Technical Report A

Number 448

Computer Laboratory

A computational interpretation
of the \u calculus

G.M. Bierman

September 1998

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1998 G.M. Bierman

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Computational Interpretation of the Au-calculus

G.M. BIERMAN

University of Cambridge

Abstract

This paper proposes a simple computational interpretation of Parigot’s Ay-calculus.
The Ap-calculus is an extension of the typed A-calculus which corresponds via the Curry-
Howard correspondence to classical logic. Whereas other work has given computational
interpretations by translating the Ap-calculus into other calculi, I wish to propose here
that the Ap-calculus itself has a simple computational interpretation: it is a typed A-
calculus which is able to save and restore the runtime environment. This interpretation
is best given as a single-step semantics which, in particular, leads to a relatively simple,
but powerful, operational theory.

This is an expanded version of a paper presented at the 23rd International
Symposium on Mathematical Foundations of Computer Science. August 24—
28, 1998. Brno, Czech Republic.

© E September 2, 1998

1 Introduction

It is well-known that the typed A-calculus can be viewed as a term assignment for natural
deduction proofs in intuitionistic logic (IL). Consequently the set of types of all closed A-terms
enumerates all intuitionistic tautologies. This is known as the Curry-Howard correspondence,
or the formulae-as-types principle. Thus one can talk of a computational interpretation of
IL. A natural question is whether there is such a computational interpretation of classical
logic (CL). A first step is to devise a well behaved natural deduction formulation for CL and
give a term assignment. A number of proposals have been made but recently Parigot [25]
introduced a extension of the typed A-calculus, which he called the Ap-calculus. The set of
types of all closed Au-terms enumerates all classical tautologies and the calculus is amazingly
well behaved, satisfying both strong normalisation and confluence.

However two questions remain. First, what does this extension to the A-calculus mean
computationally? Secondly, if the Ap-calculus is extended in much the same way as the A-
calculus is extended to yield PCF, what is its operational theory? Of course the answer to the
second question is heavily dependent upon the answer to the first. In this paper I suggest that
the Ap-calculus has a natural computational reading: it is a A-calculus which has operators
to save and restore the runtime environment. This can easily be expressed using evaluation
contexts which are common in work on control operators.

Morris-style contextual equivalence is commonly accepted as the natural notion of equiv-
alence for functional languages. There has been significant effort in devising alternative
characterisations of contextual equivalence which are more amenable for constructing proofs.
For PCF the common solution is to use some form of (applicative) bisimilarity [12}. However
these techniques do not often extend to (call-by-value) languages with control. In §7 I give
a simple notion of program equivalence, based on transitions in an abstract machine, which
coincides with contextual equivalence.

2 Parigot’s \u-calculus

In his seminal paper Parigot introduced an extension of the typed A-calculus, which he called
the Au-calculus. The extension is such that terms no longer have a single type but a sequence
of types, one of which is designated to be the active type and the rest which are said to be
passive.

Types are given by the grammar

pu=L]d—¢
and raw Ap-terms are given by the grammar

M = z Variable
| Az:¢.M Abstraction
| MM Application
| [a:¢]M Passivate

| pai¢.M Activate;

where 7z is taken from a countable set of A-variables, ¢ is a well-formed type (formula) and a
is taken from another countable set of p-variables.

Typing judgements are of the form, I'> M: ¢, ¥, where I is a set of pairs of A-variables
and types written z:4), M is a term from the above grammar and ¥ denotes a set of pairs of
p-variables and types written a: ¢ (thus ¢ is the active type). The typing rules are as follows.

Identity

Dzigva:i, X
iazigp My, 2 'eM:i¢p =4, % T N:¢, %
—z -
Teode:pM:i¢p— ¢, 2 e MN:y, =
' M:¢,% TeM:1L,a:¢, %
Passivate Activate
Irla:g|M: L,a:¢,% Lo pa:¢.M: ¢, %

The new rules are called Passivate and Activate. The former takes a term whose active type
is ¢ (where ¢ is not L) and passivates it, i.e. ¢ becomes a passive type (and is hence labelled
with a). The resulting term has an active type of L.} The Activate rule works similarly but
in the reverse direction.

As an example the following derivation gives a (well-typed) term whose type is the Peirce
formula.

Identity
s,y (b= ¥) = ppwi aiy)

26,2 (6 =) = ¢ [b: o L,b: g,z
216, y: (6 —) = ¢ pas . [b: plos o, bi b
Y (§ = 9) = o yi(p—) > ¢,bi¢ Y (6 =) = b Az gpa: [b: la: § — o, bi
y: (6 = ¥) = &> y(\o: dpua: . [b: $Jo): b, bi
g (6 =) = b [b: fly(ha: popsa: .[b: gla): L, bi 6
V99 o bl O bpas i) g
DAY b 3. [b: ly (N b .[b: @la): (& —) = ¢) — &

There are a number of reduction rules associated with the Ay-calculus. In full they are as
follows.

Passivate

Activate

T

—¢E

Passivate

Activate

(Az:¢g.M)N ~pg Mz := N]

pazpfa:plM ~g M where a & prv(M)
[a: plub: .M~y Mla/b]

(na:¢p = Y.M)N ~. pbip.Mla:¢ — 1 < [b:1p] o N]
The S-rule is familiar from the A-calculus. The Ap-calculus introduces three new reduction
rules. Two are known as simplification rules [26] and are written ~»4. In the first simplification
rule, uFV(M) denotes the set of free p-variables in M, which is defined as follows.
e g
def

HEV (z)
pFV(Az. M) Fv(M)
urv(MN) def UFV(M) U prv(N)
prv((alM) € prv(M) U {a}
pEV(pa. M) pFV(M) — {a}

=

def

1This ensures that every term has an active type. It is possible to give a formulation where terms need not
have an active type.

A term is said to be A-closed if it has no free A-variables; it is said to be p-closed if it has no
free p-variables, and closed if it is both A-closed and p-closed. In the second simplification
rule, M[a/b] denotes the term M where all free occurrences of the p-variable b are replaced
with a.

The third new reduction rule is essentially a commuting conversion, and is written ~».
I have used the notation M[a <= P[e]] to denote the term M where all occurrences of the
subterm [a]N have been replaced by the term P[N] (where P[e] is a term with a single hole
in it, and P[N] is the result of replacing the hole with N). This complicated commuting
conversion is often glossed over in other papers. In truth there are actually two different rules
depending on the type of the p-variable a. In detail, the commuting conversion is defined as
follows.

(na: g = YMN ~, { by Mla: 6 <= [biy] o N] - whered) £1

Mla: ¢ — ¢ <= oN] where ¢ =1
where
slagp = Ple]] € oz
e M)a:¢ < Plo]] ¥ Ax.(Ma: ¢ < P[o]))
(MN)[a: ¢ <= Plo]] ¥ (Ma:¢ < P[e]])(Nla: ¢ <= Plo]])
(ub:p.M)[a: ¢ <= Plo]] < pbiep.(Ma: ¢ <= Plo]))
([b: $]M)[a: ¢ < Plo]] def { f’[]\/[[a:¢<:P[o]] ifa=10

b: o} (Mla: ¢ < Ple]}) o'wise
As a rewriting step, this commuting conversion is a highly unusual rule, the substitution
involves a replacement of term for term, rather than the more familiar substitution of term for
variable. Certainly one would hope not to implement this operation in practice. Fortunately
the treatment given in later sections removes the need to implement this substitution, in
contrast to the framework given by Ong and Stewart [24].

Term will be assumed to have been written so that all forms of substitution are non-
capturing.

3 A Computational Interpretation

In contrast to the situation for the A-calculus, there is little attention in the literature to
computational aspects of the Au-calculus. How do programs execute? How do we handle
different evaluation orders? What is the computational significance of having two distinct
variable spaces? How can we reason about programs? At the time of writing only the paper
by Ong and Stewart [24] addresses these sorts of questions. This paper is an attempt to
provide an alternative, and hopefully simpler, approach to these questions.

Before presenting this approach I need first to introduce some standard terminology from
work on control operators. To formalise the notion of an evaluation order, Felleisen and
Friedman (8] defined an evaluation context. This is essentially a term with a single ‘hole’ in it,
written E[e] (this will be defined formally in the next section). The result of placing a term,
M, in that hole is written E[M]. The idea is that the hole sits at the place where reduction
will next occur. In other words, evaluation contexts are devised so that every closed term,
M, is either a value (canonical) or can be written uniquely as E[R], where R is a redex. The
context F[e] essentially represents the rest of the computation that remains to be done after
R has been reduced. In this sense it can be seen as the continuation of R and is often referred
to as the current continuation.

Evaluation is then written as
(B[R], &) = (M',&")

where £ is a function from p-variables to evaluation contexts—the need for this will become
clear. The important evaluation rules are

(Blpa.M],E) = (M,£W{awr Ele]})
(Blla]M),E & {a > E'[e]}) = (E'[M],EW{ar E'[e]});

where € W {a — E[e]} denotes the extension of the function £ with the mapping a — FEle].
Thus in the first reduction rule the current continuation is ‘saved’ by adding it to £, indexed
with a. In the second reduction rule the current continuation is thrown away and the appro-
priate indexed continuation is restored from £. In summary, the Activate and Passivate rules
are interpreted as (indexed) save and restore operators, respectively.?

4 uPCF

Rather than develop an operational theory for the Ap-calculus, I shall first enrich it with
natural numbers, a conditional, pairs and recursion. This is essentially what Ong and Stewart
call uPCF [24]. Thus pPCF types are given by the grammar

¢

nt

— i
RS U

- ¢
X ¢
and the additional typing rules are as follows.

T'v M:int, %
———.—Nat
I'panint, 3 I'>suc(M): int, 2

Suc

I'> M:int, % I'eN:¢, % T'pP:¢, %
T'vifz M then N else P: ¢, %

Conditional

' M:¢, % e N:¢, % ToM:¢xy,Z PpM:¢px,X
Xz Xe Xe
o (M,Ny:¢x,L I»fst(M): ¢, % Tesnd(M):, 2

T, fid— bz Mg, % I, fig = oo Ny, %
Toletrec f = Az. M in N:¢, ¥

Recursion

The next step is to choose an evaluation strategy. Most work on control operators has
considered a call-by-value strategy and to aid comparison I shall adopt the same.®? It is
important to note that what is developed in this and following sections can easily be adjusted
to reflect a call-by-name strategy; some details are given in §9. This is in contrast with Ong
and Stewart’s framework, which requires significant changes to move from call-by-name to
call-by-value (some details are in their paper [24]).

*The reader familiar with control operators will recognise the save operation as a form of ‘catch’ and restore
as a form of ‘throw’.

8This means that recursion is restricted to function definitions in the usual way [33, §11.1].

The syntactic classes of values, evaluation contexts and redexes are defined as follows.
Values v u= nl|dz.M|(v,v)

o
vE | EM

(E, M) | (v, E)
fst(E) | snd(E)
suc(E)

ifz E then M else M

Evaluation Contexts FE

Redexes R VU

fst(v) | snd(v)

suc(v)

ifzv then M else M
letrec f = Az.M in N

[a]M | pa.M

The fundamental property of evaluation contexts is the following,.

———

Lemma 1. Every closed term, M, is either a value, v, or is uniquely of the form E[R], where
E[e] is an evaluation context and R is a redex.

We can now write out the (single-step) reduction rules in full, which are as follows.

(El(Qz.Mp],&) = (B[M[z:=0]],£)
(Elfst((v,w))],€) = (B[],€)
(Elsnd((v,w))],€) = (E[w],f)
(Blsuc@),€) = (Blnt1],€)
(E[ifz0then M else N],£) = (E[M],&)
(E[ifz (n + 1) then M else N],&) = (E[N],€)
(Elletrec f = Az.M in N],€) = (B[N[f := Aw.letrec f = Ax.M in M]},€)
(B[ua.M),E) = (M,EW{ar E[]})
(Ella)M),E W{ar E'o]}) = (E'[M],EW{ars E'e]})

5 Examples

In this section I give a number of examples of uPCF-programs to give the reader a feel for the
computational power of the calculus. In particular, in §5.4, I shall reconsider the examples of
encodings given by Ong and Stewart [24].

5.1 Idealised Scheme

Felleisen et al. [8, 9] presented an extension to the (untyped) call-by-value A-calculus, called
Idealised Scheme. Two new operators are added, written A(M) and C(M), which are called
abort and control, respectively. Both forms are considered to be redexes and their reduction
behaviour is given by the following rules.

EAMM)] ~4 M

BC(M)] ~¢ MOz A(E[)
Informally A (M) abandons the current continuation, Efe]. C(M) also abandons the current
continuation and M is applied to the abstraction of the current continuation. If this abstrac-
tion is invoked with the value v in an evaluation context E[e], then F;[e] will be abandoned
and evaluation will continue with Efv].

More concretely, consider the term
Eo[C(Aj. M)

Evaluation of this term can be thought of as a ‘catch’ which labels the current continuation
Ey[e] with j. If j doesn’t get used in the evaluation of M then Ey|e] is effectively garbaged. If
an application of j occurs in the evaluation of M, e.g. F1[jv], then the computation is ‘thrown’
back to the evaluation context labelled with 7, along with the value v. Thus computation
continues with the term Ep[v]. '

Griffin [14] showed that control and abort can be typed as follows.

IoM:(¢p—L) =L P M:L
: Contro] —~———
CoCy(M): ¢ Lo Ag(M): ¢

Thus control corresponds to the double negation elimination rule proposed by Gentzen [11]
for classical logic, and abort corresponds to the (intuitionistic) L-elimination rule.
With these typings in mind, these operators can be encoded in uPCF as follows.

Cy (M) def pa: ¢ M(Az: d.Ja: ¢)z)

As(M) % pbig.M

(In both encodings the p-variables are assumed to be fresh.) Consider an evaluation of the
encoding of an abort in yPCF.

(Bo[Ag(M)],)
CE (Bolub: M), E)
= (M,E W {bwr Eole]})

As b is assumed to be fresh, then it is easy to see that the evaluation context Ej [¢] is aban-
doned.
Consider an evaluation of the encoding of an application of control in uPCF.

(Eo[Cy(Aj.M)], €)

= (Bolpa: .(Nj.M) (Az: §.[a: ¢]2)], €)
= (AjM) (\z: p.[a: 4]2),€ W {a v Eole]})
= (M[j:= Az ¢.[a:¢l2)],E W {a Eqyle]})
(BA[(50)lF = (Az: d[a: 6]2)]), € W {a s Eole]}) (1)
E (B[g.[a: g2, € {a - Bole]})
= (Efla: g]v), € ¥ {a m Eo[e]})
= (Bo[v], €W {a > Eole]})

At stage (1) the substitution has been left explicit to aid comparison with the earlier discussion
of the control operator, C, in Idealised Scheme. Hopefully it is clear that the effect of this
encoding is that evaluation has been thrown back to Ey, along with the value v.

Remark. It is also possible to encode the Scheme variant of the Control operator [4], which
does not initially abandon the current continuation. This rule, as observed by Griffin, is typed
using the Peirce formula, i.e.

T M: (- 9) = ¢
I'sP(M): ¢

6

Its 1'ec111cti011 rule is
E[P(M)] ~p BE[M(Az.A(E[2]))]

and it can be encoded into uPCF as follows.

def
PM) L pib: g.[b: $)M (N s .[b: fJ)
It is left as an exercise to the reader to verify that this encoding has the expected operational
bahviour.

5.2 de Groote’s Exception Handling Calculus

de Groote [7] presented a simply-typed A-calculus extended with an ML-like exception han-
dling mechanism. A new class of exception variable is introduced and typing judgements are
of the form I'; A M: ¢ where I is the typing environment for normal A-variables and A the
typing environment for exception variables. Two new term constructors are introduced whose
typing rules are as follows.

;A M: ¢ DA e =g My T z:¢; A N:op

Raise Handle
;A e: ¢ — L braise(e, M): I;Avletein M handleex = N:y

(where —¢ def ¢ —1). As de Groote notes, the typing rule Raise corresponds to the standard
(intuitionistic) rules for falsity. The typing rule Handle is clearly related to classical logic: it
corresponds to the rule of the excluded middle.

Associated with these rules are a number of reduction rules.*

v(raise(e,w)) ~» raise(e,w)
(raise(e,v))M ~» raise(e,v)
raise(e, raise(e’,v)) ~ raise(e’,v)
leteinv handleez == N ~ v (e € FV(v))
let e in raise(e,v) handlee s = N ~» Nz = v] (e € Fv(v,N))
let e in raise(e’,v) handleex = N ~» raise(e’,v) (e € Fv(v))

This exception handling mechanism can be encoded into uPCF quite simply, as follows.

[raise(e, M)] ¥ (\a.ub.ja]z)[M]
[letein M handleex = N| % pub.[b](Ax.[N]) (ue.[b)[M])

It is quite easy to verify that this translation preserves the expected operational behaviour.
Here are two examples.

(E[[let e inv handleex = NJ}, &)
E (Bub.[b)(re. [NT) (pe. B[], €)
=2 (B[(A\w.[N])(ue.b][v])], € & {b — Elo]})
= (][], €W {0+ Efe],e = B[(A\x.[N])e]})
= (B[[]],€ W {b~ Els],e = E[(\x.[N])e]})

4de Groote also gives a second, more complicated, set of reduction rules,

(E[[let e in raise(e, v) handle e z = NJ],£)

= (Blub.)\ [N]) (ne. [t Az [[])], £)

2 (B[[N]) (ue. bl Oz.pe.[e]2)[v])], € @ {b — E[o]})
(D] (A [e])[v], € @ {b > B[o], e E[(Az.[N])o]
(E[(Az.pelelx)[v]], €W {b > Ele],e — E[(Az.[N])e
(Bluc[e][v]], € & {b ~ B[s),e ~ E[(\z.[N])e]})
([e)[], £ W {b > Els], e > B[(\z.[N])s]c = E[s]})
(B[O [ND[I), € 6 {b > Efs], e > B[Oa.[N])s]c - E[s]})
(B{[N[z := [v]]), € W {6+~ E[e],e = E[(Az.[N])e]c — E[s]})

1
1}

A N

Remark. The reader familiar with SML will recognise that this exception handling mecha-
nism is less powerful than that in SML. This is to be expected as it known that the typed
A-calculus extended with SML exception handling can encode the untyped A-calculus, and
thus is not strongly normalising [21]. As the typed Ap-calculus is strongly normalising, it
clearly can not encode true SML exception handling.

5.3 Pairing

It is easy to verify that ¢ x 9 = (¢ — —) in CL. This logical equivalence can be used to
simulate pairing in uPCF. The constructor and deconstructors are encoded as follows.®

def

pair = Admip A Afi (6= (B —=L)).fmn
st & Ap.pa.p(Az.ub.[a]z)
snd Ap.pa.p{Ay. Az [a]z)

It is simple to see that these encodings satisfy the expected (call-by-value) behaviour, e.g.

(st (pairv w), &)

(fst (Amnf.f mn)vw),E)

(fst (\f.fvw), &)

(pa((Af.f vw)(Az.pb.[a]z)), €)

g(/\f Sow)(Qz.pb.la)z),E W {ars o})
(

(

(

n

(Az.pb.a)z) vw,E W {ars o})
(pb.lalv) w,E W {a > o})
[alv,EW{ar> ¢,b— (ew)})
0,EW {0 o,br (o))

48488 dag

5.4 Ong/Stewart Encodings

In their paper, Ong and Stewart [24] give variants of callcc and exceptions and show how
they can be encoded in pPCF. I shall reconsider these encodings in the light of the simpler
operational treatment offered by this paper.

5.4.1 Exceptions

Ong and Stewart considered extending PCF with a simple system of exception handling,
which was inspired by (but less powerful than) work by Gunter et al. [15]. (Their system
is actually quite similar to de Groote’s system, considered in §5.2.) Typed exceptions are

SA similar encoding using Idealised Scheme was given by Griffin [14].

identified with names, thus typing judgements are now of the form I'; A > M: ¢ where I is
the usual typing environment and A is the typing environment for the exception names. Two
new operators are added to PCF whose typing rules are as follows.

;Ab M: ¢ A ap>pMip— 9 TsAa:pp Niyp
i A a: pv raise(a, M): 1 I'; A handle(a, M, N): 1

The intended interpretation is that the term raise(a, M) first evaluates M to a value v and
then raises an exception named a associated with v. The term handle(a, M, N) evaluates M
to a value (say v) and then evaluates N. If N evaluates to a value w then this is the overall
result, but if it raises an exception named a with a value wu, then this is applied to v. Given
as reduction rules the intended interpretation is as follows. :

handle(a,v,w) ~ w (a & PN(w)
handle(a, v, E|raise(a,u)]) ~ wu (a & PN(v,u))

These operators can be translated into uPCF as follows (where b is a fresh u-variable).

[raise(a, M)] ¢ (\z.ub.[a)z)[M]

[handle(a, M, N)] def b [0][M](pa.[b][NT)

It is relatively simple to show that this translation preserves the operational behaviour, e.g.
(where [M] =* v and [N] =* u)

[handle(a, M, E[raise(a, N)])], E)

JBIM] (a. (B B[O\ prc. [al2)[NT)), €)
[M] (0. Bl E[(\e.uc.[a]2) [NT]), € & {b =+ o))
(. [BLE (A puc.[a]e) [NT]), €' {b > o})
[0 Bl(Ae.eal2)INT], € 6 {a > (ve), b o})
E[(\e.uc.[al0)[NT], € & {a -+ (ve),b > o))
Plaelau, 2 a5 ()b o)

def
=2
= *
=

=+
aju, £ W {a > (ve),b+ e, c Ele]})
u, €W {ar (ve),brre,crs Efo]})

(
(b
(
(v
(
(
(
(
(

=

5.4.2 Callce

Ong and Stewart also considered extending PCF with a variant of callcc (again inspired
by work by Gunter et al. [15]). Continuations are both typed and associated with names,
and so typing judgements are of the form I'; A > M: ¢, where A is the typing environment
for continuation names. Three new operators are added to PCF, whose typing rules are as
follows.

;A M:i(p =) — ¢ T;A>M: ¢ T;Aa:dp>M: ¢
T; A callee(M): ¢ ;A a: v abort(a, M) T;Avset(a, M): ¢

The callcc operator applies the term M to an abstraction of the current continuation. The
set serves as a delimiter for continuations, and the abort discards the current continuation
(delimited by a). Given as reduction rules their intended operational behaviour is as follows.

set(a, Elabort(a, M)]) ~ M (a ¢ FN(M))

set(a,v) ~ v (a & PN(v))
Elcallcc(M)] ~» set(a, B[M(Az.abort(a, E[z]))])

9

These operators can be translated into pPCFas follows.

[callec(M)] ¥ pafa([M](\z.ub.[a]z))
[abort(a, M)] % pub.la][M] where b & FN([M])
[set(a, M)] pa.fa][M]

Again it is simple to check that this translation preserves the operational behaviour, e.g.

([set(a, Elabort(a, M)}, €)

_ (paa]E[pbla][M]],€)
=? (Blub.[a][M]],€ ¥ {a > o})
= ([a)[M],£ W {ar o, b Efe]})
= ([[ﬂl]]5U{aHobHE[]})

def

def

6 A Transition System

An implementation based on the reduction rules given in §4 would work as follows. Take a
term M: if it is a value then we are done; if not, it can be given uniquely as E[R]. One
takes the relevant reduction step (determined by R)—the resulting term is either a value, in
which case we are done, or it has to be re-written again as an evaluation context and a redex.
This process is repeated until a value is reached. The continual intermediate step of rewriting
a term into an evaluation context and a redex would be ineflicient in practice and is quite
cumbersome theoretically. Consequently I shall give a new set of reduction rules where the
evaluation context and the redex are actually separated. Reduction rules are now of the form

(S,M,&) — (S",M',&")
where S is a stack of evaluation frames, which are defined as follows.

F = oM | ve
| (o M) | (v,0)
| fst(e) | snd(e)
| suc(e) | ifz e then M else M

(Clearly & is now a function from p-variables to stacks.) The reduction rules essentially

describe the transitions of a simple abstract machine.® In full they are as follows.

(Flo] : S,v,E) — (S, F[v],€)
(S,MN,E) — ((eN)::S,M,E) M not a value
(S,uN,E) —> ((ve) :: S, N, &) N not a value
(S, (Az.M)v, &) — (S, Mz :=v],€)
(S,(M,N), &y — ({(&,N):: S, M,€&) M not a value
(S,(v,N),E) — ({v,¢) = S,N,E) N not a value
(S, fst(]\/[),S) — (fst(e) = S, M, &) M not a value
(S, st((v,0)),E) — (S,0,€)
(S, snd(]V[),E) — (snd(e):: S, M,E) M not a value
(S,snd((v,w)),&) — (S, w,€) :
(S, suc(]\/[),é') — (suc(e) :: S, M, &) M not a value
(S,suc(n),€) — (S,n+1,€)
(S,ifz M then Nelse P,€) — ((ifz @ then Nelse P) :: S, M,£E) M not a value

®Harper and Stone [16] give simple transition rules in their analysis of SML and Pitts [27] has used similar
rules in work on functional languages with dynamic allocation of store.

10

(S,ifzQ then M else N, &

(S, letrec f = Az.M in N, &

€)
S N[f = Aw.letrec f = Aa.M in M],E)

) — (9,

(S,ifz (n + 1) then M else N,E) — (S,)
) —
(S,pab,€) — (

(S,[a]M,EW {a—T})

An example may make these reduction rules clearer. Consider an instance of the Ong/Stewart
‘callce’ reduction rule given in §5.4.2.

0,M,E {a SY)

— (T,]\JSU{aHT})

set(a, (A\z.N)(abort(a, M))) ~ M

The left hand term is translated into the following pPCF-term.

pa.[a](Az.[N])(ub.[a][M])

The reduction of this term is as follows.

(S, pa.[a](Az.[N])(ud.[a][M]), &)
— (I, [a](Az. [N])(ub-[a][M]), EW{ar S}
— (9, (Az.[N]) (ub.[a][M]), £ {ar 5})
— (((Az.[N])e) == S, wb.[a][M], EW{ar S})
— ([, [a][M], EW{ar S,br (Ax.[N])e) :: S}
— (S, [M], EW{ar S,b ((Az.[N])e) :: S})

To compare these two formulations I shall define a function [El which converts a given
evaluation context, F to a stack of frames, and a function SQM which takes a stack of frames,
S, and a term, M, and converts the stack back to an evaluation context before inserting M.

[o] def

[yE]
[EM]

def
def

lem

For example

[((Az.M)e)P)Q!
(Ow.M)e) 2 ((oP) 12 ((oQ) :: [)))@N

[
[E]@[UO]
[E@[eM]

M

((Az.M)e) :: ((oP) ::
(((Az.M)N)P)Q

(@) 1))

The two sets of reduction rules can be related in the following sense.

Proposition 1.
(SQM,¢&)

= (N,&') iff 38", M'.N = §'@M’, (S, M,l £1) —*

(S, M e

An important fact (first discovered by Pitts [27] in a different setting) is that the set

def

= {(S5,M,€)

| 3, E'.(S, M, E)

—* (,v,€}

has a direct, inductive definition which is as follows.

11

(S, Fvl,)\

0, €
(@0 (Flo] 2 S,v,E)\
(o) =2 5, M, O M not a value ((ve) 2 5, N, O N not a value
(S, MN,E)NN (S,uN, E)\,
(S, Mz :=v],E)\ (S, N[f := Az.letrec f = Az.M in M],E)\,
(S, (Az.M)v, E)N (S,letrec f = Xz. M in N, EN\
. 5 {,E &) s S,N,E
(o,) = 5, M, E) M not a value ({v.) V>0 N not a value
(S, {M,N),EN (S, (v, N),)\
(Fst(o) i S, M,)N, (S,0, €0\,
M not a value
(S, fst(M), E)\e (S, fst({v, w)), E)\s
(snd(e) :: S, M, ENN (S, w, &)\
M not a value
(S, snd(M), E)\q (Sysnd({v, w)), &)\
(T,M,E¥ {am TN ([, M, W {am S}
(Si[a]lM,E W {am TN (S, pa. M, E)N

These rules will form the basis of a notion of program equivalence given in the next section.

7 Program Equivalence

pPCF is a simple functional programming language for recursively defined, higher order
functions along with facilities to save and restore the runtime environment. As for pure
functional languages, we should like to develop methods for reasoning about properties of
pPCF programs. One possibility is to devise a set of equations and reason equationally about
programs. Such equations have been considered for Idealised Scheme by Felleisen et al. [10],
Griffin [14] and Hofmann [18]. Another possibility is to develop a denotational model and
reason about programs via their denotations. Cartwright et al. [3] give a (fully abstract)
model of Idealised Scheme and some models of the Ay-calculus have been considered recently
by Ong [23], Hofmann and Streicher [19] and Selinger [30].

In this paper I shall rather consider techniques based on the operational behaviour of
pPCF programs. One advantage of such operationally based techniques is that they require
relatively little mathematical overhead. (Further arguments in favour of operationally based
techniques can be found in the literature, e.g. [13].)

Morris-style, contextual equivalence is accepted as a natural notion of equivalence for
sequential languages. Essentially two programs are considered contextually equivalent if in-
terchanging one for the other in any larger program does not affect the result. Before the
formal definition, here are a couple of simple definitions.

12

(M,) (v, &) & (M, &) =* (v, and (v,E') %
(M,&) bv & 3 .(M,8)) (v,€)
(M, €) | Tv.(M,E) Y v
(M, &) =(Fv.(M,E) §v)

Definition 1. Let M and N be terms and C a A-closing context. M is said to contextually
refine N, written I' > M C N:¢,%, when VC,E. if (C[M],€) | then (C[N],&) | . They are
said to be contextually equivalent, written I' > M ~ N: ¢, %, just whenI' > M T N: ¢, X iff
F>NCM:¢,%

Reasoning about languages with control is difficult. One reason for this is that, in terms
of contextual equivalence, control is invariably a non-conservative extension. By this, I mean
that terms which are contextually equivalent in the call-by-value A-calculus, may no longer
be contextually equivalent in a call-by-value A-calculus extended with control. For example,
consider the following PCF-terms (this example is due to Meyer and Riecke [22]).

M, def Az Ay z.Qw.(yz)w)(zz)ig > (p =P =2 @) = (0=) = p
M, def Ay Xz (yz)(zz):d > (d =2 =)= (p—=9Y) 2@

It can be seen that these terms are PCF-contextually equivalent: Meyer and Riecke claim an
complicated inductive argument can be used, although a more modern approach would be to
show that they are applicatively bisimilar (some details of the definition are given by Pitts [28,
§6]) and use the fact that applicative bisimilarity coincides with contextual equivalence.

Of course, M; and M, are valid uPCF-terms. However they are not pPCF-contextually
equivalent: they can be distinguished by the context

¢ % ub: int.[b: int]((e 1) (M. Q™) (Ao, pa.[b]1))

where Qint21nt jg 5 non-terminating term.” Thus C[M;] terminates by the following steps
(where, for clarity, I have in places underlined the redex).

(C['Z\/Il]) E)

wb: int.[b: int] (M1 1) (Au.Q)(Mwv.pa.b]l)), £)

(M; 1) (Au.)(Av.pa.b]1), € W {b s o})

((Az Ay Az.Qw.(y z) w)(z z)) 1) (Auw.Q)(Av.pa.[b]1),E W {b > })

cl:_g_f (
(
(

=3 E w. (M) 1) w)((Av.pa.b]1) 1), E W {b— o})
(
(

2

(

Qw.((Au.Q) 1) w)(pa.[b]1),E W {br> o})
[0]1,€ & {b > o, a — O (M) 1) w)e})
LEW (b o am (. (M) 1) wye})

]

Unfortunately C[Mas] does not terminate. It evaluates as follows.
(C[Ma],€)

et (b int.[b: int]) (M, 1) (Aw.Q) (Av.pua.[b]1)),)

=2 (M DO Owpa b)1), € & {b — o})

E (Dadyre(y 2)(z) 1)) Mv.pab]1),E W {b s o})
=3 () D((Awv.pab]l) 1),€ W {b - o})

1? (@ (Ow.pa.p]1) 1),E ¥ {b - o})

"For example (inein? 4 Jetrec f = Az:int — int.fz in f(Ay: int.y).

13

This counter-example is quite serious. Both M; and My are closed terms and so they are not
distinguished by binding some free u-variable in some complicated way. In fact they differ
by having a slightly different order of evaluation in their bodies. In uPCF there is enough
computational power to differentiate between these different orders of evaluation (a similar
thing happens with languages with state [29]).

Here’s another problem when reasoning about uPCF programs. Typically given two pro-
grams of function type, we might think that if they behave in the same way for all given
arguments, then they can safely be thought of as indistinguishable, i.e. contextually equiv-
alent. For example, notions of applicative bisimilarity of PCF-programs use this idea in
their definition [1, 28, 12]. As one may have feared, things are more complicated for uPCF.
Consider the closed programs

T Y pafal(Ay.pe.fa](Az.ifz y then Q else 0)): int — int
T, AZ.pb.[b]((Ay.pe. [b] ((Az.ifz y then Q else 0)2))z): int — int

where, again,) is a non-terminating term. It is easy to verify that for all natural numbers n
and £

(T1n,£) 4 0 <= (Ton, &) § 0

Thus given the argument above, one may conclude that 7} and T should be thought of as
contextually equivalent. Unfortunately they are not, as the context

€% (Ns.5(s1))e

can distinguish between 77 and 75! Indeed C[T}] terminates in the following way.

€N, €)
E (s.s(s1))(pa.la) My.puc.a](Az.ifz y then Q else 0))), €)
=2 ((Xs.s(s1))(Ay.puc.[a](A\z.ifz y then Qelse 0)), £ W {a -+ (As.5(s1))e})
= (UUL),E¥{ar— (As.s(sl))e})
= (U(pc.]a](Az.ifz Lthen Qelse 0)),E W {a +> (As.s(s1))e})
=2 (()\s s(s1))(Aw.ifz L then Qelse 0), £ W {a — (As.s(s1))e,c+s Us})
=% (0, €W {ar (As.s(s1))e,c > Us})

(U is used as shorthand for the term Ay.uc.[a](Az.ifzy then Qelse 0).) However C[T3] loops in
the following way.

C[T2],€)
(As.8(s1)) T2, &)
(T21) €)
Lol ((Ay.pe. D] ((Az.ifz y then Q else 0)1))1)), &)

e le|

(

(

(i
(To((My.pc.[b](Az.ifz y then Q else 0)1))1), £ W {b > Thel)
(T2 (pe.[b]((Aw.ifz 1 then Q else 0)1)), E W {b s Tye})

2 (Ty((\a.ifz Lthen Q else 0)1), £ W {b > The,c Tye})
(
(
(
(ue
(
(

70, £ W {b— Tzo cr> The})

pb'. [b’](()\J pe' . [V']((Az.ifz y then € else 0)0))0), £ W {b > The,c s Thel)
(/\y pe’ O} (Az.ifz y then Qelse 0)0))0), € W {b s The,c s The, b 5 o})
pc' [0')((Az.ifz 0 then Q2 else 0)0), SU{bHTgo e The, b 1 o})

(Az.ifz 0 then Q else 0)0,£ ¥ {b > Toe,c > The,b' s o, ¢/ 5 o})
ifz0then Qelse 0,E W {b — The,crs The, b 5 o,¢ 0})

14

A consequence of this example is the fact that simple definitions of applicative bisimilarity
are unlikely to coincide with contextual equivalence. (Indeed as Ong and Stewart point out,
the most obvious definition of applicative bisimilarity fails even to be a congruence!)

The problem with contextual equivalence is that it is very hard to reason about. As
demonstrated above, it is easy to see when two programs are not contextually equivalent—
one simply finds a context which distinguishes them. To show that two programs are con-
textually equivalent is much harder: the problem lies in the quantification over all program
contexts. Indeed, the discussion above demonstrates how puPCF’s save and restore features
also complicate the problem.

Despite these difficulties let us consider a very simple notion of program equivalence which
uses the notion of termination given at the end of §6. Informally, the idea is that two programs
are considered equivalent if they have the same termination properties. The formal definition
is as follows.

Definition 2. Given two programs M and N, M is said to ciu-refine N, written M < N: ¢, 3],
just when VS, &. if (S, M,&)\, then (S,N,E)\,. They are said to be ciu-equivalent, written
M ~ N:¢,% just when M < N:¢, ¥ and M < N: ¢, X.

These can be extended to open terms as follows

T:=1]: ¢, %

#T>M<°N:¢,Y ¥ viMz:=0) <Nz
~ N[Z:=17):¢,Z

ZT> MO N:g S & v Mz =17
The obvious question is in what way are ciu-equivalence and contextual equivalence related? It

is possible to show that they coincide, or, put in another way, ciu-equivalence is an alternative
(but relatively simpler) characterisation of contextual equivalence.

Theorem 1. (ciu theorem) I'> M = N: ¢, L if > M ~° N: ¢, 3.
Proof. Some details are given in Appendix A. n

This means that to prove two terms contextually equivalent we need only to show that they
are ciu-equivalent, which is significantly easier. For example, it can be shown that the (call-by-
value variants of the) reduction rules of the Ay-calculus given in §2 are contextual equivalences,
by showing that they are, in fact, ciu-equivalences.

Az:d. M)y = Mg :=vl¢, B (1)
pa:gla: M ~ M:¢, % (a & prv(M)) (2)

[a: glub: . Jc:Y)M =~ ([cy]M)a/b: L,a:¢,2 (3)
(pa: ¢ — ».M)N =~ pbip.Mla < [b:ep] e N]:ep, % (4)

For example, the equivalence (2) holds by observing
(S, M, ¢ {ar S}
(0, [alM, €W {a = SH\
(S, pa.la] M, E)
and the fact that a ¢ prv(M) by assumption.

15

A number of other equivalences can be derived. For example, consider a term M such
that I',z: > M:4p, 2. An instance of equivalence (1) is

Dyarg o (Moo M)z ~° M:9p, T (5)
In Appendix A it is shown that ciu-equivalence is a congruence. In particular, this means
that the following rule is valid.
agr> M ~° Ny, X
' Azi¢pM ~° Az:dp.N:gp = 1,2

Applying this to equivalence 5 gives
o Aeg(Az: ¢ M)x =2° Az . M: g — 9, %,

Setting v for the term Az:¢.M, this implies the following contextual equivalence.

P Az =vig =9, % (6)

(where z ¢ FV(v)). Hence the call-by-value n-rule is a contextual equivalence. Here are a
couple more examples of contextual equivalences.

Elpa[b)M] = [b]M: L (a & prv(M)) (7)
pa.[b](ifz M then N else P) =~ ifz M then pa.[b]N else pa.[b]P: ¢ (a & prv(M)) (8)

The first equivalence is a sort of ‘abort’ axiom, the second is a typical compiler optimisation.
Further study of provable contextual equivalences is important future work.

8 Implementation

In this section I shall give details of two implementations. The first is simply the SML code
for a tail recursive interpreter based on the transition system of §6. The second is a simple
abstract machine, which is based on the framework proposed by Curien [5].

8.1 Interpreter

As mentioned in §6, the transition system essentially describes a tail recursive interpreter for
pPCF. In this section I shall give details for such an interpreter, written in SML. The function
mapping u-variables to stacks is implemented as a list of pairs. The main datatypes are as
follows.

datatype ’a exp = const of int

| suc of ’a exp

| var of ’a

| abs of ’a *x ("a exp)

| app of (’a exp) ¥ (’a exp)
| pair of (’a exp) * ("a exp)
| fst of (’a exp)

| snd of (’a exp)

16

restore of

| ifz of
| letrec of
| save of
|

type term = string exp;
(* type typed_term =

(’a exp) * (Pa exp) * (’a exp)
’a % ’a ¥ (’a exp) * (’a exp)
‘a * (Pa exp)
’a * (Pa exp);

(string*formula) exp *)

datatype hole = Bullet;
datatype frame = csuc of hole
| appl of holexterm
| appr of termxhole
| pairl of holexterm
| pairr of termxhole
| cfst of hole
| csnd of hole
| cifz of holexterm*term;

type stack = frame list;

type stack_function =

(string*stack) list;

(¥ type typed_stack_function = ((stringxformula)*stack) list *)

The main interpreter consists of two mutually recursive routines eval and unwind. They call
three subsidiary functions: insert and get, which handle the function update and access
respectively, and subs which performs substitution of a term for a variable. The code for the

interpreter is then as follows.

fun eval S (comst i)
| eval 8 (suc(e))
| eval S (abs(x,e))
| eval S (app(e,f))
| eval S (fst(e))
| eval S (snd(e))
| eval S (pair(e,f))
| eval S (ifz(e,f,g))
| eval 8 (letrec(f,x,e,g))
| eval S (restore(n,e))
| eval S (save(n,e))
and
unwind S v C = case S of
{]

| (csuc(Bullet)::8)

| (appl(Bullet,e)::S)
| (appr(abs(x,e),Bullet)::S)

C = unwind S (comst i) C
C = eval (csuc(Bullet)::S) e C
C = unwind S (abs(x,e)) C
C = eval (appl(Bullet,f)::S) e C
C = eval (cfst(Bullet)::S) e C
C = eval (csnd(Bullet)::S) e C
C = eval (pairl(Bullet,f)::8) e C
C = eval (cifz(Bullet,f,g)::S) e C
C = unwind
S
subs (abs(x,letrec(f,x,e,e),f,g)
C
C = let val T=get n C
in eval T e C
end
C = eval [] e (insert (n,S) C)
=> v
=> let val (const i) = v
in unwind 8 (const (i+1)) C
end
=> eval (appr(v,Bullet)::S) e C
=> eval S (subs(v,x,e)) C

17

| (pairl(Bullet,e);:S) => eval (pairr(v,Bullet)::S) e C

| (pairr(w,Bullet)::S) => unwind S (pair(w,v)) C
| (cfst(Bullet)::S) => let val pair(u,w)=v
in unwind S u C
end
| (csnd(Bullet)::S) => let val pair(u,w)=v
in unwind S w C
end
[(cifz(Bullet,f,g)::S) => let val (const i) =

in if (i=0) then eval S f C
else eval S g C
end;

8.2 Towards an Abstract Machine

In his paper, Curien [5] describes a simple framework for abstract machines which evaluate
functional programs using environments and closures. Both the CAM and Krivine’s machine
arise naturally as instances of this abstract framework. In this section, I shall extend Curien’s
“Bager Machine” to pPCF (actually without recursion).

The machine essentially consists of a triple. The first part is an environment. For simplic-
ity I shall consider this to be a pair of symbol tables (functions), the first maps A-variables to
values and the second mapping u-variables to stacks. In a realistic machine this indirection
would be removed by compiling both A- and u-variables into de Bruijn indices. I have chosen
not to do this for clarity. The second part of the triple is the term. The third part is a stack
of values (I use :: as an infix ‘push’ operator). The evaluation rules for the abstract machine
are as follows.

((F’g>7ﬂ>s) » (-—nu S)

(T, &), suc(M), S) > ((T,€), M,SUC :: 5)

(= —,n:: SUC 2 S) > (—,~,n+1:: S)

(T W {z s v},E),x,9) > (==

(I, &), 2. M, S) > (= ((E), . M) S)
(T,), MN, S) > (0,6), M1 : ((r £),N) :: 5)
(=, —vu L ael((D,E), M) = 9) > ((IE),M,R :v:S)

(= —vuRucd((T,E), . M) = S) > (Tw{z r——)v} 8) M,S)

(I, &), pa. M, S) > (IéW{ar S}),M,][)

(I Ew{aw S}),[a)M,T) > (T, SU{aHS}) M,S)

(T, €),ifz M then N else P, S) > (T,€), M,IFZ : ((F E),(N,P)) = S)
(7_0 IFZ :: (<F,S>,<N,P)) ::S) > (<F>5>)

(== n+1:IFZ 2 (T, €),(N,P)) = S) > ((T,€),P,S)

As the environment is separate from the term, the value of a function is naturally a closure,
which has a code part and an environment part. Closures are written cl((T",£), M).

The feature of this machine (and related environment machines) is that the recursive calls
are implemented using the stack and the “markers” (L, R, SUC and IFZ).2 Consequently
the stack contains either natural numbers, closures or markers.

Further details of such environment machines and more generally about calculi of closures
can be found in Curien’s paper [5]. Low level details of implementing other related control

8The I and R markers are not required in a call-by-name setting. The resulting machine in that case is
essentially a Krivine machine—a related machine has been given by Selinger [31].

18

operators are given by Hieb et al. [17].

9 Call-by-Name

This paper has so far considered only call-by-value computation. However it is very simple
to provide a computational interpretation for a call-by-name evaluation strategy. The main
difference is in the (new) definition of values, evaluation contexts and redexes, which are as
follows. (As normal the call-by-value function restriction on recursion can be relaxed [33,

§11.5].)

Values v

i

nlAz.M | (M, M)

Evaluation Contexts F .
EM

fst(E) | snd(E)
suc(F)

ifz E then M else M

Redexes R vM

fst(v) | snd(v)
suc(v)

ifz v then M else M
recx. M

([a]M | pa. M

——

The evaluation rules are essentially as before.

(BEl[(Az.M)N],€) = (B[Mlz:=NJ],€)
(BI(M, N €) = (B[M],E)
(Blsnd((M, NY),€) = (BN, €)
(E[suc(n)],€) = (En+1],&)
(Elifz0 then M else N],&) = (E[M],)
(E[ifz (n+ 1) then M else N],&) = (E[N],€)
(BElrecz.M],E) = (E[Mz = (recz.M)]},E)
(Elua.M),E) = (M,E{a E[s]})
(Ella]M],€ W{ar E'lo]}) = (B'[M],£W{ar E'le]})

The development of the corresponding operational theory follows closely that outlined in
§7. The differs from the treatment given by Ong and Stewart [24] who have to introduce
completely new reduction rules to move from a call-by-name to a call-by-value setting.

10 Conclusion

In this paper I have given a simple computation interpretation of the Ap-calculus: it is a
M-calculus which is extended with indexed operators to save and restore the runtime envi-
ronment. This is maybe not too surprising as Griffin [14] has shown the close relationship
between classical logic and languages with control. This interpretation can be expressed as
a single-step reduction semantics using environment contexts. In turn I gave an equivalent
semantics expressed as steps of a simple transition system, which eliminated the need for the
evaluation contexts. Using this simple transition system it is possible to define a notion of

19

program equivalence based on a termination relation which can be proved to be equivalent to
a natural definition of contextual equivalence.

Clearly the work by Ong and Stewart [24] is most closely related to that reported here.
Their thesis is that 4PCF is a foundational language for call-by-value functional computation
with control and this paper can be seen as further evidence to that claim. However I would
suggest that the operational treatment given here is more intuitive, more flexible (in that
different calling mechanisms can be handled easily) and leads to a more refined notion of
program equivalence,

This paper has given a computational interpretation directly to the Ap-calculus but
de Groote [6] has worked in the other direction, using existing work on continuation passing
to give an interpretation for the (call-by-name) Ap-calculus. A fuller comparison of these
approaches is important future work.

The techniques used in this paper to define a ciu-equivalence and prove a ciu-theorem
can be applied to a number of complicated languages.? Pitts has used this in recent work on
various calculi with explicit state. In unpublished work, the author and Pitts have applied
these techniques to both Idealised Scheme [8] and the generalised control language of Gunter
et al. [15].

Acknowledgements .

I am currently supported by EPSRC Grant GR/M04716 and Gonville and Caius College,
Cambridge. I am grateful to Nick Benton, Sgren Lassen, Luke Ong, Andrew Pitts and Peter
Selinger for helpful comments and discussions.

An abridged version of this paper appears in the MFCS proceedings [2].

References

[1] S. ABRAMSKY. The lazy lambda calculus. In D.A. Turner, editor, Research Topics in
Functional Programming, chapter 4, pages 65-116. Addison-Wesley, 1990.

[2] G.M. BIERMAN. A computational interpretation of the Au-calculus. In L. Brim,
J. Gruska, and J. Zlatuska, editors, Proceedings of Symposium on Mathematical Foun-

dations of Computer Science, volume 1450 of Lecture Notes in Computer Science, pages
336-345, August 1998.

(3] R. CARTWRIGHT, P.-L. CURIEN, AND M. FELLEISEN. Fully abstract semantics for
observably sequential languages. Information and Computation, 111(2):297-401, June
1994.

[4] W. CLINGER AND J. REES. The revised® report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 21(12):37-79, 1986.

(5] P.-L. CURIEN. An abstract framework for environment machines. Theoretical Computer
Science, 82(2):389-402, May 1991.

¥ After completing the first draft of this paper, the work of Talcott [32] was brought to my attention. Talcott
also proves a ciu-theorem for an untyped variant of Idealised Scheme as well as for a language with explicit
memory effects.

20

(6]

[10]

[11]

[12]

(13]

[14]

[16]

[17]

P. DE GROOTE. On the relation between the Au-calculus and the syntactic theory of
sequential control. In Proceedings of Conference on Logic Programming and Automated
Reasoning, volume 822 of Lecture Notes in Computer Science, pages 31-43, 1994.

P. DE GROOTE. A simple calculus of exception handling. In Proceedings of Second
International Conference on Typed A-calculi and applications, volume 902 of Lecture
Notes in Computer Science, pages 201215, 1995.

M. FELLEISEN AND D.P. FrIEDMAN. Control operators, the SECD-machine and the
M-calculus. In Formal Description of Programming Concepts III, pages 131-141. North-
Holland, 1986.

M. FELLEISEN, D.P. FRIEDMAN, E.E. KOHLBECKER, AND B. DUBA. Reasoning with

continuations. In Proceedings of Symposium on Logic in Computer Science, pages 131-
141, June 1986.

M. FELLEISEN AND R. HIEB. The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science, 103(2):235-271, September 1992.

G. GENTZEN. Investigations into logical deduction. In M.E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68-131. North-Holland, 1969. English Translation of
1935 German original.

A.D. GorDON. Bisimilarity as a theory of functional programming: Mini-course. Tech-
nical Report NS-95-2, BRICS, Department of Computer Science, University of Arhus,
July 1995.

A.D. GORDON AND A.M. Prrrs, editors. Higher Order Operational Techniques in
Semantics. Publications of the Newton Institute. Cambridge University Press, 1998.

T.G. GRIFFIN. A formulae-as-types notion of control. In Proceedings of Symposium on
Principles of Programming Languages, pages 47-58, 1990.

C.A. GUNTER, D. REMY, AND J.G. RIECKE. A generalisation of exceptions and con-
trol in ML-like languages. In Proceedings of Conference on Functional Programming
Languages and Computer Architecture, pages 12-23, 1995.

R. HARPER AND C. STONE. An interpretation of Standard ML in type theory. Technical
Report CMU-CS-97-147, School of Computer Science, Carnegie Mellon University, June
1997.

R. Hies, R.K. DyBVIG, AND C. BRUGGEMAN. Representing control in the presence
of first-class continuations. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 66-77, June 1990.

M. HOFMANN. Sound and complete axiomatisations of call-by-value control operators.
Mathematical Structures in Computer Science, 5:461-482, 1995.

M. HOFMANN AND T. STREICHER. Continuation models are universal for Au-calculus.
In Proceedings of Symposium on Logic in Computer Science, pages 387-397, 1997.

21

[20]

[21]

[22]

[23]

24]

[25]

29]

[30]

[31]

[32]

[33]

D.J. HowE. Equality in lazy computation systems. In Proceedings of Symposium on
Logic in Computer Science, pages 198-203, August 1989.

M. LILLIBRIDGE. Exceptions are strictly more powerful than call/cc. Technical Report
CMU-CS5-95-178, School of Computer Science, Carnegie Mellon University, July 1995.

A.R. MEYER AND J.G. RIECKE. Continuations may be unreasonable (Preliminary Re-
port). In Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,
pages 6371, July 1988.

C.-H.L. OnG. A semantic view of classical proofs: type-theoretic, categorical and deno-
tational characterizations. In Proceedings of Symposium on Logic in Computer Science,
pages 230-241, 1996.

C.-H.L. ONa AND C.A. STEWART. A Curry-Howard foundation for functional computa-
tion with control. In Proceedings of Symposium on Principles of Programming Languages,
pages 215-227, 1997,

M. PARIGOT. Ap-calculus: an algorithmic interpretation of classical natural deduction.
In Proceedings of Conference on Logic Programming and Automated Reasoning, volume
624 of Lecture Notes in Computer Science, pages 190-201, 1992.

M. PARIGOT. Proofs of strong normalisation for second order classical natural deduction.
Journal of Symbolic Logic, 62(4):1461-1479, December 1997.

A.M. P1rTs. Operational semantics for program equivalence. Slides from talk given at
MFPS, 1997.

A M. PrrTs. Operationally-based theories of program equivalence. In P. Dybjer and
A.M. Pitts, editors, Semantics and Logics of Computation, Publications of the Newton
Institute, pages 241-298. Cambridge University Press, 1997.

A.M. PrrTs AND 1.D.B. STARK. Operational reasoning for functions with local state. In
A.D. Gordon and A.M. Pitts, editors, Higher Order Operational Techniques in Semantics,
Publications of the Newton Institute, pages 227-273. Cambridge University Press, 1998.

P. SELINGER. Control categories: an axiomatic approach to the semantics of control in
functional languages. Unpublished manuscript, May 1998.

P. SELINGER. An implementation of the call-by-name Auv-calculus. Unpublished
manuscript, July 1998.

C. TALCOTT. Reasoning about functions with effects. In A.D. Gordon and A.M. Pitts,
editors, Higher Order Operational Techniques in Semantics, Publications of the Newton
Institute, pages 347-390. Cambridge University Press, 1998.

G. WINSKEL. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, 1993.

22

A The ciu-theorem

In this appendix, I shall give details of the proof of the ‘ciu-theorem’: the proof that contex-
tual equivalence coincides with ciu-equivalence. First recall these two definitions of program
equivalence.

Definition 3. Let M and N be terms and C a A-closing context. M is said to contextually
refine N, written I' > M C N:¢, X, when VC, €. if (C[M],&) | then (C[N],€) | . They are
said to be contextually equivalent, written I' > M =~ N:¢,%, just when I' > M © N: ¢, % iff
'>NCM:¢,%.

Definition 4. Given two programs M and N, M is said to ciu-refine N, written M < N: ¢, %,
just when VS, E. if (S, M, &)\, then (S, N,E)N\,. They are said to be ciu-equivalent, written
M ~ N:¢,% just when M < N:¢,¥ and M < N:¢, L.

These can be extended to open terms as follows

#T>M<°N:ig, Y & viM[z =0

F#T> M N:g, S 2 v Mz =7

N
N

=7 9,2
=], X

1IN
En

8y

Two facts are almost immediate from the definition of ciu-refinement.

Lemma 2.

1. VM.M < M:¢,%.

2. HFM<M:¢,% and M' < M": ¢, 5 then M < M": ¢, 5.
The following properties of relations between terms will be useful.

Definition 5. A relation, R, is said to be compatible if it satisfies the following rules.

Dzigpox R x:¢, % T'en R n:int, ¥
'sM R N:¢, % I'>sM R N:¢,%
Wealening . Weakening,
Lzipo M R N: ¢, Z M R N:¢,%,a:7

T,z:¢g> M R M4, 5
I'vdz.M R Mz M':¢— 9,5

-z

T'oMRN:p—=9,Y ToM R N:¢I
s MM' R NN':4), %

—E

I'sM R M:¢,L ToNTRN:pD
T (M,N) R (M',N"):¢x 1,5

Xz

FD]\([’R,]\([I:QSX'I/),E ' MR M:¢px,%
Xe - Xg
I'sfst{M) R fSt(]VI’):¢,E Tesnd(M) R snd(M’):zp,E

23

PeM R M':int, 2
I'vsuc(M) R suc(M'):int, T

Suc

I'sM R M:int,Y TbNRN:¢,% TP R Pi¢S
v ifz M then N else P R ifz M' then N’ else P': ¢, 2

Cond

I, fidp—dudsMRM:$S T,fid—s¢s>NR N4
Poletrec f = Xz.MinN R letrec f = Az.M'inN':¢, %

Recursion

FbM R N:¢, X
I'bla:d]M R [a:¢]N: L,%,a: ¢

Passivate

I'sM R N:1L,%,a:¢
Tvupaidg.M R pa:p.N: ¢, 2

A precongruence is a compatible relation which is also transitive. A congruence is a precon-
gruence which is also symmetric.

Activate

It is easy to see that a compatible relation is reflexive. Another important property is the
following.

Lemma 3. IfR is a precongruence and I',\ > M R N:¢,%,%'. Then for any context Cle],
I's C[M] R C[N]: 9, X

Proof. By induction over the structure of the context. [

We should like to prove that ciu-refinement is a precongruence. As is usual (e.g. for pure
PCF), this is extremely difficult to prove directly. Fortunately Howe [20] has given an in-
genious method for proving (pre)congruences of PCF-like languages. The trick is to give
another relation (which will be written <*), which is almost trivially compatible and rather
less trivially coincides with ciu-refinement. As ciu-refinement is transitive, this is enough to
show that it is a precongruence. Howe’s method will be adopted here, although it has to
be extended to handle the save and restore features of uPCF. First, the definition of the <*
relation.

Definition 6.

Ibp<*Niint,X = Tpn<°N:int, T
Dz < N:ig, Y = TDagpraz<®°N:ig 3
L' suc(M) <* N:int, % AP.T'> M <* P:int,%
I'> suc(P) <° N:int, %
T AgM < Nipg—9,2 ¥ AP T aigp M <* P, S
TP Az:pP<°N:¢p >, X
T MM <*N:¢,% ¥ 3PP .T's>M<*Pig 9,5
T M <*Ph¢ 3
I'> PP <° N9, S
I'>ifz M then M'else M" <* N:¢,% = 3P,P',P".T> M <* P:int, %
> M <*P:¢X
I'>M"<* P".¢, %
I'bifz Pthen P'else P" <° N:¢, %

24

T'> (M, M) <* N:¢p x 1,5

Tpfst(M) <* N:¢, %
T snd(M) <* N:4p, 2

T'iletrecf =z MinM' <*N:y, 5

Popa:pM <*N:¢, %

P la:¢lM <*N:1l,a:4, 2

This relation can be extended to frames, stacks of frames and functions from pu-variables to

stacks. This is important for technical reasons

Definition 7.

IP,P'.T'> M <* P: ¢, 8

T M <* Py, %

T (P,P') <° N:¢ X 9, %
AP.T> M <* P:dp x 9,5

' fst(P) <° N: ¢, &

IPTHM <* Pigx %
['>snd(P) <° N:¢, %

AP, P'.T,fid > x> M <*P:¢p, 2
T, fidp— > M <* Plih, S
T'>letrec f = Az.Pin P' <° N:y, &
IPT>M<P LY a¢

T paid.P<° N:ig, X

AP.T> M <*P:¢, %

I'>fa:¢]P <°N:L,a:¢, 2

. The definitions are as follows.

1.
oM <* Flolip,S % IN.M<*N:¢,%
VP.PN < F[P):4,%
ve <* Flo]:9h, Y % AN <* Nigp— 9, %
VP.NP < F[P):4,%
(o, M) <* Flo:px 9,5 & 3IN.M <* N:9p, 3
VP.(P,N) < F[P}: ¢ x 1,3
(v,0) <* Flo]: ¢ x 4,5 % 3INw <t N:g,
VP.(v, P) < F[P]: ¢ x 1, %
fst(o) <* Flol:), S & VPfst(P) < F[P):9), T
snd(e) <* Flo]:,2 % VPsnd(P) < F[P]:¢, &
suc(e) <* Flo]: int, 2 % VPsuc(P) < F[P]: int, %
ifz o then M else M! <* F[o]:, = ¥ 3N, N'. M <* N:¢, %
M <* N':4p, %
VP, ifz Pthen N else N' < F[P]: 9,2
2.
F[O] S* FI[.] S S* S
<+ , ,
(Flo] :: S) <* (F'[o] 2)
3.

E < & iff Va.Ea <* &a.

It is fairly easy to verify that all these relations are reflexive.

Lemma 4. (Reflexivity)
1. VM > M <* M:$, 5.

2

5

2. VF[e].F[e] <* F'[e]: ¢, %.
3. V8.8 <+ 8.
4. VEE <*E.

It is not hard to see that the <* relation is not transitive. However the following property
will suffice.

Lemma 5. If M <* M": ¢, 2 and M' < M":¢,% then M <* M": ¢, 3.
Proof. By induction on M <* M': ¢, 3. |
One half of the coincidence of the <* relation and ciu-refinement is now immediate.

Proposition 2. If M < N:¢,% then M <* N: ¢, %.

Proof. We know that M <* M:¢,% and have that M < N:¢,%. Hence by lemma 5 we
conclude that M <* N: ¢, . n

The following two properties will be useful.
Lemma 6.

1L Ifo<*v: ¢, N and Tz p > M <* M':4), % then I'> Mz == v] <* M'[z :=], 2.
2. Ifv <" M:¢, % then Jw.w <Fw: ¢, ¥ and w < M: ¢, 3.

Proof. Part 1 follows by induction on M. Part 2 by induction on v. [
The following property relates the <* relation and the termination relation.

Proposition 3. If S <* §', M <* M": ¢, %, £ <* &' and (S, M,)\, then (S',M',E"\..
Proof. By induction on depth of (S, M, E)\,.]

Corollary 1. If (S,M,E)\, and M <* N:$,% then (S, N, E)\..

We can now show the other direction of the coincidence of the <* relation and ciu-refinement
(cf. Proposition 2)

Proposition 4. If M <* N:¢,% then M < N: ¢, .

Proof. Assume that M <* N:¢, 2 and that (S, M, E)N\,. Then by corollary 1, it follows that
(S, N, &)\, .

As the <* relation is trivially compatible, Propositions 2 and 4 allow one to conclude that
ciu-refinement is also compatible. In addition, ciu-refinement is transitive (Lemma 2), which
allows one to conclude that it is a precongruence.

Proposition 5. < is a precongruence.

This now allows us to conclude that ciu-refinement is included in contextual refinement.

26

Proposition 6. If M < N:¢, ¥ then M T N: ¢, %.

Proof. By Proposition 5 we have that C[M] < C[N]: ¢ which is sufficient.]

An important property of the termination relation and evaluation contexts is the following.
Lemma 7. (S, E[M],£)\, iff (E[s]! :: S, M,E)\..
Proof. By induction on the structure of Efe]. |

Evaluation contexts and frame stacks can be seen to be in one-to-one correspondence as
follows.

Lemma 8.

1. VE[e],38 such that S =E[e]l.
2. VS,3E]e] such that S =(E[e]!.

We can now conclude that contextual refinement is included in ciu-refinement.
Proposition 7. If M T N:¢, % then M < N: ¢, .

Proof. By assumption we have that if ([],C[M],€)~ then ([},C[N],€)\y. In particular
we can take only the contexts which are evaluation contexts; thus, if ([], E[M],€) \, then
(1, E[N],€)\.. From Lemma 7 we have that if (E[e]!, M, &)\, then (E[e]!, N,£)N,. From
Lemma 8 we are done.]

Thus we have proved the ciu-theorem.
Theorem 2. '>M C N:¢, 2 if T'> M <° N: ¢, %.

Proof. The \-closed instances follow from Propositions 6 and 7. It is relatively straightfor-
ward to extend these to the open versions. []

27

