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Abstract

We obtain a new formalism for concurrent object-oriented lan-
guages by extending Abadi and Cardelli’s imperative object calculus
with operators for concurrency from the n-calculus and with oper-
ators for synchronisation based on mutexes. Our syntax of terms is
extremely expressive; in a precise sense it unifies notions of expression,
process, store, thread, and configuration. We present a chemical-style
reduction semantics, and prove it equivalent to a structural opera-
tional semantics. We identify a deterministic fragment that is closed
under reduction and show that it includes the imperative object cal-
culus. A collection of type systems for object-oriented constructs is at
the heart of Abadi and Cardelli’s work. We recast one of Abadi and
Cardelli’s first-order type systems with object types and subtyping in
the setting of our calculus and prove subject reduction. Since our syn-
tax of terms includes both stores and running expressions, we avoid the
need to separate store typing from typing of expressions. We translate
communication channels and the choice-free asynchronous w-calculus
into our calculus to illustrate its expressiveness; the types of read-only
and write-only channels are supertypes of read-write channels.

*Current affiliation: Microsoft Research
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1 Motivation

A great deal of software is coded in terms of concurrent processes and ob-
jects. The purpose of our work is to develop a new formalism for expressing,
typing, and reasoning about computations based on concurrent processes and
objects.

We present a new formalism for expressing computations in terms of con-
current processes and objects. Our concurrent object calculus concgy, con-
sists of Abadi and Cardelli’s imperative object calculus impg extended with
primitives for parallel composition and for synchronisation via mutexes. Our
work extends the analysis by Abadi and Cardelli (1996) of object-oriented
features to concurrent languages. At the heart of their work is a series of
type systems able to express a great variety of object-oriented idioms. Given
concey,, we may smoothly and soundly extend these type systems to accom-
modate concurrency.

There are by now many formalisms capable of encoding objects and con-
currency. Support of Abadi and Cardelli’s type systems is one distinctive
feature of our calculus. Others are the following. Unlike most process cal-
culi, the syntax of concg,, includes sequential composition of expressions that
are expected to return results; there is no need to encode results in terms of
continuations. Rather than reducing concurrent objects to other concepts,
concé,, treats objects as primitive. Rather than introduce auxiliary notions
of stores or configurations or labelled transitions, we directly describe the
semantics of concg,, in terms of a reduction relation on expressions.

As evidence of the expressiveness of our calculus, we present a series of
examples, including encodings of the 7-calculus. Here are our main technical
results:

(1) We describe a semantics for concurrent objects based on a reduction
relation and a structural congruence relation in the style of Milner’s
reduction semantics (Milner 1992) for the w-calculus (Milner, Parrow,
and Walker 1992). We prove that our reduction semantics is equivalent
to a classical structural operational semantics defined using auxiliary
notions of stores, threads, and configurations.

(2) We identify a single-threaded subset of our calculus that is preserved
by reduction and includes the impg-calculus.

(3) The Ob;.. calculus is Abadi and Cardelli’s first-order calculus with ob-
jects and subtyping. Given a few simple rules for parallel composition
and restriction, we confer the typing rules of Ob;., on our concurrent
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calculus. We prove subject reduction for this system without need-
ing any notion of store typing separate from the notion of expression

typing.

1.1 Related work

We survey operational techniques for concurrent languages. We review work
on formalisms based on functions as well as formalisms based on objects,
since techniques suitable for functions are often applicable to objects.

Plotkin’s structural operational semantics (1981) is a standard technique
for concurrent languages. A computation is described as sequence of configu-
rations. A configuration typically consists of a collection of runnable threads,
a store, and other data such as the state of communication channels. Di Bla-
sio and Fisher (1996) describe a concurrent version of the Fisher, Honsell, and
Mitchell lambda-calculus of objects in this style. Other languages treated in
this style include an actor language (Agha, Mason, Smith, and Talcott 1997)
and CML (Reppy 1992) (Berry, Milner, and Turner 1992).

Ferreira, Hennessy, and Jeffrey (1995) avoid configurations in their op-
erational semantics for CML by employing a CCS-style labelled transition
system. In their work, and in ours, the parallel composition a ' b of two
expressions a and b is an expression consisting of ¢ and b running in parallel.
Any result returned by b is returned by the whole composition; any result
returned by a is discarded. So unlike the situation in most process calculi,
parallel composition is not commutative: the effects of a ' b and b P a are
different. In implementation terms this is perfectly natural; running a " b
amounts to forking off ¢ as a new thread and then running b. Another way
of dealing with forked processes was investigated by Havelund and Larsen
(1993): they present a form of CCS based on a binary operator for sequen-
tial composition and a unary operator that represents the forking of a parallel
process.

Our reduction semantics is directly inspired by Milner’s (1992) presen-
tation of the chemical abstract machine of Berry and Boudol (1992). In
a chemical semantics, a computation state is represented by a term of the
calculus; there is no need for the auxiliary notion of a configuration. Pre-
vious chemical semantics for concurrent languages use evaluation contexts
to treat sequential composition of expressions (Amadio, Leth, and Thomsen
1995) (Peyton Jones, Gordon, and Finne 1996) (Boudol 1997); instead, our
semantics exploits a non-commutative parallel composition.

Di Blasio and Fisher’s paper is the work most closely related to ours.
Their principal results are the definition of a configuration-based reduction
semantics for their calculus, a type soundness theorem, and the proof that
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certain guard expressions used for synchronisation have no side-effects. As in
their work, we prove the soundness of a type system for concurrent objects.
Our chemical semantics has no need for the auxiliary notions of configurations
and reduction contexts used in theirs. Unlike their work, ours includes two
independent but equivalent characterisations of our operational semantics.

Various formalisms in the 7-calculus family have been used to model im-
perative or concurrent objects, for instance, in the work of Honda and Tokoro
(1991), Jones (1993), Vasconcelos (1994), Pierce and Turner (1995), Walker
(1995), Fournet and Gonthier (1996), Kleist and Sangiorgi (1998), and Dal
Zilio (1998). All these models use formalisms based on processes, computa-
tions with no concept of returning a result, instead of expressions. The op-
eration of returning a result is translated using continuations into sending a
message on a result channel. Our concg-calculus is based on expressions that
return results because its precursor impg is based on expressions, because
we do not wish to presuppose channel-based communication, and because
expressions with results are a fundamental aspect of many programming lan-
guages and therefore deserve a semantics in their own right.

1.2 Organisation of the paper

In Section 2 we present the syntax and semantics of a core calculus of con-
current objects, the concg-calculus, and in Section 3 we add mutexes to
obtain the concgy,-calculus. Our syntax of terms unifies auxiliary notions of
process, expression, store, and configuration, and hence supports a particu-
larly simple reduction semantics. In Section 4 we prove that our semantics
corresponds precisely to a more conventional, but more complex, semantics
phrased in terms of configurations. In Section 5 we demonstrate the sound-
ness of the Ob;.. type system for conc¢y,. Section 6 concludes the paper.

2 Concurrent Objects

We extend the imperative object calculus with primitives to assign a name to
a stored object and to compose two terms in parallel. The resulting calculus
allows us to express concurrent computations, but has no primitives to allow
concurrent computations to synchronise. In Section 3, we extend this core
calculus with mutex primitives for synchronisation.
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2.1 Primitives for Concurrent Objects

We assume there are disjoint infinite sets of names, variables, and labels. We
let p, ¢, and r range over names. We let z, y, and 2z range over variables. We
let £ range over labels. We define the sets of results, denotations, and terms
by the grammars:

Syntax of the concg-calculus

U, v = results
x variable
D name
d = denotations
[€; = ¢(@:)b; €] object
a,b,ci= terms
result
p—d denomination
u.l method select
u.l <= ¢(x)b method update
clone(u) cloning
let x=a in b let
al’b parallel composition
(vp)a restriction

Syntactic conventions:

(vp)al b isrtead ((vp)a)l b
ul<=g(x)bP c isread (u.l<cg(z)b)rc
let tz=a i b ¢ isread (let x=ainb)rc

Abbreviations:
(Vﬁ)a é (I/pl)(llp2) e (Vpn)a’ where ﬁ: DP1,P2,.. .y Dn

Given an object [(; = ¢(z;)b; "] we say that each ¢(z;)b; for j € 1..n
is a method, and that each ¢; = ¢(x;)b; for j € 1..n is a component of the
object.

Here are the rules for scoping variables and names. In a method ¢(z)b,
the variable z is bound; its scope is b. In a term let z=a in b, the variable
x is bound; its scope is b. In a restriction, (vp)a, the name p is bound; its
scope is a. Let fn(a) be the set of names free in the term a. Let fu(a) be
the set of variables free in the term a. We say that a term a is closed if and
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only if fu(a) = @. We write affx <— v} for the outcome of a capture-avoiding
substitution of the result v for each free occurrence of  in term a.

We write @ = b to mean that the terms a and b are equal up to the renam-
ing of bound names and bound variables, and the reordering of components
in objects.

As in the impg-calculus, our syntax distinguishes names, which represent
the addresses of stored objects, from variables, which represent intermediate
values. This is a helpful distinction but not essential; we believe it will be
useful when we come to treat observational equivalences. Results in our syn-
tax are atomic names or atomic variables; our techniques would easily extend
to structured results, such as tuples or A-abstractions. Our syntax separates
name scoping, by restrictions, from name definition, by denominations. We
separated scoping from definition to allow cyclic dependencies between def-
initions. An alternative is to use a single construct defining several names
simultaneously with mutually recursive scopes, as in the join-calculus (Four-
net and Gonthier 1996) for example. Due to the generality of our syntax, we
need a simple type system, defined in Section 4.1, to rule out certain terms
as not well-formed. For example, a process such as (p+>[| " p—{]) I p, that
contains two denominations for the same name, is not well-formed.

Starting with the terms of the imperative object calculus, we arrive at
our calculus by labelling each object with a name, and adding parallel com-
position a " b and restriction (vp)a from the m-calculus. As the next section
explains, we obtain the semantics of our calculus by combining the semantics
of the imperative object calculus with that of the m-calculus.

2.2 Informal Semantics

We may interpret a term of our object calculus either as a process or as an
expression. A process is simply a concurrent computation. An expression
is a concurrent computation that is expected to return a result. In fact, an
expression may be regarded as a process, since we may always ignore any
result that it returns.

The meanings of the first six primitives (result, denomination, method
select, method update, cloning, and let) are much as in the impg-calculus:

o A result u is an expression that immediately returns itself.

e A denomination prs [f; = ¢(z;)b; ***"] is a process that confers the
name p on the object [{; = ¢(x;)b; *€-"]. We say that the object
[6; = ¢(m;)b; *1-"] is the denotation of the name p. Intuitively, the
process represents an object stored at a memory location and the name
p represents the address of the object.
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e A method select p.£ is an expression that invokes the method labelled ¢
of the object denoted by p. In the presence of a denomination p+— [{; =
6(x;)b; *€1-], where £ = {; for some j € 1..n, the effect of p.¢ is to run
the expression b;fz; < p}}, that is, to run the body b; of the method
labelled ¢, with the variable z; bound to the name of the object itself.

e A method update p.£ < ¢(x)b is an expression that updates the method
labelled ¢ of the object denoted by p. In the presence of a denomination
p— [l = g(z;)b; "], where £ = ¢; for some j € 1..n, the effect of
p.L < ¢(x)b is to update the denomination to be p+— [¢; = ¢(z)b, {; =
6(z:)b; €M~ "and to return p as its result.

e A clone clone(p) is an expression that makes a shallow copy of the
object denoted by p. In the presence of a denomination p— [{; =
G(;)b; "1, the effect of clone(p) is to generate a fresh name ¢ with
denomination ¢ — [¢; = ¢(z;)b; **1*"] and to return ¢ as its result. After
a clone, the names p and ¢ denote two separate copies of the same
denotation [¢; = ¢(z;)b; ¥€1"]; updates to one will not affect the other.

o Alet let x=a in b is an expression that first runs the expression a, and
if it returns a result, calls it z, and then runs the expression b.

The meanings of the last two primitives (parallel composition and restric-
tion) are much as in the 7-calculus:

o A parallel composition a I" b is either an expression or a process, de-
pending on whether b is an expression or a process. In a I’ b the terms
a and b are running in parallel. If b is an expression then a " b is an
expression, whose result, if any, is the result returned by b. Any result
returned by ¢ is ignored.

o A restriction (vp)a is either an expression or a process, depending on
whether a is an expression or a process. A restriction (vp)a generates
a fresh name p whose scope is a.

In this section, our intuitive explanations have depended on an informal
distinction between processes and expressions. We make this distinction
precise via judgments a : Proc and o : Ezp in Section 4.1.

2.3 Formal Semantics

We base our operational semantics on structural congruence and reduction
relations. Reduction represents individual computation steps, and is defined



in terms of structural congruence. Structural congruence allows the rear-
rangement of the syntactic structure of a term so that reduction rules may
be applied. We may regard our semantics as a concurrent extension of the
small-step substitution-based semantics of impg described by Gordon, Han-
kin, and Lassen (1997).

The most interesting aspect of our formal semantics is the management
of concurrent expressions that return results. We intend that the result of an
expression be that returned from the right-hand side of the topmost parallel
composition. Therefore, as we discussed in Section 1.1, in contexts expecting
a result, parallel composition is not commutative. On the other hand, in
contexts immediately to the left of a parallel composition, where any result
is discarded, parallel composition is commutative. Therefore, structural con-
gruence identifies (a " b) P ¢ with (b a) I’ ¢, since any results returned by a
or b are discarded.

The following two tables define the structural congruence relation a = b.

Structural congruence: congruence rules

(Struct Refl) (Struct Symm) (Struct Trans)

b=a a=b =c
a=a a="b a=c
(Struct Update) (Struct Let)
b=V a=d b=V
ul =gx)b=ul<=glx)t let z=a in b= let z=ad' in b’
(Struct Res) (Struct Par)
a=d a=d b="b

(vp)a = (vp)d' arb=d ¥

(Struct Object)
b; = b; Viel.n
P [0 = ¢(wi)b; €11 = prs [0 = ()b, €]

Structural congruence: basic axioms

(Struct Par Assoc) (Struct Par Comm) (Struct Res Res)

(arb)Pc=ar (bPe) (aPb)Pe=(0ra)rc (vp)(vg)a= (vq)(vp)a
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(Struct Par 1) (Struct Par 2)
p ¢ fn(a) p ¢ fn(b)
(vp)(@rP b)=al (vp)b  (vp)(a? b) = ((vp)a) T b

(Struct Let Assoc)

y & fo(c)

let z=(let y=a in b) in c = let y=a in (let z=b in c)

(Struct Res Let)
p ¢ fn(b)
(vp)let z=a in b= let z=(vp)a in b

(Struct Par Let)

al let x=bin c=let x=(al b) in c

We explained (Struct Par Comm) earlier. The rules (Struct Par Assoc),
(Struct Res Res), (Struct Par 1), and (Struct Par 2) are counterparts of
similar rules for the m-calculus. (Struct Let Assoc) is a standard rule for
let familiar from the computational A-calculus (Moggi 1989). (Struct Res
Let) and (Struct Fork Let) allow the term a in let z=a in b to interact with
parallel processes.

The following table defines the reduction relation a — b:

Reduction
I(Red Select)
d=[; =¢(x)b; "] jel.n
(p—=d) T pl; — (p—>d) 1 bj{z; « P}

(Red Update)

(pHd)f’(pe =gz )b) (p'—ﬂl’)r’p

(Red Clone) (Red Let Result)
d = [l = g(z:)bi "] q ¢ fn(d)

(p—=>d) T clone(p) = (p—d) T (vg)(g—d T q)  let x=p in b — b + p}

(Red Res) (Red Par 1) (Red Par 2)
a—d a—a b— U

(vp)a = (vp)a’ aPb—d b alb—alb
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(Red Let) (Red Struct)
a—a a=d d =V V=0

let z=a in b — let v=a' in b a—b

Rules (Red Select), (Red Update), (Red Clone), and (Red Let Result)
correspond to the basic computation steps of the impg-calculus. (Red Res),
(Red Par 1), (Red Par 2), and (Red Let) are congruence rules. (Red Struct) is
a standard rule allowing a term to be re-arranged up to structural congruence
during reduction.

2.4 Examples of Concurrent Objects

We illustrate the operational semantics of concg via examples drawn from
encodings of the impg-calculus and the call-by-value A-calculus.

2.4.1 Imperative objects

We may embed all the expressions of the impc-calculus in concg via the
following abbreviations. We show in Section 4.3 that the reductions of any
term of impg embedded in concg are deterministic.

The impc¢-calculus

d (as aterm) = (vp)(p—dr p) for p ¢ fn(d)
al = let z=qa in z.0 for a not a result
al <=c(z)b = let y=a in y.L < ¢(z)b for a not a result and y ¢ fu(b)
A .
clone(a) = let x=a in clone(z) for a not a result

Here is an example, from Abadi and Cardelli’s book, of a computation
involving method update and method select:

[¢ = g(z)z.l <= g(y)z].L

= let z=[0 = g(z)z.l <= ¢(y)z] in 2.0

= let 2=(vp)(p— [ =¢g(z)z.l < g(y)z] T p) in 2.0
= (vp)(p— [ =¢(z)z.l <= g(y)z] T let z=p in 2.0)
= (wp)(pr [ = ¢(z)a.l <= ¢(y)z] P p.0)

= (wp)(pr €= ¢(z)z.l <= ¢(y)z] T p.L = ¢(y)p)
= (p)(p—[=¢)pl T p)




Here is an example that illustrates the interaction between let and com-
position:
p=[l=¢(x)b] P let z=pLinc = let z=(p— [ =¢(z)b] " p.f) in c
— let z=(p—~ [l =¢(2)b] P bz < pf}) in ¢
= p—[0=g(2)b] P let =bfx + p} in c

We may generate a cyclic dependency between denominations:

let $1:[€ = g(yl)yl] in let 372:[5 = Q(yg)l’l] m Sl)l.g <= (;(’yl).’EQ
=" (vp1)(vp2) (1= [ = G(y1)p2] T pa= [€ = G(y2)p1] T p1)

2.4.2 Concurrent procedure calls

We encode A-abstraction and application as in Gordon, Hankin, and Lassen
(1997):

The call-by-value A-calculus
Az)b larg = ¢(s)s.arg, val = ¢(s)let z=s.arg in b] for s & fu(b)
b(a) (b.arg < ¢(x)a).val

e e

To illustrate the action of procedure calls, let fact, be an object repre-
senting some procedure, for example, factorial.

fact, = [arg = ¢(x)p, val = ¢(s)let y=s.arg in body{y}]

We assume for the purpose of this example some implementation of numerals
as objects. We write the number n for the name of an object representing n.
The following illustrates a procedure call:

let f=facty in £(10)
= let f=(vp)(p+ fact, T p) in f(10)
vp)(p > facty I let f=p in f(10))

1l

(
= (vp)(p facty 7 p(10))
= (vp)(p> facty T (p.arg <= ¢()10).val)
—  (vp)(p+ factyy I p.val)
=% (vp)(p+> factyy P body{10})
= (vp)(p+ factyy) P body {10}

A first try at writing two concurrent procedure calls is:
let f=facty in (f(10) P f(20))
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Since there is no synchronisation between the applications f(10) and
f(20), one may interfere with the other. To avoid this, we use clone:

let f=facty in (clone(f)(10) T clone(f)(20))

The code above returns the result of clone(f)(20) but discards the result
of clone(f)(10). The following example shows how a let may be used to
process the results from both the calls.

let f=fact, in
((let zy=clone(f)(10) in Q1) © (let zo=clone(f)(20) in Q7))

Although the result of () will ultimately be discarded, ; may still in-
fluence the result of the whole computation by communicating with @), for
example.

3 Synchronisation

Different object-oriented languages use a variety of techniques to synchronise
concurrent processes. We need some way to model process synchronisation
within our calculus.

One approach would be to encode synchronisation in terms of critical sec-
tions. The mutual exclusion problem is the problem of enforcing mutually
exclusive access to a critical section in the presence of several concurrent pro-
cesses. Starting with Dijkstra (1965), many algorithms have been proposed
to solve this problem in terms of primitives for atomic reads and writes on
a shared memory. Since we can encode these primitives within the concc-
calculus, we can also encode any of the solutions to the mutual exclusion
problem. Therefore, we could use critical sections to encode higher level
synchronisation mechanisms like object locking or communication channels
within the concg-calculus.

We prefer not to use such an encoding for two reasons. First, the encoding
is anachronistic since mutual exclusion is normally solved using hardware
primitives (such as inhibition of interrupts) rather than reads and writes to a
shared memory. Second, the encoding would lead to complicated calculations
about the reduction behaviour of higher-level synchronisation mechanisms.

Instead, we prefer to encode synchronisation mechanisms in a calculus
concg,, obtained by extending the concc-calculus with mutexes (binary
semaphores). Unlike shared variable mutual exclusion algorithms, mutexes
are commonly used in the runtime systems of object-oriented languages and
have simple reduction rules. We have defined a compositional translation of
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concgy, into concg using a two process mutual exclusion algorithm (Lam-
port 1985) to guarantee exclusive access to the objects representing mutexes.
We conjecture that this translation is sound with respect to a suitable notion
of observational equivalence, but not fully abstract.

A third approach would be to add synchronisation mechanisms to the
primitive operations on objects, as in the calculus of Di Blasio and Fisher
(1996). To keep the primitives of our calculus simple, we prefer not to inte-
grate a specific synchronisation construct into the semantics of method select
and method update.

3.1 Primitives for Synchronisation
We extend the concc-calculus with mutexes as follows:

Syntax of the concgy,-calculus

I 1

d:= denotation
e as in Section 2.1
locked locked mutex
unlocked unlocked mutex
a,b,c = term
as in Section 2.1
acquire(u) mutex acquisition
release(u) mutex release

Asin Section 2.4.1, we adopt a convention allowing denotations to be used
as terms. As a term, let locked be short for (vp)(p+ locked I p). Similarly,
let unlocked be short for (vp)(p— unlocked I p). Moreover, if a is not a
result, let acquire(a) and release(a) be short for let x=a in acquire(x) and
let x=a in release(z), respectively.

3.2 Informal Semantics
We may explain the semantics of mutexes as follows:

e A denomination p> locked or pr> unlocked represents a mutex, de-
noted by p, whose state is locked or unlocked, respectively. Intuitively,
the mutex is a bit stored at memory location p.

e A mutex acquisition acquire(p) attempts to lock the mutex denoted by
p. If a denomination p — unlocked is present, the acquisition acquire(p)
changes its state to p+— locked, and returns p as its result. Otherwise
the acquisition blocks.

12



e A mutex release release(p) unconditionally unlocks the mutex denoted
by p. If a denomination p+ d is present, for d € {locked, unlocked},
the release release(p) sets its state to p+> unlocked, and returns p as
its result.

3.3 Formal Semantics

We define the structural congruence relation = by exactly the same rules as
in Section 2.3. The reduction relation — is defined by the rules in Section 2.3
together with two new rules for mutex acquisition and release:

Reduction

I ]

(p+ unlocked) I acquire(p) — (p+> locked) " p  (Red Acquire)
(p+>d) T release(p) — (p—> unlocked) P p (Red Release)
for d € {locked, unlocked }

3.4 Examples of Synchronisation
3.4.1 Mutual exclusion

We may protect access to shared state with a mutex to prevent interference
between concurrent threads. The operation lock u in a blocks until it can
acquire the mutex wu, runs a, then releases u.

a;b let x=a in b

A
£ acquire(u); let y=a in (release(u);y)

lock u in a

In Section 2.4.2 we used cloning to prevent interference between two con-

current calls to a shared procedure. We may protect access to the shared
procedure with a mutex as follows:

let x=unlocked in let f=facty in (lock z in f(10)) 1 (lock = in f(20))

With this idiom for calling a shared procedure the calls f(10) and f(20)
are serialised; the first to run must terminate before the second may run.
Hence this idiom allows for less concurrency than the one in Section 2.4.2
using clone. Serialisation is necessary if the shared procedure accesses some
persistent state.
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3.4.2 Asynchronous channels

Consider an asynchronous communications channel as in Pict (Pierce and
Turner 1997) or Concurrent Haskell (Peyton Jones, Gordon, and Finne 1996).
Such a channel is an object named by p, that either contains a result or is
empty, and has two methods read and write. If the object p is empty, the
operation p.write(v) updates p so that it contains v, while the operation
p.read blocks. If the object p contains the result v, the operation p.read
returns v and updates p so that it is empty, while the operation p.write(u)
blocks. We code this behaviour as follows, where nil is a name used to
initialise the channel. (Di Blasio and Fisher (1996) implement a similar
abstraction in their calculus of concurrent objects.)

Asynchronous channels

chang Upg Uyy U =
[reader = g, writer = Uy, val = v,
read = ¢(s)
acquire(s.reader); let x=s.val in (release(s.writer) I x),
write = ¢(s)A\(z)(
acquire(s.writer); s.val < ¢(s)x; release(s.reader)) I z))
newChan, =
let reader=locked in let writer=unlocked in

chan, reader writer nil

This code maintains the invariant that at any time at most one of the
locks reader and writer is unlocked. If reader is unlocked, the result in val
is the contents of the channel. If writer is unlocked, the channel is empty.

The body of the write method is a A-abstraction. Each call to this method
allocates a fresh object that represents the A-abstraction. Therefore concur-
rent calls to write do not interfere with each other.

We make the following definitions to represent states of a channel:

p Channela drd dwr v = (VQTd)(VQqu)(QTd s drd r Qur dwr r
P Chana Grd Qur 'U)
p— empty u p+> channel, locked unlocked u

P full u

e (e

p+> channel, unlocked locked u
We can show that our implementation has the following properties:

newChan, —* (vp)(p+— empty nil ¥ p)
pr empty ¢ © powrite(q’) —* p—full ¢' 7 ¢
pr>full g7 p.read —* pr—rempty ¢ ¢
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Given asynchronous channels, we can encode the asynchronous m-calculus:

Encoding the asynchronous m-calculus

[z] & =
[Fy] = =z.write(y)
[z(y).P] = let y=x.read in [P]
[lz(y).P] = [rep = ¢(s)let y=x.read in ([P] T s.rep)].rep
for s ¢ {z,y} U fu(P)
[P1Q] = [P]r[Q]
[(new z)P] = let x=newChan, in [P]

We conjecture that this translation is sound with respect to a suitable
notion of observational equivalence. This particular translation is not fully
abstract, since the encoding of channels allows an observer to discover the
last message sent on a channel.

3.4.3 Synchronous channels

The implementation of channels in the previous section is asynchronous in
the sense that a writer p.write(v) returns as soon as it has deposited v in
the channel p, and does not wait until a reader p.read has obtained v. In
the following code, a reader p.read signals to a writer p.write(v) that it has
obtained v by releasing the lock p.ack. To prevent races between multiple
writers, we serialise calls to the p.write method using a lock p.writeLock.

Synchronous channels

Ch&’ﬂs Uech Ugck Uwr U =

[ch = ten, ack = Uger, writeLock = Uyy,

read = ¢(s)let x=s.ch.read in (release(s.ack) I x)

write = ¢(s)A(z)lock s.writeLock in (s.ch.write(z); acquire(s.ack); z)]
newChang 2

let ch=newChan, in let ack=locked in let lock=unlocked in

chan, ch ack lock nil

Given synchronous channels, we can encode the choice-free synchronous
m-calculus by revising and extending the previous translation:
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Encoding the choice-free synchronous r-calculus

[Pl 2 warite(y);[P] |
[(new z)P] let z=newChang in [P]

Igile

We leave an encoding of guarded choice as future work.

3.4.4 Fork and join

A common pattern of concurrency is to fork off a thread to compute a re-
sult, and later to await this result using a join operation. We may easily
code these operations in terms of mutexes, but there is a particularly simple
implementation using asynchronous channels:

fork b

join u

let ch=newChan, in (let z=b in ch.write(z) P ch)

A2
£ w.read

To illustrate fork and join, suppose we have some binary operation u @ v
on results. We can extend this to an operation a @ b on arbitrary terms that
evaluates ¢ and b in parallel:

a®b = let th=fork b in let x=a in let y=join th in z®y

4 A Structural Characterisation of Reduction

The purpose of this section is to characterise our reduction semantics in terms
of a more conventional structural operational semantics. This is desirable
for two reasons. First, it increases our confidence in the correctness of our
semantics. Second, it provides a convenient way to enumerate all possible
reductions of a term.

Section 4.1 describes the well-formed terms of conegy, using a rudimen-
tary type system that distinguishes expressions (terms expected to return a
result) from processes. In Section 4.2, we demonstrate that on well-formed
terms our reduction semantics coincides with a structural operational se-
mantics defined using configurations. Finally, in Section 4.3, we identify a
single-threaded fragment of concg by omitting a single rule from the rudi-
mentary type system. We show this fragment is deterministic and includes
the impc-calculus.
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4.1 Well-formed Terms

We present a type system for well-formed terms that distinguishes expressions
from processes. In this type system, there are only two types Proc and Ezp,
representing processes and expressions, respectively. Since we may always
ignore the result of an expression, any term of type Ezp is also a term of
type Proc. The type system is very liberal and provides only two guarantees
about well-formed terms. First, it guarantees that a proper process does not
occur in a context expecting an expression. Second, it guarantees that the
top-level denominations of free names in a term represent a partial function
from names to objects whose domain is preserved by computation steps.
Later, in Section 5, we study a stronger type system that prevents “message
not understood” errors.

The top-level denominations in a term play the role of locations in a store.
It is convenient to define the domain of a term a, dom(a), to be the set of
free names named by top-level denominations in a:

Domain of a term

dom(p > d) = {p}

dom(let x=a in b) = dom(a)

dom(a T b) £ dom(a) U dom(b)

dom((vp)a) £ dom(a) - {p}

dom(a) = o for any other kind of a

Let T stand for either Proc or Fzp. The well-formed terms are given by
the judgment a : T' defined in the following table. We say that term a is a
process if and only if @ : Proc. Similarly, we say that a term a is an exzpression
if and only if a : Ezp.

Well-formed terms

(Well Result) (Well Object) (Well Mutex)

bi: Ezp dom(b;)) =@ Viel.n d € {locked, unlocked}
u: Ezp ps [0 = g(x)b; €] Proc p+>d: Proc
(Well Select) (Well Update) (Well Clone) (Well Acquire)

b: Ezp dom(b) =@
u.l: Ezp u.l < ¢(z)b: Exp clone(u) : Ezp  acquire(u) : Ezp
(Well Release) (Well Let) (Well Res)

a:Ezp b:Ezp dom(b)=2 a:T pe€ dom(a)

release(u) : Exp let x=a in b: Exp (vp)a: T
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(Well Par) (Well Concur)
a:Proc b:T dom(a)Ndom(b)=2 a: Exp
alb:T a: Proc

Results, method selects and updates, clones, mutex acquisitions and re-
leases, and lets are all expected to return a result, so the rules (Well Result),
(Well Select), (Well Update), (Well Clone), (Well Acquire), (Well Release),
and (Well Let) assign them all the type Ezp. The rules (Well Object) and
(Well Mutex) assign the type Proc to denominations, since they do not re-
turn results. The conditions on method bodies in the rules (Well Object)
and (Well Update) guarantee that method selects yield expressions, and that
method selects do not affect the domain of the term. In (Well Let), the con-
dition dom(b) = & guarantees that if b ever runs it will not alter the domain
of the term.

The rule (Well Res) allows a restriction (vp)a to be of either type, de-
pending on the type of its body a. The condition p € dom(a) guarantees that
any selects, updates or clones of p within a cannot block because no object
is named by p. In other words, if we think of the name p as a pointer, and a
denomination p+ d as the memory location to which p points, the condition
p € dom(a) guarantees that no occurrence of p within a is a dangling pointer.

The rule (Well Par) allows a composition a ' b to be of either type,
depending on the type of the term b. The condition dom(a) N dom(b) = @
prevents there being a denomination of the same name in both a and b.
Finally, the rule (Well Concur) allows an expression to be treated as a process.

For example, we may derive (vp)(p+>d P p.l) : Ezp where d = [{ =
¢(z)z.C). By (Well Select), z.£ : Ezp. By (Well Object), this implies p+ d :
Proc. By (Well Select), p.f : Ezp. By (Well Par), the latter two judgments
imply (p—=d P p.f) : Exp. By (Well Res), this implies (vp)(p+>d I’ p.£) : Ezp.

Terms that are not well-formed include p—d; ©* p—dy, let z=p+>d in b,
(vp)p, and p— [£ = ¢(x)g+— d]. None of these receives a type.

Structural congruence and reduction respect typing;:

Proposition 1
(1) Ifa:T and a=b then b: T and dom(a) = dom(b).
(2) Ifa: T and a — b then b : T and dom(a) = dom(b).

4.2 A Structural Operational Semantics

A conventional technique for describing the semantics of concurrent lan-
guages with state relies on a syntactic category of configurations, which con-
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sist of a store paired with a set of runnable threads. To mimic this technique,
we identify sets of terms that represent threads, stores, and configurations.

We begin with a grammar for threads, terms representing a single flow of
control:

Threads
e = elementary threads
u result
u.l method select
u.l < ¢(x)b method update
clone(u) cloning
acquire(u) mutex acquisition
release(u) mutex release
tu=e|let z=t in b threads

To define configurations, let o range over a sequence of denominations
p; — d; "™, which we call a store, and let p range over a sequence of threads,
t1,...,tn. Then let a configuration, (v@){p;+>d; €™ || t1,...,tn), be an
abbreviation for the term (vq)(p1+>di P+ P P dy Pt T +- - T t,). This
notation is well defined only if m + n > 0. Intuitively, a configuration is
a term consisting of a possibly multi-threaded computation a; " -+ I ay
interacting with a store py+rdy I -+ I pp > dy, with the names ¢ hidden
from its environment.

We may transform any term into a configuration as follows:

Normalising terms to configurations

N (e) = (@]le)
N(prd) = (pdl o)
N(let z=a in b) = (o || p,let z=t in b)
where N'(a) = (vp){(o || p,t) and {p} N fn(b) =
N((vp)a) = (vp)N(a)
N(ar b) = (P wd{o,d || p, )

where N (a) = (vp)(o, p), N(b) = (vq)(c’, p'), and
{7} N (fnlo") U fn(p) = {7} N (fnlo) U fnlp)) =

| ]

We can show by induction on the derivation of a : T, that a : T' implies
that A (a) is well defined and in particular that T' = Ezp implies that A (a)
takes the form (vp){o || p,t).

The two interesting cases of the definition are for lets and parallel com-
positions. When computing N (let =a in b), we normalise a and b and pull
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the restrictions, store and extra threads from a outside the let. It is in this
case that we need let x=a in b to be well-formed; if so, we have a : Fzp,
which implies that there is at least one thread in A (a). When computing
N(ar b), we normalise a and b and concatenate the stores from N (a) and
N (b) to produce the new store, and concatenate the thread lists to form the
new thread list. We pull the restrictions from N (a) and A (b) to the outside;
the conditions on the restricted names ensure there are no name clashes in
the combined store.

We can show that there is a configuration structurally congruent to every
expression, and normalisation is the identity function on configurations:

Lemma 2 Ifa: Ezp then N(a) =

Lemma 8 N((vf)(o || p)) = (wi){o || p),

Having mimicked configurations within our syntax of telms we may de-
fine a fairly conventional structural operational semantics, a 593 b, as follows:

Structural operational semantics

'(SOS Select) (where {p} N fn(o, p1, p2) = )
0 =01, pr [l = g(x:)b; €], 0y J € L.n N(bifz; + p}) = (wp)(o’ || )

(0 || prsp-Lis p2) =3 (i) (o, 0" || prs ', o)

(SOS Update)
d = [l; = ¢(z;)b; “€"]  d' = [ ( )b, £; = ¢(z;)b; F€1-m— i}

(01,0 d, 03 || p1,pb; <= ¢(@)b, pa) 223 (o1, p>d, 0 | p1, D, p2)

(SOS Clone) (where ¢ ¢ fn(o, p1, p2))
d = [; = g(xi)b " "] 0=01,prd, 0y

(o || py, clone(p), p2) =23 (va)(o,a—d || p1,q, p2)
(SOS Acquire)

SOS
{

(o1, p> unlocked, oy || p1, acquire(p), po) == (o1, pr> locked, o9 || p1, P, pa)

(SOS Release)
d € {locked, unlocked }

(o1,pr=>d, o9 || p1, release(p), ps) 508 (o1, > unlocked, o3 || p1,p, pa)

(SOS Let Result) (where {p} N fn(o, p1, p2) = @)
N(ofe < pp) = (VW o)

( || p1, let m=p in b, p2) = (v){o, 0" || p1, ¢/, p2)
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(SO8 Let) (where {p} 0 fn(1,b, p2) = @)
WH& (WNWW%W
<0 H P1, let =t in b p2> (Vﬁ)< H pl)/)/’ let z=t' in b: p2>

(SOS Res) (SOS Norm)
a —> v (@ |l p) N(a) =5 (vi) (o || p)
wp)a 2B wp)wp) o || p) 2B wp)(o || p)

There are many examples of semantics of this kind in the literature, such
as the semantics by Di Blasio and Fisher (1996) for their calculus of con-

current objects. We may show for any derivation of a 598 b that b is a
configuration; moreover, a is also a configuration, unless the last rule in the
derivation is (SOS Norm). The purpose of (SOS Norm) is to allow reduction
of arbitrary terms. The other rules correspond to the reduction rules for
threads in Section 2.3 and Section 3.3, except that rules (SOS Select) and
(SOS Let Result) use the normalisation function so that their outcome is a
configuration.

Our main theorem about the structural operational semantics is that it

coincides with the reduction semantics up to structural congruence. We write

a S—O—S> b to mean there is ¢ such that a ——) c and ¢ = b.

Theorem 1 For all a,b: Exp, a — b of and only a 508 —,

This is instructive for two reasons. First, the theorem legitimates our
chemical-style reduction relation by demonstrating its correspondence, mod-
ulo structural congruence, to a rather more conventional semantics. Second,
the theorem suggests a procedure for discovering all possible reductions of

an expression: normalise the expression, then see what 225 reductions are
derivable. It is not obvious how to use the — relation directly to discover all
possible reductions of an expression, since they are defined up to structural
congruence.

Theorem 1 fails to hold for processes that are not expressions. Consider
the process p.£ P pr [{ = ¢(s)s]. This term has type Proc but not Ezp. It
has no reductions, because composition is not commutative. On the other
hand, it is normalised to a configuration (p+ [ = ¢(s)s] || p.£) and we have

(p>[0=g(s)s] | p.) =23 (p [€ = g(s)s] || p).

The difficulty here is that the reduction relation a — b does not represent
all of the behaviour of processes that are running as subterms to the left of a
composition, where composition is commutative. To remedy this situation,
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we define versions of structural congruence and reduction specialised to pro-

P
cesses situated to the left of a composition. Let a =’ b if and only if there

is p ¢ fn(a) U fn(b) such that a P p = b p. Roughly, " is the same as

=, except that composition is commutative at the top level. Let a e p if

.. P P . e
and only if = o ,d =V, and ¥ = b (An alternative definition is to

specify these relations by a set of inference rules, simultaneously with the
. P
definitions of ¢ = b and a — b.) We can show that a I’ b = b a and that

Proc

plT p—[l=¢g(s)s] = pl p—[f=¢(s)s]. Moreover, we have:

Proposition 4 For all a,b: Proc, a e g if and only if a ﬂpgc b.

4.3 A Single-Threaded Fragment

In this section, we adapt the type system from Section 4.1 to identity a
deterministic single-threaded fragment of conc¢, and show that it includes
Abadi and Cardelli’s impg-calculus.

It is only the rule (Well Concur) from the type system in Section 4.1 that
allows for multi-threaded computations. To see this, let the single-threaded
type system for concg be the judgment a :' T' defined by the typing rules
from Section 4.1, omitting (Well Concur), (Well Mutex), (Well Acquire),
and (Well Release). We can show for every thread ¢ that ¢ :' T implies that
T = Ezp. Therefore a binary composition of threads #; I t5 cannot be typed
in this system, since the rule (Well Par) requires t; :* Proc.

The single-threaded type system enjoys the following properties:

Lemma 5
(1) Ifa*T anda =0 then b :* T.

(2) Ifa:* T anda — b thenb:* T.

(3) For all a,b:! Ezp, a — b if and only a 3= b,
(4) If a :* Proc then N (a) takes the form (vp){o || ).
(5) If a:* Exp then N(a) takes the form (vp)(o || t).

Using the lemma, we obtain that unlike the full calculus, the fragment
specified by the single-threaded type system is deterministic:

Theorem 2 Suppose a:! Ezp. If a — d' and a — a" then o' = d”.
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Recall that any term of the imperative object calculus imp¢ may be
expressed within concg using the abbreviations stated in Section 2.4.1.

Proposition 6 If a represents a term of impg, we can derive a :* Ezp.

All this establishes that we can embed imp¢ within a deterministic frag-
ment of concg closed under reduction.

5 A First-Order Type System

We turn in this section to demonstrating that the typing rules for Abadi
and Cardelli’s type system Ob; ., simply and smoothly extend to typing our
concurrent object calculus.

5.1 Typing

The types of our type system consist of the first-order object types of Abadi
and Cardelli’s Oby .. together with types for mutexes, processes, and expres-
sions:

Types and environments

A, B = [l; : A; €] | Mutex | Proc | Ezp types
Eu=@,v A, ... v, Ay environments

As in the rudimentary type system, Ezp is the type of expressions, terms
expected to return results, and Proc is the type of processes, terms that
may not be expected to return results. As in Ob;.,, [ @ A; *€1"] is the
type of objects with methods ¢y, ..., £, returning results of types A;, ...,
A, respectively; we identify object types up reordering of their components.
Finally, Mutez is the type of mutexes.

System Oby.. is based on four judgments, which we define inductively
by the rules in the following table.

Judgments

Eto E is a well-formed environment
EFA given F, type A is well-formed
Et+ A<:B given E, A is a subtype of B
Etla:A given E, term a has type A
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Typing rules

(Env @) (Env u) (Type Object) (¢; distinct)
ErA ué¢dom(E) FEbo EFBi<Exp Viel.n
FFo Eu:AFo EF 4 : B; €7

(Type Mutex) (Type Proc) (Type Exp)
EFo Elo Elo

E + Mutez E+ Proc El Exp

(Sub Refl)  (Sub Trans)
El-A ErA<B EF B<C

EF A<A E+ A<:C
(Sub Object) (¢; distinct) (Sub Exp)
Er-o EFB, Yiel.n+m E+A A+ Proc
EF ¢ B €bntm<i[(; . By i€l EF A<:Ezp
(Sub Proc) (Val Subsumption) (Val u)
Ero Etra:A EFA<B Eu:AFEFo
E v Ezp<:Proc Etra:B Eu:AFFu:A

(Val Object) (where A = [¢; : B; *€1-"))
E:Elap5A,E2 E,lL'ZAi“szz dO'fTL(bz):@ Viel.n
Etpe [l = g(a:)bi *<M"] : Proc

(Val Mutex) (Val Select)
Etp: Mutez de {locked,unlocked} Etw:l[l;: B;*¢"] j€l.n
Erp—d: Proc Etruld;: B;

(Val Update) (where A = [(; : B; *€!-7))
Etru:A jel.n Ex:AFb:B; dom(b) =0
Erul;<=gz)h: A

(Val Clone)
Etlu:[l;: B€n)
EF clone(u) : [¢; : B; €7

(Val Acquire) (Val Release)
Bt w: Mutez EFu: Mutex

E & acquire(u) : Mutez  E & release(u) : Mutez
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(Val Let)
Eta:A Ex:AFb:B dom(b)=@ FEFA<Ezp FEF B<Exp

Erlet z=ainb: B

(Val Par) (where dom(a) N dom(b) = &) (Val Res)
Etra:Proc EFDb:B E,p:Ata:B pe dom(a)

Etrarb:B Et+ (vp)a: B

This type system combines Abadi and Cardelli’s Ob; .. and the rudimen-
tary type system from Section 4.1. The rules for well-formed environments
are standard. (Type Object) is the only noteworthy rule for deriving well-
formed types. It insists that the type of every method is a subtype of Ezp;
this corresponds to the restriction in (Well Object) that methods be of type
Ezp. There are two non-standard subtyping rules: (Sub Exp) ensures that
object types and the type Mutez are subtypes of Ezp, and (Sub Proc) en-
sures that every type is a subtype of Proc. The rules for typing terms are
a straightforward combination of the rules of Ob;., and the rules from Sec-
tion 4.1.

This type system refines the rudimentary type system of Section 4.1 in
the following sense:

Lemma 7 IfEtFa: A and E+ A<T thena:T.
Our typing'rules respect structural congruence and reduction:
Theorem 3
(1) IfEta:Aanda=0bthen EFb: A

(2) IfEtFa:Aanda—bthen EFD: A

To prove such a subject reduction theorem for typed forms of impg, Abadi
and Cardelli need to introduce the standard auxiliary notion of store typing.
Since the terms of our calculus include both sequential threads and stores,
we have no need to separate the notion of store typing from the notion of a
typable term. The outcome is a crisper statement of subject reduction than
for the imperative form of Ob;.. in Abadi and Cardelli’s book.

5.2 Examples of Typing and Subtyping

Let A — B be short for [arg : A, val : B, as usual in object calculi. If we
make the definitions,

Chans A = [reader : Mutex, writer : Mutez,
val : A, read : A, write : A — A]
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Chan, A = [ch : Chans, ack : Mutez, writeLock : Mutez,
val : A, read : A, write : A — A]

we may derive:
&, nil : A+ newChan, : Chang A
g,nil : A+ newChang : Chan, A

These typings expose more of the internal state of channels than is desir-
able. Let A be the type [read : A, write : A — A]. Since both Chan, A<:JA
and Chans A<:JA, we may use subsumption to derive:

&, nil : A newChan, : A
&, nil : A newChan, : JA

To further refine usage of these channel types we define a type of write-
only channels, 1A = [write : A — A], and a type of read-only channels,
JA = [read : A], as in the work of Pierce and Sangiorgi (1996). The inclusions
JA<:1A and $A<:]A are part of the definition of Pierce and Sangiorgi’s
system but are derivable in ours.

6 Conclusions

We described a concurrent extension of Abadi and Cardelli’s imperative ob-
ject calculus, impg. The syntax of our calculus is essentially that of impg to-
gether with parallel composition and restriction from the 7-calculus, and new
primitives for synchronisation via mutexes. This syntax is extremely expres-
sive; in a precise sense it unifies notions of expression, process, store, thread,
and configuration. We presented a novel reduction semantics for concurrent
expressions, without any need for evaluation contexts, and proved that it
corresponds to a more conventional structural operational semantics defined
in terms of configurations. We exhibited translations of the asynchronous
m-calculus and the impc-calculus into our calculus.

One of Abadi and Cardelli’s notable achievements in their theory of ob-
jects is a range of type systems that allow type-checking of various styles of
object-oriented programming. By studying one of their standard type sys-
tems we demonstrated that our semantic techniques allow their type systems
to be smoothly extended to encompass concurrency.

An important avenue for future work is the study of observational equiv-
alence for our calculus. Another avenue to investigate is the encoding of
other concurrency primitives, like monitors, condition variables, and named
threads. Finally, it would be valuable to extend our semantics of expression-
based concurrency to handle the mobile processes found in object-oriented
languages like Telescript or Obliq.
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A Proofs

In this appendix we prove all the results stated in the body of the paper.
We defined the structural congruence relation ¢ = b and the reduction
relation ¢ — b by rules in Sections 2.3 and 3.3. In Section 4.2 we defined

. . Proc P . . .
Proc-indexed relations a = b and a -5 b. For stating some results in this

B
appendix, it is convenient to introduce the notations ¢ = b and a % b as
shorthands for a = b and @ — b respectively. The following table summarises
these T-indexed notations for structural congruence and reduction:

Relations = and 5 where T := Ezp | Proc

i 1
Ezp

c=b = a=b
a0 2 Tp¢ @) Ufn(b)ar p=5br p)
ab 2 4o
o™y 2 3d', V' (a Free a,a = b, fee b)

A.1 Facts about Structural Congruence

The main body of the paper relies on an operation, bffy + v}, which denotes
the outcome of substituting the result v for each free occurrence of the vari-
able y in the term b. To state the following lemma we extend this operation
to allow the substitution of a term for a result (either a name or a variable).

Substitution of a term for a result: bfv + ¢}

ufv + cifu=voruifu#wv

(p+ [l = g(z:)b; € v &} [ = g(x) (i « &) €]
for z; ¢ {v} U fu(c)

p > locked

p+—> unlocked

(ufv «+ )L

(ufv + ).t < ¢(z) (oo « o)
for z ¢ {v} U fu(c)

clone(ufv < c})

let v=afv + c} in (bfv + )
for z ¢ {v} U fu(c)

(@r b)fv « & (afv < ) r (bfp « &)

(vp)a)fv « & (vp)(afv + &) forp ¢ {v} U fn(c)

Tt

(p> locked) v « o}
(p — unlocked){v + c}

(ul)fv « &}
(ul <= g(2)b){v +

e li> fie >

(clone(u)){v «+ d}
(let z=a in b){v + d}

> e

> >
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This definition depends on the shorthands a.l, a.l < ¢(z)b, clone(a),
acquire(a) and release(a) for an arbitrary term a, defined in Sections 2.4.1
and 3.1. For example, clone(z){z + p.f} is defined to be clone(p.f), which
is a shorthand for let y=p.¢ in clone(y).

Lemma 8
(1) If a = b then afu < v} = b{u + v}

s Proc . R "
(2) The relation "= is reflezive, symmetric, and transitive.

Proc Proc

(3) Ifa = b then (vp)a = (vp)b.
(4) If a =b then affv < ¢} = bfv + d}.

G) Fa =2 d andb=V thenarb=da PY.

I~

Proc

(6) a = b if and only if, for all p ¢ fn(a) U fn(b), aP p=>bTr p.
Proof

(1) In the case T' = Ezp, we may prove the lemma by an easy induction
on the derivation of a = b.

In the case T = Proc, we have a” p = b p for some p ¢ fn(a,b). Pick
q ¢ fn(a,b) U {u,v}. Then by the Ezp case we have (a P p)fp + ¢} =
(b1 p)fp « g}, that is, a P ¢ = b I q. Using the Ezp case again, we
get (al Q)fu v} = (b7 q){u « v}, that is, afu < v} " ¢ = bfu

Proc

v} P q. Since ¢ ¢ fn(afu < v}, bfu + v}) we have a "= b as required.

P
(2) Reflexivity and symmetry are clear. For transitivity, suppose a = b

and b =° ¢. This means a P p=bPpand bl g =cl qfor some names
p and ¢ where p ¢ fn(a,b) and ¢ ¢ fn(b,c). Pick r ¢ fn(a,b,c). Then
by part (1), (aP p)fp < r} = (b7 p){p + r}, thatis,aP r=0b"7 r.
We may similarly infer that b r = ¢ r. By (Struct Trans) we deduce

Proc

alr=clPr,soa = c.

(3) If a "2 then a P g = br ¢ for some g ¢ fn(a,b). Pick r such that
r ¢ fn(a,b) U{p}. Then (a? ¢)fg < 7} = (07 ¢){¢ < r} by part (1).
This means a P 7 = b r. Then by (Struct Res), (vp)(aT r) = (vp)(bT
r). Since 7 # p we have by (Struct Par 1), (vp)(a T r) = (vp)a l r

and (vp)(b7 r) = (vp)b " r. By (Struct Trans),P(l/p)a Pr=(wp)b?r.
Since 7 ¢ fn((vp)a) U fu((vp)b), we have (vp)a = (vp)b.
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(4) An easy induction on the derivation of a = b.

(6) If T' = Ezp, we have a ' p = o' I p for some p ¢ fn(a,a’), and b =¥,
By (4), a? b= a' T b. By (Struct Par), o' 7 b = o' P . Hence
by (Struct Trans), a P b = o " ¥'. Otherwise, if T = Proc, we get
alp=drTpand b7 p=1¥bT1 pfor some p such that p & fn(a,ad’,b,b').
Then we compute:

al bl p al VP p by (Struct Par)
YParlp by (Struct Par Comm)
b1 a'Pp by (Struct Par)
a' ¥ rp by (Struct Par Comm)

e e

Hence by (Struct Trans), aP b p=d P V' P p and hence a ' b Toee
arb.

Proc

(6) If a =" b then there is ¢ ¢ fn(a,b) such that a ¢ = b gq. Now
suppose p ¢ fn(a,b). By (4) we have (a P ¢){g < p} = (07 o) g « p}
and hence a " p = b p. The converse, namely that a P p = b p for
all p ¢ fn(a,b) impliesa” p = b7 p for some p ¢ fn(a,d) is clear. O

The last part of the lemma allows us to derive a " p = b I’ p for any

fresh p when we know a =" b. We will use this implicitly in proofs without

referencing the lemma.

A.2 Proof of Proposition 1

Our aim in this section is to prove Proposition 1, subject reduction for the
rudimentary type system. We begin with two preliminary lemmas.

Lemma 9

(1) For all terms a, dom(a) C fn(a).

Proc

(2) Ifa=0bthena = b.

(3) Ifa— b then a 3 b.

(4) Ifa="b then dom(a) = dom(D).
(5) Ifa— b then dom(a) = dom(b).
(6) Ifa: T then afr + u} : T.
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Proof

(1) By induction on the structure of a.

(2) The relation 2 s defined by a 2§ if and onlyifaP p=0b"r p for
some p ¢ fn(a). Now, if a = b then a P p = b p by (Struct Par) since

p = p by (Struct Refl).
Pro Proc

(3) The relation 1% is defined by a 7% b if and onlyifa = o =¥ = b

. P P P
If @ — b then by reflexivity of =, a = a —b = b, 50 a b,

(4) By induction on the derivation of a = b.
(5) By induction on the derivation of a — b.
(6) By induction on the derivation of a : T.

Lemma 10
1) Ifal b:T then a: Proc, b: T and dom(a) N dom(b) = @.

3) If (vp)a: T then a: T and p € dom(a).

)
2) Iflet x=a in b: T then a: Exp, b: Exp and dom(b) = &.

)

4) If pr> [6; = ¢(z;)b; €1 : T then T = Proc, b; : Ezp and dom(b;) = @

(
(
(
(

foralli € 1.n.

(5) Iful <=¢(x)b: T then b: Ezxp and dom(b) = .

Proof Each of these statements follows by an easy induction on the deriva-
tion of the typing derivation. O

The next two lemmas furnish the two parts of Proposition 1.
Lemma 11 Ifa:T anda="b then b:T.
Proof We first symmetrise the lemma:

(1) fa:T and ¢ = b then b: T

(2) fb:Tanda=bthena:T.

We prove this by induction on the derivation of @ = b. We consider each of

the rules which may derive ¢ = b in turn:
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(Struct Refl) We have a = a, and the result is trivial.

(Struct Symm) We have ¢ = b obtained from b = a. Because of the
symmetrised form of the lemma, the result is trivial.

(Struct Trans) We have a = c obtained from a = band b = c. If a : T then
the induction hypothesis applied to a = b gives b : T. The induction
hypothesis applied to b = ¢ gives ¢ : T. Conversely, if ¢ : T then we
deduce b : T from b = ¢. Similarly, we deduce a : T from a = b.

(Struct Update) We have u.l < ¢(z)b = u.l < ¢(z)b obtained from
b= For part (1), if u.l <= ¢(z)b : T then by Lemma 10(5) we have
b: Ezp and dom(b) = &. The induction hypothesis applied to b = ¥/
gives b’ : Erp and Lemma 9(4) gives dom(b') = dom(b) = @. Hence by
(Well Update) and (Well Concur) we deduce u.l <= ¢(z)b' : T for either
T. Part (2) follows by symmetry.

(Struct Let) We have let z=a in b = let x=d' in V' obtained from a = o
and b = b'. For part (1), if let z=a in b: T then by Lemma 10(2) we
get a: Ezp, b: Fzp and dom(b) = &. The induction hypothesis applied
to a = a gives a' : Ezp and Lemma 9(4) gives dom(a) = dom(a’). The
induction hypothesis applied to b = ¥ gives b’ : Ezp and Lemma 9(4)
gives dom (V') = dom(b) = @. Rules (Well Let) and (Well Concur) give
let x=a' in V' : T for either T. Part (2) follows by symmetry.

(Struct Res) We have (vp)a = (vp)a’ obtained from a = a'. For part (1),
if (vp)a : T then by Lemma 10(3), a : T' and p € dom(a). The induc-
tion hypothesis applied to a = a' gives o' : T and Lemma 9(4) gives
dom(a') = dom(a). Rule (Well Res) gives (vp)a’ : T since p € dom(a').
Part (2) follows by symmetry.

(Struct Par) We have a P b = o' P V' obtained from a = o’ and b = V.
For part (1), if a P b : T then by Lemma 10 we have a : Proc, b :
T and dom(a) N dom(b) = &. The induction hypothesis applied to
a = d gives a' : Proc and Lemma 9(4) gives dom(a') = dom(a). The
induction hypothesis applied to b = b’ gives b’ : T' and Lemma 9(4) gives
dom(b) = dom(V'). Now, dom(a’) N dom(b') = dom(a) N dom(b) = &.
Hence by (Well Par), o/ P o' : T. Part (2) follows by symmetry.

(Struct Object) We have p+[¢; = ¢(z;)b; 1" = p [l = ¢(z;)b, €]
obtained from b; = b, and dom(b;) = @ for all ¢ € 1..n. For part (1),
if pr [€; = ¢(z;)b; **"] : T then by Lemma 10(4) we have T = Proc,
dom(b;) = @ and b; : Ezxp for each 7 € 1..n. The induction hypothesis
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applied to b; = b; gives b; : Ezp for each i € 1..n, and Lemma 9(4) gives
dom(b;) = & for each i € 1..n.

By (Well Object), pr [ = ¢(z:)b] i€Ln] ; Proc, and dom(pi [ =
S(@:)b; 1)) = {p} = dom(p = [£; = g(w:)bi *<"]).

Part (2) follows by symmetry.

(Struct Par Assoc) We have (a P b) P ¢ =a 'l (bl ¢). For part (1), if
(P b) P c: T then by Lemma 10(1) we have (a P b) : Proc, ¢ : T
and dom(a ' b) N dom(c) = @. Similarly, Lemma 10(1) applied to
(a P b) : Proc gives a : Proc, b : Proc and dom(a) N dom(b) = @.
Since dom(a " b) = dom(a) U dom(b) we have that the sets dom(a),
dom(b) and dom(c) are pairwise disjoint. Rule (Well Par) applied to
b: Proc, ¢ : T and dom(b) N dom(c) = @ gives b 7" ¢ : T. Rule (Well
Par) applied to a : Proc, (b7 ¢) : T and dom(a)Ndom(b P ¢) = @ gives
al (br c): T. Part (2) follows by a similar argument.

(Struct Par Comm) We have (a ' ) P ¢ = (b T a) I ¢. For part (1),
if (@l b) P ¢: T we argue as in the (Struct Par Assoc) case, to
deduce a : Proc, b : Proc, ¢ : T and that the sets dom(a), dom(b) and
dom(c) are pairwise disjoint. Applying (Well Par) twice we deduce
(bra) P c:T. Part (2) of the proposition follows by symmetry.

(Struct Res Res) We have (vp)(vg)a = (vq)(vp)a. Assume for part (1)
(vp)(vg)a : T. By renaming bound variables, we can assume without
loss of generality that p # ¢. Applying Lemma 10(3) we get a : T' and
{p,q} C dom(a). Since p # ¢, ¢ € dom(a) and p € (dom(a) — {q}).
Hence by (Well Res) (applied twice), (vq)(vp)a : T. Part (2) follows
by symmetry.

(Struct Par 1) We have (vp)(a " b) = a " (vp)b obtained from p ¢ fn(a).
For part (1), assume (vp)(a " b) : T. Parts (1) and (3) of Lemma 10
applied to this judgment yield a : Proc, b: T, dom(a)Ndom(b) = & and
p € dom(a) U dom(b). Lemma 9(1) and p ¢ fn(a) imply p ¢ dom(a).
Since p € dom(a) U dom(b) we must have p € dom(b). By (Well Res),
(vp)b: T. Now, dom(a) N dom((vp)b) = dom(a) N (dom(b) — {p}) = @,
since dom(a) N dom(b) = @. Hence (Well Par) gives a " (vp)b: T.

Part (2) follows similarly. If a P (vp)b : T then by Lemma 10, a : Proc,
b: T, pe dom(b) and dom(a) N (dom(b) — {p}) = &. Hence (vp)(al
b): T.

(Struct Par 2) Similar to (Struct Par 1).
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(Struct Let Assoc) If y ¢ fn(c) we have let z=(let y=a in b) in ¢ =
let y=a in (let z=b in c).

For part (1), assume let 2=(let y=a in b) in c¢: T. Lemma 10(2) gives
let y=a in b: Ezp, c¢: Ezp and dom(c) = &. Applying Lemma 10(2)
to let y=a in b : Ezp gives a : Ezp, b : Ezp and dom(b) = &. From
the definition of dom we have dom(let x=b in ¢) = dom(b) = @. Now
we can deduce from (Well Let) and (Well Concur) that for either T,
let y=a in let x=binc:T.

For part (2), we assume let y=a in let x=b in c : T. As before, we
deduce a : Ezp, b: Fzp, ¢ : Exp, dom(b) = & and dom(c) = &. Hence
from (Well Let), let x=(let y=a in b) inc:T.

(Struct Res Let) We have (vp)let z=a in b = let z=(vp)a in b obtained
from p ¢ fn(b). For part (1), we assume (vp)let z=a in b : T. From
Lemma 10(2) and (3) we deduce a : Ezp, b : Ezp, dom(b) = @ and
p € dom(a). Finally, rules (Well Let), (Well Res) and (Well Concur)
give let z=(vp)a in b: T for either T.

For part (2), we assume let z=(vp)a in b: T. Similarly to before, we
deduce a : Ezp, b : Ezp, p € dom(a) and dom(b) = @. Hence we get
(vp)let z=a in b:T.

(Struct Par Let) We have a I’ let =b in ¢ = let x=(a P b) in c. For
part (1), we assume a I’ let z=b in ¢: T. By Lemma 10(1) and (2) we
get a: Proc, b: Ezp, c: Ezp, dom(c) = & and dom(a) N dom(b) = @.
Rule (Well Par) implies a P b : Ezp, and rule (Well Let) and (Well
Concur) gives let x=(a T b) in ¢ : T for either T.

For part (2), we assume let z=(a " b) in ¢ : T. Much as before, we
deduce a : Proc, b : Ezp, c: Exzp, dom(c) = @ and dom(a) N dom(b) =
&. From these we deduce a T let z=bin c:T. |

Lemma 12 Ifa:T and a — b then b: T.

Proof We prove this by induction on the derivation of @ — b. We consider
each of the rules which may derive ¢ — b in turn:

(Red Select) We have (p—d) © p.l; — (p—d) I bifz; < p} where
d = [6; = ¢(;)b; ™" and j € l.n. If (pr>d) P p.l; : T then by
Lemma 10(1), pr>d: Proc and p.¢; : T. Lemma 10(4) tells us b; : Ezp
and dom(b;) = @ for each i € 1.n. Lemma 9(6) applied to b; : Ezp
gives b;j{{z; < p} : Ezp. By (Well Concur), bj{z; « p} : T for either
T. It is easy to see that dom(b;{z; < pf}) = @, since dom(b;) = @.
Hence, (p—d) © b;{z; < o} : T.
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(Red Update), (Red Clone), (Red Acquire), (Red Release) In each
case, the proof is similar to that of (Red Select).

(Red Let Result) We have let z=p in b — bfx < p}. If let z=p in b :
T then by Lemma 10(2), p : Ezp, b : Ezp and dom(b) = @. By
Lemma 9(6), bfz < p} : Ezp, and it is easy to see that if dom(b) = @
then dom(bfz < p}}) = @.

(Red Res) We have (vp)a — (vp)a’ obtained from a — o'. If (vp)a : T
then by Lemma 10(3), a : T, and p € dom(a). By induction, a' : T
and Lemma 9(5) implies dom(a’) = dom(a), so p € dom(a’). Hence
(vp)a' : T.

(Red Par 1) We have ¢ ? b — o' P b from a — o'. If a 7 b : T then by
Lemma, 10(1) we have a : Proc, b: T and dom(a) N dom(b) = @. Hence
by induction, a’ : Proc, and Lemma 9(5) gives dom(a) = dom(a’). Rule
(Well Par) gives ¢’ ' b: T.

(Red Par 2) Similar to (Red Par 1).

(Red Let) We have let z=a in b — let x=d in b obtained from a — a'. If
let z=a in b: T then by Lemma 10(2), a : Ezp, b: Ezp and dom(b) =
@. By induction, we have o’ : Ezp and dom(a) = dom(a'). Hence by
(Well Let), and (Well Concur), let z=a' in b: T for either T'.

(Red Struct) We have a — b obtained from a = ', ' = ¥ and b' = b. If
a: T then by Lemma 11, @’ : T. The induction hypothesis applied to
a — b gives b’ : T. Finally, by Lemma 11 again, b: T. O

Proof of Proposition 1
(1) Ifa: T and a = b then b: T and dom(a) = dom(b).
(2) Ifa:T and a — b then b: T and dom(a) = dom(b).

Proof Combine Lemmas 9, 11, and 12. O

We can generalise this proposition to hold for the T-indexed forms of
structural congruence and reduction:

Proposition 13
(1) Ifa: T and a L b thend: T and dom(a) = dom(b).

(2) Ifa:T and a L b thenb: T and dom(a) = dom(b).
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Proof Since Proposition 1 already covers the case T' = Ezp we need only

consider the case for T' = Proc.

For part (1) we need to show a : Proc and a ey, implies b : Proc and

dom(a) = dom(b). Now, a 2 b means a 1 p=bTr p for some p. If a: Proc
then a " p: Ezp. Applying Lemma 11 toaP p=bTl p, we get b1 p: Ezp
and dom(b) = dom(bT p) = dom(a P p) = dom(a). Lemma 10(1) applied to
br p: Ezp gives b : Proc as required.

For part (2) we must prove that if a P8 b and a : Proc then b : Proc

and dom(a) = dom(b). We recall that ¢ 3° b means a Ty Sy,

Assume a : Proc. From part (1), ¢’ : Proc and dom(a') = dom(a). Applying
Lemma 12 to a' — V' gives b’ : Proc and dom(b') = dom(d’) = dom(a).
Finally, by part (1) again, b: Proc and dom(b) = dom(b') = dom(a). O

A.3 Reformulating the Semantics of Section 4.2

When proving Theorem 1 in the next section, it is convenient ot have refor-
mulated the structured operational semantics rules of section 4.2. We factor
out of each of the rules the part that extracts a fragment of store and a
single thread, and make this a new rule, (SOS’ Config). This makes the rules
defining the SOS reductions closer to those specifying the reduction relation.
We refer to the rules given here as the SOS’ rules and those of section 4.2 as
SOS rules to disambiguate between the two rule sets.

Lemma, 14 shows that the two presentations of the structural operational
semantics are equivalent.

We define the relation o SO—S; b as follows:

Alternative structural operational semantics
T 1

(SOS' Select) (where {7} N fn(p+d) = @)
d=[l; =¢(z:)b; ™" j€ L.n N ) {e; < p} = wp)(d' || p)
(prd || p.b) =3 wp)(p—d, o' || )

(SOS' Update)
d=[l; = g(x:)b €1 d' = [l; = ¢(2)b, &; = ¢(z;)b; €M} je1.n
(prd || p.b = g(@)t) 3 (prd | p)
(SOS' Clone) (where g ¢ fn(pr>d))
d = [gL — Q(Tz)bz iel..n]

(pd || clone(p)) 225 (vg)(prd,q—d || ¢)
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(SOS’ Acquire)

(p+ unlocked || acquire(p)) 3% {p+> locked || p)

(SOS' Release)
d € {locked, unlocked }

{(p>d || release(p)) 08 {p+ unlocked || p)

(SOS' Let Result)

(@ || let z=p in b) 223 N (b)fz + 1}
(SOS’ Let) (Whtere {p} N fn(b) = @)
(@ 11t) *3 vh)(e' | 4,t) length(o) <1
(o || let z=t in b) 223 (wp)(o" || ', let a=t' in b)

(SOS’ Config) (where {p} N fu(o1, o3, p1, p2) = D)
(02 || £) 2% (up) (o' || ) length(os) <1

S08'
<01702’O3 ” p11t7 p2> — (Vp)<ala0/’03 ” p1>plﬁp2>

(SOS’ Res) (SOS’ Norm)
a5 wiolp) N =3 @il
(wp)a X5 wp) )@ 1 o) a5 @A)o |l o)

Lemma 14 For all a and b, a 598 % if and only if a SOy,

Proof The proof of equivalence will take the following four steps:

(V) If (o | t 508 (vp)(a' || /) then o = 01,09,03, 0' = 01, 05,03 where

(o9 ]| T) 598 (wp)(os || ), {B} N fn(or, 03) = @ and length(oy) < 1.

(2) If a 595 b then a 225 b.

(3) If (o || o) =23 wi)o' || ¢) and {B} N fu(o1,05,p1,p2) = @ then
<01’ 0,09 H P1; Py ,02> &g (Vm<015 OJ’ p) ” Pi, plv p2>

(4) Ifa 9% b then a 223 b.

The proofs of (1-4) are as follows:
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(1) An easy induction on the derivation of a 225 b.

(2) From (1), we note that we can rewrite the derivation of any a 223 b

judgment so that any instance of (SOS Let) is of the form: (o1, 09,03 ||

p1, let x=t in b, ps) 593 (vp){o1, 04,03 || p1, p', let x=t "in b, py) derived

from (o || t) 223 (up) (o} || ¢, ¢') where {5} N fn(o1, o, p1,b, po) = @
and length(oq) < 1.

We can now easily prove (3) by induction on the (rewritten) derivation

of a 225 b. In all of the non-trivial cases, the SOS rule can be derived

from the corresponding SOS' rule and (SOS’ Config). Hence if a 598 b
then a 295 p.

(3) We prove (3) by induction on the derivation of (o || p) 223 (vp)(c" || p').
The proof is straightforward in every case.

(4) We need to show that a L implies a 598 b We prove this by

induction on the derivation of a 523 b, All the cases are easy with the
exception of (SOS' Config), which follows from the induction hypothesis
and part (3). 0

Now we lé%ve shown that S—O—‘g and “?&q; are the same relation we use the
notation a 223 b for both in the remainder of this appendix, and all proofs

about a 228 b relation depend on the SOS’ rules given in this section.

A.4 Proof of Theorem 1

In this section we prove Theorem 1 and Proposition 4 of Section 4.2 which
provide a correspondence between the reduction semantics and the structural
operational semantics. We use Theorem 1 in the next section to prove facts
from Section 5.

An important result in the proof of Theorem 1 is a lemma, Lemma 22,
which states that structural congruence preserves SOS reductions. The proof
of Lemma 22 relies on an explicit characterisation of structural congruence
on configurations provided by Lemmas 19 and 20. The main result of the
section is Proposition 26. Theorem 1 is an immediate corollary.

We first prove some facts about normalisation.

Lemma 15

(1) Ifa: T then N(a) exists.
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(2) If a: Exp then N'(a) = (v@){o || p,t) for some §,0,p and t.

Proof These two facts can be proved simultaneously by induction on the
derivation of a : T 0

Lemma 16 For all a: T, a = N(a).

Proof There are two cases, when 7' = Fzp and when 7" = Proc. Both
cases follow by induction on the structure of a.

When T = Ezp, the only difficult case is when a = b7 ¢. Then N(bT ¢) =
(vp)(v@) (o, 0" || p,p) where N(b) = (wp)(o || p), N(c) = (v@)(o" || F),
{7} N (fn(o") U fn(p)) = {a} N (fn(o) U fr(p)) = @. From Lemma 10(1) we
have that ¢ : Ezp and b : Proc and hence by Lemma 15, p' # @&. Then we
compute:

(vp)(v@)(o, 0" || p, A}
= wp)wd)({o |l p)T (o]l p)) by (Struct Par Comm)
= wp)((c |l py? W{a' || ) by (Struct Par 2)
= (p){o |l p)) " ((v@)(o" [| p')) by (Struct Par 1)
= N(b) T N(c)

Proc

Hence N'(b P ¢) = N(b) I N(c) and since by induction we have N'(b) = b
and N'(c) = c, by Lemma 8, b7 ¢ = N(b) I N(c) = N(bT ¢).

When T = Proc, again the only difficult case is when @ = b " ¢. Then,
we have by Lemma 10(1) that b : Proc and ¢ : Proc. We pick a fresh r, and
compute much as before:

N@Gre)rr

= (Wp)(v@){o, 0" || p,p,7)
= Ao llp 7o' | p) P r) by (Struct Par Comm)
= (D))ol o7 (o |l P))) 1 by (Struct Pax 1)
= (Ao | p) P (vi){e" || P))) 0 1 by (Struct Par 2)
= ((wp)o |l p)) " ((w@)(e" || P)) T r Dby (Struct Par 1)
= N@rN@®Tr
Hence by Lemma 8, b7 ¢ _T:_./\/’()PN()’;N(Z)PC) 0

We can now prove two lemmas stated in section 4.2:
Proof of Lemma 2 Ifa: Ezp then N(a) =a

Proof = This is an immediate corollary of Lemma 16. a
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The normalisation function is the identity on configurations:

Proof of Lemma 3 N ((vp){o || p)) = (vp){o || p).

Proof By inspection of the normalisation function. O

Lemma 17 Ift : Proc then t : Ezp. If a 9% @' and a : Proc then N{(a) :

Ezxp.

Proof The first part follows by inspection of the (Well) rules. For the
second, we note that every (SOS’) reduction involves a thread, so A/ (a) has at
least one thread. Hence, A/(a) has a right-most thread, say M (a) = (vp)(a’
t). Since N (a) : Proc we have o’ : Proc and t : Proc by Lemma 10. Applying
the first part of this lemma we deduce ¢ : Exp, and hence N (a) : Ezp by
(Well Par) and (Well Res). O

To state the following lemmas, we extend structural congruence to se-

quences of terms. Let the relations q; €' és b; " for T € {Proc, Ezp}
be inductively defined as follows:

Structural Congruence on Sequences

(Seq Ezp) (Seq Proc Swap)

. Proc .
a; i€l.n =, a; i€l..n b=

: Ezp . i€l.n p_icl.m 219 1 ie1.m i€l.n
a; zel..n’ b =, a; zel..n, B a; , bi =, bz. , 4
(Seq Proc Concat) (Seq Proc =)

Proc

. Proc . .
t€l.n " /I i€l.n i€l.m
a; =g Oy brL =g

b i€L.m a;=a;, Viel.n

. . Proc . . i Proc i
. . free . / . Ci€lin =7 1 t€l.n
a; i€l n’ bz’ i€l..m = al i€l n, bi i€l.m a; =5 a4

(Seq Proc Trans)

R Proc . Proc .
i€l.n = i€l.n "= i€l.n
a; = b = ¢

_iel.n £roc
1 —8

a i i€l.n

It is easy to see that both of these relations are symmetric, reflexive and
. . . Proc R
transitive. We also have the following important property of the =, relation:

Proc

Lemma 18 If a; €™ =, b; *€1'™ then for all j € 1..n there is k € 1..n such

that a; = by, and a; icl.n—{j} 13___:’""5 b, 1€1-n—{k}
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Proc

i€l.n "= i€l.n
¢ p, i€ln, 0

Proof By induction on the derivation of a;

Lemma 19 Ifa = b, a : T and b : T then N(a) = (vp){p;+—>d; *€+™ ||
t; 1™y and N'(b) = (vq)(gi > dj *€1" || 5 7€1™) where:

(1) The § are pairwise distinct, the § are pairwise distinct, and {p} = {q}.

ToC

(2) pi>d;€n Piz_s g; > d 1€,

(3) ti i€l.m ;S tl» iel..m'
Conversely, if a,b : Exp and N'(a), N'(b) satisfy properties (1-8) then a = b.

Proof We prove this by induction on the derivation of a = b. We consider
each rule that may derive ¢ = b in turn. In many cases, it is necessary to
show that subterms are well-typed; we can use Lemma 10 for this, but we
omit the details for clarity.

(Struct Refl) We have a = a. The result is trivial.

(Struct Symm) We have a = b derived from b = a. The induction hypoth-
esis applied to b = a gives N'(b) = (vp)(p; — d; " || ¢; I€-™) and
N(a) = (vq)(gi > d} 1™ || £} 7€1™) satisfying properties (1-3). Since

Ezp Proc . :
=, and =, are symmetric, the result follows easily.

(Struct Trans) We have a = ¢ derived from ¢ = b and b = c. The result

C E: P
follows from the transitivity of Emz and =,.

(Struct Update) We have u.f <= ¢(z)b = u.l <= g(x)b' obtained from b =
V. Since N (u.l < ¢(z)b) = (@ || u.l < ¢(z)b) and N (u.l < g(z)b) =
(& || u.l <= ¢(z)b') we see that (1) is trivial, (2) is immediate from (Seq
Proc =) and (3) follows from (Struct Update), (Seq Proc =) and (Seq
Ezp).

(Struct Let) We have let x=a in b = let z=a' in V' obtained from a = o
and b = b'. Applying the induction hypothesis to a = o’ (noting that
a,a' : Ezp) gives N(a) = (vp)(pir>d; €™ || ¢; ™) and N (d') =
(v§){g; > d, ¥€1-" || ¢, €1-™) satisfying properties (1-3). Now:

N(let z=a in b) = (vp)(p; = d; *S™ || ¢ ™1 et x=t,, in b)
Similarly:
N(let z=d' in V') = (vq){gi+> d, €™ || £, €1 et =t in b)
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We obtain properties (1) and (2) from the induction hypothesis applied
. F .
to a = a'. For (3), we may deduce from ;1™ =, €™ that ¢, =t

and ¢; i€l-m-1 2 s tp€1-m=1 Then, from (Struct Let) let x=t,, in b=
let x=t], in b’ SO 1ule (Seq Ezp) gives us property (3).

(Struct Res) Here (vp)a = (vp)d' obtained from a = o’. By induction we

have: . ,

N(a) — (Z/ﬁ) <pi — dz iel.n “ t; z€1..m>

NO) = (@ [ 10m)
satisfying (1-3).
Now, N ((vp)a) = (vp)N(a) and N ((vp)b) = (vp)N(b). By renaming
the bound name p, we may assume p ¢ {p,q}. So p,p and p, § satisfy
(1), since {p} = {¢} by induction. Properties (2) and (3) follow from
the induction hypothesis.

(Struct Par) Here a P b = o' P b’ obtained from a = o' and b = ¥'. For
simplicity, we consider only the T" = FEzp case in detail; the T' = Proc
case is similar. We have a,a’ : Proc and b,b' : Ezp. Applying the
induction hypothesis to a = ¢’ and b = b gives:

N(a) = (uB)(psrsdii€n || i<m)
N(@) = (vi)lgir>d; <o | 4 ietm)
N(b) — (Vf’)(?“ d" i€l.n/ “ t” i€l.. m>
./\/(b/) — (V§)< '__>dlll icl.n/ || t”’ 1€1L.. m>

satisfying (1-3). By renaming bound variables, we may assume {p} N
{7} = @. From the definition of the normalisation function, we com-

pute M(a P b) and N(a' T ¥'):

N(ar b = (vp, ) {(p;—d; iel,.n, i d i€l.n/ ti iEl..m’ ¢ i€l.m/
. ¢ . 1 . k4 . !
N(CL’ P b/) — (l/(j‘, 5')((11 — d; zel..n) 8; d;” i€l..n “ t; zel..m, t;// i€l.m )

First we note that (1) holds. By induction, {p} = {¢} and {7} = {5}
so {p, 7} = {q, §}.
Proc + Proc

We deduce (2) from p;sd; €1 "=, g di €T, mp df €T S,
s d! **1" and (Seq Proc Concat).

. ; B
For property (3), we note that from ¢/ *ct-™ = =, /%€ we can deduce

11 Broc t"' i€l.m/~1 o4 t — /// . Then by (Seq Proc Concat)

i€l.n tl/zel..n’ l_j_fp
y g =

1iel.m/ —
ti

fig’c t/zel am

and (Seq Ea:p) with ¢; €™ we can derive t;

. . / :
t; zEl..n’ té” i€l.n as l-equlred
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(Struct Object) Here pr [£; = ¢(z;)b; *€4"] = pr— [6; = ¢(x)b] *€'"] ob-
tained from b; = b} for each ¢ € 1..n. We have:
N (p [l = zi)b; <)) = (pr> [ = ¢(2:)bi "< || @)
N(prs [l = g(@:)b, €)= (pr= [ = ()b €17 || 2)
We note that we must have T' = Proc, since neither side of the congru-

ence can have type Ezp. Properties (1) and (3) are trivial, and (2) can
be derived from (Seq Proc =) and (Struct Object).

(Struct Par Assoc) We have (a” b) P c=al (bT c). This case is easy,
since N((aP b) P c)=N(aP (b c)).

(Struct Par Comm) We have (aP b)Pc=(bFa)l c

Suppose: _ .
N(a) — (Vﬁ) <pi — dz i€l..n ” t; zel..m>
N() = (@) (g di < |4 1<)
N(C) — (1/?) <7,i - dé’ i€l.n’ “ t;’ iel..m”>
Then: o
N((@rb)rc) = (vp, ¢, .y
p; > d; zel..n, g d; zel..n’, i d;/ i€l.n H
& iel..m, # iel.‘m’, ! iel..m”>
Similarly:

N((bT a)r ) = (vq, 5, 7)¢ o
g dé i€l.n , Di di zel..n, s > d;/ i€l.n ”
t i€l.m’ t: iel.m ! z'el..m”>
1 Y1 'Y

By renaming the bound variables, we may assume the names in {7, ¢, ¥}
are pairwise distinct and hence we get property (1). Properties (2) and
(3) follow straightforwardly from (Seq Proc Concat), (Seq Proc Swap)
and (Seq Ezp).

(Struct Par 1) Here (vp)(a " b) = a P (vp)b. The result is immediate,
since N'((vp)(a T b)) =N(aT (vp)b).

(Struct Par 2) Similar to (Struct Par 1).

(Struct Let Assoc) If y ¢ fu(c) we have here let x=(let y=a in b) in c =
let y=a in (let £=b in c). Suppose N'(a) = (vP)(p; —> d;* €™ || ;™).
Then:

N (let z=(let y=a in b) in c) =
(vp)(pi+> d; €8 || & ™ et w=(let y=tn, in b) in c)
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Similarly:

N (let y=a in (let z=b in c)) =
(V) (ps > di 1€ || ;€11 Tt y=t,,, in (let z=b in c))

Properties (1) and (2) are trivial. Property (3) follows much as in the
(Struct Let) case.

(Struct Par Let) Here a T’ let z=b in ¢ = let x=(a " b) in c. Again, the
result is easy, since N'(a P let z=b in ¢) = N'(let z=(a T b) in c).

This completes the proof of the first part of the lemma.

The converse of the lemma, that is, a = b if a : Ezp and N (a) and N (D)
satisfy (1-3) holds by inspection of the (Struct) rules — we may use (Struct
Res Res) to permute restrictions, and (Struct Par Comm) to permute the
store and threads. O

As a corollary to Lemma 19 we have the following lemma:

Lemma 20 Ifa: Proc, b: Proc anda 2 then N(a) = (vp)(pi > di*m ||
t; 7€) and N'(b) = (v@)(gi > di *- || 8 I€-™) where:

(1) The names p are pairwise distinct, the names ¢ are pairwise distinct
and {p} = {q}.

Proc

(2) Di > dz i€l.m = q;— d; iEl..'n,.

. Proc .
(3) tj j€l.m =, t;' jEl..m'

Conversely, if a,b: Proc and N (a), N (b) satisfy properties (1-3) then a Froe
b.
Proof This follows easily from the previous lemma, because a Froe b means
that there is a fresh p witha P p=b7 p. If a,b: Proc then a p,b " p: Ezp.
Applying the previous lemma to a " p and b " p gives the conditions (1-3)
above.

For the converse, we note that if M(a) and AN (b) satisfy (1-3) then
N(aT p)and N (b1 p) (where p is fresh) satisfy (1-3) of the previous lemma.
Hence, a” p = b7 p and by the definition of structural congurence for Proc

Proc
terms, ¢ = b. 0
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Lemma 21

(1) Ifaioig)bthenar’p?—(—)—ﬁb’ where ' = b7 p.

(2) Ifarp2Xy then a 223 b where b = b P p.

Proof

(1) N (a) = (wp)(o || p) then N(aT p) = (vp){o || p,p) where p ¢ {F}.
If a 295 b = (v@) (0" || p') then by (SOS' Config) we deduce a " p go8
w)a" Il ',p) = Wd){o" || P) T p-

(2) Suppose N'(a) = (vp){c || p). Then N(al p) = (vp){o || p,p) where
p ¢ {7}. By inspection of the (SOS’) rules, we see that the only deriva-
tions that can occur are via (SOS’ Res) to remove the restrictions p,
then (SOS' Config) choosing a thread from p (and possibly a denomina-
tion from o), say deriving (vp)(o1, 02,03 || p1,1, p2, D) 598w (where b/ =

wp) (@) (o1, 0,03 || pr, £ 02, 1)) from (o || 1) 223 (@)(o" || o) where
o = 01, 09,03 and p = py, 1, po. But now we can derive from (SOS' Con-
fig) and (SOS' Res), (vp)(c || p) 223 b, (where b= (vF)(v])(01, 0", 0 ||
p1,p, p2)). Finally we note b p =1, O

Lemma 22 Ifa: T, a S8 b and d' = a then o' 593 ¥ where ¥ = b

Proof We first prove the case when T' = Ezp by induction on the derivation

of a 223 b. All the cases apart from (SOS' Config) are similar, so we consider

the case (SOS’ Config) and the case (SOS' Select) as a representative of the
other cases.

(SOS' Select) Here (pr—d || p.£;) 593 wp)(p>d, o’ || p) where d = [0; =
(@b €7, 5 € 1on, Noj)fp < =} = (wp){o’' || ) and {7} N
falp—d) = @. Ifd = (p—d || p.l;) then by Lemma 19 N (d') =
(p—d' || p.t;) where pd = pr>d'. Hence d' = [{; = g(a;)b; *€17]
where b; = b, for each i € 1.n. Then by (SOS' Select), (p—d’ ||
pl) 223 (W (prd', 0" || p") where N (b)) fw; < p} = (wd)(o" || p"),
and {7} N fa(p—d) = @. Since b; = b} we have N(b;) = N(b})
By Lemma 8(1) we have N (b)) {z; < o} = N (¥)){z; + p}, that is,
wp)(o' || p) = wp)lo” || p"). By (Struct Par), pr=>d I (vp)(o’ ||
P =p—dr (v){c" || p"). Finally by (Struct Par 1) (applied several
times), (vp)(p+>d, o’ || o) = WP d', 0" || p").
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(SOS' Config) We have (01, 09,03 || p1, 1, pg) (1/15')(01,0 os || p1, 0, p2)
where {p} N fn(o1, 03, p1, p2) = &, length(oz) < 1 obtained from (o ||
ty 2% (up)(o' || p/). By Lemma 19 we deduce N(b) = (o" | p")

where o Pio; o1, 09,03 and p” _ms] p1,t, po. Either by Lemma 18 (if

length(oy) = 1) or trivially (if length(oy) = 0), we can decompose o

Proc Proc
as o0y,0y,03 where o) =; 0y and of,0f =, 01,05. By Lemma 18
. . Ezp
and analysis of the derivation of the judgment p” =, pi,t, p» we can

decompose p" as plf,t, p§ where:

o If pp = @ then ¢ =t, p1 = plandp’z’~®
o If py # & then t' = ¢ and pf, pf :S 01, P2

Then (02 || t) = (o || t') so by the 1nduct10n hypothesis applied to
(o2 || £) 225 wp)(o’ | o) we have (ol || ') 225 ¥ where ¥ = (vp) (o' ||
p'). By Lemma 19 we have b' = (v§){(c" || p") where the names 7

are pairwise distinct the names ¢ are pairwise distinct, {g} = {¢},
; Proc

o =4 o and p p". Applying rule (SOS’ Conﬁg) to the reduction
(o3 || #) 251 we get (o1, 05, 0% || st p8) 223 (v@) (o, 0", ol |
pl,p’” py) where {q} N fn(of, o4, !, 04) = !3 We can now deduce

Proc .
o1,0",08 =, 01,0',03 from (Seq Proc Concat). Similarly, we can

u_””

deduce pl, ¥, py, = pl, t, po from (Seq Ezp), (Seq Proc Concat) and the
relations between pf, p1, py and pp above. This suffices for the result by
the converse of Lemma 19.

When T' = Proc we apply Lemma 21(1) to get that a P p 593 o where

a" = a' I p. We apply the T = Ezp case to a I’ p 593 4" to obtain a b
with b7 p 225 b and b = o By Lemma 21(2) We have b 293 i where

Vrp=0b' Now,VPp=b =d"=dr p Hence ¥ as required. O
Lemma 23 If (vp)a 223 b then b = (vp)d’ with a 225 o,

Proof We prove this by induction on the derivation of (vp)a 593 b. The
only two rules that can apply are (SOS' Res) and (SOS’ Norm). In the
former, the result is immediate. In the latter, the result follows from noting
that AN ((vp)a) = (vp)N (a), and then the induction hypothesis applies. O

We now have a lemma which makes explicit the intuition that every re-
duction involves only a single thread.

48



Lemma 24 If (o || t1,...,tn) 593 (wp)(o' || p') then there is i € 1.n with

<U ” t> (Vp)((f/ H p> p, = tla cee ati—bp) ti-{-l: . -tn and {]5} mfn(tj) =0
for every j € 1.n — {i}.

Proof We prove this by induction on the derivation of (o || ¢1,...,t,) 508

(vp){o' || p'). For rules (SOS' Select), (SOS' Update), (SOS’ Clone), (SOS'
Acquire), (SOS’ Release), (SOS' Let Result) and (SOS' Let) the result is
trivial, since only one thread reacts in the rule. Rule (SOS’ Res) is not ap-
plicable, since the term (o || #1,...,%,) is not restricted. Rule (SOS’ Norm)
is trivial, since M (a) = a on configurations. In rule (SOS' Config) we de-
: s0§
tive (01,0903 || put, ) 25 (W01, 0"03 || pu, 0, ps) from (os || £) =5

(vp){o’ || o). The result now follows, since we let t1,...,%-1 = p1, t; =t
and tiy1,...,tn = pa. 0

We generalise the previous lemma:

Lemma 25 If (o || p1,p2) 593 wp)(o' || p) then either (o || p1) 508

W' || ), p =7, p2 and {F} N flps) = @ or (o || p2) =23 (wB)(o" || ),
p=p1,p and {p} N fn(p) =2

Proof This is an easy corollary of Lemma 24. O

Proposition 26 For alla,b:7T, a L if and only if a §2§_ b.

Proof To prove a,b: 7T, a Lb implies a ———>E b we adopt the following

E
proof strategy. We first show that a : T’ and a — b implies a S92 b, After

SOS§P
proving this, we deduce a : Proc and a Prog 1mphes a 293'=" .

We first prove that a : T and a — b implies a 598=4 by induction on the
derivation of @ — b. We consider each rule which may derive ¢ — b in turn:

(Red Select) Here (p—=d) P p.l; = (p—d) I bifx; < p} where d =
[6; = ¢(z;)b; 1] and j € 1.n. Now, N((pHd) P ply) = (p—d |
p.£;). From rule (SOS' Select), (pr>d || p.L; ) S wip—d,o || p)
where (v@){c || p) = N(b;){z; < o} and {¢} N fn(p—d) = @. From
Lemma 10(4) applied to (p—d) P p.£; : T we have b; : Ezp. Lemma 16
implies A'(b;) = b;. Lemma 8(1) implies NV (b;){z; < p} = bjf{z; « p},
that is (vq)(c || p) = bj{x; < p}. We can assume {7} N {p,p} = & by
renaming the bound ¢ if necessary. We compute:

(pr>d) P bifx; < P}

(p—=d) T (v)(ofz; < P} || pfz; < p}) Dby (Struct Par)
@) (p—>d,ofz; < p} || pfw; < p}) Dby (Struct Par 2)
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(Red Update) Here (p—d) " p.l; < ¢(z)b — (p—d') P p where d = [(; =
()b €1, d' = [¢; = ¢(2)b, £; = ¢(z;)b; **"] and j € 1..n. Here the
result is immediate, since N'((p++d) " p.l; <= ¢(z)b) = (p—d || pl; <
¢()b) and by rule (SOS' Update), (p—d || p.t; < ¢(z)b) 223 (prsd ||
p)=(p—d)rp.

(Red Clone) Here (p+—d) " clone(p) — (p—d) " (vq)((g+—d) I’ q) where
d is an object, and ¢ ¢ fn(p—d). Now, N((p—d) T clone(p))
(p+>d || clone(p)) and by rule (SOS' Clone), (pr+d || clone(p)) 2
(va)(p>d,q—>d || g). By (Struct Par 2), (vg)(pr>d,q—>d || g)

(p=d) T (vg)((g—d) T g).

(Red Let Result) Here let z=p in a — afz < p}. From the definition of
normalisation, N (let z=p in a) = (@ || let z=p in a). By rule (SO’
Let Result), (@ || let =p in a) 223 (v)(cfo « o} || pfe « p}) where
N(a) = (v§){c || p) and p ¢ {g}. By Lemma 8(1) afr < p} = (vg){c ||
p){e < pb and since p ¢ {7}, (v@)(o || P}z < P} = (V@) {ofe + 1} |
pe < ).

(Red Res) Here (vp)a — (vp)b obtained from a — b. Lemma 10(3) means

: T, so we may apply the induction hypothesis to a — b to get
iO—S> b = b. Now by (SOS' Res), (vp)a 593 (vp)b' and by rule (Struct

Res), (vp)b' = (vp)b.

(Red Par 1) Here a " b — o' I b obtained from a — o’. Lemma 10(1)
applied to a I’ b : T means a : Proc. Hence we may apply the induction
hypothesis to a — a' to get a 223 a; = a’. Suppose N (a) = (vp){o. ||
pa) and N(0) = (v@){oy || pp). Then M(arb) = (vP)(¥q){0ou, 0 |
Pa, po)- Since a 223 a; we know N(a) = (v9){(oa || pa) 223 a1 Applying

Lemma 23 we get (04 || pa) 23 (v7)(c” || p') where a1 = (vp)(vi){c" ||
p'). Hence we can apply rule (SOS’ Config) to get:

l& I

00y 04 || Pas o) =23 (v7)(0", 00 || £, 1)
Hence by rule (SOS' Res):

D) (vq)(oa, 00 | pa,pb> N G
We now compute:

(Vﬁ)(’/‘f) (VF) <0J5 Op H pla pb>

= (wp, ") (wq) (o' 00 || ', o) by (Struct Res Res)
= (vp, 7)o" || )T (v@){op || p») by (Struct Par 1 and 2)
= drlb by (Struct Par)



(Red Par 2) Similar to (Red Par 1).

(Red Let) Here let =a in b — let x=d' in b obtained from ¢ — o’
Lemma 10(2) applied to let z=a in b : T gives a : Ezp. Hence we

may apply the induction hypothesis to a — ' to get a 598 4 = d.
Let A(a) = (p)(o || p). I a 225 a; then N(a) = (wp) (o || p) 223 as.

508

We apply Lemma 23 as in the (Red Par 1) case to get (o || p) —
(v (o' || p') where a1 = (vp,7){c’ || p/). Since a,a’ : Ezp we have
by Lemma 15, p = p1,t and p/ = pj,t'. We apply Lemma 25 to

(o] p1,1) 598 wi)(o" || ) to deduce one of:

508

(1) (o [l p) == (v)(o" || p1) and p' = py;t

S08

(2) (o [It) = (wr){o" || ph, ¥') and o' = py, p, 7"

In case 1 we compute:

N (let z=a in b)

0
o
n

let z==a; in b
let z=a' in b

|

In case 2 we compute:

N (let z=a in b)
(vp){o || p1,let x=t in b)

(vp, 7)let x=(c" || p') in b
let x=(vp,7){(c" || p/) in b
let x=a; in b
let x=a' in b

o S

(vp){o || p1,let z=t in b)
(vp)(vi)(a" || py, let x=t in b)
(vp,7)let o=(0" || pi,2) in b
let z=(vp,7){0" || ph, 1) in b

by (SOS' Config)
by (Struct Par Let)
by (Struct Res Let)

by (Struct Let)

(D) () (o’ || p1, Py, let z=t" in b) by (SOS' Let)

by (Struct Par Let)
by (Struct Res Let)

by (Struct Let)

(Red Struct) Here a — b obtained from ¢ = o/, @’ — ¥ and 0’ = b. If
a : T then by Proposition 13, ¢’ : T, 0’ : T and b : T. Hence we may

apply the induction hypothesis to o' — b’ to get &’ S98— . We apply
Lemma 22 to get that a 9% i where b = ¥'. Hence, a S8y =y =0

and by (Struct Trans), a 593 b =,
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(Red Acquire) Here (p+ unlocked) ' acquire(p) — (p+> locked) I p. The
result follows immediately in this case from the two observations:

N ((p— unlocked) I acquire(p)) = {p+s unlocked || acquire(p))
(p+> unlocked || acquire(p)) 223 (prs locked | ) = (p+> unlocked) I p

(Red Release) Similar to (Red Acquire).

This completes the proof of a : T" and ¢ — b implies a 598=b. Tt remains

P
to show that if @ : Proc and a 2%° b then a 595 0 "Z° b, 1f ¢ 2% b then

a ch a; — by ch b. By the result just proven, a; — b; means a; 508 by.
Lemma 22 gives a “25 b} free bl =b. Soa o3 b e b = by 2 b, Since
=C Fooe and Free is transitive, a ﬂpgc b.

This completes the proof of forwards implication, that a : T" and a Ny
implies a §_0_§>::71 b.

For the other half of this theorem, we prove that a : T and a 593 b implies

a5b by induction on the derivation of @ 228 b. The rules (SOS’ Update),
(SOS" Acquire) and (SOS' Release) are special cases of the respective (Red)

rules, so we consider the other (SOS') rules which may derive a 225 b in turn.
We note that in cases (SOS' Select), (SOS’ Clone) and (SOS' Let Result) we

_ : . P
show that a — b; this is sufficient since — C'3".

(SOS’ Select) Here (p—d || p.4;) 293 wp)prs d, o | p) where d = [¢; =
S(w:)bi *1"), § € Lm, N(bj)fj o} = (o || p) and {g} N fn(p—d) =
. By (Red Select), (p—=>d || p.t;) = (p—d) P b;{z; «+ p}.
Lemma 10(1) and (4) give b; : Ezp, so N(b;) = b;. Lemma 8(1)
gives N (b;){z; « p} = b;{z; < p}. Hence (p—d) P bifr; + p} =
(vp){p—=d,o || p) by (Struct Par 2) and (Struct Par).

(SOS’ Clone) Here (p+sd || clone(p)) 223 (vg)(p—>d,q—d || ¢) where d
is an object and ¢ ¢ fn(p—d). Now, (p—d) I clone(p) — (p—d) P
(vg)(g—=dT q) = (vg)((p—>d) P (g d) T q) as required.

(SOS' Let Result) Here (@ || let a=p in b) 223 (i) (oo < p} || plw
p}) where N (b) = (vp)(o || p) and p ¢ {p}. Now by (Red Let Result),
(@ || let z=p in b) — bfx < p}. Since let x=p in b : T we have by
Lemma 10 b : Ezp. Hence, by Lemma 16, b = N'(b) = (vp){o || p). By

Lemma 8(1), bffw « p} = (wp)(ofe < o} || pffz < p}) (since p ¢ {5}).
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(SOS’ Let) Here (@ H let a=t in b) 223 (wp)(c" || p', let x=t' in b) obtained
from (o || t) (1/]5')( " oty where {vecp} N fn(b) = @. Since
let =t in b : T we have from Lemma 10(2) that ¢ : Fzp. Hence by
induction, ¢t — (vp){(¢’ || ¢/,t'). By rule (Red Let), let z=t in b —
let z=(vp){c’ || p',¥') in b and by (Struct Par Let) and (Struct Res
Let), let z=(vp){d’ || p/,t') in b= (Vﬁ')(a’ H o, let z=t' in b).

(08 Config) Here (71,0103 || 1t p2) % (7)o, 's03 | 00
obtained from (o || t) (1/15')( "1l p') where {p} N fn(oy, 08, p1, p2) =
@. By induction we have (oy || t) L b where b = (vp)(a' || p).
Applying rules (Red Par Comm), (Red Par 1) and (Red Par 2) we can
deduce (01,092,053 || p1,t, p2) Loy P oy py P YT py. Rule (Struct
Par) gives 0, P o3 P p1 PV P pp =01 P o3P pr P (vp) (o' || ) T pa.
Rules (Struct Par 1) and (Struct Par 2) give o1 a3 " py I (vp){co’ ||
YT pa = Wwp)(o1 P ozl pr P o' P p' P pg). Finally, (Struct Par Comm)
gives (Wp)(or P as P p1 P o' P o P po) = (wh)lor,0',05 || p1, 0, p2).
Since Eg'—g for T'= Fzp or Proc and £ is transitive, we are done.

(SOS’ Res) Here (vp)a 593 (vp)b obtained from a 593 b. Since (vp)a: T,
by Lemma 10(3), a : T so by induction, a L b If T = Ezp, then
by (Red Res), (vp)a — (vp)b. Otherwise, a g sy 2 By
(Red Res) (vp)a' — (vp)b/. Lemma 8 implies (vp)a ch (vp)a' and

Proc r

(vp)b "= (vp)b. Hence, (vp)a =3° (vp)b as required.

(SOS’ Norm) Here a 593 b obtained from A(a) 223 b. Since a : T we
have a = A (a). The induction hypothesis applied to N (a) 593 b gives
N(a) 5 b. Since a < N(a) 5 b we have a 2 b as required. O

Proof of Theorem 1  For all a,b: Ezp, a — b if and only a 593 =1.

Proof An immediate corollary of Proposition 26. 0O

A.5 Proof of Theorem 2

In this section we prove some facts about the single-threaded fragment of the
language defined in Section 5. In particular, we prove Lemma 5, Theorem 2,
and Proposition 6.

We begin with a lemma similar to Lemma 10 for the deterministic type
system, a :! A:
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Lemma 27

(1) Ifa? b:} T then a:* Proc, b:* T and dom(a) N dom(b) = @.

(2) If let z=a in b1 T then T = Ezp, a : Ezp, b : Ezp and dom(b) = @.

(3) If (vp)a X T then a:* T and p € dom(a).

(4) If p> [l = ¢(m;)b; €] : T then T = Proc, b; : Ezp and dom(b;) = &
forallie1l.n.

(5) If ul < g(x)b:* T then T = Ezp, b: Ezp and dom(b) = 2.

Proof FEach of these statements follows by an easy induction on the deriva-
tion of the typing derivation. a

Lemma 28 Ift:' T then T = FEzxp.
Proof By inspection of the typing rules. o

Proof of Lemma 5
(1) Ifa:!T anda="b thenb:' T.
(2) Ifa:* T and a — b then b:* T.

(3) For all a,b:* Ezp, a — b if and only a 598 =1.

(4) If a:* Proc then N (a) takes the form (vp){o || @).

(5) If a:' Exp then N'(a) takes the form (vp)(c || t).
Proof

(1), (2) These may be proved by similar inductions to those found in the
proof of Proposition 1.

(3) Since @ :! Ezp implies a : Fzp, we have from Theorem 1 that a — b if
and only if a 508~ .

(4) Suppose a :* Proc. Therefore we may derive a : Proc. By Lemma 15,
N(a) exists. Suppose that M(a) = (wp){(c || t1,...,t,) for names
P, store o, and threads ti, ..., t,. By Lemma 16, a = (vp){c ||
t1,...,tn). By part (1), a :* Proc implies (vp){(o || t1,...,tn) :* Proc.
By Lemma 27, t1,...,t, :* Proc. By Lemma 27, it must be that n = 0.
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(5) Suppose a :* Ezp. Much as in the previous case, we have that N(a) =
(vp){o || t1, ..., 1), and that (vp)(o || t1,...,ts) :* Ezp. By Lemma 27,
it must be that n = 1. O

Proof of Theorem 2  Suppose a :* Ezp. If a — d' and a — d" then
a=ad.

Proof By applying Lemma 5, we can normalise a to M(a) and consider
reductions in the SOS’' semantics rather than the reduction semantics. It
is a simple induction to prove that SOS’ reductions are unique for terms in
the single-threaded fragment, because, by Lemma b, single-threaded terms
have only one thread in their configuration. This fact suffices to prove this

theorem, because if a — o’ and a — a” then a 598 b=¢ and a 28X ¥ = o,
But by the fact that SOS' reductions are unique, b = 0" and o” = d. a

Proof of Proposition 6 If a represents a term of impg, we can derive
a:' Exp.

Proof This can be proved by induction on the structure of a. - O

A.6 Proof of Theorem 3

In this section we prove the subject reduction result of Section 5, Theorem 3.

Lemma 29
(1) If E+ A then E F o.
(2) If EFa: Athen EF A

(3) IfE- A<:B then E+ A and E - B.
Proof By inductions on derivations. O
Proof of Lemma 7 IfEFa: A and EF- A<T thena:T.

Proof By induction on the derivation of '+ a: A.

(Val Subsumption) Here F F a : B obtains from £+ a : A and E I
A<:B. If E + B<:T then E + A<:T by (Sub Trans). Hence by
induction, a : T
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(Val Object) Here E + p— [¢; = ¢(;)b; "] : Proc obtains from E, z; :
AFb;: B, with E = Ey,p: A, Ey and dom(b;) = @ for ¢ € 1..n, where
A = [t : B;**"". By Lemma 29, E I o. By (Valu) E F p: A,
and hence £ + A. From (Type Object) we get E - B;<:Ezp for
all ¢ € 1.n. Hence by induction, b; : Ezp and from (Well Object),
p [ = g(x;)b; *€1-"] 1 Proc as required.

(Val Let) Here E F let z=a in b : B obtains from F - a : A and E,z :
Al b: B, dom(b) =@, E+ A<:Ezp and F + B<:Ezp. By induction
a: Ezp and b : Ezp and hence by (Well Let), let x=a in b: Ezp.

The cases for the other rules are similar. O

Lemma 30
(1) IfEFar b: Athen EF a: Proc, E+ b: A and dom(a)Ndom(b) = @.
(2) If E & let z=a in b : B then there are A,B with E + A<:Exp,
Ev B'<:Ezxp suchthat Eta: A, E,x: A+ b: B', dom(b) = & and
EF B'<:B.

(3) If E & (vp)b : B then there is an A such that E;p : A+ b: B and
p € dom(b).

(4) If EF-u: A then E = Ey,u: A, By where E+ A'<A.

(5) If EF ul; < ¢(z)b: A then there is an A" = [¢; : B; "] such that
EFu:A,jeln, dmd) =2, E,x: AFb:Bj and E+ A< A.

6) If E & p—=[l; = ¢(z;)b; "] : A then A = Proc and there is an
A" = [l; : B; """ such that E = Ey,p : A, By, dom(b;) = @ and
E,x; : A b : B; foralli € 1.n.

(7) If E\ acquire(u) : A then E F u: Mutez.

)
(8) If E'+ release(u) : A then E + u : Mutex.
(9) If E+ clone(u) : A then EFu: A.

)

(10) If E& u.l; : A then there is an A" = [€; : B; "] such that E+ u : A/,
j€l.n and E - B;<:A.

Proof Each of these facts can be proved by an induction on the appropriate
judgment. |
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We use the notation £ + J for an arbitrary judgment, where J stands
for the fragments o, A, a: A and A<:B.
We need the following standard lemmas in the proof of subject reduction:

Lemma 31 I[fE,2: B,E'+J and E+v: B then E,F' - J{& + v}.
Proof By induction on the derivation of £,z : B, E'+ J. a
Lemma 32 IfE,z:D,E't+ J and E+ D'<:D then E,x: D', E' - J.
Proof This is by an induction on the derivation of F,z: D, E'\- 7. O

We note that this lemma is not valid if we generalise it to allow bound
weakening for names as well as variables in the environment. For example,
@,p:[] + (p—]]) : Proc holds, but the weakened judgment @, p: [¢:[]] -
(p+1]) : Proc does not.

Lemma 33 IfF,u: A,E'FJ andu ¢ fn(J)U fo(J) then E,E'+ TJ.
Proof By induction on the derivation of F,u: A, E'+ J. a

Lemma 34 IfE,E'+ 7 andu ¢ dom(E,E') and E - A then E,u : A, E' -
J.

Proof By induction on the derivation of £, E' - J. O
Lemma 35 IfE,u:A,v:B,E'Fa:Cthen E,2v:Bu:AE'Fa:C.
Proof By induction on the derivation of E,u: A,v: B,E' - J. a

We show that structural congruence preserves typings:

Lemma 36 IfEFa: Aanda=bthen EFb: A

Proof We first symmetrise the lemma:
(WIfEFa:Aand a=bthen EFb: A
(2) fEFb: Aand a=bthen EFa: A

We prove this by induction on the derivation of a = b. We consider each of
the rules which may derive a = b in turn:

(Struct Refl) We have a = a, and the result is trivial.
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(Struct Symm) We have a = b obtained from b = a. Because of the
symmetrised form of the lemma, the result is trivial.

(Struct Trans) We have a = c obtained froma=bandb=c. f EFa: A
then the induction hypothesis applied to a = b gives F - b : A. The
induction hypothesis applied to b = ¢ gives E ¢ : A. Conversely,
if EFc: A then we deduce E + b : A b = c. Similarly, we deduce
Eta: Afroma=b.

(Struct Update) We have u.l; < ¢(z)b = u.l; < ¢(z)b obtained from
b=V, If EF ul; < g(z)b: A then by Lemma 30(5) we have an
A" = [6; : B;*®"] with j € 1.n, B,z : A' - b : B, B u: A,
dom(b) = @ and E + A'<:A. The induction hypothesis applied to
b=10 gives F,z: AV : B;. By Lemma 9(4), dom(d) = @. Hence
by (Val Update) E - u.l; <= ¢(x)b' : A'. Since E + A'<:A we have by
(Val Subsumption) E F u.l; <= g(z)b' : A as required. Part (2) follows
by symmetry.

(Struct Let) We have let x=a in b = let z=d' in V' obtained from o = o’
and b = V. If £ let x=a in b : B then by Lemma 30(2) we have
A,B' with F + A<:Ezp and F + B'<:Ezp such that E  a : A,
Exz: AFb: B, dom(b) = @ and F F B'<:B. The induction
hypothesis applied to a = a' gives E'+ o’ : A. The induction hypothesis
applied to b = b gives B, : AF ¥ : B'. Hence by (Val Let) and (Val
Subsumption), E F let x=ad' in V' : B. Part (2) follows by symmetry.

(Struct Res) We have (vp)a = (vp)d’ obtained from a = a'. If E - (vp)a :
A then by Lemma 30(3), E,p: Bt a: A for some B, and p € dom(a).
The induction hypothesis applied to a = ' gives E,p : B + d' : A.
Lemma 9(4) gives dom(a’) = dom(a), and so p € dom(a’). Hence, by
(Val Res), E I~ (vp)a' : A. Part (2) follows by symmetry.

(Struct Par) We have a P b = o’ I’ b’ obtained from a = o’ and b = ¥'. If
EtFarb: A then by Lemma 30(1) we have E+a: Proc, EFb: A
and dom(a) N dom(b) = &. The induction hypothesis applied to a = o’
gives E o' : Proc. The induction hypothesis applied to b = V' gives
ERb : A By Lemma 9(4), dom(a’) = dom(a) and dom(b') = dom(b).
Hence by (Well Par), EF o' b : A. Part (2) follows by symmetry.

(Struct Object) We have p— [¢; = ¢(z;)b; ‘€] = prs [6; = ¢(x;)b, €17
obtained from b; = b, and dom(b;)) = @ forall ¢ € 1.n. If E +
p> [0 = g(z;)b; €] © A then by Lemma 30(6) we have A = Proc
and there is an A’ = [¢; : B; '] such that E = Ey,p : A, Es,
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dom(b;) = @ and E,z; : A' - b; : B; for each ¢ € 1.n. The induction
hypothesis applied to b; = b} gives E,z; : A’ - b, : B; for i € 1.n.
Lemma 9(4) gives dom(b;) = @ for each ¢ € 1.n. Hence by (Val
Object), E F p [¢; = ¢(z;)b} *$'-"] : Proc as required.

(Struct Par Assoc) We have (a? b)Pc=al (bl c). HEF (aPb)T
c : A then by Lemma 30(1) we have E + (a " b) : Proc, EFc: A
and dom(a " b) N dom(c) = @. Similarly, Lemma 30(1) applied to
EF (aP b): Proc gives E & a: Proc, E b : Proc and dom(a) N
dom(b) = @. Since dom(a P b) = dom(a) U dom(b) we have that the
sets dom(a), dom(b) and dom(c) are pairwise disjoint. Rule (Val Par)
applied to E + b : Proc, E + ¢ : A and dom(b) N dom(c) = & gives
EFbr c: A Rule (Val Par) applied to EFa: Proc, EF (bl ¢): A
and dom(a) Ndom(b " c) = @ gives E - alP (b7 ¢) : A Part (2)
follows by a similar argument.

(Struct Par Comm) We have (a P b)) P ¢c= (bPa)Pc fEF (al
b) P ¢ : A we argue much as in the (Struct Par Assoc) case, to deduce
Eva: Proc, EFb: Proc, E + c: A and that the sets dom(a), dom(b)
and dom(c) are pairwise disjoint. Applying (Val Par) twice we deduce
EF(brPa)rc: A Part (2) follows by symmetry.

(Struct Res Res) We have (vp)(vg)a = (vq)(vp)a.

Suppose E + (vp)(vq)a : A. By renaming bound variables, we can
assume without loss of generality that p # ¢. Applying Lemma 30(3)
we get E,p: B,q: CF a: A for some B and C and {p, ¢} C dom(a).
By Lemma 35, E,q : C,p : B+ a: A. Hence by (Val Res), E,q :
C I (vp)a : A. Applying (Val Res) again, F - (vq)(vp)a : A. Part (2)
follows by symmetry.

(Struct Par 1) We have (vp)(a P b) = a P (vp)b obtained from p ¢ fn(a).
Assume E + (vp)(a P b) : A. Lemma 10(1) and (4) applied to this
judgment gives (for some B), E,p: Bt a: Proc, E,p: BF b: A,
dom(a) N dom(b) = & and p € dom(a) U dom(b). Lemma 9(1) and
p & fn(a) imply p ¢ dom(a). Since p € dom(a)U dom(b) we must have
p € dom(b). By (ValRes), E - (vp)b: A. Since p ¢ fn(a), E+ a: Proc
by Lemma 33. Now, dom(a)Ndom((vp)b) = dom(a)N(dom(b)—{p}) =
@, since dom(a)Ndom(b) = @. Hence (Val Par) gives £ - a I’ (vp)b : A.

Part (2) follows similarly. If £+ a P (vp)b: A then by Lemma 30, E' -
a: Proc, E,p: Bt b: A, pe dom(b) and dom(a)N(dom(b)—{p}) = @
for some B. By Lemma 34, E,p : B  a : Proc since p ¢ fn(a).
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Hence by (Val Par), E,p : B+ a " b: A. Finally, (Val Res) gives
Et (vp)(aT b) : A

(Struct Par 2) Similar to (Struct Par 1).

(Struct Let Assoc) If y ¢ fn(c) we have let z=(let y=a in b) in c =
let y=a in let x=b in c. Assume E t let z=(let y=a in b) in c :
C. Lemma 30(2) gives B,C" with E + B<:Ezp, E - C'<:Ezp, E -
let y=a in b: B, E,x : BF c: (' dom(c) = & and F + C'<:C.
Applying Lemma 30(2) to E + let y=a in b : B gives us A, B’ with
Er A<Ezp, E-B'<:FExp, El-a: A E,y: A+b: B, dom(b) = &
and F - B'<:B. By (Val Subsumption) we have E,y : A - b : B.
Since y ¢ fn(c) we have E,y : A,z : B+ c: C' from Lemma 34. By
(Val Let) B,y : A& let z=b in ¢ : C'. Applying (Val Let) again,
E & let y=a in let x=b in ¢ : C'. Finally by (Val Subsumption),
Etlet y=a in let z=bin c: C.

Part (2) follows much as Part (1).

(Struct Res Let) We have (vp)let z=a in b = let x=(vp)a in b obtained
from p ¢ fn(b). For Part (1), we assume E F (vp)let x=a in b : B.
Lemma 30(2) and (3) gives A and C such that E,p: CFa: A, EF
A<:Ezp, E,p: C,z: AFb: B, dom(b) = & and p € dom(a). From
(Val Res) we deduce F + (vp)a : A. Since p ¢ fn(b), E,x: A+ b: B
by Lemma 33. Hence by (Val Let), E I let z=(vp)a in b: B.

Part (2) follows much as Part (1).

(Struct Par Let) We have a " let z=b in ¢ = let z=(a " b) in c. For
Part (1), we assume E F a I’ let =b in ¢ : C. By Lemma 30(1) and
(2) we get E - a : Proc, dom(a) N dom(b) = & and B, such that
E+ B<FEzp, EF-C'<:Ezp, EF-b: B, E,x: BFc: (' dom(c) = @
and £+ ("<:C. Rule (Val Par) implies £ - a " b : B and rule (Val
Let) gives B + let x=(a " b) in ¢ : C'. Finally, (Val Subsumption)
allows us to infer E +- let x=(a T b) in c: C.

For Part (2), we assume E F let z=(a T b) in ¢ : C. Much as before,
we deduce that £ a : Proc, dom(a) N dom(b) = @ and there are
B, (" such that E + B<:Fzp, E+ C'<:Ezp, E+b: B, E,z : B |
c:C' dom(c) = @ and E + C"<:C. From (Val Par) and (Val Let)
we deduce E - a " let x=b in ¢ : C' and from (Val Subsumption),
Etarlet z=binc:C. O

We show that reduction preserves typings:
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Lemma 37 I[fEtF-a:Aanda— bthen EFb: A

Proof We prove this by induction on the derivation of @ — b. We consider
each of the rules which may derive ¢ — b in turn:

(Red Select) We have (p—d) P p.l; — (p—d) T bj{r; < p} where d =
[t = ¢(z)b; "] and j € 1.n. If EF (p—>d) " pl; : A then by
Lemma 30(1), E + p—d : Proc and E + p.l; : A. Lemma 30(6)
applied to E F prsd : Proc gives a B = [{; : B; **1"] such that
E = E,,p : B,Ey, dom(b;) = @ and E,z; : B F b; : B; for each
i € 1.n. Lemma 30(4) applied to E + p.l; : A gives a B' = [{; :
B! €% guch that E + p: B, j € 1.n' and E + Bi<:A. From
Lemma 31 applied to Ey,p : B,Ey,x; : B+ b; : B; we get Ey,p :
B, Ey - bi{z; < p} : B;. From Lemma 30(4) we deduce E - B<:B'
and hence from (Sub Object) that n' < n and B} = B;. Hence by (Val
Subsumption) E + b;{z; < p} : A. Finally, from (Val Par) we deduce
EF(p—d) 7 bifz; + p} : A

(Red Update) We have (p—>d) I p.l; < ¢(x)b — (p—>d') T p where
d = [& = g(wz)bl iEl..n] and d' = [63 = (;(fI))b, fz = (;(l'z)bz i€1"n_{j}]. If
EF (prd)r pl; < g(x)b: A then by Lemma 30(1) and (6) we get
a B = [{; : B;*%"] such that F = Ey,p : B, E,, dom(b;) = @ and
E,z;: Bt b;: B; for each i € 1..n. From Lemma 30(1), (4) and (5) we
get a B’ = [¢; : B! *€"] such that E+p: B', j € 1.0/, dom(b) = &,
E,xz:B'Fb: B, EF B'<:A and E  B<:B'. From E - B<:B' and
(Sub Object) we see that n' < n and B; = Bj.

From Lemma 32 applied to E,z : B' - b : B; and E F B<:B' we
can deduce E,z : B F b: B;. From this with £ = Ey,p : B, E, and
E,z;: BFb;: B;forie l.n—{j} we can deduce E - (p—d') : Proc.
The judgment E + p: A follows from (Val u) and (Val Subsumption).
Finally we deduce E + (pr—>d') P p: A from (Val Par).

(Red Clone) We have (pr—d) P clone(p) = (p—=d) P (vg)((¢g—d) T q),
where d = [¢; = ¢(z;)b;"€*"] and q ¢ fn(p+>d). Suppose E b (p+—d) T
clone(p) : B. Then by Lemma 30(1, 6, 9) we deduce E = Ey,p: A, Ey,
EFA<:Band E,x: At b;: B; fori € 1..n, where A = [(; : B; -]
From Lemma, 34 we can deduce F,q: A,z;: A+ b;: B;foreachi € 1.n
and hence from (Val Object) we derive E,q : A+ g+~ d : Proc. From
(Val u), (Val Par) and (Val Subsumption) we get E,q¢: AF (¢—d) T
q : B. Hence by (Val Res), E + (vq)((¢g—d) T ¢) : B. Finally by (Val
Par), EF (p—d) P (vg)((g—d) T q) : B as required.
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(Red Let Result) We have let z=p in b — bfx + p}. If we have F I
let x=p in b : B then by Lemma 30(2), there are A, B’ such that
Etr A<:Fzp, Ex- B'<:Ezp, Et-p: A E,x: A+ b: B, dom(b) = @
and F + B'<:B. By Lemma 31, E + bffx < p} : B'since EFp: A and
E,z: A b: B Finally by (Val Subsumption), E + b{z + p} : B.

(Red Res) We have (vp)a — (vp)a' obtained from a — a'. If E+ (vp)a: A
then by Lemma 30(3) there is B such that E,p : B+ a : A, and
p € dom(a). By induction, E F o' : A. Lemma 9(5) gives dom(a’) =
dom(a), so p € dom(a'). Hence E F (vp)d' : A.

(Red Par 1) We have a ' b — o' I’ b obtained from a — o’. f E - a T
b : A then by Lemma 30(1) we have E + a : Proc, E - b : A and
dom(a)Ndom(b) = @. Hence by induction, F - a' : Proc. Lemma 9(5)
gives dom(a’) = dom(a). Rule (Val Par) gives E+a/ T b: A.

(Red Par 2) Similar to (Red Par 1).

(Red Let) We have let z=a in b — let z=a' in b obtained from ¢ — d'.
If EF let x=a in b : B then by Lemma 30(2), there are A, B’ such
that £ - A<:Fzp, F + B'<:Fzp, E+a : A, E,x : A+ b B,
dom(b) = @ and F - B'<:B. By induction, we have F F o' : A. Hence
by (Val Let), E - let x=a' in b: B'. By (Val Subsumption) we deduce
Etlet x=a' in b: B.

(Red Struct) We have a — b obtained from a = d/, ' — ¥ and o' — b. If
EF a: A then by Lemma 36, £+ @' : A. The induction hypothesis
applied to o’ — V' gives E ¥ : A. Finally, applying Lemma 36 again,
Erb: A O

Proof of Theorem 3
(1) IfEta:Aanda=bthen EFb: A,
(2) IfEFa:Aanda—bthen EFb: A

Proof Part (1) follows immediately from Lemma 36. Part (2) follows
immediately from Lemma 37. O

A proposition analogous to Theorem 3 holds for Proc-indexed structural
congruence and reduction:
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Proposition 38 Suppose E't- a : Proc. Then:

Proc

(1) Ifa = b then E+b: Proc.
(2) Ifa 3 b then EF b: Proc.

Proof

Proc

(1) If @ "= b then there is a fresh p with a P p = b I’ p. By (Val Par)
and Lemma 34, E,p:[JFal p:[]. (Our choice of the type [] for the
name p is somewhat arbitrary.) By Lemma 36, E,p: [|F b7 p:[|. By
Lemma 30(1), E,p : [| b : Proc. Since p ¢ fn(b), E = b : Proc by

Lemma 33.
(2) Ifa P h then o "= o — b "= b. From Part (2), E+d : Proc. From
Part(3), £ b : Proc. Finally, Part (2) gives '+ b : Proc. O
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