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Summary

Local Area Networks are now an accepted part of computing research.
The technology of the netweork itself and the hardware to interface it to a
computer is standard and in the cases of networks like ETHERNET and the
Cambridge Ring is commercially available. The next level up from the
hardware is the software interface between the Host computer and the
network. This dissertation is concerned with one specific tupe of
interface where the Host is not itself directly connected to the Network,

but must access it via a second Network Interface Processor (NIP).

The dissertation begins by describing the design and implementation of
two low level interfaces for the Cambridge Ring. The first of these, the
Type 2, is machine independant and although based on a simple processor
offers some sophisticated facilities to its Host. The second, SPECTRUM,
is not so sophisticated, but is customized to interface to just one
operating system. The difference between these two approaches is

discussed.

We go on to introduce the High Level Interface, which removes all
protocol and network related processing from the Host machine. This can
bernefit both the protocol implementation, by reducing system overheads,
and the Host Operating System, by freeing CPU time for other tasks. This
is particularly true in the case of time-shared machines which rely on the
network for terminal connections. The design and implementation of such

an interface are described.

The dissertation concludes by considering the possible roles of the NIP
in the areas of security, protection, and reliability. Some thoughts are

alsa given on the design of protocols which exploit the features of a NIP.




Introduction

There has been, over the past few years, an increasing interest in
computer networking. Indeed it has become not only an accepted part of
computing systems research but now forms the major part of it. Computer
networks may be divided into three classest Wide Area Networks, Local
Area Networks, and Multiprocessor systems. Wide Area Networks are the
oldest of the three, finding examples in ARPANET [Heart701 and TYMNET
[Tymes71]. Multiprocesswrsv also have a long history, notable examples are:
the CDC 6600 (Thornton70], HYDRA ([Wulf74] and Cmx [Fuller?8,
Jones79, Ousterhout7?91. Local Area Networks are a relatively recent
development and combine features of both these as well as having features

uniquely their own.

1.1 Local Area Communicatio etwo

A Local Area Network (LAN) is ocne that connect computers, and other
devices, within a radius of less than SKm. This means that all the
machines must be in the same building, or in closely adjacent ones. The
claseness of this connection gives the LAN several important features.
The first is that it is fast, with a point-to-point bandwidth measured in
Megabits per second. The second is that its error rate is low, a figure of
one bit error in 10'! is typical. Local area networks may be divided into

three groups based on their topologu.

The first group is that of CSMA (Carrier Sense Multi-Access) bus
networks. These consist of an un-rooted tree of cables forming a passive
shared communication medium or ether, Stations are connected to this with
taps at convenient points. Sources transmit data, encapsulated in
addressed packets of several Kbits, only when they detect that the ether
is idle. Since there is no central control it is possible that two sources
will attempt to transmit at the same time. Collision detection, backoff and
retry algorithms are implemented in the transmitting computers to handle
this. ANy packet transmitted on the ether propagates to all receivers; if

a receiver recognises its address it copies the data into local memory.




The best known example of this type of network is Ethernet [Metcalfe7El.

The second group is that of Ring based networks. Here the stations are
all connected sequentially to a looped medium. Since there is a distinct
order to the nodes a distributed algorithm can be developed to share the
medium without the collision/retry algorithms needed in a CSMA network. A
packet from a transmitter passes in one direction around the ring until it
is recognised by a receiver, which copies the data. The packet could be
deleted here, but most ring networks exploit the topolegy to return an
acknowledgement to the transmitter. Examples of ring systems are the
Cambridge Ring [Wilkes73al, PRIMENET [Nelson781, and DCS [Farber751.

The final group of networks are those that do rnot fit into either of the
above topologies, many of these apply wide area network technology to local

areas and are either randomly configured or star shaped.

1.2 Network Interfaces

When interfacing a network to a Host computer there are many options
opern to the designer. The mechanism chosen is often dictated by the
requirements of the Host computer, its operating system, or the

characteristics of the underlying network.

At the most primitive level the network hardware can be connected
directly to the Host and all aspects of network driving handled by the Host
Operating System or client software. The suitability of this depends on
the relative speeds of the network and Host processor, and the intended
use of the network. At Cambridge examples of such interfaces may be
found on the many ZB0s [0dyBlal, a PDP11/45 [GibbonsB0al, and a
VAX11/750 [Collinson82l. In the first case the Z80 does little more
than respond to requests sent via the Ring, so the primitive interface is
adequate. In the other two cases the Ring is used infreguently enough for
it not to have a detrimental effect. The disadvantage of this tupe of
interface is that the real-time demands of the network may stop all other

work during a network transaction.

One way to acquire faster processing, and therefore reduce the real time
spent, is to move the network driving software into the processor’s
microcode. This can have the double advantage of speeding up the network
transfers and reducing the load on the Host. The network is still being
serviced, however, at the expense of Host programs. For example, the Alto
Ethernet interface [Thacker731, uses 16% of the machine during data
transfer, and can rise to 20% in the worst case. At Cambridge the CAP




computer also has a micro-coded interface to the Ring. This approach
assumes that the Host computer has an easily accessible micro-store,
which is often only true if you have designed and built the machine

yourself.

A significant improvement can be obtained if a modest amount of
hardware is installed in the interface. The data transfer phase of the
transaction can be handled automatically and access made via DMA. Since
the Host processor is unlikely to use every memory cycle such an interface
can have little or no effect on Host performance. Another important task
that may be performed by hardware is the calculation of the checksum
which most network protocols need. On a processor of modest performance

this can take almost as long as the data transfer.

Local Area Networks share some chaoracteristics with devices like discs:
there may be a long delay before data is available, but when it is it comes
at high speed and has associated real-time requirements. These attributes
of discs are catered for by providing an intelligent, or semi-intelligent,
controller. It makes sense, therefore, to use a similar approach to

network access.

An interesting example of a semi-intelligent network interface may be
found in the Local Network Interface (LNI) to the Distributed Computing
System [Mockapetris?7l. DCS is a ring network in which messages are
addressed to processes rather than stations. This means that the LNI
must contain an associative name table of all the process names in its
Host. The destination address of any message seen passing on the ring is
passed through this table and if it matches the data is copied. This is
further complicated by the presence of a mask field in both the name table
and the message; this allows messages to be broadcast to groups of
processes selected by fields in the address. The LNI is a custom LSI chip
that is controlled by an alterable Programmed Logic Array, it can

therefore be considered a specialised micro-coded computer.

This dissertation is concerned with the class of truly intelligent network

interfaces.




1.3 Intelligent Network Interfgce

An intelligent network interface is one that contains an  easily
programmed computer of some form. The concept of a Front-End network
processor is not new and has been employed in Wide Area Networks for
same time. Its role in these networks is usually to carry out message
routing or maintain virtual circuits. The ideas have also been extended to
Local Area Networks [Stack811. These Front-End processors usually need
to be substantial mini-computers, and are of comparable power to the type
of machine we expect to comprise most of the Host processors on a LAN.
The development of single chip microcomputers and their subsequent
increase in performance now makes it possible to build a powerful
processor that is both small (one PCB) and cheap (K£500). It is
therefore feasible to interface modest mini-computers, and even the larger
micro-computers, to a network via their own Network Interface Processor
(NIP).

The literature contains many examples of thist FordNet [Biba731, SWAN
[SommerB811, CNET [West78], MITRENET [Hopkins81], WELNET [MarkB811
and [Carpenter7?B]l. These are all CSMA networks that use the NIP to
implement the backoff/retry algorithm the network requires. All network
access, including reception and transmission, is performed by the
microprocessor with little hardware assistance, so data rates are limited
to approximately 1 Mbit/second. Some of these are also limited by the
Host/NIP conmnection, which is often no more spectacular than a serial line.
A ring network similar to DCS but using a microprocessor in place of the
LNI is described in [Lee781. Most of these implement only the lowest
protocol level: datagram or packet. Some do take advantage of the
presence of the NIP to implement flow control and error detection using
acknowledgement packets. This is on a node to node basis, not client to
client, so it does not constitute a virtual circuit protocol. It was
mentioned in the FordNet paper that they intended to implement higher
level protocols in the NIP, but there appears to be no published evidence

of this.

In most of the above cases the micro-processor node is an integral part
of the network, and no other access method is supplied. In other cases
the NIP has been used to make the network appear to be some other, more
mundane device. An example of this is the Terminal Interface being
developed at University College, London for the Cambridge Ring
[RubensteinB81]. This is a ZB0O based interface that supports a single
character terminal protocol on the ring and presents the Host with an

interface similar to a termina) multiplexor. Elsewhere on the ring ancther




780 acts as a terminal concentrator and allows a terminal to be connected

to any of several Host computers.

Of more interest is the Network Interface Processor that does not hide
its true nature behind a pseudo-device interface but supplies explicit
network access primitives to the Host. The prime requirement of such a
device is that it does its job more efficiently than the Host could itseldf.
Equally important is that the Host is not involved in as much work to use
the NIP as it would be in driving the network directly. The first
requirement may be met by using a fast processor or giving it special
hardware support. The second requires that the NIP have direct access to
the Host’s memory so it can fetch both data and commands as it requires.
Combining these two it is possible to develop hardware that can transfer
data from network to Host and vice versa without the intervention of

either processor.

The cost of a NIP is an important factor and can be assessed in relation
to several criteria. The first, and most important, criterion is its cost
compared with the Host machine it is to interface. If the cost of the NIP
is more than that of the Host, or is a sizeable fraction of it, it is
economically unfeasible to use it unless its advantages are great. Another
comparison to be made is between the cost of the NIP and that of a
simpler interface, for example a direct connection between the Host and
the Network. Clearly the NIP is the more expensive, but again we can only
make the comparison in the light of the comparative performance of the

interfaces,

The duties of a NIP reed not stop at the low level protocols, but may be
extended to both more flexible implementations of these and the
implementation of higher level protocols. Beyond this the NIP may take on
some of the systems and management duties associated with the network.
Pushing even further we come back to the case where the presence of a
NIP is an integral part of the network access logic. But instead of being
a limitation it now supplies all the high level functions a Host requires for
communication, freeing it from performing them itself. In addition the NIP
can provide a consistent interface and play a part in protection,

authentication and security.




1.4 Overview

Chapter 2 describes the Cambridge environment against which much of
the work described in this dissertation was done. The informed reader can

ignore this chapter.

Chapter 3 describes the Type 2, a high performance NIP for the
Cambridge Ring. This only implements the lowest level protocol: Basic Block

Protocol, but supplies an extremely flexible interface to this.

Chapter 4 describes the MACE, a machine that has been put to similar
use, but is based on a slower processor. The initial interface program for
this machine, SPECTRUM, was less flexible than that for the Type 2, but is

closer in specification to the Host’'s reqguirements.

Chapter 5 presents the concept of a High Level Interface that provides
its Host with more powerful protocols and services. Chapters B and 7
describe the design and implementation of a High Level Interface on the
MACE, called SuperMACE, and show that this approach results in an

improved system performance.

Chapter 8 covers further aspects of a High Level Interface including
some thoughts on possible hardware improvements and its role in security

and authentication.

Chapter 9 examines the influence a NIP may have on the design of
protocols, and goes on to describe the architecture of a system that

provides a high degree of protection between machines.

Chapter 10 concludes this dissertation.

1.5 Acknowledgements
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program were written by B. J.Knight. That for the SuperMACE was
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Background

This Chapter describes some of the background to the work presented in
this dissertation. This material is presented here in preference to
introducing it when the subject arises to dispose of it as soon as possible.
Those familiar with the following items may skip them in the safe knowledge
that they are not missing anything original.

2.1 The Cambridae Ring

The Cambridge Ring is a high performance lLocal Area Network (LAN)
developed at the Cambridge University Computer Laboratory. The ring
consists of a loop of twa twisted pairs interrupted by repeaters that
regenerate the signal. Data is carried in several packets that circulate in
a fixed pattern. The number of packets is determined by the length of the
ring and its clock rate. Since the ring is unlikely to be an exact number of
packets long, the pattern consists of an integral number of packets plus a

gap, which is shorter than a packet.

Packets are 38 bits long and consist of an 8 bit source address, an 8
bit destination address, 16 bits of data and six bits for framing, control

and error detection. This is shown in figure 2.1.

1 DEST SOURCE DATRA
(B bits) (8 bits) (16 bits)

Monitor Passed bit
Packet Full bit
Start of Packet bit

Response bits

Partty bit

Fiaure 2.1 Format of a Rina Packet

Computers are cornected to the ring via a station, which is in turn
connected via a repeater. Each station has an unique address in the range

1 to 254, addresses O and 255 are interpreted specially. To the




cornected computer the station supplies a full duplex interface, so
transmission and reception may be viewed as completely independent
devices. This is particularly useful when developing ring driving software
since not only may the two halves be tested independently, but may also be

tested jointly by transmitting to oneself.

Of all the stations one, the monitor station, is distinguished. This is
responsible for initialising the framing structure of the ring at startup

and for re-initialising it when it is lost.

e.l.l Transmission

The primitive transmission operation provided by the station is to send
one 16 bit data packet to a selected destination. This is achieved by
waiting until an empty packet passes the repeater, claiming this by setting
the full bit, and loading into it the destination address, source address
(Citself) and the 16 bits of data. The transmission logic then waits until
the packet has been all the way around the ring. When the packet returns
it is compared with the packet sent as an error detection measure, and the

response bits are made available to the Host.

There are two response bits, allowing for four responses in total:

Buey The destination recognised its address, but was not reody to

receive another packet.

Uneelected The destination does not wish to receive packets from our

station.

Accepted The destination received the packet.

Tanored No station recognised its address: it either does not exist or
is switched off.

Once a transmission has been performed the station is not allowed to
" refill the empty packet immediately, but must allow it to pass on. This
simple mechanism prevents any one station from hogging the ring bandwidth
and gives each station an equal chance of claiming packets, even when the

ring is heavily used.

An elementary flow control mechanism is supplied to suppress extraneous
transmissions. If the response to a transmission is busy the station
inhibits the transmission of the next packet for a time. After the first

such rejection this is a period of two ring revolutions, and on the second




and subsequent times is sixteen revelutions.

2.1.2 Reception

The primitive reception operation is to receive a single packet from the
selected source. The source is controlled by the Source Acceptable
Register (SAR)Y. If this is set to a value in the range 1 to 254 then only
packets from the station of that address will be accepted; transmissions
from elsewhere will be rejected uneslected. If the SAR is set to zero no
packets at all will be accepted, and if it is set to 255 packets from any
station will be accepted, in which case the actual source may be read from

another register in the station.

2.2 Protocols Used on the Cambridge Ring

Ring packets as they stand are unsuitable for most applications. There
are three reasons for this. First, the overheads of deciding what to do
with each packet individually would ke prohibitively large, particularly in a
program driven interface. Since the hardware supplies a means of
selecting packets from one source only, this may be used to allow an entire

sequence of packets to be received with greatly reduced overheads.

Second, the hardware only supplies addressing to the grain of a single
station. A typical computer will have several processes in it that may be
communicating with processes in other machines. When data arrives it is
necessary to associate it with a particular process. The only form of
identification supplied by the hardware is the source address, which may
not uniguely identify it. Some form of extended addressing is required.
Installing this in each packet would not only significantly reduce the
amount of data that could be transferred, it would not give a large enough
range of addresses to be of much help. However, if the data is blocked
" together an extended address of whatever size was felt necessary could be

included in the block format.

Third, without incurring the same penalties described above, it would not

be possible to detect lost or corrupt packets without blocking.

While a strong case in favour of a primitive block protocol has been put,
it should be noted that there are gpplications where a single packet
protoco! has its advantages. One such is the transmission of digitized
voice communications across the ring, where the overheads of constructing
blocks intrude on the real-time requirements of the application [LeslieBll.

A few lost packets will go un—-noticed, and if they are, error recovery can




be dealt with by higher level protocols. Another single packet protocel is
the terminal protocol implemented at University College London
[RubinsteinB81] where a virtual circuit between a terminal and a Host
computer is implemented by two streams of packets. The implementors rely

on the low error rate of the ring to eliminate the need for any error

recovery.

2.2.1 Basic Block Proteocol

Basic Block Protocol [Walker781 provides the primitive block protocol
demanded abave. A basic block consists of a header packet, a route packet,
some data packets and a checksum packet. Its structure is shown in

figure 2.2.

4 2 19 Bits
1001 TYPE COUNT Header Packet
FLAGS PORT Route Packet
/ DATA Ve Count+l Data Packets
CHECKSUM or ZERO Checksum Packet

Fiagure 2.2 Format of a Basic Block

The header packet contains a 4 bit pattern as a weak form of
identification, a 2 bit type field and a 10 bit count field, allowing from 1
to 1024 packets of data ¢ the count is really in the range 0 to 1023),

The route packet contains a 12 bit port number, which is used to direct
the packet to the right process in the computer. The computer has
complete freedom to allocate port numbers as it wishes. The flags field
has three of its four bits allocated. The top bit indicates that the block
is intended for the computer’s ring interface and not for the computer
itself; this allows remote debugging and loading of machines and will be
covered in more detail in later chapters. The lower two bits of the flags
field are used to specify one of four sub-ports, and is used for

communication via a ring-ring bridge. The remaining bit is unassigned.

Following the route packet are the data packets. Owing to the way the

count is encoded there must be at least orne of these.

-10-




The content of the checksum packet depends on the value of the type
field in the header. If the type is 00 then this packet contains an end-
around-carry checksum of all the previous packets in the block. If the
type is 01 this packet contains zero (Note that an actual checksum cannot
be zero unless all the packets in the block are zero, and the header is
never zero). The checksum is present more to detect block framing errors
(either because the wrong packet was identifited as a header, or
transmission was aborted in mid-block and a new one started), than to

protect against the corruption of data during transit.

Type code 10 in the header indicates that the count field contains all
the data in the block, and the following packets are not sent. Such

immediate data packets have only limited applications.

The fourth code (11) has been allocated to indicate the use of a
somewhat different block protocol. The count field contains a fixed bit
pattern, and the header is followed by an extra packet containing the
amount of data in bytes. This is followed by the route, data and checksum
packets in the usua! way. This variant has been specified with rings that

have differently sized packets in mind, and is of only passing interest.

It is an important feature of basic block protocol that the layers of
software above it should receive a block in its entirety or not at all. The

basic block lager should never pass back incomplete or corrupt blocks.

One perfectly valid means of implementing basic block protocol is to
receive all blocks regardless of source and then discard those that are not
‘ expected, too long for the available buffering or have bad checksums. This
means that a block moy be lost without trace, and may result in long delays
before the transmitter realises this. A more helpful mechanism is to set
the SAR to zero for a brief period of time just after the route packet of
arn unwarted block is received; the transmitter will see the destination go
uneelected in block and by convention will interpret this as meaning that
this block is unwanted. This has the advantages that the sender can abort
the transmission as soon as it sees this and time is not wasted at both

encls in the transfer of a block of data that is not wanted.

Even given the above mechanism it is possible for a block to be lost, and
in any case some machines do not implement it. Consequently basic block
protocal does not guarantee to deliver a particular block to its destination
with anything other than a high probability. Higher level protocols must

therefore be capable of recovering from lost blocks.

_11..




I will have more to say about the details of basic block protocol in later

chapters.

2.2.2 Single Shot Protocol

Single Shot Protocol (SSP) [Ody79] implements a simple Reguest/Reply
protocol similar to a remote procedure call. It is built on top of Basic
Block Protocol by reserving the first three data packets for tuype and

control information, and is shown in figure 2.3.

Client —> Service(ServicePort) Service ~» Client(RepliyPort)
6C FLAGS 65 FLAGS
Rep lyPort %]
Function Code Return Code
7/ User Parameters 7/ 7/ User Parameters /

Fiagure 2.3 Formagt of SSP Exchanae

The only proof the sender has that its request was received is the
arrival of the reply. Failure of the reply to arrive is detected with a
~ timeout. However the expiry of this timeout can mean one of two things:
that the request was lost, or that the reply was lost. To make it safe to
retry the reguest in both cases, SSP accessed services should be

idempotent (i.e. repeatable).

2.2.3 Byte Stream Protocol

Byte Stream Protocol (BSP) [JohneonBO1] provides a pair of error free,
flow controlled channels across the ring. Facilities are provided to push
buffered data through a channel, reset the pair to a standard state, and
to close the channels down. In some respects this is similar to a
Transport Service, and can be upgraded to a full implementation of that
protocol [INT821].

BSP is built on Basic Block Protocol by reserving the first two daota
packets of a block for control information relating to the two channels,
the remainder of the block is used for data. Data is never sent unless
requested, giving flow control, and every data block is acknowledged, giving

error reacovery.

_12...




The first data packet sent in a transmitted block contains a command and
sequence number relating to the channel being received by the sender. The
commands may be: NULL, in which case no action is taken, RIOY (ready’, in
which case the next block of data is being reguested, or NOTRDY, meaning
that the next block of data should not be sent (but the last one is being

acknowledged).

The second data packet contains a command and a sequence number
relating to the channel being transmitted by the sender. The command may
be NULL as before, DATA, in which case the rest of the block contains the
data being sent, or NODATA, meaning the sender has no data to send at

present.

The protocol is normally implemented as a finite state machine and is
best described by the state transition table given in figure 2.4. This
table gives the state transitions for both the receiving and transmitting

ends of a channel because in all major respects they are identical.

State E is entered when an Essential element (RIDY or DATA) is sent;
the other end is expected to reply immediately. State N is entered when a
Non-essential element (NOTRDY or NODATA) is sent; the other end is not
"~ expected to send anything in return. State I is entered when the other
end sends g Non-essential element; the channel remains idle until the other
end sends another essential element. For any byte stream there will be

four such state machines, one for each end of the two channels.

A Byte stream is initially set up by an OPEN exchange, the format of
which is given in figure 2.6. The parameters passed are in two groups: the
first relates to the properties of the stream to be created, the second
group is defined by the user and relates to the service invoked. Only two
BSP parameters are currently in use: the size of the largest block this
end will send, and the size of the largest it will receive. The reply port is
the port to which all subsequent BSP blocks will be directed.

The reply to an OPEN is an OPENACK. The parameters are grouped in
the same way to that in the OPEN, the two BSP parameters consisting of
the block sizes that will actually be used. The second word in the block
(which is zero in an SSP reply) contains the port to which all subsequent
BSP blocks should be routed.
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State

Event
E N 1
Elrepl Retransmit Retransmit Protocol
DATA(n-1)/ RDY(n)/DATA(N) NOTRDY(n)”/ Error
RDY(n) NODATA(N)
Empty/fill buffer Empty/fill buffer
Elexp]l n +:= 1 n +:= 1
Buffer ready? Protocol Buffer ready?
DATA(N)/ yes: no: yas: no:
RDY(n+1) Transmit] Transmit Error Transmit] Transmit
RDY(n)/ |[NOTRDY(n)”/ RDY(n)s |[NOTRDY(n)~/
DATA(n) [NODRTA(Nn) DATA(n) {NODATA(N)
Goto E Goto N Goto E Goto N
NLexpl Start Idle No Action
Handshake Timer Protocol
NODATA(N)/
NOTRDY (n+1) Error
Goto I
No Acttion Transmit No Aection
Buffer
RDY(n)/DATA(N)
Ready
Goto E
Retransmit No Action No fAction
Timeout RDY(n)/DATA(N)
Idle Protocol Protocol Retransmit
Handshake
Timer Error Error RDY(n)/DATA(N)
Expires
Goto E

Notes:
n is the block sequence number (mod 16).

Client —> Service(ServicePort)

Figure 2.4 BSP State Transition Table

Sarvice — Client(ReplyPort)

GA FLAGS
Rep |lyPort

Function Code

Parameter Count

7/ BSP Parameters 7/

/ User Parameters /

65 FLAGS

Connection Port

Return Code

Parameter Count

7/ BSP Parameters /

7/ User Parameters /

Fiaure 2.5 Format of BSP OPEN Exchange




2.3 The Cambridge Distributed Computing System

This section describes the structure of the Cambridge Distributed
System, the environment in which most of this work was done. I kegin with
a simple overview of the system and follow with more detailed descriptions
of those parts that are considered important, or have special relevance to

the work presented here. A full account may be found in ENeedhamB213.

2.3.1 Philosophy

The Cambridge Distributed System is based on the philosophy that it is
better to give the user his own personal computer than access to a shared
system. This approach becomes increasingly more realistic as the price of
computer hardware falls. The advantages of this are that the machine is
always to hand, under the user’'s control and its response is guaranteed to
be constant. An isolated personal machine, however, is at a significant
~ disadvantage. The cost of making it into a usable computing system with
/ the addition of peripherals (terminal, hard-copy, permanent storage) is
likely to be more than that of the processor itself, and if this has to be
repeated several times it soon becomes more feasible to purchase a shared
system. Separate machines also make the cooperation of users, and the
propagation of software very difficult. The solution to these problems is
to connect the computers together with a network; expensive peripherals

may be shared, and programs and data moved between machines with ease.

Conventionally such a system is achieved by placing a machine of modest
size, with Keyboard, display and disc, in every office. MWhile this is
perfectly ccceptable if the user does not get ambitious about the kind of
program he wishes to run, such a machine is clearly not able to support
such applications as relational databases, graphics and numerical
computations. It is unreasonable to expect a user to leave his office to
go in search of a suitable machine each time his computing needs outgrow
his personal machine; it is also difficult to justify giving him a larger
machine permanently, because he is unlikely to use it to its full capacity.
Permanent allocation of a machine to a user also hinders the development

and running of distributed algorithms.

One possible solution is to supply on the network a large shared computer
to which the user may connect his personal machine as a remote terminal.
The user now has access to encugh computing power to run his more
ambitious programs, but only has access when he needs it. This approach,
however, is not really in the spirit of distributed computing, since most

application effort would concentrate on the shared machine. At Cambridge




an alternative approach has been adopted.

2.3.2 The Cambridge Distributed System

The Cambridge approach is to give each user a personal computer of
modest performance, possibly integrated with his terminal, and without
local discs. This machine is capable of only minor duties, one of which is to
connect as a remote terminal to some other machine on the network. Most
of the computing power of the network resides in the Processor Bank: a

collection of machines free for any user to claim.

When a user wishes to use a Processing Berver (as the machines in the
processor bank are known) he approaches the resource management system.
This attempts to find a suitable machine, load it, and allocate it to the

user. Once allocated the machine belongs exclusively to the user for as
long as he desires; his personal computer acts simply as a (possibly very

intelligent) remote terminal.

Since processing servers may be allocated to any user they may not have
any local file storage. Instead all user files are stored on the Fileserver,
which is accessible from any machine. Consequently a user may access his

files regardless of the physical machine he is using.

Once allocated, a user has total control over the processor bank machine
he has been given. This includes being able to stop it, start it, load any
code into it, and debug it at the hardware level. The degree of sharing of
resources here is at a somewhat coarser grain than that supplied by a
time-shared system: dealing in whole processors rather than machine
cycles. This pre-supposes that there are enough processors in the bank to
satisfy demand; in practice this means that there should be slightly more
machines than necessary. With the trend towards ever cheaper machines

this is not a great price to pay for the advantages.

The composition of the processor bank need not be homogeneous, but may
be tailored to suit the requirements of the user community. For example,
it might contain a large number of medium sized machines to meet most
users needs, plus several more powerful machines for those with greater
demands. It may even contain machines with special architectures or
hardware features ( LISP and P-code machines, floating point hardware
etc.). The handling of distributed applications is a simple extension of the
basic system to allow a user to request more than one machine, and to

allow the machines themselves to request further processors.
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In addition to the processor bank the Cambridge Distributed System
contains many machines dedicated to providing most of the services
conventionally supplied by an operating system. These range from
substantial machines controlling substantial peripherals (Fileserver, Laser
printer), to small machines controlling simple peripherals (Terminal
concentrator, Line printer, Time-of-day clock), to machines that perform

the basic management functions of the distributed operating system.

The system does not prevent conventional mainframes and mini-computers
from accessing its services, and using the network for their own purposes.
The mainframe may use the system to whatever extent it wishes, from
simple use of printers and file transfer, to access via remote terminals
" and keeping its filing system on the Fileserver. An example of converting

an operating sustem to do the latter may be found in [DellarB801.

3.3 Tmplementatio etail

The preceding section has given a somewhat idealised view of what the
system looks like. In practice users do not have personal machines, but
merely a conventional cursor addressed VDU connected to the ring via a
terminal concentrator. All user work is done in processor bank machines or

in time-shared machines connected to the ring.

2.3.4 Processing Servers

At present the processor bank contains two different machine types:
Computer Automation LSI4’s, and Motorola 60000's. Processing servers
differ from most other tuypes of computer in that they have no peripherals
other than the Ring. Given this fact it is important thot the Ring
connection be of high performance. In both cases the connection is made
via a second interface processor, which in addition to performing ring
access functions for the Host computer is aiso able to exercise the kind
of control aver it one expects from the front panel of the machine: loading
systems, stopping and starting execution, and debugging. Since these
interfaces are the subject of this dissertation I will say no more about

them here.

2.3.5 Processor Bank Management

The allocation and loading of processing servers is managed by three

machines: the Resource Manager, the Session Manager and the Ancilla.

...17_..




The Resource Manager is responsible for knowing which machines are
allocated, to whom, and for how long. It is also responsible for allocating
the machines and getting them loaded with the program or cperating system
required by the user. Requests to the Resource Manager specify the type
of system to be loaded, the length of time it is wanted for, and the
attributes the machine should have (i.e. large memory, floppy discs,
intimate terminal). The Resource Manager searches its list of free
machines for one that has the requested attributes (including any the
specified system may demand) and if one is found loads it with the given
system. Two times are specified in the request, one gives the maximum
time for which the machine will be allocated, and an initial refresh time.
Once the machine is loaded it must contact the Resource Manager before
the expiry of the refresh time. The purpose of this is so that the machine
may discover where it was started from and why it was started. In this
message the machine must specify a new refresh time, and must repeat the
exchange again before this time expires. The effect of this is to maintain
a dead-man’s handle between the Resource Manager and the machine and
allows crashed machines to recovered. If the refresh time ever expires

the Resource Manager may reclaim the machine for re-allocation.

The interface to the Resource Manager is at a low level so requests may
be made by other computers for processing servers. For the user at the
terminal the Session Manager provides a higher level interface. Initially
the user connects his terminal to the Session Manager, which translates
his typed commands into low level requests to the Resource Manager. Once
the Resource Manager has allocated and loaded a machine the Session
Manager drops out of the conversation and the user can communicate

directly with the processing server.

The Resource Manager effects the loading of a machine by giving its name
plus the name of a file containing the system to be loaded to the Ancilla.
This service is responsible for knowing how to load that particular type of
machine with a binary load image taken from its own filing system on the
Fileserver. The exact activity of the Ancilla may range from simply
passing the name of the file on to the machine’s ring interface, to relaying
the entire image from the Fileserver to the machine itself for less
intelligent interfaces. In theory there is a separate Ancilla for each
different type of machine but in practice they are sufficiently similar that
they may be coalesced into a single machine (although their external
interfaces remain logically distinct). The Ancilla also has a role to play in

remote debugging.
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3.6 e Nameserwv

To use any of the various services it is necessary to address messages
to them. If the system were static these addresses could be fixed and
built into programs. This is, however, somewhat inflexible; we want to be
able to move services between machines and move machines around the
network. To allow this, all services are located by an S5P containing a
, textual name to the Nameserver, which replies with the address of the
service. The Nameserver is distinguished in that its station address is
well known and fixed for all time. Relocating a machine or service is

therefore a simple matter of changing its entry in the Nameserver.

2.3.7 The Cambridge Authentication Suystem

This is accomplished by at Cambridge with UID-sets. A UID-set consists
of four items: a PUID which names an object or user, a TUID which
represents an finstance of that object, a TPUID which represents the
association between the PUID and TUID, and an Authentity (Authority
TIdentity) which names the authority under which this association was made.
These all take the form of B4-bit random numbers to protect against
forgery, and any of them, particularly the TPUID, may be absent. This
association is stored in the Active Object Table (AOT) and is pericdically
refreshed in the same manner as the Rescurce Manager’s dead-man’s handle.
The AOT also supplies functions to validate, identify, create, and enhance

UID-sets. The reader is referred to [Girling821 for more details,

2.3.8 The Filegerver

The Cambridge Fileserver [DionB81]1 is implemented on a Computer
Automation LSI4/30 computer with 80 Mbyte COC disc drives. It provides
a slightly abstract view of a filing system with two types of object: files
and indices. All Fileserver objects are named by a B4-bit Permanent
Unigue Identifier (PUID)Y which is composed of 32 bits of object

identification and 32 bits of random data to provide a degree of

unforgeability.

A file is a vector of 16 bit words and may be any size from zero to
about 13.5 Mwords. Space is only allocated on disc for those parts of the
file that have actually been written. Consecutive sequences of words may

be read or written at any point in the file.

An Index holds references to objects and is simply a list of PUIDs., The
only restriction on what references an index may hold is that they must

not be for objects on a different disc pack, so that packs may be mounted
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and dismounted independently. The structure of references on a single
pack, therefore, is a full directed graph or naming network, which may
contain loops and multiple references. Each pack has a distinuished oot
index from which the entire network on that pack descends. The Fileserver

guarantees to preserve any ob ject as long as it is reachable from the root
‘ index, otherwise its PUID is invalidated and the disc space reclaimed. This
is normally achieved by maintaining a count of the number of references
that exist in the network to each object; deleting it when this count
reaches zero. It is possible, however, for a cyclic structure of indices to
become detached from the root sustem, and for reference counts to become
higher than they should (care is taken to ensure they are never lower than
necessary). These are taken care of by an asynchronous garbage collector,
which is run on behalf of the Fileserver itself in a processor bank machine
[GarnettB01.

Two types of file are supported by the Fileserver: pormal and gpecial.
Normal files are intended to be used for the majority of data storage; if a
crash occurs while data is being written the Fileserver does not guarantee
that the data will be left in a satisfactory state. Special files are
intended for storing data that must always be in a self consistent state
(for example, filing system directories). Any alteration to a special file
will either happen completely, or not at all. Operations on special files are
consequently more expensive than on normal files. Indices are treated like

special files.

A client of the Fileserver may perform single operations on a file by
quoting its PUID in the request, or it may execute a seguence of
operations by gpening it. In response to an OPEN the Fileserver returns a

Temporary Unigue Identifier (TUID) for the object which should be quoted

in subsequent operations in place of the PUIN, The TUID represents an
interlock on the file, any attempts to access this file with the PUID will
be rejected until the file is closed (and the TUID cancelled) or it times
out. Opening a file (or index) has two advantages. The client gains an
interlock on the object! if it is open for reading then read requests but no
write requests will be granted to other clients, and if it is open for
writing no other requests will be allowed on this object at all. If the
object is special (or an index) all operations before the final CLOSE
constitute an atomic transaction, and will either occur in their entirety or

not at all.

Most Fileserver operations are single S5P exchanges with the exception
of the READ and WRITE operations. The READ request specifies the
object and the amount of data to be read, plus a port to which the data
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should be directed. The Fileserver transmits the recquested data as fast
as possible to the specified port, followed by the standard SSP reply. The
WRITE request similarly specifies the object and amount of data to be
written to which the Fileserver replies immediately, nominating a port to
which the client should send the data as fast as possible. Once the
Fileserver has received all the data it sends a second 5SP reply to the
client reporting on the transaction’s success. To make the reading and
writing of small quantities of data easier the Fileserver also supplies
SSPREAD and SSPWRITE functions, which can transfer up to 256 words of

data in one SSP exchange.

There are currently two Fileservers in operation running five disc
drives. The filing systems in use include one for the processor bank
machines and one for the CAP camputer. There are also several smaller
private filing systems belonging to servers, notably the Mail and Ancilla
filing systems. To allow disc packs to be moved between Fileservers there
is a service (Packserver) which, when given a file PUID, will return the

name of the Fileserver on which that file is currently resident.

2.3.9 The Filing Machine

Processor bank machines do not in fact use the Fileservers directly, but
make all their files accesses through the Filing Machine [RichardsonB831.
This handles all the housekeeping associated with the filing system so the
client machines need only contain a stub which hands all commands on to FM.
The Filing Machine is equipped with 1 Mbyte of main memory and can
implement an intelligent caching algorithm. The result of this is that the
most frequently used files (system commands etc.) remain permanently in
the FM’s cache, and need never be fetched from disc. This more than
makes up for the extra level of indirection the filing machine introduces.

The Filing Machine can also implement access controls and accounting.

2.4 TRIPOS

The system usually loaded into processing servers is a variant of the
TRIPOS operating system [Richards?3a, KnightB21. TRIPOS was originally
designed as a portable single user operating system for mini-computers
with their own discs and peripherals. It has been successfully enhanced to
run in the processor barnk in such a way that most of the original software

may be run without change.
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In the interests of portability the hardware features exploited by
TRIPOS are minimal; there is, therefore, no concept of memory management
or protection, privileged processor states or priority interrupt levels.
The outcome of this is that the TRIPOS operating system is totally
unprotected from the user and everything lies in a single global address
space. The advantage of this is that objects may be passed by reference
to any paint in the system, rather than being copied, and TRIPOS gains
greatly in simplicity because of this. The main disadvantage is that an
aberrant program can cause serious disruption; but since the system is
single user, and restarting it should be cheagp, this is deemed not to be a

problem.

TRIPOS is a multi-tasking operating system, inter—-task communications
being achieved by message (or packet) passing. Since all addresses are
global this is accomplished by switching pointers rather than copying and
consequently the system is extremely efficient. Each task has a single
packet or work gueue, packets sent to the task are appended to the end of
the gueue. To receive packets a kernel primitive is called which either
returns the first packet in the queue or suspends the task until one is

available.

The TRIPOS kernel itself only provides support for tasks, devices,
message passing and store management. Other services such as a filing
system, terminal handling etc. are provided by handler tasks. The kernel
and device drivers are written in assembly code while the rest of the
system is written in BCPL [Richards79bl. The structure of the tasks and
the implementation of the kernel functions as BCPL callable procedures
makes TRIPOS an extremely BCPL oriented system, and although other
languages have been implemented (Fortran, Pascal, AlgolEBc, AlgolBEBRS)

these see only limited use.

Device drivers are accessed by packet passing in the same way as tasks,
but while tasks are addressed by small positive integers, devices are
addressed by small negative integers. In general a device is started by the
reception of a packet and when it finishes the packet is returned. The
shortcomings of this simplistic view of devices will be elaborated in later

chapters.

The system normally loaded into a processing server consists of seven
tasks and one device driver. The device is, of course, the Ring (or, more

accurately, the Ring Interface Processor). The seven tasks are:
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The Ring Handler: this is the only task that communicates with the Ring
driver and presents a machine independent interface to it along with

several ancilliary functions such as port allocation.

The BSP Handler: this implements Byte Stream Protocol using the
functions supplied by the Ring Handler. Normally there is only one

bute stream open, which is being used buy...

The Virtual Terminal Handler: this is responsible for translating the

virtual terminal protocol being used over the byte stream to the
terminal concentrator into a normal TRIPOS stream. This task is
also responsible for maintaining the dead-man’s handle to the

Resource Manager.

The File Handler: this translates standard TRIPOS file access

commands into messages to the Filing Machine.

The Command-Line Interpreter: this runs programs on the users behalf.

[he Interactive Debugger: this is always resident and the user may

switch the input of his console to it at any time to monitor the
machine’s activity., It is BCPL oriented in that it knows the
structure of a BCPL stack and program, although it may also be

used at machine level.

The Ring Services Task: this is responsible for starting up services in

response to reguests received from the Ring. These services include
file transfer and user enqguirys. This task is not essential and can
be deleted without harm.

A major drawback of this system is thaot to be able to debug a program

four tasks, the Kerrel and the Ring device driver all need to be in working

order. This can cause significant difficulty when attempting to debug a

renegade program that could corrupt vital parts of store. Means to avoid

this will be described in later chapters,
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Chapter 3

e Tupe

The Type 2 is a high performance machine independent ring interface for
connecting 16 bit mini-computers to the Cambridge Ring. By high
performance we mean that not only is it capable of transferring data to or
from the Host’s memory at high speed, but is able to implement at least
Basic Block Protocol on the Host’'s behalf.

In the context of the Cambridge Distributed System it is also required
to exert control over the Host to load, stop, start and debug it. At
present there are nine LS5I4s connected to the Ring via a Type 2 including

the Cambridge Fileserver.

3.1 Before the Tupe 2

The first Ring interface for the LSI4 was based on the Computer
Automation picoprocessor, or intelligent cable. This was a simple
programmakle peripheral controller with DMA access to the .SI4's memory.
Its program space was extremely limited, so it was configured just to DMA
blocks of data to and from the Ring. Functions were also included to allow
the Host to read and write the destination, select, source and status
registers in the station. Basic Block Protocol was implemented in a

handler task in the Host, which also had to calculate the checksum itself.

When the first Tupe 2s were made available the first program to be
written for them was essentially an emulator of the picoprocessor. This
allowed the hardware to be connected to all the machines with a minimum
alteration in the Host software. Even with this simple program the Type 2
exhibited a performance improvement over the picoprocessor. This program

was christened ‘Noddy’, due to its extreme simplicity.
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3.2 Hardware

This section gives a brief description of the hardware configuration of
the Type 2. A full description of the design process and implementation of
the Type 2 can be found in [GibbonsB0al.

The Type 2 is built around a Signetics B8x300 bipolar microprocessor
that can execute any instruction in just 250ns. This speed derives partly
from its bipolar technology, partly from its simple instruction set, and
partly from the separation of its program and data address spaces, with a

separate address bus for each.

The program bus has 12 address bits and 16 data bits and is read only.
Each instruction is a single 16 bit word with a three bit op-code, giving
just eight possible instructions. These include four standard instructions:
MOVE, ADD, AND and XOR which can all work on combinations of registers
and data bytes. There are three instructions that affect the course of
execution of the program, the simplest of which is an unconditional jump
(IMP). The only conditional branch available is to test a register or data
byte and branch if it is non zero (NZT). The branch address is specified
by a value that replaces the bottom five or eight bits of the program
counter; such jumps are therefore limited to pages of 32 or 256 bytes.
The number of bits replaced depends on the item tested, eight if it is a
register, five if a data byte. The third branch instruction (XEC
specifies an instruction to be executed after it. If the specified
instruction is a jump then the jump is taken, otherwise execution after
this instruction is resumed after the XEC. The last instruction, XMIT,
allows constant data to be inserted into registers or data bytes.
Additionally any instruction that accesses a data byte can also specify a
shift and mask to be applied to it before being made available. This gives
the Bx300 powerful bit manipulation abilities.

The data bus is just eight bits wide and is multiplexed between address
and data, thus there can only be 256 bytes of data in the address space.
This is alleviated somewhat by duplicating it into two banks (known as Left
and Right) which may be accessed independently. The multiplexing of the
data bus is performed in part by software. Thus an access to a single
byte requires one instruction to set the address in the appropriate
address register, plus one to access the byte. Once a address is set,
however, the same byte may be accessed repeatedly in just one instruction.
Separate addresses may be set up independently for both the left and
right banks. In the Type 2 the Left bank contains 256 bytes of fast RAM
and the Right contains the mapped control registers of the Ring and DMA
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charnels. These features make the machine somewhat bizarre to program,

and one tends to approach it in the same spirit one approaches microcode.

The Type 2 is connected to the ring by mapping the control registers of
the station into bytes in the Right bank. The Tupe 2 can, therefore,
perform operations on the ring simply by reading and writing select

locations in its own address space.

The connection to the Host is made via two bi-directional DMA channels
and two I/0 ports. The DMA channels contain auto-incrementing address
registers to assist in vector transfers. The I/0 ports present a
reasonably machine independent means of establishing communication

between the Host and the Type 2.

Physically the Type 2 consists of three circuit boards: one containing
the B8x300 plus memory and Ring interface logic, and two identical boards
each containing one DMA channel and I/0 port. The interface presented by
the channel boards is designed to be machine independent so a fourth board
is required to slot into the backplane of the Host computer to translate
this into signals suitable for the Host’s bus. The organisation is shown in

figure 3.1,
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Fiagure 3.1 Tupe 2 Hardware Confiauration

2.3 Design

This section sets out the required properties of the Type 2 program and

the design decisions made to meet them.

3.3.1 Requirements

The primary requirement is of course that the Type 2 should implement
Basic Block Protocol on the Host’s behalf. This means that it must
preface the user’s data with the header and port packets, and add the

checksum packet at the end, calculating the checksum itself. Similarly the
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header and port should be stripped on reception, and the checksum
validated. The Type 2's limitations mean that it cannot buffer the user’s
data, which must therefore be transfered directly from the Host’'s memory
to the Ring (or vice versa). This means that the checksums must be
calculated on-the-fly. This fact has been a major influence on the design

of this, and later, intelligent interfaces.

That the protoco! should only be BBP rather than any higher protocols is
dictated by the Tupe 2's insufficiency of program and data space to
implement anything more complex. Additionally it was decided that the Host

would gain nothing from direct access to Ring packets.

In the context of the Cambridge Distributed System the Type 2 not only
has duties to perform on behalf of the Host, it also has to implement
various control functions initiated from the Ring. These functions include
loading the initial system into the Host, setting it going and debugging it
when it fails. The Type 2 must always be able to perform these functions,
so it must protect its integrity against any possible misbehaviour by the

Host or by any other machine on the Ring.

3.3.2 Host Commands

The principal commands given by the Host to the Type 2 are concerned

with driving Basic Block Protocol. A typical command might be:

"Transmit p words of buffer b as a basic block to port p on

station g."

Such a command must occupy several 16 bit words and a method must be
supplied to transfer them all to the Type 2. Three such methods can
readily be devised. First, they can be passed one after another through an
I/0 port. To prevent the Host and Type 2 getting out of step some form
of protocol would be necessary to synchronise the exchange; results would
have to be returned the same way. This is not in keeping with the our
desire to the minimise the Host's work when using the Ring since the
exchange protocol could become gquite complicated. The second method
parcels the entire command up into a codeword, or command vector. The
address of this is passed to the Type 2 via the I/0 port which can then
read the codeword via a OMA channel. When the command is finished the
results can be DMA’ed back into the codeword and its address returned via
the I/0 port. The third method is a variation of the second, a fixed
command vector is used and the Host need only signal the Type 2 when a

command is ready, since the address is already known. Results are
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returned via a second vector. A minor amount of protocol is necessary to
prevent, for example, the Host overwriting the vector with a new command
before the Type 2 has read the previous one. This can be made
independent of the choice of location of the command vector by supplying

the address to the Tupe 2 during initial loading.

The second method was implemented since the current hardware lent
itself most naturally to it. To implement basic block protocol three
commands are necessary. The general form of the transmit command has

been given. A reception command looks like this:

"If a Basic Block arrives on port p from station s and contains

rot more than n words of data, put it in buffer b,

The station number s may specify either a specific station, or may be a
value denoting that any station will do. The form of this command raises
two important points about the design of the reception system in the Type
2. The first is that it must be capable of holding several reception
commands at once for different port/station combinations. The second is
that requests need not necessarily be returned in the order they were
submitted, it depends on the order in which Blocks arrive from the Ring.
This is no problem with the adopted communication method, the address of
the codeword uniquely identifies it; if either of the other two methods had
been used, however, it would be necessary to pass an identifier to the Type

2 with the command to be returned with the reply.

The third command cancels reception requests. The Type 2 has no
concept of the passage of real time, so reception requests will remain with
the Type 2 until either satisfied, or cancelled. It is the Host's
responsibility to maintain reception timeouts, and when a timeout expires
the relevant request must be cancelled. The Cancel command simply
specifies the address of the codeword to be cancelled. Cancelling the
request is simple if it is dormant; if, however, it is in the process of being
satisfied there are two possible courses of action: to fail the cancellation
and allow the reception to complete in the normal way, or to abort the
reception of the block and satisfy the cancellation. Since the Host is
cancelling the request it can be assumed that it is no longer interested in
seeing it satisfied, so the second course of action is the correct one. It
is still possible for a cancel command to be issued while the satisfied
request is in the pipeline back to the Host and the cancel command will fail
since the specified request can no longer be found. The Host must,
therefore, be ready to handle the case of cancelled reception requests

being returned.
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3.3.3 Buffer Chaining

The commands described above are suitable for transmitting or receiving
one basic block from (or into) just cne buffer. There are cases where it
would be useful to give the Type 2 a buffer larger than the maximum Basic
Block size and have it either transmitted as a sequence of blocks, or not
returred until it has been Filled by several separate blocks. The
requirement for this comes in part from the observation that Fileserver
Reads and Writes require exactly these primitives. For transmission no
change is required to the command format. The Type 2 can trivially detect
when the supplied buffer size is greater than a Basic Block and split the
transmission up into several maximum sized blocks plus one to carry the

remainder.

For reception the case is somewhat more complicated. It is only useful
to wait until an entire buffer has been filled if the amount of data to be
received is known; for example, a Fileserver read. At other times the
amount of data, and the size of blocks, will not be known and the Host will
want notification on a per-block basis. The Host will here want to submit
a buffer of at least the maximum size of block it expects, to be returned
as soon as a block is received into it. The difference between these two
lies in the action taken after a block is received: in one the codeword is
returned immediately, in the other the codeword is returned only if the
buffer is full, otherwise it is made ready for the reception of a further
block. The Host can specify these two different actions with a little as

one bit in the request codeword.

Given that splitting a single buffer into several basic block is a useful
thing to do, what about splitting a basic block across several buffers?
When transmitting or receiving higher level protocols (SSP, BSP) the block
will be divided into two or more sections by the protocol. For example: an
SSP request has three words of protocol specific header followed by user
data. Using the simple basic block functions any SSP  protocol
implementation would either demand that the user leave three words free
at the front of each buffer he submits, or would have to copy it into a
buffer of its own to add the protocol data. If the Type 2 undertook to
join buffers together, however, the SSP package could simply prepend the
user's buffer with a three word buffer of its own. The user can lay out
his buffer without worrying about leaving space for the protocol package,
and when it is finally transmitted it is included in the block by indirection
rather than by copying. A more suitable example it that of a long read
from the Fileserver; here the data which is coming from the Fileserver is

to be installed in several file handler cache blocks. The data is unlikely to
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arrive in blocks of the correct size, and the Host will have to engage in
some elaborate shuffling to get it to fit correctly. If the Type 2 were to
automatically insert the blocks into the buffers in the correct order the
Host would be saved much trouble. It can therefore be declared that a
general buffer/block splitting facility would be a useful attribute of the
Type 2.

Dealing with reception first: the required Host specification can be
achieved by adding a link field to the codeword and chaining further
codewords on to it for the same port and station. When a block comes in
the data is simply inserted into successive buffers which the Type 2 finds
by following the chain. A problem arises when the amount of buffering
provided in the chain is less than the size of the block. The conventional
response to an otherwise valid block that is too large for the buffer is to
go unselected as early in the block as possible. An early response can be
obtained if the Type 2 were to follow the chain, totalling up the buffer
sizes and comparing it with the size of the block before deciding whether
to accept it. Unfortunately, since the Type 2 has insufficient memory to
allow it to keep a slave copy of the chain, it would have to follow the real
chain in the Host’s memory using a DMA channel. Potentially this can take
a long time if there are many small buffers, possibly more than the critical
time during which the next packet must be accepted. A lazier alternative
is to follow the chain only when it is necessary to get another buffer.
This has the advantage that there is little overhead, but the lack of
buffer space may not be detected until some distance into the block,

resulting in the pointless transfer of data.

Chained reception presents further options regarding the the return of
completed codewords. Normally when receiving a block into a chain of
buffers the Host is not interested in being told about the completion of
intermediate buffers, but will want to be told about the success of the
entire transfer once, at the end. This implies that a third option is
required in addition to the two previously described, namely: do not return
the codeword at all, just drop it. The complete set of options can be
specified by two bits in the reception request, called the Block bit and the
Buffer bit. If only the block bit is set the codeword will be returned only
if the basic hlock finished while that buffer was being filled; this
correspond to the normal one-block-only option previously. If the buffer
bit is set the codeword will be returned only when that buffer is
completely filled; this is the buffer filling option. If neither bit is set
the buffer will be filled but will simply be dropped when it is finished and
the Host will not be told. If both bits are set either event will cause the

codeword to return.
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An envisaged Host to the Tupe 2 is the Fileserver which has its own
particular needs regarding the use of buffers. When the Fileserver is
performing a WRITE for a client it is unlikely to have enough buffers in
main memory to contain all the data. It must therefore write the contents
of a filled buffer out to disc and return it to the Type 2 to be re-filled,
Since the data may be arriving in blocks of any size, buffer filling is
required to make maximum use of disc bandwidth. To avoid communication
overheads the Fileserver should be able to simply add the recycled buffer
to the end of the existing chain of codewords, where the Tupe 2 will pick
it up in due course. Unfortunately if the Fileserver is just a little late in
adding the new codeword to the end of the chain the Type 2 may examine
the link, find it empty, and assume the chain has ended, with dire
consequences for any proceeding reception. This can be avoided by
including an explicit end of chain marker in the real last codeword of the
chain. If the Type 2 comes across a codeword with an empty link but
without an end of chain mark it knows that the Host will add a new
codeword to this chain soon and can wait for it. If the Type 2 is seeking
a new buffer to continue the reception of an incoming block this wait has a
critical time of about a millisecond, so such a feature is only useful in
making allowance for the Host occasionally being slow, where it is usually

able to add codewords at full speed.

The introduction of chaining alters the way in which cancellation works.
The Type 2 is at any time only cware of the head codeword of a chain. If
any blocks have been received on that chain this may not be the codeword
originally submitted by the Host, so an attempt to cancel that will fail.
The entire chain has to be cancelled by successively submitting cancel
request for codewords in the chain until one succeeds. However, since

cancellations are relatively rare, this will not be unduly expensive.

Chaining on transmission has much the same form as that for reception.
An important difference is that the lazy chain following scheme described
above cannot be used. This is because the header packet of a basic block
must contain a count of the data packets within it. The only way to
‘determine this is for the Tupe 2 to follow the chain totalling up the
buffer sizes. For the same reason given above (insufficient workspace)
this is not possible, so a restricted form must be used. While transmit
codewords may be submitted in chains in the same way as reception
codewords, no attempt is made to overlap basic blocks across buffer
boundaries. Each buffer is therefore transmitted as an integral number of
full sized basic blocks plus a smaller filler. This is acceptable, because in

those cases where a large quantity of data is to be transmitted it is most
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likely that the destination will have a Type 2 or something similar and will
be splitting the blocks up on reception anyway. Since the buffer
boundaries are not time-critical the wait-for-link facility used for
reception is not necessary. Space was found for a small amount of
codewords queueing to allow several codewords (or, rather, codeword
chains) to be submitted in quick succession. Since there is no analogous
concept to "receive one block" only one option bit is passed with the
codeword to determine whether the codeword is to be returned or dropped

on completion.

3.3.4 The Ring Interface

In addition to presenting an interface to its Host the Type 2 must also
present an interface to remote machines on the Ring. This is demanded by
the Cambridge Distributed System since it must be possible to exert full
control over a processing server from angwhere on the Ring. These
control functions fall into two separate, but related, categories: Loading

and Debugging.

3.3.4.1 Loading

Once a processing server has been allocated to a user it must be loaded
with the operating system image of his choice and started. Since the
machine will have no peripherals except the Tuype 2 the system must be
inserted from here. To load a system correctly the Type 2 must also be
able to halt, reset and start the Host; this can be achieved by the simple

expedient of giving it access to the control lines of the Host.

The required system is normally to be found in a file in the Fileserver.
For the reasons given above it is not possible for the Type 2 to engage in
Fileserver transactions, and in any case the load file is likely to be in
some format that would have to be decoded. The best the Type 2 can do is
to accept basic blocks of data and insert them into the Host's memory at a
given address. To convert the load file format into Type 2 load format a
special server is required. It was primarily for this purpose that the

Ancilla was devised.

.3.4.2 Debuggi

During the development of a new program it is inevitable that it will
crash and need debugging. Most of the time the underlying operating
system will survive so the examination can be carried out using
conventional debugging facilities (e.g. the Tripos debug task). This is not

possible, however, if the program takes the rest of the system down with
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it (easy to do on Tripos), or it is the system itself that needs debugging.
In these cases what is reqguired is the ability to debug the entire
processing server from without. Like loading, the Type 2 provides the
obvious place to do this. The Type 2, however, is supposed to be machine
independent, and is certainly not capable of containing a full debugger. The
Type 2 should therefore supply a set of primitive , machine independent,
debugging operations with which a more sophisticated program running

elsewhere on the Ring can build all the usual debug facilities.

What should these primitives be? The prime requirement is to be able to
examine the Host's memory, and if repairs are to be effected to write to
it. If the data structures to be examined are to be in a consistent state
the Host processor should be halted while the examination is taking place,
and allowed to continue when it is finished. There are also times when the
debugger (or some other program) is merely required to perform a
monitoring function and the processor should not be stopped. The minimum
set of primitives are, therefore, commands to read and write a single word

of store, and commands to halt, run and reset the processor.

Another reason for selecting as small a set of primitives as possible is
that most of the debugging software is unable to make use of already
existing code. This is because the bulk of the code is written to transfer
blocks of data from the Host’s memory to the Ring and vice versa under
the control of codewords. The debug commands reguire that the the block
be seen by the Type 2 itself and not passed on to the Host. It is true
that the reception of debug data to be written to the Host, and the
transmission of that read, could be performed by the main code, but only at
the expense of further complicating an already complex piece of code. This
last consideration virtually excludes the possibility of implementing vector
read and write primitives for debugging (unless the entire basic block code
is to be repeated), so they are reduced to single word read and write,

which can be implemented in fixed sized basic blocks.

A problem that arises with both loading and debugging is how to
differentiate between basic blocks sent to the Host and commands sent to
the Type 2. The only possible means of differentiation is is that debug
commands should be sent to a special port number. It is not, however,
acceptable for the Type 2 to arbitrarily take a port number ocut of the set
allowed, the Host may have a legitimate desire to use that port number
itself. The port number must therefore come from outside the normal
range. Examination of the route packet of a basic block reveals four bits

that were formerly unused. Rllocating one of these bits to indicate that

...34_




the block is intended for the interface processor not only gives the Type
2 an un-ambiguous means of identifying commands, it gives it a space of

port numbers equal to that enjoyed by the Host.

3.3.4.3 Protection and Authentication

The Type 2 Ring interface gives the remote user complete control over
the Host processor. Unfortunately without any form of authentication any
other user can also exert these same controls, at the least annoying the
legitimate user, and at worst breaching security. The only item of
information in a basic block that cannot be forged is its source address;
the authenrticity of the blocks must therefore be proved using this glone.
The only legal source of loading commands is the Ancilla; but without
resorting to the ethically guestionable practice of binding the address of
the Ancilla into the program, the Type 2 has no way of authenticating load
requests. It is allowable to write the address of the Nameserver into the
program, and Nameserver interactions are sufficiently simple that the Type
2 could manage to look up a name using fixed sized blocks. What name
should it look up? Simply looking up "ANCILLA" is no good, since there may
be several Ancillae for several different machine types. Since the Type 2
is meant to be machine independent looking up a name of the form
"ANCILLA-<{machine type>" is clearly not allowed. A possible solution is to
introduce a new Nameserver function "MYANCILLA" which would return the
Ring address of the correct Ancilla. This would require the Nameserver to

keep a table listing processing servers versus Ancillae.

The adopted solution was none of the above. The Type 2 is fitted with a
program readable coding plug that was originally intended to give the Ring
address of the Nameserver to make the code independent of that too.
Instead the Ring address of the relevant Ancilla is supplied here and it is
a simple matter to check the source of loading commands against this for

authentication.

The case of debugging is different as the identity of the source of
debug commands is not fixed (unless the Ancilla undertakes to indirect all
debug requests). In general the debugger will be some other machine on
the Ring running an interactive debug program; the Tuype 2 should only
accept debug commands from that source during the debug session. The
Type 2’s trust in the Ancilla can be used to set up this association; all
that is required is a command from the Ancilla saying "allow yourself to be

debugged from station g". In this way the Tyupe 2 will obey debug
commands from station g and nowhere else, except the Ancilla. At any time
the Ancilla can close the debug session by setting the debug machine

address to zero. The authentication procedure engaged in by a debugger to

-35~-




persuade the Ancilla to let it have access to a particular machine may be
made as complex as necessary since the Ancilla is not victim to the same

strictures of space as the Type 2.

Use of the Type 2 may not necessarily be confined to processing servers,
but may extend to standalone machines (an example is the Fileserver).
Such machines will have their own bootstrap mechanism and will not need
loading from an Ancilla. Similarly such machines will not need remote
debugging, and in some cases it must be positively discouraged. On the
other hand when commissioning new hardware, or testing for faults, it is
convenient to be able to load and debug the machine from anywhere without
appealing to the Ancilla. Seme simple conventions for the value presented
on the coding plug allows the three different modes of working to be
selected. The value from the coding plug is used to set the Ring select
register when the Type 2 is waiting to be loaded, and is tested against the
source of debug requests at other times. Normally this value is a ring
address between 1 and 254, If it is set to zero, however, the Type 2 will
de-select everyone when waiting to be loaded, and will accept no debug
commands, having the desired effect of disabling loading and debugging. If
the coding plug is set to 255 the Type 2 should accept loading request
from anyone, and by testing the plug for 255 when debugging requests

arrive, allow these from anyone as well,

3.4 Implementation

This section briefly describes the implementation of the Tupe 2 program,
highlighting some features that have an effect on its performance. Some
concepts are also introduced here that will have a bearing on the design of

subsequent Ring interfaces.

The transmit and receive basic block drivers are implemented as
independent state machines. The Bx300 does not have interrupts, so all
external events must be tested for explicitly by polling status bits. To
allow full duplex working it is necessary to poll for both reception and
transmission events simultaneocusly. This means that a single polling loop is
used which, on detecting an event, enters the correct state machine and is
returned to when the action is complete. Since the Bx300 cannot support
subroutines the normal! means of achieving this cannot be used. Instead
each state machine must maintain a state number; when it is to be entered
this byte is used in an XEC instruction to index into a jump table. In this
way each state machine may be written as a set of sequential routines. To

further simplify the state machines, and to avoid the duplication of code,
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the polling loop also performs low level transmission timeouts and retrys,
reception timeouts and deselection of unwanted blocks. The 1/0 ports are
also polled in this loop primarily because in the LSI4 implementation the
Host processor is halted until the Type 2 takes the data, which it must
therefore do as fast as possible, The DMA channels are rnot polled in this
loop for two reasons: first, DMA transfers are expected to be fast, and
second, the addition of this to the polling loop would result in the further

complication of an already complex piece of code.

The DMA channels and I/0 ports are logically split into two sets, one for
transmission and one for reception. This can lead to some contention for
the DMA channels between the transmission or reception of a block and the
reading of a codeword. This is easily avoided in the transmission case by
only reading a codeword immediately before obeying it. Reception is not so
simple since the reception request should be made active as soon as
possible. A codeword may be submitted by the Host at any time, and in
particular this may be while the Tupe 2 is busy receiving a basic block. To
avoid interfering with the reception of the block the codeword address
could be saved until after it has finished and then read. To allow for the
Host submitting several requests in rapid succession the addresses would
have to be gueved. Since RAM space in the Type 2 is limited this is not
possible, and the somewhat less acceptable practice of reading the
codeword as soon as it is submitted has been adopted. If a codeword is
submitted while a block is being received the DMA channel will be in use.
Further, it may still be busy with a transfer since the writing of a word
of data is performed in parallel with the wait for the next pcu:ke‘t.1 . This
last is no real problem since the Type 2 can simply wait for the DMA to
finish. The real problem is that the DMA channel address register will
contain a pointer into the buffer; DMAiIng the codeword in will cause this
address to be lost, and since the register cannot be read it cannot be
saved. To restore the DMA address register to its correct value the
address must be recalculated. The Type 2 keeps track of the number of
packets still to be received by storing it as a negative number that is
incremented towards zero. By adding this to the address of the end of the
buffer the current buffer address can be produced and reinserted into the

DMA register, ready for the next packet.

For the purposes of monitoring the remote debugging reception and
transmission routines must co-exist with the normal basic block system.
This required that they use the main polling loop to allow full duplex

" working. To achieve this the debug basic block state machines are added on

1 This is particularly true of the Fileserver, since the disc controller may
reserve the bus for longer than the packet inter-arrival time.
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as an extra set of states to the normal set for both transmission and
reception. Movement into the debug sub-machines is prompted in the case
of reception by the detection of an ‘interface bit’ in the route packet of a
basic block, and by the setting of a 'debug transmission pending’ bit in the
case of transmission. The ‘debug transmission bit’ is set when a debug
command requires a reply, which has to be done this way because debug
commands are cbeyed in the reception state machine, and it is not known

there what state the transmitter is in.

Loading is performed in a totally separate mode which is entered when
the Type 2 is reset and exited into the normal mode only when the system
has been loaded. In loading mode the Tuype 2 Keeps the select register set
to the value on the coding plug, thus accepting packets from that source
only. Since this value may be zero, selecting no-one, the Type 2 must not
only poll for ring receptions, but must poll the I/0 ports too. This is to
allow for machines that do not need loading from the Ring; activity on the
I/0 port implies that the machine is alive and causes the Type 2 to
immediately enter normal mode. Another consequence of the need to allow
for standalone machines is the meaning of the reset command. The Tupe 2
is able to reset the Host and conversely if the Host is reset the Tuype 2
should be too. The result of this is that the Type 2 can expect the order
to reset the Host to reset itself as well. This is also a convenient way

far the Type 2 to destroy any outstanding state in might have.

The only existing implementation of a Host software interface to the
Tuype 2 is that for Tripos in an LSI4 which was written by B. J. Knight
[KnightB2l. This is examined briefly here because it is the object of some
comments later in the chapter and for comparison with equivalent
interfaces described in later chapters. The code is divided into three
parts, two ring device drivers plus a Ring Handler task. The two device
drivers are each associated with one of the the two I/0 ports and handle
transmission and reception repectively. Normally the only task to send

packets to them is the Ring Handler.

The transmission device driver is the simplest. Each Tripos packet
directed to it contains a codeword. This is submitted to the Type 2 and
the driver waits until it returns before returning the packets and
processing the next one on its input queue. Note that it does not use any

of the chaining or multiple submission facilities of the Type 2.
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The reception driver is somewhat more complex owing to the fact that
the Type 2 must be given all reguests immediately, and the codewords will
not be returned in a predictable order. As soon as a packet arrives at the
driver the codeword it contains is submitted to the Type 2 and the packet
appended to an internal chain in the driver. When the codeword returns
from the Type 2 the corresponding packet is retrieved from the chain and
returned to its origin. This device also handles the cancellation requests:
the codeword is submitted to the Tyupe 2 and if the cancellation succeeds

the relevant packet is also dropped from the chain.

The Ring Handler task presents a simple basic block level interface to
the Ring, using only the single block and buffer filling facilities of the
Type 2 and none of the chaining. The Ring Handler also manages the

allocation of port numbers.

3.5 Performance Measurements

As soon as the Type 2 program was ready to go into service the interim
'Noddy’ programs were scrapped and it was installed in all existing Type Zs.
This meant, unfortunately, that a full set of comparative performance
tests could not be made. The only such measurements available were made
by comparing the performance of the Type 2 development system with the
'Noddy’ interface on an LSI4/10 and an LSI4/30.
was to record the time taken to transmit 100 full sized basic blocks to

The destinations were: SINK, a Ring station that

The measurement made

the same destination.
accepts all packets, plus the three source machines running a program that

accepts all blocks on a given port.

The figure 3.2 gives the results, which are the averages of several

readings in each case. The figures are in seconds.

Destination
Source
SINK L.5I14/10 LSI4/30 1.814/10
Noddy Noddy Tupe?2
LSI4/10/Noddy 7.32 (a) - 7.14 (b) 7.25 (c¢)
1.S14/30/Noddy 4,57 (d) 10.61 (e) - 4.682 (£
LSI4/10,Type2 4,04 (g) 9.53 (h) 5.19 (i) -

Fiaqure 3.2 Transmission Times

for 100 Basic Blocks
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The first point to note about this table is that readings (a), (b) and
(c) give somewhat anomalous results, since it is expected that transmission
to SINK is the fastest operation in all cases. These three average values
are all within the range of values recorded for each instance, so for the

current purpose should be considered equal.

Comparison of the figures (particularly (b)-(c), (d)-(g), (ed-(h)) leads
to the conclusion that an LSI4/10 with a Type 2 is equivalent to an
LSI4/30 using Noddy. Later measurements show that an LSI4/30 with a
Type 2 interface took about 3.80 seconds to transmit to SINK (the only
measurement that could be repeated), showing that while the difference in
processor speed between the LSI4/10 and the LSI4/30 apparent dbove
(compare (a) with (d) and (h) with (i)) was still present it was much less
significant. The times for transmitting from one Type 2 to another are ali
between 4 and 4.20 seconds, regardless of processor type, showing that
the Type 2 can normally receive as fast as it can transmit. These figures
show that the Type 2 is capable of transferring data at a rate of about
400K bits per second, compared with the theoretical Ring maximum point-
to-point bandwidth of about B0O0K bits/second.

The above figures were taken when the Ring had three slots and a small
gap. At the time of writing the Ring has four slots and a gap of nearly a
packet size. The result of this is that the theoretical point-to-point
bandwidth has dropped to about B00K bits/second. The transmission rate
of the Tupe 2, however, has only dropped to 370K bits/second. This
reduction is due entirely to the increase in ring revolution time and
contention for Ring slots since the greater size of the ring is caused by

more stations rather than more wire.

The Type 2s currently in service run at a quarter of their true speed,
executing one instruction every microsecond. This is largely because of
the great expense of suitable high speed PROMs needed to store the
program. If the Type 2 were tobrun at full speed it is expected that it
" will be able to make maximum use of the theoretical bandwidth, even on a

single packet Ring.

From the Host's point of view the Type 2 is a significant impravement.
While the speed of ring transactions has improved slightly for an LSI4/30
and by nearly a factor of two for an LSI4/10 the real improvement
derives from the introduction of parallelism. The Host is now relieved of
the task of constructing the basic blocks and caleulating checksums (a
task that can take as long as the transmission itself). Formerly heavy use
of the Ring halted all other activity in the machine, and the Ring Handler
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was a major consumer of CPU time. This is no longer the case, and the

Ring Handler runs for an insignificant amount of time.

A unfortunate consequence of introducing the Type 2 has been an
increase in the size of the Ring drivers and the Ring Handler over the

original Noddy version. I will explain why this is so in the next section.

3,6 Discussion and Cenclugsions

In this section I wish to examine where the hardware, design and

software of the Type 2 met their requirements, and where they failed.

The hardware of the Type 2 has largely met its goal of a simple basic
block level ring interface. The original design was conceived with the type
of program it was to run in mind and the program produced has been
influenced by this, The major drawback of the hardware is the micro-
processor oround which it is built. The Bx300, while possibly suitable for
controlling vending machines and electric cookers, is too limited for this
application. Since the Bx300 has eight bit data paths, and all the data
items processed are sixteen bit quantities, the number of instructions
required for most operations is at least doubled. This is further
aggravated by the extreme simplicity of the instruction set which makes
the simplest operation into a major programming exercise. For example,
just to calculate the checksum requires a sequence of fifteen instructions
to be executed for every ring packet transmitted or received. The
restriction to 256 bytes of RAM is another failing that forces the
programmer to be extremely frugal. The need to keep a chain of
outstanding reception requests and a gqueuve of waiting transmission

codeword addresses means that all this memory is used.

The original requirement to produce a general basic block interface was,
in retrospect, not perfectly met. The buffer chaining facilities have never
been used in practice and the rest of the code would probably benefit from
their removal. The principal reason for this is the high level Tripos ring
interface that is presented by the Ring Handler (and pre-dates the Type
2) has no support for chaining, and it would be incompatible with other
Tripos Ring interfaces to change it. It should also be noted that most
application programs would not benefit from such facilities in any case.
The only machine that could use the chaining is the Fileserver, but due to
lack of manpower, and the unavailability of the Fileserver for program

testing this has not been done,
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While the general concept of chaining is correct the implementation here
leaves much that is incomplete or un-defined. This is because the hardware
limitations have resulted in some corners being cut and some essential
functions being left out. It is probably a good thing that the chaining has

not been used.

A disturbing aspect of the addition of the Type 2 to Tripos was the
growth, rather than reduction, in the size of the ring driving software in
the Host. There are two factors that contribute to this. First, the Type
2 does not match the model of devices expected by Tripos. In particular,
the possibility of packets sent to the reception ring device driver being
kept for a long time and being returned in a random order, makes this
driver much more complex than normal. The second factor is paradoxical in
that the Type 2 is both too intelligent, and not intelligent enough. It is
not intelligent enough because the Host must still do most of the
housekeeping associated with ring uset maintain  timeouts, retry
transmissions, sequence cancellations and manage port number allocation.
It is too intelligent because its modes of failure are more complex than
those of a simple device and require correspondingly more code to handle

the many cases.

On the plus side the Type 2 has relieved the Host of a considerable
burden in driving basic block protocel, and the increase in performance is
marked. It should be noted that this improvement is due entirely to moving
the implementation of basic block protocol into the Type 2, and does not
come from the Type 2’s inherent speed. The object of comparison, the
Noddy interface, is itself a Type 2 running a different program, and since
it does not checksum, or work in full duplex, its raw daota rate is greater
" than that of the Type 2 program described here. The conclusion we must
draw from this is that speed alone does not lead to greater performance,

but that increased functionality is as important, if not more so.
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Chapter 4

The MACE

In the summer of 1981 the Cambridge Computer Laboratory acquired
several computers based around the Motorola MCEB000 microprocessor to
supplement the LSI4s in the processor bank. These machines were purpose
built to serve the needs of a praocessing server and the particular feature
of interest here is the presence of an interface processor of significantly
more power than the B8x300: the MACE! . This chapter serves as an
introduction to the MACE and the particular problems it presents to the
programmer. The format of this chapter follows that of chapter 3.

4.1 Hardware

Physically the system consists of three printed circuit boards: the
58000 processor, its memory card, and the MACE. Al three slot into a
common backplane and the Ring is connected to the MACE via a pair of
sockets on the front of the card. OFf the three boards the MACE is by far

the most complex.

The 68000 is a reascnably standard configuration, and is not designed
specifically for the application. The board has a socket for a memory
management unit although at present none have been fitted and the socket
is occupied by a header that connects the processors address lines directly
to the backplane. Devices are mapped in the normal way into several pre-
defined 1/0 pages; in the processor bank systems there is only one mapped
device: an interrupt line to the MACE. The 6B8000 also has a 50Hz clock
interrupt available to it. The memory card can contain up to 512K bytes
of dynamic RAM and, although it can be fitted with less, this is the
standard configuration. Some systems have been given extra cards to
hoost them to 1 or 1.5 Mbytes.

1 This is rumoured to stand for Multi-Access Control Equipment but the true
origin of this name has been obscured by the mists of time and its
thventor.
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The MACE is built around a Motorola MCBEBOS microprocessor. In
architectural terms the 6809 lies somewhere between the earlier B8-bit
processors and the full 16- or 32-bit configuration of the B8000. While
it is externally an eight bit machine most internal registers are sixteen
hbits wide and most instructions are equally applicable to eight or sixteen
bit operands. The 6809 alse has a rich set of addressing modes that make
it suitable for high-level languages, and maoke assembly language
programming easier. The processor has a cycle time of 500ns, and since
the average instruction takes six cycles this makes it a 1/3 Mips machine
(the 68000 has a rating of about 374 Mips)2 .

The memory map of the MACE consists of 56K bytes of RAM, 4K bytes of
mapped I/0 space, and 4K bytes of PROM. The full complement of RAM is
the most important point since it allows large programs to be written for
it.

The Ring is interfaced to the 6B039 in a conventional way by means of
memory mapped registers. Additionally, however, there is a direct path for
data from the Ring to the DMA hardware and vice versa. Unfortunately
this is not vector transfer logic, and the 6803 must participate in the
movement of data. Neither is there automatic checksum hardware (although
the necessary connections exist to allow it to be added as an extra board),
so the BB0O3 must calculate these itself.

The DMA Hardware is built around a DMA controller that supports four
DMA chanrels each with its own auto-incrementing address register and
counter. The four channels are allocated by the hardware to specific
functions. One channel is dedicated to performing direct transfers from
the Ring to the Host’'s memory and another for transfers in the opposite
direction; these channels are uni-directional. The other two channels are
bi-directional and are uncommitted in the hardware. ANl four channels may
be operated by the 6809 directly. There are two minor problems
associated with the use of this particular DMA controller. The first is
that it is designed to work in an address space of just 64K bytes, so both
the address registers and counters are only 16 bits wide. The 68000 has
an address range of 24 bits so to enable the BB809 access to the Host’'s

entire memory four extra 8-bit latches are provided, one for each channel,

2 The BBOY figure is based on the most commonly executed instruction: a 16-
bit load (or store) into a CPU register from a constant 8-bit offset from
an index register. The 68008 figure is based on the equivalent 68080
instruction: a 16-bit load into a data register from a constant 1B-bit
offset from an address register. In practice the 68080s are run as 32—
bit machines and never use 16-bit operands, the equivalent 32-bit
operation gives the 68008 a rating of only 1/2 Mips.
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to supply the upper portion of the address. This introduces problems of
its own since these latches are not incremented automatically and special
action has to be taken whenever a DMA transfer crosses a B4K page., The
second problem is that the DMA controller is really designed to DMA into
the same memory space as it is controlled from, and can assume that its
control registers will not be accessed while it is in the middle of a DMA
cycle. In the MACE this is not true and the 6809 may well access the
contro) registers at an inconvenient moment for the DMA controller. To
avoid this the contention is detected and the 6803 halted until the DMA

transfer is complete.

The conceptual hardware configuration is shown in figure 4.1.
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Fiqure 4.1 Hardware Confiquration of the MACE

There are currently twelve of these 6B000 system in use, eight are for
general use in the processor bank, one has 1 Mbyte of store and runs the
Filing Machine, one is the basis of a high resolution display cum workstation
and ore is the controller of a laser printer. The last has been fitted with
two MACE boards and is used as a Ring~Ring bridge, with the MACEs cross~
conrnected so that they receive from one ring and transmit onto the other
[LeslieB3].

4.2 Design

It was never intended that the MACE have just one program in the way
that the Type 2 does. Instead there may be several different programs
for different purposes and Host applications. To allow this the code in
the PROM has been deliberately kept simple and limited to just loading and
debugging the MACE itself. Initially the protocols used here were private,
later, however, it was changed to use the same protocols as the existing

Z80 systems [OdyBlbl. This was done largely so that the MACEs may be
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loaded automatically from the Bootserver; additionally it enabled existing

debug programs to be used (with slight conversions).

Consequently the initial service program, named SPECTRUM after its
multi-coloured Hosts, was not written to be general purpose but tailored
to the requirements of Tripos. Again the design may be split into two

parts.

4.2.1 The Host Inter{faoce

The only means of communication between the 68000 and the MACE is a
pair of mutual interrupts and the DMA channels controlled by the MACE,
This makes inter-machine communication slightly more complicated thon in
the Type 2. The mechanism used is the request/reply vector one described
briefly in chapter 3. This requires that the Host place its request in
memory at an address previously agreed with the MACE and then interrupt
it. The MACE can now read the request from the vector and act on it.
When a reply is generated the MACE writes the results into another fixed
vector and interrupts the BB8000. To prevent a new request or reply
being written before a previous one has been read both machines test a bit
in the first word of the vector they write. If this is set the vector can
be written, which has the effect of clearing the bit. To match requests

with replies an identifier of some sort must be included.

SPECTRUM supplies only three functions to the Host which correspond
closely to those presented by the Tripos Ring Handler task. Specifically
these are: 1) transmit a buffer of data, splitting it into blocks as
necessary, 2) set up a reception reguest either for a single block or a
buffer full, and 3) cancel a reception request. Unlike the Type 2 the
cancel function specifies a port and station number and causes exactly one
request (if anu) to be cancelled. This still reqguires the Host to
repeatedly submit requests until a cancel fails. Cancelled receptions are
returned with a suitable return code. The Tripos Ring Handler deals with
buffers that begin on long-word boundaries (32-bit) and are an integral
number of dibytes (16-bits) long. SPECTRUM expects all buffer addresses

and sizes to be expressed in byte quantities.

A major difference between SPECTRUM and the Type 2 is that no block
chaining is attempted. Since Tripos never uses this, it is no great loss.
An improvement over the Type 2 is that the Host can include a retry count
in the transmission request, and a timeout in receptions. Both of these

reduce considerably the amount of work needed by the Ring Handler.
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4.2.2 The Ring Interface

To remote machines, particularly the Ancilla, SPECTRUM presents a
remote debug and load interface similar to that of the Type 2. The major
difference is that there is no separate loading mode, the same commands
are used for both purposes. The principal commands allow arbitrarily large
portions of the of the Host's memory to be read or written. These are
used for interactive debugging and memory dumping as well a initial loading.
In addition commands are available to reset, start and halt the machine
similar to those in the Type 2. A function is also available to set the
addresses of the request and reply vectors and allows them to be changed

depending on the system loaded. None of these commands are protected.

4.3 Implementation

This section gives a brief overview of the SPECTRUM program,
highlighting some areas that will be important later.

The basic structure follows the Type 2 implementation in consisting of
two state machines. These are traversed not by means of state numbers
but by altering the contents of the interrupt vectors. Internally a ring
transaction is represented by a control block that contains the station and
port numbers, retry count or timeout, base address and size of the buffer
plus the address of a routine to be called when the transfer has finished.
There is also a flag byte that specifies, among other things, whether the
buffer is in local or Host memory. These last two features allow both
debugging and Host requested ring transactions to be treated in exactly
the same way by the ring driving code and only differentiated at the end
when the the action routine is called to reply to the Host or complete the

debug request.

A significant disadvantage of the MACE is that only one interrupt vector
is used for all interrupts. To make the various devices independent a piece
of code is attached to this that decodes the identity of the interrupt
from the status registers and takes an indirect jump through one of
several software defined vectors. This is exacerbated by all the hardware
interrupt vectors being in PROM address space and to make them alterable
by loaded programs an indirection must also be included in the PROM. The
result of this is that the fastest time between the interrupt being raised

and the handling routine being entered is 42 cycles, or 21 microseconds® .

7 3 This is a ring reception interrupt, the times on the others are: ring

transmission 47 cycles, Host interrupts 5! cycles, and clock ticks 61
cycles. DMA interrupts are not used.
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Since the time for a ring revolution is less than twenty microseconds,
driving the program entirely on a per-packet interrupt basis resvlted in a
severe performance degradation from this factor alone. In order to avoid
this a test was added at the end of each interrupt routine to see if there
was another interrupt pending. If there was the routine looped back to
beginning to service it. To prevent hogging this was only allowed to happen
sixteen times in succession before a return from the interrupt had to be
made. The number sixteen was chosen because a study of ring traffic
suggested that the vast majority of basic blocks were less than this
number of packets long [OdyB8lal.

Encouraged by this the entire program was converted to polling with a
subsequent improvement. The reason for this is very simple: the decoding
performed on each interrupt is exactly the same code as the substance of
a polling loop, converting from interrupts to polling merely changes an
interrupt return and immediate reentry into a jump back to the beginning

of the loop.

Another consequence of the hardware design is that certain operations
on the ring station use the Ring/DMA bus and in particular destroy the
content of the latches connecting it to the processor bus. These latches
are the source and destination of 6809 initiated DMA transfers, so all
requests must be read and results written to completion with interrupts
off. This prevents these activities being carried out as a background task
asynchronously with the ring transfers. This also prevents pre-fetching
and ‘post-putting’ of words for the ring transfers. Ring DMA transfers
cannot be asynchronous in any case since the completion of the DMA
transfer is the only indication available that the packet contents is ready

for adding to the checksum.

The software to run in the Host is much simpler than that for the Type
2. It consists of a single Ring device driver and a Ring Handler Task. The
device driver copies certain fields of any packet sent it into the request
vector, and copies the results back into the packet when a reply is
generated. It uses the address of the requesting packet as the unigue
identifier needed in the request, allowing it to find the packet easily when
the reply comes back. The Ring Handler Task simply passes all reguest
straight on to the device driver after re-arranging the arguments into a
format closer to what the MACE expects. It also implements the cancel

retry loop and manages port number allocation.
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4.4 Performance

The performance characteristics of the MACE are best demonstrated by
comparison with the Type 2. The comparisons are made between a
GB8000/MACE and an LSI4/30/Type2. The test used was the same as that
used before, namely the time to transmit 100 full sized basic blocks to
SINK and to eachother. The results are shown in figure 4.2, the readings

are in Kbits/second.

Destination
Source
SINK 68008/MACE 1.S14/Type2
68008/MACE 341 321 341
LSI14/Type2 367 353 365

Figure 4,2 Compartison of Raw Throughput in KBits/second

The consistent figures in the top row show that the MACE is limited by
the speed at which it can transmit, although the figure in the centre of

the lower row indicates that it can do a little better on reception.

4.5 Conclusions

The figures show that while the MACE is slower than the Type2 it can
manage a roughly comparable throughput. The MACE suffers from the same
disadvantages as the Type 2: having to involve itself with every packet and
caleulating checksums in software. That it is a slower processor accounts
for some of the difference although the more powerful instruction set of
the BB03 makes up for some of this; for example, ole four instructions

are needed to calculate the checksum.

By tailoring the MACE program to the requirements of the Host it has
been possible to reduce the Host software to a minimum. It would have
been possible to reduce it even further if the MACE took buffer addresses
and sizes in the same units as the ring handler and the semantics of the
cancel command were changed. The actual increase in functionality of
SPECTRUM over the Type 2 is quite small, only transmission retries and
reception timeouts being significant, so the consequent effect is all the

more remarkable.
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The MACE plaged an important role in the development and testing of the
Tripos kerrel for the 68000. Since the 68000 has no other peripherals
all debugging had to be performed via the Ring. This included not only
remote examination of the Host’'s memory but the operation of simple single
character input and output by polling certain locations in the 58000°s
memory via the MACE. This allowed one to communicate with the standalone
Tripos debugger in the Host from another machine. The result of this was
that the Ring Interface of SPECTRUM was implemented and in use long

before the Host interface was installed.

Ore can conclude, then, that the MACE is a ring interface of moderate
performance. While it cannot compete with the Type 2 for throughput its
most important feature is an easily programmed microprocessor and large
quantities of RAM. The exploitation of these features is the subject of

later chapters.
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Chapter S

High-lLeve tellige Interfac

5.1 Introductio

The previous two chapters have described the designs of two low level
intelligent interfaces. It has been shown that the major gains are cderived
from the parallelism introduced by the separate processor, and from an
increase in functional specification of that processor. It is suggested,
therefore, that full advantage should be taken of the presence of this
extra machine to offload yet more of the Ring driving workload; thereby
increasing the performance of the entire system to its maximum. The

result of this is the development of a High-Level Interface.

A High-Level Interface is one that is independent of the details of the
underlying network and protocols. This means that the Host can deal with
an abstract view of the world and that it may be changed without any
alteration being needed in the Host. A primary objective of the High Level
Interface is to implement most of the higher level protocols in a more
' suitable environment and consequently more efficiently. The activities of
the High-Level Interface may, however, pass beyond the purely quantitative
domain of improving protocol performance to the qualitative domain of

systems and management aspects associated with network communications.

In the following discussion examples will be drawn from the Cambridge
environment and from the Xerox Internet Specification [XeroxBlal. The
commerts made, however, are believed to be relevant to all Local Area

Networks.
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5 The Implementatio Protoc

To demonstrate that various protocols will benefit by being moved to an
interface processor it will be instructive to examine the conventional
techniques used to implement them. Some unconventional implementations
will also be examined. When any protocol implementation is moved out of the
Host processor into a NIP there are two areas that should be examined
for possible benefits and disadvantages. The first is the effect it has on
the Host machine: whether the Host is involved in more or less work to use
the protocol, and whether the gains are significant relative to the Host's
use of the network. The second is the effect it has on the protocol
implementation itself: whether it gains anything by moving into a more
benign environment, and whether it loses access to useful facilities in the
Host.

Recognising that no one protocol implementation is exactly like any other
(even if they are of the same protocol) it is possible to identify three

broad classes of protocol and implementation.

5.2.1 Packet Protocols

This is the most primitive protocol made available to any client of the
network and constitutes the foundation upon which any higher level
' protocols are built. At Cambridge this is Basic Block Protocol, and in the
Yerox Internet is the Intermet Datagram. At its upper interface this
class of protocol deals with buffers of data and network addresses, at its
lower interface it deals with the raw hardware of the network. Because
all nrnetwork traffic is dependant on this protocol an efficient
implementation is necessary to gain maximum throughput. To avoid
software overheads such protocols are usually implemented at as low a
level as possible. So we find implementations in hardware (HDLC chips), in
microcode ¢(Alte ETHERNET interface [Thacker7?391, CAP Ring interface),
or in machine code in the device drivers (RS8X Ring Interface
[GibbonsB0al, VAX UNIX Ring Interface [Collinson821* ).

The previous two chapters have already documented the results of moving
this form of protocol out of the Host. These interfaces were for the
Cambridge Ring which is a special case as far as driving programs are
concerned. This is caused by the unusually high rate of interrupts when a
basic block is being transmitted or received. To cope comfortably with a

rate of one interrupt every fifteen microseconds or so, either requires a

1 This is actually written in the language C, no UNIX device drivers are
written in assembler.
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fast processor, or hardware assistance. It therefore makes good sense to
remove the basic protocol driving from the Host and let a second processor

cope with this high event rate.

This is not necessarily the case with other network architectures where
the hardware and software packet sizes are identical. In this case
hardware assistance for transferring data between Host memory and the
network is mandatory since it arrives at line transmission speed. Here,
the processing load on the Host is unlikely to be particularly large and may
not be a significant factor in the time taken to tramsmit or receive a
packet. We ecan say, however, that for any network, while the
implementation of this level of protocol in an interface processor may not
be significantly better than that in the Host, it will certainly not be any
worse. It should of course be pointed out that if any higher level
protocols are to be implemented in the NIP then this level of protocol

must be present; so there is really no choice.

5.2.2 Cognegtioglgss Protocals

This is a general term for those protocols that do not maintain any
state between invocations by the client; each use by the client being a
totally separate instance. These protocols can usually be implemented
within, or sunchronously with, the client process and typically by library
procedures or operating system calls. These protocols are often based on
simple packet exchanges and make few guarantees about performing the
task with total success; it is usually expected that the client will deal
with failures by re-truing the interaction several times. Examples in the
Cambridge environment are SSP, File Server protocol, Remote Debug and
Load protocols for LSI4’s and B8000°s. These protocols are usually
simple to define, and equally easy to implement; so if the supplied
implementation does not do exactly what is required, is thought to be too
generalised for efficiency, or the programmer nreeds a slightly different
protoco! for his own purpose, he is quite ready to produce his own ad-hoc
version. This results in a profusion of divergent protocols and
implementations, which all have to be altered if the specification of the
base protocol changes (or not, if nobody minds the divergence getting even

greater).

The principal advantage that any high level protocol can obtain from
being implemented in a NIP is that of closer co-operation with the lower
packet level protocol. It has already been mentioned that many high level
protocols would benefit from being able to split a single packet between

several buffers for both transmission and reception, enabling it to
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assemble or decode the packet more easily. It would be even more useful if
the protocol package were allowed to exert some control over the lower
levels as the packet is being transmitted or received; for example to
decompose the components of the protocol ‘on-the-fly'. An attempt to
allow something of this sort was made in the Type 2 with its buffer
chaining facilities, with not entirely successful results. The problem with
the Type 2, and with a conventional packet protocol implementation (where
it is usually separated from the client by the width of the Operating
System), is that it is difficult to know exactly what information is
required by the lower level to make the correct decisions on behalf of the
upper level in all cases. What we really want is for the lower level to ask
advice of the upper level at the appropriate moments; the upper level is in
a better position to know what the structure of this packet is, and can
take decisions in a wider context. This gg-cgllz mechanism is clearly
something that cannot be implemented across a machine/machine boundary,
or from a device driver to a client process with any degree of efficiency.
If both levels, however, were implemented in the same machine, and the
operating system of that machine were designed to allow such activity

upwards referral of this kind would be possible.

Returning to the case of connectionless protocels: it would certainly be
possible to move the equivalent of the library procedures or operating
system primitives into the NIP in a transparent manner. This still leaves
the ad-hoc implementations of these and other protocols to be dealt with.
The argument that the supplied implementation is inefficient should now be
spurious; no implementation in the Host should be able to match that in the
NIP. MWhile it may also be possible to improve the flexibility of the
protocol interface while moving it, it is not possible to anticipate every
demand that will be made and there will probably remain a need for highly
specialised applications. The arguments that the supplied implementation
does not do what is required can therefore remain valid. Many of these
differences may be for good functional reasons, for example the Fileserver
READ and WRITE protocols differ from SSP for a good reason. The most
suitable solution for these protocols is to legitimise them and implement
them in the NIP. Other protocols differ merely at the whim of their
implementor and could easily be converted into a legitimate form; examples
are the LSI4 Debug protocol, which could be converted to SSP, and the

load protocol, which could be converted to the Fileserver protocol.

2 We owe this term to D. D. Clark [Clark82b3l, which lends dignity to an
otherwise sordid practice. I will have more to say on this subgject in
later chapters.
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Merely converting or legitimising the existing protocols does not solve
the problem: as new applications arise, new ad-hoc protocols arise. There
are two approaches to this. The first is to strongly urge implementors to
use the existing protocols wherever possible, and to legitimise those new
protocols that prove themselves to be necessary. The second approach is
ta take a hard line and totally outlaw any possibility of new protocol
implementations. This can be easily done by denying the Host access to the
packet protocol. In conventional systems access to the lowest level
protocol is essential to allow the higher protocols to be implemented. Now
that these are all implemented in the NIP there is no longer any need for

the Host to have such access.

This restriction is perfectly acceptable, and even desirable, in a service
environment where the users are not concerned with the details of the
network or protocols. It is not acceptable, however, in a research or
development environment where there may be a need for new protocols to
be tried out, particularly if they are candidates for removal to the NIP.
If the two environments are disjoint then all that are required are two
versions of the NIP program: one that oallows access to the packet
protocol and one that deoes not. If the environments are not disjoint, and
the same machine may be used for service or development, then it may be
necessary for the Host system to authenticate itself in some way to the

NIP before being allowed to use the packet protocol interface.

5.2.3 Virtual Circuit Protocaols

This class of protocol attempts to supply a higher level of service to
the client than the previcusly described protocols. This usually takes the
form of guaranteeing the delivery of data to the other end free from
errors and under flow control. The protocol therefore undertakes to
maintain a connection between the two ends along which data flows. The
example of this from the Cambridge environment is BSP, and in the Xerox
Interret is the Synchronous Packet Protocol. Such protocol
implementations are expected to be able to respond to asynchronous events
from the network, the clock and the client, often within a crisis time,
without impairing their ability to respond to the others. It is not usually
possible, therefore, to implement the protocol in the client process
because while the client program is executing the protocol is unable to
respond to events. Thus the protocol must be implemented as a separate
process, and the client must use the protocol via an inter-process
communication mechanism. Because of the time-critical nature of some
protocol events it may be necessary to run the protocol handler process at

a high priority, and in swapped systems it may need to be permanently
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resident in main memory to meet its crisis times. The latter is often only
possible if the process is made part of the operating system (e.g. the
VAX UNIX BSP Handler). Because of their complexity and wunusual

requirements one seldom finds an ad-hoc implementation of such protocols.

From the Host’'s point of view the removal of this class of protocol to a
NIP is extremely beneficial. It results in the deletion of an entire
process from the system, one that was likely to consume large amounts of
processing time. Since the protocol process is likely to run at a high
priority, any event in the protocol will cause the current process to be
preempted in its favour. The protocol process itself will probably run for
only a short period before suspending. This causes the operating system
to engage in a large amount of process switching. With the protocol
removed the only events left are those caused by, or directed at, the
client, which are relatively fewer, and need not olways cause a process

switch to take place.

Moving the protocol to the NIP now gives it the same advantages as the
previous class of protocol: closer cooperation with the lower level
protocols. Because the amount of processing needed for any single
protocol event is often very small a Host implementation is likely to suffer
from large sustem overheads; a process switch (which may involve a change
of protection domain too) can take a long time and inter—-process
communications mechanisme are often slow. In a NIP the system overheads
can be reduced to virtually zero by carefully tailoring the operating

system to the application.

To see a further advantage of a NIP based implementation of this
protocol class we must examine the applications to which they are put.
These fall into two broad areas. The first is that of File Transfer,
Remote Job Entry and other relatively short-lived applications. The
protocol is being used here largely for its ability to deliver data in an
error free manner. Any one instance of the protocol will only last a few
minutes, or if it persists will be re-used by different applications in short
bursts. Such uses of the protocol will benefit only slightly from its
movement into a NIP; that a file transfer takes five seconds instead of

twenty is of little real significance.

The second area of application is that of Remote Terminal Access, where

the protocol is being used to define a session, and although the error
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correcting characteristics are useful they are of secondary importancea .

Applications of this sort are characterised by the long time the virtual
circuit is open, and the continuous use to which it is put during that time.
It is widely becoming the practice to connect all of the terminals on a site
+o the rnetwork and allow access to the various Host computers only via
these remote terminals. This has important consequences for the
operating system of the Host machine. In a conventionally configured
system, with intimately connected terminals, console interaction is simple,
consisting of merely transferring a byte to or from a buffer on each
interrupt. To turn this into a network connection one must replace this
simple console driver by the virtual circuit protocol driver. The terminal
driver is replaced not only by the protocol handling process described
above, but a virtual terminal protocol implemented on top of this. This
turns a previously negligible consumer of rescurces into a major one and
invalves the operating system in some considerable complexity to turn the
low level concept of a terminal into the high level concept of a virtual

terminal, particularly if it is to be done in a transparent way.

The advantage to this sort of application of moving the virtual ecircuit
protocol into a NIP is that it reduces the complexity of the Host
operating sustem. This is because the NIP can be accessed at a lower
level than the former protocol implementation since it presents a device
level interface. Admittedly the NIP is a more complex device than a
terminal, or terminal multiplexor, but suitable design of its interface
should allow it to be driven by even the simplest code. Having moved the
virtual circuit out of the Host it is tempting to consider moving the
Virtual Terminal Protoco)l too. An advantage of the NIP is that it should
be able to transfer data from the network straight into the Host's memory
with minimal intervention. Most VTP protocols require that the data be
filtered for commands and escape sequences, so the NIP would have to
examire every byte itself, negating this advantage. A VTP is, in any case,
a relatively simple protocol, and is usually better implemented at a suitable

place in the Host operating system.

3 The error characteristics of LANs are such that lightweight protocols may
be desighed on the assumption of no transmission errors, and drastic
action C(like closing the connection) can be taken on the rare occasions
when they do occur. Such an approach, and protocol, is discussed in
[RubinsteinB11.
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5.2.4 Alternative Implementations

The above classes are, of course, generalisations, and many examples may
be found that do not fall into them. In the Cambridge environment one
finds the Basic Block protocol implemented in a process (the early Tripos

Ring Handler), and BSP implemented in the client process.

This latter example is an experimental implementation for Tripos by
D.D.Clark [ClarkB2al. It contains several interesting features, and the
principles on which it is based had an effect on the author’s own work.
This implementation of BSP is an attempt to eliminate some of the system
overheads, specifically task switching and message passing, incurred by the
conventional BSP handler task. This is achieved by moving the protocol
implementation into the client task as a pair of coroutines plus several
procedures. The coroutines handle the asynchronous events of the
protoco!l and it is while these are running that most of the work of the
protocol is performed. The client program is implemented as one or more
further coroutines and all the coroutines are managed by a special
coroutine scheduler. The client accesses the protocol by calling its
external procedures. These are generally simple, setting flags and causing
the coroutines to be scheduled; the client does not, for example, supply
data at this time. When the protocol coroutines run they will decide
whether a basic block is to be sent to the other end of the connection, and
at this point will ask the client to supply data to fill the block with an yp-
call. Similarly the protocol will hand data to the client with an up-call

when a block is received.

The advantages of this are first, that the up-call mechanism allows the
protocol package to ask advice of the client at the relevant moment,
enabling it to tailor its actions to suit the application. For example if,
when the up-call to ask for data occurs, the client has no data to hand but
expects some to be available soon (within milliseconds) it can tell the
protocol to wait a short time before sending the packet. Thus by only
asking the client for data immediately before transmission, a packet may be
chared more effectively between layers. The protocol package is now
solely concerned with the job of implementing the protocol, and any
peripheral concerns can now be left to the client. For example, in a
conventional implementation the protocol package would have to implement
an extremely general buffer management strategy to meet all possible
applications. This task now belong to the client, which can use an
algorithm more appropriate to the application, with a consequent
simplification. Finally the up-call mechanism more faithfully echoes the

structure of network packets. This is because the packets are built up
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from the front, the first part belongs to the lowest level protocol, the
second part to the rnext level and so on. A sequence of calls up through
the layers with each layer inserting its protocol information into the
buffer before passing it on is a natural way of compgsing the packet. The

same structure also holds for the decomposition of received packets.

There are, of course, some disadvantages to this implementation. The
major one is that the protocol package does not interface to any
conventionally written programs. Only applications that can accept the up-
calls and will not interfere with or circumvent the coroutine scheduler can
be allowed. At present there is only one of these, a Virtual Terminal
Protocol handler. The described structure does not fit into any known
language or operating system structure, so an implementation of this sort
may not always be possible. This can always be circumvented by designing
an operating system or a language (or both) which allows such structures,
and this opens up some interesting possibilities. Because the up-call
mechanism works by presenting the client with a buffer to fill, it is not
possible to use any form of multiple buffering, which can serve to improve
the throughput of the stream. Instead the client is forced to copy his
data into the buffer in the critical path, just before transmission. The
final disadvantoge of this implementation is one of pérformance. While the
reasons for moving to a coroutine based single process system are sound,
the advantage gained in comparison with the conventional implementation is
small. This is because the resulting systems overheads have not changed
much. The highly optimised machine code task scheduler of the Tripos
kernel has been exchanged for a somewhat complicated coroutine scheduler
written in BCPL. This comparison is somewhat unfair, and the improvement
would undoubtedly be more marked in an operating system that was more

protected, and had higher task switching overheads than Tripos.

Another BSP implementation worth mentioning is that written by
J. J. Gibbons and D. W. .Singer for a PDP11/45 under the RSX operating
system [GibbonsB0bl. This also runs in the clients process, but presents
a conventional stream interface. This is again configured as two
coroutines, but unlike Tripos no attempt is made to make the byte stream
transparent to clients and only purpose written programs use it. It is
interesting to note that this implementation also contains an up-call

mechanism, which is used only in erroneous or exceptional circumstances.
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5.3 Systems Aspects

Moving the implementation of protocols from the Host to the NIP is only
a beginning. Looking further we can see that the NIP can take over some
of the systems and management functions of the Host where they relate to
the network. Some of these are necessary, and obvious, consequences of
moving the protocols, others could be performed by the Host but are more
aptly implemented in the NIP given the movement of the protocols. I do
not wish to say too much about these matters here, since they are covered
in greater detail in later chapters. I will therefore limit myself to a brief

discussion of the possibilities.

If the protocols are to be implemented efficiently the NIP should also
have control over retwork addressing. This is best achieved by retaining
the real address in the NIP and passing the Host a virtual addresg to use
in network transactions. This has the advantage of hiding the exact
format of a network address from the Host, allowing it to be changed. It
also provides a degree of protection, since the Host will now only be able
to access those remote machines for which the NIP holds addresses. This
implies that the NIP must also control the mechanisms by which the Host
obtains addresses; two such mechanisms exist. The first is by mapping a
well known name, usually a character string, into an address. This can be
controlled by suppluing functions to perform the mapping in the NIP and
pass back a virtual address. The other source is addresses that gppear as
data in messages from elsewhere. Sometimes these are necessary, for
example the reply address for SSP, and so must be allowed for. Those
that are necessary will be included in the protocol specification, and can
be identified and converted into virtual addresses to be passed back to the
Host; any others cannot ke identified and will be passed on to the Host un-
altered. If the NIP is to rigidly maintain its protection the Host can be
prevented from using these addresses by defining everything to use virtual
addresses; the Host consequently has nothing it can do with a real address
if it gets one (except pass it on to someone else!). Alternatively, if
protection is not a major issue, the NIP can supply a function to convert

any real address given it by the Host into a virtual one.

The inverse to the above is protection of the Host from external malice.
Performing a preliminary acceptance check on any received messages will
prevent troubling the Host with badly formatted or erroneous blocks, and
can even extend to checking for acceptable function codes etc. The Host
may even request that the NIP ignores all messages from a particular

source if it is causing trouble.
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Allied to protection are the issues of security and authentication. Once
’ data has passed out of the Host on to the network some guarantee may be
required that is has been delivered to the required destination and no-one
else. Authentication is the mechanism by which the communicating parties
can satisfy themselves that the other is genuine and not an imposter.
Once this has been achieved it is necessary to transfer data, and if the
data is sensitive it may need to be delivered securely, this usually means
that it must be encrypted. If the Host is prepared to trust its NIP then
it can play a large part in both these areas. The NIP can automatically
authenticate any incoming messages and not bother the Host with any that
prove to be bogus; similarly it can add authenticating information to
outgoing blocks. If the encruption and decryption of data is left to the
NIP the Host need never deal with the encrypted form of the data at all.

Further areas of interest are Remote Loading and Debugging of the
Host, the use of stable storage in the NIP to preserve state information
beyond machine crashes, and the customizing of a NIP to perform specific

activities an the behalf of specialised Hosts.

5.4 Conclusions

This chapter has discussed the possible advantages of moving more than
just the low-level protocols to an interface processor. There are
advantages to be gained both by the Host in losing much software, and by
the protocols in moving to an environment more suited to their needs.
Beyond this it has been suggested that the NIP should take on some of the

systems and management functions associated with the network.

There is always a danger of putting too much into the NIP. From the
purely quantitative point of view there will come a point at which any
attempt to load more work onto the NIP will result in a degradation in
performance. Of all the tasks a NIP could perform we must only select
those that are suitable. Protocol support should stop at ISO 0SI level 3
[ISO791, since above this the protocols require that the data be scanned
for commands and escapes, eliminating the advantage the NIP has in

avoiding copying.

It would be possible, for example, to move most of the Host operating
system into the NIP, particularly if the Host were a processing server
with only the Network to connect it to the rest of the world. This would
probably need a NIP of the same size and power as the Host, which is not

the intended equation, and is really a different research topic [Dellar801.
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There remains, of course, the need to supply some ‘system’ functions in the

NIP when the Host is a processing server, to allow the machine to be

debugged and reloaded remotely. The functions that should go into a NIP
are those that are directly related to the use of the Network, any others

should be treated with the utmost suspicion.
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Chapter B

[he Design of a High-Level Interface

The previous chapter described the concept of a High-Level Interface
and gave some reasons why it would be a good idea. In this chapter I will
describe the pragmatic design of such an interface on the MACE for
Tripos. The next chapter will deal with some of the implementation issues.

With this I intend to show that the claims made in chapter five are true.

B. ost Interface

The Host interface defines both the physical form of the communications

between the two machines and the semantics of the commands exchanged.

6.1.1 Inter-Machine Communication

The hardware of the MACE/BB8000 system merely allows the two machines
to interrupt one another and the MACE to have DMA access to the
68000’s memory. This resulted in the use of two fixed buffers in the
SPECTRUM program to contain requests and replies. This arrangement,
while perfectly adequate, is somewhat unsatisfactory since it involves the

Host in copuing requests into the vector and results out.

If the MACE is to present a higher level of interface it should be able
to communicate with its clients at their leve), particularly if we want it to
take over some of the existing functions transparently. The standard
mechanism for communication between tasks, and between tasks and devices
in Tripos is the packet. This means that the MACE must be able to both
receive requests and reply using Tripos packets. A device driver could be
written that copied the contents of any packet sent it into the request
vector, and copied the results back when a reply was returned. This is a
somewhat wastefu! activity however, and it would make much more sense if
the MACE obtained its arguments directly from the requesting packet,
avoiding the copy. The device driver need now simply transmit the address
of the packet to the MACE (using the old request vector), and return the
reply to the sender when the reply is to be generated.
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It could be argued that this makes the MACE operating system
dependant. It should be noted, however, that the recquirements of the
internal interfaces of the MACE are different from the requirements of
the Host interface. The Host dependencies can therefore be concentrated
into just one module, which translates the requests into internal actions,
the rest can be made completely machine independent. It should also be
noted that the MACE does not interpret the packets it is given as inter-
process messages. As far as it is concerned it is given a pointer to a
vector of store that contains a function code and a set of arguments at
certain pre-determined offsets. MWhat the structure of the vector is
outside the few parts the MACE examines it does not need to know. It
could be argued that the MACE is really driven by codewords, which in the
current implementation can be convenien:tll,:j used as Tripos packets. The
only differences between these and the codewords used in the Type 2 is
that they cannot be chained together, and the argument encoding is
somewhat sparser than is strictly necessary. The former is no great loss,
and as will be seen later is largely unnecessary. The latter will simply
cause the MACE to DMA a few redundant bytes when reading its arguments,
but since the major cost of a DMA transfer is in the setup this should not
be significant. This does involve the MACE in two DMA transfers, one to
get the packet address and one to get the packet itself. This is offset,
however, by avoiding any copying in the Host, and while the request vector
may need to be of a fixed size, the packet may have any number of

arguments.

8,1.2 Replacing the Ring Handler

Al Tripos Ring interactions are normally directed to the Ring Handler
Task, which directs a request to the Ring device driver, which itself
submits a request to the MACE. If we are to eventually move all protocol
handling into the MACE, it seems reasonable as a first step to take over
the existing functions of the Ring Handler. The only real change needed is
the specification of the interface, which now becomes that of the Ring
Handler. The only function not performed in some way by the original
SPECTRUM program was that of port management. This has to be moved to
the MACE for it to implement higher level protocols, so a Ring Handler-like
interface can easily be provided. This move has some important
ramifications for Tripos, which will be covered in the section on Host

Software in chapter seven.

The Ring Handler functions constitute exactly those lower level protocol
functions whose use, it was decided in chapter 5, was to be discouraged.

Unfortunately so many programs in Tripos use the Ring Handler directly
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that it would not be possible to do away with them immediately. We must
therefore consider their presence as a purely temporary measure to aid in
the change, and their use will be prohibited or severely restricted in the
future. The rest of this design proceeds on the assumption that these

functions are not present or accessible.

6.1.3 Single Shot Protocol

This is the major connectionless protocol in the Cambridge environment
although I will also deal here with the other protocols of this type. For
' SSP we must supply not only the client end of the protocol (which is all
most conventional implementations do), but the service end as well if we

are to present a full implementation.

The client end of SSP is simple: given the service to be called, a buffer
containing the arguments and a buffer to contain the reply, the MACE can
construct a basic block of the required format for the request and submit
a reception for the reply. The service end, on the other hand, requires
two separate MACE functions. The first simply takes a buffer for the
expected reguest and submits a reception request to await the arrival of a
block. This is more than a simple basic block reception because the MACE
will strip the protocol header off the block and install the rest in the
Host’'s buffer. Krowing this is supposed to be an SSP it can also make
various validity checks on the incoming blocks. The second function
required at the service end is one to construct the SSP reply and transmit
it back to the client.

The BSP OPEN protocol is similar to SSP in many way, so similar that
the two can easily be implemented by the same piece of code. It is
unlikely, however, that their Host level interfaces will be shared. This is
because while there are no side-effects of a successful SS5P transaction,
there is one of a successful BSP OPEN exchange: a byte stream. The
meaning of an OPEN block has been broadened recently to allow it to
initiate protocols other than byte streams, it now means that more blocks
than just the request and reply will be flowing between the two ends. This
change was necessary to ensure that Ring-Ring bridges kept the virtual
circuit open for these blocks. This is obviously the case for BSP, but it
is also true of other protocols, for example the Fileserver protocol. Since
any other OPEN exchanges will be part of other protocols, which should
themselves be implemented in the MACE, there is no need to supply o
general interface to the OPEN function.
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Fileserver protocal is a different case. Only a bona-fide Fileserver will
ever need to implement the service end of this protocol, so the MACE need
only supply the client functions. At present, however, the 6B000 systems
do not use the Fileserver directly but access the Tripos filing sustem via
the Filing Machine [RichardsonB831. Here it would be more useful to
implement the protocol used between this and its clients. Again, most of
the 68000s need only have the client functions, but the Filing Machine,
which is itself a 68000, must implement the server end of the protocol,

and also use the Fileserver protocols.

6.1.4 Naming and Addressing

The previous section deliberately avoided several important questions.
fmong these are: how does the Host specify the service to be called in an
SSP request, and how is an SSP reply directed back to the client. These

are specific issues in the general area of naming and addressing.

Services are normally located by mapping a service name into a service
description via the Nameserver. This service description comprises a
machine address, a port number, a function code and set of flag bits. The
flag bits specify such attributes of the service as protocol type, the
expected response time, and the basic block type to be used. ANl four
items of this service description must be conveyed to an implementation of
SSP to make a call on the service. MWhile this is possible using an
indirection in a single machine, it represents a lot of data (six bytes if
tightly packed) to pass repeatedly across a machine/machine boundary. A
scheme whereby the client supplied all the service information is also open
to misuse. This latter could always be prevented by forcing the client to
supply the service name with each request, which the MACE could use to
obtain a service description itself from the Nameserver. By caching those
service descriptions it obtains against the name it could avoid a further
Nameserver interaction on later calls to the same service. Since the name
must be included in the requesting packet with a pointer, it would have to
be read into the MACE via a separate DMA transfer to check against the
cache. The service name is likely to be longer than the corresponding
service description, so the cost of the interaction is likely to be larger

than if the service description were supplied directly.

Instead of the implicit caching described abave we use an explicit caching
mechanism that not only reduces the gquantity of data passed across the
interface to a minimum, but provides the protection against abuse we
desire. The mechanism is explicit because the Host specifies which

services are to be cached with a function that takes a service name and
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maps it into a service description via the Nameserver. The Host does not
receive this description back, instead it is stored in the MACE as a
Service Descriptor (Descriptor from now on), the Host in its place
receives a Descriptor Identifier, which need only be a sixteen bit quantity.
It is the descriptor identifier that the Host supplies to the MACE when it

wishes to send an SSP to the service.

Descriptor identifiers are the yirtual addresses mentioned in chapter 5.
An analogy may be drawn between these descriptors and capabilities in that
they are unforgeable, and possession of a descriptor for a service allows
the Host to attempt a call to it. Unlike capabilities, descriptors do not
guarantee the service's accessibility in the same way, for example, that
possession of a capability for a store segment in CAP [Wilkes73b]

guarantees the existance of that segment.

With a descriptor the MACE can trust the service description it is given
and can use it to improve the quality of service it provides. The flag bits
can be examined and from these it can decide which function code to use,
how large a timeaut to give the reception request, and even what type of
basic block protocol to use. This also constitutes a validity check since it
will not allow an SSP to be performed to a service whose description
specifies some other protocol. It is possible, however, for the information
contained in a descriptor to become out of date. This may be because the
service machine has crashed, or in a multiple ring system because a bridge
has crashed or deleted the connection through under use. Whatever the
reason, some form of recovery action should be attempted. Normally this
is the job of the client, which would look the name up again in the
Nameserver and retry the request. It is now possible for the MACE to do
this transparently on the Host's behalf when it looks likely that the

interaction has failed for this reason.

Descriptors also solve the problem of associating an SSP reply with the
original request. It is merely necessary for the SSP service function to
pass back a descriptor identifier when a request arrives. The only fields
of such a descriptor that will be valid are the machine address and the
port number. To prevent this descriptor being used for purposes other
than generating replies, and to prevent service descriptors being used for
the purpose, descriptors can be typed. There are three types of
descriptor that can be identified. Reguest type descriptors specify a
service supplied on another machine on the network. Service type
descriptors specify a service supplied by this machine, and Reply
descriptors represent a return link to the caller of a service. Request

and service descriptors are both obtained from the Nameserver and can be
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differentiated by comparing the service’'s machine address with that of the
local machine. These types allow a further check to be made by the MACE
gsince it knows what tupe of descriptor each SS5P function will take. There
is a problem here if a process wishes to call a service that is implemented
bg another process on the same machine. Any attempt by it to look up the
rname will result in a descriptor of service type and not request type. The
MACE should therefore allow service type descriptors to be used in the

SSP request function, since the only harm the Host could do is to itself.

Beyond the simple lookup function the MACE should supply several
further Nameserver interaction functions., It turns out that it is
necessary to implement only two extra functions in the MACE to interact
with the Nameserver. The first is Reverse Trace which, given a
descriptor, returns the name of the machine it refers to, possibly
following the path back through several Ring-Ring bridges. The second is
Own Name, which simply returns the name of the local machine. This can be
turned into a descriptor by using the Lookup function on the name. The
remaining Nameserver functions are purely informative and may be accessed
vio the SSP request function. Finally an information function is supplied
to translate a descriptor into its constituent parts. This is no more than
the Host could do itself by sending an SSP to the Nameserver, and there is
certainly no way that it could use this information to subvert the MACE’s

protection (remember the Host is denied access to basic block pr‘otocol)l .

No function is supplied to delete a descriptor to avoid some of the
problems associated with the name/descriptor caching. For example, if two
separate processes look up the same name they will both receive the same
descriptor identifier, and thus access the same descriptor. If one process
were to delete the descriptor the other would be left with an invalid
identifier. Rather than allow deletion, all descriptors have an associated
timeout which is refreshed each time the descriptor is used. The timeout
of Request and Service descriptors is quite long, approximately twenty
minutes, while that on Reply descriptors is much shorter, about two
minutes. The only descriptors that are explicitly deleted are Reply

Descriptors after a reply has been sent to prevent them being re-used.

1 The implementation also includes a function to make a descriptor of limited
attributes, this was used in testing and is not expected to be made

available in a ‘production’ system.
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6.1.5 Bute Stream Protocol

It is from the implementation of this protocol that we expect the major
gains to be derived. The interface must therefore be designed to combine
maximum throughput with simplicity and flexibility. There are three phases
in the life of a byte stream connection: setup, data transfer and

closedown. I will consider these in turn.

A byte stream is normally created as a result of an OPEN exchange. It
has already been noted that such an exchange is similar to SSP. There are
several differences, in particular in the number of arguments required. A
BSP OPEN includes a set of BSP-specific parameters between the protocol
header and the user data. Just two such parameters are defined at
present, which specify the maximum block sizes the client is prepared to
send and receive. The OPENACK contains an equivalent pair, which are the
sizes to actually be used in the exchange, being in each case the smaller of
the values specified by the client and the service. These parameters are
really the concern of the stream implementation and are of little or no
interest to the Host. There is no need here to expect the Host to supply
them or ever be told about them and the interface to BSP can be designed
so that it is independent of this consideration. Another side-effect of
the OPEN exchange is the communication of port numbers between the two

ends to be used by the resulting byte stream.

The ultimate result of the OPEN exchange is the creation of a byte
stream. This should only be dorne if the return code received in the
OPENACK, or supplied to the MACE function which generates it, is zero.
Any other value indicates that the service has re jected the connection
attempt. A byte stream is represented by a 16 bit integer or Stream
Identifier which must be quoted by the Host in any operations on it, and
will be quoted by the MACE in any communications regarding the stream

that it generates.

BSP will be initially incorporated into Tripos by transparently replacing
the original BSP handler with an interface to the MACE. Unfortunately
Tripos has a different convention for setting up a byte stream to that
described above. The BSP Handler Task does not carry out the OPEN
exchange, this being the responsibility of the client program. The Handler
is only called when the exchange is successful and is handed all the
necessary parameters to create the stream. To allow this a second stream
creation function is supplied with a similar specification. Once all Host

programs are using the MACE OPEN function this could be withdrawn.
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The data transfer phase is the most important part of the stream
interface and the area where the style of the interface is most important
to achieve maximum throughput. Most byte stream implementations expect
the client to supply or accept data in buffers of the same size as the
negotiated block sizes. Many supply their own buffers of the given size.
The reason for this is simple! when the stream gets a buffer from the
client it constitutes a ‘Buffer Ready’ event in the state machine and a
RDY or DATA can be sent without further consideration. This is often
inconvenient for the client since the final choice of block sizes may have
been by the client at the other end of the stream which may have chosen
them too small. It may also invalve it in copying from its own buffers into

the stream buffers and vice versa.

For an example of this consider the case of a program that is reading
data from a file and sending it down a byte stream. Filing system
transfers are often in quantities of several Kbytes for efficiency. Even
if the filing system were able to insert the data into the stream buffers
it iz more than likely that they will be too small. The client program
therefore has no recourse but to maintain two sets of buffers, one set
for the filing system and one set for the stream and copy data between
them. Some increase in speed can be obtained by multi-buffering, but this
really does little more than mask this inefficiency. We really want the
stream implementation to accept buffers of any size and split them up if

necessary.

That buffers larger than the negotiated block size should be submitted is
clear, it is also true that buffers smaller than the block size should be
submitted. An example of where this would be useful may be found in a VTP
handler. This would normally use a single fixed-format line reguest that
rneeds to be prepended to any client data to be transmitted, or sent on its
own if rone was available. This is usually achieved by copying the line
request into a stream buffer followed by the client data and dispatching
the whole thing, usually with a stream push to force it through to the
other end. It would be much simpler if the line request were +to
permanently occcupy a small buffer of its own that was handed to the
stream when necessary. The client data, with a push, could likewise be
handed to the stream in its original buffer. The MACE will not transmit
any data until it has enough to fill a block of the negotiated size, or until
a push is performed. The line request on its own will not cause
transmission, only when the client data is submitted will the two be
composed together in a block and transmitted to their destination (allowing
for the constraints of flow control). By similar argument we can say that

the input side of the stream will benefit from such a scheme.
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Output may therefore be performed by a single command that specifys a
buffer of any size containing the data, plus some flag bits. The meaning of
these flag bits correspond closely to the bits sent in a DATA command. A
reply is only produced when all the data in the buffer has been

transmitted, or a higher level event like a stream reset occurs.

There is a slight infelicity in this mechanism that will become apparent if
we return to the earlier example of a VTP handler. If it turns out that
there is no client data to send it is still necessary to transmit the line
reguest on its own. The buffer has been submitted without the push bit
set to prevent it being sent prematurely. Some means must be made
available to push any buffered data even when there is no more data to be
sent. The simplest way of doing this is to submit a buffer of zero size
with the push bit set.

Input can be defined in much the same way, the Host submits buffers of
variable size which are returned when filled. A buffer may alsoc be
returned partly filled if the last block received into it had the push bit

set.

The final phase in the life of a byte stream is the closedown phase. I
also include here the Reset exchange that may occur during the data
transfer phase. This is because the Close and Reset functions have much
in common and are treated in the same way by the protocol package. The
following discussion will be based on Reset since this is the more important
case. Close is identical with the exception that the stream does not

persist beyond the last part of the interaction.

There are two possible sources of a Reset, the client and the service at
the other end of the streant . Dealing with the simplest case first: local
resets may be brought about by a simple command to the MACE. The stream

is reset and the reply returned only when this has been successfully done.

Remote resets are somewhat more complex and highlight an important
deficiency in the use of codewords and in the Tripos view of devices. A
remote reset may occur at any time and must be communicated to the Host
immediately. How should this be done? It could be communicated in the
return codes of any buffers that the MACE is holding, and must now
return. But the MACE may not have any buffers to return, indeed, the

client may be waiting for the reset before submitting any. This mechanism

2 There is a third source, the protocol package itself, but as far as the
Host/MACE interface is concerned this is the same as a remote reset.
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cannot, therefore, be relied upon. The MACE should be able to generate o
message of its own at this point and have it directed to the client. This
is where the limitations of codewords become apparent, because they tend
to favour a recquest/reply style of interface. While under most
circumstances this is exactly what we need, on occasions such as this it is
a definite disadvantage. A request/reply vector interface does not suffer
this same limitation since the MACE can generate messages of its own.
Here, however, we come across a deficiency in Tripos (and many other
operating systems). Once an asynchronous message has been generated by
the MACE it must be sent to the correct client task. Under Tripos device
drivers are second class citizens and are not expected to generate packets
themselves, but merely respond to those sent them by tasks. This simply

moves the original problem from the MACE into the Host machine.

The solution to this bears some relation to the up-call mechanism
mentioned in chapter five. At stream creation time the client supplies the
MACE with a packet that is set up to find its way back to the client. The
MACE saves this packet until a remote reset occurs, when it generates a
reply to send this packet back to source. The client acknowledges receipt
of the reset by returning this same packet to the MACE, restoring things
to their normal state. Only one such packet is needed because the MACE
will not send the return reset to the other end until the client has
replied, any further reset received can only be retries. This depends on
the client returning the packet guickly to meet the real-time constraints
of the reset exchange. To prevent the stream being hung up on this the
MACE can apply a timeout to the Host, in the same way as it applies one to

the remote end of the stream, and close it if the packet is not returned.

Identical mechanisms to this can be applied to closing the stream. The
principal difference is that once the exchange has completed the remote
reset and close packets must be returned to the client so it can safely

release the memory they occupy.

Whenever a reset or close occurs all the buffers being held for that
stream by the MACE must be returned. Each buffer is returned with a
return code indicating the reason. It is intended that these return codes
are purely informative, and should only be used to determine the fate of
the buffer and not that of the entire stream. The Host should not use
detection of such a return code to, for example, reset or close its
representation of the stream. It should only do these things when the
reset or close packet, or the reply to its request arrives. The MACE
undertakes to return all buffers before this packet is sent, so the Host

can process it in a consistent state. It is possible for a buffer to be on

-72-




its way to the MACE when a remote reset occurs and will arrive when the
MACE is waiting for the client to acknowledge the reset. This buffer
canrnot be treated as normal because the stream is in the wrong state, so
it is returned immediately with a return code to this effect. Similar
conditions can arise during a remote close sequence, but here the buffer

can be returned with an invalid stream identifier indication.

6.2 The Ring Interface

SuperMACE supports exactly the same loading and debug commands as the
SPECTRUM program. This is purely for compatability reasons as it allows
the Host to be loaded and debugged by exactly the same mechanisms as
before. These functions are, however, totally unprotected and do not
conform to any standard protocol. If the MACE is to impose strict rules
of protocol on its Host it should conform to the same rules in its own

external interfaces. We must therefore introduce a new set of primitives.

Dealing with authentication first: this is achieved in Cambridge by UID-
sets [GirlingB2l. Enhancements have been defined to the existing
protocols to allow the inclusion of such UID-sets [Johnson82l1. By
employing this mechanism the MACE can ensure that it is only loaded and
debugged by those remote clients who can present UID-sets with the

necessary privileges.

The origina! reason for inventing the Ancilla was that the Type 2 ring
interfaces were not sufficiently powerful enough to go to the Fileserver
themselves to get the load file. This is certainly not true of the MACE
which is fully capable of this (the MACE alone is arguably a more powerful
machine than the Ancillal). Therefore, in response to a suitable SSP
request the MACE should go to the Fileserver and load the Host from the
specified file. The reply should be generated only when this has been done.
Ignoring for the moment its continued need by the Type 2s, the Ancilla has
rnow become redundant. Its only remaining function is to convert the names
of load files into Fileserver PUIDs and this could easily be subsumed into

the Resource Manager, where one might consider it to genuinely belong.

If the debugging primitives were simply converted to authenticated SSP
exchanges it would be necessary to interact with the AOT manager for
each one. This is clearly an unacceptable overhead. The alternative that
first comes to mind is to perform an initial authenticated interaction to
which, if it were satisfied, the MACE could reply with a randomly generated

connection identifier. The debugger could then use ordinary SSP requests,
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quoting the connection identifier in each, to access the Host. This is a
waste of effort when we have a protocol that can not only give us a
secure connection, but has the additional properties of being error free
and flow controlled: BSP. The debugger can therefore open an
authenticated byte stream to the MACE through which they can exchange
commands and data. The advantages of this are probably only slight for
interactive debugging, where the user will only be reading small parts of
the Host’'s memory at any one time. The mechanism, however, also allows
dumps of the machine state to be taken easily. The debugger, or dump
program, need only give the MACE a single command to read the entire
memory of the Host. The MACE will deliver this only as fast as the
debugger can take it because of the flow control in the stream. Using any
other method the debugger would have to do this in many smaller transfers

since it would be unable to accept all this data at ring-speed.
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Chapte:

Implementati [) i e terface

This chapter is a general overview of the internal structure of the High
Level Interface implemented in the MACE. It examines some of the
problems involved in moving protocels te an interface processor and
describes the solutions found. At the end of this chapter we give some

comparative performance figures and draw some conclusions.

7.1 Modules and Tasks

The complexity of the software involved in a High Level Interface is
such that it would be impossible to implement it as a single monolithic
program. It was also originally intended that the code be used for other
6809 based interface processors (the GIZMO and the MACEZ) with the
minimum of re-writing. It must therefore be modularised both in the
interests of manageability and portability. The MACE is expected to be
running many independent activities concurrently, typically several byte
streams, random SSP interactions and the more mundane tasks of dealing
with Host requests and replies. It is therefore essential that the basic

environment be multi-threaded, so multi-tasking of some form is reqguired.

Conventionally there are two ways of dealing with a transaction in a
multi-tasked system. The first is to assign a task to the job that makes
the necessary module calls to serve the transaction. This task is either
created for the purpose or cbtained from a pool. The second way is for
each task to perform a specific function and for the transaction to be
passed between them by message passing. The choice here is between a
procedure based or message based system; Laver and Needham [Laver781]
have shown that these are equivalent. The first mechanism is
unsatisfactory because it can lead to a profusion of tasks. In general a
separate instance of each module for each task is necessary to avoid
synchronisation problems, and where modules must be shared a monitor
mechanism is needed. The second suffers from the expense involved in a
message passing system. We would really like to mix the two approaches:

eliminate message passing but keep the number of tasks and module
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instances in the system under control (static if possible). This can be
done by inverting the conventional structure, making modules the principals
in the system and relegating the tasks to a secondary status. A
transaction can now be processed by simple external procedure calls
between modules. Internally a module may contain one or more tasks to
handle asynchronous events, or to serialize its activities, but this need not
necessarily be the case. This may be summarized by saying that while in
conventional systems a task will contain several modules, in this system a

module may contain several tasks.

This model bears much similarity to, and was influenced by, that
expounded by Clark [Clark82al. The principal difference is that whereas
Clark retained messages for inter-task communication and synchronisation,
no such feature exists here. Having said that it must be admitted that
there remains a need for message-like objects. These Control Blocks are
needed for several reasons. First, since the entire system in written in
assembly code, and there are often too many parameters to pass in
registers, they must be passed in store with a pointer in a register.
Secondly, there is a need for data to persist beyond a single procedure
call, for example, the address of the requesting packet must be passed
through to enable the reply to be generated. Thirdly, since a module may
execute in several different tasks while servicing a request, the
parameters cannot be saved on the calling stack. This does not really
constitute a message passing system since an individual module can handle
control blocks in an application dependant manner, and while conventions
exist about the format of control blocks, no general mechanism exists.
Contro)l Blocks are used, therefore, to represent a single transaction,
being passed from module to module as the need arises. This also means
that if the same parameters need to be passed on to another module, this
same control block can be used, aveoiding copying. Modules can place their
own private data, including pointers to other control blocks, after the end
of the defined part of the control block. Control Blocks, it should be
stressed, are by no means universal, there are many modules that have a

straightforward procedure call interface,

The rormal mode! of inter-module interaction is that the calling module
does not regain control until the called module has completed. In a multi-
tasking environment this means that the calling task must be suspended
until the call completes. In a real-time environment events may occur that
require that task to perform some other duty before the call completes.
External procedures should therefore be defined to return control in a
finite time. For some modules the resuit will be available in this time, so

the return is the end to the interaction. Other services, however, cannot
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be completed so rapidly, for example, ring interactions may take an unknown
period to complete. The computation performed in the external procedure
should therefore merely initiate the service before returning. The
procedure may do this itself, or it may schedule an internal task of the

module to do it.

Same time later the module will have finished and will need to supply a
result to the caller (this usually means returning the control block). In
message passing systems this is achieved by sending the message back to
its originating process. This is not what we require, the original task may
no longer have any connection with the request, and in any case we are
attempting to avoid this. We really want to send the result back to the
originating module. This can be achieved by including among the parameters
in the control block a pointer to a procedure in the calling module. To
return a result the called module need merely call this procedure. This is
Clark’s up-call, although I favour the term Reverse Call since ‘up-call’
implies a hierarchial structure, which is not always the case, and the

reverse call need not be made back to the calling module.

Reverse calls are a powerful mechanism and can be exploited in several
ways. The most important development is to include several reverse call
pointers in a control block, these can be used to represent different
completion modes, or can be used by the called module to gain further
infarmation from the caller. Reverse calls are, as far as the called module
is concerned, the same as its external procedures, and the same real-time

constraints apply.

Tasks are used by modules in two ways. First, they are used to allow a
module to sequence its processing of events and avoid synchronisation
problems. In these cases the external procedures and reverse calls tend
to be simple, merely asserting an event flag or incrementing a counter, and
scheduling a task to run. The other purpose is to simply move the locus of
control fram the calling task to that of the module. This is used mainly by
those modules that dea) directly with interrupting devices driving modules.
Reverse calls are made from the device driver into these modules in
interrupt state. To avoid making any further reverse calls here, and
possibly upsetting any real-time constraints on the currently executing
task, these reverse calls are as simple as possible and usually just
schedule a task to make any subsequent calls. This means that above this
level all reverse call procedures can assume that they are executing in a
task that has voluntarily called them, and has not had the reverse call
thrust upon it by being unfortunate enough to be executing while an

interrupt occurred. Some modules exploit this to avoid owning any tasks
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themselves, doing all their work either in the external procedures or in the
reverse calls, even to the extent of making further external and reverse

calls.

An example will show how this works in practice. The modules mentioned
will be described in more detail later, we are interested only in the
communication mechanisms at present. Consider a Nameserver lookup.
These are handled by the module DESC, which is given a Lookup Control
Block (LuCb) by the client containing the name to be looked up plus a
reverse call procedure. In its external procedure DESC allocates an SSP
Control Block (SspCh) and fills in the necessary fields, including the
service descriptor identifier (for the lookup function), a reverse call
procedure, the name and two buffers for the reply each carried by its own
Buffer Control Block (Db, for historical reasons). A pointer to the LuCb
is installed in a spare field beyond the defined end of the SspCh. This is
submitted to the SSPREQ module whose external procedure places the
SepCb on an internal gueue, increments a counter and awakens the module’s
internal task. The SSP external procedure now returns, as does the

external procedure of DESC so the client regains control.

A short time later the SSP task will be run. It takes the SspCbh off the
queue and using the information found there, particularly that found in the
service descriptor, fills in its two Ring Control Blocks (Cb’s, again for
historical reasons), one for transmission and one for reception. These are
submitted to the the respective ring driving modules and the SSPREQ task
waits for the reception request to complete. The actions of the ring

drivers will be described later.

When the reply has been received, or the request timed out, a reverse
call is made to a procedure that reawakens the S5P task. When the SSP
task restarts it examines the return codes in the Cbs and sets an
appropriate one in the SspCh. It then makes the reverse call in the SspCb
back to the DESC module. This uses the data in the two reply buffers,
which are arranged so that the loockup data goes in one and the extended or
transformed name from the Nameserver goes in the other, to construct a
descriptor. The Descriptor Identifier is installed in the LuCb and the
reverse call in that control block is taken back to the client module. When
that call returns the DESC moadule can tidy up, releasing the SspCb and the
three Db’s and itself return to the SSPREQ module, which can now proceed
to the next SSP request.
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This description ignores descriptor caching, so before the DESC module
does anything else it searches the cache. If it finds the name in the cache
it places its identifier in the LuCb and invokes the reverse call. It is
therefore possible for a module to receive the reverse call from a module

it is invoking even before the external call has returned.

7.2 The Modules

This section describes the various modules that make up the High Level
Interface. There are about thirty separate modules comprising about 15K
bytes of code and static workspace. These will not all be discussed. A
schematic representation of the system is shown in figure 7.1, the arrows

represent only the external calls.

HOST | }| BBP
L‘”@ PORT |
TRIPOS
3 pbpeEsc [
)| SSPREQ 3
J TX & RX
5| SSPREP i
DEBUG ] sspseru
|  BSP
LOAD
l 2 FS

Figure 7.1 SuperMACE Modules

7.2.1 The Operating Suystem

The operating system consists of four modules: COORD the task
coordinator, STOREMAN and SMMAN the store managers, and CLOCK the

clock and interrupt handler.
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The coordinator supports a simple multi-tasked environment. A task
consists of a Task Control Block (Tebh) and a stack, which are allacated in
the same memory segment. Each Tcb contains four fields: a link word, a
state byte, the value of the stack pointer when it is suspended, and the
base address of the stack/Tch memory segment. All the tasks in the
system are linked in a circular chain and rescheduling consists of searching
forwards along the chain for one that is runnable. Tasks may be in one of
two states: suspended, represented by a zero in the state byte, and
runnable, represented by any other value. The coordinator has three
external procedures that affect scheduling. The Suspend entry zeroes the
state byte of the current task and enters the search loop. The Release
entry decrements the state byte of the given task ensuring it is non zero
and returns; note that this does not cause entry to the search loop, so
the current task remains in control and it may be called safely from
interrupt routines. The Pause entry simply enters the search loop without
suspending the task. This causes the coordinator to proceed round the
task chain, running any tasks, until it returns to the pausing task which,
still being runnable, is re-entered. This is used by tasks that need to busy

wait, or to force other tasks to run without themselves being suspended.

Once a task is running it cannot be pre-empted and the coordinator will
only be re-entered by an explicit call of Suspend or Pause. This is
exploited in the coordinator by not saving any task state beyond the
program counter, condition codes and stack pointer. Al tasks arrange to
suspend or pause only when they have little or no state to save, which
makes task switching fast. Also, since interrupts have no effect on
scheduling beuond marking a task to be run the coordinator may be
executed with interrupts enabled. Indeed, since the task search loop is
where the system will idle it is essential that this is executed with

interrupts enabled.

Because of the simplicity of this coordinator tasks must take care when
deciding whether to suspend. If suspending depends on some condition that
is set by an interrupt routine the test and suspend must be executed with
interrupts disabled to prevent race conditions. If the condition is set by

another task no such precaution is necessary.

There are two levels of store management supported by the system. At
the lowest level is STOREMAN, which is based on the algorithm in section
2.5 of [Knuth731. It manages large memory segments and is typically used
for obtaining task stack/Tcbh segments, ring reception buffers, large
control blocks and character strings. The second store manager, SMMAN,

is designed to manage small memory segments (3 to 63 bytes) efficiently;
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it is used for allocating control blocks. SMMAN never coalesces free
store, instead any freed blocks are added to a queue of blocks of the same
size; there are, therefore, sixty such queues. When asked for a block of a
given size it first looks at the relevant queue for a free block. If the
queue is empty it carves a fresh one out of a larger memory segment
obtained from STOREMAN for this purpose. If there is insufficient room
in this segment it obtains a new one. The theory behind this is that after
a short time the MACE will gather a "working set" of small blocks and
SMMAN will always find a block on the queue.

The final operating system module is the CLOCK module. This is really
only part of the operating system because the MACE routes all interrupts
through the same vector. The clock interrupt detects Ring and Host
interrupts and passes them on to the relevant routine. The clock itself
maintains a pair of short duration timers for the Ring drivers and a SO Hz
clock for general use. Ticks of the 50 Hz clock have the effect of
scheduling the clock task to be run. Modules may obtain the services of
the clock by submitting a Timer Vector (Tv) containing an enable flag, a
countdown and a reverse call procedure. Each time it is awakened the
clock task examines the chain of Tv’'s and decrements the counter on each
one that is enabled. If any counter goes to zero the reverse call in that
vector is taken. Because the Tv can remain accessible to the originating
module this mechanism makes it extremely cheap to enable or disable a

timer or change its counter.

The Operating System of the MACE only supports multi-tasking and store
management. This does not mean that a module must do everything else
itself as modules can be supplied to handle such common activities as queve
management, synchronization and event handling; it would even be possible
to implement a Tripos-like message passing system, although this has not

been done.

7.3 The Ring Drivers

The MACE Ring driving modules, TX and RX, present a somewhat novel
interface to the ring. This interface is designed to allow protocol
packages to exert some control over the reception or transmission of basic
blocks, To see why this is necessary consider the reception of a BSP
block. The first four bytes of the block are protocol information and the
final destination of the rest is dependant on these. For example if the
input command were DATA the rest of the block must be put into data

buffers, unless the control, or qualifier, bit is set in the command, in
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which case it must go into a different set of buffers. If the first
command is RESET, CLOSE or EXPEDITED [INTB21 the rest would have to
be put in yet another set of buffers. If we are to avoid any unnecessary
copying of data it is essential that it be put in the correct buffers from
the beginning, which can often only be done after some of the block has
been received. It is wrong for the ring driver iteelf to interpret the
format of a protocol specific block, so the reverse call mechanism is used

to ask advice of the protocol handler.

To see how this works, consider a ring reception. A reception is
initiated by a client submitting a Ck to the RX module. This control block
contains the station and port numbers on which to listen, a timeout, plus
three reverse call procedures: Fail, End and BufferRequest. It also
contains a number of other fields whose use will be made clear later. This
control block is added to one of sixteen chains depending on the bottom

four bits of the port number.

When a basic block comes in the reception driver receives the header and
port numbers and searches for a matching control block. If one is not
found the reception is aborted, otherwise it checks the Immediate Data
Size field. If this is non-zero it receives that many bytes into another
field in the control block before calling the BufferRequest procedure. The
client module now briefly regains control and using the data already
received can perform any validation or make any decisions necessary. When
this procedure returns it must tell the ring driver either to abort the
reception or where to put the rest of the block. This last is done by
returning a Buffer Control Block. The ring driver proceeds to insert the
rest of the block into this buffer until the either the buffer is full or the
block is finished. If the buffer fills up before the block ends RX makes a
further call on the BufferRequest procedure. It continues in this manner
until the block is finished. If the client module has performed validation
or made decisions on the first call of BufferRequest it is unlikely to want
to do this again. To avoid this it can use two BufferRequest procedures;
when the first is satisfied with the block it can replace the pointer to
itself in the Cb with a pointer to the second, which can be a much simpler
routine. When the block has been successfully received the return code is
installed in the Cb and the End procedure called. The contral block is not
removed from the port chain by the driver, if this is required the End
procedure must do it explicitly via an external call. This is an optimisation
that allows protocol handlers to leave control blocks in the chain and avoid
the cost of linking and unlinking them. AN Inhibit bit in the control block

prevents the driver considering it when searching for a match.
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If the reception fails or the request times out the Fail routine is called
with an appropriate return code. Although the definition of BBP does not
strictly allow clients to be told about failed receptions this must be
allowed here since the BufferRequest routines may already have committed

resources to the block and the client module must be given a chance to tidy

up.

The interface to the transmission module is almost identical to this. The
transmitter has no need to perform validity checks or decide which buffers
to transmit out of; such things can be decided before starting the
transmission. The same interface is retained because of its flexibility and
because it allows the same data structures to be used throughout the
system. Consequently data may be transmitted directly from the control
block, reverse calls are made to obtain further data, and control blocks
may be left with the transmitter in an inhibited state. Internally control
blocks are kept on a circular chain around which the transmitter proceeds,
ignoring the inhibited ones. The header of a block is retried sixteen times
in the face of errors each time the Cb is encountered and if it does not
get through a count in the control block is decremented and the
transmitter proceeds on to the next Cb. If the count reaches zero the
transmission is deemed to have failed. This strategy has the effect of
spreading the retries out in time, increasing the possibility of the header
getting through while preventing the MACE from wasting too much time on
unsuccessful retries when transmissions to other stations may get
through. Packet level retries of this sort are handled by the driver, block
level retries must be handled by the client module. Retries can be
accomplished in the Fail procedure simply by clearing the inhibit bit in the
Ch.

The parameters of a buffer are its size, base address and type. There
are two basic types of buffer: Local and Host, which indicate whether the
buffer is in the MACE’'s memory or the 68000's. The size and address are
always expressed in byte quantities, this allows buffers of both types to
be manipulated by higher levels in a type independent manner. It is only in
the ring drivers that they are finally differentiated. This causes a
problem for the MACE when the buffers are in the Host, because not only
is the Ring a 1B8-bit device, but the DMA hardware works in 16-bit
quantities. For full generality buffers must be allowed that start on odd
or even addresses and are an odd or even number of bytes long. This also
implies that a buffer may run out, and the next start, in the middle of a
ring packet. Combining these three gives eight possible cases to be dealt
with. Fortunately this does not mean that eight separate sections of

driving code must be supplied. The transfer of the bulk of the block may
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be reduced to two cases, that where packet and DMA boundaries agree, and
that where they are staggered. This leaves the end effects to be dealt
with. These too can be reduced to a smaller number of cases, some of
which are only trivially different and can share code. Unfortunately no
two combinations of beginning, middle and end cases turn out to be
identical. The driver must therefore determine the current combination
when starting a buffer and look up in a table the correct sequence of
routines to deal with it. RAccess to local memory is much easier and is byte
oriented, so handling the cases for local tuype buffers reduces to a couple

of tests at the beginning and end of a transfer.

7.3.1 The Protocol Handlers

There are six separate protocol handling modules in the system. At the
lowest level is BBP, the Basic Block Protocol module. This presents a much
simpler interface to the Ring Drivers and will handle block level retrys and
multi-block transfers. It is not used by any of the other protocol

handlers and merely exists to serve the Host's basic block requests.

At the next level are three modules to deal with SSP protocoal. SSPREQ
handles SSP requests, SSPSERY waits for SSP requests to arrive and
SSPREPLY generates SSP replies. The interface to these modules is
designed so that they can generate OPEN or OPENACK transactions, using
the protocol type field in the descriptor to decide which. This facility is
only used internally. These are all multiple instance modules, and it is

customary for each client to have its own private instance.

Also at this level is the Fileserver protocol module, FS. This only
implements the READ and WRITE operations, these being the only ones that
do not conform to normal SSP. If the MACE were to implement the full
set of Fileserver primitives it is best done via a module that makes use of
SSPREQ and FS.

The final protocol handling module is BSP. This is divided into four sub-
modules according to function. BSPEXT contains not only the external
procedures of the module but the reverse call procedures invoked by the
ring drivers and clock handler. Most of these routines perform a simple
manipulation of the Byte Stream Control Block (BsCbk), set an event flag
and release the modules internal task. BSPROOT contains the main loop of

the task, examining the event flags each time it is awakened and performing

. aony necessary actions. Among the things implemented here are the stream

RESET and CLOSE interactions and the decoding of commands in received
basic blocks. The remaining two modules, BSPIN and BSPOUT, are the input
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and output state machines. This implementation of BSP will be covered

more fully in a later section.

7.3.2 The DNescriptor Module

Descriptors are handled entirely by the module DESC, which is also
responsible for Nameserver interaction. The only real sources of
descriptors are the Lookup function and the SSPSERV madule, which must
generate reply descriptors. Al descriptors are entered into a hash table
indexed by their descriptor identifier. Additionally all descriptors obtained
via Lookup are entered into a second hash table indexed by the name under
which they were looked up. The Lookup function first tries this table to
see if it already has the name and if a match is found returns the given
descriptor identifier. An external procedure is supplied to create a reply
descriptor for use by the SSPSERY module.

Descriptors are always referenced by their identifier, both by the Host
and internally by the MACE itself. When a module, for example SSPREQ,
needs to obtain the service information it calls an external procedure,
DescFind, to look up the identifier in the hash table and return o pointer
to the descriptor. The client can now extract the information it wants
but it will not retain the pointer; if it needs this information again it will
repeat the mapping. The principal reason for this is that a side effect of
DescFind is to refresh the timeout on the descriptor. Descriptor timeouts
are decremented once per second by a routine called from the clock

handler.

A descriptor identifier is a sixteen bit value. This address space is sub-
divided into a ’system’ area from 0 to 1023 and a ‘'user’ area from 1024
up. System descriptors are those that the MACE has looked up for its own
purposes, and User descriptors are those that the Host has looked up for
itself. At start of day there are four system descriptors available, for
the Lookup, Reverse Trace and Own Name entries of the Nameserver, and

for the local machine.

7.3.3 The Host Interface

This is in the hands of two modulest HOST and TRIPOS. The HOST
' module contains two tasks plus an interrupt routine. The interrupt
routine, when called, sets o flag and releases the Request task before
returning. When the Request task runs it reads the Host request vector
into a fixed area and decodes the function. HOST implements the interface

described in Chapter 4 so if the function code turns out to be one of
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those it submits the necessary request to the BBP module. A fourth
function code is now also possible, which causes the HOST module to hand
control over to the TRIPOS module.

The TRIPOS module is only concerned with the first four bytes of the
request, the first is the function code, and the next three are the BCPL
address of the Tripos packet that caused this request. It uses this to
obtain the function code from a known offset in the packet. This is looked
up in a hash table from which it gets the number of argument bytes the
function requires plus the address of a procedure to handle it. It reads
all the required arguments into a fixed buffer and then calls the
procedure. This will set up all the necessary control blocks and call the
necessary modules before returning. Some time later a reverse call will be
made back into the TRIPOS module to generate the reply. This procedure
can free all the control blocks and construct a reply in a Reply Control
Block. Replies consist of the address of the originating packe’tl, plus
sixty four bits of results, which will be installed in the two result words
of the packet by the Host device driver. This control block is placed on an
internal queue in the HOST module and the reply task awakened to deal with
it.

7.3.4 Miscellaneous Modules

In addition to the major modules described so far there are several

lesser, support, modules that require a mention.

Once the coordinator and store manager have set up the environment the
firet module entered is ROOT. This is responsible for getting the system
going by calling the initialisation procedures of all the modules that
require it. The simplest way of destroying any state information the MACE
contains between reincarnations of the Host system is to simply restart
it. Al the initialisation procedures must therefore fully initialise the
static state of of each module. Some things are not initialised in this way,
the last port number used and the last user descriptor identifier in

particular, so the new incarnation will not use the same ones as the old.

The modules LOAD and DEBUG implement the loading and debugging
primitives described earlier. These constitute a second command interface
driven by the ring rather thon the Host, and consequently work in much the
same way as TRIPOS.

1 The request handling procedure had to ensure that this was preserved
through to this point. This is usually done by tacking it onto the end on
a control block.
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7.4 BSP and the Intelligent Interface

There are a number of problems associated with implementing BSP in an
interface processor in an efficient manner. Most of these arise from the
desire to avoid copding and to place the data in the Host where it will be

of most use to the client! in its ocwn buffers.

The general buffer handling scheme employed by MACE BEP has already
been described. The MACE will only send a DATA command when it has at
least enough data in hand to fill a buffer of the negotiated size; it will
send a NODATA when the total drops below this threshold. Similarly it will
only send a RDY when the total outstanding buffer size is above the
negotiated block size and will send a NOTRDY when it falls below. This is
essential in the input case, since there is no way of knowing what size
block the other end may send so the MACE must be ready for the largest.
It is not, however, necessary in the output case, and the MACE could
legitimately send blocks smaller than the negotiated size if it has the data
in hand. This is not done partly because it can waste bandwidth and partly
because it may be useful for the client to build a single block out of
smaller buffers by submitting them ocne at a time to the MACE. An example
of this might be marshalling the parameters for a Remote Procedure Call.
It is perfectly within the MACE’s rights to save data in this way since if
the client does want the data sent it could issue a push. These

considerations result in a slightly altered state table, shown in figure 7.2.

Thiz threshold mechanism can result in an unfortunate effect on the
reception of data. The MACE will block the flow of data with a NOTRDY
when the size of its buffer pool falls below the threshold. If this is part
of a pre-negotiated transfer for which the Host has submitted buffers of
precisely the right size then the quantity of data that the transmitter
has to send will exactly fit in the buffers. It will never be sent, however,
_ resulting in a possible deadlock, even if the transmitter has a push behind
it. This is a fault of BSP, which implements flow control in block units
whereas the Hosts often want to do it in byte units. To avoid this the
Host could lie to the MACE about the size of the last buffer, rounding the
total up to a multiple of the negotiated block size. If the transmitter is
not going to send more than the Host expects this is safe, since the extra
bytes in the buffer will not be over-written. But if the acknowledgement
to the block before the last is lost, the transmitters retry will fill up the
entire buffer, including the extra ’‘phantom’ bytes. The only safe way of
doing this is to round the buffer size up to the next multiple, or add an

extra dummy buffer at the end to do the rounding.
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State
Event
E N I
ELrepl Retransmit Retransmit Protoco!l
DATA(Nn-1)~/ RDY(n)/DATAC(N) NOTRDY(n)/ Error
RDY(n) NODATA(n)
Return Buffers Return Buffers
(Input only)
Elfexpl n +:= 1 n +:= 1
BuffSize{BlockSize? Protocol BuffSize<(BlockSize?
DATAC(N)/ no: yes: no: yes:
RDY(n+1) Transmit| Transmit Error Transmit] Transmit
RDY(n)7 |NOTRDY(n)/ RDY(n)/ [NMOTRDY(n)/
DATA(Nn)Y |NODATA(N) DATA(Nn) [NODATA(N)
Goto E Goto N Goto E Goto N
Nlexpl Return Buffers No Action
(Qutput only) Protocol
NODATA(n)/
NOTRDY(n+1) Error
Goto I
No Action BuffSize{BlockSize? No Action
Buffer no: yes:
Transmit| Transmit
Arrived RDY(n)/ |NOTRDY(n)~/
DATA(n) NODATA(N)
Goto E Goto N
Retransmit Noe ARction No Action
Timeout RDY(n)/DATA(N)
Idle Protocol Protocol Transmit
Handshake
Timer Error Error RDY(n)/DATA(N)
Expires
Goto E
Notes:

n is the block sequence number (mod 18).

BlockS1za is the number of bytes in a block of the negotioted size.
aﬁff81z. is the number of bytes of buffering in hand.
e

never a buffer arrives or is returned BuffSize is adjusted accordingly.

Fiagure 7.2 Modified BSP State Transition Tohble

Arnother problem is concerned with the possible events following the loss
of a basic block. Consider two machines, A and B, running a byte stream
between them. A sends a DATA command, which fills up all B’s buffers
causing them to be returned to the client. B sends back a NOTRDY, which
gets lost and never arrives at A. The timeout in A will eventually expire
and A will retransmit its last block, the DATA command. In conventional
implementations B would receive this block into a standard buffer, identify
it as a repetition and retransmit the NOTRDY in response. It can do this
because it always keeps this fixed buffer ready , and copies data from it

inta client buffers as necessary. The MACE, on the other hand, transfers
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data straight into the client’s buffers, and if it has none of these in hand
it cannot receive the block. It will therefore abort the reception of this
block which will cause A to retransmit again after a timeout. This will
continue until either B’s client submits more buffers or A gives up and
shuts the stream down. Note that if there are buffers available the
repeated block will be received into them successfully, but the next proper

DATA block will overwrite it with no harm done.

The solution to this is to define an extra buffer type to be give to the
RX module in the BufferRequest procedure if it ever runs out of buffers.
This buffer is a sink and tells the device driver to throw the data
received away. This is quite safe because A should never send genuine data
unless there is enough buffering to have caused B to send a RDY command.
The only important part of the block as far as the BSP module is
concerned is the first four bytes, and these have already been received

into the control block when the first BufferRequest call is made.

Arnother area where the buffering strategy causes problems is in the
treatment of control, or qualified, data. BSP has the facility to mark the
data in a block with a ‘control’ or ‘qualifier’ bit, allowing it to be treated
specially by the clients. If a single set of input buffers are used it is
possible for ordinary and control data to be mixed in a single buffer. To
prevent this a separate set of control buffers must be supplied by the
client. When transmitting these buffers are simply put into the data
stream and care taken not to mix them with ordinary data. Effectively
this means that a control buffer has an implicit push in front of it and one
behind (if the client is doing things properly these pushes will be present
anyway). On the input side the control buffers must be kept in a separate
" queuve and data diverted to them when the control bit is detected in the
BufferRequest procedure. These buffers cannot contribute towards the
total size of buffering available because of the possibility that only
ordinary data will be sent. The MACE may find itself in a position where it
has enough control buffers to accept a block but insufficient ordinary
buffers and must send a NOTRDY. The data flow will be blocked, even if
the other end has a block of control data to send next, which could, in
theory, be accepted. The only way to avoid this is for any client that
expects control data to give the MACE enough ordinary buffers so as not
to block the flow.

Most BSP implementations handle RESET and CLOSE by adding extra
states to one of the data flow state machines and disabling the other
during the exchange. This somewhat obscures the true structure of the

augmented state machine and since RESET and CLOSE are relevant to the
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whole stream this is the wrong place to handle them. MACE BSP uses a
higher 'Super State’ which is driven directly by the events that occur in
the stream. Some, like InputBufferReady translate directly into events in
the relevant data flow state machine. Others, like BlockReceived or
IdleTimeout, cause events in both state machines and others, like
RemoteReset, have no direct equivalent. The result of this is a simple and

elegant protocol handler.

7.5 Host Software

The High Level Interface required some changes to the Host's software.

Several problems arose from this.

7.5.1 The Ring Device Driver and Handler Task

The original device driver for the 68000 was designed to drive the
request/reply vector interface of SPECTRUM. It did this by copying
certain field of the Tripos packet sent to it into the Request Vector
before interrupting the MACE, and copying fields out of the reply vector
into the packet on the return interrupt. The driver also put all packets
sent to it onto an internal gueue, and searched this queuve for the packet

when a reply was generated. This was primarily a debugging aid.

The driver was converted to interface to the mew MACE program largely
by deleting the argument copy and the packet queue. Now it simply places
* the address of the requesting packet in the request vector before
interrupting the MACE. When the MACE interrupts back the reply vector
will contain the packet address plus the two reply words., These are
installed in the packet, which is usually returned to its origin., The MACE
is able to specify in the reply that the packet is not to be returned to
origin but is to be dropped. Here the driver sets the destination field to
point back to itself and sets the link field to NotInlUse. This is used
solely to implement the Ring Handler compatible cancellation feature, which
is defined to cause all cancelled reception request packets to be dropped in

this way.

The removal of the Ring Handler Task presents a couple of problems.
First, the task identifier of the ring handler is obtained by client
programs from a well known location in the operating system’s data
structures. The TaskId is normally placed there by the handler itself when
it starts. In the new system we want to place the device identifier of the

device driver there instead. The driver caould place it there in its
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initialisation routine, but since this number is fixed when the system is
linked it is simpler to initialise this location then. Because the ring
handler was a well known task it was alsc used to locate the BSP handler
task. When it started up the BSP handler would plant its Taskld in the
Ring Handler’s global vector. Any task that needed to communicate with it
would examine this same global location. An alternative to this must now be
found. There are two possible mechanisms; the first is to allocate another
well known location similar to that used to find the Ring Handler. A more
cesthetically acceptable mechanism is to set the BSP handler up as a

pseudo-device and use the standard mechanisms for finding it.

7.5.2 The BSP Handler Task

To allow Tripos to use the MACE implementation of BSP with the minimum
of alteration an interface must be supplied that will transparently replace
the existing BSP Handler. The most desirable state of affairs is to
remove the BSP Handler Task entirely and run the byte stream directly
from the client task. Unfortunately this is not possible since there are
some asynchronous events (Remote RESET and CLOSE, and returning
buffers) which, owing to the limiting nature of Tripos’ message passing
system, could not be handled transparently. A BSP Handler Task is

therefore still required.

To the client this BSP Handler present an identical interface to the
original, based on Tripos streams. Indeed most of its effort is directed
to this end rather than interfacing to the MACE. Internally the handler is
entirely event driven by the arrival of packets from the client and from
the MACE. The actions prompted by a packet are determined solely by its
type, and possibly its return code; there are no timers or state machines

involved.

MACE BSP can easily be used directly from a client program if it is
written to do this. To this end a small library of interface routines have
been written to aid in this. The most important feature of this library is
that it must be allowed to take a look at all incoming packets before the

client so that it can filter out any that belong to it.
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7.6 Performance

This section gives the results of some performance measurements.

5.1 Basic Bloc erformance

To allow comparison of raw throughput between the High Level Interface
and the previous two interfaces the same experiment has been performed
of transmitting one hundred full sized basic blocks to various destinations.

Some of these figures are reproduced from chapter 4.

Destination
Source
SINK SPECTRUM Tupe 2 SuperMACE
SPECTRUM 341 321 341 334
Type 2 367 353 356 3585
SuperMACE 318 288 318 315

Figqure 7.3 Comparison of Raw Throughput

These show that the High Level Interface is slower than SPECTRUM by
about the same factor as that program is slower than the Type 2. This
reduction is not really surprising since SPECTRUM is optimised to an
extreme extent and could not maintain this rate if it had to do high level

protocol processing as well.

c.6.2 SSP Performance

That connectionless protocols benefit from being moved into the MACE
can be demonstrated with a Nameserver interaction. Four experiments
were carried out to lookup an unknown name (“XYZ") in the Nameserver
using different mechanisms. The reason for looking up an unknown name
was, first, to prevent it being cached by the MACE Lookup entry and,
second, because the Nameserver responds more rapidly. A fifth experiment
supplied a valid name to the MACE Lookup function to demonstrate the

effect of caching. The results are given in figure 7.4.
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Method Lookups Milliseconds

per second per Lookup
Tripos SSPLIB Lookup.Name Function 88 11.36
DIY using Basic Blocks 155 6.45
MACE SSP Function 185 5.40
MACE Lookup Function 1569 6.29
MACE Lookup with name in cache 400 2.50

Fiqure 7.4 SSP Times

It can seen that the MACE functions are consistently superior to the
Host. The form of the experiment is to time how long it takes to do five
hundred Nameserver interactions; experiment two achieves its figure by
setting up its buffers and packets before timing starts and re-using them
each time whereas the others treat each lookup as a separate instarnce.
Experiment 2 is a substantial program while the others are essentially a

single statement to the client.

7.6.3 BSP Performance

The first experiment here involves driving BSP via the standard stream
interface using the BCPL wrch and pdch routines. This is exactly how all
clients of BSP use it and the results of this experiment show what
practical improvement can be expected. Three experiments were conducted
in each of the four possible arrangements of BSP Handler Task (BSPH)
and MACE BSP. Experiment 1 was to transmit 100K bytes in full sized
blocks, containing 2044 bytes of data each, resulting in the transmission
of 51 blocks. Experiment 2 was to transmit 100K bytes in 64 byte blocks
which each contained 124 bytes and resulted in the transmission of B2E
data blocks. Experiment 3 was to transmit 1652 bytes in three packet
blocks. This last resulted in the same number of blocks as in experiment 2
but with the minimum number of bytes of data in each. The purpose of this
experiment was to discover how quickly the protocol implementations can
dea)l with protocol events while not obscuring the figures with copy or
transmission times. Remember that for each data block sent an
acknowledgement must be transmitted in the opposite direction. The times
taken did not include the time to open or close the stream. The results
are shown in figure 7.5 converted to Kbits/second in experiments 1 and 2,

and to block exchanges per second in experiment 3.
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Experiment
Source Destination
1 2 3
A BSPH BSPH 35 21 83
B BSPH MACE 45 31 86
C MACE BSPH av 22 66
o} MACE MACE 77 66 295

Figure 7.5 BSP Throuahput
(L and 2 in KBits/second, 3 in block exchanges/second)

The results in column one indicate that the MACE can perform more than
twice as fast as the BSP Handler so long as the other end of the stream

is equally as fast.

Experiment 2 deals in the same quantity of data as experiment one, and
therefore suffers from the same overheads of data copying in the client.
The difference is in the number of data blocks sent; a factor of sixteen
greater. As expected the transfer rate is lower since the stream must
work harder, the point of interest is the difference between the figures
far this experiment and experiment 1. The difference in line A is 404
while that in line D is only 15%. This shows that the per-block overheads
in the MACE are substantially lower. The figures for experiment 3 show

that they are at least a factor of four better.

Lines B and C give us a valuable clue about where this difference is
critical. The figures in line C are close to those in line A, and line B tells
us that the BSP handler is capable of a better transmission rate than in
line A. This tells us that the limiting factor in lines A and C is the
destination protocol package. This limitation is the speed with which the
destination can process an incoming DATA block and get the next RDY back

to the source.

The above experiments were carried out using the stream interface,
which involves a byte-by-byte copy of all the data using procedures at
both source and destination. If we eliminate this and drive the BSP
Handlers directly at the Tripos packet level we can discover the raw
throughput of the stream. We can do this by simply returning buffers to
the stream as fast as possible, not even bothering to fill or empty them.

Figure 7.8 give figures for an experiment similar to 1 abave.
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Destination
Source
BSPH MACE
BSPH 50 81
MACE 52 318

Fiqure 7.6 Raw BSP Throuabput in KBits/second

The interesting figure here is that for MACE to MACE transfer which is
the raw throughput of the MACE given in figure 7.3. The overheads of
protocols processing have become totally insignificant compared with the
time taken to transmit the datal . These figures also indicate where the
gains were made in the first set of experiments. Assuming the copy and
transmission times were constant the improvements were made solely in
reducing the amount of time spent in the protocol package. This

demonstrates just how much CPU time the BSP Handler actually consumes.

MACE BSP can also be driven directly from the client program by
exchanging blocks with the MACE device driver. Doing this, however,
produces no better figures than the 318K bits/second produced by going
through the dummy BSP Handler. This figure was produced by breaking the
rules of Tripos and could never be used in practice. Driving ths MACE
directly does allow this throughput to be achieved and has the added
advantage that the client can submit any number of buffers of whatever

size he wants.

7.6.4 Fffects on the Host

There are two measurements that can be made on Tripos to determine the
effect of the High Level Interface: the change in system size, and the

amount of work it has to do for any particular task.

The version of Tripos that uses the High Level Interface (MACE-Tripos)
is about 9 Kbytes smaller than the normal Tripos system. Approximately
EK bytes of this derive from the reduction in code size: reductions in the
device driver and Bsp Handler Task, and the elimination of the Ring Handler
code. The the other 4 Kbytes is the result of the removal of the Ring

Handler Task stack, global vector and other data structures. This

1 This is more an findictment of the MACE hardware than evidence of
efficient software.
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reduction is not really important in a 512 Kbyte machine whose memory is

rot fully utilised anyway.

The difference in workload on the Host is somewhat more difficult to
measure. The best way of measuring this is to record the length of time
each task in the system executes for the duration of a particular activity.
Unfortunately the only measure of time available is a 50Hz clock, and most
tasks execute at any one time for much less than this. The best we can do
is to run a task at maximum priority that wakes up every 20ms and records
those tasks it has interrupted. By doing this over a period of time a
reasonably accurate picture of the system’s behaviour can be built up, with
due regard for Heisenberg's Principle. The results of running such a
program are given in figure 7.7. Experiment 1 was to type the contents of
a 16 Kbyte file on the terminal and is a good way of exercising the whole
system. Experiment 2 was to transmit 200 Kbytes of data down a byte
stream to a sink running in a MACE system and using a program that drives
the BSP Handler directly. Experiment 3 was to transmit 200 full sized
basic blocks to SINK.

Experiment
Task 1 2 3

T N I A I VR

Idle Task 56.49 68. 46 59.33 82.40 91.88 97.93
Task 1 19,86 18.14 1,189 2.62 2.43 1.76
Task 3 9.23 11.10 0.04 0.41 0.290 0.07
Task 4 0.65 2.680 2.07 a.55 .86 0.22

Task 5 4.80 - 1.62 - 5.07 -

Task B 8.93 1.47 37.72 4.00 9.33 -
Elapsed Time 48.76s 40.62s 46.86s 10.40s 10.66s 10.34s

asks:
Command Task
Console Task
File Handler Task
Ring Handler Task (Not present in MACE system)
BSP Handler Task

nwunnm

aNDWrH

Fiaqure 7.7 Comparison of Per—~Task CPU Utiltzation Percentaqes

Apart from the complete elimination of the Ring Handler Task the main
difference is in the time the BSP Handler runs. It is also interesting to
note that the extra CPU cycles freed by the High Level Interface are
almost all absorbed by the Idle Task.

Arother measurement that can be made is of the number of task switches
that occur during an activity, These can only be measured by making a

small change to the Kernel to increment a counter in the Tcb of a task
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each time it is entered. This is only one instruction, so the perturbation
of the system is minimal. The measure is of actual task switches and rnot
packet receptions or transmissions, which may not cause rescheduling.
Invocations of devices are not counted, because they are called as
subroutines of the invoking task, but the results of a device interrupt are
counted if it causes a task switch. Figure 7.8 shows the results for the

same three experiments.

Experimant
Task

Suitches Normall : MACE Normal : MACE Normal 3 MACE
Tripos Tripos Tripos Tripos Iripos Iripos
Idle Task 728 653 286 234 246 219
Task 1 2290 1628 4683 452 446 236
Task 3 1734 1875 188 28 34 26
Task 4 370 247 61 34 42 26

Task 5 3335 - 1911 -- 526 -
Task B 4923 1666 1190 433 193 35
Total 12480 5776 312% 1181 1397 542
Elapsed Time 40,66s 49. 34s 39.87s 18.15s 18,728 10.24s

Fiqure 7.8 Comparison of Task Switches between Normal and MACE Sustems

The totals for each experiment show that there is a reduction of between
fifty and sixty percent in the total number of task switches. Most of this
difference is due to the removal of the ring handler, although the BSP
handler task also exhibits a significant reduction in the number of times it

is entered.

7.6.5 Inter~-Machine Communication

A potential bottleneck is the overheads associated with getting commands
fram the Host to the MACE arnd replies back. A simple test, using a MACE
function that does nothing but generate a reply, indicates that about 800
commands can be exchanged in a second. This compares with a rate of
2000 packet exchanges per second between two Tripos tasks. In none of
these experiments were commands exchanged at anything near this rate, so

it did not constitute a limiting factor.
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7.7 Discussion and Conclusions

The figures in the previous section show that, using the same hardware,
implementing a higher level of interface in the MACE improves system
performance. Since the raw throughput of the High Level MACE is less
than that of the Type2 and SPECTRUM this increment must be derived

from other factors.

Is this improvement due to the increases in MACE functionality, or is it
caused by some other, more mundane, feature? We have moved the protocol
implementations from a high level language to hand crafted assembly code
and would be surprised if this did not result in an improvement. Is the
second processor really necessarg, and would we not get the same
improvement by implementing the protocols in machine code in the Host? In
answer to this we must bear in mind that the BB09 is a slower processor
than the 68000, has a less powerful instruction set, and inter-machine
communication is a factor of three slower than inter-task communication.
These would tend to put the MACE code at the same level as BCPL in the
68000, so any comparison in other areas should be approximately

equivalent.

A Processing Server running Tripos is not the best machine on which to
base our observations. It is a single user system and while a little
asynchronous activity does exist it is largely a single program one too.
Therefore when a ring interaction is performed there is little work the
machine can do while it is waiting for it to complete. The result of this is
that a processing server tends to spend most of its time idle, even when it
is in theory working hard. Increasing this by a few percent is no greot
achievement. More genuine gains would be observed in a multi-user
timeshared machine that has other users to service while waiting for a ring
interaction to complete Here the system overheads in the Host are also
much greater and reducing these can only be an advantage. In the
Cambridge environment multiple client service machines like the Fileserver

or the Filing Machine would also gain in performance.

In addition to reducing the amount of work the Host does in order to
operate a protocol, there is the additional advantage of reducing the
length of time spent in protocol related processing. This is where the
customised environment in the NIP is of advantage. The use of o separate
processor also allows this processing to be carried out in parallel,
removing it from the critical path. The improvements seen in the

performance of Tripos lie almost exclusively in this category.
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It is interesting to note that we find in the MACE BSP implementation
an example of the general buffer chaining mechanism we were striving for
in the Type 2. There it was somewhat unsuccessful whereas here it is not
only successful but the most natural way to do things. What is the
difference? Largely it is a matter of implementation chaining being too
complex for the limited abilities of the Type 2. The major infelicity,
however, lay in what to do with errors. If, for example, an error occurred
while processing a buffer the Host had marked to be dropped the Tupe 2
was presented with a dilemma: should it return the buffer with the error
report, or drop it as ordered, making the Host do a lot of work to find out
what happerned. The MACE avoids this problem by always returning buffers.
BSP is also different from Basic Block protocol in that there are no real
errors to be reported back to the client, buffers contain return codes

that are for information only.

A workable basic block chaining scheme, based on a mixture of the Type 2
mechaniem and the MACE BSP mechanism could be devised. In a High Level
Interface that outlaws Basic Block Protocol this is not what we want. It
would be more useful to be able to submit buffer chains to functions like
SSP and Fileserver reads and writes. Internally the MACE already uses
buffer chains for all these purposes, so the change is only in the
interface. However only a few special agpplications will need such a
facility, we should not force simple applications to use is too. This would
only allow static buffer chains, which could not be added to once submitted,

because the MACE would slave the entire chain in its own memory.

The special chaining mechanism required by the Fileserver, allowing it to
add new buffers while the transfer is in progress and to cucle the same
buffer several times between ring and disc, is a different matter. This is
best achieved by maintaining the chain in the MACE only, and cycling

buffers through the inter-machine communication mechanism.

Even this may not be necessary, we have seen that the MACE BSP
protocol implementation can deliver data as fast as the Host can itself
using raw basic blocks. It would be possible to perform all file accesses
using a byte stream interface. A distributed filing system being developed
at Cambridge is going to do exactly this. The advantages of using BSP in
this way are similar to those described in chapter B under debugging. The
protocol handles errors and retries without the Host’s intervention, and
the flow control allows data to be read off, or written to, disc as fast as

it will aHowz

2 Here the disc unit is slower than the ring, but this smoothing factor will
work equally well in reverse.
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SuperMACE gains its speed primarily by never copying data, which is
itself achieved by switching buffers in mid-block. It is worth emphasising
that this ‘trick’ is only made possible by the unigue features of the
Cambridge Ring. The use of busy backoff as a primitive flow-control
mechanism gives the MACE the necessary time in which to find and setup
the next buffer. Such a thing would be almost totally impossible with a
retwork that shared the medium with a much larger grain size, or did not
return any information to the transmitter. To the author’s knowledge the

Cambridge Ring is the only LAN that has the required properties.

The internal structure of the MACE, using the Reverse Call mechanism to
effect inter-module communication has proved to be worthwhile. It started
as a simple mechanism to allow protocol packages to control the reception
and transmission of their blocks and make validity checks on the fly.
Extending it throughout the system was an experiment, which in the
author’s opinion, has succeeded in that the resulting program is both more
efficient and simpler than if message passing or worker processes had been
used exclusively. A contributing factor to this is that the entire system
is written in assembly code, which gives the author complete freedom over
program and data structures. The mechanism can, however, be implemented
in arny language that allows modules and procedure variables, for example
Modula-2 [WirthB801,

The MACE system has avoided any of the problems of inter-task
sunchronisation by employing a non-preemptive coordinator. For genuine
real-time response it must be possible to preempt low priority activities if
favour of higher ones. This kind of preemption goes on to a small extent
in the MACE whenever an interrupt occurs; synchronisation problems are
solved here by turning interrupts off for a short period whenever shared
data is accessed. The requirements for synchonisation are relatively small;
a simple implementation of semaphores, for example, would meet the needs

adequately and efficiently in a preemptive system.

The entire system only works because all the programs have been written
with the time constraints in mind, There is no easy way to enforce these
and remain efficient. Attempting to extend this mechanism to a general
purpose operating sustem, where reverse calls into untrustworthy user
programs would have to be made, may not be totally successful. On the
whole reverse calls are really no more than an interesting design method
for self contained, real-time, systems, we should not try to push it too

far.
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Chapter 8

Further Aspects of a High-Level Interface

This chapter covers those aspects of High Level Interfaces not covered
in chapters six and seven. These features have not been implemented
because of lack of time, hardware or because they are inappropriate in the

currert environment. OFf necessity this chapter is somewhat disjoint.

8.1 Cambridge Specific Features

There are several aspects that are specific to the Cambridge
environment or the Ring alone. The loading and debuggaing requirements of a
processing server have already been discussed. Here I wish to cover the
MACEs role in resource management and authentication, and examine how
the BSP implementation might be enhanced to a network independent

Transport Service.

8.1.1 Resource Management

Processing servers are allocated by the Resource Manager (RM). To
enable RM to retrieve and reallocate machines when they crash a "dead-
man’s handle" is worked by the processing server. If this is not worked
for some timeout period the machine is reclaimed. The handle consists of
an SSP exchange every thirty seconds or so; this is clearly a cardidate for
removal to the MACE.

Merely arranging to send an SSP to RM every 30 seconds is of little use.
The Host can easily crash without affecting the MACE, which will continue
working the handle regardless, keeping the machine allocated. To avoid this
the MACE could maintain a timer which is reset whenever a command is
received from the Host. If the timer expires the MACE can assume the
Host has crashed. Unfortunately this does not always work, the Host may
be involved in a CPU intensive computation, and may not use the Ring for
some time. The MACE would not be able to detect the difference between

this and a genuine crash.
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The solution is for the Host to maintain a dead-man’s handle to the
MACE. Most of the time the operation of this will be implicit in the
exchange of reguests, only when the Host has not used the Ring for some
time will an idle exchange be necessary. To prevent the Host having to
maintain a timer of its own, the initiative for the exchange should come
from the MACE. This may be achieved by the Host giving the MACE a
packet to use for this in the same manner as Remote Resets and Closes
are implemented in BSP. The Host merely need to bounce this packet back
to the MACE whenever it is sent. Note that this bouncing should not be
performed in the interrupt routine, it is likely that this would survive a
higher level crash of the machine. The packet should instead be delivered

to a reasonably high level in the system to ensure that it is still alive.

At first sight this does not appear to gain us anything. We have simply
replaced one dead-man’s handle by another one. If we consider, however,
what the MACE should do in the case of a Host crash we find that this is
not so. The initial reaction, to tell RM to release the machine, is not
correct, since the user may wish to debug it and find out why it has
crashed. The MACE should therefore keep the handle going while the
debugging is being done. It should not, however, keep the handle going if

there is no intention to debug; the following mechanism accomplishes this.

When the MACE believes the Host has crashed it reports this fact,
either by sending a message to the system log or by communicating with a
~ well known debug service. At this point it stops working the dead-man’s
harndle to RM. If the user is not going to debug the machine RM will
eventually reallocate it; this is no worse than when the machine works the
hardle itself. If the machine is to be debugged a byte stream for this
purpose will be connected into the MACE. When this happens the MACE can
resume the dead-man’s handle for the duration of the debugging session.
When the stream is closed the MACE can hand the machine back to RM, or

cortinue if the user has managed to fix up the prablem.

This mechanism allows the user the RM timeout period in which to get a
debug service and connect in to the MACE. It also means that any other
time-dependent connections the machine has, particularly the terminal byte
stream, will not be lost, and if the machine is allowed to continue it wil) be

in the same state.
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8.1.2 Authentication

The Cambridge Authentication system is described in chapter 2. To
support this the Host normally maintains a "Fridge”, the purpose of which
is to refresh the timeouts on any UID-sets placed in it. The Fridge is
clearly a candidate for removal to the MACE for the same reasons given in

the previous section.

Authenticated versions of both the the OPEN and SSP protocols have
been defined, [JohnsonB82l. It should be simple to enhance the relevant
modules to handle these as well. The Host can reference UID-sets using
UID-set identifiers and should quote one of these whenever making an
authenticated call. Likewise any UID-sets in received reguests can be

detected and removed, a UID-set being returned in their place.

The automatic validation of received reguests, while possible, is probably
rnot a good idea. This is because the Host may not want the validation to
be carried out immediately, or may want to try the UID-set ocut against
several authentities. It makes more sense, therefore, to supply an explicit
validation function that takes two UID-sets as arguments. The first UID-
set provides the PUID/TUID pair to be authenticated and the second the
authentity under which this test should be made; these may, of course, be
the same UID-set.

The MACE should also supply the Identify function of the AOT, which
takes and entire UID-set and checks that it is represented as a single
entry in the AOT. The AOT has three other functions: Refresh, GetTUID
and Enhance. Refresh is implicitly provided by the Fridge, and need not be
supplied to the client explicitly. The other two are used by authentication
authorities. While it is unlikely that authentication servers will be
implemented in processing servers, it is possible that a static service (the
Filing Machine for example) will be an authority. The protocols used
between an authority and its client are not at present well defined, so the
MACE would not be able to extract or insert UID-sets. These protocols
are best left, then, to being implemented explicitly by the server itself
using the SSP entry. The service will, of course, be able to use the Fridge

for storage.

Finally functions must be available to allow clients to examine and install
UID-sets in the Fridge. Since we are not concerned here with protecting
the mechanism from the user, it has its own in-built protection, this is
acceptable. Attempts to install invalid UID-sets in the Fridge will be
detected when the first refresh is attempted, so they can be evicted.
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B.1.3 Traonsport Service Compatability

In chapter 5 it was mentioned that the protocol level implemented in the
NIP should rnot go beyond ISO 0SI Transport Service. At present the
MACE BSP implementation does not go even this far. Of interest here are
the "Orange Book" [INTB2] V-service and N-service definitions.

MACE BSP is already close to V-service (which is BSP under another
name) lacking only the ability to include user data in the RESET and
CLOSE exchanges, and the EXPEDITED message tupe. The latter can be
implemented as a couple of extra super-states, and both changes require
the addition of an extra buffer tupe (with associated internal queues).
This would also require enhancements to the Host interface, partly to
include the Expedited functions, and partly to bring the existing functions
in line with the standard. The OPEN exchange must also be altered because

V-gervice expresses the negotiation sizes in bytes while BSP uses packets.

The N-gervice enhances V-service to the full Transport Service defined
in [BTB80]. It does this by imposing a message structure on the the
service. Raw data is still sent in the same way but various control
messages are defined to occupy the data fields of the OPEN, RESET,
EXPEDITED and CLOSE messages. These may also extend to following data
blocks with the gualifier bit set. The ADDRESS N-service message is not
directly associated with any V-service message but occupys a block with

the qualifier bit set.

A major obstacle to implementing N-service efficiently is that it
requires all parameters to be divided up into fragments of less than B4
byte each for transmission. While it would certainly be possible to
fragment or reconstruct parameters on the fly by clever use of reverse
calls and Buffer Control Blocks, it would require the BSP module to be
made N-service specific. Fortunately this is not necessary as some of the
N-service parameters (Called Address, Calling Address, Recall Address
etc.) are of interest to V-service in order to establish the call.
Consequently these must be read into the MACE. If all the parameters are
read inta the MACE the fragmentation or reconstruction can be carried
out in store. Control messages are likely to be rare, so the overheads
associated with processing them in this way will not be too restrictive, the
bulk of data can still be transferred at full speed. This arrangement also
means that N-service can be implemented as a simple layer on top of V-

service.
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8.2 The Hardware of a High Level Interface

With the experience of having written ring driving software for two
separate sets of hardware it is possible to make some suggestions for the
hardware of an improved NIP. Some of the foliowing features were
designed and implemented by J. J. Gibbons in the GIZMO [GibbonsBlal which
itself influenced the design of the MACEZ2. Both these machines were
6803 based and it was originally intended that the program described in
previous chapters would be transported to at least one of them. This has

not been done.

The most important feature to be added is vector DMA hardware so that
Ring to memary and memory to Ring transfers can be carried out without
the NIP’s intervention. This also means that automatic checksumming is
necessary. Vector DMA is simple on reception, a memory cycle is performed
on demand each time a ring packet arrives. Transmission is more
complicated since it is possible for a previous packet to need retrying.
The speed will come from the pre-fetching of data into a buffer to await
transmission. Data will only be transferred from here to the ring when the
previous packet has been sent succeés-?ullg. To avoid involving the NIP in

the process the retrys must be done in hardware.

The hardware to do this pre-fetching and retrying is known as the
Forward Transmit Buffer (FTB) [GibbonsBlbl. In addition to automating
the transmission process it allows any machine to which it is fitted to gain
a little more point-to-point bandwidth. A program driven interface is only
able to use a ring packet at maximum once every ring revalution plus two
packets. In theory it is possible to reduce this to a revolution plus one
packet, but no program is fast enough to test the response bits and give
the next packet to the station in the few microseconds necessary to
achieve this. With the next packet already buffered, and hardware to test
the responses this is possible. As an example, consider a ring with 80
bits, this will have two packets and a gap of four bits, a program driven
interface can achieve about 1 Mbit/s transmission rate, an FTB can
increase this to 1.35 Mbit/s.

The MACE has to go to considerable trouble to concatenate buffers that
are oddly aligned with respect to memory words and ring packets. The size
of DMA transfers and ring packets should be independent, so on
transmission data should be moved a byte at a time from the memory to the
ring, transmissions and DMA transfers being performed on demand as the
buffers fill and empty. This can have the unfortunate effect of losing the
‘next packet’ advantage if the ring and DMA sizes disagree, or they get out
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of step. A possible alternative is to replace the buffer by a byte wide
FIFO with enough room for several packets and cause a DMA transfer

whenever there is room for it.

The GIZMO was fitted with a Byte Swap Unit [GibbonsBlel which not
only allowed buffer concatenation, but allowed the bytes of a packet to be
swapped over. This was to cater for machines whose byte ordering in a
word was not the same as that on the ring; this could lead to confusion
when transferring integer values from one machine to another. It should
be noted that while the byte swap unit does what is reqguired for 16-bit

values, it does not solve the problem of 32~ or 64-bit ones.

So far most of the hardware support has been for transmission, can
anything be done for reception? Nothing equivalent to the FTB is
necessary, but a buffer concatenation unit would be. There are also a
couple of useful things that could be done in hardware. First, the search
for valid header packets can be automated. The hardware is given a bit
pattern and a mask, it receives packets until one is received that matches
the bit pattern after masking. The source address of the packet is
automatically transferred to the select register and only then is the NIP
interrupted. The second optimisation is for when an unwanted black is to
be rejected by setting the select register to zero for a short period. A
piece of hardware could, when enabled, set the SAR to zero at the same
time set a counter (or a mono-stable circuit). When the count reaches
zero the SAR is reset to select anybody and the header search hardware
enabled., Neither of these will increase data transfer speeds, but they do
absolve the NIP of some work. This is particularly true for deselection,
the length of time this needs to be done is so short that it is easier to do

it in a busy wait loop rather than set up a clock timer.

Turning away from the ring for the moment, a potential bottleneck in the
system is the Host/NIP interface. The BBO00D/MACE packet exchange rate
of B00 commands a second is adequate when large buffers are being used,
but it is of no use when we want to transfer small quantities of data at
speed, for example when driving a VDU in single character mode. Part of
the problem is the need to do two DMA transfers. One of these could be
eliminated if a pair of parallel I/0 ports were provided between the two
machines as in the Tupe 2. An even better solution would be a small
quantity of shared memory, which would allow simple commands to ke

transferred in one go.
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Sa far vector DMA hardware has only been considered for the Host
memory to ring path. Such hardware would also be useful for transferring
data from the NIPs cwn memory to the Ring or vice versa. This would
enable the NIP to use the FTB and checksum hardware, and to maintain the
same data throughput. Vector DMA cannot be used as a straight
replacement for the simpler single packet interface of the MACE and Type
2 since there is still a need to transmit and receive single packets to deal
with header and port packets. Vector DMA between the NIP memory and
Host memory would also help with the Host Interface, this would require
DMA hardware at both ends. A schematic of a possible configuration is

shown in figure B.1.

Transmit ¢ FTB & ¢ Read
Data 1 BCU N Data
L_csumM 1}
Recieve 3 N Write
Data ¥ BCU _— < Data
S csuy Read
R T
N7 "
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G é HSU II
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Legend;

BCU: Buffer Concatenation Unit

CSUM: Automatic Checksum Unit

DMAC: Direct Memory Access Controller
FTB: Forward Transmit Buffer

. HSU: Header Search Unit (and Deselect Unit)

PTM; Programmablie Timer Module

Fiqure 8.1 Possible High Level Interface Hardware

The MACEZ is designed to cater for large timeshared computers, and to
this end it also has a large buffer store between it and the Host. This is
so the Host does not have to keep many buffers locked down in store for
the MACE to receive into. Instead all data is received into the buffer
store and is transferred from there into the Host when a buffer is
available. If the MACEZ processor has easy access to this memory it could
use transfers to and from this to replace DMA Transfers using its ocwn
memory. The buffer store does have the disadvantage, however, that it

introduces an extra copy operation in the pipeline.
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The cost of such an interface should not be unduly high. Most of the
components are small- and medium-scale TTL, the expensive parts being the
DMA controllers, the NIP’'s memory and the processor itself. These are
likely to be overshadowed by the cost of the software development, both in
the NIP and in the Host machine.

Future LANs will operate at transmission speed an order of magnitude
greater than the Cambridge ring (e.g. the Fast Ring [Baner jee831). The
design of a NIP for such a network may need to be significantly different
to cope with the greater real-time requirements. The Cambridge Fast Ring
already contains hardware to do the jobs of the FTB and BCU, and so

would be a more suitable device from which to start.

B.3 Security and Encryption

If the data to be shipped between machines on a network is of a
sensitive or secret nature the sender wants to ensure that it is only read
by the intended recipient and is protected from unauthorised access. Since
there is no way of preventing physical access to the network it must be
assumed that anybody can listen to any communication going on and, more
seriously, interpose a computer of their own in any communication path.
The only secure means of transferring data under these conditions is to

encrypt it.

It has been suggested that encryption be performed in the network
interface and material encrypted on transmission and decrypted on
" reception. This has been rejected [Needham7B] because one needs to be
able to multiply encrupt an item, or oattempt decryption with several
different keys. This objection is based on the assumption of an un-
intelligent or low level network interface. If we have a High Level
Interface, into which we move all encryption duties the objection is
removed. Indeed the only reason multiple encruption, and decryption
attempts, are necessary is to implement key-passing protocols, in which the

Host is now no longer involved.

It is undeniably useful to be able to encrypt or decrypt data on-the-fiy
as it is received or transmitted. When the secure connection has been set
up this is exactly what we want. Positioning encryption units in the main
data paths will achieve this (in figure 8.1 they would probably be combined
with the Buffer Concatenation Units). This assumes that suitably fast
hardware encryption units are available. DES [DES75] chips are available

that can encrypt a B4-bit block in 5§ microseconds using a 56-bit key.
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These can be configured with external hardware to operate as byte-by-
byte stream encruptors. An interesting feature of this configuration is
that for both encryption and decryption the chip works in encryption mode

only.

Placing the encruptors in the main data pipelines gives the NIP the same
problems that caused the original objection by Needham and Schroeder.
There are two ways of allowing the NIP multiple encryption and decryption.
The most elegant solution is to provide it with a third encryptor, possibly
cross-connecting two of its own DMA channels to allow asynchronous
operation. If encryption units are at a premium (which they arguably
should be), arrangements could be made to pass data through one of the

pipeline encryptors when there was no transfer going on.

The NIP is can now implement any Key passing protocols necessary. To
show how this would be achieved consider how a secure byte-stream might
be established between two clients, A and B. For the purposes of
ilustration we use a modified form of the protocol and notation from
section 4 of [Needham781.

To the Hosts the interactioms used would be identical to those to
establicsh a non-secure connection. The decision that this is a secure
communication need not lie with the Hosts and may be a property of the

service description. The first interaction therefore is:

A —> NIP,: B, Parameters L

The parameter field should not contain any sensitive information, merely
some initial parameters to allow B to decide whether to accept the
connection. If A has communicated with B before it may have cached a
connection key already, which would be stored in the description along with
the messages to be sent initially to B: [ CK , A KB, If there were no
cached key the NIP would have to cbtain a new one from the Authentication

Server with the following interaction:

NIP,—> AS: A , B , I, 2)

HS-—)NIPH:[IF”,B,CK,ECK,H]KBJKH (3
I,, is a transaction identifier, which is generated by the NIP for this

transaction only, KA is A's private key and KB is B’'s private key. Note

that since the NIP knows that this message is going to be encrypted with
KA it can decrypt this as it is received. CK and [ CK , A KB can now be
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cached for later use. The NIP rnow transmits the following message:

NIP,— NIPg: [ CK , A 1¥® , [ 1., 1°% , [ Parameters 1% (4

As far as A is concerned this can be encrypted on-the-fly, the first
part does not need to be encrypted, and the latter two parts are
encrypted once with CK as they pass out of the machine. This is also a
candidate for on-the-fly decryption provided the message can be identified
as secure connection attempt from its header. It is known that the first
part of the message will be encrypted with KB so this can be set in the
pipeline during reception. Once this part has been received CK can be
removed from the newly decrypted data and set in the pipeline decryptor to

receive the rest of the message.
NIPg now performs the following exchange with B:

NIP, ->» B: A , Parameters (5)

B

B — NIPB: A , Results (B
And returns the following message to NIPH:

NIP, —> NIP,: [ I I. 1°K |, [ Results 1°K (7

B Az ¢! B

Again this can be encrypted/decrypted on-the-fly. NIF’ﬁin turn does:

NIF’ﬂ -> A: Results (a8
The results indicate whether B will accept the connection. If the
connection is rejected the exchange stops here. If +this happens

NIF’H cannot retain CK in its cache since it is now known by another
service. If this was genuinely B there is no problem, but an eavesdropper
could have used the interaction so far to obtain CK with the intention of
listening in on a subsequent conversation between A and B. If B accepts

the connection the NIP, responds witht

NIP 16K (9

—> NIPg: [ Ig

A

The connection is now established, any subsequent communication may be
carried out with CK set in the pipeline encryptors during transfers. It is
interesting to note that in this protocol we have used only on-the-fly
erncryption. This has been possible because at all stages we have either

known beforehand which key to use, or have been able to extract it from an
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earlier part of the same message. Placing the encryption unit in the Ring
pipelines has turned out to be no great disadvantage, and if we restrict
ourselves to authentication protocols that can exploit on-the-fly
encryption we can dispense with memory-memory encryption entirely. This
also shows us that at the lowest level keys should be associated with data
buffers, and not with entire blocks, allowing different parts of the block
to be encrypted with different keys. It should be easy to arrange that
when the NIP switches buffers it also switches the current key. This is
why some of the messages above (4 and 7) show two parts of the message
encrypted with the same key, these are not coalesced because they

originate from different buffers.

The usual method of checking the validity of an encrypted block is to
include in it a checksum of the data it contains. Like basic block
checksums this can be calculated by hardware and transmitted or validated
on-the-fly. This is necessary if we are going to remove it from the data-

stream, and catch invalid communication attempts early.

The NIP is only concerned with using encryption to establish interactive
_ connections across the network. There are many other opplications of
encryption: secure mail, digital signatures, cryptographic sealing
[GiffordB11, which are outside its domain. These are more suitably
implemented in the Host processor, although there is no reason for the

NIP not suppluying an encryption service to the Host for these purposes.

This example uses secret key encryption; public key encryption does not
lend itself so easily to similar treatment. This is partly because at
present public key algorithms are unsuitable for hardware implementations,
and software implementations are slow. Also, once the secure connection
lhas been established all data transferred has to be encrypted first with

the secret key of the sender and then with the public key of the receiver.

8 ystomise IPs

The MACE program described in chapters six and seven was designed for
general purpose use by a processing server. There is alsoc the possibility
of producing NIP programs that are tailored to the needs of special
purpose Host machines. These would typically be static servers such as

the Fileserver or the Filing Machine.

The Filing Machine is a typical example. It has no need of BSP but makes
heavy use of S5P and SSP based protocols. The advantages of
implementing the Filing Machine protocol in the MACE have already been
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mentioned. The service end of this protocol is only necessary in the Filing
Machine itself. FM is also the only machine that can make full use of the
Fileserver protocols. A MACE program could be put together which

implement these protocols exclusively.

Similarly the Fileserver only needs the service end of the Fileserver
protocol. Here we could probably go further and include validation and
function decoding, and keep the tag field in the request in the reply

descriptor to prevent it being passed around the Fileserver itself.

8.5 The Use of Stable Storage in a NIP

It is generally considered useful that machines that engage in network-
wide transactions should have a quantity of stable, crash-proof, memory at
its disposal. This may be used to, for example, store the commitment state
of an atomic transaction. This is often supplied by disc storage and
+ conventional multiple copy techniques. Where the expense of a disc is too

much, or is inappropriate, other techniques must be used.

The requirements of staoble-storage are that it be immune to both
software and power failure. Resistance to power failure can be achieved
either by using a memory medium that preserves its state without power
(e.g. Bubble memory) or giving it a standby power supply using batteries.
Immunity to software error can be achieved by preventing it being
accidentally written. The technique given in [NeedhamB831] allows the stable
memory to be read in the same way as any other part of the address space,
but only written if the previous content of the location is inserted in a
special register first. The paper describes this in terms of a microcoded
machine, but the same technique can be applied in hardware by a purpose
built memory board. There are a couple of disadvantages to this. First, it
is Host specific, a new micro-program or memory board must be implemented
for each different machine type. Secondly if many locations contain the
same value, and this value is in the special register, a rogue program may
be able to write nonsense over much of the stable memory with little
effort.

An alternative is to install the stable memory in the NIP. A Host
specific interface must be implemented for this in any case, once this has
been done the stable storage will become available at no extra expense and
in exactly the same way on all machines. The formality of communications
with the NIP provides the protection necessary against software failures,

and since we can put some trust in the NIP software the stable storage
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need rot be protected against reading and writing in an arbitrary manner.
Indeed if we are rnot concerned about protection against power failures the
stable storage need be no more than a reserved area of the NIPs normal
RAM. At the other end of the scale we can give the entire NIP a reserve
power supply, so if the Host loses power it can report the fact. It can
even take measures to dump the contents of the stable memory to a

Fileserver before the batteries run out.

Finally it should be noted that stable storage is only useful to certain
types of machine. These are machines that, when they are restarted, will
be performing the same job, for example static servers and personal
machines. Gtable storage of this kind is of little use to a processing
server since it is uncertain whether a crashed program will be reloaded
into the same physical machine. A limited amount of such storage would be
useful to the NIP itself, however, to keep the port number sequence,
descriptor cycle etc. Here only a few butes are necessary, and can be

supplied easily.
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Chaopter 9

otocols and Clos etwo

This chapter discusses two issues associated with Intelligent Interfaces.
The first is the influence a NIP may have on the design of network
protocols, and the second is the possible advantages to be gained by the

universal use of NIPs in a network.

9.1 Protocols and the Intelligent Interface

So far we have only considered implementing those protocols that have
already been in use. Sometimes the protocol is designed in such a way that
it is difficult to implement it in a NIP, BSP is an example of this. We can
also consider implementing protocols in the NIP that would be too costly or
impossible in the Host. In this section I wish to consider two protocols

that are designed for an implementation in the NIP.

9.1.1 Remote Procedure Call

Interactions of a reqguest/reply type are handled in the Cambridge
environment by Single Shot Protocol which is a limited form of Remote
Procedure Call. This only implements at-least-once semantics because the
failure of the protocol is detected by the expiry of a timeout, and the only
recovery is to retry the request. Any service that is accessed by SSP
must therefore be defined in such a way that any operation is idempotent.
This is often not possible, for example: if an OpenFile request to the
Fileserver fails and the retry produces a reply of ‘File already open’ the
client does not know whether this is because the reply to his previous
otherwise successful request was lost, or because some other client has it
open. At-least-once semantics are at odds with the ‘natural’ view of a
procedure call, which guarantees that the operation has been performed
exactly once if the call returns., It would ease the application
programmers burden, and allow modules to be made local or remote in a
transparent manner, if an RPC protocol were available that guaranteed
exactly-once semantics. For a full discussion of the issues involved in

Remote Procedure Call see [Nelson811.
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Imposing this model on the interaction requires that the service can
differentiate between original reguests and retries. This is achieved in
some systems, for example Courier [Xerox81lbl, by employing a stream
protocol as the basic data carrier. This guarantees that the requests and
replies are delivered exactly once without error by handling all flow
control, error recovery and retries itself. In consequence the RPC
protocol layer is merely a message structure imposed on top of the stream.
If the client is going to make repeated calls on the service over a short
period of time this is adequate. If the client only wants to make one call,
however, it would be needlessly expensive to create a stream for the

purpose.

An alternative approach is to enhance the simple message exchange
protocol towards reliability. One means of doing this is to include a Unigue
Identifier in the request. The server records the UID of each request it
receives and if any repeats arrive they can be discarded. By using a
system-wide sequence number Shrivastava and Panzieri [ShrivastavaBl]

only need to keep the last sequence number received.

This mechanism deals adequately with a lost request, and prevents the
service performing an operation more than once. It does not help the
client to recover from a lost reply. This can be achieved if the server
caches every reply it sends; then if it gets a repeat request it simply
returns the cached replu. In theory the server must cache every reply it
has ever sent since it does not know how long the clients timeout is. In
practice this can be reduced to just the current set of Remote Calls if
the client returns an ackmowledgement to the reply. Since it should do
this immediately the timeout used by the server to detect the failure of
this exchange can be small; if it does fail the server must retransmit the
reply message. If the acknowledgement was lost the client will not have an
outstanding call with that UID attached. By deriving the UIDs from a
monotonic sequence the client can decide whether the UID was used
recently and either generate a suitable acknowledgement or return an

error message to the server.

Detection of a lost request still relies on the expiry of a long timeout.
This is unsatisfactory for two reascns. First, the client must wait the
entire timeout period before retrying; in theory it should be able to
retransmit the request at once if it knew it had been lost. Second, the
service is forced to meet this deadline; this often results in a timeout
value much larger than necessary, making the client wait even longer when
failures cccur. This is exacerbated if the service must itself make remote

procedure calls to other services, since their timeout periods must be
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added on to the time for the service. We can overcome this in exactly the
same way as we overcame the loss of repliest by returning an
acknowledgement to the request. Again the timeout on this exchange can
be short, and retries rapid. If the request was lost the retry will start
the operation as required. If the acknowledgement was lost the service
will already have the UID in its cache and can generate the
acknowledgement while throwing the repeated request away. This scheme
has the advantage that there is no need for an overall timeout on the call,

which may take as long as necessary.

So far we have dealt with lost packets only; for the protocol to be
complete it must also be able to deal with machine crashes. The server will
detect that the client has crashed when it attempts to reply: the client
will not have that UID as an outstanding request. To avoid confusing this
with the case of a lost reply acknowledgement the client must keep the
firest UID it used in the current incarnation in stable storage. Any reply
whose UID lies between this value and the current one is the result of a
reply retry; any other value indicates that the reply was from an orphaned
call of an earlier incarnation. The server can use the result of this
response to decide whether to commit any changes it has made as a result

of the call, or to undo them.

A crash of the server is not so easy to detect with the protocol as it
stands, but if we introduce an idle-handshake between client and server
every thirty seconds or so, both ends can discover early whether the other
has crashes. Since most calls will be of short duration it is unlikely that

the idle handshake will be used frequently.

Since this protocol is implemented entirely in the NIP the Host machines
see an interface identical with that of SSP, consisting of just three
functions: RpcRequest, RpcService and RpcReply. The client should see no
difference in performance between this protocol and SSP since the request
acknowledgement is delivered in parallel with the execution of the service,
and the reply acknowledgement is delivered after the reply has been passed
on to it. The server will see a slight degradation in the time taken for
the RpcReply function since the NIP ’‘caches’ replies by simply not
returning the reply buffers to the Host until the acknowledgement has
arrived. If the service expects to generate a reply almost instantly a
slight optimisation can be made in which the servers NIP witholds sending

the request acknowledgement, making the reply serve the purpose instead.
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The full advantages of this protocol are only available on a machine with
a NIP that will do all the protocol processing in parallel. The protocol is
. only four messages, however, and is much simpler than BSP which is the
only other means of guaranteeing safe delivery, so it should be easy to

implement on single processors and simple machines for compatability.

This protocol should not be confused with the fully type-checked, highly
etructured RPC mechanism of Courier, or described in [NelsonBll. A
closer analogy would be that this protocol is to that form of RPC what a
jump subroutine instruction is to normal procedure call. It is a primitive,
unstructured mechanism that maoy be used as it is for speed, but may be

built upon to achieve something more elaborate.

9,1.2 A Stream Protocol

Some of the problems associated with the implementation of BSP in an
intelligent interface were described in chapter 7. These are largely a
result of its original derivation from wide-area protocols such as X.25.
Two important infelicities can be identified. First, the restriction to
fixed sized blocks is unnecessary in a NIP based protocol, and leads to the
threshold mechdnism employed in the MACE. The Host should be able to
submit data buffers of any size that is convenient and expect it to be
delivered, and not be trapped in the stream by an unfortunate choice of
buffer sizes. Secondly, every block of data sent must be acknowledged
before the next is sent. This is done in the interests of simplicity and
makes the protocol safe at the expense of bandwidth (it should be
mentioned that this was a conscicus design decision). 0On a LAN where the

error rate is expected to be low this practice is largely redundant.

An alternative stream protocol to BSP can be devised with the following
properties: flow control is at a byte rather than block level, and data may
be transmitted on the assumption that it will arrive safely, special action
is only taken when it does not. An exampie of such a protocol is now given.
The intention in giving this protocol is to show how the deficiencies in BSP
might be overcome and is therefore presented for the purposes of

ilustration only.

The stream is a full duplex bi-directional channel, although the following
description considers just one direction only. The format of a stream
message is shown in figure 9.1,

The stream starts up with SegNo, AckNo and Credit set to zero. Whenever
the receiver is given a buffer it sends a message to the transmitter with

the Credit field set to the new size of the buffer pool. The receiver may
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sernd a message to the transmitter at any time. When the transmitter
receives a buffer of data from its Host it examines the outstanding credit
from the receiver and if this is non-zero transmits as much of the buffer
as it will allow, incrementing the sequence numbers in the blocks
accordingly. If the Host wants to know that the data has been delivered
the transmitter sets the RequestAcknowledge bit in the flags field. If a
message from the receiver with the AckNo value equal to or greater than
the sequence number of the last byte sent is not received within a short
period of time the last message is retransmitted. Normally this bit will
not be set, and acknowledgements will flow back to the transmitter with
any data travelling in the opposite direction. The Host can specify an
EndOfMessage bit, which is equivalent to the Push bit of BSP, and which

causes the RequestAcknowledge bit to be set too.
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When the receiver gets a message it checks that SeqNo is equal to the
sequence number of the last byte it received plus one. If it is less then
this is a retransmission, and indicates that an acknowledgement was lost,
so the receiver transmits another acknowledgement. If it is equal then
this is the next message in sequence and it increments AckNo by the size
of the data in the message and decrements the Credit; if the
RequestAcknowledge bit is set it transmits an acknowledgement. If the
SegNo in the message is greater than expected then the previous message
has been lost, and the receiver sends an acknowledgement with the
SequenceError bit set. When it receives such a message the transmitter
restarts transmission of all daota after the last byte acknowledged. Since
the error message itself may have advanced AckNo this will normally result
in the retransmission of just the message that was lost and the one that

provoked the error.

Buffers are returned toc the Host at both ends whenever AckNo advances
past their last byte. When the transmitter has no more data to send or
the credit is zero, the stream will be idle and no messages will normally
flow. To detect a crash of a machine during this period an idle exchange
can be produced if the transmitter sends a message containing no data but
with the ReguestAcknowledge bit set. This will force the receiver to
respond; if it does not (and it should do so immediately) then a crash of
the receiver is indicated. This also allows new credit to flow from the

receiver to the transmitter when there is no data to send.

To enable the Hosts to send contral information without defining escape
sequences in the main stream the transmitter should be able to mark, or
qualify, certain data buffers as Control data. The receiver should put any
messages whose data is so marked into a separate set of buffers. As in
BSP these control buffers cannot contribute towards the credit, but
neither can they have their own flow contro} since they should retain their
position in the stream. There is nothing to stop them having their own
credit, however. Whenever the receiver gets a new control data buffer it
sends a message to the transmitter with the RxControl bit set, SegNo and
AckNo can be the same as usual, but the Credit is the amount of control
buffering available, not the amount of ordinary buffering. When the
transmitter comes across a control data buffer in its input stream it
first ensures that all previous data has been acknowledged by sending a
message with the ReguestAcknowledge and RequestControiCredit bits set.
This causes the receiver to return the Control Credit as described above,
and guards against the loss of credit in earlier messages. Data can now be
transferred in exactly the same way as before. When the transmitter runs

out if control data it ensures that is has all been acknowledged, and
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returns to transmitting ordinary data. The actions required of the
transmitter in switching from ordinary to control data and back are
identical with the exception of the setting or clearing of certain bits. The
only real difference between ordinary and gualified data is the set of

buffers they are delivered into at the receiver.

The advantage of this protocol over BSP is its flexibility; the client can
tailor its behaviour to the application. The frequency of acknowledgements
is an example of this; by setting the RequestAcknowledge bit on every
message we have a lock-step protocol similar to BSP. On the other hand,
by only setting it at the end of a long transfer there need only be a single
positive acknowledgement, although negative, seguence error,
acknowledgements will occur at any time. In this mode the protocol can be

used for high speed bulk data transfer with little overhead.

It should be possible to implement this protocol simply. The transmitter,
for example, needs to keep just a single queue of buffers. The head of the
queue points to the oldest byte yet to be acknowledged, while a pointer
into the queue points to the next byte to be sent. Whenever a message
from the receiver arrives the head of the queue is advanced and any
buffers returned. The head of the transmitter’'s queue always represents,
therefore, the point to which it must return to retransmit after a
sequence error. The sequence numbers themselves should be large, 32 bits,
as should the credit field. This means that the credit should never grow
to be more than 22! to avoid problems when comparing sequence numbers.
The use of such lafge values makes the stream averheads in each message
larger than that of BSP, by about a factor of three. This is balanced,
however, by not having to return an explicit acknowledgement to each dato
message. As the errors in the network increase this protocol will do more
work thanm BSP since it will tend to retransmit more data each time a
message is lost. The protocol is therefore only suitable for low error

networks.

The message format is devised to allow the receiving NIP to decode it
on-the-fly. In particular it can do the sequence number comparison and
route the data to the correct buffers as the message is arriving. As for
BSP the NIP must maintain two timers: an idle timer which is reset each
time a message is received, and should be long; and a transmission timer
which is reset whenever a message is transmitted, and whose value can be
small. The action to be taken when the transmission timer expires depends
on which end of the protocol this is, and what the last block sent was.
Normally thé expiry of the timer results in no action. If the transmitter

sees a timeout after sending a message with the ReqguestAcknowledge bit
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set it should repeat it; similarly if the receiver sees a timeout after

sending a sequence error acknowledgement it should retransmit.

So far we have considered only an established stream, how should it be
opened and closed? BSP uses an Open exchange that is similar to S5P and
is used to negotiate the message sizes and communicate port numbers. This
stream only need to exchange port numbers, and this can be performed in a
simple interaction. Rather than define a full RPC-like open protocol
specific to the stream protocol the initial connection and user parameter
exchange should be made via the standard RPC protocol. A special exchange
to close the stream is not necessary either, since all that is required is
that both ends agree, which can be achieved by consent at a higher level.
The NIPs must, of course, be able to handle unilateral action, but this

should be treated at all levels as a serious error.

9.2 Closing the Network

Having designed our protocols with a NIP in mind the next step is to
consider what would happen if we placed all machines on a network behind
an intelligent interface. Such a configuration can be called a Closed

Network because it is not now open to direct use (or abuse) by the Host.

The first advantage of this is in the area of protection. We have
already seen how descriptors contribute a degree of protection to a single
machine with a NIP. If all machines are equipped with NIPs then this can
be extended throughout the network. The mechanism can be expanded to
bring the otherwise divergent ‘concepts of descriptor, stream identifier
and UID-set identifier under the same umbrella. Such items are ‘tickets of
permission’ to communicate with a paricular service, use a protocol
instance, or be identified as a particular user. Conventionally these are
known as capabilities [Fabry7?43], and are protected against forgery either
by being encrupted, chosen from a sparse set, or by being hidden from the
user by the operating system or machine hardware. In this case the
capabilities are protected by being stored in the NIP's memory, which is
inaccessible to the Host. Definition of the protocols to include these

Network Capdbilities in messages can greatly simplify the passing of

addresses and other information that is of interest to the NIPs.

Another advantage of the Closed Network derives from the trust one
NIP can have in another. Any messages the NIP receives over the network
are expected to be correct, since they can only have originated at another

NIP. Similarly the NIP knows what will happen with any messages it sends.
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This means that protocols may be designed to be lightweight, and can make
assumptions about the behaviour of the other end because there is no
question of it being a bad, faulty or malicious implementation (this does
not mean, however, that we can ignore the problems of lost messages or
machines?. This can also make security and authentication a little easier:
a NIP can pass things like UID-sets or encryption keys to a remote NIP in
the safe knowledge that the Host will not get hold of it. This feature of
trustworthiness relies on the assumption that untrustworthy nodes cannot
be added to the network. This is valid in networks where the transmission
medium must be cut to introduce new nodes, as in the Cambridge Ring, but
is not in system like Ethernet where a station can be tapped onto the

ether at any point.

A Closed Network will be somewhat more closely coupled than the current
Cambridge Distributed System owing to the unifying nature of the NIPs.
It would not, however, be so closely coupled as a multiprocessor system, or
a "Distributed Operating System" like Amoeba [Tannenbaum81l1, SODS/0S
[SincoskieBO01, Accent [RashidB81l, or Roscoe [Solomon731. This is
because the user remains free to run whatever program or operating
system he desires in the Host, without having to have a fixed protected
kernel or nucleus. A consequence of this is that the NIPs work at a
machine-to-machine level and not, as the adbove do, at a process-to-process
level. On a network where most of the machines are expected to be
personal computers this is not really significant, although support for

multiple processes can be included in the NIP.

9.2.1 Protocols in_the Closed Network

The distributed operating systems mentioned above have a somewhat
restricted view of communications. They all limit themselves to just one
communication protocel: either simple uni-directional message passing or a
Transport Service level stream (Amoeba). This limitation is justified by
the (valid) observation that any other protocols may be built as extra
layers in the Host, or by engineering special cases (Amoeba allows a
"Secure Datagram" to be sent by enabling the stream to be opened, used
and closed in just one message). At the other end of the spectrum lies
the Cambridge Distributed System which relies on convention to prevent

the proliferation of ad-hoc protocols.

This second approach is unacceptable because it tends to imply access to
the retwork at a low level, with the corresponding compromise of
protection. The first approach is alsoc unacceptable because it places the

client in the position of having to do a lot of work, or accept gross
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inefficiencies, if his pattern of use does not match that assumed by the
system implementors. For example, while it is possible to perform remote
procedure calls down a byte stream, or implement a stream protocol using
remote procedure calls, both suffer from a mismatch of application and

protocol.

We must therefore adopt a medium level approach and supply a small set
of protocols whose use can be controlled by the NIP, but which serve the
client’s needs fully and efficiently. This is similar to the problems faced
by a language designer in providing sufficient facilities to allow any
program to be expressed, but few enough to keep the compiler down to a
controllable size. If we consider the mechanisms supplied by most
operating systems to access objects under their control we find that two
are outstanding. Operating systems represent objects either as streams
of records or bytes (files, terminals, printers etc.)? , or as procedures
(0/S primitives, library modules etc.). The most frequently used protocols
in local area networks also happen to be byte streams and remote
procedure calls. This is not really surprising, distributed systems tend to
take their model of the desired operations from conventional operating

systems.

The most suitable protocols to supply, then, are RPC and byte stream
protocals. Those described in the previous section would be suitable.
Pravided the interfaces are defined flexibly enough they should cater for
most user need. There do remain, however, some applications for which
these protocols are inappropriate or too costly. An example of this is the
protacol that is used between the Fileserver and its Garbage Collector to
report new preservations; which uses repeated, unacknowledged
transmission to ensure data delivery. These applications can be catered
for by a simple datagram protocol. This is not the same as giving the Host
access to the basic transport protocol, and can ke as fully protected as

any other protocol.

9,2.2 Network Capabilities

Network Capabilities can be used to represent many things, but all have
severa)l common attributes that must be recognised by the NIP. The first
of these is its type; the NIP will recognise several types of capability and
only allow certain operations on each type. The second is the identity of
the creator, this will usually be the global address of the NIP that
created the capability.

1 That streams are accessed with procedure calls should not disguise the
underlying abstraction.
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The third common attribute is the access field, which is simply a field of
bits some of which are defined by the capability’s type and others of which
may be defimed by the client. When stored in a NIP there should be two
copies of this field: the Local and the Remote access fields. Whenever the
capability is transmitted to another machine it is the Remote access field
that is sent. This allows the client to refine the access in a capability

withaut making a copy, and without losing his own rights.

The last common attribute is a group number which serves two related
purposes. First, it enables the NIP to filter out any messages that are
directed to a previous incarnation of the Host system since the group to
which they are directed will not be valid. Secondly, by allowing the Host to
define several groups it is possible to allow different processes in cne
Host to appear on the network as separate entities and to handle process
crashes by the same mechanism as machine crashes. To ensure that groups
are rot re-used immediately they should be obtained from a monotonic
sequence and the oldest and newest groups in existence recorded in stable
storage. This is exactly the same property required of the UID in an RPC
call, which can now be constructed from the group number of the caller

plus a sequence number.

In addition to the abaove fields there is the tupe-dependent information
that the capability encapsulates. In theory the capabilities can be made of
variable size, but for practical reasons of store management it is
expedient to make them a fixed size with eight or sixteen bytes of type

dependant information. This should be sufficient for most purposes.

9.2.2.1 Protocol Capabilities

Among the tuypes of capability the NIP will recognise the most important
are those that represent the three protocols. A protocol capability
effectively has two forms. In the creator’s NIP it is in local form, and
may not be passed out to any other machine. Attempting to transmit it
elsewhere causes it to be converted into the cemote form. An instance of
a protocol is therefore represented by a single local capability and many

remote capabilities.

These different forms are easily implemented by setting up the local and
remote access fields of the newly created capability accordingly. For
datagram capabilities only the holder of a local capability is able to receive
messages, and possessors of the remote capability are only able to
transmit to it. Similarly the holders of a remote RPC capability are only
able to make calls to the holder of the local capability, which is the only

machine that can receive requests.
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Also associated with RPC are reply type capabilities, which represent the
return link to the caller. The state associated with a current call can be
associated in the client with the reply capability, freeing the local RPC
capability to accept further calls. A useful facility results if we allow
reply capabilities to be passed on: the reply to a request need not come
from the original service. This would be particularly useful for distributed
services, the request is made to the closest or most convenient instance
which passes the regquest on to another part that executes the reguest
and replies. It would also help with the implementation of dynamic

services, which are created only in response to a request to use them.

Stream capabilities are slightly different in that they allow data
transfer in both directions. When a stream is initially created it is in
passive state, and occupys no more memory than it takes to store the
capability. When the holder of a remote stream capability wishes to open a
stream it simply activates it, at which point the NIP allocates any data
structures necessary to represent the stream. It alsoc sends an initial
message to the local end to inform it of the address to be used for stream
messages. If the local capability has also been activated the stream will
be created, otherwise the NIP waits until it is, or reports a failure (this
choice can lie with the client). While the stream is active the remote
capability is fixed in place and cannot be transferred elsewhere. The

stream is closed by deleting the capability.

9.2.2.2 User Capabilities

The protection provided by the capability mechanism may be extended for
the use of clients and servers, and is safe so long as the user created
capabilities cannot be confused with ‘system’ capabilities. It is expected
that the active objects in the system will be represented by one or other
of the protocol capabilities. For example, an open file may be represented
by an open stream between the client and the Fileserver. The purpose of
user capabilities is to name passive objects, and to represent access
rights to them. Such capabilities should have a lifetime longer than a
single incarnation of the service that created them. A Fileserver, for
example, will give out capabilities that represent handles onto files; it will
want to treat such capabilities as valid even if they were handed out by a

previous incarnation of itself.

To segregate user capabilities into separate domains they may only be
manipulated if the client can presént a Tupe capability to the NIP. A Type
capability defines the value of the type field in the user copability and
confers upon its holder certain rights regarding these. Depending on the

access field the posessor of a Type capability is able to examine the
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contents, and create new capabilities of that type. In the absence of a
Type capability the contents of a user capability is protected against both

reading and writing.

While it would be possible to define a general mechanism to allow the
dynamic creation of capability types this is not necessary. The number of
capability types needed in the system is small and fixed, and these types
can be allocated statically by a higher authority than exists in the
network. In this respect they have similar properties to names in the

Nameserver, or Authentities in the present authentication system.

9,2.3 The Transmission of Capabilities

The mechanism for transferring capabilities between machines must be
defined to preserve their protected status; it is not possible to mix them
with ordinary data. We could define a special capability transfer protocol
for this purpose, but this does not match the higher level requirements.
When making a remote procedure call the client will want to submit both
capabilities and ordinary arguments to the service, and expect both in
return. It would be unweildy and expensive to do this with two different
mechanisms, so the standard protocols must be modified to allow capability
transfer. This is best achieved by splitting the message into two parts,
one for capabilities and one for normal data allowing the NIP to extract
the capabilities on-the-fly. While this mechanism is acceptable for
datagrams and RPC, it introduces the added problem of capability flow
control in the stream protocol. However, a stream will largely be used for
bulk data transfer, in which capabilities are not expected to appear. Any
capability transfer needed can be carried out either in the initial open

exchange, or with RPC’s or datagrams in parallel with the stream.

The distinction of local and remote capabilities while at first sight
restricting is exactly identical to the mechanism in use at present; the
remote capability simply encapsulates the address of the local end. Remote
capabilities will under normal circumstances be lodged in a Nameserver for
general access. The exception to this is expected to be stream
capabilities. Any service that is accessed via a stream will present an RPC
interface initially, if it is satisfied with the request it will then pass a
remote stream capability back in the reply. Streams will, therefore, only

be used once.

The restrictions are imposed for purely practical reasons: if the service
(local) end of an RPC protocol instance were moved it would either be

necessary to inform the holder of every remote capability for that
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service, or record its new home in the original NIP so that any request
that arrived for it could be redirected. The first requires that the
creating NIP be informed every time a remote capability is moved or
copied, and generates a lot of traffic when a local copability is moved.
The second can result in a request being redirected many times, and may

even generate loops.

9,2.4 The Nameserver and Initial Capabilities

When a machine starts up it must have some capabilities to allow it to
communicate with other machines; and if it is to have access to a user
capability type it must obtain the necessary Type capability. These can
either be obtained from the Nameserver, or be already present when the
Host starts. The first method allows dynamic binding of names to
addresses, while the second allows the rights and privileges of the client
to be established in a safe way. It is in fact useful to have both these
mechanismes. Initial capabilities may be installed in two ways, depending on
the form of the Host. A machine, such as a processing server, which is
loaded remotely from the network, will receive its initial capabilities in the
loading sequence. Other machines, such as a Fileserver, which bootstraps
from a different source cannot obtain their capabilities in this way. The
capabilities must already be present in the NIP. Specifically, the
capabilities can be stored in the NIP's stable storage and be read out into
the usual capability store when the machine restarts. The capabilities
must be installed in the NIP when the service is initially created, after

this there is no need to change them.

The Nameserver required by this system is somewhat more complex than
the simple static Nameserver in use on the ring at present. It need not,
however, be a fully dynamic Nameserver, allowing the addition and deletion
of names. Instead it must allow the bindings between names and
capabilities to be altered as services move or come into existence. To
prevent the binding being altered by anyone, the Nameserver must support
a user capability tupe which allows a name/capability binding to be altered.
A new capability will only be entered against a name if the requestor can
produce a capability which controls that binding. In general only the
service to which the name applies will need to do this, and will receive the
capability in its initial set. By defining the Nameserver as an RPC service
and ensuring that each machine is passed a capability for this in its initial
set, any dependency upon the design of the Nameserver can ‘be removed
from the NIP.
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9,2.5 Invalid Capabilities

The crash of a machine, its NIP, or an inter-network bridge will render
some or all of the capabilities it has passed out to other machines invalid.
If any of these machines attempts to use one of these capabilities it will
either be unable to contact the owner, or have its communication re jected
because it is addressed to an earlier incarnation. The response of
SuperMACE to a failure of this kind was to attempt to look up the name
again in the Nameserver, if this was appropriate. Since the Closed
Network NIP does rot have any knowledge of the Nameserver this is not
now possible. A generalisation of this mechanism would be to record with
each capability the source from which it was obtained, and generate an
appeal to that address if the capability becomes invalid. However, it is not
possible for the NIP to know what the capability represents to the Host,
or what other information or capabilities the Host had to supply in order
to obtain it. The invalidity of this capability may be a sumptom of a larger
system failure which can only be corrected by alternative or drastic action
at higher levels. This is very similar to the problems discussed in section
5.2.2 regarding on-the-fly protocol decoding; there is no way to convey all
the relevant information to the lower levels which allows them to make the
correct decision in all circumstances. The only useful action the NIP can
take, therefore, is to respond to the Host with an 'Invalid Capability’

return code.

9.2.6 Authentication and Security

The use of protected capabilities greatly simplifies authentication. The
client of a service can be sure that if the capability he possesses for a
service is valid, then it will connect him with a gernuine instance of that
service. Similarly the service can assume that only bona fide clients will
possess a capability for its entry point. The class of access allowed to
the client is modified by the access bits in the capabkility which are also

transmitted in the datagram/request message.

This is only valid if an eavesdropper cannot intreduce bogus messages
into the network. If he can then it is necessary to protect all
communications with encryption. At the least the capability segments of
messages must be encrypted, and if the clients are also exchanging
sensitive data, the data segments too. Since the capability mechanism
handles authentication, we are only concerned here with excluding the
eavesdropper. Encrypted connections need only be established on a
machine-to-machine or group-to-group basis, using the protocol given in

section 8.3. Such connections need only be established between machines
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when they communicate for the first time, and can be timed out after o
period of non-use. This means that the Authentication Server and the
entire encryption mechanism is below the level of the clients, which need

not be aware of its existence.

8.2.7 Systems Aspects

The above description has been given assuming a network-wide system
similar to the Cambridge Disfributed System. A feature of this that does
not transport well into the closed network is the use of small, single task,
computers to implement most of the management functions of the system.
It is not economically feasible to place such a smail machine behind a NIP,
which is of comparable size. While it would be possible to implement such
servers in stand-alone NIPs this is a potential source of protection
breaches. The alternative is to collect all these management functions
together into one larger machine. While this goes against the spirit of
distributed computing, it does have several advantages. First, since this
machine will be of the same type as the processing servers, it reduces the
rnumber of different hardware and software configurations that needs to
be supported. Secondly, the servers can share code for common activities,
for example saving state and, of course, protocol handling. Thirdly, it
allows reliability through redundancy to be included in the system since it
will be easier ta add a second ‘shadow’ machine ready to take over from the

first if it fails.

The operating system installed in the Host is chosen by the user. It may
be a standard operating system like Tripos or UNIX, or it may be a special
system designed to fully exploit the closed network environment. Such an
operating system would undoubtedly have to be capability based, perhaps
using the NIP’s user capabilities to represent its own internal ones in the

absence of memory protection.
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apter 10

Summary and Conclusions

This dissertation has been concerned with the design and application of

Intelligent Network Interfaces.

The first device described was the Tupe 2 which implements Basic Block
Protocol only. An attempt to supply a more flexible interface to this
protocol was made in the provision of buffer chaining facilities. While
these have not proved to be particularly successful the improvement that
the Type 2 contributes to overall performance is clear. The principal
conclusion to be drawn from the Type 2 is that significant performance
gains are to be had in moving protocol processing out of the Host. In this
respect the Type 2 serves to lay the foundations for the rest of the work

described here.

The MACE differs from the Type 2 in that it contains a more
conventional processor; what it loses in raw speed it makes up for by being
more powerful. The first program written for this device, SPECTRUM, was
neither machine independent nor sophisticated, modelling its facilities on
those required by the Tripos operating system. This has had the effect of
reducing the Host software considerably compared with the Type 2,

although the difference in specification is small.

Both these interface suffer from the somewhat simple design of the
hardware, which requires the NIP to participate in each packet
transferred. This is caused partly by the lack of checksum hardware,
which the NIP is required calculate itself on-the-fly, adding a delay before
the next packet can be processed. This delay is not so great for the Type

2 owing to the faster processor, but is paid for with the instruction set.

The bulk of this dissertation describes the High Level Interface. The
advantages of such an approach are threefold. First, the protocol
implementation itself moves to a more benign environment, with a
consequent increase in performance and decrease in complexity, since it can
cooperate more closely with other levels. Secondly, the Host will lose much

necessarily resident, and CPU-hungry, software, releasing more resources
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for other purposes. These both contribute to a better system
performance being perceived by the user. The third advantage is that the
High Level Interface is able to conceal the true nature of the underlying
network and protocols. This makes the Host software independent of

these, and allows them to be altered transparently.

The High Level Interface implemented in the MACE demonstrates superior
performance to SPECTRUM in both the major high level protocols
implemented (SSP and BSP). This is true even though it suffers from the
same hardware infelicities as the earlier program, and cannot take
advantage of the same software optimisations. The improvements cbserved
in Tripos are almost entirely due to the increased efficiency of the
protocol implementation, since the freed CPU cycles in the Host are all
absorbed by the idle task. This leads one to expect that a time-shared

Host would benefit in both areas.

With the expected performance of computers of all types increasing
continuously, any means to achieve this is welcome. The Network Interface
Processor is ohne way of improving the performance of machines connected
to a Local Area Network by offloading the network related processing. As
the cost of hardware decreases, and the complexity of components
increases, this approach becomes more attractive for smaller machines. It
is therefore reasonable to assume that the NIP will become more cammon,
particularly for the larger machines. This leads on to consider the
possible benefits and advantages of placing all the Host computers on a
network behind NIPs.

Several areas for further research present themselves. First, the
hardware design of a NIP needs to be elaborated; the features presented
in section 8.2 have not, at the time of writing, been fully realised. There
is scope here for some exercises in VLSI design, for example: a DMA
controller that may be remotely controlled. The problems of NIP design
for high speed networks must also be addressed. Second, the design of
protocols that exploit the features of a NIP may be developed. Two such
protocols were given in chapter 9: the first used the NIP to provide a
more religble service (RPC) at roughly the same cost as a simpler one
(85P), the second attempted to rectify some of the problems faced in
implementing BSP in a NIP. The third area of research is the full
specification and development of a closed network. The construction of a

network and system based on these principles would be a major undertaking.
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