
Technical Report
Number 468

Computer Laboratory

UCAM-CL-TR-468
ISSN 1476-2986

Synthesis of asynchronous circuits

Stephen Paul Wilcox

July 1999

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 1999 Stephen Paul Wilcox

This technical report is based on a dissertation submitted
December 1998 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

.

Abstract
.

Abstract
.

Abstract
.

Abstract
.

Abstract
The majority of integrated circuits today are synchronous: every part of the chip
times its operation with reference to a single global clock. As circuits become larger
and faster, it becomes progressively more difficult to coordinate all actions of the
chip to the clock. Asynchronous circuits do not suffer from this problem, because
they do not require global synchronization; they also offer other benefits, such as
modularity, lower power and automatic adaptation to physical conditions.

The main disadvantage of asynchronous circuits is that techniques for their de-
sign are less well understood than for synchronous circuits, and there are few tools
to help with the design process. This dissertation proposes an approach to the de-
sign of asynchronous modules, and a new synthesis tool which combines a number
of novel ideas with existing methods for finite state machine synthesis. Connec-
tions between modules are assumed to have unbounded finite delays on all wires,
but fundamental mode is used inside modules, rather than the pessimistic speed-
independent or quasi-delay-insensitive models. Accurate technology-specific verifi-
cation is performed to check that circuits work correctly.

Circuits are described using a language based upon the Signal Transition Graph,
which is a well-known method for specifying asynchronous circuits. Concurrency
reduction techniques are used to produce a large number of circuits that conform to
a given specification. Circuits are verified using a bi-bounded simulation algorithm,
and then performance estimations are obtained by a gate-level simulator utilising a
new estimation of waveform slopes. Circuits can be ranked in terms of high speed,
low power dissipation or small size, and then the best circuit for a particular task
chosen.

Results are presented that show significant improvements over most circuits
produced by other synthesis tools. Some circuits are twice as fast and dissipate half
the power of equivalent speed-independent circuits. Examples of the specification
language are provided which show that it is easier to use than current specification
approaches. The price that must be paid for the improved performance is de-
creased reliability, technology dependence of the circuits produced, and increased
runtime compared to other tools.

i

ii Abstract

.

Preface
.

Preface
.

Preface
.

Preface
.

Preface
This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration.

This dissertation is not substantially the same as any that I have submitted
for a degree or diploma or other qualification at any other University. No part of
this dissertation has already been or is concurrently being submitted for any such
degree, diploma or other qualification.

I believe that this dissertation is 59 861 words in length, including bibliography
and footnotes but excluding diagrams, and hence complies with the limit of 60,000
words put forward by the Board.

iii

iv Preface

.

Acknowledgements
.

Acknowledgements
.

Acknowledgements
.

Acknowledgements
.

Acknowledgements
I would like to thank Simon Moore and Peter Robinson for their advice and com-
ments, the EPSRC for their funding, and George and Paul for spotting mistakes in
various parts of this thesis. I would especially like to thank Judie for putting up with
me, and my parents for their support and for getting me to the stage where I could
attempt this.

PostScript is a registered trademark of Adobe Systems Incorporated.
Verilog is a registered trademark of Cadence Design Systems, Inc.

This dissertation was typeset in LATEX 2�, and all diagrams produced using xfig
3.2.0, both from the Red Hat Linux 5.0 distribution. The body text is 10pt Bitstream
Benguiat with headings set in Benguiat Gothic. Programs L2b, b2ps, prune and synth
were written in C++ and compiled using GNU g++ 2.8.1. When execution times are
given in the text, these refer to the time taken to run the program on a 210MHz
AMD K6 with 64MB memory running Linux kernel 2.0.32.

v

vi Acknowledgements

.

Contents
.

Contents
.

Contents
.

Contents
.

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Why Asynchrony? . 1
1.2 Aims . 4
1.3 Structure of this dissertation . 5

2 Previous Work 7
2.1 Delay assumptions . 7
2.2 Signalling and data conventions 11

2.2.1 Two-phase versus four-phase protocols 11

2.2.2 Bundled data versus delay-insensitive schemes 11

2.2.3 Comparisons . 14

2.3 Graph-based specification approaches 15
2.3.1 Petri nets (PNs) . 15

2.3.2 Signal transition graphs (STGs) 21

2.3.3 Change diagrams . 26

2.3.4 P**3 . 27

2.3.5 Burst mode . 27

2.3.6 Other FSM-based methods 31

2.4 Text-based specification approaches 32
2.4.1 Ebergen’s trace theory . 32

2.4.2 Martin’s CHP . 33

2.4.3 Tangram . 34

2.4.4 Others . 35

2.5 Concurrency Reduction . 36
2.6 FSM synthesis algorithms . 36

2.6.1 ISSM minimization . 36

2.6.2 State assignment . 39

2.6.3 Logic synthesis . 41

2.7 Summary . 44

3 Overview and Motivations 45
3.1 Delay assumption . 45

vii

viii Contents

3.2 STGs, Fragments and Snippets 45
3.3 Concurrency . 49
3.4 Blue Diagrams . 49
3.5 Fully decoupled controller . 52
3.6 Summary . 54

4 Specification 55
4.1 Preliminary definitions . 55
4.2 Example circuits . 58

4.2.1 The Furber/Day latch controller 59

4.2.2 Abstract definitions of more example circuits 60

4.2.3 Examples from the SIS benchmarks 63

4.2.4 Inadequacies of the simple interconnection model 69

4.3 The specification language . 71
4.3.1 Extending STG fragments 72

4.3.2 BNF description of language 76

4.3.3 Specifications for the examples given 77

4.4 Translation to a Petri net . 82
4.4.1 True/false places . 83

4.4.2 Transitions . 83

4.4.3 And and Or operators . 85

4.4.4 The if...then statement . 91

4.4.5 Data inputs . 91

4.4.6 Arbitration . 94

4.5 Converting the Petri net to a blue diagram 97
4.5.1 Hanging structure removal 97

4.5.2 Net optimization . 98

4.5.3 Creating the blue diagrams 98

4.5.4 Reduction of the blue diagrams 102

4.6 Drawing blue diagrams . 102
4.7 Results of translation . 104

5 Concurrency Reduction 113
5.1 Reducing concurrency in blue diagrams 113

5.1.1 Conditions that must be satisfied for pruning to occur 115

5.2 Application to a simple example 116
5.2.1 Example used . 116

5.2.2 Possible concurrency-reducing transformations 116

5.2.3 Observations . 118

5.3 Improved method for a general environment 119
5.3.1 Problems with the simple example 119

5.3.2 Solution using a state graph 119

5.3.3 Iterative updating of the state graph 121

5.4 Description of algorithm . 122
5.5 Comparison with earlier work . 123

Contents ix

5.6 Results . 127

6 Synthesis 131
6.1 Start and end points for synthesis 131

6.1.1 Start point . 131

6.1.2 End point . 132

6.2 Flow table minimization . 133
6.2.1 Puri and Gu’s reduction algorithm 135

6.2.2 Shrinking compatibles . 136

6.3 Converting the flow table to a truth table 141
6.3.1 Tracey’s algorithm . 144

6.3.2 Non-unique next-state entries 147

6.3.3 Modified Tracey algorithm 148

6.3.4 Partial Tracey algorithm . 150

6.3.5 Choosing the best state assignments 152

6.4 Converting truth tables to circuits 153
6.4.1 Derivation of the P and N trees 153

6.4.2 Types of gate created . 154

6.4.3 Other considerations . 156

7 Timing and Verification 159
7.1 Previous timing strategies . 159

7.1.1 Analogue simulators . 159

7.1.2 Event simulators . 160

7.2 Development of an accurate timing model 161
7.2.1 Evaluation of input slope models 162

7.2.2 Effects of discrete gate modelling 165

7.2.3 Estimating gate delays . 169

7.2.4 Finding equivalent gates . 173

7.2.5 Caveats . 176

7.2.6 Power estimation . 176

7.3 Finding a speed measure for an implementation 176
7.3.1 Action when timing wrapper is not known 179

7.4 Verification . 182
7.4.1 Reasons for verification . 182

7.4.2 Types of verification . 182

7.4.3 Binary Bi-bounded Delay Analysis 183

7.4.4 Additions to the algorithm 188

7.4.5 Summary . 189

8 Results 191
8.1 Comparison of static, pseudo-static and dynamic gates 191
8.2 Comparison of the state assignment algorithms 195
8.3 Comparisons with other asynchronous tools 197

8.3.1 The latch controller . 198

8.3.2 Parallel component . 199

x Contents

8.3.3 Nacking arbiter . 200

8.3.4 DME element . 200

8.3.5 Loadable counter . 201

8.3.6 Summary . 202

8.3.7 Estimated timings . 203

8.4 Results on other circuits . 203

9 Summary and Conclusions 205
9.1 Summary . 205
9.2 Conclusions . 207
9.3 Further Work . 209

Glossary 211

Bibliography 213

Index 231

.

List of Figures
.

List of Figures
.

List of Figures
.

List of Figures
.

List of Figures

Chapter 1: Introduction
1.1 An overview of the synthesis tool presented in this dissertation

.

.
.

6

Chapter 2: Previous Work
2.1 DI circuit modules from Patra and Fussel [144]

.

.
.

9
2.2 An isochronic fork

.

. .
.

10
2.3 Two phase and four phase events

.

.
.

12
2.4 Two phase and four phase data

.

.
.

13
2.5 Bundled data with processing delay

.

.
.

14
2.6 Overview of specification styles

.

.
.

16
2.7 Petri net examples

.

. .
.

16
2.8 Snippets specifying the medium capability latch controller of [171]

.

. . . .
.

19
2.9 Circuit derived from specification in Figure 1.9

.

.
.

19
2.10 Q-module implementation style

.

.
.

20
2.11 Example of an STG: rcv-setup

.

.
.

21
2.12 An example timed STG from Myers and Meng [137]

.

.
.

23
2.13 Implementation style used by Beerel [6] and Kondratyev et al. [94]

.

. . . .
.

25
2.14 An example change diagram from Hauck [69] with part of its state graph

.

.
.

26
2.15 The P**3 primitives and an example of their use

.

.
.

27
2.16 Example burst-mode diagram: isend, from Yun [202]

.

.
.

28
2.17 Example extended burst-mode diagram: sbuf-send-pkt2-core

.

. . . .
.

29
2.18 Local Clocking synthesis style

.

. .
.

30
2.19 AFSM synthesis style used by Chu’s CLASS [29]

.

.
.

31
2.20 Permissible operations in Ebergen’s Trace Theory

.

.
.

32
2.21 A few examples of trace theory circuit primitives

.

.
.

33
2.22 Operations in Martin’s CHP

.

. .
.

33
2.23 A few examples of Tangram circuit primitives

.

.
.

34
2.24 A gate with a single-input-change static hazard

.

.
.

42
2.25 Gate with single-input-change hazard removed

.

.
.

42

Chapter 3: Overview and Motivations
3.1 Three different STGs for essentially the same behaviour

.

.
.

46
3.2 Four-phase latch controller

.

. .
.

46
3.3 STG fragments given in Furber and Day’s paper [59]

.

.
.

47
3.4 Two latch controller STGs from Furber and Day [59]

.

.
.

48
3.5 STG for two simple latch controllers in a pipeline

.

.
.

48
3.6 STG for an “improved” controller due to Yun, Beerel and Arceo

.

.
.

49
3.7 Blue diagram for toggle element

.

.
.

50
3.8 BD for C-element with usual environment

.

.
.

50
3.9 Blue diagrams of some latch controllers

.

.
.

51
3.10 (a) Circuit derived by use of blue diagrams, (b) Furber and Day’s circuit.

.

.
.

52
3.11 Four-phase latch controller, modified to have Ltin and Ltout

.

.
.

52

xi

xii List of Figures

3.12 Blue diagram derived from modified fragments
.

.
.

53
3.13 Blue diagram for semi-decoupled controller from modified fragments

.

. .
.

53

Chapter 4: Specification
4.1 Overview of translation from fragments to blue diagram

.

.
.

56
4.2 An example BD with its graphical representation

.

.
.

56
4.3 Network of modules connected in a DI way

.

.
.

57
4.4 First model of connections between a circuit and its environment

.

. . . .
.

59
4.5 Latch controller specified by STG fragments

.

.
.

59
4.6 Intermediate Petri net for latch controller example

.

.
.

60
4.7 Parallel component specified by STG fragments

.

.
.

60
4.8 Nacking arbiter specification

.

. .
.

61
4.9 Martin’s DME element

.

. .
.

62
4.10 The loadable counter example

.

.
.

63
4.11–4.23 STG examples from the SIS benchmarks

.

.
.

64–69
4.24 Improved model of connections between a circuit and its environment

.

. .
.

70
4.25 A standard arbiter unit: the Seitz arbiter

.

.
.

71
4.26 An example Verilog definition, showing the file format

.

.
.

72
4.27 STG for Martin’s DME element

.

. .
.

73
4.28 A problem with automatic placement of tokens

.

.
.

74
4.29 How arbitration appears to the designer

.

.
.

75
4.30–4.48 Specification files used as input to L2b

.

.
.

78–82
4.49 Representation in the Petri net of a transition in the specification file

.

. . .
.

84
4.50 Representation of input, output, external and internal transitions

.

. . . .
.

85
4.51 Composition of transitions in the intermediate Petri net

.

.
.

86
4.52 Composition of transitions using the and keyword

.

.
.

87
4.53 Composition of transitions using the or keyword

.

.
.

87
4.54 A specification showing a problem with direct translation of the or keyword

. .

87
4.55 Possible translations of Figure 3.54

.

.
.

88
4.56 An example specification with nested if...then statements

.

.
.

88
4.57 A gateway structure

.

. .
.

89
4.58 Translation of the or statement in Figure 3.54 using gateways

.

.
.

89
4.59 Multiple nested gateways for the example in Figure 3.56

.

.
.

90
4.60 Problems with multiple choice points

.

.
.

92
4.61 Petri net structure for the if...then statement

.

.
.

93
4.62 Petri net structure for an if...then statement using an and conjunction

.

.
.

93
4.63 How to translate a data input into the intermediate Petri net

.

.
.

94
4.64 Representation of Seitz arbiter as a Blue Diagram and as a Petri Net

.

. . .
.

94
4.65 A problem that can occur during concurrency reduction

.

.
.

95
4.66 Modified arbiter behaviour, which cures a problem in prune but breaks L2b.

. .

95
4.67 Part of the state graph for the nacking arbiter with modified arbiter behaviour

. .

96
4.68 Correctly modified arbiter behaviour, which can be used in prune and L2b.

. .

96
4.69 Translation of the arbitrate statement to a Petri net structure

.

.
.

97
4.70 The three types of optimization performed on the intermediate Petri net

.

.
.

99
4.71 Removing redundant states from an XBD to form a blue diagram

.

. . . .
.

101
4.72 Results of b2ps on the blue diagram for the parallel component

.

.
.

103
4.73–4.84 Blue diagrams resulting from running L2b on the examples

.

. . .
.

106–112

Chapter 5: Concurrency Reduction
5.1 The standard concurrency reduction operation

.

.
.

114
5.2 The concurrency reduction operation on a circuit

.

.
.

114

List of Figures xiii

5.3 Left, STG for a simple pruning example; right, how the circuit will be used
. .

116
5.4 Blue diagram and environment derived from Figure 4.3

.

.
.

116
5.5 Blue diagram after transformation �

.

.
.

117
5.6 Blue diagram after transformation �

.

.
.

117
5.7 Blue diagram after transformation

.

.
.

118
5.8 Blue diagram after transformation � then �

.

.
.

118
5.9 Blue diagram after transformation � then

.

.
.

118
5.10 An example of a more typical environment: what L2b actually produces.

.

.
.

120
5.11 System and state graph for transformation �

.

.
.

120
5.12 Example blue diagram, arcs labelled with total states

.

.
.

121
5.13 Blue diagram after transformation
, arcs re-labelled with total states

.

. .
.

122
5.14 Example for comparing the two methods of concurrency reduction

.

. . . .
.

125
5.15 Ykman-Couvreur type reduction, applied to Figure 4.14

.

.
.

125
5.16 Blue diagram reduction that has no Ykman-Couvreur reduction

.

.
.

125
5.17 A backward reduction from Cortadella et al. [39]

.

.
.

126
5.18 The master-read example, split into two halves

.

.
.

128
5.19 Histogram of pruned diagram sizes for the latch controller and mr1.

.

. . .
.

128
5.20 Some pruned versions of the atod example

.

.
.

129

Chapter 6: Synthesis
6.1 Converting the mp-forward-pkt blue diagram to a flow table

.

.
.

132
6.2 Traditional implementation of a Moore machine

.

.
.

132
6.3 Example of the implementation style used in this dissertation

.

.
.

134
6.4 Effect of shrinking compatibles on the loadable counter

.

.
.

138
6.5 Effect of shrinking compatibles on the mr2 example

.

.
.

139
6.6 Effect of shrinking compatibles on the pe-send-ifc example

.

.
.

139
6.7 Effect of shrinking compatibles on isend, left, and ram-read-sbuf

.

. . . .
.

140
6.8–6.11 The four scoring functions f1–f4 against the figure of merit

.

. . .
.

141–143
6.12 Overview of the state assignment and truth table generation algorithms

.

.
.

144
6.13 Three ways of implementing a C-element

.

.
.

155

Chapter 7: Timing and Verification
7.1 NAND gate and inverter used to produce test waveforms

.

.
.

163
7.2 A more typical gate than an inverter

.

.
.

164
7.3 Four example gates used and their circuits

.

.
.

165
7.4 Static C-element symbol that will be used, and a CMOS implementation

.

.
.

166
7.5 Example circuit from [59], redrawn to highlight interesting transitions

.

. .
.

167
7.6 Straight-line version of Figure 6.5

.

.
.

167
7.7 Example circuit broken up by perfect buffers

.

.
.

168
7.8 Graph of gate delay against output load

.

.
.

170
7.9 Graph of output slope against output load

.

.
.

170
7.10 Graph of gate delay against input slope

.

.
.

171
7.11 Graph of output slope against input slope

.

.
.

171
7.12 Graph of gate delay against extreme values of input slope

.

.
.

172
7.13 Two gates with the same transconductance and loading, but different delays

. .

174
7.14 Effects of non-switching transistors off the conducting path

.

.
.

175
7.15 Circuit to determine the power consumed by a gate

.

.
.

177
7.16 Example circuit used for timing purposes: Latch controller

.

.
.

178
7.17 The timing part of the file latchc.timing

.

.
.

179
7.18 Example circuit used for timing purposes: Parallel component

.

.
.

180
7.19 Example circuit used for timing purposes: Loadable counter

.

.
.

181

xiv List of Figures

7.20 Example circuit used for timing purposes: DME
.

.
.

181
7.21 Example circuit used for timing purposes: Nacking arbiter

.

.
.

182
7.22 Example circuit used to illustrate the BBD algorithm

.

.
.

185
7.23 A modified Floyd-Warshall algorithm to determine feasibility

.

.
.

186

Chapter 8: Results
8.1 Circuit used to simulate a typical use of the latch controller

.

.
.

198

.

List of Tables
.

List of Tables
.

List of Tables
.

List of Tables
.

List of Tables

Chapter 2: Previous Work
2.1 Flow table example from Miller [124] and Unger [177]

.

.
.

37
2.2 Flow table reduced using maximal compatibles

.

.
.

38
2.3 Primes from Table 1.1

.

. .
.

38
2.4 Flow table reduced using prime classes

.

.
.

39

Chapter 4: Specification
4.1 Meaning of p!q for different types of p and q

.

.
.

84
4.2 Results of reduction and optimization

.

.
.

105

Chapter 5: Concurrency Reduction
5.1 Results of the prune program

.

. .
.

127

Chapter 6: Synthesis
6.1 Reduced table T 0 for the table T shown in Figure 6.1

.

.
.

134
6.2 Reduced table showing choice in the next-state entries

.

.
.

135
6.3 Example flow table to demonstrate Tracey’s algorithm

.

.
.

144
6.4 Dichotomies produced from the flow table in Table 6.3

.

.
.

145
6.5 Maximal dichotomies for the flow table in Table 6.3

.

.
.

146
6.6 Final state assignments for the example table

.

.
.

146
6.7 Encoded flow table, using state assignment 1

.

.
.

147
6.8 Example of a non-unique next-state entry

.

.
.

147
6.9 Finding the cost of the two possible next-state entries

.

.
.

148
6.10 The mp-forward-pkt example again

.

.
.

149
6.11 Result of scoring function for state assignments for isend

.

.
.

152
6.12 Result of scoring function for state assignments, loadable counter

.

. . . .
.

152
6.13 The meaning of strong and weak values at the transistor level

.

.
.

155
6.14 Comparison of static, pseudo-static and dynamic gates

.

.
.

156

Chapter 7: Timing and Verification
7.1 Additional capacitance required to make s x = sy for methods 1–6

.

. . . .
.

164
7.2 Discrepancies between gate delays when driven by “identical” waveforms

.

.
.

166
7.3 Effect of straightening the example circuit

.

.
.

168
7.4 Effects of different substitute gates on the delay of the example circuit

.

. .
.

169

Chapter 8: Results
8.1 Comparing the four types of gate, for the latch controller example

.

. . . .
.

192
8.2 As Table 7.1, but with a modified Quine-McCluskey cost function

.

.
.

193
8.3 Effects of type of gate used for latch controller, MPP state assignment

.

. .
.

193
8.4 Effects of type of gate used for DME example, MM state assignment

.

. . .
.

194
8.5 Effects of type of gate used for DME example, MPP state assignment

.

. . .
.

194
8.6 How the best implementations produced are affected by the type of gate used

..

195

xv

xvi List of Tables

8.7 Effects of the state assignment algorithm, on static latch controller circuits
. .

195
8.8 Effects of the state assignment algorithm, on dynamic latch controller circuits

..

196
8.9 Effects of the state assignment algorithm, on static DME element circuits

.

.
.

196
8.10 Effects of the state assignment algorithm, on dynamic DME element circuits

. .

196
8.11 Latch controller implementations from various tools

.

.
.

199
8.12 Parallel component implementations from various tools

.

.
.

199
8.13 Nacking arbiter implementations from various tools

.

.
.

200
8.14 DME implementations from various tools

.

.
.

201
8.15 Loadable counter implementations from various tools

.

.
.

201
8.16 Summary of results

.

. .
.

202
8.17 Total run-time for each example

.

.
.

202
8.18 Results on some of the SIS benchmarks

.

.
.

204
8.19 Recap of number of pruned blue diagrams

.

.
.

204

.

Introduction
.

Introduction
.

Introduction
.

Introduction
.

Introduction 1
1.1 Why Asynchrony?

The transistor has gone a long way since its discovery by Bardeen and Brattain
in 1947 [16]. In the early 50s, integrated circuits with as many as ten transistors
were available; by the 80s, hundreds or even thousands of transistors could be
integrated on a single die. In 1998, barely fifty years on from the first transistor,
microprocessors costing under $100 contain almost ten million transistors, and the
scale of integration seems likely to rise even further.

Initially, circuits were largely designed in an ad-hoc manner without requiring
global synchronization. Consequently, many early computers were asynchronous,
such as ORDVAC at the University of Illinois and IAS at Princeton. It was soon found
that a global timing signal would allow smaller and faster circuits to be produced,
such as the later Illinois machines, ILLIAC II, III and IV. The introduction of a global
clock allowed systems to be decomposed into subsystems, each of which was a
finite state machine with its outputs synchronized to one edge of the clock. Design
correctness was simply a matter of determining the delays in the combinational
logic within each subsystem, and checking that latch setup and hold times were
not violated. Checking that an asynchronous circuit was correct required removing
hazards, critical races and, at a higher level, checking for deadlock possibilities.

Synchronous circuits soon began to dominate digital design. The simplifying
assumption that time is discrete, partitioned by clock pulses, permitted progres-
sively larger and more complex designs to be created, with a good degree of con-
fidence that the design will operate correctly. As circuits grew, synchronous design
techniques and CAD tools became more widespread, and asynchronous design was
mostly forgotten.

As lithography became more advanced, feature sizes became smaller and clock
speeds rose. Constant field scaling [189] implies that wire delays for a particu-
lar circuit will scale down proportionally to feature size as gate delays do, but the
maximum economic die size has remained fairly constant at about 200–400mm2.
Wires are therefore increasing in length relative to other features at the same rate
that transistors are becoming faster. In an effort to keep wire resistance low, wires
have become taller than they are wide, but this has adverse effects on inter-wire
capacitance and, recently, inductance [165].

Significant delays in wires cause clock skew, where the clock edge is not seen
simultaneously at all points on the die. Optical injection of the clock is possible,

1

2 Chapter 1: Introduction

but this will not solve clock skew problems for clock speeds much above 1GHz. For
example, the permissible clock skew on the 500MHz Alpha 21164 was 90ps, a time
in which light can scarcely cross the chip, so optical clocking would only just cope
with current clock speeds. With the current roadmaps predicting 0.1�m feature
sizes giving clock speeds in excess of 4GHz by 2010 [188], it can be seen that the
assumption of a single global clock will fail within the next ten or fifteen years. Even
today, clock distribution is difficult. For the last few years, Digital’s Alpha design
team have had to find increasingly esoteric ways to reduce clock skew. The 21064
had a massive 35cm wide clock driver in the centre of the die [66], the 21164 had
a pair of drivers totalling 58cm to reduce the distance from the clock driver to any
point on the circuit [14], whereas the 21264 has a distributed network of conditional
clocks with known skew. Even if the clock can be distributed successfully, data
signals still travel at sublight speeds on-chip, a fact that required two register files
in the 21264 to reduce the distance data had to travel in a single clock cycle.

As synchronous circuits begin to hit these fundamental technology barriers,
asynchronous circuits look to be poised for a comeback. Asynchronous circuits are
any that do not have a global synchronisation signal; they can range from locally-
clocked modules connected in a clock-free way to fully delay-insensitive circuits.
Asynchronous circuits have a number of advantages:s They automatically adapt their speed to suit their physical conditions:

– Temperature: Martin’s asynchronous microprocessor functioned correctly,
and much faster, when placed in liquid nitrogen [120]

– Age of components: hot-carrier effects [54] cause degradation in short-
channel transistors over time, causing a synchronous circuit to fail to
meet timing margins

– RF interference: individual gate delays can vary –50% to +100% due to
low-level EMI [25]s Lower power:

– Only parts of the circuit that are being used take power, however newer
synchronous processors use conditional clocking to achieve the same
goal [66].

– Dynamic supply voltage variation can cut power, e.g. by a factor of 20
for an asynchronous DCC player [86], although dual supplies have also
recently been used for low power in synchronous circuits [181].s Infrequently used subcircuits can be left unoptimised, at very little perfor-

mance penalty.s Better technology migration potential. Because asynchronous circuits do not
use global timing assumptions, it is possible to implement a circuit using a
different gate library or possibly a completely different logic family, as Tierno
et al. [175] showed when they ported the Caltech microprocessor to Gal-
lium Arsenide. Basic delay-insensitive building blocks [145] and asychronous

Section 1.1: Why Asynchrony? 3

pipelining schemes [82] have even been demonstrated for rapid single-flux
quantum (RSFQ) superconducting devices, which are still in their infancy.s The outside world is asynchronous; in particular, metastability (see Chaney
and Molnar [24]) is not a problem when the circuit can wait for its components
to stabilise.

It is also often said that asynchronous circuits give average case performance,
rather than the worst case performance which must be accepted for synchronous
circuits. This statement requires some qualification. Bundled-data approaches re-
quire overestimating the worst-case datapath delay by typically 100% to allow for
process variations [57], whereas a synchronous circuit may be clocked only 10–20%
slower than the speed at which it fails. Handshaking overheads also increase the
time to do any operation on data, although Martin [115] believes that this overhead
is roughly the same as the clock skew penalty in todays CMOS circuits.

Papers which state that average delays can be substantially less than worst-
case delays usually use a ripple-carry adder as an example, but the worst-case
for a ripple carry happens surprisingly often in microprocessors [87]. It is also
the case that carry select and carry skip adders are reasonably simple, so ripple
carry adders will not be used in real designs. Achieving average-case performance
requires completion detection, which takes a time overhead that is not present in
synchronous circuits, although this can be taken off the critical path. Pipelines that
are built out of elements that have large delay variances tend to perform worse than
pipelines with a more uniform delay per stage, unless additional decoupling is used
[84]. To summarise, the only fast asynchronous circuits are likely to be ones using
pipelined completion detection with carefully prepared pipeline structures, such as
proposed by Martin [121].

On the other hand, there are some major disadvantages to asynchronous cir-
cuits:s Many of the techniques that make it easier to design synchronous circuits can-

not be used for self-timed design. Inputs to asynchronous circuits are active
all the time, whereas in synchronous circuits they are only sampled at well-
defined intervals. This leads to problems with hazards [180] when reducing
Boolean expressions using algorithms designed for synchronous circuits.s It is not possible to put latches round all the parts of an asynchronous circuit
and run the circuit slower for testing purposes. In particular, scan paths and
design-for-test will have to be modified for use in asynchronous circuits, but
much effort is being expended here. It has often been said that stuck-at
faults in certain classes of asynchronous circuits cause them to stop rather
than give an incorrect answer, so testing is in some sense built-in, but this
has been disputed [20].s Some global timing issues return and are difficult to solve, such as deadlock
or livelock in systems composed of many concurrent parts.

4 Chapter 1: Introductions There are few proven CAD tools to help with design.

Although asynchronous circuits may not show speed improvements over equiva-
lent synchronous circuits, it may be possible to develop asynchronous architectures
that simply have no synchronous counterparts. An example is Sproull and Suther-
land’s Counterflow Pipeline Processor [170]; this can be built in a clocked way, but
can take advantage of an asynchronous framework in a way that a clocked version
could not. Another example is the Rotary Pipeline processor of Moore, Robinson
and Wilcox [128], which is a generalisation of Williams’ self-timed ring structures.
Data flows round a ring of ALUs without having to wait for control or clock over-
heads until it reaches the register file. Certain specific areas, such as DSPs, have
been showing the advantages of asynchronous circuits for some time [79].

1.2 Aims

The work in this dissertation was inspired by Furber and Day’s paper on latch con-
trollers [58]. They specified a circuit to operate the latches in an asynchronous
pipeline by giving orderings between rising and falling transitions of the inputs and
outputs of the latch controller circuit. These orderings are better known as Signal
Transition Graph (STG) fragments. Implementations were produced by hand, and
relied upon the skill of Furber and Day to produce fast circuits.

Orderings between transitions are an intuitive way to specify the behaviour of a
circuit, but not all circuits can be described in this way; consider a circuit where the
choice between two transitions depends on the state of a third level-sensitive input.
To be useful as a specification, transition orderings must be augmented with other
constructions.

One of the interesting features of Furber and Day’s paper [58] is that three
implementations were produced which allowed varying degrees of concurrency be-
tween adjacent pipeline stages. Chapter 3 introduces an intermediate represen-
tation of the interface behaviour of a circuit, which makes it easy to change the
amount of concurrency in a similar way. A fast concurrency-reducing transforma-
tion can be defined on this intermediate form, which allows a large number of
possible implementations to be investigated.

The aim of this dissertation is to describe the development of a synthesis tool for
asynchronous circuits, which starts with STG fragments, performs concurrency re-
duction on intermediate forms, and synthesizes these forms into verified modules.
In detail, the aims are:

1. To create a front-end description, based upon STG fragments, that is powerful
enough for almost all real-world circuits and is simple to use.

2. To compile this specification into the intermediate form mentioned above.

3. To show that exhaustive enumeration of concurrency-reduced intermediate
forms is possible within a reasonable time.

Section 1.3: Structure of this dissertation 5

4. To show that the concurrency-reduced intermediate forms can be synthesized
into circuit modules and verified as correct given bounds on the environment
reponse times.

5. To show that circuits produced tend to be superior to current asynchronous
tools, in terms of the scoring function given by the designer.

1.3 Structure of this dissertation

A pictorial overview of the synthesis tool described in this dissertation is given in
Figure 1.1.

Chapter 2 relates previous work in asynchronous circuits, concentrating on
specification styles and fundamental mode synthesis techniques. Literature on tim-
ing and verification will be left until Chapter 7.

Chapter 3 gives the observations that prompted the work described in this dis-
sertation. It can be viewed as a roadmap for the dissertation.

Chapter 4 describes the design of a specification language, based upon STG
fragments, and the way in which this language is translated first to a Petri net, and
then into an intermediate form called a blue diagram. This translation is performed
by the program L2b. Some example specifications are given, from a number of
sources including the standard set of SIS STG benchmarks [101].

The concurrency reduction operation is described in Chapter 5, and compar-
isons made with other approaches to the problem. The concurrency reduction
algorithm was implemented in the program prune.

Chapter 6 explains the synthesis algorithms that were used in the synthesis
program synth. Most of the methods are based upon existing work, but with some
modifications to improve the results.

Chapter 7 gives the gate-level timing algorithms that were used, and describes
a verification algorithm that uses the gate-level timing analysis.

Chapter 8 lists the results of the whole synthesis procedure for the example
circuits that were considered in Chapter 4. Results are also given for the different
state assignment algorithms and implementations considered in Chapter 6.

Chapter 9 gives an summary of the work presented in this dissertation, along
with conclusions that can be drawn and possible areas for future work.

Typographic conventions

Anything that would be expected to occur in a text file will be set in a typewriter
font, such as signal names in a specification, and transitions of those signals, and
keywords such as module and arbitrate. Letters that are being used to stand for
one out of a number of possible transitions or signals will be set in italics, as will the
names of well-known asynchronous synthesis examples such as alloc-outbound.
Program names such as L2b and prune will be set in sans serif. L2b actually has a
lower case “L”, but this tends to read as “twelve-b”, so it has been changed so an
upper case letter in this dissertation.

6 Chapter 1: Introduction

Program

synth

Output

Circuit Circuit Circuit Circuit

prune

l2b

b2ps

file.pbd

file.timing

file.bd

file.spec

Blue
diagram

Blue
diagram

Blue
diagram

Time
Power
Size

Time
Power
Size

Program

Blue diagram
representation

Program

Specification

Program

Blue
diagram

Timing
file

PostScript

PASS FAIL PASS PASS

V E R I F Y

T I M I N G A N A L Y S I S

P I C K B E S T

S Y N T H E S I Z E

Power
Size

Speed

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.1: An overview of the synthesis tool presented in this dissertation

.

Previous Work
.

Previous Work
.

Previous Work
.

Previous Work
.

Previous Work 2
He who cannot draw on

three thousand years [of knowledge]
is living from hand to mouth

– Goethe

2.1 Delay assumptions

An important early work in asynchronous circuit synthesis is the book by Unger
[177], which collected a number of results and methods into a definitive reference
work for the early seventies. At that time, there were two main types of circuit,
which were distinguished by what they assumed about the delays that were present
in circuits:s Fundamental mode or Huffman circuits, due to D. A. Huffman [77]. The

delay assumption is that upper and lower bounds are known for all gate and
wire delays. When a combination of inputs has been given to a Huffman
circuit, these known bounds can be used to determine when the circuit will
become stable, and the environment must wait for the circuit to stabilize be-
fore providing another input. Formally, for any circuit there exist real numbers�2 > �1 > 0 such that two input transitions less than �1 apart are treated
as a single change, and two transitions greater than �2 apart are treated as
two sequential inputs. If the delay between two inputs is between � 1 and �2,
then the behaviour of the circuit will be undefined. Hazard removal for Huff-
man circuits is difficult, and is often avoided by either imposing the restriction
that only one input changes at a time, which limits concurrency and impacts
performance, or adding explicit inertial delays on outputs, which also reduces
performance.s Speed Independent or Muller circuits, after D. E. Muller [132]. The delay
assumption used is that gate delays are unbounded but finite whereas wires
have no delay. The only way to find out whether a Muller circuit has finished a
computation is to have it return a completion signal, which indicates that the
circuit is ready to receive another input.

7

8 Chapter 2: Previous Work

Muller’s 1955 technical report [132] defined a notion of asynchronous circuit
correctness that would be useful during design. One of his desirable properties
for a circuit (Condition 3 from [132]) states that if a circuit, complete with its envi-
ronment, is broken at a set of one or more nodes, then the final equilibrium state
of the circuit (if one exists) should not depend on the relative speeds of the active
elements. In subsequent reports [133, 134] he defines speed-independence and
semi-modularity and proves some results connecting these concepts. Let a gate
be excited if a change to it inputs has just occurred which will cause a change in
its output, but the output change has not happened yet. The gate fires when the
output change happens.

Speed Independence A circuit is speed independent with respect to a particular
initial state if all behaviours of the circuit starting in that initial state end up in
one equivalence class of states. In the circuits considered in this dissertation,
there will not be any oscillating internal states of a control circuit; in this case,
the condition for speed-independence can be restated as “The final state of
the circuit does not depend on the relative delays of gates”.

Semi-Modularity A circuit is semi-modular if, from any state
.

b reachable from the
initial state, and for any successor state

.

c of
.

b, then any excited gates that
do not fire in the transition from

.

b to
.

c are still excited in
.

c. Equivalently,
“An excited gate can only become stable through firing”, which is the usual
definition of semi-modularity.

Muller proved that a semi-modular circuit is also speed-independent, although
the reverse is not true, and that speed-independence implies that condition 3, which
was mentioned above, is satisfied. A good account of the work of Muller can be
found in Miller’s book [124].

Both the Fundamental mode and Speed-Independent models have their prob-
lems. Fundamental mode relies upon knowing the delays of circuit elements, but
Chappel and Zaky [25] states that gate delays may be affected by as much as factor
of two by low-level electromagnetic interference. Speed independent circuits do
not take account of wire delays, which dominate gate delays in submicron CMOS
[36]. Some speed-independent approaches [3, 94] assume that zero-delay input
inverters are available on all gates, which is a violation of true speed-independence
but is fairly safe in practice.

Other delay models include:s Delay-Insensitive or DI design assumes that the delays in both wires and
gates are finite but unbounded, and is the most robust assumption that can
be made. The term “Delay-Insensitive” was coined by Molnar and Clark in
the Macromodules project [32]; they also defined the Foam Rubber Wrapper
Property as a test for delay-insensitivity, which states that if arbitrarily delaying
the input and output transitions of a circuit cannot cause a hazard or a change
in its behaviour, then its interface is delay-insensitive.

Section 2.1: Delay assumptions 9

Component Symbol Trace expression

Fork a?
b!

c!
pref[a?;(b!kc!)]*

Merge
a?

b?
c! pref[(a?|b?);c!]*

Mutex Mutex
r0?

r1?

g0!

g1!

pref f(r0?g0!r0?g0!)*k(r1?g1!r1?g1!)*k[(g0?g0?)|(g1?g1)]*g
2�1-Join

b?

a0?

a1?

c0!

c1!

pref f[(a0?kb?)c0!][(a1?kb?)c1!]g*
Mem Mem

c?

t?

c’!

t1!
t0!

pref[(t?t0!)*c?c'!(t?t1!)*c?c'!]*
Figure 2.1: DI circuit modules from Patra and Fussel [144]

Unfortunately, very few circuits fall into this class, so some weakening as-
sumptions have to be made—Martin [119] showed that a DI circuit composed
of only single-output gates can contain only NOT gates and C-elements, which
do not allow enough flexibility to build most circuits. Because DI design is so
restrictive, synthesis algorithms usually just connect a set of predefined low-
level modules, where the modules themselves are designed using a different
delay model. These modules are usually built out of simpler gates, such as
AND, OR and NOT, but it has recently been found that certain modules can be
efficiently built directly in some superconducting technologies, giving mod-
ules that are substantially smaller than AND or OR gates [145]. Effort has
gone into finding the best set of DI components; Patra and Fussel [144] say
that the five modules shown in Figure 2.1 are minimal and optimal in a sense
defined by Keller [85].s Quasi Delay Insensitivity or QDI modifies DI by introducing isochronic
forks [117], structures that allow delay matching over a limited area. An iso-
chronic fork is shown in Figure 2.2. When a signal starts at p and travels down
the forked wire, it will be seen to arrive at different times at q and r. If the
difference between the arrival times of the signal at q and r is less than the
propagation delay of either of the gates driven by the fork, labelled f and g,
then the fork is deemed to be isochronic. This assumption can be upheld
by making the two prongs of the fork almost equal in length, and ensuring
that the thresholds of f and g are not widely different. Asymmetric forks were

10 Chapter 2: Previous Work

f

g

p

q

r

s

t

=

Figure 2.2: An isochronic fork

also proposed, where the signal is guaranteed to arrive at one end before
the other. Using isochronic forks enables a wider variety of circuits to be de-
signed, but they must be treated with care, as pointed out by van Berkel [9].
A pair of CMOS gates can often have significantly different input thresholds,
even if the gates are identical, which means that a slow ramp voltage caused
by a long wire could trigger two gates at very different times. Current auto-
matic place-and-route tools may not honour the isochronic forks in a design,
which is problematic. Some research teams, such as the TITAC team [139],
have found that the QDI assumption is overly pessimistic and leads to low
performance, but Martin’s work disputes this.s Quasi-QDI or Q2DI is a further relaxation of QDI. QDI circuits can be quite
large when built out of standard cells. Van Berkel proposed extended iso-
chronic forks [12] as a way to design more compact circuits with better per-
formance, at the expense of using a more risky delay assumption. The as-
sumption used, with reference to Figure 2.2, is that the difference in delay
between p and s and between p and t is less than the propagation delays of
gates driven by s and t. Extended isochronic forks may require post-layout
verification to make sure the assumption holds.s Field Forks: The problems with DI prompted Kishinevsky et al. to consider
Field Forks [89]. A CMOS gate has two contacts, one on each side of the active
area, so a signal that should be forked to a number of gates can instead be
chained through the necessary transistors. The transistors should change
state in the order of the chaining, and given this knowledge, the circuit can
be designed to work correctly. Forking a signal to the P and N transistors of a
gate is allowed, for example in a NOT gate. Although elegant, field forks have
been largely ignored.

Armstrong et al. [1] attempted to bridge the gap between the two delay models
in 1969 by using unbounded gate delay and bounded wire delay, but this had similar
properties to speed-independent circuits. Other recent delay assumptions are the
unbounded complex-gate assumption used by Chu in [28, 30], bounded simple-
gate assumption as used by Lavagno et al. in SIS [105], and the bounded complex-

Section 2.2: Signalling and data conventions 11

gate assumption used by Moon et al. [127]. There is a rapidly growing number of
delay models, each having their own strengths and weaknesses, with no one model
being the best for all occasions.

2.2 Signalling and data conventions

In synchronous circuits, data transfer is simply a matter of making sure that the
sender observes setup and hold times on the data lines, and that the receiver sam-
ples the data lines when the clock edge arrives. Data transfers in asynchronous
circuits do not have a clock edge to synchronize to, so other ways of coordinating
the sending and receipt of data must be found. Events passed from one asynchron-
ous module to another can be considered as data transfers of a null value, so all
inter-module communication can be treated as data transfers.

2.2.1 Two-phase versus four-phase protocols

When passing events and data between modules, it is usually not known exactly
what the wire delays are between the modules. In such cases, it is important to
use methods which do not assume precise delays, such as request/acknowledge
handshaking. When just events are being sent, there are two ways to organize the
request and acknowledge wires: two phase and four phase signalling. Two phase
signalling, also called transition signalling, treats both rising and falling edges of
signals identically. Four phase, or level signalling, assigns no meaning to falling
edges, using only rising edges to convey information. Figure 2.3 shows this graph-
ically.

The choice between two phase and four phase design is not easy to make,
as pointed out by Sutherland et al. [171]. Two phase signalling maps well to for-
malisms such as trace algebra, because there are no unnecessary transitions; this
also can theoretically reduce power and increase speed. Unfortunately, two phase
circuit elements, such as XOR gates and C-elements, tend to be larger and slower
than level-sensitive gates such as AND and OR. The link with trace theory makes
two-phase design clean and elegant, but this is not preserved in the resulting cir-
cuits, which often have duplicated circuit blocks. CMOS is fundamentally a level-
sensitive technology, so four-phase signalling maps onto the hardware better; it
also is a more familiar model to most circuit designers. The disadvantage of four-
phase control is that the falling edges introduce useless concurrency and extra
power and delay, which in turn complicates formal analysis.

2.2.2 Bundled data versus delay-insensitive schemes

When several bits of data are to be sent rather than just a single event, the schemes
above need to be generalized. One way is the bundled data approach, where it is
assumed that the time taken for the data on a bus to travel from the sender to the
receiver is almost the same as the time that a request transition takes to do the
same journey; this is a good approximation if the data lines and request wire are

12 Chapter 2: Previous Work

req

ack

Two phase
interpretation

Four phase
interpretation

e

e

a

a

e a e a

e a- -

Sender Receiver

Acknowledge

Request

(e = event, a = acknowledge)

Figure 2.3: Two phase and four phase events

all routed very close to one another. Bundled data can be used with either two-
phase or four-phase control signalling, as in Figure 2.4. The data wires are driven
shortly before a request event is sent. When the receiver sees the request event,
it can be assumed that the data is stable at the receiver. The useless transitions
in the four-phase protocol can happen in parallel with the settle time for the next
data, so that four-phase bundled data is not intrinsically slower than two-phase.
Figure 2.4 (c) shows some modifications to four-phase timings that have been used
by the Amulet group [59, 108].

A variation on four-phase bundled data is the asP* protocol, presented by Molnar
et al. [126]. The falling edge of the acknowledge signal is timed, and occurs three
gate delays after the rising acknowledge. This has been demonstrated to give good
performance in a FIFO with no processing logic.

Delay-insensitive schemes do not introduce timing and routing constraints, but
require more circuitry. Brunvand [19] has classified DI schemes as follows. A pair
of request/acknowledge handshakes

.

R0/.

A0 and
.

R1/.

A1 can be used to pass a single
bit of data, by performing a handshake on

.

R0/.

A0 for a binary 0 and
.

R1/.

A1 for a
binary 1. When used to send a number of bits between modules, this is termed
a four-wire scheme. The

.

A0 and
.

A1 wires can be combined together on a per-bit
basis, yielding a three-wire scheme where each bit has

.

R0, .

R1 and Ack wires, or the
acknowledges can be combined into a single wire for the whole bus, which is called
a two-plus-wire scheme. Any of these approaches may be used with either two-
phase or four-phase signalling, but the most common combination is four-phase
signalling with two-plus-wire data, more commonly referred to as dual rail.

Dual rail data requires two wires per bit from sender to receiver,
.

R0[0]/.

R1[0],

Section 2.2: Signalling and data conventions 13

req

ack

data

req

ack

data

data

req

ack

early

late

broad

broadish

data must be held valid during this interval

req

ack

Sender Receiver

valid valid valid

validvalidvalid

(a) Two-phase bundled data

(b) Four-phase bundled data

(c) Some variations on four-phase used by the Amulet team

Figure 2.4: Two phase and four phase data

14 Chapter 2: Previous Work

sender receiver

of processing logic

Control Control

Processing
Logic

Delay matched to worst-case delay

Figure 2.5: Bundled data with processing delay

. . .
.

R0[n-1]/ .

R1[n-1], and an acknowledge wire from the receiver to the sender. All
wires start at logic 0. A transaction consists of raising one of each pair of wires

.

R0[i] and .

R1[i], raising the acknowledge when the all data bits have been received,
dropping all data lines when the acknowledge has been received, and then dropping
the acknowledge.

NULL Convention Logic is a proprietary dual-rail methodology using neuron-
like gates, described by Fant and Brandt [55] and based partially on the work of
Seitz [161]. It is a more structured approach than dual rail, a fact which permits
substantial gate-level optimization of circuits. Results were given in [167] for an
asynchronous 2-D DCT chip, but because bit-serial addition was used and their
router was not tailored for use with this logic, the results were poor compared to
other designs.

2.2.3 Comparisons

Two-phase bundled data was first proposed by Sutherland [172], and has been
widely used, for example in Amulet 1 [57]. The Amulet team found that two-phase
latches are much larger than pass-transistor or Yuan and Svensson [200] latches,
which both use four-phase control. Two-phase to four-phase conversion was found
to be too expensive, so four-phase control was used throughout Amulet 2e. Day
and Woods [47] state that their four-phase pipeline design is smaller, faster and
more energy-efficient than a two-phase design.

Bundled data has the advantage that a standard synchronous datapath can be
used, but this is also a disadvantage. Figure 2.5 shows how to insert processing
logic between two stages of an asynchronous pipeline: a delay must be added to
the control path so that the bundled data assumption will still hold at the receiver.
This delay must be chosen so that it is longer than the worst-case delay through
the processing logic, plus a safety margin of typically 100% [57], which substantially
affects performance. It is no surprise that the Amulet team, who use bundled data
throughout their designs, have shifted their focus from high speed to low power.

Section 2.3: Graph-based specification approaches 15

Dual rail datapaths consume more silicon area than synchronous or bundled
data circuits, because there are twice the number of wires involved, but they can
be quite efficiently implemented with Cascade1 Voltage Switch Logic (CVSL) gates
[189, page 170]. The request signal is embedded in the data, so no additional
delays need to be added; the receiver simply waits until it sees valid data, and then
it knows that the data processing is complete. Unfortunately, determining whether
the data is valid requires looking at each bit in the datapath, which takes a large
tree of gates. This completion tree takes time to produce a result, although this is
unlikely to be as long as the additional delay margins imposed on bounded delay
circuits. Cunning design, such as that used by Williams [190] and Martin [121], can
take the completion delay off the critical path and allow a pipeline to run as fast
as the data processing circuits will allow, which is simply not possible with either
synchronous or bundled data design.

Hybrid approaches have been proposed that keep the small size of bundled
data, but have performance near that of dual rail. Garside proposed an ALU for use
in the Amulet processor that used a ripple carry adder with a dual-rail carry path
and an external bundled data interface [61]. Completion of the addition is signalled
a short time after all carry bits have been calculated. This gives reasonable per-
formance while keeping size and power low. Another technique is Current-Sensing
Completion Detection (CSCD), which uses the fact that CMOS gates only take power
while they are switching. A circuit was suggested by Izosimov [78] which uses a re-
sistor and an analogue amplifier as a current sensor to determine when processing
has finished, but this causes a voltage drop to the rest of the logic that results in
a 35% delay penalty. Grass and Jones gave a faster BiCMOS circuit [62]. Activity
Monitoring Completion Detection is a more promising approach, given by Grass
et al. in [63], where small circuits inspect the output of datapath gates and signal
when the outputs are stable.

2.3 Graph-based specification approaches

Many ways have been proposed to specify the behaviour of asynchronous circuits;
Figure 2.6 gives an overview of the more common styles. The specification type
depends on the delay assumption, and affects the synthesis algorithms used. This
section looks at specifications that are essentially graph-based, while text-based
specifications are covered in the next section. Only deterministic circuits are con-
sidered.

2.3.1 Petri nets (PNs)

Petri nets, invented by C. A. Petri, are a graphical specification of processes that
naturally depict causality, concurrency and choice. Figure 2.7 shows two examples
of Petri nets. The open circles are places, the black circle is a token, and x+, y+,

1Often erroneously called Cascode Voltage Switch Logic, probably because it sounds better. The
cascode configuration is actually an analogue circuit designed to nullify the Miller effect (Ccb) in high-
frequency bipolar amplifiers [76, page 103].

16 Chapter 2: Previous Work

Chu's
CLASS

Burst
Mode

Extended
Burst Mode

Finite

Machines
State

Change
Diagrams

Petri
Nets

Signal
Transition

Graphs

Causal
Logic
Nets

Symbolic
STGs

Generalised
STGs

Synchronized
Transitions

Hoare's CSP
+ Dijksta's guards

Event-

Systems
Controlled

I-nets
Macro-

modules
project Ebergen's

trace
theory

Martin's
CHP

Handshaking
Expansions

Graph-based Text-based

Specifications

Tangram

Figure 2.6: Overview of specification styles

r0+

x+

g0+

g1+

r0- g0-

g1-r1+ r1-

z+ x-

z+

y-

y+

(a) Petri net of an arbiter, showing choice

(b) Petri net showing concurrency

Figure 2.7: Petri net examples

Section 2.3: Graph-based specification approaches 17z+, x-, y- and z- are transitions. The arrangement of tokens in the net is called its
marking. The set �t of all places with arrows to a particular transition t is known
as the set of predecessor places of that transition, similarly the successor places t�
are those with an arrow from the transition. When a transition has at least one token
in all its predecessor places, it can fire, removing one token from each predecessor
place and adding one token to each successor place. A highly concurrent circuit
with many internal states may correspond to a small Petri net. A good introduction
to Petri nets can be found in Reisig [151].

Petri nets that are used to design four-phase circuits usually have their transi-
tions labelled with + or -, but two-phase nets, such as I-nets, do not. Many known
results about Petri nets were collected by Murata [135], from which the following
definitions are taken.

A Petri net is a 4-tuple (P, T, F, M0), where

P = fp1; p2; : : : pmg are the places
T = ft1; t2; : : : tmg are the transitions

with P \ T = ; and P [T 6= ;
F � (P� T) [(T� P) is the flow relation
M0 : P ! f0; 1; 2; : : :g is the initial marking.

A pure net is one with no self-loops, i.e. no t and p such that (t; p) 2 F and(p; t) 2 F. Self-loops can be turned into two-transition loops by adding a dummy
transition, if required. A net is k-bounded if no place can contain more than k to-
kens during any sequence of transition firings from the initial marking; a 1-bounded
net is also called safe. Nets which are not bounded can not necessarily be imple-
mented as a finite circuit. A net is live if every transition can be fired infinitely often
from the initial marking.

Direct structural synthesis of a Petri net is possible, translating either places or
transitions into circuit constructs. In general, structural methods make large and
slow circuits, but they can be useful for rapid prototyping. Direct place translation
has an SR flip-flop for each place in the net. An AND gate connected to all the
predecessor places of a transition goes high when the transition is enabled, and
then is used to set all the successor places and reset the predecessors [184]. A
better approach is to use a circuit element for each transition, as used by Patil and
Dennis [48] and later refined by Kishinevsky et al. [89]. This can only be used for
two-phase circuits, and places a number of restrictions on the net.

Petri nets are a general specification style with few restrictions, so not all nets
can be turned into actual circuits. Certain conditions need to be met by a net before
it can be synthesized, such as persistency and consistent state assignment. A non-
input transition t is non-persistent if there is a reachable marking in which it and
another transition u are enabled, but firing u disables t. This behaviour might cause
a hazard if t is part-way through firing when u fires. A persistent net is one with no
non-persistent transitions; note that this is not the same as Chu’s definition of STG
persistency [28], even though STGs are a restricted class of Petri nets. Consistent
state assignment means that a particular signal a must alternate a+, a-, a+, a-, . . .

There are two ways to determine whether these conditions hold. Kondratyev et

18 Chapter 2: Previous Work

al. have used net unfoldings [95], and also conducted an implicit state space search
by using binary decision diagrams [92]. Usually, when one algorithm takes a long
time, the other will be much more efficient for a particular net; they are essentially
complementary techniques.

Because Petri nets are such a general specification, other forms can be trans-
lated into a Petri net and then synthesized. Kishinevsky et al. [88] have translated
transition systems, a superset of state graphs, to Petri nets; this is a generalisation
of earlier work by Cortadella et al. [40]. Translation of circuits into circuit Petri nets
and resynthesis to optimize the circuit was discussed by Kondratyev et al. [92].

Many Petri net transformation and synthesis algorithms have been implemented
in the tool petrify [37], which produces speed-independent circuits. Synthesis
using petrify is similar to the STG synthesis that will be presented shortly. A
state graph is formed, which has CSC violations removed by adding state variables
based on the theory of regions [38]. A region is a constrained set of states in the
state graph that will preserve speed-independence if it is used as a rising or falling
condition for a state variable. CSC violations are removed iteratively, then standard
logic synthesis algorithms are used to produce CMOS complex gates. The gates
produced tend to be reasonably small, and are usually in a gate library [92]. A good
overview of Petri net methods is given by Kondratyev et al. [92].

I-nets

It has already been said that useful delay-insensitive circuits cannot be built out of
single-output gates, and that a set of basic multi-output modules is required. I-
nets are a specification, very similar to Petri nets, that are designed to specify these
modules. The modules are small, which allows exponential synthesis algorithms to
be used, such as the traditional FSM algorithms of Tracey and Unger. Typically, two-
phase signalling is used. I-nets were used in the Macromodules project by Clark
and Molnar in the late 60s and early 70s. The aim of the project was to create
“building blocks . . . from which it is possible for the electronically naive to construct
arbitrarily large and complex circuits that work” [32]. Modules were boxes with
about 80 MECL-II chips in each, plugged into a power and cooling backplane and
attached to each other with data cables.

Synthesis from an I-net proceeds by exhaustively simulating all transitions to get
a two-phase interface state graph (ISG), converting this to an equivalent four-phase
diagram called an encoded interface state graph (EISG), and then using standard
logic synthesis techniques, such as Karnaugh maps. State variable insertion, if
required, is done by hand. A full description can be found in Sproull [169]. The
circuits produced may not be delay-insensitive, but by analysing hazards and adding
inertial delays if necessary, the circuits can be made to compose correctly in a DI
setting.

In 1994, Sutherland et al. [171] described the synthesis of a number of pipeline
latch controllers, using fragments of Petri nets which they called snippets. Fig-
ure 2.8 shows the snippets used, and Figure 2.9 gives the resulting circuit. It can
be seen that this is a combined two-phase and four-phase methodology, using XOR

Section 2.3: Graph-based specification approaches 19

Latch

DataRi Ai

Ro Ao

L

G

Ai Ri

Input handshake

RoAo

Output handshake

Ai G+

Data captured

Ri Ri

Ro Ro
Dataflow and storage

L-

Unlatching

AoL+ Ri

Initiate latching

G- Ro

New output data

L+ G+ L- G-

Four phase latch behaviour

Control
circuit

Figure 2.8: Snippets specifying the medium capability latch controller of [171]

Ri Ai

Ro Ao

L

GTransparent
Latch

Figure 2.9: Circuit derived from specification in Figure 2.8

20 Chapter 2: Previous Work

data out

acknowledge out

data in

clock in

Outputs

Inputs

clock wire

inputs

.

.

.

states

acknowledge wires

.

.

.

.

.

.

Q-
flop

Q-
flop

Q-
flop

Q-
flop

Q-
flop

rendez-
vous

clock

next-state
logic

output
logic

..

..

Figure 2.10: Q-module implementation style

gates to convert one way and wait-ons, also called transparent latches, to convert
the other way.

Rosenberger et al. [154] implemented I-nets as Q-modules, which are internally
clocked state machines with the ability to stretch the clock period if a circuit element
goes metastable. Figure 2.10 shows the Q-module implementation style. A Q-flop
is a clocked data latch, with a built-in arbitration circuit, that will only send an
acknowledge when its output is stable. Q-modules can provide a compact way to
implement large specifications, but the clock is always cycling, so they take a fair
amount of power and have an indeterminate latency.

Time Petri nets (TPNs)

Time Petri nets are Petri nets that have rational earliest and latest firing times (t+e x)
and (t + lx) associated with every transition x. When x becomes enabled, it must
wait until time (t + ex) before firing, but must have fired by time (t + lx). TPNs

Section 2.3: Graph-based specification approaches 21

acksend-

rejsend-acksend+

sending- sending+

reqrcv+/2 rejsend+ sending-/2

enwoq+/2enwoq-/2

reqrcv+/1

reqrcv-/2

enwoq+/1

enwoq-/1 reqrcv-/1

According to the usual STG convention, two different transitions of the same wire in the

same direction are distinguished by appending /1 and /2. This STG is live, safe, free-

choice and has the USC, CSC and CSA properties, but does not have single-cycle transi-

tions, because of reqrcv+/1 and reqrcv+/2.
Figure 2.11: Example of an STG: rcv-setup

were used by Semenov [163] to reduce the size of the state graph corresponding
to the Petri net, and hence make a simpler circuit. The state graph can still be
large, especially for highly concurrent specifications. This problem was addressed
by Verlind et al. [186] by allowing tokens in the state graph to have negative ages.
This has the effect of folding many different possible orderings of concurrent signals
into one ordering, but the negative ages mean that any one transition can actually
have fired before the others.

2.3.2 Signal transition graphs (STGs)

STGs were proposed by Chu [28] as interpreted live safe free-choice Petri nets.
Liveness and safety of Petri nets has been covered already; an interpreted net is one
that has signal names associated with all its transitions, and a net is free-choice if
for any two transitions s and t such that (�s [�t) 6= ;, then �s and �t are
both a single place p. When STGs are drawn, any places that have one arc in and
one arc out are removed, making the representation more compact. An example
STG showing concurrency and choice is shown in Figure 2.11. Input transitions
are usually distinguished; here they are ringed. STGs are designed to be used to
specify small modules, and are not useful for system-level design.

An equivalent specification, the signal graph, was proposed by Rosenblum and
Yakovlev [155]. Signal graphs are less constrained than STGs—all graphs that can

22 Chapter 2: Previous Work

be meaningfully interpreted are regarded as correct—and allow timing informa-
tion to be included in the specification, with constructs like a+!T(50ns)!b+.
However, no synthesis algorithms were presented in [155], so Chu’s STGs came to
dominate.

The advantage of STGs is that Chu provided polynomial-time synthesis algo-
rithms, in contrast to the exponential time taken for general Petri net synthesis. His
STG contraction algorithm means that the logic for a signal can be synthesized by
looking at only a small part of the original STG. The disadvantage of these and other
fast methods is that the STG must obey certain conditions before they can be used,
such as liveness, safety, consistent state assignment (CSA), unique or complete
state coding (USC/CSC), STG persistence, and single-cycle transitions. An STG with
consistent state assignment has its signals alternating up and down, ie. a+,a-,a+.
A graph with unique state coding does not have two reachable markings with the
same value of all signals in both. A graph with complete state coding is allowed
to have two markings with the same values on all signals, as long as the enabled
non-input transitions in both markings are the same; i.e. if the circuit does not
know what state it is in, it does not need to know. A persistent STG is one where,
for every arc between transitions t*!u* where u is a non-input signal, there is a
sequence of arcs ensuring that u* happens before the next transition of t. Finally, a
net with single-cycle transitions has, for each signal, only a single rising and single
falling transition of that signal.

Several of Chu’s conditions have been criticised for being over-restrictive. Per-
sistency was shown to be unnecessary by Lavagno et al. [104], who gave an exam-
ple of a non-persistent specification that is clearly implementable. STG persistency,
which implies PN persistency, was shown by Puri and Gu [149] to be related to CSC
rather than implementability. Yakovlev [195] outlined several features of STGs that
he considered to be too limiting. An example of an unsafe STG was given that was
obviously implementable, and other reasons were given why free-choice was too
restrictive, and why coloured tokens and non-binary signals should be introduced.
Multi-valued signals are allowed in symbolic STGs [193], which are said to be useful
for high-level specification, but they need to be translated into binary STGs before
synthesis.

Generalized STGs are a specification used by the synthesis tool ASSASSIN [199],
and are a superset of STGs. Boolean guards are allowed on arcs, which have the
meaning that a token can only flow along an arc if the guard is true. Additional
transition types are x~, meaning x toggles state, x&, meaning x becomes stable,x^0 and x^1 mean x goes to 0 and 1 respectively, and x* means that anything can
happen to x.

Timing constraints were added to STGs by Myers and Meng [137], for the same
reasons that time Petri nets were later considered. An example timed STG is shown
in Figure 2.12. This approach requires post-layout verification of delays to make
sure that the original timed STG had its internal delays correct. Note that in Fig-
ure 2.12, the delay constraints turn out to be equivalent to the fundamental mode
assumption: all output and internal signals are faster than all input signals. This
work was later extended to allow nondeterministic environment behaviour [7].

Section 2.3: Graph-based specification approaches 23

req-

ack-

req+

ack+

rdy+

go+ q-

rdy-

go-

q+

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5]

[0,5][20,50]

[20,50]

[20,50]

[20,50]

Figure 2.12: An example timed STG from Myers and Meng [137]

When an STG specification contains a choice between two output or internal
signals, called an internal conflict, then metastability may arise in the circuit pro-
duced. This can either be dealt with by adding special analogue components, as
suggested by Chung and Kleeman [31], or by factoring out an arbitration mod-
ule from the original STG producing a new STG without conflicts, as proposed by
Cortadella et al. [44, 43].

STGs have also been used for verification; Yakovlev et al. [191] gave a framework
that treats specifications and circuits as instances of the same kind of object. Con-
ditions that are required for a correct implementation to exist can then be checked
on the STG, and then on the synthesized circuit to verify that the properties were
preserved during synthesis.

State variable insertion

Unlike I-nets, STGs aimed to automate the synthesis process. If the USC or CSC
conditions do not hold for an STG, state variables must be added to the specification
to distinguish between markings where all signals have the same value. Several
methods for doing this have been proposed.

Vanbekbergen et al. gave the first totally general STG state assignment algo-
rithm [183], but it was often prohibitively time-consuming. Their first algorithm,
using generalized lock classes or GLCs, ran in time O(n5). The second algorithm
used graphs to determine stronger conditions, which would imply that all signals
were in a GLC and hence that USC was satisfied, and was implemented in ASSAS-
SIN. This algorithm would often add arcs in the STG that would reduce concurrency,
so steps were taken to ensure that the circuit performance was not reduced by too
much.

Tracey’s algorithm is one of the first state assignment algorithms for asynchron-
ous circuits, but it works on a finite state machine (FSM) representation. Lavagno

24 Chapter 2: Previous Work

et al. [102] formed an FSM from an STG specification, used Tracey’s algorithm to
insert state variables, and then went back to the STG and inserted rising and falling
transitions of the new state variables where appropriate.

Recent work centres of the concept of regions, described by Cortadella et al.
[42]. This technique works on the state graph, where the addition of a new signal
requires finding sets of states where the variable will be stable at 0, switching to 1,
stable at 1 and switching to 0. A region is a set of states which has the property that
a new variable using this set as its switching-to-0 or switching-to-1 set will preserve
the speed-independence of the specification. Regions are based on earlier work
by Ykman-Couvreur and Lin [198], but have a finer granularity which allows better
solutions at the expense of a longer computation time.

STG synthesis methods

One of the main contributions of Chu’s Ph.D. thesis [28] was his contraction algo-
rithm. Using this, synthesis from STGs proceeded in three stages. For each output
x, s The net was contracted to only include transitions that directly affect the

switching of x,s A state graph was formed from the contracted net,s A Karnaugh map was drawn from the state graph and logic derived.

The delay assumption used was that arbitrarily large CMOS gates could be built
that behave as if there is a single lumped delay at their outputs, the unbounded
complex gate assumption.

SIS is an early STG synthesis tool which was formed by collecting together a
number of results in asynchronous circuit synthesis [103, 164]. The authors of
SIS felt that delay-insensitive design was too pessimistic and restricted, speed-
independent design was not realistic, and fundamental mode had significant prob-
lems with multiple input changes. SIS starts from an STG specification, which is
required to be live, safe and free-choice for the benefit of algorithms known at the
time. The circuits produced function under either the unbounded gate or bounded
wire delay models. SM flip-flops, equivalent to SR flip-flops, are used as the state-
holding elements with a pair of set/reset gates that are static-hazard-free by con-
struction. The flip-flops are assumed to be relatively immune to dynamic hazards.
Hazard analysis is performed, and as a final step, delays can be added on wires
to remove any remaining hazards. The addition of delays in the circuit can reduce
performance; Beerel [6] reported that his speed-independent circuits were typically
25% faster than SIS.

The aims of ASSASSIN [199] were to build a unified synthesis environment on
top of SIS, where different specification types can be synthesized using the same
methods. The high-level specification is the generalized STG, which is then trans-
lated into the lower level state graph before synthesis. Other specifications could
also be converted into a state graph. Much of the synthesis was inherited from SIS,

Section 2.3: Graph-based specification approaches 25

Signal out

Reset

Set

. . .

. . .

Inputs,
outputs

and state
variables

Figure 2.13: Implementation style used by Beerel [6] and Kondratyev et al. [94]

although there were several additions, such as concurrency reduction and new state
assignment algorithms. A new state-holding element called the MHS flip-flop was
used, which has an internal hazard filter to remove delays on outputs.

Beerel’s synthesis tool SYN [6] takes determinate state graphs and produces
almost speed-independent circuits. The determinate condition on state graphs is
very similar to persistency on Petri nets. Beerel’s Standard-C implementation strat-
egy is shown in Figure 2.13. State holding C-elements are used at primary outputs.
Each of the AND gates on the left of Figure 2.13 corresponds to a connected set
of states in the state graph; if these sets are all disjoint, then there are no delay
hazards in the logic shown. The input bubbles on the C-elements mean that the
circuits produced are not quite speed-independent, but if it is assumed that invert-
ers are fast, then the circuits will not fail. Kondratyev et al. [94] described a similar
synthesis style at the same time as Beerel, but also developed a style using an SR
flip-flop as the state-holding element. This has the advantage that no bubble is re-
quired on the reset input, and complemented outputs are available which reduces
the number of bubbles required on the AND gates, but loses the advantage of the
C-element, which is that the output is the last moving point.

Recently, interest has been shown in synthesis methods that can be used for
very large STGs. Semenov et al. [162] described an algorithm that uses unfoldings
to find relationships on the places that must be occupied in the STG before a given
signal can fire. Using this localised condition for synthesis produces an algorithm
that is only singly exponential in the size of the STG, rather than doubly exponen-
tial as for most other algorithms. The algorithm is implemented in the synthesis
tool PUNT. This builds on earlier work on unfoldings by Pastor et al. [143], which
gave polynomial-time algorithms for the synthesis of free-choice STGs, apart from
one stage of the algorithm which was exponential but empirically fast. Unfoldings
were also used for fast synthesis by Miyamoto and Kumagai [125], but were called
Occurrence Nets.

PNIT is a TclTk framework that integrates the tools petrify, SIS and PUNT. It
supports a number of file formats and provides a common interchange format,
PNIF. It is capable of both asynchronous and synchronous design.

26 Chapter 2: Previous Work

1110

0000

1100

01001000

1010 0110

1111
abcd

. . .

r+

a+ b+

b+ a+

b+ a+

c+

c+

c+

d+

a+

r+

b+

c+

d+

a- b-

c-

d-

Disengageable arc

Weak precedence (OR)

Strong precedence (AND)

Figure 2.14: An example change diagram from Hauck [69] with part of its state graph

2.3.3 Change diagrams

Change diagrams (CDs) [89] are a similar specification to STGs, but where STGs
use places to represent OR behaviour, change diagrams have another kind of arc,
called a weak precedence arc. There are no places in a change diagram, so they
cannot describe choice behaviour. Their restrictions do however permit polynomial
time synthesis algorithms.

An example of a change diagram is shown in Figure 2.14, where the weak prece-
dence arcs are drawn grey, and the blacks arcs function as in STGs. When either a+
or b+ have fired, then c+ can fire. If a+ fires and then c+ fires, a token gets taken
from both input arcs to c+, leaving a token debt on the arc from b+ to c+. This
debt will be cancelled out when b+ fires, unlike the OR operation in STGs, whenb+ firing would cause another c+ to fire. An effect of this is that change diagrams
cannot specify an XOR gate, but STGs can. The crossed arcs in Figure 2.14 are
disengageable arcs, which fire exactly once and are then removed. They are used
for non-repeating initialisation behaviour. Although OR arcs appear to add flexibility
to the model, a result by Kishinevsky et al. [89] reduces diagrams with OR arcs to
ones without them to simplify synthesis, so they do not add anything significant.

Causal Logic Nets were introduced by Yakovlev et al. [192] as a specification
combining the best features of STGs and change diagrams. CLNs have places and
transitions, as STGs and Petri nets do, but the firing rule is a boolean function
of input places rather than the simple AND rule of STGs. A result in [192] states
that an STG that is observation equivalent to a change diagram with OR behaviour
must be non-free-choice and either non-persistent or unsafe, although an earlier
report by Yakovlev [195] stated that safety and free-choice were overly restrictive
STG characteristics. CLNs look to be overly powerful for current specification needs.

Section 2.3: Graph-based specification approaches 27

An elastic FIFO or micropipeline drawn in P**3.

. . .

. . .

. . .

An example of a pipelined computation net-
work, showing a forking path, a forking
place and a data-dependent port.

Place

Path

Port

Figure 2.15: The P**3 primitives and an example of their use

2.3.4 P**3

P**3 (pronounced “P cubed”), described by Coates et al. [35], is a development
of Sutherland’s earlier micropipeline work [172] to allow data-dependent pipelined
computation. P**3 is a graphical specification of networks of pipelines which can
be used to design complete systems, unlike the other graphical specifications here
which deal with small control circuits. P**3 takes its name from the three types
of module used in circuits: places, where data resides between computations,
paths, where computations happen unconditionally, and ports, which are connect-
ing structures that can be used to steer the data conditional on other data values.
A few P**3 structures are drawn in Figure 2.15. Synthesis of a P**3 specification
consists of translating each construct into a circuit module. Examples of these mod-
ules were given by Coates [35] for a two-phase implementation with the emphasis
on speed rather than robustness, although a wide variety of formalisms could be
used at the gate level. For example, the four-phase asP* protocol has also been
used to implement P**3 specifications.

2.3.5 Burst mode

Burst mode was developed by Davis et al. as a way to avoid the limitations of fun-
damental mode. Fundamental mode circuits require a settling period after every
input, and as stated in Section 2.1, there are two values �1 and �2 such that two
inputs separated by a time more than �1 but less than �2 will cause the behaviour
of the circuit to be undefined. If two inputs are intended to arrive concurrently from
two different sources, it is impossible to guarantee that there will not be this critical
time difference between them, so fundamental mode cannot be used.

28 Chapter 2: Previous Work

0 1 2

3

45

6

7

8

a+ / z- a- / y+ b-,d- / y-

b-,c- / y-

c+ / x-,y+

d+ / x-b+,d- / x+,y-

b-,d+ / x-

b+,c- / x+,y-

b-,c+ / x-,y+

b+ / x+,z+

Figure 2.16: Example burst-mode diagram: isend, from Yun [202]

Burst mode sidesteps this problem by making sure that, during the receipt
of one or more out of a number of concurrent input transitions, no internal state
change will occur. The settling time is therefore effectively zero for these transitions,
so �1 = �2 = 0 and no failures can occur. State changes are only allowed after
all transitions in the concurrent set of inputs has been received. A set of input
transitions that will occur concurrently is called an input burst; similarly, outputs
are grouped together in an output burst. The burst-mode assumption is that, after
providing an input burst, the environment must wait until it has received the whole
of the corresponding output burst before it can send another input burst. Hauck
[70] believes that it may be difficult to meet the burst mode constraints on the
environment in all cases, which seems plausible, although no groups have reported
this.

An example burst-mode diagram is shown in Figure 2.16. This represents a
finite state machine, with 0 as the initial state. Arrows between states are labelled
as “input burst / output burst”. When an input burst is received, the corresponding
output burst is fired and the machine moves along the arrow. For example, in state
2, the machine waits for b- and one out of c- and d-; if b- and c- were received,y- is fired and the machine moves to state 3, similarly b- and d- cause y- and a
move to state 8. The machine must always be able to tell which arc to take out of
a state, so the arc from state 2 to state 8 could not be labelled simply b-/y-; after
receiving b-, the machine would not be able to decide whether state 3 or state 8 is
next.

Burst mode was designed to allow the creation of large systems, and also to
give fast circuits [34]. The Post Office, a large communications chip for the Mayfly
project at HP Labs, showed that it achieved both of these goals. However, burst
mode limits concurrency, because the only allowable concurrency is within an input

Section 2.3: Graph-based specification approaches 29

Req+
Done*

/Sendline+
<Done->
Ackline+

/Sendline-

Ackline-
Done*

/Sendline+

Ack+
Sendline-Done+

Ackline+
/

Req-
Done-

Ackline-
/Ack-

0 1 2

3

Figure 2.17: Example extended burst-mode diagram: sbuf-send-pkt2-core
burst. Yun [203] stated that a moderate degree of concurrency is essential, but that
fine-grained concurrency is not necessary in most applications. Extended burst
mode (XBM) adds a construct called the directed don’t-care, written x* for an inputx, which allows certain inputs to change concurrently with outputs. When x* is
written, its meaning depends on the next up-going or down-going transition of x
that can be reached along a path in the XBM specification. If the next transition isx+, then x* means that x can remain stable or make a low-to-high transition, and
the reverse for x-. The value of a signal that might or might not have changed at a
particular time can be read by using hx+i for “x is high” and hx-i for “x is low”. In
text files, hx+i is written as x# and hx-i as x~. An example XBM specification from
Ykman-Couvreur et al. [199]2 is given in Figure 2.17.

Large burst mode machines may be partitioned using the work of Kudva et al.
[97], although one of the strengths of burst mode is that large machines can be built
when local clocking is used (see Section 2.3.5), and partitioning does not appear to
guarantee that the burst mode environment constraints are still met.

Synthesis from burst-mode specifications

The first burst-mode synthesis tool was MEAT, written in LISP by Davis, Coates
and Stevens at HP Labs [33, 45]. The burst-mode specification is first converted
to a flow table, then semi-automated state minimization carried out, followed by
state assignment using Tracey’s algorithm, and finally a circuit produced for each
state assignment using a modified Quine-McCluskey algorithm and the best circuit
picked. The state-holding elements are CMOS complex gates with a large output
inverter to give a good drive capability. All wire forks are kept away from module
interfaces to ensure modularity. Useful additions to the tool would have been au-
tomatic layout of gates on silicon and the use of standard cells, according to Davis
[45].

MEAT made no efforts to avoid hazards; it just used a verifier on the resulting
circuit and added delays by hand to remove any hazards found. Nowick [140] looked
at changing the MEAT synthesis strategy to make circuits that were hazard-free by

2This diagram appeared on page 23 of [199], but with Done+ replaced with hDone+i, which I can
only assume is an error, because that does not agree with the XBM rules that are given on the same
page.

30 Chapter 2: Previous Work

P h
 a s e 1

 l a t c h
 e s

Combinational
Logic

Local
Clock

Combinational
Logic

Outputs

Inputs

Phase 2
latches

Figure 2.18: Local Clocking synthesis style

construction. If state minimization is not done, it is always possible to avoid hazards
at the synthesis step, but hazards may be introduced during minimization if state
splitting occurs, when one row of the original flow table is included in more than
one row of the reduced table (see Section 2.6.1 for details of the minimization
procedure). State splitting may violate the stability condition, which says that a
burst-mode machine must remain stable in a particular state until the whole of an
input burst is received. Coates later modified the minimization algorithm to be
stable. Nowick’s approach to minimization was to repeatedly merge two states that
would not cause a hazard, until no more states could be merged.

Nowick et al. [141] also proposed the synthesis of burst-mode machines using
local clocks. This work builds on the concept of self-synchronizing circuits due to
Rey and Vaucher [152] and later Unger [179]. Figure 2.18 shows the architecture
used. The internal clock can be used to embed a synchronous state machine in an
asynchronous framework, which allows the use of fewer state variables and partially
avoids hazard considerations. Hazards must still be avoided on the clock line. A
cache controller was built in the local clocking style, and found to have a latency
about half that of a comparable synchronous design.

Yun’s 3D synthesis tool [203] improved on earlier work in two areas: it used the
XBM specification to get increased concurrency, and used a new state assignment
algorithm. 3D circuits are of the classic Huffman type; they are a block of combi-
national logic with delays on feedback paths. No latches or C-elements are used,
and no delays are placed on primary outputs. Next-state values for output and state
variables are placed in a 3-dimensional K-map, with inputs and outputs labelling
the x and y axes, and state variables on the z axis. A layer is a set of states in the
x-y plane. Synthesis starts at state 0 and proceeds by filling in entries in the K-map

Section 2.3: Graph-based specification approaches 31

000
000

000
000

100
100 010

010

000
000 000

000

001
010

011
011010

001

100
001

101
101

001
100

UrDrRa
UaDaRr6

3

2

1

0

7

8

9

5 4

Figure 2.19: AFSM synthesis style used by Chu’s CLASS [29]

corresponding to the transitions in the XBM specification, keeping within a single
layer. If this causes a contradiction when moving from state p to state q in the spec-
ification, then the algorithm backs up to the point that state p was entered, and
makes a change in the state variables so that the machine moves to a free layer.
The transition from p to q can now be filled in on the new layer. State changes can
either occur after output bursts or concurrently with them; in occasional circum-
stances, hazard avoidance may require the state change to come before the output
burst. The hazard avoidance and improved specification style effectively render the
other burst mode tools presented here obsolete.

2.3.6 Other FSM-based methods

Hollaar gave an implementation strategy [74] that used a 1-hot encoding in an at-
tempt to remove the fundamental mode restriction. It was only partially successful,
as pointed out by Hauck [70]; time is still required for a Hollaar circuit to stabilise,
although that time is two or three times less than the fundamental mode assump-
tion would indicate.

Chu gave a list of reasons why FSMs are bad for synthesis in [27]; in particular
there are problems specifying concurrency so it is difficult to compose two FSMs
to get another FSM, and state assignment is needed which can causes races and
failures if done badly. However, synchronous designers are familiar with FSM spec-
ifications, so Chu designed a synthesis tool using an FSM front-end to his earlier
STG work [29]. An example of one of Chu’s asynchronous FSMs, or AFSMs, is given
in Figure 2.19. It can be seen that there is no concurrency in Figure 2.19; no pair of
transitions can fire simultaneously. This sequentiality is likely to give a large perfor-
mance loss in the resulting circuits. It is interesting to note that this specification is
almost identical to blue diagrams which are a main topic of this dissertation.

32 Chapter 2: Previous Work

Operator Written as Notes
Input a?
Output a!
Concatenation a;b Do a then b
Union a|b Do a or b
Repetition *a �, a, aa, : : :
Prefix-Closure pref(ab) �, a, ab
Projection abc#fa,cg ac
Weave abdkacd abcd or acbd

Figure 2.20: Permissible operations in Ebergen’s Trace Theory

Peyton Jones also used an AFSM as a specification in [147], with a fast provably
correct synthesis procedure targeted at PLAs. The design process was only partly
automated, and no results were given.

2.4 Text-based specification approaches

The alternative to graph-based specification is text-based specification, where the
proposed circuit behaviour is coded in a particular formal language. Text-based
specifications tend to be more cryptic and have stricter delay models, such as DI
or QDI, but it is often easier to prove results about the synthesized circuit. Several
approaches are based on a combination of Hoare’s Communicating Sequential Pro-
cesses (CSP) [73] and Dijkstra’s guarded commands [51], although many languages
have been subverted for the purpose—even C++ has been used [67] as a hardware
design and simulation language, using a thread library to get concurrent behaviour.

2.4.1 Ebergen’s trace theory

This was an early approach to DI circuit synthesis, using a language similar to regu-
lar expressions. Circuits were built from a number of basic modules. The behaviour
of these modules was written down in the trace language, then syntax-directed
translation used to implement a given specification as an interconnection of basic
modules, a process called decomposition. It can be proven that the circuit formed
is equivalent to the given specification. A condition called progress ensures that all
possible traces will occur, so that deadlock is impossible. The result is a clean, the-
oretical basis for DI design. Problems with the C-element later led to the inclusion
of an isochronic fork in the basic module set, making the delay assumption QDI.

Table 2.20 gives the operations in Ebergen’s trace theory. Prefix-closure is used
to indicate that a circuit will always have fired a finite number of times, even though
the set of possible traces is infinite. The projection operation is used for data hiding,
when composing a number of modules. The weave operation introduces concurrent
behaviour, but can often make a specification much harder to read. Some of the
basic modules are shown in Figure 2.21.

Section 2.4: Text-based specification approaches 33

Component Circuit Symbol Trace expression
Wire Wire a? b! pref*[a?;b!]
Fork Fork a?

b!

c!
pref*[a?;(b!kc!)]

Join C-element
a?

b?
c! pref*[(a?kb?);c!]

Merge Xor
a?

b?
c! pref*[(a?|b?);c!]

Toggle Toggle a?
b!

c!
pref*[a?;b!;a?;c!]

Figure 2.21: A few examples of trace theory circuit primitives

Operator Written as Meaning
Assignment x", x# x set to logic 0, 1 resp.

Sequencing hcmdi;hcmdi Commands in sequencehcmdi,hcmdi Commands in parallel

Selection [G1!hcmd1i[]. . . []Gn!hcmdni] Wait for a Gi to be true,
execute hcmdii

Repetition *hselectioni Repeat hselectioni; if all
Gi false, exit

Interconnection channel(hpi,hqi) Create channel between
ports hpi and hqi.

Synchronization

�
Process 1: hpi
Process 2: hqi Each process waits for

the other, then proceeds

Communication

�
Process 1: hpi!hxi
Process 2: hqi?hyi Synchronization, thenhyi:=hxi

Probe hpi true if another process is
blocked on port hpi

Figure 2.22: Operations in Martin’s CHP

2.4.2 Martin’s CHP

Communicating Hardware Processes (CHP) [114, 115] is based on a subset of CSP
[73] with the additions of Dijkstra’s guarded commands [51]. A CHP specification
has a number of processes, operating in parallel, connected by channels, over
which all synchronization and data transfer takes place. Compared to CSP, only the
boolean data types are supported, and there is no dynamic creation of resources.
Some additions to CSP are the probe operation, which can tell whether data is ready
on a channel without blocking, and multiple channels or buses. The CHP operations
are listed in Figure 2.22.

Using an automated procedure, a CHP specification is translated step-by-step
into production rules for each signal. An example production rule for a C-element

34 Chapter 2: Previous Work

Name Symbol Function

Repeater #
After handshake on upper port, gives
unbounded number of handshakes on lower
port

Parallel
After handshake on upper port, complete
handshakes simultaneously on both lower
ports and then acknowledge above

Sequencer
*
;

After handshake on upper port, complete
handshake on starred port, then other port,
then acknowledge above

Transferrer T
After handshake on upper port, transfer one
item of data from left to right, then
acknowledge

Figure 2.23: A few examples of Tangram circuit primitives

is a ^ b ! q", :a ^ :b ! q#. The procedure often requires expert assistance
to achieve the best circuit for a particular use. Martin’s approach appears to create
the fastest circuits out of all the asynchronous design styles.

Timed Handshaking Expansions, derived from CSP by adding timing informa-
tion, is a language developed by Myers [136] to interface to an existing timed graph-
based specification due to Myers and Meng [137]. Alterations were required so that
timing makes sense, for example, guards were changed to events rather than lev-
els. The graph-based specification was then translated to a timed state graph before
synthesis. Circuits that are 50% smaller and 50% faster than those produced by SIS
were reported.

2.4.3 Tangram

Tangram was developed by van Berkel at Philips [10], to address some of the prob-
lems with other specification languages. Ebergen’s language was too low level,
and the circuits produced were composed from a small number of modules, which
meant many instantiations of these modules were required resulting in a large cir-
cuit. Martin’s synthesis style, although giving good performance, was not suitable
for the standard cell work that Philips were doing. The solution adopted was to have
a combined CSP and guarded command language like Martin’s, but to translate to
circuit primitives that are closely connected with the language constructs. The trans-
lation was therefore “highly transparent”, so a good idea of circuit complexity can
be gained from looking at the specification.

A few circuit primitives are given in Figure 2.23; there are too many to list here.
Lines connecting two modules are actually a request/acknowledge handshake pair,
with the request going from the solid circle to the open one, and the acknowledge
the other way. Either two-phase or four-phase implementations of modules are
possible.

Tangram’s focus on handshaking and composability can lead to inefficient cir-

Section 2.5: Concurrency Reduction 35

cuits, but its big advantage is low power as was demonstrated by an impressive
reimplementation of the Philips DCC error correction circuitry [11]. To increase per-
formance, some peephole optimizations were proposed by Kessels [86] that can
remove useless circuit elements inside modules.

2.4.4 Others

Brunvand-style compilation to Macromodules

The precursor to Tangram was a language used by Brunvand and Sproull [19] to
specify the interconnection of Macromodules, themselves designed by I-net synthe-
sis. The language was a subset of Occam, itself based on CSP. Macromodules were
designed for each of the language constructs, and then a syntax-directed translation
carried out from the high-level language.

Resynthesis using Petrify

A text-based specification was used as an interface to a graph-based synthesis al-
gorithm by Peña and Cortadella [146]. Circuits were built out of a set of modules,
but these modules were actually defined as Petri nets. The composition of these
nets could then be optimized and resynthesized using petrify. When a number of
circuits were synthesized in this way, and the area of the resulting circuit compared
to the area that would result if the modules were implemented separately, a 30%
drop was observed; however, 60% of the improvement came from a single exam-
ple, and many circuits were not smaller at all. Kolks et al. [91] have also tried this
approach with ASSASSIN.

Event Controlled Systems

Event Controlled Systems (ECS) [130] are a way to integrate two-phase control sig-
nals with four-phase data signals. Two-phase signals are translated from the volt-
age domain into the temporal domain, where they become essentially four-phase
signals, then module behaviours are specified in terms of these four-phase pseudo-
signals. Bounded delay models are used, with bundled data. ECS has been used to
design a microprocessor, ECSTAC [131], but it has not caught on widely, perhaps
because of the counterintuitive translation between domains.

Synchronized transitions

Synchronized transitions, developed by Staunstrup, have been used as a high-level
specification for modular verification of speed-independence [90]. The behaviour
of a circuit can be specified, then semi-modularity and hence speed-independence
mechanically checked. An example specification in synchronized transitions for a
C-element is hha=b! c:=aii, which means that whenever the two inputs a and
b are equal, the output c should be assigned to the value of one of them. Syn-
chronized transitions have also been used as an interface to an ML-like functional
programming language FL [106], again for property verification.

36 Chapter 2: Previous Work

2.5 Concurrency Reduction

Concurrency reduction has been done previously at the STG level, by Vanbekbergen
et al. [183], and at the SG level, by Ykman-Couvreur et al. [197] and later Cortadella
et al. [39]. Vanbekbergen used concurrency reduction to solve the USC problem,
which is a sufficient but not necessary condition for STG synthesis. By adding arcs
to the STG, the number of state variables required can be reduced, possibly to zero.
However, this method was limited to live-safe marked graphs with single transitions
of any signal.

Concurrency reduction was used by Ykman-Couvreur et al. [197] to reduce the
number of state variables needed to implement a given state graph. The concur-
rency reduction operation was to pick a pair of transitions t0 and t1, then to ensure
that these two transitions must alternate t0, t1, t0, t1 in the state graph by deleting
all states that do not fit this pattern. All pairs of states were examined, and a pair of
cost functions attached to each: cost 1 was the number of states in the state graph
that were deleted, and cost 2 was the number of CSC violations left in the state
graph. The pair with the lowest cost 1 was chosen, using the lowest value of cost
2 to break ties. This method tried to reduce concurrency as little as possible while
maximally reducing the number of states with CSC violations. Fewer CSC violations
typically means less state variables will be required, and a smaller circuit will result.
State variables were added using the work of Vanbekbergen et al. [182], if any were
needed. Results were promising in terms of area, but speed measures such as cycle
time were not given.

The recent work of Cortadella et al. [39] introduces two new concurrency reduc-
ing operations. The first is an extension of the work of Ykman-Couvreur, including
some new correctness constraints. The second is more general, but was not imple-
mented because it was difficult to see what the operation actually represented at a
Petri net or STG level.

2.6 FSM synthesis algorithms

Synthesis of finite state machines will play a central role in this dissertation. In this
section relevant algorithms are collected together, along with other related ideas.

2.6.1 ISSM minimization

The starting point for finite state machine synthesis is typically a flow table repre-
senting an incompletely specified sequential machine, or ISSM. An example flow
table for an ISSM from Miller [124] is shown in Table 2.1; it is a synchronous ma-
chine, but the same principles apply to asynchronous machines.

Inputs to the circuit are labelled A–D horizontally, and internal states 1–5 verti-
cally. An entry of a/b in column i and row s means that in state s, if the input given
is i, the machine should output symbol b and move into state a on the next clock
edge. Dashes represent don’t-cares and are used to fill in entries that will not be

Section 2.6: FSM synthesis algorithms 37

A B C D
1 2/0 -/1 3/- 2/0
2 3/0 5/1 2/0 -
3 3/0 4/1 - 5/0
4 - 1/1 2/- -
5 - - 1/1 -

Table 2.1: Flow table example from Miller [124] and Unger [177]

used; after moving to a don’t-care state, all outputs of the machine are don’t-cares
from then on.

If this machine was implemented as it stands, the five states would requiredlog25e = 3 binary state variables to encode the present state. State machine
minimization attempts to combine the rows of the table into a smaller number
of new rows, not necessarily disjoint, such that the behaviour of the machine is
preserved. In Table 2.1, an attempt could be made to create a new table with just
two rows a = f1; 2g and b = f3; 4; 5g, but then the next-state entry for state a
under input A would be f2; 3g, which corresponds to neither a nor b. The reduced
table cannot be filled in to give the behaviour of the original, so that minimization
is incorrect.

Minimization of flow tables usually, but not always, gives a smaller circuit. A
minimal solution is one that has the smallest number of rows in the reduced ma-
chine. Minimization of a completely specified machine with n rows is known to
take time O(nlogn), but the problem for incompletely specified machines has been
proven to be NP-complete [60].

Early state minimization algorithms were described by Unger [177]. A compat-
ible pair is two states that, when given the same sequence of inputs, will produce
output sequences that agree with each other where they are defined. Don’t-care val-
ues in the output sequences are taken to agree with whatever the other sequence
has in that place. For example in Table 2.1, states 1 and 2 form a compatible pair,
which can be shown by applying any input combination; e.g. ABCD gives an output
of 0110 from state 1 and 01–– from state 2, which agree with each other. States 1
and 3 do not form a compatible pair, because when given the input DC, they give
outputs 00 and 01 respectively.

Compatibles are sets of states such that any two members are a compati-
ble pair, and maximal compatibles or MCs are compatibles that cannot be made
larger by adding another member. In Table 2.1 the maximal compatibles aref1; 2g; f1; 4g; f2; 3g and f3; 4; 5g. The set of all maximal compatibles is always
a solution to the minimization problem, although this often produces more rows
than the original table had. Here, a new flow table with four rows can be created,
with each row corresponding to one of the MCs, as shown in Table 2.2. Because
some states of the original table belong to more than one state of the reduced
table, some next-state entries have a choice between two states.

Usually, a reduced machine can be found using a proper subset of the maximal

38 Chapter 2: Previous Work

New state A B C D
a = f1; 2g c/0 d/1 c/0 ac/0
b = f1; 4g ac/0 ab/1 c/- ac/0
c = f2; 3g cd/0 d/1 ac/0 d/0
d = f3; 4; 5g cd/0 b/1 a/1 d/0

Table 2.2: Flow table reduced using maximal compatibles

prime �(prime) Notesf1,2g f2,3g,f4,5g Max compatiblef1,4g f1,2g,f2,3g,f4,5g Max compatiblef2,3g f1,2g,f4,5g Max compatiblef3,4,5g f1,2g,f2,3g,f1,4g Max compatiblef3,5g nonef4,5g f1,2g,f2,3gf3,4g f1,2g,f2,3g,f1,4g,f4,5g Deleted by f3,4,5g
Table 2.3: Primes from Table 2.1

compatibles. This is not true in the example given, as can be seen by noting that
in Table 2.2 every state appears at least once on its own as a next-state entry, so
no row can be omitted. When minimizing completely-specified tables, it can be
proven that there is a minimal solution using only maximal compatibles, but this
result does not hold for incompletely specified tables. More sophisticated methods
are required.

Prime classes were introduced by Grasselli and Luccio as a replacement for
maximal compatibles. They proved that at least one minimal solution of ISSM mini-
mization is composed of prime classes only [64], and later gave algorithms to solve
the problem [65].

A compatible P is said to imply another compatible Q if including P as a state
in the reduced machine means that there must be another state in the reduced
machine that contains Q. In Table 2.1, having a row f1; 2g in the reduced machine
means that f2; 3g has to be included as well by considering the next-state entry of
the new state f1; 2g under the input A, so f1; 2g implies f2; 3g. The set f2; 3g
itself implies other sets. Let the transitive closure of the implies set for set S be
denoted �(S). Then the prime classes are all compatible sets S such that there is
no set T with S � T and �(T) � �(S). Intuitively, prime classes are all sets that
might be useful in a reduced machine; if there is a set T that includes S but also
implies less than S, then S can be replaced by T in any reduced machine, so there
is no point considering S. Suitable candidates for prime classes are the maximal
compatibles, and subsets of them. An improved method to find prime classes was
given by Bennetts [8]. The prime classes of Table 2.1 are given in Table 2.3.

When picking prime classes to include in a solution, every row of the original
table must be included in some row of the reduced table, and every set implied
by a set in the solution must also be in the solution, called covering and closure

Section 2.6: FSM synthesis algorithms 39

New state A B C D
a = f1; 2g b/0 c/1 b/0 ab/0
b = f2; 3g b/0 c/1 ab/0 c/0
c = f4; 5g - a/1 a/1 -

Table 2.4: Flow table reduced using prime classes

constraints respectively. It is easy to see from the Table 2.3 that f1; 2g, f2; 3g andf4; 5g can all be chosen and only imply each other, so satisfy the closure constraint.
They also obviously cover the original table, so they give a minimized table with
three rows, shown in Table 2.4. It can also be seen that no other three-member
solution exists formed from prime classes.

DeSarker [49] proposed a faster solution by splitting the problem into two steps:
first, recursively combining prime classes with their implied classes to create prime
closed sets, and secondly using these to cover the original table.

One of the best-known tools for state minimization is STAMINA, described by
Rho et al. [153]. This combines two previously known algorithms with two new
heuristic ones. The first new algorithm is good at machines with a particular struc-
ture, so may not be much use for general machines. The second algorithm tries
to reduce the number of prime classes that need to be considered by suboptimally
solving the problem using only maximal compatibles. Prime classes that are con-
tained in maximal compatibles that appeared in the solution are likely to be the
most useful in solving the problem, so only these prime classes are added to the
set of maximal compatibles and the problem solved again. Although this is not
guaranteed to give a minimal solution, it did well on all examples that were tried.

A novel approach was described by Puri and Gu [148]. The search for a solution
is depicted as a tree, and then pruning criteria are used to reduce the search space.
Heuristics are used to concentrate on areas of the tree that are likely to give the
best solutions. It was reported to be a little faster than STAMINA, but Puri and Gu’s
algorithm will always give a minimal solution. The algorithm will be described in
more detail later in the dissertation.

2.6.2 State assignment

State assignment is the action of allocating one or more binary codes to each row of
a flow table. These binary codes will typically be held in a flip-flop of some kind, and
then next-state logic equations derived using a logic synthesis algorithm. A unicode
assignment is one where every row has a single binary code; a multicode assign-
ment has one or more rows with several binary codes. A single transition time
assignment is one where, on a state change, any state variables that must change
do so concurrently. Non-STT assignments are called multistep assignments. The
abbreviations USTT and MSTT for unicode and multicode single transition time as-
signments are often seen. The best USTT assignment for an n-row machine has the
number of state variables s proportional to dlog2ne2; this is higher than the MSTT
assignment given in Kuhl [99] which has s � 2dlog2ne, but multicode assignments

40 Chapter 2: Previous Work

tend to have more logic per state variable.
State assignment for synchronous circuits does not affect correctness, only the

size of the circuit. State changes always happen on clock edges, so any number of
state variables can change simultaneously. Without a global clock, if several state
variables attempt to change at the same time, a race will occur; the changes occur
in some order, so the machine passes through several intermediate states. If one of
these intermediate states is also part of another transition to a different final state,
then the machine cannot tell which final state is the correct one. This is called a
critical race, and should be avoided.

One of the earliest asynchronous state assignment algorithms was given by
Tracey in 1966 [176], based upon earlier work by Liu [110]. Tracey’s algorithm
looks at all situations where a critical race might occur, and makes sure that no
intermediate state can ever occur as part of two transitions to different states. When
it was proposed, it was excessively time-consuming, and two other approximations
of the algorithm were also given by Tracey [176] to reduce computation time. An
even more approximate and fast version was given by Smith [168], which keeps the
problem small by partially solving it whenever a certain size is reached. Computers
are now around a million times faster than in 1966, so Tracey’s original algorithm
is feasible. Tracey’s algorithm also can be used to add state variables to an existing
assignment, rather than creating a whole new state assignment. Unger [178] gave
an extension to Tracey’s algorithm, which allowed certain combinations of inputs to
change concurrently, even though the fundamental mode assumption forbids this.
His algorithm will be described later.

Tan’s algorithm [173] gives small implementations on PLAs by arranging that
the next-state equations for different variables have many product terms in com-
mon. The assignments, which have more state variables than Tracey assignments,
do not appear to be smaller on CMOS. Another PLA-targeted algorithm was given
by Rutten [158], a development of an earlier algorithm by Fuhrer. Using a partic-
ular measure of PLA size, their algorithm gave a 3% size advantage over Tracey’s
algorithm, although over three-quarters of that improvement came from a single
example, and out of the given examples, four were better with Tracey’s algorithm
and four were worse.

Multistep algorithms tend to produce circuits that are small but slow, because
each state change can take several variable transitions. Maki and Tracey [113] gave
an algorithm that starts with an assignment with the minimum number of state
variables, then adds in new variables until all transitions can be completed. The
algorithm attempts to minimise the number of steps needed for each transition,
so the circuit is not too slow. Fisher and Wu [56] gave an algorithm that embeds
a graphical representation of the flow table into a hypercube with vertices corre-
sponding to the 2n states of the n state variables. No comparison was made with
the earlier work by Maki and Tracey, and it is not possible to add to an existing
assignment.

Multicode assignments can be created that have only one state variable chang-
ing between rows in the flow table, as done by Kantabutra and Andreou [83]. The
advantage of this is low power; they found their circuits took 58% of the power of a

Section 2.6: FSM synthesis algorithms 41

Tracey assignment, although the state logic was 23% larger. The size and power of
the output logic was not considered, and no indications of speed were given.

2.6.3 Logic synthesis

Several ways exist of implementing circuits in CMOS. The trade-off that has to be
made is ease of design and low cost against performance, such as high speed and
low power. Highest speed is achieved by using complex gates and full-custom de-
sign, but this is time-consuming and error-prone, and costly to fabricate. Standard
cell synthesis makes full-custom design easier and faster, but chip production is just
as expensive and the circuits produced are not quite as fast. Sea-of-gates design
allows complex gates at relatively low cost, but has fallen out of favour. PLAs and
FPGAs are low-cost approaches which give noticeably inferior results, but are good
for rapid prototyping and proof-of-concept.

Complex gates in full custom CMOS

Two forms of CMOS complex gates are commonly found in the literature:s Pull-up/pull-down trees with a weak keeper inverter, also called a feedback in-
verter or staticizer, such as those used by Martin [118] and the Amulet group
[59]. These are usually specified as conditions on the rising and falling tran-
sitions of the output. I will call these dynamic gates with keepers, although
they are sometimes known as dynamic or pseudo-static gates.s Fully static gates that are specified by an on-set and an off-set, where there
are no states of the input that can cause the output to float. These are used
by petrify, MEAT and the later Amulet work [108]. I will refer to these as fully
static gates.

A complex function with several inputs will typically be smaller and faster when
built as a dynamic gate with a keeper, but small functions such as 2-input C-
elements are faster as the fully static form [46, 108].

Figure 2.24 shows a standard CMOS And-Or-Invert or AOI complex gate, where
the P-tree has been implemented as the dual of the N-tree. If b = c = 1 and a
changes from 1 to 0, a static hazard can occur on the output. During the time that
a and a are 0, the P tree erroneously conducts, because there is a conducting path
through the series a and a transistors. It can be seen that there will be a problem
by multiplying out the expression from the P-tree into a:a + a:b + a:c + b:c; the
a:a term is obviously to blame.

If the P-tree of a gate was also implemented as a Sum-of-Products (SOP) expres-
sion as well as the N-tree, then there would never be any product terms including
a signal and its complement. This is shown in Figure 2.25; it can be seen that
instead of producing a hazard, the P-tree simply lets the output of the gate float,
which presents no problems in CMOS. Such gates are termed SOP/SOP gates be-
cause they have sum-of-product expressions for both the N tree and P tree, and
were discovered independently by several groups.

42 Chapter 2: Previous Work

ab+ac

(a+b)(a+c)

c

a

b

a c

a b

a

b

a

c

out

a

a
b

c
a

Figure 2.24: A gate with a single-input-change static hazard

output floating
but still correct

ab+ac

ab+ac
c

a

b

b

a

b

a

c

out

a

ca
b

c
a

a a

Figure 2.25: Gate with single-input-change hazard removed

There is some debate as to whether complex gates are smaller than standard
cell synthesis. The results of Kudva et al. [98] showed that complex gates were
well under half the size of library solutions, and typically had only half the delay.
Beerel [5] believes that there are more opportunities for logic sharing with simple
gates from a library, so that complex gates may well be larger. The truth is probably
somewhere in the middle.

CMOS technology does not look to be infinitely shrinkable, so there will come a
time soon when process optimizations will run out of steam. At that time, complex
gate solutions may have a hard time migrating to other technologies. When Martin
ported his asynchronous processor to GaAs, the complex gates required mapping
to a standard cell library, because P transistors are particularly poor conductors on
GaAs. Recently, Brown et al. [18] described a technology called Complementary
GaAs or CGaAs, where P transistors have gains within a small factor of the N tran-
sistors and gates are semi-isolated, so CMOS complex gates can be directly ported.
CGaAs processing currently costs about five times as much as silicon, but may give
complex gates a new lease of life when the CMOS end-point is reached.

Section 2.6: FSM synthesis algorithms 43

Standard cell synthesis

Standard cell synthesis in asynchronous circuits is difficult because most logic func-
tions require at least two levels of logic, which introduces delays and may cause
hazards. The main problem for standard cell synthesis algorithms is how to accom-
plish technology mapping, the translation of Boolean functions to a simple library
of gates, without introducing hazards. When tech mapping speed-independent cir-
cuits, it is required that the decomposition is also speed-independent, which may
not always be possible. For a limited class of SI circuits, Varshavsky et al. [184]
proved that a decomposition using 2-input NANDs exists, but this result does not
hold for all SI circuits. Tech mapping will be avoided in this dissertation; the inter-
ested reader will find recent material in [4, 41, 93].

When synthesizing two-level hazard-free logic, Espresso-HF can be used [174].
This is a development of the popular tool Espresso-II [15], which targets PLA design
but can also be used for two-level logic or complex gates. A different approach to
logic synthesis was presented by Lin and Devadas [109], where a binary decision
diagram representing a logic function is translated into a tree of multiplexers. This
ensures freedom from most hazards if the multiplexers are static-hazard-free, as
they are on CMOS. These circuits look to be large, even with the given optimizations.

FPGAs

Field programmable gate arrays have traditionally been targeted at synchronous
circuits, with very little provision for asynchronous elements; arbiters present a par-
ticular problem, because the required analogue circuitry is not present. Hauck
et al. [71] designed an FPGA with arbitration blocks that can be used for mixed
synchronous/asynchronous work, and gave mappings from common DI circuit el-
ements onto the FPGA structures. Moore [129] gave an arbiter design on stan-
dard synchronous FPGAs which appears to be remarkably resistant to metastability.
These approaches mean that FPGAs can be used for prototyping asynchronous cir-
cuits, even though FPGAs are relatively slow.

Transistor-level optimization

Several things can be done to improve custom and standard-cell designs, but not
FPGA-based or multiplexer circuits. Changing the ordering of transistor stacks can
have speed and power benefits. Carlson and Lee [23] showed that swapping the
inputs of 2-input NAND gates can improve the speed of circuits, but simulation of
the whole circuit was the only way to determine which ordering was best. Power
consumption was optimized by Panwar and Rennels [142], by reordering transistors
to reduce the power dissipated inside a gate as a result of charging and discharg-
ing internal nodes. Transistor sizing using Logical Effort was described by Sproull
and Sutherland [169, vol. II], which can be used as a good first-approximation to a
detailed simulation-based approach. Transistor-level optimization will not be con-
sidered in this dissertation, although the algorithms that are used should allow
these sort of optimizations to be added at a later date.

44 Chapter 2: Previous Work

Initialisation

Initialization will not be explicitly considered in this dissertation. Two possible meth-
ods of initializing circuits are to build everything out of flip-flops with resets, such as
the approach used by ASSASSIN [199], or to use the method suggested by Coates
et al. [34], which is to turn an inverter after a complex gate into a NAND or NOR gate
as appropriate. The method used for initialization depends on the synthesis style,
and it is unlikely to either be a difficult problem or to perturb the results by very
much.

2.7 Summary

Asynchronous circuit design is a very diverse field, with a variety of complementary
methods. A number of different delay models have been used to design circuits,
each with its own advantages and disadvantages, but there is no clear winner. Two-
phase and four-phase signalling again each have their own strengths, but in the
end it comes down to personal preference which one is used.

A major division in the subject is whether to use a graph-based specification,
or to use a programming language to design circuits. Graph-based approaches
are clear and readily understandable, but are typically only used to build subcircuits
which will later be composed to create a system. Text-based approaches can specify
an entire system, which can be decomposed into smaller and smaller pieces until
these pieces can be implemented directly in hardware, but these methods have
their own problems: Tangram and Ebergen’s method give large and slow circuits,
and Martin’s method often requires expert assistance.

Finally, there is little consensus on whether complex gates or library synthesis
is best, but this decision is affected more by outside factors, such as what the rest
of the institution uses for their work.

I believe that asynchronous circuits are in a reconnaissance phase. Synthesis
approaches are being scouted out and tested against other styles; given time, it will
become clear which methods give the best results, and then the field will mature as
effort is concentrated at the most promising techniques. This dissertation attempts
to illuminate a little more of the research landscape, specifically in the direction of
a modified Petri net specification, combined with concurrency reduction and a link
back to the early work of Unger and Tracey.

.

Overview and Motivations
.

Overview and Motivations
.

Overview and Motivations
.

Overview and Motivations
.

Overview and Motivations 3
Abstract

This chapter, which is based on my thesis proposal, gives the reasons why the
work in this dissertation was attempted. Furber and Day [59] designed a number
of latch controllers essentially by hand, using ad-hoc concurrency reducing trans-
formations. It was found that the use of a concurrency reduction operation on an
intermediate form called a blue diagram could give the same results without man-
ual intervention, which suggests that a synthesis tool based upon blue diagrams
could replicate and generalize the earlier latch controller work. This chapter gives a
brief and simplified overview of the proposed synthesis tool, from the point of view
of replicating the results of Furber and Day.

3.1 Delay assumption

One of the strengths of asynchronous circuits is modularity. Complete circuits can
be built up out of smaller modules; if these modules adhere to well-defined inter-
face constraints, then their composition will function correctly. The steady increase
of wire delays in current CMOS processes means that the only reliable assump-
tion that can be made about delays between modules is that they are finite but
unbounded, so the connections between modules must be delay insensitive. If
a module presents a delay-insensitive interface, then it does not matter how it is
implemented internally. Kuwako and Nanya [100] looked at which delay assump-
tion should be used for various circuit parts, and concluded modules should be
built using the Quasi-delay-insensitive assumption internally. This and the popular
speed-independent assumption are both pessimistic when applied inside modules,
often giving circuits that are larger and slower than the more realistic fundamental
mode assumption would have given [45]. The delay assumption used in this dis-
sertation is fundamental mode with additional conditions which attempt to cause
correct behaviour for concurrent multiple-input changes.

3.2 STGs, Fragments and Snippets

STGs often specify an ordering between outputs of a circuit, even though this order-
ing cannot ever be seen if the connections between modules are delay insensitive.

45

46 Chapter 3: Overview and Motivations

a+

b+

c+

a+

b+

c+

a+

b+

c+

Figure 3.1: Three different STGs for essentially the same behaviour

Latch

controller

Data Data

Rin

Ain

Rout

Aout

Latch

Latch

Latch

...

Lt (buffered)

Figure 3.2: Four-phase latch controller

Figure 3.1 shows a small fragment of three larger STGs for a hypothetical circuit
module, where a is an input to the circuit and b and c are outputs. When a goes
high, both b and c should go high in some order. Under a DI model of module inter-
connections, the three behaviours in Figure 3.1 are indistinguishable even though
their STGs are different. The STG has restricted the implementation of the module
as well as giving its specification.

Another problem with STGs is that it is difficult to compare the concurrency of
two specifications. Figure 3.2 shows a design problem for a latch controller. Furber
and Day [59] specified a solution by the STG fragments given in Figure 3.3. These
fragments show:s An input handshake on Rin and Ains An output handshake on Rout and Aouts Data flowing forwards through the latch Rin+! Rout+s Latch set and reset conditions:

– Set (Lt+) when data received (Rin+), and then acknowledge the previous
stage.

Section 3.2: STGs, Fragments and Snippets 47

Lt+ Lt-

Lt-Aout+

Rin+ Lt+ Ain+

Rin+ Rout+

Rin+ Ain+

Ain- Rin- Aout-

Rout+ Aout+

Rout-

this circuit must
generate

the environment
will generate

Transition which

Transition which

Inputs: Rin, Aout. Outputs: Ain, Lt, Rout

Figure 3.3: STG fragments given in Furber and Day’s paper [59]

– Reset (Lt-) when the next stage acknowledges it has received the data
(Aout+).

– Alternate (Lt+$ Lt-) once every input/output handshake cycle.

A similar specification to STG fragments is the concept of snippets, which were
used by Sutherland et al. [171] to design latch controllers using a four-phase latch
and two-phase communication.

STG fragments are a natural specification of four-phase asynchronous circuits.
Only important sequencing constraints need to be included in the set of fragments;
the precise timing of the return-to-zero handshakes does not need to be specified.
A full STG would have to specify orderings between all signals, and also satisfy a
number of correctness criteria, such as persistence or complete state coding.

The first part of the synthesis problem from the STG fragments in Figure 3.3
is to find a complete STG that includes all of the fragments. Figure 3.4 (a) shows
the simplest merged STG, which Furber and Day called their simple controller. The
circuit corresponding to this STG consists of a single 2-input C-element. It has
the problem that when two or more simple controllers are connected together in a
pipeline, and that pipeline stalls, then every other stage will be empty. This can be
seen by examining the STG for two simple controllers in series, shown in Figure 3.5:
stage (n + 1) must unlatch its data before stage n can latch new data, which is
shown by the bold arrows.

Furber and Day’s semi-decoupled controller, shown in Figure 3.4 (b), was pro-
posed to cure this problem. A new signal A has been introduced to decouple the
input and output handshakes, and allow every stage to fill in a stalled pipeline. The
circuit corresponding to this STG is shown later in Figure 3.10 (b), and consists of a
pair of asymmetric C-elements.

Yun, Beerel and Arceo [201] also designed a semi-decoupled controller, referred

48 Chapter 3: Overview and Motivations

Rin+ Rout+

Aout+Lt+Ain+

Rin-

Aout-Lt-Ain-

Rout-

Rin+ Rout+

Aout+Lt+Ain+

Rin-

Aout-Lt-Ain-

Rout-

A+

A-

(a) Simple controller (b) Semi-decoupled controller

Figure 3.4: Two latch controller STGs from Furber and Day [59]

Pipeline stage n Pipeline stage n+1

Rout+

Aout+Lt+

Aout-Lt-

Rout-

Rin+ Rout+

Aout+Lt+Ain+

Rin-

Aout-Lt-Ain-

Rout-

Rin+

Ain+

Rin-

Ain-

(data latches)

(data unlatches)

Figure 3.5: STG for two simple latch controllers in a pipeline

to here as the improved1 controller, using a different specification and synthesis
style to Furber and Day. An STG of their latch controller, derived from their XBM
specification, is shown in Figure 3.6. Unlike the semi-decoupled controller, this has
no state variable. State variables add circuitry, so it would be expected that the
improved controller would be smaller and probably faster than the original semi-
decoupled controller. Unfortunately, the circuits are not directly comparable be-
cause they assume different things about the operations of the latch driver buffer.
In an apples-to-apples test between the semi-decoupled and improved versions,
the improved controller will have a lower cycle time, but the semi-decoupled con-
troller will pass data forward faster. As is often the case, the definition of “faster” is
fuzzy, and depends on the circumstances in which a circuit will be used.

1“Improved” is their term; maybe “different” would be better.

Section 3.4: Blue Diagrams 49

Rin+ Rout+

Aout+Ain+

Rin-

Aout-Ain-

Rout-

Lt+

Lt-

Figure 3.6: STG for an “improved” controller due to Yun, Beerel and Arceo

3.3 Concurrency

It has been pointed out by Ivan Sutherland that the way to achieve speed is by
exploiting concurrency. A highly concurrent circuit allows many actions to take
place at the same time, but the circuit tends to be larger and therefore slower than
a less concurrent one. There is a fine balance between concurrency and complexity,
if the aim is maximum speed.

It is difficult to see from the STGs in Figures 3.4 (a), 3.4 (b) and 3.6 what the
differences are in concurrency between the specifications. It would be intuitively
expected that there are behaviours that the semi-decoupled controller could exhibit
that the simple controller could not, but it is not obvious whether the reverse is
true, and it is also nontrivial to make comparisons between the improved controller
and the other two STGs. A state graph for each specification could be constructed,
but these tend to be rather large, and they again suffer from the problem that
output transitions are ordered, so identical behaviours when viewed from outside
the module may appear different. A question that could be asked of these STGs is
“Does there exist an STG that has complexity between that of the simple and semi-
decoupled STGs?” An STG fitting this description might give rise to a circuit which
is simpler and faster than the semi-decoupled controller, without the problem of
only filling every other stage on a stall.

3.4 Blue Diagrams

Blue diagrams, or BDs, are an intermediate representation of module behaviour
that can be viewed as a cross between state graphs and burst-mode diagrams; two
examples are shown in Figures 3.7 and 3.8. Inputs are ringed in a blue diagram,
and outputs are written above the inputs. When moving from one state to another
along an arrow, exactly one input must change, but any number of outputs can
be different. BDs are state graphs in which the output changes are considered to
be instantaneous. They are intended to represent the behaviour of modules that
compose in a delay-insensitive way, so the output changes can only be seen by
other modules after an unbounded but finite delay. It is assumed that the universe

50 Chapter 3: Overview and Motivations

Q
t

Q

t

Q Q

0 1

1 0

01 01

1010

Figure 3.7: Blue diagram for toggle element

ab

c

01

0 0

01

0

10

11

10

00

1

1 1

a b c

Model of environment

Figure 3.8: BD for C-element with usual environment

consists of modules specified by BDs, so it is not necessary to add delays on all
input wires; these delays are already present, considered to be part of the output of
another module. A circuit corresponding to a BD can be viewed as an instantaneous
decision-making element, followed by a set of arbitrary delays.

Figure 3.9 shows the BDs of the three latch controllers discussed, and also a
fourth BD derived directly from the STG fragments used to specify the latch con-
troller2. It can be easily seen from the diagrams that the simple controller and the
improved controller both have a restricted set of behaviours compared to the semi-
decoupled controller, although they are restricted in different ways. It can also be
seen that there is no specification that is between the simple and semi-decoupled
controllers in terms of concurrency, answering the question in section 3.3. Com-
paring diagrams (a) and (b) shows that there is still a loss of concurrency in the
semi-decoupled STG compared to the fragments, something that is hard to see
just by considering the STGs.

It can be seen from Figure 3.9 that when a state is removed from a BD, some
changes must occur in the outputs of previous states. This will be explored in
Chapter 5.

Blue diagrams, being essentially little more than compacted state graphs, are
not a very useful specification for circuits, but the observations above suggest that
they may be useful as an intermediate representation to explore concurrency reduc-

2An additional restriction was added that transitions on Ain should directly follow Lt. This restric-
tion simplifies the diagrams so that the point of this example is clearer, and is due to the original
fragments not being quite precise enough. An alternative addition is given in Section 3.5, which leads
to Furber and Day’s fully decoupled controller.

Section 3.5: Fully decoupled controller 51

00
000

000
0100

111
11

101
01

101

00
000

000
0100

111

10
111

11
111

11
000

Rin, Aout
Ain, Rout, Lt

00
000

000
0100

111
11

101
01

101

10
100

11
100

10
111

00
000

000
0100

111
11

101
01

101

10
111

10
101

(c) (d)

(a)

11
111

(b)

(a) BD derived from STG fragments, (b) BD of Furber and Day’s semi-decoupled latch

controller and (c) their simple controller, and (d) the improved controller of Yun, Beerel

and Arceo.

Figure 3.9: Blue diagrams of some latch controllers

tion transformations. BDs are close enough to finite state machines that established
methods can be used for synthesis. When the BD of Figure 3.9 (b) is converted into
a flow table, and then state minimization, race removal and implementation per-
formed using C-elements, the circuit in Figure 3.10 (a) results. This is identical to an
earlier controller proposed by Day and Woods [47]. Yakovlev found that this circuit
was not speed independent using FORCAGE, which prompted the semi-decoupled
controller of Furber and Day [59], shown in Figure 3.10 (b). However, Furber and Day
[59] states that Figure 3.10 (a) operates correctly given any reasonable distribution
of gate delays regardless of its speed-dependent nature.

If the most concurrent BD, Figure 3.9 (a), is synthesized, the circuit is larger
and slower than any of the other circuits. The additional concurrency just increases
the size of the circuit and hence its delay. Concurrency reduction on BDs can,
when used correctly, make circuits faster, but when a specification becomes overly
sequential, any speed benefits will be lost.

52 Chapter 3: Overview and Motivations

-

+

Aout Rout

Rin Ain

Lt

(a) (b)

-

+

Aout Rout

Rin Ain

Lt

Figure 3.10: (a) Circuit derived by use of blue diagrams, (b) Furber and Day’s circuit.

Latch

controller

Data Data

Rin

Ain

Rout

Aout

Latch

Latch

Latch

...

Ltin Ltout

Figure 3.11: Four-phase latch controller, modified to have Ltin and Ltout
3.5 Fully decoupled controller

The semi-decoupled controller has the property that a processing delay of size t
caused by logic between pipeline stages adds a delay 2t to the cycle time of the
pipeline. Furber and Day also presented a fully decoupled latch controller, which
has a cycle time that only increases by t in this case. To derive a blue diagram for
the fully decoupled controller, it is necessary to consider the latch driver buffer to
be outside the control circuit, as it is drawn in Figure 3.11. The latch drive buffer,
taking Ltout and producing Ltin, is considered to be part of the environment.

The STG fragments were modified trivially for the addition of Ltin and Ltout.
The fragment Ltin-! Rout+ was also added, which is required because the latch

Section 3.5: Fully decoupled controller 53

111

110 100

101 111 101

011 001 011 001

101 111 101

110 100

010 000

101

001 011 001 001

111 100 110

001 011 000 000

001 011 000 000

100 100

000 000

001 011

110 100

110 100

Rin,Aout,Ltin

Ain,Rout,Ltout

111

A

A

B

B

The two states labelled A are the same, as are the two labelled B.

Figure 3.12: Blue diagram derived from modified fragments

111 101

011 001 011 001

010 000

111

101

001 011

111

111 100

000

001 011

110 100

110 100

Rin,Aout,Ltin

Ain,Rout,Ltout

011

111

110

101 100

000

A

A B

B

Figure 3.13: Blue diagram for semi-decoupled controller from modified fragments

must be transparent before the receiver can be told that the data is available 3. The
BD derived from the modified fragments is shown in Figure 3.12. The BD for the
fully decoupled controller corresponds to deleting the rightmost state on the top

3This fragment was not included in Furber and Day’s paper, although the ordering it represented
was present in all derived STGs.

54 Chapter 3: Overview and Motivations

row of Figure 3.12, so at the outset of this work it seemed likely that a circuit very
like the fully decoupled controller could also be produced using BDs. It turns out
that this is not the case, although similar circuits can be constructed. Figure 3.13
shows the blue diagram for the semi-decoupled controller using the modified latch
driver, showing that it too can be derived from Figure 3.12 by removing states.

3.6 Summarys STG fragments are an intuitive way to specify the behaviour of circuit modules,
even though STGs may specify too much information.s A Blue diagram derived from the specification displays concurrency in an
straightforward way. Concurrency-reducing transformations take the form of
state deletions in the blue diagram, with associated patching of output values.s Highly concurrent specifications can be slow for certain applications; highly
sequential specifications will certainly be slow. The fastest circuit for a partic-
ular task will usually be somewhere in the middle.s Blue diagrams can be synthesized using the well-trodden path of FSM synthe-
sis, originally described by Unger.

These points suggest a plausible design methodology for asynchronous circuits.
Starting from a specification in terms of STG fragments, a blue diagram could be
produced. Deleting various combinations of states from this blue diagram would
produce a large number of different diagrams with varying amounts of concurrency.
These diagrams could all then be synthesized and scored according to criteria given
by the designer, for example any combination of small size, low power and high
speed given a particular environment. A synthesis tool based on these ideas would
be easy to use and could provide significantly better circuits than current synthesis
tools.

.

Specification
.

Specification
.

Specification
.

Specification
.

Specification 4
Abstract

Blue diagrams cannot reasonably be used as a specification by a designer, so an-
other starting point for the design process must be found. This chapter covers the
development of a specification language, and the translation from it into a blue
diagram. The translator has been implemented, and some sample results are pre-
sented.

Structure of this chapter

Section 4.1 gives some definitions that will be useful. Section 4.2 contains some
examples that the specification language must be able to cope with, and some con-
clusions that can be drawn from these examples. Section 4.3 looks at the creation
of the specification language. Section 4.4 covers the translation from the input file
to an intermediate Petri net, which is then converted to a pair of blue diagrams with
using the material in Section 4.5. An overview of the translation process is given
in Figure 4.1. The b2ps program for producing PostScript figures of blue diagrams
is briefly described in Section 4.6. Finally, Section 4.7 gives the results of the L2b
program for all the examples used.

4.1 Preliminary definitions

Definition 1 A Blue Diagram or BD is (S; p; q; f in; fout; R) with

S = f0; 1; 2; : : : jSj � 1g, the set of states, with 0 as the initial state,
p = number of inputs,
q = number of outputs,
fin : S ! I with I = f0; 1gp, assigning inputs to states,
fout : S ! O with O = f0; 1gq, assigning outputs to states,
R � S� S with the property that(a; b) 2 R) d(fin(a); fin(b)) = 1

where d is the usual Hamming metric on I

As a notational aid, if (a; b) 2 R, I will write a!b. I will also write a in � fin(a)
and aout � fout(a). An example blue diagram with its usual graphical representa-
tion is shown in Figure 4.2. State numbers are typically unimportant, and they are

55

56 Chapter 4: Specification

Actions of a program

Action of
program b2ps

Section 3.6

Input or output file

Intermediate representation

Action of
program l2b

name.spec

Intermediate
Petri net

Petri net
Optimized

Petri net
Another

XBD for
circuit

XBD for
environment

Translation
from PN to BD

Section 3.5

name.eps

to PN
Translation

Section 3.4

Hanging structure removal
Section 3.5.1

Optimization
Section 3.5.2

Simulation
Section 3.5.3

Reduction of BDs
Section 3.5.4

name.bd

environment

Blue diagrams
for circuit and

Postscript,
can be sent to

printer

Specification
including

STG fragments

Figure 4.1: Overview of translation from fragments to blue diagram

S = f0; 1; 2; 3g
p = 1
q = 2
fin(0) = 0 fout(0) = (0; 0)
fin(1) = 1 fout(1) = (0; 1)
fin(2) = 0 fout(2) = (0; 0)
fin(3) = 1 fout(3) = (1; 0)
R = f(0; 1); (1; 2); (2; 3); (3; 0)g

state 3state 0

state 2state 1

1
01

0
00

1
10

0
00

Figure 4.2: An example BD with its graphical representation

Section 4.1: Preliminary definitions 57

Module

Module

ModuleModule

Module

Figure 4.3: Network of modules connected in a DI way

usually left off and the initial state distinguished in some other way; b2ps sets the
intial state in a bold face.

Blue diagrams can be viewed as state graphs where output changes are as-
sumed to be instantaneous, or as burst-mode diagrams where the states are la-
belled rather than the arcs between states. When circuits are derived from blue
diagrams, precautions must be taken to ensure that the non-zero response time of
real circuit elements will not cause erroneous behaviour.

Blue diagrams are used as a specification of the interface behaviour of a mod-
ule, assuming delay-insensitive interconnections to other modules. Consider two
networks of modules connected by unbounded finite delays, both looking some-
thing like Figure 4.3. The first network, N, has modules with nonzero internal delays
that are bounded above by m; the second, Z, has the same modules but with zero
internal delay, and the same connection between modules as N. Wire delays are in
the range (0;1) in both networks, and are assumed to be variable on a per-signal
basis. Are these two networks capable of the same set of behaviours?s It is clear that any behaviour exhibited by N can also occur in Z, because the

non-zero module delays in N can be absorbed into the wire delays in Z, giving
a set of actions that could be observed in Z.s Assume we have a finite sequence s of signal events in Z. Let w be the
smallest delay that occured on any wire in this sequence. We may scale up
the wire delays by any constant factor, which keeps the ordering of all signals
the same, so scale up all wire delays in the sequence s by m=w to produce
a sequence s0. Now all wire delays in s0 are m or more, so when the intrinsic
delay of an element in N is subtracted from the delay between two events in
s0, there will be a non-negative delay left. This non-negative delay can be
ascribed to the inter-module delays in network N, giving a valid sequence of
events in N.

This informal argument shows that a network of bounded-response circuit mod-
ules under a DI wire assumption has identical behaviour to a network of instanta-
neous decision-making elements under the same wire assumption, so it is valid to

58 Chapter 4: Specification

use a blue diagram to describe a circuit which has non-zero delays between inputs
and outputs. It is always assumed that there are finite unbounded delays on the
outputs of an element specified by a blue diagram, but not the inputs; delays on
the inputs are taken to be the output delays of some other element. The type of the
delay—pure, inertial or some combination of the two [22]—is unimportant, because
there will never be two transitions propagating through a delay at the same time.

Definition 2 If R instead has the property that (a; b) 2 R) d(a in; bin) � 1,
then (S; p; q; fin; fout; R) is an Extended Blue Diagram or XBD.

XBDs can exhibit hazards on output wires, so they do not always correspond to
a useful specification. A state graph is an XBD, because at most one input changes
between a state and its successor. Similarly, the projection of a state graph or
Blue Diagram onto a subset of its inputs and outputs is also an XBD. By repeatedly
collapsing pairs of states a and b such that a ! b and a in = bin into a single state
c with cin = bin and cout = bout, an XBD can either be transformed into a BD, or
seen to have output hazards.

Definition 3 Given a blue diagram S, if 9s; x; y 2 S such that s ! x; s ! y; x 6=
y and xin = yin, then S is non-deterministic; if there are no such s; x; y, then it is
deterministic.

Definition 4 Given a blue diagram S, if 9s; u; v; x; y 2 S such that s ! u; u !
v; s ! x; x ! y; uin 6= xin; vin = yin but v 6= y, then S is non-semi-modular. If
there are no such s; u; v; x; y, then S is semi-modular.

A semi-modular BD is one where the ordering of concurrent input transitions
does not matter; it could alternatively be called an order independent diagram.
An obvious non-semi-modular diagram is the one for a Seitz arbiter, where the
precise timing between requests affects which grant is asserted. Non-deterministic
diagrams are only useful for specifying the environment for a circuit, where they
represent input choice.

Figure 4.4 shows a first attempt at defining the interconnections between a
circuit and its environment. Technically, the environment behaviour does not need
to be specified at all, because it can be inferred from the blue diagram for the circuit.
However, concurrency reduction will change the circuit behaviour while leaving the
environment alone, so it is useful to have the environment specified in some way.
It also makes sense to use the same specification for the environment as for the
circuit, although state graphs or trace expressions could be used instead.

4.2 Example circuits

Any useful specification style must be able to describe a wide variety of possible
circuits, so the specification was created with a number of representative design
problems in mind. Five of these were abstract descriptions of the required be-
haviour, each of which required recasting as a set of STG fragments, possibly with

Section 4.2: Example circuits 59

00...0
01...0 01...0

01...0
11...0

10...0

. . .

. . .

. . .

00...0
01...0 01...0

01...0
11...0

10...0

. . .

. . .

. . .

.

a

g

u

z

a...g

u...z

a...g

u...z

Blue diagram
for circuit to

be synthesized

Environment described by a blue diagram

Figure 4.4: First model of connections between a circuit and its environment

Rin

Ain

Rout

Aout

LtoutLtin

Latch
controller

Rin+!Ain+!Rin–!Ain–!Rin+
Rout+!Aout+!Rout–!Aout–!Rout+
Ltout+!Ltin+!Ltout–!Ltin–!Ltout+
Rin+!Rout+
Rin+!Ltout+!Ltin+!Ain+
Aout+!Ltout–!Ltin–!Rout+

Figure 4.5: Latch controller specified by STG fragments

some additional features. The other examples were taken from the set of standard
SIS STG benchmarks [101], which do not really count as design examples because
they have already been written as STGs; they were included to make sure that the
specification style was powerful enough for most examples that will be encountered.

4.2.1 The Furber/Day latch controller

The STG fragments for this circuit have been discussed already, but are shown again
in Figure 4.5 for completeness. A blue diagram can be constructed by interpreting
these fragments as a Petri net, adding arcs from x+ to x- and back for all signals x,
which gives the net shown in Figure 4.6, and then simulating this net. If, during this
simulation, it is assumed that any excited output transition will occur without delay
and simultaneously with the input that caused it, then a blue diagram is formed
rather than a state graph.

Unnecessary arcs and places, of which there are many, have been shaded in
Figure 4.6. Most of these are arcs that were added from x+ to x- and back for all x,
but these are useful for reasons that will be covered in Section 4.4.1.

60 Chapter 4: Specification

Rin+

Ltin+

Ltout+ Rout+

Aout+

Rout-

Aout-Ltin-Ain-

Rin-

Ain+

Ltout-

Figure 4.6: Intermediate Petri net for latch controller example

R A

R1 R2

A2A1

R+!R1+ R1+!A1+ A1+!A+
R+!R2+ R2+!A2+ A2+!A+
R+!A+!R–!A–!R+
R1+!A1+!R1–!A1–!R1+
R2+!A2+!R2–!A2–!R2+

Figure 4.7: Parallel component specified by STG fragments

4.2.2 Abstract definitions of more example circuits

This section gives a high-level description of the other four circuits that were used
as representative examples of asynchronous circuit behaviour.

Tangram-like parallel component [10]

This is shown in Figure 4.7, and is similar to the latch controller. It too can be
specified using only STG fragments.

Nacking arbiter

The nacking arbiter is also known by the names non-blocking arbiter and arbiter
with reject. It is an arbiter that is capable of refusing access to a shared resource,
allowing the requester to get on with something else until the resource becomes
free. The design considered here is the four-phase version shown in Figure 4.8;

Section 4.2: Example circuits 61

ly

lr

ln

(Request resource)

(No = reject)

(Yes = grant)
Nacking
arbiter

rr

ry

rn

Resource is free:
lr+ ! ly+! lr–! ly–
Request Grant
rr+ ! ry+! rr–! ry–

Resource is busy:
lr+ ! ln+! lr–! ln–
Request Reject
rr+ ! rn+! rr–! rn–

Figure 4.8: Nacking arbiter specification

other variants are possible.
Rising edges on lr and rr request the resource from the arbiter. If the resource

is free, the arbiter signals with the grant wire ly+ or ry+, and the requester is al-
lowed to access the resource. The four-phase handshake is completed as fast as
possible, with no meaning attached to the falling edges of signals. To free the re-
source, another request is made (lr+/rr+), but this time the reject wire is asserted
(ln+/rn+) to signify that the resource is now free, and the four-phase handshake
again completed. If the resource was busy when the request was received, a hand-
shake occurs on the reject wire instead of the grant wire.

This circuit requires some method to cope with the metastability that can result
when lr+ and rr+ happen almost simultaneously.

Martin’s Distributed Mutual Exclusion element (DME)

Martin’s DME element [116] is an ingenious solution to the multi-way arbiter prob-
lem, using n identical circuit elements to arbitrate between n parties, as shown in
Figure 4.9. One of the DME elements initially has the token, and is the only element
that can grant the resource. If a DME element, say at position i from the left, re-
ceives a request for the resource and it does not have the token, it can request the
token from the element (i+ 1) on its right by initiating a handshake on rr. When
element i receives ra+ from its right, the token is deemed to have moved from ele-
ment (i+1) to element i. If element (i+1) does not have the token, the request is
passed on to element (i+ 2) and further to the right until the token is found, then
the token passed all the way back and the resource finally granted. Unlike some
similar circuits, the token only moves when a request has been received; it is not
constantly moving round the ring.

The loadable counter: a design problem from ACiD-WG 1996 [111]

The problem is to find a circuit which, when presented with a binary number k on a
bus and given a ‘go’ signal, will give k handshakes on output port a, followed by a
single handshake on output port b and then acknowledge the ‘go’ signal. A possible
decomposition is given in Figure 4.10. It is assumed that handshakes on ali/alo
and bli/blo cannot occur at the same time.

62 Chapter 4: Specification

request token - lr

acknowledge - la
(token has been passed left)

rr - request token

ra - acknowledge
(token acquired from the right)

ua - resource grantedrequest resource - ur

First client Second client Third client

DME
element

DME
element

DME
element

DME
element

When a rising edge on lr or ur is received
If you have the token

Acknowledge the request
If the request was on lr

We do not now have the token
Complete four-phase handshake on lr/la or ur/ua

Else
Get the token: assert rr+ and wait for an ra+
Complete the four-phase handshake on rr/ra sometime
Acknowledge the request on lr/ur
If the request was on ur

We now have the token
Complete four-phase handshake on lr/la or ur/ua

Endif

Figure 4.9: Martin’s DME element

Section 4.2: Example circuits 63

d d d
2 1 0

ali
alo

bli
blo

(request)
(acknowledge)

(acknowledge)
(request)

aro
ari

bro
bri

(request)
(acknowledge)

(request)
(acknowledge)

Loadable
counter

unit

d (data input)

a

b
LCU LCU LCU

goack

If ali+ received
Complete two handshakes on aro/ari
Acknowledge alo+ and complete ali/alo handshake

Else if bli+ received
If (d == 1)

Complete one handshake on aro/ari
Endif
Complete one handshake on bro/bri
Acknowledge blo+ and complete bli/blo handshake

Endif

Figure 4.10: The loadable counter example

4.2.3 Examples from the SIS benchmarks

Some examples were chosen from the standard set of SIS STG benchmarks [101].
Rather than use the whole set, examples were chosen that appear to have been used
often in published papers. Most of the examples used look like they have been
originally derived from burst mode machines, so they are mostly sequential and
will not be affected by the concurrency-reducing transformations that are a central
topic in this dissertation. However, these examples show that the specification and
synthesis tools are powerful enough to cope with most real examples, even if the
concurrency-reduction tool cannot be used for them. Versions with a .nousc suffix
were preferred to versions without if both were present; the .nousc ending denotes
the STGs that have not had the Unique State Coding property enforced, which gives
a little more implementation freedom. The examples, shown in Figures 4.11–4.23,
are alloc-outbound, atod, isend, master-read, mp-forward-pkt, nak-pa, nowick,
pe-send-ifc, ram-read-sbuf, rcv-setup, rlm, sbuf-ram-write, and sbuf-read-ctl.

64 Chapter 4: Specification

busctl+/1 busctl+/2

req+

busctl-/2

reqbus+

reqbus-/2

busctl-/1

ack-

reqbus-/1

ackctl-/1

req-

ackctl+

ackctl-/2

nakbus-

nakbus+

ackbus+

ackbus-

ack+

Figure 4.11: Example alloc-outbound

zr+

dr- da-

za+ zr-

da+

lr-

dr+

lr+

la-

la+

za-

Figure 4.12: Example atod, from T.A.Chu’s thesis [28], page 133

Section 4.2: Example circuits 65

0 1 2

3

45

6

7

8

a+ / z- a- / y+ b-,d- / y-

b-,c- / y-

c+ / x-,y+

d+ / x-b+,d- / x+,y-

b-,d+ / x-

b+,c- / x+,y-

b-,c+ / x-,y+

b+ / x+,z+

Figure 4.13: Example isend

req+

ackout-

req-

ackpb-

allocoutbound-

rts+

ack-

allocoutbound+

rts-

allocpb+

ack+

allocpb-

ackout+ ackpb+

Figure 4.14: Example mp-forward-pkt

66 Chapter 4: Specification

aro- ari+ pri+

ari- aro+ pri- pro+

pro-

busyo+ breq-

bprn+ bprn-

breq+ busyo-

mrdc+

mrdc-xack-

xack+di+

di-

pack+

pack-

pdo+

pdo-

do+

do-

Figure 4.15: Example master-read

reqbus-

ack+

enableda-

hystreq-

busack-

ackhyst-

rejsend-
ack- busreq-

busack+

busreq+

ackhyst+
enableda+

hystreq+
ackbus+

ackbus-

reqbus+

rejsend+

Figure 4.16: Example nak-pa

a+

b+

x+/1

y+/1
y-/2c+x-/1

c-
x+/2

y-/1
b-

x-/2

y+/2
a-

Figure 4.17: Example nowick

Section 4.2: Example circuits 67

peack-
tack+
adbld-

rdiq-

adbldout-
treq-
rdiq+

adbld+

adbldout+ peack+

treq- tack-

treq+ tack+

ackpkt-
treq-

peack-
tack-

ackpkt- tack-
peack-

reqsend-
peack-
tack-
adbld-

rdiq-

adbldout-
treq+
ackpkt+

peack+
tack+

adbldout-
treq-
ackpkt+

peack+adbldout-
treq+
rdiq+

adbld+

reqsend+

rdiq+
adbld+treq+

adbldout+ peack+

4

5

8

7

0 1 2 3

6

9

10

Figure 4.18: Example pe-send-ifc

precharged+

wsldin+

prnotin-

wsld+

prnot-

wsld-wsldin-

wsen+ ack-

req+ prnot+ prnotin+ wen+

wenin-

precharged-

wen-

wsen-

wenin+
ack+

req-

Figure 4.19: Example ram-read-sbuf

68 Chapter 4: Specification

acksend-

rejsend-acksend+

sending- sending+

reqrcv+/2 rejsend+ sending-/2

enwoq+/2enwoq-/2

reqrcv+/1

reqrcv-/2

enwoq+/1

enwoq-/1 reqrcv-/1

Figure 4.20: Example rcv-setup

sr+/2

sa+

sa-

sr-

cr+

la+lr+sr+/1

lr-la-ca+

ca-

cr-

Figure 4.21: Example rlm, from Chu’s thesis [28], page 172

wsen+

ack-
wsldin-

req-

precharged+

req+

done-

prbar+

prbar-

wen-

wsen-done+

ack+wenin+

precharged-

wen+
wenin-

wsldin+

wsld+

wsld-

Figure 4.22: Example sbuf-ram-write

Section 4.2: Example circuits 69

ack+
req- ack-

ackread-

req+

ramrdsbuf-
ramrdsbuf+busack-

busack+ busreq+busreq- ackread+

Figure 4.23: Example sbuf-read-ctl

4.2.4 Inadequacies of the simple interconnection model

Figure 4.4 showed a first attempt at naming the wires that are needed between a
circuit and its environment, but from the examples given above, it can be seen that
this model will not be sufficient for most useful circuits. Three problems can be
seen to arise:s Outputs causing outputs requires new wire labels. If an output causes an-

other output, such as lr- causing zr+ in atod (Figure 4.12), then the two
transitions may occur in either order when received by the environment. What
is meant by lr-!zr+ is that on the outputs of the circuit, zr+ will follow lr-
by a small delay; it does not mean that the environment will see lr- beforezr+, which is what an ordering between the labelled transitions in Figure 4.4
would give. The circuit outputs need to be labelled in front of the wire delays
to allow this behaviour to be specified. This also happens at several points in
master-read (Figure 4.15).

This problem occurs because STGs, and hence STG fragments, use the speed-
independent delay model, but the delay model used with blue diagrams is
delay-insensitivity on interconnecting wires; observing that a transition has
been sent is not the same as knowing it has been received when using blue
diagrams, but it is in the STG fragments.s Inputs causing inputs requires a wire back. If an input causes some other
input, for example sending+ causing either sending- or reqrcv+/2 in rcv-
setup (Figure 4.20), and the circuit must see the transitions occurring in order,
then some mechanism must be included to force this ordering. It is not
sufficient for the environment to send a sending+ transition, then wait for
any bounded time before giving reqrcv+/2, because the unbounded wire
delays can swap the ordering of the two signals from the circuit’s point of
view. A wire must be included from the circuit end of the sending wire back
to the environment, so the environment can tell when sending+ has been
received before giving another transition. This also happens in pe-send-ifc
(Figure 4.18) when reqsend- causes reqsend+, and the loadable counter
(Figure 4.10) when the d input must change and be stable before either anali+ or bli+.
Note that this extra wire is only a model of the behaviour of the environment;
in reality, there will be some upper bound on the delays in the circuit, which

70 Chapter 4: Specification

c c'' da b

x'

y'b^'

a^' x

y

c' d'a' b'
a^

b^

c'' x' y'

a b c d

a^' b^' c' d'

x y
. . .

. . .

. . .
00

0000

1000
11

0100
01

. . .

. . .

. . .

010

000
0010

100
1010

1110

Blue diagram
for circuit to

be synthesized

Environment described by a blue diagram

Optional
arbiter

Figure 4.24: Improved model of connections between a circuit and its environment

the designer can use at a global level to make this extra wire unnecessary.
Precisely how this is done is outside the scope of this dissertation.s Arbiters are required. In the nacking arbiter and DME circuits (Figures 4.8
and 4.9), an arbiter is required on the input side of the circuit to remove
metastability problems. This is similar to the approach used by Cortadella
et al. [43, 44]. Ivan Sutherland has pointed out that the use of observing
arbiters would lead to increased speed, an approach that was used for a fast
tree arbiter by Josephs and Yantchev in [80] and Yakovlev et al. [194], but this
will be left as a possible extension to the work.

The changes listed above are shown in Figure 4.24, which will be referred to
as the improved model of module interconnections. Primes (x 0, x00) are used to
indicate that a signal has been through an unbounded wire delay, and a postfixed
circumflex (x ,̂ x 0̂) to show the output of an arbiter. A given transition x in the STG
fragments may need to be interpreted as x 0, x00, xˆ or x 0̂, depending on its context.
The arbiter used, Figure 4.25, is a CMOS version of the design proposed by Seitz
[160, 161]. The arbiter is optional, and does not occur in most of the examples.

The connections to the arbiter are overly pessimistic—it is assumed that there

Section 4.3: The specification language 71

Vss

request a

request b

grant a

grant b

Figure 4.25: A standard arbiter unit: the Seitz arbiter

are unbounded finite delays between the arbiter and the circuit. In reality, the
arbiter and the circuit will be very close together, so there will be almost no delay
between the arbiter and the circuit. However, problems occur if these delays are left
out. When the arbiter changes state between granting one request and granting
the other, its outputs briefly go through a state in which neither is granted; ie. the
outputs of the arbiter go 01!00!10. If it is assumed that the arbiter outputs are
connected directly to the inputs to the circuit, then the synthesis tools often produce
a circuit which relies upon the existence of the neither-grant state. In practice, the
neither-grant state persists for such a short time that the implementation does not
manage to see it, so the implementation fails. Adding extra delays between the
arbiter and the circuit allows the inputs to the circuit to go through either 01!
00!10 or 01!11!10, so the circuit cannot rely on the neither-grant state for
correct operation, and hence the circuits produced are more robust.

4.3 The specification language

This section describes the creation of a specification style that is based upon STG
fragments. An obvious choice that must be made is whether to make the user
interface graph-based or text-based; for a first attempt, it would be easier to use a
text-based approach and create a graphical front-end later on, if necessary.

It would be sensible to make the form of the specification similar to an existing
text-based style. It would also be good to be able to integrate the synthesis tools
with an existing synthesis environment. Verilog is used in the Computer Laboratory
for the design of synchronous and asynchronous circuits, so it was decided to make
the specification look similar to Verilog. The idea is that, ultimately, asynchronous
specifications based on STG fragments can be included in Verilog files. Synthesis
of the Verilog file could then invoke a program to extract asynchronous modules,
synthesize them, and substitute a circuit layout back in the original file. The inte-
gration of the tools into Verilog would not constitute original research, and will not
be attempted in this dissertation. Figure 4.26 gives an example Verilog file [112,
page 6] showing the file format.

72 Chapter 4: Specificationmodule dff (q,qb,clk,d,rst);input clk,d,rst;output q,qb;wire dl,dbl;
// Verilog-specific statements; STG fragments would go hereendmodule

Figure 4.26: An example Verilog definition, showing the file format

4.3.1 Extending STG fragments

When converting the Furber/Day latch controller to a blue diagram, a Petri net was
used as an intermediate representation. Petri nets are very general, so there will
not be a problem representing all the examples as Petri nets. A specification file
consisting of just STG fragments will not be sufficient to describe several of the
examples, so some way must be found to make this description more powerful.
Two different ways are possible:s Allow places and dummy transitions to be specified in the file, so that the STG

fragments become simply Petri nets or STGs.

Advantages:

– Petri nets are a well-known specification.

Disadvantages:

– It may be difficult to determine what p! . . . !qmeans in the specifica-
tion if there are arbitrarily many dummy transitions and places between
p and q in the specification. Does it mean p!q, p 0!q or p00!q?s Add language constructs to allow any additional features that are required.

Advantages:

– It will be easier to provide helpful error messages if basic assumptions
are violated, e.g. if an input signal is arbitrated against an output signal,
or if the circuit presents a non-DI interface.

– Typical Computer Scientists or Electrical Engineers may find language
constructs such as AND and OR to be easier to use than place/transition
relationships.

– A similar but different specification to Petri nets will serve to remind
users that the underlying delay model is not the same as that usually
used for Petri nets.

Disadvantages:

– Some Petri net knowledge will always be required, because tokens can-
not be automatically placed in the generated intermediate Petri net.

On balance, it seems that creating a new specification language that includes
STG fragments and keywords such as arbitrate would be more useful than us-
ing Petri nets. A question that could be asked at this point is “Why does the world

Section 4.3: The specification language 73

ua+

rr-ra-

ur+/2 rr+/1 ra+/1

ur+/1

lr+/1

ur- ua-

lr+/2 rr+/2 ra+/2 la+

lr-

la-

Figure 4.27: STG for Martin’s DME element

need yet another form of specification for asynchronous circuits? What is wrong
with simply translating an existing form, such as an STG, to a Blue Diagram?” The
answer is concurrency: in an STG, all transitions must be specified, with tempo-
ral constraints placed between many of them. Not all of these constraints will be
necessary for the circuit to function correctly; the others may have been put in to
satisfy persistency, unique state coding, or maybe just so the designer has a clearer
picture of the operation of the circuit. An example of this is shown in Figure 4.27,
showing an STG for Martin’s DME element; while creating this STG, it was tempting
to place an ordering between rr-!ra- and la+ or ua+, rather than allowing the
separate handshakes to operate concurrently. This would have made the STG easier
to design and read, but made the final circuit slower. A new specification language
will allow the designer to specify the important relationships between transitions,
leaving the translation tool to take care of the falling edges of handshakes and any
correctness constraints. This gives the concurrency reduction tool more freedom
to perform transformations on the Blue Diagram produced, and allows a larger set
of possible solutions to be explored. This conclusion has also independently been
reached by Cortadella et al. [39] while this dissertation was being written.

Figure 4.27 also shows, when compared to the specification for the DME ele-
ment in Figure 4.33, that the proposed specification style can be significantly more
readable than an STG.

Features will now be described that are needed in the specification language.
Transitions: Transitions in SIS and other tools have a means to distinguish two

different transitions of one variable in the same direction, e.g. a+/1 and a+/2. This
mechanism must exist in the language.

74 Chapter 4: Specification

Initial state: a = b = 0

a-/1

b+

a+/2

a+/1

a-/2

b-

a-/1

a+/2

a+/1

a-/2

b- b+

This STG has six places but only four states of the two signals a and b, so some values ofa and b correspond to more than one marking. Either of the two markings given could

be the intial marking for a = b = 0. Any net without the USC property will have this

problem, so the designer must place tokens manually in the net.

Figure 4.28: A problem with automatic placement of tokens

Arrow operator: Causality between transitions will be denoted by the arrow
operator!, written -> in a text file. On some arcs, tokens will need to be explicitly
included, because in general it is not possible to tell from the structure of the net
where tokens should be placed—see Figure 4.28. A token on an arc from a+ to b+
will be written a+!token!b+.

Data inputs: The d input to the loadable counter does not have rising and
falling transitions; rather, it is a level input that is guaranteed to be stable before anali+ or bli+. SIS does not have this functionality, but ASSASSIN does; on page 20
of the ASSASSIN manual [199], SDA* was used to denote a data signal SDA going
unstable, and SDA& denoted when it became stable at some value. The generic
form of an ASSASSIN-style data input would be A!d*!d&!B, so for brevity
this will simply be written A!d*!B. This latter form is a bit of a fudge—the place
between d* and d& must still exist, but is not visible in the shortened version—yet
the meaning of the shortened construct is still clear.1

And/Or: Several of the examples—the loadable counter, alloc-outbound, rlm,
rcv-setup, isend and pe-send-ifc—demonstrate input choice: the ability of the en-
vironment to nondeterministically choose one out of a number of alternative tran-
sitions to fire. Without explicit places, an or2 keyword must be provided. If used
inside the circuit, this would create a nondeterministic circuit, which should be dis-
allowed. An and keyword is strictly unnecessary, because the Petri net firing rule will
create an AND function anyway, but the language will be more elegant if it has bothand and or operators.

The and and or operators should take a pair of transitions, and create an object
that behaves like another transition. This will allow constructs such as a+! (b+ and

1In fact, the statement a+! d*! b+ can be written using other language constructs as(a+ or d+ or d-)! (d+ or d- or b+), so data inputs are not required, but the form using d* is much
more natural.

2Purists may require this to be xor, but I am assuming the English meaning of or, rather than the
Boolean meaning. The synonym xor is also provided.

Section 4.3: The specification language 75

AEXCL
Set of actionsa+

b+

a-

b-Set of actions

Set of actions

Set of actions
BEXCL

ARESET

BRESET

Figure 4.29: How arbitration appears to the designerc+)!d+, and give it the meaning that a+ causes both b+ and c+, and then after
both b+ and c+ have fired, d+ can happen. If the! operator is treated in the same
way, this will allow structures like a+! ((b+!c+) or d+)!e+, meaning that a+
causes either of b+ or d+, after a b+ comes a c+, and either of c+ and d+ causes e+.

Arbitration: Arbitration needs a special language construct because an arbiter
must be created to resolve metastability. Arbitration can be thought of as being
described by the Petri net given in Figure 4.29. Sets of actions AEXCL and BEXCL
are mutually exclusive due to the action of the arbiter. The single transition a+ in
Figure 4.29 actually corresponds to four transitions in the intermediate Petri net; in
Figure 4.24, these would be a+, the environment raising a; a0+ the arbiter receiving
the request; a +̂, the arbiter granting the request; and aˆ0+, the circuit receiving the
grant. Each of the other three transitions in Figure 4.29 similarly corresponds to
four separate transitions. Sets of actions ARESET and BRESET are circuit actions
that cause a+ or b+ to be re-asserted respectively. These do not have to be part of
the arbitrate language construct, but including them would make the specifica-
tion more modular and easy to read—someone reading the specification would not
have to hunt down the rest of the file to find the conditions that cause another a+
to be asserted, for example.

The arbitration construct will be written as:arbitratea+ => (block AEXCL) => a-=> (block ARESET) => a+| b+ => (block BEXCL) => b-=> (block BRESET) => b+end
In this construct, the doubled arrows (=>) signify the same relationship between

transitions as ordinary arrows (->), but the two must be distinguished so that the
LALR(1) front end can parse the statement correctly.

If...then: The loadable counter has an input d that controls whether the counter
should add one to the present count or not. It is not transitions on d that are impor-
tant, but levels, and all the statements above deal only with transitions. Something

76 Chapter 4: Specification

is needed that will behave like the STG notion of input choice, or more recogniz-
ably, like an if...then statement in a programming language. This function could
also be written as in Dijkstra’s guarded command language [51], but of the three,
an if statement is probably the easiest to understand for most people. The form
of the if statement should be:

(Transition A) -> if (condition) then (actions) else (actions) endif
The A transition at the start of the statement is important; it must be specified

when the condition is to be tested, and here it should happen immediately after A.

Other features: The aim of the specification language is to make it easier to
specify circuits, so common structures should be abbreviated as much as possible.
A familiar structure in asynchronous circuits is the handshake a+!b+!a-!b-!a+, for which it would be useful to have a shorthand notation: h/s (a,b). Note
that it is possible to automatically insert tokens at the right place in the handshake,
if the initial state of the signals is known. A synonym for h/s is delay, which models
the effect of a delay external to the circuit, such as the latch driver delay in the
Furber/Day latch controller.

Another useful shorthand is the cycle keyword, where cycle(A! ...! B)
is equivalent to A! ...! B! A. This is useful in cases where A is long or compli-
cated, or in cases such as cycle (A or B) to specify a choice between two distinct
behaviours. The cycle keyword can be seen to be very useful in the loadable
counter example, Figure 4.34.

4.3.2 BNF description of language

This section gives a definition of the specification language in a BNF-like format.
The “+” symbol represents one or more copies of what it follows, “*” is zero or
more copies, square brackets denote optional clauses, and a vertical bar within
braces denotes a selection from different options. All whitespace is equivalent and
serves to delimit strings and operators. The input file is of the formmodule hnamei (hparmif,hparmig*)hi/o declarationi+htop level statementi+end

wherehi/o declarationi = input[s] hi/o dec listi| output[s] hi/o dec listi| internal[s] hi/o dec listi| external[s] hi/o dec listi
(wire is a synonym for internal)hi/o dec listi = hi/o dec stmti f, hi/o dec stmtig*hi/o dec stmti = fhnamei =g+ f0|1g

Section 4.3: The specification language 77htop level statementi = hstatementi| h/s (hnamei,hnamei)
(delay is a synonym for h/s)| cycle (hstatementi)| 8>>>>>>><>>>>>>>:

arbitratehtransitioni => hstatementi => htransitioni=> hstatementi => htransitioni| htransitioni => hstatementi => htransitioni=> hstatementi => htransitioniendhstatementi = hstatementi or hstatementi| hstatementi and hstatementi| hstatementi -> hstatementi| if (hif condi) then hstatementi[else hstatementi] endif| (hstatementi)| htransitionihtransitioni = hnamei f+|-|*g [/hnumberi]| tokenhif condi = hif condi or hif condi| hif condi and hif condi| (hif condi)| hnameihnamei = Alphanumeric string, possibly including underscores

4.3.3 Specifications for the examples given

This section gives the specifications used for each of the example circuits, to il-
lustrate the use of the language. The first five examples in Figures 4.30–4.34 are
derived from abstract specifications, and show that quite complicated behaviour is
easily expressible in the language. The other figures are translated from the STG or
burst-mode specifications. The burst-mode specifications are particularly clumsy
in the new language, but not as bad as when they were translated to STGs in the
SIS benchmarks. In isend and pe-send-ifc, a transition x from state s from to sto is
written as x=sfromsto to avoid name clashes.

It can be seen that the examples given show the structure of the corresponding
STGs much better than the input format to SIS. This is especially true in Figure 4.45,
the improved specification for rcv-setup, where the use of sending* has made the
specification shorter and easier to understand.

78 Chapter 4: Specificationmodule latchc (rin, ain, rout, aout,ltout, ltin);inputs rin = aout = ltin = 0;outputs ain = rout = ltout = 0;h/s (rin, ain)h/s (rout, aout)delay (ltout, ltin)rin+ -> (ltout+ -> ltin+ -> ain+)and rout+aout+ -> ltout--> ltin--> token-> rout+endmodule
module parallel (Rin, Ain, R1, A1,R2, A2);inputs Rin = A1 = A2 = 0;outputs Ain = R1 = R2 = 0;h/s (Rin, Ain)h/s (R1, A1)h/s (R2, A2)Rin+ -> (R1+ -> A1+)and(R2+ -> A2+)-> Ain+endmodule

Figure 4.30: Furber/Day latch controller Figure 4.31: Parallel componentmodule narb (lr, ly, ln, rr, ry, rn);inputs lr=0, rr=0outputs ly = ln = ry = rn = 0internal lhas = rhas = 0arbitratelr+ => if (lhas) thenlhas- -> ln+else if (rhas) thenln+elselhas+ -> ly+endifendif=> lr-=> if (ly) thenly-elseln-endif=> lr+| rr+ => if (rhas) thenrhas- -> rn+else if (lhas) thenrn+elserhas+ -> ry+endifendif=> rr-=> if (ry) thenry-elsern-endif=> rr+endendmodule

module dme (lr, la, ur, ua, rr, ra);inputs lr = ur = ra = 0;outputs la = ua = rr = 0;internal have token = 0;h/s (rr, ra)arbitrateur+ => if (!have token) thenrr+ -> ra+ -> have token+endif-> ua+ => ur-=> ua- => ur+| lr+ => if (have token) thenhave token-elserr+ -> ra+endif-> la+ => lr-=> la- => lr+endendmodule

Figure 4.32: Nacking arbiter Figure 4.33: Martin’s DME element

Section 4.3: The specification language 79// Loadable counter from// ACiD-WG, Groningen.module loadcnt (ali, alo, bli, blo,ari, aro, bri, bro, d)inputs ali = bli = ari = bri = d = 0;outputs alo = blo = aro = bro = 0;h/s (ali, alo)h/s (aro, ari)h/s (bli, blo)h/s (bro, bri)cycle (token-> d*-> (ali+ -> aro+/1 -> ari+/1-> aro-/1 -> ari-/1-> aro+/2 -> ari+/2-> aro-/2 -> ari-/2-> alo+ -> ali- -> alo-)or(bli+ -> if (d) then(aro+ -> ari+ ->aro- -> ari-)endif-> bro+ -> bri+ ->((blo+ -> bli-)and (bro- -> bri-))-> blo-))endmodule

module alloc outbound(req, ackctl, ackbus, nakbus,ack, busctl, reqbus);inputs req = ackctl = ackbus= nakbus = 0;outputs ack = busctl = reqbus = 0;busctl+/1 or busctl+/2-> ackctl+-> reqbus+-> ackbus+ or nakbus+ackbus+ -> reqbus-/1-> ackbus--> busctl-/1-> ackctl-/1-> ack+-> req--> ack--> token -> req+ -> busctl+/1nakbus+ -> reqbus-/2-> nakbus--> busctl-/2-> ackctl-/2-> busctl+/2endmodule
Figure 4.34: Loadable counter Figure 4.35: Example alloc-outboundmodule atod (da, la, za, dr, lr, zr);inputs la = za = 0, da = 1;outputs lr = zr = 0, dr = 1;lr- and da+ -> token -> zr+la+ and da+ -> token -> dr-(zr+ -> za+ -> zr- -> za-)and (dr- -> da-)-> lr+-> la+-> (lr- -> la-) and (dr+ -> da+)endmodule

module mp forward pkt(ackout, req, ackpb,allocoutbound, rts, allocpb, ack);inputs ackout = req = ackpb = 0;outputs allocoutbound = 1,rts = allocpb = ack = 0;ackout+-> allocoutbound- and rts+-> req+ and ackout--> allocpb+ and rts--> ackpb+-> ack+ and allocpb--> req- and ackpb--> ack- and allocoutbound+-> token -> ackout+endmodule
Figure 4.36: Example atod Figure 4.37: Example mp-forward-pkt

80 Chapter 4: Specificationmodule isend (a,b,c,d,x,y,z);inputs a=0, b=c=d=1;outputs y=0, x=z=1;x+/70 and z+/70 -> token-> a+/01 -> z-/01-> a-/12 -> y+/12-> (b-/23 and c-/23 -> y-/23)or (b-/28 and d-/28 -> y-/28)// State 3 branchy-/23 -> c+/34 -> (x-/34 and y+/34)// At state 4((x-/34 and y+/34)or (x-/54 and y+/54))-> ((b+/45 and c-/45)-> (x+/45 and y-/45)-> (b-/54 and c+/54)-> (x-/54 and y+/54))or((b+/46 and d-/46)-> (x+/46 and y-/46)-> (b-/67 and d+/67)-> x-/67)// State 8 branchy-/28 -> d+/87 -> x-/87// State 7, recombine(x-/67 or x-/87)-> b+/70-> (x+/70 and z+/70)endmodule

module master read(ari, pri, bprn, xack, di, pack,aro, pro, busyo, breq, mrdc, do, pdo);inputs ari=pri=di=0,xack=bprn=pack=1;outputs aro=do=0,pro=breq=busyo=mrdc=pdo=1;aro+ -> ari+ari+ -> aro- and pro-aro- -> ari-ari- -> token -> aro+pri- -> (token -> pro-)and (token -> aro+)and breq-pro- -> pri+pri+ -> pro+pro+ -> pri-breq- -> bprn-bprn- -> busyo-busyo- -> breq+ and mrdc-breq+ -> bprn+ and busyo+bprn+ -> token -> breq-busyo+ -> token -> breq-mrdc- -> xack-xack- -> mrdc+ and do+mrdc+ -> xack+ and breq+xack+ -> token -> mrdc-do+ -> di+di+ -> do- and mrdc+ and pdo-do- -> di-di- -> token -> do+pdo- -> pack-pack- -> pdo+pdo+ -> pack+pack+ -> token -> pdo- and aro+endmodule
Figure 4.38: Example isend Figure 4.39: Example master-readmodule nak pa(rejsend,ackbus,ackhyst,busack,ack,reqbus,hystreq,busreq,enableda);inputs rejsend = ackbus = ackhyst =busack = 0;outputs ack = reqbus = hystreq =busreq = enableda = 0;rejsend+ -> reqbus+ -> ackbus+-> hystreq+ and enableda+-> ackhyst+ -> busreq+ -> busack+-> busreq- -> busack--> (reqbus- -> ackbus-)and(ack+ -> rejsend-)and((enableda- and hystreq-)-> ackhyst-)-> ack- -> token -> rejsend+endmodule

module nowick (a,b,c,x,y);inputs a = b = c = 0;outputs x = y = 0;cycle (a+ and b+ -> x+/1 and y+/1-> c+-> x-/1-> c--> x+/2 and y-/1-> b--> x-/2 and y+/2-> a--> y-/2 -> token)endmodule
Figure 4.40: Example nak-pa Figure 4.41: Example nowick

Section 4.3: The specification language 81module pe send ifc (reqsend, adbldout, rdiq, treq, ackpkt, adbld, peack, tack);inputs reqsend = adbldout = rdiq = treq = ackpkt = 0;outputs adbld = peack = tack = 0;reqsend-/90 -> token-> (reqsend+/01 and treq+/01 and rdiq+/01)-> adbld+/01adbld+/01 or adbld+/61-> adbldout+/12-> peack+/12-> rdiq-/23-> (peack-/23 and tack+/23 and adbld-/23)-> (adbldout-/34 and treq-/34 and rdiq+/34 -> adbld+/34)or(adbldout-/38 and treq-/38 and ackpkt+/38 -> peack+/38)adbld+/34-> adbldout+/45-> peack+/45-> rdiq-/56-> (peack-/56 and tack-/56 and adbld-/56)-> (adbldout-/61 and treq+/61 and rdiq+/61 -> adbld+/61)or(adbldout-/67 and treq+/67 and ackpkt+/67 -> peack+/67 and tack+/67)(peack+/67 and tack+/67)-> (ackpkt-/79 and treq-/79)-> (peack-/79 and tack-/79)peack+/38 -> ackpkt-/89-> (tack-/89 and peack-/89)tack-/109 or (peack-/79 and tack-/79) or (tack-/89 and peack-/89)-> (treq+/910 -> tack+/910 -> treq-/109 -> tack-/109) or reqsend-/90endmodule
Figure 4.42: Example pe-send-ifcmodule ram read sbuf(req,precharged,prnotin,wenin,wsldin,ack,wsen,prnot,wen,wsld);inputs req = precharged = 1,prnotin = wenin = wsldin = 0;outputs ack = prnot = wen = wsld = 0,wsen = 1;req+ and precharged+-> token -> prnot+-> prnotin+-> wen+-> precharged- and wenin+-> ack+-> req--> wen- and wsen--> wenin--> (wsld+ -> wsldin+)and(prnot- -> prnotin-)-> wsld--> wsldin--> ack- and wsen+-> req+wsld+ and prnot- -> precharged+endmodule

module rcv setup(reqrcv, sending, acksend,enwoq, rejsend);inputs reqrcv = sending = acksend = 0;outputs enwoq = rejsend = 0;reqrcv+/1 -> enwoq+/1-> reqrcv-/1-> enwoq-/1// Two choice placessending+ -> (sending-/1 or reqrcv+/2)(enwoq-/1 or sending-/1 or enwoq-/2)-> token -> (reqrcv+/1 or sending+)reqrcv+/2-> rejsend+-> sending- and acksend+-> rejsend--> acksend--> enwoq+/2-> reqrcv-/2-> enwoq-/2endmodule
Figure 4.43: Example ram-read-sbuf Figure 4.44: Example rcv-setup

82 Chapter 4: Specificationmodule rcv setup better(reqrcv, sending, acksend,enwoq, rejsend);inputs reqrcv = sending = acksend = 0;outputs enwoq = rejsend = 0;cycle (token-> sending*-> reqrcv+-> if (sending) thenrejsend+-> acksend+ and sending-/2-> rejsend--> acksend-endif-> enwoq+-> reqrcv--> enwoq-)endmodule

// Tam-Anh Chu Thesis Page 172module rlm (Cr, Sr, La, Ca, Sa, Lr);inputs Cr = Sr = La = 0;outputs Ca = Sa = Lr = 0;La+ or Sr+/2-> Sa+ -> Sr- -> Sa--> Sr+/2 or Cr+Cr+ -> Lr- -> La- -> Ca+-> Cr- -> Ca- -> token-> Sr+/1 -> Lr+ -> La+endmodule
Figure 4.45: Improved version of

rcv-setup, using sending* construct
Figure 4.46: Example rlmmodule sbuf ram write(req, precharged, done, wenin, wsldin,ack, prbar, wsen, wen, wsld);inputs req=precharged=wenin=wsldin=0,done = 1;outputs ack = wen = wsld = prbar = 0,wsen = 1;prbar+-> precharged--> wen+-> done+ and wenin+-> (wen- and wsen- -> wenin--> wsld+-> wsldin+-> wsld--> wsldin-)and (ack+ -> req-)-> (wsen+ -> token -> done-)and(prbar- -> token -> precharged+)and (ack- -> token -> req+)-> prbar+endmodule

module sbuf read ctl(req, ackread, busack,ack, ramrdsbuf, busreq);inputs req = ackread = busack = 0;outputs ack = ramrdsbuf = busreq = 0;req+ and (ackread- -> token)-> ramrdsbuf+-> ackread+-> busreq+-> busack+-> busreq--> busack--> ramrdsbuf- and ack+-> req--> ack--> ackread- and (token -> req+)endmodule
Figure 4.47: Example sbuf-ram-write Figure 4.48: Example sbuf-read-ctl

4.4 Translation to a Petri net

This section describes the translation from the specification language to the in-
termediate Petri net form. To make the simulation of the net easier, no Boolean
labels are allowed on arcs, such as in input choice STGs, and the only transitions
allowed are rising and falling transitions of named signals and dummy transitions.
This means that d* must be translated into a structure containing d+ and d-. The
simulation is not made easier if the net is pure, so self-loops are allowed. It will be

Section 4.4: Translation to a Petri net 83

assumed that the size of the resulting Petri net is not an issue, so the translation can
be very inefficient. The net will be optimized to reduce the number of transitions
and places before simulation.

4.4.1 True/false places

When creating the intermediate Petri net, a pair of places is created for each sig-
nal that guarantees that rising and falling transitions alternate. These places were
shown to be unnecessary for the latch controller example back in Figure 4.6, but
there are three reasons why these places should be included for all signals in all
specifications:s True/false places may be needed to translate if...then statements—see Sec-

tion 4.4.4.s These places induce a mapping from Petri net markings onto the state graph
of the Petri net, which makes the simulation stage easier. The state of all
signals does not have to be stored during simulation, because it can be simply
read off from the x-true places for all signals x.s These places stop certain kinds of misbehaviour. If the specification contains
a nondeterministic choice between firing a+ and b+, and a is already at logic
1, the choice must be to fire b+; without places to record the state of a, the
net could not make this decision.

When the specification is first read in, true and false places are created for all
signals x mentioned, as well as x0, x00, xˆ and x 0̂ if required, and arcs to and from
these places included in the Petri net. If several rising transitions of a single signal
are used in the input file, then arcs must be included to each of these transitions,
and the same for multiple falling transitions. For example, in the loadable counter
example, there would be arcs from the aro-false place to each of aro+/1, aro+/2
and aro+/3, and from each of those transitions to the aro-true place.

4.4.2 Transitions

The intermediate Petri net describes the behaviour of the circuit when used in the
improved model of interconnections shown back in Figure 4.24, so when p!q is
written, p may need to be changed to be p 0 or p00 depending on the types of p
and q. Possible signal types are I, O, N and X, short for Input, Output, iNternal and
eXternal respectively3. The sixteen combinations of the types of p and q are shown
in Table 4.1.

If the only operator used in a specification was the arrow operator, then the
translation into a Petri net could be carried out by taking each pair of transitions p
and q with an arrow between them in the specification file, looking up p and q in
Table 4.1, and creating an arc in the intermediate Petri net from one of p, p 0 or p00 to

3N for internal follows the convention in [19]

84 Chapter 4: Specification

Transition p Transition q is of type
is of type Input Output Internal External
Input I p00!q p0!q p0!q p00!q
Output O p0!q p!q p!q p0!q
Internal N Error p!q p!q Error
External X p!q Error Error p!q

Table 4.1: Meaning of p!q for different types of p and q

a'+ a''+a+

Input and external
transitions caused
from here

Place in intermediate Petri net

Output and internal
transitions caused
from here

The correct transition
to cause another input

or external transition
has an arc to here

The correct transition
to cause another output

or internal transition
has an arc to here

Figure 4.49: Representation in the Petri net of a transition in the specification file

q as appropriate. However, it is not clear whether this approach can be generalized
to a language that also includes and, or and if statements. Consider:a+!if (b) then (c+ and d+) endif! (e+ or f+)

In order to work out whether a+ should actually be a+, a0+ or a00+, the translation
program needs to know the type of the transition caused by a+. Here, a+ can cause
either c+ and d+ if b+ is true, or one of e+ or f+ if b is false. It could be declared
that in cases like this, all transitions caused by a+ must be the same type, but that
would disallow a+! (b+ and c+) if b+ and c+ are different types, which is clearly
allowable, because this could be written as a+!b+ and a+!c+.

To find a solution to this problem, it is necessary to notice two facts:s In Table 4.1, the columns for types I and X are identical, as are O and N.
Therefore in p!q, it is only necessary to know whether q is of type I or X, or
of type O or N.s A single transition in the specification file does not have to be translated into
just one transition in the intermediate Petri net; any reasonably small combi-
nation of transitions and places would be acceptable.

Given this information, a possible solution is shown in Figures 4.49 and 4.50. A
transition in the specification file is translated into a small net fragment, a transition
block, which has two input places and two output places. Places between two
transitions are not shown in Figure 4.50 for clarity. To translate a statement p+!q+,
the transition blocks for p+ and q+ are abutted, overlapping the output places of p+
with the input places of q+, as shown in Figure 4.51. Any hanging structures—

Section 4.4: Translation to a Petri net 85

a'+ a''+a+ a+ a'+

Input transition Output transition

a+

error

error

a+

External transition Internal transition

Figure 4.50: Representation of input, output, external and internal transitions

places or transitions with either no predecessors or no successors—created by this
procedure should be removed before the net is simulated to create a blue diagram.

The word “error” in Figure 4.50 denotes a special error transition. If an internal
transition p causes q, where q is an output or internal transition, then the error
transition will have no successors, and so will be removed just before simulation. If
q was an input or external signal, then the error transition will have both successors
and predecessors, so will not be removed. L2b searches for error transitions that
are still present just before the net is simulated, and prints an appropriate message
if one is found. In this case, a message “Internal transition p was used to cause an
input or external signal” will be printed by L2b and the translation stopped.

The structures in Figure 4.50 take care of the DI model of interconnections at
a low level. It is now possible to define new operators to compose transitions,
such as and, or and if, without having to pay too much attention to details of the
underlying delay model.

4.4.3 And and Or operators

It is easy find a Petri net structure which can be used to create the and operation on
two transitions, shown in Figure 4.52. Figure 4.53 shows a similar structure for theor keyword; this must include an error transition, because there is a danger that a
nondeterministic specification will result from writing a+! (b+ or c+) when either
of b+ or c+ are output or internal transitions.

A problem with the or statement can be seen by looking at the specification
in Figure 4.54. The intended behaviour is clear: the circuit should wait for one ofa+ or b+, raise x, wait for the other input to rise, raise y, then wait for both inputs
to fall before dropping x and y together. This behaviour is given by the Petri net
on the left of Figure 4.55. What actually happens is immediate deadlock, because
the intermediate Petri net created by using this naive version of the or statement is
actually the one on the right of Figure 4.55. The two occurrences of each transition
are assumed to be the same, an action which is essential when considering STG

86 Chapter 4: Specification

p+ p'+ p''+ q+ q'+ q''+

p+ p'+ p''+ q'+q+

p+ p'+ q+

q+p+ p'+ p''+

p'+p+ q+ q'+ q''+

p+ p'+ q+

q'+q+p'+p+

p+ q+

Input causing input

Input causing output

Output causing input

Output causing output

Figure 4.51: Composition of transitions in the intermediate Petri net

fragments as in the Furber/Day latch controller. Here, they are not the same; the
token that enters the or statement will only take one of the two branches, so a
transition in one branch should be distinct from the same transition in the other
branch. The same problem will also occur with the two alternative paths throughif...then and arbitrate statements; collectively these will all be referred to as
branching statements.

An easy solution to this problem would be to label each transition in a branch-
ing statement with a suffix indicating which fork it was in, for example splitting x+
into x+/left and x+/right. If x+ was then mentioned outside of the branching
statement, say by adding an input c and a fragment c+!x+ to the example in
Figure 4.54, then it is clear that this means that c+ must occur before either of thex+ transitions x+/left and x+/right. This can be implemented in the Petri net by

Section 4.4: Translation to a Petri net 87

B

A

λ

µβ

α

A and B

Figure 4.52: Composition of transitions using the and keyword

α

β
B

A

error

λ

µ

ν

π

A or B

Figure 4.53: Composition of transitions using the or keyword

inputs a = b = 0; outputs x = y = 0;cycle (token -> (a+! x+! b+! y+)or(b+! x+! a+! y+)! (a- andb-)! (x- andy-))
Figure 4.54: A specification showing a problem with direct translation of the or keyword

88 Chapter 4: Specification

a+b+ x+x+

a+ b+y+y+

a+

b+

x+y+

Falling
transitions

Falling
transitions

Left, translation as intended, resulting in correct behaviour. Right, the translation that

actually occurs, because two occurrences of a transition with the same name are taken to

be the same transition

Figure 4.55: Possible translations of Figure 4.54a+! if (b)then ...! t1+! x+! ...else ...! t2+! x+! ...endifc+! if (d)then if (e)then ...! t3+! x+! ...else ...! t4+! x+! ...endif...! t5+! x+! ...else ...! t6+! x+! ...endif
Figure 4.56: An example specification with nested if...then statements

an arrow from c+ to a single place, which has arrows to both the x+ transitions.
However, in arbitrarily nested branching statements, it may be difficult to create

a Petri net structure that causes the correct behaviour. Consider which of the tran-
sitions tn+ cause x+ in Figure 4.56. This example is quite contrived, but is similar
enough to the specification for Martin’s DME element that it would not be surprising
if it actually occurred. Because x+ is mentioned in both parts of both if statements,x+ can only occur after an a+ and a c+, and not just one. Looking at the first if
statement, x+ will be caused by either a t1+ or a t2+, but not both. If d is true, x+
must be caused by one of t3+ or t4+, and by t5+; if d is false, it will be caused byt6+. To summarize, x+ can be caused by one of:t1+, t3+ and t5+ t1+, t4+ and t5+t1+ and t6+ t2+, t3+ and t5+t2+, t4+ and t5+ t2+ and t6+

A solution is needed for a single branching statement that can be recursively
applied to nested sets of statements. A Petri net structure that accomplishes this
goal is shown in Figure 4.57, which will be called a gateway. It has the property

Section 4.4: Translation to a Petri net 89

Arc i2 Arc o2

Arc o1Arc i1

δ1

δ2 δ4

δ3

x+

Figure 4.57: A gateway structure

Out

In

δ1

δ2 δ4

δ3

a+

δ1

δ2 δ4

δ3

x+

δ1

δ2 δ4

δ3

y+

δ1

δ2 δ4

δ3

b+

Translation for (a+! x+! b+! y+) or (b+! x+! a+! y+)
Solid arcs are used for the path a+! x+! b+! y+
Dashed arcs are used for the path b+! x+! a+! y+

Figure 4.58: Translation of the or statement in Figure 4.54 using gateways

that x+ can be caused by a token arriving on either arc i1 or i2, but if the token
arrives on arc i1 it must leave on o1, and similarly for i2 and o2. This can be used
to keep track of which branch of an or statement a token is in, at the same time
as allowing either branch to cause a particular transition. A translation of the or
statement in Figure 4.54 using gateways is shown in Figure 4.58; it can be seen
that this net captures the intuitive meaning of the or statement in this example.

Gateways are notionally used by the following procedure:s When a branching statement is encountered, then for each transition x that is
mentioned anywhere in the specification, create four places and four transi-
tions as in Figure 4.57.s Whenever transition x is used in the first fork of the branching statement,
direct all arcs that should be to x to �1 instead, and all arcs from x should
now come from �2. This includes the arcs formed by the creation of further
nested gateways.

90 Chapter 4: Specification

t1+

t2+

t6+

t5+

t3+

t4+

Gateway for
if (b) then ...

Gateway for
if (d) then ...

Nested gateway for if(e) then ...

δ3 δ4

δ1 δ2

x+

δ5 δ6

δ7 δ8

δ9 δ10

δ11 δ12

Figure 4.59: Multiple nested gateways for the example in Figure 4.56s Arcs in the second half should be directed to �3 and �4 respectively.s When leaving the branching statement, forget about the created places and
transitions, but leave them in the net.s When the translation is finished, remove transitions and places with either no
successors or no predecessors.

Applying this procedure to the nested if example of Figure 4.56 gives the net
shown in Figure 4.59. It can be seen that this gives the required behaviour. For
efficiency reasons, this algorithm was implemented in a lazy way, by only creating
gateways when they were actually referenced.

Gateways and transition blocks are orthogonal methods for solving their respec-
tive problems; by this I mean that either method can be built on top of the other,
without either of then needed to know that the other is there. When translating the
specification file, the sequence of actions of the L2b program on each transition x
encountered in the file can be either of:

1. Create a gateway structure for each of x, x 0, possibly x00.
Bind these gateways into a transition block.

2. Combine x, x0, possibly x00 into a transition block.
Place a gateway structure around this transition block.

There are no real reasons for preferring one to the other; the former method
was used in L2b.

Section 4.4: Translation to a Petri net 91

One insurmountable problem with or statements, but not with the other kinds
of branching statements, is what happens when the same choice is made twice.
If a specification includes fragments x+! (a+ or b+) and y+! (a+ or b+), then
this creates two separate choice places, as shown in Figure 4.60. If one place
chooses a+ and the other b+, then the net will deadlock because each transition
is waiting for both tokens to arrive. In this example, the net optimization that will
be described in Section 4.5 will reduce the net in Figure 4.60 (c) to that in part (d),
which works correctly, but the problem may occur in more complicated examples
when optimization fails. The only solution is to reword the fragments given to be
(x+ and y+)! (a+ or b+)4
4.4.4 The if...then statement

The if...then statement is similar to the or statement, but the choice between
alternatives depends on the state of a signal in the circuit. It will be assumed that
the environment behaviour is always fairly simple, so the if statement will not
be used to determine whether a transition fires in the environment. Typically, the
environment specification will use or statements where choice is required. If anif statement is used to conditionally fire an environment transition, L2b rejects the
specification. This restriction will possibly rule out some useful behaviours, but will
catch a number of incorrectly specified circuits at an early stage.

The Petri net structure for an if...then statement is shown in Figure 4.61.
Places for x true and x false already exist in the net, so are not part of the if...then
structure. The double-headed arc from � to the x true place in Figure 4.61 means
that � can only fire when x is true, and when � does fire, it takes a token from the
x true place and instantly replaces it. The resulting net is not pure, but that does
not affect any algorithms that are being using. The error transition in Figure 4.61
has the same meaning as in Figure 4.53.

Figure 4.62 shows how if (x and y) is translated to a Petri net. This is taken
to be a nested pair of if statements, if (x) then if (y) then, but with the else
clauses merged. The use of the or conjunction is similar, and nested conjunctions
such as ((x and y) or z) follow by recursive application of Figure 4.62.

4.4.5 Data inputs

Data inputs such as d* can be translated using the structure in Figure 4.63, which is
derived from the translation of a input given in Figure 4.50. Only the environment
can decide when d is stable, so the transition following d* in the specification must
be an input or internal transition. The error transition will stop the translation if this
rule is violated.

4An early solution to this problem was to make sure that the choice places were always con-
nected directly to the alternative transitions as in Figure 4.60 (d), rather than being connected through
dummy transitions as in part (c). This was carried out by rewriting expressions that use nested and
and or statements to have the ands at the top level. However, this method still fails when gateways
exist in the intermediate net, which is pretty often, so it was abandoned.

92 Chapter 4: Specification

b+ b'+ b''+

a'+ a''+a+

x+ x'+

α

β

λ

µ

ν

πerror

(a) Translation of the statement x+ -> (a+ or b+) into a Petri Net fragment.

a+

b+
x'+

α

β

(b) The same fragment, but with hanging transitions and places removed, as will
happen before converting the Petri Net into a state graph.

a+

b+
x'+ y'+

α

β

γ

δ

(c) The fragments for x+ -> (a+ or b+) and y+ -> (a+ or b+) combined, show-
ing that there is an arrangement of tokens during the exhaustive simulation that
will cause deadlock.

a+

b+
x'+ y'+

(d) After optimization, the problem may not occur; this cannot be relied upon.

Figure 4.60: Problems with multiple choice points

Section 4.4: Translation to a Petri net 93

B

A

λ

µ

ν

π

error

β

α

x false x true

x+

x-

if (x) then A
else B endif

Figure 4.61: Petri net structure for the if...then statement

error

error

β

α

x+

x-

y false y true

y+

y-
x truex false

γ

δ

λ

µ

ν

π

if (x and y) then A
else B endif

B

A

Figure 4.62: Petri net structure for an if...then statement using an and conjunction

94 Chapter 4: Specification

d'+

d'-

d+ d''+

d''-d-

error

ε
δ

Figure 4.63: How to translate a data input into the intermediate Petri net

00

00

10

10

01

01

10

11 11

01

(initial)

r1 r2

g1 g2

r2- g2-g2+

g1+ r1- g1-

r2+

r1+

r1

r2

g1

g2

Seitz
arbiter

Figure 4.64: Representation of Seitz arbiter as a Blue Diagram and as a Petri Net

4.4.6 Arbitration

The arbitrate statement has three effects:s It writes a line to the output file that causes the later synthesis tools to create
a Seitz arbiter in the right place.s It introduces new signal names, corresponding to the wires leading from the
physical arbiter to the circuit to be synthesized.s It creates structures in the intermediate Petri net that model the action of
an arbiter and cause arbiter-like behaviour while the blue diagram is being
created.

The first two actions are trivial, so only the third will be discussed. It is possible
use the Petri net for a Seitz arbiter, shown on the right of Figure 4.64, as a model
of arbiter behaviour. The concurrency reduction program prune will also need a
model of the arbiter; it takes its models as blue diagrams, so a blue diagram corre-
sponding to this Petri net is shown on the left of Figure 4.64. Although Figure 4.64
gives the correct result when used in L2b, problems will be encountered later if
prune also uses this model of an arbiter. The problem can be seen by looking at
a partial state graph5 for the nacking arbiter example as shown in Figure 4.65. A
valid concurrency-reducing transformation is to insist that ly- only happens after

5The prune program does not actually use state graphs, but they are used here to illustrate what
goes wrong. This example is similar to the concurrency reduction approach used by Ykman-Couvreur
et al.[197]

Section 4.4: Translation to a Petri net 95

States that can be removed
by concurrency reduction

lr^'+

rr^'+

rr^'+

lr^'+

ly+

lr^'-

ly-

ly-

lr

ly

ln

Rest of
the circuitln

ly

lr Arbiter

lr^

Nacking
arbiter

rr

ry

rn

rr

ry

rn

rr^

This is part of the state graph for the nacking arbiter, and shows that arbitration can be

turned into alternation if the wrong model is used for the arbiter.

Figure 4.65: A problem that can occur during concurrency reduction

r2- g2-g2+

g1+ r1- g1-

δ

r1+

r2+

r1 r2

g1 g2

00

00

10

11 11

01

(initial)

10 01

00 00

Figure 4.66: Modified arbiter behaviour, which cures a problem in prune but breaks L2b.rr 0̂+ in this part of the state graph, which removes the shaded states and implies
that, after a lr+ and lr-, the nacking arbiter will only respond to a rr+ and not
to another lr+. This has gone half-way towards replacing the arbitration by mere
alternation; after one request, only the other may happen. This is undesirable be-
haviour, but technically correct because the circuit will eventually respond to every
input and deadlock will never occur. This is often called a violation of fairness.

A possible solution is to replace the arbiter module in Figure 4.65 by one that
will wait until both requests are asserted before nondeterministically raising one
of the grant wires, which can be represented by the BD and PN in Figure 4.66.
This changes the partial state graph in Figure 4.65 to that in Figure 4.67, where
there are no concurrency-reducing transformations that can favour one of lr+ andrr+ over the other. The nondeterministic choice in the arbiter cannot be affected
any concurrency-reducing transformations, which forces prune to avoid tampering
with the arbitration. This does not actually affect the circuit or how it can be used;
the model is solely used inside prune to determine candidate transformations for
concurrency reduction.

96 Chapter 4: Specification

lr^'+

rr^'+

lr^'+

ly+

lr^'-

ly-

Figure 4.67: Part of the state graph for the nacking arbiter with modified arbiter behaviour

r2- g2-g2+

g1+ r1- g1-

r2+

r1+
10

10

01

01

10

11 11

01

(initial)

1001

00

00

00 00

r1 r2

g1 g2

ε

δ

Figure 4.68: Correctly modified arbiter behaviour, which can be used in prune and L2b.

Unfortunately, the model in Figure 4.66 cannot be used in L2b as a model for the
arbiter in the intermediate Petri net, because it does not exhibit certain behaviours
that are required. The Petri net of the real Seitz arbiter in Figure 4.64 shows that
after the sequence of transitions r1+, g1+, r2+, r1-, the arbiter gives the two tran-
sitions g1- and g2+. Because unbounded delays are assumed on wires between
the arbiter and the rest of the circuit, the circuit may see both grant wires g1 and g2
being high for an unbounded time. In contrast, after that sequence of transitions
in the modified arbiter of Figure 4.66, only g1- occurs, so both grant wires can
never seen to be high at the same time. It was found that circuits produced using
this modified arbiter model tend to rely upon both grant wires being low for several
gate delays, and so fail when built using a real arbiter.

It is possible to use one model of arbiter behaviour in L2b and the other in
prune, but it would seem prudent to use a single model for both situations if possi-
ble. An arbiter model is needed that will make a nondeterministic choice between
grant wires, as in the modified arbiter, but display the full behaviour of the Seitz
arbiter. One possible solution is shown in Figure 4.68; others also exist. The Petri
net on the right of Figure 4.68 is very similar to the original Seitz arbiter, but the
choice is made between two dummy transitions � and � rather than the grant wires.
When this arbiter has unbounded finite delays on all inputs and outputs, it behaves
equivalently to a normal Seitz arbiter, but because the choice of which side to grant
cannot be affected from outside, it works properly in the prune program.

Section 4.5: Converting the Petri net to a blue diagram 97

Environment

a b

Circuit

a^' b^'

a^ b^

b'a'

AEXCL

error

ARESET

error

BEXCL

error

BRESET

error

Arbiter

a+ a'+ a^+ a^'+

a- a'- a^- a^'-

b+ b'+ b^+ b^'+

b'-b- b^- b^'-

δ

ε

Figure 4.69: Translation of the arbitrate statement to a Petri net structure

The intermediate Petri net structure that should be used for the arbitrate
statement can now be derived. To recap, the arbitrate statement is:arbitratea+ => (block AEXCL) => a-=> (block ARESET) => a+| b+ => (block BEXCL) => b-=> (block BRESET) => b+end

The transitions in Figure 4.68 must be replaced with transitions from this ar-
bitration construct, by looking up their actual names in the improved model of
module interconnections given in Figure 4.24. The request signals r1 and r2 will
be a0 and b0 respectively. The grant signals g1 and g2 will be called aˆ and b .̂
The arc between g1+ and r1- corresponds to the circuit seeing the grant (aˆ0+), the
circuit’s actions in response to this (AEXCL), and the environment’s withdrawal of
the request (a-). The other three grant to request arcs are similar. This gives the
intermediate net structure is shown in Figure 4.69.

4.5 Converting the Petri net to a blue diagram

4.5.1 Hanging structure removal

After the intermediate Petri net is created, any places or transitions that either have
no successors or no predecessors are recursively deleted. Only unnamed dummy
transitions are removed, because all named transitions will always have arrows to
and from their true and false places.

Two kinds of named transition should however be removed, if they only have
their true and false places as successors:

98 Chapter 4: Specifications Rising and falling transitions of x00 for an input signal x. It is easier to assume
that all input transitions need to be watched by the environment, and then
remove the wire back if it does not get used, than it is to add the wire back
when it is known whether it will be used.s Rising and falling transitions of x0 for an output signal x. This corresponds to
the output wire for x not being sensed by the environment, and so means that
x was actually an internal signal rather than an output. A warning message is
printed in this case.

The second case happens for master-read, when the following is printed by L2b:bash$ l2b master readCompiling: module master readNet constructed: 172 transitions and 406 places*** Message: signal "busyo" does not affect the environment,so its type has been changed from Output to Internal.Hanging structures removed: 98 transitions and 158 placesNet optimized: 64 transitions and 124 placesNet optimized: 51 transitions and 111 placesNet optimized: 51 transitions and 110 placesPartial stategraphs created with 108 and 108 states.Environment Blue Diagram has 108 states.Circuit Blue Diagram has 108 states.bash$
4.5.2 Net optimization

Three types of peephole optimization are used on the intermediate Petri net to
reduce the number of places and transitions before simulation; they are shown in
Figure 4.70. The first optimization is targeted at superfluous gateway structures,
while the second removes multiple places between two transitions that are caused
by, for example, writing both h/s (x,y) and x+!y+ in the specification file. The
third rule shortens long chains of transitions and places by removing a redundant
dummy transition and a following place. The third rule is the only one that is not
left-right symmetrical, so a reflected version of rule 3 could also be included as an
optimization. It was easier when writing L2b to reflect the entire net, apply the three
rules again, and then reflect back.

4.5.3 Creating the blue diagrams

When the intermediate Petri net has been created, it must be converted into a pair of
blue diagrams: one for the circuit and one from the environment. The blue diagram
for the circuit can be derived by simulating the Petri net to form a state graph S,
projecting this state graph onto the subset of the signals that the circuit can see,
so forming a state graph S0, and finally turning S0 into a blue diagram by insisting
that all enabled output signals fire instantaneously. This last step compacts several
states in S0 into a single state in the blue diagram. A similar procedure will create a
blue diagram for the environment instead.

Section 4.5: Converting the Petri net to a blue diagram 99

y

zx

1 2

3

y

zx

1 2

Type 1 — Restrictions: places 1 and 2 must each have only one successor transi-
tion, y and z respectively.

x
1

n

.

.

. y
1

x y

Type 2 — Restrictions: all places shown should have only x as a predecessor and
y as a successor.

.

.

.
.
.
.

.

.

.

b

c

a
1

2

n

1

2.
.
.

x b

c

a

n

p

Type 3 — Restrictions: There should not be an arc from place p to transition x;
transition x must not be associated with a signal name; transition x must not be
one of the choice transitions in an arbitrate construct; if there is a token in
place p, then a token should be added to each of places 1, 2,. . . n.

Figure 4.70: The three types of optimization performed on the intermediate Petri net

Producing the full state graph can be very time-consuming—the intermediate
net for master-read has 25 610 states in its state graph—so a method that avoids
generating the full state graph would be preferable. An obvious first attempt at a
way to directly derive a blue diagram from the intermediate net is the following:

1. Fire any non-input transitions that are enabled in the default state.

2. Add the resultant marking to a list L of states that are still to be done.

3. Repeatedly, pop the next state x from list L, and for each enabled input tran-
sition t:

(a) Fire t.

(b) Fire all enabled non-input transitions in any order to form a state y.

(c) Mark y as a successor of x in the blue diagram. Push y on to L if y has
not been seen before.

100 Chapter 4: Specification

The problem with this method is that in step 3b, the order that non-input tran-
sitions are fired in might make a difference to the resulting blue diagram if choice
places are present. Instead, define unsafe transitions as those transitions which are
either inputs to the circuit or share a predecessor place with another transition, and
safe transitions as all the rest. Intuitively, safe transitions are those that can safely
be fired as soon as they are enabled, and doing so will not change the blue diagram
that results. If the above algorithm is modified by changing “non-input” to “safe”
and “input” to “unsafe”, then an algorithm is produced that will not be confused
by choice places, but instead of giving a BD, it will give an XBD. Choice points inif...then, or and arbitrate statements will cause connected regions of states
such as the shaded area in Figure 4.71, where several states have the same values
for all inputs. These regions must be collapsed into a single state in the final blue
diagram, as shown at the bottom of Figure 4.71. The shaded states do not nec-
essarily have the same output values as each other, but in a deterministic circuit,
the outputs for all states that have arcs leaving the shaded region will agree; in this
case, the state in the final blue diagram has its outputs defined by this agreement.
Steps have been taken to stop nondeterministic diagrams, such as limiting the use
of the or operator to the environment only, so these outputs should not be found
to disagree,6 but if they do, L2b stops with an error.

By firing enabled safe transitions in one order rather than every possible order,
a substantial time saving is made. The XBDs in the master-read example have only
108 states each, so a pair of XBDs was used instead of a 25610-state state graph.

During the net simulation, one of three errors may be encountered:s The net deadlocks.s More then a preset number of tokens accumulates in a state, currently 10.s Rising and falling transitions of a signal are given in quick succession, without
either transition being detected by the intended recipient; this violates the
assumption that all modules present a delay-insensitive interface, and also
creates a possible static hazard.

Livelock is not checked for, but this will usually manifest itself as a violation of n-
safety as tokens accumulate in the net.

While the net is being simulated, a record is kept of which transitions have been
fired to get to a particular state. This record is used to provide an indication of
where an error condition occurred. An example error, produced by removing the
line “wsld+ and prnot- -> precharged+” from ram-read-sbuf, is shown below.
Deleting this line removes any constraints on when precharged+ fires, so it fires
immediately after precharged-, giving a static hazard.

6although pathological specifications can still cause nondeterministic circuit behaviour, such as...! (x+ and y+)! ((if (x) then y- endif) and (if (y) then x- endif)).

Section 4.5: Converting the Petri net to a blue diagram 101

C

B

D

E

A

Y

X

Z

A

B

C

D

E

X

Y

Z

Blue diagram

Partially compacted state graph

Inputs: 011
Outputs: 101

Inputs: 011
Outputs: 100

Inputs: 011
Outputs: 111

Inputs: 011
Outputs: 111

Inputs: 011
Outputs: 100

Inputs: 011
Outputs: 100

Inputs: 011
Outputs: 100

011

100

010

110

010

111

001

101

001

001

010

101

111

000

111

010

001

100

Inputs: 010

Inputs: 010

Outputs: 110

Inputs: 010
Outputs: 110

Outputs: 111

Outputs: 101

Inputs: 001

Inputs: 001
Outputs: 101

Inputs: 111

Inputs: 111

Inputs: 001

Outputs: 010

Outputs: 000

Outputs: 100

Figure 4.71: Removing redundant states from an XBD to form a blue diagram

102 Chapter 4: Specificationbash$ l2b ram read sbufCompiling: module ram read sbufNet constructed: 102 transitions and 186 placesHanging structures removed: 65 transitions and 109 placesNet optimised: 45 transitions and 89 placesNet optimised: 41 transitions and 85 placesFatal error when simulating Petri Net:Interface error in state reached by:prnot+, prnotin+, wen+, wenin+, precharged-After that, precharged+ can occur without waiting for any responsefrom the environment. This breaks the assumption that the circuit hasa delay-insensitive interface to the environment.h/s () declarations may help here.It's also possible that there are too many tokens in the specification.bash$
4.5.4 Reduction of the blue diagrams

It is often the case that in the generated blue diagrams, there will be a state s with
two identical successor states x and y. This occurs when the environment has made
a decision between two alternatives, but the circuit has not yet seen the effects of
this decision, or vice versa. In these cases, states x and y should be merged into a
single state to simplify the blue diagram.

Occasionally, two identical states x and y are found that have the same succes-
sor states, and again these should be merged. In one example, pe-send-ifc, iden-
tical states can be found that have a successor in common, but one has successors
that the other does not. Such states are only merged if the -strong-reduce com-
mand line option is given to l2b. The optionally merged states are tied together in
Figure 4.81. This makes no difference to the generated circuit in this example.

4.6 Drawing blue diagrams

Drawing blue diagrams is tedious and error-prone, much more so than for burst-
mode diagrams or STGs, so b2ps was written to convert blue diagrams into Encap-
sulated PostScript (.eps) files. The program is semi-automated; manual interven-
tion is usually required to produce the best layout of states, although it can do a
fairly good job on its own. An example of the output of b2ps is shown in Figure 4.72.

The default algorithm assigns a vector of integers (ax; ay) to each input signal
name a. If state s is placed at position (x; y) in the diagram, and a successor state
t of s which has not been seen yet differs from state s in the value of signal a,
then state t is placed at position (x + ax; y + ay). Vectors (ax; ay) are chosen so
that states do not coincide, by choosing (1; 0) and (0; 1) for the most commonly
changing signals, and picking progressively larger integers for other signals until no
states overlap. Empty rows and columns are removed, then arrows placed between
states using algorithms similar to circuit routing procedures—arrows cannot cross
states, and can only cross other arrows at 45

a
or 90

a
to ensure that it is always

possible to follow an arrow by eye to its destination. This algorithm created the
top example in Figure 4.72, but the layout can be significantly improved by manual

Section 4.6: Drawing blue diagrams 103

000

000

001
110

101
010

011
100

111
001

001
010

001
100

011
001

101
001

110
000

001
001

010
000

100
000

111
000

011
100

101
010

111
000

111
000

011
000

101
000

A2 A1 Rin
R2 R1 Ain

Default algorithm: Offsets are A1 (1,0), A2 (0,1), Rin (2,0).

000

000

001
110

101
010

011
100

111
001

001
010

001
100

011
001

101
001

110
000

001
001

010
000

100
000

111
000

011
100

101
010

111
000

111
000

011
000

101
000

A2 A1 Rin
R2 R1 Ain

Results after manual intervention to bring out the structure of the blue diagram.

000

000

001
110

101
010

011
100

111
001

001
010

001
100

011
001

101
001

110
000

001
001

010
000

100
000

111
000

011
100

101
010

111
000

111
000

011
000

101
000

A2 A1 Rin
R2 R1 Ain

Results of using the fall-back robust algorithm. States are placed close to their
successors, but the structure of the diagram is lost.

Figure 4.72: Results of b2ps on the blue diagram for the parallel component

104 Chapter 4: Specification

intervention, shown in the middle example.
If the blue diagram is not semi-modular, the default algorithm will fail, and a

fall-back procedure must be used. This treats all states as incompressible balls with
elastic bands between them where arrows occur, then allows the system to stabilize
in a high number of dimensions before the equivalent of dropping a heavy book on
it to flatten it to two dimensions. States are encouraged towards grid points, and
then arrows generated as above. This algorithm tends to destroy any structure in
the diagram, as the example at the bottom of Figure 4.72 shows.

4.7 Results of translation

Table 4.2 shows the number of places and transitions in the intermediate Petri net
for all of the examples, just after the creation of the net, after hanging structures
have been removed, and after optimization of the net. The amount of time taken for
the entire translation process is also listed, both with and without optimization. Net
optimization takes almost no time and can significantly speed up program execu-
tion. It can be seen that the translation process was very inefficient in terms of the
number of places and transitions used; even after optimization, the intermediate
Petri nets were three or four times the size of the STGs that they were derived from.
However, the execution times were all so small that this does not matter.

The execution times depend predominantly on three features of the specifica-
tion: the number of places in the intermediate net, the number of states in the
final blue diagrams, and whether there is choice behaviour in the intermediate net.
Specifications that produce intermediate nets with a large number of places, such
as pe-send-ifc and isend, take a long time to translate to a blue diagram, because
each possible marking takes more memory to store. The master-read example
produces a large blue diagram, which takes a long time to generate. Examples
with arbitration, such as the nacking arbiter, or explicit choice, such as pe-send-ifc,
produce several states internally that are collapsed down into a single blue diagram
state, and this again increases the time taken.

This chapter concludes with the blue diagrams produced for all the examples
except master-read, which is too big to fit comfortably on one page.

Section 4.7: Results of translation 105

trans t Hanging No opt. Opt.
Specification

places p removed
Optimized

time (ms) time (ms)

48 32 24
latchc

100 63 55
202.6 23.7

42 30 24
parallel

85 60 54
24.0 23.7

298 176 58
nacking arbiter

351 257 95
1213.11 112.8

178 107 47
DME

235 168 88
212.1 60.8

414 201 57
loadable counter

522 332 132
431.1 64.3

135 70 36
alloc-outbound

207 105 67
36.6 29.5

72 41 26
atod

140 68 53
24.9 21.8

76 49 33
mp-forward-pkt

140 83 67
26.0 22.5

473 214 78
isend

604 302 123
583.5 96.5

172 98 51
master-read

406 158 110
612.6 148.7

90 41 36
nak-pa

164 99 76
37.6 28.6

72 47 30
nowick

120 71 54
27.4 23.3

607 278 102
pe-send-ifc

779 388 166
3312.8 310.0

108 67 41
ram-read-sbuf

202 113 87
40.4 30.6

193 91 33
rcv-setup

262 133 62
71.9 34.3

121 55 26
rlm

178 85 52
26.7 23.5

106 68 42
sbuf-ram-write

190 113 87
48.7 33.1

66 40 24
sbuf-read-ctl

120 66 50
21.1 20.2

Table 4.2: Results of reduction and optimization

106 Chapter 4: Specification

000

000

001
110

101
111

011
100

111
001

100
110

001
100

011
001

101
001

110
000

101
110

001
001

010
000

100
000

111
000

011
100

101
000

111
101

110
100

111
100

ltin aout rin
ltout rout ain

Figure 4.73: Blue diagram for latch controller example

0000

000

0001
010

0011
110

1011
010

0111
010

0011
000

0011
000

0001
001

nakbus ackbus ackctl req
reqbus busctl ack

001

100

000
100

101
000

100
000

001
000

000
010

010
001

011
101

000
001

111
001

011
001

za la da
zr lr dr

Figure 4.74: Blue diagrams for alloc-outbound and atod

Section 4.7: Results of translation 107

000

000

001
110

101
010

011
100

111
001

001
010

001
100

011
001

101
001

110
000

001
001

010
000

100
000

111
000

011
100

101
010

111
000

111
000

011
000

101
000

A2 A1 Rin
R2 R1 Ain

Figure 4.75: Blue diagram for parallel component

00

0000

10
0001

01
0100

00
0000

00
0000

11
1001

11
0110

10
0010

01
1000

10
0010

01
1000

11
1010

lr^ rr^
rn ry ln ly

Figure 4.76: Blue diagram for nacking arbiter

108 Chapter 4: Specification

000

000

010
100

001
100

110
010

101
001

010
010

100
000

001
001

100
000

000
000

111
001

110
000

101
000

111
011

011
011

110
010

010
010

011
101

111
010

111
011

011
011

101
001

011
110

001
001

ra ur^ lr^
rr ua la

Figure 4.77: Blue diagram for Martin’s DME element

00000

0000

00010
1000

10000
0000

01010
0010

00010
0010

01000
0010

00001
0100

10001
0100

10010
0100

00101
0000

10101
0000

10110
0000

00001
0100

10010
1000

11010
0010

10010
0010

11000
0010

10001
0100

00101
0000

00001
0001

10101
0000

10001
0001

d bri ari bli ali
bro aro blo alo

Figure 4.78: Blue diagram for the loadable counter

Section 4.7: Results of translation 109

0111

011

1111
001

0111
101

0101
101

0110
101

0011
101

0100
001

0010
001

0110
000

0110
100

0100
100

0111
100

0010
100

0101
001

0011
001

0111
001

0111
001

a d c b
y z x

000

1000

001
0001

000
0001

011
0001

010
0010

110
0100

010
0100

100
0100

ackpb req ackout
allocoutbound ack allocpb rts

Figure 4.79: Blue diagrams for isend and mp-forward-pkt

0000

00000

0001
00010

0011
10110

0111
11110

1111
10110

0111
00001

0011
00001

0110
00001

0101
00001

0010
00001

0001
00001

0100
00001

busack ackhyst ackbus rejsend
enableda busreq hystreq reqbus ack

000

00

010
00

001
00

011
11

111
10

011
01

001
10

c b a
y x

Figure 4.80: Blue diagrams for nak-pa and nowick

110 Chapter 4: Specification

00000

000

00100
000

01000
000

00001
000

01100
000

00101
000

01001
000

01101
001

01111
011

01011
100

01111
100

00011
100

01001
100

11011
100

00111
100

01101
100

00001
100

10011
100

11001
100

00101
101

10001
110

00111
111

00001
000

01001
100

00011
000

00111
000

01011
000

00001
000

10011
000

01111
000

01001
000

11011
000

10001
000

11001
110

01001
110

ackpkt treq rdiq adbldout reqsend
tack peack adbld

The two pairs of shaded states are the ones that are identified when the -strong-reduce
option is passed to L2b, reducing the diagram to 33 states rather than 35.

Figure 4.81: Blue diagram for pe-send-ifc

Section 4.7: Results of translation 111

11000

00101

11001
01101

11011
01101

01001
01101

01011
01111

00011
00110

00001
10010

00000
10010

00101
10010

10001
10010

00100
00010

10000
10010

10101
10010

00000
00001

10100
00010

01000
00001

10000
00001

precharged req wsldin wenin prnotin
wsld wen prnot ack wsen

Figure 4.82: Blue diagram for ram-read-sbuf

000

00

010
00

001
01

011
10

111
10

001
10

101
00

acksend sending reqrcv
rejsend enwoq

000

000

010
100

110
110

100
100

101
000

001
001

La Sr Cr
Lr Sa Ca

Figure 4.83: Blue diagrams for rcv-setup and rlm

112 Chapter 4: Specification

00001

00001

00011
00001

00101
00001

00000
00001

00111
00001

00010
00001

00100
00001

00110
10001

00010
10101

01010
10101

00011
10101

01011
10010

01001
10010

00011
11010

00001
11010

10011
10010

10001
10010

00011
10010

wsldin wenin precharged req done
prbar wsld wen ack wsen

000

000

001
010

011
110

111
010

011
001

010
000

011
000

busack ackread req
busreq ramrdsbuf ack

Figure 4.84: Blue diagrams for sbuf-ram-write and sbuf-read-ctl

.

Concurrency Reduction
.

Concurrency Reduction
.

Concurrency Reduction
.

Concurrency Reduction
.

Concurrency Reduction 5
I donna suppose you coulda speed things up?

– Inigo Montoya, The Princess Bride

Abstract

Concurrency reduction plays a central role in the work described in this disserta-
tion. It is used to produce a large number of circuits from a specification, and the
best circuit for a particular task is chosen. This chapter describes the concurrency-
reducing operations that are used, first by applying them to a simple example, and
then a more complicated example, before giving a brief description of the algorithm
used in the prune program. The prune program reads in a starting blue diagram and
an environment specification, and produces a file containing all possible blue dia-
grams which can result from reducing concurrency. A short comparison with earlier
work on concurrency reduction is also given.

Structure of this chapter

Section 5.1 describes the concurrency reduction operation, and gives conditions
that must be satisfied for it to be used. Section 5.2 gives an example of using
concurrency reduction operations on a simple circuit with a trivial environment,
which makes it easy to see what the effects of a particular operation are. More gen-
eral environments need the methods that are described in Section 5.3, which are
summarized as an algorithm in Section 5.4. A brief comparison with earlier work
on concurrency reduction by Ykman-Couvreur et al. [197] is given in Section 5.5,
although the approach presented here has a different goal to the earlier work. Fi-
nally, Section 5.6 gives the results of the concurrency reduction process for all the
examples in the last chapter.

5.1 Reducing concurrency in blue diagrams

Concurrency reduction in blue diagrams is the action of taking an output transition
t that occurs as a state s is entered, and delaying t until the diagram leaves state
s instead. Figure 5.1 shows an example of a transition o1+, which occurs on entry
to state s, being delayed until the diagram leaves s. Often, the environment will
be waiting to observe the delayed output transition before issuing another input

113

114 Chapter 5: Concurrency Reduction

i1 i2

o1 o2 i1+

i2+

o1+

o2+

00

00

00

11

p

q

s

x

y

10

01

01

11

00

00

00

11

11

11

p

q

s

x

y

10

01

01

10

01

10

o1+

o1+

Circuit Environment

(Represented as part of
an STG for simplicity)

Figure 5.1: The standard concurrency reduction operation

i1

i2

o1

o2
Circuit

i1

i2

o1

o2

Some function of
input signals

Wait-on = latch

Circuit

Figure 5.2: The concurrency reduction operation on a circuit

transition; here, i1+ can only happen after o1+, so delaying o1+ will stop the inputi1+ being given in state s, and will remove the arc from state s to state y. If y has
no other predecessors, this will remove y and all arcs from y, possibly removing
other states as well. The action of removing states by delaying output transitions is
called pruning, by an obvious gardening analogy, and the program that performs
concurrency reduction is called prune.

The operation of concurrency reduction has an analogue at the circuit level, as
shown in Figure 5.2. Delaying an output corresponds to adding a wait-on or latch in
series with one of the unbounded finite delays on the output of the circuit. This latch
waits until some combination of inputs is seen before allowing the output transition
through. A circuit would not actually be built like this; Figure 5.2 is simply a thought
experiment. The circuit in Figure 5.2 cannot be observed to be different from the
original circuit in a finite time, because the extra latch delay could always have been
caused by the unbounded delay in the original circuit. Equivalently, all traces of

Section 5.2: Application to a simple example 115

signals that are possible when the pruned BD is composed with the environment
could also been seen in the original BD, although the reverse is obviously not true.

5.1.1 Conditions that must be satisfied for pruning to occur

In Figure 5.1, the transition o1+ could be delayed until after state s because every
arc into s came from a state where o1 was low, but o1 was high in s. This leads to
the first condition for pruning being possible:

Condition 1: Output xmay be changed to Boolean value v in state s if x = NOT(v)
in state s and x = v in all predecessors of state s.

At a first glance, it appears that a condition on the successors of s is also re-
quired. Consider what would happen in Figure 5.1 if the outputs in state x were 01
rather than 11. When taking the path p! s! x in the upper diagram, o1+ and o1-
transitions would be produced, but in the lower diagram on the same path, both
these transitions would be lost. However, it turns out that this problem can never
occur. Because the interfaces between modules are delay-insensitive, the o1+ tran-
sition when entering state s in the upper diagram must be acknowledged before the
circuit is allowed to send an o1-, but the only candidate for this acknowledge is thei2+ transition that causes the move from state s to state x. The environment must
have been waiting to see the o1+ transition before providing the input that would
cause the change to state x, so delaying o1+ will stop the arc from s to x being
taken, and hence the problem will not occur. Although state x could not have that
value of o1, state y could, because the arc from s to y is removed by the pruning
operation. This argument can be applied to any situation where a pair of transitions
look as though they might be lost.

The pruned diagram must be free from deadlock, so:

Condition 2: The pruned blue diagram, when composed with the environment
blue diagram as described in Section 5.3.2, should be free from deadlock.

This condition is difficult to use in the simple example, so will be replaced in the
next section by a weaker condition, which is easier to see in the blue diagram:

Condition 2a: All states in the pruned diagram must have at least one arc to an-
other state.

Condition 2a has only been introduced to simplify examples in the text; the
stronger condition 2 is used inside prune.

A final, very obvious condition is:

Condition 3: After removing any arcs that cannot be taken, and any states that
have no arcs to them, the initial state must still exist.

The initial state needs to be present in all pruned diagrams because the imple-
mentation needs a state that it will enter after power-up or on a reset.

116 Chapter 5: Concurrency Reduction

Rin

Ain Aout

Rout

Rin+ Rout+

Aout+

Rout-

Aout-Ain-

Rin-

Ain+
Example
circuit

Figure 5.3: Left, STG for a simple pruning example; right, how the circuit will be used

Ain Rout

Rin Aout

state 1 state 2 state 3

state 4 state 5 state 0
(initial)

11

00

11

00

10 11

10

10

10

01

10 00
Rin

Aout

Ain

Rout

Circuit Environment

Figure 5.4: Blue diagram and environment derived from Figure 5.3

5.2 Application to a simple example

The prune program performs all transformations that satisfy conditions 1, 2 and 3
above, forming the whole set of pruned blue diagrams. To illustrate this procedure,
a simple example will be worked through. Some observations will be made about
how these transformations behave, which are useful when producing an general
pruning algorithm.

5.2.1 Example used

Figure 5.3 gives the specification of the example circuit, in terms of an STG on
the left and the environment behaviour on the right. This STG describes a circuit
which partially decouples handshakes on its left and right, so is quite similar to the
Furber/Day latch controller. From this STG, L2b produces the blue diagram shown
on the left of Figure 5.4; for the time being, the environment will be considered to
be that shown on the right of Figure 5.4.

5.2.2 Possible concurrency-reducing transformations

Condition 1 can be used to provide candidate concurrency-reducing transforma-
tions: any signal that has a different value in state s to its value in all predecessors
of s. This gives the following possibilities:

Section 5.2: Application to a simple example 117

Ain Rout

Rin Aout

deleted
state 4

state 1 state 2 state 3

state 5 state 0
(initial)

00

10 11

10

10

10

01

10 00

01

Figure 5.5: Blue diagram after transformation �
Ain Rout

Rin Aout

state 1

state 4 state 5 state 0
(initial)

00

11

00

10

01

10 00

state 2
deleted

state 3
deleted

10

Figure 5.6: Blue diagram after transformation �s Change the outputs in state 0 from 00 to 10.
This delays the Ain- transition until after the diagram leaves state 0, which
stops Rin+ being given in state 0, causing deadlock and violating condition
2a. After removing all states with no arcs to them, the entire diagram disap-
pears, so this violates condition 3 as well.s Change the outputs in state 1 from 11 to 01: transformation �.
This delays Ain+, so stops Rin- being given and hence removes the arc from
state 1 to state 4. State 4 has no predecessors so is removed giving the
diagram in Figure 5.5. The changed outputs are marked in a bold font. Con-
ditions 2a and 3 obviously hold, so this is a valid transformation.s Change the outputs in state 1 from 11 to 10: transformation �.
This delays Rout+ and hence stops Aout+ in state 1, removing the arc from
state 1 to state 2, which deletes both state 2 and state 3. This produces the
diagram in Figure 5.6. Conditions 2a and 3 also hold.s Change the outputs in state 2 from 10 to 11: transformation
.
This delays Rout- until after state 2, so Aout- cannot happen in state 2,
removing the arc to state 3. This transformation gives the diagram shown in
Figure 5.7.

No other output changes are possible in the original diagram that do not violate
condition 1, but a further transformation � is possible in the diagram in Figure 5.5:

118 Chapter 5: Concurrency Reduction

Ain Rout

Rin Aout

state 1 state 2

state 4 state 5 state 0
(initial)

11

00

11

00

10 11

01

10 00

11 state 3
deleted

Figure 5.7: Blue diagram after transformation

Ain Rout

Rin Aout

deleted
state 4

state 1 state 2 state 3

state 0
(initial)

00

10 11 10

10

00

deleted
state 5

01 00

Figure 5.8: Blue diagram after transformation � then �
Ain Rout

Rin Aout

deleted
state 4

10

state 1

state 5 state 0
(initial)

00

10 11

01

01 11

00

deleted
state 3

state 2

Figure 5.9: Blue diagram after transformation � then
s After transformation �, change the outputs of state 2 to 00.
This stops the arc from state 2 to state 5 being taken, deleting state 5 and
giving the diagram in Figure 5.8.

The compound transformation of � then � will be written ��.
It is possible to do transformation � on the diagram that results after doing

(Figure 5.7), but this is the same as doing � on the original diagram. One more
compound reduction is also possible: after transformation �, then
 is possible,
giving the diagram in Figure 5.9. This can also be derived by doing
 then �.
5.2.3 Observations

Three properties of concurrency-reducing transformations can be seen from the
above:

Section 5.3: Improved method for a general environment 119s If x and y are two transformations on a blue diagram, and xy and yx are both
possible, then xy and yx give the same transformed diagram. Example: �
then
 gives the same result as
 then �. In theory, this leads to a factor of
two speed-up in the operation of prune, but in practice the action of checking
to see whether xy has already been done to diagram D before attempting op-
eration x on a diagram which was formed by doing y on D takes a significant
amount of time, which nullifies any performance gains. For this reason, this
observation will be ignored.s It may be possible to produce the same pruned diagram in two different ways,
for example doing
� produced the same result as � alone. This is because
the state that was changed by
 was removed by �.s Some reductions may make others possible that were not allowable in the
original diagram, such as �� being possible above although � could not be
done in the original diagram.

To summarize: duplicate diagrams may occur, and new transformations must
be looked for every time a new blue diagram is produced. An algorithm to generate
all pruned diagrams from a given diagram must be able to check for duplicates
quickly, and must check for new transformations every time a new diagram is found.

5.3 Improved method for a general environment

5.3.1 Problems with the simple example

In the example above, it was easy to determine the effect on the environment of
delaying an output transition, because the environment was just a buffer and an
inverter. In general, the environment will actually be specified by a blue diagram
that is about the same size as that for the circuit. For example, when the STG
of Figure 5.3 is given to L2b, the pair of blue diagrams shown in Figure 5.10 is
produced. It is possible in this case to reduce the blue diagram on the right of
Figure 5.10 to an inverter and a buffer, but this is not possible in general. A way
must be found to determine which arcs become untraversable in the blue diagram
when a general environment is used.

5.3.2 Solution using a state graph

One way to find the effects of an output change is to:s Do the output change. As an example, take the transformation
 from before,
which was changing the outputs in state 2 to 11.s Create a circuit-like system by composing the circuit and environment blue
diagrams with unbounded finite delays, as shown on the left of Figure 5.11.

120 Chapter 5: Concurrency Reduction

Ain Rout

Rin Aout

state 1 state 2 state 3

state 4 state 5 state 0
(initial)

11

00

11

00

10 11

10

10

10

01

10 00

10

00

00

10

00

10

11

01

11 10

01

00

Circuit Environment

Rin Aout

Ain Rout

state A
(initial)

state B state C

state D state E state F

Figure 5.10: An example of a more typical environment: what L2b actually produces.

0A
Removed by

transformation
γBlue

diagram
after

transform-
ation

 Aout

 Rin
Rout

Ain

Blue
diagram

for
environ-

ment

1A

1D

1B

1E

2B

2E

5E 5F 0F4D 4E

2C 3C

3F2F

Left, the system used to determine the effect of changing the outputs in a state; right, the

graph that results from applying transformation
 to the blue diagrams in Figure 5.10.

Figure 5.11: System and state graph for transformation �s Simulate this system to find all reachable pairs of states xy where x is a state
of the circuit blue diagram and y is a state of the environment blue diagram.
Such pairs of states will be called total states, because they are states of the
whole system. They may be triples or more if arbiter blue diagrams must also
be included in the system. The reachability graph of all total states is shown
on the right of Figure 5.11, where shaded states in Figure 5.11 are ones that
were possible before transformation
 happened, but were not possible after.s Read off from the graph of total states which states and arcs still exist in the
pruned diagram. In Figure 5.11, no total states of the form 3* exist, so state
3 should be deleted, and no arcs exist in the total state graph that go from 2*
to 3* or 3* to 0*, so the arcs from state 2 to state 3 and from state 3 to state
0 should be removed in the blue diagram.

Section 5.3: Improved method for a general environment 121

State graph

state 1

11

10
state 3

10

10

state 2
11

10

state 0
(initial)

00

00

state 5
01

10

state 4

11

00

Ain Rout

Rin Aout

0A
2B, 2E 3C, 3F

5E 0F

4D, 4E 5E, 5F 0F1A

Labels in italics are total states

1A

1D

1B

1E

2B

2E

5E 5F 0F4D 4E

2C 3C

3F2F

Figure 5.12: Example blue diagram, arcs labelled with total states

The reachability graph in Figure 5.11 is equivalent to the state graph that can
be obtained from the original STG, so the total state reachability graph will simply
be called a state graph from now on.

5.3.3 Iterative updating of the state graph

Creating a complete state graph every time a concurrency-reducing transformation
is performed would be very time-consuming. A method is possible where the state
graph is calculated only once, and then local changes made every time an output
signal value is changed. The idea is to label each arc in the blue diagram with the
total states in the state graph that cause that arc to be taken. Figure 5.12 shows
how the arcs are labelled in the example blue diagram from Figure 5.4. The blue
diagram changes from state 1 to state 2 when the total state changes from 1B to 2B
and 1E to 2E, so the arc in the blue diagram from state 1 to state 2 will be labelled
with 2B and 2E; other arcs are labelled in the same way.

Consider again transformation
, changing the outputs in state 2 to 11. In
Figure 5.12, state 2 is entered in total state 2B or 2E. Instead of regenerating the
entire state graph after the outputs have been changed in state 2, the system can
be partially resimulated starting from states 2B and 2E only, and the simulation
stopped as soon as the system leaves state 2. This is shown in Figure 5.13. It is
found that state 2 is left by changing from 2E to 5E, and that no transitions are
possible to total states 5F, 3C or 3F. State 5E is written back to the arc from state 2
to state 5, but the absence of any labels on the arc from state 2 to state 3 means
that state 3 should be deleted. After this transformation, state 5 is only entered with
total state 5E, whereas before it was also entered with 5F, so state 5 should also be
resimulated and any changes propagated forwards. In general, this propagation
will only be necessary if the environment blue diagram is non-semi-modular, which
should only happen if there is arbitration-type behaviour in the environment that
has not been declared with an arbitrate keyword. To be safe, resimulation is
always performed if arc labels have changed.

122 Chapter 5: Concurrency Reduction

state graph

No states found
on this arc simulation

starts here

Small part of the

state 1

11

10

state 0
(initial)

00

00

state 5
01

10

state 4

11

00

Ain Rout

Rin Aout

2B

2E

5E

2B, 2E

5E 0F

4D, 4E1A

Labels in italics are total states

5E

state 2
11

11

Figure 5.13: Blue diagram after transformation
, arcs re-labelled with total states

The process of concurrency reduction can only remove total states from the
state graph, because there are no possible traces in the pruned diagram that were
not possible in the original—neither new states nor new arcs can be added. This
means that an arc in a pruned diagram can only be labelled with a subset (�) of
the total states that appeared on that arc in the original blue diagram, and con-
sequently, an efficient way to store arc labels of pruned diagrams would be as a
bitmapped Boolean array, each bit saying whether a particular total state was there
or not. A efficient method of storing pruned diagrams is essential if a large number
of diagrams is to be found.1

5.4 Description of algorithm

This section gives a pseudocode description of the algorithm that has been outlined
in the last section. The two structures needed by the algorithm are:s O, a set of possible concurrency reducing operations.

Each operation is a pair (s; o), where s is the state that the operation will be
performed on, and o defines the output that will be toggled.s D, a set of pruned blue diagrams.
Each diagram is stored as compactly as possible, to squeeze as many dia-
grams as possible into memory. Only the outputs of the diagram and the
labels on arcs need to be stored, because the rest can be inferred from the
original diagram.

1Actually, this does not make much of a difference. Version 1 of prune used linked list structures
for total states on arcs, and was limited to about 3 000 pruned diagrams on a 64MB machine; prune
version 2 uses bitmaps, and can keep track of over 50 000 diagrams. Unfortunately, all blue diagrams
encountered that have more than 3000 pruned diagrams happen to have well over 50 000 pruned
diagrams as well, so there are no cases that prune v.2 can handle that prune v.1 cannot. Swap space
does not help, because the algorithm repeatedly scans through a large subset of the known blue
diagrams; when the machine starts to swap, CPU utilization drops to 5% or lower and the program
practically stops.

Section 5.5: Comparison with earlier work 123

Every time a pruned blue diagram d is added to the set D, the set O is updated
with any operations that can be performed on d, if those operations have not been
seen before.

This leads to the following algorithm:

Create empty D and O.
Add the original blue diagram to D, updating O.
For each diagram d in D f

For each element (s; o) of O f
Try doing operation (s; o) on d to get diagram d0
If d0 exists and satisfies all three conditions

Add d0 to D if it is not already there, updating O.gg
FUNCTION do operation (s; o) on diagram d f

If (s; o) on d violates Condition 1, abort now.
Change output o of state s to the new value.
Collect all total states on entry to the state s in a set T.
Re-simulate the collection of all blue diagrams starting from

the set of total states T. If any state deadlocks at any point,
set T0 = ;. Otherwise, let T 0 be the set of all total
states that leave the state s.

Update arcs out of the state s with new total states T 0. If this
has changed any arc labels to a state s0, re-simulate from
state s0 to propagate changes through the diagram.

Delete any arcs with no labels on them.
Delete any states with no arcs to them.
Check conditions 2 and 3 and if it passes, return the new diagram.g

The re-simulation procedure creates a pair of arrays, before and after, each
with one element for each unbounded delay in the system. The current states of
all blue diagrams in a total state define all the values of these two arrays, so it
is then possible to determine which delay elements are excited. Each of these
delay elements can be fired, and the effects on the total state determined to find a
successor total state.

The complete algorithm is quite compact, and took only 1 700 lines of C++ to
implement. The complete state graph needs to be generated only once, and never
stored, so it is not particularly time-consuming for moderately sized examples.

5.5 Comparison with earlier work

Concurrency reduction has previously been explored at the STG level and at the
state graph level. STG concurrency reduction was introduced by Vanbekbergen et al.

124 Chapter 5: Concurrency Reduction

[183] as a method to solve the USC problem, which is a sufficient but not necessary
condition for synthesis. By adding arcs to the STG, the number of state variables
required to implement the STG can be reduced. However, this method was limited
to live-safe marked graphs with only one rising transition and one falling transition
of any signal.

The concurrency reduction work by Ykman-Couvreur et al. [197] operated at the
state graph level, which allowed a broader range of specifications to be considered.
Their work attempts to remove CSC violations in state graphs by doing a series of
transformations, producing a single state graph that requires a smaller number of
state signals to synthesize. A concurrency-reduction transformation (x,y) delays an
output transition y until after some other transition x with which it was concurrent
in the original state graph. Transformations are carried out until the number of
CSC violations cannot be further reduced, which tends to produce a state graph
that is significantly less concurrent than the original diagram, although constraints
can be applied to limit the amount by which concurrency is reduced, especially the
concurrency between inputs.

In contrast to Ykman-Couvreur’s work, the purpose of the transformations pre-
sented here is to produce a large number of possible blue diagrams, each of which
can be synthesized. Some of these will require less state variables than the original
blue diagram, and will produce smaller and faster circuits for the same reasons as
in the earlier work. Some blue diagrams have greatly reduced concurrency, others
less so, a few are hardly reduced at all. By producing a large number of possi-
ble circuits and picking the fastest or lowest power or smallest, it is hoped that a
particularly good circuit can be produced.

Ykman-Couvreur’s concurrency reduction transformation does not always make
sense when applied to blue diagrams: there are state graph transformations that
delay one output until after another output, but enabled output transitions are al-
ways concurrent in blue diagrams. The synthesis program, which will be described
later, chooses which order to fire outputs in, rather than including this information
in the specification. However, comparisons can be made by applying blue diagram
transformations on state graphs.

An example piece of a state graph is shown in the centre of Figure 5.14. On
the right is an equivalent blue diagram, and on the left is an STG which shows the
behaviour of the state graph more clearly. A possible state graph transformation
is (ia+,ob+), which is also an allowable transformation on the blue diagram, pro-
ducing the state graph and blue diagram shown in Figure 5.15. It is clear that any
transformation of the form (in*,out*)2 will have an equivalent blue diagram trans-
formation: simply take all states from which it is possible to fire in*, and change
the value of out in those states so that out* cannot fire.

The blue diagram in Figure 5.15 has had two states altered, so it is the compo-
sition of two separate blue diagram transformations, which together have the same
effect as the single state graph transformation (ia+,ob+). The blue diagram after
one of the two blue diagram transformations is shown in Figure 5.16. An equivalent

2in* means either in+ or in-.

Section 5.5: Comparison with earlier work 125

ia ib ic ...
oa ob oc ...

x+

oa+ ob+ oc+

y+

ia+ ib+ ic+

111...

000...

111...

111...

111... 111...

111... 111...

010...

100...

001...

111...

011...

111...

110...

101...

STG State graph Blue diagram

x+

y+

oa+

ia+

ob+ ib+
oc+

ic+

Figure 5.14: Example for comparing the two methods of concurrency reduction

ia ib ic ...
oa ob oc ...

111... 111...

111... 111...

100...

001...

111...

110...

101...

x+

y+

oa+

ia+

ob+ ib+

oc+

ic+

000...

101...

101...

x+

oa+ ob+ oc+

y+

ia+ ib+ ic+

Figure 5.15: Ykman-Couvreur type reduction, applied to Figure 5.14

x+

oa+ ob+ oc+

y+

ia+ ib+ ic+

ia ib ic ...
oa ob oc ...

111...

111... 111...

111... 111...

100...

001...

111...

011...

111...

110...

101...

000...

101...

x+

y+

oa+

ia+

oc+

ic+

ob+ ib+

OR arc

Figure 5.16: Blue diagram reduction that has no Ykman-Couvreur reduction

state graph is also shown, from which it can be seen that no state graph transforma-
tion can produce this state graph. A change diagram equivalent to the concurrency
reduction state graph is shown on the left of Figure 5.16, from which it can be seen
that the state graph is not expressible as an STG. Ykman-Couvreur style reduc-
tions always have an interpretation at the STG level, so the reduction in Figure 5.16

126 Chapter 5: Concurrency Reduction

b+

a-

a+

d+

c+

a+

d+

c+

b+

a-

Backward reduction

Figure 5.17: A backward reduction from Cortadella et al. [39]

cannot have a equivalent Ykman-Couvreur style reduction. This demonstrates that
blue diagram transformations are of a finer granularity than the transformations of
Ykman-Couvreur et al., although the difference only occurs when three or more in-
put transitions are each enabled concurrently and individually by output transitions.

While this dissertation was being written, Cortadella et al. [39] published the
results of their work on concurrency reduction. Their forward reduction algorithm
is similar to the work of Ykman-Couvreur et al., but has improved correctness con-
straints, and can be aimed at logic minimization as well as removing CSC violations.
Their backward reduction algorithm is more powerful than the forward reduction
algorithm, because it allows a finer granularity of concurrency reduction. A back-
ward reduction consists of removing a single arc from the state graph, with some
patching to preserve speed-independence. Equivalent transformations on blue di-
agrams are possible with the algorithms in this chapter, although the patching step
is not available; instead, the patching gets done with other blue diagram reduction
operations. The situation is similar to the way in which transformation � had to
be done before � to derive Figure 5.8; the work of Cortadella et al. would allow �
but then have to do � to patch the state graph. I believe that the algorithms pre-
sented in this chapter are the blue diagram equivalent of backward reduction. It is
interesting to note that backward reduction was not implemented by Cortadella et
al., because the extra generality of the algorithm could not be clearly interpreted in
terms of signal orderings, although there is no such problem with the blue diagram
algorithms presented here. It is also interesting to note that the change diagram in
Figure 5.16 is very similar to the diagram given by Cortadella et al. as an example
of a backward reduction that has no equivalent forward reduction (Figure 5.17).

To summarize,s Ykman-Couvreur transformations of the form
.

(out1,out2) or the equivalent
forward reductions of Cortadella et al. do not make sense on blue diagrams;
these correspond to implementation choices that will be made by the synth
program, rather than changes to the specification of a circuit.s Ykman-Couvreur transformations of the form (in,out) do make sense on blue
diagrams, and are equivalent to one or more blue diagram transformations.s Some blue diagram transformations do not have equivalent Ykman-Couvreur
style transformations, so blue diagram transformations appear to have a

Section 5.6: Results 127

slightly finer granularity. The same is true of the forward reductions of Cor-
tadella et al.; their backward reduction algorithm, which has not yet been
implemented, appears to be the STG equivalent of the blue diagrams trans-
formations presented in this chapter.

5.6 Results

Table 5.1 shows the time taken and number of pruned blue diagrams produced by
the prune program for each of the examples. The master-read example was too
highly concurrent to find all concurrency-reduced diagrams—70 000 reduced dia-
grams were found in 10 minutes before the available swap space was exceeded.
This example was instead broken into two parts at the specification stage to create
examples mr1 and mr2, as shown in Figure 5.18. In example mr1, all transitions
above the dividing line were declared as external transitions, apart from pri which
directly affects the lower part of the STG. Example mr2 is the opposite. If it is as-
sumed that the number of pruned blue diagrams for master-read is approximately
the product of the number for mr1 and mr2, then it would have almost 700 000
pruned diagrams, so it is no wonder that prune failed.

To illustrate the concurrency reduction process, Figure 5.20 gives some pruned
blue diagrams from the atod example. Arrows between diagrams denote a single
concurrency-reducing transformation. The prune program produces the following
output for this example:bash$ prune atodReading input file ... done, 11 states and 16 arcsNumber of pruned diagrams found: 346 of size 6 9 of size 7 9 of size 86 of size 9 3 of size 10 1 of size 11bash$

This distribution of pruned blue diagram sizes is typical; there are usually few
diagrams that are only a state or two smaller than the original, and relatively few
minimal-sized diagrams, with the majority being somewhere in the middle. The
distribution of pruned diagram sizes for the latch controller and example mr1 are
shown in Figure 5.19, where the same pattern can be seen.

Example Runtime Number of
(seconds) pruned BDs

latchc 1.46 847
parallel 1.44 818
nacking arbiter 0.08 1
DME 3.39 848
loadable counter 0.15 9
alloc-outbound 0.12 1
atod 0.15 34
mp-forward-pkt 0.10 1
isend 0.04 1
nak-pa 0.22 58

Example Runtime Number of
(seconds) pruned BDs

master-read fails �700000?,! mr1 7.71 2310,! mr2 0.75 298
nowick 0.08 1
pe-send-ifc 0.09 1
ram-read-sbuf 0.15 15
rcv-setup 0.07 1
rlm 0.09 1
sbuf-ram-write 0.75 264
sbuf-read-ctl 0.08 1

Table 5.1: Results of the prune program

128 Chapter 5: Concurrency Reduction

aro- ari+ pri+

ari- aro+ pri- pro+

pro-

busyo+ breq-

bprn+ bprn-

breq+ busyo-

mrdc+

mrdc-xack-

xack+di+

di-

pack+

pack-

pdo+

pdo-

do+

do-

aro- ari+ pri+

ari- aro+ pri- pro+

pro-

busyo+ breq-

bprn+ bprn-

breq+ busyo-

mrdc+

mrdc-xack-

xack+di+

di-

pack+

pack-

pdo+

pdo-

do+

do-

Left, new example mr1; right, mr2.

The specification files for these two examples are the same as for the originalmaster-read

example, but with the shaded transitions declared as type external rather than input or

output. This gives a pair of circuits which can be composed to give a full master-read

implementation.

Figure 5.18: The master-read example, split into two halves

100

50

pruned diagrams
Number of

Size of pruned
diagram6 8 10 12 14 16 18 20 14 16 18 20 22 24 26 28 30 diagram

Size of pruned

300

200

100

pruned diagrams
Number of

Figure 5.19: Histogram of pruned diagram sizes for the latch controller and mr1.

Section 5.6: Results 129

001

100

000
100

101
000

100
000

001
000

000
010

010
001

011
101

000
001

111
001

011
001

za la da
zr lr dr

001

100

000
100

101
000

100
000

001
000

000
010

010
011

011
101

111
001

011
001

za la da
zr lr dr

001

100

000
100

101
000

100
000

001
000

000
010

010
011

011
001

za la da
zr lr dr

001

101

101
000

100
000

001
000

000
010

010
001

011
101

000
001

111
001

011
001

za la da
zr lr dr

001

101

101
000

100
000

001
000

000
010

010
000

000
001

za la da
zr lr dr

001

101

101
001

001
000

000
010

010
000

000
001

za la da
zr lr dr

001

101

101
000

100
000

001
000

000
010

010
011

011
101

111
001

011
001

za la da
zr lr dr

001

101

101
000

100
000

001
000

000
010

010
011

011
001

za la da
zr lr dr

001

101

101
001

001
000

000
010

010
011

011
001

za la da
zr lr dr

Figure 5.20: Some pruned versions of the atod example

130 Chapter 5: Concurrency Reduction

.

Synthesis
.

Synthesis
.

Synthesis
.

Synthesis
.

Synthesis 6
What day did the Lord create Spinal Tap,
and couldn’t he have rested on that day too?

– Marti Dibergi, This Is Spinal Tap

Abstract

This chapter describes the synthesis algorithms that are used to create circuits from
the set of pruned blue diagrams. Blue diagrams are basically finite state machines,
so traditional methods are used, such as those first described by Unger [177]. Sev-
eral methods are tried for state assignment, all of which are based on Tracey’s
method [176]. Gates can be created either with or without weak feedback inverters,
also called keeper inverters or staticizers. Each of the implementations produced
must then be verified, using the techniques described in the next chapter. Compar-
isons between the different state assignment methods are given in Chapter 8. The
algorithms in this chapter have been implemented in the synth program.

Structure of this chapter

Section 6.1 defines the problem in terms of its start and end points. Flow table
minimization and associated concepts such as compatible shrinking and mapping
is covered in Section 6.2. State assignment and the creation of truth tables for
each output and state variable is dealt with in Section 6.3, where several different
methods of finding state assignments are presented. Finally, Section 6.4 gives the
methods that were used for creating circuits from truth tables, and gives a short
discussion of transistor sizing and how to isolate circuits from capacitative loading
outside the circuit.

6.1 Start and end points for synthesis

6.1.1 Start point

Synthesis starts from a flow table description of a Moore-type incompletely-specified
state machine (ISSM). For a full description of flow tables, their properties and meth-
ods that can be applied to them, see Unger [177]. Each of the set of pruned blue
diagrams must be converted into a flow table, which is a very simple task because

131

132 Chapter 6: Synthesis

000

1000

001
0001

000
0001

011
0001

010
0010

110
0100

010
0100

100
0100

a

b c

d e f g

h

ackpb req ackout

allocoutbound ack allocpb rts

Inputs
000 010 100 110

State Output 001 011 101 111
a 1000 a b - - - - - -
b 0001 c b e d - - - -
c 0001 c - e - - - - -
d 0001 - - e d - - - -
e 0010 - - e - - - f -
f 0100 a - g - h - f -
g 0100 a - g - - - - -
h 0100 a - - - h - - -

Bold entries in the flow table are ones that have been added because of possible multiple

input changes in the blue diagram. In state f , inputs ackpb- and req- are both enabled,

so can happen at the same time which moves the flow table directly to state a. Dashes in

the table denote don’t-care entries.

Figure 6.1: Converting the mp-forward-pkt blue diagram to a flow table

..

....

..
. ..Inputs

Outputs

Feedback delays

Combinational
next-state logic

Combinational
output logic

Figure 6.2: Traditional implementation of a Moore machine

blue diagrams are also descriptions of Moore machine. If four states a, b, c and d
are found in the blue diagram such that a!b!d and a! c!d, then the inputs
that cause the a!b and a!c transitions are concurrent, so d is also included in
the next-state entries for row a of the flow table. More states have to be added when
three or more inputs can change concurrently. The additional entries are shown in
bold for the mp-forward-pkt example in Figure 6.1.

6.1.2 End point

Figure 6.2 shows the traditional implementation of a Moore machine, as a block of
combinational logic with delays in the feedback path and a block of combinational
logic producing the outputs. This style has the problem that outputs can appear
before the feedback paths have stabilised, which makes the fundamental mode
assumption difficult to uphold. Most synthesis styles today use a network of small
state-holding elements:s SIS [164] uses SR flip-flops with combinational gates to provide the set and

reset signals.

Section 6.2: Flow table minimization 133s Martin [115, 114] uses a general structure comprising a pull-up tree, a pull-
down tree and a weak keeper inverter.s MEAT [33, 45] uses a general static CMOS gate followed by an inverter. The
output of the inverter can be fed back into the static gate, which allows struc-
tures such as C-elements to be built. This style can be considered as a gen-
eralization of a static C-element.s ASSASSIN [199] uses a derivative of the SIS approach, using MHS flip-flops.s Beerel [6] and Kondratyev et al. [94] use a C-element as a flip-flop with com-
binational trees for the set and reset signals.s The Amulet group use asymmetric dynamic C-elements [59] and more re-
cently static versions [108].s The GC synthesis technique described in Yun, Beerel and Arceo [201] appears
to use asymmetric C-elements.

One notable exception to this trend is the 3D synthesis tool, described by Yun
[203], which uses the traditional arrangement of Figure 6.2.

The approach used in this dissertation will be a combination of the MEAT ap-
proach and Martin’s structures, because they are very general and together sub-
sume most of the other approaches. Each state variable and output is produced
by a single gate followed by an inverter, possibly with a keeper inverter to main-
tain state, as shown in Figure 6.3. The decision to use keeper inverters on gates
is made by the designer, rather than automatically by synth. Inverted outputs are
available if necessary, rather than placing bubbles on the inputs to gates. Inputs
are also inverted by explicit inverters. The output of any gate can be fed to any
other gate. While this approach does not forbid having totally separate output and
state variables, it will be assumed that primary outputs are also available as state
variables.

6.2 Flow table minimization

The first step in synthesizing a flow table is to reduce the table to an equivalent one
with a minimal number of rows. This is done by finding sets of compatible states
from the original flow table T, and then creating a new flow table T 0 with its rows
defined by each of these sets of states; this was described in Chapter 2, so will not
be described in detail here. As an example, a reduced version of the flow table in
Figure 6.1 is shown in Table 6.1, where the sets of states chosen were fag, fb,c,dg,feg and ff,g,hg. Choosing which states to combine into sets is a difficult problem,
with many known algorithms for solution. The best method at the moment appears
to be due to Puri and Gu [148], so their method is used in synth. The algorithm is
briefly described in Section 6.2.1. An alternative method would be to use STAMINA,
described by Rho et al. [153], but Puri and Gu’s algorithm appears to be faster.

134 Chapter 6: Synthesis

Inputs

Outputs

optional weak inverter

optional inverted output

Combinational
gate

Figure 6.3: Example of the implementation style used in this dissertation

Inputs
000 010 100 110

State Output 001 011 101 111
A = fag 1000 A B - - - - - -
B = fb,c,dg 0001 B B C B - - - -
C = feg 0010 - - C - - - D -
D = ff,g,hg 0100 A - D - D - D -

Table 6.1: Reduced table T 0 for the table T shown in Figure 6.1

Section 6.2: Flow table minimization 135

Inputs
000 010 100 110

State Output 001 011 101 111
A = fag 1000 A B - - - - - -
B = fb,cg 0001 B/C B D C - - - -
C = fc,dg 0001 B/C - D C - - - -
D = feg 0010 - - D - - - E -
E = ff,g,hg 0100 A - E - E - E -

Table 6.2: Reduced table showing choice in the next-state entries

If the sets of states used to reduce the table are such that one state of the
original table is contained in more than one state of the reduced table, then the
reduced table may have several possible next-state entries; an example of this is
shown in Table 6.2, which is again a reduction of the Table given in Figure 6.1.
This reduction is non-minimal, so would never occur, but this sort of choice does
happen in larger tables. Two operations may now be carried out, both of which are
described by Rho et al. [153]:s Shrinking the compatibles. In this case, either fb,cg could be changed tofbg, or fc,dg could be changed to fdg.s Mapping, which is the action of selecting one out of a number of possible

next-state entries in the flow table. In either of the rows where B/C occurs,
one of B and C would be selected.

The purposes of these steps is to create an ISSM as the output of the minimiza-
tion procedure. Table 6.2 does not meet the definition of an ISSM, which requires
that next-state entries are either defined as a single state, or not defined at all. This
is for the benefit of current synthesis approaches. Section 6.2.2 investigates how to
perform the shrinking and mapping, and also how to determine whether or not it
should be done.

In this dissertation, flow table reduction is used to describe the process of find-
ing compatibles that produce a reduced table, and flow table minimization is re-
duction followed by shrinking compatibles and mapping.

6.2.1 Puri and Gu’s reduction algorithm

The method used to reduce flow tables in synth was the algorithm described by Puri
and Gu [148]. No modifications were needed to this algorithm, so it was simply
reimplemented in C++ as it was described in [148]. Some of the routines that are
invoked by Puri and Gu’s algorithm, such as Unger’s pair chart algorithm to find
maximal compatibles, were altered. This section will give a brief overview of the
method used. The algorithm is very efficient, and is capable of reducing much
larger tables than the ones that are encountered in this dissertation.

136 Chapter 6: Synthesis

The first task is to find the maximal compatibles in the original table. All com-
patible pairs of states are found, and then Unger’s pair chart algorithm [177] used
to determine the max compatibles. If the number of known compatibles exceeds
1000 during the algorithm, then the computation is terminated and a fall-back al-
gorithm used. The fall-back algorithm creates n compatibles C i by letting Ci = fig
for i = 1; 2; : : : n, and then attempts to add state ((i + j) mod n) to C i for
j = 1; 2; : : : n while making sure that every Ci remains a compatible. The setfCig after this process, with duplicates removed, is necessarily composed of maxi-
mal compatibles only, so it is used as an approximation to the actual set of maximal
compatibles. The fall-back algorithm is only needed formaster-read, because there
are a 48 states that are almost all pairwise compatible, creating a vast number of
compatibles during the algorithm.

The next task is to find the prime compatibles from the maximal compatibles,
as described in Chapter 2. An alternative approach, due to Bennetts [8], is to find
the prime compatibles directly. In all the examples tested, the prime compatibles
are exactly the same as the maximal compatibles, so deriving the primes from the
maximal compatibles is particularly efficient. This may be an intrinsic property of
blue diagrams, but this has not yet been proved.

Once the prime compatibles are known, a maximal incompatible is found. A
maximal incompatible is a set of states

.

fs1; s2; : : : skg such that no two
.

si are
compatible. Each of the

.

si must be covered in the solution, so in any solution
there must be at least one compatible

.

ci that covers each
.

si. Let
.

Ci be the set of
all compatibles that cover

.

si, so .

ci must be chosen from
.

Ci. Because the
.

si are
mutually incompatible,

.

Ci\Cj = ; for all i 6= j, and hence the choice of which
.

ci to
choose from

.

Ci is independent for each i. This observation is the basis of Puri and
Gu’s algorithm. The search for a solution can be viewed as a tree, with the choice
of which

.

ci to choose from
.

Ci at the first level, choosing
.

c2 from
.

C2 at the second
level, and so on. The states

.

si are ordered so that
.

jC1j � jC2j � : : : jCkj which
minimizes the number of nodes in the tree.

An important element of the algorithm is a pair of tree-pruning criteria. These
can identify pairs of nodes (x; y) at the same level in the tree, such that if a node
below x can produce a solution, then so can a node below y. This renders x redun-
dant, so it can be deleted and lower nodes not generated.

Picking one ci from each Ci may not produce a solution, so the algorithm carries
on down the tree until a solution is found. The leaf nodes are heuristically sorted
so that the most promising nodes are tried first.

The algorithm is extremely fast on all the examples tried. The longest time
taken for a solution was 0.2 seconds, for the mr1 example.

6.2.2 Shrinking compatibles

For five of the examples, a single state of the original flow table appears in more
than one row of the reduced table. For example, the seventh blue diagram produced
by prune for ram-read-sbuf has 13 states, and the primes returned by the reduction
algorithm are a, bcd, e, f , gl, hj, il, k and m. The state l appears twice in this

Section 6.2: Flow table minimization 137

list, as gl and il. If either gl was replaced with g, or il with i, then the resulting
sets of states are still solutions to the flow table reduction problem, but because
g and i are not prime compatibles, these solutions will never be produced by Puri
and Gu’s algorithm. The action of removing duplicated states from primes is called
shrinking compatibles, after Rho et al. [153]. Early work by Russo and

.

Palamà
[157] attempts to maximise the number of don’t care entries, but Rho et al. use a
more sophisticated method to determine the best way to shrink the compatibles.
Shrinking compatibles does not affect the number of rows in the reduced flow table,
but might affect the size and speed of the final solution.

When a state of the original table appears in more than one state of the re-
duced table, the reduced table will have next-state entries that are not uniquely
defined. In the example above, if the next-state entry in the original table was l,
then in the reduced table, the corresponding entry can be either gl or il. Synthesis
algorithms cannot usually accept tables that have non-unique next-state entries,
so something must be done to make the next-state entries unique. Shrinking the
compatibles solves the problem for all the examples considered in this dissertation,
but if there are still outstanding non-unique entries after that, then mapping must
be employed. Mapping is simply picking one out of a number of possible next-state
entries; a good comparison of mapping algorithms is given in [153].

To investigate the usefulness of shrinking compatibles and mapping, the syn-
thesis algorithms that will be presented later were modified to accept flow tables
with several next-state entries. The choice of which next-state entry to use was left
as late as possible; usually, half or more of the final circuit was in place before
a judgement was made as to which next-state entry to choose. By allowing non-
mapped and non-shrunk tables to be implemented, the effectiveness of shrinking
and mapping could be explored.

Figures 6.4 to 6.7 show the results of shrinking compatibles in the loadable
counter, mr2, pe-send-ifc, isend and ram-read-sbuf examples. The squares in
these figures denote implementations where compatible shrinking did not occur,
circles denote ones where it did occur, and lines from a circle to a square show
which square a particular circle was derived from. The horizontal axis indicates
the size of the resulting implementation, obtained by counting the total area of the
transistors relative to a single N-transistor. The vertical axis is the cycle time for a
test circuit using the implementation. The loadable counter had twelve solutions
returned from Puri and Gu’s algorithm, each of which could be shrunk to obtain
four more solutions. This graph suggests that shrinking compatibles usually, but
not always, creates a smaller and faster circuit.

Figure 6.5 shows the effects of compatible shrinking on the first five blue dia-
grams for mr2, out of the 298 produced by prune. Again, four new solutions were
produced from each original solution, but here, several of the shrunk solutions
coincide in the graph. The shrunk solutions are often either bigger or slower or
both for this example. The other three examples are also inconclusive; sometimes,
shrinking compatibles produces faster or smaller solutions, sometimes it does not.

Synthesizing every possible flow table that can be formed by shrinking compati-
bles is too time-consuming, but creating the flow tables is relatively fast. It would be

138 Chapter 6: Synthesis

Cycle time of
test circuit (ns)

Size of implementation

Solution before shrinking compatibles

Solution after shrinking compatibles

a shrunk solution has come from
Lines indicate which original solution

21.5

170

19.0

19.5

20.0

20.5

21.0

200 250 300 320

Figure 6.4: Effect of shrinking compatibles on the loadable counter

good to have a scoring function that could be applied to each flow table, and then
the table with the best score could be synthesized. This scoring function should
reflect the complexity of the final circuit. Four functions were tried:

f1: Count the number of next-state entries that are not don’t-cares.

f2: Count the number of different next-state entries in each column, and let
.

f2 be
their sum.

f3: Count the number of different next-state entries in each row, and let
.

f3 be
their sum.

f4: A derivative of f3. For each next-state entry x in row r, column c of the table,
assign a score k according to:s if there is another next-state entry of x in the same row r in column c 0,

where c0 has the same combination of inputs as column c except that in
c0, a total of i inputs that were 1 in c are 0 in c0, then k = i.s Else if there is no other next-state entry as above, set k to be the number
of inputs plus one.

If the flow table has several next-state entries in a single cell of the table, only
the lowest cost next-state is counted.

Section 6.2: Flow table minimization 139

Shrunk and non-shrunk coincide

Cycle time of
test circuit (ns)

Size of implementation

a shrunk solution has come from

Solution before shrinking compatibles

Solution after shrinking compatibles

Lines indicate which original solution
13.0

13.5

14.0

14.5

140 150 160 170 180

Figure 6.5: Effect of shrinking compatibles on the mr2 example

Partially shrunk compatibles

Cycle time of
test circuit (ns)

Size of implementation

Solution after shrinking compatibles

a shrunk solution has come from

Solution before shrinking compatibles

Lines indicate which original solution

160 170 180 190 200

13.5

14.0

14.5

Figure 6.6: Effect of shrinking compatibles on the pe-send-ifc example

140 Chapter 6: Synthesis

Cycle time of
test circuit (ns)

Cycle time of
test circuit (ns)

Size of implementation Size of implementation

Solution before shrinking compatibles

Solution after shrinking compatibles

a shrunk solution has come from
Lines indicate which original solution

17.0

17.5

170 180 190 200 210

15.5

16.0

16.5

17.0

150 160 170

Figure 6.7: Effect of shrinking compatibles on isend, left, and ram-read-sbuf

The justification behind f4 is that if in a particular row of the flow table the next-
state entry for column 0 was x, then it would probably not change the final solution
by very much if the next-state entry in one of columns 1, 2, 4, 8 etc. was x too,
because only one input is different between the two columns.

Rather than look at the cycle time and area of implementations separately, a
figure-of-merit was defined as the area of an implementation times its cycle time,
for which low is good. For each of the four scoring functions fi, a graph of fi against
the figure-of-merit was plotted; these are shown in Figures 6.8–6.11. It can be
seen that a low value of f1 does not imply a good figure-of-merit, although there
is quite a good correlation. There are many loadable counter implementations
that get the lowest score for f1, but only one of these is actually the best. The f 2
function is worse, with all of the loadable counter implementations getting one of
two values. The f3 function is almost ideal: for each example, the lowest value of f3
also corresponds to the lowest value of the figure-of-merit. Themr2 and ram-read-
sbuf examples appear to have a pair of implementations with the lowest value of
f3, but in both these cases, the pair of implementations comes from different blue
diagrams, so only one out of the pair will be scored at any one time. Function f 4
has the same problem as f1: four loadable counter implementations get the same

Section 6.3: Converting the flow table to a truth table 141

Loadable counter

ram-read-sbuf

isend

mr2

pe-send-ifc

3000 4000 5000 6000 7000

Figure of merit, lower is better
(Active area in N-trans equivalents) x (cycle time in ns)

30

45

60

Score f1

2000

Figure 6.8: The first scoring function against the figure of merit (size � speed)

lowest score, but only one is the best.
These results show that the best way to shrink compatibles is to find the f 3 score

of the original flow table and each flow table produced by shrinking compatibles,
and then take the table with the best f3 value.

Mapping

For all the examples that are considered in this dissertation, shrinking compati-
bles produced a flow table with unique next-state entries, so mapping was never
required. When mapping was tried in synth on its own instead of shrinking the
compatibles, very poor results were obtained: mapped circuits were always bigger
and slower than non-mapped circuits. For this reason, mapping was not imple-
mented in synth. It would be reasonably easy to implement an algorithm which
picks next-state entries such that some score function was minimized, similar to
the fi functions above, but without examples to test the code on, it is difficult to find
a suitable cost metric.

6.3 Converting the flow table to a truth table

The next stage in the process of creating a circuit is to take the best flow table
from the last section, assign a vector of Boolean state variables to each state, and
produce a truth table for each state variable. The state assignment and truth table
production phases are intricately related, because the state assignment algorithm

142 Chapter 6: Synthesis

Loadable counter

ram-read-sbuf

isend

mr2

pe-send-ifc

3000 4000 5000 6000 7000

Figure of merit, lower is better
(Active area in N-trans equivalents) x (cycle time in ns)

15

30

45

Score f2

2000

Figure 6.9: The second scoring function against the figure of merit (size � speed)

Loadable counter

ram-read-sbuf

isend

mr2

pe-send-ifc
15

30

27

24

21

18

3000 4000 5000 6000 7000

Figure of merit, lower is better
(Active area in N-trans equivalents) x (cycle time in ns)

12

Score f3

2000

Figure 6.10: The third scoring function against the figure of merit (size � speed)

Section 6.3: Converting the flow table to a truth table 143

Score f4

Loadable counter

ram-read-sbuf

isend

mr2

pe-send-ifc

100

150

200

230

3000 4000 5000 6000 7000

Figure of merit, lower is better
(Active area in N-trans equivalents) x (cycle time in ns)

90

2000

Figure 6.11: The fourth scoring function against the figure of merit (size � speed)

assumes that a particular method will be used to create the truth tables. Three pairs
of algorithms will be described, which I will call the Tracey method, modified Tracey
method and partial Tracey method respectively. Figure 6.12 gives an overview of
how these methods will be used, and five names that can be used to identify the
different combinations of the methods. Note that the partial Tracey algorithm for
creating truth tables is general enough to accept state assignments from other
algorithms. The state assignment algorithms tend to produce several solutions, of
which only a few are actually synthesized; the numbers on arrows in Figure 6.12 give
how many different assignments are carried forward to be made into truth tables.
The second assignment is only used if the first fails for some reason, and the third
only if both the first and second fail, and so on.

It was intended that the starred boxes in Figure 6.12 would give smaller circuits
than the other algorithms, by producing assignments with fewer state variables. In
some cases, the modified Tracey assignments were minimal, so the starred boxes
could not produce an assignment with fewer variables; in this case, the two best
minimal modified Tracey assignments were used by the partial Tracey truth table
generation algorithm. Essentially, the path labelled MP in Figure 6.12 is a fall-back
strategy for when the MPP or PP paths fail to produce a circuit. The following four
strategies were actually used in synth:

1: TT on its own
2: MM on its own
3: PP, if it fails falling back to MP
4: MPP, if it fails falling back to MP

144 Chapter 6: Synthesis

State assignment algorithms Truth table generation

Flow table

Tracey's
algorithm

Partial Tracey
algorithm

Modified Tracey
algorithm

Tracey's
algorithm

Partial Tracey
algorithm

Modified Tracey
algorithm

Pick subset of state
variables such that

each state is unique

2

2

2

8

8*

*

algorithm

TT

MM

MP
MPP
PP

Name of

Figure 6.12: Overview of the state assignment and truth table generation algorithms

I1 I2 I3 I4
a a d a a
b - b b d
c a - b c
d e d d d
e e d d c

Table 6.3: Example flow table to demonstrate Tracey’s algorithm

6.3.1 Tracey’s algorithm

One of the first asynchronous state assignment algorithms was proposed by Tracey
[176]. When it was proposed, it was very time-consuming, but as computers have
got faster it has become more tractable. Tracey’s algorithm gives unicode single
transition time (USTT) assignments, which means that every state has a unique
binary code associated with it, and every transition between states happens in a
single step, with all variables that need to change rolling together. When several
variables change at once, the order in which they change cannot be determined, so
the machine can pass through a large number of possible states before reaching
the final state. Tracey’s algorithm ensures that, regardless of the order in which
variables change, the final state will always be the same.

The algorithm will be explained with reference to the flow table shown in Ta-
ble 6.3. Assume we have a state assignment for this table involving k state vari-
ables, and let the assignment for state a be

.

a1a2 : : : ak. In column I1, state c needs
to make a transition to state a, and state d goes to state e. Several state variables
may be different between states c and a, so when these state variables change, a
number of different states may be entered before the machine settles in state a.

Section 6.3: Converting the flow table to a truth table 145

Column Dichotomies
I1 D1 = ac=de
I2 D2 = ad=b, D3 = b=de
I3 D4 = a=bc, D5 = a=de, D6 = bc=de
I4 D7 = a=bd, D8 = a=ce, D9 = bd=ce

Table 6.4: Dichotomies produced from the flow table in Table 6.3

Let [c; a] denote the set of states that may be entered when the machine goes from
state c to state a, and [d; e] be defined similarly, so[c; a] = fx1x2 : : : xk where xi = ai or xi = cig = [a; c][d; e] = fx1x2 : : : xk where xi = ei or xi = dig

If there is a state x in both [a; c] and [d; e], then state x may be entered during
a c!a transition and during a d!e transition. If this happens, the machine will
not know which state should be next after entering state x, so the machine may
malfunction. This is a critical race. If there is no such state x, then a critical race
cannot occur: the next-state entries of all states in [c; a] in column

.

I1 should be
set to a, all states in [d; e] should go to e, and then the machine must necessarily
get to the correct final state. The correctness of the state assignment depends on
whether [a; c] and [d; e] have a state in common. Notice that:

x 2 [a; c] and x 2 [d; e] () 8i : ((xi = ai or xi = ci) and (xi = di or xi = ei))
and therefore:9x : x 2 [a; c] and x 2 [d; e] () 9i : (ai = ci = 0 and di = ei = 1)

or (ai = ci = 1 and di = ei = 0)
This result is the basis of Tracey’s state assignment algorithm. It says that if

there is a state variable which takes one value in states a and c, and the other in
states d and e, then c!a and d!e transitions in the same column will be free
of critical races. Tracey’s algorithm finds all pairs of transitions in the flow table
that could cause a critical races, and makes sure that there is at least one state
variable that prevents the machine malfunctioning. The constraint that at least
one variable must be different in a and c to d and e is written ac=de, and is called a
dichotomy. The full list of dichotomies for Table 6.3 is given in Table 6.4. In column
I2, the transition from a to d must avoid passing through state b, which creates the
dichotomy ad=b, and the transition from e to d creates dichotomy b=de. In column
3, a dichotomy is created for each pair of stable states, (b; c), (d; e) and a. Certain
dichotomies are redundant and can be removed; for example D3 will automatically
be satisfied if D6 is, so D3 can be disregarded. D5 can also be removed.

Tracey’s algorithm is particularly useful for the type of implementation consid-
ered in this dissertation, because the outputs of the machine can be used as state
variables. Some of the dichotomies may already be satisfied by an output variable;

146 Chapter 6: Synthesis

Max Dichotomy Dichotomies
M1 = abc=de D1, D6

M2 = ac=bde D1, D7

M3 = ade=bc D2, D4, D6

M4 = ad=bce D2, D4, D8

M5 = a=bcde D4, D7, D8

M6 = ace=bd D7, D9

M7 = abd=ce D8, D9

Table 6.5: Maximal dichotomies for the flow table in Table 6.3

Flow table State assignment 1 State assignment 2
I1 I2 I3 I4 abc=de ad=bce ace=bd ac=bde ade=bc abd=ce

a a d a a 0 0 0 0 0 0
b - b b d 0 1 1 1 1 0
c a - b c 0 1 0 0 1 1
d e d d d 1 0 1 1 0 0
e e d d c 1 1 0 1 0 1

Table 6.6: Final state assignments for the example table

for example, if one of the outputs of the machine in Table 6.3 took the value 1
in state a and 0 in all other states, then this satisfies dichotomies D 4, D7 and D8

already, so they may be disregarded. This is equivalent to adding more variables
to an existing state assignment, which is something that most state assignment al-
gorithms cannot do, such as the algorithms due to Fisher and Wu [56], Kantabutra
and Andreou [83], and Tan [173]. Using the outputs as state variables potentially
produces a smaller number of state variables and hence a more compact imple-
mentation.

The next stage in Tracey’s algorithm is to combine dichotomies into maximal
dichotomies. If a state variable took value 0 in states a, b and c, and 1 in d and
e, then this could be written as the dichotomy abc=de; this variable would satisfy
or cover both D1 = ab=de and D6 = bc=de. Dichotomies can be combined
into larger dichotomies, and when none of the Di can be further combined with a
dichotomy formed in this way, then it is a maximal dichotomy. Maximal dichotomies
Mi are listed in Table 6.5 with the dichotomies they were made from. A bar over a
dichotomy means that the states before and after the slash have been swapped, so
if D6 = bc=de, D6 = de=bc.

The last step in Tracey’s algorithm is to pick a minimal-sized set of maximal
dichotomies such that each of the Dis that was not deleted is covered by at least
one of the chosen maximal dichotomies. Here, either fM1;M4;M6g or fM2;M3;M7g
can be chosen, giving the states assignments shown in Table 6.6.

Tracey’s algorithm for state assignment requires that the truth tables for imple-
menting the state variables are derived in a certain way. As was said above, during
a transition between two states, for example the transition from a to d in column I2,

Section 6.3: Converting the flow table to a truth table 147

I1 I2 I3 I4
a = 000 000 101 000 000

001 - 101 - 101
c = 010 000 - 011 010
b = 011 - 011 011 101

100 110 101 101 -
d = 101 110 101 101 101
e = 110 110 101 101 010

111 110 101 101 101

Table 6.7: Encoded flow table, using state assignment 1

Present state Next state, input I
a b or c
b b
c c
d e
e e

Table 6.8: Example of a non-unique next-state entry

all the intermediate states [a; d] may be entered, so all states in [a; d] must have
their next-state entries set to d. This is shown for the first state assignment in Ta-
ble 6.7, which I will call an encoded flow table, where the states [a; d] in column I 2
are shown in bold. Given this table and an input coding, it is easy to derive truth
tables for the state variables.

6.3.2 Non-unique next-state entries

The version of Tracey’s algorithm used in synth was modified to allow non-unique
next-state entries. If there are two or more next-state entries at a point in the flow
table, then a number of dichotomies may be produced of which a limited number
need to be satisfied. As an example, consider the single column of a flow table
shown in Table 6.8. The transition from state a will produce dichotomies ab=de and
ac=de, of which only one needs to be satisfied. Maximal dichotomies are produced
as before, but when picking a set of maximal dichotomies, only one of ab=de and
ac=de needs to be covered, although both might get covered by chance.

When the encoded flow table is produced, it might be the case that only one of[a; b] and [a; c] are disjoint from [d; e]; in this case, it is obvious which next-state
entry must be chosen. If both are possible, then as much information is filled in the
encoded flow table as can be determined, and Boolean equations derived for the
state variables. These Boolean equations define next-state entries for all the rows in
the column that is being considered; an example of this is shown in Table 6.9. The
next-state entry for state a will be defined, but is unlikely to be a race-free transition
to one of the required final states. In Table 6.9, the next-state entry in row a is the

148 Chapter 6: Synthesis

Present Next-state derived Next-state Next-state
state from Boolean eqs for a!b for a!c

a = 000 001 011 100
001 001 011 001
010 010 011 010

b = 011 011 011 011
c = 100 100 100 100

101 100 100 100
d = 110 111 111 111
e = 111 111 111 111
Cost: 3 2

Table 6.9: Finding the cost of the two possible next-state entries

state 001. If the next-state of a is declared to be b, then three entries in the second
column will need to be changed; these are shown in bold in the third column. The
fourth column shows the two entries that need to be changed if the next-state is c.
The number of flow table entries that need to be changed is taken as a heuristic
measure of the cost of a particular transition, so the transition with the lowest cost
is picked; here, the next-state entry of state a will be set to c, because that transition
had cost 2 rather than 3.

The algorithm in synth employs this heuristic next-state determination in three
stages. Boolean expressions are derived for the table, then on the first pass, a next-
state entry is only picked if its cost is less than half the cost of all other possible next-
state entries. Equations are then re-derived, and on the second pass, a transition is
picked if it has a lower cost than the other choices. Any draws are left until the last
pass, when hopefully, other changes to the table have broken the tie. Equations are
again re-derived, and on the third pass, any ties are broken by choosing the lowest
numbered next-state.

6.3.3 Modified Tracey algorithm

One of the problems with Fundamental Mode operation was mentioned in Chap-
ter 2: there are times

.

�1 and
.

�2 with
.

0 < �1 < �2 such that if two inputs
.

Ia and

.

Ib arrive separated by less than
.

�1, the inputs are taken to be simultaneous; if the
separation was greater than

.

�2, they are seen as two separate inputs. If the time
separation was between

.

�1 and
.

�2, then the behaviour is undefined.
The rationale for this is that for some time after an input

.

Ia arrives, the circuit
will not have reacted in any way to the input, so if another input

.

Ib arrives, the circuit
must react as if they happened together. There will be some period

.

�1 where this
is true for all inputs

.

Ia. Alternatively, if an input
.

Ia arrives and
.

Ib does not arrive
quickly, a sequence of transitions will occur inside the circuit. Then,

.

�2 is the time
taken by the longest sequence of internal transitions caused by any input. If the
separation between two inputs is between

.

�1 and
.

�2, the circuit may be between
states when the second input arrives, which can cause behaviour which was not

Section 6.3: Converting the flow table to a truth table 149

Inputs
State Output 000 001 010 011 100 101 110 111
a 1000 a b - - - - - -
b 0001 c b e d - - - -
c 0001 c - e - - - - -
d 0001 - - e d - - - -
e 0010 - - e - - - f -
f 0100 a - g - h - f -
g 0100 a - g - - - - -
h 0100 a - - - h - - -

Table 6.10: The mp-forward-pkt example again

intended. This can be seen in the flow table of Table 6.3 and the encoded version in
Table 6.7. Consider the table to be in state a under input

.

I1, and change the input
to

.

I2 and then
.

I3. Looking at the flow table, we would expect the machine to end
up in state a or d, depending on the precise timing of the inputs. Looking at the
encoded version in Table 6.7, it can be seen that a problem might occur. During
the a to d transition in column

.

I2, the machine might pass through the state 001,
and if the machine was in this state when the input

.

I3 arrived, then the next-state of
the machine is undefined.

This problem was tackled by Unger [178], who noticed that when an asynchron-
ous circuit had two or more inputs from different sources, then the time differences
between inputs could be arbitrary. Using Tracey’s algorithm for state assignment,
Unger found that by including additional constraints in the set of dichotomies that
needs to be covered, Tracey’s algorithm could be made to work for machines with
unrestricted input changes. This technique was only demonstrated for the tradi-
tional implementation of finite state machines shown in Figure 6.2, but it can also
be applied to the implementations considered here. Unger’s improved algorithm
does not seem to be quite enough to stop misbehaviour1, but because flow tables
derived from blue diagrams have a particularly simple structure, an algorithm based
on Unger’s idea can be employed.

To explain the algorithm, I will used the mp-forward-pkt flow table that was
given earlier, shown again in Table 6.10. Consider the b!e transition in column
010. Tracey’s algorithm produces the dichotomies be=fg, ce=fg and de=fg for this
column, which reflect the fact that the sets of states [b; e], [c; e] and [d; e] must
each have no intersection with the set [f ; g]. Unger’s modification to this algorithm
says that if the machine was in state b in column 001, and the inputs changed from
001 to 000 and then quickly to 010, then the machine could be half-way between
states b and c when the inputs became 010. We must therefore be able to tell the
difference between any state x 2 [b; c] in column 010 and the set of states [f ; g] in

1Unger’s extra dichotomies are not quite enough to make sure that the machine functions correctly;
assignments can be constructed that satisfy Unger’s conditions but fail on certain combinations of
inputs. Unger did publish corrections [179], but this was not one of them.

150 Chapter 6: Synthesis

column 010, so the dichotomy bc=fg must be added. A similar argument adds the
dichotomy bd=fg.

However, this is not quite enough. It is not sufficient to be able to tell the
difference between any state x 2 [b; c] and [f ; g], because from every such x,
a transition to state e must be made. We must ensure that [x; e] and [f ; g] are
disjoint for each x 2 [b; c]. Define [S; T] for sets S and T as:[S; T] = fstates x such that 8i : (xi = si for some s 2 S

or xi = ti for some t 2 T)g
so that [

x2[b;c][x; e] = [[b; c]; e] = [b; [c; e]] def= [b; c; e]
In the example flow table, we must make sure that [b; c; e] is disjoint from [f ; g],

so we should add the dichotomy bce=fg. A similar argument also adds bde=fg.
When creating the encoded flow table, all states in [b; c; e] in column 010 should
have their next-state entries set to state e, and the same for all states in [b; d; e].
The general algorithm is that for all stable states n and t in a column, and for all
multiple input changes h; i; : : : n and p; q; : : : t that may enter states n and t, the
dichotomy hi : : : n=pq : : : t should be added. These dichotomies will cover all the
Tracey dichotomies, so the Tracey dichotomies can be left out.

Tracey also gave a second algorithm [176], which produces dichotomies for
every column of the form s1s2 : : : sks=t1t2 : : : tlt, where s1; s2; : : : sk are all the
states which have a next-state entry of s in the column under consideration, and
similarly for t1 : : : tl. This algorithm is faster than Tracey’s first algorithm but may
produce an assignment with more state variables. The algorithm proposed here
can be seen to be part-way between Tracey’s first and second algorithms.

6.3.4 Partial Tracey algorithm

Tracey’s algorithm often picks more state variables than approaches that allow a
transition to happen in a number of steps, such as Fisher and Wu’s algorithm [56] or
typical speed-independent approaches. Because of this, an algorithm was written
that still allows state variables to be added to an existing assignment, but only
adds enough state variables to ensure that all states have a unique encoding, while
satisfying as many Tracey constraints as possible. Every Tracey constraint that is
satisfied allows a transition of the flow table to happen as a fast, single step, but
some transitions may need to be routed through intermediate states in two or more
steps.

The algorithm used is similar to Tracey’s algorithm. For any two states x and y
that have the same values of all outputs, the dichotomy x=y is added to a set E =fE1; : : : EjEjg of essential dichotomies. If an essential dichotomy is not satisfied
by the state assignment, then two states will be indistinguishable, which is clearly
wrong. The Tracey dichotomies are then calculated as above, and placed in a set
N = fN1; : : : NjNjg of non-essential dichotomies. If a non-essential dichotomy

Section 6.3: Converting the flow table to a truth table 151

ab=cd is not satisfied, then one or both of the transitions a!b and c!d will need
to be routed via an intermediate state. Associated with each member of N is a count
of how many times it has been seen as a Tracey dichotomy, so that the algorithm
can make a decision to route transitions that occur often in a single step at the
expense of transitions that only happen infrequently.

The set of maximal dichotomies M = fM1; : : :MjMjg can be computed as in
Tracey’s algorithm from both N and E. The task then is to find a minimal set of
elements of M such that all members of E are covered, and the maximum number
of members of N are covered. The method used was based on a solution for the
knapsack problem suggested by Dr. A. C. Norman. Rather than use an exhaustive
search or some modification of such a method, Dr. Norman’s suggestion is to formjMj solutions S1 : : : SjMj by starting off solution Si by including Mi in the set of
maximal dichotomies picked, and then picking further maximal dichotomies in each
set by greed. A score function was defined for a set of maximal dichotomies as the
number of members of E that were covered times 216, plus the number of members
of N that were covered. The maximal dichotomy which raises the score function
most is then repeatedly picked until all members of E are covered, and this set of
maximal dichotomies marked as a solution. More members of M are then picked,
until the number of maximal dichotomies picked is one less than the number of
modified Tracey state variables. The reason for also creating solutions with more
than the minimum number of state variables is that it might not be possible to
route all transitions in the flow table derived from the minimal solution; having an
extra state variable or two might allow all the transitions to be routed properly. If no
solutions can be found with less state variables than the modified Tracey algorithm,
the MP algorithm in Figure 6.12 is used instead.

The above algorithm produces a large number of possible state assignments,
which is also true to a lesser extent of the other two algorithms. Which assignment
should be picked is dealt with in the next section.

Creating the encoded flow table is similar to the method used for multiple next-
state entries in the Tracey algorithm described above. Whenever two or more state
variables need to change during a transition, there is a choice of whether they
should change together, if possible, or one at a time. For example, when going
from state 00 to 11, the choices are 00!01!11, 00!10!11, or the Tracey-type
transition 00!11 with 01!11 and 10!11. When only one variable changes, there
is no choice. The algorithm proceeds similarly to the first algorithm: all transitions
that have no choices are filled in, Boolean expressions derived, and then a three-
step procedure carried out where low-cost routes through the flow table are taken
in preference to high-cost routes. If only one route is possible for a transition, then
that route is taken as soon as possible to avoid the route being blocked by another
transition. It is possible that the encoded table cannot be filled in correctly, in which
case the state assignment is rejected.

152 Chapter 6: Synthesis

Scoring function Cycle time Size of circuit
19 17.4890ns 172
20 17.4845ns 191
21 17.5675ns 199
22 18.0455ns 205
22 16.9867ns 209

Table 6.11: Result of scoring function for state assignments for isend

Pruned BD no. Scoring function Cycle time Size of circuit
0 17 19.1455 177
1 20 19.9898 179
1 22 19.7032 198
2 23 21.8089 185
2 29 21.6518 211
3 22 19.7329 184
4 23 19.2386 184
6 23 20.1866 184
7 23 22.3785 190
7 29 22.8651 220
9 19 21.2238 176
9 23 20.6630 198

Table 6.12: Result of scoring function for state assignments, loadable counter

6.3.5 Choosing the best state assignments

All of the above state assignment algorithms can produce several possible state
assignments. It may be the case that certain assignments may produce a circuit
which fails verification, or the encoded flow table cannot be filled in for the case
of the partial Tracey algorithm, so several state assignments may be synthesized,
but it would be good to order the assignments so that heuristically good circuits
will be produced first. This requires a scoring function for the state assignments.
Several scoring criteria were tried, but the results were mixed. The best function was
the sum of the number of state variables and outputs that were different between
states a and b for all transitions a!b in the flow table. Some results are shown
in Tables 6.11 and 6.12, where it can be seen that a low score corresponds to a
small implementation, but not necessarily a fast one. These two circuits, isend
and the loadable counter, were chosen because they had several state assignments
with the modified Tracey method, but many circuits for the loadable counter failed
verification.

Section 6.4: Converting truth tables to circuits 153

6.4 Converting truth tables to circuits

6.4.1 Derivation of the P and N trees

Section 6.1.2 gave the form of circuits that will be considered, as a CMOS complex
gate followed by an inverter, with an optional weak keeper inverter. If the P and N
trees of the complex gate are derived separately, then an SOP/SOP gate results as
described in Section 2.6.3, which is immune to static hazards. It is important that
the P tree and N tree do not both conduct at the same time, partly because this
wastes power, but more importantly because the power estimation tools that will be
described later will fail to pick this up. It is permissible for neither tree to conduct
for some input combinations.

The usual tool for deriving Boolean expressions from truth tables is espresso
[153], which is freely available from the University of California at Berkeley. One
way to find a pair of expressions for the P and N trees from a truth table containing
values from f0,1,Xg is:s Derive the P tree directly using espresso.s Fill with 1’s all entries in the truth table that are covered by the expression for

the P tree.s Invert the truth table and run espresso to derive the N tree expression.

Equivalently, the N tree can be derived first and the P tree second. These methods
differ, because the second time espresso is run, the flow table has fewer don’t-
care entries so the problem is a little more constrained. Because it is not obvious
which order the trees should be derived in, both orderings are tried and the one that
produces that smallest gate chosen. When judging the size of the gate, P transistors
are assumed to be twice the size of N transistors, although the exact figure used
makes little difference.

The espresso program produces minimal sum-of-product expressions, such as
ab+acd, rather than attempting to combine terms into a simplified expression such
as a(b+cd). This simplification appears to be usually done with a tool full-simplify,
but that was not available for download from Berkeley, so a small simplification
function was written using a partial search followed by a greedy approach.

An alternative to expresso was written, using a modified Quine-McCluskey al-
gorithm [123, 150]. This algorithm is a little faster than espresso on the small
problems that are encountered in this dissertation, and gives solutions of about the
same quality. The speed difference may only be due to the fact that espresso is a
separate program which needs to be launched as a child process, which takes a
comparatively long time. On large problems, the Quine-McCluskey algorithm takes
much longer than espresso. This algorithm was written so that a few ideas could
be tested, such as:

1. Whether deriving the N and P trees simultaneously by constraining the cov-
ering problem part of the Quine-McCluskey algorithm would provide a better
solutions than separately deriving the P and N trees.

154 Chapter 6: Synthesis

2. Whether combining prime implicants before the covering problem is solved
could give a better solution. For example, if ab and acd were prime implicants
of cost 2 and 3 respectively, is it worth combining these into a single PI-like
term a(b+ cd) of cost 4?

3. Whether giving an n-variable prime implicant a cost of n2 rather than n would
encourage many short transistor stacks, which provide better drive to other
gates.

It transpires that none of these ideas gives significant benefits. The first two
give gates that are smaller by about 0.5% on average, but increase the run time
by a factor of 20 to 100 times. The third modification, interestingly, has absolutely
no effect; it seems that a minimal solution is still a minimal solution under any
reasonable cost function. Using n3 or even 2n as a cost function also makes no
difference.

6.4.2 Types of gate created

As was noted in Chapter 2, two types of CMOS gates are typically used by asynchron-
ous tools: dynamic gates with keeper inverters, or fully static gates. An example of a
two-input C-element implemented as each kind of gate is shown at the top left and
top right of Figure 6.13. Although the dynamic version looks smaller and probably
faster, the weak inverter is quite large and slows the circuit down, so there is not
much to pick between the two circuits. In practice, for small circuits the static ver-
sion is the fastest and smallest, but for large gates with many inputs, the dynamic
version is smaller and faster.

Consider what would happen if it was known that the input combination a = 1,
b = 0 to a two-input C-element would only persist for a small number of gate
delays. Such conditions can occur when a and b are state variables internal to
the circuit, and the only time that a = 1 and b = 0 is during a state transition
ab = 00!10!11. In this case, the implementation at the bottom of Figure 6.13
could be used, which is much faster and smaller than the other two circuits. Such
gates can be described as pseudo-static, because they only rely on dynamic charge
retention for a few gate delays, and never in a stable state of the circuit.

Creating pseudo-static gates requires that the truth tables take values from the
five-membered set f0,0,X,1,1g, where 1 is a strong logic one and 1 is a weak logic
one, similarly for 0 and 0. Strong logic values are those that must be driven, such
as stable states of the circuit and when a state variable is changing its value. Weak
values are where the circuit is changing rapidly, so dynamic charge retention will
be sufficient to hold the value. An example is the three-step transition 0001!
1001!1101!1111, where the stable start and final states are strong values, as
are any variables that are changing state. When creating P and N trees for a pseudo-
static gate, the five-valued truth tables are translated to ordinary three-value tables
as in Table 6.13, where is it assumed that the output of the complex gate is inverted.

Pseudo-static gates can be viewed as being between dynamic gates with keepers
and fully static gates, as Table 6.14 shows. Because the P and N trees are derived

Section 6.4: Converting truth tables to circuits 155

a

b

Dynamic with keeper

a

b

Fully static

a

b

Pseudo-static, which can be used if a=1 b=0 is only transitory

Figure 6.13: Three ways of implementing a C-element

Symbol State of P-tree State of N-tree
1 = Strong 1 off on
1 = Weak 1 off don’t care

don’t care don’t care
X = Don’t care

(But not both on)
0 = Weak 0 don’t care off
0 = Strong 0 on off

Table 6.13: The meaning of strong and weak values at the transistor level

156 Chapter 6: Synthesis

Type of gate Output defined for Needs
places where the stable reachable unreachable keeper
variable changes states states states

Static (s) Yes Yes Yes Yes
Not quite static (s2) Yes Yes Yes
Pseudo-static (ps) Yes Yes
Dynamic (d) Yes Yes

Table 6.14: Comparison of static, pseudo-static and dynamic gates

separately for a gate, there may be input combinations that do not cause the output
to be driven, producing what is labelled in Table 6.14 as an s2 gate: one that is not
static, but behaves as a static gate for all input combinations that are not don’t-
cares. Some results obtained by using each of the four kinds of gates s, s2, ps and
d will be given in Chapter 8.

When creating a dynamic gate with keeper, synth always checks to see whether
the resulting gate is actually static, and if so removes the keeper inverter. A similar
degenerate case is when the complex gate turns out to be just an inverter; in this
case, the combination of the complex gate followed by an inverter can be replaced
with a wire. This only happens if a flag is set in synth, because the implementation
will then be able to respond in zero time, which may break timing assumptions in
other modules.

Currently, the choice of which type of gate to use is left up to the designer. A
possible extension is to employ a heuristic that can determine whether a pseudo-
static or dynamic gate with keeper would be best in a certain circuit, by looking at
both and comparing their size and speed.

6.4.3 Other considerations

Isolation from outside effects

The MEAT design style [34] attempted to keep wire forks away from the interfaces
between modules, by placing buffers before and after modules. If a wire is forked
on entry to a module, then a slow ramp voltage on that input could cause gates to
switch at noticeably different times, causing the circuit to fail. If a wire at the output
of a module is forked back into the module, then a large load on that output may
cause the output to be a slow ramp, causing the same kind of problem. Whenever
slow ramps or large loads may be encountered, inverters should be placed before
all inputs and after all outputs. When very slow input ramps could occur, Schmitt
trigger inverters could be used. This is a trivial modification to the synthesis algo-
rithm, because it simply inverts all input and all outputs.

Section 6.4: Converting truth tables to circuits 157

Transistor sizing

Transistor sizing is something that is often done at the end of the design process,
using simulators such as SPICE to shave a few percent off the delays in a circuit.
A method to create a good first approximation to an optimal sizing of transistors,
called Logical Effort, was given by Sproull and Sutherland [169]. This requires
using several different sizes of transistors in a single gate, which will render the
timing algorithms that will be described in the next chapter almost useless. The
timing algorithms rely on a large number of gates looking relatively similar, so the
same timing information can be used for many gates; this is made much easier by
building all gates with a certain size of P and N transistor.

However, it is possible to make the inverter that follows the complex gate (see
Figure 6.3) a different size from every other gate, because this will only require
the timing simulator to learn about one new kind of gate. In SPICE trials on small
circuits, it was found that double-size inverters gave the lowest cycle times, pro-
ducing circuits that were about 10% faster than using single-size inverters. Only
another 2% was gained by using Logical Effort in the examples tried, although this
is almost certainly a best-case result for my approach; on more complex circuits,
Logical Effort could probably give more substantial improvements.

Although synth does not use Logical Effort or other transistor sizing algorithms
for every circuit before timing simulation, there is no reason why the final imple-
mentation cannot be sized correctly.

158 Chapter 6: Synthesis

.

Timing and Verification
.

Timing and Verification
.

Timing and Verification
.

Timing and Verification
.

Timing and Verification 7
One . . . two . . . Wait!
On three, or after three?
– Murtaugh, Lethal Weapon 3

I find your lack of faith disturbing.
– Darth Vader, Star Wars

Abstract

This chapter discusses previous approaches to gate-level timing, and finds that
these will be either too slow or too inaccurate to be used in this dissertation. A new
model of slope waveforms in circuits is presented, which allows an accurate gate-
level simulator to be written. This is then combined with previous work on binary
bi-bounded simulation to produce a technology-specific verification algorithm.

Structure of this chapter

Previous timing and simulation strategies are described in Section 7.1. Section 7.2
compares the accuracy of these strategies with a new method proposed in this
dissertation. The newmethod is used in a timing simulator described in Section 7.3.
Finally, verification of circuits is described in Section 7.4.

7.1 Previous timing strategies

This section gives a quick overview of techniques that have been used for timing
of CMOS circuits. It is not exhaustive, and probably could never be; a good timing
algorithm would have great commercial advantages, and is unlikely to be docu-
mented in academic journals.

7.1.1 Analogue simulators

The earliest predictors of circuit timing information were the analogue simulators,
such as SPICE [138] and ASTAP [187]. These programs numerically solve systems
of differential equations expressing the voltages and currents in the test circuit, and
take a long amount of time for circuits of only a few hundred transistors. Despite

159

160 Chapter 7: Timing and Verification

this disadvantage, SPICE has become almost ubiquitous, and it even now used
in preference to other simulators even though it is over twenty years old. This
popularity is due in part to the fact that the transistor models in SPICE are very
detailed, so accurate technology files can be produced for any given fabrication
process. SPICE is so well-trusted that other simulators are usually judged by how
close their predictions are to those of SPICE.

Several methods have been recently tried to speed up the execution of ana-
logue simulators. Ruan et al. [156] used piecewise constant I-V curves for all circuit
elements. Piecewise constant currents imply piecewise linear voltages, so the sim-
ulation becomes more event-based in character, because it is easy to tell when a
linearly-changing voltage will exceed a particular value. Devgan [50] proposed the
use of charge-voltage simulation rather than current-voltage, which can speed up
the inner loop of SPICE by a factor of two. Other improvements and approximations
were also suggested that gave signification speed-ups.

7.1.2 Event simulators

Analogue simulators were found to be too slow for tasks such as transistor size
optimization, where repeated re-simulation of a circuit is required. Fast methods
of estimating gate delays had to be found. Some simulators, such as DIANA and
SPLICE, combined the old analogue techniques for critical paths with newer, event-
based methods for all other gates, but these are not really fast enough for optimiza-
tion problems. Rather than the transistor-level approach of SPICE, methods were
developed that consider gates to be atomic units in a circuit, a practice known as
macromodelling.

Three main types of delay estimation can be identified, based on what the model
assumed about the effects of the input waveform to a gate:s Assume the input waveform can be ignored. This was the approach taken

by Berkelaar et al. [13], because they needed linear equations for the power
vs. delay optimization that they were doing. They used the formula � gate =�int+c:Cload, expressing the gate delay solely in terms of the internal no-load
delay �int plus a constant times the load capacitance.s Assume the input waveform depends only on a property of the previous gate.
Hedenstierna et al. [72] made several simplifying assumptions to the equa-
tions governing a CMOS inverter, such as assuming the input was a linear
ramp and that a primitive MOSFET model could be used. They found that
the delay tds of an inverter is equal to tds + tdi, where tds is the step-input
delay of the inverter, and tdi is proportional to tds�1, the step-input delay of
the previous gate. This model was used by Hoppe et al. [75] to optimize cir-
cuits for power and speed, and extended by Hallam et al. [68] by making the
dependence on tds�1 linear rather than proportional.s Assume the input waveform can be approximated by a particular curve, and
parameterize the gate behaviour in terms of the rise time of this curve. Typical

Section 7.2: Development of an accurate timing model 161

curves are a linear ramp through the 10% and 90% points [185, 196], or
through the 20% and 80% points [17, 81]. Other curves have also been used,
such as exponentials [17] and linear ramps with exponential tails [122].

Of the three approaches, the last seems to be capable of giving the best results.
Again, approaches to delay determination using slope-based methods can be split
into a number of categories:s Yang and Holburn [196] used a semi-analytic method to determine gate delay.

The input waveform could be of three types: fast, so that the input waveform
did not affect gate delay or the output waveform, hence an RC delay approx-
imation could be used; slow, where a direct solution of the transfer equation
of the gate could be used; or intermediate, which used parts of both other
solutions. Vemuru and Smith [185] later split the slowest classification into
two, improving accuracy.s Brocco et al. [17] measured the input slope vs. output slope and gate delay
characteristics, and found that the graphs were fitted well by two and three
piece linear approximations. A set of approximations is stored for each differ-
ent kind of gate that is used in a circuit. Very similar graphs were also given
by Compass Design Automation, when talking about their new commercial
simulator [36].s Jun, Jun and Park [81] gave a method for estimating the delay of all kinds
of gates with only one set of parameters. They found that the graphs of gate
delay �d vs. input slope �in were almost linear, so assumed that �d = a�in+b,
and then expressed a and b as quadratics in the output load Cout and the
effective width of the conduction path inside the gate �. This gave a set of 60
parameters that could be used to determine the delay of any gate.

It is difficult to compare accuracy of these methods; even though most were
compared to SPICE simulations, the choice of MOSFET model will affect the validity
of the results. An example is the work of Hedenstierna et al. [72], where good
agreement with SPICE results was reported. The only SPICE model available at
the time was the primitive level 1 model; these same Shichman-Hodges equations
were the ones that were used by Hedenstierna et al. in their work, so it is not
surprising that their results were close to SPICE. The level 6 SPICE model will be
used in this chapter for all simulations, which is a model applicable to submicron
and deep submicron transistors, and is described in [159]. This may give results
that are different from the papers listed above, which were mostly written before
1990, when the level 5 (BSIM2) and level 6 SPICE models became available.

7.2 Development of an accurate timing model

This section covers the development of the gate-level timing approach that is used
in this dissertation. Accuracy is paramount, because a large number of circuits must

162 Chapter 7: Timing and Verification

be timed, with small variations in delays between them. Section 7.2.1 looks at the
different methods of estimating the effects of the input waveform slope on the delay
of a gate, to determine whether any existing methods will be sufficiently accurate.

7.2.1 Evaluation of input slope models

The delay of a CMOS gate depends on its geometry, the load on its output, and
the waveform which it receives from the previous gate. Any effective gate-level
simulator must have some way of determining the slope of the input waveform, and
determining its effects on the gate delay and output slope. Four ways of measuring
the input slope were found in the literature:

1. Assume all necessary knowledge about the input slope is captured by the
previous gate’s step-input delay [68, 72, 75].

2. Measure the time between the 10% and 90% points of the input waveform,
and use that as the slope [185, 196].

3. Measure the time between the 20% and 80% points of the input waveform,
and use that as the slope [17, 81].

4. Do a least-squares fit of a linear waveform with an exponential tail [122].

Each of these methods attempts to capture the important properties of a wave-
form in a single real number, so the effectiveness of each method will ultimately
depend on how much information is not reflected in this number. Consider a falling
waveform x produced by a 3-input NAND gate, which has three N-transistors in the
conducting path. The gate is loaded by two inverters, and driven from an inverter
which itself has a linear ramp voltage applied; this is shown at the top of Figure 7.1.
Each of the methods 1–4 will be able to assign a particular slope s x to waveform x.
Now consider replacing the NAND gate by an inverter, producing waveform y, but
adding an additional capacitative load so that the slope sy of this waveform is the
same as the original slope sx of the NAND gate. This is illustrated at the bottom
of Figure 7.1. If it was indeed the case that the slope values s x and sy captured all
the relevant information about the waveforms x and y, then any gate G driven by
waveform x should have exactly the same delay Gx as the delay Gy when it is driven
by y. By measuring the difference between Gx and Gy for a variety of gates G and
loading conditions on the output of G, it should be possible to see how good each
of the methods 1–4 are.

Two further methods will also be compared, which I believe are new to this
dissertation. When macromodelling gates, a simulator does not need to create a
waveform with a given slope; it is only necessary to be able to measure a slope
parameter from a waveform. A method is needed that will derive a single number
from a waveform, that gives a maximal amount of information about what effects
that waveform will have on the delay on the gate it is driving. An ideal measuring
device would therefore seem to be a CMOS gate, giving the following method for
determining the slope of a waveform:

Section 7.2: Development of an accurate timing model 163

Perfect
buffer

Perfect
buffer

Additional
capacitance C

Capacitance C
adjusted so these
two waveforms
appear to have
the same slope in
a particular model

Test waveform x

Test waveform y

+V

The box labelled “perfect buffer” is a SPICE model for unity-gain voltage controlled voltage

source. It copies the voltage on its input, presenting no load to the NAND gate or inverter.

Figure 7.1: NAND gate and inverter used to produce test waveforms

5. Feed the waveform into an inverter I loaded with two other inverters, and take
the delay of I as an indication of the slope of the waveform.

It was later found that an inverter is a particularly atypical gate, being the small-
est possible CMOS gate, so the gate shown in Figure 7.2 was used instead, leading
to method 6:

6. Feed the waveform into T, the typical gate of Figure 7.2, loaded with two
other such gates, and take the delay of T as an indication of the slope of the
waveform.

To compare these six methods, each must be used to measure the output slope
sx of the NAND gate in Figure 7.1, then a linear search or interval bisection used
to determine the value of C in the lower half of Figure 7.1 that makes the slope s y
equal to sx. The measured values of sx, initial value of sy with C = 0 and required
values of C are given in Table 7.1.

Next, waveforms x and y must be fed into some example gates with different
loadings, and the delays of these gates measured and compared. The gates that
were be used are given in Figure 7.3; they were each be loaded by one, three
and five inverters. For each of gates A–D and each load, Table 7.2 gives the delay
Gx of the test gate when driven with waveform x, and for each method 1–6, the
difference between Gx and the Gy. It can be seen that errors of 7–12% are inevitable

164 Chapter 7: Timing and Verification

R1

C3C1 C2

This gate is equivalent to a tri-state inverter in the enabled state. All gates in this test have

a small length of polysilicon attached to their inputs, modelled here by the �-network
.

R1,

.

C1 and
.

C2, and a small length of metal1 on their output, modelled by a pure capacitance

.

C3. Both lengths were 20 times the gate width, assuming a particular set of process

parameters.

Figure 7.2: A more typical gate than an inverter

Value on NAND Value on inverter Additional capacitance C

sx with C=0, sy needed to make sx = sy
Method 1
(previous gate delay)

0.57279 ns 0.23006 ns 37.151 fF

Method 2
(t90% � t10%)

1.31403 ns 0.46932 ns 45.637 fF

Method 3
(t80% � t20%)

0.91976 ns 0.33579 ns 47.408 fF

Method 4
(fit linear/exp tail)

0.85538 ns 0.30654 ns 45.169 fF

Method 5
(delay of inverter)

0.48941 ns 0.29594 ns 68.699 fF

Method 6
(delay of typical gate)

0.66273 ns 0.44229 ns 65.841 fF

Table 7.1: Additional capacitance required to make s x = sy for methods 1–6

Section 7.2: Development of an accurate timing model 165

A

B
1

1

C
0

0

D

1

1

0

Figure 7.3: Four example gates used and their circuits

with the existing methods, but the two proposed methods for measuring waveform
slopes have errors of around 2%. These figures give an indication of the possible
accuracy of a gate-level simulator based upon each of the six methods, so imply
that a simulator using methods 5 or 6 would perform significantly better than one
using methods 1–4. Method 6 was used for the simulator described in this chapter.

7.2.2 Effects of discrete gate modelling

Any gate-level simulator assumes that a circuit can be split up into its constituent
gates, and when timing algorithms are applied to these gates in isolation, the re-
sulting gate delays are approximately equal to the gate delays in the original circuit.
This section will take an example circuit and break it up into single-gate pieces,

166 Chapter 7: Timing and Verification

Gate & Actual Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Load delay prev gate 10%–90% 20%–80% lin/exp inverter typ. gate

1 364.65 ps – 17.0% – 12.5% – 11.6% – 12.7% – 1.1% –2.5%
A 3 574.27 ps – 14.6% – 10.1% – 9.2% – 10.4% +0.9% –0.4%

5 731.52 ps – 12.8% – 8.4% – 7.6% – 8.7% +2.4% +1.2%
1 375.95 ps – 13.2% – 10.8% – 10.3% – 10.9% – 5.8% –6.3%

B 3 583.67 ps – 12.5% – 9.1% – 8.4% – 9.3% – 1.4% –2.3%
5 743.71 ps – 11.3% – 7.7% – 7.0% – 7.9% 0.9% –0.1%
1 662.79 ps – 14.5% – 9.8% – 8.9% – 10.1% +2.3% +0.9%

C 3 996.99 ps – 9.5% – 6.3% – 5.7% – 6.5% +2.5% +1.4%
5 1333.08 ps – 6.9% – 4.6% – 4.1% – 4.7% +1.9% +1.1%
1 651.66 ps – 14.5% – 9.8% – 8.8% – 10.1% +2.2% +0.8%

D 3 903.45 ps – 11.1% – 7.1% – 6.3% – 7.4% +3.3% +2.0%
5 1143.67 ps – 9.0% – 5.6% – 4.9% – 5.8% +3.2% +2.2%

Average magnitude
of error

12.2% 8.5% 7.7% 8.7% 2.3% 1.8%

Table 7.2: Discrepancies between gate delays when driven by “identical” waveforms

a

b

c

q

a

b

c

q

a

c

b

c

a

q

Figure 7.4: Static C-element symbol that will be used, and a CMOS implementation

looking at the errors that are introduced along the way.
The example circuit used in this section is the Furber/Day fully decoupled latch

controller [59], with some modifications:s Fully static C-elements are used, such as that shown in Figure 7.4. This is
partly because Davis suggested that fully static gates are faster than dynamic
ones [45], but mostly because I thought that dynamic gates with keeper in-
verters would be harder to handle in a gate-level simulator. It turns out that
the theory presented here also works well with dynamic gates.s Inverted outputs from a C-element are taken from the output of the combi-
national part of the C-element, rather than hanging another inverter off the
output inverter. This is merely to give a more interesting example.

A somewhat artificial set of inputs is used to get a transition that will pass

Section 7.2: Development of an accurate timing model 167

Lt+

1

1

0

0

Lt

NAin-

Outside
load

Ain+ NB-

B

NA+

..

.Latch drive

A- NRout+ Rout-

Figure 7.5: Example circuit from [59], redrawn to highlight interesting transitions

1

1

1

1

0

0

0

0

0

1

0

0
0

1

0

0

Lt+

1

1

1

1

1

NAin-

Outside
load

Ain+ NB-

1

B

NA+

..

.Latch drive

A- NRout+ Rout-

0 0

00

Figure 7.6: Straight-line version of Figure 7.5

through all four C-elements, although this set of transitions can occur in practice:Rin and Aout are held at logic 1, while a rising edge is observed leaving the latch
drive buffer at Lt. The circuit from [59] is redrawn in Figure 7.5, highlighting the
following set of transitions that will occur: Lt+!NAin-!Ain+!NB-!NA+!A-!NRout+!Rout-. NAin refers to the signal on the internal node of the C-
element that produces the Ain signal.

The first step towards isolating the gates in this example is to turn the circuit into
a linear sequence of gates, each of which drives the next gate plus some additional
load. This could be viewed as “straightening” the circuit. In Figure 7.5, the gate
that creates the NB signal drives the next gate in the chain, and an inverter, but it
also drives an earlier gate that creates the NAin signal. In the straight-line version
of this circuit, shown in Figure 7.6, the NB gate now drives a copy of the NAin gate
instead. It would be expected that the gate delays in the straight-line version would
be almost the same as in the original; after all, every time a gate switches, it has
the same values on all inputs in both versions of the circuit, and it drives the same
gates again with the same values on all inputs. Table 7.3 gives the gate delays
in both versions, where it can be seen that this is not the case. Gate delays vary
by an average of 7%, but the total delay through the circuit is only out by 1.5%.
This pattern has been observed on several test circuits. This result indicates that
individual gate delays may be highly inaccurate in a gate-level simulator, although
the errors tend to cancel in long chains of gates, giving a reasonable accurate final
result.

168 Chapter 7: Timing and Verification

Delay in original Delay in straight-line DifferenceLt+!NAin- 246ps 254 ps +3.0%NAin-!Ain+ 335ps 302 ps – 9.6%Ain+!NB- 399ps 419 ps +5.1%NB-!NA+ 488ps 554 ps +13.5%NA+!A- 377ps 350 ps – 7.3%A-!NRout+ 304ps 317 ps +4.3%NRout+!Rout- 240ps 227 ps – 5.4%
Total 2 390ps 2425 ps +1.5%

Table 7.3: Effect of straightening the example circuit

Lt+

1

1

1

Load equivalent to a non-switching gate

Load equivalent to a switching gate

. . .

NAin- Ain+ NB-

Perfect
buffer

Perfect
buffer

Perfect
buffer

0 0

Rout-

NRout+

Figure 7.7: Example circuit broken up by perfect buffers

When the circuit has been straightened out, then the second step can occur:
treating each gate in isolation. Each gate will have a known input waveform and
a known loading. At this stage, the load on each gate will be approximated, but
the input waveform will be an exact copy of the output of the previous gate. This
is illustrated in Figure 7.7, where each gate has been separated from the adjacent
gates by a perfect buffer, and a load added on the output of the gate equivalent
to the load it had before. Two kinds of load on a gate G were identified: gates
that will switch depending on the output of G, and ones that will not. Gates that
switch present a higher load on their input than ones that do not, because of the
Miller effect [76, page 102]. The effects of replacing each kind of load with either
an inverter, the typical gate used before, or a pair of P and N transistors simulat-
ing a non-switching gate are given in Table 7.7. These results show that it is not
worth making the distinction between switching and non-switching loads. Earlier—
probably less trustworthy—results showed that it was worth making this distinction,
so the timing models used in the synth program were written to expect separate
parameters for switching and non-switching loads, and it is that method which will
be described in this chapter. Having two types of load makes the procedure only
slightly more complicated, and makes little difference to the results.

To summarize this section, circuits experience large errors in individual gate
delays when they are broken up into constituent gates, but these errors tend to
cancel out in a long chain of gates. In the example circuit, errors occur of up to
13% in individual gate delays, but the errors in the delay of the chain of gates are

Section 7.2: Development of an accurate timing model 169

Gate substituted Gate substituted for Delay through Error relative
for a switching load a non-switching load the chain to original

of gates circuit
I I 2 664ps 11.5%
I P 2568ps 7.4%
T P 2372ps 0.8%
P P 2407ps 0.7%

I: Inverter
T: Typical gate of Figure 7.2
P: Pair of transistors with their source and drain connected,

representing a non-switching gate, as shown on the right

Table 7.4: Effects of different substitute gates on the delay of the example circuit

1.5% and 0.7% for the two stages described, which partly cancel to give an overall
error of 0.8%. This implies that any gate-level simulator can only hope to get to
within about 2% of SPICE; of course, SPICE is not accurate to 2%, so the distinction
is academic.

7.2.3 Estimating gate delays

The next task is to produce a method which can calculate the delay d of a gate G
and its output slope so, when given the input slope s i, measured as in method 6 of
Section 7.2.1, and the load l on the gate. The method used was to find a number
of basis functions fn(l; si), and to express the delay for a particular gate as a sumP

n anfn(l; si) for a set of constants an, which are determined from SPICE runs. This
is similar to the work by Jun, Jun and Park [81], except that they used quadratics
rather than general basis functions, and they found a single set of constants for all
gates, whereas this work finds these constants on a per-gate basis.

To determine the dependence of the gate delay and output slope on the load
and input slope applied to the gate, SPICE simulations of the four example gates in
Figure 7.3 were carried out, with a variety of input slope and load conditions. The
resulting graphs of gate delay and output slope against input slope and load are
shown in Figures 7.8–7.11.

The curve for gate delay as a function of the load on the gate (Figure 7.8) looks
linear, but the worst-case error in fitting a straight line is 2.5% with an RMS error
of 0.82%. This worst-case error is a little higher than was hoped for, so a linear
approximation will not be quite good enough. A quadratic approximation could be
used, as in the work of Jun et al. [81], giving an RMS error of 0.25%; the problem
with this is that the delay against load curve will tend towards a straight line as the
load gets large, but a quadratic will not show this behaviour. A better approximation
would be a linear expression plus something that tends to zero as the load get big,
such as 1

load+k for some constant k. Choosing k arbitrarily to be 2 gives an RMS error
of 0.11% when fitting the delay against load curve, and gives the right behaviour for
large loads. This argument can also be applied to the graph of output slope against

170 Chapter 7: Timing and Verification

two other gates
four other gates

Input slope corresponds to
a load on the last gate of:

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

B

A

B

A

D
D

C

C

GATE DELAY (ns)

LOAD ON
GATE OUTPUT
(number of other gates)

Figure 7.8: Graph of gate delay against output load

1 2 3 4 5 6

B

A

MEASURED

D

C

OUTPUT SLOPE (ns)

0.8

0.7

0.6

0.5

0.4

LOAD ON
GATE OUTPUT
(number of other gates)

Figure 7.9: Graph of output slope against output load

Section 7.2: Development of an accurate timing model 171

Gate loaded with 2 other gates
Gate loaded with 4 other gates

(Load on
previous gate)(2) (4) (6) (8) (10)

B

A

A

B

C

C

D

D

GATE DELAY (ns)

1.2

1.0

0.8

0.6

0.4

0.2

MEASURED
INPUT SLOPE (ns)

0.70.60.50.4

Figure 7.10: Graph of gate delay against input slope

MEASURED

A

B

MEASURED

D

C

OUTPUT SLOPE (ns)

0.6

0.5

0.4

0.4 0.5 0.6 0.7 INPUT SLOPE (ns)

Figure 7.11: Graph of output slope against input slope

load, shown in Figure 7.9.

The graph of output slope against input slope, shown in Figure 7.11, appears
to fit the same argument as above; it appears to be linear for large values of the
input slope, with a correction to be made for small slope values. The RMS error in
Figure 7.11 is smaller when a function of the form �+ �si +
 1

si+� is used than if
a quadratic was used, where � is a fixed parameter about the same size as a typical
gate delay.

The graph of gate delay against input slope does not fit this argument: Fig-
ure 7.10 does not appear to be linear for large input slopes. Figure 7.12 shows

172 Chapter 7: Timing and Verification

MEASURED

B

A

D

C

GATE DELAY (ns)

2.4

2.0

1.6

1.2

0.8

0.4

0.4 0.6 0.8 1.0 1.2 INPUT SLOPE (ns)

Figure 7.12: Graph of gate delay against extreme values of input slope

the effects on the gate delay of extreme values of the input slope, far greater than
will be encountered in normal circuits; even at huge values of the input slope, the
curve does not become linear. The argument above breaks down for this curve, but
it happens that fitting a curve of the form � + �s i +
 1

si+� gives a slightly better
RMS error on moderate values of the input slope, 0.20%, than fitting a quadratic,
0.21%.

The obvious step now is to take the approximating basis functions for the input
slope si and load on the gate l, and form a product basis of nine functions:

Basis functions for l: 1 l 1
l+k

Basis functions for si: 1 l 1
si+�

Basis functions for (l,si):

8>><>>: 1 l 1
l+k

si lsi
si
l+ky

1
si+� l

si+�y 1(si+�)(l+k)y
By doing a least-squares fit of these basis functions to a number of SPICE re-

sults, it was found that the terms marked with a dagger were very small, and when
they were left out, the difference in predicted gate delays changed by a tiny amount,
less than 0.1%. The other terms could not be neglected.

Up to now, switching and non-switching loads on gates have been treated the
same, because the graphs of output slope and gate delay against load would look
roughly the same regardless of what kind of load was used. To allow for separate
lsw and lnsw parameters, representing the switching and non-switching loads re-
spectively, the l and lsi basis functions were split into two. The 1

l+k term is small, so
it was left alone. This gives the final set of basis functions used, where k = 2 and� is a typical gate delay:f1; lsw; lnsw; si; lswsi; lnswsi; 1

lsw+lnsw+� ; 1
si+kg

Section 7.2: Development of an accurate timing model 173

Eight basis functions fn require eight sample points from SPICE runs to deter-
mine the constants an. Each sample consists of running a SPICE simulation of the
gate G with a given value of the parameters lsw, lnsw and si. The value of si cannot
be affected directly, but instead it is produced by varying the load l prev on the previ-
ous gate to the one under test, and measuring the value of s i from the SPICE run.
It would be good to use typical values of the three parameters, such as l sw � 1,
lnsw � 2 and therefore lprev � 3. The average value of lsw varies between about 0.9
and 1.2 depending on the complexity of the specification, so 1.0 is a good estimate.
The average value of lnsw varies from about 0.9 to 2.5, so the choice was more ar-
bitrary for lnsw. Many obvious or symmetric choices of the eight sample points lead
to singular matrices when trying to find the an constants, so the eight points were
found essentially by trial and error. The points used were:(lprev; lsw; lnsw) = ((1; 1; 0) (1; 1; 2) (3; 0; 2) (3; 1; 0)(3; 1; 4) (3; 2; 2) (5; 1; 2) (5; 2; 4)

When doing the SPICE run, it is also possible to find relatively cheaply the load
that gate G presents on other gates. Three circuits are produced that time the
delay of the typical gate of Figure 7.2, when loaded with (a) a single typical gate,
(b) two typical gates, and (c) the gate G. The load of the gate G relative to a typical
gate can then be calculated by linear interpolation. The result is typically a figure
in the range 0.95–1.15; its use has been observed to halve the errors in some
example circuits. The process also makes splitting the load into switching and non-
switching components even less significant, because all switching loads can now
be parameterized in terms of any other constant load; unfortunately, this was not
spotted until after the simulation program was written.

7.2.4 Finding equivalent gates

The above method for calculating gate delays requires a SPICE run and parameter
fitting for every different gate that is seen in a given circuit. These SPICE runs take
typically 30–60 seconds each, so building a disk and memory cache of the results
of SPICE runs is necessary for good performance. Even so, the number of different
CMOS gates that can be produced by the synthesis algorithm is large, and it would
be inefficient to run SPICE on a gate that is almost the same as a gate that has
already had its delay parameters determined. If a way can be found to infer the
parameters of one gate from another gate that has already been simulated, then
this would reduce the number of SPICE runs required.

Several methods in the literature [68, 81, 166] assume that the delay of a gate
will only depend on the transconductance of the conducting path, and not on the
ordering of the transistors in the conducting path as long as any extra switching
capacitance is compensated for. This means that the C-element producing signalNA in the example used above (Figure 7.5) can be implemented as either of the
two gates in Figure 7.13, and the differences in gate delays should be minimal. In
SPICE tests, the differences were actually quite large; gate (a) switched in 617ps,
gate (b) in 558 ps, a difference of 10.6%. Gate (a) also produced a slower output

174 Chapter 7: Timing and Verification

Switching part State-holding part
(same for both variants)

Extra load

NRout

Rin

NAout

NAout

Rin

NB

NA

NRout

A

Switching part State-holding part
(same for both variants)

Extra load

NRout

A

Rin

NAout

Rin

NAout

NRout

NB

NA

(a) (b)

Rin

NB

NRout
NA

NAout

Rising edge out here
Falling edge in here

A

The only difference between these gates is the ordering of the transistor stacks. The

transistors that cause the gate to switch are drawn bolder than the others. Both gates

charge their loads through three series P-transistors, both gates have three N-transistors

on a conducting path to ground, and the extra loads on the right of each gate make sure

that the number of P-type and N-type source and drain regions switched by each gate is

the same. However, gate (b) is 10.6% faster than gate (a).

Figure 7.13: Two gates with the same transconductance and loading, but different delays

ramp, causing the next gate to switch 4.3% slower than with gate (b). All other gate
delays differed by less than 2%. This error was not cancelled out by other changes
in gate delays, resulting in a total error for the chain of seven gates of 55ps, or
2.2%. An error of 55ps due to a single gate which only has a delay of �600 ps is
totally unacceptable for an accurate simulation algorithm. The ordering of transistor
stacks clearly does matter. This result also applies, somewhat surprisingly, to the
conducting path that is being switched off as well as the one that is being switched
on.

When a CMOS gate switches, some transistors will be part of a conducting path
to power or ground, but others will be simply acting as capacitative loads. It would
be hoped that these load transistors, which may either be on, off or switching,
would have linear effects: an n transistor load at a particular point will have an
effect roughly equivalent to n times the effect of a single transistor. Figure 7.14
shows the effect of 1, 3 and 5 extra transistors on a gate at various points on the

Section 7.2: Development of an accurate timing model 175

���� ������

A

B

D

E

F

C

Delay

Output
slope

gate delay / slope
Change in

Additional
load transistors

F
1

10%

20%

A

C B
E

3 5

D

Left, circuit used to evaluate the effect of non-switching transistors. The drains of 1, 3

or 5 off N-transistors were connected to A, B and C; P-transistors were used for D, E, F.

A falling transition was applied to the input of the gate, causing a rising transition of the

output.

Right, the resulting increases in gate delay and output slope are linear to within an amount

equal to 0.2% of the gate delay.

Figure 7.14: Effects of non-switching transistors off the conducting path

conducting paths to power and ground. A graph derived using transistors in the
“on” state looks almost identical, but scaled by a factor of 1.5–2.0 depending on
the location of the extra transistors, so it can be deduced that additional transistors
not on the conducting path act purely as extra loads on the gate. A third possibility
for extra transistors is that they are also connected to the input that is changing,
so they switch during the output transition. These transistors act as being part-way
between on and off transistors.

Although the extra loads appear to be linear, the magnitude of these loads is
difficult to determine. Points A and F in Figure 7.14 do not charge or discharge
during a rising transition of the output; additional load at those points therefore
makes little difference to the gate delay and output slope. The effects of loads
at the other four points must be determined from SPICE runs. For the gate in
Figure 7.14, an additional twelve circuits would be added to the SPICE circuit used
for parameter fitting. These would correspond to extra on, off and switching loads
at each of points B, C, D and E. Each of these twelve circuits is used to determine
a load on the output of the circuit that is equivalent to that kind of transistor at that
point. This equivalent load is then added to lnsw when calculating the gate delay.

176 Chapter 7: Timing and Verification

7.2.5 Caveats

The usefulness of the synthesis tool presented ultimately lies in its ability to provide
reasonably accurate timing information about generated circuits, which relies upon
a stable copy of SPICE. SPICE 3f4 was used in early trials, but this fails to simulate
a large number of gates, even though there is nothing wrong with the circuit as
given to SPICE. Additions of 1G
 resistors between various points in the circuits
would often cure spurious errors from SPICE. A later version of SPICE, patched to
3f5, was downloaded from http://www.redhat.com; this version seemed much
more reliable, and only failed on a handful of gates. The problem appears to be
the adaptive stepsize control within SPICE: SPICE decides that no stepsize is small
enough to accurately simulate the gate in question, and terminates the simulation.
As a result, the proposed tool is unable to simulate a particular gate and must
abandon any circuits containing that gate. The more stable version of SPICE is no
longer available for download, so this may seriously affect the usability of the tool
presented in this dissertation. The stability of commercial versions of SPICE has not
yet been determined.

7.2.6 Power estimation

The delay and output slope of a gate are already determined by SPICE runs, so it
was decided that power should also be estimated in this way. The major source of
power dissipation in small CMOS circuits is I2R heating in the transistors of a gate,
although interconnect accounts for more of the power in larger circuits. To find the
power dissipated by a gate, ammeters were included in every gate simulated, as
in Figure 7.15, and the VI product across both transistor stacks was integrated and
summed. This measure of power includes short-circuit current, unlike XPOWER [2]
and the work of Kudva and Akella [96], but will fail in the presence of substantial
subthreshold leakage current. It is assumed that power has the same dependence
on input slope and output load as the gate delay and output slope. The power of
a circuit is not critical, because it turns out to be almost a linear function of the
active area, which is easy to compute. For critical low-power applications, it would
be good to replace this power estimation algorithm by a better one.

7.3 Finding a speed measure for an implementation

It is not always obvious what defines a “fast” example of a particular circuit; for
example, is a fast latch controller one that has a small Rin+!Rout+ delay, so
can propagate data forwards quickly, or is it one that has a low cycle time when
connected in a pipeline? If the latter, is there a processing delay between stages?
Only the circuit designer will know what particular speed measure is important, so
there must be a way for the designer to tell synth how to measure speed. This is the
purpose of the .timing file.

In order to find out how fast a particular implementation is, a test wrapper must
be placed round the implementation and then the whole system simulated. This test

Section 7.3: Finding a speed measure for an implementation 177

I

I

V

V

Power = R
time of interest(VpIp + VnIn)dx

Figure 7.15: Circuit to determine the power consumed by a gate

wrapper may be as simple as applying a rising edge to a single input while keeping
other inputs constant and measuring when a particular output transition occurs,
or it may involve a complicated external circuit and a cycle time measurement.
An example test wrapper for the latch controller example is shown in Figure 7.16.
The cycle time of the latch controller is measured when it is in a pipeline with
a processing delay of 20ns and a precharge delay of 5 ns, because this was the
arrangement used in Furber and Day’s paper [59]. The latch driver buffers are
modelled as four series inverters, as is the end of the pipeline. The start of the
pipeline uses a special NOTRESET signal provided by the simulator, which makes a
single rising transition at time t = 0. RESET is also provided, as are constant logic
0 and logic 1.

Once a speed measure has been found—here, the cycle time of the latch con-
troller in the given circuit—the latchc.timing file can be created. As before, the
format of the file will be made as close to Verilog as possible, but there will be sig-
nificant limitations, because the full functionality of Verilog is not required. Only the
following features are supported in the .timing file:s wire declarations, which create wires in the circuit. Example: wire a,b;

creates wires called a and b.s Assignments of values to wires using NOT (~), AND (&) and OR (|) Boolean
operators. The value will be computed with a complex gate, and will honour
multiple NOT operators in series. For example, assign d = ~~~((a & b) | c)
will create a complex gate for ~((a & b) | c), and will then add two more
NOT gates to the output.

178 Chapter 7: Timing and Verification

Falling: 5ns
Rising: 20ns

Ltout

Ltin

Falling: 5ns
Rising: 20ns

Ltout

Ltin

Ltout

Ltin

Latch controller
implementation

Rout Aout

Rin Ain

Latch controller
implementation

Rout Aout

Rin Ain

Latch controller
implementation

NOTRESET

Rout Aout

Rin Ain

Cycle time
measured here

Figure 7.16: Example circuit used for timing purposes: Latch controller

In the latch controller example, a delay was needed between adjacent stages
to simulate processing logic in the pipeline. A construct is needed to intro-
duce such a delay, because physically building the delay from basic gates
would be tedious. The construct #<rise,fall> is available, which creates a
model of a delay. The rise and fall delays can be specified in gate delays,
such as 2 gd, or in nanoseconds, as 5 ns. The Verilog-like construct #delay
can be used if the rise and fall delays are the same.s Creation of subcircuits, but the only kind of circuit that can be created is the
circuit that is being timed. In the file latchc.timing, it is possible to write:latchc hnamei (a,b,c,d,e,f);
but it is not possible to create an instance of a nacking arbiter, for instance.
Parameter renaming is allowed, for example using .Rin(x) to connect wire x
to the Rin terminal of the latch controller.

Section 7.3: Finding a speed measure for an implementation 179timingwire rin1, ain1, rout1, lto1, lti1,ain2aout1,rin2, rout2, lto2, lti2,ain3aout2,rin3, rout3, aout3, lto3, lti3;latchc one (.rin(rin1), .rout(rout1), .ain(ain1), .aout(ain2aout1),.ltout(lto1), .ltin(lti1)),two (rin2, ain2aout1, rout2, ain3aout2, lto2, lti2),three (rin3, ain3aout2, rout3, aout3, lto3, lti3);aout3= ~~~~rout3;rin1 = ~ ~(NOTRESET & ~ain1);lti1 = ~~~~lto1;lti2 = ~~~~lto2;lti3 = ~~~~lto3;rin2 = #<20ns,5ns> rout1;rin3 = #<20ns,5ns> rout2;cycle rout2+;endtiming
Figure 7.17: The timing part of the file latchc.timing

Two additional keywords are provided to specify how the circuit is to be timed:s cycle htransition namei measures the cycle time between adjacent named
transitions.s time htrans1i,htrans2i measures the time elapsed between a pair of named
transitions.

The file latchc.timing is shown in Figure 7.17, to illustrate the use of most of
these features. This produces the circuit in Figure 7.16. The timing wrappers used
for the parallel component, loadable counter, DME circuit and nacking arbiter are
shown in Figure 7.18–7.21. The timing wrapper for the nacking arbiter produces
alternate requests on lr and rr, because of the properties of a Seitz arbiter. These
alternate requests will produce rising transitions on ly, rn, ln, ry, ln, rn and then
the sequence repeats, so the cycle time can be determined by looking at adjacently+ transitions.

7.3.1 Action when timing wrapper is not known

Example timing wrappers are not given for the SIS benchmarks examples, so some
other fall-back timing method needs to be provided for these cases. The blue dia-
gram for the environment was used as an approximation to the actual environment
behaviour. The gate-level simulator was written to accept blue diagram models of
a circuit behaviour, with given delays on outputs, as well as normal CMOS gates. An

180 Chapter 7: Timing and Verification

A1

R1

Ain Rin

R2

A2

A1

R1

Ain Rin

R2

A2

A1

R1

Ain Rin

R2

A2

Rising: 10ns
Falling: 2ns

Rising: 15ns
Falling: 2ns

NOTRESET

Cycle time
measured here

Figure 7.18: Example circuit used for timing purposes: Parallel component

approximation to the behaviour of the latch controller example could be specified
in the file latchc.timing as:timing estimatedefault delay 4gd;rin delay 20ns,5ns;endtiming

This causes the blue diagram model of the environment to have a delay of 4
gate delays on all outputs, apart from Rin, which has a rising delay of 20ns and a
falling delay of 5 ns, which emulate a processing delay between this stage and the
previous stage. If no .timing file is provided at all, a default delay of 2 gate delays
is assumed on all inputs to the circuit.

The effect of approximating the environment behaviour is difficult to quantify.
In the latch controller example, the fastest circuit using a blue diagram model of
the environment will be a long way from the fastest circuit using the cycle time of a
pipeline as a measure of speed, because in the latter case, the speed of the circuit

Section 7.3: Finding a speed measure for an implementation 181

d
1

0

0

bli blo

bro bri

ali alo

ariaro

bli blo

bro bri

ali alo

ariaro

bli blo

bro bri

ali alo

ariaro

d
1

d

Time this
rising edge

implementation
Loadable counter

implementation
Loadable counter

implementation
Loadable counter

NOTRESET

Figure 7.19: Example circuit used for timing purposes: Loadable counter

uaur
lr

la

rr

ra

Time this
rising edge

uaur
lr

la

rr

ra

uaur
lr

la

rr

ra

0 0

0
DME DME DME

NOTRESET

Figure 7.20: Example circuit used for timing purposes: DME

182 Chapter 7: Timing and Verification

arbiter
implementation

rr

ry

rn

lr

ly ra

ln

Nacking
la

NOTRESET

la = ly + ln ra = ry + rn
lr = la.NOTRESET rr = ra.NOTRESET

Figure 7.21: Example circuit used for timing purposes: Nacking arbiter

depends heavily on the decoupling between pipeline stages, but in the former, this
is not the case. This will also be true of the DME, parallel and loadable counter
examples. The nacking arbiter circuit, and many of the SIS examples, are not in-
tended to be connected to other copies of themselves, so the blue diagram model
provides an adequate model of the environment behaviour.

7.4 Verification

7.4.1 Reasons for verification

Post-synthesis verification is often used in asynchronous circuit synthesis. Verifi-
cation of speed-independent circuits is as much about checking the tools as the
circuit itself, because SI synthesis algorithms should produce circuits that are cor-
rect by construction; in this case, verification serves only to highlight program bugs.
Verification of non-SI circuits, such as timed circuits [7, 137] or burst-mode circuits
[34, 33, 45, 140, 203] is more about checking whether a circuit malfunctions due to
imperfect synthesis algorithms, and then patching the circuit to remove the prob-
lem. The circuits produced in the previous chapter fall into this last category; they
need to be checked because they may have hazards, deadlock, livelock or a host of
other undesirable behaviours.

7.4.2 Types of verification

Verification of speed-independent circuits is comparitively easy in principle, al-
though in practice may be very time-consuming. The basic idea is to allow any
excited gate to fire at any time relative to other gates, and keep track of all states
that the circuit passes through. The most well-known SI verifier is Dill’s AVER [53].

SI verification will not work for the circuits produced in this dissertation, because
the circuits produced often assume that the environment cannot respond “too fast”
to an output; ie. it might not matter if the environment takes 2ns, 20ns or 200 ns
to provide a particular input after the output that triggers it, but 1.8 ns may break
the circuit. A simulator is needed that can use a range of delay values for each gate

Section 7.4: Verification 183

rather than a fixed nominal value. All possible states of the implementation can be
found while assuming that all gates delays can vary by 20% or 50% or more, and
then the behaviour of the circuit checked against the specification.

A pair of simulation algorithms that use ranges for the delays of gates are pre-
sented in Brzozowski and Seger [21]. The subject is known as bi-bounded delay
analysis, to distguish it from up-bounded analysis where all delays are between zero
and some constant, and the unbounded analysis that is used for speed-independent
circuits. The more computationally efficient bi-bounded algorithm uses a ternary
model of signals on wires: signals can takes values from the set f0; 1;�g, where� denotes an uncertain value, which can be either 0 or 1 depending on the precise
delays in the circuit. The value � is not the same as X, which usually denotes a
value which is part-way between a 0 and a 1. The rule that gives the outputs of a
gate with minimum delay dmin and maximum dmax is:s When any input changes, the output will change to � in a time dmin unless it

is already at or changing to �.s At a time dmax after all inputs become defined at 0 or 1, the output will change
to either 0 or 1 as appropriate for those inputs.

The problem with ternary bi-bounded simulation is that it is inherently pes-
simistic. It returns the most information that can be said about a circuit at a
particular time t; if a node x could be either 0 or 1 depending on the precise
gate delays at time t, then the ternary simulation algorithm will assign node x the
value �, because the most that can be known about the node is nothing. This
is useless when a closed cycling circuit is being considered. For example, con-
sider verifying a circuit with a cycle time of tcyc, but allowing gate delays to vary
by a factor k. At time t = 0, the circuit is in a particular state. It will be in this
state again sometime between t = (1 � k)tcyc and t = (1 + k)tcyc, because
of the variations in gate delays. The nth time it is in this state will occur for t
in the interval [(1 � k)ntcyc; (1 + k)ntcyc]. For some n, it will be the case that(1 + k)ntcyc < (1 � k)(n + 1)tcyc, which means that the circuit could be at any
point in its cycle for a certain time t1 2 ((1 + k)ntcyc(1 � k)(n + 1)tcyc), and
hence the most that can be known about the circuit is nothing. This will always
happen with circuits that cycle; after a time, ternary simulation will assign the value� to all nodes in the network. In practice, this occurs very fast, especially in circuits
involving arbiters.

7.4.3 Binary Bi-bounded Delay Analysis

The other algorithm given for bi-bounded delay analysis in Brzozowski and Seger
[21] uses binary rather than ternary. It is much more computationally expensive
than ternary analysis, so was said to only be useful for small circuits. Empirically,
circuits in this dissertation appear to fit their definition of small. This section will
describe the binary bi-bounded delay model, or BBD model for short. It will be
described in sufficient detail to allow the algorithm to be implemented, in a way

184 Chapter 7: Timing and Verification

which is less formal than the treatment given in [21]; the emphasis will be on how
to create a program to do the simulation, rather than presenting it in a way which
allows a formal proof that it works. Full details of why it works can be found in
Dill [52] and Lewis [107], but they are beyond the scope of this dissertation. Some
additions to the algorithm are given in the next section, which make it more suitable
for the verification task required.

First, some properties of intervals must be defined. Let � be an integer interval,
ie. a 4-tuple (tlower; tupper; Clower; Cupper), with tlower being an integer or�1, tupper
being an integer or +1, and Clower and Cupper being Boolean flags that determine
whether the ends are closed (true) or open (false). According to the usual conven-
tion, closed ends are written as “[” or “]” and open ends as “(” or “)”, so an example
interval would be [1,2). Intersection, addition and negation of intervals are defined
in the obvious way, as:

If I1 = (tl1; tu1; Cl1; Cu1) and I2 = (tl2; tu2; Cl2; Cu2),
then I1 \ I2 = (tl; tu; Cl; Cu) where (tl; Cl) = 8><>: (tl2; Cl2) : tl1 < tl2(tl1; Cl1) : tl1 > tl2(tl1; Cl1:Cl2) : tl1 = tl2

and (tu; Cu) = 8><>: (tu1; Cu1) : tu1 < tu2(tu2; Cu2) : tu1 > tu2(tu1; Cu1:Cu2) : tu1 = tu2
and I1 + I2 = (tl1 + tl2; tu1 + tu2; Cl1:Cl2; Cu1:Cu2)
and �(I1) = (�tu1;�tl1; Cu1; Cl1)
Subtraction of an interval � is defined as addition of �� . All gates in the circuit

are assumed to have their possible delays specified by an interval, where gate j
may fire in the interval [dj; Dj) after its inputs cause it to become excited. Note that
the above operations can all be performed efficiently, even though they represent
infinite sets of points.

A plausible approach to bi-bounded simulation would be to simply keep bounds
on the times that excited gates could fire, but this can be shown to be insufficient.
Consider the circuit shown in Figure 7.22, which has three excited gates at t=0, with
firing times bounded by [1; 2), [3; 4) and [3; 4) for gates 1, 2 and 3 respectively.
Gate 1 must fire first, at some time t 2 [1; 2); we can move the circuit forwards to
the time tg1 at which gate 1 fires by subtracting [1; 2) off of the other two intervals,
which gives that gates 2 and 3 can both fire in the interval t � tg1 2 (1; 3). This
is true, but not the whole story. Either of gates 2 and 3 can fire at time 1.1 or
2.9 after gate 1 fires, but it is not possible for gate 2 to fire at t = t g1 + 1:1 and
gate 3 to fire at t = tg1 + 2:9, because this would imply a time separation of
1.8 time units between gates 2 and 3, which was not possible in the original firing
intervals. The bounds between firing intervals on different gates have been lost, so
bounds should also be kept on the differences between the firing times of all pairs
of excited signals. Brzozowski and Seger [21] state that this is sufficient to carry out
a bi-bounded delay analysis.

Section 7.4: Verification 185

Gate 1

[1,2)

Gate 3

[3,4)

Gate 2

[3,4)

t = 0

Figure 7.22: Example circuit used to illustrate the BBD algorithm

The BBD algorithm must keep track of:s F, the bounds on the firing times of all gates,s G, the bounds between the firing times of all gates,s c, the current state of all wires in the circuit.

Given a triple (F; G; c), the BBD algorithm advances time until one or more
gates may fire, and then fires those gates, producing a new triple (F 0; G0; c0). Sev-
eral different successor triples may be produced from a single triple, because gates
may fire in different orders. The algorithm in Brzozowski and Seger is used on
circuits which will eventually stabilize, but it also works in circuits that show cyclic
behaviour if some minor modifications are made. Firing a number of gates at one
time rather than just one gate gives oscillation when considering cross-coupled
NAND gates, which models the metastability phenomenon. In the circuits in this
dissertation, all arbitration behaviour is concealed by analogue circuits in a Seitz
arbiter, so metastability will not occur. The algorithm described here will only fire a
single gate at a time, so it is a slight simplification of the algorithm in Brzozowski
and Seger.

When implementing the algorithm, it is convenient to combine F and G into
a single matrix �, by creating a fictitious gate number 0 representing the current
time. � has entries �ij, each of which are intervals, defined by r i � rj 2 �ij for
0 � j < i � N, where N is the number of gates, r i and rj are the firing times of
gates i and j respectively, and r0 = 0, the current time. Any entry � ij where one or
both of gates i and j are excited is defined as (�1;1).

Given a matrix �, it is a problem to determine whether there is a set of gate
delays (r1; r2; : : : rN) that satisfy the inequalities represented by r i � rj 2 �ij. If
a set of delays exists, then � is a feasible matrix, if not, an infeasible one. To
determine whether � is feasible, the algorithm in Figure 7.23 was proposed, which
is a modification of the Floyd-Warshall all pairs shortest path algorithm. If �(�; c)
has any empty intervals, then � is infeasible, otherwise �(�; c) is a canonicalized
version of � that can be used to compare two matrices with each other.

186 Chapter 7: Timing and Verification

Function �(�; c)
Matrix �0 = �
For k = 0 to N, such that gate k is excited or k=0

For i = 1 to N such that i 6= k and gate i is excited
For j = 0 to (i� 1) such that j 6= k and gate j is excited�0ij := �0ij [(�0ik + �0kj), where �0

pq is defined as ��0
qp if p < q

Return �0
EndFunction

Figure 7.23: A modified Floyd-Warshall algorithm to determine feasibility

The starting state for the algorithm is the pair (�(�; c); c) with c being the
initial state of wires in the circuit, and �i0 = [di; Di) for all excited gates i and all
other �ij = (�1;1).

Given a state (�; c), a successor state can be found by:

1. If there are no excited gates, then there are no successors.
Otherwise, find the minimum M of the upper bounds on the firing times of
all excited gates. At least one gate must fire before this time. Pick any gate x
which is excited and can fire before M, ie. �x0 \ [0;M] 6= ;.

2. Create a copy _� of �.

3. All gates fire from this point on in time, so for all i, _� i0 := _�i0 \ (0;1)
4. Gate x fires first, so all other excited gates must fire later:

For all i > x, _�ix := _�ix \ (0;1)
For all i < x, _�xi := _�xi \ (�1; 0)

5. Check whether (_�; _c) is feasible, by finding �� = �(_�; c). If �� has any empty
intervals, then x could not be fired. Abandon and return to step 1, picking
another x if there is one.

6. Create a copy ~� of �� and a copy ~c of c.
7. Change the output of gate x in ~c to its new state.

8. For all gates j that were (a) excited before x fired, (b) remain excited after x
has fired, and (c) are not x, do ~� j0 := ��jx \ (0;1), with the convention that�pq is defined as ��qp if p < q, as before. This step makes sure that gate j
will fire at the right time relative to gate x.

9. For all gates j that were not excited before x fired, but are afterwards, includ-
ing gate x if that is again excited, do ~�j0 := [dj;Dj). This sets up excited
gates to fire at the right time.

10. For all gates j that are not excited after x fires, set ~� j0 := (�1;1).

Section 7.4: Verification 187

11. Set ~�ij to be ��ij if i and j are both excited gates, and neither of them is x.
Otherwise, set ~�ij to (�1;1).

12. Record (~�;~c) as a successor state to (�; c).
The algorithm looks formidable, but is actually quite simple. A quick example of

its use will now be presented, using the example circuit shown back in Figure 7.22.
The initial state of this circuit has the output of gates 1, 2 and 3 at logic 1, so the
starting value of c is (1,1,1). The starting value of � is:� = 0BBB@ ! ! ! ![1; 2) ! ! ![3; 4) ! ! ![3; 4) ! ! ! 1CCCA
where ! denotes (�1;1): Running the Floyd-Warshall algorithm on � to find�(�; c) gives the starting state for the algorithm:(�0; c0) = (�(�; c); c) = (0BBB@ ! ! ! ![1; 2) ! ! ![3; 4) (1; 3) ! ![3; 4) (1; 3) (�1; 1) ! 1CCCA ; (1; 1; 1))

In this matrix, it can be seen that gates 2 and 3 must fire in some interval (1,3)
after gate 1 fires, and the time difference between when gates 2 and 3 fire must lie
in the interval (-1,1).

Step 1 of the algorithm finds that M = 2, and the only gate that can fire before
time t = 2 is gate 1. Gate 1 must fire next.

Steps 2, 3 and 4 create the matrix _�0, which in this case is the same as �0

above. ��0 is therefore also the same as �0.
Steps 6 onwards create ~�0. In step 8, gates 2 and 3 were excited before gate

1 fired, are still excited after, and are not gate 1, so (~�0)20 = (��0)21 \ (0;1) =(1; 3) and the same for (~�0)20. Steps 10 and 11 set various entries to !, giving a
successor state (�1; c1):(�1; c1) = (~�0;~c0) = (0BBB@ ! ! ! !! ! ! !(1; 3) ! ! !(1; 3) ! (�1; 1) ! 1CCCA ; (0; 1; 1))

Starting again with (�1; c1), step 1 gives that M = 3 and either gate 2 or gate
3 can fire. Assume gate 2 fires. Steps 2, 3 and 4 again create _�1 = ��1 = �1.

In step 8, the only gate excited both before and after gate 2 is gate 3, so(~�0)30 = (��0)32 \ (0;1) = (0; 1), giving the successor state(�2; c2) = (~�1;~c1) = (0BBB@ ! ! ! !! ! ! !! ! ! !(0; 1) ! ! ! 1CCCA ; (0; 0; 1))
It can be seen that the algorithm correctly determines that gate 3 can only fire

upto one time unit after gate 2.

188 Chapter 7: Timing and Verification

7.4.4 Additions to the algorithm

Two main alterations were made to the above algorithm. The first was to replace the
constant delay (dj;Dj) of gate j by a delay derived from the accurate timing models
described earlier in this chapter. The output slope of all excited gates is stored
with the current state c. When a gate i switches, the slope of its output waveform
is then used to calculate accurate delays and output slopes for all the gates that
become excited as a result of gate i switching. The range of delays used for a
gate j is [b d

1+�c; d(1 + �)de) where d is the calculated gate delay, expressed in
hundredths of a constant typical gate delay, and � is a parameter that determines
the permitted variations in gate delays. The default value of � is 20% or 0.2, but it
can be changed as described below.

The second alteration was to allow circuits to cycle indefinitely, rather than only
allowing circuits with a definite set of final states, as in the Brzozowski and Seger
algorithm. This requires the ability to determine whether a state is very like one
that has been seen before, even though it may not be identical. An example that
was seen in the early stages of writing the verifier was a case when rising edges on a
pair of wires a and b were about to happen, but three separate states were created:

State 1: a will happen in [20,99), b will happen in [30,99)
State 2: a will happen in (21,99), b will happen in [30,99)
State 3: a will happen in [20,99), b will happen in (31,99)

These states are obviously almost identical, so should really be merged and
treated as the same state. Similar, but more subtle problems occur when a circuit
enters a state it has been in before, but because the gate delays depend on wave-
form slopes and the slopes depend on previous gate delays, the gate delays in the
new state are slightly shifted.

The solution used was to say that two states of the circuit (�; c) and (� 0; c0)
are sufficiently close if c = c0 and �ij [�0ij 6= ; for all i; j, which means that the
same gates are excited in both and there is a pattern of gate delays that can occur
in either state. The weaker condition of just requiring c = c 0 was found to cause
problems with circuits in which there is a race condition, but the race is always won
by one side or the other.

During simulation, a list L of states (�; c) is built up, starting with the initial
state. Every time a new state (�0; c0) is seen, it is checked against all known states.
If it has not been seen before, (�0; c0) is added to L. If (�0; c0) is sufficiently
close to another state (�00; c00) that has been seen before, a new state (�̂; ĉ) is
formed by taking the union of all intervals in �0 and �00. The new state (�̂; ĉ)
encompasses the possible behaviours of both (� 0; c0) and (�00; c00). If �̂ = �00,
then the new state was contained in the old state (� 00; c00); if not, the old state(�00; c00) is replaced with (�̂; ĉ). The simulation continues until all successors
of states in L are also in L. This process is guaranteed to converge by results in
[21], and in practice, it does so within a second for most of the examples in this
dissertation.

Consider the case when, in addition to the three states listed above, a fourth

Section 7.4: Verification 189

state occurred that had a occurring in [120,199) time units and b in [130,199), and
no other gates were excited. This is clearly 100 time units before the three states
above, so we can see that the set of behaviours reachable from this state is the
same as the set reachable from the three above, but the intersection of the firing
times of a and b is empty. To correct this problem, at Step 12 of the algorithm,
states are always stepped on in time so that one of the signals fires in an interval
(0,t) or [0,t). This makes the states more canonical, and reduces the number of
states that the algorithm must find.

Minor additions were made to the algorithm to make sure that the circuit does
not malfunction. The implementation to be checked needs some model of the full
environment behaviour, so a single example of the circuit to be verified is com-
posed with the blue diagram model of the environment. The BBD simulator was
written to accept blue diagrams as well as gates, with delay ranges specified by the
user or set at the default of two to twenty gate delays. During the simulation, the
implementation is checked against the blue diagram for the circuit to see whether
the implementation conforms to the specification.

Hazard checks are also implemented: any gates on the output of the circuit that
are enabled and then disabled without firing might produce hazards, so this causes
the circuit to fail the verification. Hazards inside the circuit do not cause the circuit
to fail, but if these hazards get to an output or might possibly cause erroneous
behaviour, then the circuit will be failed. The circuit will also be failed if there is a
direct DC path from the supply to ground through a gate, or if a gate floats at a
voltage which is not supply or ground.

The verification parameters can be changed by including a verify...endverify
section in the .timing file for a circuit. The amount by which gate delays vary can
be altered, and so can the environment delay on each input to the circuit. An
example file for the latch controller is:verify 20%rin delay 3gd - 30ns;aout delay 2gd - 30ns;ltin delay 3gd - 20gd;endverify
7.4.5 Summary

Verification is necessary for the circuits produced in this dissertation, because the
synthesis procedure is not provably correct. The binary bi-bounded analysis from
Brzozowski and Seger [21] is particularly suitable for verifying the circuits produced.
The algorithm is modified to use the accurate timing models presented earlier, and
to work on circuits that do not have a final state but repeat a set of behaviours
forever. Conformance to specification, hazard checks and other techniques are
performed to make sure that the proposed implementation for a circuit does not
malfunction. The verification algorithm is the most time-consuming part of the
synthesis procedure, but perhaps the most important.

190 Chapter 7: Timing and Verification

.

Results
.

Results
.

Results
.

Results
.

Results 8
Structure of this chapter

The results in this chapter are presented in four parts. The use of static and dynamic
gates with keeper inverters was discussed in Section 6.4.2, and the pseudo-static
gate introduced as an attempt to make faster and smaller circuits. Section 8.1
compares these different types of gate when they are used to synthesize the latch
controller and DME examples. Section 8.2 compares the state assignment methods
that were discussed in Section 6.3. Section 8.3 gives the results of running the tool
described in this dissertation on the five example circuits that were described in
Section 4.2, and compares these results with those obtained by other asynchronous
circuit synthesis tools. Finally, Section 8.4 gives some limited results of running the
tool on the other examples that were described in Chapter 4, taken from the SIS
benchmark STGs.

All cycle time, response time and power measurements in this chapter were
calculated using SPICE 3f4 patched to 3f5, with an example 1 micron technology
file that came with this distribution of SPICE. Power measurements were obtained
using a trapezium rule integration of the current taken from the power supply, and
so reflect the total power taken by the circuit under test and the rest of the test
wrapper. In particular, this means that most of the power taken by the latch con-
troller example (Figure 8.1) is actually dissipated inside the delay on the forward
request path, which does not depend on the controller implementation. The size
of implementations is taken to be proportional to the total active area of gates in
the implementation. P transistors have been assumed to be twice as wide as N
transistors, although this ratio can be changed.

8.1 Comparison of static, pseudo-static and dynamic gates

Section 6.4.2 described four kinds of gate that can be used to implement an asyn-
chronous circuit:s s: Fully static gates,s s2: Not quite static gates. Gates such that either the P tree or N tree will

always conduct in all reachable states of the circuit, but the P tree and N tree
are not necessarily duals of each other.

191

192 Chapter 8: Results

Type of Cycle Energy Size Number that passed
gate used time per cycle (active area) verification

s Reference case 711/847
s2 0.0% +0.2% +0.6% 703/847
ps – 0.1% +0.4% +0.5% 692/847
d – 0.4% – 0.4% +25.3% 813/847

Table 8.1: Comparing the four types of gate, for the latch controller examples ps: Pseudo-static gates, where the output of the gate is defined only in states
of the circuit that may persist indefinitely or states that require a change in
the output value of the gate. This type of gate may rely on charge retention
for periods that are a small number of gate delays.s d: Dynamic gates with keeper inverters. The P and N trees are only used to
change the current state of the gate; otherwise, a weak inverter will keep the
current state indefinitely.

By removing some restrictions from static gates, it was hoped that pseudo-static
gates would have fewer transistors on average than static gates. Pseudo-static im-
plementations should not be larger than static implementations, because a static
gate also satisfies the criteria for a pseudo-static gate; hence a fully static imple-
mentation is a lower bound in some sense for a pseudo-static implementation.
Fewer transistors in a gate means faster operation, lower power and smaller chip
area, so pseudo-static gates should show a clear advantage over static gates.

Table 8.1 gives a comparison between static, pseudo-static, s2 and dynamic
gates, when used to synthesize the latch controller with the modified Tracey state
assignment method. For each of the 847 pruned blue diagrams produced from the
latch controller specification, a circuit was derived using each of the four types of
gate. The circuits were verified, and the estimated cycle time, energy consumed
per cycle and size were calculated for each circuit. Table 8.1 lists the average im-
provement in cycle time, energy and size when using each of the four kinds of gate,
relative to using static gates. For these columns, a lower figure is better. Not all
circuits produced passed the verification stage; the number of circuits that passed
using each type of gate is also shown.

It can be seen that pseudo-static gates produce implementations that are a
little faster than static implementations, but are larger and take more power. This is
counter-intuitive; the average number of transistors per gate should decrease when
using pseudo-static gates, which is precisely what is observed. The extra size and
power must be coming from something other than the gates themselves.

This paradox is best explained by an example. When creating a static gate,
any input that is connected to an N transistor is also connected to at least one P
transistor, and vice versa. Consider a static gate with four transistors in the N tree.
This will also have four transistors in the P tree, and there will be four inputs to this
gate.

Section 8.1: Comparison of static, pseudo-static and dynamic gates 193

Type of Cycle Energy Size Number that passed
gate used time per cycle (active area) verification

s 0.0% – 0.1% – 0.4% 753/847
s2 0.0% +0.3% +0.6% 746/847
ps – 0.1% +0.2% +0.3% 733/847
d – 0.4% – 0.3% +25.3% 814/847

Table 8.2: As Table 8.1, but with a modified Quine-McCluskey cost function

Type of Cycle Energy Size Number that passed
gate used time per cycle (active area) verification

s Reference case 800/847
s2 +0.3% +0.5% +0.8% 782/847
ps +0.3% +0.6% +0.5% 688/847
d +1.2% +5.3% +36.0% 813/847

Table 8.3: Effects of type of gate used for latch controller, MPP state assignment

When a pseudo-static gate is constructed, it is not the case that the P and N
transistors must come in pairs. By removing the restriction that either one tree or
the other must conduct in every state, it might be possible to reduce both the P tree
and N tree to three transistors, but these transistors no longer come in pairs. As-
sume there is only one input shared between the P and N trees; so this gate requires
five inputs. The number of inputs is more than in the static case, so the number
of inverters that will be required to create negated values of input, state or output
signals will be more than in the static case, on average. Saving a transistor or two
per gate may require more inverters, and the extra circuitry and power consumed
by these inverters outweighs any benefits in real circuits.

An attempt was made to reduce the number of inverters required in implemen-
tations by altering the Quine-McCluskey algorithm that was used. The cost of a
negated literal was made to be twice the cost of an non-negated literal in the ex-
pression for the N-tree of a gate, and vice versa for the P tree. This produced the
results shown in Table 8.2, where the figures given are again relative to the first
row of Table 8.1. This modification to the Quine-McCluskey algorithm produces cir-
cuits that are insignificantly different in speed, power and size than the unmodified
algorithm, but more importantly, several more of these circuits passed verification
compared to the unmodified Quine-McCluskey algorithm. This unexpected but wel-
come modification was used while deriving the rest of the results in this chapter.

The four different kinds of gate were also compared for the MPP state assign-
ment when applied to the latch controller, and both the MM and MPP methods for
the DME example, giving the results in Tables 8.3, 8.4 and 8.5. The results for the
parallel component were similar to the latch controller, so they are not listed. The
loadable counter and nacking arbiter do not have enough different implementations
produced from concurrency reduction to give reliable figures.

194 Chapter 8: Results

Type of Cycle Energy Size Number that passed
gate used time per cycle (active area) verification

s Reference case 444/848
s2 +0.3% +0.3% +0.7% 467/848
ps +0.3% +0.2% +0.2% 455/848
d – 3.9% – 27.2% +14.4% 840/848

Table 8.4: Effects of type of gate used for DME example, MM state assignment

Type of Cycle Energy Size Number that passed
gate used time per cycle (active area) verification

s Reference case 569/848
s2 +2.3% +2.9% +0.8% 312/848
ps – 0.2% +1.4% – 6.5% 243/848
d – 2.4% – 3.6% +8.5% 387/848

Table 8.5: Effects of type of gate used for DME example, MPP state assignment

The results in Tables 8.2–8.5 are largely inconclusive, because the estimated
cycle time and energy per cycle are about 4–5% out from the actual values ob-
tained using SPICE, but the differences between the different types of gate are typ-
ically much smaller than 4%. These results show that pseudo-static gates do not
show any significant improvements over conventional static gates on average. In
Tables 8.3 and 8.4, the pseudo-static implementations were larger, slower and con-
sumed more power than the static implementations. In Table 8.2, the pseudo-static
implementations were very slightly faster than the static ones, but only by 0.1%. The
only significant gain was in Table 8.5, where pseudo-static implementations were
6.5% smaller than static implementations, but the number of circuits passing the
verification algorithm was reduced by over a half. From these results, static and
dynamic gates seem to be worth looking at, but pseudo-static and s2 gates do not
appear to be worthwhile.

Tables 8.2–8.5 give the average changes when pseudo-static and dynamic gates
are used relative to static gates, but the synthesis program always picks the best
circuit according to a particular criterion. Table 8.6 gives the differences between
the best static implementation of a circuit and the best pseudo-static and dynamic
versions using the same state assignment method. It can be seen that pseudo-static
gates only provide a significant advantage in the DME example with the MPP state
assignment; the other results are too small to be of much significance. Results for
dynamic gates are confused; dynamic implementations are always larger, but are
sometimes faster and take less power.

Although the best pseudo-static gates seem to be a little better than the best
static gates, the difference is small. To allow a more fair comparison with other
asynchronous tools, only static gates or dynamic gates with keeper inverters will be
considered from now on.

Section 8.2: Comparison of the state assignment algorithms 195

Best, compared to best static
Example State Type of Cycle Energy Size
circuit assignment gate used time per cycle (active area)

MM ps – 0.5% 0.0% 0.0%
Latchc

MPP ps +1.2% – 0.2% – 1.9%
MM ps – 0.1% – 1.3% – 1.9%

DME
MPP ps – 6.5% +0.3% – 7.4%
MM d – 1.3% +0.7% +37.3%

Latchc
MPP d +0.1% +3.5% +37.0%
MM d – 4.6% – 4.1% +25.9%

DME
MPP d +4.6% +3.9% +29.6%

Table 8.6: How the best implementations produced are affected by the type of gate used

Type of state Cycle Energy Size Number that passed
assignment time per cycle (active area) verification

TT 0.0% 0.0% 0.0% 698/847
MM 0.0% – 0.1% – 0.1% 753/847
MPP +0.1% – 14.2% – 17.5% 800/847
PP +0.1% – 14.1% – 17.7% 791/847

Table 8.7: Effects of the state assignment algorithm, on static latch controller circuits

8.2 Comparison of the state assignment algorithms

Section 6.3 described the four state assignment algorithms that were used, which
were denoted TT, MM, PP and MPP respectively. TT was a standard Tracey [176]
algorithm, slightly modified to allow some experiments to be carried out on flow
tables with non-unique next-state entries. MM was Tracey’s algorithm, modified
using an extension of Unger’s algorithm [178] to allow multiple concurrent inputs
changes. It was expected that the MM algorithm will produce circuits that are more
likely to work correctly and pass verification than the TT algorithm. PP and MPP were
algorithms that attempted to reduce the number of state variables required and so
to trade off speed for reduced area and power. Tables 8.7 and 8.8 give speed,
power and size measurements for the four state assignment methods relative to
the TT algorithm for static and dynamic versions of the latch controller; Tables 8.9
and 8.10 gives this information for the DME element.

For the latch controller, the MM state assignment algorithm produces more cir-
cuits that pass verification than the Tracey algorithm, as expected. Circuits pro-
duced using the MM algorithm are also slightly smaller and consume a little less
power, which is a bonus. There is little to choose between the MPP and PP algo-
rithms for the latch controller, but the MPP algorithm seems definitely better for the
DME element; as expected, both produce circuits that are slower but much smaller
and more power-efficient than the TT and MM algorithms.

For the static version of the DME element, the MM algorithm surprisingly pro-

196 Chapter 8: Results

Type of state Cycle Energy Size Number that passed
assignment time per cycle (active area) verification

TT 0.0% 0.0% 0.0% 764/847
MM 0.0% – 0.2% – 0.2% 814/847
MPP +1.7% – 9.3% – 12.7% 813/847
PP +1.8% – 9.4% – 12.8% 807/847

Table 8.8: Effects of the state assignment algorithm, on dynamic latch controller circuits

Type of state Cycle Energy Size Number that passed
assignment time per cycle (active area) verification

TT 0.0% 0.0% 0.0% 478/848
MM – 4.4% – 2.9% – 4.6% 444/848
MPP +5.9% – 21.7% – 18.3% 569/848
PP +6.4% – 18.4% – 16.7% 561/848

Table 8.9: Effects of the state assignment algorithm, on static DME element circuits

Type of state Cycle Energy Size Number that passed
assignment time per cycle (active area) verification

TT 0.0% 0.0% 0.0% 839/848
MM – 2.9% – 2.0% 0.0% 840/848
MPP +11.8% –30.7% –23.8% 806/848
PP +15.2% –19.9% –19.3% 841/848

Table 8.10: Effects of the state assignment algorithm, on dynamic DME element circuits

duces less circuits that pass verification than the TT algorithm, but the circuits
produced with the MM algorithm are significantly faster, smaller and more power-
efficient than the TT algorithm. For dynamic DME elements, the MM algorithm
produces one more correct circuit than the TT algorithm, but the circuits produced
by the MM algorithm are still faster and more power efficient. There is again little
to choose between the PP and MPP algorithms, but this time, both the PP and MPP
algorithms are much worse than either the TT or MM algorithms when producing
dynamic circuits.

These results suggest that, when attempting to find the fastest circuit, the best
state assignment algorithm to use is the modified Tracey method, denoted MM. This
algorithm is usually more reliable than the TT Tracey algorithm, and on average
produces better circuits. When low power or small size are important, the MPP or
PP algorithms should be used, with little to choose between them, although there
are times when both of these algorithms are inferior to the MM algorithm. In the
results in this chapter, both the MM and MPP algorithms were used and the best
circuit for a particular task chosen.

Section 8.3: Comparisons with other asynchronous tools 197

8.3 Comparisons with other asynchronous tools

In this section, existing synthesis tools were used to create circuits for the latch
controller, parallel component, DME element, nacking arbiter and loadable counter.
These circuits were then SPICE simulated in a typical use of each circuit to deter-
mine their speed and power dissipation, and the circuits compared to ones pro-
duced by the work in this dissertation.

The tool described in this dissertation is directly comparable to the existing
synthesis tools petrify [37], SIS [103, 164] and ASSASSIN [199]. FORCAGE [89] is
only capable of synthesizing change diagrams, which cannot represent arbitration
or choice behaviour such as that present in the nacking arbiter, the DME element
or the loadable counter. 3D [203] uses an extended burst-mode specification style,
a style in which it is not possible to describe a fully decoupled latch controller. The
MEAT tool [33, 45] also uses burst-mode specifications, so that too cannot specify
the latch controller example. These are the only tools that I was able to download.

SIS, ASSASSIN and petrify all take STGs as their input specification, so the five
example circuits were all recast as STGs. It was found at this stage that the five
examples were significantly harder to specify as STGs than they were to specify in
the language described in Chapter 4. The synthesis tools each had options which
can control the quality of their outputs:s Petrify1 can be used with the -no -csc -cg -eqn out.eqn option string to

produce speed-independent circuits. The option -redc can be used to enable
concurrency reduction, as described in [39]. The -redc option often serialises
transitions in the environment, which results in slow circuits, so the option-slowenv can be specified to keep environment transitions concurrent. The
form of the output is a network of static gates followed by inverters, similar to
the static implementations described in this dissertation.s ASSASSIN is a command-driven shell; commands are executed rather than
passed in as options on the command line. The STG is read in to ASSASSIN
by the assa read stg command. An implementation can then be derived by
using the commands assa stg to sg to create a state graph, assa opt sa
and assa gen sa to assign state variables to remove CSC conflicts, and thenassa haz logic to create a hazard-free implementation. This implementa-
tion was then converted to a network of static or dynamic complex gates by
hand, to allow the circuits to be compared with ones produced by the work in
this dissertation. Some circuits were too large to be converted by hand; these
circuits were simply marked in the results as being too big.

Two forms of concurrency reduction are supported in ASSASSIN: STG locking
is performed by the the assa lock stg command, used before the STG is
converted to a SG. The assa red sg command does state graph reduction,
and is used before state assignment.

1Petrify version 3.5 was used in this dissertation; the -redc option does not appear in version 4.0.

198 Chapter 8: Results

Rising delay: 15.3ns. Falling delay: 3.5ns

Rin

Ain

Rout

Aout

Ltin Ltout

Rin

Ain

Rout

Aout

Ltin Ltout

Rin

Ain

Rout

Aout

Ltin Ltout

Latch
controller

Latch
controller

Latch
controller

x10

NOTRESET

Figure 8.1: Circuit used to simulate a typical use of the latch controllers SIS could not be made to synthesize any of the five example circuits with any
set of commands.

8.3.1 The latch controller

The typical use of the latch controller was taken to be the circuit shown in Fig-
ure 8.1. This is a three-stage pipeline with a delay of 15.3 ns on rising edges of the
forward-going request wire, corresponding to the processing delay of a datapath,
and a delay of 3.5 ns on the falling edge, corresponding to the datapath precharge
delay. Results from SPICE runs carried out with the implementations produced by
ASSASSIN and petrify, both with and without concurrency reduction, are shown in
Table 8.11. Also shown are the three latch controllers from Furber and Day [59].

Two circuits were produced using the tools described in this dissertation. The
first was the fastest circuit found. The smallest and lowest power circuits are triv-
ial, because it is possible to create a zero-size circuit by simply connecting Rin toLtout, Ltin to Rout and Aout to Ain. Instead, the lowest power fully decoupled
circuit was found, where all circuits that have a cycle time of less than twice the
forward processing delay are taken to be fully decoupled.

It can be seen that the fastest latch controller produced by the new tool is a
little slower, a little bigger and a little more power-hungry than Furber and Day’s
fully decoupled controller. This shows that the proposed synthesis method is not
capable of producing circuits that are as good as hand-crafted speed-independent
circuits. The new tool is however noticeably better than current automated SI design
approaches.

The second circuit produced from the new tool in Table 8.11 is smaller than the
semi-decoupled controller, but provides performance that is nearly as good as the
fully-decoupled version. The small size is partially due to the fact that fully static
gates were used; the two keeper inverters in Furber and Day’s semi-decoupled
controller are quite large. Logic equations for this circuit are:

Section 8.3: Comparisons with other asynchronous tools 199

Implementation Cycle time Energy/cycle Size
Furber and Day:
Simple 36.7 ns 69.8 pJ 30
Semi-decoupled 37.9 ns 78.7 pJ 60
Fully-decoupled 25.3 ns 92.2 pJ 117

petrify:
No concurrency reduction 29.3 ns 112.5 pJ 129
With concurrency reduction (-redc) 63.0 ns 84.3 pJ 45
With -redc and -slowenv 27.5 ns 94.0 pJ 87

ASSASSIN:
Without concurrency reduction State assignment failed
With assa lock stg Fails; wrong kind of STG
With assa red sg 49.2 ns 82.8 pJ 59

Proposed tool:
Unreduced Fails verification
Highest speed 25.6 ns 94.4 pJ 127
Lowest power (cycle < 30.6ns) 29.1 ns 82.3 pJ 54

Table 8.11: Latch controller implementations from various tools

Implementation Cycle time Energy/cycle Size
petrify:
No concurrency reduction 27.5 ns 141.5 pJ 141
With concurrency reduction (-redc) 85.4 ns 127.6 pJ 84
With -redc and -slowenv 25.1 ns 121.8 pJ 81

ASSASSIN:
Without concurrency reduction Too big 335
With assa lock stg 23.1 ns 118.8 pJ 92
With assa red sg 88.2 ns 145.5 pJ 109

Proposed tool:
Unreduced Fails verification
Highest speed 23.8 ns 107.1 pJ 39
Lowest power and smallest 24.4 ns 100.8 pJ 21

Table 8.12: Parallel component implementations from various toolsLtout= Aout.(Rin + Ltout)Rout = Ain + Rout.LtinAin = Ain.Rin + Rout.Ltin
8.3.2 Parallel component

Table 8.12 shows the results of running petrify, ASSASSIN and the new tool on the
parallel component. SPICE timings were carried out using the circuit shown back

200 Chapter 8: Results

Implementation Cycle time Energy Size
petrify:
No concurrency reduction 21.2 ns 49.8 pJ 174
With concurrency reduction (-redc) 28.6 ns 50.0 pJ 168
With -redc and -slowenv 24.1 ns 57.2 pJ 174

ASSASSIN:
Without concurrency reduction 24.6 ns 57.4 pJ 239
With assa lock stg Fails, not right kind of STG
With assa red sg Fails, SIGSEGV

Proposed tool:
Highest speed and smallest 19.1 ns 53.8 pJ 156
Lowest power 21.5 ns 44.2 pJ 169

Table 8.13: Nacking arbiter implementations from various tools

in Figure 7.18, with each of the delays replaced by the same circuit that was used
to create a delay in Figure 8.1. Most of the power that was dissipated in each cycle
of the circuit comes from the delay lines that were used, rather than the control
circuits themselves, which is why there is little variation in the power consumed by
each of the different implementations. It can be seen that ASSASSIN produced the
fastest circuit, shaving 3% off the best cycle time that can be produced with the
new tool. The new tool did produce the smallest and most energy-efficient circuits,
however.

8.3.3 Nacking arbiter

The circuit used for SPICE timings of the nacking arbiter was that shown in Fig-
ure 7.21, for which the results are shown in Table 8.13. Concurrency reduction was
not possible in this case, so the only difference between the two circuits produced
by the new tool is the state assignment method used—the MM method was used
in the fastest circuit, which was also the smallest, and the MPP method used in the
circuit which took least energy per cycle. Both circuits show some improvement
over circuits produced by the other tools.

8.3.4 DME element

The circuit in Figure 7.20 was used in SPICE simulations of the DME element, and
the results given in Table 8.14. ASSASSIN was unable to implement the DME ele-
ment, due to internal errors and segmentation faults. Petrify was not able to use
the -redc and -slowenv options, but did create circuits using no additional op-
tions and using the -redc option. The effects of concurrency reduction are clearly
demonstrated in this example; the unreduced circuit produced by the new tool is
much larger and more power-hungry than the reduced circuits, although not much
slower.

The unreduced DME circuit can be seen to be faster than the circuit produced

Section 8.3: Comparisons with other asynchronous tools 201

Implementation Response time Energy Size
petrify:
No concurrency reduction 14.5 ns 34.4 pJ 138
With concurrency reduction (-redc) 21.7 ns 27.8 pJ 129
With -redc and -slowenv Fails, suggests option -timed

ASSASSIN:
Without concurrency reduction Fails, internal error
With assa lock stg Fails, not right kind of STG
With assa red sg Fails, SIGSEGV (stack growth)

Proposed tool:
Unreduced 11.8 ns 42.8 pJ 249
Highest speed 10.7 ns 26.2 pJ 195
Lowest power 11.2 ns 17.4 pJ 102
Smallest 16.9 ns 22.9 pJ 81

Table 8.14: DME implementations from various tools

Implementation Time for count=5 Energy Size
petrify:
No concurrency reduction 78.9 ns 149.1 pJ 301
With concurrency reduction (-redc) 90.1 ns 135.3 pJ 285
With -redc and -slowenv 87.6 ns 143.0 pJ 273

ASSASSIN:
Without concurrency reduction Too big 650
With assa lock stg Fails, not right kind of STG
With assa red sg Too big 531

Proposed tool:
Unreduced 38.6 ns 75.4 pJ 173
Highest speed and lowest power 38.6 ns 74.0 pJ 175
Smallest 48.5 ns 79.4 pJ 144

Table 8.15: Loadable counter implementations from various tools

by petrify, but it is much larger and takes more power. This is probably typical
of fundamental mode circuits, but the unreduced circuits often fail the verification
stage so firm conclusions cannot be drawn.

8.3.5 Loadable counter

Figure 7.19 shows the circuit that was used to compare the loadable counter imple-
mentations, and Table 8.15 gives the results. The test circuit was simply using the
loadable counter implementation to count up to five. It can be seen that the new
tool shows a clear advantage over the other tools when synthesizing this circuit;
circuits produced are about twice as fast, half the size and take half the power of
circuit produced by petrify, and they are a quarter of the size of circuits produced

202 Chapter 8: Results

Example circuit Optimized for Percentage improvement on
best of other tools

Latch controller Speed 14% faster
Latch controller Power (cycle< 30.6ns) 27% less power

Parallel Speed 3% slower
Parallel Power 15% less power
Parallel Size 74% smaller

Nacking arbiter Speed 11% faster
Nacking arbiter Power 11% less power
Nacking arbiter Size 7% smaller

DME Speed 35% faster
DME Power 37% less power
DME Size 37% smaller

Loadable counter Speed 104% faster
Loadable counter Power 50% lower power
Loadable counter Size 47% smaller

Table 8.16: Summary of results

Example Time to create Time to create
circuit static circuit dynamic circuit

Latch controller 0 hr 52 min 0 hr 4 min
Parallel 0 hr 51 min 0 hr 5 min

Nacking arbiter 4 sec 0.6 sec
DME 4 hr 59 min 3 hr 51 min

Loadable counter 1 hr 5 min 0 hr 1 min

Table 8.17: Total run-time for each example

by ASSASSIN. The circuits from ASSASSIN were so large that they were not tested in
SPICE.

8.3.6 Summary

Table 8.16 shows a summary of the results in Tables 8.11–8.15, which shows that
the tool presented in this dissertation usually produces circuits that are significantly
faster, smaller or dissipate less power than other approaches, depending on what
factors are important to the designer. The gains are moderate for some examples,
such as the nacking arbiter, but more pronounced for the DME element and load-
able counter. There is one exception to this: ASSASSIN shows a surprising ability to
synthesize an exceptional parallel controller, which is faster that the best circuit the
new tool can produce.

Table 8.17 gives the run-times of synth on the five example circuits. L2b and
prune take under five seconds on each example. It can be seen that synth is not
interactive, but can synthesize circuits if left overnight. The synth program is easily

Section 8.4: Results on other circuits 203

parallelizable, so an alternative to an overnight run is to use a large number of
machines concurrently.

8.3.7 Estimated timings

The estimated timings of the DME, nacking arbiter and loadable counter circuits
were found to be 4.8% out on average from the SPICE timings. This is partly due to
the fact that arbiters are analogue components, which are not handled particularly
well by the gate level simulator. However, this is still a respectable accuracy. Esti-
mated timings for the latch controller and parallel component cannot be compared
with SPICE timings, because a model of a fixed pure delay was used to estimate
the cycle time, but this model does not exist in SPICE. The average discrepancy
between the estimated and actual power taken by the DME, nacking arbiter and
loadable counter circuits was 6.4%, although again this could have been adversely
affected by arbiters.

8.4 Results on other circuits

The tool described in this dissertation was also used to synthesize some of the
standard SIS benchmark STGs. An exact environment was not specified for these
circuits, so it is not possible to give reliable speed and power estimates. Instead,
these circuits were optimized to be as small as possible. Table 8.18 gives the results
of the new tool on each of the benchmarks used, and also the results of petrify
with the option -redc1, which steers the concurrency reduction algorithm towards
small circuits. There is no clear winner in this test in terms of the size of the circuits
produced. It was not expected that the new tool would produce particularly good
implementations from STG specifications, so this is not a surprise.

The run-times for the new tool are, unfortunately, worryingly high in some
cases—sbuf-ram-write took just over 7.6 hours to synthesize. This is because some
examples have a large number of pruned blue diagrams, and synth attempts to im-
plement each diagram. Table 8.19 gives the number of blue diagrams produced
by prune for each of the examples, which shows that sbuf-ram-write had over 200
pruned diagrams. Large blue diagrams also take longer to synthesize, as pe-send-
ifc shows.

204 Chapter 8: Results

Benchmark Proposed tool petrify
size of circuit time taken (s) size of circuit time taken (s)

alloc-outbound 96 6.2 87 1.1
atod 39 9.7 48 2.0
isend 151 5.5 150 21.8
master-read Fails 141 480
mr1 60 25000 48y 6.9
mr2 66 4600 57y 30.0
total 126 30000 105y 36.9

mp-forward-pkt 81 0.3 81 1.6
nak-pa 54 1500 63 13.5
nowick 63 1.0 69 1.5
pe-send-ifc 140 40.2 123y 99.8
ram-read-sbuf 84 600 102 3.2
rcv-setup 45 0.1 45 0.3
rlm 45 0.2 45 0.1
sbuf-ram-write 84 27000 117 21.2
sbuf-read-ctl 78 0.5 72 0.5yrequires -timed

Table 8.18: Results on some of the SIS benchmarks

Benchmark Pruned diagrams Size of unpruned diagram
alloc-outbound 1 8
atod 34 11
isend 1 17
master-read �700 000 108
mr1 2310 30
mr2 298 24

mp-forward-pkt 1 8
nak-pa 58 12
nowick 1 7
pe-send-ifc 1 33 or 35
ram-read-sbuf 15 17
rcv-setup 1 7
rlm 1 6
sbuf-ram-write 264 18
sbuf-read-ctl 1 7

Table 8.19: Recap of number of pruned blue diagrams

.

Summary and Conclusions
.

Summary and Conclusions
.

Summary and Conclusions
.

Summary and Conclusions
.

Summary and Conclusions 9
9.1 Summary

This dissertation has described a new synthesis tool, which augments existing al-
gorithms for finite state machine synthesis with a number of new techniques. A
front-end specification language provides an intuitive and easy-to-use interface to
the synthesis tool. Concurrency reduction is carried out on an intermediate rep-
resentation of the specification, to produce a large number of possible circuit be-
haviours. Finally, verification and timing analysis are performed to choose the best
circuit for a particular application. The delay model used was fundamental mode,
with the constraint that the circuits produced must have a delay-insensitive inter-
face. In practice, this means that the environment has some minimum response
time, and that concurrent inputs can occur with arbitrary delays between them.

Chapter 4 described the front-end specification language and the procedure
that was used to translate this into an intermediate representation called a blue
diagram. Blue diagrams are essentially compacted state graphs, in which output
orderings are irrelevant and are not specified. The specification language is based
on STG fragments, but also includes constructs that a circuit designer would find
useful, such as and and or relations between transitions, handshake declarations,
and if and arbitrate statements. STGs could not be used directly as a specifi-
cation, because STGs use the speed-independent model whereas circuits produced
in this dissertation are fundamental mode with a delay-insensitive interface. Spec-
ifications in the proposed language are easier to create and much easier to read
than equivalent STG specifications that can be used as an input to other compara-
ble tools, such as ASSASSIN or petrify. There is also more scope for giving helpful
error messages when the designer inputs an invalid specification. The specification
is first translated into a Petri net, and then simulated to form a blue diagram.

Chapter 5 explained the concurrency reduction operation on blue diagrams, and
gave some examples of its use. This operation can be performed efficiently with-
out requiring a full state graph to be held in memory, and is reasonably natural,
although probably not as natural as the concurrency reduction work of Ykman-
Couvreur et al. [197] or the forward reduction algorithm of Cortadella et al. [39].
However, it is slightly more powerful than either of those two algorithms, but the
differences may be small in practice. I believe that it is as powerful as the back-
ward reduction algorithm of Cortadella et al. [39], but that algorithm has not been
implemented yet, and it is not clear whether it can be used effectively.

205

206 Chapter 9: Summary and Conclusions

The concurrency reduction process produces a number of different blue dia-
grams, which are synthesized using the techniques presented in Chapter 6. The
blue diagrams were first converted to flow tables, which is a trivial step. The flow
table reduction algorithm of Puri and Gu [148] was used, because this appears to
be a little faster and better than the standard reduction program, STAMINA [153].
State assignment was performed using an extension of the modification to Tracey’s
algorithm [176] suggested by Unger [178], which makes sure that concurrent input
changes do not cause the circuit to malfunction. Although this modification adds
constraints to the state assignment algorithm, which could possibly increase the
number of state variables required, the circuits produced by the modified algorithm
are usually a little smaller, faster and consume a little less power than Tracey’s orig-
inal algorithm. Another state assignment algorithm was also used, which reduces
circuit size and power in exchange for decreasing the speed of the implementation.
Scoring functions were provided to find the best flow table reduction if several were
produced, and also to find the best way to shrink compatibles and the best state
assignment. A new form of CMOS gate was explored, the pseudo-static gate, but
this was found to be inferior to more conventional static gates. Dynamic gates with
keeper inverters were found to offer lower power solutions at the expense of size.
SOP/SOP expressions were used in the static gates, rather than the more conven-
tional approach of making the P-tree be the dual of the N-tree, because of better
hazard properties.

Timing and verification were described in Chapter 7. A new method of estimat-
ing waveform slopes in a circuit was used to provide reasonably accurate estimates
of gate delays. The gate-level simulator was combined with the binary bi-bounded
simulation algorithm described in Brzozowski and Seger [21] to produce a verifi-
cation algorithm. The circuit under test was composed with a model of its envi-
ronment, and then simulated while allowing all gate delays to vary by some fixed
amount, by default 20%, from their nominal amount. The behaviour of the circuit
was then checked against the specification. Hazards are allowed on internal circuit
nodes as long as the hazard does not propagate to a primary output of the circuit.
Timing was performed by allowing the designer to specify an example use of the
circuit in a language similar to Verilog. This allows a better measure of the speed
of a circuit, compared to other methods such as the path delay estimation used in
ASSASSIN.

The results in Chapter 8 are promising, especially for the DME element and the
loadable counter. Circuits produced are almost always better than those produced
by existing synthesis tools. The program takes a long time to run, but this is not
surprising, and probably not much of a handicap; when the specification has been
accepted as correct, the synthesis program can be run overnight or in parallel on
many machines. All the SIS STG benchmarks that were tried could be synthesized,
although the master-read example had to be split into two parts.

Section 9.2: Conclusions 207

9.2 Conclusions

In Chapter 1, the stated aims of the dissertation were:

1. To create a front-end description that is powerful enough for almost all real-
world circuits and is simple to use.

All the example circuits could be described using the proposed specification
language, and the descriptions were much clearer than equivalent STG spec-
ifications in the standard file format that is used for petrify and ASSASSIN.

2. To compile this specification into the intermediate form of a blue diagram.

All examples tried were compiled correctly into blue diagrams.

3. To show that exhaustive enumeration of concurrency-reduced blue diagrams
is possible within a reasonable time.

The execution times that were given in Chapter 8 show that the time require-
ments are reasonable, although the tool is certainly not interactive. The spec-
ification front end and concurrency reduction programs are fast, taking a few
seconds each; the synthesis program can take anywhere between a second
and about five hours on a moderate workstation. Running the tool overnight
is not really a problem, especially if this produces circuits that are 10%, 20%
or even 50% faster than comparable tools.

4. To show that the concurrency-reduced blue diagrams can be synthesized
into circuit modules and verified as correct given bounds on the environment
response times.

Implementations for all the example STGs could be found that passed the
verification algorithm. It is, however, very difficult to test the verification al-
gorithm itself. Several bugs in the verifier were picked up by the simulator,
because the simulator checks for strange behaviour that may be caused by an
incorrect circuit, but the verifier cannot be inferred to be correct just because
it has not passed an incorrect circuit for a while.

5. To show that circuits produced tend to be superior to other asynchronous
tools, in terms of the scoring function given by the designer.

With the exception of the parallel component, for which ASSASSIN created a
very fast circuit, and the latch controller, for which Furber and Day created the
best circuit by hand, this has been shown to be true. Circuits produced by the
tool described in this dissertation have usually been better, sometimes by a
factor of two, than circuits produced by current synthesis tools.

Several questions can be asked about the work in this dissertation. Firstly, is
the use of fundamental mode justified? The results in Chapter 8 suggest that fun-
damental mode circuits are indeed smaller, faster and more power-efficient than
speed-independent circuits, but they also have their drawbacks. Fundamental mode

208 Chapter 9: Summary and Conclusions

circuits are not guaranteed to work correctly under every distribution of gate delays,
so they must be verified for a particular target technology. If the circuits are imple-
mented using a different technology, the circuits must be re-verified. The best
circuit for a particular task may actually change when moving to a different technol-
ogy. Fundamental mode circuits are a two-edged sword; they appear to be better,
but they are more difficult to produce and more likely to fail in the presence of pro-
cess variations. The best approach to take when designing large circuits for high
speed operation would be to use fundamental mode circuits for time-critical parts,
and speed-independent circuits for everything else.

Another question that may be asked is whether exhaustive concurrency re-
duction is better than more conventional methods, which take small concurrency-
reducing steps guided by a heuristic until a single solution is found. This is a difficult
question to answer, because it is not possible to isolate the effects of the concur-
rency reduction process from the effects of the fundamental mode synthesis style.
It can be seen that exhaustive concurrency reduction is not overly time-consuming;
all the example circuits can be synthesized overnight. The most time-consuming
part of the synthesis is verifying the circuits produced, so an algorithm based on
exhaustive concurrency reduction in speed-independent circuits may run signifi-
cantly faster. To answer this question fully, the fundamental mode synthesis rou-
tines would have to be replaced by a known speed-independent synthesis program,
such as petrify. Then, a direct comparison between existing methods and the ex-
haustive approach can be made. Such an investigation is beyond the scope of this
thesis.

A new specification language was presented in this dissertation, but the disad-
vantage of any new specification language is that it is an unknown, and needs to be
learnt. It was found to be much easier to use than STGs, so its ease of use probably
outweighs the drawback of having to learn how to use it. It would be possible to
use the front-end as an interface to other synthesis tools, because the language is
translated into a Petri net internally, and tools such as petrify and ASSASSIN accept
Petri nets. Anything that increases the readability of specifications is likely to be
welcomed by circuit designers. This also offers the possibility of integrating petrify
into a Verilog framework, which may produce a unified synthesis environment.

The gate level simulator was found to have an average accuracy better than 5%
on the examples tried, which would appear to be very good. Several published
papers give accuracy results in the 5–10% region, but they often are limited to a
few kinds of basic gate, such as inverters and 2-input and 3-input NAND and NOR
gates. This simulation algorithm achieves 5% accuracy on circuits containing large
complex gates, keeper inverters and analogue arbitration circuitry. It would be
good to compare the proposed method with commercial gate-level simulators, but
accuracy figures for these are not usually released.

It is difficult to draw conclusions about the verification algorithm without using
the circuits produced in a real design; if all circuits produced are found to work in
real designs, then the verifier is a success, if one or more fail, then it is faulty and
should be abandoned. The combination of a fairly accurate timing simulator and
the binary bi-bounded simulation algorithm is very powerful, and could have appli-

Section 9.3: Further Work 209

cations outside the synthesis tool described. A stand-alone version of the verifier
could be used to check timing assumptions in published designs, and provide a
higher degree of confidence than a SPICE simulation. The verifier could also pro-
duce a degree-of-confidence result, by raising the amount by which gate delays are
permitted to vary until the circuit fails; a circuit for which the parameter must be
75% before the circuit fails would be more robust than a circuit for which only 50%
causes failure.

It had been hoped that the tool would produced all three circuits from Furber
and Day’s paper [59], along with many other circuits, and then pick the one with
the lowest cycle time. So why was the fully decoupled controller better than any
produced with this tool? It turns out that the fully decoupled controller cannot be
produced by the algorithms outlined in this dissertation—there are two states of
the fully decoupled circuit that are compatible in the flow table sense, but have a
different value of a state variable. Any flow table reduction algorithm will combine
these two states, and so can not produce the fully decoupled circuit. It is unfortunate
that the unofficial goal of this dissertation—to produce a better latch controller than
the fully decoupled controller—is unattainable.

9.3 Further Work

This dissertation opens up many possibilities for further research:s The master-read example had to be split into two halves, otherwise there
were too many concurrency-reduced blue diagrams. When this was done,
petrify was able to find a solution that was 25% smaller than when the original
specification was used. This suggests that automatic cleaving of STGs, similar
to Chu’s seminal contraction algorithms [26], would be a useful first step for
many synthesis algorithms.s Currently, each blue diagram after concurrency reduction is synthesized, ver-
ified and timed. The gate-level simulator was written to allow modules to be
specified by blue diagrams, rather than collections of gates. Relatively good
speed estimates can be found by simulating the composition of a blue dia-
gram with its environment before synthesis; then, only the most promising
diagrams need be synthesized. Preliminary work shows that this is good for
circuits that need to be fast, but it is difficult to determine the size or power of
the resulting implementation just by looking at the blue diagram; more work
is required to find good heuristics for power and size.s It was said at the end of Chapter 6 that Schmitt triggers on the inputs to the
circuit and buffers on all primary outputs would make the circuits more ro-
bust. This has not been implemented, but should be a fairly simple extension.s The front end can be modified to act as an interface to a speed-independent
synthesis tool, such as petrify.

210 Chapter 9: Summary and Conclusionss It would be good to rewrite the core of the synthesis routines to use a speed-
independent approach, so that the effects of the fundamental mode synthesis
style can be fully evaluated. This would also remove the need for a verification
stage.s The verifier could be expanded to handle standard cell or Xilinx designs as
well as CMOS complex gates, and make into a stand-alone tool that could be
used in other synthesis methodologies.s It was envisaged at the start of the project that layout could also be tackled.
This would allow the tool to produce a standard cell for a latch controller, for
example. This cell could then be treated exactly as any other cell by place-
and-route tools.s Technology mapping issues have not been addressed: are CMOS complex
gates a usable implementation medium? Will mapping them onto standard
library gates reduce the number of circuits that pass verification?s Observing arbiters could be used to increase the response time of some cir-
cuits that require arbitration. For example, if a DME circuit does not have the
token when it receives an lr+ or ur+, it does not need to make a decision
between the two alternatives to know that it needs to request a token from
the DME element on its right. The arbitration can be carried out in parallel
with the request for the token.

.

Glossary
.

Glossary
.

Glossary
.

Glossary
.

Glossary

Alpha Digital’s cutting edge processor. The Alpha 21264 is probably the fastest
mainstream uniprocessor available.

ALU Arithmetic and Logic Unit. The part of a processor where calculations occur.

BiCMOS A combination of CMOS and bipolar technologies, designed to achieve the
high speed of bipolar logic with the low power consumption and high density
of CMOS logic.

CAD Computer-Aided Design. Specifically refers to the design of integrated circuits
using specialized software packages.

CMOS Complementary MOS, an integrated circuit technology using both P and N
channel MOSFETs. The self-aligning property of CMOS and its relatively low
power consumption have made it the most popular fabrication technology for
almost all mainstream digital circuits.

DCC Philips’ Digital Compact Cassette. The decoding hardware of DCC players is a
good example of where asynchronous circuits can provide superior solutions
to conventional synchronous circuits.

DSP Digital Signal Processor.

FIFO First-In First-Out. A type of queue or pipeline where the order of items of data
is preserved.

FPGA Field programmable gate array, essentially a programmable chip. FPGAs
are composed of a number of CLBs (combinational logic blocks), which can
generate a large number of logic functions and be connected together to
build complex circuits. Most are synchronous, but asynchronous structures
can just about be built.

GaAs Gallium Arsenide, one of the III-IV semiconductors. III-IV materials produce
faster circuits and have other advantages, but cost significantly more for pro-
duction.

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor. Name refers to the
original method of fabrication of the device. MOSFETs act like small switches,
and are the building blocks from which CMOS integrated circuits are made.

211

212 Glossary

PLA Programmable Logic Array, an off-the-shelf chip that can implement sum-
of-product expressions with feedback efficiently, and can be programmed
cheaply.

Schmitt Trigger An analogue circuit with positive feedback, which can generate
sharp edges from a slow ramp input even in the presence of noise.

SPICE Simulation Program with Integrated Circuit Emphasis. An analogue simu-
lator which is widely regarded as the most accurate way, but also the slowest
way, to find the behaviour of a ciruit.

SR flip-flop Set-reset flip-flop, a circuit element which can store a single bit of
information, which can either be set or reset by giving one of two inputs.

Set

Reset

Qbar

Q

Set

Reset Qbar

Q

FF
SR

Verilog A widely-used hardware description language, loosely based on C.

.

Bibliography
.

Bibliography
.

Bibliography
.

Bibliography
.

Bibliography
[1] Douglas B. Armstrong, Arthur D. Friedman, and Premachandran R. Menon.

Design of asynchronous circuits assuming unbounded gate delays. IEEE
Transactions on Computers, C-18(12):1110–1120, December 1969.

[2] Aaron Ashkinazy, Doug Edwards, Craig Farnsworth, Gary Gendel, and Shiv
Sikand. Tools for validating asynchronous digital circuits. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 12–21, November 1994.

[3] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed-
independent circuits. In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 581–587. IEEE Computer Society Press, November 1992.

[4] P. A. Beerel, K. Y. Yun, and W. C. Chou. Optimizing average-case delay in
technology mapping of burst-mode circuits. In Proc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, March 1996.

[5] Peter A. Beerel. CAD Tools for the Synthesis, Verification, and Testability of
Robust Asynchronous Circuits. PhD thesis, Stanford University, 1994.

[6] Peter A. Beerel, Jerry R. Burch, and Teresa H.-Y. Meng. Sufficient condi-
tions for correct gate-level speed-independent circuits. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 33–43, November 1994.

[7] Wendy Belluomini and Chris J. Myers. Efficient timing analysis algorithms
for timed state space exploration. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 88–100.
IEEE Computer Society Press, April 1997.

[8] R. G. Bennetts. Improved method of prime C-class derivation in the state
reduction of sequential networks. IEEE Transactions on Computers, 20:229–
231, February 1971.

[9] Kees van Berkel. Beware the isochronic fork. Integration, the VLSI journal,
13(2):103–128, June 1992.

[10] Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, volume 5 of International Series on Parallel Computa-
tion. Cambridge University Press, 1993.

213

214 Bibliography

[11] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken,
and Frits Schalij. A fully-asynchronous low-power error corrector for the DCC
player. IEEE Journal of Solid-State Circuits, 29(12):1429–1439, December
1994.

[12] Kees van Berkel, Ferry Huberts, and Ad Peeters. Stretching quasi delay in-
sensitivity by means of extended isochronic forks. In Asynchronous Design
Methodologies, pages 99–106. IEEE Computer Society Press, May 1995.

[13] M. R. C. M. Berkelaar, P. H. W. Buurman, and J. A. G. Jess. Computing the
entire active area / power consumption v. delay tradeoff curve for gate sizing
with a piecewise linear simulator. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, 15(11):1424–1434, November
1996.

[14] W. J. Bowhill et al. Circuit implementation of a 300-MHz 64-bit second-
generation CMOS Alpha CPU. Digital Technical Journal, 7(1):100–115, 1995.

[15] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic, 1984.

[16] W. F. Brinkman, D. E. Haggan, and W. T. Troutman. A history of the invention
of the transistor and where it will lead us. ieeejssc, 32(12), dec 1997.

[17] L. M. Brocco, S. P. McCormick, and J. Allen. Macromodelling CMOS circuits
for timing simulation. IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems, 7(12), December 1988.

[18] R. B. Brown et al. Overview of complementary GaAs techonology for high-
speed VLSI circuits. IEEE Transactions on VLSI Systems, 6(1):47–51, March
1998.

[19] Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[20] J. A. Brzozowski and K. Raahemifar. Testing C-elements is not elementary. In
Asynchronous Design Methodologies, pages 150–159. IEEE Computer Soci-
ety Press, May 1995.

[21] Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits.
Springer-Verlag, 1995.

[22] Jerry R. Burch. Delay models for verifying speed-dependent asynchronous
circuits. In ACM Int. Workshop on Timing Issues in the Specification and
Synthesis of Digital Systems, March 1992.

[23] B. S. Carlson and S. J. Lee. Delay optimisation of digital CMOS VLSI circuits
by transistor reordering. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 14(10):1183–1192, 1995.

Bibliography 215

[24] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and
arbiter circuits. IEEE Transactions on Computers, C-22(4):421–422, April
1973.

[25] J. F. Chappel and S. G. Zaky. A delay-controlled phase-locked loop to reduce
timing errors in synchronous/asynchronous communications links. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, 1994.

[26] T.-A. Chu, C. K. C. Leung, and T. S. Wanuga. A design methodology for con-
current VLSI systems. In Proc. International Conf. Computer Design (ICCD),
pages 407–410. IEEE Computer Society Press, 1985.

[27] Tam-Anh Chu. On the models for designing VLSI asynchronous digital cir-
cuits. Integration, the VLSI journal, 4(2):99–113, June 1986.

[28] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[29] Tam-Anh Chu and Narayana S. Mani. CLASS: A CAD system for automatic syn-
thesis and verification of asynchronous finite state machines. In Proc. Hawaii
International Conf. System Sciences, volume I. IEEE Computer Society Press,
January 1993.

[30] Tam-Anh Chu and Narayana S. Mani. CLASS: A CAD system for automatic
synthesis and verification of asynchronous finite state machines. Integration,
the VLSI journal, 15(3):263–289, October 1993.

[31] Edwin C.Y. Chung and Lindsay Kleeman. Metastable-robust self-timed circuit
synthesis from live safe simple signal transition graphs. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 97–105, November 1994.

[32] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference Pro-
ceedings: 1967 Spring Joint Computer Conference, volume 30, pages 335–
336, Atlantic City, NJ, 1967. Academic Press.

[33] B. Coates, A. Davis, and K. S. Stevens. Automatic synthesis of fast compact
self-timed control circuits. In Proc. VII Banff Workshop on Asynchronous
Hardware Design, 1993.

[34] Bill Coates, Al Davis, and Ken Stevens. The Post Office experience: Designing
a large asynchronous chip. Integration, the VLSI journal, 15(3):341–366,
October 1993.

[35] W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, and I. E. Sutherland. A
fifo data switch design experiment. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems, pages 4–17, 1998.

216 Bibliography

[36] Deep submicron seminar. Compass Design Automation Inc., 1995.

[37] J. Cortadella. The petrify home page at Univsitat
.

Politècnia de Catalunya.
http://www.ac.upc.es/˜vlsi/petrify/petrify.html.

[38] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Complete state encoding based on the theory of regions. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, March 1996.

[39] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Au-
tomatic handshake expansion and reshuffling using concurrency reduction.
In Workshop on Hardware Design and Petri Nets (HWPN’98), June 1998.

[40] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri
nets from state-based models. In Proc. International Conf. Computer-Aided
Design (ICCAD), pages 164–171, 1995.
ftp://ftp.ac.upc.es/archives/cad/petrify/UPC-DAC-95-09.ps.gz.

[41] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, En-
ric Pastor, and Alexandre Yakovlev. Decomposition and technology mapping
of speed-independent circuits using Boolean relations. In Proc. International
Conf. Computer-Aided Design (ICCAD), November 1997.

[42] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alex Yakovlev. Methodology and tools for state encoding in asynchronous
circuit synthesis. In Proc. ACM/IEEE Design Automation Conference, 1996.

[43] Jordi Cortadella, Luciano Lavagano, Peter Vanbekbergen, and Alexandre
Yakovlev. A systematic approach to design asynchronous circuits with internal
conflicts. In Proc. ACiD-WG Workshop on Testing and Design for Testability,
Aveiro, Portugal, 1994.

[44] Jordi Cortadella, Alexandre Yakovlev, Luciano Lavagano, and Peter Vanbek-
bergen. Designing asynchronous circuits from behavioral specifications with
internal conflicts. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 106–115, November 1994.

[45] A. Davis, B. Coates, and K. Stevens. Automatic synthesis of fast compact
asynchronous control circuits. In S. Furber and M. Edwards, editors, Asyn-
chronous Design Methodologies, volume A-28 of IFIP Transactions, pages
193–207. Elsevier Science Publishers, 1993.

[46] A. Davis, B. Coates, and K. Stevens. The Post Office experience: Design-
ing a large asynchronous chip. In Proc. Hawaii International Conf. System
Sciences, volume I, pages 409–418. IEEE Computer Society Press, January
1993.

Bibliography 217

[47] Paul Day and J. Viv Woods. Investigation into micropipeline latch design
styles. IEEE Transactions on VLSI Systems, 3(2):264–272, June 1995.

[48] J. B. Dennis and S. S. Patil. Speed-independent asynchronous circuits. In
Proc. Hawaii International Conf. System Sciences, pages 55–58, 1971.

[49] S. C. DeSarker, A. K. Basu, and A. K. Choudhury. Simplification of incom-
pletely specified flow tables with the help of prime closed sets. IEEE Trans-
actions on Computers, C-18:953–956, October 1969.

[50] A. Devgan. Transient simulation of integrated circuits in the charge-voltage
plane. IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, 15(11):1379–1390, November 1996.

[51] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[52] D. L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuit. In J. Sifakis, editor, Proceedings of International Work-
shop on Automatic Verification Methods for Finite State Systems, Lecture
Notes in Computer Science, volume 407, pages 197–212. Springer-Verlag,
1990.

[53] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[54] B. Doyle, M. Bourcerie, J.-C. Marchelaux, and A. Boudou. Interface state cre-
ation and charge trapping . . . during hot-carrier stressing of n-MOS transis-
tors. IEEE Transactions on Electronic Devices, 37(3):744–754, March 1990.

[55] Karl M. Fant and Scott A. Brandt. NULL conventional logic: A complete and
consistent logic for asynchronous digital circuit synthesis. In International
Conference on Application-specific Systems, Architectures, and Processors,
pages 261–273, 1996.

[56] P. David Fisher and Sheng-Fu Wu. Race-free state assignments for synthesiz-
ing large-scale asynchronous sequential logic circuits. IEEE Transactions on
Computers, 42(9):1025–1034, September 1993.

[57] S. Furber. Computing without clocks: Micropipelining the ARM processor. In
Graham Birtwistle and Al Davis, editors, Asynchronous Digital Circuit Design,
Workshops in Computing, pages 211–262. Springer-Verlag, 1995.

[58] S. B. Furber and J. Liu. Dynamic logic in four-phase micropipelines. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems. IEEE Computer Society Press, March 1996.

[59] Stephen B. Furber and Paul Day. Four-phase micropipeline latch control cir-
cuits. IEEE Transactions on VLSI Systems, 4(2):247–253, June 1996.

218 Bibliography

[60] M. R. Garey and D. S. Johnson. Computers and Intractability - a Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[61] Jim D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In
S. Furber and M. Edwards, editors, Asynchronous Design Methodologies, vol-
ume A-28 of IFIP Transactions, pages 181–207. Elsevier Science Publishers,
1993.

[62] E. Grass and S. Jones. Improved current-sensing completion detection
(CSCD) circuits. In Proc. ACiD-WG Workshop on Testing and Design for Testa-
bility, Aveiro, Portugal, 1994.

[63] E. Grass, R. C. S. Morling, and I. Kale. Activity monitoring completion de-
tection (AMCD): A new single rail approach to achieve self-timing. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems. IEEE Computer Society Press, March 1996.

[64] A. Grasselli and F. Luccio. A method for minimising the number of internal
states in incompletely specified sequential networks. IEEE Transactions on
Electronic Computing, EC-14:350–359, June 1965.

[65] A. Grasselli and F. Luccio. Some covering problems in switching theory. In
G. Biorci, editor, Network and Switching Theory, pages 536 – 557. Academic
Press, New York and London, 1968.

[66] P. E. Gronowski, W. J. Bowhill, M. K. Gowan, and R. L. Allmon. High-
performance microprocessor design. IEEE Journal of Solid-State Circuits,
33(5):676–686, May 1998.

[67] R. K. Gupta and S. Y. Liao. Using a programming language for digital system
design. IEEE Design and Test of Computers, 14(2):72–80, April–June 1997.

[68] P. Hallam, P. J. Mather, and M. Brouwer. CMOS process independent propa-
gation delay. Electronics Letters, 31(9):702–703, April 1995.

[69] Scott Hauck. Asynchronous design methodologies: An overview. Technical
Report TR 93-05-07, Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, 1993.

[70] Scott Hauck. Asynchronous design methodologies: An overview. Proceedings
of the IEEE, 83(1), January 1995.

[71] Scott Hauck, Steven Burns, Geatano Borriello, and Carl Ebeling. An FPGA
for implementing asynchronous circuits. IEEE Design & Test of Computers,
11(3):60–69, 1994.

[72] N. Hedenstierna and K. O. Jeppson. CMOS circuit speed and buffer optimi-
sation. IEEE Transactions on Computer Aided Design, CAD-6(2):270–281,
March 1987.

Bibliography 219

[73] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[74] Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE
Transactions on Computers, C-31(12):1133–1141, December 1982.

[75] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel, and W. Specks. Optimisation
of high-speed CMOS logic circuits with analytical models for signal delay, chip
area and dynamic power dissipation. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, 9(3):236–247, March 1990.

[76] Paul Horowitz and Winfield Hill. The Art of Electronics. Cambridge University
Press, second edition, 1989.

[77] D. A. Huffman. The synthesis of sequential switching circuits. In E. F. Moore,
editor, Sequential Machines: Selected Papers. Addison-Wesley, 1964.

[78] O. A. Izosimov, I. I. Shagurin, and V. V. Tsylyov. Physical approach to CMOS
module self-timing. Electronics Letters, 26(22):1835–1836, October 1990.

[79] Gordon M. Jacobs and Robert W. Brodersen. A fully asynchronous digital sig-
nal processor using self-timed circuits. IEEE Journal of Solid-State Circuits,
25(6):1526–1537, December 1990.

[80] Mark B. Josephs and Jelio T. Yantchev. CMOS design of the tree arbiter ele-
ment. IEEE Transactions on VLSI Systems, 4(4):472–476, December 1996.

[81] Y.-H. Jun, K. Jun, and S.-B. Park. An accurate and efficient delay time model-
ing for MOS logic circuits using polynomial approximation. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, 8(9):1027–
1032, September 1989.

[82] Y. Kameda, S. Polonsky, M. Maezawa, and T. Nanya. Primitive-level pipelining
method on delay-insensitive model for RSFQ pulse-driven logic. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pages 262–273, 1998.

[83] Vitit Kantabutra and Andreas G. Andreou. A state assignment approach
to asynchronous CMOS circuit design. IEEE Transactions on Computers,
43(4):460–469, April 1994.

[84] David Kearney and Neil W. Bermann. Performance evaluation of asynchron-
ous logic pipelines with data dependant processing delays. In Asynchronous
Design Methodologies, pages 4–13. IEEE Computer Society Press, May 1995.

[85] Robert M. Keller. Towards a theory of universal speed-independent modules.
IEEE Transactions on Computers, C-23(1):21–33, January 1974.

[86] Joep Kessels. VLSI programming of a low-power asynchronous Reed-
Solomon decoder for the DCC player. In Asynchronous Design Methodolo-
gies, pages 44–52. IEEE Computer Society Press, May 1995.

220 Bibliography

[87] D. J. Kinniment. An evaluation of asynchronous addition. IEEE Transactions
on VLSI Systems, 4(1):137–140, March 1996.

[88] Michael Kishinevsky, Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, and
Alex Yakovlev. Synthesis of general Petri-nets. Technical Report TR96-2-004,
University of Aizu, Japan, November 1996.
ftp://ftp.u-aizu.ac.jp/u-aizu/async/TR96-2-004.ps.gz.

[89] Michael Kishinevsky, Alex Kondratyev, Alexander Taubin, and Victor Var-
shavsky. Concurrent Hardware: The Theory and Practice of Self-Timed De-
sign. Series in Parallel Computing. John Wiley & Sons, 1994.

[90] Michael Kishinevsky and Jørgen Staunstrup. Checking speed-independence
of high-level designs. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 44–53, November
1994.

[91] Tilman Kolks, Steven Vercauteren, and Bill Lin. Control resynthesis for
control-dominated asynchronous designs. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, March 1996.

[92] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Taubin. The
use of Petri nets for the design and verification of asynchronous circuits and
systems. Journal of Circuits, Systems and Computers, 8(1), 1998.
ftp://ftp.u-aizu.ac.jp/u-aizu/async/pn-review98.ps.gz.

[93] Alex Kondratyev, Michael Kishinevsky, Jordi Cortadella, Luciano Lavagno, and
Alex Yakovlev. Technology mapping for speed-independent circuits: decom-
position and resynthesis. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 240–253. IEEE Com-
puter Society Press, April 1997.

[94] Alex Kondratyev, Michael Kishinevsky, Bill Lin, Peter Vanbekbergen, and Alex
Yakovlev. Basic gate implementation of speed-independent circuits. In Proc.
ACM/IEEE Design Automation Conference, pages 56–62, June 1994.
ftp://ftp.u-aizu.ac.jp/u-aizu/async/230.ps.Z.

[95] Alex Kondratyev, Michael Kishinevsky, Alexander Taubin, and Sergei Ten.
Analysis of Petri nets by ordering relations in reduced unfoldings. Techni-
cal Report TR 95-2-003, University of Aizu, Japan, June 1995.
ftp://ftp.u-aizu.ac.jp/u-aizu/async/95-2-0003.ps.gz.

[96] Prabhakar Kudva and Venkatesh Akella. A technique for estimating power
in self-timed asynchronous circuits. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 166–175,
November 1994.

[97] Prabhakar Kudva, Ganesh Gopalakrishnan, and Hans Jacobson. A technique
for synthesizing distributed burst-mode circuits. In Proc. ACM/IEEE Design
Automation Conference, 1996.

Bibliography 221

[98] Prabhakar Kudva, Ganesh Gopalakrishnan, Hans Jacobson, and Steven M.
Nowick. Synthesis of hazard-free customized CMOS complex-gate networks
under multiple-input changes. In Proc. ACM/IEEE Design Automation Con-
ference, 1996.

[99] J. G. Kuhl and S. M. Reddy. A multicode single transition-time state assign-
ment for asynchronous sequential machines. IEEE Transactions on Comput-
ers, 27:927–934, October 1978.

[100] Masashi Kuwako and Takashi Nanya. Timing-reliability evaluation of asyn-
chronous circuits based on different delay models. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 22–31, November 1994.

[101] L. Lavagno. The SIS benchmark STGs.
ftp://ftp.cs.man.ac.uk/pub/amulet/www support/async.tar.gz.

[102] L. Lavagno, C. W. Moon, R. K. Brayton, and A. Sangiovanni-Vincentelli. A
novel framework for solving the state assignment problem for event-based
specifications. Technical Report UCB/ERL M92/19, University of California,
Berkeley, 1992.
http://www-cad.eecs.berkeley.edu/˜luciano/publications/tr/UCB-ERL-92-19.ps.gz.

[103] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Synthe-
sis of verifiably hazard-free asynchronous control circuits. Technical Report
UCB/ERL M90/99, University of California, Berkeley, 1990.
http://www-cad.eecs.berkeley.edu/˜luciano/publications/tr/UCB-ERL-90-99.ps.gz.

[104] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Algo-
rithms for synthesis of hazard-free asynchronous circuits. In Proc. ACM/IEEE
Design Automation Conference, pages 302–308. IEEE Computer Society
Press, 1991.

[105] Luciano Lavagno, Kurt Keutzer, and Alberto Sangiovanni-Vincentelli. Syn-
thesis of hazard-free asynchronous circuits with bounded wire delays. IEEE
Transactions on Computer-Aided Design, 14(1):61–86, January 1995.

[106] Trevor W. S. Lee, Mark R. Greenstreet, and Carl-Johan Seger. Automatic verifi-
cation of asynchronous circuits. IEEE Design & Test of Computers, 12(1):24–
31, Spring 1995.

[107] D. L. Lewis. Finite-state analysis of asynchronous circuits with bounded tem-
poral uncertainty. Technical Report TR-15-89, Harvard University, Cambridge,
Massachusetts, USA, 1989.

[108] M. Lewis, J. Garside, and L. Brackenbury. Latch controller operating mode in
asynchronous circuits. In 4th UK Asynchronous Forum, July 1998.

222 Bibliography

[109] Bill Lin and Srinivas Devadas. Synthesis of hazard-free multilevel logic under
multi-input changes from binary decision diagrams. IEEE Transactions on
Computer-Aided Design, 14(8):974–985, August 1995.

[110] C. N. Liu. A state variable assignment method for asynchronous sequential
switching circuits. Journal of the ACM, 10:209–216, 1963.

[111] Loadable counter and interrupt controller, design problems presented at the
1996 ACiD workshop at Groningen.
http://www.cs.man.ac.uk/amulet/async/problems/twoprob.ps.

[112] R. Madhavan. Quick Reference for Verilog HDL. Automata Publishing Com-
pany, San Jose, CA 95129, 1993.

[113] G. K. Maki and J. H. Tracy. A state assignment procedure for asynchron-
ous sequential circuits. IEEE Transactions on Computers, 20:666–668, June
1971.

[114] A. J. Martin. Synthesis of asynchronous VLSI circuits. In Proc. VII Banff Work-
shop on Asynchronous Hardware Design, 1993.

[115] A. J. Martin. Tomorrow’s digital hardware will be asynchronous and verified.
In Proc. VII Banff Workshop on Asynchronous Hardware Design, 1993.

[116] Alain J. Martin. The design of a self-timed circuit for distributed mutual exclu-
sion. In Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference
on VLSI, pages 245–260. Computer Science Press, 1985.

[117] Alain J. Martin. The design of a delay-insensitive microprocessor: An example
of circuit synthesis by program transformation. In M. Leeser and G. Brown,
editors, Hardware Specification, Verification and Synthesis: Mathematical
Aspects, volume 408 of Lecture Notes in Computer Science, pages 244–259.
Springer-Verlag, 1989.

[118] Alain J. Martin. Formal program transformations for VLSI circuit synthesis. In
Edsger W. Dijkstra, editor, Formal Development of Programs and Proofs, UT
Year of Programming Series, pages 59–80. Addison-Wesley, 1989.

[119] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits.
In William J. Dally, editor, Advanced Research in VLSI, pages 263–278. MIT
Press, 1990.

[120] Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.
Hazewindus. The first asynchronous microprocessor: the test results. Com-
puter Architecture News, 17(4):95–110, June 1989.

[121] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes,
Robert Southworth, and Uri Cummings. The design of an asynchronous
MIPS R3000 microprocessor. In Advanced Research in VLSI, pages 164–181,
September 1997.

Bibliography 223

[122] M. D. Matson and L. A. Glasser. Macromodelling and optimization of digital
MOS circuits. IEEE Transactions on Computer Aided Design, CAD-5(4):659–
678, October 1986.

[123] E. J. McCluskey, Jr. Minimisation of boolean functions. Bell Systems Techni-
cal Journal, 35(6):1417–1444, November 1956.

[124] R. E. Miller. Sequential Circuits and Machines, volume 2 of Switching Theory.
John Wiley & Sons, 1965.

[125] T. Miyamoto and S. Kumagai. An efficient algorithm for deriving logic func-
tions of asynchronous circuits. In Proc. International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systems. IEEE Computer
Society Press, March 1996.

[126] Charles E. Molnar, Ian W. Jones, Bill Coates, and Jon Lexau. A FIFO ring
oscillator performance experiment. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 279–289.
IEEE Computer Society Press, April 1997.

[127] Cho W. Moon, Paul R. Stephan, and Robert K. Brayton. Synthesis of hazard-
free asynchronous circuits from graphical specifications. In Proc. Interna-
tional Conf. Computer-Aided Design (ICCAD), pages 322–325. IEEE Com-
puter Society Press, November 1991.

[128] S. Moore, P. Robinson, and S. Wilcox. Rotary pipeline processors. IEE Pro-
ceedings, Computers and Digital Techniques, 143(5):259–265, September
1996.

[129] Simon W. Moore and Peter Robinson. Rapid prototyping of self-timed circuits.
In Proc. International Conf. Computer Design (ICCD), October 1998.

[130] Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. An event con-
trolled reconfigurable multi-chip FFT. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 144–153,
November 1994.

[131] Shannon V. Morton, Sam S. Appleton, and Michael J. Liebelt. ECSTAC: A
fast asynchronous microprocessor. In Asynchronous Design Methodologies,
pages 180–189. IEEE Computer Society Press, May 1995.

[132] D. E. Muller. Theory of asynchronous circuits. Technical report, University of
Illinois Digital Computer Laboratory, December 1955.

[133] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits I. Technical
report, University of Illinois Digital Computer Laboratory, November 1956.

[134] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits II. Technical
report, University of Illinois Digital Computer Laboratory, March 1957.

224 Bibliography

[135] T. Murata. Petri nets: properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[136] Chris J. Myers. Computer-Aided Synthesis and Verification of Gate-Level
Timed Circuits. PhD thesis, Dept. of Elec. Eng., Stanford University, October
1995.

[137] Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous cir-
cuits. IEEE Transactions on VLSI Systems, 1(2):106–119, June 1993.

[138] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits.
Technical Report ERL-M520, UC-Berkeley, May 1975.

[139] Takashi Nanya, Yoichiro Ueno, Hiroto Kagotani, Masashi Kuwako, and Akihiro
Takamura. TITAC: Design of a quasi-delay-insensitive microprocessor. IEEE
Design & Test of Computers, 11(2):50–63, 1994.

[140] S. M. Nowick and B. Coates. Automated design of high-performance asyn-
chronous state machines. In Proc. VII Banff Workshop on Asynchronous
Hardware Design, 1993.

[141] Steven M. Nowick, Mark E. Dean, David L. Dill, and Mark Horowitz. The de-
sign of a high-performance cache controller: a case study in asynchronous
synthesis. In Proc. Hawaii International Conf. System Sciences, volume I,
pages 419–427. IEEE Computer Society Press, January 1993.

[142] R. Panwar and D. Rennels. Input ordering for low power in CMOS logic gates.
International Journal of Electronics, 78(5):925–943, May 1995.

[143] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig. Cover approximations for
the synthesis of speed-independent circuits. In Proc. IFIP Workshop on Logic
and Architecture Synthesis, December 1995.
ftp://ftp.ac.upc.es/pub/archives/Papers/PCKR95.ps.gz.

[144] Priyadarsan Patra and Donald Fussel. Efficient building blocks for delay in-
sensitive circuits. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 196–205, November 1994.

[145] Priyadarsan Patra, Donald S. Fussell, and Stanislav Polonsky. Delay insensitive
logic for RSFQ superconductor technology. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 42–53.
IEEE Computer Society Press, April 1997.

[146] M. A. Peña and J. Cortadella. Combining process algebras and Petri nets
for the specification and synthesis of asynchronous circuits. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems. IEEE Computer Society Press, March 1996.

Bibliography 225

[147] S. L. Peyton Jones. A practical technique for designing asynchronous finite-
state machines. Technical Report CSC 91/R2, Department of Computing Sci-
ence, University of Glasgow, April 1991.

[148] R. Puri and J. Gu. An efficient algorithm to search for minimal closed covers
in sequential machines. IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 12(6):737–745, June 1993.

[149] Ruchir Puri and Jun Gu. Asynchronous circuit synthesis; persistency and com-
plete state coding constraints in signal transition graphs. Int. Journal Elec-
tronics, 75(5):933–940, 1993.

[150] W. V. Quine. The problem of simplifying truth functions. American Math.
Monthly, pages 521–531, Fall 1952.

[151] W. Reisig. Petri Nets: an Introduction. Springer-Verlag, Berlin, 1985.

[152] C. A. Rey and J. Vaucher. Self-synchronized asynchronous sequential ma-
chines. IEEE Transactions on Computers, 23(12):1306–1311, December
1974.

[153] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby. Exact and heuristic al-
gorithms for the minimisation of incompletely specified state machines. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems,
13(2):167–177, February 1994.

[154] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien
Fang. Q-modules: Internally clocked delay-insensitive modules. IEEE Trans-
actions on Computers, C-37(9):1005–1018, September 1988.

[155] L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: from self-timed to timed
ones. In Proceedings of International Workshop on Timed Petri Nets, pages
199–207, Torino, Italy, July 1985. IEEE Computer Society Press.

[156] G. Ruan, J. Vlach, and J. A. Barry. Current-limited switch-level timing simu-
lator for MOS logic networks. IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems, 7(6):659–667, June 1988.

[157] G. V. Russo and G. Palamà. Minimization of incompletely specified sequential
machines. Digital Processes, 6(2–3):199–206, Summer-Winter 1980.

[158] J. W. J. M. Rutten and M. R. C. M. Berkelaar. Improved state assignments
for burst mode finite state machines. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 228–239.
IEEE Computer Society Press, April 1997.

[159] T. Sakurai and A. R. Newton. A simple mosfet model for circuit analysis and
its application to CMOS gate delay analysis and series-connected MOSFET
structure. Technical Report ERL Memo No. ERL M90/19, Electronics Research
Laboratory, University of California, Berkeley, March 1990.

226 Bibliography

[160] Charles L. Seitz. Ideas about arbiters. Lambda, 1(1, First Quarter):10–14,
1980.

[161] Charles L. Seitz. System timing. In Carver A. Mead and Lynn A. Conway,
editors, Introduction to VLSI Systems, chapter 7. Addison-Wesley, 1980.

[162] Alex Semenov, Alexandre Yakovlev, Enric Pastor, Marco Pe na, Jordi Cor-
tadella, and Luciano Lavagno. Partial order based approach to synthesis of
speed-independent circuits. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 254–265. IEEE Com-
puter Society Press, April 1997.

[163] Alexei Semenov and Alex Yakovlev. Verification of asynchronous circuits using
time Petri-net unfolding. In Proc. ACM/IEEE Design Automation Conference,
pages 59–63, 1996.

[164] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS:
A System for Sequential Circuit Synthesis. Department of Electrical Engi-
neering and Computer Science, University of California, Berkeley, May 1992.
Memorandum no. UCB/ERL M92/41.

[165] K. L. Shepard and V. Narayanan. Conquering noise in deep-submicron digital
ICs. IEEE Design and Test of Computers, 15(1):51–62, January–March 1998.

[166] Y.-H. Shih, Y. Leblebici, and S.-M. Kang. ILLIADS: a fast timing and reliability
simulator for digital MOS circuits. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, 12(9):1387–1402, September
1993.

[167] R. Smith, K. Fant, D. Parker, R. Stephani, and C. Y. Wang. An asynchronous
2-D discrete cosine transform chip. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 224–233,
1998.

[168] R. J. Smith. Generation of internal state assignments for large asynchron-
ous sequential machines. IEEE Transactions on Computers, 23:924–932,
September 1974.

[169] Robert F. Sproull and Ivan E. Sutherland. Asynchronous Systems. Suther-
land, Sproull and Associates, Palo Alto, 1986. Vol. I: Introduction, Vol. II:
Logical effort and asynchronous modules, Vol. III: Case studies.

[170] Robert F. Sproull, Ivan E. Sutherland, and Charles E. Molnar. The counterflow
pipeline processor architecture. IEEE Design & Test of Computers, 11(3):48–
59, Fall 1994.

Bibliography 227

[171] I. Sutherland, R. Sproull, D. Roberts, C. Molnar, I. Jones, B. Coates, R. Yung,
and J. Lexau. The counterflow pipeline processor project. In Proc. Inter-
national Symposium on Advanced Research in Asynchronous Circuits and
Systems, 1994. Special invited session.

[172] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–
738, June 1989.

[173] C. J. Tan. State assignments for asynchronous sequential machines. IEEE
Transactions on Computers, 20(4):382–391, April 1971.

[174] M. Theobald and S. M. Nowick. Fast heuristic can exact algorithms for two-
level hazard-free logic minimization. Technical Report CUCS-001-98, Dept.
of Computer Science, Columbia University, 1998.
http://www.cs.columbia.edu/˜library/1998.html.

[175] José A. Tierno, Alain J. Martin, Drazen Borkovic, and Tak Kwan Lee. A 100-
MIPS GaAs asynchronous microprocessor. IEEE Design & Test of Computers,
11(2):43–49, 1994.

[176] J. H. Tracey. Internal state assignments for asynchronous sequential ma-
chines. IEEE Transactions on Electronic Computers, EC-15:551–560, August
1966.

[177] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley-Interscience,
John Wiley & Sons, Inc., New York, 1969.

[178] Stephen H. Unger. Asynchronous sequential switching circuits with unre-
stricted input changes. IEEE Transactions on Computers, 20(12):1437–1444,
December 1971.

[179] Stephen H. Unger. Self-synchronizing circuits and nonfundamental mode
operation. IEEE Transactions on Computers, 26(3):278–281, March 1977.

[180] Stephen H. Unger. Hazards, critical races, and metastability. IEEE Transac-
tions on Computers, 44(6):754–768, June 1995.

[181] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Ichid, and K. Nogami. Au-
tomated low-power technique exploiting multiple supply voltages applied to
a media processor. IEEE Journal of Solid-State Circuits, 33(3):463+, March
1998.

[182] P. Vanbekbergen, B. Lin, G. Goossens, and H. de Man. A generalized state
assignment theory for transformations on signal transition graphs. In Proc.
International Conf. Computer-Aided Design (ICCAD), pages 112–117. IEEE
Computer Society Press, November 1992.

[183] Peter Vanbekbergen, Gert Goossens, Francky Catthoor, and Hugo J. De Man.
Optimized synthesis of asynchronous control circuits from graph-theoretic

228 Bibliography

specifications. IEEE Transactions on Computer-Aided Design, 11(11):1426–
1438, November 1992.

[184] Victor I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The
Design of Aperiodic Logical Circuits in Computers and Discrete Systems.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[185] S. R. Vemuru and E. D. Smith. Accurate delay estimation model for lumped
CMOS logic gates. IEEE Proceedings - G, Electronic Circuits and Systems,
138(5):627–628, October 1991.

[186] Eric Verlind, Gjalt de Jong, and Bill Lin. Efficient partial enumeration for tim-
ing analysis of asynchronous systems. In Proc. ACM/IEEE Design Automation
Conference, 1996.

[187] W. T. Weeks, A. J. Jiminez, G. W. Mahoney, D. Mehta, H. Qasemzadah, and T. R.
Scott. Algorithms for ASTAP – a network analysis program. IEEE Transactions
on Circuit Theory, CT-20(6):628–634, November 1973.

[188] U. Weiser. Future directions in microprocessor design. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
1996. Invited lecture.

[189] N. Weste and K. Eshragian. Principles of CMOS VLSI Design, A Systems
Perspective. Addison-Wesley, 1988.

[190] Ted E. Williams. Self-Timed Rings and their Application to Division. PhD
thesis, Stanford University, June 1991.

[191] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli. A unified signal tran-
sition graph model for asynchronous control circuit synthesis. In Proc. Inter-
national Conf. Computer-Aided Design (ICCAD), pages 104–111. IEEE Com-
puter Society Press, November 1992.
http://www-cad.eecs.berkeley.edu/˜luciano/publications/tr/UCB-ERL-92-78.ps.gz.

[192] A. V. Yakovlev, M. Kishinevsky, A. Kondratyev, and L. Lavagno. On the mod-
els for asynchronous circuit behaviour with OR casality. Technical Report TR
#463, University of Newcastle upon Tyne, November 1993.

[193] A. V. Yakovlev and A. I. Petrov. Symbolic signal transition graphs and asyn-
chronous design. Technical Report TR #395, University of Newcastle upon
Tyne, September 1993.

[194] Alexandre Yakovlev, Alexei Petrov, and Luciano Lavagno. A low latency asyn-
chronous arbitration circuit. IEEE Transactions on VLSI Systems, 2(3):372–
377, September 1994.

[195] Alexandre V. Yakovlev. On limitations and extensions of STG model for de-
signing asynchronous control circuits. In Proc. International Conf. Computer
Design (ICCD), pages 396–400. IEEE Computer Society Press, October 1992.

Bibliography 229

[196] H. G. Yang and D. M. Holburn. Switch-level timing verification for CMOS cir-
cuits: a semianalytic approach. IEEE Proceedings - G, Electronic Circuits and
Systems, 137(6):405–412, December 1990.

[197] C. Ykman-Couvreur, P. Vanbekbergen, and B. Lin. Concurrency reduction
transformations on state graphs for asynchronous circuit synthesis. In Proc.
Int’l Workshop on Logic Synthesis, May 1993. (In the ASSASSIN ftp distri-
bution).

[198] Chantal Ykman-Couvreur and Bill Lin. Optimised state assignment for asyn-
chronous circuit synthesis. In Asynchronous Design Methodologies, pages
118–127. IEEE Computer Society Press, May 1995.

[199] Chantal Ykman-Couvreur, Bill Lin, and Hugo de Man. Assassin: A synthesis
system for asynchronous control circuits. Technical report, IMEC, September
1994. User and Tutorial manual.

[200] J. Yuan and C. Svensson. High-speed CMOS circuit technique. IEEE Journal
of Solid-State Circuits, 24(1):62–70, February 1989.

[201] K. Y. Yun, P. A. Beerel, and J. Arceo. High-performance asynchronous pipeline
circuits. In Proc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems. IEEE Computer Society Press, March 1996.

[202] Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Synthesis of 3D asyn-
chronous state machines. In Proc. International Conf. Computer Design
(ICCD), pages 346–350. IEEE Computer Society Press, October 1992.

[203] Kenneth Yi Yun. Synthesis of Asynchronous Controllers for Heterogeneous
Systems. PhD thesis, Stanford University, August 1994.

230 Bibliography

.

Index
.

Index
.

Index
.

Index
.

Index

3D tool, 30, 133, 197

arbiter
DME, see Martin’s DME element
nacking, 60
Seitz, 70, 94

asP*, 12, 27
ASSASSIN, 24, 35, 133, 197

binary bi-bounded delay algorithm,
183

blue diagram, 49, 55
drawing, 102

bundled data, 11
burst mode, 27

causal logic nets, 26
CFPP, 4
change diagrams, 26
CHP, 33
clock skew, 1
compatibles, 37
completion detection, 15
concurrency reduction, 36
Counterflow Pipeline Processor, 4

delay-insensitivity (DI), 8
distributed mutual exclusion (DME),

see Martin’s DME element
dual rail, 12
dynamic gates, 154

comparisons, 191

ECS, 35

field forks, 10
foam rubber wrapper property, 8
FSM synthesis algorithms, 31, 36–

44, 133–157

fundamental mode, 7, 27

handshaking, 11
Huffman, 7

I-nets, 18, 35
isochronic forks, 9

latch controllers, 4, 45–54, 59
blue diagram for, 106
circuit for timing, 178, 179
description in language, 78
results, 198

loadable counter
blue diagram for, 108
circuit for timing, 181
description in language, 79
results, 201

loadable counter problem, 61
local clocks, 30
logic synthesis, 41
logical effort, 157

macromodules, 8, 35
Martin’s DME element, 61

blue diagram for, 108
circuit for timing, 181
description in language, 78
results, 200

MEAT, 29, 133, 156, 197
Muller, 7

nacking arbiter, 60
blue diagram for, 107
circuit for timing, 182
description in language, 78
results, 200

null convention logic, 14

231

232 Index

P**3, 27
parallel component, 60

blue diagram for, 107
circuit for timing, 180
description in language, 78
results, 199

Petri nets, 15
petrify, 18, 35, 197
phase, two vs. four, 11
PUNT, 25

Q-modules, 20
quasi delay insensitivity (QDI), 9
quasi-QDI, 10

regions, of STGs, 24

semi modularity, 8
signal graph, 21
SIS, 24, 132, 197

benchmark STGs, 63–69
blue diagrams, 106–112
language description, 79–82
results, 203

snippets, 18, 47
speed independence, 7, 8
SPICE, 159, 176
STAMINA, 39, 133
state assignment, 39
static gates, 154

comparisons, 191
STG (signal transition graph), 21
STG fragments, 4, 45, 71
SYN, 25

Tangram, 34
time Petri nets, 20
timed handshaking expansions, 34
trace theory, 32
Tracey’s algorithm, 23, 40, 144

waveform models, 160, 162
new, 162

