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Abstract

A generic tableau prover has been implemented and integrated with Isa-
belle [14]. It is based on leantap [3] but is much more complicated, with
numerous modifications to allow it to reason with any supplied set of tableau
rules. It has a higher-order syntax in order to support the binding opera-
tors of set theory; unification is first-order (extended for bound variables in
obvious ways) instead of higher-order, for simplicity.

When a proof is found, it is returned to Isabelle as a list of tactics. Be-
cause Isabelle verifies the proof, the prover can cut corners for efficiency’s
sake without compromising soundness. For example, it knows almost noth-
ing about types.
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1 Introduction

Interactive proof tools obviously benefit from the addition of automatic
proof procedures, provided they are well integrated. Interactive tools are
popular because of their flexibility: they support expressive formalisms and
large developments. The user must guide the proof, but would like to have
straightforward subgoals proved automatically.

Isabelle [14] is an interactive theorem prover. Unusually, Isabelle is
generic: it supports numerous formalisms, including higher-order logic (Isa-
belle/HOL), first-order logic, set theory (Isabelle/ZF), some modal logics
and linear logic. This paper describes a new tableau prover and its integra-
tion with Isabelle.

I have previously [17] described Fast_tac, a tableaux-like proof tactic for
Isabelle. Fast_tac automatically finds proofs that consist only of so-called
obvious inferences [5, 21]. Crucially, the tactic is itself generic. It works
in most of Isabelle’s classical logics and reasons directly with user-defined
primitives. New concepts from the application domain can be supported
without the search-space explosion that would result from simply adding
their definitions to the tableau.

Fast_tac is not really an integration between automatic and interactive
tools because it runs on the same generalized Prolog engine that Isabelle
uses for single-step inferences. Isabelle itself provides the automation. This
engine is rather slow, in part because it performs higher-order unification [8].
To improve decisively over Fast_tac, I decided to code a separate tableau
prover and arrange that only a successful proof (rather than the full search)
went through Isabelle’s engine.

This paper makes two contributions. First, it describes a generic tableau
prover, listing the many differences between such a tool and a first-order
prover. Second, it describes the prover’s integration with Isabelle and how
compatibility constraints were overcome.

Both aspects of the work are pragmatic. The goal was to improve upon
Isabelle’s performance on hard problems arising in domains such as the
verification of cryptographic protocols [18]. Some well-known theoretical
refinements turned out to have little measurable benefit. Even the most ba-
sic theoretical properties, soundness and completeness, are not paramount.
Soundness is not essential because the final proof is given to Isabelle for
checking, though we want few proofs to fail. Completeness in the semantic
sense is obviously impossible for the strong theories considered here, which
contain set theory and therefore arithmetic. Anyway, the user will interrupt
the prover after a minute or so: completeness is hardly relevant to interactive
tools.

Paper outline. The paper begins with a review of tableau methods and
introduces the notion of generic tableau rules (§2). Then it outlines the
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methods used to design the Isabelle’s tableau prover (§3). Some points re-
quire detailed discussion: instantiation of variables (§4), Skolemization (§5),
and types (§6). Several minor points are briefly outlined (§7), and inte-
gration of the prover with Isabelle is discussed (§8). A few statistics are
presented (§9) and conclusions drawn (§10).

2 Generic Tableau Methods

As is well known, the tableau method operates on branches: lists of formulas,
interpreted conjunctively. Tableau rules are of four types: α-rules, which
divide a conjunctive formula into two parts on one branch, β-rules, which
split a branch according to the two parts of a disjunctive formula, γ-rules,
which instantiate a universal quantifier, and δ-rules, which Skolemize an
existential quantifier. Here are examples of each type of rule, for first-order
logic:

type α type β type γ type δ
φ ∧ ψ
φ
ψ

φ ∨ ψ
φ | ψ

∀xφ(x)
φ(?t)

∃xφ(x)
φ(s)

Generally, this paper identifies the formula ¬φ with the goal φ. The formula
¬(φ ∧ ψ) counts as being disjunctive. It has the α-rule

¬(φ ∧ ψ)
¬φ | ¬ψ ,

which reduces the goal φ ∧ ψ to the two subgoals φ and ψ.
In the γ-rule (for ∀), the term that replaces x is written ?t to indicate

that it is a meta-variable and can be updated during unification. 1 In the
δ-rule (for ∃), the symbol s can be generated in alternative ways discussed
below.

For all rule types except γ, the formula above the line can be deleted
after applying the rule. Controlling application of γ-rules is a key problem
in tableau theorem-proving. Another problem is how to organize the search:
if closing a branch instantiates a variable, then that step might have to be
undone later.

For first-order logic, tableau methods are much less powerful than reso-
lution. Their advantage for interactive theorem proving is that they can be
extended to reason directly in application domains. Take set theory as an

1The question mark is included for emphasis, but it could mislead. In the Isabelle
representation of such rules, all free variables are treated in the same way. Even the
formula φ, strictly speaking, should be written ?φ.
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example:

type α type β type γ/β type δ/α

t ∈ A ∩B
t ∈ A
t ∈ B

t ∈ A ∪B
t ∈ A | t ∈ B

A ⊆ B
¬(?x ∈ A) | ?x ∈ B

¬(A ⊆ B)
s ∈ A
¬(s ∈ B)

As a trivial indication of how generic tableau proving complicates matters,
note that the tidy classification of rules into types α, β, γ and δ no longer
holds. These rules can best be understood through the equivalences that
reduce them to first-order logic:

t ∈ A ∩B ⇐⇒ t ∈ A ∧ t ∈ B
t ∈ A ∪B ⇐⇒ t ∈ A ∨ t ∈ B

A ⊆ B ⇐⇒ ∀x (x ∈ A→ x ∈ B)

Using special tableau rules is much more efficient than adding the defini-
tions of ∩, ∪ and ⊆ to the initial branch. A preliminary rewriting phase
could eliminate these symbols, but many application domains cannot easily
be reduced to first-order logic. Examples are those involving inductive defi-
nitions, such as the λ-calculus [12] and my models of security protocols [18].

Binding constructs such as
⋃
x∈A B(x) and {x | φ(x)} are common in set

theory, which is as fundamental to Isabelle/HOL as it is to Isabelle/ZF. A
generic tableau prover therefore needs a higher-order syntax: a syntax that
includes the λ-calculus.

Leantap [3] uses negation normal form, but a generic tableau prover
cannot easily use a normal form. The notion of normal form would depend
upon the precise set of primitives being supported in a particular call to the
prover.

Tableau rules can be expressed in Isabelle’s meta-logic and given to tools
such as Fast_tac for execution on Isabelle’s proof engine [17]. To improve
upon Fast_tac, I have written a generic tableau prover from scratch. It is
independent of Isabelle’s proof mechanisms, but its design is constrained by
the requirements of integration and compatibility. The new tactic (which is
called Blast_tac) must let Isabelle check the proof it finds and must behave
reasonably to users accustomed to Fast_tac.

3 Designing the Prover

As the starting point, I adopted leantap [3], a tableau prover consisting
of five Prolog clauses. Although it is far from being the top-performing
prover, it is much better than Fast_tac on standard benchmarks such as
Pelletier’s problems [20]. Leantap proves the first 46 problems in under half
a second each, while Fast_tac takes several seconds for some of them and
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cannot prove others at all. Leantap’s simplicity and clarity make it a good
framework on which to build other provers.

Several features of leantap still remain in Blast_tac.

• Depth-first iterative deepening [9] is now the search strategy of choice
for such systems. Fast_tac can use depth-first search because of its
incomplete treatment of γ-rules, which ensures termination but proves
only obvious [5] theorems.

• The resource bounded by iterative deepening is mainly the number
of γ-rule applications, but it includes other ‘costs’ of the proof. (For
Stickel’s Prolog Technology Theorem Prover [22], the resource is the
number of subgoals allowed in a proof.)

• Formulas in a branch are considered in a stack discipline. If a rule adds
the formula A to a branch, then A and the formulas derived from A
will be expanded before any other formulas on that branch. The usual
effect is to reduce A quickly to literals.

(Fast_tac has a queue discipline due to the workings of Isabelle’s
proof engine. A new formula is expanded last rather than first. The
stack/queue distinction refers not to the search strategy but to the
method used to select the next formula for expansion.)

Extensive experimentation with problems in first-order logic (largely Pel-
letier’s) and ZF set theory [13, 15] suggested extensions to leantap’s strategy.
Though many of these extensions were driven by the need for Blast_tac to
handle generic rules, most of them can be explained in terms of first-order
logic, which may be clearer to some readers.

Deferral of γ-Formulas. The stack discipline works well—with some ex-
ceptions. When a γ-formula such as ∀xA is the next formula to expand, it
is deferred until formulas of all other types have first been expanded. Great
care is taken to preserve the stack discipline even with this exception. The
deferred γ-formula does not go the end of a global queue but merely after
all other formulas in the present group arising from some expansion: there
is a stack of queues.

A formula such as ∀xA can make a branch grow without limit, so de-
laying its expansion can realize dramatic savings. Another exception to the
stack discipline concerns transitivity rules (see §7).

Retention of γ-Formulas. When a γ-formula such as ∀xy A or ∀x (B →
∀y A) is expanded, the outer formula must be retained. However, the inner
γ-formula (which is ∀y A in both of the examples above) can be discarded
with no loss of completeness: equivalent copies of it can be generated from
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the retained outer formula. This optimization, which can be extended to
generic tableau rules, suppresses an explosion of redundant γ-formulas.

Note that ∀x∃z ∀y A requires retention of the subformula ∀y A because
each instance of it will contain a different term for z, generated by a δ-rule.
So, the optimization works even better for provers that employ Skolemiza-
tion or the δ++-rule [2].

Rules that Close Branches. In a first-order tableau, the only way to
close a branch is by unifying complementary literals. But in generic tableau
theorem-proving, many rules can close branches. Here are three examples:

¬(x = x) 0 = Suc(n) n < 0

The first rule, reflexivity, accepts the goal formula x = x, while the other
two recognize the given formulas as contradictory. The possibility of a rule’s
closing a branch complicates the treatment of backtracking. But it is more
directional (and therefore more effective) than the approach of regarding
x = x, ¬(0 = Suc(n)) and ¬(n < 0) as axioms that can be added to a
branch at any time.

Search-Space Pruning. A limited form of intelligent backtracking takes
place whenever a branch is closed. The prover is coded in ML [16] and
manages backtracking with an explicit list of choice points. Closing a branch
typically proves a number of parent subgoals. When a branch is closed,
a tree-pruning function looks backward to identify those subgoals and to
determine if their proofs involve instantiating variables present in branches
that are still open. All choice points for parent goals free of such clashes are
removed.

4 Inferences that Instantiate Variables

A first-order tableau prover only instantiates variables when a branch is
closed. A generic tableau prover may be supplied rules that instantiate
variables. Dealing with this possibility is a major source of complications.

For example, suppose we are working in set theory and have the ‘big
union’ operation

⋃
C, defined to satisfy

t ∈
⋃
C ⇐⇒ ∃X (t ∈ X ∧X ∈ C).

Suppose we have tableau rules for
⋃
C as well as for binary union (A∪B)

and intersection (A ∩B):

¬(t ∈
⋃
C)

¬(t ∈ ?X)
¬(?X ∈ C)

¬(t ∈ A ∪B)
¬(t ∈ A)
¬(t ∈ B)

¬(t ∈ A ∩B)
¬(t ∈ A) | ¬(t ∈ B)
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The rule for
⋃
C says that to show t ∈

⋃
C it suffices to show t ∈ ?X and

?X ∈ C, where ?X may get instantiated to any term. The other two rules,
the duals of those shown in §2, handle t ∈ A ∪ B and t ∈ A ∩ B as goal
formulas.

Given the goal t ∈
⋃
C, the first rule adds ¬(t ∈ ?X) and ¬(?X ∈ C) to

the branch. We now have the ingredients of disaster, because the new goal
t ∈ ?X matches all three rules given above, and in a realistic environment,
dozens of rules. If the A∩B rule is chosen next, then ?X will be instantiated
to ?A1 ∩ ?B1, and the new goals will be the equally disastrous t ∈ ?A1 and
t ∈ ?B1.

A partial solution is to replace the
⋃
C rule shown above by one that

creates goals in the opposite order: first ?X ∈ C, then t ∈ ?X. The search
for solutions to the first goal will be acceptably constrained, and proving
that goal will probably instantiate ?X, constraining the second goal. In
general, however, we must be prepared to handle unconstrained subgoals
like t ∈ ?X.

If a rule instantiates variables while closing the branch, no special treat-
ment is necessary. But if the rule does not close the branch, then something
must be done to prevent runaway instantiations. The search already im-
poses a bound on the number of expansions of γ-formulas; the same bound
can control variable instantiations.

The precise handling of this bound is problematical. Decreasing the
bound by one prevents looping, but allows goals such as t ∈ ?X to swamp
the search space. We need a greater penalty, depending upon the number n
of rules that are applicable to the formula being expanded. (Indexing of
rules, needed anyway for efficiency, can provide this information cheaply.)
If the penalty is too great, many theorems will not be proved. The penalty
used at present is log4 n, determined after extensive experimentation; it is a
compromise between banning instantiation altogether and allowing it freely.

5 Skolemization and δ-Rules

Unlike leantap, my tableau prover cannot easily use Skolemization (which
complicates proof reconstruction), so δ-rules are necessary. A typical δ-rule
replaces the formula ∃xφ(x) on a branch by φ(s). The question is, what
precisely is s?

The standard answer is that s is a Skolem term constructed in the usual
manner by applying a fresh Skolem function to all the branch’s free variables.
Although it may resemble Skolemizing the formula before calling the prover,
this form of δ-rule poses no problems for proof reconstruction: it corresponds
(in the example above) to the standard ∃-elimination rule.

Two liberalizations of the δ-rule have been published. The first [6] is to
apply the Skolem function only to the variables free in the formula ∃xφ(x)
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rather than to all those of the branch; having fewer variables lets the Skolem
term take part in more successful unifications. The second liberalization [2]
goes further by allowing ∃xφ and ∃xψ to share one Skolem function pro-
vided the two formulas are identical up to variable renaming. (This includes
the important case where both have arisen through expansion of a formula
such as ∀y ∃xφ.) Both liberalizations can be understood intuitively as the
replacement of existential variables by Hilbert ε-terms, changing ∃xφ(x) to
φ(εx φ(x)).

Experiments, mainly on Pelletier’s examples [20], found that the first
example made little difference in practice. One proof (problem 43) got
shorter, but the runtime actually rose due to the increased branching factor!
I did not investigate the second liberalization. I did find that Skolemization
made a big improvement in the proof of a problem discussed by Lifschitz [10].

With Skolemization and the liberalized δ-rules, the obvious method of
proof reconstruction involves manipulating ε-terms in Isabelle. This method
would be prohibitively inefficient: the terms are large.

Finally, there is the question of prenexing. Baaz and Leitsch [1] have
proved the folklore result that prenexing a formula makes its proof longer.
Quantifiers should be pushed in, not pulled out. Isabelle’s tableau prover
can expect that task to have been done for it beforehand. Users normally
apply simplification first, and the simplifier is equipped with rewrite rules
such as

∀x (φ(x) ∨ ψ)↔ (∀xφ(x)) ∨ ψ

and even (⋃
x∈A

A(x) ∩B
)

=
(⋃
x∈A

A(x)
)
∩B.

Omitted is the distributive law

∀x (φ(x) ∧ ψ(x))↔ (∀xφ(x)) ∧ (∀xψ(x))

and its ∃-∨ dual, which by increasing the number of Skolem functions can
sometimes be harmful [1].

6 Types and Overloading

Isabelle’s framework for specifying formalisms is typed. Some of its logics,
such as ZF set theory [19], are essentially typeless: types serve only to
prevent absurd expressions like

⋃
(
⋃

). Other logics, such as higher-order
logic (HOL), are not only typed but provide polymorphism and overloading.

Omitting types helps make the tableau prover more efficient than Isa-
belle’s proof engine. But HOL demands some knowledge of types. For
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example, the equality x = y can be treated in three different ways, de-
pending on the type of x. Every equality satisfies the usual axioms such as
transitivity. If x has type bool then the equality means ‘x if and only if y.’
If x has type (τ)set then it is set equality, enjoying additional axioms such
as extensionality; moreover, τ is the type of the set’s elements, determining
which rules apply to them. Each of these three might apply to the goal
t = u, depending upon types:

transitivity iff introduction extensionality

¬(a = c)
¬(a = ?b) | ¬(?b = c)

¬(φ = ψ)
φ
¬ψ

∣∣∣ ψ¬φ
¬(A = B)

¬(A ⊆ B) | ¬(B ⊆ A)

The collection of rules supplied to the prover can be different at each invo-
cation, so it needs a general strategy for using type information.

Storing the types of all constants is prohibitively expensive, and storing
only the types of overloaded constants is insufficient. Consider the constant
insert, defined to satisfy

(x ∈ insert y A) = (x = y ∨ x ∈ A).

One tableau rule resembles the corresponding α-rule for disjunction:

¬(x ∈ insert y A)
¬(x = y)
¬(x ∈ A)

Because of Isabelle’s polymorphism, static analysis of this rule cannot reveal
the type of x. After applying the rule, if x turns out to have a set type, then
the prover will not know to try the set equality rule on the goal formula
x = y. Overloading resolution by static type analysis is workable—I used it
in an early version of Blast_tac—but it cannot find proofs involving such
inferences.

The solution I have adopted is to store some types dynamically: during
the proof search. The prover can be instructed to record the types of cer-
tain constants. These should include not just the overloaded constants but
other basic, polymorphic constants such as ∈. To keep the prover simple,
it represents Isabelle types using its data structure for terms; unification
propagates type constraints.

7 Minor Points

Now, let us briefly consider some additional features of the prover.
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Unification. Isabelle uses higher-order unification [8]. For efficiency, the
tableau prover uses first-order unification. Bound variables, represented by
de Bruijn indices, are handled in the obvious way: a bound variable unifies
only with itself. Unification between two λ-abstractions fails. Detecting
that λx.x is not unifiable with λx.?y would complicate the algorithm and
is not necessary. However, β-reductions (from (λx.M)N to M [N/x]) are
performed so that quantifier rules will work. Redundant λ-abstractions are
erased using η-reduction, which takes (λx.Mx) to M provided x is not free
in M .

Closing Branches. For simplicity, leantap attempts to close a branch
only when it can do nothing else, and it only compares the current formula
(which must be a literal) with existing literals. Blast_tac’s prover always
attempts to close the branch using the current formula before doing any-
thing else with it. It searches for a complementary formula even among
the unexpanded formulas. Branches are closed more quickly than otherwise
would be possible, particularly if the closing formula is compound.

If the current formula can neither close the branch nor be expanded,
then it is moved to a list of literals, as in leantap. There is an important
difference, however. In generic tableau proof, the notion of literal depends
upon what rules are supplied. For example, x ∈ A ∪B is not a literal if the
corresponding rule from §2 is available.

Equality. The treatment of equality is simple and incomplete. Suitable
assumptions of the form s = t are deleted, replacing s by t throughout the
branch. Which assumptions are suitable?

Typically, s is a Skolem term, introduced by a δ-rule. We require that
s does not occur in t—otherwise the substitution will not eliminate s—but
this condition is not strong enough. If the branch contains the formulas
s = ?y and ∀z z 6= Suc z, then we should hope eventually to close the branch
with ?y 7→ Suc s. The equality assumption must not be deleted.

If s is a Skolem constant, then s = ?y is not suitable for substitution
because ?y might later be instantiated with a term containing s. If s is
the Skolem term f(x1, . . . , xm), then t may contain only the variables x1,
. . . , xm, because those variables cannot be instantiated with s. (In Isabelle’s
meta-logic, which does not use Skolemization, the corresponding condition
is literally that s does not occur in t.)

Any literals affected by the substitution are moved back to the list of
unexpanded literals for reconsideration. For example, after eliminating the
equality s = A ∪ B, the literal x ∈ s becomes the compound formula x ∈
A ∪ B. The ensuing rearrangement of the formulas interferes with proof
reconstruction, occasionally making it fail.
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Undoable rules. Classical tableau rules are purely analytic: each rule
captures the full logical content of the expanded connective. Backtracking
from a rule application is never necessary. Choice points arise only when
closing a branch with unification.

We already have to allow backtracking for rule applications that instanti-
ate a variable (which cannot happen in a first-order tableau), so it is easy to
allow backtracking for other reasons. Isabelle has a concept of unsafe rule:
those where backtracking is suitable because the conclusion is weaker than
the premises.2 A generic tableau prover can expect to be supplied rules that
need backtracking. For example, if our problem domain involves transitive
closure, we might supply three rules:

¬(xR∗ x) ¬(xR∗ y)
¬(xR y)

¬(xR∗ z)
¬(xR∗ ?y) | ¬(?y R∗ z)

These rules should be tried in the order shown, trying to prove the goal
aR∗ b first by reflexivity, then by reduction to aR b and only as a last resort
by transitivity.

A rule application may be undone if other unifiable rules exist (as in our
example), if it instantiates variables, or if the inference does not introduce
new variables (and thus is not a true γ-rule). The overall effect is to allow
backward chaining over a variety of types of rule. Equally important, it
makes Blast_tac treat such rules similarly to Fast_tac.

Transitivity. Transitivity and similar rules are notoriously hard to deal
with, but some proofs require them. They are unfortunately incompatible
with the stack discipline of §3. If the current subgoal is aR c, then expanding
by the transitivity rule shown above replaces it by the subgoals aR ?b and
?bR c. Expanding these subgoals before the rest of the branch, as the stack
dictates, could permanently exclude the latter from consideration as the R∗

subgoals multiply. The prover checks whether the conclusion of the current
rule matches any premises of the same rule, and if so arranges that those
premises are expanded after the rest of the branch. Mutually recursive rules
could defeat this simple heuristic, but they seem not to occur in practice.

8 Integration with Isabelle

The purpose of this tableau prover is to improve the degree of automation
available to Isabelle users. Because the prover is generic, integration has
two aspects:

• translation of Isabelle rules to tableau rules
2This concept was originally used to allow backtracking over γ-rules in Fast_tac, which

does not retain the universal formula.
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• translation of tableau proofs to Isabelle proofs

The translation of Isabelle rules has to contend with different treatments
of eigenvariables in quantifiers—Isabelle does not employ Skolemization—
and it discards virtually all type information. Both of these complications
could render the resulting tableau proof incorrect; Isabelle must check the
tableau proof to ensure soundness.

8.1 The Translation of Isabelle Rules

The translation from Isabelle rules to tableau rules is largely straightforward.
I have elsewhere described the connection between Isabelle and tableau
rules [17], and more details are available in the documentation [14, Chap. 14].

Some further points can be seen in the treatment of the natural deduction
rule (∀I). This inference rule takes the premise φ to the conclusion ∀xφ,
subject to the usual proviso that x is not free in the assumptions. The rule
is represented in Isabelle as a generalized Horn clause:(∧

x. Tr(φx)
)

=⇒ Tr(Allφ)

Here,
∧

is Isabelle’s meta-universal quantifier, Tr is a meta-level predicate to
recognize true formulas, and All is the constant for the first-order universal
quantifier. Isabelle’s treatment of Skolemization (which is its dual [11]) must
be converted to conventional Skolemization. The bound variable (x) in the
premise is replaced by a Skolem term (call it s) containing the free variables
of the current branch. (Thus, it is a δ-rule of the tableau calculus.)

The conclusion of the rule, namely Tr(Allφ), involves no variable-binding.
Unification will probably instantiate φ (which is a function variable) to a
λ-term representing some quantified formula. Although the generic prover
does not implement higher-order unification, it can perform the β-reduction
needed to replace the quantified variable by the Skolem term s.

One difference between Isabelle rules and tableau rules is that the former
can have only one goal formula, while the latter can have many. Isabelle
represents multiple goal formulas as negative formulas, but (for a number of
reasons) retains its natural deduction concept of goal formula too. Therefore,
the rule (∀I) becomes two tableau rules:

Goal(Allφ)
Goal(φ(s))

¬(Allφ)
¬(φ(s))

If a rule is to generate multiple goal formulas, then all but one of them must
be negative.

Blast_tac also has to translate an Isabelle proof state to an initial
tableau. This process resembles that of translating rules and on rare oc-
casions can fail.
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8.2 Giving Tableau Proofs to Isabelle

Translating a proof found by one tool for checking by another is an old idea.
For example, John Harrison has shown how to translate OBDD derivations
into proofs acceptable to the HOL system [7]. Translating proofs can be
difficult and slow, so I have taken pains to make the tableau proofs closely
resemble Isabelle proofs. The main advantage of the tableau prover over
Isabelle is its greater search speed.

Of the many minor differences between the tableau proof style and Isa-
belle’s style, only one could not be settled straightforwardly. A key heuristic
of the tableau approach is to expand formulas using a stack, while Isabelle’s
normal mode would yield a queue; I had add an Isabelle primitive for re-
ordering a subgoal’s assumptions.

Proof reconstruction is simple in concept, if complicated in its details.
During its search, each time the tableau prover proposes some inference, it
records the corresponding Isabelle tactic. If a proof is found, then the full list
of tactics is applied to the original Isabelle subgoal. Isabelle’s tactic mech-
anism supports backtracking, but for efficiency reasons, most of the tactics
returned by Blast_tac do not offer alternative outcomes. Backtracking is
supposed to occur during the search, not during the proof reconstruction.

Isabelle’s proof engine repeats the unifications originally found by the
tableau prover. An attempt to deliver those instantiations to Isabelle yielded
no speed-up; the tableau prover only finds first-order unifiers, which Isabelle
can reconstruct easily.

Proof reconstruction occasionally fails. After printing a message, the
tableau prover backtracks, but it cannot always recover. It prunes its search
space under the presupposition that its inferences are legal. Pruning is es-
sential for efficiency, but it reduces the chances of finding alternative proofs.

The usual cause of failed proof reconstruction is that the tableau and
Isabelle proofs have somehow diverged. Typically, they disagree on the order
in which formulas appear on a branch. Proof reconstruction occasionally
fails because the tableau proof is unsound. Overloading, when a rule expects
a constant to have a certain type, is the only cause of unsoundness that I
know of. The prover knows little about types, but its mechanisms cope with
all but the subtlest uses of overloading.

9 Results

This project must be judged on the pragmatic grounds for which it was
undertaken: to augment Isabelle’s existing tools with something similar but
more powerful. The classical reasoner already provided Fast_tac (based
on depth-first search) and Best_tac (based on best-first search). Blast_
tac indeed outperforms them in most cases: it is faster and proves many
theorems that they cannot.
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Search Verify Fast_tac
Problem depth branches time tactics time time
24 4 16 60 52 40 220
26 3 17 30 43 40 430
28 3 7 20 29 30 140
34 7 10 200 431 1120 failed
38 4 30 50 10 130 900
43 5 24 50 48 60 failed
46 7 15 610 48 50 2,090
52 7 63 110 68 290 1,490
62 1 17 10 46 40 130
Halting II 7 2,015 1,960 1,086 4,540 226,000
Union-image 3 12 40 40 70 370
Inter-image 3 12 50 36 50 830†

Singleton I 4 110 320 19 20 ∞
Singleton II 4 108 310 19 20 ∞

runtimes given in milliseconds
∞ = still running after 5 minutes
† = using Best_tac; would be ∞ for Fast_tac

Table 1: Blast_tac Compared With Fast_tac

Table 1 compares the performance of Blast_tac and Fast_tac on sev-
eral examples.3 Search refers to the tableau prover, while Verify refers to
the Isabelle reconstruction of the proof. The numbered problems are those
of Pelletier [20]; problem 34 is also known as Andrews’ Challenge. Halting II
refers to the halting problem presented by Dafa [4].4 The last four problems
are formulated in the set theory of Isabelle/HOL.⋃

x∈C

(
A(x) ∪B(x)

)
=
⋃

(A“C) ∪
⋃

(B“C) Union-image

⋂
x∈C

(
A(x) ∩B(x)

)
=
⋂

(A“C) ∩
⋂

(B“C) Inter-image

∀x∈S ∀y∈S x ⊆ y → ∃z S ⊆ {z} Singleton I

∀x∈S
⋃

(S) ⊆ x→ ∃z S ⊆ {z} Singleton II

Here “ is the image operator, which satisfies y ∈ f“A ⇐⇒ ∃x∈A y = f(x).
Proof reconstruction time often exceeds search time, especially when the

tactic proof is long. Examples include problem 34 and Halting II, and there
are instances throughout the Isabelle proof scripts.

3Benchmarks run on a 300Mhz Pentium Pro running Linux. Isabelle was compiled
using Standard ML of New Jersey, version 109.32.

4This theorem is large rather than deep: even Fast_tac can prove it. Dafa’s short
proof doubtless takes advantage of its repetition of large subformulas.
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The set theory problems are largely insensitive to the set of rules used,
provided they cover all of set theory. However, the two Singleton problems
are proved without the trivial rule for the universal set:

¬(?x ∈ UNIV)

Adding this rule makes the problems much harder. It probably closes too
many branches, increasing the search space.

Benchmarks give a distorted picture. For most first-order problems,
Blast_tac is overwhelmingly superior to Fast_tac, but the latter is some-
times faster because of its incomplete search strategy. First-order problems
allow comparison with other systems, but are of little relevance to Isabelle.
Set theory problems are more relevant. Blast_tac is most important in
application domains such as security protocols [18], whose use of inductive
definitions cannot easily be reduced to first-order logic. Blast_tac can han-
dle recursive rules such as transitivity, which otherwise could force the user
to write a detailed, single-step proof.

10 Conclusions

This work has two aspects, (1) as a contribution to tableau theorem proving
and (2) as an extension to Isabelle. Regarding (1), a generic tableau prover
is possible, but is much more complicated than a first-order prover. Leantap
consists of five Prolog clauses; Blast_tac is around 1,300 lines of ML (or 45K
bytes). Higher-order syntax is essential in a generic prover, and it is easily
implemented. The integration with Isabelle causes many complications and
restricts the use of refinements. A stand-alone generic prover could use
liberalized δ-rules, β-rules that incorporate lemmas, etc. Another obvious
area for improvement is equality handling.

Regarding (2), Blast_tac is certainly useful, though it is not a killer
tool. Its complete treatment of quantifiers makes little difference in practice,
which comes as a surprise. It makes some proofs significantly faster, and
some proof scripts shorter. Most security protocol proofs [18] consist of
calls to Blast_tac on the simplified subgoals arising from induction. Each
subgoal corresponds to one protocol action, and typically is proved by one
Blast_tac call, using relevant lemmas. The next level of automation could
involve supplying most lemmas by default, so that users do not have to
consider them. If Blast_tac can cope with the resulting search space, then
proof scripts will become much simpler. Preliminary experiments suggest
that this may be possible.
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