Technical Report A

Number 460

Computer Laboratory

Message reception in
the inductive approach

Giampaolo Bella

March 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1999 Giampaolo Bella

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Cryptographic protocols can be formally analysed in great detail by means
of Paulson’s Inductive Approach, which is mechanised by the theorem prover
Isabelle. The approach only relied on message sending (and noting) in order
to keep the models simple. We introduce a new. event, message reception,
and show that the price paid in terms of runtime is negligible because old
proofs can be reused. On the other hand, the new event enhances the
global expressiveness, and makes it possible to define an accurate notion
of agents’ knowledge, which extends and replaces Paulson’s notion of spy’s
knowledge. We have designed new guarantees to assure each agent that the
peer does know the crucial message items of the session. The approach has
now a broader scope. We provide general guidance to update the protocols
analysed so far, and exemplify this on some of them.

2 1 INTRODUCTION

1 Introduction

The “Inductive Approach” to analyse cryptographic protocols was devel-
oped by Paulson in 1997 [10]. Some inductive features had been formerly
introduced in the field by Meadows [6], but Paulson’s approach breaks the
ground towards formal protocol analyses that merely rely on the expréssive-
ness of induction.

The generic theorem prover Isabelle is used to mechanise the analysis.
Vital properties such as confidentiality and authentication have been widely
examined of several protocols (e.g. TLS [9], Kerberos [1, 2]), in the presence
of a malicious agent who can actively tamper with the information retrieved
from the traffic. However, the search for flaws can be performed more quickly
by state-enumeration techniques on systems of limited size [4, 7, 11].

The Inductive Approach is based on the notion of event. All protocols
tackled thus far can be analysed in terms of a single event, message sending,
excepted the TLS protocol where agents also need to take note of some
message items for future use. The number of events should be small in
order to keep the model simple. On the other hand, many events could
enrich the treatment. The best compromise seems modelling events that
carry a high level of expressiveness.

This paper presents the introduction of a new, crucial event in the model:
message reception. The enhanced model is (expectedly) more adherent to
the real world, a feature that always improves readability. As a matter of
fact, the guarantees for agents — protocol properties enforceable on assump-
tions that agents can verify — can be now expressed with smaller formal
overhead.

The major outcome is allowing an effective formalisation of the knowl-
edge of agents. The rudimentary version introduced originally [8] was soon
simplified to express the knowledge of a single agent, the eavesdropper, op-
timising the approach to reason about confidentiality [10]. This represented
the state of the art before our work. However, there are real-world scenarios
in which pairs of agents communicating via a specific protocol need to agree
on certain data (e.g. [3, 5]). A new hierarchy of properties based on agents’
knowledge become crucial in this context, but their analyses require a broad
formal notion of knowledge. This is achieved by our model.

The inductive definition of each protocol must be extended by one rule
allowing reception of those messages that have been sent. However, the full
proof scripts only pay a negligible price in terms of computational time.
To achieve this, several general lemmas have been proved about message
reception and agents knowledge (general facts only have to be proved once),
which makes it possible to reuse the existing proofs.

Moreover, allowing for message reception is a mandatory step towards
the analysis of non-repudiation protocols. Future work includes looking
at properties such as non-repudiation of reception (e.g. [12]), for which we

expect the present model to scale up easily.

Sec. 2 briefly gives few guidelines about the Inductive Approach. Our
updates are described in sec. 3. The protocol analyses performed so far can
be easily adapted to the new model, and gain expressiveness. This is ex-
emplified together with the new session key knowledge and nonce knowledge
theorems in sec. 4. Sec. 5 concludes the presentation.

2 Overview of the Inductive Approach

This section only introduces those features that are relevant to our treat-
ment. The underlying intuition of the approach is rather simple. The real-
world protocol must guarantee certain properties to hold during its sessions.
Those properties can be verified as invariants of the formal protocol model,
which specifies all admissible behaviours of an unbound population of agents,
plus an eavesdropper (the “spy” below).

The following events may occur on the network

SaysAB X | and Notes A X

expressing respectively agent A sending message X to B, and agent A noting
message X in her internal state.

The formal protocol model defines inductively all traces of events that are
admissible according to the real-world protocol. The model also allows traces
to be extended when agents accidentally lose some valuable information to
the spy (the “oops” case). In this circumstance, a trace is extended by the
event Notes Spy msg, where msg contains the lost information (typically a -
session key and the nonces that identify its session). See [10] for more.

3 Enbancing the Approach by Message Reception

We extend the Isabelle datatype defining the network events by the event
modelling agent A’s reception of message X:

Gets A X

In the real world, a message can be received only if it has been previously
sent (reception invariant). The formal protocol model can easily enforce this:
a trace can be extended by the event Gets B X only when there exists an
agent A such that the event Says A B X is on the trace. This will be stated
by the Reception rule of the formal protocol specification. The extension
can be performed for an unbound number of times, formalising the fact that
agents may receive the same message more than once.

Moreover, the model does not guarantee that messages that are sent will
be ever received; they could even be received in a wrong order or by wrong
recipients.

4 3 ENHANCING THE APPROACH BY MESSAGE RECEPTION

"The oops case could be modelled by a Gets event. For example, consider
the scenario in which the trusted server has sent an encrypted message
containing a session key K, and an agent P has associated K to a nonce Np.
Allow the spy to receive the message {K, Np} if an oops occurs. However,
this would compromise the reception invariant and consequently burden
the proof script with several case splits. Using the Notes event avoids the
problem.

The function used extracts from a trace all components of messages ap-
pearing on it [10]. Therefore, if e.g. a key K is fresh on a trace evs, we have
k ¢ used evs. If a message is received on a trace, the set of components used
on the trace is unaltered thanks to the reception invariant (since messages
that are received have been previously sent, their components belong to the
set used evs already). We extend the definition of used accordingly:

used((Gets AX) # evs) £ used evs

3.1 Formalising the Agents’ Knowledge

We introduce the function knows yielding the set of messages that an agent
can handle on a given trace. It generalises (and replaces) Paulson’s definition
of the function spies [10] to any agent, and to the message reception event.

The function is defined inductively on the length of the trace. The base
case states that agents know their respective initia] state. Recall that the
initial state of the trusted server is the set of all agents’ long-term keys;
the initial state of the spy is the set of all compromised agents’ long-term
keys (the spy is compromised too); the initial state of any other agent is the
agent’s long-term key.

knows A[] £ initState A

Each agent knows what the agent alone sent on a trace. The spy knows all
messages ever sent.

{X}UknowsAevs ifA=A" vV A=Spy

k A(SaysA'BX # evs) =
nows A (Say # evs) { knows A4 evs otherwise

Each agent knows what the agent alone noted on a trace. The spy also
knows compromised agents’ notes.

{X}UknowsAevs ifA=AV
knows A (Notes A’ X # evs) 2 (A=Spy A A’ € bad)
knows A evs otherwise

Each agent knows what the agent alone received from a trace. Since mes-
sages that are received must have been previously sent, the spy knows them
already. Therefore, the spy’s knowledge does not grow on received messages.

{X}UknowsAevs if A=A

knows A (Gets A’ X # evs) =)
knows A evs otherwise

3.2 Updating the Existing Specifications 5

In particular, the last case exploits the message reception event to strengthen
Paulson’s original definition of agents’ knowledge: agent A could see message
X when X had been sent by somebody to A ([8], sec. 4.5 “Events and Agent
Knowledge”). This could not assure that A ever got hold of X and therefore
knew it.

Recall that the function analz applies to a set of messages and extracts all
components of compound messages and bodies of messages encrypted under
keys that are recursively known. If in the real world an agent A knows a
message X, the formal protocol model contains a trace evs such that either
X € (knows A evs) if A did not need any cryptanalysis to get hold of X, or
X € analz(knows A evs) if A had to retrieve X from within a message of the
set knows A evs.

3.2 Updating the Existing Specifications

The existing formal protocol specifications can be easily updated by the
following procedure.

o Update the Fake rule replacing “spies” by “knows Spy?.

o Update each rule replacing any event Says P Q X, P being a free vari-
able of the rule, by the event Gets@Q X. (This typically modifies the

rule premises).
e Add the Reception rule.

In the original specification, an agent A could send a new message when '
some other (undefined) agent had sent A a suitable message X. Obviously,
A could only check on reception of X whether that event had happened,
because she could not monitor any events performed by other agents.

The message reception event can make the formal protocol specification
closer to the real world. The new specification tells each agent which message
the agent can send if the agent has previously sent and /or received certain
messages. These conditions model directly the checks performed by a real-
world agent before sending a new message. Therefore, the specification now
provides a better basis for implementation. This is exemplified in sec. 4.1
and in Appendix.

3.3 Updating the Existing Theorems

The existing proof scripts can be trivially updated replacing the string
“spies” by the string “knowsSpy”. “Session key secrecy” theorems [10]
now state that the key K is such that K ¢ analz(knows Spy evs) in certain
circumstances.

Applying the reception invariant, we can prove that the spy knows all
messages that are received by any agents. More formally, for any trace evs

6 3 ENHANCING THE APPROACH BY MESSAGE RECEPTION

containing the event Gets A X, we can state that
X € knows Spy evs
and, by H C parts H for any set H [10], that (GetsSpyKnows):
X € parts(knows Spy euvs)

Recall that the function parts applies to a set of messages and extracts all
message components excepted the ciphers’ encryption keys [10].

Consider a theorem that assumes X € parts(knows Spy evs). Let agent
A be the intended recipient for message X, and suppose that the theorem
assesses a result useful to A. Replace the mentioned assumption by the
event Gets A Xevs. The resulting theorem can be proved applying lemma,
GetsSpyKnows and then the proof for the old theorem. The new theorem is
a guarantee for 4, as it rests on assumptions that A can verify. All theorems
proved thus far can be so updated (see sec. 4.1).

3.4 Proving the Session Key Knowledge Theorem

The operations formalised by the function analz must also be performed by
agents different from the spy who need to access the components of the
messages they know. For instance, at latest at the end of a protocol session,
the peers have to extract the session key they have agreed to use for their
communication.

We have designed a new guarantee for A establishing that a key K is such
that K € analz(knows B evs) on assumptions that A can verify (typically
suitable message receptions). The theorem, called session key knowledge
theorem (for A about B over K), assures A that B can analyse (extract) the
key K from the messages B knows. A guarantee of the same form can be
stated for B. The peers can so understand whether they know the same key
(see sec. 4.2).

Normally, it is the trusted server who issues the session key that is sent
to the peers. However, it is not guaranteed a priori that the peers will receive
it. Therefore, a session key knowledge theorem for A about B over K can
be achieved by the following strategy.

1. Prove that if A receives a suitable message on a trace, then B has re-
ceived (and can decrypt) on the same trace another message containing
K.

2. Apply a lemma stating that agents know the messages they received
(thanks to the reception invariant).

3. Apply H C analz for any set H, and extraction of message components
under analz.

Step 1 is proved using standard inductive techniques [10], and may require
few intermediate steps to establish which messages must be sent before B
receives his message. The lemma mentioned by step 2 is trivial.

"This strategy may also allow proving agents’ knowledge of other valuable
data (e.g. nonces), by means of other lemmas stating that agents know what
they sent and what they noted on a trace (see sec. 4.3).

4 The Outcomes

'This section exemplifies the notions presented above, showing the outcomes
in terms of improved expressiveness of existing analyses, and of new proofs
about agents’ knowledge.

4.1 Enhancing Expressiveness

We update the analysis of the Otway-Rees protocol performed by Paul-
son [10].

The new formal protocol specification about the version that encrypts
the nonce Nb is presented in Appendix. According to the procedure pre-
sented in sec. 3.2, rule Fake gets a minor change, and rules OR2, OR3, OR4
gain new premises. The others remain unaltered. The specification is en-
riched by the Reception rule enforcing the reception invariant.

We have updated Paulson’s theorems as described in sec. 3.3. For ex-
ample, we can prove that if the events

Gets Server {Na, Agent A, Agent B, Crypt(shrK 4){Na, Agent A, Agent B}, X}
Gets Server {Na, Agent A, Agent B', Crypt(shrK A){Na, Agent A, Agent B'}, X}

appear on a trace evs, then follows B = B’ provided that A is uncompro-
mised. Thanks to the new form of OR3, this result can replace the original
theorem expressed in terms of parts. However, its importance is mainly
technical for other proofs.

The authenticity theorems now state more explicitly in what circum-
stances agents can consider their certificates to be authentic. If A has started
the protocol with B, she has to check that two events concerning only herself

Gets A {Na, Crypt(shrK A){Na,Key K}}
Says A B {Na, Agent A, Agent B,
Crypt(shrK A){Na, Agent A, Agent B}}

occurred on the trace, to infer that her certificate {Na, K} ., originated with
the server for some nonce Nb, i.e. the event

Says Server B {Na, Crypt(shrK A){Na, Key K},
Crypt(shrK B){Nb, Key K}}

8 4 THE OUTCOMES

occurred on the same trace. At the other end, B can come to the same
conclusion if the two events concerning himself only

Gets B {Na, X, Crypt(shrK B){Nb, Key K}}

Says B Server {Na, Agent A, Agent B, X',
Crypt(shrK B){Na, Nb, Agent A, Agent B}}

occurred on the trace; B is thus assured that his certificate {Na, Nb, 4, B} 5,
is authentic.

4.2 Proving Agents’ Knowledge for a Shared-Key Protocol

We have updated Paulson’s analysis of the shared-key Needham-Schroeder
protocol [13] and proved the session key knowledge theorems and a nonce
knowledge theorem about the protocol.

Suppose that A initiates a session of the protocol with B and that both
agents are uncompromised. The session key knowledge theorem for 4 about
B over K states that if the events

Gets A (Crypt(shrK A){Na, Agent B, Key K, X})
Gets A (Crypt K (Nonce Nb))

occur on a trace evs, and the key K has not been leaked by accident on the
trace, then

Key K € analz(knows B evs)

Learning that B can access the key K is an important conclusion for A: it
means that B will be able to understand the messages she encrypts under K.
However, A must trust K to have not been lost accidentally to the spy. This
requirement comes from the application of the session key secrecy theorem,
and is therefore minimal and in common to several guarantees (e.g. [2]).

The proof applies the guarantee of authentication of B to 4 (the updated
version of “A_trusts_ZNS4” [13]) to infer that the event

Says B A (Crypt K (Nonce Nb))

occurs on evs. It is this result to require the session key secrecy theorem:
if K were not confidential, then the spy could have forged {Nb} . At this
stage, we prove by standard inductive techniques that also the event

Gets B (Crypt(shrK B){Key K, Agent A})

must occur on evs. Then, the proof applies the lemma, stating that agents
- know the messages they receive, and finally the basic properties of analz.

4.3 Proving Agents’ Know]edgé for a Public-Key Protocol 9

On the same assumptions as those of the session key knowledge theorem
for A, we can also prove a nonce knowledge theorem for A about B over Nb,
concluding that

Nonce Nb € analz(knows B eus)

At the other end of the communication, B gets a symmetric guarantee.
If the two events

Gets B (Crypt(shrK B){Key K, Agent A})
Gets B (Crypt K {Nonce Nb, Nonce N})

occur on a trace evs, and the key K has not been leaked by accident on the
trace, then

Key K € analz(knows A evs)

Agent B s0 learns that A agrees on the same session key he is using.

We prove this by the same strategy applied to the guarantee for A. The
first step applies the authentication guarantee of A to B (the updated version
of “B_trusts NS5” [13], which rests on one assumption fewer), to obtain that
the event formalising the fifth step of the protocol

Says A B (Crypt K {Nonce Nb, Nonce Nb})

occurs on evs. The next step applies to this event a new lemma, concluding
that

Gets A (Crypt(shrK A){Nonce Na, Agent B, Key K, X})

must occur on evs for some nonce Na. The final step is straightforward.
The full proof script, inclusive of the authentication guarantee, executes in
approximately 10 seconds on a Pentium Pro 300MhZ, the same runtime of
the guarantee for A.

4.3 Proving Agents’ Knowledge for a Public-Key Protocol

We have updated the existing analysis of the public-key Needham-Schroeder
protocol [10].

The protocol merely exchanges nonces in order to authenticate the peers
to each other. Looking at the (well-known) protocol messages, it is relatively
easy to realise that A at some point gets evidence that B knew her nonce
Na and was therefore present on the network. Spotting a similar guarantee
for B requires analogous effort. However, such properties about knowledge
can be now proved formally.

Suppose that A runs the protocol with B and that they are uncompro-
mised. Let evs be a trace of the protocol. If evs contains the events

10 4 THE OUTCOMES

Says A B (Crypt(pubK B){Nonce Na, Agent A})
Gets A (Crypt(pubK A){Nonce Na, Nonce Nb})

A can invoke the guarantee that authenticates B to her (the updated version
of that in [10], sec. 5.2) learning that evs must contain the event

Says B A (Crypt(pubK A){Nonce Na, Nonce Nb}) (1)

On this assurhption, we have proved by standard inductive techniques that
also the event

Gets B (Crypt(pubK B){Nonce Na, Agent A}) (2)
must occur on evs, and therefore, since priK B € analz(knows B evs), follows
Nonce Na € analz(knows B evs)

This guarantee is the nonce knowledge theorem for A about B over Na. Tt
provides A with simple assumptions to check in order to learn that B knows

her nonce.

The nonce knowledge theorem for B about A over Nb is analogous. If
the events

Says B A (Crypt(pubK A){Nonce Na, Nonce Nb|})
Gets B (Crypt(pubK B)(Nonce Nb))

occur on evs, then, by authentication of A to B (the updated version of that
in [10], sec. 5.4), the trace must contain the event

Says A B (Crypt(pubK B)(Nonce Nb)) (3)

A proof by induction leads to the fact that the trace must also contain the
event

Gets A (Crypt(pubK A){Nonce Na, Nonce Nb}) (4)
for some nonce Na, and therefore
Nonce Nb € analz(knows A evs)

Our proofs were not affected by Lowe’s middle-person attack [4]. There-
fore, if an agent A starts a session with the spy, another agent B may on
another session issue a nonce Nb for talking to A and learn that A does know
Nb, although B is in fact talking to the spy. This supports the claim that the
mere knowledge of the nonce does not guarantee authentication. Obviously,
the same guarantees have been proved for the Needham-Schroeder-Lowe

_protocol.

4.4 More on our Formalisation of Knowledge 11

4.4 More on our Formalisation of Knowledge

The nonce knowledge theorems proved for the public-key Needham-Schroeder
protocol stimulates some further discussion about our formalisation of knowl-
edge.

To achieve the guarantees, we had to prove that event (1) implied event
(2), and that event (3) implied event (4). However, these steps seem redun-
dant because B knows Na already when he creates the message {Na, Nb} Ka
in event (1); similarly, A knows Nb already when she creates the message
{Nb} g, in event (3).

Those steps are in fact necessary, because in our model an agent knows
a message item if and only if the agent is able to access it from one of
the messages that he/she either sends or notes or receives. With shared-
key protocols, this definition also captures those items that the agent may
invent and send on the network for their first time, since the agent can send
messages either in cleartext or encrypted under keys that he/she knows.
This is not the case with public-key protocols. An agent may encrypt some
items using the public key of the peer, and send the cipher: at this stage,
those items are no longer accessible to the agent, and therefore not captured
by our formalisation of knowledge.

A trivial attempt to solve this problem extends the definition of knows by

{X}UknowsAevs if A=A

knows A (Says A’ B(Crypt(pubK B £
nows A (Says (Crypt(pubK B)X) # evs) { knows A eys otherwise

so to capture the knowledge of those items that are sent encrypted under the
public key of the recipient. This definition would work well with Needham-
Schroeder, and the proofs would speed up. However, it would fail on a
protocol that required a third agent C to create {X}.,, and then A4 to
forward it to B. In this case, A should not be allowed to access X because
she does not know Kb~!.

The problem is solved as follows. If the items sent inside the cipher
have been received, they are known anyway, as exploited by our proofs. On
the contrary, if they are invented at the moment, the agent should note
them (by a Notes event), as suggested by Paulson in his analysis of the TLS
protocol [9], and our definition of knowledge would capture them.

5 Conclusions

Cryptographic protocols can be deeply analysed by means of Paulson’s In-
ductive Approach in Higher Order Logic. Their crucial properties can be
established by theorems proved with the support of the theorem prover Is-
abelle.

The approach intentionally avoided message reception in order to sim-
plify the mechanisation. We have added. a reception event, so that the

12 REFERENCES

protocol traces also record information about which messages have been re-
ceived, which agents have received them, and at which stage of the session
they were received. We have proved some basic lemmas that allow the old
proofs to be straightforwardly reused. Consequently, the existing models
can be trivially updated, and the runtime is negligibly increased.

The work initially aimed at improving the analyses in terms of expres-
siveness. This aim has been achieved, as the guarantees for each agent can
now be expressed upon events that concern the agent alone, and not on
conditions about the network.

The new model turned out to provide a good basis for a broad definition
of agents’ knowledge. This is a new feature for the approach, since Paulson’s
initial attempt [8] had been soon tailored to a formalisation of the spy’s
knowledge only [10]. We allow each agent but the spy to know only the
messages the agent sends, notes, or receives, while the spy knows all messages
ever sent, and those noted by compromised agents. The knowledge of a
message item is formalised by the ability to access it (possibly decrypting
some ciphers) from one of the messages that are known.

We have designed a new hierarchy of guarantees based on agents’ knowl-
edge: the session key knowledge theorems for shared-key protocols, and the
nonce knowledge theorems, which can also be proved for public-key proto-
cols. They assure each agent about the peer’s knowledge of a session key or
of a nonce.

The potentialities of the Inductive Approach appear significantly en-
hanced, also towards. the analysis of non-repudiation protocols. Our model
will be publicly available with the next Isabelle distribution.

Acknowledgements. Larry Paulson commented extensively on a draft
of this paper. The author wishes to dedicate this work to Maria Matarazzo.

References

[1] G. Bella, L. C. Paulson. Mechanising BAN Kerberos by the Inductive
Method. Proc. of Tenth Conference on Computer Aided Verification,
Springer, LNCS 1427, 1998.

[2] G. Bella, L. C. Paulson. Kerberos Version IV: Inductive Analysis of
the Secrecy Goals. Proc. of Fifth European Symposium on Research in
Computer Security, Springer, LNCS 1485, 1998.

[3] M. Burrows, M. Abadi, R. M. Needham. A logic of authentication.
Proceedings of the Royal Society of London, 426:233-271, 1989.

[4] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Pro-
tocol using FDR. In Tools and Algorithms for the Construction and

REFERENCES | 13

Analysis of Systems, Margaria and Steffen (eds.), LNCS1055, Springer
Verlag, 147-166, 1996.

[5] G. Lowe. A Hierarchy of Authentication Specifications. Proc. of Tenth
IEEE Computer Security Foundations Workshop, 1997.

[6] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of
Logic Programming, 26(2), 113-131, 1996.

[7] J. C. Mitchell, M. Mitchell, U. Stern: Automated Analysis of Crypto-
graphic Protocols Using Murphi. In Proc. of Symposium on Security and
Privacy, IEEE Press, 1997.

[8] L. C. Paulson. Proving properties of security protocols by induction.
10th Computer Security Foundations Workshop (June 1997), 70-83.

[9] L. C. Paulson. Inductive Analysis of the Internet Protocol TLS. Cam-
bridge University, Computer Laboratory, Technical Report No. 440, July
1997.

[10] L. C. Paulson. The Inductive Approach to Verifying Cryptographic
Protocols. Journal of Computer Security, 6:85-128, 1998,

[11] S. Schneider. Security Properties and CSP. In Proc. of Symposium on
Security and Privacy, IEEE Press, 1996.

[12] J. Zhou, D. Gollmann. A fair Non-Repudiation Protocol. In Proc of
Symposium on Security and Privacy, IEEE Press, 1996. :

[13] See theory “NS_Shared” at
http://www4.informatik.tu-muenchen.de/~isabelle/library/HOL/Auth/

14A EXPLOITING MESSAGE RECEPTION TO SPECIFYOTWAY-REES

A Exploiting message reception to specify
Otway-Rees

Nil [] € otway

Fake [| evs € otway; X € synth (analz (knows Spy evs)) []
= Says Spy B X # evs € otway

OR1 [l evsl € otway; Nonce NA ¢ used evsi |]
== Says A B {[Nonce NA, Agent A, Agent B,
Crypt (shrkK A) {INonce NA, Agent A, Agent B|}|}
evsl € otway

OR2 [l evs2 € otway; Nonce NB ¢ used evs?;
Gets B {INonce NA, Agent A, Agent B, X|} € set evs2 |]
= Says B Server
{|Nonce NA, Agent A, Agent B, X,
Crypt (shrX B)
{|Nonce NA, Nonce NB, Agent A, Agent Bl}|}
evs2 € otway

O0R3 [] evs3 € otway; Key KAB ¢ used evs3;
Gets Server
{|Nonce NA, Agent A, Agent B,
Crypt (shrkK A) {|Nonce NA, Agent A, Agent Bl},
Crypt (shrK B) {|Nonce NA, Nonce NB, Agent A, Agent Bl}|}
€ set evs3 |] '
=> Says Server B
{|Nonce NA,
Crypt (shrK A) {|Nonce NA, Key KAB|},
Crypt (shrK B) {[Nonce NB, Key KAB|}|}
evs3 € otway

OR4 [l evs4 € otway; B # Server;
Says B Server {|Nonce NA, Agent A, Agent B, X’,
Crypt (shrkK B)
{[Nonce NA, Nonce NB, Agent A, Agent B|}|}

€ set evsd;

Gets B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}
€ set evsd |]

= Says B A {|Nonce NA, X|} # evsd € otway

Oops [} evso€ otway;
Says Server B {|Nonce NA, X,
Crypt (shrK B) {|Nonce NB, Key KI|}I}
€ set evso |]
== Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso € otway

Reception [| evsr € otway; Says A B X € set evsr |[]
= Gets B X # evsr € otway

