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Abstract

Previous systems for dot counting in fluorescence in-situ hybridiza-
tion (FISH) images have relied on an automatic focusing method for
obtaining a clearly defined image. Because signals are distributed in
three dimensions within the nucleus and artifacts such as debris and
background fluorescence can attract the focusing method, valid signals
can be left unfocused or unseen. This leads to dot counting errors,
which increase with the number of probes. The approach described
here dispenses with automatic focusing, and instead relies on a larger
statistical sample of the specimen at a fixed focal plane. Images across
the specimen can be obtained in significantly less time if a fixed focal
plane is used. A trainable classifier based on a neural network (NN) is
used to discriminate between valid and artifact signals represented by
a set of features. This improves upon previous classification schemes
that are based on non-adaptable decision boundaries and are trained
using only examples of valid signals. Trained by examples of valid and
artifact signals, three NN classifiers, two of them hierarchical, each
achieve between 83% and 87% classification accuracy on unseen data.
When data is pre-discriminated in this way, errors in dot counting can

be significantly reduced.

Keywords: Auto-focusing; Colour image analysis; Dot counting; Fluo-

rescence in situ hybridization (FISH); Neural networks; Signal classification;




1 Introduction

In recent years, FISH has emerged as one of the most significant new de-
velopments in the analysis of human chromosomes. FISH offers numerous
advantages compared with conventional cytogenetic techniques since it al-
lows numerical chromosome abnormalities to be detected during normal cell
interphase. One of the most important applications of FISH is dot counting,
i.e., the enumeration of signals (also called dots or spots) within the nuclei.
Dot counting is used for studying numerical chromosomal aberrations in e.g.,
haematopoietic neoplasia, various solid tumours, prenatal diagnosis and for

demonstrating disease-related chromosomal translocations [9)].

However, a major limitation of the FISH technique for dot counting is
the need to examine large numbers of cells. This is required for an accurate
estimation of the distribution of chromosomes over cell population, especially
in applications involving a relatively low frequency of abnormal cells. As
visual evaluation of large numbers of cells and enumeration of hybridization
signals is very tedious, laborious and time-consuming, FISH analysis for dot

counting can be expedited by using an automatic procedure [2, 3, 7, 8, 9.

To perform dot counting, an automatic system has to exploit three-
dimensional (3D) information of cells contained in the specimen. The system
needs an automatic focus control that enables obtaining the ‘sharpest’ image

along the Z-axis, similar to that obtained by manual adjustment of the mi-
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croscope stage. Moreover, this mechanism has to be activated for each and
every field of view (FOV). Employing an auto-focusing mechanism, however,
suffers from a number of problems. First, dedicated hardware and software
for the operation of the mechanism are needed [7, 8]. Second, automatic ac-
quisition is dependent upon finding the ‘sharpest’ image. It can fail however,
if the mechanism focuses on a source of noise such as debris or background
fluorescence, or if the FOV is empty [7, 8]. Therefore, subsequent manual
inspection for discarding such images is sometimes inevitable. Third, even
if the ‘sharpest’ image is indeed found, it can only represent a section of
a 3D-image, where signals in other sections which are above or below that
section are left unfocused. Fourth, automatic focusing has been found to
be time-consuming. Ten seconds are required to complete auto-focusing of
one FOV [8], which is around 24 times longer than the time of moving from
one FOV to another. And finally, research shows [8] that auto-focusing con-
tributes about 3% of the total 11% error rate of the analysis.

We suggest that FISH dot counting be based on images that are sampled
at a fixed focal plane as an alternative to the use of auto-focusing mechanism.
This method is motivated by the assumption that nuclei are approximately
uniformly distributed in the sample, so that translations at a fixed focal plane
will provide a statistically equivalent sample as projections through different
focal planes. Images can be captured by any scanning method of the slide,

and the microscope stage can stop for collecting images arbitrarily, even at
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random. Randomly-captured images in a fixed focal plane ‘intersect’ nuclei
on the slide at random sections, which are equivalent to those encountered by
the auto-focusing mechanism. This method enables most of the shortcomings
of auto-focusing to be overcome, since it shortens the length of image acqui-
sition and requires no special instrumentation. However, the system needs to
acquire sufficient analysable images and to exploit most of the information
contained within these images in order to enable dot counting. It may have
to deal with more unfocused nuclei and signals, and so its ability to distin-
guish between focused and unfocused signals should be better than that of
a system employing an auto-focusing mechanism. Therefore, the proposed
system depends upon two components: a classifier to discriminate between
valid and artifact signal data, and well-discriminating features to represent
the signals.

Our previous work [5] has investigated the second component of feature
representations for FISH signals. In the present work, we study the use of a
classifier to discriminate between valid and artifact signals. Focused signals
that have characteristics of valid signals are more likely to be classified by the
system as ‘reals’. Unfocused signals and signals created by background fluo-
rescence or due to overlap between signals of different fluorophores are more
likely to be classified as ‘artifacts’. A two-layer perceptron neural network
(NN) trained using large numbers of examples of these classes is employed

for the classification.




Section 2 of the paper describes biological preparation and image ac-
quisition, while Section 3 depicts the applied image analysis stages, namely
colour analysis, nuclei and signal segmentations, and signal feature measure-
ment. Section 4 presents a classifier of signals into ‘reals’ and ‘artifacts’ of
two colours (fluorophores), while the results of applying the classifier to the
problem are given in Section 5. Finally, the benefits of an accurate signal

classification and its application to dot counting are discussed in Section 6.

2 Biological material and image acquisition

2.1 Slide preparation

The interphase nuclei preparations from amniotic fluid were made using the
method by Klinger et al. [4] with minor modifications. 1-2ml of amniotic
fluid was centrifuged and the cell pellet washed in PBS warmed to 37°C. The
cells were resuspended in 75mM Potassium Chloride (KCl) and put directly
on to slides coated with APES (Sigma) and incubated at 37°C for 15 minutes.
Evaporation of PBS was compensated with filtered distilled water. Excess
fluid was carefully removed and replaced with 100ml of 3% Carnoys fixative,
70% 75mM KCI at room temperature for 5 minutes. The excess fluid was
carefully removed and 5 drops of fresh fixative were dropped on to the cell

area. Slides were briefly dried on a 60°C hotplate, and then either used
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immediately for hybridization or dehydrated through an alcohol series and

stored at —20°C until required.

2.2 Hybridization

Target areas were marked on the slides using a diamond tipped scribe. Tar-
get DNA was denatured by immersing in 70% formamide:30% 2xSSC at
73°C for 5 minutes. 10 pL of probe mix containing spectrum orange LSI
21 and spectrum green LSI 13 (Vysis UK) was applied to the target area
and a coverslip placed over the probe solution. Coverslips were sealed using
rubber cement and slides placed in a pre-warmed humidified container in a
37°C incubator for 16 hours. Coverslips were removed and slides washed in
0.4xSSc/0.3%NP-40 solution at 73°C for 2 minutes. Slides were then placed
in 2xSSC/0.1% NP-40 solution at room temperature for 1 minute. When
completely dried 10 uL of DAPI II counterstain (Vysis UK) was applied to

the target area and sealed under a coverslip.

2.3 Instrumentation and screening procedure

Slides were screened under a Zeiss axioplan epifluorescence microscope using
x100 objective. Signals were viewed using appropriate filters and images
acquired using a CCD camera and SmartCapture software (Vysis UK). Slides

were scanned by starting in the upper left corner of the coverslip and moving
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from top to bottom. Images were captured by stopping at random intervals.
Red and green signals were seen on blue DAPI stained nuclei, corresponding
to chromosomes 21 and 13 respectively. The focus and colour ratios were
adjusted for the first captured image from each slide, and then kept at those
values for all the following images from that particular slide. A total of 400

images were collected from five slides and stored in TIFF format.

3 Image analysis

3.1 Colour analysis

Multiple probes, labelled by different fluorophores, are often used in conjunc-
tion in FISH preparation. For example, in the present study, chromosomes
13 and 21 are indicated by green and red signals, respectively, while the
nuclei are coloured in blue (Figure 1a). The position in the image and the
characteristics of each of these fluorophores have significant meaning to the
researcher or clinician. Nevertheless, in most of the previous research of au-
tomatic FISH image analysis (see e.g. [7, 8]), and regardless of whether a
monochromatic or a colour camera is being used, colour information is con-
verted into gray-level scale. FISH image analysis is then based on brightness
contrast and not on colour information, which is lost in the process. How-

ever, much of the difficulties which are encountered during the analysis of
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intensity-based FISH images can be avoided if colour information is main-
tained and used. This is especially true for nuclei and signal segmentations.
Many user-defined thresholds and heuristics are needed to segment signals
from nuclei and nuclei from background, when intensity-based analysis is
employed. Colour image analysis does not only facilitate pre-processing and
segmentation [3], but it also yields hue-based features, which are found very

efficient for FISH signal representation and classification [5].

In this work, colour is kept and specified by the RGB (red, green, blue)
format, where each image pixel is represented by the normalized red, green
and blue brightness values. Nuclei are analysed in the blue channel of the
RGB image, whereas red (chromosome 21) and green (chromosome 13) sig-
nals are analysed separately in the red and green channels, respectively. The
HSI (hue, saturation, intensity) colour format has been also used when mea-

suring hue-based features to represent signals, as in previous research [5].

3.2 Colour image segmentation

Special multi-stage (usually TopHat-based) procedures that rely on heuristically-

derived thresholds and parameters are conventionally employed to segment
nuclei and signals [7, 8]. Colour image segmentation, however, avoids the use
of these procedures. It is performed separately on each of the three differ-

ent channels of the RGB image using global thresholds. Finding ‘optimal’
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thresholds is almost trivial compared with thresholding an intensity image

since only blue (red, green) objects are found in the blue (red, green) channel.

The blue, red and green thresholded objects are used as candidates for
nuclei and red and green signals, respectively. Noise reduction, boundary
smoothing of the nuclei by morphological operations and spatio-spectral cor-
relation between nuclei and signals are then implemented to complete the
segmentation. A signal whose area is larger than 5% of the area of the cor-
responding nucleus is rejected as ‘background fluorescence’. Finally, since
our interest in this work is to study FISH signal classification, we allow the
system to accept signals of nuclei of irregular shape or which are part of
a cluster. Such nuclei, as well as unfocused nuclei, can be rejected for the

purpose of dot counting based on their size, shape and intensity [8].

3.3 Signal feature measurement

A few features are measured for each of the candidates for signals segmented
from the RGB image. Features that are measured include area (a size mea-
sure), eccentricity (a shape measure), total and average intensities (intensity
measures) and intensity standard deviation (texture measure). All but the
last feature have been suggested previously [7] to represent signals, albeit
measured using the intensity image. We also measure the maximum and

average hue (colour measures) as they are more appropriate for signal dis-
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crimination than RGB-based features [5]. Hue features can be measured only
if colour information is kept, and the RGB image is then converted into HSI
format. A few features are found to be very representative for signal classi-
fication when evaluated using scatter plots, probability density functions, a
class separability criterion and the probability of misclassification [5]. Among
these features are the area, average intensity (RGB) and average hue (HSI)
of the signals. Therefore, these three features are measured here from the

segmented signals and compose the signal patterns to be classified.

4 Signal classification

The main purpose of this work is to investigate the feasibility of automatic
signal classification in randomly-captured FISH images. Although the appli-
cation of the research is mainly in dot counting, we are not interested here
in estimating the proportions of cells having specific numbers of signals, but
rather in the ability to accurately distinguish between valid signals (‘reals’)
and artifacts. This ability, if proven, will form the basis of a dot counter.

In the common procedure for automatic dot counting, signals whose rela-
tive intensity and either total intensity [7] or area [8] are in specific intervals
are classified as ‘reals’, while other signals are rejected. The interval is de-
fined by the minimum and maximum values of the features as measured on a

training set composed of valid signals. Such a strategy is not appropriate for
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the methodology we are suggesting here for a number of reasons. First, even
the ‘best’ one (or two) discriminative features would fail to provide sufficient
classification accuracy when signals have to be classified as ‘reals’ or ‘artifacts’
of one of a few fluorophores [5]. Dealing with a complex multi-class classi-
fication problem usually requires the use of multi-variate patterns. Second,
as the training set includes only valid signals, the classifier is limited in its
ability to model artifacts. Therefore, it may ‘miss’ those decision boundaries
between the classes which yield the minimum probability of misclassifica-
tion. Third, as the decision boundaries are determined by the minimum and
maximum feature values, they are only a rough approximation of the real
decision boundaries determined by feature values of the entire training data
set. Moreover, these boundaries are sensitive to outliers. In the presence of
outliers, the probability density functions of valid signals and artifacts may
overlap to a greater extent and the probability of misclassification of the
classifier may then be increased.

Therefore, the classification procedure proposed here is as follows. Three-
dimensional-patterns of signals (and in another study [5] higher-dimensional-
patterns), which are based on the signal area, average intensity (RGB) and
average hue (HSI) (Section 3.3) are examined. The patterns are classified
into four classes— ‘real red’, ‘artifact red’, ‘real green’ and ‘artifact green’.
Within the ‘artifact’ classes we expect to find mostly unfocused and overlap

signals, and signals which are the result of background fluorescence. These
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signals will have patterns with different values of features than those of valid
signals, and hence will be classified as artifacts (Figure 1b). Labels for the
patterns, as belonging to one of the four classes, are needed to train and
evaluate the classifier, and they are obtained by an expert cytogeneticist
using a custom-built graphical environment for labelling FISH images [6].
Before performing each classification experiment, outliers (around 3% or
less of the data) are automatically removed from the data and the features
are then normalized to zero mean and unit variance. Patterns of signals
extracted from all the images are divided randomly into training and test
sets and classification into one of the four classes is implemented using cross-
validation [1, pp. 374-375|. In the variant of cross-validation technique which
is used in this work, the data is partitioned into five equal parts, where 4/5
of the data are used for training and the remaining 1/5 are kept for the test.
The experiment is repeated five times where in each time another 4/5 (1/5)
of the data are employed for the training (testing). Classification accuracy
is then averaged over the five experiments (CV-5). The classifier is a two-
layer perceptron NN [1, Ch. 4] trained by the scaled conjugate gradient
algorithm [1, pp. 282-285]. Classification is based on the approximation of
the multi-layer perceptron outputs to the a posterior: probabilities for the
classes. A validation set which is drawn from the training set assures that
the classifier is not over-trained. It also allows the selection of a minimal

network configuration based on only a few hidden units. Both factors ensure
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rapid training and improved generalisation.

Three classification strategies are examined here. In the first, called the
‘monolithic strategy’, patterns are classified into the four classes using a single
NN. In the second, termed the ‘independent strategy’, patterns are classified
into ‘red’ and ‘green’ classes using the ‘colour network’ and independently by
a second network, the ‘real network’, into reals and artifacts. Classification
of a pattern into one of the four classes is achieved by a common decision
of both networks. In the third strategy, called ‘combined’, patterns are first
classified into ‘red’ and ‘green’ classes using the ‘colour network’ and then
based on the results of this network they are classified by two other networks,
the ‘real-red network’ and the ‘real-green network’, into reals and artifacts

of the two colours.

5 Results

Before beginning the experiments, we established a database of 400 FISH
images, which were randomly-captured from five slides. Following nuclei
segmentation, the system identified 944 objects within these images as nu-
clei, of which 613 also contained signals. Following signal segmentation, 3,144
objects within the above nuclei were identified as potential signals and fea-
tures were measured for them. Based on labels provided by expert inspection

(Section 4), 1,145 of the signals were considered as ‘reals’ (among them 551
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were red) and 1,999 as ‘artifacts’ (among them 1,224 were red).

First, experiments to find suitable configurations for classifiers of each of
the strategies were performed. Input and output dimensions for the networks
were set by the feature space dimension and the number of classes, respec-
tively. The number of hidden units is determined such that the network
has the highest generalisation capability. This was achieved by evaluating
networks of different numbers of hidden units on an independent validation
set [1, p. 372] drawn from the training set. The network which had the low-
est error measured on the validation set was selected for training. Figure 2
shows the results of experiments with the ‘monolithic’ and the ‘combined’
strategies for determining the number of hidden units for each network, and
therefore their configurations. Table 1 (first row) gives the configurations
selected for the networks of each of the classification strategies, where the
number of hidden units is selected by the highest classification accuracy on
the validation set. Finally, training of each of the networks was continued
for 100 epochs (presentations of the entire training set), and the results were
averaged for each network over three random initialisations.

The classification accuracy for the ‘monolithic’ strategy, using its opti-
mal configuration, was 84.0% and 82.9% for the training and test sets, re-
spectively (Table 1 first column). We have examined the sensitivity of the
classification accuracy of this strategy against the sample size by repeating

the experiment for training sets of different sizes. The size of the training
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set is increased from 10% to 90% of the data, where the same unseen 10%
of the data are used for the test. The results in Fig. 3 demonstrate that
the classification accuracy on the test set follows, as expected, the increase
of the training sample size until its maximum level. However, the classifica-
tion accuracy on the training set has a minimum. The explanation is that
for a very small sample size, training is very simple and classification of a
few training patterns can be very accurate. It is, however, more difficult to
maintain this accuracy as the sample size increases and more variants of the
training patterns are added. The classification accuracy, hence, decreases
until it reaches a minimum for a ‘critical mass’ of learned patterns. After
this point, as sample size continues to grow, the additional patterns are not
so different from those of the ‘critical mass’. Thus, learning of the patterns
of the (extended) ‘critical mass’ is intensified, while at the same time the
fraction of misclassified patterns becomes lower. The result of both trends
is towards the improvement of the classification accuracy on the training set
as is shown in Fig. 3.

Experiments with the other two strategies, the ‘independent’ and the
‘combined’, reveal that these strategies can improve the classification accu-
racy of the ‘monolithic’ strategy by 0.4% (to 83.3%) and 4.2% (to 87.1%),
respectively, when tested on unseen data (Table 1). The table also demon-
strates that classification of signals into their colours is more successful than

that of signals into ‘reals’ and ‘artifacts’. Finally, the ‘combined’ strategy,
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when tested using an extended feature set, has achieved classification accu-

racy of 89.2% [5].

6 Discussion

Usually, the application of an auto-focusing mechanism to the acquisition of
FISH images enables the analysis of nuclei and signals from focused images.
However, the distributions of signals within a nucleus and nuclei within a
specimen are uniform. Because of this, and the fact that the auto-focusing
mechanism can focus on debris and background fluorescence, signals are often
left unfocused. Consequently, missing images are analysed, and dot counting
suffers from errors. Moreover, this flaw is enhanced significantly as the num-
ber of probes, and therefore signals, increases. In addition, auto-focusing
requires special hardware and software and a large fraction of the analysis
period. Around 50% to 75% of the total time needed for analysing a spe-
cific FOV is devoted to auto-focusing [8], where eventually all but one of the
captured and analysed images are discarded. In summary, auto-focusing is
a critical and time-consuming step of FISH image analysis that upon failure
will undermine the whole analysis and will lead to unreliable results [8].

An alternative methodology is proposed in this work, which is not limited
to well-focused images. The methodology is applied to randomly-captured

images, and hence makes the use of an expensive auto-focusing mechanism
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redundant. Unlike a methodology that is based on an auto-focusing mecha-
nism, all the randomly-captured images are utilized. These images provide
enough examples of focused and unfocused (and other artifact) signals which
are necessary for training a classifier to accurately discriminate between valid
signals and artifacts. When the system is later tested on unseen images
of cells, a nucleus can be rejected automatically if it is unsuitable for the
analysis (due to, e.g., overlap or irregular shape), or if signal classification
demonstrates that the nucleus contains artifacts.

Our work has aimed to study the accuracy of automatic signal clas-
sification in FISH images. Signals are classified regardless of the quality
of the image or the corresponding nucleus. Inference by the classifier is
probability-driven, where decision is based on the maximum a posterior:
probability. The probability framework enables the exploitation of the max-
imum discrimination information about the decision boundaries between the
classes to be classified. Nevertheless, the proposed acquisition methodology
provides the flexibility to use also other inference frameworks such as decision
rules or trees.

Processing of colour in FISH images makes the segmentation and classi-
fication of nuclei and signals easier and less sensitive to artifacts and noise.
Furthermore, it eliminates the employment of user-defined thresholds and
prevents the excessive application of heuristics, both of which are common

in intensity-based analysis. Consequently, colour-based FISH image analy-
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sis reduces the dependence upon environmental conditions and preparation
techniques, and thus provides a more generic technique. It also suggests an
improvement to current methods [7, 8] since it is suitable for use with more
than two fluorophores.

Classification experiments in this work have revealed that NN-based hi-
erarchical classification strategies, besides shortening training sessions com-
pared with a monolithic strategy, also decrease the classification complexity,
and thus improve the classification accuracy. Signals are classified as valid
signals and artifacts with an accuracy of 87.1% (or an accuracy of 89.2% for
other feature sets [5]). This accuracy can be considered a promising result
when classifying multi-colour signals of not necessarily single nuclei in not
necessarily focused images. This is especially significant when compared to
the state-of-the-art accuracy of 89.3%, which has been achieved on single-
colour signals of single nuclei in well-focused images [8].

Combined with an accompanying probabilistic framework (e.g., [2, 3]),
this accuracy can improve the estimation of the proportions of cells hav-
ing different numbers of signals (0,1,2,...), and thereby lead to precise dot
counting. As previous research has shown [8], an average of 11% of the cells
are counted incorrectly. About 6% of these errors are due to the detection
algorithm [7], whereas the remaining 94% are caused by wrong classifica-
tion of the detected signals. We believe that by employing the classification

methodology described here, these errors can be significantly reduced. Cur-
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rent research is aimed at proving this.
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(a) (b)

Figure 1: (a) An example of an image used for FISH signal classification.
(b) Valid signals (‘reals’) in Fig. 1a, as labelled by a cytogeneticist using a
graphical interface [6], are marked by squares in corresponding colours. All
other (unfocused and ‘background fluorescence’) signals are considered, and
therefore labelled, ‘artifacts’. These labels are used to train and evaluate the

signal classifier.
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Figure 2: Classification accuracy of the (a) ‘monolithic’ and (b) ‘combined’
strategies for increasing numbers of hidden units (notice the different scales
along the two y-axes). (The slight deviations in classification accuracy of
the ‘combined’ classifier for 13 hidden units compared with Table 1 is at-
tributed to the different experiments using random classifier initialisations

and randomly selected data sets).
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Table 1: Configurations as well as classification accuracies on the training

and test sets of the three classification strategies— ‘monolithic’, ‘independent’

and ‘combined’. Configurations are specified by the numbers of units in each

layer of the network (input:hidden:output). Results for both the ‘real’ and

the ‘colour’ networks are needed to obtain the overall classification accuracies

of the ‘independent’ and ‘combined’ strategies (Section 4).

‘monolithic’ | ‘real’ | ‘colour’ | ‘independent’ | ‘combined’
Configuration 3:27:4 3:13:1 | 3:13:1 3:13:1 3:13:1
Training (%) 84.0 87.5 96.4 84.1 87.9
Test (%) 82.9 87.3 95.7 83.3 87.1
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