Technical Report A

Number 449

Computer Laboratory

Locales

A sectioning concept for Isabelle

Florian Kammuiiller, Markus Wenzel

October 1998

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1998 Florian Kammiiller, Markus Wenzel

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Locales are a means to define local scopes for the interactive proving process
of the theorem prover Isabelle. They delimit a range in which fixed assump-
tion are made, and theorems are proved that depend on these assumptions.
A locale may also contain constants defined locally and associated with
pretty printing syntax.

Locales can be seen as a simple form of modules. They are similar to
sections as in AUTOMATH or Coq. Locales are used to enhance abstract
reasoning and similar applications of theorem provers. This paper motivates
the concept of locales by examples from abstract algebraic reasoning. It also
discusses some implementation issues.

CONTENTS.

Contents

1

2

Motivation

Locales — the Concept

2.1 LocaleRules
2.2 Locale Constants
2.3 Local Definition and Pretty Printing
Operations on Locales
3.1 DefiningLocales
3.2 Invocationand Scope.
321 Opening i e
3.2.2 SCOPE ... e
3.23 Closing
3.2.4 Export of Theorems
3.3 Other Aspects. e e e
3.3.1 Imstances,
332 Proofs
3.3.3 Polymorphism
3.3.4 Augmenting Locales
Implementation issues
4.1 Theory Data for Locales
4.2 Theory Section Parser
4.3 Imterfaceo

An Example from Abstract Algebra
Discussion

Appendix
Al Syntax
A.2 Functions for Scope. oL,

10
11

11

13

1 Motivation

In interactive theorem proving it is desirable to get as close as possible to the
convenience of paper proof style making developments more comprehensible
and self declaring. In mathematical reasoning assumptions and definitions
are handled in a casual way. That is, a typical mathematical proof assumes
propositions for one proof or a whole section of proofs and local to these
assumption definitions are made that depend on those assumptions. The
present paper introduces a concept of locales for Isabelle [Pau94] that aims to
support the described processes of local assumptions and definition. Locales
implement a sectioning device similar to that in AUTOMATH [dB80] or
Coq [Dow90], but with optional pretty printing syntax and dependent local
definitions added.

In mathematical proofs we often want to define abbreviations for big
expressions to enhance the readability of the proof. These abbreviations
might implicitly refer to terms which are arbitrary but fixed values for the
entire proof. Surely, Isabelle’s pretty printing and definition possibilities
are mostly sufficient for this purpose. But there are still examples where a
definition in a theory is a too strong means in the sense that the syntactical
constants used for abbreviations are of no global significance. Definitions in
an Isabelle theory are visible everywhere.

In the case study of Sylow’s theorem [KP97] we came across several such
local definitions. There, we define a set M as {S C G,, | order(S) = p*}
where G, p, and « are arbitrary but fixed values with certain properties.
"This is just for one single big proof, and has no general purpose whatsoever.
The formula does not even occur in the main proposition. Still, in Isabelle
as it is, we only have the choice of spelling this term out wherever it occurs,
or defining it on the global level, which is rather unnatural. On top of
that we need in a global definition to parameterize this example over all
variables of the right-hand side. In our example we would get something
like M(G, p, o) which is almost as bad as the original formula. This second
drawback is because we cannot have something like local constants, here @,
p, and «a.

Subsequently we explain a simple approach towards sectioning for the
theorem prover Isabelle. In Section 2 we describe the locale concept and ad-
dress issues of opening and closing of locales. We present aspects concern-
ing concrete syntax, including a means for local definitions. We continue
in Section 3 with the fundamental operations on locales and their features.
Section 4 describes the implementation of the ideas. We give a simple exam-
ple illustrating an application from algebra in Section 5. Finally, we discuss
some aspects of locales in Section 6. The Appendix summarizes Isabelle
commands and syntax for locales.

2 2 LOCALES — THE CONCEPT

2 Locales — the Concept

Locales delimit a scope of fized variables, local assumptions, and local def-
intteons. Theorems that are proved in the context of locales may make
use of these local entities. The result will then depend on the additional
hypotheses, while proper local definitions are eliminated.

A locale consists of a set of constants (with optional pretty printing syn-
tax), rules and definitions. Defined as named objects of an Isabelle theory,
locales can be invoked later in any proof session. By virtue of such an invo-
cation, any locale rules and definitions are turned into theorems that may
be applied in proof procedures like any other theorem. Similarly the defini-
tions, like usual Isabelle definitions, abbreviate longer terms. But, the rules
and definitions are only local to the scope that is defined by a locale.

Theorems proved in the scope of a locale can be exported to the sur-
rounding theory context. In that case, rules employed for the proof become
meta-level assumptions of the exported theorem. For the case of actual def-
initions, these hypotheses are eliminated via generalization and reflexivity.
So, the theorem becomes a usual theorem of the Isabelle theory that contains
that locale.

Subsequently we explain several aspects of locales. There are basically
two ideas that form the concept of locales: one is the possibility to state
local assumptions, and the other one is to make local definitions which can
depend on these assumptions, and may use pretty printing. With those two
main ideas the notion of a locale constant is strongly connected. We explain
other specific features of locales in this section.

2.1 Locale Rules

To explain what locales are it is best to describe the main characteristics
of Isabelle that lead to this concept and are the basis of the realization.
The feature of Isabelle that builds the basis for the locale rules is Isabelle’s
concept of meta-assumptions.

In Isabelle each theorem may depend upon meta-assumptions. The the-
orem that ¢ holds under the meta-assumptions ¢y, ... , ¢, is written as

¢ b1, bnl

The first main aspect of locales is to build up a local scope, in which
a set of rules, the locale rules, are valid. The local rules are realized by
using Isabelle’s meta-assumptions as an assumption stack. Logically, a locale
is a conjunction of meta-assumptions; the conjuncts are the locale rules.
Opening the locale corresponds to assuming this conjunction.

In Isabelle as it is, a meta-assumption can be introduced in proofs at any
time, but by the end of the proof, Isabelle would complain about extraneous

2.2 Locale Constants 3

hypotheses. With the locale concept added to Isabelle, locale rules become
meta-assumptions when the locale is invoked. A theorem proved in the scope
of some locale, can use these rules. The result extraction process at the end
of a proof has been modified accordingly to cope with this: the additional
premises stemming from the locale are entailed in the conjunction; the proof
is admitted.

2.2 Locale Constants

There is a notion of a locale constant that is integral part of the locale con-
cept. A locale implements the idea of “arbitrary but fixed” that is used in
mathematical proofs. We can assume certain terms as fixed for a certain
section of proofs, and we can state further rules or define other terms de-
pending on them. The locale constants may be viewed from the outside as
parameters, because they become universally quantified variables, when a
result theorem is exported.

Technically, locale constants behave like logical constants while the locale
is open. In particular, they may be subject to the standard Isabelle pretty
printing scheme, e.g. equipped with infix syntax.

A locale corresponds to a certain extent to modules in a theorem prover,
with some notable restrictions of declaring items, though. In particular, a
locale may not contain type declarations and the constants are not persis-
tent. The outside view of locales is realized in a different way. Instead of
presenting the entire locale similar to a parameterized module that can be
instantiated, one can export theorems from inside the locale.

2.3 Local Definition and Pretty Printing

A major reason for having a sectioning device like locales are user require-
ments to make temporary abbreviations in the course of a proof develop-
ment. As pointed out in Section 1, there are large formulas that are used
in proofs and do not have a global significance. Moreover, they might not
even occur in the final conjecture of the theorem that we want to use. So,
conceptually, the definition of such proof terms is not a persistent definition.
Nevertheless, we want to use such definitions to make the theorems read-
able, and the proof process clear. Hence, one aspect is the locality of these
definitions. The other aspect, as illustrated by the introductory example as
well, is that the local definitions might depend on terms that are constants
in a certain scope. For example, we want to write M only, not a notation
like M(G,p, @) as it would be necessary, if we wanted to refer to the terms
that form the other premises of the Sylow theorem.

Another common thing in abstract algebra are formulas which are not
so big, but suppress implicit information, e.g. we write Ha for the coset of
a with respect to the subset H of a group G. Since the group G containing

4 3 OPERATIONS ON LOCALES

this coset is a parameter to this definition we would have to define something
like coset G H a. This is partly the same problem as with the parameters
of the definition M. Note that the normal pretty printing mechanism would
not work here because of additional arguments in the definitions.

In a locale where G is an arbitrary but fixed group for a whole series of
theorems we can have a syntax like H #> a instead of coset G H a. We can
create a simple definition mechanism for concrete syntax which implements
the concept of a locale constant for which we can define pretty printing
syntax. The idea of the locale constant is to give a locale a scope such that
inside the locale a free variable can be considered as a constant. Then we can
define pretty printing syntax for this constant, but this syntax only exists
as long as the locale is open. Viewed from outside the locale, this syntax
does not exist. The theorems proved inside the locale using the syntax are
global theorems with the syntactical abbreviations unfolded and the locale
constants replaced by free variables.

In a locale where we want to reason about a group G and its right cosets,
we declare G as a locale constant. Then we can define another locale constant
#>, and define this in terms of the underlying theory of groups where the
operation r_coset is known.

rcos_def "H #> x == r_coset G H x"

If the locale containing this definition is open, we can use the convenient
syntax H #> x for right cosets, and it is defined as the sound operation of
right cosets with the parameter G fixed for the current scope. If we finish a
theorem and want to use it as a general result, we can ezport it. Then, the
locale constant G will be turned into a universally quantified variable, and
“the definition will be expanded to the base definition of right cosets.

3 Operations on Locales

Locales are introduced as named syntactic objects within Isabelle theories.
They can then be opened in any theory that contains the theory they are
defined for.

3.1 Defining Locales

The ideas of locale definitions, rules, and constants can be combined to-
gether to realize a sectioning concept. Thereby, we attain a mechanism
that constitutes a local theory mechanism. To adjust this rather dynamic
idea of definition and declaration to the declarative style of Isabelle’s the-
ory mechanism, we integrate the definition of locales into the theories as
another language element of Isabelle theory files. The concrete syntax of
locale definitions is demonstrated by example below.

3.2 Invocation and Scope 5

Locale group assumes the definition of groups as a set of records
[Kam98b] as follows (cf. Section 5):

locale group =

fixes
G :: "’a grouptype"
e s ll)all
binop pr "a => g => ’a" (infixr "#" 80)
inv i: "a => g ("~ ~=1" [90] 91)
assumes
Group_G "G: Group"
defines)
e_def "e == unit G"
binop_def "x # y == bin_op G x y"
inv_def "x "-1 == inverse G x"

Above Isabelle theory file section introduces a locale for abstract reasoning
about groups.

The subsection introduced by the keyword fixes declares the locale con-
stants in a way that closely resembles Isabelle’s global consts declaration.
In particular, there may be an optional pretty printing syntax for the locale
constants. ~

The subsequent assumes specifies the locale rules. Their way of defini-
tion is the same as for Isabelle rules. They admit the statement of the local
assumptions we want to state about some of the locale constants. Here, we
assume that the locale constant G is a member of the set Group, i.e. is a
group.

Finally, the defines part of the locale introduces the definitions that
shall be available in this locale. In these definitions we can already use
the syntax of the locale constants in the fixes subsection and define these
locale constants in terms of the underlying theory of groups. Note, that we
can define here now in a style that is normally impossible in Isabelle. A
definition like

e_def "e == unit G"

would appear to contain an additional free variable G on the right hand side.
In the scope of locale group, though, G is bound, and e_def becomes a, legal
dependent definition.

Note also, that there are two different kinds of locale constants, one
that is used merely in the locale rules, and one that is declared to serve for
definitions.

3.2 Invocation and Scope

After definition, locales may be opened and closed in a block-structured
manner. The list of currently active locales is called scope.

6 3 OPERATIONS ON LOCALES

3.2.1 Opening

Locales are opened or invoked at points where we want to prove theorems
concerning the locale. Inside the scope of an open locale, theorems can
use its definitions and rules. An invocation assumes the rules of the lo-
cale. The rules get names, so they can be accessed individually. Opening
a locale means making its assumptions visible. The primitive Isabelle rule
Thm. assume applied to a term P returns the theorem P [P], representing
the tautology P = P. The term P becomes a meta-assumption. The rules
are stored in this form in a locale. Opening a locale means activating these
meta level assumptions P [P] for all locale rules P.

3.2.2 Scope

Invocation corresponds to assuming an instance of the locale, i.e. we as-
sume the existence of the locale constants fulfilling the locale’s rules. The
definitions are valid and can be used throughout the lifetime of the locale,
i.e. until it is closed again. The opened locales form a scope which lives
until all locales are explicitly closed. At any time there can be more than
one locale open. The scope manages currently open locales. It contains all
assumptions and definitions of opened locales.

3.2.3 Closing

Closing means to cancel the last opened locale, pushing it off the scope.
Theorems proved during the life cycle of this locale will also vanish, unless
they have been explicitly exported, as described below.

3.2.4 Export of Theorems

Exported theorems become theorems at the global level, that is, the current
theory context. Locale rules that have been used in the proof of an exported
theorem inside the locale are carried by the global form of the theorem as
its individual meta-assumptions. The locale constants are universally quan-
tified variables in these theorems, hence such theorems can be instantiated
individually. Definitions become unfolded; locale constants that were merely
used for definitions vanish.

3.3 Other Aspects
3.3.1 Instances

We do not provide a general instantiation operation for locales. Nevertheless,
theorems proved within some scope of locales can be used outside at any
instance, without the need to instantiate the locale first. So, the (conceptual)
instantiation of the locale is split up into the instantiation of the individual

3.3 Other Aspects 7

theorems. This seems appropriate, because in the kinds of proofs we have
in mind, one is only interested in a few of the theorems proved in a locale
on the global level.

Still, there is a device to rename locale constants (cf. Section 3.3.4).
Although this is just a purely syntactical operation it represents in some
sense an instantiation.

3.3.2 Proofs

The theorems proved inside a locale can use the locale rules as axioms,
accessing them by their names. The used locale rules are held as meta-
assumptions. Hence, subgoals created in a proof matching locale assump-
tions are solved automatically. Theorems proved in a locale can be exported
as theorems of the global level under the assumption of the locale rules they
use. If a theorem needs only a certain portion of the locale’s assumptions,
only those will be mentioned in the global form of the theorem.

3.3.3 Polymorphism

Isabelle’s meta-logic is based on a version of Church’s Simple Theory of
Types with schematic polymorphism. Free type variables are implicitly uni-
versally quantified at the outer level of declarations and statements. For
example, a constant declaration

consts f :: ’a => ’a

basically means that £ has type Va.a = «. So, if there is a subsequent
constant declaration using the same type variable «, those are different type
variables. That is, they can be instantiated differently in the same context.

Now, for locales the scope of polymorphic variables is wider. The quan-
tification of the type variables is placed at the outside of the locale. So,
variables with equal names are actually the same variables. On the one
hand, this difference allows us to define sharing of type domains of opera-
tors at an abstract level. This is important for the algebraic reasoning that
we are focusing on. On the other hand, locale definitions are not polymor-
phic within the locale’s scope.

3.3.4 Augmenting Locales

We consider some further operations on locales that are not yet implemented
in Isabelle, but will be in due course.
One locale can extend another locale. This is written as

locale foo = bar + ...

8 4 IMPLEMENTATION ISSUES

The dots ... stand for the locale sections fixes, assumes, and defines.
Locales can also be composed by merging already existing locales. Here,
we compose foo by merging barl and bar2.

locale foo = barl + bar2

Finally, we can rename locale constants. This can be very useful if we
want to have more than one instance of the same locale in the scope. Here,
bar is created from foo by renaming all occurrences of locale constant ¢ in
bar by r.

locale foo = bar [r/c]

4 Implementation issues

In this section we briefly highlight some of the implementation issues of
locales. In particular, we outline some key features of recent versions of
Isabelle that may not yet be folklore in the realm of Isabelle hacking.

Extending the Isabelle theory language by any kind of new mechanism
typically consists of the following stages:

(1) providing private theory data,
(2) writing a theory extension function,
(3) installing a new theory section parser.

For our particular mechanism of locales, we also have to adapt parts
of the Isabelle goal package to cope with scopes as already hinted in the
previous section:

(4) modify term read and print functions,
(5) modify proof result operation.

Subsequently, we briefly describe the idea of locales as theory data, and
then carry on to illustrate the implementation. The reader not interested
in the internals of Isabelle might well skip the present section and continue
with the application example in Section 5.

4.1 Theory Data for Locales

Basically, any new theory extension mechanism boils down to already ex-
isting ones, like constant declarations and definitions. For example, the
standard Isabelle/HOL datatype package could be seen just as a generator
of huge amounts of types, constants, and theorems. This pure approach to
theory extension has a severe drawback, though. It is like compiling down
information, losing most of the original source level structure. E.g. it would

4.1 Theory Data for Locales 9

be extremely hard to figure out any datatype specification (the set of con-
structors, say) from the soup of generated primitive extensions left behind
in the theory. :

The generic theory data concept, introduced in Isabelle98 and improved
in later releases, offers a solution to this problem by enabling users to write
packages in a structure preserving way. Thus one may declare named slots of
any ML type to be stored within Isabelle theory objects. This way new ex-
tensions mechanisms may deposit suitable source-level information as needed
later for any advanced operation.

Picking up the datatype example again, there may be a generic in-
duction tactic, that figures out the actual rule to apply from the type of
some variable. This would be accomplished by doing a lookup in the pri-
vate datatype theory data, containing full information about any HOL type
represented as inductive datatype.

Note that traditionally in the LCF system approach, such data would be
stored as values or structures within the ML runtime environment, with only
very limited means to access this later from other ML programs. Breaking
with this tradition, the current Isabelle approach is considered more power-
ful, internalizing generic data as first class components of theory objects.

The functor TheoryDataFun that is part of Isabelle/Pure provides a fully
type-safe interface to generic data slots'. The argument structure is expected
to have the following signature:

signature THEORY_DATA_ARGS =

sig
val name: string
type T
val empty: T

val prep_ext: T -> T

val merge: T *x T -> T

val print: Sign.sg -> T -> unit
end

Here name and T specify the new data slot by name and ML type, while
empty gives its initial value. The prep.-ext operation is intended to prepare
your data for extension to a new theory node. Usually, this is just the
identity function; occasionally one might want to reset some tables, or copy
reference values. The merge operation is called when theories are joined,
as should be your data. Finally, print shall display the theory data in
some human readable way; the function obtains the current signature as
additional argument.

'The curious expert may note that this is achieved by invoking most of the black-
magic offered by Standard ML: exception constructors for introducing new types, private
references as tags for identification and authorization, and functors for hiding the whole
mess. We see that ML is for the Real Programmer, after all!

10 4 IMPLEMENTATION ISSUES

The result structure of TheoryDataFun is as follows:

signature THEORY_DATA =
sig
type T
val init: theory -> theory
val print: theory -> unit
val get_sg: Sign.sg -> T
val get: theory -> T
val put: T -> theory -> theory
end

The new data slot has to be made known to theories (only once) via above
init operation. Afterwards any derived theory knows about the print, get
and put functions as given above.

For locales, we have defined a data slot called “Pure/locales” that
contains a table of all defined locales, together with their hierarchical name
space. There is also a reference variable of the current scope, containing a
list of locales identifiers.

" Employing this private theory data slot, we have implemented the actual
locale definition mechanism on top of usual Isabelle primitives. The ultimate
result is function Locale.add locale, which is the actual theory extender
that does all the hard work:

val add_locale: ... -> theory -> theory

Here the dots refer to the locale specification, including fixes, assumes,
defines arguments. After preparing these by parsing, type checking etc.,
we store the information via above get and put operations in our theory
data slot. We also emit some other Isabelle primitives to extend the theory’s
syntax, for example.

4.2 'Theory Section Parser

Another part of the scheme of adding a theory section to Isabelle is to
provide a parsing method. The actual parser locale_decl for the locale
definitions is just one ML-term constructed from parser combinators as are
well-known in the functional programming community. It resides in the file
thy_parse.ML of Isabelle/Pure.

Via ThySyn.add_syntax we can now plug our Locale.add locale func-
tion into the main theory parser.

val _ = ThySyn.add_syntax
["fixes", "assumes", "defines"]
[(section "locale" "|> Locale.add_locale" locale_decl)];

Above we declare new keywords fixes etc., and state that locale shall
introduce a theory file section that is taken care of by the locale_decl parser
(syntax) and the Locale.add locale theory extension function (semantics).

4.3 Interface 11

4.3 Interface

Apart from the actual theory extension function discussed above, there are
a few more things to be done for the locale implementation.

The file 1ocale.ML (now part of Isabelle/Pure) also contains this cre-
ation of the interface. It also contains most of the other changes to Isabelle
that implement locales. The function add_locale is the main function in
this file. It adds a locale to a theory, once it is read in by the appropriate
theory parser routine.

The locale constants are realized by developing two layers of terms for
them. Basically they are Frees for which one can define mixfix syntax.
So, we treat a locale constant c like Free ¢ but produce for it a con-
stant \<"locale>c. The pretty printing syntax is assigned to the copy
\<"locale>c. Terms occurring during proofs really contain the Free c,
but for printing we use the constant \<"locale>c. For reading, we add
translation functions permanently to the theory containing the locale. '

The read and print functions of terms have to be adjusted to locales:
if a locale is open, we want any term that is read in, to respect the bind-
ings of types and terms of that locale. We augment the basic function
Thm.read_ctermsuch that it checks if a locale is open, i.e. if the current scope
is nonempty, and then bases the type inference on this information. Simi-
larly, we adjust the function pretty_term. It is used to print proof states.
Here, we replace now all Free constants ¢ by their double \<"locale>c.
Then the printing produces the pretty form.

Isabelle’s goal package has been adopted to use these modified read and

print functions.

5 An Example from Abstract Algebra

We illustrate the use of the implementation by examples with the abstract
algebraic structure of groups [Kam98a]. We use a representation of groups
that we found in [Kam98b] to be the most appropriate for abstract algebraic
structures. The base theory is Group. It contains the theory for groups.
We define a basic pattern type for the simple structure of groups, by an
extensible record definition [NW98]2.

record ’a grouptype =

carrier :: "’a set" ("_ .<cxr>" [10] 10)
bin_op :: "[’a, ’a] => ’a" ("_ .<f>" [10] 10)
inverse :: "’a => ’a" ("_ .<inv>" [10] 10)
unit e Mgt ("_ .<e>" [10] 10)

2We use pretty printing facilities for records that are not yet available, but will be in
due course. The example doesn’t change much, see the proof files.

12 5 AN EXAMPLE FROM ABSTRACT ALGEBRA

Now, we have defined a record type with four fields that gives us the pro-
jection functions to refer to the constituents of an element of this type. We
can see how this works in the following definition of the simple structure —
in the sense of [Kam98b] — of groups.

constdefs
Group :: "(’a grouptype)set"
"Group == {G. (G.<f>): (G.<cr>) -> (G.<cr>) -> (G.<cr>)
& (G.<inv>): (G.<cr>) -> (G.<cr>)
& (G.<e>): (G.<cr>) &
(! x: (G.<cr>). ! y: (G.<cr>). lz: (G.<cr>).
(G.<£>)(G.<inv> %) x = G.<e>)
& (G.<f>)(G.<e>) x = x)
& (G.<>)((G.<f>) x y) z =
(G.<£>) (x) ((G.<£>) vy z)))}"

Given that the Isabelle theory for groups contains the locale displayed in
Section 3 we can now use it in an interactive Isabelle session. We open the

locale group with the ML command
Open_locale "group";

Now the assumptions and definitions are visible, i.e. we are in the scope of
the locale groups. ML function print_locale shows all information about
locales in the theory.

print_locales Group.thy;
This returns all information about the locale groups and the current scope.

locale name space:

"Group.group" = "group", "Group.group"
locales:
group =
consts:
G :: "aset * ({’a, ’a] => ’a) * (a => ’a) * ’a * 'more"
e !I)all
binop :: "[’a, ’al => ’a"
inv :: "la => ’a"
rules:
Group_G: "G : Group"
defs:
e_def: "e == unit G"
binop_def: "!!x y. binop x y == (G.<f>) x y"
inv_def: "!!x. inv x == (G.<inv>) x"

current scope: group

Note, how the definitions with free variables have been bound by the meta-
level universal quantifier (!'!). The locale print function also gives informa-
tion about the name spaces of the table of locales in the theory Group and
displays the contents of the current scope.

13

As an illustration of the improvement we show how a proof for groups
works now. Assuming that the theory of groups [Kam98a] is loaded we
demonstrate one proof that shows how the inverse can be swapped with the
group operation.

Goal "!'! x y.[] x:G.<cr>; y:G.<cx> |] ==> (x # y)"-1 = y™-1 # x~-1";

Isabelle sets the proof up and keeps the display of the dependent locale
syntax.

1. Mxy. [l x: G<ex> ; 3y ¢ Gucer> [] ==> (x #y)™-1 =y -1 #x"~1

We can now perform the proof as usual, but with the nice abbreviations and
syntax. We can apply all results which we might have proved about groups
inside the locale. We can even use the syntax when we use tactics that use
explicit instantiation, e.g. res_inst_tac. When the proof is finished, we can
assign it to a name using result(). The proof is now:

val inv_prod = "[| 7x : G.<cx>; 7y : G.<cr> |]
==> inv (binop ?x 7y) = binop (inv ?7y) (inv 7x)
[t!'x, inv x == inverse G X,
G : Group,

!'x y. binop x y == bin_op G x ¥,
e == unit G]" : thm

As meta-assumptions annotated at the theorem we find all the used rules
and definitions, the syntax uses the explicit names of the locale constants,
not their pretty printing form.

If we want to export the theorem we just type export inv.prod.

"[] ?G : Group; 7x : 7G.<cr>; 7y : 7G.<cr> |]
==> 7G.<inv> (?7G.<f> 7x 7y) = 7G.<f> (7G.<inv> 7y) (7G.<inv> 7x)"

The locale constant G is now a free schematic variable of the theorem. Hence
the theorem is universally applicable to all groups. The locale definitions
have been eliminated. The other locale constants, e.g. binop, are replaced
by their explicit versions, and have thus vanished together with the locale
definitions.

6 Discussion

Locales seem to be a more primitive concept than modules. They do not
enable abstraction over types or type constructors. Neither do they support
real schematic polymorphic constants and definitions as the topmost theory
level does. On the other hand, these restrictions admit to define a represen-
tation of a locale as a meta-logical predicate fairly easily. Thereby, locales
can be first class citizen of the meta logic. We have developed this aspect
of locales elsewhere. Although it works well, we found that it is better to

14 A APPENDIX

perform the first class reasoning separately in HOL, using an approach with
dependent sets [Kam98b]. |

We believe that concrete syntax is the most decisive aspect for the actual
usability of a locale concept. There is no inherent contradiction that would
forbid the integration of the combination presented in this paper with the
idea of a first class representation of locales by a locale predicate. In an
independent experiment, we even implemented the mechanical generation of
a first class representation for a locale. This implementation automatically
extends the theory state of an Isabelle formalization. But, in many cases
we don’t think of a locale as a intra-logical object, rather just an theory-
level assembly of items. Then we don’t want this overhead of automatically
created rules and constants.

In some sense locales do have a first class representation: globally in-
teresting theorems that are proved in a locale may be exported. Then the
former context structure of the locale gets dissolved: the definitions become
expanded (and thus vanish). The locale constants turn into variables, and
the assumptions become individual premises of the exported theorem. Al-
though this individual representation of theorems does not entail the locale
itself as a first class citizen of the logic, the context structure of the locale
is translated into the meta-logical structure of assumptions and theorems.
In so far we mirror the local assumptions — that are really the locale —
into a representation in terms of the simple structural language of Isabelle’s
meta-logic. This translation corresponds logically to an application of the
introduction rules for implication and the universal quantifier.

The simple implementation of the locale idea as presented in this paper
works well together with the embedding of structures [Kam98b] and both
can be used simultaneously.

A Appendix

We sum up the syntax and functions for locales described in ‘this paper to
provide a quick reference list. We use usual regular expression constructors
{}, |, [] and *. Terms enclosed in () are non-terminals; typewriter font
denotes terminals; quotation marks enclose single terminal symbols to avoid
ambiguity. We use the lexical classes name, id, string, and mixfix of Isabelle
[Pau94, Appendix A].

A.1 Syntax
Locale definition:
locale name = (options)
fixes (consts)
assumes (rules)

defines (defs)

A.2 Functions for Scope 15

The locale constants have the same format as Isabelle constant declarations.
(consts) = { name “::” string [“(” mixfix “)”]}*
Similarly, the locale rules can be defined like Isabelle rules.
(rules) = { id string }*

Definitions have the same outer syntax as general rules, but have to specify
a meta-equality ==.
The optional extension of the locale header denotes the operations on
locales®
(options) = “+” name { “+” name }
| name { “+” name }
| name “[” string “/” string “1”

A.2 Functions for Scope

Open_locale : xstring -> unit

Close_locale : xstring -> unit

export : thm -> thm
Description:

¢ (Open_locale loc;

opens the locale loc in the theory of the current context.

e Close_locale;

eliminates the last opened locale from the scope.

e export thm;

locale definitions become expanded in thm and locale rules that were
used in the proof of thm become part of its individual assumptions.

References

[dB80] N.G. de Bruijn. A Survey of the Project AUTOMATH, pages
579-606. Academic Press Limited, 1980.

[Dow90] G. Dowek. Naming and Scoping in a Mathematical Vernacular.
Technical Report 1283, INRIA, Rocquencourt, 1990.

[Kam98a] F.Kammiiller. Application Examples for [Kam98b]. Available on
the Web as http://www.cl.cam.ac.uk/users/fk203/algebra,
1998.

$This is not implemented yet.

16

REFERENCES

[Kam98b] F. Kammiiller. Modular Structures as Dependent Types in Is-

[KP97]

[NW98]

[Pau94]

abelle. Presented at the TYPES-workshop, Kloster Irsee, Ger-
many, 1998.

F. Kammiiller and L. C. Paulson. Formal Proof of Sylow’s First
Theorem — An Experiment of Abstract Algebra in Isabelle HOL.
Journal of Automated Reasoning, 1997. Submitted for publica-
tion.

W. Naraschewski and M. Wenzel. Object-oriented Verification
based on Record Subtyping in Higher-Order Logic. In 11th Inter-
national Conference on Theorem Proving in Higher Order Logics,
volume 1479 of LNCS, ANU, Canberra, Australia, 1998. Springer-
Verlag.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 |
of LNCS. Springer, 1994.

