Technical Report Rt

Number 451

Computer Laboratory

The structure of open
ATM control architectures

Sean Rooney

November 1998

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 1998 Sean Rooney

This technical report is based on a dissertation submitted
February 1998 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-451

https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-451

Contents

List of Figures viii
List of Tables X
Glossary xi
1 Introduction 1
1.1 Motivation 2
1.2 Contribution. 4
1.3 Outline. 7
2 The Tempest Environment 9
2.1 Motivation for the Tempest 9
2.2 'The Tempest Environment 12
221 Terminology 12
2.2.2 The Testbed Network P 13
2.2.3 Distributed Processing Environment 14
2.2.4 The Ariel Switch Control Interface 14
2.2.5 The Network Builder e 16
2.2.6 The Prospero Switch Divider 17
2.2.7 Control Architectures 18
23 Summary 19

3 The Hollowman:
An Open Control Architecture 20
3.1 Imtroduction 21
3.2 SoftSwitch 22
3.2.1 Resource Management 23
3.2.2 Control Interfaces 24
3.2.3 Encapsulation of Switch Interface 25
3.2.4 Discussion of Call Admission Control 26

iii

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

Host-Manager 29

Connection-Manager 30
Host Addressing 33
Application Naming 34
Trading 34
End-User Application 35
Implementation 37
Related Work 38
3.10.1 Signalling System No. 7 (SS7) 38
3.10.2 Intelligent Networks (IN) 39
3.10.3 ITU-T & ATM Forum 40
3.104 TINA-C 41
3.10.5 Xbind e e 42
3.10.6 Xunet 43
3.10.7 IP Switching 45
3108 UNITE 45
SUMMATY oot e e e 46

The Hollowman:

Patterns of Communication 48
41 Introduction 48
4.2 Hollowman Initialisation 49
4.2.1 'Trader Initialisation 49
4.2.2 Connection-Manager Initialisation 49
4.2.3 Host-Manager Initialisation 50
4.3 Control Operations 50
4.3.1 Host-manager o-interface 51
4.3.2 Host-manager f-interface. 54
4.3.3 Connection-manager y-interface 36
4.3.4 Connection Creation 57
4.3.5 Connection Removal 59
4.3.6 Third-Party Control Operations 59
4.3.7 Multicast Connections 61
44 Call Types 63
4.5 Cleaning up Application Resources 64
4.6 Atomic Control Operations. 64
4.6.1 Discussion of Atomic Control 66
4.7 Summary 68

iv

5 Experiments in ATM Control

5.1 Caching Connections
5.2 Persistent Connections . . >~
5.3 Asynchronous Communication with Switch
54 Applications L.
94.1 TheTube
5.4.2 Secure Video-Conferencing
54.3 TheSandman
5.5 Hollowman Performance Figures
9.5.1 Measuring the Control Processing Time — C
5.5.2 Effect of D and S on Overall Latency
5.5.3 Comparison with other Results
56 Summary,

6 Connection Closures:
Application-Specific Control

6.1 Introduction
6.2 Motivation for Connection Closures
6.2.1 Optimising the Use of Resources.
6.2.2 Reacting to Changes in Network State
6.2.3 Mobility
6.3 Architecture L.
6.3.1 Registration
6.3.2 Resource Management
6.3.3 Virtual Channel Management
634 Routing
6.3.5 Notifying Host-Managers
6.3.6 Communicating with Applications.
6.4 Distributed Closures
6.5 Implementation
6.6 Proof-of-Concept
6.7 Related Work
6.8 Summary

7 Inter-Control Architecture Signalling

7.1 Introduction
7.2 Motivation
7.3 Interoperation with the Hollowman

7.3.1 Control Gateway

7.4

7.5

7.6

7.3.2 The Interoperation Interfaces — SICI & SIRI
Experiments in Interoperation
7.4.1 Hollowman/Hollowman Signalling
7.4.2 Hollowman/Q.Port Signalling
7.4.3 Hollowman/Q.Port/Hollowman Signalling
Related Work e
751 P-NNI
752 IISP
753 BICI
Summary . . o. e

Adaptive Fault Management

8.1
8.2

8.3

8.4
8.9

8.6
8.7

Introduction
Recovering from Port Failure.
8.2.1 Naive Strategy for the Hollowman
8.2.2 Discussion of the Naive Strategy
8.2.3 Robust Strategy for Hollowman
8.2.4 Sharing the CA-OAM Network
Generalisation
8.3.1 Directed Message
8.3.2 - Dynamic Message Type
8.3.3 Correlating Information
Fault Management with Mobile Code
Experiments with Tempest Mobile Agents
8.5.1 Overview
8.5.2 Automatic Resource Freeing
8.5.3 Implementation
8.5.4 Discussion of the Utility of Mobile Agents
Related Work
SUMMAry e,

Caliban:
A Switch Interface for Health Functions

9.1
9.2
9.3
9.4
9.5

Introduction
Existing Solutions,
Problems with Existing Solutions
Caliban Interface
Caliban SNMP Implementation
9.5.1 Imitialisation.

vi

124

124~

126
126
127
128
132
134
135
136
136
136
138
138
139
141
142
142
144

95.2 Location
9.5.3 Retrieval and Modification
9.5.4 Code Loading e e e e
9.6 Experimental Results
9.7 Related Work,
9.8 Summary

10 Summary, Future Work and Conclusions

10.1 Summary .
10.2 Future Work
10.3 Conclusions

Bibliography

vii

155
156
157
159
161
162

164
164
166
167

169

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

2.1
9.2
5.3

5.4

9.5

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

The Tempest infrastructure

Hollowman entities
Example Hollowman instance
Soft switch
Hollowman control path
Protocolstack

The relationship between interfaces
Service user interaction
State changes in service provider’s host-manager
Third-party interaction
Example of multicast connection

Cached connection
Transmitting a Tube mobile agent using the Hollowman
C as a function of the number of concurrent requests (source ini-
tlated)
C as a function of the number of concurrent requests (sink initi-
ated)
C + D as a function of the number of concurrent requests (sink
imitiated)o

Security guard example
Closure creation -.

Overview of a control bridge
Pattern of inter-control architecture signalling
Example of Hollowman/Hollowman signalling
Example of Hollowman/Q.Port signalling
Example of Hollowman/Q.Port/Hollowman signalling

viil

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4

Example of the CA-OAM network 129

Robust error recovery 131
The Tempest site e e e e e e 133
Robust error recovery 140
Caliban server implemented with SNMP 151
Caliban server with loaded code 154
Example of access control 156
Code loading into SNMP agent 158

ix

List of Tables

4.1
4.2
4.3

5.1
7.1

9.1

The host-manager a-interface
The host-manager S-interface
The connection-manager ~v-interface

Summary of results for the creation of pt-to-pt connection
The SICTand SIRI

Average time in milliseconds to obtain ifInUcastPkts counter . .

Glossary

General

AAL ATM Adaptation Layer

ABR Available Bit Rate

ADM Add and Drop Multiplexor

AFI Authorising Format Identifier

AIN Advanced Intelligent Network

ANSA Advanced Network Systems Architecture
API Application Programmer Interface

ASN.1 Abstract Syntax Notation

ATM Asynchronous Transfer Mode

ATMF ATM Forum

AVA ATM Video Adapter

BER Basic Encoding Rules

B-ISDN Broadband Integrated Services Digital Network
B-ISUP Broadband Integrated Service User Part
B-ICI Broadband Inter-Carrier Interface

BIB Binding Interface Base

CAC Call Acceptance Control

CBR Constant Bit Rate

CDhV Cell Delay Variation

CLR Cell Loss Ratio

CMIP Common Management Information Protocol
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit

DIMMA Distributed Interactive Multimedia Architecture
DPE Distributed Processing Environment

FIFO First-In-First-Out

FRS Frame Relay Service

GCAC Generic Call Admission Control

GDMO Guidelines for the Definition of Managed Objects
GIOP General Inter-ORB Protocol

GSMP General Switch Management Protocol
ICMP Internet Control Message Protocol

xi

IDL Interface Definition Language

IETF Internet Engineering Task Force
IFMP Ipsilon Flow Management Protocol
ITIOP Internet Inter-ORB Protocol

IISP Interim Inter-Switch Signalling

ILMI Integrated Local Management Interface
IN Intelligent Networks

IP Internet Protocol

IPOA (Classical) IP Over ATM

ISDN Integrated Services Digital Network
ITU International Telecommunications Union
ITU-T Telecommunications Standardisation Sector of ITU
JDK Java Developers Kit

JNI Java Native Interface

JPEG Joint Photographic Experts Group
LAN Local Area Network

MAC Media Access Control

MBS Maximum Burst Size

MCR Minimum Cell Rate

MIB Management Information Base

MO Managed Object

MOC Managed Object Class

NFS Network File Server

NNI Network-Network Interface

NSAP Network Service Access Point

OAM Operation and Maintenance

OoDP Open Distributed Processing

OMA Object Management Architecture
OMG Object Management Group

ORB Object Request Broker

OSI Open System Integration

OTS Object Transaction System

PDU Protocol Data Unit

P-NNI Private Network-Network Interface
PSTN Public Switched Telecommunication Network
PVC Permanent Virtual Connection

RM Resource Management

RMON Remote Monitoring of Network Devices

RPC Remote Procedure Call

X11

RSVP
SAAL
SCP
SNMP
SPANS
SRG
SSCOP
SS7
SSP
SvVC
TCAP
TCP
TINA
TINA-C
TMN
TUP
UBR
UDP
UNI
VBR
vVC
VCC
VCI
vP
VPI
VPN
WAN

ReSerVation Protocol

Signalling ATM Adaptation Layer

System Control Péirit

Simple Network Management Protocol
Simple Protocol for ATM Network Signalling
Systems Research Group

Service Specific Connection Oriented Protocol
Signalling System Number Seven

System Switching Point

Switched Virtual Connection

Transaction Capability Part

Transmission Control Protocol
Telecommunications Information Networking Architecture
TINA Consortium

Telecommunications Management Network
Telephone User Part

Unspecified Bit Rate

User Datagram Protocol

User-Network Interface

Variable Bit Rate

Virtual Connection

Virtual Channel Connection

Virtual Channel Identifier

Virtual Path

Virtual Path Identifier

Virtual Private Network

Wide Area Network

Dissertation Specific

ARF

CA-OAM

H-OAM
SAP
SICI
SIRI

Automatic Resource Freeing

Control Architecture — Operation and Maintenance
Hollowman — Operation and Maintenance

Service Access Point

Simple Inter-Control Interface

Simple Inter-Routing Interface

xiii

Chapter 1

Introduction

Asynchronous Transfer Mode (ATM) control systems are complicated. This com-
plexity is witnessed by the evolutionary approach that organisations such as the
ATM Forum (ATMF) have taken to the introduction of ATM control standards.
The objective of these organisations is to define a single monolithic control ar-
chitecture which can handle the needs of all present and future services. Their
general approach is influenced by the control techniques that have been success-
fully used for telephony. However, these techniques are too rigid to be used
within networks in which new service types have to be quickly introduced. On
the one hand by attempting to encompass all possible control functions within a
single control system the standards are guilty of over-specification, forcing net-
work operators to pay an overhead for functions they may not need, and at the
same time forcing them to adapt their services to the functions that are available
even if these are inappropriate. On the other hand the standards are guilty of
under-specification: by not defining the interface between the control plane and
the physical network they in effect allow switch vendors to sell control systems
which are switch-specific and in consequence can only be maintained and evolved
by the vendors themselves.

This dissertation shows how by defining a low-level interface between the
control plane and the physical switch, control systems can be made less switch-
dependent and therefore more portable and easily modified. These open con-
trol systems can be implemented by parties other than switch vendors allowing
network operators the potential to implement and maintain the standard ATM
control architectures themselves or alternatively to implement completely propri-
etary systems. Such an environment can support multiple control architecture

allowing network operators to choose the control architecture best suited to con-
trolling the services they wish to support.

1.1 Motivation

The transport and processing of network control information uses resources and
therefore incurs some overhead. The cost is traded off against the increase in effi-
ciency and predictability that the control engenders. As an example, the accuracy
of resource-constrained routing is a function of the rate at which information is
exchanged between network elements, but when this exceeds a certain frequency
the amount of resource used in the transport and processing of the control infor-
mation outweighs the gain in having accurate knowledge. For a given network,
the balance struck between the overhead incurred and the gain achieved, reflects
the needs of the services which that network is required to support. A network
control architecture is the set of protocols, policies and algorithms used to con-
trol a network. Example control architectures include SS7 [ITU-T93b], P-NNI
[ATMF96] and IP switching [Newman97c]. The nature of each of these con-
trol architectures is congruent with the types of services that the network they
control is expected to support.

End-systems sending or receiving time-sensitive information require guaran-
tees about the arrival process of units of data transported across the network.
The guarantees typically relate to the number of units arriving in some fixed
time, the delay between units, and the probability of the network dropping or
corrupting a unit. Other than by over provisioning, the only way to be able
to make these guarantees is through the reservation of resources on the set of
network elements across which the data flows. The control architectures of net-
works that support the transport of time-sensitive data fulfil their obligations to
end-systems by reserving resources for them. The set of resources allocated to
an end-system across the network is normally termed a connection, and the ex-
change of reservation requests, signalling. As services which produce continuous
media become more prevalent, the need for a widely deployed unified transport
network capable of satisfying their diverse constraints will increase.

ATM has been designed to support the data transfer needs of a large and
unspecified set of different services. The ATM data path is both flexible and
efficient, making it a candidate for the transport protocol of high speed service-
independent networks. The simplicity of the ATM data path contrasts with that

of its control plane, which is more complicated than that of many other widely
deployed networks because it is required to support connections with arbitrary
resource guarantees. Although there is 1o guarantee that the future data transfer
protocol will be ATM, whatever protocol is finally chosen, it will have to deal with
the same problems that the designers of ATM networks have already considered.

Control in a packet! forwarding network involves determining, at each network
node, whether and to where a packet is forwarded. The control policy can be
viewed at two different levels of granularity and on two time-scales:

e at the network node level;

e at the control architecture level.

The first is termed in-band control; within an ATM network it covers func-
tions, such as traffic policing, which directly manipulate cells in the data path.
The second, termed out-of-band control, concerns the management of connec-
tions, and covers issues such as connection routing, signalling and call admission
control. This dissertation focuses on the provision of out-of-band control.

The ATM standards have defined a set of control primitives for use between
the end-system and the ingress/egress switch [ATMF95a] and between switches
[ATMF96]. While the standards recognise that different services have distinct
resource requirements for their connections, there is an implied assumption that
the out-of-band control policy exercised over those connections can be made com-
mon to all services. The standards attempt to define a single ATM control archi-
tecture valid for all possibles services within planetary scoped ATM networks.

It is impossible to know the precise control requirements of all future services
and in consequence ATM control architectures will be subject to constant evolu-
tion and revision as new services are introduced with distinct control needs. For
example, the control needs of mobile ATM systems is still a topic of research?; as
they are better understood their integration with the single fixed standard ATM
control system will require further revision to the standards. Even if it were pos-
sible to define all the control needs of all possible services within a single control
architecture, it is arguable whether it would be appropriate to do so; such a con-
trol architecture would be extremely large and complex, and all services would

1The word packet here refers the Protocol Data Unit (PDU) in any protocol in which data
is transfered in discrete units. It covers both an IP packet and an ATM cell.

2[Ngoh97, Acharya97, Sfikas97] all propose different protocols and algorithms for the
handling of mobile ATM hand-offs.

have to pay the price for its general nature. For example, implementing complex
error recovery strategies incurs a significant overhead, some services might prefer
to trade greater efficiency against robustness, but all services will have to pay the
price for the needs of the most demanding service.

Finally, the standards attempt to avoid influencing the nature of their imple-
mentation by saying nothing about the interaction between the controlling plane
and the physical switch. This arises from a belief that this is forcibly switch-
specific and properly the concern of the switch vendors. Currently, ATM switch
vendors propose an integrated approach where both the cell forwarding and con-
nection establishment functions are sold as one complete package. This obscures
the fact that they are to a large extent independent and imposes architectural
decisions on network operators. Although the ATM standards do not require this
integrated approach, neither do they proscribe it; no standard interface is defined
between the control and switching plane, allowing switch vendors to implement
proprietary solutions. The consequence of this is that switch control software is
difficult to port from one switch to another and is impossible for third parties to
maintain and evolve.

The unsatisfactory nature of the ATM standards will inevitably impede the
wide scale deployment of ATM. There is a need for control systems which are
less monolithic and rigid than those proposed by the standards.

1.2 Contribution

This dissertation shows how a low-level, service-based switch control interface
permits a sharp distinction to be made between the physical network and the
control layer.' Control architectures that allow this type of separation are termed
open, as they can be implemented, modified and maintained by parties other than
the switch vendor. Opening the switch’s control has several advantages:

e control functions can be made switch-independent, so the same control
architecture implementation can manage different switches in a similar way
and the controlling and switching plane can evolve independently;

e the switch controller and the switch fabric can be physically separated, so
the control architecture can be executed in an environment potentially more
powerful than that available on the switch;

e since such a low-level interface can be controlled by any number of different
control architectures, network operators are free to implement their own
control architectures, either proﬁrietary or standard, in the way best suited
to the services they wish to support. In this way network operators can
make decisions about the nature and implementation of their control ar-
chitectures which are more congruent with the types of services that the
network they control is expected to support.

Other research [Barr93, Lazar96] has also recognised the limitations of the
current standards and attempted to rectify them in a similar way. What dis-
tinguishes these approaches from that described here is that they attempt to
replace the current single monolithic standard control architecture with another,
perhaps more modular, one. This dissertation shows that much more flexibility
is attained by accepting that no single ATM control architecture can ever be
optimal for all services and defining a framework, called the Tempest, in which
multiple control architecture, both standard and proprietary, can be supported.
There is no longer any need to define one single ‘best’ control architecture.

The issues involved in open control in general and the Tempest framework
described here in particular, are best revealed through an examination of a work-
ing control architecture. This dissertation describes the structure of an advanced
switch-independent ATM control architecture, which executes in the framework.
The feasibility and desirability of open control are demonstrated by showing that
this control architecture is:

e Realistic: the control architecture, although simple, is fully operational
and used by applications in the University of Cambridge Computer Lab-
oratory. It implements control functions more advanced than those cur-
rently required by the ATMF signalling standards, e.g. sink initiated joins
to multicast groups. Moreover, the performance of the control architecture
compares favourably with that of several commercial implementations of
the ATMF signalling standards. This dissertation uses the description of
the structure of the control architecture to highlight some of the general
problems in implementing control systems for multi-service networks.

e Flexible: the example control architecture described in this dissertation
can be modified quickly and independently of the physical network, expe-
diting the evolution of out-of-band control and allowing network operators
to customise the control architecture for their own needs. The flexibility of
open control manifests itself at two other levels:

— firstly, within the overall Tempest framework many control systems
can coexist allowing network operators to choose the control architec-
tures best adapted to the services they wish to support;

— secondly, advanced control architecture can be extended by dynam-
ically loading code into them. Executing application-specific code
within a control architecture allows applications to take advantage of
their application-specific knowledge in order, for example, to optimise
resource usage.

e Scalable: the usefulness of a particular control architecture cannot be
judged only on its parsimony in the allocation of network resources and
the flexibility it affords network operators and applications. The number
of services that can be signalled to by using that control architecture is of
fundamental importance, i.e. being able to communicate with the rest of the
world is as important as being able to communicate with a small domain
efficiently. It is likely that some widely deployed standard ATM control
architecture will emerge. This dissertation shows how a control architecture
of the type described here can take advantage of this by interoperating with
standard ATM control architectures. Control operations which do not cross
the domain boundary of the control architecture can take full advantage of
its flexibility, while still allowing applications to signal to services offered
outside its domain.

¢ Robust: a network’s robustness is governed in part by its control systems
ability to detect and react to unexpected changes in network state. This
can be viewed on two different time-scales:

— firstly, the control architecture automatically adapts its behaviour to
take account of the unexpected change of state, e.g. port failure;

— secondly, on a longer time-scale, a human network operator attempts
to determine the origin of the incident and to modify the network if
necessary, using tools offered by the management system.

The clear separation between switching and controlling planes that charac-
terise open control has an effect on the way the network is maintained.

In regard to the first time-scale, the adaptation techniques specified by the
standards assume that all control entities can read Operation and Main-
tenance (OAM) cells sent in the ATM data path. In the environment de-
scribed here this is no longer the case as control entities may be physically

separated from the switches they manage. The automatic adaptation of a
open control architecture in response to network failure is considered by
examining a number of approaches for dealing with port failure. This dis-
sertation suggests that the standard OAM techniques should be extended in
order to allow OAM messages to be exchanged between control entities, as
well as network elements. Furthermore, it shows how allowing messages to
be executable, i.e. to carry code as well as data, is beneficial in permitting
more adaptive and flexible failure management.

In regard to the second time-scale, the fact that several distinct network
operators may be running their own control architecture simultaneously
within the Tempest framework means that it may not be appropriate to
give a network manager full access to the complete state of the switch. This
dissertation shows how existing management techniques can be adapted to
permit access control at a finer level of granularity, while taking into account
the trend in network management research for allowing network managers
to dynamically add code to the management servers running on the network
devices.

1.3 Outline

The organisation of the rest of the dissertation is as follows.

Chapter 2 presents an overview of the research context and describes the
switch control interface. This chapter explains how multiple control architectures,
all of which use this interface, can coexist on the same physical network.

Chapter 3 describes the components of a switch-independent control architec-
ture which executes in the environment explained in Chapter 2, while Chapter 4
shows how the components described in Chapter 3 cooperate to allocate, main-
tain and liberate ATM connections. Chapter 3 and 4 together allow the flexibility
enabled by open control to be examined through the description of an advanced
working ATM control architecture. At the same time this description permits the
demonstration of how some problems general to all ATM control architectures,
such as atomic synchronisation of resources allocation and call admission control,
are influenced by open control.

Chapter 5 details experiments carried out using the control architecture. Ex-
periments related to connection caching and parallel connection establishment

allow these techniques to be evaluated and the flexibility of the open control
architecture to be further demonstrated. The description of some of the applica-
tions that the control architecture supports evidences its generality. Finally, the
performance of the control architecture is evaluated and shown to be as least as
efficient as control architectures more closely bound to the switch.

Chapter 6 discusses how applications can be hindered by high-level APIs.
Extending the architecture described in Chapter 3 allows applications to add
application-specific code to it. This increases the flexibility of the control archi-
tecture by allowing applications to take advantage of their application-specific
knowledge.

Chapter 7 shows how two instances of the control architecture can interoperate
to allow signalling beyond the control architecture domain. The generality of
this solution is demonstrated by describing how the open control architecture
interoperates with an implementation of ATMF UNI 4.0.

Chapter 8 explores the problem of fault detection and recovery within switch-
independent control architectures. It shows how using mobile code allows adap-
tive and decentralised fault management.

Chapter 9 identifies some weaknesses in using standard management proto-
cols within the environment described in this dissertation. It proposes a general
purpose management system which addresses these issues and describes its im-
plementation.

Chapter 10 summarises the research, identifies areas for future work and con-
cludes the dissertation.

Related work is reviewed in each chapter.

Chapter 2

The Tempest Environment

This chapter describes the context in which the research detailed in this disser-
tation took place. The Tempest environment allows many different ATM control
architectures to execute simultaneously over the same physical network. A re-
quirement for achieving this is a mechanism which allows the resources of a switch
to be partitioned between the control architectures!.

2.1 Motivation for the Tempest

Schematically, an ATM switch contains:

e a number of ports through which cells are received and transmitted:;

e a switching fabric across which cells are forwarded;

e a control module which creates and deletes connections;

e an Operation and Maintenance (OAM) module which ensures the general

health of the switch.

In most commercial ATM switches, the control module communicates with the
rest of the switch using a proprietary interface. Although this allows communi-
cation to be very efficient, the control plane is tightly coupled to the switching

! Jacobus van der Merwe originated this idea and was responsible for the implementation of
the partitioning mechanism [van der Merwe97]; [van der Merwe97] calls the Tempest the
more prosaic: Open Service Support Architecture.

9

plane. This means that it is neither portable nor readily modifiable by parties
other than the switch vendor.

As [Chen94, Alles95, Veeraraghavan95, Kant97] all point out, ATM con-
trol is extremely complex. For example, [Kant97] states:

The stringent reliability and performance requirements for the cur-
rent PSTN and ATM Networks have resulted in a rather complex set
of signalling prbtocols for call set up and network management, and
this complezity is expected to continue growing as new services and
functionalities are introduced.

This complexity is witnessed by the evolutionary approach the ATM Forum
(ATMF) has taken to the standardisation of ATM signalling, with standards
— for example that of User Network Interface (UNI) [ATMF93, ATMF94a,
ATMF95a] — being revised as experience is gained and new functions are intro-
duced. It is impossible to know the precise control needs of services that have yet
to be invented. Since one of the important motivations behind the use of ATM is
that it will be able to support the resource guarantees of new continuous media
services, the constant evolution of the signalling standards is likely to continue.
Mobile ATM is one example of a new service whose control needs are distinct
from those in the current standards. Moreover, even if it were possible to define
a complete and final set of control functions adequate for all present and future
services, including them within a single generic control architecture would both
complicate the implementation of that control architecture and at the same time
force even very simple services to pay the price, in terms of efficiency, for the
complexity of the implementation.

As new versions of the ATMF’s signalling system are standardised and im-
plemented the software running on network nodes needs to be upgraded. This
must be achieved without disturbing services written using earlier versions. So,
for some period while the new version of the standard signalling software is in-
troduced and tested, it will coexist alongside the older version. There is already
a need for multiple control architecture, even if only for the migration path of
the implementation of the existing standards. At the same time, new techniques,
such as IP switching [Newman97c] or Xbind [Lazar96], make use of the ATM
data path, while requiring a distinct control architecture from that defined by the
standards, further demonstrating the need for the coexistence of multiple control
architectures.

10

In summary, the complexity of ATM control coupled with the need to in-
troduce new services quickly means that monolithic solutions are inappropriate
and other solutions must be found. Multiple control architectures are already
required and any workable solution must take this into account.

The control plane can be made less dependent on the switching plane by
defining a non-proprietary interface through which the controller and the fabric
communicate. A control architecture can then be implemented without detailed
knowledge of the working of the switches it controls, allowing parties other than
the switch vendors to implement the required control functions. Control archi-
tectures can then evolve independently of the physical network. The immediate
advantage of this is that different switches can be controlled in the same way,
enabling heterogeneous networks to be controlled homogeneously. For example,
versions of UNI signalling developed for one network can quickly be ported to
another, thereby expediting the update of signalling software.

Perhaps more importantly, making a clear distinction between the switching
and control planes allows network operators to implement their own control ar-
chitectures in the way best suited to their needs. Architectural decisions forced
on network operators by vendors can be rethought. For example, a given switch
controller can manage many switch fabrics. Conversely a given fabric can be
managed simultaneously by many controllers if the resources of the switch can be
partitioned between them. [van der Merwe97] calls such a partition a switchlet,
because to each control architecture the partition resembles a small switch.

The Tempest framework supports a low-level service interface between con-
trol architectures and the physical network and provides a mechanism for creating
switchlets, allocating them to control architectures and ensuring their integrity. A
Tempest virtual network is composed of a number of related switchlets located on
different physical switches. It is possible to run both standard and non-standard
control architectures simultaneously within the Tempest environment. The Tem-
pest solves the problem of allowing the different versions of UNI signalling to
coexist, while also permitting operators to run other standard control architec-
tures, e.g. IP switching [Newman97c], or even completely proprietary control
architectures, within the same framework. The ability to support many control
architectures means there is no need to try to define one single all-encompassing
‘best’ control architecture.

11

2.2 The Tempest Environment

This section gives an overview of the Tempest environment. First some termi-
nology is introduced, followed by a description of:

o the testbed ATM network and Distributed Processing Environment (DPE);

o the Ariel switch control interface;

the network builder;

the Prospero switch divider;

the control architectures.

2.2.1 Terminology

This section introduces and defines the terminology used in the rest of the dis-
sertation.

The Domain of a control architecture is the part of the network it controls.
A Host is a logical edge node of the controlled network. The type of a host is
defined by the set of resources that it contains. An Application is a schedulable
entity within some host to which resources, e.g. CPU time, may be assigned.

A Service Type is a well defined task that a given application can carry out
on behalf of another. An instance of a service type is called a Service; when there
~1s no ambiguity a service type may simply be called a service. An application
that offers a service is called a server and the applications that use it are called
clients. The set of operations that define the client’s view of the service is called
an interface. A given service may have many interfaces. The means through
which clients and servers exchange information is called a transport.

An Interface Reference is an entity containing the information required by a
client to locate and establish communication with a server. An interface reference
typically contains information about the service type and the possible transports
that can be used to communicate with a server. The client communicates with
a server by associating some local resources to an interface reference, e.g. a TCP
socket. The set of client resources allocated to an interface reference is termed
an Invocation Reference.

12

A Service Offer is the means by which the existence of a service instance is
advertised within some scope. Service offers encapsulate interface references. The
process of Trading is the act of matchfhg the requirements of a service user for a
service with the set of available service offers.

A Connection is a set of resources allocated to two or more applications across
the network in order that they may exchange data. A Connection Type is defined
by the nature, amount, location and time period of allocation of the resources
that need be dedicated to a connection.

2.2.2 The Testbed Network

At the time of writing, the ATM test network at the Cambridge Computer Lab-
oratory consists of three commercial ATM switches, two Fore ASX-200 switches
and one Fore ASX-100 [Fore95a]. Attached to these switches is a variety of
ATM capable workstations: Sun Ultras under Solaris 2.5, HPs under HP-UX 9.0
and DEC 3000/400 Sandpiper workstations running the experimental Nemesis
multi-service operating system. In addition, a number of ATM cameras — Fore
AVA 200 and 300 — [Pratt94] are connected to the test network.

An IP network is overlaid across the ATM network. This uses RFC 1577 clas-
sical IP-over-ATM (IPOA) [Laubach94] based on UNI signalling [ATMF95a]
or the Fore proprietary SPANS (Simple Protocol for ATM Signalling) [Fore95b)]
signalling protocol for connection control. It supports services, such as NFS, used
for the normal operation of the general purpose workstations.

The Fore ATM libraries are used on the Solaris and HP-UX machines. These
allow applications running on ATM-enabled workstations connected to Fore
switches to create ATM connections and to send and receive data across those
connections. The libraries support a high-level operational API. The ATM con-
nections can be established using either SPANS or UNI signalling. The work
described in this dissertation makes use of the data transmission and reception
part of the Fore API, but makes no use of the Fore signalling primitives. This is
possible because the API also allows for Permanent Virtual Channels (PVCs) to
be created other than by signalling; the connections created by Tempest-aware
control architectures appear to the Fore API to be PVCs.

13

2.2.3 Distributed Processing Environment

A Distributed Processing Environment (DPE) is the framework in which dis-
tributed entities cooperate to achieve some purpose. The OMG/CORBA DPE
[OMG95b] specifies the language for defining interfaces, transports between
clients and servers, and the behaviour of clients and servers during information
exchanges. Also specified within CORBA [OMG95a] — although not widely
available in existing implementations — are generic services, such as persistence,
which are useful within the DPE. CORBA, both because of its position as a stan-
dard environment and the large number of free and commercial implementations
is a convenient DPE for building the Tempest. The CORBA implementation
used was APM’s Dimma [Li95].

In the current implementation of the Tempest, the CORBA Internet Inter-
ORB Protocol (IIOP) [OMG95b] is used as the reliable transport for signalling,
as opposed to the ATMF’s reliable transport SSCOP [ITU-T94a], and the sig-
nalling requests are carried over the IP-over-ATM (IPOA) network. This is ex-
tremely useful in an experimental environment, as it avoids having to directly set
up and maintain signalling channels?. Although the Tempest’s DPE is a CORBA
implementation, care has been taken to ensure that the Tempest’s dependency
on that implementation is minimised.

2.2.4 The Ariel Switch Control Interface

The Ariel switch control interface is the means by which control architectures
communicate with a switch. The intention is that Ariel be as low-level as is
consistent with it being independent of any given switch.

Ariel clients communicate with the Ariel server using some convenient trans-
port, for example CORBA’s IIOP transport, and the Ariel server translates Ariel
control operations into a form that can be understood by the physical switch.
Since the internal interfaces of most commercial switches are not in the public
domain the Ariel servers use whatever standard protocols are offered by the switch
in order to accomplish their control functions, e.g. the General Switch Manage-
ment Protocol (GSMP) [Newman96] defined for IP switching. The operations
in the fundamental Ariel interface are divided into six groups:

2Q.Port [Bellcore97] allows SSCOP messages to be carried over UDP rather than AALS
for the same reason.

14

e configuration operations;
e port operations;

e context operations;

e connection operations;

e statistics operations;

e alarm operations.

Switch vendors may extend the Ariel interface to take into account special
features of a particular switch, but all Ariel servers are required to support at
least the operations defined here. These are now explained.

The Configuration operations allow an Ariel client to determine the switch
configuration. The minimum amount of information the Ariel server should be
capable of returning is: an identifier indicating the make and version of the
switch; the type of the Ariel interface it supports (extended Ariel servers support
a subtype of the basic Ariel interface); the number of ports on the switch; the
VPI/VCI range for each port and the ATM service categories that each port can
support, e.g. ABR, VBR.

The Port operations allow a client to examine and change the administrative
state of a port. The port states can be active, inactive or cell loop-back.

The Context operations allow clients to build resource contexts which can
be associated with connections during connection creation. Making a distinction
between the allocation of VPI/VCI space and other network resources has the
following advantages:

e it enables Ariel clients requiring only best-effort connections to avoid using
the context interface altogether;

e it allows standard context types to be defined, avoiding the need for their
descriptions to be repeatedly passed across the Ariel interface;

e it allows the more complex context interface to evolve and be extended
independently of the more fundamental connection interface.

15

The context contains four delay and loss parameters: Cell Delay Variation,
Maximum Cell Transfer Delay, Mean Cell Transfer Delay, Cell Loss Ratio. In
addition, there are six traffic parameters: Peak Cell Rate, Sustainable Cell Rate,
Cell Delay Variation Tolerance, Maximum Burst Size, Minimum Cell Rate and
the feedback algorithm for flow control. Different combinations of these parame-
ters will be significant for the different ATM service categories of the connection.

The parameters follow those defined by the ATMF in [Sathaye95] and there-
fore should be adequate for many applications and supported by most commercial
switches. This avoids requiring knowledge about the precise implementation of
the fabric, e.g. queueing algorithms, which is unlikely to be available for commer-
cial switches.

The Statistics operations allow a client to examine information about vir-
tual channels, virtual paths and ports. This includes the number of received and
transmitted cells, the number of erroneous cells, the number of dropped cells, and
for virtual paths and virtual channels, the time elapsed since creation.

The Alarm operations allow clients to register an interest in changes of
state in ports, for example in order to determine when a port has failed.

The Connections operations allow clients to create and delete virtual paths
and virtual channels and to determine which virtual paths and channels are in
place at any given moment.

Ariel does not specify the means by which the Ariel server communicates
with the switch fabric; it is a programming interface not a protocol specification.
Many different implementations have been carried out. These are discussed in
Section 3.9.

2.2.5 The Network Builder

Figure 2.1 shows the relationship between the network builder, the Prospero
switch dividers and the control architectures within the Tempest framework.

The Network Builder is a Tempest service which control architectures use
to create, modify and release virtual networks. The control architecture either
builds its network by specifying the resources it requires and the switches on
which it requires them, or it is given a predefined virtual network. The network
builder, after allocating a virtual network, informs the control architecture about

16

Network Builder

Create Networl

Allocate Resources on Switch

Ariel Interface Ariel Interface

Prospero

Ariel Serve Ariel Server [

Figure 2.1: The Tempest infrastructure

the resources that have been assigned to it and passes it the Ariel interface refer-
ences through which they can be accessed. When a control architecture finishes
executing, it informs the network builder which liberates its virtual network. The
resources which constitute that virtual network then become available for use by
other control architectures.

The network builder obtains information about the network resources avail-
able on the switches from the switch dividers, explained in Section 2.2.6. After
each virtual network is created, the network builder communicates with the switch
dividers in order that the assigned resources be accounted to the requesting con-
trol architecture.

2.2.6 The Prospero Switch Divider

An Ariel client uses the interface references passed to it by the network builder to
perform control operations within the scope of its virtual network. The client does
not communicate with the Ariel server directly, but through the Prospero switch
divider. The Prospero switch divider supports an interface which is identical
to that of the Ariel server. The switch divider ensures that the resources an

17

operation is trying to use belong to the client; if they do not, then the switch
divider refuses the operation; otherwise the switch divider forwards the operation
to the Ariel server. In this way, the Tempest constrains the control architecture
to its own virtual network. A fuller account of the network builder and switch
dividers is given in [van der Merwe97| and is not repeated here.

2.2.7 Control Architectures

The Tempest provides the framework in which control architectures can be allo-
cated resources and the means within that framework to communicate with those
resources. Control architectures which make use of this infrastructure are termed
Tempest control architectures. The relationship between control architectures
and the Tempest infrastructure is similar to that between applications and an
operating system.

In general, the communication between the Tempest entities will take place
across the ATM network that they control. Some primal bootstrapping control
architecture must be created by means other than the Tempest itself. For exam-
ple, the network builder must be able to communicate with the divider servers
before the first Tempest control architecture is started.

In the current implementation, IP is used as the primal network. This has a
number of advantages:

e IP is available on most ATM networks already;
e it is simple to bootstrap the IP network if it is not already in place;

e issues such as naming and routing are handled by IP and all the existing
services which presuppose the availability of Internet protocols are obtained
for ‘free’, e.g. NFS, IIOP, SNMP.

The running of IP over ATM requires some signalling protocol that the IP
network can use to establish ATM connections. The solution used in the current
implementation is simply to make use of the testbed’s IP-over-ATM (IPOA) net-
work. IPOA requires UNI signalling, so the presence of one control architecture
— UNI — is presumed and this control architecture is used to create others. The
bootstrapping problem is one which is common to all control architectures. In
standard ATM control architectures the problem appears in the need to establish

18

signalling channels without signalling. Similarly, the Tempest needs to create the
bootstrapping Tempest control architecture without using the Tempest. In both
instances, the solution depends on there being some in-built knowledge. The use
of IPOA, although useful in the experimental environment, is questionable as a
general solution, as UNI signalling is too heavyweight. LAN Emulation (LANE)
[ATMF95c] is also excluded for the same reason. Other simpler methods of
running IP over ATM, such as IP switching [Newman96], are promising; their
implementation within the Tempest is the subject of future work.

Where Tempest control architectures execute is dependent on the location of
the switch dividers. If the switch dividers are running off-switch, then the control
architectures which use them are required to do so as well. If the switches allow
the execution of foreign code, then control architectures and switch dividers can
be executed on the switches themselves allowing all communication between the
two to be performed using some efficient local transport. In the current proof-of-
concept implementation of the Tempest, in order to take advantage of the rich
development environment offered by the workstations, the control architecture
entities and switch dividers are executed off-switch.

Q.Port [Bellcore97] is an implementation of the UNI signalling standard
that has been slightly modified by the author so that it executes in the Tempest
environment. Q.Port achieves some switch-independence by defining a Fabric in-
terface that Q.Port switch controllers use to communicate with the actual switch.
The fabric interface is tightly coupled to the Q.Port control architecture and is
not as general as Ariel. The execution of Q.Port within the Tempest environment
is achieved by implementing the fabric interface using the more fundamental Ariel
interface. Q.Port is a commercial implementation; the fact that it can be treated
in the same manner as in-house control architectures supports the assertion that
any control architecture can be run within the Tempest.

The generic Tempest control architecture described in the next two chapters
was used to test the Tempest environment.

2.3 Summary

This chapter has outlined the Tempest environment which allows many control
architectures to run simultaneously over the same ATM network. The work in
the rest of this dissertation was developed in the context of the Tempest.

19

Chapter 3

The Hollowman:
An Open Control Architecture

This chapter introduces the core services within the Hollowman switch- -
independent control architecture. The Hollowman is a simple but fully functional
and efficient ATM control architecture. The goal in designing and implementing
the Hollowman was not to replace the ATMF’s standard control architecture, but
to demonstrate that ATM control can be made more open and that this open-
ness allows greater flexibility and reduced complexity. Standard control architec-
tures could usefully profit from these techniques, for example, by standardising
a control interface similar to that of Ariel. The description of the Hollowman’s
structure in this and the next chapter elucidates these advantages, while also
permitting some issues that have yet to be fully resolved to be considered.

Although it is likely that a small number of generic ATM control architectures
will eventually be adopted and deployed by industry, this dissertation argues that
some services require more advanced control than those that can be offered by
generic control architectures. In particular, generic control architectures by their
nature cannot allow application-specific control; Chapter 6 shows how a flexi-
ble control architecture, such as thé Hollowman, can enable application-specific
control.

The Tempest permits standard control architectures to coexist alongside more
advanced proprietary ones and removes the need to define a ‘best’ control archi-
tecture. With that in mind, the Hollowman can be viewed not simply as a control
architecture, but as a set of fundamental components with which network oper-

20

ators can build their own control architectures within the Tempest framework.

3.1 Introduction

Chapter 2 described how the Tempest can simultaneously support many running
control architectures. The Hollowman is a Tempest-aware control architecture,
used in the first instance to test the Tempest framework.

The Hollowman is a realistic ATM control architecture both in terms of the
functions that it offers and the efficiency with which it performs those functions.
The core Hollowman functions enable end-user applications to create and delete
point-to-point, point-to-multipoint, and third-party connections between ATM
capable workstations and devices using an Application Programmer Interface
(API) which is small and simple to use. As Section 5.5 shows, the Hollowman’s

signalling latency compares favourably with a number of commercial implemen-
tations of the ATMF standards.

The only requirement that the Hollowman makes on the switches over which it
executes is that they support Ariel, meaning that it could easily be ported to other
environments. The Hollowman was implemented without detailed knowledge of
the switches’ implementation showing how parties other than switch-vendors can
build ATM control systems. The Hollowman, while simple, supports the control
needs of a number of different applications running in the Cambridge Computer
Laboratory, demonstrating how realistic services do not necessarily require the
complexity of standards-based signalling. Those applications have in turn served
as a means of throughly testing the Hollowman. Moreover, the Hollowman serves

as a flexible platform on which experiments related to ATM control can be carried
out.

The structure of a switch-independent control architecture is elucidated
through a detailed description of the Hollowman implementation. First, the
following core Hollowman services are described:

e the soft switch, through which the rest of the Hollowman interacts with the
physical switch;

e the host-manager, which manages the resources of a host;

21

Hollowman Domain

Federated
Host-Traders Trader

Figure 3.1: Hollowman entities

e the connection-manager, which synchronises the creation, modification and
deletion of connections.

Thereafter several aquziliary issues are considered in relation to host address-
ing, application naming, trading and end-user applications. Figures 3.1 shows
the core and auxiliary Hollowman entities.

Details of the implementation are given and a survey of related work concludes
this chapter. Chapter 4 describes how the services introduced in this chapter in-
teract to perform complete Hollowman control functions and Chapter 5 describes
some of the applications that the Hollowman supports and some experiments
carried out using it.

3.2 Soft Switch

The Soft Switch is the entity through which the rest of the Hollowman interacts
with the physical switch. For every physical switch within the Hollowman virtual
network, one soft switch is instantiated within the control architecture. Figure 3.2
shows an example Hollowman instance.

22

Hollowman Instance
(with two soft switches)

o ———————

Figure 3.2: Example Hollowman instance

The soft switch has the following roles:

e managing the Hollowman’s view of the switch resources;
e defining a set of logical control interfaces to the switch;

e encapsulating the precise method of interacting with the physical switch.

The Hollowman soft switch, implementing as it does typical switch control
functions such as Call Admission Control (CAC)?, is as much a part of the switch
as the switching fabric itself. The switch can be viewed as the combination of a
soft switch with an actual physical switch. Soft switches can easily be modified
and replaced without affecting the underlying physical switch demonstrating the
ability of both to evolve independently. The different roles of the soft switch are
now considered in turn.

3.2.1 Resource Management

During its instantiation, the soft switch is told about the resources that have
been allocated to the control architecture on the corresponding physical switch.
The soft switch updates its view of the state of the switch after every relevant
state changing operation performed by the control architecture. For example, it

!Within the Hollowman this might be more properly called Connection Admission Control
but the term more widely used in the literature is preferred.

23

records which virtual channel identifiers are currently being used in connections
on the switch.

Within a control architecture’s virtual network all control operations are per-
formed by the control architecture, therefore during normal operation keeping
the control architecture’s view of the state of the physical switch consistent with
the actual state is straightforward. Achieving consistency after network failure is
considered in Chapter 8.

3.2.2 Control Interfaces

In the current implementation of the Hollowman there are three control inter-
faces: the Call Admission interface, the Connection interface and the Alarm in-
terface. The interfaces that a particular instantiation of a soft switch is required
to support are determined from a configuration file during the initialisation of
the Hollowman. All soft switches must have at least one call admission service
and one connection service. The alarm service is optional. Other switch control
services, e.g. an accounting service are the subject of future work.

The call admission interface takes a connection creation request description
and returns a boolean value indicating whether or not the request can be accepted.
If it can, then an indication of the cost of that connection is also returned. In
the current implementation the cost is given simply as a real number in the
range zero to one, where one is the highest cost and zero is the lowest. For
example, the soft switch can calculate the cost of the connection as a function
of the amount of resources it would leave free for further connection requests.
The cost is used by the connection-manager when deciding whether to accept
a connection and through which soft switches to route it. Any algorithm could
potentially be used within the soft switch for deciding whether a connection
should be accepted or not, and network operators can refine this algorithm, for
example, in order to privilege certain connection types over others. By its nature,
the soft switch is independent of the implementation of the switch and this means
that its knowledge of the capacity of the switch is restricted; the effect that this
has on CAC is considered in Section 3.2.4.

The connection interface allows resources to be reserved on the switch, connec-
tions to be created on the physical switch using reserved resources, connections
to be removed from the switch, and resources to be liberated. In the current im-
plementation of the connection service the only resources the connection service

24

.CAC Interface

Connection Interface Alarm Interface

Ariel Interface

Switch Divider
| I |
Physical Switch

Figure 3.3: Soft switch

manages are the virtual channel and virtual path identifiers of the switch ports.

The alarm interface allows an interest to be expressed in the notification of
an alarm, and the required response to that notification to be defined. Chapter 8
has a more detailed discussion about failure recovery within the Hollowman.

3.2.3 Encapsulation of Switch Interface

At its instantiation, the soft switch receives an Ariel interface reference and uses
this to communicate with the switch. The set of Ariel interface references assigned
to a control architecture are obtained from the network builder during the creation
of the virtual network. The operations of the connection interface are mapped
onto the Ariel connection operations; interest in alarms expressed using the alarm
interface are forwarded to the Ariel server. No other entity in the Hollowman
communicates with the switch directly. Figure 3.3 represents the soft switch
diagrammatically.

The soft switch can determine if the Ariel server supports an extended version
of the Ariel interface by examining the identifier of the Ariel interface obtained
using the Ariel configure operation. For example, if an Ariel server offered the
ability to support the abstract switch model defined in [Newman97a), then the
soft switch could take advantage of that fact to implement the CAC function.

25

The Ariel ports, context and statistics operations are not used in the current
Hollowman implementation.

3.2.4 Discussion of Call Admission Control

Call Admission Control (CAC) is the act of deciding if there are sufficient re-
sources available to satisfy a request for the creation of a connection without
affecting existing connections. Other factors, such as charging, may also influ-
ence the CAC policy. Commercial ATM control systems make use of very detailed
knowledge of switch implementations in order to perform CAC. For example, to
accurately determine whether statistical multiplexing gain is sufficient to per-
mit a given mix of VBR connections, whose total peak bandwidth requirements
are greater than that of the output port through which they pass, requires a
knowledge of the cell queueing algorithms used by the switch.

Open control architectures, such as the Hollowman?, are independent of any
particular switch implementation. Ideally, decisions should be made by the con-
trol architecture independently of the switch about whether a connection with
a given traffic profile should be accepted. This means that the open control ar-
chitecture should implement its own CAC algorithms. Section 3.2 described how
within the Hollowman each soft switch has its own CAC control interface. The
CAC algorithms implemented in the Hollowman’s soft switches can be:

e less conservative than that of the switch;
e identical to that of the switch;

e more conservative than that of the switch.

If the algorithm is less conservative, then the control architecture may deter-
mine a route which will be refused by the switches during establishment. The

2In the current implementation of the Hollowman, the only resources managed by the control
architecture are the virtual channe] identifiers and virtual path identifiers. Applications are not
given guarantees about delay, loss or traffic parameters. Ariel uses the standard set of ATMF
parameters — see Section 2.2.4 — to define the resource context for a virtual channel across a
single switch. A traffic descriptor structure could easily be added to the relevant operations in
the Hollowman’s API and the connection-manager could transfer the request to the switches
using Ariel. Some traffic parameters, e.g. peak cell rate, can be checked for each switch in
isolation; others, such as total transit delay, require coordination amongst a number of switches.

26

control architecture must take this into account, e.g. allowing for rolling back
part of the creation and attempting another route (crank-back).

Using the same algorithm as the switch requires special knowledge about the
switch’s cell scheduling policy. Such information is not generally available. It is
possible [Lazar96] to map out the schedulable region for a given type of switch
for a given set of call types. This has the disadvantage that it limits users to
using only those call types and needs to be done for each different version of each
switch.

The third possibility is to use algorithms which are more conservative than
those used by the switch, for example mapping Variable Bit Rate traffic parame-
ters onto Constant Bit Rate at peak rate®. Calls may be refused when in fact the
switch can support them. If the algorithms used are only slightly more conserva-~
tive, then the number of unnecessarily blocked calls may be sufficiently low that
this technique is acceptable. In fact, this is the technique that P-NNI [ATMF96]
uses to source route a connection, while having only incomplete knowledge about
remote switches. In P-NNI, nodes periodically exchange information about their
current resource usage with nodes of the same group. P-NNI specifies two al-
gorithms — the Complex Generic CAC algorithm (C-GCAC) and the Simple
Generic CAC algorithm (S-GCAC) — which a node can use to determine if a
foreign node is likely to accept or refuse a given connection. Switch vendors are
free to develop their own CAC algorithms, but they are constrained to being less
conservative than the GCAC.

By their nature switch-independent control architectures, such as the Hollow-
man, have less knowledge of the capacity of the switches that they control than
more switch-specific ones. The problems arise simply because switch manufac-
turers are understandably loath to reveal the mechanisms, e.g. cell scheduling
algorithm, that their switches use; in that sense it is a commercial rather than
a technical issue. Nevertheless, open signalling must address this problem, to
be considered a practical technique. Mapping out schedulable regions is a useful
solution for situations in which the call types are predefined and well known,
but it is not generally applicable. Furthermore it reduces the flexibility of open
control as the control plane is again tightly and statically bound to switch imple-

31t is interesting to note that [Kalmanek97] questions the utility of VBR for services that
are as bursty as variable bit rate video. The problem is that it is difficult a priori to define
reasonable values for the burst tolerance, sustainable rate and peak rate parameters. VBR
may not be needed in many multi-service networks, significantly reducing the problem of Call
Admission Control.

27

mentations. Unless there is some way of dynamically determining the capacity
of commercial switches, open control architecture when performing CAC must
either be:

e overly optimistic, thereby complicating the task of connection creation (to
take account of rollback) and removing the possibility of performing effec-
tive resource constrained routing;

e overly pessimistic, and in consequence not take full advantage of the capac-
ity of the switch.

The former is acceptable only in extremely undemanding contexts and the
latter option is preferred. The use of the ATMF’s GCAC as the conservative
CAC algorithm has the advantage that switch vendors will in all likelihood ensure
that their switches’ capacity is at least that stipulated by the GCAC and that
commercial switches designed to support P-NNI will be capable of supplying the
necessary values to allow its calculation.

However, recent work suggests that it may be possible to dynamically deter-
mine a switch’s capacity.

Firstly, [Newman97a] describes a proposed extension to GSMP
[Newman96] which allows a switch to describe its scheduling and policing pol-
icy to a controller in terms of an abstract switch type. In the best case — in
which the abstract switch model accurately models the capacity of the underlying
switch — this will allow the controller to avail of the full capacity of the switch;
in the case that the capacities of the underlying switch cannot be completely
defined by the model, then the controller can implement a CAC algorithm which
is conservative, but probably less so than GCAC. Future work will look at the
possibility of extending Ariel to take into account this new version of GSMP. To
some extent the success of this approach depends on the willingness of switch
vendors to support enhanced GSMP servers; this again is a commercial rather
than a technical question. '

Secondly, the Measure project [Crosby96] is attempting to predict the effec-
tive bandwidth of a switch port by measuring the current traffic patterns and
applying some results from large deviation theory [Duffield95]. Resource man-
agement in a network which uses statistical multiplex, such as ATM, depends
on knowing the probability of rare events, e.g. cell loss. The probability of rare
events is determined by the rate function of the traffic classes. Normally, a model

28

is used to define this rate function; the models must characterise the expected
traffic types making it noh—general and difficult to evolve. The Measure project
has adopted the novel approach of tfrj;fing to measure the rate function. The
ability to do this is based on the similarity between large deviation rate func-
tions and thermodynamic entropy. The mathematical theory behind Measure is
beyond the scope of this dissertation.

If Measure proves applicable to commercial networks, then open control ar-
chitectures could dynamically determine the capacity of switches by measuring
their behaviour. The Measure approach has the great advantage that it does not
require much support from switch vendors; only the ability to obtain some basic
traffic measurements. Although this work is still on-going, [van der Merwe97]
reports some success in the use of an implementation of Measure’s effective band-
width estimator in determining the resources that need be allocated to Tempest
virtual networks running on commercial switches. The author suggests that fur-
ther work needs to be done: in investigating the measuring time required before
the effective bandwidth estimates become usable and the application of Mea-
sure to switches which, unlike those used in [van der Merwe97], are not simple
FIFO output queued and therefore less easily mappable on the Measure model of
a single shared server. These issues are being addressed by the Measure project.

3.3 Host-Manager

For an end-user application to send and receive a continuous media stream it
needs to reserve network resources on the devices across which that steam will be
transported. However, both sending and receiving applications also need to be
allocated operating system resources if true end-to-end resource guarantees are 0
be given. It is pointless, for example, to acquire enough resources to carry a video
stream across the network to a workstation if the application cannot guarantee
that enough of the framestore will be available to allow the video stream to be
rendered. An advanced control architecture for multi-service networks must take
this into account.

In addition, the signalling of end-user applications needs to be managed. For
example, some access control policy must be enforced, stopping a given appli-
cation from deleting the connections of another. This is best done as ‘close’ to
the end-user applications as possible, since communication between the end-user
applications and the signalling manager can be efficiently performed and the sig-

29

nalling manager can take advantage of any artifacts offered by the environment
for the management of applications.

Within the Hollowman the allocation of resources on a host and the man-
agement of end-user signalling are both handled by an entity called the host-
~manager. There is one host-manager per host within the Hollowman domain.
A host-manager normally runs on the host that it manages, but when manag-
ing dumb devices such as a camera, e.g. the Fore ATM Video Adaptor (AVA)
[Pratt94], it is convenient to run it on a separate workstation. An end-user ap-
plication uses the host-manager for signalling to other applications. The simple
host-manager API is described in Chapter 4.

In the current implementation only a small number of resources relevant to the
creation of ATM connections is managed. Future work will investigate the issues
in allocating a complete set of both network and operating system resources to
Hollowman applications. The Nemesis multi-service operating system [Leslie96]
offers an application process the ability to specify precisely the operating system
resources it requires. Nemesis is the ideal platform on which to run the Hol-
lowman, and the host-manager and host-trader have been designed with this in
mind?.

3.4 Connection-Manager

Within the Hollowman soft switches manage virtual channels across the part
of the switch that they control and host-managers manage the resources allo-
cated to applications on hosts. In order to establish an end-to-end connection
some entity must coordinate the action of the soft switches and host-managers.
The Hollowman entity responsible for performing this coordination is called the
connection-manager. Figure 3.4 shows the entities involved in the creation of a
Hollowman connection.

In the description of the operation of the connection-manager given in this
chapter and the next, it is assumed that there is only one connection-manager
per Hollowman domain. This is simply for reasons of convenience and other con-
figurations are possible, e.g. a connection-manager per switch. From the point of

4 An exploratory port of part of the Hollowman to the Nemesis operating system has already
been carried out by the author. A version of ANSAware [APM95] was used as the DPE, since
Nemesis, at the time, did not support CORBA.

30

Producer

A e L L

.4 >< = — e s -

........... Host boundary

=3 Contro] Path

—_———— Data Path

Figure 3.4: Hollowman control path

view of the connection-manager the network is made up of host locations, switch
locations and gateway locations. The host locations are instances of the host-
manager, the switch locations are soft switches and the gateway locations are
instances of a gateway manager which allows Hollowman connection-managers
(and as Chapter 7 shows, control architectures) to be interconnected. The expla-
nation of how the function of the connection-manager can be distributed using
gateways is reserved until Chapter 7.

The connection-manager has complete knowledge of the topology of its Tem-
pest virtual network. In the current implementation it acquires this knowledge
from a set of configuration files; an automatic discovery mechanism is a subject
for future work. The Hollowman connection-manager has much the same role as
the connection module in a normal switch, except that there is no need for the
connection-manager/switch fabric mapping to be one-to-one. This allows net-
work operators to trade-off the risks of centralisation, e.g less robustness, against

31

the reduction in complexity that it permits.

An application uses its host-manager to perform control operations. The
host-manager, after doing some local verification, forwards this request to the
connection-manager, which then contacts the other entities concerned in the op-
eration and synchronises their activity. For example, when a host-manager for-
wards a connection creation operation, the connection-manager determines the
source and sink hosts and the sequence of switches which constitute a route be-
tween them. It then uses the host-managers and soft switch entities to establish
that connection.

In order to route, the connection-manager needs accurate information about
the state of the virtual network. When there is a single connection-manager
per domain, then this state can be determined simply from the complete set of
soft switches that the connection-manager coordinates. When there are many
connection-managers, they must exchange routing information amongst them-
selves. This is explained in Chapter 7. In ATMF signalling it is the ingress switch
which determines the complete set of nodes to the egress switch, all switch control
software must be capable of performing routing functions. All switches must be
updated in order to introduce a new routing algorithm, influencing the time-scale
at which innovation can take place. In the Hollowman, the routing algorithms
are separated from both the physical and soft switch and new algorithms can
easily be introduced and tested.

Currently the default routing algorithm is a variant of the weighted spanning
tree algorithm. The weights associated with each of the switches in a route are
defined as a function of the current resource usage on a switch and the necessary
resources required for a connection. The exact formula used to turn these two
pieces of information into a weight is an intrinsic part of the control policy of
the soft switch. Within the Hollowman any of the diverse techniques described
in [Lee95] for resource constrained routing can be used.

The connection-manager frees the resource associated with a connection when
a host-manager asks it to do so. The host-manager may have been explicitly
asked by an application or it may have decided that the application that owns
the connection has failed.

The demand for connection creation necessitates the modification of state
in at least four places: the source host-manager, the sink host-manager, the
connection-manager and the switches. When an attempt to create a connection
fails after state has been already updated in one or more of the above, then all

32

the updates must be undone and the original state restored. The creation of a
connection is a distributed transaction which can be rolled back if the procedure
fails at any stage. This problem is cofrli)licated by the fact that the state in the
connection and host-managers should be locked for as short a time as possible to
optimise concurrency. Section 4.6 has a fuller discussion of the issues involved in
ensuring coherence in control operations.

3.5 Host Addressing

An address identifies a network location. In the ATM standards [ATMF95a]
a distinction is made between public ATM addresses which are 15-digit E.164
[ITU-T91] format telephone numbers and private addresses which are 20-octet
ISO Network Service Access Point (NSAP) [ISO/IEC95a] formated. There are
three different classes of private address corresponding to different authorising
entities as distinguished by the Authorising and Format Identifier (AFI) field in
the address. Other classes are possible by mutual agreement between involved
parties. The complexity of addressing within the standards is as a direct result
of their all encompassing nature.

Hollowman addresses are byte arrays; the Hollowman places no constraints
on the structure of the data contained in the address other than that the array
be non-empty. During the initialisation of the Hollowman a unique address is as-
signed to every host in the Hollowman’s domain. In the current implementation,
uniqueness is guaranteed by using the host-name of the machine as its address®.

Hollowman addressing is much less elaborate than that in the ATMF stan-
dards because the Hollowman is not a single ubiquitous control architecture. This
demonstrates how simplifying assumptions, appropriate in certain contexts, al-
low control architecture complexity to be reduced. Moreover, this absence of
structure means that any format can be used for a valid Hollowman address.
Chapter 7 describes how this helps the interoperation between the Hollowman
and other control architectures.

®Note that IP addresses would serve equally well for Hollowman addressing and would be
universally unique.

33

3.6 Application Naming

The name of an application instance identifies that instance uniquely in the con-
text of a Hollowman domain. In the rest of this dissertation an application
instance’s name is termed an application identifier. Application instances are not
tightly bound to hosts and therefore application identifiers are kept distinct from
host addresses.

Application identifiers are used within the Hollowman to distinguish between
application instances during control operations. They also permit resource book-
keeping and some limited access control. In the current implementation, an
application identifier is a single integer. The application instance obtains this
unique integer from the host-trader application explained in the next section.

3.7 Trading

A trader is an application that maintains a set of available service offers within a
given scope. Trading [ITU/ISO97] is a well understood concept and has existed
in Distributed Processing Environments such as ANSA [APM92] for some time.
Traders are not core Hollowman services, because they are not directly involved in
the management of connections, but they are a useful auxiliary service. Traders
serve two distinct functions within the Hollowman:

e they enable the Hollowman core services and Hollowman end-user applica-
tions to get in contact with each other;

e they allow end-user applications to learn about the ATM information pro-
ducing and consuming services currently being offered by other applications.

The former is an artifact of the current implementation and is transparent to
end users. The latter is a facility offered to end-users which they are not obliged
to use. For reasons of simplicity, in both cases service offers are used to advertise
the services. Service offers used for ATM signalling can be distinguished from
the others by the fact that they have ATM as one of the allowed transports.

Trading is hierarchical within the control architecture, i.e. an attempt is made
to find a match for a service request first of all within the same scope as the
requester and if this fails, within the scope of a higher level. Thus the use

34

of service providers which are, in some sense, close is favoured. Within the
current implementation of the control arch1tecture two levels of trading exist,
a trader for each host — host-trader — and a trader which federates all these
traders — federated-trader. The host-traders maintain service offers for end-
user applications and the federated-trader maintains service offers for the host-
trader services themselves. The host-trader and host-manager are the only two
services directly addressed by an end-user application. Applications advertise
their services and learn of the existence of other services through their host-
trader.

Within the ATM standards end-points can register the fact that they support
an anycast [ATMF95a] address; an application can signal to an anycast address
without knowing the precise end-point on which the corresponding service is
implemented and the UNI control architecture routes to the closest. The distinct
concepts of location and service are mixed in an anycast address. Within the
Hollowman, when an application receives a service offer for a given service type
from the trader, it is not aware of where that service is implemented. Moreover,
because of the hierarchical nature of the traders, it will receive a reference to the
closest available offer.

3.8 End-User Application

An end-user application, after obtaining an application identifier from its host-
trader, may perform control operations by communicating with its host-manager.
In every control operation the application supplies its application identifier, al-
lowing the host-manager to account the resources to the application and perform
some basic access control.

The direction in which data flows in a connection is independent of the lo-
cation that initiates the connection creation. A data producer, a data consumer
or another party may request the creation of a connection. Within the current
implementation all connections are uni-directional; setting up bi-directional com-
munication requires the creation of two separate connections. This accords with
the principle of a small useful set of functions described in Section 3.1. Section 4.4

discusses how more complex connections (or calls) can be supported within the
Hollowman.

An application may assume one of two roles during connection creation: ser-

35

l Application Application 1
7) ry 7
Fore-API - Host-manager Connection-manager Host-mhnager Forel API

—— , Data
eeraemaamsmeasasaacannee » Signalling

Figure 3.5: Protocol stack

vice user or service provider. Service users may identify the service with which
they wish to communicate by supplying a service offer. The application may have
received this service offer from its trader or it may have another origin. A service
offer must have ATM as one of its allowed transports if the host-manager is to
use it to create an ATM connection.

Service providers can publicise the existence of an ATM service to the other
applications in the Hollowman by registering offers with their host-trader. A
typical service would be the ability to produce a video stream from an ATM
camera or to display a video stream on some monitor. The direction of the
data stream from the service is determined by whether the offer is a source or
sink. When an application registers an offer, it supplies an interface reference of
a callback service, which is then associated with the offer in the host-manager.
The callback service is the means by which the Hollowman informs applications
about the state of a connection. The callback interface contains an operation
— do-It — which is invoked when a connection is established to a service offer.
The implementation of the do-It operation is the application-specific response to
a connection creation.

An application can make a service offer without that service being operational.
For example, a service provider that controls an ATM camera can offer a video
service without initiating a video stream from the camera; it is only when the do-
It operation is called that the video service is started. The do-It operation could
be extended so that additional information about the connection, e.g. cell rate,

36

could be passed to the application. This would help the application to estimate
the operating system resources required to accomplish its function. This is the
subject of future work. '

If the connection-manager and host-manager are thought of as protocol layers
then the protocol stack for communication between applications is represented
by Figure 3.5.

3.9 Implementation

The Hollowman is written in the C/ C++ programming language. It executes on
Sun Ultras under Solaris 2.5, HPs running HP-UX 9.0 and DEC Alphas running
digital UNIX. Applications use the Fore libraries for data transfer, but not for
signalling.

A variety of implementations of Ariel have been achieved by Jacobus van der
Merwe [van der Merwe97] including:

Scotty [Schoenwelder96]— a Tcl implementation of SNMP;

a GSMP [Newman96] implementation;

a CORBA [OMG95b] implementation;

a proprietary message passing implementation.

These varied in efficiency and generality. The author performed one imple-
mentation using a native implementation of SNMP [Hardaker97]. It was hoped
that this would allow more efficient connection set up than that performed us-
ing Scotty. Although this implementation was twice as fast as the Scotty one,
it was still extremely slow compared with other implementations. SNMP was
useful for the initial implementations of Ariel, since nearly all switches support
it. However it is too slow for signalling, both because the creation, transmission
and interpretation of ASN.1 PDUs is slow, and because many SNMP operations
are required to perform simple control functions, such as the creation of a virtual
channel. GSMP is the preferred implementation for Ariel when the switch con-
troller is executing remotely from the switch. Ariel is easily mapped onto GSMP,
and GSMP is both efficient and likely to be available on many commercial ATM
switches. Although GSMP currently lacks support for allocating a complete range

37

of resources to a connection, proposed extensions to GSMP [Newman97 a] will
resolve this problemS.

The Dimma framework ORB [Li95] is used for the communication between
distributed entities. Dimma supplies a set of general purpose interfaces for dis-
tributed computing which can be mapped onto a variety of distributed computing
systems. Dimma 2.0 comes with an implementation of an Internet Inter-ORB
Protocol (IIOP) protocol stack and a Basic Object Adaptor (BOA) [OMG95b].
The traders, host-managers and connection-managers are all applications within
the DPE. The interfaces of the services they support are defined using the
CORBA Interface Definition Language (IDL) and communication exchanges take
place using IIOP.

The connection-manager, host-manager and traders each require under 3.5
megabytes of virtual memory; most of this is due to the DPE. The Hollowman
has been used to create several million connections in one session; the memory
occupancy does not rise. The performance of the Hollowman is considered in
some depth in Section 5.5.

3.10 Related Work

This section examines the relationship between Hollowman and other control
architectures. Within the broader framework of the Tempest all these control
architectures can coexist.

3.10.1 Signalling System No. 7 (SS7)

Signalling System No. 7 (SS7) [ITU-T93b] is a network of signalling channels
used in the Public Switched Telecommunication Network (PSTN) and a suite of
protocols for sending control information across this network. The nodes of this
network are:

e Service Switching Points (SSP), where data circuits are switched;

8Some other ways of extending GSMP have also been proposed. [Murthy97] suggests the
addition of the standard ATMF resource parameters to the GSMP ADD BRANCH message, while
[Adam97b] extends GSMP through the use of the schedulable region concept, explained in
Section 3.2.4. .

38

e Signalling Transfer Points (STP), for the routing and transfer of signalling
messages;

e Service Control Points (SCP), servers which perform advanced control op-
erations.

The SS57 suite of protocols includes the Telephone User Part (TUP) for Telephone
Signalling, the ISDN User Part (ISUP) for ISDN signalling and the Transaction
Capability Part (TCAP). TCAP is used for the exchange of non-circuit related
data, e.g. routing information for free-phone numbers, and is mainly used for
Intelligent Network (IN) services.

The ITU-T and the ATM Forum have used SS7 as their model for ATM
signalling. For example, ATM signalling in the PSTN is performed using B-
ISUP which is an extension of ISUP. While this is understandable in the context
of the PSTN, this dissertation argues that telephony signalling is not a suitable
model for general purpose multi-service networks.

3.10.2 Intelligent Networks (IN)

Intelligent Networks (IN) [ITU-T92a] allows the introduction of services other
than basic telephony into the PSTN. Examples of IN services include free-phone,
call forwarding and universal personal telephone numbers. Initially these services
were amalgamated with the switching elements, but the additional complexity in
call processing that such services engender and the need for faster introduction
meant that a distinction had to be made between the switching plane — sets
of Service Switching Points (SSPs) in IN terminology — and the IN control
plane — Service Control Points (SCPs). The resulting architecture is called
AIN (Advanced Intelligent Networks) [Garrahan93]. The interfaces between
the SCPs and SSPs are standardised and to an extent the SCP logic can be
modified without changing the SSPs.

The aim of making a clearer separation between the switching and controlling
plane is shared by the work in this dissertation. However, the AIN model still
requires the SSP to have a significant amount of service logic. For example, the
ingress SSP has to determine that a call is special, e.g. an 0800 number, and to
delegate the treatment of that call to an SCP; the SCP uses the SSP to perform
the required intelligent control. This dissertation argues that by defining a lower
level interface between the controlling and switching plane, most service logic can

39

be removed from the switching plane. Any call model can then be implemented
without modifying the network elements.

3.10.3 ITU-T & ATM Forum

The International Telecommunications Union (ITU) and the ATM Forum
(ATMF) are the most important organisations concerned with the standardis-
ation of ATM. The concerns of the ITU’s Telecommunication Standardisation
Sector (ITU-T) are focused on ATM within the PSTN, while the ATMF has
concentrated more on private networks. Their respective standards are aligned.
The ATMF and ITU-T have standardised the interaction between an end-system
and the network in the User Network Interface (UNI) [ATMF95a, ITU-T94b],
between different network elements in the Private Network Network Interface (P-
NNI) [ATMF96] and between public networks in the Broadband Inter-Carrier

Interface (B-ICI) [ATMF95b, ITU-T96].

The UNI describes two different things: the functions that an end-user can
perform and the means by which they can be achieved. The functions have
evolved over the successive versions of UNI, the latest being UNI 4.0. The Hol-
lowman’s control functions are comparable to the entire suite defined by UNI
4.0. A UNI 4.0 implementation is only required to implement point-to-point
connections, the rest — leaf initiated join, proxy signalling, anycast, etc. —
are optional. UNI/NNI signalling takes place using a special signalling proto-
col stack, across a virtual channel well known to both the end-system and the
network. The signalling protocol’s topmost layer is called Q.2931. This defines
both the formats and actions of a set of control primitives, and the patterns of
exchanges between end-systems and switches required to perform some entire
control function. Q.2931 makes use of a Signalling Adaption Layer (SAAL) con-
taining a reliable network-to-network transport protocol called Service-Specific
Connection Oriented Protocol (SSCOP). The signalling part of P-NNI is an ex-
tension of UNI 4.0. P-NNI also defines how routing information is exchanged
between P-NNI nodes.

UNI/NNI signalling is the definitive ATM control architecture and compar-
isons between it and the Hollowman are made throughout this dissertation.

40

3.10.4 TINA-C

The Telecommunication Information Network Architecture (TINA) [Barr93|
Consortium, active since 1993; is a group of software manufactures, hardware
vendors and network operators dedicated to defining an integrated management
and control system for the B-ISDN. TINA’s objective is to have a single model
within which the interaction between all elements in a public switching multi-
service network can be defined. [Nilsson95] states that:

The goal of the TINA Architecture is to provide a set of concepts
and principles to be applied in the design, processing and operation of
telecommunication software.

TINA tackles issues as diverse as the integration of Intelligent Networks (IN),
computer operating system resource control and Telecommunication Management
Networks (TMN). TINA’s large vision, while having the advantage of addressing
all the concerns of its diverse participants, means that there is a strong em-
phasis on evolution from existing techniques to avoid losing capital investment,
e.g. the integration of SS7 signalling [ITU-T93b], Telecommunication Manage-
ment Networks (TMN) [ITU-T92b], Intelligent Networks (IN) [ITU-T92a], etc.
For example, [Bloem95] states in relation to the TINA Connection Management
architecture that:

Since Connection Management does not differ in a major way from
TMN and OSI Management Developments, easy inter-working and
migration from TMN-based management systems is guaranteed.

TINA is all encompassing. This is in contrast with the work described in this
dissertation, which argues that trying to embrace all present and future control
functions within a single, albeit modular, control architecture is too inflexible for
a multi-service network in which new services must be quickly introduced, and
too complex to be easily implemented and maintained. However, much of the
justification for TINA, e.g. greater flexibility and quicker introduction of services,
is resonant with the motivation behind the Tempest. For example, [Rublin94]’
states that:

"[Rublin94] defines an antecedent of TINA called INA.

41

The architecture must enable the network to support a multiplicity of
call models and signalling protocols.

Although this aim is shared by the work presented in this dissertation, the
means of attaining it is different. TINA assumes that generality is achieved by
defining many high-level building blocks and then defining complete models of
how these building blocks will interact to perform all required functions. By sep-
arating the description of the function of these building blocks from the method
in which they communicate, greater modularity is achieved than is presently pos-
sible within the ATMF standards. However, the patterns of interactions between
the building blocks defined by TINA restricts the call models and signalling pro-
tocol that it can support. The Tempest shows that true generality is attained
by giving both network operators and end-users fine grained access to network
resources.

The Hollowman — a specific instance of a Tempest-aware control architecture
— shares some features in common with TINA, for example the use of distributed
computing for network control. However, the purpose of the Hollowman — the
implementation of a small useful set of control functions to demonstrate the
practicality of open signalling — is not common with TINA’s.

3.10.5 Xbind

[Lazar96] describes a framework — called a Binding Model — for the creation
of multimedia services within ATM broadband networks. This framework offers
a set of open interfaces — the Binding Interface Base (BIB) [Adam97a] — that
developers can use for developing open services. Xbind is an implementation of
these interfaces which uses CORBA3.

The work presented in this dissertation shares with Xbind both its motivation-
— greater flexibility in ATM control — and the method of achieving this —
a switch-independent interface between the physical network and the control
plane. The Tempest approach differs from that of Xbind in the manner in which
generality is achieved. The only constraint that the Tempest places on a control

8Tt is interesting to note that while both Xbind and TINA implicitly assume that there is
a distinct IP control architecture running in their environment — as both specify the use of
standard CORBA transports for communication between control entities — neither of them
explains how this fits with the rest of their control model.

42

architecture is that it must use Ariel to perform its control operations; everything
else is up to the control architecture, e.g. the method of communication between
control entities, the application API. A control architecture built using Xbind
is constrained by the interfaces of the Binding Interface Base (BIB) in how it
interacts with the physical network. For example, the ScheduableRegion BIB

. interface assumes that the control architecture will be performing Call Admission
Control (CAC) in the way specified by the Binding Model. As Section 3.2.4 has
explained, the ScheduableRegion interface may not be suitable for certain control
architectures. In addition, the requirements of the BIB are such that existing
implementations of control architectures, e.g. UNI signalling, would need to be
completely rewritten to conform to the model.

The Binding Model’s objective is to be so general that any user can im-
plement his desired control within that model; the Tempest approach is to al-
low users controlled access to their own resources at a low enough level that
they can define their own model. Since one model of signalling, that of the
ATMF, is already well established and others have been implemented both com-
mercially [Newman97c] and in research laboratories [Arango93, TINA-C97,
Kalmanek97, Hjalmtysson97 , Rooney97a] as well as Xbind itself, it is likely
that there will be many different ATM control architectures. Acceptance of open
signalling systems will be dependent on their ability to take these multiple models
into account.

3.10.6 Xunet

Xunet 2 [Kalmanek97] was a prototype nationwide ATM network — active
from 1991 until 1996 — linking many laboratories in the USA. It investigated
areas related to LAN interconnection over wide area ATM, traffic management
in a multi-service network and control and management of large ATM networks.

The Xunet switch controller was designed as a set of distributed services,
e.g. signalling, routing and resource management, which communicate amongst
themselves using the ANSAware [APM92] DPE. For convenience, the switch
controller ran remotely from the switch and communication between controllers
took place across an Ethernet, using a fabric-independent protocol. This fabric-
independent protocol was based on an abstract model of the switch, that is to say
it defined a set of functions general to many switches, e.g. for modifying entries
in the header translation tables, assigning weights to virtual circuits serviced by

43

a weighted round-robin scheduling algorithm. Its implementation depended on
knowing the capacity of the switch and being able to map the abstract operations
onto its internal interfaces. The switches that Xunet used were built in-house and
so this posed no problem. In contrast, Ariel controls commercial switches and
the development of the Hollowman required no special knowledge of the switches
implementations.

In Xunet, the relationship between switch controller and switch is one-to-one.
and adjacent switch controllers exchange control messages across dedicated PVCs
established at start-of-day. The Hollowman allows a looser coupling between
the control plane and the physical network, e.g. a given Hollowman connection-
manager can manage many switches if it is appropriate to do so. Moreover, Xunet
treated only simplex connections. The basic Hollowman control architectures
allows both unicast and multicast connections, established by a source or sink or
some other third-party. The extensions to the Hollowman, explained in Chapter 6
allow end-users to dynamically introduce their own call types into the control
architecture.

Xunet demonstrated the practicality and utility of using distributed process-
ing techniques in a large network. The authors of [Kalmanek97], while recom-
mending these techniques, note that overuse of RPCs leads to an unacceptably
large overhead in the creation of connections. In Xunet, each switch controller
was comprised of processes for signalling, routing, resource management, trading
and acting as hardware proxies, as well as some other processes for Operation
and Maintenance. All of these processes communicated amongst themselves using
RPCs in order to establish a virtual circuit across a given switch. The Hollowman
is more frugal in its use of RPC and this is reflected in the performance figures
given in Section 5.5.

The authors of [Kalmanek97] recognise that many ATM control architec-
tures, differentiated by the environment in which they are required to run, will
be needed. They state that:

It is clear that such complex protocols [as those defined by the ATMF]
are not needed everywhere. For ezample, a desk area or home network,
might use a lightweight signalling protocol, with a concise encoding
and good support for the common case.

The Tempest elegantly manages the coexistence of multiple control architec-
tures.

44

3.10.7 IP Switching

IP switching [Newman97c] is a commercially developed control architecture of
IP routers running over ATM switches. The routers can optimise the throughput
of long lived IP flows by mapping them onto ATM connections. The packets are
switched in the ATM switch rather than in the IP router, increasing efficiency.
The IP header information can be removed from the packet as it enters the
ATM connection and added when it leaves, reducing the amount of information
that needs to be transported. Advantages are also accrued from being able to
map IP multicast directly onto ATM multicast. [Rekhter96] proposes a similar
technique called Tag switching.

IP switching requires two protocols: the General Switch Management Pro-
tocol (GSMP) which allows the IP switch controller to create and remove vir-
tual channels on the switch and the Ipsilon Flow Management Protocol (IFMP)
which allows adjacent switch controllers to exchange information about the IP
flow/virtual channel mapping. An IP switch controller, after identifying a long
lived IP flow, requests, using an IFMP message, the downstream controller to
start sending the IP packets of that flow on a given virtual channel, rather than
the default one. If the next upstream controller does likewise then the switch

controller can use GSMP to create a dedicated virtual channel for that flow on
its ATM switch.

IP switching demonstrates the flexibility that is engendered by the clear sep-
aration of the switching plane from the control plane. However, IP switching,
unlike the Hollowman, is not a general purpose ATM signalling protocol; it is
dedicated to the transporting of IP packets and signalling is not end-to-end.

3.10.8 UNITE

UNITE [Hjalmtysson97] (the conjunction of UNI and LITE) is an ATM con-
trol architecture that reduces the overhead in standards-based ATM signalling.
UNITE separates the allocation of one resource, VPI/VCI values, to a connec-
tion from the other resources. A connection is established using a lightweight
signalling mechanism across a predefined signalling channel. Only after the con-
nection is established does the application specify its exact resource needs. This is
performed in-band along the connection using Resource Management (RM) cells.
Services which only require best-effort connections avoid the overhead in process-

45

ing complex signalling messages. UNITE affords low latency for the creation of
best-effort connections.

This increase in efficiency is traded against both greater complexity in call ad-
mission control and the need for simplifying assumptions in resource constrained
routing. VPI/VCIs may be assigned to connections whose resource demands sub-
sequently cannot be satisfied, while connections with fewer requirements might
be refused because of the shortage of VPI/VCI space. The two phase allocation
means that the ‘cranking back’ of a signalling message when routing information
about remote switches turns out to be out-of-date is also more difficult. More-
over, in order to perform resource constrained routing UNITE assumes that there
is a finite number of well-known resource classes. Whether this is generally true
is arguable®; one of the major reasons for the introduction of ATM is its ability
to support a large set of unspecified resource classes, and if this is not needed
then the usefulness of ATM is diminished.

Situations may exist — for instance when there is a small number of resource
classes, a high proportion of calls do not require resource guarantees and call
blocking is rare — in which the assumptions made by UNITE are valid. The
Tempest allows innovative control architectures such as UNITE to be used when
appropriate!’. The existence of UNITE demonstrates some of the concerns that
the research community has with standards-based ATM signalling.

3.11 Summary

This chapter has introduced the Hollowman exemplar Tempest-aware control ar-
chitecture. The Hollowman is a simple, but practical, ATM control architecture,
efficiently supporting both unicast and multicast connection operations. The de-
velopment of the Hollowman has served to demonstrate the feasibility of open
control, and the practicality of the Tempest framework. A range of related work
in the domain of ATM control has been detailed and compared with the Hollow-
man.

By detailing the role of the core services within the Hollowman and explaining
some general techniques related to naming, addressing and trading, this chapter

9 Although such assumptions can become self fulfilling.
10UNITE would require an extended version of Ariel, allowing RM cells to be sent from the
fabric to the control plane.

46

has shown how the clear separation of the control plane from the physical net-
works allows more flexibility, for example in the evolution of routing algorithms.
It has also shown that by abandoning the need for an all encompassing universal
control architecture simplifying assumptions can be made, for example in ad-
dressing, which greatly reduce complexity. When network operators decide it is
appropriate to use these simpler control architectures, gains are achieved both
in the efficiency of control operations and the effort required to implement and
maintain the control architectures.

‘The next chapter considers more fully the issues related to performing open
control operations by explaining the patterns of interaction between the compo-
nents introduced in this chapter.

47

Chapter 4

The Hollowman:
Patterns of Communication

This chapter explores how end-user applications initiate the creation and dele-
tion of connections using the Hollowman and how the core Hollowman services
interact to perform the required control operations. Having fully explained the
structure of the switch-independent control architecture this chapter concludes by
examining some problems general to all ATM control architectures, and explains
how they are influenced by open control.

4.1 Introduction

Chapter 3 described the services offered by the core Hollowman entities. This
chapter details how the host-manager, connection-manager and end-user applica-
tions collaborate to perform control operations. Besides basic control operations,
the Hollowman supports advanced functions such as multicast group management
and third-party connection establishment. After having explained the structure of
the Hollowman, the rest of this chapter uses it as an example switch-independent
control architecture through which issues general to all ATM control architecture
— and their manifestation in those supporting open control — may be better
understood. These issues relate to:

e complex call types;

e handling failure;

48

e synchronising the atomic allocation and liberation of resources.

4.2 Hollowman Initialisation

Before the Hollowman can serve end-users, it must itself be initialised. First the
traders are started, then the connection-manager and finally the host-managers.
These are now explained.

4.2.1 Trader Initialisation

When started, both federated-traders and host-traders reinitialise themselves
from their database of active service offers stored during the last session. The
trader determines which offers are no longer valid and removes them. The trader
decides if a service offer is still valid by attempting to contact the application
which advertised that service offer. The means of contacting an application is
defined at the registration of that application; in the current implementation the
application supplies an interface reference for a ping service that it supports.

The federated-trader checks that the host-traders are still running at periodic
intervals and if not removes them from the federation. The host-traders also
periodically check the status of the applications running on the host; a failed
application’s offers are removed from the trader and its resources are liberated.
This is an extension of ‘garbage collecting’ techniques available in [APM92].

4.2.2 Connection-Manager Initialisation

Like any other application, the first thing the connection-manager does during
initialisation is to register itself with its host-trader. It then reads from a config-
uration file a description of the required virtual network and negotiates with the
Tempest’s network builder to have it created. If this negotiation is successful,
the network builder allocates the necessary network resources to the Hollowman
instance and returns a set of Ariel interface references that can be used to per-
form control operations on the switches. The connection-manager uses these to
initialise the appropriate soft switches.

49

4.2.3 Host-Manager Initialisation

A host-manager is started on each host of the Hollowman domain. Host-managers
register themselves with their host-trader and then acquire the interface reference
for the connection-manager from their trader. After this, the connection-manager
gives each host-manager the set of network resources that have been allocated
to it. In the current implementation, the host’s network resources are a set of
Service Access Points (SAP). Each SAP corresponds to a potential connection.
The SAP may be thought of as a token that the host-manager redeems against a
VPI/VCI when it wants to create a connection. A SAP has one of three states:
Free, Reserved and Active.

It would be possible to give actual VPI/VCI values to the host-managers
rather than tokens. However, letting the connection-manager rather than host-
managers decide which VPI/VCI value to use in a connection greatly simplifies
the creation of multicast connections.

Once the initialisation has finished, end-user applications may use the Hol-
lowman.

4.3 Control Operations

Host-managers maintain information about the state and owners of the SAPs
in the Source_SAP Table and Sink_SAP_Table and about the current offers
made by applications running on the host in the Source_Offer_Table, and
Sink_Offer_Table. Host-managers support two distinct interfaces:

e the a-interface that end-user applications use to initiate control operatibns;

e the (-interface that connection-managers use to signal to host-managers.

The connection-manager orchestrates the activities of other Hollowman en-
tities to perform an entire control operation. Control operations, such as con-
nection creation, are normally initiated by host-managers on behalf of end-user
applications. The connection-manager has two interfaces, namely:

e 7y-interface that the host-manager uses to forward control requests;

50

&)

Connection
Manager,

(1) host-manager o—interface

(2) connection-manager Y- interface

(3) host-manager P—interface

(4) application call back interface

(5) connection-manager S—interface (explained later)

Figure 4.1: The relationship between interfaces

e J-interface used by connection closures. The discussion of the connection-
manager’s d-interface is reserved until Chapter 6.

Figure 4.1 shows the relationship between the control interfaces and the clients
of those interfaces. The rest of this section explains the purpose of the e, 8 and
7 interfaces and shows how they interact to perform complete control operations.

4.3.1 Host-manager o-interface

The host-manager a-interface is the main Hollowman API. Table 4.1 shows the
set of operations that are present in the host-manager a-interface. A Service
Access Point (SAP) is an application’s means of manipulating a connection. An
application that reserves a SAP has that SAP accounted to it within the host-
manager. The SAP remains the property of the application until it is freed. All
control operations in the API are performed in relation to a SAP. During a control
operation, the host-manager:

1. checks that the SAP has the correct state for the operation;
2. checks that the application has the right to perform this operation;

3. forwards the request to the connection-manager;

51

e getSourceSAP

e getSinkSAP

e connectLocalSourceSAPToSinkOffer
e connectLocalSinkSAPToSourcelffer
e connectSourceSAPToSinkSAP

e connectSourcelfferToSinkOffer

e getSourceEndPoint

e getSinkEndPoint

e freeSourceSAP

e freeSinkSAP

Table 4.1:-The host-manager a-interface

4. updates its local state.

A service user typically does the following to create, use and delete a connec-
tion:

1. it gets a SAP from the host-manager, using getSinkSAP or getSourceSAP.

2. it calls connectLocalSinkSAPToSource0Offer to create a connection from
the source service to itself or connectLocalSourceSAPToSink0Offer to cre-
ate a connection from itself to a remote sink service.

3. it communicates with the service using the SAP. The current implementa-
tion is dependent on the Fore API for the actual transmission and reception
of data. The primitives atm_recv and atm_send of the Fore API require
VPI/VCI values as arguments. Although it would be possible to encapsu-
late these primitives in operations which took SAPs rather than VPI/VCI
as values, this would require the modification of legacy applications. In-
stead, the actual VPI/VCI values used in the SAP are recovered by calling
getSourceEndPoint or getSinkEndPoint. This is a layer violation, but in
the proof-of-concept implementation it is not overly inhibiting.

4. finally it frees the connection by calling freeSourceSAP or freeSinkSAP.

52

Legacy applications may have their own means of learning of the existence of
information producers and consumers, other than Hollowman trading. In addi-
tion, when the service provider’s location is well known to the service user, trading
may be inappropriate. The Hollowman allows for these situations by having an
additional host-manager operation: connectSourceSAPToSinkSAP. This opera-
tion permits applications which know the host and SAP that a remote service
provider is using to set up a connection to that service provider without the use
of advanced features such as traded offers or callbacks. A legacy application that
uses the Hollowman transparently is described in Section 5.4.2.

If, when connectSourceSAPToSinkSAP is called, both source SAP and sink
SAP are on hosts other than that of the application, then the operation is a
third-party connection. The equivalent operation for joining a foreign source and
sink offer is connectSourceOfferToSinkOffer. An example is now given of a
typical interaction between a service user and the host-manager.

Example: suppose an application wishes to receive data from an information
producing service called ProducerService for which it has-a service offer. The
invocations between the entities are shown in Figure 4.2. The application calls
the host-manager getSinkSAP operation passing its application identifier (1); if
there is a free sink SAP, then the host-manager sets the state of the SAP to
Reserved, accounts it to the application, and returns the sink SAP identifier to
the application.

The application invokes connectLocalSinkSAPToSourceOffer (2), pass-
ing its application identifier, the SAP identifier and the source offer.
The host-manager checks both that the SAP is Reserved and that it
is accounted to the application. It then calls the connection-manager’s
createConnectionToSAP_FromSource operation (3) — explained in Section 4.3.4
— passing the sink SAP identifier and the source offer. If the connection-manager
establishes the connection, then the state of the SAP is set to Active.

The application recovers the VCI/VPI value associated with the SAP by

calling getSinkEndPoint (4). It can now use the normal Fore API to start
receiving data from the source (5).

At some stage the application calls freeSinkSAP (6). The host-manager
checks that the SAP belongs to it. If the SAP is in the Reserved state, then the
host-manager simply sets its state to Free, if the SAP is in the Active state, then
the host-manager invokes the connection-manager’s freeSinkSAP (7) operation
to remove the end-to-end connection as well. In both cases the SAP is no longer

53

getSinkSAP l

? -

Service User Host-manager Connection-manager ATM Device APl

Figure 4.2: Service user interaction

accounted to the application.

4.3.2 Host-manager [-interface

Host-managers control the assignment of SAPs to the applications running on
their host. Potentially each host-manager could use a different allocation policy.
In the current implementation host-managers, when asked, hand out a SAP if one
is available. Future work will explore more complex resource allocation policies
covering both network and operating system resources, for example ensuring that
an application on a shared server offering a video display service is allocated
enough operating resources, e.g. Direct Memory Access (DMA), CPU, framestore
etc., to render the video correctly.

The host-manager’s (-interface allows a connection-manager to reserve a
SAP — using obtainSourceSAP or obtainSinkSAP — and to inform the host-
manager about changes in the state of the SAP — using notifySourceSAP or
notifySinkSAP. Table 4.2 shows the operations that are present in the host-
manager f-interface.

54

e obtainSourceSAP
e obtainSinkSAP
e notifySourceSAP
e notifySinkSAP

Table 4.2: The host-manager S-interface

On receiving a SAP reservation request for a service offer, the host-manager:

1. verifies the offer’s service provider is registered at that host;
2. finds an available source or sink SAP;
3. accounts the SAP to the service provider;

4. returns the SAP identifier to the connection-manager.

The notification operation can either notify that a SAP is now Active or
notify that it is Free. A notification of the activation of the SAP is accompanied
by the VPI/VCI values that are now associated with the SAP by the connection-
manager. If the SAP has been reserved for a service offer, then the activation
of the SAP provokes the invocation of the callback function associated with that
SAP in the host-manager’s offer table. If the SAP is not associated with a service
offer then no callback is performed. '

In the same way, during the notification of the liberation of the SAP, the host-
manager checks if there is an associated service offer and if so invokes its callback
to inform the service provider of the liberation of the connection. In either case
the host-manager updates its view of the SAP state. An example illustrates the
changes in state that operations in the S-interface induce on a host-manager.

Example: Figure 4.3 shows the evolution in the state of the host-manager’s
tables during this example. Suppose an application with identifier 9807 registers
the producer service X with associated callback interface reference Ci. Later,
the connection-manager requests the reservation of a source SAP for X. The
host-manager returns the source SAP identifier 0, sets the state of the SAP
to Reserved and accounts it to application 9807.

95

Time=T Source SAP Table Source Offer Table

SAP | VCI | Application Offer| App. Id.| Call Back]
0 Free -
X 807
1 220 4567 ? cle
2 Free - Y 7654 2 .
Time=T+1
ObtainSourceSAP For Source Offer = X
—_—
Source SAP Table Source Offer Table
SAP | VCI | Application Offer| App. Id.| Call Back
0 Reserve | 9807 X 9807 | Cle@
1 220 4567
2 Free - Y 7654 cC20
Time=T+2
notifySourceSAP id = 0, state = Active, VCI =221
Source SAP Table Source Offer Table
SAP | VCI | Application Offer| App. Id.| Call Back]
0 221 9807
X 9807 Cle.
1 220 4567 ' -+
2 Free - Y 7654 C20 |

C1.dolt (sending on VCI = 221)

Figure 4.3: State changes in service provider’s host-manager

After the connection-manager has established the connection, it notifies the
host-manager that a connection is in place, passing the VPI/VCI values which
define the connection source end-point. The host-manager invokes C1, passing
these values, and the application may start sending data across the connection.

4.3.3 Connection-manager ~y-interface

Table 4.3 shows the operations that are present in the connection-manager’s
v-interface. The getSourceSAPs and getSinkSAPs operations are used by
the host-manager at start-of-day to obtain its allocation of SAPs. The
createConnectionToSAP_FromSource, createConnectionToSAP_FromSink and

56

e getSourceSAPs

e getSinkSAPs

e createConnectionToSAP_FromSource

e createConnectionToSAP_FromSink

e createConnectionBetweenSAP_FromThird
e createConnectionToO0ffer_FromSource

e createConnectionToO0ffer_FromSink

e createConnectionBetweenOffer_ FromThird
e freeSourceSAP

e freeSinkSAP

e createConnectionClosure

Table 4.3: The connection-manager -y-interface

createConnectionBetweenSAP_FromThird operations which host-managers to
signal to SAPs. For each of these creation operations there is an equivalent
with a service offer rather than a SAP defining the signalling end-point. The
freeSinkSAP and freeSourceSAP operations allow the deletion of connections.

The explanation of the createConnectionClosure operation is reserved until
Chapter 6.

The action of the connection-manager during the creation and deletion of
ATM connections is now considered.

4.3.4 Connection Creation

A host-manager initiates the creation of an ATM connection by calling
createConnectionToOffer FromSource, if it is the source’s host-manager, or
createConnectionToOffer FromSink, if it is the sink’s. In either case it sup-
plies a local SAP identifier and a remote service offer.

The connection-manager uses the service offer’s address to acquire the inter-
face reference of the service provider’s host-manager. First, it examines a cache
of host-manager invocation references, using the address as an index. If the in-
terface reference is not in this cache, it calls its host-trader to get the service offer
of the appropriate host-manager, establishes an invocation reference and adds it

57

to the cache. In this way, the connection-manager learns dynamically about the
existence of host-managers. A penalty is paid for the first signalling request to
a given host-manager, but all subsequent requests are efficiently performed by
use of the cache. Failure to communicate with a host-manager using a cached
invocation reference leads to the removal of that reference from the cache and
an attempt to find a valid service offer for that host-manager through trading.
Other control entities behave similarly when using the DPE; this allows a given
control entity, e.g. a host-manager, to be stopped and restarted without causing
the whole control architecture to fail.

The connection-manager then reserves a source or sink SAP for the offer on the
service provider’s host-manager, using the obtainSourceSAP or obtainSinkSAP
operation of the host-manager’s S-interface. If the host-manager refuses this
reservation request, e.g. because it has no more available SAPs, the operation
fails. Otherwise, the host-manager returns a SAP identifier. The connection-
manager then attempts to find a route from source to sink. The route is composed
of a sequence of soft switches.

At this stage the connection-manager has received a SAP identifier from
both the source and sink parties and determined a route between them. The
connection-manager knows the totality of VPI/VCI values that have been as-
signed to the control architecture. The connection-manager associates the source
SAP and sink SAP identifiers with a free VPI/VCI value on the switch ports at-
tached to the source and sink hosts. It then reserves suitable VPI/VCI values on
all the other ports in the determined route and requests each soft switch to estab-
lish a connection between the VPI/VCI value on an input port and the VPI/VCI
value on the output port using the connection service described in Section 3.2.2.

The connection-manager notifies the service provider’s host-manager of the
connection establishment using either notifySourceSAP or notifySinkSAP. The
reaction of the host-manager to this notification was explained in Section 3.3.
If the host-manager accepts the connection creation, then a new network con-
nection is added to the book-keeping records of the connection-manager and the
creation request operation returns to the initiating host-manager. When the
calling host-manager signals to a SAP rather than a service offer, then the reser-
vation invocation between the connection-manager and the host-manager is not
necessary.

In the simple signalling described here, when a consumer signals to an in-
formation producer, the producer cannot be sure when the consumer is ready

58

to receive information. For example, if the source starts sending immediately
after notification, the sink may still be waiting for the completion of the creation
operation and cells will be lost!. Better control can be achieved by using the
Hollowman to also establish a control channel from the consumer to a producer
manager service which manages the actual data producer, the consumer can then
start and stop the flow of information on the data channel by sending appropriate
messages on the control channel.

4.3.5 Connection Removal

The connection-manager maintains and updates the set of active connections. A
host-manager calls freeSinkSAP or freeSourceSAP to free a connection. Each
time this is done, the connection-manager:

1. verifies that the SAP corresponds to a connection;

2. frees the resources of the connection within the connection-manager;

3. notifies the appropriate host-manager(s), i.e. if the removal was prompted
by the source, it notifies the sink and vice-versa;

4. removes the connection from its records.

Since two host-managers in a given connection — one whose host is a source
and the other a sink — may simultaneously attempt to remove that connection
it is not an error to try to delete a non-existent connection.

4.3.6 Third-Party Control Operations

A connection may be established by a party other than the source and sink
applications of that connection; this is called third-party signalling?. The third-

party application may be on the same host as the source sink or on a completely
different host.

!Note that as UNI/NNI CONNECT ACK messages are not transported end-to-end the same is
true of standards-based signalling.

%A related but distinct idea is proxy signalling where an end-system such as an ATM camera
delegates the responsibility for its signalling to another entity. Proxy signalling is achieved in
the Hollowman by running an end-system’s host-manager on a separate end-system.

59

Third-party Host-manager C Connectio ger Host ger A Host-manager B
application :

Figure 4.4: Third-party interaction

A third-party application calls the connectSourceOfferToSinkOffer oper-
ation of its host-manager, passing both a source and sink offer, and its own
application identifier. The host-manager checks if either the source or sink offer
is on the host-manager’s host. If so, then the operation resembles the normal
creation operations; otherwise, the host-manager calls the connection-manager’s
createConnectionBetweenOffer FromThird operation. The effect of this is sim-
ilar to the operations defined in Section 4.3.4 except that SAPs must be reserved
and connection establishment notified on both source and sink host-managers. If
the connection is created then the third-party application is returned the identi-
fier of both the source and sink SAPs. An example demonstrates the interaction
of the diverse entities during third-party connection establishment; Figure 4.4
shows these interactions diagrammatically.

Example: application Third-party running on host C wishes to estab-
lish a connection between SourceService offered by the Source-party ap-
plication on host A and the SinkService offered by the Sink-party on host
B. Third-party calls connectSourceOfferToSinkOffer on its host-manager
(1), supplying the service offers. The host-manager checks that neither
of the offers come from an application resident on C. It then calls the

60

createConnectionBetweenOffer FromThird on the connection-manager (2).

The connection-manager calls obtainSourceSAP (3) on the host-manager of
A and obtainSinkSAP (4) on the host-manager of B. It determines a route, estab-
lishes the connection using the soft switches, then calls notifySinkSAP (5) and
notifySourceSAP (6), each of these performs the appropriate callbacks. The
source and sink SAP identifiers are then returned to Third-party.

4.3.7 Multicast Connections

All connections within the Hollowman are multicast connections, i.e. a source
can be associated with many sinks; point-to-point connections are just a special
case. The Hollowman follows the point-to-multipoint model of the ATMF’s mul-
ticast [ATMF95a], in contrast to the multipoint-to-multipoint [Deering89] IP
model3.

From the application’s viewpoint, joining and leaving a multicast group in the
Hollowman is identical to creating and deleting a point-to-point connection. This
contrasts with both IP multicast, where a distinction is made between packets
sent to a multicast group and packets sent point-to-point, and standard ATM
multicast, where special primitives are defined for joining and leaving a multicast
connection.

Service providers, when registering source service offers, specify whether they
are multicast offers or not. If an offer is not a multicast offer, then each time
a reservation request is made by the connection-manager to the host-manager a
distinct source SAP is returned. If, on the other hand, the offer is a multicast
offer and there is an Active SAP associated with the offer in the host-manager
tables, then that SAP is returned to the connection-manager.

"The connection-manager, during connection creation, checks if the source SAP
it has acquired from the host-manager is already associated with a network con-
nection. If it is, then the creation operation adds a new branch to the existing
multicast connection. When adding a new sink to a multicast connection, the
connection-manager selects the location at which to add the new branch to the
tree of switch connections. The normal routing algorithm is used to find an en-

8The ATMF is defining multipoint-to-point signalling [Heinanen97] to take advantage
of virtual channel merging. Generalising the Hollowman model to allow multipoint-to-point
connections is the subject of future work.

61

producer

Route: producer -> consumer-3
/S |

consumer-2 /
A

consumer-1 consumer-3 B producer

consumer-2

/c

consumer-1 consumer-3

Figure 4.5: Example of multicast connection

tire path between the source and sink. The connection-manager, starting at the
ingress soft switch, traverses this path matching elements against switch connec-
tions in the multicast tree. It does this until it can no longer find a match. It
then creates the connection from the point of divergence to the sink. This sim-
ple algorithm allows the efficient creation of suboptimal multicast connections;
better results could be attained by the complete reconfiguration of the multicast
tree at each join, but this would greatly increase the complexity of the operation.
It is arguable whether more sophisticated multicast algorithms are worth the
extra complexity; [Doar93] demonstrates that such naive multicast algorithms
are only worse than optimal ones by a small factor. When there are multiple
connection-managers in a Hollowman domain each one determines if a connec-
tion is multicast and where to add the appropriate branch in isolation. This
again simplifies the handling of multicast at the cost of suboptimal multicast
connection topologies

After adding a new branch to a multicast tree the connection-manager notifies
the source host-manager of the addition of a new sink using the notifySourceSAP

62

operation. The source host-manager notifies the source application using an
operation of the callback interface. Figure 4.5 shows an example where a source,
producer, is sending data to two sinks, consumer-1 and consumer-2, when a
third sink, consumer-3, requests a connection to producer’s service offer.

A host-manager that removes a sink from the multicast connection removes
the branch of the connection that was dedicated to that sink; if the tree only has
one branch then the entire connection is removed and the source notified. When
the source of a multicast connection is freed, the entire connection is removed
and all the sinks are notified.

In the Hollowman, as in UNI 4.0, multicast trees are formed by adding
branches one at a time. The next section discusses how more complex opera-
tions, for example the simultaneous creation of a complete multicast tree, are
handled within the Hollowman.

4.4 Call Types

Groups of related connections are often termed a call. A call type defines the
connections and relationship between connections that constitute the call. The
Hollowman does not directly support call types; the Hollowman implements a
small set of functions which allow it to demonstrate the advantages of open con-
trol. The point-to-point, point-to-multipoint and third-party connection creation
operations described in this chapter are adequate for this demonstration.

"The Hollowman is flexible enough that it could easily be enhanced to support
more complex connection types. As an example, within the ATM standards end-
points may register themselves as supporting a groupcast [ATMF95a) address;
when an application signals to a groupcast address a connection is created to all
the members of the group. By adding a flag to the Hollowman host-manager o-
operation connectLocalSourceSAPToSinkOffer indicating that the connection-
manager is to create a connection to all hosts that support a sink offer of the
same type, the simultaneous creation of an entire multicast connection would
be possible. In this solution, the connection-manager could gather the offers by
asking all traders within some federation and would then use a multicast routing
algorithm to determine the topology of the resulting connection tree.

More generally, defining a call type description language would allow an end-
user application to specify arbitrarily complex calls. [Minzer91] describes such

63

a call description language. Although some reflections was given to extending
the Hollowman in this way, experience with implementing applications to demon-
strate the power of open control suggested that simply giving end-users the ability
to define complex meshes of connection was not in itself enough. The end-users
should also be able to exercise a control policy over their calls. This led to the
design of connection closures, described in Chapter 6, which allow users to intro-
duce dynamically their own call types along with the control policy to manage
those calls. Some end-user applications may require calls without needing the

~ ability to define control policies for them. The implementation of the more gen-

eral connection-closure concept shows that adding such calls to the Hollowman
would pose no major problem.

4.5 Cleaning up Application Resources

End-user applications may fail while still holding network connections. The ap-
plications never free those connections and the Hollowman itself must do so.

As Section 4.2.1 explained, after an application registers with its trader, the
trader periodically checks that the application is still there and if not removes
its current offers. In line with the principle of simplicity, this same mechanism
is used to clean up any network resources allocated to a failed application. If
the application fails, the trader removes all service offers for the application and
prompts the host-manager to remove all connections for which the application is
either source or sink.

4.6 Atomic Control Operations

A connection is a set of distributed resources. Connection creation is the act
of allocating the required resources on a set of network devices. There may
be several possible acceptable outcomes to a creation request. For example,
in a groupcast connection creation request it might be desirable that as many
members of the group are connected as possible. However, if not all the resources
can be assigned in such a way as to satisfy one of these acceptable configurations,
then none should be assigned. '

A location may refuse connection creation when resources are already assigned

64

to that connection at other locations. For example, within the Hollowman, when
creating a connection across a single switch between a source and sink applica-
tion, SAPs may have been successfullj; allocated on the source and sink host and
VPI/VCI values on the switch ports, only to have one of the hosts refuse the
notification of the connection creation. The host-manager may have changed its
priorities since the SAP was allocated or the application may refuse the connec-
tion for application-specific reasons.

When this happens all the resources associated with the connection must be
liberated and the state of the control architecture returned to that which preceded
the demand for the connection creation. This would be simple to achieve if only
one connection creation or deletion request were active at a time, i.e. if the whole
control architecture were locked during a control operation. However, this would
mean that applications setting up connections concurrently would slow each other
down significantly. '

Reducing the time during which parts of the control architecture are locked
increases control throughput, but increases the complexity of handling concur-
rent access. One solution is the use of distributed transactions [ISO/IEC95b]
such that at the initiation of the create request at each host-manager, a transac-
tion is started for that request. All state changing operations across the control
architecture are made within the context of that transaction and it is only when
all state changes have been successfully made that the transaction is committed.
In the OMG standard for distributed transactions [OMG95a] an Object Trans-
action Server (OTS) coordinates the distributed entities in the modification of
state. The distributed entities register the completion of their operation with the
OTS. When the OTS has received a successful reply from all the participating
parties it tells them to commit. If there are N entities in the transaction then 2
X N ertra network invocations are required; this is a significant overhead.

[Kramer92, Ranson95] both recognise the efficiency problem in applying
classical transaction systems to network control. Both suggest weakening the
transactional model in order to make it more suitable for fast connection cre-
ation, e.g. optimistically use a single phase commit, rather than two phase, with
corrective action if necessary. The consistency of persistent state is not as im-
portant within a control architecture as in a classic database model. Of more

importance is rolling back from failure and ensuring consistency during concur-
rent operations.

In the Hollowman, each control entity, e.g. connection-manager, is responsi-

65

ble for returning itself to a consistent state after a control operation has failed
and of informing all other concerned entities. An ad hoc transaction system is
achieved by dividing all control operations into a set of sub-operations. Any
sub-operation may fail during a request, resulting in the raising of an exception.
The encapsulating operation catches the exception and undoes the effect that the
operation has had up until that point. Consistency is ensured by associating a set
of locks and a pre-condition with the sub-operation. The thread assigned to the
control operation obtains access to the locks then checks the pre-condition. If the
pre-condition is not true then the operation fails. For example requests may be
active to both delete a multicast tree and add a branch to it; the sub-operation
that joins the new branch to the multicast connection must check whether the
connection still exists. At the end of the sub-operation, the thread releases all the
locks it holds. Deadlock is avoided by ensuring that the order in which threads
acquire locks within a given entity is fixed and that a thread cannot hold a lock
while performing an RPC.

Determining the necessary set of pre-conditions for each sub-operation and
the required actions needed to undo an operation is complex. The current imple-
mentation reduces the complexity by being conservative; better control through-
put would be expected with a less conservative approach. Although the ad hoc
methods adopted for ensuring atomic synchronisation within the Hollowman are
sufficient for its purpose, they are not generally applicable. The following section
discusses the problem in more detail.

4.6.1 Discussion of Atomic Control

The various user parts of SS7 — TUP, ISUP, B-ISUP — and UNI/NNI signalling
all use essentially the same model for coordinating distributed entities in the
creation of connections. Each controller reserves some resources, forwards the
connection request upstream, and waits for an acknowledgement confirming the

connection’s creation or a release message requiring that the operation be rolled
back. In regard to the PSTN, [Kuhn97] states that:

Paradozically, this seemingly trivial task requires some of the most
complex and sophisticated computing systems in ezistence. Software
for a switch with even a relatively small set of features may comprise
several million lines of code.

66

The author of [Kuhn97] goes on to point out that despite superfluous hard-
ware, extensive self-checking, recovery software, and extremely predictable call
patterns, availability of the network is not total; approximately two thousand
minutes of outage were experienced by some customers between April 1992 and
March 1994 in the United States’ PSTN and that almost half of that was caused
by overloading.

[Kant97] suggests that the nature of multi-service network calls differs from
that of calls in the PSTN in that:

e the call processing time at each node is likely to be longer, as the call types
are more complex; ’

e call-blocking is likely to occur more often as traffic patterns are less pre-
dictable and end-points are more intelligent;

e the call topologies are more complex and more varied.

All of these factors mean that coordinating the management of distributed
resources across the nodes of a multi-service network is more of an issue than
in the current PSTN. This observation is born out by practical experience with
implementing ATM control systems. For example, [McMahon81] mentions in
the description of the implementation of the software for the Datakit Virtual
Circuit Switching (VCS) switch, that: the hard part of the [implementation of
the switch] controller is to manage many connections in various states at once;
[Newman97b] states that the majority of code in an ATM signalling system is
dedicated to recovery from failure. Experience with building a signalling system,
even one as simple as the Hollowman, suggests that synchronising distributed
resources is the key problem.

To an extent, the problem can be mitigated by reducing the amount of dis-
tribution. [Veeraraghavan95] affirms that the complexity of protocol engines
supporting B-ISUP is as a result of their need to handle refusal from end-points
and proposes the centralisation of the response from multiple end-points into one
entity — the connection server — to simplify the atomic creation and deletion of
connections. Experience with the Hollowman suggests that while this does reduce
the complexity of the signalling protocol, the centralisation requires an efficient
transaction system to prevent this central server becoming a bottleneck. More-
over, centralising the coordination of resource allocation reduces the complexity
of the system, but introduces single points of failure and makes the network less

67

robust. Network operators should be able to decide on the degree to which they
are prepared to trade simplicity against robustness.

It might be tempting to identify the complexity of ATM control in this regard
as a reflection of a fundamental weakness of the technology as a whole. Packet
forwarding mechanisms such as IP which make packet forwarding decision at each
node for each packet are inherently more adaptive than those such as ATM which
require the creation of a connection before data can be sent. For example, after
reception of an ICMP packet indicating router outage, all upstream routers send
all further packets across an alternative route if one is available. This is implicit in
IP, while in ATM it requires some separate error recover mechanism. Standard IP
[DARPASI] cannot give resource guarantees to applications, excluding it from
being a general solution to the transport of continuous media. Solutions to rectify
this failing [Zhang93] have involved the addition of the concept of connections,
called IP flows, and a signalling protocol ReSerVation Protocol (RSVP) to the IP
model. RSVP was designed for small video-conferencing applications and there
is some debate as to whether it is or should be the general IP signalling protocol
[Henning97]. However, the ‘ATMisation’ of IP seems set to present the IP
community with the same problems, in regard to the synchronisation of complex
flow state in a highly distributed environment, as those discussed in this section.

In summary, the problem of implementing efficient atomic control actions in
a large multi-service is still an open issue and worthy of further investigation. It
seems likely that there will not be one ‘right solution’ but any number of differ-
ent solutions appropriate in given contexts. This demonstrates again the need
to customise control architectures and adds further motivation for the Tempest
framework.

4.7 Summary

This chapter has explained in some detail how the Hollowman’s control operations
are performed. The Hollowman has no pretension to replace ATMF signalling;
it was designed and implemented to demonstrate that open control is a practical
technique. The Hollowman, while simple, is realistic enough for this purpose. The
next chapter will describe some of the applications that the Hollowman supports,
further motivating its realistic nature.

The description of the Hollowman’s implementation has allowed some prob-

68

lems related to ATM control, such as atomic synchronisation and handling com-
plex call types, to be better understood. These are general problems to all ATM
control architecture, but their manifestation is affected by the use of open control.
As is shown in the next chapter, the flexibility of the Hollowman makes it an ideal
environment in which to carry out experiments in ATM control. Open control,
by allowing parties other than switch vendors to implement control architectures,
will increase the creativity that can be brought to bear upon these problem and
expedite the finding of solutions.

In the long term, the Hollowman will become a component library with which
network operators can implement simple proprietary (or small subsets of stan-
dard) control architectures. These control architectures can coexist with standard
ones within the Tempest framework. This allows non-monolithic solutions to the
problem of implementing control architectures.

69

Chapter 5

Experiments in ATM Control

This chapter demonstrates the flexibility of the Hollowman control architecture
by detailing some of the control experiments that have been carried out using
it. In addition, the performance of the Hollowman is compared against that of a
range of other control architectures. "

5.1 Caching Connections

A control architecture may decide not to remove a given connection between two
hosts if there are frequent requests for connections of that type between those
hosts; the connection is then said to be cached. A cached connection can be
reused the next time a request is received for a connection of the same type,
reducing the latency of the set up time.

The Hollowman was used to build an experimental implementation of connec-
tion caching. Although the Hollowman makes a distinction between connections
that are in use and connections that are cached, as far as the physical switch is
concerned they are indistinguishable.

Figure 5.1 shows an example in which the host-manager on a host A requests
a connection from host B to A. Previously a connection from B to A had been
created and cached. From the viewpoint of the two host-managers the sequence of
operations is normal. However, the connection-manager identifies the connection
as cached and simply looks up the values to associate with the SAPs from the
cache table.

70

Host-Manager A Connection-Manager Host-Manager B

B->A)

index | O [O]
[O 1 o 1
o o [e | N
,»"'Cache Table .
‘,l ‘\\‘ _I
Sw1tch ----------------------- Switch

(1) createConnectionToOffer FromSink
(2) reserveSourceSAP
(3) notifySourceSar

Figure 5.1: Cached connection

Connection caching allows extremely short signalling latencies as there is lit-
tle or no need for any communication between the control architecture and the
physical switch. Section 5.5 details the performance of the signalling using the
Hollowman and describes the relative importance of the various factors which
contribute to signalling latency.

Whether a connection should be cached or not depends upon the nature of
the applications that are using the Hollowman. This makes the use of connec-
tion caching problematic within a generic control architecture, but promising for
service-specific control architectures such as those described in Section 5.4.3. Pre-
allocation of connections is also possible if the control architecture can make a
reasonable guess about the patterns of communication of the applications using
it. [Lazar97] has recently proposed a similar technique.

9.2 Persistent Connections

At termination, a Tempest control architecture loses its virtual network and
information about all connections is lost. The network builder releases all the
connections still in place when a virtual network is liberated.

A persistent connection is one that persists between executions of a control

71

architecture. The Hollowman was used to experiment with persistent connec-
tions. In the implementation, the API was enhanced so that applications, during
a creation request, could mark a connection as persistent. At the next execution
of the Hollowman, all persistent connection are recreated. This is useful because
it allows:

e applications to assume the existence of certain connections after the
connection-manager has started executing; this is analogous to the use of
PVCs in the standard ATM control architecture;

e the network operator to create complex connection topologies without doing
this connection-by-connection;

e the Hollowman to be restarted, after failure, in the same state as it was
when it failed. In the experimental environment this is helpful in error
detection.

In the experimental implementation, information pertaining to a persistent
connection is stored in a file in symbolic form. Each branch of a multicast con-
nection is represented by a record containing, for both source and sink, the SAP
identifiers and the host addresses. A complete multicast connection is described
by a set of such records. The records are added to the permanent store in the or-
der that the branches are created. The deletion of a persistent connection marks
it as deleted in the file and at the next execution of the Hollowman it is removed
from the file and not recreated.

During initialisation the host-manager acquires its network resources from
the connection-manager. Some of the SAPs that the host-manager receives may
already have been associated with an ATM end-point, i.e. they are end-points in
permanent connections. The host-manager updates its local state accordingly.

5.3 Asynchronous Communication with Switch

In the Hollowman, during connection creation the connection-manager locks a
part of its state, communicates with the switch, updates its local state and then
releases the lock. For example, when adding a branch to a multicast connection,
the connection-manager locks its representation of the network connection, asks
the switch to create a switch connection, then if this is successful it adds the new

72

branch to the network connection, before releasing the lock. The connection-
manager blocks until the switch has rephed or a time limit has been exceeded.
When the connection-manager is physmally removed from the switch this commu-
nication takes place over the network, implying some latency. If many connection
requests arrive concurrently, all requiring access to the same piece of locked state,
then the latency in communication with the switch will affect control throughput.

Since the control architecture has a complete view of the state of resources
in the switch, once the control architecture has decided that, for instance, a
create operation is valid, then the only reason why the switch would refuse the
connection would be in the case of switch failure. This is likely to be rare. In
general, there is no need to wait until the switch has confirmed what the control
architecture has asked it to do. Moreover, if the control architecture does not
wait for each switch to confirm the success of an operation, then the different
switches involved in the connection can create it concurrently, further optimising
the connection creation time.

In order to test asynchronous communication with the switch, an experimen-
tal implementation was carried out using the Hollowman. In this experiment,
asynchronous communication was achieved by dispatching a separate thread in
the connection-manager to perform the invocation. All the invocation threads
shared an array of variables with three states: Waiting, Confirmed and Failed.
Each thread modified one and only one of the elements in the array. All the
variables of the array were initially set to Waiting. When a thread received a
successful reply from its switch, it set its variable to Confirmed. If, on the other
hand, the operation failed, or a waiting threshold was exceeded, then the thread
set its variable to Failed. The associated connection could only be used when
all the variables in the array were in the Confirmed state. If any of the threads
set their variable to Failed the operation was rolled back.

The experimental implementation showed that parallelising the creation of a
multiple switch connection permits the time spent by the control architecture in
switch communication to be -approximately the same as for a connection which
involves only a single switch. However, the price of asynchronous communication

is a significant increase in complexity and its utility must be judged with that in
mind.

[Veeraraghavan97| presents an incremental improvement to the P-NNI pro-
tocol which allows the Parallel Creation of Connections (PCC) within a small
P-NNI group; its purpose is similar to the that of the work explained here.

73

fF=======-=-1

HT | HM | LFORE‘ : FORE| | HM] l HT

ImportOoffer

tLocd

HT: Host Trader
HM: Host Manager

Figure 5.2: Transmitting a Tube mobile agent using the Hollowman

5.4 Applications

The Hollowman supports the communication needs of a number of applications
at the University of Cambridge Computer Laboratory and those applications
have, in turn, served to test the Hollowman. This support takes two forms; some
applications link to the Hollowman libraries and simply use the Hollowman API,
while others use the Hollowman as a source library of components for creating
other Tempest control architectures. The first two applications described here
are in the former group, while the third is in the latter.

5.4.1 The Tube

The Tube [Halls97] is a mobile agent system written by David Halls at the
Computer Laboratory. It is able to send and receive marshalled expressions writ-
ten in Scheme [Clinger91] to and from a network. Agents can create arbitrary
functions and send them elsewhere along with their enclosing environments.

Tube mobile agents use the Hollowman to move between hosts. Figure 5.2
shows how a mobile agent moves from a Tube site on host A to another Tube
site on host B. Each Tube execution site registers as both an agent receptor and

74

an agent emitter service with a Hollowman host-trader. An agent moves by
importing the offers of the site where it is and the site where it wants to move,
requesting the creation of a connection between them and then sending itself over
that connection. The receptor service reads the agent, dispatches it into the Tube
site and deletes the connection.

Using this mechanism, dozens of mobile agents have been allowed to con-
currently roam about a network for several hours at a time. Each agent makes
random choices as to when and where to move!. The Hollowman’s ability to sup-
port the unpredictable and concurrent activity of these mobile agents motivates
belief in its stability. The Tube was used to investigate adaptive management
within the Tempest and will be discussed again in Chapter 8.

5.4.2 Secure Video-Conferencing

Jacobus van der Merwe at the University of Cambridge Computer Laboratory
wrote a secure video-conferencing application which allowed users to participate
in a video-conferencing session whose integrity was ensured using a security pro-
tocol. The original version of this application used SPANS [Fore95b] — Fore’s
proprietary signalling protocol — and a set of libraries that are supplied with
the Fore ATM cameras. Replacing this application’s signalling mechanism with
the Hollowman increased confidence that the Hollowman could serve as a general
purpose signalling mechanism. It also indicated that advanced control architec-
tures such as the Hollowman, might have a role to play in securing signalling.
This is the subject of future work.

The video-conferencing application used a BSD-style socket API, with the
typical open, bind, listen, connect and close operations. The Hollowman API
was masked with a set of operations that resemble the classic socket operatioris.
The primitives of this socket-like API are:

e cam_open_sink, which adds a new consumer offer to the host-manager,
reserves a sink SAP for that offer and returns its identifier. The SAP
identifier takes the place of the file descriptor in normal socket operations;

e cam_open_source, which reserves a source SAP and returns its identifier;

1This test was turned into a simple demonstration by giving each program a graphical
display which it carries around from host to host.

75

e cam_connect, which clients use to connect their source SAP to a sink SAP
at a stated Hollowman address. This maps directly to the host-manager
connectSourceSAPToSinkSAP operation;

e cam listen, which a server uses to block while waiting for a connection
invocation. This is achieved by waiting on a mutex that is released when
the associated offer is ‘called back’;

e cam_close_sink, which calls freeSinkSAP and removes the offer from the
host-manager;

~ e cam_close_source, which calls freeSourceSAP.

This socket-like API allows legacy applications to use the Hollowman control
architecture with only a small number of modifications.

5.4.3 The Sandman

Since many control architectures may run simultaneously within the Tempest,
a small, specialised control architecture can be dedicated to a single service
[van der Merwe97]. Although each of these control architectures is designed
for a single specific service, e.g. video-conferencing, they share many common
control functions. It should not be necessary within the Tempest environment
to rebuild fundamental components, such as routing services, from scratch each
time a new control architecture is developed. The components developed for the
Hollowman serve as a library for other control architectures.

The Sandman [Bos98] is a service-specific control architecture being devel-
oped by Herbert Bos at the University of Cambridge Computer Laboratory. The
Sandman controls the network resources of a set of video servers containing parts
of commercial films. It is hoped that by being able to create a schedule of connec-
tions, the network resource usage can be optimised. The Sandman extends the
Hollowman components, for example, by allowing network connections to have a
temporal aspect.

76

5.5 Hollowman Performance Figures)

The total time T taken to create or delete a connection with the Hollowman is
governed by three factors:

e 5, the total time for communication with the switches;
e D, the total time for communication between Hollowman entities;

e C, the time taken by the Hollowman for the control processing.

S is principally determined by the way in which Ariel is implemented and in
particular the underlying protocol used. D is dependent upon the implementation
of the DPE. Both S and D depend upon third-party software, and a testbed was
written so that C could be measured independently from them. In the testbed,
host-managers and connection-managers are linked into the same address space,
so that communication between these services can be achieved without a DPE.
Furthermore, in the testbed the Ariel implementation is replaced with a switch
emulator.

Each of the graphs in this section was obtained by taking the mean of ten
runs; each run is the mean of a thousand creation or deletion operations. The
performance tests were carried out using a 167 MHz Sparc Ultra 1 under Solaris
2.5.1. Sun CC was used for the compilation with the ~fast option set; threading
was achieved with the Solaris thread packages.

5.5.1 Measuring the Control Processing Time — C

Figure 5.3 shows how the values for C in some representative scenarios vary as a
function of the number of concurrent requests.

(1A) shows how the the latency of a source initiated creation operation across
a single switch varies as a function of the number of simultaneous requests. (1B)
plots the latency of a source initiated deletion operation under the same condi-
tions. In (1A) and (1B) all the connection requests originate from the same
source host-manager and are destined for the same sink host-manager, i.e. there

is the maximum amount of contention possible between the competing control
operations.

77

(1B) Deletion operation (max. contention) -—--
(2B) Deletion operation — -
6 - (1A) Creation operation (max. contention) —-—- =" i
(2A) Creation operation ------ Lo

C in Milliseconds

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

Figure 5.3: C as a function of the number of concurrent requests (source initiated)

(2A) and (2B) show how the values vary when there are two different sources
and destinations and the requests are divided equally between them.

(2A) and (2B) are each respectively faster than (1A) and (1B) because there
is less interference between the requests. (1A) and (2A) both have gradients less
than the time for a single control operation until the number of requests exceeds
a certain threshold; the gradient then rises to the equivalent of purely sequential
access. The point at which this occurs is an indication of the granularity of the
locking. Deletion is slower than creation because it is more expensive in the
current implementation to remove an item from a hash-table than to add one.

Figure 5.4 shows how the value for C varies as a function of the number of
requests in three different, sink initiated, control operations:

e (3) connection creation across three switches;
e (4) connection creation across a single switch;

e (5) joining a (single switch) branch to a multicast connection.

78

4.5 i T 1 i T 1] T
(3) Creation of a connection across three switches - P
4 | (4) Creation of a connection across a single switch —— -~ J
(5) Creation of a branch in a multicast connection

C in Milliseconds

0 1 1 1 1 1 1 R 1

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

Figure 5.4: C as a function of the number of concurrent requests (sink initiated)

(3) shows that a switch connection across three switches is only slightly longer
than that for one switch (4); the work that the host-manager does is independent
of the number of switches the operation involves; the connection-manager must
do more work, e.g. invoking the CAC interface on three switches rather than one,
but this is not very costly.

In (5) host-managers connected to a given switch are joining to a multicast
connection which crosses three switches. An anchor host-manager sets up the
original connection and never releases it, ensuring that all subsequent connect
operations to the offer are joins. All the joins take place across the switch that
the host-managers are connected to — the connection across the first two switches
is never touched during the test — and the results for (5) are very similar to those
for (4).

5.5.2 Effect of D and S on Overall Latency

The previous section measured C in isolation from D and S. For a single control
operation, not competing with other requests, it is enough to know the time for

79

70 i L T T 1 1 1 T

(6) Creation operation =~ ——

60 (7) Deletion operation ~ ------ |

C + D in Milliseconds

0 1 1 1 1 — 1 1 1

1 2 3 4 5 6 7 8 9 10
Number of Concurrent Requests

Figure 5.5: C + D as a function of the number of concurrent requests (sink
initiated)

an intra-machine RPC (T1_RPC) and an inter-machine RPC (T2.RPC). D is then
approximately equal to: n x T1_RPC 4+ m x T2_RPC, where n and m are respectively
the number of intra-machine RPCs and inter-machine RPCs required for the
control operation.

D has greater influence on the latency than C. In the DPE [Li95] used an
inter-machine RPC takes approximately 1.5 ms; intra-machine RPC has not been
optimised for the DPE and is only slightly quicker. Deleting a connection is faster
than creating one, because it requires one less RPC. In the Hollowman, n = 2
and m = 3 for an application to signal to a service offer whilen = 2 and m = 2
for an application to tear down a created connection.

When there are many concurrent requests the result depends on the implemen-
tation of the RPC mechanism and to what extent other operations can proceed
while a given operation is performing an RPC. Experiments were performed on
the normal Hollowman, but with the switches replaced by switch emulators local
to the connection-manager. In this way, the combined latency of C + D was
measured in isolation from S. Figure 5.5 shows how the values of C + D vary as
a function of the number of concurrent control requests during creation (6) and

80

deletion (7) operations.

In the testbed, the Tempest only controls part of the VPI/VCI space of the
Computer Laboratory’s ATM network; the rest of the network is controlled by
non Tempest-aware control architectures. The Tempest prevents the Computer
Laboratory’s normal control architectures from obtaining VPI/VCI values in its
range by setting up place holding connections over all its VPI/VCI space. Setting
up a connection requires the costly reconfiguration of the place holding connec-
tions. Place holders are only an artifact arising from the need not to interfere
with the normal functioning of the network; they would not be required if all
.control architectures were Tempest-aware. In consequence, communication with
the switch was not included in the performance figures; a lightweight Ariel imple-
mentation based on message passing has been measured at 2 ms for creation and
less than 2 ms for deletion operations [van der Merwe97]. Adding this value
to the performance figures gives the entire application-to-application connection
set up time (C'+ D + §) for an independent operation over a single switch as
approximately 11 ms and deletion as 9 ms.

Better values have been published for inter-machine and intra-machine RPC,
for example [ORL97] gives 0.54 ms for intra-machine RPC/IIOP and 0.71 ms
for inter-machine RPC/IIOP /Ethernét for the same platform used in this experi-
ment. A variety of commercial CORBA implementations have similar — though
slightly longer — latencies [Schmidt97]. If these faster RPCs could be repeated
within the context of the Hollowman, the total end-to-end connection set up time
in the Hollowman would be approximately 5 ms.

5.5.3 Comparison with other Results

According to its release notes [Bellcore97)] the Q.Port portable implementation
of UNI 4.0 requires 6.5 ms of processor work to establish a connection across a
single switch. The performance measurements were performed on a Sparc Station
5 running Solaris 2.3; the code was written in C++ and was compiled with the Sun
CC compiler with -02 option set. The figures do not include the communication
time with an actual switch, S, nor the communication time between the host
controllers and the switch controller, D.

[Niehaus97] describes a benchmarking framework for conducting tests on the
. latency of UNI signalling, for point-to-point and point-to-multi-point connections,
in both ATM LANs and WANs. It motivates these tests by giving results for:

81

e Q.Port on Linux, communicating with a DEC AN2 experimental switch
using GSMP;

e two different implementations of UNI signalling on two different versions of
the Fore ASX-200 switch — ASX-200WG and ASX-200BX;

e an implementation of UNI signalling on an unnamed commercial ATM LAN
switch. '

‘These tests show that a point-to-point connection across a single ATM LAN
switch takes about 20 ms for both Q.Port and ASX-200WG, 10 ms for ASX-
200BX and more than 50 ms on the unnamed LAN switch. Connection set up
time increases linearly with the number of hops in the same LAN. Concurrent
connection requests emitted from two different sources affect the switches differ-
ently; the latency for connection set up for the ASX-200BX is not increased while
that for Q.Port and the unnamed switch almost double. Figures are not given
for higher numbers of concurrent requests. Adding branches to a multi-point
connection has extremely long latency rising from around 100 ms for a single hop
to 3000 ms when the new branch traverses five hops.

[Battou96] describes a set of experiments to test UNI signalling for the ATM
Forum in both a LAN and a WAN context. The type of the switches which make
up this network is not named. 53 ms is recorded for point-to-point connection
creation across a single switch in a LAN with much higher results given for multi-
point connections. Results for connection deletion and concurrent connection
requests are not given.

[Shumate96] compares the performance of Q.Port running off-switch in a
variety of environments, against native implementations of UNI signalling. The
conclusion is that there is no performance liability in off-board control and that
in fact the fastest tested control architecture was Q.Port running over Linux and
using GSMP2.

[Veeraraghavan95] gives figures for the creation and release of a point-to-
point call/connection using B-ISUP. The performance figures are calculated an-
alytically based on available figures for diverse functions rather than from mea-
surement. The call processing time for the creation of a call containing a single

2The figures given for Q.Port using Linux/GSMP are similar to those given in [Niehaus97].
However, when Q.Port is running using Solaris/GSMP the latency values are three times as
high although the same processor is used in both cases. The author speculates that this is due
to better memory management in Linux.

82

Name Latency (ms) Environment

UNI, Q.Port/GSMP 20 Off-switch on Linux PC

UNI, Fore ASX-200WG 10 On Switch

UNI, Fore ASX-200BX 20 On Switch

UNI, ATM Forum testbed || 53 Environment not explained
Xbind/GSMP 16 Off-Switch on Sparc workstation
Hollowman/GSMP 11 Off-Switch on Sparc workstation

Table 5.1: Summary of results for the creation of pt-to-pt connection

bi-directional point-to-point connection is stated as 50 ms and its release as 20 ms.
The B-ISUP processing deals with calls, rather than connections, but in the sce-
narios described the calls only contain single connections. [Veeraraghavan95]
obtained the 50 ms figure from another analytical model given in [Willmann90]
which calculated the mean processing time using a VAXstation 3200 under the
VMS operating system, — typical in 1990 of the processing environment for an
Intelligent Network Signalling Point. The time for a switch to process the B-ISUP
connection creation message- is given at 4.5 ms, while that for acknowledgement
is given at 1.5 ms. The communication latency between signalling entities is
given at 5 ms, based on the B-ISUP message being carried over a 64 k/bs circuit.
[ITU-T93b] defines the maximum permitted delay for SS7 signalling within an
‘average sized’ country as 2240 milliseconds for 95% of calls.

[Lazar97] reports 16 ms for connection creation in the Xbind open signalling
control architecture, measured on a Sun Sparc 10. The greatest overhead in
the Xbind control architecture is the communication between signalling entities;
techniques similar to those described in Sections 5.1 and 5.3 are used to reduce the
amount of communication. The results given for the Hollowman in this chapter
do not use this type of optimisation.

Table 5.1 summarises some of the relevant results for point-to-point con-
nection creation across a single switch. Although the Hollowman compares
favourably with a variety of other signalling system, it is Important not to over-
state the importance of signalling latency. If a difference of some small number
of milliseconds in signalling latency has adverse effects on an application, then
it is probably inappropriate for that application to be carrying out signalling in
its critical path. It is enough to demonstrate that there is no radical difference
between open signalling systems and those more tightly bound to the switch.

83

5.6 Summary

This chapter has detailed a number of experiments that were carried out using
the Hollowman control architecture. These experiments were related to:

e caching connections;
e making connections persistent between control architecture executions;

e making communication with the switch asynchronous;

ensuring the correct support of a number of different applications;

performance.

Overall these experiments provide evidence both of the flexibility and effi-
ciency of the Hollowman.

84

Chapter 6

Connection Closures:
Application-Specific Control

This chapter identifies a limitation in the use of high-level control APIs,
namely that their generic nature prevents applications from taking advantage
of application-specific knowledge. Allowing users to load application code into
the Hollowman for the fine grained control of their own resources addresses this
problem. The combination of the application code and network resources is called
a connection closure.

6.1 Introduction

Chapter 4 described the host-manager interface that applications use to perform
control operations. This high-level operational interface is similar to those offered
in more conventional signalling systems.

For most applications this will probably be sufficient. However, this disserta-
tion contends that certain applications need to pass their own application-specific
control policy for connections into the network and have that policy interact at
a very fine level of granularity with the resources allocated to the connections
during their lifetime. This allows users to take advantage of their high-level
knowledge of the function of connections within an application, for example to
optimise their use of network resources.

The combined control policy and connection is called a connection closure

85

following the usage in programming of the term closure to mean a behaviour
combined with a context over which that behaviour executes.

A proof-of-concept implementation of closures has been carried out using the
Hollowman. Closures allow applications to extend the function of the Hollowman.
For example, loading a closure for mobile communication enables the Hollowman
to behave like a mobile control architecture for a period; when the mobile closure
stops running the Hollowman can ‘forget’ about mobility.

Allowing foreign code to execute on a shared server raises security issues. The
resolution of these issues is the subject of future work. The security problems are
reduced if the environment in which the foreign code is introduced can strictly
partition all available resources. The recent interest in the transmission of small
pieces of code within the Internet means that the securing of shared servers is an
active research area [Adl-Tabatabai96, DARPA97, Cardelli97].

6.2 Motivation for Connection Closures

Within existing ATM control architectures, after signalling its requirements for a
connection, an application delegates its control over the connection to the control
architecture. The connection belongs to the application in the sense that the re-
sources comprising that connection can be unambiguously accounted to it. There
is no fundamental reason why the application should not use its own resources in
whatever way it wishes, even if those resources are scattered across the various
network devices over which the connection exists. This can be accomplished by
offering applications a lower level API than that which is commonly offered by
existing control architectures, with which to manipulate network resources. Low-
ering the level of the API increases the number of invocations that the application
is required to execute to achieve some complete control function. If all these in-
vocations need to be transported across the network from application to control
architecture, then the latency of the operation will increase. This is a major
disadvantage in itself, and also means that certain types of resource management
are excluded purely due to the latency in communication between network and
application.

At connection creation, an application should be able to pass into the con-
trol architecture an application-defined control policy as well as a connection
description. The control policy is a dynamically loadable program in some suit-

86

able programming language which the control architecture can read, load and
execute.

After the control architecture has successfully allocated the resources on the
diverse network devices specified in the connection description, a handle on these
resources is combined with the application-provided control policy to form a
connection closure. This closure is then executed within the context of the control
architecture.

The connection closure interacts with the network only through the handles
on the resources it is allocated. Connection closures are free to manipulate these
resources in whatever way they see fit; the role of the control architecture is
simply to:

e assign resources to applications;
e offer an interface to the resources;

e provide the context in which connection closures execute.

An application-defined entity can have knowledge about the use that end-
systems are making of connections that a generic signalling system cannot. Exe-
cuting a connection closure within the control architecture allows the closure to
take advantage of this high-level knowledge while interacting with the network
resources at a very low level. This technique will not replace the need for distinct
control architectures but allows applications greater flexibility in the use of their
connection resources. For certain services this is very useful. Some examples of
the uses of connection closures are given in the following subsections.

6.2.1 Optimising the Use of Resources

Suppose a security guard monitors video from two different locations, each with
its own camera. Imagine further than the locations are adjacent and that the two
cameras are connected to the same switch, call this Switch 2. Let the display be
attached to a neighbour of Switch 2 called Switch 1. It would be possible to
establish two distinct connections from the cameras to the display of the security
guard. The designers of this service may know that the guard will only ever
observe one camera at a time and therefore that at any given moment one of the
connections is superfluous. Figure 6.1 shows this system diagrammatically.

87

Control For Connection =

1

1]

! When Time & Not Alarm .

1 With Switch 2 !

1 If (C,55) <- (A, 210) : Camera A

, Then (C,55) <- (B, 180) 1

' Else (C,55) <- (A,210) ! O
Display leccmcce e e e m——

-

(Port=C, VCI=55)

\
(Port=B, VCI=180)

O

Camera B

Figure 6.1: Security guard example

In a traditional ATM control architecture the designers would not be able to
take advantage of this fact because there is no primitive for creating temporally
multiplexed connections. Using connection closures they can define a control
policy which creates one virtual channel to the display across Switch 1 from
a VCI on the output port of Switch 2 and periodically interchanges the input
virtual channel across Switch 2 with which it is associated.

The result is a reduction both in the amount of bandwidth that needs to be
reserved for the application, and in the total number of VCIs that are used.

The proposed IP signalling system, RSVP [Zhang93], achieves a similar effect
to connection closures through the use of filters. Filters allow a small fixed set of
sharing and merging policies to be defined for network resources. For example,
RSVP filtering allows a video-conferencing application to specify that only one
of the potential sources will be active at a given moment and that resources
between these sources can be shared. RSVP demonstrates that some multimedia
applications require more than simple point-to-point and multipoint connections.
However, RSVP tries to allow for this within the signalling protocol, rather than
accepting that it is best left to the applications. Within a video-conferencing

88

system an application layer floor controller is still needed to turn sources on and
off. The activity of the floor controller is tightly bound to that of the network
resource controllers and would be better merged with it. Connection closures
allow this to be done.

IP switching [Newman97c] offers another example of how end-users might
take advantage of their application-specific knowledge to optimise resource usage.
IP switching (already mentioned in Section 3.10.7) allows more efficient transport
of IP packets by mapping IP flows onto ATM connections when appropriate. The
decision as to which flows should have their own dedicated ATM connection is
made heuristically by the switch controller. IP switching uses GSMP for commu-
nication between the switch controller and the ATM switch. Allowing applica-
tions to load closures into an IP switch controller would allow applications rather
than switch controllers to determine when the ‘cut-through’ should take place.
The closures could communicate with the switch using GSMP directly!.

6.2.2 Reacting to Changes in Network State

Connection closures make the notion of a connection more dynamic, permitting
some of the flexibility normally associated with IP to be introduced into ATM
networks.

Within traditional IP, routing decisions are made for each packet at each
router [DARPAS81]. Routers periodically exchange information with their neigh-
bours about the state of the network, e.g. whether a given link is up or down.
Routers make decisions about the best next hop per packet. Two packets in the
same message may take different routes to traverse the network if, for example,
a link fails or an administrator adjusts the weights assigned to the router links.
The network can transparently — from the application point-of-view — alter the
flow of data in response to changes in network state.

Within a traditional ATM control architecture this is not possible. Once
established, a connection’s topology cannot be altered without the application
being aware of the change. For instance, if an Available Bit Rate (ABR) connec-

Moreover, as RSVP does not specify the format of the flow specification that it carries, it
would be possible to transport the code using RSVP. Multi Protocol Label Switching (MPLS)
[Callon97] — which generalises IP switching and other similar techniques, e.g. tag switching
[Rekhter96] — profits from the lack of structure of RSVP’s flow specifications to use RSVP
for label distribution.

89

tion is established across a given set of switches and consequently those switches,
because of heavy congestion, start to drop packets, there is no one way to alter
the connection so that it takes a less congested route even though this may exist.

Running a part of the application — the connection closure — at the heart of
the control architecture allows the application and control architecture to interact
at a very fine level of granularity. The closure might potentially, after receiving
an alarm about dropped packets from the control architecture, decide that the
connection’s quality is no longer adequate. It might then ask the control archi-
tecture for an alternative route and replace all or part of the connection. The
closure could, if necessary, contact the parent application to tell it to back-off
during this operation.

Self-healing is the ability of a network to automatically adapt to network
failure, without the need for human intervention. After a switch failure has
been identified by the control architecture, connection closures having con-
nections crossing that switch may adapt to the failure by finding, for exam-
ple, an alternative route. This is different to other methods of achieving self-
healing [Kawamura95, Veitch96] because applications decide the recovery pol-
icy, e.g. drop connection or reroute, rather than some generic policy being used.

6.2.3 Mobility

[Agrawal96] describes the SWAN mobile ATM control architecture and identifies
one of the challenges of mobile ATM as the need to distinguish within the mobile
control architecture different types of applications. Certain applications are keen
to learn about changes in network conditions in order to adapt their behaviours
while others prefer to treat the mobile network as if it were fixed. [Agrawal96]
states that current ATM APIs are tailored for static environments and only allow
basic control operations such as VCI establishment and tear-down; SWAN gets
around this problem by allowing applications to register an interest in events,
such as hand-offs, at the medium access level.

A connection closure can communicate with its parent application in an
application-specific way in order to identify its current location and resource
needs. The closure has the responsibility within the control architecture for mod-
ifying its application’s connections. The closure, possessing application-specific
knowledge, may also modify the resources allocated to the application without
having to communicate with it. Since the connection closure may be executing

90

within the same address space as other parts of the control architecture, this can
be done very efficiently. The control architecture need not be aware of the pre-
cise needs of the application. Section 6.6 shows how the loading of a connection
closure into the Hollowman allows it to function as a flexible mobile ATM control
architecture without the Hollowman having to be modified.

6.3 Architecture

The connection-manager has two interfaces: the v-interface for requesting the
atomic creation and deletion of connections, as described in Section 4.3, and the
d-interface for more fundamental management of network resources. The former
is used by the host-manager and is typically implemented using the transport
mechanism of the underlying DPE. The latter can only be used by entities in the
same address space and can therefore be implemented very efficiently.

One of the operations in the «-interface, createConnectionClosure, is used
to create a closure. The location of the connection closure’s behaviour is passed to
this operation as a parameter. The connection-manager loads the code from this
location and starts executing it. The newly formed closure uses the é-interface
for its interactions with the rest of the control architecture.

Figure 6.2 shows the interactions in the the reading, loading and instantiation
of connection closures. The closure is shown being executed within an interpreted
runtime environment; more information about the nature of this system is given in
Section 6.5. The application’s host-manager is not shown for reasons of simplicity.

The 6-interface contains operations which fall into the following classes:

e registration;

e resource management;

e virtual channel management;
e routing;

¢ notifying host-managers;

e communicating with applications.

These are now explained.

91

Runtime environment

Connection Policy Text
v C))
Application
o

)

Network Elements

(1) Call control architecture - createConnectionClosure
(2) Reserve resources for connection(s) on devices

(3) Upcall into interpreted runtime system

(4) Read and load connection policy

(5) Start connection closure

(6) Read context and link to the S-interface

Figure 6.2: Closure creation

6.3.1 Registration

Closures must register themselves before doing anything else. Unregistered clo-
sures cannot acquire any resources and therefore cannot do anything useful. As
Section 3.6 described, all Hollowman applications are assigned a unique applica-
tion identifier. Closures use the identifier of their parent application to register.
Registration, as well as allowing the closure to obtain resources, results in the
creation of a mailboz, which is used for communication both between closures and
between a closure and its parent application. This is explained in more detail in
Section 6.3.6.

92

6.3.2 Resource Management

A closure is a combination of state and behaviour. To be well-formed a closure
must obtain some network resources. The required resources are described by a
string in a simple resource specification language. In the current implementation
two types of resource exist, VCIs on switch ports and Service Access Points
(SAPs) on hosts. Resources such as bandwidth and buffer space are not currently
handled, but would easily fit into the architecture. Allocated SAPs are accounted
to applications. For a SAP to be assigned to an application, the application must
already have registered itself with the host-manager at that host.

Handles on the connection’s resources are returned to the closure which con-
trols it. The closure uses these handles to manipulate the underlying resources.
Closures are restricted to using only their own resources, thus enabling at least
some protection from interference between closures. A distinction is made be-
tween source and sink VCIs because of the asymmetric nature of ATM con-
nections that results from the point-to-multipoint model of ATM multicast. A
similar distinction, for similar reasons, is made between source and sink SAPs.

The environment in which a closure runs must be capable of ensuring that
it only modifies network resources that belong to it, and that it does not inad-
vertently or deliberately impede the progress of other closures, for example by
using a significant amount of processing time. The Nemesis operating system
[Leslie96], already mentioned in Section 3.3, would allow limits to be placed
on the amount of operating resources, e.g. CPU time, that each closure could

use. Operating system resources would be specified in the same manner as other
resources.

6.3.3 Virtual Channel Management

A source VCI on a port of a switch may be associated with a sink VCI on a port
of the same switch. This creates a virtual circuit across that switch. This is a

much more fundamental operation than the creation of a virtual circuit from host
to host?2.

2It may be instructive to think of the resource allocation operation issuing the closure a set
of dots across the network and the association operation managing the joining of these dots.

93

6.3.4 Routing

When a closure knows the switch ports on which it needs to obtain VCIs to create
its network connections, it does not need to route. If it does not know the network
topology or if it wishes to reserve resources as a function of the current network
state, it asks the connection-manager to ascertain a best route between the two
hosts. The connection-manager calculates the best route using two functions: a
cost function which is used to give a value for a connection passing through a
given switch and a routing function which uses these values to determine the best
route. '

These functions are passed into the connection-manager from the closure.
Defaults exist for both functions; the default for the cost function is shortest
path, i.e. it returns unity for every switch traversed and for the routing function
the default is the weighted spanning tree. A closure could however define any cost
function and any routing function. Whether in a commercial system applications
should be allowed to define their own cost functions is questionable, but it is
useful in an experimental environment.

6.3.5 Notifying Host-Managers

The ability to create virtual channels across switches is not in itself enough to
create an application-to-application connection. In order for an application to

use a connection, the connection’s end-point must be associated with a Service
Access Point (SAP).

Section 4.2.3 described three SAP states: Free, Reserved and Active. An
Active SAP is one which is associated with a VCI and involved in an end-to-end
connection. The finer granularity of connection management enabled by closures
means that a new SAP state is required — Suspended. A suspended SAP is one
which is associated with a VCI, but which is not currently involved in an end-
to-end connection. For example, an application having an Active sink SAP can
expect to be receiving information on that SAP. If that SAP is set to Suspended
it can expect that no more information will be received until it is reset to Active.

The closure can ask the connection-manager to notify the host-manager about
a change in SAP state. Besides doing its own book-keeping the host-manager
executes an application specified callback to inform the application about the
change in state. Application responses to changes in SAP state are application-

94

specific.

6.3.6 Communicating with Applications

As a side-effect of both host-managers being informed of changes in SAP state and
applications being called back when the SAP changes state, closures can prompt
applications to start, stop and suspend receiving and sending information. For
many applications this is enough, but to take full advantage of the power of
closures requires more complex communication. For example, an application
should be able to prompt its closure to ask for more resources, as the needs of
the application evolve. '

To do this a mailboz is created for each closure when it registers. A mailbox
is simply a pair of FIFO buffers and two event channels. When a closure sends a
message it writes into its send FIFO and notifies its send event channel. When

a receive event is signalled, the closure reads the next message from its receive
FIFO. '

The parent application, on being notified of a receive event, reads the message
across the network using a mailbox DPE service. It writes to the distant mailbox
using the same service. Although the application must communicate by reading
and writing over the network, all the reads and writes for the closure are local.
This reflects the desire to make the closures as simple as possible.

Connection closures can communicate with each other using the same mech-
anism. It would be possible for closures to trade resources amongst themselves
with little interaction with the rest of the control architecture. For example, in an
environment supporting mobile connections, a connection may be modified sim-
ply by adding a new virtual channel to the end of the existing one. This, although
suboptimal in terms of resource usage, allows fast updates. At some point the
connection has to be modified to release the resources being wasted. If each of the
mobile connections is controlled by a closure, then a closure might be prompted
to ‘slim down’ its connection when another signals that it has failed to get its
required resources. Other situations can be imagined in which closures sell or
exchange resources. [Huberman93] gives examples of computational economic
models and ecosystems and [Grover97] proposes the use of economic models for
the allocation of resources between ATM virtual paths. This type of ‘bartering’
between connection closures is the subject of future work.

95

6.4 Distributed Closures

If there are many connection-managers in the Hollowman domain or the connec-
tion crosses several different domains then closures execute on many connection-
managers simultaneously. A closure will always be sent to the closest (or ingress)
connection-manager. If its request for network resources cannot be completely
satisfied by that connection-manager then it can ask the connection-manager to
send it to the connection-managers downstream. This process is repeated until
the set of closure instances has all the resources that are required. The distributed
closurés can communicate amongst themselves using the mailboxes described in
Section 6.3.6. The implementation of distributed closures is the subject of future
work.

6.5 Implementation

This section describes the implementation of the architecture defined in the pre-
vious section. The implementation described in Section 3.9 was extended so that
the connection-manager executable could be created and run in two ways:

e by linking the relevant Hollowman’s libraries with a C language main and
running the resulting binary as a stand-alone application;

e by loading and linking those same Hollowman libraries into an interpreted
runtime environment. "

The former is identical to that described in Chapter 3 and 4. The latter gives
an extra degree of flexibility since the runtime environment allows the dynamic
integration of new modules of interpreted code. Simple control operations, not
involving closures, behave exactly as if the code were being executed indepen-
dently of this runtime environment. There is no penalty for the fact that they
are embedded inside an interpreted runtime system and the performance fig-
ures given in Section 5.5 remain valid. Other entities in the control architecture
make no distinction between the virtual machine and stand-alone versions of the
connection-manager.

Currently a closure’s control policy‘ is written in Java bytecode and the dy-
namically incremental runtime environment is a Java virtual machine®. It would

3Version 1.1 of the Java Developer’s Kit (JDK).

96

be possible to use a dedicated control language with only control related prim-
itives. This approach would make the security issues easier to solve albeit at
the cost of restricting what the users could do. Since the main concern was not
primarily one of security it was decided to allow applications the greatest amount
of freedom by permitting them to define control policies in a general purpose pro-
gramming language. Java was the obvious candidate because of its ubiquity. In
addition, the Java Native Interface (JNI) permits complete interaction between
Java and C, allowing Java entities to be called from C/C++ and C/C++ entities
to be passed into the Java virtual machine®.

When executed in a virtual machine, the connection-manager’s Java Main
loads the relevant native code libraries using the Java Runtime class. The
connection-manager service is initialised, exports a service offer to its host-trader,
and waits on a socket for incoming invocations. When a simple connection re-
quest is received by the connection-manager service, it is processed in the normal
manner without any interaction with Java. A request for a connection closure
creation is up-called into Java. The Java code then reads the connection closure
from the network location identified in the invocation using a modified form of
the Java ClassLoader class. The behaviour of the closure is defined as a subclass
of the Java Runnable class; after reading in the behaviour it is instantiated and
the Runnable method start is called. The closure uses the interface described
in the previous section to create, maintain and delete connections.

The concept of connection closures requires that the control architecture —
or parts of it — be run in an environment to which user code can be dynamically
added; it is a requirement that the environment be able to ensure that different
closures do not interfere with each other. The exact nature of the dynamically
incrementable environment is an implementation detail; [Alexander97] suggests
that Java, due to its lack of a mathematical definition, is flawed, resulting in many
security weaknesses and making it an inappropriate environment for running
third-party software on a shared server. The authors propose the use of a strongly
typed functional programming language called Caml, while the same group more
recently have implemented a dedicated language called Programming Language
for Active Networks (PLAN) [Hicks97].

4The fact that the closure’s policy is written in Java bytecode does not mean that application
developers are forced to write their high-level code in Java as well. Java bytecode compilers

now exist for many languages [Tolksdorf97], so connection closures are effectively language
independent.

97

Hollowman

Mobile

Application

Base Station

ATM Camera

o)

Figure 6.3: Mobile connection closure

6.6 Proof-of-Concept

Section 6.2.3 mentioned that the need for fast connection creation in mobile
ATM signalling systems means that the connection topologies are not necessarily
optimal. The control architecture needs to periodically reconfigure connections
which have become too distorted, for example those which have loops. When
and how to modify a mobile connection is application-specific: some applications
can support frequent alterations if they are short, while for other applications
the inverse may be true.

This section describes an experiment which uses closures to define application-
specific strategies for managing mobile ATM connections. In the experiment,
applications running on workstations take the place of mobile base stations and a
human wandering around the laboratory the role of the mobile. Figure 6.3 shows
a typical sequence of control messages resulting from the use of a mobile closure.

The user creates a closure in the Hollowman (1). The closure registers itself
then waits (2) for notification of the user’s location. The user types on the
keyboard of a workstation and the base-station reacts by telling the closure where
the user is (3). The closure requests resources for a source SAP on the host on

98

which an ATM camera is running, a sink SAP on the host on which the user
has typed and resources on all the switches that constitute a path between them
(4). It then creates the connection (5) and notifies the video and user service
(6). When the user moves to another workstation and types, the base station
communicates to the closure the fact that the user has moved (7). The closure
then decides how best to modify the connection, e.g. the closure adds a new
branch to the connection, before deleting the old one. Many different mobile
closures can run simultaneously allowing each to have its own policy.

‘The mobile connection closure is about 200 lines of Java source and compiles
to 4 kilobytes of Java bytecode. After the closure is loaded and resources are
assigned, the time to establish and modify connections is mainly determined by
the time taken to communicate between the mobile and the closure. Although
the Java code is the top layer, it is a very thin layer and does not have much
influence on connection set up time. This experiment demonstrated the feasibility
and utility of connection closures.

6.7 Related Work

Many attempts have been made to make network nodes programmable by adding
interpreters or dynamic linkers to the node software. Programs are sent along
the data path and tagged for interpretation. The network node, e.g. the switch,
detects these programs and executes them. It is possible to distinguish two
different motives for doing this:

e to deploy and upgrade control software at network nodes;

e to allow data streams to change the policies controlling them.

The first happens infrequently, stopping or inhibiting the normal function of
the node until the transfer and loading are complete, and is normally initiated by
the network operator. An example is the modification of the access control policy
of an Internet firewall. Networks which have the second aim are often called
Active Networks; [Tennenhouse96, Wetherall96, Smith96, Alexander97]
are examples. [Alexander97] states that:

“Active Networks” are packet-switched networks in which network in-
frastructure is programmable and extensible and where network be-

99

haviour can be controlled on a per packet, per user or other basis. For
ezample, a packet might carry ezecutable code.

The execution of these active packets — or capsules as [Tennenhouse96|
calls them — happens on a time-scale which is at, or close to, the speed with
which they are transferred across the network node. The IP model of store and
forward has a major influence on this work. In fact, the intention of the Active
Network could be summarised as modifying this model to store, evecute and
forward. While it might be tempting to equate an ATM cell with an IP packet®
this ignores the important distinction in ATM between the control and data path
and would mean that functions that were placed by the designers of ATM in the
control path are pushed back into the data path. ATM was designed to allow
fast, predictable switching and the control/data path distinction is a necessary
feature of that.

An Active Network enabled ATM switch would have to distinguish active cells
from normal data, assemble them into a program and execute the program. In
a sense this is what Operation and Maintenance (OAM) cells within the ITU-T
forum standards [ITU-T93a] already do, except the languages in which these
cells are programmed may be completely defined by a finite set of sentences stipu-
lated in the relevant standards. The use of OAM cells is restricted to ensuring the
health of the entire network rather than optimising the resource usage for specific
applications. The problem is significantly more complex when the programs, as
in Active Networks, have the following general properties:

e they are written in a general programming language, e.g. Java;

they are sequenced across an arbitrary number of protocol data units, which
must be identified as special and assembled into a program;

they can manipulate the flows on which these protocol data units arrive;

they execute on network nodes with different capabilities;

they must avoid interfering with programs written by other users.

More experimental evidence is required to demonstrate that these active pro-
grams can be executed both quickly and predictably enough to warrant their

Some of the Active Network research seems to suggest just this, for example [Smith96]
proposes the application of active networks to ATM switches.

100

presence in the data path of a multi-service network. The approach described in
this chapter restricts itself to the control path.

Netscript [Yemini96] is a language for programming a Netscript Virtual Net-
work, consisting of a set of Netscript-aware nodes. Each Netscript-aware node,
e.g. a router, runs a Netscript interpreter. The language contains primitives
for controlling the allocation, scheduling and transmission of packets over vir-
tual links, allowing users to define, for example, their own routing algorithms.
Netscript programs operate on streams of packets allowing them to be multi-
plexed, demultiplexed, parsed and filtered. Netscript is similar to Active net-
works in that it allows application code to directly manipulate packets in the
data stream. Netscript could be confined to just the control path in which case
it would offer a similar function to connection closures.

[Biswas95] proposes the use of a roaming software agent, known as a rep-
resentative, for the distribution of mobility management load within the fixed
backbone network. In essence, the agent is a proxy for the mobile itself which
moves less frequently than the mobile. It can convert normal ATM signalling into
mobile signalling and hides some mobile specific features e.g. hand-overs, from
the fixed ATM signalling network. The representative treats a mobile connection
as a set of segments that it joins into a path to form a complete connection, allow-
ing it, for example, to pre-reserve segments thereby optimising hand-overs. The
approach differs from that presented in this chapter in that the representative is
supplied by the control architecture rather than the user. Moreover, a distinction
is made between signalling to mobiles and signalling to fixed points rather than
treating this simply as another type of fine grained resource management.

Intelligent Networks (IN) [ITU-T92a] allows non-basic call functions to be
associated with signalling end-points. An IN checks in a database to see if a
special script, e.g. call forwarding, is associated with a dialled telephone number,
and if so triggers that script. The scripts are network operator defined; since
they add knowledge to the basic call model about special call types, they require
extensive modification to the signalling infrastructure and can only be introduced
on a long time scale. AIN (Advanced Intelligent Networks) [Garrahan93] has
lessened the introduction time by making a clearer separation between the switch-
ing and controlling planes, but the nature of the interface between the two means
that while adaptations of existing services, e.g. calling forwarding, can easily be
introduced, completely new services still require modifications to the switching
plane. [Veeraraghavan97| addresses this problem by separating basic signalling
from service signalling and defines the second in terms of the first.

101

[Rizz097] identifies one of the problems in the introduction of IN services as
the coarse grain service interface. The authors remark that most research work in
IN is dedicated to solving the problem of feature interaction whereby two separate
predefined IN services when combined have unexpected side-effects. They propose
allowing telephony users to define service-specific policies for managing their calls.
The primitives of these scripts are still fairly coarse grained, e.g. forward-the-call-
for-approval rather than directly manipulating network resources as the work
described in this chapter does. '

JTAPI [JavaSoft97] is an API which allows Java applications to implement
advanced telephony call models. The nature of the API is similar to the Hollow-
man connection-manager’s d-interface. However, the JTAPI is dependent on the
interfaces supported by telephony servers, which means that it is at a higher level
than the d-interface and is telephony specific. It is interesting to note that at the
same time the telephony community is actively researching ways of making tele-
phony services more flexible and telephony calls more programmable, the ATM
standards are adopting the telephony model of signalling in order to deal with
the more complicated problem of establishing and managing multimedia services.

[van der Merwe97] describes another solution to the limitations of trying
to define a single generic control API for all present and future services. The
authors propose the creation of service-specific control architectures within the
Tempest environment, each dedicated to a single service, e.g. video-on-demand.
Section 5.4.3 has already mentioned one service-specific control architecture, the
Sandman. [van der Merwe97] describes one for video-conferencing, the Video-
man. Connection closures and service-specific control architectures differ in the
granularity of control and the speed with which they can be introduced. The two
techniques are complimentary. For example, connection closures could be used
as a prototyping technique for service-specific control architectures and some
service-specific control architectures, e.g. for mobility, might offer end-users the
ability to introduce closures as part of their control function.

6.8 Summary

This chapter has describéd how allowing applications to take advantage of their
application-specific knowledge permits more flexible and efficient control. Within
the Hollowman this is achieved by the loading and execution of application defined
code within the control architecture itself. The combination of this policy and the

102

network resources that it manipulates is called a connection closure. Examples
have been given to motivate this technique and a proof-of-concept implementation
has been described which demonstrates its feasibility.

The closures are restricted to manipulating only their own resources, permit-
ting at least some degree of security. Future work will explore in more depth the
security issues, in particular the application of mechanisms for the partitioning
of operating system resources.

103

Chapter 7

Inter-Control Architecture
Signalling

It is likely that the techniques described in this dissertation for the simultaneous
execution of multiple control architectures will not be generally deployed in com-
mercial networks in the near future. This means that for at least some time open
signalling control architectures will have to interoperate with more conventional
ones. This chapter explains how instances of advanced control architecture can
interoperate with other ATM control architectures.

7.1 Introduction

Advanced control architectures such as the Hollowman allow network operators
and end-users a great deal of flexibility in the control over their network resources.
This makes them convenient experimental platforms. To be more generally useful
they need to be able to interoperate with other, more widely deployed, control
architectures. This interoperation requires that the control operations of the
advanced control architecture can be translated to and from the format of other
control architectures, that routes to addresses outside the advanced control archi-
tecture’s domain can be determined, and that routing information can be made
available to other control architectures. In short an interoperation protocol is
required.

This chapter considers the form of such an interoperation protocol and how an

104

open control architecture could make use of it. The Hollowman has been used for
experimenting with inter-control architecture signalling. The rest of this chapter
is structured as follows: '

e firstly, the research described in this chapter is motivated;

e secondly, the issues involved are explained by describing the parts of the
Hollowman dedicated to inter-control architecture signalling;

e thirdly, some experiments are described which demonstrate the patterns of
interaction between the Hollowman and other control architectures;

e finally, P-NNI [ATMF96] is considered and the extensions required to allow
the Hollowman to use it are discussed.

7.2 Motivation

A single standard ATM signalling mechanism — assuming it was accepted and
widely implemented — would guarantee universal interoperation. Preceding
chapters have argued that this one size fits all approach is too restrictive and is
unlikely to be successful. Alternatively, if every switch could support the switch
divider described in Section 2.2.6, then potentially any control architecture could
be deployed universally. The following reasons argue against this as a solution:

e in all probability users will be restricted in their use of network elements
outside their management domain;

e the number of virtual networks that can be supported by a network element
at a given moment is bounded;

e not all switches will have a switch divider.

So, while the Tempest environment allows a service provider to operate a
global virtual network, in practice the extent of the.virtual network is likely to be
closely related to the equipment owned by the body that authorised that virtual
network. There is still a need for interoperation between control islands belonging
to different management domains.

The ATM Forum terms the group of signalling interfaces between two switches
the Network-to-Network Interface (NNI). The Private-NNI or P-NNI [ATMF96],

105

is intended for use within private networks. . P-NNI contains two distinct inter-
faces; one for the exchange of routing information between switches and a second
for the management of connections. P-NNI is designed to scale to planetary
scope. It is discussed in more detail in Section 7.5.

While this dissertation argues that standard UNI/NNI signalling will not
be the only ATM control architecture it is likely to be the one which is most
widely deployed. If an advanced control architecture could interoperate with
P-NNI, then applications using that control architecture would have the same
scope in their signalling as those directly using the UNI. An advanced control
architecture which implemented P-NNI would in fact be a partial implementation
of the standard ATMF one; it would behaves as a normal P-NNI instance to other
control architecture instances, however within its own domain it could avail of
non-standard signalling techniques, e.g. connection closures. This is analogous
to CORBA/OMG [OMG95b] where, within the domain of a given ORB, any
proprietary protocol can be used, but all ORBs must use the GIOP protocol
when communicating with other ORBs.

Due to its complexity, there is as yet no readily available version of P-NNI.
Other means had to be found to experiment with interoperation,

Chapters 3 and 4 detailed the Hollowman connection management functions.
In order to simplify the description, they assumed that there was only one
connection-manager per Hollowman domain. It was mentioned that the con-
nection management functions could be distributed, but the explanation of how
this is achieved has been reserved until now. The distribution is achieved using
two interfaces:

e the Simple Inter-Control Interface (SICI), which allows two connection-
managers to collaborate in the creation of a connection;

e the Simple Inter-Routing Interface (SIRI) which allows two connection-
managers to exchange routing related information.

The SICI and SIRI are explained in Section 7.3. Section 7.4 gives an example
of how they are used to distribute connection management. While the SICI and
SIRI are implemented as services of the DPE and intended for communication
between Hollowman control entities, their functions are similar to those of the
two interfaces of P-NNI. The SICI and SIRI were used to experiment with the
interoperation of control architectures. The exact nature of the control architec-

106

ture being communicated with was hidden behind these interfaces, facilitating
the experiments.

The experiments described in this chapter show that a Hollowman instance
can interoperate with both another Hollowman instance and a standard control
architecture instance — ATMF UNI 4.0 — using the SICI and SIRI. The main
distinguishing feature between the ATMF UNI and the P-NNI is the exchange
of routing information that takes places across the NNI; the connection control
primitives are very similar. The fact that the Hollowman can interoperate with a
UNI implementation gives credence to the claim that the Hollowman will be able
to interoperate with P-NNI when implementations of that control architecture
are more widely available.

7.3 Interoperation with the Hollowman

A control architecture instance manages resources located on some set of network
elements, called its domain. Two control architecture instances are said to be
neighbours if one or more of their network elements are directly connected. To
interoperate with another, a control architecture needs to be able to:

e recognise that a signalled address is outside the scope of its domain;
e identify which, if any, of its neighbours permits that address to be reached;

e map signalling requests to and from a format recognised by its neighbour.

In the standard control architecture the first and second are achieved by hav-
ing a common hierarchical addressing scheme and through the continual exchange
of routing information. The third is enabled by a signalling interface across which
network elements signal to each other.

The elements of the Hollowman required for control architecture interoper-
ation are now discussed. The intention is not to implement an interoperation
protocol to compete with P-NNI, but only to show how the Hollowman control
architecture, described in Chapters 3 and 4, can easily be extended to allow in-
teroperation. The rest of this section explains the Hollowman control gateway
service, the Simple Inter-Control Interface (SICI) and the Simple Inter-Routing

Interface (SIRI). The gateway completes the set of core Hollowman services in-
troduced in Chapter 3.

107

CA-1 signalling Control Bridge Between CA-1 & CA-2

interface

CA-2 signalling
\.>)\, interface

SICI

Gateway for Gateway for
CA-I/ CA-2
I]
o |

I |

! |
Port of Port of
switch in switch in
CA-1’s domain Link CA-2’s domain

Figure 7.1: Overview of a control bridge

7.3.1 Control Gateway

This section examines the features — other than those described in Chapter 3
— which allow the Hollowman to signal to an address outside its domain. This
is achieved through the generalisation of entities used for the inter-connecting of
Hollowman connection-managers and the distribution of the connection manage-
ment functions.

A control bridge is an entity that can map a control request emitted from one
domain into a format suitable for another. The two domains may be managed
by different instances of the same control architecture or by completely differ-
ent types of control architecture. A bridge is addressable in both domains and is
capable of interpreting and generating control operations for the control architec-
tures that manage those domains. The end-points of a bridge are called control
gateways.

The Hollowman gateway manages some subset of the resources of a switch’s -
port. By the definition of gateway, this port is attached to a switch outside the
Hollowman’s domain. Two gateways are coupled if the ports that they control are
connected across the same link. Each gateway couple constitutes a control bridge.
A local gateway communicates with the foreign gateway using the Simple Inter-
Control Interface, described in Section 7.3.2. Figure 7.1 shows a control bridge
between two control architectures, CA-1 and CA-2.

A gateway can be the start or end point of a connection within a given Hollow-

108

man domain. In this respect a gateway resembles a host-manager. The gateway
implements the host-manager’s 3-interface described in Section 4.3.2; this allows
the Hollowman connection-manager, after routing, to make no further distinction
between signalling to hosts and signalling to gateways. The gateway also sup-
ports a gateway interface — containing two operations addForwardingRecord
and removeForwardingRecord — which the connection-manager uses to update
the routing information in the gateway.

A gateway maintains an Offer_Table, containing information about the cur-
rent service offers available through that gateway and the SAPs assigned to them,
and a Forwarding_Table, containing a set of forwarding records which enables it
to determine through which foreign gateway it may reach a foreign address. For-
warding records are added to the gateway by calling the addForwardingRecord
operation of the gateway interface. The forwarding record contains informa-
tion related to foreign addresses, such as the foreign gateway to use in or-
der to reach them. When the connection-manager calls the obtainSinkSAP or
obtainSourceSAP operations on the gateway’s [-interface to reserve a SAP, the
service offer, passed as argument, is automatically added to the offer table, if it
is not present already.

The connection-manager activates a SAP by calling the notifySinkSAP or
notifySourceSAP operation on the gateway. The activation of a SAP on a gate-
way involves:

1. identifying with which forwarding record the SAP is associated;

2. forwarding the operation to the foreign gateway;

3. updating the state of the SAP;

4. telling the connection-manager whether the operation succeeded or not.
Failure of the gateway to establish a distant connection is not perceived by

the initiating connection-manager as any different to refusal by a host-manager
and is handled in the same way, i.e. rolling back the signalling operation.

In this chapter for the purposes of clarity the connection-manager and the
gateways it communicates with are shown as distinct applications, but in practice
the connection-manager and gateway instances are combined in the same process
and all communication between them takes place using efficient local function
calls. ’

109

The Simple Inter-Control Interface

e connectSourceChannel
e connectSinkChannel

e unconnectSourceChannel
e unconnectSinkChannel

The Simple Inter-Routing Interface

e isAccessible
e exportForeignOffer

Table 7.1: The SICI and SIRI

7.3.2 The Interoperation Interfaces — SICI & SIRI

This section describes the interfaces — the SICI and the SIRI — that are used
by the Hollowman to distribute the connection management functions. The SICI
and SIRI were designed for communication between control entities in the same
Hollowman domain and are intentionally very simple. They are not intended to
have the same scalability as a general purpose interoperation protocol such as
P-NNI. Table 7.1 shows the operations that make up the SICI and SIRI.

The Simple Inter-Control Interface (SICI) allows a gateway to ask its
homologue gateway in the control bridge to create or delete a connection.
The connectSourceChannel and connectSinkChannel operations create a
connection between a given source or sink SAP and a service offer. The
unconnectSourceChannel and unconnectSinkChannel operations delete con-
nections. Each control architecture maps these operations onto its own control
primitives.

The connectSourceChannel and connectSinkChannel operations of the
SICI both take a service offer as argument. The Hollowman service offer con-
tains information about the nature of the service and the location of the service
provider; it is general enough to allow the transport of service descriptions in a
range of control architectures. For example, in the case of inter-operation with
the ATMF standard control architecture, an NSAP format address can be used
for the service location and the service properties can be used to transport the
description of the network resources, in the form of ATMF Information Elements,

110

required to use that service, as well as additional information, e.g. higher level
identifiers.

A given instance of the Hollowman finds a route to a foreign host’s location by
determining with which local gateway it should be associated and then calculating
a route to that gateway. The Hollowman instance determines which gateway
to use by asking its neighbouring control architectures using the Simple Inter-
Routing Interface (SIRI).

The SIRI allows routing information to be exchanged between neighbour-
ing control architecture instances. The SIRI isAccessible operation returns
whether an address is reachable within or through the domain of a control archi-
tecture and if so the means to reach it, i.e. the interface reference of the service
that supports the SICI. It takes the foreign address and a list of already visited
control architectures as arguments. The action of isAccessible is first to check
if the address is present in the domain control architecture and if not to check all
the yet to be visited neighbours. '

The Hollowman’s lack of structured addresses means that any address format
can be used within the Hollowman. So, for example, an application can signal to a
standard NSAP format ATM address using the API described in Chapter 4. If the
address is not present in the Hollowman’s domain, the connection-manager calls
isAccessible on the domain’s neighbours passing the address as argument. The
address can be passed from the application, across the Hollowman, to a control
architecture which is capable of interpreting its structure. This allows Hollowman
applications to signal to locations outside the Hollowman’s scope.

For other control architectures to signal to Hollowman services requires that
the Hollowman service offer be converted into a suitable format for that control
architecture. The SIRI exportForeignOffer operation allows the availability
of a service offer in one domain to be advertised in another. The Hollowman
supplies information about the nature of the offer in a form suitable for the foreign
domain®, and passes the interface reference of the the appropriate SICI service
to use to reach it. The receiving entity within the foreign control architecture
identifies the gateway to use to reach the offer, updates the gateway, completes
the offer with the address of the gateway and makes the offer known within
its domain. To entities within the foreign control architecture the éateway will

!Note that in order for the Hollowman to export an offer to a foreign control architecture it
is required to know the format of foreign service offers; in practice offers which are to be made
globally available should follow the ATMF standards on addressing and service description.

111

connectSinkCh

unconnectSin

Connection-Manager Local Gateway Foreign Control Architecture Foreign Gateway

Figure 7.2: Pattern of inter-control architecture signalling

appear as the offer supplier.

In order for the Hollowman to interoperate with a foreign control architecture,
the operations of the SIRI and SICI must be mapped onto control primitives
in that control architecture. Section 7.4 outlines how this was achieved for a

commercial implementation of UNI signalling. An example demonstrates the use
of the SICI and SIRI.

Example: Figure 7.2 shows the typical interaction that occurs when the
Hollowman connection-manager, during a control operation, recognises that a
signalled address is foreign. The connection-manager calls the isAccessible of
its neighbour passing the foreign address (1). The foreign control architecture
confirms the address is accessible and returns the interface reference of the foreign
gateway through which it can be reached. The connection-manager then uses the
interface reference to update the forwarding table in the local gateway using
addForwardingRecord (2). The connection-manager calls the obtainSinkSAP
(3) operation of the gateway to obtain a SAP identifier, and after the connection
has been established to the gateway calls notifySinkSAP (4). This results in
the local gateway calling connectSinkChannel to create the connection to the
appropriate sink in the foreign domain (5). When the connection-manager calls

112

freeSinkSAP on the local gateway (6), the gateway prompts the foreign gateway
to delete the rest of the connection by calling unconnectSinkChannel (7)2.

After a neighbour of the Hollowman instance has confirmed that an addressis
reachable, the Hollowman updates the forwarding table in the appropriate gate-
way and modifies its topology tables such that the foreign address is associated
with the gateway. The next time that the address is used in a control operation
within the domain, the information about how to signal to that location will
already be present; so with reference to Figure 7.2, operations (1) and (2) would
not need to be repeated.

The Hollowman has no knowledge of the topology outside its domain, yet the
set of gateways that the connection creation request traverses after leaving the
Hollowman is decided before the request is made. The SIRI permits a type of
routing which lies somewhere in between source-based and hop-by-hop routing.
Inter-control routing establishes the appropriate entry and exit points for the
domain of each control architecture. During connection creation each control
architecture uses its own routing mechanism to calculate the best route between
these end-points. The complete path of gateways to use in reaching a location
is not returned to the initiating control architecture but is scattered across the
forwarding records in the gateways of all the concerned control architectures.
It would be possible to do without the SIRI and just optimistically attempt to
signal to a neighbour whenever an address was not found in a given domain. This
would involve the complexity of cranking-back the create operation if the address
turned out to be erroneous or if there are multiple neighbours and the correct one
was not chosen first. Having a distinct routing phase ensures that the address is
reachable (or likely to be reachable) before any network resources are assigned to
the connection, removing or reducing the need for crank-back.

The SICI and SIRI are not appropriate as a general inter-operation protocol;
they are neither complete nor scalable enough. For example, in the current
implementation no attempt is made to find a best route, the search stops when
any route is found and the Hollowman learns about its neighbours during start
up simply from a configuration file. However, they are sufficient to demonstrate
the patterns of interactions which are required to allow the Hollowman to inter-

operate with foreign control architectures; these are explained in the following
section.

2Note that when the connection-manager and gateway instances are resident in the
same process, the example shown in Figure 7.2 requires only three RPCs (isAccessible,
connectSinkChannel, unconnectSinkChannel). The rest are all local function calls.

113

7.4 Experiments in Interoperation

This section motivates the description of the structure of inter-control architec-
ture signalling by detailing the patterns of communication for a number of differ-
ent inter-control architecture exchanges. The types of inter-control architecture
signalling examined are those between:

e two instances of the Hollowman?3;
e the Hollowman and an implementation of UNI 4.0;

e two instances of the Hollowman separated by a UNI 4.0 domain.

All of the examples described here were implemented within the testbed net-
work in order to experiment with control architecture interoperation.

7.4.1 Hollowman/Hollowman Signalling

In the testbed network, there are three switches, cogan, aynho and aller. At-
tached to cogan is a host called clyde, and attached to aller is a host called
magnus. Figure 7.3 shows the network. Three different instances of the Hollow-
man are started such that:

e Hollowman-1 is allocated a virtual network on cogan. Hollowman-1 has a
gateway, G-A1, which manages the cogan port attached to aynho.

e Hollowman-2 is allocated a virtual network on aynho. Hollowman-2 has
two gateways, G-A2 and G-B2, such that G-A2 can form a control bridge
with G-A1 and G-B2 can form a control bridge with G-B3.

e Hollowman-3 is allocated a virtual network on aller. Hollowman-3 has a
gateway, G-B3, which manages the aller port attached to aynho.

Experiment: in this experiment service provider SP on magnus — within
the domain of Hollowman-3 — is offering a service of type VideoService. The

®Note that normally within the testbed network there is no need for two instances of the
Hollowman to interoperate, since any given instance can acquire some subset of resources on
the entire physical network. '

114

Hollowman-1 Hollowman-2 Hollowman-3

). (om2),

SU ‘Jj:— .]n._sp

on clyde) cogan ay{llho aller (on magnus)
—————————» Control Path HM: Host Manager G: Gateway
........... » DataPath CM: Connection Manager

Figure 7.3: Example of Hollowman/Hollowman signalling

sequence of operations required for the application SU on clyde — within the
domain of Hollowman-1 — to sink a video stream from SP is now explained; they
are also shown diagrammatically in Figure 7.3.

SU calls the host-manager connectLocalSinkSAPToSourceOffer operation,
passing the source offer for the VideoService. The host-manager relays the
invocation to the Hollowman-1 connection-manager (1). The Hollowman-1
connection-manager recognises that magnus is not an address in its domain. It
calls the isAccessible operation of its only neighbour’s SIRI passing the address
magnus as well as adding the label Hollowman-1 to the list of already visited con-
trol architectures (2). The address is not in Hollowman-2’s domain either, so it
in turn calls the isAccessible operation of Hollowman-3’s SIRI (3). As magnus
is in Hollowman-3’s domain, it tells Hollowman-2 that the address is reachable
(4). Hollowman~2 alters its topology information such that magnus is associated
with G-B2 and updates G-B2’s forwarding table. Hollowman-2 then confirms the
reachability of magnus to Hollowman-1 (5). Hollowman-1 updates its topology
information and forwarding tables in a similar way.

Hollowman-1’s connection-manager reserves a source SAP on G-A1, sets up
the connection from G-A1’s port to SU and finally notifies G-A1 of the activation
of the source SAP (6). This notification causes G-A1 to read its forwarding
tables and call the connectSourceChannel operation on the SICI associated with

115

the foreign address magnus. The arguments in this operation are the activated
source SAP and the service offer for VideoService (7). G-A2 creates a sink
SAP with the same VPI/VCI values as that in the passed source SAP. G-A2
then calls connectLocalSinkSAPToSourceOffer on Hollowman-2’s connection-
manager passing this sink SAP (8).

Hollowman-2’s connection-manager sets up a connection from G-B2’s port to
G-A2’s port and notifies G-B2 that the reserved source SAP is now active (9). This
notification causes G-B2 to call connectSourceChannel using the SICI associated
with magnus, i.e. that implemented by G-B3 (10). G-B3 behaves like G-A2 (11).
A connection is established between magnus and G-B3’s port. Notifying magnus’
host-manager of the SAP activation causes the callback function of SP to be
invoked (12). The control operation initiated by SU has successfully completed;
SP starts producing a video stream on the source SAP passed to it and SU starts
receiving the stream on its sink SAP.

If another application in Hollowman-1 wished to use the video service then
steps (2) ... (5) would not need to be repeated*. When the connection-manager
and the gateways in its domain are present in the same process 9 RPCs are re-
quired to establish the first connection from clyde to magnus and 7 thereafter.
This is not significantly greater than the 5 RPCs required to establish a connec-
tion within a single Hollowman domain.

The scenario described here is an extreme form of distributed connection
management in which each switch is controlled by a distinct and independent
instance of the Hollowman. A single instance of the Hollowman, controlling one
unified virtual network and with a connection-manager per switch is similar to,
but simpler than, the above, e.g. traders can be shared.

7.4.2 Hollowman/Q.Port Signalling

This experiment shows how a Hollowman application can signal to a service
controlled by an implementation of UNI 4.0.

Q.Port [Bellcore97] is a portable version of the UNI 3.0, 3.1 and 4.0 signalling
protocol written by Bellcore. In Q.Port, the signalling engine on the host is called

4In the current implementation failure to create a connection to an offer resident on a
foreign location causes the routing information about that location to be freed as potentially
out-of-date. More sophisticated means of maintaining consistency can be imagined.

116

Hollowman-1 Q-Port-1

- Adaptor
) v J— .

SU J_ ' '"_‘1-‘5?

on clyde) cogan aynho aller (on magnus)
— Control Path HM: Host Manager G: Gateway
-------- > Data Path CM: Connection Manager

Figure 7.4: Example of Hollowman/Q.Port signalling

the host controller. An adaptor allows the commands defined in Section 7.3.2 to
be mapped onto Q.Port commands. This adaptor is added to the Q.Port host
controller, making it a Hollowman gateway. The signalling PVC and Q.Port
configuration files are altered so that signalling messages to an external port are
sent to the appropriate gateway. No other modification to Q.Port is made. The
test configuration is as shown in Figure 7.4.

Experiment: in this experiment a Q.Port service provider SP on magnus
— within the domain of Q.Port-1 — is offering a service whose Q.Port type is
4031, i.e. it is a UNI 4.0 service that sinks an AALS5, point-to-point, ABR connec-
tion. Q.Port offers this shorthand description of service offers to applications and
does the conversion to the corresponding ATMF Information Elements carried
in the signalling request. Alternatively the service could be identified within the
Hollowman directly by some combination of ATMF Information Elements. The
Q.Port NSAP address of magnus is nsap-magnus. The sequence of operations
required for a service user SU on clyde — within the domain of Hollowman-1

— to use that service is now explained; they are also shown diagrammatically in
Figure 7.4.

SU creates a suitable Hollowman service offer — one whose type
is 4031 and address is nsap-magnus -— and calls its host-manager

117

connectLocalSourceSAPToSinkOffer operation. The host-manager relays the
request to the Hollowman-1 connection-manager (1). Hollowman-1 realises that
the address is not in its domain and calls its only neighbour’s isAccessible
operation (2).

The Q.Port-1 adaptor does not have complete knowledge of all actual ad-
dresses within Q.Port-1’s domain. It does know how to check if an address
conforms to the NSAP standard and is therefore potentially a valid address.
The adaptor verifies this, and confirms to Hollowman-1 that nsap-magnus is
potentially reachable (3). If the Hollowman has multiple instances of Q.Port as
neighbours then the implementation would have to be modified so that failure
to connect with one gateway would result in trying other routes. However, in
practice a control island is likely to be connected to the rest of the world through
only one port.

Hollowman-1 modifies its topology information, such that the foreign address,
nsap-magnus, is associated with G-A1 and updates G-A1’s forwarding table. The
Hollowman-1 connection-manager establishes a connection from the port man-
aged by G-A1 to SU and notifies G-A1 of the connection creation (4).

G-Al calls connectSinkChannel (5) on the gateway, G-A2, implemented by
the Q.Port adaptor. The adaptor gets the type and address of the service from
the offer, and the VPI/VCI to use from the SAP. It then creates a connection
from G-A2 to SP using normal UNI 4.0 signalling messages (6). The Hollowman
application SU can now send information to the Q.Port service SP.

7.4.3 Hollowman/Q.Port/Hollowman Signalling

The final experiments show how one instance of the Hollowman can signal across
a domain controlled by Q.Port, to communicate with another instance of the
Hollowman.

Experiment: in this experiment a service provider SP on host magnus — in
the domain of Hollowman-2 — is offering a service of type VideoService. The
sequence of operations required for an application SU on host clyde — within
Hollowman-1 — to receive a video stream from SP is now explained; they are
also shown diagrammatically in Figure 7.5.

SP, to make the source offer VideoService generally available, tags it as
externally exportable when registering it with its trader. The trader calls

118

Hollowman-1 Q-Port-1 Hollowman-2
omeefens, D
@)
G-a1) ©)| | G-A2) EG-B2)®
SU at=T i _'1‘~~.SP
on clyde) cogan aynho aller (on magnus)
—— Control Path s Offer registration G: Gateway
""""""" * Data Path CM: Connection Manager HM: Host Manager

Figure 7.5: Example of Hollowman/Q.Port/Hollowman signalling

the exportForeignOffer (1) operation of its neighbouring Q.Port adaptor’s
SIRI. G-B2 records the VideoService with a Q.Port alias as service name, and
with the NSAP address of the port that G-B2’s controls. This alias and ad-
dress are the form in which the offer is known within both Hollowman-1's and
Q.Port-1’s domains. When Q.Port notifies G-B2 of a connection request, the
connectSourceChannel operation of Hollowman~2’s gateway is invoked with ap-
propriate values; this is step (8) in Figure 7.5. The other interactions are similar
to those described in Section 7.4.2.

Connections can also be established across the external network for the ex-
change of control information between Hollowman domains. There is nothing
special about these connections as far as the external network is concerned, but
the Hollowman instances can use them to perform control architecture specific
signalling. For example, if Hollowman-2 had two video cameras then an appli-
cation within the domain of Hollowman-1, after creating a signalling connection,
can pass the security closure described in Section 6.2.1 to Hollowman-2 to ensure

that a video stream from only one of these cameras is sent across the external
network at any given moment®.

5This is similar to Permanent Virtual Path (PVP) tunnelling [ATMF96], except PVP
tunnelling requires manual configuration.

119

This section has demonstrated how a Hollowman instance can inter-operate
with other control architectures. Although the simple techniques discussed here
are inappropriate for general inter-operation, they allow a better understanding
of how advanced control architectures could make use of a scalable solution such
as P-NNL The required extensions are considered in the following section.

7.5 Related Work

This section explains P-NNI in more detail and describes how the Hollowman
could interoperate with it. In the interest of completeness some other Network-
Network Interfaces are also mentioned.

7.5.1 P-NNI

The Private NNI [ATMF96] is designed to scale to planetary scope. P-NNI
routing is based on IP routing techniques, such as Open Shortest Path First
(OSPF) [Moy97]. Switches exchange information with their peers about their
current state. The ingress switch of a connection request uses this information
to determine the entire route from source to destination. A generic set of routing
information is constantly exchanged between peer entities.

P-NNI defines a generic CAC algorithm that switches can use to determine
the likelihood of a foreign switch accepting a given connection request. The
number of switches is potentially very large, so the switches are organised into
hierarchical peer groups. All elements of such a group have complete knowledge
of the topology of the group and exchange routing information directly with
each other. A peer group leader is elected by the nodes of a group. The peer
group leader exchanges routing information with other peer group leaders in
this higher group. The entire group appears like one logical node at the higher
level. This federating process can be repeated an arbitrary number of times.
The route determined by the ingress switch consists of both logical and physical
nodes; during connection creation the logical nodes must be resolved as a path
across the group. This in-band routing is performed by the group leader. If
a node refuses a connection because, for instance, the ingress switch’s routing
information is incomplete or out-of-date, then the group leaders of the group in
which this occurred have the responsibility of attempting to find an alternative
route.

120

If the Hollowman can interoperate with P-NNI, then Hollowman applications
will have the same scope as applications directly using UNI signalling. In P-
NNI routing information and signalling requests are sent on VCI=15 and VCI=5 of
VPI=0 respectively. A Hollowman instance which could send, receive and respond
appropriately to P-NNI messages on these channels would appear to P-NNI as a
normal P-NNI group. One entity within the Hollowman domain must play the
role of the P-NNI group leader, exchanging information with P-NNI peers. The
connection-manager controlling the switch connected to the external network is
the natural termination and emission point of P-NNI routing information.

All external connection management requests can be received or initiated by
Hollowman gateways. The work described in this chapter has shown how this
can be done for the SETUP, CONNECT and RELEASE UNI primitives; these have al-
most identical homonyms in P-NNI. The operations related to multicast have not
been tested, but should pose no significant problem. NSAP format addressing
can be accommodated within the less structured Hollowman addressing, while
additional information required in the ATMF Signalling Information Elements,
e.g. the resources required for the connection, can be contained within the Hol-
lowman notion of a service offer.

In the experiments detailed in Section 7.4 a given Hollowman instance was
unaware if it was signalling to another Hollowman instance or to Q.Port. While
this facilitated the experiments, it is not generally appropriate as the SICI and
SIRI are too simple to completely encapsulate P-NNI. Hollowman control entities
must make a clear distinction between communicating with other Hollowman
entities and communicating with P-NNI. However, only the connection-manager
and gateways attached to foreign control architectures have to implement P-NNI;
two Hollowman connection-managers can still exchange routing information using
the SIRI and non P-NNI aware connection-managers and gateways can be kept
simple. Requests to signal to services offered by the standard ATMF control
architecture can be transported across the Hollowman, using the SICI and SIRI
in the way described by this chapter, until a P-NNI aware connection-manager
recognises their significance.

To signal across P-NNI to a service under the control of the Hollowman re-
quires that the service be identifiable within P-NNI. The service must be exported
with the appropriate format and the Hollowman must do the mapping when a
signalling request is received for that service. For example, if a Hollowman service
is capable of supporting a P-NNI anycast service, then the connection-manager
must export the willingness of the gateway attached to P-NNI to support that

121

service, using the normal P-NNI routing information exchange, and when the
gateway receives the connection request, the Hollowman must be capable of do-
ing the additional signalling to the correct Hollowman service.

Running Hollowman as a P-NNI group is the subject of future work; the
integration with Q.Port motivates its feasibility.

7.5.2 IISP

P-NNI is complex, so another protocol, the Interim Inter-Switch Signalling Proto-
col IISP [ATMF94b] — sometimes called P-NNI phase zero — has been defined
which uses UNI signalling for implementing the NNI between switch controllers.
In each IISP exchange one switch controller plays the role of a host controller.
All switch controllers know the locations of all the other switch controllers that
they communicate with; this information is manually added to the routing tables
of each switch controller. IISP does not have the same scalability as P-NNI and
is simply an interim measure while P-NNI is deployed.

7.5.3 B-ICI

P-NNI is used for the interconnection of two private nodes; the Broadband Inter-
Carrier Interface (B-ICI) [ATMF95b, ITU-T96] serves to connect two public
networks. B-ICI specifies a wider range of physical layers over which the ATM
layer can run than UNI/P-NNI and also particular adaptation layers for running
common inter-carrier services, e.g. Frame Relay Service (FRS). B-ICI signalling
is based on the ITU-T Signalling System No.7 [ITU-T93b]. The upper layer
signalling protocol (B-ISUP) is similar to that of Q.2931, with some modifications
to allow it to interoperate with the Public Switched Telecommunications Network,
e.g. addresses use E.164 format. It is not clear how the public network will
interoperate with private networks, particularly in the exchange of potentially
sensitive routing information.

7.6 Summary

This chapter has shown how an instance of an open control architecture can
interoperate with other open control instances and with instances of Q.Port — a

122

commercial implementation of UNI 4.0. In the longer term, P-NNI is proposed
as the universal interoperation protocol; in this scheme P-NNI would serve as
a ‘glue’ to interconnect different control architectures. Experience with inter-
connecting with Q.Port has motivated the feasability of achieving this. Control
architectures can implement the ATMF NNI without implementing the UNI,
and without requiring that all control requests within the control architecture’s
domain be ATMF compliant. This will allow network operators more flexibility
over the nature of the control architectures used within their own domain while
still permitting signalling which scales to planetary scope.

123

Chapter 8

Adaptive Fault Management

Chapter 1 described how switch-independent control is characterised by a loosen-
ing of the association between the out-of-band switch control functions and the
switch fabric. This has implications for the way such a control architecture is
administered and in particular how control architectures can detect and recover
from network failure. The ability of a fault management system to adapt itself
to the current network state is a precondition for it being robust. This chapter
considers how the Tempest can facilitate the implementation of adaptive fault
management

8.1 Introduction

A Tempest control architecture must ensure that its view of the network state
remains in phase with that of the actual state. This is not prohibitive, since every
permitted state changing operation is by definition sanctioned by the control
architecture. The control architecture, for example, decides whether a connection
request should be granted by examining its local view of the network. Once the
control architecture decides to admit the request, it instructs the switches to
create the connection and updates its local view. Normally, the switch should
never refuse an operation that the control architecture has authorised, i.e. the
control architecture has all the intelligence while the switch is relatively dumb.

If an unauthorised change of network state occurs, e.g. port failure or routing
table corruption, then that change must be propagated to the control architec-
tures concerned so that they can respond to it. All unauthorised changes in

124

network state are termed network failures. In the period between a failure occur-
ring and the control architecture taking it into account, the control architecture is
said to be unstable. The process of returning the control architecture to a stable
state is called failure recovery.

The reaction of a control architecture to network failure is control architecture
specific. For example, some control architectures might simply release their net-
work resources and finish when confronted by any unforeseen change in network
state; other, more resilient control architectures, might adapt to the failed state.
Failure recovery may or may not require the participation of a human operator.

Besides detecting and recovering from failure, fault management also entails
determining its cause. Some cases, for example outage of a port, are trivial to
determine; others are more subtle, requiring the correlation of information from
many different sources. [Yemini93] gives an example whereby a long burst of
noise on a link carrying a large number of different connections from a given host
leads to packet loss. The link layer protocol invokes automatic retransmission
which results in a burst of retransmission tasks running on the interface processor
queue, leading to thrashing. The transport layer protocols time out and the host
CPU responds with a burst of corrective action leading to more thrashing and
the emission of alarms from the host. To identify the reason for the alarms the
operator needs to have information about both the error rate on the link and the
queue length on the interface processor. However, neither of these two pieces of
information by themselves is enough. What the operator must determine is that
a sharp increase in error rates was followed by a sharp increase in queue length
and that even after the error rate dropped off the queue length remained long,
pointing to lots of failed retransmissions. Correlation between two different types
of data from two different sources is needed to identify the cause of the problem.

The human operator’s decision about probable cause is guided by the available
information. Often the problem is too much information rather than too little. A
failure may cause other failures as side-effects which in turn provoke the emission
of more alarms, making it difficult for the operator to distinguish between primary
and auxiliary alarms. The problem becomes worse the further across the unstable
network the alarms have to be transported to the operator. If the management
system is centralised then all the alarms will be heading towards the same place.
When alarms start being emitted, because of other alarms, then exponential
growth in emissions may put the network in jeopardy [Dupy91, Miller97]’.

1Miller97] reports an episode in a SONET network where two Add and Drop Multiplexors
(ADMs), constantly exchanging alarms, brought the network management system to within 3%

125

This chapter starts by examining the problems involved in implementing one
aspect of fault management — recovery from port failure. The constraints on a
fault management system are elucidated through this examination. This solution
is then generalised so as to be applicable to a wide range of fault management
functions.

8.2 Recovering from Port Failure

This section considers the implementation of recovery from port failure, i.e. the
unexpected non-functioning of an ATM switch port, such that it is no longer able
to send and/or receive cells. It starts by looking at a naive strategy for achieving
this, using the Hollowman as an example control architecture. A discussion
identifies the weakness in this strategy and leads to the definition of a more robust
one for the Hollowman. Finally, the sharing of the fundamental infrastructure
between many control architectures in the Tempest is motivated.

8.2.1 Naive Strategy for the Hollowman
After port failure, the Hollowman attempts to regain a stable state by:

e updating its topology information so that no further connections will be
routed through that port;

e removing all connections that run across that port;

e notifying the source and sink applications about the connection’s deletion.

The Ariel server, as described in Section 2.2.4, is capable of notifying regis-
tered parties about changes in port state. For the purposes of this discussion
suppose that the port has only two states of interest: up and down. Within the
Hollowman, each soft switch registers an interest with the Ariel server about the
state of the ports of its switch fabric using the Ariel server. If a port goes into the
down state, the corresponding soft switch within the Hollowman is notified. The
reaction of the soft switch to reception of a port failure notification is to mark
that port as unreachable and to propagate the failure to the connection-manager.

of its virtual memory limits. The author comments that if these limits had been exceeded the
entire system would have crashed.

126

The Hollowman connection-manager updates its network topology informa-
tion so that no further connections will be routed through that port. The
connection-manager searches through its information about the current connec-
tions to identify which of them crosses the port. It removes all those connections
from the switch using the Ariel server and notifies the source and sink applica-
tions about the connection’s liberation in the way described in Chapter 4. If an
affected connection has been marked as persistent then, assuming an alternative

route exists, it will be automatically rerouted, i.e. it is treated as a Soft PVC
[ATMF96).

At the end of the failure recovery process, the Hollowman is once again in a
stable state, albeit with a reduced domain.

8.2.2 Discussion of the Naive Strategy

The strategy described in Section 8.2.1 is naive since it assumes that normal
communication between Hollowman entities will not be affected by the port fail-
ure. Many of the solutions proposed in the literature, [Shrivastava97, Frey97,
Hong97, TINA-C97] also ignore this fact?>. For example, in [TINA-C97], af-
ter a network element has raised an alarm, four TINA computational objects are
involved in detecting and recovering from the failure: notification server, alarm
manager, fault coordinator and testing/diagnostic server. Implicitly these compu-
tational objects must communicate with others, e.g. TINA connection manager,
to carry out their task, yet it is not clear what happens if communication between
these entities themselves is affected by the network fault.

The implementation of failure recovery is complicated by the fact that there
is no guarantee that any Hollowman service can still communicate with any other
service executing on a different host.

In existing ATM systems, Operation and Maintenance (OAM) cells
[ITU-T93a] are exchanged between neighbouring connected ATM switches to
ensure the health of the physical link and the logical layers built over it. The
OAM cells are inserted into the data stream of normal connections. For example,
if an OAM cell for a virtual path is not received after some time from the down-
stream switch, the OAM functions on the upstream switch may assume that the

2Many papers seem to consider the integration of CORBA into a alarm management sys-
tem as an end in itself, without considering whether the advantages of CORBA, e.g. location
transparency, are desirable in detecting the cause and nature of faults.

127

virtual path has been removed and take suitable action. This allows all reachable
parts of the network to be informed about failure. A network which supports
open control can still use the same mechanisms at the switch level. However,
since Ariel separates the switch controller from the switch fabric, the control
architecture cannot examine the data stream of normal connections. The con-
trolling software is not necessarily even running on the network elements through
which the OAM cells are transported. The higher level control architecture also
needs to be prompted to update its view.

Control architectures are distributed entities that in general use the network
itself for communication between their constituent parts. The Ariel sever — as-
suming it monitors the OAM cells — may send an appropriate message to a part
of the control architecture, but the control architecture as a whole still has to
synchronise itself. If port failure caused an alarm to be emitted, there is no guar-
antee either that the Ariel server can communicate with the control architecture
or that the control architecture can contact all its constituents. The recovery is
needed because the network has failed. As small a number of assumptions as
possible should be made about the network state during the recovery process.
Doing so also reduces the possibility of the recovery process itself inflicting harm
on the network.

Recovery from port failure entails each part of the control architecture trying
to determine with which other parts it can still communicate. During failure
detection and recovery, knowing the location of the entities that are being com-
municated with is of primary importance.

In summary, during failure recovery few expectations should be placed on the
network, i.e. the resources used for detecting and recovering from failure should
be minimal and bounded. The next section takes these constraints into account
to obtain a more robust strategy for failure recovery.

8.2.3 Robust Strategy for Hollowman

The discussion in the previous section concluded that the transport of messages
between control architecture entities while the control architecture is unstable
should be minimal and bounded. Therefore, during recovery, the distributed
processing environment is not used for communication between hosts, instead
the ATM adaptation layer is used directly. Signalling and failure recovery use
separate mechanisms; this is analogous to the situation in the current standards

128

H2 H4
(group leader) (group leader)

eV 3 :

Hi
> <
) @)
H3 H5
G

CA-OAM Network connections

Figure 8.1: Example of the CA-OAM network

where reliable message passing — SSCOP — is used for signalling but single
cells are used for operation and maintenance. The messages exchanged between
Hollowman entities to return the Hollowman to a stable state are termed Hol-
lowman Operation and Maintenance (H-OAM) messages; in a sense the H-OAM
messages are control architecture level OAM messages. All the H-OAM messages
described in this section fit into a small number of ATM cells®.

A set of connections is dedicated to the transport of H-OAM messages. These
connections are collectively called the control architecture OAM network (or CA-
OAM network). This network allows all hosts to be interconnected, while using
a small number of connections. From amongst the set of hosts attached to a
switch one host is nominated group leader. Each group leader has a bi-directional
connection with all members of its group. In addition each group leader has a
bi-directional connection with each of its neighbouring group leaders.

The number of VCIs dedicated to the CA-OAM network on a host which is
not a group leader is one source and one sink. On a group leader it is number
of neighbouring groups + number of hosts in groups sources and sinks, i.e. it is
upper bounded by the number of ports - 1 of the switch.

3In fact, in all the experiments they fit into one ATM cell, but since the addresses of the
locations the messages pass through are added, to avoid looping around forever, potentially the
messages can be many cells long.

129

In the Hollowman implementation, the host-manager is the application end-
point of all these connections. The CA-OAM network is established during the
Hollowman’s initialisation. All host-managers communicate with other host-
managers by sending messages to their group leader. The group leader decides if
and to where the message should be forwarded. Each host-manager, before for-
warding or sending a message, adds its address to the message. This allows the
group leader to decide to where it should forward a message and avoids messages
constantly being looped around.

Figure 8.1 shows the CA-OAM network between five hosts labelled with ad-
dresses H1 ... H5. (1) The host-manager at H1 sends a H-OAM message with
identifier 23 to its group leader. The host-manager at the group leader then for-
- wards it to its group members (2) and its neighbouring group leader (3). The
host-manager at the neighbour sends the message to all its group members (4).

Host-managers, which are running on hosts that have been nominated as
group leaders, periodically send out still-alive message to all their neighbours
and group members and listen on all their sink end-points for arriving still-alive
messages. Failure to receive such a message from a host — group member or
neighbour — leads to the assumption that either one of the ports connecting the
two hosts has failed, or that the remote host-manager has failed. The sequence
of events that occurs after failure is best explained with an example.

Example: suppose the network is as shown in Figure 8.2. The group lead-
ers for the three switches, cogan, aynho and aller, are respectively: thistle,
irishsea and heather. The diagram shows the Tempest applications running
on each host. Suppose that the link between cogan and aynho is broken.

After thistle’s host-manager has not received a still-alive message from its
neighbour for a given time it will start the recovery process. Since thistle is
still receiving still-alive messages from clyde, it deduces that the switch it is
connected to is still functioning and the port by which it is attached to that
switch is working. Therefore, the cause of the non-reception of the message is
one of the following: '

e its neighbour’s host-manager has failed;
e the port or link by which its neighbour is attached to its switch has failed;

e the port or link through which its switch is attached to its neighbouring
switch has failed.

130

clyde magnus
cogan aynho aller
. h_manager h_manager
c_manager switch divider
switch divider
1! I :
! ;
Y. v ! v
h_manager ! . h_manager
¥ y
h_manager
switch divider
thistle heather
roup leader, .. roup leader
(group) irishsea (group)
(group leader)
——————— =» ATM Connection (in thistle’s group) h_manager: host-manager
............................. # ATM Connection (in irishsea’s group) c_ranager: CONnECtion-manager
~——————=————> ATM Connection (in heather’s group)

Figure 8.2: Robust error recovery

The first two cases have the same effect, i.e. it is no longer possible to signal
to irishsea. They are, for the recovery process, therefore equivalent. The latter
case can be distinguished from the first two by asking the Ariel server imple-
mented by cogan’s switch divider about the state of the port. In the example
shown, the switch dividers are run on a workstation, so communication with them
is carried out using the CA-OAM network. This will verify that the port is down.
The host-manager then initiates the recovery process for its part of the network.

This entails sending an are-you-running-a- Connection-Manager message to all
the members of its groups and then waiting for them all to reply. There is only
one member in thistle’s group — clyde — and as it is running the connection-
manager it returns true. The host-manager on thistle then sends the message
port-failed, with the appropriate parameters, to all its group members. The
connection-manager on clyde behaves in the same way as that described in Sec-
tion 8.2.1. It uses the Ariel server to remove the parts of the connections that use
the port, and that cross cogan. It changes its topology so that aynho and aller

are no longer part of its domain and removes all its local state about connections
that cross them.

* The host-manager on irishsea behaves similarly. Normally it sends an are-
you-running-a-Connection-Manager message to all the members of its group. and
waits for a reply. Since in the example it has no group members, it immediately

131

sends the are-you-running-a-Connection-Manager message to its neighbours. Its
neighbour, heather, checks if it is running the connection-manager by consulting
the host-trader, and when it finds that it is not, it forwards the message to all its
group. Since all return false and it has no other neighbours it returns false to
irishsea. The host-manager on irishsea deduces that no connection-manager
exists in its subnetwork.

The host-manager then starts a new connection-manager on irishsea.
This connection-manager determines the topology of the subnetwork by asking
each reachable switch divider for the allocated partition on that switch. The
connection-manager running on irishsea then requests each of the reachable switch
dividers to reinitialise the VCI space in the Hollowman’s virtual network and each
of the reachable host-managers to release all their connections, i.e. all existing
connections are lost*. The result of the recovery process is to split the original
Hollowman domain into two separate and distinct ones.

8.2.4 Sharing the CA-OAM Network

Section 8.2.3 described how a single instance of the Hollowman responds to a port
failure. Within the Tempest, many instances of different control architectures
may be running simultaneously over the same physical network. They will all
need to detect and respond to network failure.

Each of them could define its own individual mechanisms for doing this. This
is wasteful, as each of them would be doing similar things in response to failure.
Moreover, the message exchanges described in Section 8.2.3 are general enough
that many different control architectures could multiplex OAM messages over the
same CA-OAM network?®.

To share the CA-OAM network, some entity must be capable of multiplexing
and dispatching messages to and from the appropriate control architectures. An
entity, termed the Tempest site, was created to experiment with sharing the CA-
OAM network. A Tempest site runs on each host within the Tempest and is
the application end-point of the connections. In this configuration, the CA-OAM
network is a distinct virtual network within the Tempest, created at start-of-day.

41t would be possible to save these connections by correlating the state of the switch dividers -
and the host-managers, but this has not yet been attempted in the current implementation.

®When control architectures have their own well-defined patterns of interaction to recover
from failure, e.g. P-NNI, they use their own separate mechanisms.

132

Control architectures

send-local H send-remote |—-

atm-listen atm-listen atm-send atm-send
! S) 1 ! S
— - - -
Remote — Remote
local local

Figure 8.3: The Tempest site

Since CA-OAM messages may only be passed on this virtual network, the amount
of resources assigned to operation and maintenance is bounded.

At network creation, the Tempest network builder assigns each control ar-
chitecture a unique identifier encoded in one integer. Adding this identifier to
the start of a CA-OAM message allows messages from different control architec-
tures to be distinguished. The total length of the message is also sent. No other
constraints are placed on the structure of OAM messages by the Tempest site.
Control architectures are free to define their own patterns of communication over
this fundamental infrastructure, e.g. reliable communication. The Tempest site
could implement policies for preventing a given control architecture using up all
the resources of the CA-OAM, e.g. setting a bound on the number of CA-OAM

messages a control architecture can send per second. This is the subject of future
work.

The Tempest site allows control architectures to send messages to other group
members by calling send-local. When invoked on a non group leader host, it sends
the message to the group leader; when invoked on a group leader host it sends
the message to all the members of the group. The Tempest site send-remote
operation enables a control architecture to send a message to all the group’s
neighbours. It is only defined for group leader Tempest sites. Figure 8.3 shows
three control architecture entities communicating with the CA-OAM using the

133

Tempest site.

A control architecture entity wishing to receive OAM messages from the Tem-
pest site on the same host as itself must register with that Tempest site. When
a control architecture entity registers, it is informed about whether the host is a
group leader or not. The control architecture passes its identifier and the inter-
face references to the operations to call back when a message is received for that
control architecture. A Tempest site communicates with the control architectures
using the normal DPE, but all such communications are local as they reside on the
same machine. In the current implementation, two call backs are defined: one,
port-failure, is the means by which a given Tempest site informs the local control
architecture entities about a network failure. The other, received-message, is the
means by which the Tempest site dispatches a message to a control architecture
entity after feceiving it from another Tempest site.

The Tempest sites exchange still-alive messages amongst themselves. The
still-alive messages have a special identifier and are not dispatched to control
architectures. If the Tempest site fails to receive a still-alive message from its
peers, it initiates the failure recovery process by calling all the control architecture
entities registered at that host with the port-failure callback. In this way, different
control architectures share the CA-OAM network to recover from failure.

8.3 Generalisation

The scheme defined in Section 8.2.4 allows different control architectures to share
the CA-OAM network, allowing them to implement their own, control architec-
ture specific, recovery processes in response to port failure. To adapt this ar-
rangement to be generally usable for fault management, some additional issues

‘need to be_ addressed:

e Each message of every control architecture goes to every host in the physi-
cal network regardless of the topology of the control architecture’s virtual
network. This is inefficient.

e For two entities in a control architecture to exchange a CA-OAM message,
requires them both to agree on the meaning of that message. It is not
possible for a new message to be introduced without updating all control
architecture entities about its meaning.

134

e The previous sections have only described how to detect and recover from
one simple type of failure. Other types of failure require more correlation
of information.

These points are now considered in more depth.

8.3.1 Directed Message

In the scheme defined in Section 8.2.4, the send-local and send-remote operations
send a control architecture message to a set of hosts. A control architecture’s do-
main consists of only some subset of the physical network. Therefore, messages
relevant to one control architecture are sent to hosts which are not part of its do-
main. For example, suppose that in Figure 8.2 there were another host attached
to cogan, but that it was not part of the Hollowman control architecture’s virtual
network. The are-you-running-a-Connection-Manager message would be sent to
the Tempest site at that host. This does not cause any problem, as the Tem-
pest site checks if an incoming message’s identifier corresponds to any registered
control architecture entity and if not simply drops it. The number of dropped
messages increases as a function of the number of control architectures and the
size of the physical network. If the solution defined in Section 8.2.4 is to scale,
then there is a need for more discrimination about where CA-OAM messages are
sent.

A Tempest site does not have any knowledge about the topology of the control
architecture’s virtual network. Giving it this knowledge would greatly complicate
the scheme as the Tempest sites would have to be informed about the topology of
all the virtual networks and this information would have to be constantly updated
as these changed. So the Tempest sites cannot make the decision as to where a
CA-OAM message should be sent. "

Alternatively, the send operations could be modified so that a control archi-
tecture entity using the Tempest site could specify to which locations the message
should be sent. This would require that control architecture entities on each site
maintain a complete view of their topology, leading again to more complexity.

135

8.3.2 Dynamic Message Type

The meaning of each message exchanged between control architectures must be
fixed in advance. For example, the payload of the Hollowman OAM message
starts with a message identifier which defines the type of that message. The host-
manager, on receipt of the message, knows the operation that must be performed,
for example, are-you-running-a-Connection-Manager means that it should return
whether its host-trader contains a connection-manager offer or not. The intro-
duction of a a new CA-OAM message, e.g. how-many-connections-have-you-got,
requires the updating of all of the host-managers.

8.3.3 Correlating Information

The network failure described in Section 8.2 is simple. In general, fault manage-
ment is more complex involving the gathering of many different types of infor-
mation from many diverse entities. If, for example, the port in Figure 8.2 was
oscillating between being up and down, then the different parts of the control
architecture might not be able to agree on whether a failure had occurred or
not. The control architecture entities in cogan’s groups might believe that they
had become separated from aynho and aller, while the entities in aynho’s and
aller’s groups might believe they were still connected; [Dupy91] gives an exam-
ple of this type of problem in a commercial network. The different views must be
correlated to come to a conclusion about the actual state. For information to be
compared it must first be gathered; the more centralised the correlation of infor-
mation the less likely it is to be accurate or understandable because the further
information must travel the more probable it is to be affected by the instability
of the network.

The next section explains how these problems can be alleviated by sending
code as well as state in the OAM messages.

8.4 Fault Management with Mobile Code

Mobile code is data that can be executed as a program; an autonomous mobile
code system is one in which an executing program can stop executing on one
location, and ask to be moved to another location on which its execution will be

136

resumed. The combination of mobile code and the environment it executes in is
called a mobile agent. [Nwana96] gives an overview of the research currently
being carried out on various types of mobile agent systems.

Experimentation in passing autonomous mobile agents in CA-OAM messages
has allowed some of the issues raised in Section 8.3 to be addressed. In this
system, each control architecture has its own set of mobile agents, supplied to it
by the Tempest infrastructure. The mobile agents of a control architecture are
informed by the Tempest infrastructure about the topology of the virtual network
of their control architecture. CA-OAM messages are tagged as either executable
or non-executable. The Tempest site treats non-executable messages as defined
in Section 8.2.3, while executable messages are loaded and executed. The control
architecture specific mobile agent can communicate with the control architecture
entities at that host using the normal interfaces of those entities. The sequence of
operations that a mobile agent uses to perform its function is determined by the
mobile agent itself. Since new mobile agents can be introduced without affecting
a control architecture, message types can be added dynamically.

The mobile agent uses its knowledge about the topology of its control archi-
tecture’s virtual network to determine where it should be sent next. The mobile
agent may also take additional factors into account, for example where it has
already been, when taking this decision. This allows the CA-OAM messages to
discriminate about where they are sent without adding complexity to the Tem-
pest sites or the control architecture. Moreover, the normal operation of the
control architectures is kept completely distinct from their exceptional behaviour
when managing failure.

Mobile agents allow processing to be brought to state, rather than state to
processing. The mobile agent can examine the state at one location and then
correlate this with the state which it finds at the next execution location. Since
the mobile agent can process the state locally, it can reduce the amount of in-
formation to be transported. If this saving is larger than the size of the agent,
then the total amount of data that needs to be transported is reduced. As the
agent is control architecture specific, it need only examine parts of the state that
concern its control architecture.

The use of mobile agents reduces the need for doing the correlation centrally,
allowing a more scalable solution. It increases the probability of correct fault
detection as the distance between the location where an alarm is emitted and
the location where it is interpreted is shortened, thereby reducing the amount of

137

‘noise’ that has to be filtered out. It allows more adaption, since the mobile agents
can change their behaviour as a function of the state of the network. For example,
if they detect that alarm emission is causing the network to overload they start
suppressing the emission of alarms. Such a system is inherently decentralised,
allowing information to be gathered and management decisions to be made closer
to the concerned network elements.

The next section describes a strategy for recovery from a complex failure
requiring a large amount of correlation.

8.5 Experiments with Tempest Mobile Agents

This section describes some practical experiments that have been carried out to
test the use of mobile agents for fault management within the Tempest environ-
ment.

8.5.1 Overview

Research into network control at the University of Cambridge Computer Labora-
tory has resulted in the implementation of many experimental control architec-
tures. An incorrectly programmed control architecture which only partly deletes
or creates a connection pollutes the VCI space. Sometimes failure can occur in
subtle ways. For example, programming error in handling concurrent connection
creation requests can lead to erroneous connections being created. The control
architecture’s view of the network becomes out of phase with the real state.
This is an example of the problem of desynchronization that was described in
Section 8.1, although in this case it is the control architecture rather than the
network that fails. "

The existence of erroneous connections may not become manifest until some
time after their creation. Deciding whether the entire set of connections that a
given control architecture possesses is valid or not requires correlating information
from the virtual channel tables of all the switches that the control architecture
uses. This task is laborious and better. automated. It would have been possible
to write a central entity which constantly polled the switches across the network
to determine whether the VCI space for all control architectures was healthy or
not. This would require the transfer of the complete virtual channel tables from

138

all switches, and is therefore not a scalable solution. Consider a switch that has
16 ports with a single virtual path used for connections and 256 virtual channel
identifiers associated with each path. The number of distinct entries in the virtual
channel tables is 4096. Assuming that each entry is a sextuple of integers, and
all integers are encoded in 2 bytes, then the entire state of the switch’s virtual
channel tables takes up 48 kilobytes. On the other hand, as is demonstrated in
Section 8.5.3, the amount of code required to do the correlation is quite modest.
It makes more sense to move the program to the switch state rather than the
other way around. Mobile agents offer a natural way of achieving this.

The experiments that this section describes address a practical problem; this
problem is particular to the experimental environment but is an example of a
class of problem in which distributed data must be correlated.

8.5.2 Automatic Resource Freeing

When a control architecture starts, the Tempest infrastructure can initiate one
or more monitoring agents dedicated to it. These agents know:

e the resources assigned to the control architecture;
e the location of the Ariel servers in the control architecture’s virtual network;

e the location of a control entity capable of determining if a connection is
still in use.

The mobile agents move between these locations using the CA-OAM network,
supplied by the Tempest infrastructure and shared between all control architec-
tures.

Each agent constantly moves between the Ariel servers and examines the state
of the parts of the virtual channel tables that have been allocated to its control
architecture. The agent follows connections upstream, determining if sinks on
one switch have corresponding sources on the upstream switch. It only carries
relevant information between the Ariel servers and does all correlation locally,
reducing the amount of information that needs to be carried around. At the end
of its tour of the switch dividers, the agent moves to the location of a known

control architecture entity to report on any potentially erroneous connections it
has found.

139

ARF agent for CTR-1 ARF agent for CTR-1 ARF agent for CTR-1

VCI=210..220 VCI=210..220 VCI=210..220

Port A, B, C Switch 1 Port A, B, C Switch 1 Port A, B, C Switch 1
Port A, B, C Switch 2 Port A, B, C Switch 2 Port A, B, C Switch 2
No State S1: A, 0,210 ->C, 0,219 Bad Connections ?

S1: A, 0,211 >C, 0,220 | |S1:4,0,210->C, 0,219

-,
-

) . ?“ I"-:\"
@ b ia CTR-1
“IEN (S
\\ / \ /

/ \ /
\ / \ /
\ / \ /
| / \ /
v/ |/
———1 | R
IR DCE
C c]
Switch 1 Switch 2

A,0,210->C, 0,219 | | A,0,220->B,0, 215
A,0,211->C, 0,220

Figure 8.4: Robust error recovery

Control architectures may have their own reasons for maintaining connections
which appear invalid to the agent, so the agent cannot make the decision inde-
pendently of the control architecture. For instance, as explained in Section 5.1,
the control architecture may leave redundant connections in place if pending new
ones can make use of them. Another reason that the agent should liaise with the
control architecture is that it may have read switch state which was the result
of an incomplete control architecture operation. The control architecture can
recognise such cases and tell the agent that the state it found to be potentially
erroneous is in fact valid.

The simplest version of the agent flags an alarm to a human operator if the
control architecture confirms that the connection should not exist. The human
operator then takes appropriate action, for example to clean up the VCI space
manually. To make the recovery process more dynamic, the agent’s function was
enhanced so that it could automatically free erroneous connections as soon as
it identified them. Such agents are called Automatic Resource Freeing (ARF)
agents. They are useful during testing since they avoid the need for constantly
stopping and restarting control architectures.

140

Figure 8.4 shows an example use of an ARF agent. The agent is associated
with a control architecture CTR-1, which has the VCI space 210 ... 220 allocated
on the ports A, B and C of both Switch~1 and Switch-2. All connections are
made with a virtual path identifier of zero.

The agent goes to the location of the Ariel server for Switch-1 and collects
all the state associated with connections, using the Ariel interface. It then goes
to the location of the Ariel server of Switch-2 and correlates the information it
has brought from Switch-1 with that of Switch-2, to determine if any of the
connections is potentially erroneous. In the example, the connection on Switch-1
from port A, VCI=210, to port C, VCI=219, (A,0,210)—(C,0,219), is suspicious,
because (4,0,219) is not in use on Switch-2. The ARF agent then goes to
the location of the interface to its control architecture and asks whether this
connection is known. If not, it is removed.

If ‘ARFing’ is done too quickly then resources are wasted, as the ARF agents
must be frequently transmitted and executed; if it is done too slowly then the
inconsistencies between switch and control architecture may cause connections
to be inexplicably refused. ‘ARFing’ is made adaptive by varying the number
of ARF agents executing and the frequency with which they move as a function
of the number of inconsistencies found in the immediate past. When an agent
returns to the control architecture, the control architecture can change the agents
behaviour by modifying certain parameters, e.g. the amount of time it should wait
at each Ariel interface. The control architecture can also launch more agents when
it is proper to do so.

The ability of ARF agents to move themselves means that the processing
moves to the state, rather than the state to the processing (i.e. to the control
architecture). Since ARF agents are smaller than the entire contents of the
network’s virtual channel tables, the amount of network communication required
to clean up resources is reduced.

8.5.3 Implementation

The implementation was carried out by David Halls using the Tube [Halls97]
mobile agent system, mentioned in Section 5.4.1, in order to demonstrate its util-
ity. The Tube allows the sending and receiving of marshalled expressions written
in Scheme to and from a network. The Tempest site is capable of identifying,
unmarshalling and executing the Tube mobile agents. The size of an ARF agent

141

is around 1 kilobyte. A full account of the actual implementation of ARF agents
is given in [Halls97, Halls98] and is not repeated here.

8.5.4 Discussion of the Utility of Mobile Agents

Executing CA-OAM messages places a lower bound at the latency at which they
can be processed. An executable CA-OAM message may be many cells long, it
must be assembled into a program and executed within an appropriate environ-
ment. However, the efficiency with which Operation and Maintenance functions
are executed is of much less importance than their need for robustness and mak-
ing minimal demand on network resources. Typically, failure recovery is initiated
some small number of seconds after the failure’s manifestation; the overhead in
executing interpreted code is therefore not critical®. Of more concern is that the
use of software mobile agents in the way suggested requires every location in the
network that they visit to be capable of executing them. To some extent, the
usefulness of the approach defined here depends on the ubiquity of environments
to run those agents and the security guarantees which those environments can
enforce.

8.6 Related Work

The work of the ATMF and ITU-T on operation and maintenance [ITU-T93a]
has already been mentioned in Section 8.2.2. OAM cells are organised into a five
layer hierarchy; FI cells carry information about the physical layer and higher
layer OAM cells advance up the protocol stack. OAM cells are used for fault
detection, notification and performance testing. The work described here extends
the OAM cell technique to an open signalling environment.

The MAGNA project .[Magedanz96] has been exploring how the TINA
model can be extended to address the drawbacks of traditional client-server in-
teractions. The proposed framework covers both control and management. The

®[Halls97] gives results for the latency with which the elements in an array of integers on
a remote server can be added together by a client using: an RPC call to obtain each element
and performing the sum at the client, or sending a Tube agent from the client to the server and
performing the sum at the server. For a configuration with the client and server both running on
Sun Ultra Sparcs, communicating using TCP/IP and an array containing one hundred thousand
integers, the former method requires more than 5 seconds, while the latter less than 400 ms.

142

work presented in Chapters 6 and 9 and in this chapter, all looks at how certain
network functions can be dynamically extended; the issues related to signalling
and fault management are radically different and there is no reason to believe
that the patterns of interaction that are valid for one should also be valid for the
other.

British Telecom (BT) [Appleby94] uses mobile agents for updating routing
information in a large source routed circuit switched network. The work uses two
types of agents: a load agent which uses Dijkstra’s algorithm for updating routing
tables and a parent agent which determines at what frequency these updates
are performed from observing the overall load of the network. Simulations of
BT’s U.K. PSTN have been used to motivate the assertion that the agents allow
more adaptation than more conventional load balancing techniques. The work
presented in this chapter is similar to that in [Appleby94] and has shown how
such agents can be implemented in a real network.

Agent Tcl [Gray97] is a software agent system used for the distributed gath-
ering of information. Early experiments suggest that mobile agents allow better
adaptation in fast changing networks and secondly that the parallelisation of the
task permits greater efficiency’.

The WAVE project [Sapaty94| defines a general purpose low-level language
interpreter which can be run on a variety of network nodes and which allows the
propagation and execution of a user defined WAVE string across the network.
WAVE has been used for a number of very diverse projects including:

integration of distributed databases;

distributed coordination of multiple objects in space;
e management of collective behaviour of robots;

e management of open computer networks.

Some of the related work detailed in Section 6.7 ([Tennenhouse96,

Yemini96]) and 9.7 ([Meyer95, Waldbusser95)) is also relevant to this survey
but is not repeated here.

"Interestingly the authors state that smart routing is problematic, because: Unfortunately,
this [routing] information is usually hidden inside the routers and is not propagated to user
workstations. In an open signalling environment such as the Tempest, more information about
the physical state of the network can be made available to clients.

143

8.7 Summary

This chapter has looked at the issues related to implementing fault management
functions within the Tempest. Some of these issues are general to all control
architectures; for example the avoidance of the failure recovery process causing
further failure. Others are particular to open control systems; open control sys-
tems may be physically separated from the network devices they manage, and
therefore OAM messages sent in-band will not reach all control entities. The fact
that the Tempest is designed to support multiple control architecture, each of
which has its own control architecture specific reaction to failure, requires the
failure recovery mechanism to be flexible enough to accommodate all of them,
while still allowing common features to be shared.

This chapter concludes that general fault management within the Tempest is
best achieved by having a virtual network, dedicated to OAM, over which control
architectures can send their own OAM messages and define their own patterns of
communication for failure recovery. Little constraint is placed on the structure
of these messages, so they can contain executable as well as non-executable data.
The experimental Automatic Resource Freeing function described in this chapter
supports the assertion that executable messages permit less centralised and more
adaptive fault management.

144

Chapter 9

Caliban:
A Switch Interface for Health
Functions

Health functions are those dedicated to ensuring the correct functioning of the
network. Tempest clients will wish to manage their virtual network in the same
way as they currently manage their physical one. This chapter describes a switch
interface — Caliban — which allows network administrators to verify and ensure
the overall health of their virtual networks within the Tempest environment.

9.1 Introduction

Traditionally within ATM there has been a distinction made between net-
work management, e.g. TMN [ITU-T92b|, and network control, e.g. Q.2931
[ITU-T94b]. This separation of network functions into two groups is based as
much on who performs the function as what the function does: in general a human
network operator (or ‘intelligent’ proxy, e.g. an expert system) is the initiator or
recipient of a management function, while control takes place without operator
intervention. This has led to some confusion about what is management and
what is control. Some authors [Crosby95, Crutcher93] have decided it is best
to distinguish them only by the time-scales on which they operate. In this view
there is no sharp division but only a continuum from functions such as in-band
traffic management at the scale of microseconds right up to functions such as

145

network provisioning at minutes and even longer time-scales.

Although this gives a single simple parameter on which to differentiate be-
tween functions, it ignores completely the reason for performing the function.
This dissertation distinguishes between network functions based on their pur-
pose. Network operators require two different groups of functions to exploit their
networks:

e conitrol functions that allow a network to be used;

e health functions that permit the health of the network to be maintained.

Control is analogous to the useful functions offered by a program, while health
is akin to debugging, profiling, garbage collecting, etc. If the network was per-
fectly reliable, possessed resources that were more abundant than the maximum
demand and had an invariant topology, then health functions would not be re-
quired. Health functions are used by the network operator to enable the detection
of problems and to help in the determination of their cause, for example by cor-
relating the manifestation of faults against the values of counters held in switch
memory. A health function may be as simple as some convenient presentation of
the memory of switch, or as complex as an expert system examining and correlat-
ing the historic information drawn from many distinct sources. [McConnell97)
gives a description of some case studies of actual problems experienced in com-
mercial networks. These include:

e frayed cables causing high-le;\rel messages to be lost leading to many re-
transmissions and the slowing down of the network;

e faults in the routing tables of a LAN connected to a large meshed backbone
causing all the backbone’s traffic to be routed through the LAN;

e ARP cache reflush values erroneously being set for milliseconds rather than
minutes, leading to periods of slow response.

[Cisco97], which describes known problems in a commercial ATM switch, is
also revealing about how faults manifest themselves in commercial networks. For
example:

e setting the sustained cell rate to zero for a VBR connection caused the
switch to crash;

146

o failure to flush packets under certain conditions within LAN emulation
caused packets to be continuously exchanged between the LAN client and
bus resulting in a broadcast storm;

e connection cells at the ingress switch could be policed at a higher rate than
configured due to a wraparound in the expected arrival time counter.

What is striking about all of these situations is that the cause of the problem
is not easy to determine from its manifestation. In general, extensive monitor-
ing is required to determine the cause of failure and this involves an overhead
in network, computer and human resources. The sophistication of the health
functions that a network operator implements is a trade-off between the cost of
carrying out this monitoring and the cost of network failure. This in turn is
likely to be strongly influenced by the nature of the services that the network
supports. [Feldkhun97, Yamamura97] state that companies running private
customer networks over a public network often wish to manage their slice of that
network in the same way that they would their own physical one. It is likely
within the Tempest environment that certain network operators will require sim-
ilar flexibility over their virtual networks. The Tempest must offer infrastructure
which allows different network operators to implement their own health functions
without them interfering with each other.

The Ariel switch interface, discussed in Section 2.2.4, allows the full range of
ATM control functions to be implemented within a logically distinct control layer.
The Ariel interface is a set of fundamental ATM switch operations that allows
a higher level control architecture to implement its required control functions.
Ariel is, in effect, a switch Abstract Data Type and the control functions built
using Ariel need not know any details about the implementation of a particular
switch.

Health functions require more information than control functions about the
switch implementation to achieve their goal. For example, it may be necessary
to read any piece of information contained in the switch memory in order to
determine why it is not functioning as expected. For this reason, management
interfaces have tended simply to be abstractions of memory with some restricted
means of retrieving and modifying memory locations rather than higher level
operations. The next section explores the existing management protocols.

147

9.2 Existing Solutions

The Simple Network Management Protocol (SNMP) [Case90] and the Common
Management Interface Protocol (CMIP) [ISO/IEC91] are the two most com-
monly cited management protocols in the literature® .

SNMP and CMIP both define the state of a network element as a Management
Information Base (MIB). A MIB is made up of typed MIB elements — ASN.1
typing [ISO/IEC87] is used in both SNMP and CMIP. MIB elements have a
position within the MIB and are ordered with respect to each other. Each MIB
element has a unique identifier which permits it to be distinguished from other
MIB elements. The MIB is only a convenient presentation for state that the
network element reveals to a manager and has no influence on the real location
at which that state resides. The MIB integrity is preserved by some software
process running on or ‘close’ to the network element. Managers communicate
with this process to perform management operations; in both SNMP and CMIP
this process is called an agent. In this chapter, the term agent covers both SNMP
and CMIP agents and any software processes in other management schemes which
have an equivalent task.

Each protocol defines a wire representation for the transfer of data, e.g. the
ASN.1 Basic Encoding Rules (BER), and a set of generic primitives for retrieving
and modifying network element state. In order for a given manager to be able
to manage two different pieces of network equipment requires each of them to
support a significant subset of the same MIB.

The generic nature of management operations means that many manager-
agent exchanges may be required to execute a given management operation. For
example, [Rose91] states that one of the criteria for including a particular ele-
ment in SNMP’s standard MIBs was that it should not be derivable from other
MIB elements. So, as a result, in order to determine the total number of ICMP
packets received at an IP interface it is necessary to read twelve different MIB
elements and add them together. CMIP solves this problem with an action prim-
itive which invokes a function defined in the MIB that can read and modify many
pieces of state and perform calculations at the server. However, it is generally
not possible to define a priori a complete set of actions for all possible health

1SNMPv2 [Case96] is a newer version of SNMP addressing perceived problems in SNMP
relating to security, bulk transfer and manager-to-manager communication. It has not been as
successful as its antecedent, so this dissertation concentrates on the first version of SNMP.

148

functions.

9.3 Problems with Existing Solutions

SNMP is a very successful, widely deployed management- protocol. Currently
all commercial LAN ATM switches support SNMP. The reasons which militate
against simply using SNMP alone for management of Tempest virtual networks
are:

e Access Control: within the Tempest, one control architecture should not
be able to read or modify data which belongs to another. It is possible to
modify the virtual channel tables of the Fore ASX-200 switch using SNMP
operations on the Fore MIB. A control architecture could subvert the strict
partitioning imposed by the Tempest if no restrictions are placed on the
SNMP operations it can perform. Per-user access control in SNMP is ac-
complished by checking the SNMP community to which the user belongs
and deciding how that should influence the predefined access rights of a
MIB element. While in principle this could allow very fine grained control,
in practice it is often only binary, i.e. if the user is in the appropriate com-
munity he has write access to all read-write elements otherwise he has only
read access to them. Often there is only a fixed set of these communities.
While communities could be created dynamically, this is not possible with
many currently deployed SNMP agents. Moreover, the access rights are
associated with single MIB elements, while the partition imposed by the
Tempest cuts across tables. SNMP communities cannot be used for restrict-
ing Tempest control architectures without modifying existing SNMP MIBs
and agents. SNMPv2 allows better access control — defining MIB views to
which a client is restricted — but these still would not limit retrieval and
modification to only certain elements in a table.

e Micro-management: [Goldszmidt95] identifies the difficulty in achiev-
ing generic, efficient management and refers to it as the micro-management
problem: the nature of management operations means that they are low-
level, e.g. stylised reads and writes; in consequence, many operations —
and therefore network exchanges — are required to do anything useful.
[Goldszmidt95] proposes a dynamic incrementable server, termed an elas-
tic server, to tackle this problem. In this system, the client adds code to the
management server, for example the SNMP agent, running on the switch.

149

The client code becomes an intrinsic part of the switch management in-
terface for the client. This is a promising technique and has met with
some approval within the SNMP community [Wellens96], but is not im-
plemented in any widely available version of SNMP and probably will not
be in the near to medium future. This loading of code is particularly attrac-
tive within the Tempest, since it allows different Tempest users to configure
their management policy for their own needs. For example, users can:

— correlate and filter data at the MIB;

— trigger the emission and reception of arbitrary patterns of OAM cells
to test performance;

— add control architecture specific alarms.

An important restriction is that any code addition must preserve access
control.

e Heterogeneous Management Protocols: small ATM switches for the
home, such as those developed by the Warren project [Greaves98], may
not even have a processor and so cannot be managed directly by SNMP.
Moreover, it might be preferable to use GSMP [Newman96| rather than
SNMP, for example, when the management operations are restricted to the
gathering of simple statistics. So while SNMP is the most used manage-
ment protocol, there are alternatives. An ideal solution would allow health
functions to be as independent of the protocol used for communicating with
the switch as possible.

Clients that are capable of implementing health functions are by defini-
tion privileged and have a good knowledge of the nature of the switch.
Completely hiding the software that the switch is running is impossible.
However, since all management protocols are stylised forms of retrieving
and modifying values from switch memory, it is possible to define a small
set of operations that all management protocols support, i.e. get value at
location, modify value at location and move to next location. Management
protocols differ only in what constitutes a location (e.g. a Managed Object
in SNMP; a physical memory location in a Warren switch), how they are
addressed, and how the values at the locations are encoded.

SNMP is not adequate for building efficient, control architecture specific
health functions usable across a range of switches with different processing ca-
pabilities in an environment — like the Tempest — which requires fine grained

150

SNMP

Switch

2
SNMP agent

Figure 9.1: Caliban server implemented with SNMP

access control. That said, it would be quixotic to try to define from scratch a com-
pletely new management protocol as this would require a large amount of effort
and would be unlikely to achieve anything approaching the current deployment of
SNMP. The preferred solution is one which lessens the identified problems while
remaining backwardly compatible with existing management protocols. This is
achieved by defining an interface containing a small set of primitives which can
be mapped onto a variety of underlying protocols. This interface is called Caliban
and is described in the following section.

9.4 Caliban Interface

Caliban is a simple ATM switch management interface adapted for use within the
Tempest environment. Network managers communicate with a Caliban server
using this interface and the server translates the request into the appropriate
format for communicating with the switch. Network managers do not address
the switch directly and therefore fine grained access control can be implemented
within the Caliban server if the switch itself cannot support it. Within the
Tempest, the Prospero switch divider is already required to know the resource
allocation of each control architecture so it is natural to run the Caliban server
as a part of the switch divider.

Figure 9.1 shows the relationship between Caliban clients, the switch divider

151

and the switch within the context of the Tempest. Caliban may be thought
of as an indirection which allows some independence from the precise switch
communication protocol and permits the required fine grained access control to
be enforced. The cost of this is that the client is restricted to using only those
primitives in the Caliban interface, rather than the potentially richer management
protocol, as well as some overhead in communication time.

Caliban also addresses the problem of micro-management. Caliban clients can
change the behaviour of the Caliban server by dynamically loading and executing
code as close to the agent as possible. Dynamically loaded code has the same
access control restrictions as its emitting client regardless of where it is executed.

The operations of the Caliban interface are divided into four groups:

e initialisation operations: each control architecture has a unique network
identifier which allows the switch divider to determine the switch resources
allocated to it. This network identifier is obtained from an authorising
entity, e.g. the network builder, at start-of-day. Caliban clients must create
a Caliban session using their network identifier before any other Caliban
operation; all operations in the rest of the Caliban interface are made in
the context of a given session.

e location operations: Caliban clients view the switch state as a single
linked list of locations. Each location has an ASN.1 type. Clients cre-
ate references to locations using the Caliban interface and all retrieval and
modification operations are performed relative to a given location. Clients
can only create references to locations which are valid for them. Location
reference creation takes a character string as argument. The exact mean-
ing attached to this string is implementation-specific. To some extent, the
means of identifying a location hints at the underlying protocol. For exam-
ple, identifying locations by stringified forms of ASN.1 Object identifiers
suggests that SNMP is being used; while stringified forms of physical mem-
ory addresses would suggest that the Caliban server can directly read from
and write to switch memory.

e retrieval and modification operations: Caliban has three operations
related to the manipulation of the contents of the switch locations: get,
set and getnext. The get operation takes a location as argument and
returns its value?. The value of a location is an instance of an ASN.1

>The Caliban get, set and getnext operations only take a single argument, rather than

152

type in the subset of ASN.1 allowed by SNMP. The set operation takes a
location reference and an ASN.1 value pair as arguments and, if possible,
modifies the value at the location. The getnext operation is similar to the
get operation, but in addition it modifies the location reference so that it
points to the next valid location for the client. Although this is very similar
to SNMP, note that by adding an indirection Caliban allows access control
not present in the underlying agent to be implemented and moreover, these
SNMP-like operations are not necessarily implemented using SNMP.

Caliban does not have an equivalent of an SNMP trap or a CMIP notifica-
tion. Notifications reduce the amount of polling that a manager has to do
at the cost of increasing the complexity of both the agent and the manager.
Polling requires both the manager and agent to be constantly active and
many network exchanges. The next section describes an alternative to both
polling across the network and notifications.

code loading operations: clients can load code into Caliban for manage-
ment purposes; this code is executed as close to the actual switch memory
as possible. Three possibilities exist:

— foreign code can be executed on the switch;

— foreign code cannot be executed on the switch either for security or
technical reasons, but can be executed on the Caliban server;

— foreign code cannot be executed on the switch or the Caliban server.

Regardless of where the loaded code accesses the switch locations from, it
is subject to the same restrictions as the client that emitted it.

Figure 9.2 shows a situation in which a client has loaded code into a Caliban
implementation using SNMP. The code has been passed by the Caliban
server to the switch and is communicating with the SNMP agent across a
local version of the Caliban interface. Since it is difficult to elaborate these
points without reference to an implementation a fuller discussion of this is
reserved for Section 9.5.

The loaded code communicates with its client using appropriate means,
e.g. one or more virtual channels. The messages sent over these channels
are sent and received by code with the same provenance, so only the trans-
port level and below needs to be standardised by the infrastructure. For

a list as in SNMP. This was done simply to ease the implementation of the proof-of-concept
Caliban server.

153

Caliban Client Caliban Client
Code loading
Reguest

Ay

Virtual] Channel
(for client-loaded code

comim

itch Divider

Switch

\ Internal Interface
Loaded Code From Client

Figure 9.2: Caliban server with loaded code

example, the method of encoding data structures can be decided by each
client for each connection. This, as demonstrated in Section 9.6, allows
greater efficiency as well as more flexibility. Clients can define arbitrary
communication patterns for the exchanges over these connections; alarm,
performance data and reconfiguration operations can all be fitted into the
same scheme. For example, the loaded code can locally poll a part of the
switch state on behalf of a client and notify the client if it is appropriate;
the client does not have to poll across the network nor does it have to be
capable of receiving and interpreting generic alarms.

9.5 Caliban SNMP Implementation

This section explains how the Caliban interface summarised in the previous sec-
tion is implemented with SNMP. The SNMP implementation used — UCD SNMP
[Hardaker97] — is freely available.

154

9.5.1 Initialisation

Each Caliban client is associated with a session in the Caliban server. A Caliban
session is a structure containing the client’s access rights, an SNMP community
name and a UDP socket. The access rights and community name are obtained
from the switch divider using the network identifier. The socket is connected to
the SNMP socket on the switch and is used for sending client requests to the
switch. '

9.5.2 Location

The UCD SNMP agent offers little in the way of assistance for handling fine
grained access control. There is a set number of predefined communities which
determine whether or not the user has write access or not. So, in this implemen-
tation, nearly all access control is performed by the Caliban server.

The string passed to the create-location operation is a stringified form of an
ASN.1 Object Identifier (OID). The Caliban server verifies that this OID is valid
for the user by checking it against the access rights of the user’s session. The
SNMP access rights are defined by two lists, one which gives the valid prefixes to
the OID and the other which gives the valid postfixes. For an OID to be valid it
must match at least one of the items in both the prefix and postfix list.

Since OIDs are organised as trees, each prefix defines a subtree and each
postfix defines an branch terminating in a leaf. The prefix allows the inclusion
of large parts of the MIB without having to list them exhaustively; the postfix
permits a finer grain of access control®>. An example illustrates the point: The
interface table in SNMP MIB-I contains information about the various network
interfaces that a host possesses. The OID of this table is 1.3.6.1.2.1.2.2.
On the workstation on which this dissertation was written, the OID for all the
columns in the the ATM interface table terminate in 2 while all those which refer
to the Ethernet interface terminate in 3. Including prefix 1.3.6.1.2.1.2.2 and

postfix 2 allows a user access to the information about the ATM interface but
not the Ethernet.

Similarly, within the Fore ATM Switch, MIB information about virtual chan-
nels is contained within many different tables. Each of these tables is indexed

3This is similar to the view mechanism defined in SNMPv2, except that views are defined
only by a prefix.

155

PreFix = A.B.E and A.C.G

PostFix =L.2 / \

I

Figure 9.3: Example of access control

by a port, VPI and VCI identifier tuple. Typically, the client’s access rights
will include postfixes corresponding to the values of these items which have been
allocated by the network builder to the client. This means that a client can ex-
amine and change only the values in the SNMP MIB which it has been assigned.
Figure 9.3 shows an example of how OID prefixes and postfixes are used to limit
the set of valid locations for a user within the OID tree. In the example the user
only has access to the MIB element whose OID is A.B.E.H.L.2.

The list of prefixes and postfixes for a client is generated from a static profile
description of the MIB and the network description returned from the network
builder. The profile description typically gives the prefixes for the client, while
the postfixes are generated from the network description. For example a client
that has been assigned on port 9 and VPI 0 the VCI range 200 ... 210, would
have postfixes (9,0,200) ... (9,0,210) and prefixes defining which tables the
client had the right to examine and ‘modify.

9.5.3 Retrieval and Modification

The Caliban get and set operations map directly onto their SNMP homonyms.
The getnext operator is an extremely powerful aspect of SNMP as it is a simple
way of dynamically learning about a MIB’s contents. The Caliban getnext may
call the SNMP getnext operation one or more times until SNMP returns an OID
that Caliban considers to be valid for the user in question.

156

9.5.4 Code Loading

A user specifies the code to be loaded into Caliban by defining the location of
the file in which the code resides. In the current implementation the location is
defined as the absolute name of a file in an NFS file system. The code is bytecode
runnable on a Java virtual machine. The Caliban server knows how close it can
get the code to the switch, and informs the client. The client decides on the
mechanism for communicating with the code, for example, by creating a virtual
channel between itself and the location at which the code is executing. In order
to do this it must possess the necessary network resources. The parent informs
the code, before sending it, of the means to receive and send information, e.g. the
appropriate VPI/VCI values. If the switch cannot run foreign code, then the code
is loaded into the Caliban server itself. If the Caliban server cannot accept code,
i.e. if it is not running on a virtual machine, the code is rejected. The loaded
code performs its management operations using the Caliban interface regardless
of where it is loaded.

In the proof-of-concept implementation, the SNMP agent was run inside a
Java virtual machine. This was achieved by creating a shared library from the
SNMP agent code; when the virtual machine is started the SNMP code is loaded
into the virtual machine and is prompted to begin listening for messages on the
relevant SNMP port.

All UCD SNMP access operations are implemented using a function called
snmp_agent_parse. This function expects a byte sequence as input which it
parses as an ASN.1 request. It executes this request and gives a byte se-
quence as output which is an encoded form of an ASN.1 reply. The internal
snmp.agent_parse function of the UCD implementation is exposed to the virtual
machine using the Java Native Interface (JNI). This allows Java code to call into
the SNMP agent directly. Although the snmp_agent_parse is implementation-
dependent, it is likely that all SNMP agents have a similar function; standardising
SNMP agents so that this function is exposed on all implementations would pose
no technical problem.

The Caliban server passes the user’s code and access rights — as a set of
OID prefixes and postfixes — to the virtual machine running on the switch, via
a well known port. The user’s code is then added to this virtual machine where
it executes its function using an implementation of an interface built directly
on top of snmp_agent_parse. This interface has its own get, set and getnext
operations, but these call functions in the same address space as themselves and

157

AgentIn VM |

“ Caliban Interface

|
!
1
i
snmp_a geln t:_parséI
i
i
1

Load

Client

Device
' Memory

Figure 9.4: Code loading into SNMP agent

hence are very efficient. The access control on these local calls uses the client’s
access rights supplied by the Caliban server and the calls are as secure as any other
form of interaction using Caliban. Although the code is constrained to access only
the MIB variables that belong to it, it may inadvertently or deliberately cause
problems by consuming too large a share of the resources of the shared server.
The environment in which such code runs needs to specify precise bounds for its
resource usage. Operating systems for soft real-time services [Leslie96] already
provide such guarantees; their application to constraining foreign code is the
subject of future work. [

In the current implementation, the client uses its own control architecture
to create virtual channels for communication between itself and the location of
the code. The implementation of code loading has been achieved almost without
modifying the code for the SNMP agent. The only modification made is the
replacement of the main function in the code with the mechanism needed for
starting it from Java. Existing applications can continue to use normal SNMP
operations to communicate with the agent. Figure 9.4 shows the interactions
between a piece of loaded code and the SNMP agent within the current imple-
mentation.

158

9.6 Experimental Results

Section 9.3 illustrated by giving examples some of the advantages of loading
code closer to the switch. Loading management code closer to the device to be
managed has been the subject of a lot of research. However, the literature, see
Section 9.7, has largely concentrated on exploring the increased flexibility that
code loading allows; this is necessarily qualitative, rather than quantitative. The
intention of the experiment described here is to demonstrate how loading code can
permit more efficient management operations by removing unnecessary overhead
in the communication between manager and the agent. Increasing the speed of
communication permits the manager to sample more data within a given time
frame; this is useful for both performance and error monitoring?.

The SNMP MIB-I has a variable ifInUcastPkts in the ifTable which is a
counter of the number of IP packets received from a given network interface. The
experiment involved observing the evolution of the ifInUcastPkts counter over
time and comparing the efficiency with which the value of this counter could be
retrieved for a workstation’s ATM interface using:

* a Normal SNMP client (N-client) with a normal SNMP agent (N-agent);
e a Caliban SNMP agent (C-agent) with dynamically loaded code controlled

by a Caliban client (C-client).

In both cases the client and agent ran on different machines, so all data
exchanges between manager and agent took place across the network. There
were three different versions of the dynamically loaded code, which varied in the
method by which they returned the value of the counter:

o the first returned each value one at a time (C-1);

e the second polled the agent ten times in quick succession and got ten con-
secutive values of the results before returning them (C-10);

e the third did the same but called the agent a hundred times and returned
the results in groups of one hundred (C-100).

For convenience, the SNMP agent for these experiments was run on a workstation rather
than an ATM switch. This should not have any consequence on the conclusions. The Fore
ASX-200 LAN ATM switches used in the experiment contain Sparc processors and run SUN
OS; they have the same processing capacity as a workstation.

159

Load N C-1 C-10 C-100
L/L 222018 17
H/L |40 2018 [[17
L/H |49 4745 [[44

Table 9.1: Average time in milliseconds to obtain ifInUcastPkts counter

In all three cases the results were returned across an ATM virtual channel. They
were read and written using the Fore ATM API with AAL5 as the adaptation
layer.

In each run of the test the counter was accessed one thousand times. Twenty
runs were carried out for each test case, interspersing runs to reduce the possi-
bility that unintentional variations in CPU usage would have an influence on the
comparison between the results. The results for the C test cases do not include
the time to load the code since this is a start-of-day operation that the client
need only perform once. Moreover, the time to read the code into the virtual
machine is constant — some tens of milliseconds — so as the total number of
counters exchanged increases, the overhead per-packet decreases until eventually
it becomes negligible. The experiment was carried out with different balances of
load between client and server. These were:

e lightly loaded client and server workstations (L/L);
e heavily loaded client and lightly loaded server workstation (H/L);

e lightly loaded client and heavily loaded server workstation (L/H).

Table 9.1 shows the average time in milliseconds to obtain a single value for
the counter. When both the client and server are lightly loaded (L/L) C-1, C-10
and C-100 are all quicker than N, with the results improving as the number of
counters returned in a given PDU is increased. The C case does all that the N case
does, but it also performs fine grained access control®. The reason that the C.cases
are quicker is that although the exact same amount of useful information is being
sent as in the N case there is no need to encode, send and decode superfluous data,

5Consideration of these results should also take into account that both the loaded code and
the extension to the SNMP agent are Java bytecode and that interpreted Java is twenty times
slower than the C programming language [Flanagan96].

160

e.g. the ASN.1 PDUs; only useful information is sent. In effect, the dynamically
loaded code communicates with its client using a client-specific protocol stack.

As the load is increased on the client the C test cases do not change, while the
time for the N test case more than doubles. This is unsurprising, as more work
is done by the N-client which has to encode, send, receive and decode ASN.1
PDUs while the C-client simply receives AAL5 packets. Increasing load on the
server causes all test cases to slow down about equally. In summary:

e the C-agent is an N-agent run in an environment which can be dynamically
incremented; the actual SNMP agent does not need to be modified;

e the C-agent behaves like an N-agent for N-clients;
e the same amount of useful information is sent in the N and C cases;

e the C-case is quicker than the N-case in the tested situations.

Dynamically loading code into a server permits the communication patterns
and structure of protocol data units to be defined for each client. This is worth-
while when the reduction in the overhead of communication is greater than that
added by the loading and processing of foreign code, i.e. long-lived, information-
intensive communication exchanges.

9.7 Related Work

[Yemini93] provides a good overview of the issues in network management
stating that the problem of network management can be summarised by
three fundamental questions: What should be monitored? How should it
be interpreted? How should this analysis be used to control the network?
[Meyer95, Goldsimidt95] propose the dynamic addition of code to the SNMP
agent as a means to deal with the problem of micro-management mentioned in
Section 9.2. [Crutcher93] also identifies the problem of micro-management.
[Meyer95, Goldszmidt95] introduce a style of management, called manage-
ment by delegation, that allows management functions to be divided into a
set of distributed processes that can be dispatched to the most suitable lo-
cation for their execution. The claimed advantages of management by del-
egation are flexibility, scalability and robustness. Many others, for example

161

[Busse97, Grimes97, Keshav97, Susilo98], have proposed variations on the
same theme. These are broadly similar to the code loading aspect of Caliban.
The distinction comes both from Caliban’s emphasis on access control and the
evidence offered in this chapter for the hypothesis that code loading can increase
efficiency. '

[Vassila97] describes an implementation of mobile code for Telecommuni-
cation Management Networks (TMN) [ITU-T92b]. The client program is an
Attribute of a special type of GDMO Managed Object Class called an Active
Managed Object (AMO). The client can modify and perform actions on the AMO
using normal CMIP operations. The AMO interacts with the other managed ob-
Jects using local communication.

[Rose93] argues that the introduction of network management should make
minimal demands on the managed network elements. The work outlined in this
paper does not require the network elements to be able to dynamically increment
code, only that if they do have this potential then advantage may be taken of
it. As [Wellens96] points out, current network devices often contain processors
and memory exceeding that of only slightly older management platforms. That
in itself is not an excuse to be profligate with the resources of the network device,
but if resources are available and under used then management tasks should be
able to take advantage of them.

RMON [Waldbusser95] is a standard SNMP MIB for remote network mon-
itoring of an Ethernet link. Modification of certain tables has as a side-effect the
starting or stopping of a probe function for obtaining statistics about network
performance. For example, a client can execute a function which will order a
user-defined number of hosts by a user-defined statistic. The RMON functions
are all predefined — although parametrised — and the client cannot modify them
dynamically. RMON’s success demonstrates the need for greater computation on
the network element itself.

9.8 Summary

This chapter has described Caliban, a switch interface for the use of health func-
tions within the Tempest environment. Caliban makes use of existing manage-
ment protocols, while attempting to solve problems related to:

162

e their diversity;
e their lack of fine grained access control;

e the need for most computation to be performed within the manager even
when this is unsuitable.

The Caliban interface consists of a simple set of operations which can be
mapped onto a variety of different underlying protocols by a Caliban server. In
addition, the Caliban server can perform the required access control if the agent
is unable to. Clients can load client-specific code as close as possible to the
switch agent using Caliban. This allows greater flexibility and efficiency in the
communication between client and server.

Although Caliban’s design has been influenced by the fact that SNMP is
the most commonly deployed management protocol, the solutions proposed here
are independent of SNMP. A Caliban implementation using a freely available
version of SNMP has been explained in some detail, with an emphasis on the
implementation of fine grained access control and dynamic code loading into an
SNMP agent. The Java environment has been used as the means for creating an
agent which can be dynamically incremented with client code, but the technique
outlined is not specific to any particular programming language. It would be
possible, for example, to do the same with native code if a dynamic linker were
available.

The hypothesis that dynamically loading code into a server can increase effi-
ciency by reducing overhead has been supported with experimental evidence. An-
other advantage of this technique is that clients may specify client-specific modes
of interaction with management servers allowing greater managament flexibility,
for example through the use of client-specific alarms.

163

Chapter 10

Summary, Future Work and
Conclusions

This -chapter summarises the dissertation. It indicates some potential areas for
future work and draws the overall conclusions from the research described here.

10.1 Summary

This dissertation has described the Tempest open signalling environment, in which
many distinct control architectures may coexist. The Tempest environment de-
pends on being able to make a clear distinction between the control and switching
layers, and being able to strictly partition the resources of the switch between
distinct controllers. The Tempest consists of:

a switch-independent control interface, called Ariel;

a switch management interface, called Caliban;

a partitioning mechanism for switch resources, called Prospero;

a network builder for creating virtual networks.

Open signalling within the Tempest framework has been investigated through
the implementation of a Tempest-aware control architecture called the Hollow-
man. The Hollowman implements a set of functions which include all required

164

and most optional capabilities of UNI 4.0. The flexibility of this control archi-
tecture has been demonstrated through a description of the experiments carried
out using it. The control architecture’s performance is more efficient than the
published results for a variety of implementations of UNI signalling.

Traditional high-level signalling APIs have been identified as being too restric-
tive for certain types of application, as their generic nature prevents applications
from making use of their application-specific knowledge. The basic control ar-
chitecture has been modified so that users can dynamically extend it with their
own application-specific code. This allows them control over their resources at a
fine level of granularity, and permits them to take advantage of their application-
specific knowledge, for example, to optimise their resource usage. Experimental
results confirm the practicality and utility of this technique.

The need for ubiquitous signalling has been addressed by describing how a
switch-independent control architecture can interoperate with standards-based
systems. The implementation of a simple interoperation protocol has been de-
scribed and evidence has been offered to support the assertion that this protocol
could be replaced with P-NNI when it is more widely available.

The special issues concerning the management of a virtual network in the
Tempest environment have been explored. Operation and Maintenance tech-
niques from the ATM standards have been extended so that distributed control
architecture entities can detect and recover from failure. Experimental evidence
has suggested that allowing messages to be executable permits less centralised
and more adaptive fault management to be achieved.

Existing management protocols do not permit the strict partitioning required
by the Tempest environment. Moreover, they have a well-known weakness relat-
ing to the number of network exchanges that are required to achieve a complete
management task. These problems have been addressed by a switch management
interface which allows the virtual network’s integrity to be preserved during man-
agement operations, while also solving the micro-management issue by the inte-
gration of code into the management agent. Performance results have shown that
the latter — by allowing the removal of unnecessary overhead in communication
— permits more efficient management operations to be performed.

165

10.2 Future Work

Directions for future work have been identified throughout this dissertation. This
section examines only some of the more critical points. The issues that remain
to be resolved can be divided into three groups, namely those that:

¢ are common to all ATM control architectures, but which may mani-
fest themselves slightly differently in regard to switch-independent control.
Some issues in this group include call admission control, atomic synchroni-
sation of resources, accounting and bootstrapping. The work presented in
this dissertation suggests that switch-independent control does not make
this group of problems harder to solve, while providing the means to ex-
periment and test solutions even in large networks. Moreover, the Tempest
framework allows the choice of solution to be varied as a function of the
nature of the services the control architecture is supporting.

e arise from allowing third-party code to gain access to network
resources. The major issue in this group is security. Many of the secu-
rity problems arising from executing foreign code can be solved if the code
is restricted to using only those resources allocated to it. The work pre-
sented in this dissertation has shown how this can be achieved for network
resources at several different levels of granularity. However, operating sys-
tem resources must also be considered and this requires operating systems
which have been designed with the fine grained partition of resources in
mind. Work already accomplished in the domain of soft real-time operat-
ing systems may address at least some of the security problems.

e result from the separation of the switch from the control plane.
The major open issue in this group is network management and in particular
fault management. The handling of failure and the management of faults
is a problem for any network; switch-independent control might be said
to exacerbate this problem as the control plane is less aware of how the
switching plane is implemented, and is therefore less able to identify the
reasons why it is not functioning as expected. This dissertation has explored
some of the issues related to fault management and proposed solutions.
The effectiveness of network management techniques can only be really
tested ‘in the field’; better understanding of the problems of managing a
large multi-service network supporting open signalling will result from the

166

Learnet project [Crosby97], which will use the Tempest framework as the
basis for controlling a wide area ATM network.

10.3 Conclusions

It is the thesis of this dissertation that:

¢ a well-defined low-level interface between the control plane and
the switch enables both to evolve independently: switch vendors can
concentrate on building cheap and efficient switches, while network opera-
tors can quickly extend their control architectures in reaction to the need for
new services. There is no reason why such a control interface should not be
standardised, allowing the standard ATMF control architecture and other
newer control systems to take advantage of this, and thereby increasing the
rate at which innovation can be introduced.

e an open switch control interface, coupled with a switch resource
partitioning mechanism, allows the simultaneous execution of
many control architectures over the same physical network. This
elegantly solves the problem of change migration as a new version of a par-
ticular control system, can be run on one virtual network, while at the same
time allowing existing applications to use another older version. Network
operators may customise the implementation of their selected control ar-
chitecture in order to suit the services their network supports. For example
they may only implement those parts of the standards which are actually
used by their services, thereby reducing the complexity of the implemen-
tation and reducing the overheads in its execution. The network operator
may even implement completely proprietary control architectures for imple-
menting advanced control functions or new service features which permit
the operator to differentiate their services.

¢ open control, by allowing the coexistence of many control archi-
tectures, frees the telecommunication industry from having to
define one single monolithic control architecture. As anyone who
can obtain a virtual network can effectively become a network operator,
an increase in the creativity that can be brought to bear upon the prob-
lem of ATM control is to be expected. The complexity of controlling a
multi-service network means that this is much needed.

167

e open control is a practical technique. This dissertation has demon-
strated, through a description of the structure of a fully functional switch-
independent control architecture, the advantages of open control. It has

. explained how practical concerns, such as robustness and scalability, which
are important in determining whether the technique is adopted or not can
be addressed. The switch-independent control architecture has served both
to motivate the explanation of the problems and as a platform for experi-
menting with solutions.

In conclusion, this dissertation has supported the thesis that open control is
both feasible and desirable.

168

Bibliography

[Acharya97]

[Adam97a]

[Adam97b]

Arup Acharya, Jun Li, Bala Rajagopalan, and Dipankar
Raychaudhuri. Mobility Management in Wireless ATM Net-
works. IEEE Communications, 35(11):100-109, November 1997.

(p-3)

C. Adam, M. Chan, J.F. Huard, A. Lazar, and K. Lim. Binding
Interface Base Specification Revision 2.0, April 1997. University
of Columbia Technical Report 475-97-09. (p.42)

C. Adam, A. Lazar, and M. Nandikesan. QoS Extension to
GSMP, April 1997. University of Columbia Technical Report
471-97-09. (p.38)

[Adl-Tabatabai96] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe.

[Agrawal96]

[Alexander97]

[Alles95]

Efficient and Language-Independent Mobile Programs. In Pro-
ceedings of ACM SIGPLAN ’96 Symp. on Programming Lan-
guage Design and Implementation (PLDI), pages 127-136, May
1996. (p.86)

P. Agrawal, P. Mishra, and M. Srivastava. Network Architecture
for Mobile and Wireless ATM. In IEEE - The 16th International
Conference on Distributed Computing Systems (ICDCS '96),
pages 299-310, May 1996. - (p. 90)

D. Alexander, M. Shaw, S. Nettles, and J. Smith. Active Bridg-
ing. In Proceedings of ACM SIGCOMM’97, Cannes, France,
September 1997. (pp. 97, 99)

Antony Alles. ATM Internetworkz’ﬁg. Cisco System Inc. white
paper, May 1995. Also presented at Engineering InterOp, Las
Vegas, March 1995. (p.10)

169

[APMO92]

[APM95]

[Appleby94]

[Arango93]

[ATMF93]
[ATMF94a]
[ATMF94b]

[ATMF95a]

[ATMF95b]
[ATMF95c]

[ATMF96]

APM. ANSAware 4.1. Systems programming in- ANSAware
Manual. Poseidon House, Castle Park, Cambridge, UK, 1992.
ANSA project. (pp- 34, 43, 49)

APM. ANSAware/RT 1.0 Manual. Poseidon House, Castle
Park, Cambridge, UK, March 1995. ANSA project. (p.30)

S. Appleby and S. Steward. Mobile Software Agents for Con-
trol in Telecommunications Networks. BT Technology Journal,
12(2):104-113, April 1994. (p.143)

M. Arango and et al. The Touring Machine System. Communi-
cations of the ACM, 36(1):69-77, January 1993. (p.43)

ATMF. ATM User-Network Interface Specification - Version
3.0. The ATM Forum: Approved Technical Specification, 1993.

(p- 10)

ATMF. ATM User-Network Interface Specification - Version

3.1. The ATM Forum: Approved Technical Specification, 1994.
(p. 10)

ATMF. Interim Inter-Switch Signalling Protocol Specification
(PNNI 0). The ATM Forum: Approved Technical Specification,
December 1994. af-pnni-0026.000. (p.122)

ATMF. ATM User-Network Interface Specification - Version
4.0, (UNI 4.0). The ATM-Forum: Approved Technical Specifi-
cation, July 1995. af-sig-0061.000. (pp.3, 10, 13, 33, 35, 40, 61,
63)

ATMF. B-ISDN Inter Carrier Interface Specification - Version
2.0 (B-ICI 2.0). The ATM-Forum: Approved Technical Specifi-
cation, December 1995. af-bici-0013.003. (pp.40, 122)

ATMF. LAN Emulation over ATM Specification, Version
1.0. The ATM-Forum: Approved Technical Specification, 1995.

(p-19)

ATMF. Private Network-Network Interface Specification - Ver-
ston 1.0 (P-NNI 1.0). The ATM Forum: Approved Technical
Specification, March 1996. af-pnni-0055.000. (pp.2, 3, 27, 40,
105, 119, 120, 127)

170

[

[Barr93]

[Battou96]

[Bellcore97]

[Biswas95]

[Bloem95]

[Bos98]

[Busse97]

[Callon97]

[Cardelli9?7]

[Case90]

W. J. Barr, T. Boyd, and Y. Inoue. The TINA initiative. IEEE
Commununications, 31(3):70-76, March 1993. (pp. 5, 41)

Abdella Battou. Connections Establishment Latency: Measured
Results. ATM-Forum T1A1.3/96-071, October 1996. (p.82)

Bellcore. Q.Port Portable ATM Signalling Software, Product
Information, 1997. Available at: http://www.bellcore.com/
QPORT/gport-ov.html. (pp.14, 19, 81, 116) -

Subir Biswas and Andy Hopper. A Representative Based Ar-
chitecture for Handling Mobility in Connection Oriented Radio
Networks. In Proceedings of ICUPC’95 International Conference
on Universal Personal Communications, Tokyo, Japan, Novem-
ber 1995. (p.101)

J. Bloem, J. Pavén, H. Oshigiri, and M. Schenk. TINA-C Con-
nection Management Components. In Proceedings of TINA’95,
Integrating Telecommunications and Distributed Computing -
from Concept to Reality, pages 485-493, February 1995. (p.41)

Herbert Bos. ATM Admission Control based on Measurements
and Reservations. In Proccedings of IEEE International Perfor-

mance, Computing and Communications Conference, February
1998. (p.76)

I. Busse and S. Covaci. Customer facing components for net-
work management systems. In Integrated Network Management
V, pages 31-43. IFIP & IEEE, Chapman & Hall, May 1997.
(p-162)

R. Callon, P. Doolan, N. Feldman, A Fredette, G. Swallow, and
V. Viswanathan. A Framework for Multiprotocol Label Switch-
ing. Internet Draft, November 1997. (p. 89)

Luca Cardelli and Andrew Gordon. Abstractions for Mobile
Computation, 1997. To be published, Available at: http://
www.cl.cam.ac.uk/~adg/Research/Ambit/. (p.86)

J. Case. A Simple Network Management Protocol. Internet RFC
1157, May 1990. (p.148)

171

[Case96]

[Chen94]

[Cisco97]

[Clinger91]

[Crosby95]

[Crosby96]

[Crosby97]

[Crutcher93]

[DARPAS1]

[DARPA97]

J. Case. Version 2 of the Simple Network Management Protocol.
Internet RFC 1905, January 1996. (p.148)

Thomas Chen and Stephen Liu. Management and Control Func- |
tions in ATM Switching Systems. IEEE Network, 8(4):27-39,
July/August 1994. (p.10)

Cisco. Release Notes for LightStream 1010 ATM Switch
Software (Release 11.1). Cisco System Inc. product
information reference manual, March 1997. Available
at: http://www-europe.cisco.com/univ-src/ccden/data/doc/
hardware/wbu/1s1010. (p. 146)

William Clinger and Jonathan Rees (editors). Revised(4) Report
on the Algorithmic Language Scheme. ACM LISP Pointers IV,
July-September 1991. (p.74)

Simon Crosby. Performance Management in ATM Networks.
Cambridge University PhD dissertation, May 1995. Available
as Technical Report 393. (p.145)

S. Crosby, I. Leslie, M. Huggard, J. Lewis, B. McGurk, and
R. Russell. Predicting Bandwidth Requirements of ATM and
FEthernet Traffic. In Proceedings of IEE 13th UK Teletraffic Sym-
posium, Strathclyde University, Glasgow, March 1996. (p.28)

Simon Crosby, Jon Crowcroft, Ian Leslie, Lionel Sacks, and
Chris Todd. Proposal for Ezperimental Academic Research using
LEARNET. BT project description, September 1997. PEARL
1 Document 2-25/4/97-UCL/CAM-(CJT-UCL EE). (p.167)

Laurence Crutcher and Aurel Lazar. Management and Control
for Giant Gigabit Networks. IEEE Network, 7(6):62-71, Novem-
ber 1993. (pp.145, 161)

DARPA. Internet Protocol - DARPA Internet Program, Protocol
Specification. Internet RFC 791, September 1981. (pp. 68, 89)

DARPA. Workshop on Foundations for Secure Mobile Code.
Monterey, California, US, March 1997. Available at: http://
www.cs.nps.navy.mil/research/languages. (p. 86)

172

[Deering89]

[Doar93]

[Duffield95]

[Dupy91]

[Feldkbun97]

[Flanagan96]

[Fore95a]

[Fore95b]

[Frey97]

[Garrahan93]

Steve Deering. Host Extensions for IP MultiCasting. Internet
RFC 1112, August 1989. (p.61)

Matthew Doar and Ian Leslie. How Bad is Naive Multicast Rout-
ing? In Proceedings of IEEE INFOCOM, San Francisco, Cali-
fornia, volume 1, pages 82-89, March/April 1993. (p.62)

N. Duffield, J. Lewis, N.Connell, R. Russell, and F. Toomey.
Entropy of ATM Traffic Streams: A Tool for Estimating QoS

Parameters. IEEE Journal on Selected Areas In Communica-
tions, 13(6):981-990, August 1995. (p.28)

Alexander Dupy, Soumitra Sengupta, Ouri Wolfson, and
Yechiam Yemini. NETMATE: A Network Management Envi-
ronment. IEEE Network, 5(2):35-43, March 1991. (pp.125,
136)

L. Feldkhun, M. Marini, and S Borioni. Integrated Customer-
Focused Network Management: Architectural Perspectives. In

Proceedings of Integrated Network Management V, pages 17—
30. IFIP & IEEE, Chapman & Hall, May 1997. (p.147)

David Flanagan. Java in a Nutshell 1st Edition. O’Reilly and
Associates Inc., May 1996. ISBN: 1-56592-183-6. (p. 160)

Fore. ForeRunner ASX-200, ATM Switch User’s Manual. Fore
Systems Inc, 1000 Fore Drive, Warrendale, PA 15086-7502, US,
June 1995. MANUO0013 - Rev. E. (p.13)

Fore. SPANS UNI: Simple Protocol for ATM Signalling. Fore
Systems Inc, 1000 Fore Drive, Warrendale, PA 15086-7502, US,
1995. Release 3.0. (pp.13, 75)

J. Frey and L. Lewis. Multi-level Reasoning for Managing Dis-
tributed Enterprises and their Networks. In Integrated Network
Management V, pages 5-16. IFIP & IEEE, Chapman & Hall,
1997. (p.127)

James Garrahan, Peter Russo, and et al. Intelligent Networks
Overview. IEEE Communications, 31(3):30-36, March 1993.
(pp. 39, 101)

173

[Goldszmidt95] Germén Goldszmidt and Yechiam Yemini. Distributed Man-

[Gray97]

[Greaves98]

[Grimes97]

[Grover97]

[Halls97]

[Halls98]

[Hardaker97]

[Heinanen97]

[Henning97]

agement by Delegation. In Proceedings of the 15th International
Conference on Distributed Computing Systems. IEEE Computer
Society, June 1995. (pp. 149, 161)

R. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko. Mobile
Agents: The Next Generation in Distributed Computing. In
Proceedings of the 2nd Aizu International Symposium on Paral-
lel Algorithms/Architectures Synthesis, pages 8-24. IEEE Com-
puter Society Press, March 1997. (p.143)

David Greaves and Richard Bradbury. Warren: A Low Cost
ATM Home Area Network. To appear in IEEE Network, 12(1),
January/Febuary 1998. (p.150)

G. Grimes and B. Adley. Intelligent Agents for Network Fault
Diagnosis and Testing. In Integrated Network Management V,
pages 232-244. IFIP & IEEE, Chapman & Hall, May 1997.
(p. 162)

Wayne Grover. Self-Organizing Broad-Band Transport Net-
works. Proceedings of the IEEE, 85(10):1582-1610, October
1997. (p.95)

David Halls. Applying Mobile Code to Distributed Systems. Cam-
bridge University PhD dissertation, September 1997. Available
as Technical Report 439. (pp. 74, 141, 142)

David Halls and Sean Rooney. Controlling the Tempest: Adap-
tive Management in Advanced ATM Control Architectures. Ac-
cepted for Publication in IEEE JSAC, 1998. (pp.i, 142)

Wes Hardaker. SNMP implementation: UCD SNMP Version
3.1. University of California at Davis, Davis CA 95616, US, 1997.
Available at: ftp.ece.ucdavis.edu:/pub/snmp/ucd-snmp.tar.gz.
(pp- 37, 154)

J. Heinanen. Multipoint-to-point Virtual Circuits. ATM-Forum
contribution, ATMF/97-0261, April 1997. (p.61)

Ian Henning, Steve Sim, Chris Gibbings, Mick Russell, and Peter
Cochrane. A Testbed for the Twenty-First Century. Proceedings
of the IEEE, 85(10):1572-1581, October 1997. (p.68)

174

[Hicks97]

M. Hicks, P. Kakkar, J. Moore, C. Gunter, and S. Nettles.
PLAN: A Progamming Language for Active Networks. Sub-
mitted to PLDI'98, November 1997. Available at: http://
www.cis.upenn.edu/~switchware/PLAN. (p.97)

[Hjalmt}"sson97] G. Hjalmtysson and K.K. Ramakrishnan. UNITE - An Ar-

[Hong97]

chitecture for Lightweight Signalling in ATM Networks. To be
published, April 1997. (Also presented at OpenSig Spring’97,
Cambridge UK). (pp. 43, 45)

James Won-Ki Hong and et al. Web-Based Intranet Services and
Network Management. IEEE Communications, 35(10):100-109,
October 1997. (p.127)

[Huberman93] B. Huberman and T. Hogg. The Emergence of Computational

[ISO/IECS87]

[ISO/IEC91]

[ISO /TEC95a]

[ISO/IEC95b]

[ITU-T91]

[ITU-T92a]

Ecologies. SFI Studies in the Sciences of Complexity. Addison-
Wesley, Reading, MA, 1993. Editors: L. Nadel and D. Stein.

(p- 95)

ISO/IEC. Open Systems Interconnection, Specification of Ab-
stract Syntaz Notation One (ASN.1). ISO Publication, Decem-
ber 1987. IS 8824. (p.148)

ISO/IEC. Open Systems Interconnection, Common Manage-
ment Information Protocol Specification. ISO Publication, 1991.
IS 10165-1. (p.148)

ISO/IEC. Information Processing Systems — Data Communica-
tions — Network Service Definition. ISO Publication, 1995. IS
8348. (p.33)

ISO/IEC. Information technology — Open Systems Intercon-
nection — International Standardized Profiles: OSI Distributed
Transaction Processing — Part 1: Introduction to the Transac-
tion Processing Profiles. ISO Publication, 1995. IS 12061-1.
(p. 65)

ITU-T. Recommendation E.164/1.331. Numbering Plan for the
ISDN Era. ITU publication, 1991. (p.33)

ITU-T. Recommendation 1.312/Q.1201. Principles of Intelligent
Network Architectures. ITU publication, 1992. (pp. 39, 41, 101)

175

[ITU-T92b]
[ITU-T93a]
[ITU-T93b]
[ITU-T944]

[ITU-T94b]

ITU-T. Recommendation M.3010. Principles for a Telecommu-
nications Management Network. ITU publication, 1992. (pp.41,
145, 162)

ITU-T. B-ISDN Operation and Maintenance Principles and
Functions. ITU-T Recommendation 1.610, ITU publication,
1993. (pp. 100, 127, 142)

ITU-T. Introduction to CCITT Signaling System No. 7. ITU
Recommendation Q.700, ITU publication, 1993. (pp.2, 38, 41,
83, 122)

ITU-T. B-ISDN SAAL Service Specific Comnnection Oriented
Protocol (SSCOP). ITU Recommendation Q.2110, ITU publi-
cation, 1994._ (p. 14)

ITU-T. Broadband Integrated Service Digital Network (B-ISDN)
Digital Subscriber Signalling Systems No. 2, User-Network In-
terface Layer 3 Specification for Basic Call/Connection Con-

- trol. ITU-T Recommendation Q.2931, ITU publication, 1994.

[ITU-T96]

[ITU/IS097]

[JavaSoft97)

[Kalmanek97]

[Kant97]

(pp- 40, 145)

ITU-T. Functional Description of the Broadband ISDN user part
of Signalling System No.7. ITU Recommendation Q.2761, ITU
publication, 1996. (pp. 40, 122)

ITU/ISO. ODP Trading Function - Part 1 ; Specification.
ISO/IEC IS 13235-1, 1997. ITU-T Draft Recommendation X950
-1. (p.34)

JavaSoft. The Java Telephony API, An Overview 1.1. JavaSoft
white paper, January 1997. Available at http://java.sun.com/
products/jtapi/jtapi-1.1. (p.102)

Charles Kalmanek, Srinivasan Keshav, William Marshall,
Samuel Morgan, and Robert Restrick. Xunet 2: Lessons from
an Early Wide-Area ATM Testbed. IEEE/ACM Transactions on
Networking, 5(1):40-55, February 1997. (pp.27, 43, 44)

Krishna Kant and Lyndon Ong. Signalling in Emerging Telecom-
munications and Data Networks. Proceedings of the IEEE,
85(10):1612-1621, October 1997. (pp. 10, 67)

176

[Kawamura95] R. Kawamura and 1. Tokizawa. Self-healing Virtual Path Archi-

[Keshav97]

[Kramer92]'

[Kuhn97]
[Laubach94]

[Lazar96]

[Lazar97]

[Lee95]

[Leslie96]

[Li95]

tectures in ATM Networks. IEEE Communications, 33(9):72-79,
September 1995. (p.90)

Srinivasan Keshav. Open Signaling with Active SNMP. To be
published, October 1997. (Also presented at OpenSig Fall’97,
Columbia University). (p.162)

Michael Kramer and Seshadri Mohan. Applications of Trans-
action Processing for Session Management in Multi-Media In-
formation Networks. In Proceedings of Globecom’92, volume 2,
pages 764-769, 1992. (p.65)

D. Kuhn. Sources of Failure in the Public Switched Telephone
Network. IEEE Computer, 4(30), April 1997. (pp. 66, 67)

Mark Laubach. Classic IP and ARP over ATM. Internet RFC
1877, January 1994. (p.13)

A. Lazar, K.S. Lim, and F. Marconcini. Realizing a Foundation
for Programmability of ATM Networks with the Binding Archi-
tecture. IEEE JSAC, 14(7):1214-1227, September 1996. (pp.5,
10, 27, 42)

A. Lazar. Programming Telcommunication Networks. IEEE Net-
works, 11(5):8-18, September/October 1997. (pp. 71, 83)

Whay Lee, Michael Hluchyj, and Pierre Humblet. Routing Sub-
ject to Quality of Service Constraints in Integrated Communica-
tion Networks. IEEE Network, 9(4):46-55, July/August 1995.
(p- 32)

I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden. The Design and Implementation of
an Operating System to Support Distributed Multimedia Applica-
tions. IEEE JSAC, 14(7):1280-1297, September 1996. (pp. 30,
93, 158)

Guangxing Li. Dimma Nucleus Design. Poseidon House, Castle
Park, Cambridge, UK, October 1995. APM Technical Report
1553.00.05. (pp. 14, 38, 80)

177

[Magedanz96] T. Magedanz, K. Rothermel, and S. Krause. Intelligent Agents:

An Emerging Technology for Next Generation Telecommunica-
tions? In Procceding of IEEE INFOCOM, San Francisco, US,
March 1996. (p.142)

[McConnellQ'Z] McConnell. RMON Methodology: Towards Successful Deploy-

[McMahon81]

[Meyer95]

[Miller97]

[Minzer91]

[Moy97]

[Murthy97]

[Newman96|

[Newman97a)

ment for Distributed Enterprise Management. 8324 Westfork
Road, Boulder, CO 80302, May 1997. Available at: http://
www.3com.com/nsc/500251.html. (p. 146)

L. E. McMahon. An Ezperimental Software Organization for a
Laboratory Data Switch. In Proceedings of the IEEE Interna-
tional Conference on Communications, 1981. (p.67)

K. Meyer, M. Erlinger, J. Betser, C. Sunshine, G. Goldszmidt,
and Y. Yemini. Decentralizing Control and Intelligence in Net-
work Management. In Integrated Network Management IV,
pages 4-16. Chapman & Hall, 1995. (pp. 143, 161)

David Miller. Weathering Sonet Alarm Storms. Amer-
ica’s Network, April 1997. Available at: http://
www.americasnetwork.com/issues. (p. 125)

Steve Minzer. A Signaling Protocol for Complex Multimedia Ser-
vices. IEEE Journal on Selected Areas in Communication, Vol
9, 9(9):1383-1394, December 1991. (p.63)

J. Moy. OSPF Version 2. Draft Standarad, Internet RFC 1247,
May 1997. (p.120)

Shyam Murthy. UNI 3.1 QoS additions to GSMP. Univer-
sity of Kansas project report, July 1997. Available at: http://
hegel.ittc.ukans.edu/projects/. (p.38)

Peter Newman and et al. Ipsilon’s General Switch Management
Protocol Specification Version 1.1. Internet RFC 1987, August
1996. (pp.14, 19, 28, 37, 150)

Peter Newman and Greg Minshall. Quality of Service En-
hancements to the General Switch Management Protocol. To be
published, October 1997. (Also presented at OpenSig Fall’97,
Columbia University, US.). (pp.25, 28, 38)

178

[Newman97b] Peter Newman, Greg Minshall, and Tom Lyon. IP Switching:

[Newman97c]

[Ngoh97]

[Niehaus97]

[Nilsson95]

[Nwana96]

[OMG95a]

[OMG95b]

[ORL97]

[Pratt94]

ATM Under IP. Submitted to IEEE/ACM Transactions on Net-
working, 1997. (p.67)

Peter Newman, Greg Minshall, Tom Lyon, and Larry Hus-
ton. IP Switching and Gigabit Routers. IEEE Communications,
35(1):64-69, January 1997. (pp.2, 10, 11, 43, 45, 89)

Lek-Heng Ngoh, Hongyi Li, and Weiguo Wang. An Integrated
Multicast Connection Management Solution for Wired and
Wireless ATM Networks. IEEE Communications, 35(11):52-59,
November 1997. (p.3)

Douglas Niehaus, Abdella Battou, Andrew McFarland, Basil
Decina, Henry Dardy, Vinai Sirkay, and Bill Edwards. Per-

formance Benchmarking of ATM Networks. IEEE Communica-
tions, 35(8):134-143; August 1997. (pp.81, 82)

Gunnar Nilsson, Fabrice Dupuy, and Martin Chapman. An
Overview of the Telecommunication Information Networking Ar-
chitecture. In Proceedings of TINA’95, Integrating Telecommu-
nications and Distributed Computing - from Concept to Reality,
pages 1-12, February 1995. (p.41)

H. Nwana and D. Ndumu. An Introduction to Agent Technology.
BT Technology Journal, 14(3):55-67, October 1996. (p.137)

OMG. Object Service Architecture. Technical Report, The Ob-
ject Management Group (OMG), January 1995. Revision 8.1.
(pp. 14, 65) V

OMG. The Common Object Request Broker: Architecture and
Specification Version 2.0 (CORBA 2.0). Technical Report, The
Object Management Group (OMG), 1995. (pp. 14, 37, 38, 106)

ORL. OmniORB wversion 2. Olivetti/Oracle Research Centre,
24a Trumpington St, Cambridge, UK, 1997. Available at: http:/
/www.orl.co.uk/omniORB/omniORB.html. (p.81)

L. Pratt and P. Barham. The ATM Camera V2 (AVA-200). Uni-
versity of Cambridge Computer Laboratory - ATM Document
Collection 3, March 1994. (pp. 13, 30)

179

[Ranson95]

[Rekhter96]

[Rizz097]

[Rooney97a]

[Rooney97b]

[Rose91]

[Rose93]

[Rublin94]

[Sapaty94]

[Sathaye95]

R. Ranson. Less-Than-Transactional Semantics for TINA. In
Proceedings of TINA’95, Integrating Telecommunications and
Distributed Computing - from Concept to Reality, pages 243—
247, February 1995. (p.65)

Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G. Swallow.
Tag Switching Architecture Overview. Internet Draft, September
1996. (pp.45, 89)

M. Rizzo and I. Utting. A Negotiating Agents Model for the Pro-
vision of Flezible Telephony Service. In Proceedings of ISADS
97, 3rd International Symposium on Autonomous Decentralized
Systems, pages 351-358. IEEE Computer Society Press, April
1997. (p.101)

Sean Rooney. An Innovative Control Architecture for ATM Net-
works. Integrated Network Management V, pages 369-380, May
1997. (pp.i, 43)

Sean Rooney. Connection Closures: Adding Application-Defined
Behaviour to Network Connections. ACM Computer Communi-
cation Review, 27(2):74-88, April 1997. (p.i)

Marshall Rose. The Simple Book. Prentice-Hall, 1991. ISBN
0-13-812611-9. (p.148)

Marshall Rose. Challenges in Network Management. IEEE Net-
work, 7(6):16-19, November 1993. (p.162)

H. Rublin and N. Natarajan. A Distributed Software Architec-
ture for Telecommunication Networks. IEEE Network, 8(1):8~17,
January/February 1994. (p.41)

P. Sapaty and P. Borst. An Overview of the WAVE Language and
System for Distributed Processing in Open Networks. Technical
Report, Dept. of Electronic and Electrical Eng., Univ. of Surrey,
UK, June 1994. (p.143)

Shirish S. Sathaye. ATM Forum Traffic Management Specifica-
tion Version 4.0. In ATM Forum Technical Committee - Con-
tribution 95-0013, 1995. (p.16)

180

[Schmidt97] Douglas Schmidt, Aniruddha Gokhale, Timothy Harrison, and
Guru Parulkar. A High-Performance End System Architecture
for Real-Time CORBA. IEEE Communications, 14(2):72-77,
January/February 1997. (p.81)

[Schoenwelder96] J. Schoenwelder. Scotty - Tcl Estensions for Network Man-
agement, 1996. Available at: http://wwwsnmp.cs.utwente.nl.
“(p-37)

[Sfikas97] Georgios Sfikas, Costas Apostolas, and Rahim Tafazolli. The
UK LINK-PCP Approach to the Wireless ATM System. IEEE
Communications, 35(11):60-70, November 1997. (p.3)

[Shrivastava97] Santosh Shrivastava. A Transactional Workflow System for
Network Services. Presented at: OpenSig Fall’97, Columbia Uni-
versity, US, October 1997. (p.127)

[Shumate96] Scott Shumate. A Performance Analysis of an Off-Board Sig-
nalling Architecture for ATM Networks. University of Kansas,
Graduate School MSc Dissertation, August 1996. (p. 82)

[Smith96] J. M. Smith, D. J. Farber, C. A. Gunter, S. M. Nettles, D. C.
Feldmeier, and W. D. Sincoskie. SwitchWare: Accelerating Net-
work Evolution. Technical Report, CIS Department, University
of Pennsylvania and Bell Communications Research, June 1996.
White Paper, Available at: http://www.cis.upenn.edu/~jms/
SoftSwitch.html. (pp. 99, 100)

[Susilo98] G. Susilo, A. Bieszczad, and B. Pagurek. Intelligent Agents: An
Emerging Technology for Next Generation Telecommunications?
In NOMs’98, February 1998. To be presented at the IEEE/IFIP
Network Operations and Management Symposium. (p. 162)

[Tennenhouse96] D. Tennenhouse and D. Wetheral. Towards an Active Net-
work Architecture. ACM Computer Communications Review,
26(2):5-18, April 1996. (pp. 99, 100, 143)

[TINA-C97] TINA-C. Network Resource Architecture Version: 8.0.
TINA-C Publication, February 1997. Available at: http://
www.tinac.com. (pp.43, 127)

181

[Tolksdorf97] Robert Tolksdorf. Programming Languages for the Java Virtual
Machine. Available at: http://grunge.cs.tu-berlin.de/~tolk/
vmlanguages.html, 1997. (p.97)

[van der Merwe97] Jacobus van der Merwe. Open Service Support For ATM.
Cambridge University PhD dissertation. To be available as Tech-
nical Report, September 1997. (pp.9, 11, 18, 29, 37, 76, 81, 102)

[van der Merwe98] Jacobus van der Merwe, Sean Rooney, Ian Leslie, and Si-
mon Crosby. The Tempest - A Practical Framework for Network
Programmability. To be published, 1998. (p.1i)

[Vassila97] A. Vassila, G. Pavlou, and G. Knight. Active Objects in TMN.
In Integrated Network Management, pages 139-150. Chapman
& Hall, May 1997. (p.162)

[Veeraraghavan95] M. Veeraraghavan, T. La Porta, and W. S. Lai. An Alterna-
tive Approach to Call/Connection Control in Broadband Switch-
ing Systems. IEEE Communications, 33(11):90-96, November
1995. (pp.10, 67, 82, 83)

[Veeraraghavan97] Malathi Veeraraghavan. Connection Control in ATM Net-
works. Bell Technical Journal, 2(1):48-64, Winter 1997. (pp. 73,
101)

[Veitch96] Paul Veitch, Ian Hawker, and Geoffrey Smith. Administration of
Restorable Virtual Path Mesh Networks. IEEE Communications,
34(12):96-101, December 1996. (p.90)

[Waldbusser95] S. Waldbusser. Remote Network Management Information
Base. Draft Standard, Internet RFC 1757, October 1995.
(pp. 143, 162)

[Wellens96] Chris Wellens and Karl Auerbach. Towards Useful Management.
, The Simple Times, 4(3), June 1996. (pp. 150, 162)

A

[Wetherall96] Dave Wetherall and David Tennenhouse. The ACTIVE IP Op-
tion. In Proceedings of 7th ACM SIGOPS European Workshop,

Connemarra, Republic of Ireland, September 1996. (p.99)

(Willmann90] Gert Willmann and Paul Kiithn. Performance Modeling of Sig-
naling System No. 7. IEEE Communications, 28(7):44-56, July
1990. (p.83)

182

[Yamamura97] Tetsuya Yamamura, Tsutomu Tanahashi, Miyoshi Hanaki, and

[Yemini93]

[Yemini96]

[Zhang93]

Nobuo Fujii. TMN-Based Customer Networks Management for
ATM Networks. IEEE Communications, 35(10):46-52, October
1997. (p.147)

Yechiam Yemini. The OSI Network Management Model. IEEE
Communications, 30(5):20-29, May 1993. (pp.125, 161)

Y. Yemini and S. da Silva. Towards Programmable Networks.
In IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management, L’Aquila, Italy, October 1996.
(pp- 101, 143)

Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker,
and David Zappala. RSVP: a new resource ReSerVation pro-
tocol. IEEE Network, 7(5):8-18, September 1993. (pp- 68,
88)

183

