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Abstract

The fixed-point theory of computation can express a variety of
recursive data types, including lazy types, conventional first-order
(strict) types, mutually recursive types, and types with equational
constraints. Lazy types contain infinite objects, regarded as the
limit of a chain of finite objects. Structural induction for all these
types follows from fixed-point induction, though induction for lazy

types is only sound for a certain class of formulas.

The paper presents the derivation of structural induction for
each type, and justifies the necessary axioms by furnishing models
for them. It presents example type definitions of lazy lists, strict
lists, syntax tre\es for expressions, and finite sets. Strict data types
' are proved to be flat in their partial ordering. Primitive recursion
operators are introduced for each type,, providing theoretical

insights as well as a concise notation for defining total functions.

The research was done using LCF, an interactive theorem-
prover for the fixed-point theory. The paper documents the theory
of LCF data types, and surveys several LCF proofs involving struc-
tural induction. In order to be self-contained, it makes little refer-
ence to LCF details and includes a summary of the fixed-point

theory.
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1. Introduction

Many computer scientists are aware of the fixed-point theory of computa-
tion, due to its importance in denotational semantics [22]. The theory is also
good for reasoning about lazy evaluation, unbounded computation, partial
functions, and higher-order functions. Unfortunately it remains obscure to
most people, both in its foundations and in its relation to the more familiar

first-order logic and set theory.

This paper summarizes experience with LCF (Logic for Computable Func-
tions), a theorem-prover for the fixed-point theory. It does not try to motivate
the logic:itself, but shows how to define data types that allow structural induc-
tion [4].

In studying data structures, it is important to abstract away from what
particular programming languages provide. The Cartesian product and
. discriminated union are fundamental data structuring operators. Making this
idea more formal, Burstall and Goguen [5] define abstract types as word alge-
bras or initial algebras. This paper considers types of that general form: all
values are composed from a set of constructors, each with a given arity (for-
mal parameter list). This includes common types such as lists and the natural
numbers; in addition it includes iazy types such as infinite streams. It does
not include function types. The fixed-point theory allows them, but apparently

without any form of structural induction.

Boyer and Moore's theorem prover [2] accepts data structure definitions,
introducing constructors and preparing a structural induction rule. All induc-
tion rules appeal to a general principle of well-founded induction. It has
proved many difficult theorems, including the unique factorization of natural

numbers into primes.



2 ' Structural Induction in LCF

The LCF proof assistant {11,18] provides several packages for defining data
types for structural induction. All induction rules appeal to fixed-point induc-
tion. LCF allows well-founded induction on similar logical foundations as Boyer
and Moore, using natural number induction. A subsequent paper will deal with
this complex topic.

This paper surveys the topic of inductive data types, presenting old and
new results in a uniform framework z;nd pointing out trouble spots. It tries to
bridge the gap between the theory of types and the practice of using them.

The remaining sections discuss

(2)  the elements of fized-point theory,

(8)  lazy structures such as infinite iists, the basic Scott derivation [20];
(4)  strict data structures such as finite lists;

(5) mutually recursive structures, such as abstract syntax trees for
‘expressions;

(8) structures satisfying equational constraints, such as finite sets;

(7)  proving that a strict data type is flat;

(8) models for lazy structures, strict structures, and structures with both
lazy and strict constructors;

(9)  defining functions by primitive recursion;

(10) experience in LCF research projects involving the implementation and
use of structural induction.

The exposition is semi-formal. I have not written down the general case of

n constructors with their arities, to avoid complex subscripting; the general

case should be apparent from the examples. The paper is based on experience

with proofs in LCF, but avoids mentioning LCF’s commands or implementation.

It does require some familiarity with fixed-point theory [1,14].

2. Flements of Fixed-Point Theory

This section is a brief summary of LCF's logic, PPLAMBDA [19]. PPLAMBDA
evolved from an early logic of Scott [20], which Igarashi [13] extended to the
full predicate calculus. Bird [1] and Manna [14] explain the theory of partial

orderings, continuous functions, and fixed points.

PPLAMBDA is a natural deduction logic, with conventional rules for intro-
ducing and eliminating connectives [14]. A formula represents a logical sen-

tence, while a term represents a computable value.
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2.1. Types and continuous partial orderings
PPLAMBDA is a typed logic; every term has a type. If a and 8 are types,
then other types include |
the function type a-p of continuous functions from « to g;
the Cartesian product type axg of pairs of elements from a and g,
the primitive type tr of the truth values.

You may introduce new types; for example, a later section will define the
type (a)list for lists with elements of type a. The notation ¢:a states that the
term ¢ belongs to the type a. An operator such as -, X, or list, which builds a
. type from other types, is called a type operator.

Every type includes the value L (bottom), representing the result of a non-

terminating computation. This induces a continuous partial ordering (cpo) on

terms, written £ Cu and pronounced ‘'t approximatesu.’ Axioms include

lcz . (minimality of 1)
rCx (reflexivity)
TCYNYCz => =y . (anti-symmetry)
TCYNYCz => z2C2 (transitivity)

Strictly speaking, the expression ''L" is ambiguous; we should always write
down the type, "L:a”. However, the types can generally be inferred from the
context. LCF performs this automatically, using Milner's type inference algo-
rithm [9].

For logics involving undefined elements, “'equivalence’ refers to the equal-
ity predicate, where L=1 is a true formula. The word "‘equality’’ is reserved for
" the computable equality function, where 1=1 is a term whose value is L. The

axioms imply several lemmas involving equivalence:

r=x (reflexivity)
r=y = y=z (symmetry)
TEYANY =2z = =2 (transitivity) .

2.2. Truth values
The type tr includes three distinct truth values: L (bottom), 7T (true), and
FF (false). Axioms are
Yo:tr .p=lvp=TTVvp=FF (case analysis)
TT¢FFAFFZ TTATTCLAFFZL (distinctness)

Note: The cases axiom for truth-values implies that every truth-value is
either defined or undefined. To intuitionists [10] this is an unacceptable

instance of the excluded middle, implying that the halting problem is
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decidable. The strong connections between computing and constructive logic

[17] indicate the need for a constructive theory of computable functions.

2.3. Cartesian products

The axioms for Cartesian products state that every element, including 1,
can be uniquely expressed as a pair. For types a and B, the functions
FST:(axB)-»a and SND:(axf)-p select components of pairs.

Vazy:axB.(FST 2y, SND zy) = zy

FST(z,y) x
SND(zy) = ¥

[l

i

2.4. Functions

Functions may be written in lambda notation. If the variable 2 has type a,
and the term t has type B, then the term Az.t has type a-»f. Beta-conversion
is an axiom scheme. For a variable z, and terms ¢ and «, where x and « have
the same type, let ¢[w/z] denote the term that results from substituting of ©
for x in‘t. renaming bound variables of £ to avoid clashes. For every z, £, and

«, PPLAMBDA includes the axiom
(Az.t)u = t[u/z] (beta-conversion)
All functions are monotonic and continuous. The partial ordering on a

function type is defined using the ordering on the range of the function, using

the axiorns

zCy = fzcfy (monotonicity)
(Ve.fzcgz) <> fCg (extensionality)

Lemmas about functions include:

(Ve.fr=gz) = f=¢g (extensionality)
Azl = 1 (undefined function)
Ae.fz = f (eta-conversion)

Every function f has a least fixed point FIX f. For every type «,

FIX:(a~»a)~a is itself a continuous function in the logic, satisfying the axiom
FIX f = f(FIX )

The Fixed-Point Theorem (Kleene) states that FIX is the limit (least upper

bound) of a chain of functions:

FIX f

il

Umil; fL F(fL); -
iiqloif“li

fll
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2.5. Fixed-point induction

/

The fundamental induction rule of PPLAMBDA is fixed-point induction:

P(l) Yf.P(f)=>P(fun [)
P(FIX fun)

Jor chain-complete P

Fixed-point induction on a variable f and formula P(f) is sound whenever
P is chain-complete with respect to f. For any ascending chain of values
9192 - .., if P(g;) holds for every i, then P(g) must hold for the limit, g. The
premises imply that P holds for every member of the chain L, funl,
fun(funl), ---. By chain-completeness, P holds for the limit, which is
FIX fun,

Unfortunately chain-completeness is a semantic property, while conduct-
ing a formal proof using inference rules is a syntactic operation. In Scott's
basic logic [20], the only formulas are conjunctions of inequivalences, which
are always chain-complete. PPLAMBDA is a full predicate logic; a formula con-
taining implication, negation, existential quantifiers, or predicates may not be
chain-complete [1,13].

Both the Edinburgh [11] and Cambridge [19] implementations of LCF res-
trict fixed-point induction to formulas that satisfy a syntactic test that guaran-
teés chain-completeness. Each test is too complex to describe in less than a
page, yet neither accepts all the chain-complete formulas that come up in
practice. Section 5, on mutual structural induction, presents such a formula.
Thus current implementations of fixed-point induction are overly complex and
insufficiently general. A possible solution would be to express and prove

' chain-completeness within the logic.

Chain-completeness matters even if you never use fixed-point induction
directly. LCF derives structural induction from fixed-point induction. Struc-

tural induction on lazy types is only sound for chain-complete formulas.

2.6. Sets and flat types
The type tr may be thought of as the set {TT,FF} of truth values, with L

adjoined. Other sets, such as the natural numbers 10,1,2,3, -+ {, can be taken
as primitive types by adjoining L. Such types have no partially defined ele-
ments: if z Cy, then either x=1 or x=y. Any type with this fundamental pro-

perty is called flaf, as diagrams of the partial orderings illustrate:
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TT FF 0123

%

L L

The types axf and a-f are rarely flat, even if o and g are. For instance,'

trxtr contains the partially defined element (L,TT), where

(LL)e(, TT)<(TT, TT).

Infinite types such as functions and lazy lists have a complex partial order-
ing.

You can perform conventional reasoning about sets in PPLAMBDA by using
only flat types. Section 8 presents sum and product type operators that
preserve flatness; section 7 proves that strict type opefators, such as list,

preserve flatness. Flat types have two important advantages:

. Structural induction over a flat type is sound for any formula. Since all
chains are trivial, every formula is chain-complete,

. The equality function is total only on flat types. It is impossible to decide
in finite time whether two infinite lists are equal; this intuition can be
made rigorous. Any reasonable equality test must report that y=y is TT,
if ¥ is defined. Then for any z that approximates y, monotonicity implies
(z=y)c(y=y). Thus 2=y can only be L or TT, never FF. This poses no

problem in flat types, where z can only be L ory.

2.7. Shorthand for defined quantification

Formulas involving flat types often involve quantification over defined
values only. In this paper, such formulas are written with the help of abbrevia-
tions.

The formula V, . P means the same as Vz.z#L => P, and may be read, "'P
holds for all defined z." Several variables may be quantified; for instance, ¥
p £ Y.P means the same as ¥, . , y. P.

The formula 3, z.P means the same as Jr.z#.AP, and may be read, "'P
holds for some defined z." For several variables, 3, z y.P means the same as
FHz FHy P

Unfortunately, current LCF implementations do, not provide these

quantifiers.
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3. Lazy Data Types
Suppose we have a type a, with elements z,,...,2,, and would like to
define lists over «. It is natural to introduce the constructors NII for the

empty list, and CONS for adding an element to alist. Typical lists are

NIL .
CONS z(CONS z NIL)
CONS z,(CONS z,(CONS x4 NIL))

These are all finitely constructed. Induction on a type containing only
finite objects is well understood, since it is only a slight generalization of tradi-
tional "“mathematical induction’’ on numbers. Unfortunately the discussion of
induction rules cannot begin with this easy case. The fixed-point theory is
more amenable to defining lazy data types, which contain infinite and partially

defined objects in addition to the usual finite ones.

3.1. Lazy lists
The example for this section is lazy lists, similar to those of the program-
ming language KRC [23]. The constructors for lazy lists ax;e, for any type a,
LNIL : (o)list
LCONS : &~ (a)llist -»(a)llist
The type (a)llist includes finite lists like the ones above, with no require-
ment that the elements z; be defined. There are also infinite lists, informally

written as

U, = LCONS z(LCONS z,(LCONS z4- - -))

The ** - - - " indicates that Il,, is the limit (least upper bound) of a chain of

finite lists ending with L:

llo = |
I, = LCONS z, L
ll, = LCONS z,(LCONS z,1)

lly = LCONS z,(LCONS z5(LCONS z41))

i

Though mathematical induction concerns only finite objects, the lazy

induction rule for (a)llist is sound even for infinite lists:

P(L)
P(LNIL)
Ve IL. P(Il) = P(LCONS z II)

ViL . P(lL) Jor chain-complete P
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For a lazy list of finite construction, the conclusion P holds by a finite
number of applications of the L, LNIL, and LCONS premisses. Thus P holds for
the chain llg,lly,ll,, - - - ; by chain-completeness, P holds for their limit Uil... So

P is true for both finite and infinite lazy lists.

3.2. Axioms

Induction proves a property for every element of a type. This is only possi-
ble if the elements of the type are sufficiently restricted. The cases axiom

states that lazy lists are built only from the constructors 1, LNIL, and LCONS :

= Liv
ViL: (o) Ulist L = LNILv
- 3z W.Ul = LCONS z I

Asserting that any infinite list is the limit of a chain of finite lists requires a

copying functional, defined by cases on the three forms of list:

LLIST_FUN f L =1
. LLIST_FUN fLNIL LNIL
LLIST_FUN f(LCONS z Il) = LCONS =z(f lL)

il

Write the function FIX LLIST_FUN as COPY. The definition of FIX implies
COPY=LLIST_FUN COPY; expanding the above clauses gives
COPY L = |

COPY LNIL LNIL
COPY (LCONS z UL) LCONS z(COPY L)

i

i

This suggests that COPY recursively copies its argument, and should be

the identity function for lazy lists. The reachabilily axiom asserts this:

FIX LLIST_ FUN Il = U

Note that FIX LLIST_FUN is the limit, for n -2, of LLIST_FUN™L, and that
LLIST_FUN™LU, = U,.

An infinite list such as Ill,, because it equals FIX LLIST.FUN li,, is the
limit of the finite lists lolly,lly - -+ . This is the desired interpretation of
infinite structures — they do not exist in their entirety, but may be approxi-
mated to any finite degree.n Obviously, the operator llist does not create flat

types!
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3.3. Derivation of induction

Most LCF proofs proceed backwards. The statement to be proved, called
the goal, is reduced using inference rules to simpler and simpler subgoals. The
following derivation shows how to reduce the conclusion of the lazy induction
" rule to its premisses, ‘

Suppose that the property P(ll) is chain-complete for lazy lists I, and that

we would like to prove
Vil :(a)llist . P(LL).
By the reachability axiom, it is enough to show

Vil . P(FIX LLIST_FUN UL)

The next step, fixed-point induction, requires proving that Vi P(f U) is
chain-complete in f. Suppose f is the limit of a chain of functions
Sof 1Sz -, and that VIl.P(f,, Il) holds for all natural numbers n. It suffices
to show P(f U') for every IlI'. By continuity of function application, the chain
of lazy lists foll', f W', foll', - - - has the limit f II'. Since P(f, ') holds for
all », and P(il) is chain-complete in UL, the limit P(f II') holds.

Now fixed-point induction gives the two subgoals

VIL. P(L L) ' (L case)

(VIL.P(f UW)) => (VL. P(LLIST_FUN f Il)) (step case)

The L case reduces to .showing P(1), which is the L premiss of the lazy
induction rule being derived. To prove the step case, assume the antecedent

.Vll.P(f IL), and try to prove
Vil . P(LLIST_FUN f IL).

The cases axiom breaks this into three goals, depending on whether Ul is L,
LNIL, or some LCONS:

P(LLIST_FUN f 1)
P(LLIST_FUN f LNIL)
P(LLIST_FUN f (LCONS =z WI'))

Expanding out the definition of LLIST_FUN simplifies these to

P(L)
P(LNIL)
P(LCONS z(f I'))
The L and LNIL cases have been reduced to the desired form for the lazy
induction rule, but the LCONS case needs more work. Appeal to the
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assumption VIL.P(f IL), which was set aside earlier. In particular P(f U') is
true; making this explicit gives the goal
P(f W) => P(LCONS z(f I'))
Since we know nothing ébout the function f, we might as well remove it

from the goal. The term f Il', which appears twice, denotes some la'zy list.

Writing Ul for f Ul', it suffices to prove the more general goal
Vz Il . P(il) = P(LCONS z 1)

which is the LCONS premiss of the lazy induction rule.

3.4. Discussion

Lazy induction dates back to Scott [20], but has never been published in
this simple form. One refinement is the cases axiom using disjunction and
existential quantifiers. The conventional approach requires a discriminator
function LNULL, satisfying

INULL L =1
LNULL LNIL = TT
LNULL(LCONS =z ll) = FF

In the derivation of‘ induction, this replaces the appeal to the list cases
axiom by an appeal to the truth-values cases axiom: consider whether
LNULL Il returns 1, TT, or FF. The conventional definition of LLIST_FUN is a
conditional expression that tests its argument using LNULL, and takes it apart
using destructor functions LHEAD and LTAIL. Expanding a call to LLIST_FUN
requires reasoning abouf LNULL, LHEAD, LTAIL, and conditionals.

As Burstall [4] argued long ago, discriminator and destructor functions add
needless complexity. The cases axiom is simpler than using a discriminator
function, and generalizes naturally to larger structures. Milner's data type of
trees [8] can be described with the cases axiom

t = 1lv
, t TIPv
Viitreel 305 t,.t = UNARY op £V
Jop t ty.t = BINARY op t, &,

m

il

The conventional method requires at least two discriminator functions,
IS_TIP and IS_UNARY; uniformity suggests providing also IS_BINARY.

For an example proof using induction, consider a function to append two

lazy lists:
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LAPPEND 1 U,
LAPPEND LNIL Il
LAPPEND(LCONS =z UL,) il

n

1l
LNIL
LCONS z(LAPPEND I, lL,)

mom

It is easy to prove that LAPPEND is associative, by induction on-ll, in
LAPPEND(LAPPEND Ly WLp)lly = LAPPEND WL,(LAPPEND U, lL,)

This formula is chain-complete because it is an equivalence.
As yet there is little experience with infinite data structures. Few
theorems have been proved, though Turner [23] and Burge [3] present many

programming examples.

4. Strict Data Types .
Lazy data types contain infinite objects that are not always wanted. Many
simple properties hold only for finite objects. For example, it is straightfor-

~ ward to prove that reversing a finite list twice has no effect,

REVERSE(REVERSE 1) = L.

The analgous statement for lazy lists is false [6]; reversing an infinite list
results in L. In their parser proof Cohn and Milner [8] construct a lazy type for
parse trees, then use predicates to restrict their theorems to finite trees not
containing L. This proof would be simpler with a type containing only finite

objects.

4.1. Finite lists

The example for this section will be the type of ordinary finite lists. Its
" constructors are

NIL : (a)list

CONS : o= (a)list »(a)list
To exclude partially defined lists, supply axioms stating that the construc-

tors are strict:
CONS Ll = 1
CONSzl = 1
Formulate the cases axiom to avoid overlap between the cases. To be cer-
tain that the CONS z | case is distinct from the L case requires considering

only defined z and {, whic‘h the quantifer 3, concisely handles:
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i

l lv
l NILv
Gpzl'.l = CONS z U

W:(a)list

fm

The reachability axiom states that any infinite list is the least upper bound
of partially defined lists. Since there are no partially defined lists, there are no
infinite lists either. As for lazy lists, the axiom requires a copying functional:

LIST_FUN f L =1

LIST_FUN f NIL = NIL
Y,z l. LIST_FUN f(CONS z 1) = CONS z(f 1)

i

In the CONS case, the assertions that 2 and ! are defined are essential to
avoid contradicting the L case. Put TT for z, put 1 for L, and put Al'.NIL for f;

the potential contradiction is

LIST_FUN f(CONS z L) = LIST_-FUN f L
CONS TT((N\U.NIL)) = 1
CONS TT NIL = L.

f

Il

To avoid such contradictions, always insist that # and I be defined when-
ever talking about CONS z L. This corresponds to the intuition that if a list is

finitely constructed, then so are its parts.

4.2. Derivation of induction

In view of the above, the CONS premiss of induction should include the
assumptions that z and | are defined. The desired rule is '
P()
‘ P(NIL)
Y,z l.P(l)=> P(CONS z 1)
VI.P(l)

Induction over finite lists is sound for any formula, but the formal deriva-
tion requires that P(l) be chain-complete. Section 7, on flatness, shows how to
prove that the type operator list preserves flatness. If a is flat, then all chains

in (a)list are trivial, so every formula about strict lists is chain-complete.
The derivation of induction follows that for lazy lists. The first difference

arises in the CONS case, in the goal

z#l = U'#l => P(f ') => P(CONS z(f I')).

The next step is to replace f I' by the new variable I. The assertion l'#l
must be discarded. If f I'#L could be proved, that would become L #1 after the
substitution, giving the CONS premiss for list induction. Unfortunately there

is no way to prove this, since we know nothing about the function f. The
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resulting goal is

x#l => P(l) = P(CONS z l).

H

To strengthen this requires an ugly step. By the excluded middle, either
l=lL or l#L. If l=1l, then P(CONS z L) follows from P(l) and strictness of
CONS. If L#L, then the goal reaches the proper form:

z#l => Ll = P(l) = P(CONS =z ).

Note: The connective = associates to the right; 4 = B = C means
A = (B => C). Such a formula is like a curried function [17], which can be
“‘applied" first to 4, then to B.

4.3. Totality of functions producing lists

Strict proofs require careful treatment of termination. Consider the list
append function:

APPEND 1 1, =1
APPEND NIL 1, = NIL
Y,z l. APPEND(CONS =z 1) l; = CONS z(APPEND I L)

Here we could omit the assertions that 2 and I are defined, since the right
side of the CONS clause collapses to L if either 2 or | is undefined. But other

common functions, like MAP below, require the assertions.

The assertions complicate proofs. Consider the associative law for

APPEND; there is no way to prove the obvious formulation

APPEND(APPEND 1, L)ly = APPEND L,(APPEND L, Ly)

Induct on ly. After a few manipulations, the CONS goal becomes

APPEND(CONS z(APPEND L L))y = CONS z(APPEND L(APPEND L L3))

Here we are stuck — there is no way to expand the leftmost APPEND
before proving that APPEND I l; is defined. Although the induction rule states
that ! is defined, there is no assumption about I,. We must start over, proving

the weaker and uglier statement

Lo#L => APPEND(APPEND Ly ly)lg = APPEND L,(APPEND Iy l3)

Beforehand we must prove that APPEND is a total function:
Volily . APPEND Ly l#1

This is a trivial induction on !;, but requires axioms stating that N/L and

CONS' construct defined lists:
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NIL#L
V,21.CONS z L#£L

When working with strict data types, it is a good idea to prove that any
functions you introduce are total. Consider the functional that applies a func-
tion to every element of a list:

MAP [ 1 =1

MAP f NIL NIL
Y,z 1. MAP f(CONS z 1) = CONS(f z)(MAP f L)

Il

It is meaningless to say that a functional is total; however MAP preserves
totality. If f is a total function, then so is MAP f. The proof is a simple induc-

tionon l:

(pz.fx2l) =Vl . MAP [ L1

To summarize the difficulties of proving theorems about strict data types:
Before expanding a function definition, you must prove that the function's
arguments are defined. If these arguments are the results of other functions,
then you must prove that these functions are total. If these arguments are

simply variables, then you must assume that the variables are defined.

Definedness conditions tend to accumulate; many theorems hold only when
all free variables are assumed to be defined. In this situation it is inconvenient
to have L in the logic. If all of your functions are total, a logic based on con-

ventional set theory would be more appropriate than PPLAMBDA.

5. Mutually Recursive Types

Several data types are mutually recursive if an element of one type may
contain elements of the others. Abstract syntax érees for a programming
language are often mutually recursive. For instance, a declaration may be
part of a block, and a block may be. part of a procedure, which may be part of
a declaration. A variable may be part of an expression, and an expression may
be part of a (subscripted) variable. Abstract syntax trees appear in both com-

pilers and proofs.

5.1. Expression trees

The example data type for this section contains trees representing expres-
sions like z or f[z;y] or f[glz]g[y]]. For simplicity the constructors will be
lazy, allowing expressions such as f[L;y] and g{glg[ - - - ]]]. The strict deriva-
tion is similar; add strictness axioms and put definedness assertions before

uses of the constructors.
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An expression is either a variable or a function applied to a list of expres-
sions. This requires two mutually recursive types, exp for expressions and
elist for expression lists. Suppose that we have a type var of variable symbols,

and a type fun of function symbols. The constructors for type exp are

VAR : var-exp
APPL : fun+»elist »exp

and for the type elist,

ENIL : elist
ECONS : exp-elist »elist’
Why not use an existing list type to define expression lists? Then APPL
would have the type fun - (exp)llist »exp. The derivation of induction does not
work for type definitions with recursion involving another type operator such

as llist. -

After defining the types exp and elist, you can easily prove that elist and
(exzp)llist are isormorphic. Provide a _function FEXPLL to copy any elist as an
(exp)llist, and a function ELIST to copy any (exp)llist as an elist. Prove by

induction that the two functions are isomorphisms:

Vel:elist . ELIST(EXPLL el)=el
ViL:(exp )llist . EXPLL(ELIST )=l

Then use EXPLL and ELIST to convert between the types (exp)llist and elist
as necessary. We can expect future theorem-provers to hide this routine con-

struction.

5.2. An aside: local declarations

Here is a technique for presenting the axioms of mutual recursion in a
readable form. Suppose that t is a complex term that appears in several
places in the formula P(t). As an informal shorthand, you might choose a new
variable z, and write, ""let z=t in P(z).” Formally, it is straightforward to

prove that P(t) is logically equivalent to the formula -

Vz.x=t => P(z).

Now suppose that the type of ¢ is axf; in other words, t denotes some pair.
If the variables z:a and y:8 do not appear anywhere in P(t), then, because
(F'STt, SND t)=t, the following formulas are logically equivalent:
P(t)

P(FSTt, SNDt)
Ve y.(zy)=st = P(z,y)
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In words, “let (z,y)=t in P(z,y)."" Writing (z,y) on the left side of a
declaration avoids writing numerous FSTs and SNDs in the body of P. This
idea has been successful in programming languages. Many implementations of
Lisp provide the *‘destructuring let;"” LCF's meta-language ML [11] allows the
binding of *‘varstructs." Note the similarity to defining functions by cases to
avoid writing NULL, HEAD, and TAIL.. Unfortunately, the use of implication

causes problems later on.

5.3. Mutual induction

For a set of mutually recursive types, induction simultaneously proves a
property of each type. If P(e) is a proposition for expressions, and PL(el) is

one for expression lists, then the induction rule is

P(l)
Vo . P(VAR v)
Vfn el. PL(el) = P(APPL fnel)
‘ PL(L)
PL(ENIL)
Ve el. P(e) => PL(el) = PL(ECONS e _el)
Ve.P(e) Vel. PL(el)

Jor chain-complete P, PL

Each mutually recursive type has a separate cases axiom:

e = lv
Ve :exp Jv.e = VAR vv
dfnel.e = APPL fnel
el = Lv
Vel.elist el = ENILv
Jx el'.'el = FECONS e el

A single copying functional intertwines the recursive types. For expres-
sions, it maps pairs of functions to pairs of functions, defining copying func-

tions for exp and elist simultaneously:

gl = I

g (VAR v) = VAR vA

g(APPL fnel) = APPL fn(flel)A
(9.9!) = EXP-FUN(f, ) => | gy | — I

gl ENIL = ENILA

gL(ECONS e el) = ECONS(f e)(flel)

The reachability axiom states that the fixed-point of EXP_FUN is a pair of

identity functions:

(g,9l)=FIX EXP_FUN => (g e=eAgl el=el)
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The derivation of the mutual induction rule is similar to that for lazy lists,

and should not require detailed commentary. The initial goal:
Ve.P(e )~Vel. PL(el)
Using the axiom of reachability:
Vg gl .(9,9l)=FIX EXP_FUN => (Ve.P(g e )AVel. PL(gl el))

Fixed-point induction produces two’ goals, with ggl as the induction variable.

However, see the later note concerning chain-completeness:

Vg gt .(g,9l)=L => (Ve.P(g e)AVel. PL(gl el))

(Vg gl .(g9.90)=ggl => (Ve.P(g e)AVel. PL(gl el))) =
Vg gl .(9,9l)=EXP_FUN ggl =>
Ve.P(g e)AVel.PL(gl el)
The L goal reduces to the P(L) and PL(L) premisses. The step goal, after speci-
alizing g, gl as f,/1 in the antecedent, and substituting for ggl, becomes .
(Ve.P(f e )AVel. PL(fl el)) =
V9 gl.(9.9L)=EXP_FUN(f f1) =
Ve.P(g e )nVel.PL(gl el) _
Putting aside the antecedents, and considering the separate cases for e and
el: A
P(gl)
P(g (VAR v))
P(g (APPL fn el))
PL(gll)

PL(gl ENIL)
PL(glL(ECONS e el))

Substitution in these six goals, using the definition of EXP_FUN:

P(l)
P(VAR v)
P(APPL fn(f et))
PL(1)
PL(ENIL)
PL(ECONS(f e)(flel))
Only the APPL and ECONS goals need further work. I leave the rest to
.you; formulate the induction hypotheses P(e) and P(el) using the same argu-

ment as for lazy lists.

5.4. Whoops! |

There is a nasty problem with the use of fixed-point induction above. The

induction formula is chain-complete if P and PL are, but violates most
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proposed syntactic tests for chain-completeness [11,18,198]. The induction
term FIX EXP_FUN appears inside an equivalence in a negative position, the

antecedent of an implication. Such formulas are rarely chain-complete.

We can salvage the derivation by extending the chain-completeness test to
recognize the use of implications as declarations. But the test already handles
a baroque combination of special cases. Or we can recast everything to use

FST and SND, with induction on the chain-complete formula

Ve . P(FST(FIX EXP_FUN)e )AVel . PL(SND(FIX EXP_FUN)el).

The rest of the derivation of induction follows the one above. The FSTs and
SNDs render the definition of EXP_FUN unreadable, with clauses such as

FST(EXP_FUN ffl)(APPL fnel) = APPL fn(SND ffl el)
Clearly we need a better way to establish chain-completeness.

6. Types with Equational Constraints

The data types presented so far have all been word algebras [5]; any struc-
ture can be uniquely decomposed. In computing there are many examples of
types that satisfy equational constraints, such as commutative and associative

laws. PPLAMBDA can express such types, and provide induction rules for them.

6.1. Finite sets

Programrﬁers often use lists whef'e finite sets are called for, so you might
imagine that lists can also replace sets in proofs. Such a mistake cost me
several months of work. Lists d.o not enjoy the algebraic laws that hold for the
union and intersection of sets. It is true that the APPEND of lists resembles
union, but APPEND is not commutative. A trivial proof about sets can become
a long and tedious proof about lists.

The connection between lists and sets is more subtle. As the type («)list
has constructors NIL and CONS, the type (a)set has constructors

EMPTY : (o)set
INCLUDE : a-(a)set +(a)set,

Here EMPTY denotes the empty set ¢, while INCLUDE z s denotes the set
{r}s. Sets satisfy two equations, stating that the multiplicity and order of

elements is irrelevant:

INCLUDE #(INCLUDE z s) = INCLUDE = s
INCLUDE «(INCLUDE y s) = INCLUDE y(INCLUDE z s)

It
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Note: Equational constraints are only allowed on strict types. Ther;e is no
way to form equivalence classes of infinite objects; lazy sets make no computa-

tional sense.

6.2. Axioms

Sets are finitely constructed; induction should be possible. But we cannot
derive induction in the usual way. If we try to turn lists intp sets by adding
equations, a contradiction arises in the definition of the copying functional, as

in section 4. The assertion
CONS z(CONS z L) = CONS z I,

along with the definition of LIST_FUN, implies

LIST-FUN f (CONS TT(CONS TT NIL)) = LIST_FUN f (CONS TT NIL)
CONS TT(f (CONS TT NIL)) = CONS TT(f NIL)

Putting LIST_FUN (Ay.L) for f gives:

CONS TT(CONS TT 1)
- 1

CONS TT NIL
CONS TT NIL

mom

We can retain consistency by insulating the copying: functional from the
equations. This example' will use the existing type (a)list, with its copying
functional and induction rule, and impose equations on elements of type
(a)set. Lists will be regarded as abstract syntax trees for sets. In the general

case, you have to define two types: one with equations and one without.
To convert between lists and sets we introduce two functions:
SET : (a)list »(a)set
LIST : (a)set »(a)list
The functijon SET takes a list z4,...,z, of elements, and constructs the set"
containing them:

SET L =] ,
SET NIL = FMPTY
Yozl. SET(CONS z 1) = INCLUDE x(SET L)

The function LIST converts any finite set s to the list of its elements,

Zy,....T,, in arbitrary order. The denotation axiom asserts that this list is

correct; applying SET to it produces the original set s again:

Vs:(a)set . SET(LIST s) = s

Consider the relation =; on lists, where [l;=,1, exactly when

SET L,=SET ly. The type (a)set is isomorphic to equivalence classes of (a)list
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over =,. We do not assert the dual statement LIST(SET L)=L; this would force
SET to preserve the structure of its argument, making (a)set isomorphic to
(a)list . '

Since INCLUDE is strict, we need axioms of strictness and definedness:

INCLUDE L1l = 1
INCLUDE z 1 = L

EMPTY#L
Y,z l.INCLUDE = L#1

Clearly SET is a total function, by induction on lists. This will be needed
Jater. Remember the advice from section 4 — you often must reason about

totality when working with strict types.

Is it reasonable to postulate the function LIST, which can enumerate the
elements of any set? Yes, if the element type a is a simple type such as’the
integers; sets of integers may be implemented on a computer as sorted lists.
No, if a is a function type. In previous LCF studies, I have allowed sets only if
the type « is flat. Better still, there should be some computable total ordering
on «. Unfortunately, PPLAMBDA does not handle type conditions gracefully.

-

6.3. Derivation of induction
The induction rule for finite sets is derived from ghe one for strict lists:

P(l)
P(EMPTY)
V,z s.P(s) = P(INCLUDE z s)
Vs.P(s)

Suppose that «a is a flat type, and that we would like to prove

Vs :(a)set . P(s).

By the denotation axiom, it is enough to show
Vs . P(SET(LIST s)).
This reduqes to a more general goal about lists:
V.. P(SET 1)

The type (a)list is flat. Thus P(SET l) is chain-complete in I; list induction
produces the three goals

P(SET L)
P(SET NIL)
Vox L. P(SETL) => P(SET(CONS z L))
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Expanding with the definition of SET gives

P(L)
P(EMPTY)
Y,z L.P(SET L) => P(INCLUDE = (SET1))

The L and EMPTY goals are now in proper form for the induction rule; the
INCLUDE goal needs a little more massaging. Using totality of SET ‘on the

assumption [£L gives

Vyz L.SET L#l => P(SET 1) => P(INCLUDE z(SET 1))

Now every occurrence of the list variable ! has the form SET I, which is

some defined set. It suflices to prdve
V,z s.P(s) = P(INCLUDE = s).

This is the proper form of the INCLUDE premiss of set induction; the deriva-

tion is complete.

6.4. Defining functions on sets

This paper defines functions such as APPEND, LLIST _FUN, and SET, in a
clausal style, by cases on the possible forms of input. This has the advantage
of not requii'ing discriminator and destructor functions. The risk is that over-

lapping clauses may contradict each other.

Equations increase this risk. Any function on sets must be consistent with
the set equations. Consider the definition of UNION, which resembles that of
APPEND. 1t is consistent because it handles the INCLUDE case using

INCLUDE itself. ‘
UNION L s, =1

UNION EMPTY s, = EMPTY
V,zs. UNION(INCLUDE z s) sy = INCLUDE z(UNION s s)

A subtler example is the membership test, which requires a infix function

OR on truth values:

OrR | L TT FF
L1 1L 1
T | L TT TT
FF 1L TT FF

To test whether 2z is a member of the set s, compare z with each element

of s:
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MEMBER z L =1
MEMBER z EMPTY = FF
Y, zs. MEMBER z(INCLUDE z s) = (z=xz)OR(MEMBER z s)

The definition is consistent because it handles the INCLUDE case using the

function include y, defined as
includey z r = (z2=x)ORr,

which satisfies the same equations as INCLUDE. Section 8, on primitive recur-

sion, make this idea more precise.

7. TFlatness of Strict Types

Lazy data types have a much richer structure than strict ones. Consider
lists of zeros and ones. Because strict lists have finite length, they can be
embedded into the natural numbers using binary notation. So there are only
countably many strict lists of zeros and ones. There are uncountably many
lazy lists, since any real number between zero and one generates a distinct

lazy list: its infinite binary expansion.

A flat type is one without partially defined elements. There are many par-
tially defined lazy lists, such as LCONS z L. There are no partially defined
strict lists; CONS z L is (completely) undefined. The type (a)list is flat when-

ever a is, and this can be proved within the logic.

7.1. Axioms

To prove that a strict type operator like list preserves flatness requires
axioms stating that values of the type can be uniquely decomposed. The vari-

ous constructors must be distinct:
Yoz L. NIL£CONS z |
and invertible:.
Yoz, lyzsly. CONS 2y LyCCONS x5ly = z,C2nCly
If you introduce the discriminator and destructor functions NULL, HEAD,

and TAIL', then distinctness of NIL and CONS follows from thé distinctness of
TT and FF, and invertibility follows from the monotonicity of HEAD and TAIL.

Distinctness is false for data types that satisfy equations among the con-
structors. The proof of flatness does not require distinctness, but only a

weaker consequence called mazximality:

NILcl = L=NIL -
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Vi)xl ll.CONS x,y lICl == BD Zo lzlECONS Zo lz

7.2. Proof for strict lists

Define the type predicate FLAT as

FLAT(a) <> Vzy:a.zCy = l=xvz=y

The type (a)list can only be flat if the element type a is, for if z:a were
partially defined, then so would be CONS z NIL. The desired theorem is

FLAT (o) => FLAT ((o)list)

Assuming FLAT(a), it is enough to show

Vl1 lz'((X)l’iSt . llglz = J.ELIVLIELZ

-

This formula is chain-complete in 1, since the only negative occurrence of
l, is on the left side of an inequivalence [11]. Structural induction is sound,

and produces three subgoals. The L goal is trivial:
Wiy Lcly, = L=lvil=l,
The NIL goal follows from maximality:
Vi NILCly = 1=NILVv NIL=l,

The CONS goal requires more work. (To avoid ambiguity, I have renamed the

variable l; as L5 in the induction hypothesis.)

r#EL = l#£l =
(VIz.lclg => L=lvi=lz) = (induction hypothesis)

Vlz. CONS z LCly => 1=CONS z LV CONS =z L=l

Using the assumptions that £ and | are defined and that CONS =z lcl,,
maximality provides defined z' and !' such that l,=CONS 2' I'. Substitution
gives the goal

'l = U#l =
CONS z LCCONS ' I! =
1=CONS = IvVCONS z L=CONS 2' U

Using the assumption that CONS z LCCONS z' U', invertibility irﬁplies that
zcxr' and Lcl'. Because the type a is flat and 2 Cz', either l=x or z=2'":

(1) If L=z, then the strictness of CONS implies the conclusion L=CONS = L.
(This is the only part of the proof that does not hold for lazy construc-

tors.)
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(2) If z=2', then the induction hypothesis implies that either 1=l or L=l
Again strictness solves the L case, leaving the case where z=z' and I=l'.

Substitution implies the conclusion, CONS z l=CONS z' '

This ‘completes the proof. Though presented here in English, it can be
entirely expressed using LCF tactics. You can easily extend it to mutually

recursive strict data types; prove simultaneously that all the types are flat.

7.3. Proof for finite sets

An equational type such as (a)set is flat whenever its underlying type, here

(a)list, is flat. The proof does not require induction.

-

Suppose that the type « is flat. To prove flatness of (a)set, it is enough to

show, for all sets sy and s, that
51CSp = 1l=s Vs =S,

Suppose that s,Cs,. Monotonicity implies LIST s,CLISTs,. Flatness of
lists implies that either L=LIST s, or LIST s =LIST s .

(1) "If L=LIST sy, then SET L=SET(LIST s,), implying L=s,.
(2) 1t LIST s ,=LIST s5, then SET(LIST s )=SET(LIST s ), implying s ,=s.

That's all there is to it!

8. Models of Recursive Types

The preceeding sections have introduced numerous axioms, asserting
cases, strictness, definedness, distinctness, and invertibility. These can be
proved as theorems for data types constructed from familiar primitives. (Sec-

tion 9 will justify the axiom of reachability.)

The strict data types presenteh above can be expressed as sums of pro-
ducts of themselves (if recursive) and other types. Lazy types require an addi-
tional type operator, for delaying the evaluation of arguments of lazy construc-
tors. Types need not be fully strict or fully lazy; constructors can take any

combination of strict or lazy arguments.

8.1. Sum types

If « and B are types, then every value of the sum type a®f is either L or
has the form INL z or INR y, for defined z:« and y:8. This is a coalesced sum
— the bottom element of a®f is identified with those of a and B. In other
words, INL and INE are strict constructors. The sum operator preserves

flatness, since it is a special case of the strict types of section 4. It satisfies
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cases,
Vzy:a®f . zy=Lv (3, z:a. 2y =INL 2)v( 3, y:f.2y=INR y)

and strictness,

INL1 =1
INR 1 =1

and also definedness, invertibility, and distinctness.

-

8.2. Product types

Section 2 presents one product type, the Cartesian product used to define
mutual recursion. It is superior to other products for this purpose because of

two characteristics:
(1) every element is a pair; notably, the bottom element L is the pair (L,L).
() every pair (z,) can be uniquely decomposed to yield z and y again.

The Cartesian pairing constructor (the comma) is neither lazy nor strict.
If it were lazy, then (z,y) would differ from L for all z and ¥, violating (1). If it
were strict, then (z,1) and (L,y) would equal L for all £ and ¥, violating (2).

The Cartesian product is not suited for constructing rﬁodels of data types;
the strict (coalesced) product is better. If a and g8 are types, then every ele-
ment of the strict product a®p is either L or has the form z/y, for defined z:«
and y:8. The strict product operator preserves flatness, since it is another

example of the strict types of section 4. It satisfies a cases axiom,
Yzy:a®B . zy=Llv Jyz:ay:f.2y=2/y
-and strictness axioms,
17y =1
z/l =1
Another advantage of strict over Cartesian products appears when reason-
ing about product types in non-lazy programming languages. To represent
finite lists of pairs, use the type (a®g)list; this will be flat if a and g are. The

Cartesian product, in (axg)list, will not produce a flat type.

8.3. Lifted types

Making a coﬁstructor lazy requires delaying the evaluation of the
constructor’s arguments. The domain theory models delayed evaluation as a
lifted type, consisting of a type with a new bottom element affixed. If a is a
type, then every element of the lifted type (a)u is either L or has the form
UP z, for some z:a. Note that UPL is partially defined, distinct from L. A
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lifted type is an example of a lazy data type, satisfying the cases axiom

Vuz:(c)u . uz=Llv Iz:a.uz=UP=x

8.4. The void type

The trivial type void contains only the element L. As void has no construc-
tors, it is both strict and lazy. Its cases axiom is Vz:void.z=1. This type serves

as a building block for nullary constructors such as NIL.

8.5. Defining a model in LCF

You can model a recursive type as a solution of domain equations involving
itself and the type operators above. Scott proved that such solutions exist
[2%]. The desired abstract type is defined to be isomorphic to a representing
type involving sums, products, liftings, and wvoid. For the strict list type

(a)list, the representing type is
(c)rep = (void)u @ o®(a)list

where (void)u represents NIL and a®(a)list represents CONS. Assert that

the abstract and representing types are isomorphic by declaring the functions

ABS_LIST:(a)list »(a)rep
REP_LIST:(a)rep - (a)list

and then stating

I
T

ABS_LIST(REP_LIST 1) =
REP_LIST(ABS_LIST r) =

I
h

Define the constructors as

NIL = ABS_LIST(INL(UP()))
CONS z L = ABS_LIST(INR(z/1))

Monotonicity implies that the isomorphisms are strict; strictness implies
that they are total. The properties of cases, strictness, definedness, distinct-

ness, and invertibility follow from those for sums and products.

The model for a lazy type is similar, using the lifting operator for all the

lazy arguments of constructors. For lazy lists, the representing type is
(void)u & (o)u ®((a)list)u
and the lazy version of CONS is
LCONS z Il = ABS_LLIST(INR((UPz)/ (UP)))

For mutually recursive types, set up domain equations for each type

independently of the others. The solution of these equations simultaneously
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provides models for all the types. Cartwright and Donahue [6] discuss models

of data types in greater detail.

9. Primitive Recursion and Initiality

A data type constructed from sums and products need not have an induc-
tion rule. Previous sections use a reachability axiom to exclude spurious ele-
ments that would invalidate induction. Primitive recursion is a more natural
way to obtain induction, revealing a connection between LCF data types and

initial algebras.

Primitive recursion is also a concise notation for defining functions. Gor-

don [12] and Burge [3] give many examples; a few appear below.

9.1. Lazy types

In constructive ty'pe theory [17], propositions are regarded as types; the
type of any term is a formula. Induction is a special case of definition by prim-
itive recursion. PPLAMBDA accomodates this idea. For lazy lists, defining a
function h by primitive recursion means stating what & is to compute in the
cases where its argument is LNIL or LCONS z IL; in the LCONS case, the value

may depend on both z and the recursive call h IL.

Asserting induction is equivalent to asserting that primitive recursion
defines a wumique function; any two functions that agree on LNIL and
LCONS z Ul must agree on all lazy lists. The following axiom, by virtue of the
. <> connective, asserts both existence and uniqueness of primitive recursive
functions. The primitive recursive operator, LLIST_REC, is a higher-order
' function; it combines Inil and lcons to make a function on lazy lists:
hl = INn

h=LLIST_REC(Inil lcons ) <> h LNIL il A
Vr Il .h(LCONS z ll) = lcons z(h IL)

it

i

An obvious use of primitive recursion is to concisely define functions such
as LAPPEND:

LAPPEND WLy ll; = LLIST_REC(l;,LCONS) UL,

A more surprising use of primitive recursion is to justify the odd-looking
reachability axiom. If Inil is LNIL, and lcons is LCONS, then h must satisfy
h L = |

h LNIL LNIL
h(LCONS z 1) = LCONS x(h IL)

i
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Call any function h that satisfies these equations a copier. The uniqueness
of primitive recursion implies that every copier is equivalent to
LLIST_REC(LNIL,LCONS).

As section 3 points out, the function FIX LLIST_FUN is a copier. So is the
identity function I, which for all z satisfies Jz=z. These functions are

equivalent,
FIX LLIST_FUN = I,

implying the reachability axiom.

9.2. Strict types

For strict lists, use the quantifier ¥, ; the CONS case is only considered for

defined arguments:

hl
h=LIST_REC(nil cons) <> h NIL
YV, zl.h(CONS z 1)

In
niln
cons z(hl)

i

i

[

Section 4 suggests that you always prove functions total when working with
strict types. This is easy if you define functions by primitive recursion. Prove,
by induction on !, that LIST_REC produces a total function if nil is defined
and cons is total:

(nil#£L => AV, z r.cons z r#l) =
Y, L. LIST_REC(nil ,cons)l#L

If you define MAP in terms of LIST_REC,
MAP f = LIST_REC(NIL, Az. CONS(f z)),

then MAP preserves totality because LIST_REC does. No induction is needed.

9.3. Mutually recursive types

The primitive recursion functional for the mutually recursive types exp
and elist resembles the copying functional. It defines a pair of functions

simultaneously:

(h,hl)=EXP_REC(var,appl,enil econs) <>

hl = IN
W .h(VAR v) = var N
Vfn el. h(APPL fnel) = appl fn(hlel)N
hi L = IN
hl ENIL = eniln
Ye el . hl(FECONS e el) = econs(h e)(hl el)




Primitive Recursion and Initiality : "9

Burge [3, pages 119-124] gives examples of primitive recursive functions

on mutually recursive trees and forests.

9.4. Types with equational constraints

To be consistent, primitive recursion must take account of any equations
imposed on the type. For a functional SET_REC analogous to LIST_REC, a
function defined as SET_RFEC(empty,include) will be consistent if include
satisfies the same equations as INCLUDE:

I include z (include z ) = includez rn
lVa: Y 7linclude z (include yr) = includey (includez r)
=
hl =In
h=SET_REC(empty jinclude) <> h EMPTY sempiyn

bz s .h(INCLUDE z s)=includex(h s)

We can now express the set functions UNION and MEMBER in one line

each:

UNION Sq18n

i

SET_REC(s,INCLUDE) s,

MEMBER z s = SET_REC(FF,\z r.(z2=2)0R r)

Note: Thanks to the definedness assertions before INCLUDE, the function
include need not be strict. In fact, it is legitimate to assume that z and y are
defined in the equatioﬁs. The variable r represents the result of h. A more
complex axiom for SET_REC, with assumptions that empty is defined and
include is total, would guarantee that h was total and » was defined. Such
" tedious reasoning about totality is necessary, for instance, if MEMBER uses a
conditional expression instead of the symmetric OR. LCF users often wish that

1 were not around.

9.5. Initial algebras in LCF

There is an interesting connection between primitive recursion and initial
algebras. Burstall and Goguen [5] describe an initial algebra as having two pro-

perties:

no confusion.:
Different terms get different values. This is the same as saying that primi-
tive recursive functions exist; it is consistent to specify different values
for NIL and CONS z L, for each defined z and [.

~ no junk:

Every element is the value of some term. This is the same as saying that
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primitive recursive functions are unique.

More formally, an algebra A is initial if, for any other algebra B with the
same signature (the same number and arities of operators), there is a unique
homomorphism from 4 to B. If (a)list is regarded as an algebra 4 with opera-
tors NII, and CONS, then nil and cons can be regarded as operators of the
algebra B. The unique homomorpism from A to B is simply the unique primi-

tive recursive function determined by nil and cons.

The connection also holds for data types satisfying equations. There exists
a unique homomorphism from an initial algebra 4 to any other algebra B with
tﬁe same sighature, provided that B also satisfies the equations. The prag-
matic, ad-hoc methods of this paper seem to define essentially the same data

types as the initial algebra method.

Conventional treatments of initial algebras allow only first-order (strict)
data types; emerging higher-order theories of initiality may provide an under-
standing of lazy data types. But for informal reasoning, 1 find primitive recur-

sion more natural than homomorphisms.

Note: In constructive type theory [17], the cons function for primitive
recursion may use the argument !, as well as z and hl. 1 prefer that cons
take énly the two arguments z and hl. This gives CONS and cons the same
arity, allowing the connection with hombmorphisms. To define a function hg by
primitive recursion on nilg and on a function cans,, taking the three argu-

mentsx, !, and hl, let

(NIL, nily)
(CONS z L, consgz L 7).

nil
cons z (L,r)

il

Then LIST_REC(nil ,cons) returns the pair (I, hgl).

10. Experience in Case Studies s

LCF is a programmable theorem-prover. Its meta-language, ML, is a
higher-order functional programming language with a polymorphic type sys-
tem [11]. By writing ML programs, users have automated routine parts of the
theorem-proving process — in particular, the construction of theories of data
types and the derivation of structural induction. Many LCF studies involve
induction.

Edinburgh LCF users have traditionally defined recursive types in terms of
strict sums, Cartesian products, lifted types, and void, which are sufficient to

define lazy data types like lists [11, pages 79, 87—100]. For historical rather
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than theoretical reasons, Edinburgh LCF does not provide disjunction or
~ existential quantifiers. The cases axiom cannot be asserted directly, but its
eflect can be obtained by defining destructor and discriminator functions. At
first the user had to develop new types individually, a tedious and error-prone
process. In her proof of a simple compiler, Cohn [7] spent months construct-

ing theories of syntax trees.

Now Milner [8] has implemented a package of ML programs -to assert
axioms and dérive the induction rule for lazy recursive data types, given a
description of the constructors. It achieves the effect of a cases axiom by
repeated case analysis on the branches of an n-ary sum. This package is
- tremendously important, not merely for saving labor, but for demonstrating
that complex theory construction can be implemented in ML. Many other data
type definition packages descended from Milner's. Several projects are using
the package. Cohn and Milner [B] have verified a simple parser, and Soko-

lowski [21] has proved the soundness of Hoare proof rules.

Monahan [16] has implemented strict products in Edinburgh LCF, and has
developed a package that allows any combination of strict and Cartesian pro-
ducts in models. Monahan's program can define both strict and lazy types; it

also provides discriminator and destructor functions.

I have extended Milner’'s package to use strict sums and products, with
possible lifting of any argument of a constructor function. This allows any
combination of strict and lazy constructors, exactly as in Section 8. Further-
more, the program can define mutually recursive types. It unfortunately runs
. extremely slowly, largely due to the complex inferences needed to simulate
the cases axiom from the properties of strict sums and products. 1 have
proved a few simple theorems about substitution using mutually recursive

types, but for this purpose a single type is simpler [18].
In developing Cambridge LCF from Edinburgh LCF, I have provided disjunc-

tion and existential quantifiers and used them tb implement a structure
definition package. Like my earlier package, it allows strict and lazy construc-
tors, but not mutual recursion. After constructing any strict type, it proves
that the type is flat. Internally it is simpler than the earlier package, and runs
much faster. Cambridge LCF does not provide sums, strict products, or lifted
types, since these are definable using the package. It still provides Cartesian

products.

Using Cambridge LCF, I have performed Manna and Waldinger's verification

of the unification algorithm [15], including all the preliminary theorems about
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substitution. The proofs involve strict data types for pairs, lists and expres-
sions, developed automatically using the structure package. Equational types
for finite sets and substitutions were developed manually, using the methods of
section 6. The continual need to reason about totality was most annoying;
Boyer and Moore's theorem prover [2] considers totality only when defining a

new function, But it is encouraging that such a proof can be completed at all.

‘There have been few proofs involving lazy types, where totality should not
be a problem. Perhaps some of the many projects now under way will shed
some light on this topic.

Acknowledgements: 1 would like to thank M.J.C. Gordon :for daily discus-

sions, R. Burstall for some stimulating conversations about ‘initiality, and also
J. Goguen, G. Huet, R. Milner, and R. Waldinger.
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