Technical Report A

Number 470

Computer Laboratory

Modular reasoning in Isabelle

Florian Kammuller

August 1999

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/


https://www.cl.cam.ac.uk/

© 1999 Florian Kammiiller

This technical report is based on a dissertation submitted April
1999 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986
DOI https://doi.org/10.48456/tr-470


https://www.cl.cam.ac.uk/techreports/
https://doi.org/10.48456/tr-470

Abstract

This work is concerned with modules for higher order logic theorem provers,
in particular Isabelle. Modules may be used to represent abstract mathe-
matical structures. This is typical for applications in abstract algebra. In
Chapter 1, we set out with the hypothesis that for an adequate representa-
tion of abstract structures we need modules that have a representation in the
logic. We identify the aspects of locality and adequacy that are connected
to the idea of modules in theorem provers.

In Chapter 2, we compare module systems of interactive theorem provers
and their applicability to abstract algebra. Furthermore, we investigate a
different family of proof systems based on type theory in Section 2.4.

We validate our hypothesis by performing a large case study in group
theory: a mechanization of Sylow’s theorem in Chapter 3.

Drawing from the experience gained by this large case study, we develop a
concept of locales in Chapter 4 that captures local definitions, pretty printing
syntax, and local assumptions. This concept is implemented and released
with Isabelle version 98-1.

However, this concept is alone not sufficient to describe abstract struc-
tures. For example, structures like groups and rings need a more explicit
representation as objects in the logic. A mechanization of dependent -
types and II-types as typed sets in higher order logic is produced in Chapter
5 to represent structures adequately.

In Chapter 6, we test our results by applying the two concepts we devel-
oped in combination. First, we reconsider the Sylow case study. Further-
more, we demonstrate more algebraic examples. Factorization of groups,
direct product of groups, and ring automorphisms are constructions that
form themselves groups, which is formally proved. We also discuss the proof
of the full version of Tarski’s fixed point theorem. Finally, we consider how
operations on modules can be realized by structures as dependent types.
Locales are used in addition; we illustrate the reuse of theorems proved in a
locale and the construction of a union of structures.
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Chapter 1

Introduction

This thesis is concerned with modules for higher order logic theorem provers,
in particular Isabelle [Pau94], and their application to the formalization of
abstract algebra.

In computer science, modules are an element of programming languages.
They are a tool to enhance the software engineering process. Modules sup-
port structuring, separate development and compilation of programs. Usu-
ally, they offer parameterization, which generalizes the code contained in a
module, thereby enabling reuse. This is a form of abstraction.

Modules for theorem provers are introduced for similar reasons as in pro-
gramming languages. In particular, generic theorem provers need some sort
of modules to organize their object logics. These modules are often called
theories. Like modules of programming languages, the ones for theorem
provers are parameterized and hence introduce abstraction.

Abstraction in logic must be treated with care. Modules can represent
structure. That is, if we represent a logical or mathematical structure by a
module, then the module itself carries the meaning of this structure. Usually,
modules are designed like their predecessors in programming languages as
external devices, i.e. modules do not have any meaning in the logic of a
theorem prover. Consequently, as soon as we employ modules to represent
structures of an application, we cannot reason about these structures.

The abstraction that is an intrinsic part of modules for theorem provers
is deeply related to mathematical and logical abstraction and is not just
restricted to reusability. In order to emphasize the difference from program-
ming languages, we use the terms modular reasoning and modular structures
to describe the use of modules for mechanization of logic and the mathe-
matical structures described by these modules.

Abstract algebra deals with abstraction in mathematics. It is an ideal
application for the test of module systems for theorem provers. In compari-
son to most other abstract applications, like specification languages or other
engineering methods for computer software and hardware development, it is

1



2 CHAPTER 1. INTRODUCTION

well understood semantically. Abstract algebraic structures typically consist
of an abstract set and one or more abstract operations on this set obeying
a few rules. This is why they may be represented elegantly by parameter-
ized modules. Abstract algebraic proofs are often deep — properties about
structures are used. On the other hand, abstract algebraic structures are
characterized by only a few constructors and rules. Hence, they may be
specified quickly. These features make abstract algebra a good test domain
for the specification of structures in theorem provers.

Some people say that formalizations of mathematics, like mechaniza-
tions of abstract algebraic proofs, are not valuable for technological advance
[QED96]. However, we believe that such formalizations may be useful to test
module systems for theorem provers. Furthermore, abstract algebraic struc-
tures resemble elements of programming languages like objects and classes.
Hence, it is very likely that module systems that enable a proper treatment
of abstract algebra will improve formal support of software engineering as
well. Tt is common in science that some subjects are critizised as just in-
tellectual pleasures. In pure mathematics there are problems that seem of
relatively little importance for any useful application in the real world. An
example is Fermat’s last theorem [Sin97]. This theorem is in itself not par-
ticularly interesting outside pure mathematics, the more so because it is a
negative statement; it is concerned with the non-existence of solutions to an
equation. Nevertheless, 358 years of attempts to solve Fermat’s last theo-
rem have led to many amazing developments in mathematics. New fields
were explored, new techniques developed, and relationships between known
domains of mathematics discovered. The actual solution connects modular
forms with elliptic equations — two completely different domains of math-
ematics; a connection that was independently conjectured some 30 years
before by Taniyama and Shimura but only solved by Wiles in order to prove
Fermat’s last theorem [Wil95].

We believe that formalization of mathematics plays a similar role in
theorem proving. Attempts to construct good tools for the formalization
of mathematics can produce techniques of general interest. As an example
for this may serve the creation of higher order logic, which is the basis of
many theorem provers that serve all kinds of practical tasks in software and
hardware engineering. Higher order logic is usually traced back to Church’s
paper [Chu40], but its origin is to be seen in Russell’s and Whitehead’s
work - [WR62], which has been motivated by a crisis in the foundations of
mathematics shortly characterized by Russell’s paradox about the set of all
sets.
 Besides a contribution to the improvement of module systems for higher
order logic theorem provers, this thesis should also be understood as an ad-
vocation of the formalization of mathematics. Presenting concepts that are
suited to deal with the complicated world of abstract algebra, this work illus-
trates that general benefits for the theorem proving technology are gained.



Some issues we address are best described and explained here: through-
out this thesis we will make use of a few principal notions that are specific
to our area of research.

e Our utmost concern in this work is adequacy. By that we mean that
the formal representation of a part of the real world in the language
of a theorem prover should cover it as completely as possible. For the
world of abstract algebra this means that it should be possible to find a
representation for its constructs and to state propositions about these
constructs (logical adequacy). These statements should at the same
time be readable (notational adequacy). Furthermore, it should be
possible — with reasonable investment of human and computer time
— to conduct their proofs (pragmatic adequacy).

e Strongly connected to the notion of adequacy is the notion of first class
citizen. By a first class citizen of a formal system we mean an element
that lives in it. A first class citizen of a logic or a type theory is an
entity that can be used in formulas. In higher order logic, first class
citizens are those elements that may be denoted by a variable, i.e. are
values. Alternatively, one may characterize them as elements that can
be subject to a quanitfier. Normally, types are not first class citizens
of higher order logic as they cannot be quantified (an extension that
enables quantification over type variables is given by Melham [Mel93]).

e Another important aspect that comes with modules is best described
as locality. Locality is the ability to declare concepts whose scope is
limited or temporary. Locality for theorem provers enables the implicit
use of information and thereby clarifies notations and facilitates proofs.

In the remainder of this chapter, we present short introductions to basic
research fields that we will consider in order to tackle the task of constructing
methods for modular reasoning in Isabelle. At first, we give in Section 1.1
a short introduction to type theory. We will use concepts from this theory
in our developments. Although we will inspect type theory in more detail
in Chapter 2, we consider it helpful to give a general introduction to it at
the start. Abstract algebra deals with abstract sets and operations on them.
Hence, one way to model abstract algebraic structures is to use polymorphic
types, although mathematically the basis of an algebraic structure is a set.
It is important to understand the differences between types and sets. We
discuss in Section 1.2 the relationship between sets and types in a higher
order logic theorem prover. Then we mention in Section 1.3 some work that
has been performed towards a formalization of abstract algebra. Finally
in Section 1.4, we develop our hypothesis stating a possible approach to
a sensible treatment of modular structures for higher order logic theorem
provers and outline the thesis in Section 1.5.
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1.1 Type Theory

In the comparison of other provers, we come across a class of theorem proving
assistants that are based on constructive type theory. They offer many
interesting ideas, but unfortunately appear to be difficult to automate, for
few large proofs have been undertaken using them.

It is important to understand that type theory is a fundamentally dif-
ferent approach to theorem proving. Although systems like Coq [DT93]
and LEGO [LP92] do not differ much from a system like Isabelle or IMPS
[FGT93] in the way they present themselves to the user, the underlying
philosophy differs as much as the principal paradigm and hence the actual
proof machine.

Whereas Isabelle and comparable systems are implementations of a logic,
type theoretical provers are implementations of an abstract calculus of func-
tions and types. The logic only comes in via the Curry-Howard isomorphism
[How80]. This isomorphism is used as a paradigm saying that in the world
of types we interpret every type as a proposition and terms inhabiting that
type as proofs of that proposition. There is no explicit connection between
the two worlds of types and truth in the type theory. The mechanisms of
type theory, like reduction of terms, just happen to behave like some kind
of logic and hence type theory can be used as a machinery for implementing
logics. Since every term is constructed as something like a function term,
type theory typically implements constructive logics.

1.2 Sets and Types in Higher Order Logic

Isabelle/HOL is a higher order logic theorem prover. Higher order logic is
historically called a simple type theory [Chu40]. Types are used to impose
hierarchies on the domains of terms. Types and terms are separate entities.
There is one type, usually called bool, of all logical terms, i.e. all formulas.

Types do not play such a major r6le in higher order logic as they play
in pure type theories. Still, types can be sometimes too restrictive to enable
completeness of mathematical reasoning. Every set that is modelled by a
type is restricted by the type hierarchy and the possibilities of type construc-
tion. Since the hierarchy of higher order logic is flat and the polymorphism
is restricted to binding of type variables at the outermost position of the
type, many higher order statements about a set represented by a type are
not possible in such a model (¢f. Section 5.4.2) .

Isabelle is a generic theorem prover. One can employ its different object
logics for the reasoning process. Due to its untyped character the theory ZF,
implementing Zermelo-Fraenkel set-theory, is the natural domain of math-
ematical reasoning. Since it is untyped, it is less convenient to represent
structures in ZF. Abstract algebraic structures can profit from typing as it
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is provided by higher order logic. The Isabelle object logic HOL, for higher
order logic, offers a formalization of typed sets that we employ for abstract
algebra. Nevertheless, a switch to Zermelo-Fraenkel set-theory could be a
solution as well. Actually, a connection between HOL and ZF might offer ex-
pressive power of set theory combined with the convenience of type theoretic
reasoning of HOL. To this end, one may construct an effective translation
from HOL to ZF. One may use here the set theoretic semantics of HOL
[GP93]. This interpretation is nontrivial because ZF has neither typed sets
nor polymorphism. A mechanization of a theory translation mechanism for
Isabelle is an interesting problem in its own right.

From a pragmatic point of view, this translation seems not to be neces-
sary because the formalization of typed sets in HOL that we use turns out
to be the best basis for our work. It combines convenience of types with
expressiveness of sets.

Gordon experimented with an extension of the HOL system [GM93]
with set theory [Gor95] to achieve more natural mathematical reasoning
facilities. Polymorphism is represented there in terms of A-abstraction with
the set representing the polymorphic type as the function’s parameter. For
example, the polymorphic identity A z : a. z becomes X a. {(z,z). € a}. In
[Gor96] the author concludes that types as well as sets are needed. Lamport
and Paulson discussing the use of types for specification languages [LP97]
arrive at similar conclusions: generality of set theory can be combined with
the benefit of type-based tools.

1.3 Formalizations of Abstract Algebra

Some work has been performed on applications of theorem proving to ab-
stract algebra up till now. We mention only a few contributions that are
milestones in this subject. Abstract algebra is a good domain for the study
of expressivity of formal methods. The abstraction and structuring that is
essential part of the reasoning process in abstract algebra challenges most
formal languages and related tools. This is why we decided to use it as our
field of application. The simple examples of groups, substructures of groups,
like subgroups, and superstructures, like homomorphisms reveal very quickly
weak points in formal systems or certain naive characterizations of this part
of mathematics.

The treatment of algebraic structures in the higher order logic theorem
prover HOL has already been studied [Gun89]. However, at the time of these
experiments there were no sets available in HOL. Hence, algebraic struc-
tures, like groups, are represented by a predicate over a base type. This
formalization has some unnatural notational drawbacks. Gunter’s formal-
ization allows reasoning about groups because there are no explicit theory
structures involved. Still, as far as logical adequacy is concerned, Gunter’s
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work can be seen as a benchmark for the present project.

Jackson has applied the type theory based system Nuprl [C*86] to ab-
stract algebra [Jac95] and enhanced the system to deal with a computational
subset of abstract algebra.

The case study [Bai98] of the formal proof of the fundamental theorem
of Galois is a real milestone in the formalization of abstract algebra. This
case study is performed in LEGO, a type theoretic proof checker offering
automation for proof refinement. In this work, the author comments a few
times on the problems with machine performance, which seem to have in-
fluenced the design decisions of the formalization. Apparently it had to be
adjusted to achieve a reasonable performance at all. That should not be an
issue when trying to mechanize mathematics. Although logically and no-
tationally adequate, type theoretical mechanizations are not pragmatically
adequate.

However, the concepts of type theory are expressive and elegant. The
bad performance occurs because proofs are objects in the logic. Hence, the
proof constructions have to be stored with the propositions. Naturally the
proofs are magnitudes bigger than the propositions. An interesting approach
would be to extract the elegant structures out of type theory without paying
the high price for too rigorous principles. Can we achieve the logical and
notational adequacy of type theory without sacrificing pragmatic adequacy?

1.4 Modular Reasoning

By Modular Reasoning we mean reasoning that employs modules as part
of the logic. In a way this is a special case of what is often referred to
. as abstract reasoning. We restrict our attention to abstract algebra. For
an adequate treatment of abstract algebra in an LCF-style higher order
logic theorem prover, modules can be conveniently employed to represent
algebraic structures. But, in that case, modules must be first class citizens of
the logic. In this section we describe this observation in principle and discuss
it. The observation sketched here will be further illustrated in Chapter 2.

1.4.1 Observation

To characterize the problem, we consider the example of groups that we will
consider in detail in Section 2.3 and many other places in this thesis. In a
pseudo notation for modules we can characterize groups as

Module Group [G: TYPE, o : G -> G -> G, inv: G -> G, e: G]
Vx:G. xoe=x

V x: G. x o (inv x) = e

V,9,2:G. x0(yoz)=(xoy)oz
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This is the way modules are employed to characterize groups in systems like
IMPS [FGT93], PVS [OSRSC98], and Larch [GH93].

With the use of modules the carrier of the group becomes a type. Thereby,
the class of all groups is contained in the product type of the type of the
carrier and the types of the other constituents of the group, i.e. the types of
the binary operation, the inverse, and the unit element. The subtype of this
product type that exactly represents the class of groups is then specified by
the properties of the body of the module for groups.

To achieve adequate reasoning, we need to be able to express properties
of all groups in the logic and use the class of all groups in the specification
of substructures like subgroups or superstructures like homomorphisms or
quotient groups. This is not possible if types and terms are on different
levels, i.e. if formulas are terms while types are only a means to classify
them. In higher order logic theorem provers, the latter is the case, i.e.
terms and types are completely separate concepts.

Without considering types necessarily as logical properties as in type
theory, we have to transfer some of the concepts of structure representation
of type theory to logic to be able to grasp the world of abstract mathematics
adequately.

The ideal solution would be to have on the one hand the convenient for-
malization employing modules and on the other hand to be able to change
the viewpoint to consider these theory structures at the reasoning level. A
notion of reflection between structures like modules and logical formulas
seems to describe this change of viewpoint quite well. Reflection is a fre-
quently used mechanism in reasoning processes [Har95]. In type theories
the reflection is realized by impredicative types or to an extent by infinite
type hierarchies, where each type can be considered as a term on a higher
level (see Section 2.4). In IMPS we see that the solution to overcome the
separation between terms, types, and theories (see Section 2.3.4) consists
of transforming a sort to a set or indicator. This procedure is a reflection
between types and terms.

Surely, reflection in the described sense cannot be introduced in general.
Abandoning the separation between terms and types, we would encounter
the foundational problems that were the reason to create types in the first
place [WR62]. However, the applications of modules to abstract algebra we
will present in Chapter 2 show that a proper treatment of this aspect in
a structuring concept for a theorem prover is necessary to make reasoning
more adequate. We aim to construct a support for modular reasoning that
is more flexible with respect to reflection of structure. This will actually
happen by separating the concerns of locality and adequacy.
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1.4.2 Locality and Adequacy

One feature of a module is encai)sulation. A module builds a context, or local
scope, in which certain items are temporarily known. This feature is desir-
able, because is gives us locality. We can define local variables, constants,
and operators in a notationally adequate way. These items are defined in
a certain context. Thereby the context information can be used in their
definition and enhances their concrete syntax. Locality is something that
comes in with modules in the IMPS-PVS-Larch style.

The other aspect is adequacy. As we will see in Section 2.4, dependent
types are well suited to give an adequate representation of algebraic struc-
tures. But, compared to the approach taken in type theory, we do not want
to interpret these dependent types as logical constructors, instead just as
structure representations. The approach of structures taken in the type the-
oretic proof tools solves the problem of adequacy, but the advantages of the
modules of IMPS, PVS, and Larch in terms of locality are necessities for
modular reasoning as well.

1.5 Overview

In Chapter 2 we compare the proof systems IMPS, PVS, and Larch and
their module systems with respect to abstract algebra and point at the
limitations. We also describe in more detail the class of type theory systems
and their type universes.

The better theorem proving systems these days have grown into large
formal frameworks. A system like Isabelle is in its generic concepts and
different object logics so complex that it is hard to judge where the limits
are, even for an expert user. Some limitations are quite obvious and yet
there are often ways around them. The best way to find out if a system is
suitable to fulfill the tasks it is constructed for — and at first sight seems
capable of doing — is to apply the system to a large-scale case study. To that
end, we continue this work with the application of Isabelle to a fundamental
theorem of abstract algebra — the first theorem of Sylow. This case study
was chosen because it deals with an application field that is not easily dealt
with; the proof of this theorem outlined in [Her64] is a combination of several
different ways of algebraic reasoning.

Much of the knowledge a first year student of abstract algebra learns is
combined in this proof. For example, the proof uses Lagrange’s theorem,
which states that the order of a subgroup divides the order of the enclosing
group. Furthermore, basic results about functions are used: to exhibit that
Lagrange’s theorem applies to a subset of the group, a bijection is defined
between this subset and a factorization of the group. Besides reasoning
about bijections and cardinality of sets, this requires reasoning about fac-
. torizations of a group. Finally, some combinatorial reasoning is developed
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and applied to substructures to derive their properties. Summarizing, the
proof demands a combination of different knowledge bases as well as viewing
groups and substructures of groups under many different aspects. The va-
riety of the involved reasoning entails the potential to reveal critical points
of algebraic reasoning. In particular, using the convenient formalization in
terms of modules performed in the provers IMPS, PVS, and Larch, even the
formulation of the conjecture would be either difficult or impossible. The
conjecture talks about cardinality and substructures of a group. To express
such properties, a group has to be a first class citizen of the logic and it is
not in the module characterization.

The case study yields a list of requirements that naturally leads on to
the development of a concept of locales in Chapter 4. This concept addresses
mostly the need for locality for the interactive proof process of higher order
logic provers. We describe the concept and its integration into Isabelle.
In addition, we sketch how the implementation has been performed. We
discuss the possibility to reflect locales to achieve a first class representation
for them. However, it turns out that such a representation is not easily
achieved and furthermore not always desirable. ,

From that observation we continue the developments with the construc-
tion of structures as dependent types in Chapter 5. We describe our notion
of algebraic structures, explain dependent types and their mechanization
as typed sets in higher order logic, and describe how they may be used to
represent structures.

Finally, we show in Chapter 6 how the concepts we have developed can
be successfully combined to provide support for modular reasoning. First
we reconsider the Sylow case study, but now apply the concepts of locales
and structures as dependent types. We show the improvements in some
detail and give some further insight into the conceptual enhancement. Fol-
lowing that, we consider more examples from abstract algebra validating the
logical adequacy of the structural representation as dependent types. We
formalize the factorization of groups, direct product of groups, the group
of ring automorphisms, and the full version of Tarski’s fixed point theorem.
Locales can be used in perfect interaction with the first class representation
by dependent types thereby smoothly merging adequacy with locality.

Chapter 7 concludes the work with a summary and points out the achieve-
ments. It also discusses some lessons we learned during the project and
sketches a few possibilities for future research.
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Chapter 2

Modules

We begin the work in Section 2.1 with a short introduction to the theorem
prover Isabelle and the attempts that have been made to build modules for
Isabelle. Isabelle did not have a module concept prior to the current devel-
opment, but there has been a proposal [Pau91b] and experiments [Asp91].
In addition, Isabelle’s polymorphism gives rise to a notion of axiomatic type
classes [Nip93, Wen95] that is integrated in the current release. This concept
can be seen as a particular case of modules (see Section 2.1.3).

A good starting point to explore the possibilities for a support of abstract
reasoning and modularization in Isabelle is to look at module concepts of
comparable proof systems. We will point out requirements for the develop-
ment of modular structures for algebraic reasoning by comparing the module
concepts of IMPS, PVS, and Larch in Section 2.2. We discuss in Section
2.3 how the developers of these provers suggest to employ their modules for
abstract algebra. Theorem provers like Coq and LEGO are in a different
class of theorem proving systems because they use type theory. They do
not have module systems comparable to the former provers, but they have
other interesting concepts for the formalization of abstract algebra. They
will be considered separately in Section 2.4. This chapter wants to validate
the hypothesis we put forth in Section 1.4 by comparing different modular
concepts and their usability for abstract algebraic proof.

2.1 Isabelle

Isabelle [Pau94] can be instantiated to form theorem provers for a wide range
of logics [Pau90]. Thus, it is well suited for the development and testing of
new logics. These can be made known to the prover by defining theories
that contain sort and type declarations, constants, and related definitions
and rules. A powerful parser supports intelligible syntactic abbreviations
for user-defined constants.

Apart from being a tool for logical developments, some instantiations

11
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of Isabelle have independent value as theorem provers. These are Zermelo-
Fraenkel set theory (ZF), higher order logic (HOL), and constructive type
theory (CTT). The best developed and most widely used ones are ZF and
HOL. Substantial case studies have been performed in both of them (e.g.
[Pau95, Pau98|).

Isabelle’s meta-logic is a fragment of higher order logic [Pau89]. Some
parts that are missing are existential quantification and conjunction. The
type system of Isabelle is a simple type theory with Hindley-Milner poly-
morphism. It is a traditional higher order logic in that it has no dependent
types or subtypes as some variations of higher order logic do (see Section
2.2). Nevertheless, Isabelle/HOL has a device to define new types through
set definitions over already existing types. This is a kind of subtyping but it
is rather like modelling subtypes using sets and isomorphisms. For example,
these new types are completely separate from their supertypes. That is,
there is no automatic or implicit coercion and functions do not carry over
from supertypes to subtypes. The concept of axiomatic type classes inte-
grates some advantages of the subtype concept on the more abstract level
of type classes.

In the subsequent section we briefly explain Isabelle’s notion of theory.

2.1.1 Isabelle Theories

An Isabelle theory contains all axioms, definitions and other kinds of dec-
larations, like for example type definitions. Object logics of Isabelle, like
HOL and ZF, but also ones defined by users, reside in such theories. New
theories can be built from existing ones via extension.

To allow axiomatizations of object logics, the rules of object logics can
be assumed to be true without proof. The responsibility is with the user to
ensure that the set of rules is sound and consistent with underlying logics.
Nevertheless, conservative extension may be built if one uses only defini-
tions. For higher order logic the nonemptiness of a new type is a necessary
requirement to sustain consistency. In the object logic HOL of Isabelle this
is true as well if the new types are constructed using typedef. Then the
nonemptiness condition is produced as a proof obligation.

Definitions, rules, and other declarations that are contained in an Isabelle
theory are visible whenever that theory is loaded into an Isabelle session.
All theories on which the current theory is built are also visible. All entities
contained in a current theory stay visible for any other theory that uses
the current one. Thus, Isabelle theories form hierarchies. But, theories do
not have any parameters or other advanced features typical for modules in
theorem provers (see Section 2.2). We introduce next a concept of Isabelle
Modules as it has Ieen proposed by Paulson [Pau91b] and implemented by
Aspinall [Asp91]. -
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2.1.2 Isabelle Modules (1991)

Isabelle Modules are designed according to the ML concepts [Pau9la] of
structure, signature and functor. But, signatures can also include axioms.
These axioms have to be fulfilled in structures which match the signature.
Functors map structures to each other in order to define new ones from
others. We first introduce in some detail these notions of signature, structure
and functor and then sketch the definition of context.

Structures

Structures build the main object of interest in the module concept. They are
classified by signatures and transformed by functors. A structure consists
of bindings which introduce abbreviations for types or names for existing
structures and definitions, which associate constants with terms.

Theorems are proved “inside” a structure; they may be associated with
names and are recorded in the structure. The components of a structure are
not directly visible from the outside, but may be referred to by compound
names, e.g. Str.c for component ¢ of structure Str. Since theorems are
stored in it, an Isabelle structure involves some state. The Isabelle theories of
the current version of Isabelle are what structures in the concept of Isabelle
Modules -were at the time: non parametric entities containing constants,
types, rules, and definitions.

Signatures

Isabelle Modules differ from ML modules in that in Isabelle a signature
may include axioms that state requirements on structures, which match this
signature.

Signatures define classes of structures. They specify types, constants
with types, and substructures with their signature. Furthermore, they spec-
ify concrete syntax via mixfix declarations and names for the axioms. By
specifying substructures as open in a signature all the items of the opened
structure are added to the signature and made visible whenever an instance
of the signature is opened.

To specify that two substructures are the same, a signature may contain
sharing constraints. “The same” is an extensional notion here. It means
equality rather than identity, unlike in ML. ML has no structural equality,
t.e. if we define an individual structure twice with different names the
structures are not identical.

There are two levels by which a structure can match a signature. A
structure can match and satisfy a signature:

e a structure Str matches a signature Sig, written Str$Sig, if Str

— binds all the types defined in Sig



14 : CHAPTER 2. MODULES

— defines all constants specified in Sig, giving them the specified
types

— binds all the substructures specified in Sig, giving them the spec-
ified signatures.

— satisfies all the sharing constraints in Sig.

e a structure Str satisfies a signature Sig, written Str : Sig, if Str
matches Sig and additionally all the axioms in Sig have been proved
as theorems in Str.

Matching can be tested automatically because it is just a type checking op-
eration whereas satisfaction may involve proofs, which have to be performed
by the user. Since a foundational system like first-order logic or set theory
cannot be implemented starting from nothing, it is assumed for a given sig-
nature that some structure satisfies it. This is done by declaring a structure
as primitive for a particular signature.

Functors

A functor provides a method for building a structure from other structures.
It takes the structures as formal parameters and defines another structure
from those. The functor may be applied to structures which match its formal
parameters. It produces instances of its result signature. Thereby, proof
obligations of the result signature may be created. These can be solved by
theorem proving in the body of the functor. After that the functor is said to
be promoted: its application yields a structure satisfying the result signature.
If the obligations are not solved the application results in structures which
just match the result signature.

Contexts

A context is an environment, which is used to define module elements. In
the definition of context Paulson [Pau91b] and Aspinall [Asp91] differ. They
agree about a global context, though. This shall be the “current theory” like
in HOL or LCF. This global context contains the primitive structures and
all signatures and functors are defined within. The structures in the global
context are pervasive — they are visible everywhere.

Aspinall [Asp91] defines a notion of current theory, which is formed by
adding the contents of structures to the global context. This addition can be
undone. So, a kind of temporary opening facility is provided. The proposal
[Pau91b] says that the global context contains all structures that have been
previously created within the global context. But there a notion of local
context is defined in terms of functors: each functor heading defines a local
context which contains the functor’s formal parameter and also the global
context.
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The global context avoids the need to specify pervasive items in sig-
natures or as formal parameters to functors. If structures could only be
mentioned as formal parameters, then their properties would have to be
imported into each functor and furthermore declared as sharing.

In general, the functor concept is obviously able to perform all typical
actions of the module systems of PVS, LSL, and IMPS, which we are going
to consider in Section 2.2. Yet, it also suffers the same restrictions that
we describe in Section 2.3. Modules cannot be Isabelle values since they
may contain a type and we cannot build formulas over types in Isabelle’s
meta-logic.

Isabelle Modules have not made their way into the current release. In
the present state of Isabelle, a theory is something like a primitive structure
satisfying a given signature. Howéver, there is another feature of the Isabelle
system that supports modular ideas. This is the concept of axiomatic type
classes.

2.1.3 Axiomatic Type Classes

The type class system of Isabelle [Nip93] enables the organization of the
polymorphic types of object logics in a lattice-like order. By using type
variables and coercing them into certain classes it becomes possible to state
axioms for whole classes of types. If a type is declared as a member of
the type class, then all axioms are inherited. The mechanism of defining
type classes together with axioms is an explicit device of the Isabelle theory
definition language [Wen95].

A type class in Isabelle is a device for grouping types. For example,
semigroup < term defines a type class as a subclass of the built-in class
term of HOL. Type classes can be defined directly together with axioms,
which members of the class have to fulfill.

The concept of these classes is best illustrated by an example.

Semigroup = HOL +

consts

R i "[?a, ’a] => ’a" (infix1l 70)
defs

assoc_def

"assoc f == ALLxyz. f (fxy) z=fx (fy z)

axclass

semigroup < term

mul_assoc assoc(op *)
end

After declaring an operation * over a type class, the axclass section allows
us to define a new subclass semigroup of the standard type class term of
HOL. The axiom mul_assoc is then valid in the whole type class semigroup,
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1.e. for all types which will be assigned to this class and all types which will
be assigned to future subclasses of semigroup.

Besides the possibility to define a class of structures meeting abstract
conditions prescribed in the axclass section, it is also possible to instantiate
axclasses. Assuming an axclass definition of groups and monoids, this is
illustrated by:

MonoidGroupInsts = Monoid + Group +

instance
monoid < semigroup (Monoid.assoc)
instance
group < monoid (assoc, left_unit, right_unit)
end

The instance sections set up the necessary obligations for the class inclusions.
Corresponding goals are produced automatically and their proofs attempted
using theorems supplied by the user in brackets on the right side. This
form of annotation advises Isabelle to solve the produced obligations by
the listed properties. Thus, we can insert the class monoid between group
and semigroup wrt <. The instance construction allows whole classes of
structures to be put into an axiomatic class order. Note that the instance
facility performs a restricted action of a functor as described in Section 2.1.2.
That is, a type class together with its axioms may be seen as a signature
with an abstract sort. The instance of this signature to another signature,
i.e. type class, is equivalent to the definition of a functor mapping the first
signature to a result signature. An instance of a type into this type class
lattice corresponds to the application of the functor to structures. In the
above case group < monoid maps from groups to monoids, ¢.e. every group
is a monoid. The inclusion obligations can be proved on an abstract level
thus becoming simply applicable to concrete types.

Extension of Type Classes

If we think about modular structures in Isabelle, we might consider the ax-
iomatic type classes as a starting point. They represent a particular case of
modules. An axiomatic type class defines a type class with certain proper-
ties. As we have seen, the instance section

instance
monoid < semigroup (Monoid.assoc)

for the definition of the axclass monoid enables inserting one type class
into another. This corresponds to a theory interpretation or an import in
other theorem provers (see Section 2.2).

The idea arises to express the functor concept of Isabelle-91 in terms
of axclasses. However, the correspondence works only for cases of simple
type signatures. Unfortunately, the axclass concept is restricted to one
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type [Nip93]. To achieve a mechanism of abstract theories similar to other
theorem provers in terms of axclasses it would be necessary to allow more
than one abstract type in an axclass. We need to extend the lattice of
the type classes to whole type signatures. Consequently, as soon as we want
to express signatures (and functors) over different base types the current
concept of axclasses is not sufficient any more.

Also, the structures expressed as axclasses are not first class citizens
of the logic, i.e. they are not terms. We are not able to express properties
where the structures themselves are objects of formulas. Explicit reasoning
about structures, i.e. axiomatic type classes, is not possible. As in the
module concepts of other provers, the type classes are on a different level
from the terms of the reasoning (cf. Section 2.2).

For the above instance section, Isabelle produces the proof obligation
OFCLASS (monoid,semigroup). This obligation could be considered as a
predicate stating a monoid is a semigroup thus representing a particular case
of a reflection of the structures semigroup and monoid onto the reasoning
level. Unfortunately, the OFCLASS obligation is an internal function which is
— although a visible obligation — not accessible by the user, i.e. it cannot
be manipulated or used explicitly on the reasoning level. Allowing access
to this internal OFCLASS predicate would at least admit reasoning about a
particular predicate of structures.

Summarizing, an extension of the concept of axiomatic type classes is a
possibility to establish modular structures in Isabelle. However, we believe
that the construction of something like aziomatic type signatures demands
a lot of theoretical preparation. The extension of axiomatic type classes to
more than one type makes the type checking process more difficult, if not
undecidable.

2.2 Modules in IMPS, PVS, and Larch

There are many proof systems which attempt to be generic in the sense
that they provide support for various tasks, i.e. they may be instanti-
ated to different problem worlds and offer their adjusted proof power there.
Among them are HOL, Isabelle, PVS, IMPS, Eves, LEGO, and Coq. Among
the known systems, some offer possibilities to support modularization and
parametrization of theories. We chose IMPS [FGT93], PVS [OSRSC98], and
Larch [GH93] as adequate candidates for a comparison because they have
an explicit notion of theory. Their module systems appear to be successful
and elaborate.

The HOL system [GM93] has got a theory device for its version 98 [S1i98].
This is designed according to the module system of Moscow ML, i.e. HOL
developments reside in ML structures'. It does not contain an explicit notion

!Moscow ML does not have functors.
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of theory in the specification language of the theorem prover. Theories are
represented by separately compiled ML structures. In contrast to our main
objective of adequacy, HOL theories address the efficient organization of
proof developments. Earlier work on abstract theories [Win93] is more along
our lines (see Section 5.4).

Another possible example for a comparison was Eves [Saa89, KPSt92,
SC91). However, after having studied the relevant publications we came to
the conclusion that its facilities of theory construction do not offer anything
remarkable. Though there is a device to relate specifications to models in
a mechanical way in the Eves library [SC91] the specification language of
Eves, Verdi, has none of the constructions present in the other systems.

After short introductions to the three systems IMPS, PVS, and Larch,
we will describe their module systems in more detail.

2.2.1 IMPS

The Interactive Mathematical Proof System (IMPS) [FGT92a, FGT93] de-
veloped at MITRE is mainly designed for interactive machine supported
mathematical proof. It emphasizes the linking of axiomatic theories as the
main method of mathematical reasoning [FGT92b]. The heart of IMPS is
its higher order logic LUTINS, a Logic of Undefined Terms for Inference in
a Natural Style. The speciality of LUTINS compared to other logics based
on simple type theory is its explicit notion of partial functions.

The type hierarchy of LUTINS consists of base types and function types.
For a language £ in LUTINS there is always the type of propositions prop,
and depending on £ some types of individuals. Function types are defined
over those atomic types as aq,...,a, — an4+1 for base or function types oy
andi € {1,...,n+1}.

The terms of prop are always defined and hence all predicates are total
functions. Arbitrary functions may be undefined for certain inputs. IMPS
provides the kind ind of individuals, which is the set of all types of possibly
partial functions. Except for undefined terms, all terms are typable, i.e.
LUTINS is strongly typed. On top of the type hierarchy there is a sort
system. Types and subtypes together build the sorts of this sort system.

LUTINS contains no polymorphism in the sense of variables over types.
In [FGT93, p.219] the authors say that polymorphism is achieved by the
use of constructors, quasi-constructors, sorts and theory-interpretations.
Quasi-constructors are basically the same as constructors; one reason to
have them is that the user cannot define constructors. Constructors and
quasi-constructors are globally valid constants, i.e. they can be used across
theories.

The philosophy of IMPS may be shortly characterized by “Little Theo-
ries” [FGT92b]. Theories can be seen as modules. Mathematical reasoning
in IMPS is as well a matter of relating theories or transporting theorems
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from one theory to another as reasoning in one large theory, like Zermelo-
Fraenkel set theory. Theories and their contents are viewed as objects to
be linked, transported, and interpreted. There are some specific methods
to realize this. To be able to analyze the possibilities of the IMPS module
system we concentrate on the central aspects.

Definition of Theories

A theory is constructed from a possibly empty set of subtheories, a language,
and a set of axioms. Theories may be enriched at any time by the definition
of new atomic sorts and constants and by the installation of theorems. The
relations on theories are subtheory and theory interpretation. Theories and
copies of theories can be grouped:together in so-called theory ensembles.

Theory development in IMPS is a dynamic process. The user defines
and develops a theory, theory interpretation, or other objects by evaluating
expressions called definition forms (or def-forms, for short). There are some
30 different def-forms in IMPS. The IMPS system relies basically on the
global environment or context in which several different theories “live” and
undergo changes during a session.

Theory Interpretation

The central mechanism of IMPS is theory interpretation [FGT92b]. The
notion of theory interpretation in LUTINS is very similar to the standard
notion in first-order logic apart from complications caused by the partiality.
Intuitively, a theory interpretation from a source theory S to a target theory
T specifies one way of embedding S in 7, while preserving theorems. This
notion is formalized using certain syntactic translations. In brief, a LUTINS
translation from a theory S to 7 .is specified as a pair (u,v) of functions.
The function g maps the sorts of S to sorts, sets or unary predicates of 7
and v maps the constants of § to expressions of 7. This translation is a
kind of homomorphism @ from the expressions of S to the expressions of
T, i.e. ®(cler,...,en)) = ®(c)(P(e1),...,P(en)), where c is a constant and
e, -..en are subexpressions.

Every translation & determines a set of formulas in 7, so-called obliga-
tions. These obligations contain in particular the ®-images of all axioms S.
If each obligation of the source theory S is a theorem of the target theory 7
then @ is a theory interpretation by the interpretation theorem of LUTINS
[Far93]. That is, ® translates each theorem of S into a theorem of 7.

Interpretations are independent from languages £, so they form a means
to relate arbitrary user defined applications. If there is a theory interpre-
tation in IMPS from a theory S to a theory 7, then S is consistent if 7 is
consistent. Thus, theory interpretations provide a mechanism for showing
that one theory is consistent relative to another.
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Syntactically, theory translations are handled in the same manner as def-
initions using def-forms. That is, in one command language the definition of
theories itself as well as their relations and interpretations are expressed. For
example, the def-form that defines the symmetry translation which reverses
the group? multiplication, reads:

(def-translation MUL-REVERSE
(source groups)
(target groups)
(fixed-theories h-o-real-arithmetic)
(constant-pairs
(mul "lambda (x, y: gg, y mul x)"))
(theory-interpretation-check using-simplification))

The system uses the simplifier to check that the theory interpretation obli-
gations of this translation hold. Then the translation is an interpretation.

The function p of the above theory translation is p(a) = « for a the
base sort of elements of the group, and p(prop) = prop for the type prop.
The second part v maps every constant to itself except v(mulja,qq)) =
Ao, YoMl o 0] (Yas Ta). The notion of arity [«, @, a] stands for the com-
pound sort o, a — a.

Generic Theories

In this section we introduce the notion of generic theories in IMPS in two
ways. First we give an account on how abstraction is achieved via modules
in IMPS, and then we explain the definition of “generic theories” as the
designers of IMPS explain this term.

There is no explicit notion of parameterization in theory interpretations
of IMPS. Interpretations are constructed by mapping a usual theory to an-
other one by defining a translation. There are no parameters at all; basically
any concrete element that is mapped can be viewed as an actual parameter to
a (non-existent) formal parameter. Thus, every theory which is mathemati-
cally abstract can be regarded as generic. By defining a theory translation
from this “generic” theory to any specialization we introduce its abstract
character. The abstraction can be developed step by step and need not be
stated explicitly when defining a theory. This absence of explicit polymor-
phism is a decisive difference between IMPS and a system like Isabelle whose
universal polymorphism is explicitly realized with type variables.

The explicit notion of “generic” theories in IMPS is used for theories con-
taining neither axioms nor constants. Theories of generic types are defined in
the IMPS documentation [FGT95] as theories with nothing in them except
a base type. The user is advised to prove results about quasi-constructors
which are built merely on logical constants in those generic theories be-
cause then these results are derived in the most general way. Any use of

2The definition of the theory will be given in Section 2.3.1.
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these results in other theories is easily possible because they may be trivially
transported there by theory interpretation. An example of such a theory is
the theory for sets. Those are represented by characteristic functions called
indicators. An indicator in IMPS is a function which takes on a fixed value
— say 1 — on elements which “belong” to the indicator, i.e. are members
of a set, and which is undefined for all other arguments. Such indicator the-
ories are generic in the sense that their theorems can be easily transported
to other theories because they contain neither axioms which would produce
obligations nor explicit IMPS sorts which needed to be mapped somehow.
The sort of an indicator is [a,unit%sort] where « is an arbitrary sort3
and unit¥%sort is a type of a kernel theory which is part of every IMPS
theory and contains only one element called an%individual. The indicator
is printed as sets[a].

2.2.2 PVS

The Prototype Verification System (PVS) developed at SRI International
is designed for the development and analysis of formal specifications. The
PVS system has applications in this field [Rus92, SM95, MS95]. The PVS
specification language builds on what they call classical typed higher order
logic.

A PVS specification consists of a collection of theories constituted by a
signature, axioms, definitions and theorems. Entities of PVS are mainly in-
troduced by means of declarations. Declarations are used to introduce types,
variables, constants and formulas. Each declaration has an identifier and
belongs to a unique theory. Declarations also have a body which indicates
the kind of the declaration and provides the signature and definition of the
declaration. Declarations are classified according to their kind; these kinds
are type, prop, ezpr, and theory. Expressions, i.e. items of kind ezpr, can be
again variables, constants, and recursive definitions.

Functions in PVS are all total. Partial functions may be modelled by
defining them as total functions over subtypes.

PVS has a strongly typed specification language, i.e. every expression is
typable, although not automatically because type checking is undecidable.
The PVS specification language contains type constructors for building more
complex types, like the function type [int -> int]. The built-in set of type
constructors contains constructors for subtypes, function types, predicate
types, tuple types, and record types. The function, tuple and record types
may be dependent types, i.e. in the declaration of a type later components
may depend on earlier components of the same type declaration.

PVS offers predicate subtypes which may be defined in a set-like notation,
e.g. t: TYPE = {x: S | p(x)} where p is the predicate defining the

3The name a seems to indicate a type variable, but this is not the case. However, it
can be considered as abstract by interpretation as described in the previous paragraph.
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subtype. This form of defining subtypes provides expressivity but leads to
undecidable type checking; type checking conditions, so-called TCC’s, are
generated in undecidable cases. They have to be solved by the user.

The PVS Tutorial [OSRSC98, p.55] claims that the theory parameter-
ization provides support for universal polymorphism. This is not explicit
polymorphism in the sense of type variables, but achieved rather by param-
eterization of theories.

Definition of Theories

In PVS, the user defines theories in a declarative style. The syntactical form
of a theory looks much like an imperative programming language module.
There are fixed sections of contents in a theory, e.g. it has an assumption
part and an EXPORTING section.

A PVS theory consists of a theory identifier, a list of formal parameters,
an EXPORTING clause, an assuming part, and a theory body. In the PVS
system, the set of theories available in a session forms a contert in which
theory names must be unique. An initial context, called “prelude”, provides
convenient entities like the Boolean operators, equality, and the real, ratio-
nal, integer, and natural number types and their associated properties. This
prelude is automatically imported into every theory.

The assuming part of a theory precedes its theory part. Intuitively, this
assuming part states constraints on the use of the theory. These constraints
are defined in form of formulas preceded by the keyword ASSUMPTION. The
assuming part can also contain declarations needed in its formulas and im-
ports. Apart from the variables, these declarations are visible from the
outside as well. The constraints defined in the form of assumptions have
to hold for any instance of the theory and then become obligations which
must be discharged. Internally, assumptions may be used as axioms; exter-
nally, they have to be proved for each import of the theory with the actual
parameters replacing the formal ones.

The theory part usually contains the main body of the theory. It consists
of top level declarations and IMPORTINGs. The declarations may be axioms,
labeled by the keyword AXIOMS. Furthermore, theorems may be stated by
THEOREM but there are also several other keywords, e.g. LEMMA, which all
mean the same and serve for “greater diversity in classifying formulas”. Free
variables are possible and handled by the universal closure. Assumptions
are not allowed in the theory part.

Theory Hierarchies

PVS theories may make use of other theories. They may export parts of their
entities to let others use them. This import-export relation between theories
reminds us again of imperative programming languages like Modula-2. The
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relation must form a hierarchy.

e EXPORTING:

Some names declared in a theory may be hidden from other theories
whereas others may be made visible in the same context. This is
achieved by means of the EXPORTING clause. Names exported by a
theory may be imported into a second theory. Exporting is an option
in PVS: if omitted it defaults to exporting everything. The adwice of
the authors is “it is probably best not to include an exporting clause
unless there is a good reason” [OSRSC98, p.57]. An exporting clause
may specify instances of the theories, which the current theory used,
to be exported.

e TMPORTING:

Visible names of other theories in the current context may be imported
into a theory. The IMPORTING clause can appear in the parameter list,
the assuming part, or the theory part of a theory. An import with
actual parameters provided is called a theory instance, even if it has no
parameters. An import without instantiation of parameters is called
a generic reference. Importing forms a relation between the theory
referenced and the theory which imports. The transitive closure of
this import relation is called the importing chain of a theory. The
importing chain must form a directed acyclic graph, so that a theory
may not import itself, directly or indirectly.

We see that the theory hierarchies of PVS are inferior to the notion of trans-
lation in IMPS that enables self-reference as is illustrated by the example
MUL-reverse in Section 2.2.1. PVS cannot have self-reference because that
would correspond to a theory importing itself. Self-reference of theories can
be very useful as it enables proofs using duality.

Theory Parameters and Instantiation

PVS theories may be parametric in types and values, as specified by the pa-
rameter list in square brackets following the theory identifier. More precisely,
these parameters may be types, subtypes, constants, or imports. Apart from
the constraints defined in the specification of the parameter list, the param-
eters may further be constrained by the assumption part of the theory. The
parameter concept provides a certain kind of polymorphism named “univer-
sal polymorphism” in [OSRSC98|. This is comparable to the polymorphism
in IMPS although it is more explicit. Inside the parameter list, later pa-
rameters may refer to earlier ones, whereby a dependence of types may be
placed as a constraint on parameters.

A theory is instantiated in PVS from within another theory by insert-
ing actual parameters for the formals. This insertion is called a theory
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instance. A theory instance may be given a name by which this instance
and its constituents may then be referred to. For example, the code frag-
ment fsets: THEORY = sets[[integer -> integer]] names the instan-
tiation of the theory of sets by integer functions as £sets. If the theory sets
contains a predicate member this element of the instance may be referred to
as fsets.member. Although this notation seems to indicate that theories
are first class citizens, it only enables references to contents of theories.

2.2.3 Larch

Larch [GH93] is a system consisting of several axiomatic specification lan-
guages. One group of languages is designed for the specification of interfaces
between program components. Such interface languages exist for C (LCL
[GHY1]) and Modula-3 (LM3 [Nel91]), for example. There is the language
LSL, the Larch Shared Language which all interface languages have in com-
mon. It is independent from any programming language and intended to
specify the meaning of the languages given in the interface specifications.
The Larch Prover, LP, serves as a proof assistant to reason about Larch
specifications or to assist in “specification debugging” [GGH90]. In contrast
to the specification languages of PVS and IMPS, LSL is based on typed first-
order logic with equations. An LSL specification declares in its introduces
section a list of operators given by function identifiers and their signature.
The signature is a characterization of the operators domain and range, e.g.
__€ __ : 1Ind, Tab — Bool declares an operator € as a function taking
an argument of sort Ind and one of sort Tab mapping them to sort Bool.
The signatures allow Larch to check the sorts of terms, which is comparable
to type checking. The introduces section is part of a so-called trait which
builds LSL’s basic unit of specification. The remainder of a trait is consti-
tuted by a section indicated by the keyword asserts. This section defines
properties of the operators by means of equations. Further features of basic
character include various built-in Boolean operators and syntactic short-
hands like enumerations, tuples and unions which provide representations
for common structures.

Sorts in LSL are represented by symbols. A sort is a non-empty set of
objects. Distinct sorts represent disjoint sets of objects. The only built-
in sort is Bool, which represents a set containing the objects true and
false. Compound and function sorts are built by grouping sorts in tuples
or using the constructor symbol —. There is no explicit notion of subsort
or inheritance of operators for subsorts.

There are two constructs in LSL for determining the structure of sorts
more precisely. The clause generated by followed by a list of operators over
a sort specifies that this sort can be generated by the enumerated operators.
A partitioned by clause allows one to identify terms of sorts which cannot

be distinguished by a given list of operators.
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As already mentioned above, the trait is the basic unit of specification
in LSL. It is meant to contain an abstract data type or possibly encapsulate
a property which is common for several data types. Although it seems to
be rather a unit in the sense of a programming language module or object,
its logical meaning is that of a theory: “each trait defines a theory (a set
of formulas without free variables) in typed first-order logic with equality”
[GHM90]. A trait is constituted by its introduces part, the section declar-
ing all the operators of the trait, and its asserts part, which contains the
constraints on the operators in form of equations and possibly the gener-
ated by or partitioned by clauses. A further part of a trait is the implies
section, which allows one to state claims about “theory containment”, i.e.
theorems representing consequences of the traits assertions. In this section,
a list of formulas may be stated Which have to be shown. It is noteworthy
that in the implies section the full power of the language may be used which
includes equations, generated by and partitioned by clauses. Further-
more, universal quantification may be used as well as references to other
traits. For example, let Associative be the following trait:

Associative(o, T): trait
introduces __o __: T, T = T
asserts Vx, y, z : T
(xoy)oz==xo0 (yoz)

Another trait which introduces a binary associative operator op over a sort
T’ may contain Associative(op, T’) in its implies section. The insertion
of this formula in the implies list states that it should be shown that op is
indeed associative. '

Parameterization of Traits

As in the trait example Associative, it is possible to use parameters to
define general specifications. Parameters are just listed after the trait’s
name without specifying them in any way. They may be sorts or operator
symbols. General specifications may be “specialized”, i.e. another trait
may load an instance of a general trait. For example, if Set is a trait with
parameter S abstracting over the element type another trait could use the
code includes Integer, Set(Int) to instantiate the general Set trait to
integer sets. Thereby, the included trait becomes accessible in the present
one with the actual parameter inserted for the formal one.

Another option of the trait structure is to pose requirements on the
parameters. By the keyword assumes positioned after the trait header
an optional section may be opened for stating assumptions on the formal
parameters. The assumes formulas are restricted to references to other
traits possibly with actual parameter instantiation.
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Renaming of Trait Contents

Besides instantiation, sorts or operators may also be just renamed. That
is, whenever a trait is included in another, the sorts and operators of the
incorporated trait can be renamed using the for clause. The formula part
(newname for oldname) can be inserted after includes trait and results in
the replacement of every occurrence of oldname by newname in the entire

trait. This device does not exist in the other systems. If a trait includes .

different other traits which define properties of an equally named operator
their union automatically identifies the operator by its name and unifies its
diverse properties. Still every name has to be declared in the asserts part or
must be made present by an includes declaration (possibly with renaming)
if this name is used in a trait. Names do not have global existence; they are
visible only in traits. Thus, we have a kind of scoping, i.e. names are only
visible in a trait if made known in some way.

2.2.4 Comparison

Summarizing, the exposition of PVS, IMPS and Larch shows that Larch
has some nice ideas but cannot compete with the two others. For example,

Larch theories can be used quasi as formulas at the reasoning level. But,.

due to the general design of Larch and its first-order logic foundation, this
is just an abbreviation mechanism. The notations must be dissolved in
a preprocessing step that transforms Larch specifications into first-order
formulas for the proof in the LSL prover LP. That is, structures do not-exist
at the level of the prover and its language, instead they are all dissolved
into simpler constructs of a first-order logic. We lose the advantage of the
notation for the actual proving process. 4
Generally, PVS and IMPS are restricted to a fixed logic: classical and
three-valued [Far90] higher order logic, respectively. In PVS the theory
level is separate from the reasoning level, which causes severe restrictions in
the adequate treatment of abstract algebra, as we will see in the following
section. Compared to IMPS, its theory concept is inferior. The strict hier-
archies forbid self-reference, which is possible in IMPS (¢f. Section 2.2.1).
It is not possible to do such advanced transformations between sorts and
terms as in IMPS (cf. Section 2.3.4). IMPS is more flexible but its higher
order logic with undefinedness may be rather inconvenient in some cases.
IMPS has definitely the most adequate module system in the first group
of provers we examined. The theory interpretation mechanism is a well
developed and powerful tool. It enables a kind of flexible polymorphism.
Abstraction can be modelled via theory interpretation (see Section 2.2.1),
although not as explicitly stated as in a system that offers polymorphism. A
sort s stands for a constant type. One can express properties quite neatly,
because they can all refer to this s. And, by the possibility of theory in-
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terpretation, this constant value can always be interpreted as any sort in
another theory, linking all the results proved in the base theory and its ex-
tensions. It is a clever way of avoiding difficult checking of polymorphic
variables by leaving that open for the time, when the abstraction is actually
made use of, i.e. at the point when we want to interpret s.

Although IMPS has an elaborate theory concept, the general approach
does not seem ideal to us. Much of the properties about structures that are
expressed as theories has to be formulated via translation of theories. This
does not seem to be very explicit. The obligations that arise from theory
interpretation are the ones that are of quite central concern, especially in
abstract algebra, where propositions about structures are ubiquitous. This
major issue is hidden in the general mechanism of theory interpretation. In
the application to abstract algebra in the subsequent section, we will see
that this causes a certain clumsiness in modular reasoning.

2.3 Abstract Algebra with Modules

A basic example to illustrate modules is the algebraic theory of groups.
It is used in all of the three provers compared in Section 2.2 to advertise
the advantages of their theory concepts. To explain the convenient use of
modules for abstract algebra, we consider the example of groups in the three
provers more closely.

A group is a set G together with a binary relation o on this set. There
is a neutral element e in G and for each element of G there exists an inverse
in G. These properties, together with associativity, form the axioms of a
group. This abstract and concise description immediately gives rise to the
idea to model groups as a single theory in a theorem prover with modules.
We can use parameters to abstract from the carrier G, the operation o, the
identity e, and the inverse.

theory group (G, o, e, inv)
axioms
neutral_element : ...

end

Some approaches to formalizing abstract algebra assume the existence of the
unit and the inverse rather than model them by parameters (e.g. [Gun89]).
However, the systems PVS, IMPS, and Larch use parameterization. To
be able to compare our developments with these examples we will use the
parameterized version as well in the remainder of this work.
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2.3.1 Groups in IMPS
The def-form introducing the language for a theory of groups is:

(def-language groups-language
(base-types gg)
(constants
(e "gg")
(mul "[gg,ge,88]")
(inv "[gg,egg1")))

The language definition introduces the sorts and constants. The definition
of the theory of groups integrates this language and formulates the axioms:

(def-theory groups
(component-theories h-o-real-arithmetic)
(axioms
(left-op~-id
"forall(x:gg, e mul x = x)")
(right-op-id
"forall(x:gg, x mul e = x)")
(left-op-inv

"forall(x:gg, inv(x) mul x = e)")
(right-op-inv
"forall(x:gg, x mul inv(x) = e)")

(op-associativity
"forall(x,y,z:gg, (x mul y) mul z = x mul (y mul z))™)))

This example is taken from the on-line documentation for IMPS [FGT98]*.
The example of groups will also be considered in the other systems to point
out differences. Because IMPS offers the most advanced formalism, we go
into some detail here to find out how far we can reason explicitly with the
notion of groups. The specification given above enables reasoning in the
algebraic structure of groups. Sometimes we might want to state that a
structure is a group in the logic. Therefore, an additional definition of the
group axioms in form of a quasi-constructor is necessary:

(def-quasi-constructor group
"lambda (ggh%: setslggl, mul¥%: [gg,.gg.gel, ek:gg, invi: [gg,gegl,
forall(x,y:gg, x in ggh and y in ggh
implies mul%(x,y) in gghk) and e% in gg) and
forall(x:gg, x in ggh implies invi%(x) in gg%) and
forall(x:gg, x in gglh implies mul% (e}, x) = x) and
forall(x:gg, x in ggh implies mul¥%(x, e%) = x) and
forall(x:gg, x in ggl implies mul%(inv%(x), x) = e%) and
forall(x:gg, x in ggh implies mul%(x, inv%(x)) = e}%) and
forall(x, y, z:g88, 4

4Note that the axiomatization of groups is not minimal: the “right” versions of the
axioms can be derived.
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((x in gg%4) and (y in gg%) and (z in gg%)) implies
mul%(mul%(x, y), z) = mul%(x, mul%(y, =z))))"
(language groups-language))

This definition just introduces a A-term which has no logical significance, i.e.
it is not an axiom, just a definition. Since it is not a theory definition and
does not define any base sorts or constants it may be used in any context
where enough items of appropriate signature exist to apply the A-form to
them. Statements like group(G,*,1,-) are then of type prop and may be
part of formulas. They raise all necessary conditions.

Note that this is a second formalization of groups, separate from the first
one. There is no implicit connection between the two — nor any guarantee
that they are consistent. It would be nice to check consistency of the double
formalization by theory interpretation, but this is not possible: one of them
is not a theory but a quasi-constructor.

One example illustrating how the gap between theories, their types and
an adequate representation as a set for algebraic structures is bridged in
IMPS is given by the example of the definition of subgroups. Subgroups are
not defined by a theory, instead by a constant predicate.

(def-constant SUBGROUP
"lambda (a: sets[ggl,
nonempty_indic_q(a) and
forall (g, h:gg, (g in 2 and h in a) implies (g mul h in a)
and
forall (g:gg, (g in a) implies (inv(g) imn a)))"
(theory groups))

(def-constant GGY%SUBGROUP
"sort_to_indic (gg)"
(theory groups))

The second constant GG%SUBGROUP uses the quasi-constructor sort_to_indic
to transform the sort gg — representing the base set of a group in the theory
for groups — into a set, or an indicator in IMPS parlance. Only through
this transformation it is possible to apply the predicate subgroup to groups.
This is not realized by theory interpretation, instead by the mysterious quasi-
constructor sort_to_indic (see Section 2.3.4).

(def-theorem GG-IS-A-SUBGROUP
"subgroup (gglsubgroup)"
(theory groups)

(usages transportable-macete)
(proof

)

The decisive step here is not theory interpretation, but the transformation
of the base type gg into a set by application of sort_to_indic.
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2.3.2 Groups in PVS

The following theory definition taken from [OSRSC98] declares a theory of
groups:

groups [G : TYPE,

e : G,
o : [G,G—>G],
inv : [G->G]] : THEORY
BEGIN
ASSUMING

a, b, c: VAR G

associativity : ASSUMPTION a o (boc) = (ao b) oc
unit : ASSUMPTION e o a = a AND a 0o e = a

inverse : ASSUMPTION inv(a) o a = e AND a o inv(a) = e

ENDASSUMING
END groups

With the PVS formalization of groups as a module, we can use theory instan-
tiation and import facilities. We can use this theory to represent the idea
of groups, e.g. we can instantiate the module, say to integers® IMPORTING
Group(Z, +, 0, -) and produce the corresponding obligations. But this
is not explicitly qualifying the tuple (Z, +, 0, -) to be a group. We can-
not use this statement in a formula, because it is no logical term, just a
PVS command. Consequently we cannot talk about all groups, or define
anything depending on the group property. For example, we cannot use
this definition of groups to define subgroups or reason about them. Unlike
IMPS, PVS does not offer any other more adequate formalization of groups
that could be used to model substructures like subgroups.

2.3.3 Groups in Larch

The example of groups can be expressed in LSLE:

Group: trait

introduces

.o _: T, T—=T
unit: — T

T T T

asserts Vx, y, z :T
(x oy) oz==x0 (y o z);
unit o x == x;

5 Assuming that there is a formalization of integers where Z is the base type
5Note the integration of the I¥TgXfeatures in the code declaration, e.g. in declaring
the inverse element



2.3. ABSTRACT ALGEBRA WITH MODULES 31

(x 1) o x == unit;
implies Monoid, Inverse

The implies section is added here to illustrate that it is possible to state
properties which should be shown. The cited traits Monoid and Inverse
contain properties about o and __~! which have been stated as axioms in
the corresponding IMPS examples (c¢f. Section 2.3.1). Here, we incorporate
them by the reference in the implies section and point out that they are
entailed in the other properties.

Note that an assumes could have been alternatively stated at the be-
ginning, similar to PVS, to state constraints on parameters. In that case
we would have to have the groups constituents as parameters. Although we
can use traits as statements, like Monoid in the implies section, this would
never be possible in a formula, because LSL is based on first order logic.
Thus, such statements about structures cannot be expressed at all in the
logic.

2.3.4 Analysis of Group Specification in IMPS, PVS, and
Larch

The abstract character of groups is modelled in the three systems by using
(generic) sorts or explicit parameters to model the contents of the group.
This parameterization enables the instantiation of the group theory to actual
groups. Reasoning about properties of group elements and the operation o
is possible inside such a theory. The derived results can be reused by an
instantiation of the theory of groups. This is the way of formalization we
find in the examples of the documentation of the theorem provers IMPS,
PVS, and Larch. It is an elegant way to model mathematical structures
and abstraction using the concepts of modules provided by these theorem
provers.

However, an adequate way of reasoning is not possible in this setting.
Naturally, the possibility to abstract from the given representation is re-
quired. For example, we must consider the class of all groups to enable
reasoning about general properties which hold, say, only for finite groups.
This class of all groups cannot be defined here because the theory level
is separate from the reasoning level; modules are not first class citizens.
Furthermore, it is convenient to consider related structures as for example
semigroups or rings which have much in common with groups but are struc-
turally different. We do not only want to relate the structures on the theory
level; we might need to prove that, for example, a semigroup is a group if
further properties hold. This is not possible with the theory mechanisms of
PVS and Larch. The only system that finds a way around this problem is
IMPS.




32 CHAPTER 2. MODULES

The IMPS solution

As illustrated in section 2.3, we can transform the base type of a group
module into a set by using a quasi-constructor called sort_to.indic. Then
we can apply predicates like subgroup to the image of the base type. The
remarkable map sort_to_indic uses the basic sort uu that is the “universal”
sort used for all quasi constructors, and the element an’individual that is
the only element of the predefined sort unit%sort we encountered earlier.

(def-quasi-constructor SORT-TO-INDICATOR
"lambda(e:uu, lambda(x:uu, an%individual))"
(language indicators)

(fixed-theories the-kernel-theory))

Drawing from a personal communication with F. Thayer, one of the authors
of IMPS, we are able to explain how this quasi-constructor works. The term

sort_to_indic(gg)
in the definition of the constant GG%SUBGROUP in Section 2.3.1 is parsed as

(SORT-TO-INDICATOR (undefined gg))

Now, the A-expression lambda(e:uu, lambda(x:uu, an%individual)) ap-
plied to (undefined gg) reduces to lambda(x:gg, an%individual)) there-
by interpreting uu as the base type of the group gg. This function, read as
an indicator, and thereby as a set, returns anjindividual for any element
of type gg, i.e. is defined for any element of gg. Hence, this indicator
represents the set that contains all elements of type gg. This is a very note-
worthy device to transform types into sets, that can only be achieved by
using special parsing combined with the notion of undefinedness.

We see that IMPS has to walk out of its way to get a complete charac-
terization of the algebraic structure of groups. The obscurity of this solution
shows that it is necessary to find a better method for an adequate represen-
tation of abstract algebraic structures.

2.4 Type Theory: LEGO and Coq

The systems Coq and LEGO are based on type theory. They implement
variants of the Calculus of Constructions [CH88]. They do not have module
systems comparable to IMPS, PVS and Larch. Instead they have a special
type abstraction that may be used to represent structures. This abstrac-
tion is given by the concept of dependent types, in particular ¥-types. In
Chapter 5 we will introduce these types in more detail.

Coq and LEGO are very similar. In this section we only describe the
major characteristics of the two systems in order to lead into a description
of the aspects of type theory that are important from our point of view.



2.4. TYPE THEORY: LEGO AND COQ 33

There are other systems that are more elaborate, e.g. Nuprl [Ct86]. The
latter has an interesting notion of theories [Hic97] using a special form of
dependent types [Hic96]. Although we will use dependent types as well (see
Chapter 5), a plain consideration of the main mechanism is sufficient for our _
work.

2.4.1 Cogq

The type theory on which Coq is based is called the Calculus of Induc-
tive Constructions (CIC) [CPM90]. This is an extension of the Calculus of
Constructions by primitive inductive definitions.

Besides many other methods and techniques in Coq, it has a section
device [Dow90]. This device is part of a Mathematical Vernacular’. In
Chapter 4 we describe a concept of locales for Isabelle that has something
in common with sections.

2.4.2 LEGO

LEGO [LP92] models various different type systems. Among them are the
calculus of constructions, that is also the basis for Coq, and the Extended
Calculus of Constructions [Luo90b}, ECC for short. Another type theory
modelled by LEGO is the Unified Theory of Types [Luo92], abbreviated
UTT. This type theory is an extension of ECC, and is also the one used
for the case study in [Bai98] mentioned earlier (see Section 1.3). As an
extension of ECC, the unified theory of types is one of the most powerful
type theories, especially with respect to expressivity. Therefore, we selected
UTT as the basis for a short introduction to type theory.

2.4.3 Type Theory

In the world of type theory the types are part of the logic, or vice versa, the
logic is implemented by types. By the Curry-Howard isomorphism [SH80],
the types are interpreted as logical formulas; this isomorphism is sometimes
called propositions-as-types [How80).

The calculus of constructions can be seen as a typed higher order M-
calculus. Every term has a type. We write

a:A

for “term a has type A”. The types can be again considered as terms. Hence,
this two-sided relationship builds up a type hierarchy.

"Dowek describes a mathematical vernacular as a “language in which mathematics can
be written both usable for publishing and mathematically fully described.” He refers to
N.G. De Bruijn.

o
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The unified theory of types extends the calculus of construction by a
hierarchy of type universes with subsumption and an impredicative type of
propositions, amongst other things. In the following we explain these no-
tions.

The hierarchy of type universes is a sequence T'ypeg, T'ype1, Types, .. ..
This hierarchy has that usually

Type; : Typeitr
Subsumptive means that each universe includes its predecessor.
A:Type; = A : Typej

This hierarchy of progressively higher type universes is a way to enable
types to be given even to terms that quantify over whole type universes.
An example for such a term is the II-type that is a generalization of the
function type. The type constructor II abstracts over an entire type. But
as long as B can be typed by T'ype;+1, the type universes enable to type a
II-abstraction as follows

Mz: A B:Typeiy

Having abstraction over types, such as I, it is important to have universes, if
one wants to avoid having impredicativity. An impredicative definition is one
that presupposes the existence of the object that is being defined [Bai98] and
refers to it in the definition. An example is the type of propositions in UTT.
This type is impredicative because one can build types using abstraction
over the whole type of proposition Prop. An example is the following type,
expressing the tautology P = P:

II P: Prop. P: Prop

The abstraction IT P : Prop. P is itself contained in the type Prop, although
it abstracts over the entire type Prop. If all types were impredicative, then
the type hierarchies would collapse, because no type construction would ever
“leave” the type, i.e. go up one level. To express it vice versa: only open
hierarchies enable us to type abstractions, like the II-type, over predicative
types.

The interesting point from our perspective is that, by the concept of type
hierarchies, types can be terms again. Thus, on a higher level, it is possible
to use types again in formulas. Alternatively, one may use impredicative
types. The II-types and X-types are useful to express structure. The fact
that they are still typeable, and thereby terms on a higher level, makes such
formalizations adequate.

For example, groups can be represented in UTT [Bai98] as

Y G:set. Se:G.No:maps GGG. X 7! :map G G. group_axioms




2.5. OUTLOOK 35

where group_axioms abbreviates the usual rules for groups, which use the
parameters G, e, o and ~!. Since this X-type can be considered as a term
in a higher type universe, we can use it in other formulas. Hence, this
formalization of groups is logically adequate.

A more detailed description of the II-types and X-types and their appli-
cation for structure representation will be given in Chapter 5 when we use
them ourselves.

2.5 Outlook

In this chapter we have seen examples of modules for theorem provers. They
illustrate various properties of which the most important for our purpose is
locality. That is, modules encapsulate properties and definitions of mathe-
matical structures like groups such that those can be used conveniently and
close to mathematical notation in a local context.

We have also seen that the module concepts of theorem provers compa-
rable to Isabelle, i.e. IMPS, PVS, and Larch, have some weaknesses once
it comes to adequacy. Although in IMPS, adequacy is in principle possible,
we find its realization not satisfactory.

Type theory systems, represented here by Coq and LEGO, offer the
concept of dependent types for the representation of modular structures. If
the type theory is sufficiently powerful, these types can be considered as first
class citizens, whereby we achieve adequacy.

Summarizing, we have illustrated that locality is desirable but should
respect adequacy. In the following chapter we are going to consider a major
case study to prove that for abstract algebra we do really need these features.
The case study will also lead to a refined characterization of the requirements
for modular reasoning in Isabelle.




36

CHAPTER 2. MODULES



Chapter 3

Sylow’s Theorem

The first theorem of Sylow is proved in Isabelle/HOL. We follow the proof
by Wielandt, which is more general than the original and uses a non-trivial
combinatorial identity. The mathematical proof is explained in some detail
in Section 3.1, leading on to the mechanization of group theory and the
necessary combinatorics in Isabelle. We present the mechanization of the
proof thoroughly, giving reference to theorems contained in Appendix A.
After a general analysis of the experiment, we draw from the experience of
the case study some requirements for abstract algebraic reasoning. They give
rise to some tentative ideas for the further development towards a concept
for modular reasoning in Isabelle.

The theorem is most easily described as the converse of Lagrange’s the-
orem. Lagrange says that the order of a subgroup divides the group’s order.
Unfortunately, the direct converse,

if @ number divides the group’s order then there is a subgroup
with corresponding order,

is not generally true. But the theorem of Sylow gives us at least,

if p is a prime and p* divides the order of the group then there
s a subgroup of order p*.

The proof of the theorem of Lagrange has been performed with the Boyer-
Moore prover [Yu90]. Gunter formalized group theory in HOL [Gun89].
In the higher order logic theorem prover IMPS [FGT93], some portion of
abstract algebra including Lagrange is proved. Mizar’s [Try93] library of
formalized mathematics contains probably more abstract algebra theorems
than any other system. But to our knowledge none of the known systems
has proved Sylow’s theorem. We always considered it as a theorem which is
hard to prove already in theory and this definitely makes it an interesting
challenge for theorem provers.

Yet, the main motivation to prove this theorem is to explore the reason-
ing with abstract structures. As pointed out in Section 1.5, Sylow’s theorem

37
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is quite well suited for this purpose as it uses different views of structures and
applies combinatorial reasoning to derive properties of those structures. We
use this example of abstract algebra to find out about reasoning mechanisms
in algebra and thereby to refine the requirements for modular concepts.

3.1 The First Sylow Theorem

Sylow’s theorem gives criteria for the existence of subgroups of prime power
order in finite groups.

THEOREM 1 If G is a group, p a prime and p® divides the order of G
then G contains a subgroup of order p®.

In the following we write a | b for a divides b and o(G) for the order of G.

The proof displayed here and used as the basis for the formal proof is due
to Wielandt [Wieb9]. It generalizes the original form found by the Norwegian
mathematician Sylow in 1872 [Syl72]. We give the proof following [Her64]
but go much more into detail to prepare the description of the formalization.
Proof

The proof is presented in three major parts. In the second part the
existence of a subgroup of G having p® elements is shown by constructing a
subgroup H and the final part proves by combinatorial arguments that H
actually has p® elements. In the construction of the subgroup H, we define
the set M of all subsets of G having p® elements. We have to consider first
a combinatorial argument about M, which is used in the final part of the
proof.

3.1.1 Combinatorial Argument

Let M be {S C G | card(S) = p®}. If p*|0o(G) then there is m > 0 such
that o(@) = p®m because G is a group and hence nonempty. The cardinality
of the set M is then p;ln because this is the number of ways one can

pick a set of p® elements out of G. We define the number r as the mazimum
natural number such that p” |m, that is p"* fm.

In the following we show that p™ |m iff p"| ( p;ln ) The following

argument yields this equivalence for an arbitrary natural number:

(p"‘m ) _ p°m(p®m—1)...(p*m — (p* — 1))
p° pe(pe—1)...1

(p®m —1)...(p%m — (p® — 1))
m (> —1)...1
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The power of p dividing p®m — k in the numerator is the same as the power
of p dividing p®* — k in the denominator for all ¥k = 1,...,p® — 1. This
observation holds in the one direction because if p° | p® — k and k£ < p® then
s < « and thus for the quotient z, i.e. p’z = p® — k, we can construct
p*m —k as p*(z + (p* *(m — 1))) whereby p® | p®*m — k.

Conversely, a slightly more difficult argument yields that s < a: if simi-
larly & < p* and p°® | p®*m — k assuming for contradiction that p® > p* then
p* | p® and by transitivity of divisibility p® | p*m — k. Since p* | p*m it must
follow that p®|k in contradiction to & < p® (and 0 < k). Thus, we can
construct p® — k from p’z = p*m — k (where z is again the quotient) as
p*(z — (p*%(m — 1))). The property s < « is necessary because we are in
N and thus s + (a — s) = @ only if s < a.

Thereby, the powers of p in dénominator and numerator all cancel out.

Hence (p*m—1).... (p"m — (p* — 1))
m—1)...(p%m — (p* —
p/ @ —1)...1

and thus, the power of p dividing p;:‘ is the same as the power of p

dividing m. The right hand side of the above formula is an integer because
. pPm—1
it equals ( o —1 )

3.1.2 Construction of the subgroup H

Consider the set M of all subsets with p® elements in G. On this set, define
a relation ~ as M; ~ My if there exists a g € G such that M; = Msyg. It is
straightforward to prove that this relation is an equivalence relation on M.
Now, for the maximum number r such that p" |m we claim that there is an
equivalence class M in M/~ such that p"*! fcard(M). If not, then p™t!
would divide the cardinality of all classes in M/~ and thus p"*! | card(M) =
( P ;,T ) because equivalence classes partition M. But, this would yield by
the combinatorial argument of Section 3.1.1 that p™*! |m in contradiction
to the assumption that r is maximal.

Now, let n be the cardinality of this class M. Since M has n elements,
let us name them Mj,..., M,. We pick M; out of the equivalence class M
— which is possible since n # 0 — and construct the subgroup H from this
p*-set M7 as

H={g€G|Mg=DM}

This set H is a subgroup:

e ¢ € H because Mie = M, for all subsets of G and thus also for M;.

e for a,b € H is Mya = M; and Mib = M; by the definition of H.
Thereby, M;(ab) = (Mia)b = Myb = M, yields ab € H.

These two criteria are sufficient to show that H is a subgroup.
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3.1.3 Cardinality of H is p“

First we establish that n-o(H) = o(G), in other words card(M)-o(H) = p*m.
To this end we construct a bijection between M and the set of right cosets
G/H of H. By construction of H, we get the equivalence:

(Ha = Hb) = (ab™! € H) = (Myab™ = My) = (Mya = M;b)

for all a,b € G. That is, whenever a and b are in the same right coset of H (or
their cosets are equal, respectively) they form the same Mja = M;b, name
it N; and N € M because Nb—! = My, hence N ~ M;. So Ha — M;ja, for
all @ € G, defines a mapping from G/H to M. Since N € M, N is some
M;, j € {1,...,n}, and conversely, each M; is of the form Mja for some
a € G by definition. So the mapping Ha — M;ja for all ¢ € G is in fact a
bijection.

By this bijection we know that card(M)-card(H) = card(G/H)-card(H)
which equals o(G@) according to Lagrange’s theorem (cf. Theorem 2).

Now we prove the two directions separately:

1. p* < o(H):

We constructed M such that p™*! fn = card(M). Hence, for the max-
imum & such that p*|n must hold & < 7, i.e. p*|p". By construction
of r holds p®*" | p®m = n - o(H) and consequently p®** | n - o(H). But
since k was already the maximum power of p dividing n we get from
this p® | o(H) whereby p® < o(H).

2. o(H) <p*:

For some arbitrary m; € M7, we have m1h € M, for all h € H because
of the definition of H as {g € G | Myg = M;}. Since this group
operation is an injection, i.e. hy # hy = mihy # mihs (cancellation
law for the binary operation), it follows that M; must have at least
o(H) different elements whereby o(H) < card(M7). Since the set M,
is in M it has p® elements and thereby finally o(H) < p®.

Summarizing, the constructed subgroup H has exactly p® elements. O
The original form of the theorem of Sylow is a special case of the previous
one:

COROLLARY 1 If G is a group, p a prime, p™|o(G) and p™ ! fo(G)
then G contains a subgroup of order p™.

As we have seen in the previous proof, the property of the m here being the
maximal power of p dividing the order of G had been internalized, which
made the theorem more general but the proof harder (in the combinatorial
argument).
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3.2 Formalization of Groups in Isabelle/HOL

The proof of Sylow’s theorem demands a formalization of groups on a fine
scale. We need to consider the carrier of the group as a set which has
different kinds of subsets, e.g. subgroups, cosets, and arbitrary subsets of
certain cardinalities. These subsets play a réle in the reasoning about the
group factorization in terms of the equivalence relation, which is used in the
construction of the Sylow subgroup. Hence, we have to be able to view the
constituents of the group from some completely different perspectives.

In the following, we explain the formalization of groups we used to handle
these different views on groups in our experiment.

3.2.1 Groups in Isabelle

For the formalization of Sylow’s theorem, we used the theory HOL of Isa-
belle. We preferred it to pure set theory represented by ZF because we
wanted to employ polymorphism for the abstraction over the base set of a
group. HOL offers a formulation of typed sets. Sets are here basically a
syntactical abbreviation for predicates. By switching between the set repre-
sentation and the corresponding predicate, we can combine the convenience
of mathematical notation with the power of higher order logic reasoning
with types.

To encapsulate the definition of a group by its operations and corre-
sponding axioms, we employ the following definition of groups as a typed
set of quadruples:

Group_def "Group ==
{(G,f,inv,e). T € G ->G->G & inv € G >G & e €G &
Vx€eG VyeG VzeG. (f (invzx) x=¢) &
fex=x&E Exy)z==1f & Ey2)IN

The constant Group is a typed higher order logic set. Its type is
(’a set ¥ ([’a, ’a] => ’a) *x (’a => ’a) * ’a) set

The symbol ’a symbolizes a type variable, i.e. the group definition may be
instantiated to arbitrary types. The function constructor A -> B constructs
the set of functions from a set A to B. We define this function set for HOL
in more generality (including dependency) in Chapter 5.

3.2.2 Basic Propertieis

The definition of Group admits stating that a term G is a group quite con-
cisely as G € Group. Unfolding the definition of Group, represented by the
above set, yields all the defining properties for the constituents of G. Nat-
urally, we need to define projection functions for these constituents. Gen-
erally, they are available by the projection functions for the product type
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of HOL, e.g. the function £st would return the set underlying the group.
But, to make notations more self-explanatory we overload the projections
for the quadruple (G,f,inv,e) with names symbolizing the meaning of
the constituents: carrier, bin_op, inverse, and unity. To enhance the
readability of formulas we define the pretty printing syntax _.<cr>, _.<f>,
_.<inv>, and _.<e> for these projections. It can be applied as postfix in
record-like fashion.

We have to derive the axioms from the definition — an additional cost for
the neat representation — but this is very schematic and could be optimized
by Isabelle’s tactics to a high extent.

The definition of groups only assumes the minimal axioms, e.g. for
the inverse only the left inverse rule a~'a = e. We derive from the group
definition a number of corresponding meta-level rules. For example,

[I G € Group; a € (G.<cr>) |1 ==> (G.<£>)((G.<inv>) a) a = (G.<e>)

is the left inverse rule. For the closure properties, e.g. inv € G — G, we de-
rive a more applicable rule from the definition, for example inverse_closed:

[l G € Group; a € (G.<cr>) [] ==> (G.<inv>) a € (G.<cr>)

The symmetric properties, like the right inverse rule are then derived from
them in the classical way: first we prove the left cancellation law for the
binary operation zy = zz = y = z and from that the symmetric unity rule
ae = a; now, we can prove that aa = @ = a = e and by that the symmetric
inverse rule. Finally, we can prove with the latter two the right cancellation
law.

3.2.3 Subgroups

Building onto the basic properties of groups we consider the notion of a
subgroup using the syntax H <<= G for H is subgroup of G. In the defini-
tion of the subgroup property we can use an elegant approach which reads
informally: a subset H of G is a subgroup if it is a group with G’s operations.

subgroup_def "H <<= ==
H <= (G.<cr>) & (H, (G.<£>), (G.<inv>), (G.<e>)) € Group"

It is not completely trivial that this definition is possible because it depends
on the way that groups are formalized: we can use the structure Group in a
formula because it is a term.

Basic derived results are SG_unity — the unit of G is an element of
every subgroup — from which we get that a subgroup is nonempty, or 0 <
card (H). Related theorems about subgroups are that they are closed under
product, i.e. a,b € H = ab € H and under inverse, i.e. a € H = a~' € H.

An introduction rule for the subgroup property is subgroupI:
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[l G € Group; H <= (G.<cr>); H # {}; V a € H. (G.<inv>) a € H;
VaeH. VbeH. (G.<f>) ab € H|] ==> H <<= G"

That is, for a nonempty subset H of a group G it is sufficient to check
that it is closed under inverse and the binary operation to conclude that
H is a subgroup. Ideally, we want to have an introduction rule where it
is sufficient to show that a nonempty subset of G is closed under G.<f>
to gain the subgroup property. Actually, this is the characterization of
subgroup used in the Sylow proof (see Section 3.1.2). But, this result uses
an argument about finite sets and repetitions of a™ for n — oo if G is
finite, which is quite complicated to prove formally. On the other hand, it
is straightforward to prove the additional closure under inverse construction
for the Sylow subgroup. Hence, we deviate at this single point from the
mathematical proof of Sylow’s theorem by using the longer characterization
subgroupl (c¢f. Section 3.3).

The proof of Sylow’s theorem uses Lagrange’s theorem as well as an
equivalence relation which is ranging over subsets with p* elements. For
both we need the notion of cosets.

3.2.4 Factorization of Groups

If H is a subgroup of a group G then the right coset of a with respect to H
in G, written Ha, is the set {ha | h € H}. We consider only right cosets
here and sometimes refer to them as just cosets. The division of a group into
cosets is a partition. The coset construction is needed when we consider so-
called factorizations of a group. Then we look at H, the factor, as the unit
and each coset as a member of the factorization with respect to the induced
operation on cosets. An interesting point is to find out how the induced
operation behaves on the factorization. For example, one can reason about
the criteria which make the factorization G/H together with the induced
operation on the cosets again a group (see Section 6.3.1).

Although the construction of a group factorization is defined merely for
subgroups, it can as well be applied to arbitrary subsets of groups. Hence,
in our definition we leave out the condition that the factor is a subgroup
and define r_coset as

r_coset G Ha=={b. 3h € H. (G.<f>) h a = b}

The definition is equivalent to {ha|h € H}.
To be able to talk about the factorization of a group into cosets, we
further define the set of right cosets G/H as:

set_r_cos G H=={C. 3 a € (G.<cr>). C = r_coset G H a}

The notation r_coset G H a is not very satisfying. It is necessary to quote
the group G for which we consider the coset construction. The mathematical
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notation is just Ha, where the group G to which we refer should be clear
from the context. Here, we need more notational support to get at least some
notation like H #> a. This issue is addressed when we perform the actual
Sylow proof (see Section 3.3). For the purpose of general group results, we
deal with the verbose notation.

To prepare for the reasoning with cosets we derive some theorems about
cosets (see Appendix A). They are partly concerned with the arithmetic for
the induced operation: coset_mul_assoc, coset.mul unity, coset_joini,
coset_join2, coset mul_inversi, and coset.mul_invers2. Further results
are: the union of the set of all cosets equals the group (set_r_cos_part_G),
cosets are subsets of G (r_cosetGHa_subset_G), cosets have equal cardinality
(card cosets_equal), unequal cosets are disjoint (r_coset_disjunct), and
the set of cosets is a subset of the powerset of G (set_r_cos_subset_PowG).

The last few of these general results join together to prove Lagrange’s
theorem as we shall see in the following section.

3.2.5 Lagrange’s Theorem

In contrast to the formalization of Yu [Yu90], the form of Lagrange that we
need here is not just the one stating that the order of the subgroup divides
the order of the group but instead gives the precise representation of the
group’s order as the product of order of the subgroup and the indez of this
subgroup in G, i.e.

THEOREM 2 If G is a finite group and H is a subgroup of G, then o(G) =
|H| * |G/H|

The term G/H stands for G modulo H and is the factorization of G in right
cosets of H. Its cardinality |G/H| is defined as index of H in G. We sketch
the proof here.
Proof

The proof of this theorem in our Isabelle formalization of group is quite
straightforward. The basic idea is to reduce it to theorems about cosets
using a fact that we can derive in general for finite sets (card_partition):

[| finite C; finite (Union C); V ¢ € C. card ¢ = k & finite c;
VeleclC. Ve2€Cocl #c2-—>clnec2=4}1]
==> k * card(C) = card (Union C)

Application of this to the original conjecture leaves us with the following
subgoals: '

1. finite (set_r_cos G H)
2. finite (Union set_r_cos G H)
3. Vc € set_r_cos G H. card ¢ = k & finite c;
4, ¥V cl1 € set_r_cos G H.
¥V c2 € set_r.cos GH . cl # c2 -->clnNec2={}
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The group G is finite by assumption. The subgoals 3 and 4 are the rules
mentioned in the previous section: the cardinality of cosets is equal, and
since they are subsets of G' they are all finite. Their intersection is pairwise
empty. Another derived result states that the powerset of a finite set is finite.
Together with set_r_cos_part_G and set_r_cos_subset.PowG we get also 1
and 2. The finer scale of formalization with groups as first class citizens
enables us to derive Lagrange’s theorem in a general form and the proof is
still concise. O

3.3 Sylow’s Theorem in Isabelle/HOL

As mentioned in Section 3.2.4, the syntax for cosets is not very intelligible.
Also, we would like to have a nicer notation for the group’s binary operation.
So far we must write (G.<f>)a b for ab. Since we need to quote the group
G, the only way around this difficulty at the present state of Isabelle seems
to abuse the theory file technique and declare a constant G and a type i of
elements of G to build a context for the Sylow proof. To get nicer syntax
and also to avoid repeating global premises in each lemma of the proof of
Sylow’s theorem — i.e. to save listing:

G € Group, finite (G.<cr>), p € prime, o(G) = (p ~ a)* m
— we define a theory Sylow.thy which contains a type i, a constant G, and
the above premises as rules. Generally, the proof can be easily transformed
into the explicit version abandoning the syntactical improvements, hence
our approach here does not influence the soundness of the formalization of
Sylow’s theorem. Nevertheless, it disables a general application of the theo-
rems derived in the theory Sylow.thy because they are not polymorphic (cf.
Section 3.4.2). Chapter 4 will present locales, an extension to Isabelle, that
builds temporary contexts, giving us the same notational benefits without
sacrificing generality. '

With this context at hand, we can abbreviate the verbose notation for
bin_op and r_coset in terms of the constant G by the definitions

H# x == r_coset G H x
x#y == (G.<£>) x y

Furthermore, we can define (G.<e>) as e and (G.<inv>) a as inv a. In the
Sylow theory we additionally define an identifier for the set M of p®-subsets
of G and for the equivalence relation ~ over this set:

calM == {s. s C (G.<cr>) & card(s) = (p ~ a)}
RelM == {(N1,N2).(N1,N2) € calM x calM &
(3 g € (G.<cr>). N1 = (N2 #> g))}
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3.3.1 Prerequisites

Besides the theorems about groups and cosets, we need to derive properties
about finite sets and cardinalities for this case study. Furthermore, some ad-
ditional arithmetical results are needed and functions of combinatorics, e.g.
binomial coefficients, and divisibility rules, have to be defined or derived. In
the present section we show some of these; when displaying the rules we of-
ten leave out preconditions to enhance readability. Sometimes introduced in
the text, names of theorems may also be displayed in square brackets at the
right margin. The function primrec defines primitive recursive functions.

Arithmetic

The arithmetical rules which have to be derived in addition to the already
existing ones of the Isabelle theory Arith are mostly obvious but some are
nevertheless nontrivial. For example, the rule

a-(b-c)=a-b+c

needs the additional assumptions ¢ < b and b < a because - is the dif-
ference for natural numbers. Similarly, the left cancellation law for natural
number multiplication

k*a=k*xb==>a=%>b

is not generally valid (k must not equal zero).
Apart from such additional theorems about already existing functions,
we define for the present case study an integer power operation by

primrec
m”~0=m
m~ (Sucn) =m*m " n

The use of the primitive recursion allows us to derive typical properties of
this power function.

Finally, we have to define divisibility and derive basic facts about it. The
most advanced rule about divisibility we derive is div_combine — the main
argument for the proof part of Section 3.1.3.1 is to show that p* | o(H):

[l...; =(p ~ (x+1) I n); p ~(atr) [ n*xk [] ==>p "~ a |k

Prime numbers are defined as a set, letting us quantify over all primes.
Observe the syntactical overloading of the operator |, once as divisibility
and once as logical or:

prime == {p. 1 <p& (Wab.plax*xb-->(@@ |l al (@] b}

We do not need many extra theorems for primes.
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Finite Sets and Cardinalities

We have to prove that the cardinality of a finite set A is less or equal the
cardinality of a finite set B if there exists an injection from A into B. From
this, we can immediately show that if there is a bijection from A to B then
their cardinalities are equal (card_bij).

We derive the already mentioned finite Pow — the powerset of a finite
set is finite — and the counting theorem card_partition (see Section 3.2.5).
Furthermore, we need in the Sylow proof that if 2 number & divides the
cardinalities of all classes of a set S factorized by an equivalence relation
then k divides the cardinality of S (equiv._partition).

Binomial Coefficients and k-subsets

The definition of the choose operator is inspired by the HOL tutorial [Hol]
by taking the Pascal triangle for the definition of ( Z ) instead of a ratio

of factorials. We define ( Z ) as

primrec
(0 choose k) = (if k = 0 then 1 else 0)
(Suc n choose k) =
(if kX = 0 then 1 else (n choose (k - 1)) + (n choose k))

Using this primitive recursive definition we can derive immediately

Suc n choose Suc k = [chooseD_add]
(n choose Suc k) + (n choose k)

From that we get all other necessary prerequisites quite easily:
n_choose 0, zero_le_choose, less._choose, n_choose n, choose_Suc, and
n_choose_1 for the basic ones and a multiplicative decomposition:

k < n== [chooseD mult]
Suc n * (n choose k) = (Suc n choose Suc k) * Suc k

From that we can derive the theorems

k < n ==> (Suc n * (n choose k)) mod Suc k = 0
k <n== [choose_defT]
(Suc n choose Suc k) = (Suc n *(n choose k))div Suc k

which are decisive in the first combinatorial part of Sylow’s proof.
We can now prove

card {s. s C M & card s = k} = (n choose k) [n_subsets]

if card M = n and k < n. In the induction scheme for finite sets, applied
to M, we can use some x not in M. Using the decomposition
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{s. s C insert x M & card s = Suc k} =
{s. s C M & card s = Suc k}
U{s. 3 st €{s. s CM&card s = k}. ¢ = insert x s1 }

for x not in M, we can use the induction hypothesis to show that
card {s. s C M & card s = Suc k} = ((card M) choose (Suc k))
on the one hand. On the other hand, we construct a bijection between
{s. 3s1 € {s. s CM&card s = k}. s = insert x si}
and
{s. s C insert x M & card s = k}

provided that x is not in M. We use the induction hypothesis again to show
that

card {s. 3 s1 € {s. s CM& card s = k}. s = insert x sl1} =
((card M) choose k)

The cardinalities we derived for the two components of the decomposition
match the formula chooseD_add. Hence, after showing that the cardinality
of the union of two disjoint sets is just the sum of the cardinalities of these
sets, we can apply chooseD_add to finish the proof of the theorem n_subsets.

Preparation for Combinatorial Argument

The combinatorial argument of Sylow’s proof is formalized by first defining
a maximum number predicate max-n as

max-n k. P(k) == @k. P(X)&(Vm. kX <m --> - P(m))
Thereby, we can state the combinatorial argument as

(max-nr. (p “r | m)) = [const_p_facl
(max-nr. (p " ] (((p ~ @) *m) choose p ~ a)))

which is a natural way of encoding this proposition. Unfortunately, the
max-n construct uses the Hilbert-operator @ which names an element that
fulfills a given predicate P but forces us to show the existence of such an
element first. To make the proof easier we observe that the maximum power
of p dividing a number n is the integer logarithm of n to the base p. By
defining this integer logarithm function as

log_def "log p n == wfrec (trancl pred_nat)
(A £ 3. if (0 < j) & (j mod p = 0))
then Suc(f (j div p)) else 0) n"



3.3. SYLOW’S THEOREM IN ISABELLE/HOL 49

we gain the desired function that improves the derivation of the main propo-
sition const_p_fac. The definition of this function uses the functional wfrec
for well founded recursion. We first show some properties about this loga-
rithm function to enable later calculations.

We show that this logarithm represents actually the maximum power of
p dividing a number s by deriving

P - logps | s [max p_div]
& (Vm. logps <m-—>=(p " m | s))

This enables us to replace the max-n term by a log term and we can derive
the unique existence of the logarithm (unique max_power div_s, log_p_uni-
que, max.p-div_eq-log).

The theorem we finally use in the combinatorial argument is a combina-
tion of the latter ones, namely

[l...;Vr. ((p~"rla=(( "r|b)l]==>1logpa=1logpb
The results we need to calculate with the new logarithm operation are
n=(p "~ log p n)*(n div (p ~ log p n))
and

log p (a * b) = (log p a) + (log p b) [logmult_add]

3.3.2 Proof

According to the structure of the mathematical proof, we present the formal
proof of Sylow’s theorem in three parts.

Combinatorial Argument

We have to show the conjecture const_p_fac (see Section 3.3.1). Using
unique_max_power_div_s we can immediately reduce the conjecture to the
logarithm equality:

log pm=1logp ((p ~ a)* m choose p " a)

By chooseDmult (or choose_defT, more precisely) this can be transformed
into

log pm = log p ((p~a)* m *((p~a)*m-1 choose (p~a)-1) div (p~a))
Cancellation (div_multl) yields:

lo¢gp m=1logp (m* ((p~ a)m-1 choose (p ~ a) - 1))
which can be decomposed by log-mult_add into

logpm=1logpm+ logp ({p "~ @a)*xm-1choose (p ~ a) - 1)
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By arithmetical rules (add_0_right, add_left_cancel) we reduce the latter
to

0=1logp ((p~axm-1 choose (p ~ a) - 1)
which can be derived from:
~(p | ((p~ a)*m- 1 choose (p ~ a) - 1))

So far the calculation above is straightforward. That p does not divide the
remaining ratio can also be shown following the outline of the mathematical
proof. To this end, we derive the two directions. The forward direction is

[l...; k< (pra); (px) | (pra)*m -k |] ==> (p7r) | (pTa)- k

for which we have to derive r < a as in the mathematical proof under the
same premises as above. The backward direction,

[l...; X < (pra); (p7x) | (pra)-k 1] ==> (p°r) | (pTa)*m - k

needs again r < a. Now, we characterize =(p | n choose k) for the case
log p k = log p nunder more general preconditions (p-not_div_choose).
Instantiating the latter to p®m — 1 and p® — 1 by plugging in the previous
two lemmas we attain

—-( | ((p~a) *m-1 choose (p ~ a) - 1)) [const_p_fac right]

which solves the combinatorial argument.

Construction of the subgroup H

By abusing the theory mechanism we gained the possibility to use more
natural syntax for the algebraic operations. An additional cost for this nice
representation is that we have to instantiate the rules derived for groups to
the constants of the theory Sylow. The instantiations of the rules are marked
by a leading I in their names, e.g. Ibin_op_closed is the instantiation of
bin_op_closed to the proof context and reads

[l x € (G.<cr>); y € (G.<cr>) 1] ==> x # y € (G.<cr>)

Before we get into the concrete parts of the proof, we have to derive some
facts about calM and RelM. First, RelM is an equivalence relation over call.
The proof is a straightforward check of the definition of equivalence relation.
The assumptions M € M/~, p"*! fcard(M), and M; € M are always
made in the following derivations. They have to be proved finally, then they
are discharged at the top level of the proof.
Under the assumption of M and M1 we prove now

{g. g € (G.<cr>) & M1 #> g = M1} <<= G
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Here we see that abusing the theory mechanism to get a nicer syntax pays
off. The syntactical form of the constructed subgroup is very similar to the
mathematical notation.

As already mentioned in Section 3.2.3 we use the alternative character-
ization subgroupI to tackle this task. It leaves us with some subgoals of
which the first one is

{g. g € (G.<cr>) & M1 #> g = M1} # {}

It can be solved by showing that e is in this set. The two closure conditions,
i.e. the potential subgroup is closed under the binary operation and under
inverse construction, are derivable by insertion and definition expansion.

We avoid defining an abbreviation for the constructed subgroup in the
proof because this construction is only visible inside the proof and vanishes
at the top level.

Cardinality of H is p“

The most difficult part of this subproof is to construct the bijection between
M and set_r_cos G H (abbreviated G/H subsequently). Though mathe-
matically it is sufficient to derive (Ha = Hb) = (Mya = M1b) and to define
the actual bijection as the mapping Ha — Ma for all a € G, this is not as
easy formally. The problem is, we have, for one direction, some M; which
has an equivalent form M;ja for some a. Unfortunately, we do not know this
a but need to use it to construct the inverse image of M; = Mja as Ha. For
the backward map we have the same problem.

We solve this problem by employing the Hilbert operator @, although
this makes the proof quite messy. We reduce the bijection to two injections
f €M — G/H and g € G/H — M. For the sake of readability we use
below H for {g. g € (G.<cr>) & M1 #> g = M1}.

f
g

AM. H# (6g. g € (G.<cr>) & M1 #> ¢
AC. ML # (0g. g € (G.<ex>) & H#> g

M)
c)

i

That is, we just define these maps by the properties we expect from them
— this is like saying that the map is Ha — Mja but is less clear; we do not
know this a instead just describe it by its properties.

Though the terms in this proof grow quite large, making the derivation
hard to read, the proof is again straightforward. Additional results needed
in the course of the derivation are

card(M1) = card(M1 #> g)
(M1, M1 #> g) € RellM

With the bijection at hand, we solve the index lemma:

card(M) * card{g. g € (G.<cr>) & M1 #> g = M1} = card G [index lem]
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by reducing it to Lagrange’s theorem. This reduction is performed by
the derivation card M_eq_IndexH which entails the constructed bijection
bi j_M_GmodH.

The two inequalities yielding o(H) = p® can now be derived by plugging
in all the prepared theorems according to the textbook proof.

1.p - a < card {g. g € (G.<cr>) & M1 #> g = M1}
This task can be reduced by the divisibility lemma div_order to

p - al card {g. g € (G.<cr>) & M1 #> g = Mi}

The main divisibility rule for this subproof (div_combine) leaves us
with '

1. =(p " (max-nr. p ~r | m)+ 1 | card(M))
2.p - (a+max-nr.p " r | m |
card(M) * card {g. g € (G.<cr>) & M1 #> g = Mi}

The first subgoal is entailed in the assumption about M for this proof.
To the second one we can apply the previously derived index lemma
to transform into

p - (@+maxnr.p " r | m | order(G)

After replacing order(G) by (p ~ a)* m this can be reduced by basic
arithmetic and divisibility rules to

p (max-nr.p " rlm |m

which is entailed in max p_div (see Section. 3.3.1).

2. card {g. g € (G.<cr>) & M1 #> g=M1} < p " a

We substitute card(M1) for p = a. By the preconstructed injection
of M7 into H (M1_inj_H), discussed in Section 3.1.3.2 the task is re-
duced to subgoals finite M1 and finite H which can be solved by
the already derived lemmas (see above).

The main proof finally puts together the parts H_.is_SG, lemma_leql, and
lemma_leq2 (the above inequalities 1 and 2).
Still, we have the two assumptions

M€ calM / RelM & =(p ~ ((max-nr. p " r | m)+ 1) | card(M))
MiI eM

We discharge the former one finally in the top level proof Sylowl by applying
lemmaAl. This lemma proves the existence of such an M by contraposition.
Assuming for contradiction that such a set does not exist, we would have
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VMEcalM / RelM. p ~ ((max~nr. p " r | m) + 1) | card M

But then, since equivalence classes are a partition (equiv_partition)

p - ((max-nr. p ~r | m) + 1) | card calM

Since card calM = ( ppln ) this contradicts const_p_fac right.

The assumption M1 € M is canceled by the theorem existM1inM. The
existence of a set M; in the class M, whose cardinality is not divided by
p" 1, is derived from M € M/~. Since the empty set is not a member of
M/~, but M is a member, it follows that M is not the empty set; hence we
can assume an M7 € M.

The formal proof of Sylow’s theorem necessitates some smaller lem-
mas not visible in the textbook proof. They are mostly concerned with
the existence of elements in the sets M, M or M, inclusions between
those sets and G and the cardinalities of those sets. Their names indi-
cate this already: zero_less_oG, zero_lessm, card_call, exists_x_in M1,
M1 _subset G, finite_calM (see Appendix A).

3.4 Conclusions and Requirements

As we have seen in the formalization of groups, there is a need to support
structures to enhance the reasoning in abstract algebra. We modelled struc-
tures by defining a typed set for the structure of groups. This representation
caused a little bit of extra work to retrieve the group properties from the
definition (see Section 3.2.2). However, this representation is necessary to
achieve logical adequacy, i.e. state and prove properties about groups. For
reasons of notational adequacy we defined a separate theory for the defini-
tions and assumptions of Sylow’s theorem. This method is an abuse of the
theory facility because we define a constant G to be able to define readable
syntax. Furthermore, we abuse the possibility to state axioms in order to
use them as local assumptions for the proof.

We begin in Section 3.4.1 with the summary of experiences from this case
study and some conclusions on the performance and the statistics. Building
on the observations about module concepts for theorem provers, we use the
experience of the mechanization of Sylow’s proof to propose a concept for
the further direction of this thesis in Section 3.4.2.

3.4.1 Statistics and Experience

Sylow’s theorem is a fundamental result of finite group theory. It usually
stands at the end of a lecture course on group theory because it unifies
most of the basic results about finite groups. A lot of textbooks on abstract
algebra skip the theorem, or at least its proof, because it is difficult. The
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proof by Wielandt that is the raw model for our formalization is quite concise
(less than one page). Herstein [Her64], being a bit more detailed, uses almost
two pages. In our introduction we need three pages.

The formalization of Sylow’s theorem is quite a big experiment. Alto-
gether we proved 278 theorems, of which only 52 are in the theory Sylow.
The theory Group contains 121 theorems of which only 34 are concerned
with group properties; the other 87 are dealing with the self defined oper-
ators: natural number logarithm, power, choose operator, the function set
constructor ->, and bijections (which use ->). Though these are mostly
arithmetical results, one could not expect them to be in the theorem library
because the operators are rather exceptional and did not exist in Isabelle
before. Another 104 theorems are extensions to the existing Isabelle theories
of the HOL logic, sets, arithmetic, finite sets, equivalence relations, products
and natural numbers. The total running time, if the entire development of
the interactive proof is loaded into Isabelle, is five minutes on a 300MHz
Penthium Pro.

The reasoning processes are quite subtle, mainly in the combinatorial
argument. A lot of the reasoning deals with divisibility and finite set prop-
erties. As other formalizations show [PG96], reasoning with finite sets is
tricky — though most arguments seem intuitively obvious. It necessitates
a quite well structured analysis to avoid losing track of the proof. Often
during the development we had severe problems because of innocuous side
conditions. Some simple looking subtheorems turned out to be quite hard
to prove. One could say that this is typical in proof development, but we
think that it is obvious from the present chapter that the proof is just very
subtle, though elegant.

Elegant constructions and proofs can be especially hard to mechanize.
That is, they connect different domains of reasoning by unusual associations.
This is intuitively appealing, but tedious for mechanical proofs. We are
lucky if there is another unelegant but straightforward proof if we want to
mechanize it.

What do we learn from the experiment? First of all, we think that hard
proofs are good benchmarks for systems because they are well suited to
reveal deficiencies of formal approaches. Tools or frameworks constructed
for formal proofs might turn out to be not suited for intuitive associations
connecting domains of mathematical reasoning. Especially, methods which
prescribe the way of approaching a problem are naturally inflexible and can
only be changed with unnatural complications to solve nonstandard tasks.
Examples, for this are the module systems.

Another point which becomes obvious by performing big or difficult case
studies is how far theory libraries are sufficiently equipped with theorems
for such tasks. Surely, it is an impossible task to provide all possible lem-
mas which might arise in some obscure proof, but at least a certain level of
knowledge about predefined theories must be provided. The Isabelle the-
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ory library is mostly sufficient, though some probably not too frequently
demanded theorems about equivalence relations and finite sets caused some
additional difficulties.

Last but not least, we have to admit our admiration for mathematicians.
While reconstructing a hard mathematical proof from the pure logic, one
comes to points where it seems that there must be mistakes in the proof —
but then it turns out that it is sound and just a bit trickier than expected.
Relying on machine support to prove difficult theorems makes it almost
impossible to believe that this can be performed soundly by just relying on
a human brain which is often biased by the desire to solve the problem.

3.4.2 Sections

As we have seen in Chapter 2 and in particular in the present case study,
modules enable local proof contexts by encapsulation, i.e. they provide
locality!. But, we discover that the locality can be too permanent — rules
of Isabelle are axioms, and definitions are meant to be of global significance.
That is, theories are a too strong means to encapsulate local assumptions,
like G € Group. On the other hand algebraic structures like groups have to
be presented as first class citizens anyway; modules as extra-logical devices
are not appropriate here. We use typed sets which are sufficiently flexible
to be adequate for groups. In the following we use the case study of Sylow’s
theorem to formulate a concept of sections. Those will enable encapsulation
but more appropriately for the needs of algebraic reasoning.

The concept of a section described here is a tentative list of requirements;
the actual construction will be considered in the following chapter. The
concept resembles the ones in Coq [Dow90] and AUTOMATH [dB91, dB80].

Similar to the theory we defined for the main proof of Sylow’s theorem,
a section delimits a scope in which assumptions and definitions can be made
and theorems depending on these assumptions are proved. They enable one
to fix variables, like the group G, for the context of a proof, with special
syntax if desired. Sections resemble modules but they are restricted to en-
capsulating terms of the logic, not types. They are of only local significance,
i.e. they can be regarded as abbreviations for formulas of the meta-logic. A
section entailing the assumptions I'y, . .., I, proving the theorems ¢1,..., %,
may be regarded as the Isabelle meta-level formula

Ll F]_,,Fn” ==> tl&...&tm

This enables an inside view of objects and theorems depending on section
assumptions and definitions when the section is invoked; at the same time
results shall have an outside representation, i.e. they can be globally applied.

! Although Isabelle theories are not very advanced modules they have to be considered
as such in this context.
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To fix and bind polymorphic constructors and definitions of groups, we
need to declare a fixed type i in the Sylow case study (c¢f. Section 3.3).
Isabelle’s polymorphism is too general to fix a polymorphic constant for a
group; the formalization would be unsound. Unfortunately, the resulting
theorems are not polymorphic and hence not generally applicable to arbi-
trary groups. Another requirement for a section concept is thus to adapt
Isabelle’s polymorphism to the local context of a section.

The present case study can be seen as a prototype example for the use of
sections. The theory we defined for Sylow’s theorem shall be representable
by a section. The constant G and the assumptions of the theorem are the
contents. The outside view is the theorem in the usual form: all assump-
tions as premises of the meta-level. To realize the concept of sections the
possibility of syntax definition in Isabelle has to be extended to allow us the
same readable formalization as in the present case study. That is, we want
to be able to use local definitions that depend on locally fixed values and
we want to define pretty printing syntax involving local constants.

Summarizing our requirements we need a section concept that

¢ allows the assumption of local rules,

e enables local definitions that may depend on arbitrary but fixed values
(like a group G) and possibly admit pretty printing syntax,

e creates a scope in which theorems depending on local assumptions can
be proved,

e enables a reflection of the scope into a meta-logical formula, i.e. real-
izes an outside view of the section,

e allows to fix polymorphic constructors temporarily such that proper-
ties can be assumed soundly.

In the following Chapter we present the concept of locales that addresses
this list of requirements.




Chapter 4

Locales

Drawing from the case study in the previous chapter we present a con-
cept enabling locality. The concept is called locales because it realizes local
contexts for proofs. Locales are implemented and have been released with
Isabelle version 98-1 [KW98]. The implementation has been performed in
collaboration with Markus Wenzel (TU-Munich).

Locales can be seen as an approach towards sectioning for higher order
logic theorem provers, thereby addressing the requirements we stated in
Section 3.4.2. After a motivating introduction in Section 4.1 we describe in
Section 4.2 the locale concept and address issues of opening and closing of
locales. We present aspects concerning concrete syntax, including a means
for local definitions and continue in Section 4.3 with a detailed definition
of locales and their features. Section 4.4 describes the implementation of
the ideas. After summarizing the syntax in Section 4.5, we illustrate the
application of locales in Section 4.6 by constructing a locale for groups. In
Section 4.7, we consider some further steps we have explored towards the
development of an explicit first class representation for locales. Finally, we
discuss the further direction of the work in Section 4.8.

4.1 Motivation

In interactive theorem proving it is desirable to get as close as possible to
the convenience of paper proof style. This makes developments more com-
prehensible and self declaring. In mathematical reasoning it is convenient
to handle assumptions and definitions in a casual way. That is, a typical
mathematical proof assumes propositions for one proof or a whole section
of proofs and local to these assumption definitions are made that depend
on those assumptions. The concept of locales is designed for the support of
these processes of local assumptions and definition. Locales are a means to
define local scopes for the interactive proving process. Fixed assumptions
can be made that are visible inside the scope of the locale. When the locale
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is invoked, theorems may be proved depending on these assumptions. A
locale contains constants that enhance pretty printing syntax and enable
local definitions in proof development contexts. Locales implement a sec-
tioning device similar to that in AUTOMATH [dB80] or Coq [Dow90}, but
with optional pretty printing syntax and dependent local definitions added.
Apart from the obvious difference that Coq and AUTOMATH are type the-
ories, the concept of locales is static in that locales are declared in a theory
and only opened interactively, whereas Coq and AUTOMATH sections are
defined dynamically. Locales can be seen as a simple form of modules, yet
they may be used for abstract reasoning and similar applications.

In mathematical proofs, we often want to define abbreviations for big ex-
pressions to enhance readability. These abbreviations might implicitly refer
to terms, which are arbitrary but fixed values for the entire proof. Surely,
Isabelle’s pretty printing and definition possibilities are mostly sufficient for
this purpose. But there are still examples where a definition in a theory is
too strong: the syntactical constants used for abbreviations are of no global
significance. Definitions in an Isabelle theory are visible everywhere.

In the case study of Sylow’s theorem, we came across several such local
definitions. For example, we defined a set M as {S C G | card(S) = p*}
where G, p, and « are arbitrary but fixed values with certain properties.
This is just for one big proof, and has no general meaning whatsoever. The
formula does not even occur in the main proposition. Still, in Isabelle as it
is, we only have the choice of spelling this term out wherever it occurs, or
defining it on the global level, which is rather unnatural. On top of that, we
need in a global definition to parameterize this example over all variables of
the right hand side. In our example we would get something like M(G, p, @)
which is almost as bad as the original formula. This second drawback is
because we cannot have something like local constants, here G, p, and a.

4.2 Locales — the Concept

Locales declare a context of fixed variables, local assumptions and local
definitions. Inside the scope, theorems can be proved that may depend on
the assumptions and definitions, and in which the fixed variables are treated
like constants. The result will then depend on the assumptions of the locale,
while locale definitions are eliminated.

A locale consists of a set of constants, rules and definitions. It is defined
in an Isabelle theory and can be invoked in any session for that theory. An
invocation assumes the locale rules; the locale definitions become visible.
The rules can be used in the same way as usual Isabelle rules, i.e. like
axioms. Similarly the definitions, like usual Isabelle definitions, abbreviate
longer terms. But, the rules and definitions are local to the body of the
invocation.




4.2. LOCALES — THE CONCEPT 59

Theorems proved in the scope of a locale can be exported to the sur-
rounding theory context. In that.case, the rules used in its proof become
assumptions of the exported theorem. The local definitions are expanded
and then eliminated via generalization and reflexivity.

In the following, we explain several aspects of locales. There are basically
two ideas that form the concept of locales: one is the possibility to state local
assumptions, and the other one is to make local definitions which can depend
on these assumptions and may use pretty printing. Those two main ideas
depend on the notion of a locale constant.

4.2.1 Locale Rules

To explain what locales are, it is best to describe the main characteristics of
Isabelle that lead to this concept and are the basis of the realization. Locale
rules are based on Isabelle’s concept of meta-assumptions.

In Isabelle each theorem may depend upon meta-assumptions. The the-
orem that ¢ follows from the meta-assumptions ¢;,..., ¢, is written as

Pld1, ..., bnl

The first main aspect of locales is to build up a local scope, in which a
set of rules, the locale rules, are valid. The local rules are realized by us-
ing Isabelle’s meta-assumptions as an assumption stack. Logically, a locale
is a conjunction of meta-assumptions; the conjuncts are the locale rules.
Opening the locale corresponds to assuming this conjunction.

In Isabelle-98, a meta-assumption can be used in proofs, but by the end of
the proof, Isabelle would complain about the extraneous assumptions. With
the locale concept added to Isabelle, locale rules become meta-assumptions
when the locale is invoked. A theorem proved after a locale is opened can use
these rules as axioms. They can be accessed by the names they have been
given in the definition of the locale. At the end of a proof performed in a
locale, the used rules become attached to the theorem as meta-assumptions.
The theorem is admitted with the additional premises entailed implicitly.
Hence, if this theorem is used in the same locale, the locale rules will not
even be produced as subgoals. All locale rules can be used throughout
the life cycle of the locale. The life cycle is determined by the interactive
operations of opening and closing (see Section 4.3.2).

4.2.2 Locale Constants

A locale constant is an integral part of the locale concept. A locale imple-
ments the idea of “arbitrary but fixed” that is used in mathematical proofs.
We can assume certain terms as fixed for a certain section of proofs and
we can define other terms depending on them. These arbitrary but fixed
terms are the locale constants. The locale constants may be viewed from
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the outside as parameters because they become universally quantified vari-
ables when a major theorem is exported. Inside the locale they are just like
normal constants and can thereby be used to enable pretty printing in local
definitions. Locale definitions and rules may depend on these constants.

A locale corresponds to a certain extent to modules in a theorem prover,
In contrast to the classical notion of a module, a locale does not contain
type declarations and the constants are not persistent. The outside view of
locales is realized in a different way. Instead of presenting the entire locale
similar to a parameterized module that can be instantiated, one can export
theorems of a locale. This export transforms a theorem into a general form
whereby the locale is represented in the assumptions.

4.2.3 Locale Definition and Pretty Printing

A major reason for having locales is to make temporary abbreviations in
the course of a proof development. As pointed out in Section 4.1, there are
large formulas that are used in proofs and do not have a global significance.
Conceptually, the definition of such logical terms is not persistent. Never-
theless, we want to use such definitions to make the theorems readable and
the proof process clear. Hence, one aspect is the locality of these defini-
tions. The other aspect, as illustrated by the introductory example as well,
is that the local definitions might depend on terms that are constants in a
certain scope. For example, we want to have M only, not a notation like
M(G, p, ), as would normally be necessary because we need to refer to the
terms that form the other premises of the Sylow theorem.

Another common thing in abstract algebra are formulas which are not so
big, but leave out information, e.g. we write Ha for the right coset of a with
respect to the subset H of a group G. Since the group G containing this
coset is a parameter to this definition we would have to define something like
r_coset G H a. This is partly the same problem as with the parameters of
the definition M but on top of it it requires pretty printing. The pretty
printing facilities do not work here because we must not omit variables in
definitions.

These features are realized by locales. In a locale where G is an arbitrary
but fixed group, we can use the syntax H #> a instead of r_coset G H a.
We create a definition mechanism for concrete syntax which implements the
concept of a local definition for which we can define pretty printing syntax.
The idea is to use the locale as a scope such that inside it a locale constant
can be used to abbreviate longer terms. The terms we define can even be
dependent on other locale constants if those are contained in the scope of the
locale. Since locale constants are only temporarily fixed, the latter feature
realizes dependent definitions, 7.e. the defined terms may depend on implicit
information of the context. This concrete syntax may only be used as long as
the locale is open. Viewed from outside the locale, this syntax does not exist.
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The theorems proved inside the locale using the syntax can be transformed
into global theorems with the syntactical abbreviations unfolded and the
locale constants replaced by free variables.

In a locale where we want to reason about a group G and its right cosets,
we declare G as a locale constant. Then we can define an operation #> as
another locale constant in terms of the underlying theory of groups where
the operation r_coset is defined generally.

H#> x == r_coset G H x

When the locale containing this definition is open, we can use the convenient
syntax H #> x for right cosets, and it refers to the fixed parameter G. If we
prove a theorem in the locale scope and want to use it as a general result, we
can export it. Then, the locale constant G will be turned into a variable, and
the definition will be expanded to the underlying definition of right cosets.

4.3 Locales — Operations

4.3.1 Defining Locales

Locales are defined in an Isabelle theory. They can be opened in any de-
scendant of that theory.

By combination of locale definitions, rules, and constants we attain a
mechanism that constitutes a local theory mechanism. To adjust the dy-
namic idea of local definition and declaration to the declarative style of
Isabelle’s theory mechanism, we integrate the definition of locales into the
theories. That is, a locale is another declaration part in Isabelle theory files.
At first, we were toying with the idea of designing the entire concept in
the interactive part of Isabelle. But, this would contradict the declarative
nature of Isabelle’s specification language, where every user defined entity
resides in a theory. Consequently, locales are defined statically as an integral
part of a theory. Yet, they are used interactively controlled by the locale
operations (see 4.3.2).

To introduce the syntax, we show the example of groups. It uses the
definition of groups as a typed set that we have encountered in the case
study of Sylow (cf. Section 3.2.1). We use the type definition ’a grouptype
here. This is just an abbreviation for the type we used in the Sylow proof.

locale group =

fixes

G :: "’a grouptype"

e 1 I|)all

binop 12 "Wa => ’a => a" (infixr "#" 80)

inv 1r "a => 2a" (mi ()" [90]91)
assumes

Group_G "G € Group"
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defines
e_def "e == (G.<e>)"
binop_def "x # y == (G.<f>) x y"
inv_def "i x == (G.<inv>) x"

This part of an Isabelle theory introduces a locale for reasoning with an
arbitrary but fixed group. The theory chunk introduced by the keyword
fixes declares the locale constants in the familiar way, as in a consts
declaration of Isabelle theory files. That is, besides their type, which is
obligatory, there exists the option to define pretty printing syntax for the
locale constants.

The subsequent assumes part specifies the locale rules. They are defined
like Isabelle rules, i.e. by an identifier followed by the rule given as a
string. Locale rules admit the statement of local assumptions about the
locale constants. The assumes part is optional. Non-fixed variables in locale
rules are automatically bound by the universal quantifier !! of the meta-
logic. In the above example, we assume that the locale constant G is a
member of the set Group, i.e. G is a group. ’

Finally, the defines part of the locale introduces the definitions that
shall be available in this locale. Here, locale constants declared in the fixes
section can be defined using the Isabelle meta-equality ==. The definition
can contain variables on the left hand side if the defined locale constant is a
function. This improves natural style of definition, for example for constants
that represent infix operators, e.g. binop. The non-fixed variables on the
left hand side are considered as schematic variables and are generalized
automatically. The right hand side of a definition must only contain variables
that are already present on the left hand side. Thus far, locale definitions
behave like theory level definitions. However, the locale concept realizes
dependent definitions in that any variable that is fixed as a locale constant
can occur on the right hand side of definitions. For example, a definition
like

e_def "e == (G.<e>)"

contains the locale constant G on the right hand side. In principle, G is a
free variable. Hence, this is a dependent definition. In Isabelle this would
normally cause the error message “extra variable on right hand side”. Nat-
urally, definitions can already use the syntax of the locale constants in the
fixes subsection. The defines part is, like the assumes part, optional.

Note also that there are two different ways a locale constant can be used;
one is to state its properties abstractly using rules, and one is to declare it
as a name for a definition. Actually, one locale constant can be used for
both. In Section 6.4.2 we will see an example for this combined use.
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4.3.2 Locale Scope

The -definition of a locale is static, i.e. it resides in a theory. When the
theory file is loaded the locales of this theory become analyzed and added
to the internal representation of the theory.

Nevertheless, there is a dynamic aspect of locales corresponding to the
interactive side of Isabelle. Locales are by default inactive. If the current
theory context of an Isabelle session contains a theory that entails locales,
they can be invoked. The list of currently active locales is called scope. The
process of activating them is called opening; the reverse is closing.

Scope

The locale scope is part of each théory. It is a dynamic stack containing all
active locales at a certain point in an interactive Isabelle session. The scope
lives until all locales are explicitly closed. At one time there can be more than
one locale open. The contents of these various active locales are all visible
in the scope. In case of nested locales for example, the nesting is actually
reflected to the scope, which contains the nested locales as layers. To check
the state of the scope during a development the function Print_scope may
be used. It displays the names of all open locales on the scope. The function
print_locales applied to a theory displays all locales contained in that
theory and in addition also the current scope.

The scope is manipulated by the commands for opening and closing of
locales.

Opening

Locales can be opened at any point during an Isabelle session where we want
to prove theorems concerning the locale. Opening a locale means making its
contents visible by pushing it onto the scope of the current theory. Inside a
scope of opened locales, theorems can use all definitions and rules contained
in the locales on the scope. The rules and definitions may be accessed
individually using the function thm. This function is applied to the names
assigned to locale rules and definitions as strings. The opening command
is called Open_locale and takes the name of the locale to be opened as its
argument. In case of nested locales the opening command has to respect
the nested structure (cf. Section 4.3.3).

Closing

Closing means to cancel the last opened locale, pushing it out of the scope.
Theorems proved during the life cycle of this locale will be disabled, unless
they have been explicitly exported, as described below. However, when
the same locale is opened again these theorems may be used again as well,
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provided that they were saved as theorems in the first place, using ged or ML
assignment. The command Close_locale takes a locale name as a string
and checks if this locale is actually the topmost locale on the scope. If this
is the case, it removes this locale, otherwise it prints a warning message and
does not change the scope.

Export of Theorems

Export of theorems transports theorems out of the scope of locales. Locale
rules that have been used in the proof of an exported theorem become ad-
ditional premises. The locale constants are universally quantified variables
in these theorems, hence such theorems can be instantiated individually.
Definitions become unfolded; locale constants that were merely used for def-
initions vanish. Logically, exporting corresponds to a combined application
of introduction rules for implication and universal quantification. Exporting
forms a kind of normalization of theorems in a locale scope.

According to the possibility of nested locales, there are two different
forms of export. The first one is realized by the function export that ex-
ports theorems through all layers of opened locales of the scope. Hence, the
application of export to a theorem yields a theorem of the global level, that
is, the current theory context without any local assumptions or definitions.

The other export function Export transports theorems just one level up
in the scope. When locales are nested we might want to export a theorem,
but not to the global level of the current theory, instead just to the previous
level because that is where we need it as a lemma. If we are in a nesting
of locales of depth n, an application of Export will transform a theorem to
one of level n — 1.

4.3.3 Other Aspects
Polymorphism

The polymorphism in Isabelle is such that definitions of constants with poly-
morphic types are individually quantified in front of the type expression. For
example, a constant declaration

f :: ’a = ’a

means that the type of f is Va.a = a@. So, if there is a subsequent constant
declaration using the same type variable a, those are different type variables.
That is, they can be instantiated differently in the same context.

Now, for locales the scope of polymorphic variables is wider. The quan-
tification of the type variables is placed outside the locale. So, type variables
having the same name are actually the same variables. On the one hand,
this difference allows us to define sharing of type domains of operators at an
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abstract level. This is important for the algebraic reasoning that we are con-
centrating on. On the other hand, locale declarations are not polymorphic
in the sense of Isabelle declarations.

This feature solves the problem we encountered in the Sylow case study
and explained in Section 3.4.2. There we had to choose a fixed type i in
order to model this restricted form of polymorphism.

Extension of Locales

A locale can be defined as the extension of a previously defined locale. This
operation of extension is optional and is syntactically expressed as

locale foo = bar + ...

The locale foo builds on the constants and syntax of the locale bar. That
is, all contents of the locale bar can be used in definitions and rules of
the corresponding parts of the locale foo. Although locale foo assumes the
fixes part of bar, it does not automatically include its rules and definitions.
Normally, one expects to use locale foo only if locale bar is already active.
The opening mechanism introduced in Section 4.3.2 is designed such that in
the case of a locale built by extension it opens the ancestor automatically.
If one opens a locale foo that is defined by extension from locale bar, the
function Open_locale checks if locale bar is open. If so, then it just opens
foo, if not, then it prints a message and opens bar before opening foo.
Naturally, this carries on, if bar is again an extension.

An interesting device that has not yet been implemented is renaming
for locale constants. This can be very useful if we want to have more than
one instance of the same locale in the scope, for example when we reason
with two different groups (¢f. Section 6.3.2). The following illustrates a
possible renaming mechanism: loc_r is created from loc_c by renaming all
occurrences of locale constant ¢ in loc_c by r. ‘

locale loc_r = loc_c [r/c]

As of yet, it is an open question how to handle the pretty printing syntax
in the case of renaming.

4.4 Implementation Issues

In this section we give a short description of the implementation of locales.
We just describe some major features and how the concept is integrated
with Isabelle and its theories. It uses a new method of generic theory data.
Locales are another section of Isabelle theory files. The theory data functor
is applied to a structure providing a package of necessary functions and
types to build a new theory section. Then the functor transforms this basic
package into one that adds to theories. The short description of the interface
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for theory data is not meant to be complete, but is just necessary to illustrate
the application of the method to the implementation of locales. The theory
data functor has been created as a general tool by Wenzel. He collaborated
with the author in the application of this method to provide an interface
for locales. The implementation of locales based on this interface has been
performed just by the author. Subsequently, we briefly describe the-idea of
locales as theory data, and then carry on to illustrate the implementation.

4.4.1 Theory Data

The functor TheoryDataFun in the file Pure/theory_data.ML provides a
schematic way to produce new theory data. It is a gemeric method for
adding new theory sections, e.g. inductive definitions, records, and now
locales, to the theory interface of Isabelle.

The input signature of TheoryDataFun asks to provide a name and a type
describing the new section. Furthermore, one has to plug in some standard
operations, e.g. empty and print. From those the functor constructs an
output structure that provides the type and the basic toolkit to implement
the new theory section: a function init to initialize the section in theories,
a new function print that can be applied to theories and print the new
section, and two functions get and get_sg that return all section elements
from a theory. In other words, provided some functions on the data type
implementing a new section for Isabelle theory files, the functor integrates
these functions into the theory data type and returns the interface to build
up the new section as an extension to an Isabelle theory.

4.4.2 Interface and Locales

A locale definition forms a section of Isabelle theory files. Therefore, pro-
viding the input signature functions for the theory data functor, we can
apply the functor and automatically get functions to initialize a theory with
locales, print locales, and access them. This instantiation of ThyDataFun
provides a starting point for the implementation of the concept.

The file locale.ML contains this creation of the interface. It also contains
most of the other changes to Isabelle that implement locales. The function
add_locale adding a locale to a theory, once it is read in by the appropriate
theory parser routine, is the main function in this file.

The locale constants are realized by developing two layers of terms for
them. Isabelle has two kinds of variables for terms: free variables, con-
structed by the datatype constructor Free, and schematic variables con-
structed by Var. The latter ones can be instantiated during unification,
the former not. Basically the locale constants are Frees for which one can
define mixfix syntax. We treat a locale constant ¢ like Free ¢ but produce
for it a constant using the reserved name \<"locale>c. The pretty printing
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syntax is assigned to the copy \<"locale>c. Proof terms in locales really
contain the Free c, but for printing we use the constant \<~locale>c. For
reading, we add translation functions permanently to the theory containing
the locale.

The read and write functions of Isabelle have to be adjusted to locales:
If a locale is open, we want any term that is read in to respect the bindings
of types and terms of that locale. In locale.ML we augment the basic
function Thm.read cterm such that it checks if a locale is open, i.e. if
the current scope is nonempty, and then bases the type inference on this
information. Similarly, we adjust the function pretty _term, which is used
to print proof states. Here, we replace now all Free constants ¢ by their
double \<"locale>c. Then the printing produces the pretty form.

4.4.3 Parsing

Another necessary part of the new method of adding a theory section to Isa-
belle is to provide a parsing method. The actual parser locale_decl for the
locale definitions is just one ML-term constructed from parser combinators.
It resides in the file thy_parse.ML.

Via ThySyn.add_syntax we can introduce locales to the general theory
parser.

val _ = ThySyn.add_syntax
["fixes", "assumes", "defines"]
[(section "locale" "|> Locale.add_locale" locale_decl)];

So, the keywords of a locale section are known, and for each section starting
with the keyword locale the theory parser knows that the following has to
be parsed with the parser locale_decl and the resulting raw form of the
locale contents have to be added by add_locale to the theory.

4.5 Syntax and Functions

To provide an overview for subsequent examples, we summarize in this sec-
tion the syntax and functions for locales described in this chapter. We use
usual regular expression constructors {}, |, [| and *. Terms enclosed in () are
non-terminals; typewriter font denotes terminals; quotation marks enclose
single terminal symbols to avoid ambiguity. We use the lexical classes name,
id, string, and mixfix of Isabelle [Pau94, Appendix A].

4.5.1 Syntax

Locale definitions can be added to Isabelle theories as
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locale name = [ name “+”]
fixes (consts)
[ assumes (rules) ]
[ defines (defs) ]

The locale constants have the same format as Isabelle constant declarations.

(consts) = { name “::” string [ “(” mixfix “)” ]}*

Similarly, the locale rules can be defined like Isabelle rules.

(rulesy = { id string }*

Definitions have the same outer syntax as general rules.

4.5.2

(defs) = { id string }*

Functions for Locales

Summarizing, the functions for the interactive use of locales are

Open_locale : xstring -> unit
Close_locale : xstring -> unit
export : thm -> thm
Export : thm -> thm
thm : xstring -> thm

Print_scope : unit -> unit
print_locales: theory -> unit

In particular,

Open_locale zstring;

opens the locale zstring, i.e. adds it to the scope of the theory of
the current context. If the opened locale is built by extension, the
ancestors are opened automatically.

Close_locale zstring; ‘

eliminates the locale zstring from the scope if it is the topmost item
on it, otherwise it does not change the scope and produces a warning.
export thm;

expands locale definitions in thm. Locale rules that were used in the
proof of thm become part of its individual assumptions. This normal-
ization happens with respect to all open locales on the scope.

Export thm;

works like export but normalizes theorems only up to the previous
level of locales on the scope.
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e thm zsiring;

applied to the name of a locale definition or rule it returns the defini-
tion as a theorem.

e Print_scope ();

prints the names of the locales in the current scope of the current
theory context.

e print_locale theory;

prints all locales that are contained in theory directly or i'ndirectly. It
also displays the current scope similar to Print_scope.

4.6 Application Example from Abstract Algebra

We illustrate the use of locales by an example with the abstract algebraic
structure of groups. Given that the Isabelle theory for groups contains the
locale displayed in Section 4.3 we can now use it in an interactive Isabelle
session. When the theory of groups is loaded, we can open the locale group
with the command

Open_locale "group";

Now the assumptions and definitions are visible, i.e. we are in the scope
of the locale groups. Using the print command, Isabelle displays the open
locales of a theory.

print_locales Group.thy

It returns all the information about the locale groups and the scope.

locale name space:

"Group.group" = "group", "Group.group"
locales:
group =
consts:
G :: "a set * ([’a, ’a] => ’a) * (a => ’a) *x ’a"
e :: Il)all
binop :: "[’a, ’al] => ’a"
inv :: "’a => ’a"
rules:
Group_G: "G € Group"
defs:
e_def: "e == (G.<e>)"
binop_def: "!!x y. binop x y == (G.<f>) x y"
inv_def: "!!x. inv x == (G.<inv>) x"

current scope: group
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Note how the definitions with free variables have been bound by the uni-
versal quantifier of the meta level !!. The locale print function also gives
information about the name spaces of the table of locales in the theory Group
and displays the contents of the current scope.

As an illustration of the improvement we show how a proof for groups
works now. We demonstrate a proof that shows how the inverse distributes
over the group operation.

Goal "[|x € (G.<cr>); y € (G.<cr>) ] ==> i(x # y) = (1 P#{E ";

Isabelle sets up the proof and keeps the display of the dependent locale
syntax.

1.1x y.[x € (G.<cr>); 7 € (G.<cr>) ] ==> iz # y) = (L P#{E %)

We can now perform the proof as usual, but with the nice abbreviations
and syntax. We can apply all results which have been previously derived
in the same locale. In that case, the definitions can be used and locale
assumptions will not appear as subgoals. We can even use the syntax when
we use tactics that use explicit instantiation, e.g. res_inst_tac. When the
proof is finished, we can assign it to a name using result ().

val inv_prod = "[] ?x € (G.<cr>); 7y € (G.<cr>) ]
==> inv (binop ?x ?y) = binop (inv 7y) (inv ?x)
['!x. inv x == (G.<inv>) x,
G € Group,
I'x y. binop x y == (G.<f>) x y,
e == (G.<e>)]" : thm

As meta-assumptions of the theorem we find all the used rules and defini-
tions. The syntax uses the explicit names of the locale constants, not their
pretty printing form.

If we want to export the theorem, we just type export inv_prod.

"[| ?G € Group; 7x € (?G.<cr>); ?y € (?G.<cr>) [] ==>
(7G.<inv>) ((?2G.<£>)7x 7y) = (7G.<f>) ((?G.<inv>)7y) ((7G.<inv>)7x)"

The locale constant G is now a free schematic variable of the theorem. Hence
the theorem is universally applicable to all groups. The locale definitions
have vanished. The other locale constants, e.g. binop, are replaced by their
explicit versions, and have thus vanished together with the locale definitions.

Before we summarize the exposition of locales and discuss it in Section
4.8, we describe in the subsequent section a further development that we
have experimented with but decided not to integrate into the locale concept.
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4.7 Locales as First Class Citizens?

In this section, we introduce a line of research we followed towards the
automatic generation of a first class representation for locales. What we
want to gain is a reference to the locale in a logical sense. We explain the
ideas, point out some advantages and explain why we finally abandoned this
additional feature of the concept.

Although we used the set description for groups so far, we might think

of employing a locale to represent groups in the style of modules as seen in
Section 2.3.

locale group =

fixes

G :: "a set"

f 2 MWig => 25 => Ig"
assumes

fteG->G->G
VxeG (fex=x3x)

We think of this structure as an abstract characterization of the property of
the parameters G, £, inv, and e. Thus, we are not only interested in having
an ed hoc mechanism to organize related formulas. In addition, we want to
have a qualifying statement like the set G together with the binary operation
f, the inverse and the unit element is a group. That is, we define at the same
time a predicate which basically reads X is a group and has four arguments.

How can this be achieved? When we define a locale there has to be a
mechanism that constructs the predicate according to the contents of the
locale and assumes introduction and elimination rules. To illustrate this
more closely, let us consider the hypothetical example of a locale for groups.
The mechanism for the automatic generation of the first class representation,
which we implemented experimentally, constructs a constant group.

group :: "[’a set, [’a, ’al] => ’a, ’a => ’a, ’a] => prop"

This meta-level predicate can then be used to qualify parameters of appro-
priate type as a group as PROP group G f inv e. To integrate the asso-
ciated meaning we generate and assume introduction and elimination rules
according to the rules of the group locale®.

groupl "[l fEG->G->GC; inv € G -> G; e € G;
Vx€G f (invx) x=e; Vx€EG fex-=x;
VXEG VYy€EG Vzeg. ffxy)z=fx {Ey2)
[1 ==> PROP group G £ inv e"

groupEl "PROP group G f inve ==>f € G -> G -> G" -

!The leading PROP indicates Isabelle meta-level propositions.
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groupE2 "PROP group G £ inv e ==> inv € G -> G"

groupE3 "PROP group G £ inv e ==> e € G"

groupE4 "PROP group G £ inv e ==> V x € G. £ (inv x) x = e"
groupES "PROP group G f inve ==>Vx€G. fex=x
groupE6 "PROP group G f inv e ==>

VxeEG Vyee. Vzea (£ Exy)z=1f x) y2)"

The latter ones correspond to the rules of the locale but with the assumption
of group made explicit as a premise. The first one is an introduction rule
and the latter ones are elimination rules for the notion group.

4.7.1 Advantage for Operations on Locales

An explicit first class representation for locales has — apart from adequacy
— advantages when we think about scoping, i.e. opening and closing and the
outside view of the locale. Opening a locale means making its assumptions
visible. As we have seen above, the way this is achieved is to generate
meta-level assumptions P [P] for all locale rules P. Generating a predicate
makes this process more efficient. Invocation of a locale corresponds then
to the assumption of the predicate representing the locale. From this single
assumption the locale rules are automatically generated by applying the
elimination rules for the locale. The scope for locales merely has to keep
track of the locale predicates of opened locales to administer the current
context.

Theorems that are exported become theorems at the global level un-
der the assumption of the locale predicate instead of listing all used rules
separately as premises.

Multiple invocations can be realized by supplying distinct sets of parame-
ter names to the invocation mechanism. For example, if we want to build up
a context in which there are two different groups, we can open the locale for
groups with two different sets of names. This results in a current context in
which, say, group G1 f1 invl el and group G2 f2 inv2 e2 are stacked
as assumptions. The opening mechanism generates different sets of invoked
locale assumptions from the group elimination rules, e.g. group_rule_G1 be-
comes f1 € G1 -> G1 -> G1 and group.rule G2 becomes assigned to £2
€ G2 -> G2 -> G2.

Instantiation of a locale corresponds to proving group G £ inv e for
some terms G, £, inv and e of appropriate type. In other words, instantiation
of a locale can be implemented by application of the locale predicate. By
backward resolution with the introduction rule of the locale, here groupl,
this goal is unfolded to produce the corresponding subgoals according to the
locale rules.

Although the explicit first class representation of a locale does have ad-
vantages we did not pursue the development of the mechanical generation
of the predicate.
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4.7.2 Disadvantages

It would have been nicer to define the meaning of the locale predicate by
just one meta equality instead of a long list of elimination rules and an
introduction rule.

"PROP group G f inve== £ € G->G->G A inveG->G

AN e€G A (VxeG £ (dov x) x = e) '

A Vx €GB £fex=x)

AN Vx€EGY yeEG VzeG f(Exy)z==fx (fyz2))"

But, here we use a logical conjunction which is not part of the meta-logic
of Isabelle. Isabelle implements just a fragment of higher order logic as
its meta-logic (cf. Section 2.1). An extension of the Isabelle meta-logic
with conjunction would be a possible way to enable simpler definition of the
predicate in the above style.

Another problem with the representation of a locale by a meta-level
predicate is that the predicate can have in general more than one argument,
e.g. like in the above example four. It is necessary for a good formalization
to pack such arguments in a product or some other structure. Then we
can abstract from the argument list using just one variable. Otherwise, the
argument lists get longer and longer when we consider higher order struc-
tures that have simpler structures as their arguments. An example for such
structures are homomorphisms that have two groups as their parameters
and would consequently have at least eight arguments. Unfortunately, the
meta-logic of Isabelle does not have products either.

One might think about extending the meta-logic of Isabelle by conjunc-
tion and products. But, as we will see in the following chapter the adequate
representation of a modular structure requires even more than those two
features. Eventually, the extension of Isabelle’s meta-logic would result in
producing a fully equipped higher order logic as meta-logic — where we
already have it as an object logic.

A way out of this dilemma is to restrict the locale concept to an object
" logic that offers sufficient support, say HOL. The object logic HOL contains
a conjunction, so we can represent the predicate as above. Furthermore it
has product types. In a further prototypical experiment we implemented the
locale concept as a mechanism restricted to HOL. In this implementation
the locale predicate is a unary HOL predicate. For our group example the
locale mechanism generates

group :: "(’a set * ([’a, ’al] => ’a) * (Pa => ’a) *’a) => bool"

We can now omit the PROP in all related rules and define the meaning of
the locale by equality and conjunction. To enable access to the components
of the product, our prototype automatically generates projection functions
for the components of the group. We can integrate the predicate in any
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other HOL formula giving us the first class property as we wanted it. Since
the predicate is unary over the product type one variable can represent the
arguments. Hence formalization of higher order structures becomes feasible.
For example, we can write group G and thereby define even higher order
structures, like homomorphisms, in a concise way.

But, Isabelle is a generic theorem prover and offers more object logics
than just HOL. The concept of locales is more generally useful if not re-
stricted to just one object logic. Furthermore, we do not always associate
a logical predicate with a locale. For example, in the case study of Sy-
low, we can use the locale concept to assemble the assumptions of Sylow’s
proof. These assumptions and local definitions definitely define a context
for a proof but they are not describing a structure.

Consequently, there is not sufficient reason to automatize the genera-
tion of a logical representation of a locale generally. In cases of local proof
contexts, where we really think of those contexts as structures, a first class
representation can still be defined individually by the user. In the follow-
ing chapter we define a method for doing this in HOL schematically. The
concept of locales, though, remains a global concept of local proof contexts
for all of Isabelle logics and has no explicit representation as a predicate,
neither in the meta-logic, nor in HOL.

4.8 Discussion

The syntax is strongly improved by locales because they enable dependent
local definitions. Locale constants can have pretty printing syntax assigned
to them and this syntax can be dependent as well, i.e. they can use every-
thing that is declared as fixed implicitly. Thereby, locales approximate a
natural mathematical style of formalization. Locales are a simpler concept
than modules. They do not enable abstraction over types or type construc-
tors. Neither do they support real schematic polymorphic constants and
definitions as the full theory level does. They realize a sectioning device for
grouping theorems together and sharing common assumptions. Since locales
do not contain any type declarations it is in principle possible to generate
a representation of a locale as a meta logical predicate. Through this rep-
resentation, locales are first class citizens of the meta-logic. We developed
this aspect of locales in an experiment described in Section 4.7. Although it
worked well, the meta-level of Isabelle is not strong enough to realize a more
adequate representation than predicates. An extension of Isabelle’s meta-
logic seems to drive the design out of proportion. Hence, we abandoned the
automatic generation of an explicit first class representation for locales.

In some sense, however, locales do have a first class representation even as
they are implemented now: globally interesting theorems that are proved in
a locale may be exported. Then the former context structure of the locale
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gets dissolved: the definitions become expanded (and thus vanish). The
locale constants turn into variables, and the assumptions become individual
premises of the exported theorem. Although this individual representation of
theorems does not entail the locale itself as a first class citizen of the logic, the
context structure of the locale is translated into the meta-logical structure
of assumptions and theorems. In so far we reflect the local assumptions that
constitute the locale into a representation in terms of Isabelle’s meta-logic.
This translation corresponds logically to an application of the introduction
rule of the universal quantifier and the implication of the meta-logic. And,
because Isabelle has a simple meta-logic this gquasi first class representation
is easy to apply.

Sometimes, premises that are available in a locale are not used at all in
the proof of a theorem. In that caseé the exported version of the theorem will
not contain these premises. This may seem a bit exotic, in that theorems
proved in the same locale scope might have different premise lists. That
is, theorems may generally just contain a subset of the locale assumptions
"in their premises. That takes away uniformity of theorems of a locale but

grants that theorems proved in a locale can be individually considered for
" the export. In many cases one discovers that a theorem that one closely
linked with, say, groups actually does not at all depend on a specific group
property and is more generally valid. That is, locales filter the theorems to
be of the most general form according to the locale assumptions. Hence,
locales may also help to discover generality of theorems.

Locales are, as a concept, of general value for Isabelle independent of ab-
stract algebraic proof. They are already applied in other theories of Isabelle,
e.g. for reasoning about finite sets where the fixing of a function enhances
the proof of properties of a “fold” functional. Locales are also used in proofs
about multisets, the formal method UNITY, and the proof of the Ultrafilter
Theorem [Fle99]. Furthermore, the concept can be transferred to all higher
order logic theorem provers. There are only a few things the concept relies
on. In particular, the features needed are implication and universal quan-
tification — the two constructors that build the basis for the reflection of
locales via export and are at the same time the explanation of the meaning
of locales.

We believe that the improvement of concrete syntax is the most practical
advantage of the locale concept. We found that it is better to separate
concerns and to perform the first class reasoning separately in HOL using
a construction of dependent types [Kam99]. We present this work in the
following chapter.
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Chapter 5

Modular Structures as
Dependent Types

This chapter describes a method for representing algebraic structures in the
theorem prover Isabelle. We use Isabelle’s higher order logic. Dependent
types, constructed as HOL sets, are used to represent modular structures by
semantical embedding. The modules remain first class citizens of the logic.
Hence, they enable adequate formalization of abstract algebraic structures
and a natural proof style. "

5.1 Introduction

The initial aim of our work was to find a module system for the theorem
prover Isabelle where modules are first class citizens, i.e. have a represen-
tation in the logic. As we pointed out in Section 1.4, this is important
when we want to formalize mathematical theories for abstract entities. The
theorem provers we have inspected use their modules as representations for
algebraic structures. Although the encapsulation and abstraction achieved
by packaging structures into modules is sensible, it does not constitute an
adequate representation.

In the previous chapter we introduced locales. They cover the locality
and scoping aspects of modules. As we have seen there, the export facility
automatically produces a meta-level formula of a theorem that can be con-
sidered as a first class representation of the locale. Generally one can say
that a locale has a first class representation; we can write down the locale
as a term. This is because we abandon the use of type declarations in lo-
cales. We even considered the possibilities for an automatic generation of
a first class representation. Nevertheless, it turned out that the structural
concepts to represent a locale — and in general a module — adequately, go
well beyond the expressivity of Isabelle’s meta-logic. In the present chapter
we want to investigate a first class representation of modular structures by

7
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starting from abstract algebraic structures. We choose the object logic HOL,
which is the implementation of higher order logic we already discovered to
be suitable for abstract algebraic reasoning in Chapter 3. Using an extension
of Isabelle/HOL with a notion of sets, we define dependent types to find an
embedding of signatures in the logic. Using this embedding, we can repre-
sent abstract algebraic structures as dependent types. Furthermore, we use
record types [NW98] to represent the element patterns of algebraic struc-
tures. This changes our representation slightly; for example, we represent a
group as a record with four fields: the carrier set, the binary operation, the
inverse, and the unit element. The class of all groups is represented by a
HOL set over this record type.

In this chapter, we first explain our notion of algebraic structures and
give examples in Section 5.2. In Section 5.3 dependent types and their
formalization in Isabelle/HOL are introduced. Their application to represent
structures is described. Finally, we discuss some related work and draw some
conclusions in Section 5.4.

5.2 Algebraic Structures

An algebraic structure is a class of entities, which are considered to be
similar according to some characterizing rules, while abstracting from other
concrete characteristics. Examples for algebraic structures are groups, rings,
homomorphisms, ete. The algebraic structure of groups, say, is the class of
all objects that satisfy the group axioms. Hence, the structure is formed by
abstracting over elements of similar appearance that fulfill common proper-
ties.

In this section we characterize our notion of simple algebraic structure
and higher order structure. We use an informal notion of signature instead
of modules because that is what the latter basically are. We do not use a
separate syntactical description language for those signatures, because we
think that for the encoding of mathematical structures our method of direct
encoding in HOL sets plus dependent types is sufficiently self-explanatory.

In the following we will talk about structures as sets of objects. We are
using the set notion of Isabelle/HOL as a foundation for this work. This
" notion is defined in terms of predicates and is thus — in a set-theoretic sense
— rather a notion of classes than sets.

5.2.1 Simple and Higher Order Structures

An algebraic structure is a class of mathematical objects. They can be
syntactically represented by their signature, i.e. by the arities of their ele-
ments and the rules which hold for the elements of the structure. An object
matching the arities and fulfilling the rules is an element of a structure. A
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syntactical description of a structure S by its signature and related rules is
of the form:

signature S(z1,...,2,)

x1 € A1

Tn € An

P

Pr,
where the A; are the arities of the parameters, 1 € {1,...,n}. The Py
are properties in which the parameters z; can occur, k£ € {1,...,m}. The
arities can denote types or sets deépending on the framework. This syntax
is a simplified form of the style of modules as seen in other theorem provers
[OSRSC98, FGT93, GH93].

The associated meaning of this syntactical description of signature S is
what we consider as an algebraic structure

[Sl={(z1,--.,zn) €A1 X...x Ay | PL A ... A Py}

where in P; any of {z1,...,2p} can occur. We call the elements z1,...,z,
parameters of the structure S.

Structures may possibly be parameterized over other structures. We call
such structures higher order structures in contrast to simple structures. To
identify the structures that are parameters of higher order structures, we
use the term parameter structures, and the structure that is defined by the
higher order structure itself we call image structure.

For the definition of simple structures, we use sets of extensible records.
Record types are used as a template for the structure’s elements. They give
us the selectors, which are projection functions enabling reference to the
constituents of a simple structure.

The definition of higher order structures needs a device to refer to the
formal parameters. Here we employ the set theoretic construction of depen-
dent types. It enables the use of constraints on parameter structures in the
definition of an image structure. The selectors of the parameter structures
admit to refer to their constituents. :

For the parameter tuple par = (z1,...,2z,) of a simple structure we
define a record o par-sig as!

record «a par-sig =
- {z1) w4 (postfix)

Cdzn) = An (postix)

1We assume here syntax definition possibilities that are planned for records though not
yet available. They can be modelled using usual syntax declarations, though.
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The underscore defines the argument positions of the field selectors of this
record. For example, if T' is a term of appropriate record type, 4.e. a suitable
n-tuple, we can select the field z; of T by T'.(z;). In general, the elements of
the tuple will have names like carrier, or inverse, so the naming discipline
of the record field selectors that we chose, is more informative than indexing
by numbers.

The representation of a simple structure is given as a set of records; the
record type defines the element pattern of the structure.

5.2.2 Example: Groups and Homomorphisms

A group is constituted by a carrier set and a binary function o on that set,
such that the function o is associative, and for every element z in the carrier
there exists an inverse z. The carrier set also contains a neutral element e.
The syntactical representation of a group by a signature is

signature Group (cr,0,inv,€)
o € cr Xer—cer
nv € cr—ecr
e € cr
VY z€cr. eoxr ==z
V z€cr. inv(z)oz =e
Vz,y,z€cr. {(zoy)oz=1xz0(yoz)

According to Section 5.2.1, the mathematical meaning that we associate to
this example is

[ Group | = o€erxer—rcr ANinvEcr —cr A e€cr A
(Vzecr.eoz=1x) A
(Vz € er. inv(z) oz =€) A

(Vz,y,z €cr. (xoy)oz=1zo(yoz))}

{( er,o,inv,e) |

The notation (| cr,o,inv,e |) of the elements of this set stands for an ex-
tensible record term. In this context it is sufficient to understand them
as products. The base type of the set Group is defined by the following
extensible record definition. ‘

record a group-sig =
_fer)  u o« oset (postfix)
- i [a,a] = a  (postfix)
_inv)y T a=2>a (postfix)
- {e) ta (postiix)

The structure Group is of type ( « group-sig ) set. In the following example
of a higher order structure for group homomorphisms we see how the field
selectors are used to refer to the constituents of a group. Subsequently, we
name the group operation f, instead of o, because we need to refer to the
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group G and in prefix notation G.(f) looks more natural. An improvement
of syntax for such implicit references is given by the locale concept we have
presented in the previous chapter.

A homomorphism of groups is a map from one group to another group
that respects group operations. The parameters of a structure Hom for ho-
momorphisms are groups themselves, i.e. we have a higher order structure.
The following syntactical form encloses the parameter structures in square
brackets.

signature Hom [ G, H € Group | ( ®)
®c G.{cr) = H.cr)
Ve,y € G.er). ¥(GAf) zy)=HAf) 2(z) (y)

In the definition of the mathematical structure we have to add “where G
and H are elements of the structure Group”. That is, a mathematical object
representing a homomorphism between groups has to carry also the two
groups in itself. It is a triple (G, H, @) of two groups and a homomorphism
between them. The definition of homomorphism uses the elements G and
H. So we need to refer to the parameter structures G and H when we define
the image structure; the definition of the image structure depends on the
parameter structures. Hence, we choose a dependent type, the X-type, to
define the structure for homomorphisms.

Hom = EG’EGroup 2HEGroup
(2% € G.(er) — H.(er) A
(Vz,y € G.(cr). (G Af) z y) = H(f) 2(z) 2(¥))}

Now the parameter groups G and H are bound by the ¥ operator and we can
refer to them, and their constituents by using the projections, e.g. G.(f).
In the following section, we explain the notion of dependent types, and how
we represent them using set theoretic constructions.

5.3 Dependent Types as Structure Representation

According to a textbook introduction to type theory [NPS90, page 52] the
main reason for the introduction of the II-set is the interpretation of the
universal quantifier. The Heyting interpretation of this quantifier is [Hey56]

Vz € A.B(z) is true if we can construct a function which when
applied to an element a in the set A, yields a proof of B(a).

However, the II-construction is also well known in set-theory (e.g. [Hal60]).
The dependent sum ¥ enables to deal with the existential quantifier, 7.e. 3
can be understood constructively as

dz € A.B(z) = Z;c4B(z)
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We use the dependent sets in the same sense, but restrict the use to the
description of structures. We consider A and B as structures, not general
formulas. So, we use the dependent sets as type theory uses them, but in
a more naive way restricting ourselves to the statements z € A and not
interpreting this as “z is a proof of formula A”. We interpret the dependent
types as modular structures; 3 as relations and II as function sets.

The idea is to use the syntactical signature description of the structure
as a set B(r) — with a formal parameter x. This formal parameter is an
element of the first set A. In case of more than one parameter structure the
nesting of the dependent type constructors X and II just accumulates.

We show in this section how dependent types are formalized in HOL,
and how this formalization can be used to represent higher order structures.

5.3.1 Isabelle Representation

Isabelle/HOL implements a simple type theory [Chu40] and has no depen-
dent types. It is extended by a notion of sets. Sets are here essentially
predicates, rather than “built-in” by ZF-style axioms. We use this exten-
sion to define dependent types as sets in Isabelle.

Set Representation

One can consider the E-type as a general form of the Cartesian Product. If
we represent Y c4B(z) as a set, it is thus

E:EEAB(Q;) = U U {($7y)}

z€A yeB(x)

This representation of the X-type is used in HOL.

The II-type is the type of dependent functions. It is related to the X-
type. We can express this type as a set by considering the subsets of %
which can be seen as functions

MycaB(z) = {f € P(ZzeaB(2)) |Vz € A. 3y € B(z).f(z) =y} (5.1)

where P denotes the powerset.

Implementation in Isabelle

In the distribution of Isabelle/HOL the 3-type is already defined in terms
of HOL sets, the II-type not.

The most natural way to define II seems to be to use Definition (5.1)
defining IT in terms of ¥. But, then the functions we would get would be
sets of pairs and we would develop a new domain of functions inside HOL,
when there are already functions.
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The existing functions in HOL are the elements of the function type
o = 3, where o and § indicate arbitrary types, and = is the function
type constructor. There is a notation for A-abstraction available to express
functions. We would like to define function sets, i.e. sets of elements of the
HOL type a = 3, and on top of that we want to have that the co-domain of
these functions 8 may depend on the input to the function. Ideally, the type
3 should depend on some z of type a. Since HOL does not have dependent
types, it is impossible to integrate the dependency at the level of types. But,
we can define a non-dependent type for the constructor II as

la set,a = Bset] = (a = B)set

Then, we can assign the above type to a constant IT in HOL and add the
idea of dependency to the definition of this constructor.

MyesB(z) = {f | Vz. if z € A then f(z) € B(z) else f(z) = (ey.True)}

By using the more explicit language of sets we achieve that the co-domain
is a set which depends on the argument to the function. The “else” case
is necessary to achieve extensionality for the II-sets. The ¢ is the Hilbert-
operator for HOL that we have used before (¢f. Chapter 3).

Equality compares functions according to their behavior on the set A.
We do not care about what a function in II;c4B(z) does outside A. We
want to think of all functions which behave alike on A as the same function.
Obviously, this is not generally true from the perspective of HOL. That is
why we have to label one distinguished element out of the set of all functions
which behave equally on A by determining the value for inputs outside A to
the arbitrary value (ey.True). In the classical HOL system [GM93] this term
is called ARBITRARY. It suffices our purposes, but we have to admit that it
is not a fully satisfying solution. What we really want to have here is some
distinct value, like the undefinedness 1 of domain theory that would be a
member of all sets — as .L is an element of all domains.

The dissatisfaction in the above definition stems from the fact that we
do not know if (ey.True) is in B(z) or not. Thus, we cannot decide how
any function behaves if applied to this value. This causes problems when we
think about composition, for example, but they can be overcome by defining
corresponding restrictions, which transform a function into the appropriate
form of the II-set. We define this restriction according to the similar formal-
ization in ZF by using a A-notation, so that we can now annotate the HOL
function f restricted to a set A as Az € A.fz.

The non-dependent function sets are a special case of the definition of
I1. Using Isabelle’s pretty printing facilities, we get a nice syntactical repre-
sentation for them and can now write A — B for the set of functions from
a set A to a set B.



84 CHAPTER 5. MODULAR STRUCTURES

To reassure ourselves that the definition of II is sound we have established
a bijection IIp;; between the classical definition from Equation 5.1 and the
above HOL function set as

lpijAB = \f € LyeaB. {(z,y) [z €A A y = fz}

We proved in Isabelle that this map is actually a bijection.

Our approach to model partial functions in a total setting is in principle
similar to the one described in [FFL97]. There, the membership of the
argument to the function is explicitly modelled by a notion of domain that
is carried along as additional assumption. Although our approach does not
enable an explicit reasoning about the domain of a function, the implicitness
grants that we can use the usual function application and do not have to
integrate the domain in all our formulas. In case of actual application of
one of our M\-functions, the actual proof obligation, i.e. the proof that the
argument is in the domain, is exactly the same as in the other approach
with explicit domains.

5.3.2 Algebraic Formalization with II and ¥

We concentrate in this section on the representation of higher order struc-
tures. As already pointed out in Section 5.2, we use sets of records for simple
structures. We use the dependent type constructors ¥ and II to represent
higher order structures, that is, to express structures where the parameters
are elements of structures themselves. Roughly speaking, the 3-types are
used for general relations between parameter and image structures. When
this relation is a function, i.e. the construction of the image structure is
unique and defined for all elements of the parameter structure, then we can
construct elements of the higher order structure using the A-notation. In
that case, the higher order structure is a set of functions, i.e. it is a II-type
structure.

Use of &

The interpretation of the X-type is that of a relation between parameter and
image structure. Higher order structures whose image structures are defined
for certain input parameters, but not necessarily for all, can be represented
by X. So, the elements of these higher order structures are pairs of parameter
and image structure elements; for a structure Struc = XzcaB(z), we can
write this membership as (a,b) € Struc.

But in addition to expressing the membership of a pair of parameter
and image structure elements in the higher order structure, we also want
to instantiate the higher order structure with an element of the parameter
structure. Instantiation of a higher order structure corresponds to appli-
cation of the structure when we see it in a functional way. By Struc | a
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we annotate the instantiation or application of the structure. What we are
interested in is to get an instance of the image structure B, where a is sub-
stituted for the formal parameter z. That is, we want to derive B(a) for
a € A, or apply the entire structure generally to an element of the parameter
structure. For a € A we construct an operator | such that (X;c4B(z)) | a
evaluates to B(a). We can define | in terms of the image of a relation, so it
reduces to?

Struc | a = (BzeaB(2))""({a}) = {y | 3z € {a}.(z,y) € L4eaB(z)}
Then we can use the theorem
(a,b) € XzcaB(z) = b € B(a)

to derive
a € A= Struc] a = B(a)

This theorem enables us now to build the instance of a higher order structure
with an element a of the parameter structure A.

Use of II

Elements of higher order structures which are uniquely defined — like the
factorization of a group in Section 6.3.1 — can be represented by a function
definition in the typed A-calculus from Section 5.3.1. Let elem = (\z €
A. t(z)), then

elem € llzcaB(z) iff Va € A. t(a) € B(a)

The function body ¢ of the element elem constructs elements of the image
structure of the higher order structure to which elem belongs. For the
application or instantiation we do not need an extra operator as | for X.
Since we have defined the II-type as sets of functions we can use the HOL
function application elem(a). If a € A then this evaluates to t(a). We have
to apply reasoning to evaluate the definition of A in such a reduction. But
this can be solved by the simplifier.

The A-functions we construct in this way are elements of a II-set. The
domain of the II-set that contains a A-function is the same as the domain
of the A-function. The co-domain can be any set that includes the image of
the A-function. In the example of factorization of a group, or direct product
of a group in Section 6.3.1, we will see that this image structure is again
the structure of groups. The higher order structure is a II-set; with A we
construct only elements of the structure. The membership proof, i.e. the
proof that a A-function is in a II-set, is a process very similar to typing.
This typing can mean a logical judgement, depending on the higher order

*The Isabelle notation for the operator representing the image of a relation is ~~.
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structure, to which we want to assign a A-function to through this typing.
Again, in the example of factorization and direct product of groups in Section
6.3.1 this typing process corresponds to showing that the constructed images
of the A-terms are groups. Hence, the logical meaning of this typing is that
the constructed image is a group. The assignment of a type in the described
way is naturally not unique. On the one hand, this reflects the property of
subtypes, and that elements of a subtype are also elements of the supertype.
On the other hand, it corresponds to the implication of logical properties.

This relationship between types and propositions resembles the Curry-
Howard isomorphism [How80] between types and propositions. It is very
explicit, because the type representations are sets. Hence, we can immedi-
ately apply the isomorphism by using the axiom of collection, ¢.e.

a € {z|P(z)} = P(a)

where € corresponds to the typing notation “:”. The difference in our ap-
proach to the type paradigm of Curry and Howard is that we do not use
the correspondence as a basis of the logic, so that logical formulas do not
have to be represented by a type. In type theory the existential quantifier
is a X-type, i.e. the type is the only encoding of logic. The Curry-Howard
isomorphism is explicitly present in our approach, since we have both repre-
sentations — sets and propositions. The actual isomorphism is represented
by the axiom of collection.

However, the correspondence between II-set structures and imposing a
universal proposition over a construction may also lead to an alternative
method of representing higher order structures. In the following section we
want to describe briefly, how we can use II instead of ¥ to impose a certain
typing discipline. We explore this alternative way only to give a complete
description of dependent types as sets, not as the way we suggest to use
them as structure representation.

Alternative Use of II

In principle one can define structures that are universally applicable to pa-
rameters directly by Il c4B(z). For example, we may use II instead of ¥
to encode the structure of group homomorphisms, because for all groups G
and H there is always a homomorphism between G and H. The use of II
as general representation for higher order structures in the described sense
is more complicated than X.

In case of a higher order structure where we know that there exists
always an image structure for each parameter structure, i.e. if we have a
set of functions, the structures can be defined using II instead of 3. We can
use the theorem

a€ AN f ellyeaBz = f(a) € B(a)
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to apply the functions individually. If
Vz € A3y. y € B(z)

holds, we can establish
locaB(z) # @ : (5.2)

which is equivalent to 3f. f € lzc4B(z). In this case only we can build
the instance of the structure. Similar to the construction in Section 5.3.2 we
define an instance operator ||. As the instance operator for X, it uses the
image operator for a relation.

Fla=(Af.fa)""(F)

The definition of this operator enables together with Equation 5.2 the con-
struction of the general instantiation of a structure defined in terms of II.

Struc = llgeaB(z) Az € AN Struc # @ = Struc | a = B(a)

5.3.3 Relationship between Il and ¥

It is an extra effort to use the II-representation for a structure; we have to
show the nonemptiness of the set II;c 4 B(z). The reason for this extra work
is that the II-representation entails

fellzeaB(z) = Vz € A.f(z) € B(z) (5.3)

The antecedent is equivalent to Vz € A. Jy. y € B(z). It implies that all
B(a) for all ¢ € A are nonempty. To keep things simple it is more sensible to
use generally 3, even if IT would be applicable. We avoid the extra effort of
justifying Property (5.3) for a structure by showing Condition (5.2). In the
following chapter we show a list of examples from abstract algebra where we
use ¥ for structure representation. We can replace all 3 by IT and still get
the same theorems. This is the case because in the examples of higher order
structures in abstract algebra, there seems to be a functional relationship
between the parameter and the image structure. This is sometimes called
well-definedness of mathematical definitions.
We explain the relationship between the representation by ¥ and II again
. with the example of group homomorphisms. These maps can be defined
either as

Homg = z:G'eGr'oup z)HEGrouP
{¢| ¢ € Gcr) = H.{er) A

Vz,y € G.cr). ¢(GAf) = y) = HAf) ¢(z) ¢(y)}

or, using % instead, as

Homy = HGEGroup HHEGroup
{¢| ¢ €G.er) = Hler) A

Vz,y € Ger). $(G(f) = y) = HAf) é(z) 8(y)}
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For example, the A-function
A G € Group. A H € Group. A z € (G.(cr)). (H.{e))
is a member of the set Homp. This statement is equivalent to
(G,H,\ z € (G.{cr)). (H.(e)))

is an element of Homy, for all groups G and H. The former function in
Homy is represented by a set of triplets in Homy. If one wants to see the
functions in Homy represented as sets of pairs, its elements would be sets
of subsets of Homsy, or elements of P(Homy), respectively. So, one can
understand Homsys as the same as Homy, but with the internal function
structure dissolved.

It seems to us that the examples of higher order structures in abstract
algebra are all capable of being defined in terms of II, because they are all
well defined. That is, the mathematical definitions already entail that they
are meaningful, i.e. define nonempty image structures, and are thus sets of
functions. Nevertheless we are forced to show this, if we employ II instead
of the weaker but simpler structure notation by 3. This reflects the proof
of well definedness of a new definition in a mathematical development.

Do we have any advantages, if we use Il instead of » to represent a
higher order structure? By showing the nonemptiness or well definedness of
a structure in advance, we incorporate this property in the definition and
can reveal it in contexts where it is needed. On the other hand, if it is
really needed® we could as well show it for the equivalent 3 version of the
structure. One might argue that the use of II forces a certain discipline to
define only nonempty, i.e. well defined, higher order structures.

Summarizing, the way we use ¥ and II is as follows:

e We express higher order structures that are uniquely defined for their
parameter structures by A-expressions. These structures are then
members of corresponding II-sets. We will illustrate this by exam-
ples in Section 6.3.1 and 6.3.2.

e We use X to describe all other higher order structures. That is, higher
order structures where we do not have an explicit method to con-
struct image elements explicitly from parameter elements. These are
the cases where there is no functional relationship required, i.e. the
structures are relations between parameter and image structure.

5.4 Discussion

The approach to use dependent types as modular structures is well known
(e.g. [Mac86]), but to represent these types as sets is a new way of mechaniz-
ing modules. The advantage lies in the first class property of the structures.

3Non of our examples uses this property of a II structure.
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As we have seen in Section 5.3.2, we can now define operations on modular
structures in the logic. Others, like forgetful functors and unions of struc-
tures can be expressed in terms of those. This will be illustrated in the
following chapter.

There has been work done on integrating dependent types into higher
order logic [JM93]. The objectives of this work are similar to ours in that
the focus is on obtaining the “expressive advantage”. The translation of
dependent types into HOL constructed there, corresponds to “sending a de-
pendent type to a predicate”. Nevertheless, the realization is quite different
in that it aims at constructing dependent types as ML abstract data types.
This is in the tradition of LCF. Our approach taken here is much shallower
in that we just express the dependent types as sets. Still, we gain the first
class property of structures because they are terms of the logic and thereby
we get the expressive advantage as well.

The HOL system [GM93] has a concept of abstract theories based on the
experiments with abstract algebra [Gun89]. Gunter presented the ideas at
the Third HOL Users Meeting [Gun90]. Windley implemented them later in
HOL [Win93]. Theories are there represented by two components: abstract
representations and theory obligations — roughly resembling our notion of
parameter and image structures. In contrast to our work the obligations
are represented by predicates over polymorphic types. The base sets of
structures are types, not sets as in our representation.

Although our dependent types are realized by an embedding it is not
too deep?. That is, it keeps a balance between the extremes of internalizing
everything within the logic as first-class (resulting in unwieldy concepts), or
externalizing too much (becoming less expressive).

5.4.1 Relation to Type Theory

LEGO [Bur90, LP92], an implementation of the Extended Calculus of Con-
structions [Luo90b] uses dependent types as theories [Luo90a]. Our work is
similar except that we are constructing these types as sets.

One difference is that our dependent structures are terms, not types
as in ECC. The discussion section of [Luo90a, Section 4.4] mentions the
possibility of a combination of two ideas: one is to have dependent structures
as a representation of theories, done by ECC. The other idea is to have
operations on theories, that is theories are values and there are operations
that can be performed on those values. These concepts were examined in
the specification language CLEAR [SB83]. Since the dependent types are
values in our semantical embedding of theory structures, it is possible to
define operations on theories as HOL functions. This has been illustrated

“In this context we mean by deep, how explicitly we can reason about the subject of
interest, 7.e. modules
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in this chapter by defining the operation of instantiation by the structure
instance operation (cf. Section 5.3.2). -

The other difference is that we are following the HOL philosophy of
not considering proof objects. Thus the actual proof construction leading
to the results is independent of the type structure of the formalization.
Nevertheless, the structures we use contain enough information to produce
the instances one is interested in, as will be illustrated by the proof for the
group of ring automorphisms in Section 6.3.4.

5.4.2 ‘Records

In an earlier version of this work we used products as base type for simple
structures. Due to a suggestion of P. Martin-Lof at the TYPES 98 work-
shop [Typ98] we employ here extensible records, which were first presented
at the workshop. Although Martin-Lof suggested to use records as an alter-
native to HOL sets, we use the concept of records just in addition to sets:
records allow us to use their field selectors that are generated according to
our needs. This is handy, but forces a different treatment of higher order
structures. Higher order structures are built by using ¥-types, which are
a sophisticated form of products. We adopted this heterogeneous represen-
tation of simple and higher order structure, because the records save some
work. They automatically provide the projection functions. In Section 6.4,
when we consider operations on theories, we will see that this incongruous
representation works, though.

Naraschewski et al. suggest using extensible records for a representation
of groups as follows (assuming the definition of monoids [NW98, Chapter

- 2)):
record « group-sig = monoid-sig +
inv ta=a
defs :
group = (oxaxa=al:ain:a=al) = bool
group (o,1l,inv|) = monoid (o,1,inv)) A Vz. (invz)oz =1

The idea of representing the base set of a group by a type does not constitute
an adequate formalization of abstract algebra in Isabelle. This is because
any property apart from internal group properties can only be expressed
using formulas over types. For example, to express the subgroup property
one needs subtypes and for factorization of groups one needs quotient types.
All these advanced type concepts are not part of a simple theory of types
as Isabelle and HOL are based upon — even when records are added.

The way we use records to describe base types of sets is closer to a notion
of dependent records. The dependency between the elements of the record
can be entailed in the description of the set representing the structure. To
elaborate the notion of dependent records types fully, it would be necessary
to embed them as usual products are embedded in HOL, so that there
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would be a dependent record constructor similar to X. We consider this as
an interesting line of research for the development of records in Isabelle.

5.4.3 Syntax

The syntax definition possibilities provided by locales (¢f. Chapter 4) can
improve the presentation of structures. For example terms like G.(f) z y
should be expressible as zoy. This is nontrivial because the reference to the
element G is crucial. Nevertheless, locales enable definitions depending on
local assumptions. The additional use of locales with the structural concepts
presented in this chapter provides a satisfactory style of abstract algebraic
reasoning.

In the following chapter, we will evaluate the concepts we developed
by an illustration how they can be used in combination to improve abstract
algebraic reasoning. That is, we will reconsider the Sylow proof and do some
more examples from abstract algebra using locales and the mechanization
of modules as presented in this chapter.
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Chapter 6

Locales 4+ Dependent Types
— Modules

In this chapter, we demonstrate our results. We have developed the concept
of locales to realize local scoping and syntax. Furthermore, we have mech-
anized a first class representation of modules using dependent types. The
main idea of this work is that a combination of these two concepts enables
adequate representation and convenient proof in abstract algebra. To val-
idate this hypothesis we present some application examples. We start off
with the development of a basis for abstract algebra, i.e. we present groups
and cosets. We continue in Section 6.2 with reconsidering the proof of Sy-
low’s theorem and point out the improvements we gain from our conceptual
developments. In the following sections we present some more new case
studies: the formalization and proof of the group of bijections, ring auto-
morphisms and the factorization of a group by a normal subgroup in Section
6.3, followed by a mechanization of the full version of Tarski’s fixed point
theorem in Section 6.3.5. Finally, we give in Section 6.4 a few examples for
operations on structures.

6.1 Basic Formalizations

6.1.1 Groups and Subgroups

The formalization of groups in Isabelle has already been introduced in Chap-
ter 3. In Chapter 5 we adapted this formalization of groups to our notion of
simple structures; the base type of the set Group became a record. Thereby,
we get the projection functions for free.

Similarly, we must update now the definition of subgroups introduced
in Chapter 3 according to the general approach of structures as dependent
sets. Note that compared to the definition of subgroups in Section 3.2.3,
the restriction of the group operations to the base set H of the subgroup is
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realized using our A-notation. Subgroups are now the higher order structure
subgroup. That is, the X-structure can be used to model the subgroup
relation.
Y G € Group. {H. H C carrier G &
( carrier = H, binop = A x € H. A y € H. (G.<f>) x y,
inverse = X\ x € H. (G.<inv>) x, unit = (G.<e>) |) € Group)}

Although this change of the definition obviously affects the mechanized
proofs we already constructed for subgroups in the Sylow case study, the
changes to the proofs are minimal. Since we always derive introduction
and elimination rules for new structures, we do so as well for subgroups.
Hence, to adapt the proofs to the change of the subgroup property, only
the derivations of these interface rules for the subgroup property have to be
updated. Even the convenient syntax H <<= G, for H is a subgroup of G,
can be preserved. It now abbreviates (G, H) € subgroup.

The proofs for groups established as a basis for the subsequent case
studies subsume the ones that we already proved for Sylow’s theorem and
extend them by some more specific results. In contrast to the derivations
there, we use locales. We define a locale group to provide a local proof
context for group related proofs (¢f. Section 4.3).

locale group =

fixes
G :: "a grouptype"
e 1] llJaH
binop 11 "a => a => a" (infixr "#" 80)
inv 1 "la => Ja" Mi Q" [e0]191)
assumes
Group_G "G € Group"
defines
e_def e == (G.<e>)"
binop_def "x # y == (G.<f>) x y"
inv_def "i x == (G.<inv>) x"

This locale is attached to the theory file for groups. Prior to starting the
proofs concerning groups, we open this locale and can subsequently use
the syntax and the local assumption G € Group throughout all proofs for
groups. This improves the readability of the derivations as well as it reduces
the length of the proofs. For example, instead of

[l G € Group; x € (G.<cr>); (G.<f>) x x =x |1 ==> x = (G.<e>)
we can state this theorem now as
[l x € (Ger>); x#tx=x 1] =>x=¢e

Subgoals of the form G € Group that were created during the old proofs
are not there any more because they are now matched by the corresponding
locale rule. All group related proofs share this assumption. Thus, the use
of a locale rule reduces the length of the proofs.
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6.1.2 Cosets

We extend the set of theorems that we have already derived for Sylow’s
theorem in particular with respect to left cosets, a product, and an inverse
operation for subsets of groups. We restructure the developments by creating
a separate theory for cosets named Coset. We add the following constructors
to the theory of cosets! '

l_coset G a H == ((G.<f>) a) ‘“ H
set_prod G H1 H2 == (X (x, y). (G.<f>) xy) ‘¢ (H1 x H2)
set_inv G H == (G.<inv>) ‘¢ H

The definition of left cosets immediately gives rise to the definition of a
special class of subgroups, the so-called normal subgroups of a group.

Normal == X G € Group.
{H. H<=G & (V x € (G.<cr>). r_coset G H x = 1_coset G x H)}

We define the convenient syntax H <| G for (G, H) € Normal. As is ap-
parent from the definition, normal subgroups are a special case of subgroups
of a group where left and right cosets coincide. This is not necessarily the
case in non-abelian groups. Note that the use of the verbose syntax for
cosets is only necessary in the very first mention of normal subgroups. We
define a locale for the use of cosets to enable convenient syntax for cosets
and products. This locale is defined as an extension of the locale for groups.

locale coset = group +

fixes
rcos :: "[’a set, ’al => ’a set" ("_ #> _" [60,61]60)
lcos it "[’a, ’a set] => ’a set" ("_ <# _" [60,61160)
setprod :: "[’a set, ’a set] => ’a set" ("_ <#> _"[60,61160)
setinv :: "’a set => ’a set" MICOH" [90]191)
setrcos :: "’a set => ’a set set" ({x _ *x}"[20]91)
defines
rcos_def "H #> x == r_coset G H x"
lcos_def "x <# H == 1_coset G x H"
setprod_def "H1 <#> H2 == set_prod G H1 H2"
setinv_def "I(H) == set_inv G H"
setrcos_def "{* H *} == set_r_cos G H"

The locale for cosets adds to the one for groups that we defined in the
theory Group.thy. To open it, the scope representing the current proof
context has to contain the locale group. If this is not the case, the function
Open_locale will open it automatically (cf. Section 4.3.2). The definition
of the locale coset resides in the theory Coset that is built via theory
extension on the theory of groups. Thereby, we can use the locale group

!The definition of left cosets depicted here uses the image operation ‘‘. We use the
same for right cosets, deviating from the formalization seen in Sylow’s proof. The defini-
tions are equivalent.
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and on top of it the newly defined locale coset and perform proofs about
cosets in an intelligible and concise way. The theorems we need for Sylow’s
proof mentioned in Section 3.2.4 become more readable. For example, the
antecedent of coset_mul_assoc has been without locales

r_coset G (r_coset G M g) h = r_coset G M (bin_op G g h)
In the scope of the locale coset we can write this equation as
M#>g) #>h=M# (g # h)

The advantage is considerable, especially if we consider that the syntax is
not only important when we type in the goal for the first time, but we are
confronted with it in each proof step. Hence, the syntactical improvements
are crucial for a good interaction with the proof assistant.

The theorems we derive about the set product of groups are needed as
a calculational basis for the theorems involving the factorization of a group
(see Section 6.3.1). The binary operation of groups is lifted to the level of
subsets of a group. We derive algebraic rules relating the coset operators <#
and #> with the product operation for subsets <#>. A couple of examples
giving a gist of the derived rules and of the syntactical improvements we
gain by locales are

[| H<] G; H1l € {* H *}; x € H1 |] ==> I(H1) = H #> (i x)

[l H<] G; x € (G.<cr>); y € (G.<cr>) |]
=> (H# x) <> H#H y) =H# (x#y)

[ H<| G; HL € {* H *}; H2 € {x H %} |] ==> H1 <#> H2 € {* H *}

These preparations give us the appropriate frame for further experiments
into abstract algebraic proof. At the same time, the basic theorems entail
sufficient algebra for Sylow’s theorem. Before we get into further examples,
we shortly reconsider the proof of Sylow’s theorem and the improvements
we achieved by the new concepts.

6.2 Sylow’s Theorem

In the case study of Sylow, we were forced to abuse the theory mechanism to
achieve readable syntax for the main proof. We declared the local constants
and definitions as Isabelle constants and definitions. To model local rules,
we used axioms, i.e. Isabelle rules. This works well, but contradicts the
meaning of axioms and definitions in a theory (cf. Section 2.1.1).

Locales offer the ideal support for this procedure and it is methodically
sound. In the theory of cosets, we define a locale for the proof of Sylow’s
first theorem.
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The natural number constants we had to define before as constants of
an Isabelle theory become now locale constants. The names we use as ab-
breviations for larger formulas like the set M = {S C G, | order(S) = p*}
also become added as locale constants. So, the fixes section of the locale
sylow is

locale sylow = coset +

fixes
p :: "nat"
a :: "nat"
m :: "nat"
calM :: "’a set set"
RelM :: "(’a set * ’a set)set"

The following defines section introduces the local definitions of the set M
and the relation ~ on M (here calM and RelM).

defines
calM_def "calM == {s. s C (G.<cr>) & card(s) = (p ~ a)}"
RelM_def "RelM == {(Ni,N2).(N1,N2) € calM X calM
& (3 g € (G.<er>). N1 = (N2 #> g) )"

Note that the previous definitions depend on the locale constants p, a, and
m (and G from locale group). The example illustrates the advantage we gain
from locales. We can abbreviate in a convenient way using locale constants
without being forced to parameterize the definitions, i.e. without locales
we would have to write calM G p a m and RelM G p a m. Furthermore,
without locales the definitions of calM and RelM would have to be theory
level definitions, whereas now they are just local.

Finally, we add the locale assumptions to the locale sylow. Here, we can
state all assumption that are local for the 52 theorems of the Sylow proof. In
the mechanization of the proof without locales in Chapter 3 all these merely
local assumptions had to become rules of the theory for Sylow.

assumes
Group_G "G € Group"
prime_p "p € prime"
card_G "order(G) = (p "~ a) * m"

finite_G "finite (G.<cr>)"

The locale sylow can subsequently be opened to provide just the right con-
text to conduct the proof of Sylow’s theorem in the way we discovered in
Chapter 3 to be appropriate. But in contrast to there, the assumptions and
definitions have only local significance. This makes the formalization clear
and readable.

Apart from the already obvious advantages we gain from locales, there
are two more important improvements illustrated by the recapitulation of
the Sylow case study which we want to emphasize by a separate considera-
tion in the subsequent sections.
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6.2.1 Adapted Polymorphism

As already mentioned on the conceptual level in Chapter 4, the declarations
of locale constants may use polymorphism, but this is different to the usual
one. The use of the same type variable name for the declaration of different
constructors in an Isabelle theory does not imply any connection between
definitions using the same variable. In locales, we enrich the expressivity of
polymorphic definitions by extending the scope of the polymorphic variable
names over all constant declarations of a locale (¢f. Section 4.3.3). This
changes the usual polymorphism of Isabelle, in that equal names imply the
same variable. That is, polymorphic variables are fixed by the variable
names, e.g. ’a, inside the locale. Although the locale as an entity can
still be instantiated to arbitrary constant types of appropriate sort, the
instantiation is implicitly forced to be the same for all constants of a locale
that use the same variable name.

This restriction only holds if the same names are used. Naturally we
preserve the same freedom of expressivity that was there before: if we use
different variable names in polymorphic declarations of locale constants,
they can be instantiated independently. An example for this will be given
in Section 6.3.2.

However, in the Sylow case study — and in abstract algebraic appli-
cations in general — this is exactly what we need: we want to constrain
different constructors to the same type, while we still want to stay abstract,
i.e. use polymorphic declarations. In the ad hoc mechanization of Sylow’s
theorem in Chapter 3 we had to declare a fixed type i to achieve the same
effect that we gain now from the locale concept. There, we had to use
the fixed type i to be able to assume the (local) properties for the proof
of Sylow’s theorem. The assumption of these properties for a polymorphic
constant G::’a set would have made the formalization unsound.

Obviously, the trick used for Sylow’s theorem in Chapter 3 is not at all
satisfying because the result is not applicable to groups of arbitrary type;
although i is a random type, it is fixed. This is a severe restriction and
proves that this particular feature of locales is not only convenient but also
necessary. Furthermore, it illustrates that locales are valuable in their own
right in that they implement a more explicit control for polymorphism.

6.2.2 More Encapsulation

In the ad hoc approach to the mechanization of Sylow’s theorem, we had
no means to encapsulate local assumptions and definitions. Although we
abused the theory mechanism to that end, we did not structure as far as
it seemed possible, because it felt wrong to use theory level definitions and
rules to an extent that would make the entire proof look dubious.

Now, we may soundly use the locale mechanism for any merely locally
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relevant definition. In particular we can define the abbreviation
== {g. g € (G.<cr>) & M1 #> g = M1}

for the main object of concern, the Sylow subgroup that is constructed in
the proof. Naturally, we refrained from using a definition for this set before
because in the global theorem it is not visible at all, i.e. it is a temporary
definition. But, by adding the above line to a new locale, after introducing
a suitably typed locale constant in the fixes part,

H:: "a set"

the proofs for Sylow’s theorem improve a lot. A further measure taken now
is to define in the new locale the two assumptions that are visible in most
of the 52 theorems in the file for Sylow’s proof. Summarizing, a locale for
the central part of Sylow’s proof is given by:

locale sylow_central = sylow +

fixes
H :: "a set"
M :: "a set set"
ML :: "’a set"
assumes

M_ass "M € calM / RelM &
-(p "~ ((max-nr. p " r | m)+ 1) | card(M))"
Mi_ass "M1 € M"
defines
H_def "H == {g. g € (G.<cr>) & M1 #> g = M1}"

We open this locale after the first few lemmas when we arrive at theorems
that use the locale assumptions and definitions. Subsequently, we assume
that the locales group and coset are open. Henceforth, the conjectures
become shorter and more readable than in the ad hoc version. For example,

[l M € calM / RelM
& (p " ((max-nr. p " r | m+ 1) | card(M));
Ml eM; x€{g. g€ (G.<cr>) & M1 #> g = M1};
xa € {g. g € (G.<cr>) & M1 # g = M1} |]
==> x # xa € {g. g € (G.<cr>) & M1 #> g = M1}

can now be stated as
[l x €eH; xa € H|] ==>x #xa €H

The shorthand for H is particularly handy when one has to instantiate
schematic variables of theorems explicitly using, for example, the Isabelle
tactic res_inst_tac.

Of all the lemmas that are proved inside the scope of the innermost
locale sylow_central, we just export the theorems
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I M. M1 €M [existsM1inM]

Jd M. M € calM / RelM & [lemmaAl]
-(p " ((max-nr. p " r | m+ 1) | card(M))

H<<=G & card(H) =p "~ a [main_proof]

For the export of these three theorems we use the one step export function
Export that only normalizes the theorems up one level (¢f. Section 4.3.2).
Thereby, they become normalized according to the scope of the locale sylow.
If we apply Close_locale "sylow.central" to pop sylow_central off the
scope, we reestablish a scope on which we have group, coset, and sylow
open. This is just the right context to prove the final theorem Sylowl

JH. H<<=G & card(H) = p " a

The proof is easily derived from main proof by using existential elimination
and the other two previously exported theorems that are just of the right
form with respect to the locale scope.

If we finally export this theorem using the generally normalizing function
export, we achieve the desired form of Sylow’s theorem which is completely
independent from any local definitions and assumptions made so far. The
theorem stands alone as a global theorem of the Isabelle theory Coset, and is
hence applicable to any group. This becomes visible in the resulting theorem
by the question marks indicating schematic variables.

[| ?p € prime; finite (carrier 7G); ?G € Group; _
order ?G = ?7p ~ 7a * m |] ==> I H. H<<=7G & card H = ?p ~ 7a

6.3 More Abstract Algebra

In this section we present some more examples from abstract algebra and
lattice theory that we mechanized in Isabelle. They further validate the
concepts put forth in this thesis. In particular, they illustrate the need
for dependent types in addition to locales to express structural properties
sufficiently well.

6.3.1 Factorization of a Group

If a group is factorized by one of its normal subgroups then the factorization
together with the induced operations on the cosets is again a group. This
is a quite standard result of group theory, but it is challenging because it
contains a self-reference: a structure constructed from a group shall be a
group again. We define the factorization of a group using the concept of
structures as dependent types of Chapter 5. In addition, we will analyze to
what extent locales can be helpful.

For this proof we define a new theory that builds on the theory of cosets.
The factorization of a group by one of its normal subgroups is given by
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the set of cosets. The operations on the cosets are described by the group
operations lifted to the level of cosets, i.e. the binary operation is given by
the product of cosets, the inverse operation is given by the inverse coset, and
the factor of the factorization serves as a unit element, a normal subgroup

H. To describe this construction formally, we use the typed A-notation from
Chapter 5.

FactGroup ==
A G € Group. A H € Normal | G.
( carrier = set_r_cos G H,
bin_op = A X € set_r_cos G H.
AY € set_r_cos G H. set_prod G X Y,
inverse = A X € set_r_cos G H. set_inv G X,
unit = H |

The relation between the input parameters and the image of a higher order
structure for group factorization is functional. The factorization is a unique
construction because we can explicitly identify how it is built by the coset
operations. That is why we can define FactGroup as an element of a higher
order structure using A.

We define the theory syntax G Mod H for the factorization FactGroup
G H. To enhance the readability of the construction and thereby the proofs
about it, we employ locales. We cannot use any nicer syntax in the above
definition of the factorization because in the body of the A-term above, the
terms G and H are parameters. Hence, they have to stay flexible. But, using

locales we can fix a group G and a normal subgroup H in G for the local proof
context.

locale factgroup = coset +

fixes
F :: "(’a set) grouptype"
H:: "(C’a set)"

assumes
H_ass "H <| G"

defines

F_def "F == FactGroup G H"

By defining this locale as an extension of the locale coset, we incorporate all
the syntactical abbreviations we defined for cosets and operations on cosets
in Section 6.1.2. In addition, we have the group G already as a fixed local
constant. The additional definition of the factorization as F lets us derive in
the scope of this locale?

F = (| carrier = {x H *},
binop=(AX e {xHx*}. XY € {xH=*} X<#>7),
inverse = (A X € {* H %}, I(X)),
unit = H |

2Opening factgroup automatically opens coset and group.
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The derivation is an application of Isabelle’s simplifier to the corresponding
definitions, and the reduction rules for A. By the additional use of the locale
properties of fixing and local definition, we achieve a readable syntax in a
local scope.

With these preparations, we can prove that this factorization is again a
group, which is trivially stated as F € Group in the scope of the locale. The
proof is straightforward. By backward resolution with the introduction rule
for the group property Groupl we can reduce it to six subgoals that can be
solved by repeatedly applying previously derived results about cosets and
the operations on them. Note that here the initial application of GroupI
illustrates the first class property of locales we gain through the export, as
discussed in Section 4.8. Although we proved the rule GroupI for the fixed
group G we can now apply it again to the group F which is constructed with
that same G.

By exporting the result that F is a group we get the general formula

[l ?G € Group; 7H <| 7G [] [FactorGroup_is_Group]
==> ?G Mod ?H € Group

In an earlier version of this experiment, we did not employ locales. The
statement of the conjecture was even without locales not such a problem; it
corresponded to the above formula. But, in the proof of the group property,
where all the definitions of the lifted operations have to be employed, we
were formerly exposed to formulas that were hard to read. For example,
the sixth subgoal of the proof corresponding to the proof of the associativity
property of the group is after one simplification step that reduces the A-terms
without locales

[l G € Group; H <| G; x € set_r_cos G H; y € set_r_cos G H;
z € set_r_cos G H |]
==> get_prod G (set_prod G x y) z = set_prod G x (set_prod G y z)

The use of locales improves this to

[l x € {xH=*}; ye {xH=*}; ze€ {xH=x*} |]
==> X <#> y <#> z = x <#> (y <#> z2)

As a further illustration of the concept of higher order structures, we consider
the proof that the constructed A-term FactGroup is an element of a suitable
II-set.

FactGroup € (II G € Group. (Normal | G) -> Group)

This membership statement is equivalent to the structural proposition that .

the factorization of a group is a function mapping a group and a normal
subgroup of this group to another group. We call this kind of theorem
a structural proposition because membership in a structure (a set) entails
the proposition we just proved, i.e. that the factorization is a group. If
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we interpret the sets that are our structures as types, then we see how
the Curry-Howard isomorphism of propositions-as-types is embodied in a
statement like above (¢f. Section 5.3.2). In contrast to type theory, we do
not need to state this isomorphism as a paradigm — it is inherent because
we use sets: from the above we can derive the logical proposition.

6.3.2 Direct Product of Groups

The direct product of two groups G and G’ is a structure built over the set
of pairs of elements (z,y) where z € G and y € G'. This set, together with
the pointwise product of the operations of the groups G and G, is again a
group. This theorem is, like the previous example, a test for the adequacy of
our approach. We have elements of a structure that are combined together
and build again an element of that same structure, a self-referential aspect
that can only be mechanized with first class structures.

Similar to the previous example, we define the direct product of two
groups at the theory level using an element of II.

ProdGroup ==
A G € Group. A G’ € Group.
( carrier = (G.<cr>)x(G’.<cr>),
bin_op = (A (x, x’) € (G.<cr>)x(G’.<cr>).
A (y, v7) € (G.<cr>) % (G’ .<cr>).
((G.<f>) x5y, (G.<£>) x? y7)),
inverse = (A (x, y) € (G.<cr>)x(G’.<cr>).
((G.<inv>) x, (G’.<inv>) y)),
unit = ((G.<e>),(G’.<e>)) )

We define the theory syntax { G1, G2 |) for this direct product of two groups.
To enhance the proof process we can employ again locales to reduce the
complex definition of ProdGroup to a readable formula. Otherwise the above
term will occur in the proof of the group property.
~For the second group G’ we define a locale r_group

locale r_group = group +

fixes
G’ :: '"’b grouptype"
e) I ll)bll
binop’ Wb => b => p" (M(_ # _)" [80,81]80 )
INY’ 1r Wb => b " Q" [90]191)
assumes
Group_G’ "G’ € Group"
defines
e’ _def "e? == (G’.<e>)"

binop’_def "x #’ y == (G’.<f>) x y"
inv’_def "i’(x) == (G’.<inv>) x"
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The locale r_group is basically a repetition of the locale group. As in the
case of the factorization in the previous section, we build a new syntactic
layer into the locales for this example.

locale prodgroup = r_group +
fixes
P :: "(Pa * ’b) grouptype"
defines
P_def "P == ( G, G’ )"

We separated the two locales because the former one is independently useful
for other examples reasoning about two groups.

First, we can simplify the definition of ProdGroup by considering the
term that represents the product in the scope of the locale prodgroup be-
cause G and G’ are fixed there.

P =
( carrier = P.<cr>, :
bin_op = (A (x, x’) € (P.<cr>). A (y, y’) € (P.<cr>).
(x#y, x2# 3y°)),
inverse = (A (x, y) € (P.<cr>). (1 x, i’ y)),
unit = P.<e> |

The additional syntactical layer that is created by the locale prodgroup
enables to stay syntactically abstract during the proof of the group property
of the direct product. That is, if we prove that the direct product is a group

P € Group

we have a clear syntax. In the proof we can use most of the time the
abbreviation P and only unfold when it is necessary. Mostly, we are not
confronted with the gory details of the construction — the simplifier is able
to solve this task when we add the locale definitions to the simplification
sets. The exported result is independent of the locales and applicable to any
two groups.

[l G € Group; G’ € Group |1 ==> { G, G’ ) € Group

As in the factorization example, we consider the membership of the direct
product in a higher order structure — in this case again a II-type.

ProdGroup € Group -> Group -> Group

As with the factorization of groups, we first performed the-mechanization
without the use of locales®. In comparison, we could reduce the size of the
proof by 50% using locales. Although in the latter version some savings
are due to polishing the proofs by improving the applications of automatic
simplification tactics, a larger portion is due to locales. Furthermore, the

3 At the time the implementation was not capable of dealing with nested locales.
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streamlining of the proofs was made much easier because of the greatly
improved comprehensibility. Where we were lost before in grasping huge
complicated terms, and thus sometimes misled from the optimum solution,
the natural representation achieved by locales leads the way now.

6.3.3 Group of Bijections

To prepare some further results concerning groups of automorphisms we
prove a general result about maps: the set of bijections with the appropri-
ate operations of composition of bijections, inverse bijection, and identical
bijection form a group.

We define the set of bijections Bij and a record BijGroup made up out
of the set of bijections over a set S, the composition of these bijections, the
inverse of a bijection and the identical bijection.

BijS=={f | f €S ->8 & f(S) =S & inj_on S f}

BijGroup S == carrier = Bij S,
bin op = A f € Bij S. A g € Bij S. g og f,
inverse = A £ € Bij S. A x € S. (Inv S £),
unit = A x € S. x )

The constructors og and Inv S are the composition and the inverse of the
typed A-functions we defined for the II-sets (see Chapter 5). We can show
that this record is in the set Group, i.e. that the bijections together with
the listed operations on them are a group

BijGroup S € Group [Bij_are_Group]

The method used is the same as for the previous two examples: we define a
locale to provide concise notation.

6.3.4 Group of Ring Automorphisms

With this preparation we can attempt a proof concerning a special class of
homomorphisms: automorphisms. They are bijective homomorphisms from
an algebraic structure to itself. The example described in this section is the
proof that the automorphisms of a ring form a group.

Definitions

Rings are defined in a similar manner to groups. The definition of rings is
not relevant for the present example. It will be described in Section 6.4.1
where its nested structure is of interest. Assuming the definition of group
homomorphisms Hom from Section 5.2.2, group automorphisms can now be
defined as homomorphisms from a group to itself that are bijective on the
carrier of the group. Ring automorphisms are defined in a very similar way.
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constdefs
GroupAuto :: "(’a grouptype * (’a => ’a)) set"
"GroupAuto == ¥ G € Group. {®. (G,G,®) € Hom &
inj_on ® (G.<cr>) & @& ‘¢ (G.<cr>) = (G.<cr>)}"
RingAuto :: "((’a ringtype) * (’a => ’a))set"
"RinghAuto == ¥ R € Ring. {®. (R,R,®) € RingHom &
inj_on ® (R.<cr>) & & ‘¢ (R.<cr>) = (R.<cr>)}"

Proof

Using the definition of ring automorphisms RingAuto, we show that the
set of ring automorphisms is a subgroup of the group of bijections over
the carrier of the ring. Since we know that any subgroup is itself a group
(subgroupE2) we get the group property of ring automorphism straight-
forwardly. But, the proof that they are a subgroup is much simpler than
showing that ring automorphisms are a group explicitly. This is evident if
we look at the obligations we have to show for the subgroup property. They
are entailed as premises of the subgroup introduction rule we derived as one
of the classical theorems about subgroups (see Section 6.1.1). This rule says
that it is sufficient to show that a subset H of a group G is closed under the
group operations in order to infer that H is a subgroup of G.

[| H C carrier G; H # {}; Va € H. i(a) € H; : [subgroupIl
VaeH VbeEH. a#beH|] ==>H<k=G

To show the group property explicitly we would need to show the six group
properties as encoded in the rule GroupI. But now, if we prove the theorem

R € Ring ==> [RingAuto_SG_Bij_Group]
RingAuto | R <<= BijGroup (R.<cr>)

we can use the result that the set BijGroup is a group shown in the previous
section. By applying prederived basic rules for subgroups we obtain imme-
diately from the former theorem that the ring automorphisms together with
the appropriate operations are a group.

R € Ring ==> [RingAuto_are_Group]
( carrier = RingAuto | R,
bin_op = X x € RingAuto | R.
A y € RingAuto | R. (BijGroup(R.<cr>).<f>) x y,
inverse = A x € RingAuto | R. (BijGroup(R.<cr>).<inv>) x
unit = BijGroup(R.<R>).<e> |) € Group

The Isabelle proof code that produces this result is short. It just concate-
nates the former theorems using forward resolution RS.

RingAuto_SG_BijGroup RS (Bij_are_Group RS subgroupE2);

It illustrates nicely how the first class representation of structures allows the
reduction of the proposition and hence improves the proof process.
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6.3.5 Tarski

The fixed point theorem of Tarski [Tar55] is well known in computer science.
Yet the form of the theorem which is usually proved is an older version from
1928. This theorem says that the least upper bound of all fixed points of
a monotonic function f over a complete lattice (A,C) can be obtained as
V{z € A | z C f(z)}. The dual is true for the greatest lower bound A.
Besides proving that, Tarski showed in the later paper that the set of all
fixed points of f is itself a complete lattice. This second result is very well
suited to illustrate the need for a proper structural representation, because it
is proved by applying the first part of the theorem to the interval sublattice
[VY,1] for any subset Y of the set of all fixed points. So, our mechanized
proof illustrates again the advantages of the present approach.

The proof of this full version was first formalized by R. Pollack in LEGO
[Pol90]. There, partial equivalence relations have to be used, which make
the proof quite hard to read. That is, in LEGO we are deprived of the
natural notion of equality to be able to express the self-referential aspects
of this theorem.

Our formalization is, like the other examples, based on an adequate rep-
resentation of lattices as structures and uses locales in addition to improve
the syntax and shorten the formulas and proofs.

6.4 Operations on Modules

Through the embedding of structures as X-types and II-types, we achieve
first class representations of modules. Thereby, we are able to use structures
in formulas. Hence, we can express general operations on structures such as
unions of forgetful functors. We illustrate this in the present section.

A ring can be considered as a construction from an abelian group and
a semigroup over the same carrier. The definition we used — and that is
used in mathematical textbooks — is the ad hoc definition of a ring. To
illustrate the adequacy of our concepts we show how the substructure of a
ring that is an abelian group can be revealed and how conversely a ring can
be seen as constituted by a group and a semigroup. The former is provided
by a typed function that belongs to a class of functions that are known as
forgetful functors.

6.4.1 Forgetful Functor

For the rather simple forgetful functor example we first have to explain how
we formalized rings. Using extension of record types, we can build the base
type for rings on the base type for groups grouptype.

record ’a ringtype = ’a grouptype +
Rmult :: "[Pa, ’al] = ’a"
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Thereby, we inherit the components of groups and can form rings by just
extending the latter by the second operation Rmult*. We add the syntax
R.<m> for the additional element Rmult of a ring to adapt the notation for
rings to the syntax of the group projections.

To isolate the group contained in a ring we can use an element of a II-set.
This A-function represents a forgetful functor. It “forgets” some structure.

constdefs
group_of :: "’a ringtype => ’a grouptype"
"group_of == A R € Ring.
( carrier = (R.<cr>), bin_op = (R.<f>),
inverse = (R.<inv>), unit = (R.<e>) |"

Thereby, we are able to refer to the substructure of the ring that forms
an abelian group using the forgetful functor group_of. We can derive the

theorem?®

R € Ring ==> group_of R € AbelianGroup [R_Abel]

This should enable a better structuring and decomposition of proofs. In
particular, we can use this functor when we employ locales for ring related
proofs. Then we want to use the encapsulation already provided for groups
by the locale group. To achieve this we define the locale for rings as an
extension.

locale ring = group +

fixes

R :: "’a ringtype"

rmult :: "[’a, ’al => ’a" (infixr "xx" 80)
assumes

Ring_R "R € Ring"
defines

rmult_def "x **x y == (R.<m>) x y"

R_id_G "G == group_of R"

Note that we are able to use the locale constant G again in a locale definition.
This is sound because we have not defined G yet. If one gives a constant an
inconsistent definition, then one will be unable to instantiate results proved
in the locale. This way of reusing the local proof context of groups for the
superstructure of rings illustrates the flexibility of locales as well as the ease
of integration with the mechanization of structures given by X and IL
Naturally, one could have used a different setup for rings in which the
entire structure would have been defined separately from groups. The ad-
vantage would have been to avoid the close connection with the functor

“Note that we formalize rings without 1. Mathematical textbooks sometimes use the
notion of rings for rings with a 1 for convenience.

5AbelianGroup is the structure of abelian, i.e. commutative, groups. Their definition
is a simple extension from the one of groups by the additional commutativity.
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group_of. The disadvantage would have been to abandon the perfectly
suited locale context for groups.

There is a slight drawback with this intricate use of locales: theorems
that are proved in the setup of the locale rings using group results will have
in the exported form the assumptions

[l R € Ring; group_of R € Group ... |1 ==> ...

But, as an implication of the theorem R_Abel, we can easily derive
R € Ring ==> group_of R € Group

Thus, the second premise can be canceled. Although we have to do a fi-
nal proof step to cancel the additional premise, this shows the advantage of
locales being dissolved into premises of global representations of theorems:
it is impossible to introduce unsoundness. A definition of a locale constant
that is not consistent with its properties stated by locale rules would be not
applicable. Since locale assumptions and definitions are explained through
meta-assumptions, the resulting theorem would carry the inconsistent as-
sumptions implicitly. The final proof step we do in the example seems a
small price we have to pay for a smooth merging of locales and structures.

6.4.2 TUnion: Construction of a Ring

A ring may be constructed from an abelian group and a semigroup where
this semigroup shares the same carrier with the group.

We refine the definition of groups to entail semigroups. To that end,
we enclose the carrier and the binary operation in a record definition for
semigroups.

record ’a semigrouptype =
carrier :: "’a set"
bin_op :: "[’a, ’a] => ’a"

We then build the definition of the type for groups as an extension of the
type semigroup. The definition of the structure of semigroups is just a
subformula of the group definition (see Section 5.2.2).

To build a ring, the binary operations of an abelian group and a semi-
group have to obey the right and left distributive laws

distr 1S f1f2==Vx€8S.VyeS.Vzes.

flx (f2y z) = £2 (f1 x y) (f1 x 2)
distr r S fl1 f2 =V x €8. Vye€eS.VzeSs.

f1 (f2y z) x = £2 (f1 y x) (f1 z x)

assuming that £1 is the semigroup operation, £2 the group operation, and
S the carrier of the group. '

For the actual construction of the ring, we define a typed A-function
ring from.
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ring_from :: "[’a grouptype, ’a semigrouptype] => ’a ringtype"

If we consider the class of abelian groups AbelianGroup and a structure of
semigroups that shares the group’s carrier and fulfills the distributivity laws
we can define this A-function as

A G € AbelianGroup.
A S € {M. M € Semigroup & (M.<cr>) = (G.<cr>)
& distr_1 (G.<cr>) (M.<f>) (G.<£>)
& distr_r (G.<cr>) (M.<f>) (G.<£>)}.
( carrier = (G.<cr>), bin_op = (G.<£>),
inverse = (G.<inv>), unit = (G.<e>), Rmult = (S.<£>) )

That is, we construct an element of the appropriate record type for rings
from elements of the two structures AbelianGroup and a specialized sub-
structure of Semigroup. We can derive

ring_from G S € Ring

if G and S are elements of the parameter structures of ring from. More
generally, we can derive a structural proposition that entails the logic of the
construction of the ring.

ring_from €
(II G € AbelianGroup.
{ M. M € Semigroup & (M.<cr>) = (G.<cr>)
& distr_1 (G.<cr>) (M.<f>) (G.<f>)
& distr_r (G.<cr>) (M.<f>) (G.<£f>)} -> Ring)

The examples for constructions and deconstructions of rings in this section
are classical operations of theories, 7.e. the first one is a forgetful functor
and the second one a union of two structures with sharing and constraints
on parameters (the distributivity of the operations).

Summarizing, we have illustrated in this chapter three things. First, we
have shown how the use of locales improves the proving process. Second,
we have illustrated that we can represent algebraic structures adequately
by the mechanization of II and X. And finally, the presented case studies
illustrate that the two concepts can smoothly be combined to provide the
same support as modules but — through the separation of the concepts of
locality and structures — more adequately.



Chapter 7

Conclusions

In this final chapter, we summarize in Section 7.1 the work we performed
and highlight major decisions. Subsequently, we list the improvements of
our concepts, evaluating to what extent the objectives were met. Section 7.2
names the major achievements. In Section 7.3, we discuss the experiences
and the lessons we learned from performing the project. Finally, we end this
thesis with a general concluding remark in Section 7.4.

7.1 Summary

This work is concerned with modules for theorem provers, in particular Isa-
belle. Modules provide a means for structuring theories and representing
mathematical structures. The latter mechanism is typical for applications
in abstract algebra. We set out in Chapter 1 with the hypothesis that
modules should have a representation in the logic, i.e. be first class citizens.
According to our hypothesis an amalgamation of aspects of locality provided
by modules and adequacy through the first class property of structures is
the solution for higher expressivity, good performance, and intelligible rep-
resentation of abstract algebra.

We began the research by looking at related work in Chapter 2. There
we compared module systems of interactive theorem provers and their ap-
plicability to abstract algebra. Our comparison of theorem proving systems
comparable to Isabelle validated our hypothesis that their modules are not
adequate, for abstract algebraic reasoning. Furthermore, we investigated a
different family of proof systems based on type theory in Section 2.4. They
use an interesting alternative to modules: some powerful type theories use
dependent types to represent structures. These modules are first class citi-
Zens.

Next we checked the hypothesis by doing a large case study: a mechanical
proof of Sylow’s theorem in Chapter 3. The evaluation of this case study
shows on the one hand that locality is crucial for algebraic proofs and on
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the other hand that the first class structure representation is a necessity for
adequate reasoning.

Drawing from the experience of this case study in group theory, we de-
velop a concept of locales (see Chapter 4) that captures local definitions,
pretty printing syntax, and local assumptions. Locales provide support for
locality by realizing local contexts for Isabelle proofs. They can be seen as
a simple form of modules.

According to our initial hypothesis, we naturally explored the possibility
to find, and generate automatically, a first class representation for locales.
In a prototypical experiment, we identified objects that are representations
of locales at the meta-level (see Section 4.7). Those are meta-level predi-
cates. Since Isabelle’s meta-logic is only a fragment of higher order logic,
we would need to extend the meta-logic of Isabelle with explicit conjunction
and (dependent) products to be able to encode structures adequately as
meta-level predicates. But, this extension is not always desirable. The need
for an explicit first class representation only partly applies to locales. The
aspect of locality is often used without a need to identify a first class notion
for a local proof context. That is, a general concept of locales that applies
to all object logics turns out to be useful as a stand-alone feature. Examples
for such local proof contexts are the locales sylow and sylow_central in
Section 6.2. These locales enclose a local context for a certain proof but do
not represent any algebraic or other structure. We have to distinguish be-
tween an algebraic structure and a local context for a proof. Therefore, it is
sensible to separate concerns and keep locales as a separate general concept
for locality.

However, locales are not sufficient to describe structuring adequately.
For example, structures like groups and rings need an explicit representa-
tion as objects in the logic. A mechanization of dependent :-types and
II-types as typed sets in higher order logic is presented in Chapter 5. The
mechanization of Y-types and II-types as HOL sets is necessary because
there are no dependent types in HOL. The dependent types can represent
structures adequately in the logic because these structures are then terms,
i.e. first class citizens.

The combination of locales with dependent types provides a sufficient
methodology to formalize abstract algebra in a higher order logic theorem
prover: in Chapter 6 we validate the combination of the two concepts on
case studies.

7.2 Achievements

There are three main achievements in this work. Firstly, we mechanized Sy-
low’s theorem. This case study is an interesting formalization experiment in
its own right [KP99]. Secondly, we designed and implemented locales. This
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concept is implemented and released with Isabelle version 98-1 [KW98]. As
a concept it is valuable beyond the scope of Isabelle. Finally, we mecha-
nized a first class representation of modular structures [Kam99] in such a
way that it can easily be combined with the locale concept. Thereby, we
realized modular reasoning in Isabelle.

Locales are a sectioning concept for higher order logic theorem provers.

The concept of locales proves to enhance the reasoning with abstract
algebraic proofs dramatically. This is illustrated by the Sylow case
study. The requirements set out by the ad hoc version of Sylow in
Chapter 3 are fulfilled by application of locales (see Section 6.2).

Locales are a general concept of local proof contexts. The concept is
general: it can be transferred to any higher order logic theorem prover
(see Section 4.8).

Locales realize a form of polymorphism with binding of type variables
not normally possible in Isabelle (see Section 6.2.1).

The concept of structures as dependent types addresses the adequate repre-
sentation of module systems.

The ¥ and II-sets enable first class representations for modular struc-
tures. Thereby, adequate representations of algebraic structures be-
come possible. Several non-trivial case studies could be performed and
illustrate the capability of the concept.

The concepts are relatively light-weight as they are based on simple for-
malizations. At the same time the II and X-types are strong enough to
express higher-level modular notions, like mappings between parame-
terized structures. We can represent abstract operations on structures
like forgetful functors and unions of structures with sharing.

Most prominently, we achieved the goals we set out with by applying our
concepts of modular reasoning in combination.

Structures expressed by ¥ and Il-sets can be complicated. By using
locales in addition they can be greatly simplified inside the scope of a
locale. This enhances comprehension of the formulas and consequently
facilitates the proving process. Examples for this have been presented
in Section 6.3.

The encapsulation provided by locales enhances proofs and shortens
their presentation. If proofs are concerned with structures that build
on other structures the corresponding locales can model this structural
extension by the locale extension device (see Section 4.3.2).
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e To be able to decompose higher-level structures so that they can ac-
tually make efficient use of underlying locale theorems, maps between
structures can be defined. They can be employed to make reuse of
locales possible. This is illustrated by the example of rings built on
groups and the interaction with the forgetful functor group_of in Sec-
tion 6.4.1.

7.3 Lessons Learned

Initially, we aimed at constructing one module system that would have both
features: locality and adequacy. We have already named various reasons and
gave evidence that support the decision to separate these major concerns.

There are some other interesting experiences we made during design,
prototyping, and implementation that support the separation from a prag-
matic point of view:

e The implementation of locales was very simple once the right idea was
found to realize local constants with dependent pretty printing syntax.

e The mechanization of dependent types as sets is similarly simple and
light-weight. Through derived introduction and elimination rules the
structures can be reduced in an application almost as easily' as the
built in A-expressions of Isabelle/HOL.

e The combination of the concepts is trivially possible, i.e. there is no
other device necessary to use them in combination.

During the construction and experimentation phase of the concepts we nat-
urally encountered difficulties. We found it quite difficult to integrate the
prototype for locales into Isabelle. Fortunately, the concept for theory data
(see Section 4.4) provided a systematic way for the integration. However,
this concept is very abstract. Hence, the integration of locales into Isabelle
was harder than the construction of the initial prototype. Without a sys-
tematic concept it is likely that the integration would have turned into a
very complicated task, though.

Naturally, our work raised some questions that can only be answered
through further experimentation.

e Isabelle uses simplification sets for rewriting. We decided not to put
locale definitions into (local) simplification sets because we do not want
these definitions to be unfolded automatically. However, there are
situations when we need to unfold locale definitions. More experience

‘with the use of locales might show if there is a systematic way of
supporting such cases.

! Although the terms are simply reduced, there may be nontrivial membership obliga-
tions produced.
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e Dependent types are represented as sets in our mechanization. Some
of the proofs we performed using dependent types correspond to a
type-inference for dependent types. This is undecidable in general
and a tactic trying to solve it could fail. Nevertheless, similar to the
mechanism generating type checking condition in PVS, one might try
to automatize this to some extent. Although Isabelle’s general tactics
support the proof of such obligations quite well, experiments towards
implementing a specific tactic that implements a type-inference algo-
rithm for our dependent sets would be desirable.

e The examples with structures as dependent types we considered in
Section 6.4 show that with the tool set of X and II we can define
operations on modules, like unions or forgetful functors. Although
our structures are values, we cannot express such operations generally
because we did not construct an explicit notion of signature and struc-
ture. There is some theoretical work on theories for theorem provers
[LB92]. The speciality of this approach is that theories are values,
and there is an explicit notion of signatures, axioms, and theories. It
defines a general notion of so-called frames that generalizes the no-
tions of theories for theorem proving systems. The work develops a
lattice of signatures that enables to construct general operations on
signatures and structures using joins and meets. Since our structures
are values, it might be possible to construct the lattice of signatures
for structures as dependent types in Isabelle. Thereby, we would gain
more generality in construction as well as reasoning with structures.

~ On the whole, locales, dependent types and their combination show the ad-
vantage of using elegant ideas from type theory without sacrificing pragmatic
advantages of the LCF approach.

7.4 Concluding Remark

To conclude this work, we would like to return to our argument from the first
few pages. One intention of the thesis was to show that formalizations of
abstract algebra are a useful test bench for the development of concepts for
theorem provers. The formal proof of Sylow’s theorem in Isabelle did have
a positive impact on the development of techniques for interactive generic
theorem proving in higher order logics. The concepts we developed were
based on experience from abstract algebra. The use is by no means restricted
to abstract algebra: locales can be used throughout Isabelle’s object logics
and are already used to conduct proofs about the formal method UNITY
(see Section 4.8). Apart from the conceptual improvements, the work may
thus be seen as a contribution to strengthen the reputation of formalizations
of mathematics.
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Appendix A

Theorems for Sylow’s Proof

This appendix serves as a lookup section for Chapter 3. Selected theorems
of group theory, some that deal with the combinatorial argument, and all
from the theory for Sylow’s theorem are contained here. We do not display
any proofs. We left the syntax as ASCII in order to give a real impression

of the Isabelle code.

The prefix ! is the universal quantifier, : represents € for HOL sets,
and the question mark ¢?? is the existential quantifier of HOL. The symbol
% stands for A; Un for set union U, ~ for -, and <= for C or <.

A.1 Group Theory

coset_mul_assoc

coset_mul_unity

coset_mul_inversl

coset_mul_invers2

coset_joint

coset_join2

"[I G : Group; M <= (G.<cr>); g : (G.<cr>);

h :
= r_coset G M ((G.<f>) g h)";

(G.<cr>) |1 ==> r_coset G (r_coset G M g) b

"[] G: Group; x : (G.<cr>); H<<=G; x : H |]
==>r_coset G H x = H";

"[| G: Group; x : (G.<cr>); y : (G.<cr>);

M <= (G.<cr>);

r_coset G M ((G.<£>) x ((G.<inv>) y)) =M |]
==>r_coset G M x = r_coset G M y";

"[I G: Group; x : (G.<cr>); y : (G.<cr>);
M <= (G.<cr>); r_coset G M x = r_coset G M yl|]
==> r_coset G M ((G.<f>) x ((G.<inv>) y)) = M ";

"[l G: Group;
r_coset G H x

]

: (G.<cr>); H <<= G;
H ] ==>x : H";

"[l G: Group; x : (G.<cr>); H <<= G;

X

: H |] ==> r_coset G H x = H";
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set_r_cos_part_G "[| G: Group; H <<= G|]
==> Union (set_r_cos G H) = (G.<cr>)";

rcosetGHa_subset_G "[l G: Group; H <= (G.<cr>); a : (G.<cr>) 1]
==> r_coset G H a <= (G.<cr>)";

card_cosets_equal "[1G : Group; H <= (G.<cr>);
finite ((G.<cr>))|] ==>
! ¢c: set_r_cos G H. card ¢ = card H & finite c";

r_coset_disjunct "[| G: Group; H <<= G |] ==
! ¢1: set_r_cos G H. ! c2: set_r_cos G H.

cl "= ¢c2 --=> c1 Int c2 = {}";

set_r_cos_subset_PowG "[| G: Group; H <<= G |]
==> get_r_cos G H <= Pow( (G.<cr>))";

Lagrange "[| G: Group; finite(G.<cr>); H <<= G |]
==> card(set_r_cos G H) * card(H) = order(G)";

A.2 Combinatorics

n_choose_0 "(n choose 0) = 1";

zero_le_choose "k <= n ==> 0 < (n choose k)";
less_choose "'n < k ==> (n choose k) = 0";

n_choose_n "(n choose n) = 1";

choose_Suc "(Suc n choose n) = Suc n";

n_choose_1 "n choose 1 = n";

div_order "[l k | n; 0 <n |] ==>k<=n";
max_p_div "[] 1<p; 0<s []==>p - logps | si&

(!m. logps<m-->"(p " m | s)";

unique_max_power_div_s
"[l 1 <p; 0<s |] ==>
(max-nr. p " r | 8) = log p s";

log_p_unique "[l 1<p; 0<s |[]==>7'x%x. p~x|s&
(Im. x<m-=>"(p ~“m]| s)";

max_p_div_eq_log "[I 1 <p; 0<s;
p - xdvds & (! m. x<m -->"(p "~ mdvd s))]|]
==> log p s = x";
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div_eq_log_p

"[[1 <p; 0<a; 0<hb;
! (r :: nat). ((p " r | a
==> log p a = log p b";

log_power_div_equality

equiv_partition

constr_bij

n_subsets

Rettung

p_fac_forw

r_le_a_forw

p_fac_backw

logp_eq_logp

p_not_div_choose

"[|1<P; 0<n l] ==

) =
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"l NI

n=(p "~ log p n)*(n div (p ~ log p n))";

"[| finite S; equiv S rel; !

k dvd card(x)& finite x |] ==

"[] finite M; x “: M |] ==>
card {s. ? sl :
{s. s <= M & card(s) = k}. s

= card {s. s <= M & card(s) =

"[| finite M; card(M) = n; k

x : S/ rel.
> k dvd card(S)";

= insert x si}
k}";

<=n I] ==

card {s. s <= M & card(s) = k} = (n choose k)";

"[1 0 <m; O<Kk;

k< (pta); (p°r) | (pra)* m - k []

==>r <= a";

"[l 0 <m; O0<k; p: prime;

k< (pra); (p°r) | (pra)*m - k |]

==> (p7r) | (p7a)- k";

"[] 0 <k; k < (pra);

0<p; (p°r) | (pra) -k |] ==>r <= a";

"[l 0 <m; O0<k; p: prime;

k < (pTa); (p°r) | (pra)- k |1

==> (p°r) | (p~a)* m - k";

"[l p: prime; 0 < m |] ==>
'kn (k< (@ ~a &n< (p
0<k&O0<n&n-k=(p"

“a) *xm &
a) *m- (p~ a)k&

(p~a)<=(p "~ a) *m&k<=n)

~-> log p k = log p n";

"[ p: prime; ' kn. (k< pl &n<p2&0<k&&

0<Kn&n-k=p2-plé&pl
-=>log p k = log p n ;pl <=
k<=n&k<pl&n<p2&n
-=> “(p | (n choose k))";

<= p2 & k <= n)
p2l] ==>
-k =p2-pl
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const_p_fac_right "[| p : prime; 0<m|] ==>
“(p | ((p ~a) *m -1 choose (p ~ a) - 1))";

const_p_fac "[| p : prime; 0 < m |] ==>
(max-n r :: nat. (p ~r | (m :: nat))) =
(max-n r.

(p"r | (((p~ a) *m) choose p ~ a)))";

A.3 Theory Sylow

RelM_equiv "equiv calM RelM";

M_subset_calM "M : calM / RelM &
“(p " ((max-nr. p " r | m+ 1) | card(M)
==> M <= calM";

card_M1 "[IM : calM / RelM &

“(p " ((max-nr. p " r | m+ 1) | card(M));
M1 : M[] ==> card(M1) = p ~ a";

exists_x_in_M1 "[IM : calM / RelM &
“(p " ((max-nr. p “r | m+ 1) | card(M);
M1 : M|] ==> ? x. x : M1";

M1_subset_G "[l M : calM / RelM &
“(p " ((max-nr. p ~r | m)+ 1) | card(M);
M1 : M|] == M1 <= (G.<cr>)";

Mi_inj_H "[] M : calM / RelM &
“(p " ((max-nr. p “r | m+ 1) | card(M));
M1 : M[] ==>

7?7 f: {g. g+ (G.<cr>) & M1 #> g = M1} -> M1.
inj_on £ {g. g : (G.<cr>) & M1 #> g = Mi}";

RangeNotEmpty "[| {} = RelM "~ {x}; x : calM |] ==> False";
EmptyNotInEquivSet "{} ~: calM / RelM";
existsM1inM "M : calM / RelM &

“(p " ((max-nr. p " r | m+ 1) | card(M))
==> 7 M1. M1 : M";

zero_less_o_G "0 < order(G)";
zero_less_m "0 < m";
card_calM "card(calM) = ((p ~ a) * m choose p ~ a)";

max_p_div_calM "“(p " ((max-nr. p "~ r | m+ 1) | card(calM))";
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finite_calM "finite calM";

lemma_A1 "? M. M : calM / RelM &
“(p " ((maxnr. p " r | m)+ 1) | card(M))";

bin_op_closed_lemma "[| M : calM / RelM &
“(p " ((max-nr. p ~r | m)+ 1) | card(M));
ML : M; x : {g. g : (G.<cr>) & M1 #> g = M1};
xa : {g. g : (G.<cr>) & M1 #> g = M1}|]
==>x # xa : {g. g : (G.<cr>) & M1 #> g = M1}";

H_is_SG "[IM : calM / RellM &
“(p " ((max-nr. p " r | m)+ 1) | card(M));
ML : M [] ==
{g. g : (G.<cr>) & M1 #> g = M1} <<= G";

M_elem_map "[1 M : calM / RelM &
“(p " ((max-nr. p " r | m)+ 1) | card(M));
Mi: M; M2: M|l ==> 7 g: (G.<cr>). M1 #> g = M2";

H_elem_map "[IM : calM / RelM &
“(p " ((max-nr. p ~r | m)+ 1) | card(M)); M1:M;
H: set_r_cos G {g. g : (G.<cr>) & M1 #> g = Mi}
11 ==> 7 g: (G.<cr>).
{g. g : (G.<cxr>) & M1 #> g = M1} #> g = H";

rcosetGMig_subset_G "[| M : calM / RelM &
“(p~" ((max-nr. p ~r | m)+ 1) | card(M));
Mi: M; g : (G.<cr>); x : ML #> g |]
==>x : (G.<cr>)";

finite_M1 "[IM : calM / RelM &
“(p " ((max-nr. p " r | m)+ 1) | card(M));
Mi: M|] ==> finite M1";

finite_rcosetGMig "[IM : calM / RelM &
“(p " ((maxnr.p " r | m+ 1) | card(M));
Mi: M; g : (G.<cr>)|] ==> finite (M1 #> g)";

M1_cardeq_rcosetGMig "[| M : calM / RelM &
“(p " ((max-nr. p " r | m)+ 1) | card(M));
Mi: M; g : (G.<cr>)|]
==> card(M1) = card(M1 #> g)";

M1i_RelM_rcosetGMlg "[| M : calM / RelM &
“(p " ((max-nr. p " r | m)+ 1) | card(M));
Mi: M; g @ (G.<cxr>)[] ==> (M1, M1 #> g) : RelM";
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bij_M_GmodH

calM_subset_PouG

finite_M

cardMeqIndexH

index_lem

lemma_leql

lemma_leq2

main_proof

Sylowl

APPENDIX A. THEOREMS FOR SYLOW’S PROOF

"[| M : calM / RelM &

“(p " ((max-nr. p ~r | m)+ 1) | card(M);

ML : M|] ==

(7 £: M ->

set_r_cos G {g. g : (G.<cr>) & M1 #> g = Mi}.
inj_on f M) &

(? g: (set_r_cos G {g. g: (G.<cr>) & Mi#>g=M1})
-> M. inj_on g

(set_r_cos G {g. g: (G.<cr>) & M1 #> g = M1}))";

"calM <= Pow((G.<cr>))";

"M : calM / RelM &
“(p " ((max-nr. p ~r | m)+ 1) | card(M))
==> finite M";

"[| M : calM / RelM &

“(p " ((max-nr. p ~r | m+ 1) | card(M));
M1 : M [] ==>

card(M) = card(set_r_cos G

{g. g : (G.<cx>) & M1 #> g = M1PD";

"[| M : calM / RelM &

“(p” ((max-nr. p ~r | m)+ 1) | card(M));

ML : M|] ==>

(card(M) *card({g. g : (G.<cr>) & M1 #> g = M1}))
= order{(G)";

"[| M : calM / RelM &
“(p” ((max-nr. p " r | m)+ 1) | card(M));
M1 : M |] ==

P~ acx<=s

card({g. g : (G.<cr>) & ML #> g

MiB)";

"[| M : calM / RelM &

“(p " ((max-nr. p " r | m)+ 1) | card(M));
M1 : M |] ==

card({g. g : (G.<cr>) & Ml #> g
<= p ~a";

Mi}b)

"[l M : calM / RelM &

“(p " ((max-nr. p " r | m)+ 1) | card(M));

M1 : M|] ==>

{g. g : (G.<cr>) & M1 #> g = M1} <<= G &
card({g. g : (G.<cr>) & M1 #> g = M1}) =p ~ a";

"? H. H <<= G & card(H) = p ~ a";



Bibliography

[Asp91]
[Baios]

[Bur90]

[C*86]
[CHS8S|
[Chu40]

[CPMY0]

[D+93]
[dB8O]
[dB91]
[Dow90]
[Far90]
[Far93]

[FFL97]

D. R. Aspinall. Isabelle Modules — A New Theory Mechanism for
Isabelle. Master’s thesis, University of Cambridge, 1991.

A. Bailey. The Machine-Checked Literate Formalisation of Algebra in
Type Theory. PhD thesis, University of Manchester, 1998.

R. Burstall. Computer Assisted Proof for Mathematics: an Introduc-
tion using the LEGO Proof System. Technical Report ECS-LFCS-91-
132, University of Edinburgh, 1990.

R. L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice Hall, 1986.

T. Coquand and G. Huet. The Calculus of Constructions. Information
and Computation, 76:95-120, 1988.

A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, pages 56-68, 1940.

T. Coquand and C. Paulin-Mohring. Inductively Defined Types. In
P. Martin-Lof and G. Mints, editors, Proceedings of Colog’88, volume
417 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

Gilles Dowek et al. The Coq proof assistant user’s guide. Technical
Report, 154, INRIA-Rocquencourt, 1993.

N. G. de Bruijn. A Survey of the Project AUTOMATH. In Seldin and
Hindley [SH80], pages 579-606.

N. G. de Bruijn. Telescoping Mappings in Typed Lambda Calculus.
Information and Computation, 91:189-204, 91.

G. Dowek. Naming and Scoping in a Mathematical Vernacular. Tech-
nical Report 1283, INRIA, Rocquencourt, 1990.

W. M. Farmer. A Partial Functions Version of Church’s Simple Theory
of Types. Journal of Symbolic Logic, 55:1269-91, 1990.

W. M. Farmer. A Simple Type Theory with Partial Functions and
Subtypes. Annals of Pure and Applied Logic, 64:211-240, 1993.

S. Finn, M. P. Fourman, and J. Longley. Partial Functions in a Total
Setting. Journal of Automated Reasoning, 18:85-104, 1997.

123




124

[FGT92a]

[FGT92b]

[FGT93]

[FGT95]

[FGT98]

[Fle99]

[GGHY0]

[GHO1]

[GHO3]

[GHMO0]

[GM93]

[Gor95]

BIBLIOGRAPHY

W. M. Farmer, J. D. Guttman, and F. J. Thayer. 1mMps: System
Description. In D. Kapur, editor, Automated Deduction—CADE-11,
volume 607 of Lecture Notes in Computer Science, pages 701-705.
Springer-Verlag, 1992.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little Theories.
In D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of

Lecture Notes in Computer Science, pages 567-581. Springer-Verlag,
1992.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: an Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213—
248, 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. The IMPS User’s
Manual — First Edition, Version 2. Technical report, The MITRE Cor-
poration, 1995.

W. Farmer, J. Guttman, and F. J. Thayer. IMPS
Theory Library Home Page. available from the web:
file/ /math.harvard.edu/imps/imps_html/theory-library.html, 1998.

J. D. Fleuriot. A Combination of Geometry and Nonstandard Anal-
ysis, with Application to Newton’s Principia. PhD thesis, Computer
Laboratory, University of Cambridge, 1999. forthcoming.

Stephen J. Garland, John V. Guttag, and James J. Horning. De-
bugging Larch Shared Language specifications. JEEE Transactions on
Software Engineering, 16(9):1044-1075, September 1990. Reprinted as
DEC Systems Research Center Report 60. Superseded by Chapter 7 in
[GH93].

John V. Guttag and James J. Horning. A tutorial on Larch and LCL,
a Larch/C interface language. In S. Prehn and W. J. Toetenel, editors,
VDMI1: Formal Software Development Methods, Delft, October 1991.
Springer-Verlag Lecture Notes in Computer Science 551. Superseded
by Chapter 3 of [GH93]. '

John V. Guttag and James J. Horning, editors. Larch: Langueges and
Tools for Formal Specification. Texts and Monographs in Computer
Science. Springer-Verlag, 1993.

John V. Guttag, James J. Horning, and Andrés Modet. Report on
the Larch Shared Language: Version 2.3. Report 58, DEC Systems
Research Center, Palo Alto, CA, April 14 1990. Superseded by Chapter
4 of [GH93].

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL,
a Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

M. J. C. Gordon. Merging HOL with Set Theory. Technical report,
University of Cambridge, Computer Laboratory, 1995.



BIBLIOGRAPHY ' 125

[Gor96]

- [GP93]

[Gun89]

[Gun90]

[Hal60]
[Har95)]

[Her64]
[Hey56)

'[Hic96]

[Hic97]

[Hol]
[How80]

[Jac95]

[TM93)

[Kam99]

[KP99]

M. J. C. Gordon. Set Theory, Higher Order Logic or Both? In
J. von Wright, J. Grundy, and J. Harrison, editors, Theorem Proving
in Higher Order Logics: 9th International Conference, TPHOLs’96,
volume 1125 of LNCS, pages 191-202. Springer-Verlag, 1996. Revised
version.

M. J. C. Gordon and A. M. Pitts. The HOL Logic. In Gordon and
Melham [GM93], pages 191-232.

E. L. Gunter. Doing Algebra in Simple Type Theory. Technical Report
MS-CIS-89-38, Dep. of Computer and Information Science, University
of Pennsylvania, 1989.

E. L. Gunter. The Implementation and Use of Abstract Theories in
HOL. In Third HOL Users Meeting, Aarhus University, 1990.

Paul R. Halmos. Naive Set Theory. Van Nostrand, 1960.

J. Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI Cambridge,
Millers Yard, Cambridge, UK, 1995. Available on the Web as
http://wuw.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

I. N. Herstein. Topics in Algebra. Xerox, 1964.

- A. Heyting. Intuitionism: An Introduction. North Holland, Amster-

dam, 1956.

J. J. Hickey. Formal Objects in Type Theory Using Very Dependent
Types. In Foundations of Object Oriented Languages 3, 1996. Available
on the Web as http://wuw.cs.cornell.edu/jyh/papers/fool3.ps.

J. J. Hickey. Nuprl-Light: An Implementation Framework for Higher-
Order Logics. In International Conference on Automated Deduction,
CADE-14, volume 1249 of LNCS. Springer-Verlag, 1997.

The HOL System, Tutorial. Available on the Web as
http://lal.cs.byu.edu/lal/holdoc/tutorial.html.

W.A. Howard. The formulae-as-types notion of construction. In Seldin
and Hindley [SH80], pages 479-490.

P. B. Jackson. Enhancing the NUPRL Proof Development System and
Applying it to Computational Abstract Algebra. PhD thesis, Cornell
University, Department of Computer Science, 1995.

B. Jacobs and T. F. Melham. Translating Dependent Type Theory
into Higher Order Logic. In M. Bezem and J. F. Groote, editors,
Typed Lambda Calculi and Applications, number 664 in LNCS, pages
209-229. Springer-Verlag, 1993. Utrecht, March 16 - 18.

F. Kammiiller. Modular Structures as Dependent Types in Isabelle.
In TYPES ’98, volume 1657 of LNCS. Springer-Verlag, 1999. Selected
papers. To appear.

F. Kammiiller and L. C. Paulson. A Formal Proof of Sylow’s First
Theorem — An Experiment in Abstract Algebra with Isabelle HOL.
Journal of Automated Reasoning, 1999. To appear.




126

[KPS*92]

[KW98]

[LB92]

[LPY2]

[LPY7]

[Luo90a]
[Luo90b]

[Luo92]

[Mac86]

[Mel93]

[MS95]

Nel91]
[Nip93]

[NPS90]

[NW98]

BIBLIOGRAPHY

S. Kromodimoeljo, B. Pase, M. Saaltink, D. Craigen, and 1. Meisels.
The Eves System. In International Lecture Series on Func-

tional Programming, Concurrency, Simulation and Automated Reason-
ing(FPCSAR), McMaster University, August 1992.

F. Kammiiller and M. Wenzel. Locales — a Sectioning Concept for
Isabelle. Technical Report 449, University of Cambridge, Computer
Laboratory, 1998.

Z. Luo and R. Burstall. A Set-theoretic Setting for Structuring The-
ories in Proof Development. Technical Report ECS-LFCS-92-206, De-
partment of Computer Science, 1992. :

Z. Luo and R. Pollack. Lego proof development system: User’s manual.
Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.

L. Lamport and L. C. Paulson. Should Your Specification Language
Be Typed? (revised version). Technical report, 1997. Original version
available as Report 425, Computer Lab (1997).

Z. Luo. A Higher-order Calculus and Theory Abstraction. Information
and Computation, 90(1), 1990.

Z. Luo. An Extended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990. Also as Report CST-65-90.

Z. Luo. A Unifying Theory of Dependent Types: the Schematic Ap-
proach. In Symposium on Logical Foundations of Computer Science,
volume 620 of LNCS. Springer-Verlag, 1992.

D. B. MacQueen. Using Dependant Types to Express Modular Struc-
tures. In Proc. 13th ACM Symp. Principles Programming Languages.
ACM Press, 1986.

T. F. Melham. The HOL Logic Extended with Quantification over
Type Variables. Formal Methods in System Design, 3(1-2):7-24, 1993.

S. P. Miller and M. Srivas. Formal verification of the aamp5 micropro-
cessor — a case study in the industrial use of formal methods. Technical
report, 1995. presented at WIFT ’95.

Greg Nelson, editor. Systems Programming with Modula-3. Prentice
Hall, 1991.

T. Nipkow. Axiomatic Type Classes (in Isabelle). In Types for Proofs
and Programs, Nijmegen, 1993.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-
Lif’s Type Theory — An Introduction. Oxford Science Publications.
Clarendon Press, Oxford, 1990.

W. Naraschewski and M. Wenzel. Object-oriented Verification based
on Record Subtyping in Higher-Order Logic. In 11th International
Conference on Theorem Proving in Higher Order Logics, volume 1479
of LNCS, ANU, Canberra, Australia, 1998. Springer-Verlag.



BIBLIOGRAPHY 127

[OSRSC98] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Calvert. PVS

[Pau89]

[Pau90]

[Pau9lal

[Pau91b]

[Pau94]
[Paus)]
[Paugs]
[PGY6]
[Pol90]

[QED96]
[Rus92]

[Saag9]

[SB83]

[SC91]

[SHS0]

[Sin97]
[S1i98]

Language Reference. Part of the PVS Manual. Available on the Web as
http://www.csl.sri.com/pvsweb/manuals.html, September 1998.

L. C. Paulson. The Foundation of a Generic Theorem Prover. Journal
of Automated Reasoning, 5:363—-397, 1989.

L. C. Paulson. Isabelle: The Next 700 Theorem Provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361-386. Aca-
demic Press, 1990.

L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1991.

L. C. Paulson. Theories as ML Structures, Signatures, and Func-
tors. Unpublished, University of Cambridge, 28th January 1991. Third
Draft.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer, 1994.

L. C. Paulson. First Isabelle User’s Workshop. Technical Report 379,
Computer Laboratory, University of Cambridge, September 1995.

L. C. Paulson. The Inductive Approach to Verifying Cryptographic
Protocols. Journal of Computer Security, 6:85-128, 1998.

L. C. Paulson and K. Grabczewski. Mechanizing Set Theory. Journal
of Automated Reasoning, 17:291-323, 1996.

R. Pollack. The Tarski Fixpoint Theorem. e-mail to: proof-
sci@se.chalmers.cs, 1990.

QED. The "hohum” objection, April 1996. Mailing list discussion.

J. M. Rushby. Formal specification and verification of a fault-masking
and transient-recovery model for digital flight-control systems. In.
J. Vytopil, editor, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 571 of Lecture Notes in Computer Science, pages 237—
257, Nijmegen, The Netherlands, January 1992. Springer Verlag.

M. Saaltink. A Formal Description of Verdi. Technical Report 89-5429-
10, ORA Canada, October 1989.

D. T. Sannella and R. M. Burstall. Structured Theories in LCF. In
CAAP’83: Trees in Algebra and Programming, volume 159 of LNCS,
pages 377-91. Springer-Verlag, 1983.

M. Saaltink and D. Craigen. Simple Type Theory in EVES. In
G. Birtwistle, editor, 4th Workshop on Higher Order Logic, 1991.
Springer Verlag.

J.P. Seldin and J.R. Hindley, editors. To H. B. Curry: FEssays on
Combinatory Logic, Academic Press Limited, 1980.

S. Singh. Fermat’s Last Theorem. Fourth Estate, 1997.

K. Slind. HOL98 Draft User’s Manual. Available on the Web at:
http://www.cl.cam.ac.uk/users/kxs/, 1998.




128

[SM95]

[Syl72]
[Tar55]
[Try93]

[Typ98]
[Wen95]

[Wie59]
[Wil95]

[Win93)]

[WR62]

[Yu90]

BIBLIOGRAPHY

M. K. Srivas and S. P. Miller. Formal Verification of an Avioniocs Mi-
croprocessor. Technical Report SRI-CSL-95-4, SRI and Collins Com-
mercial Avionics, 1995.

Ludwig Sylow. Théorémes sur les groupes de substitutions. Mathema-
tische Annalen, 5:584-594, 1872.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

A. Trybulec. Some Features of the Mizar Language. 1993. Available

from Mizar user’s group.
Workshop Types. Working Group Meeting. Kloster Irsee, March 1998.

M. Wenzel. Using Axiomatic Type Classes in Isabelle. Draft, August
1995.

H. Wielandt. Ein Beweis fiir die Existenz der Sylowgruppen. Archiv
der Mathematik, 10:401-402, 1959.

A. Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals
of Mathematics, 142:443-551, 1995.

P. J. Windley. Abstract Theories in HOL. In L. Claesen and M. Gor-
don, editors, Higher Order Logic Theorem Proving and its Applications,
IFIP Transactions A-20, pages 197-210. North-Holland, 1993.

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1962. Paperback edition to *56, abridged from the
2nd edition (1927).

Y. Yu. Computer Proofs in Group Theory. Journal of Automated
Reasoning, 6:251-286, 1990.



