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Combining the Hol98 Proof Assistant
with the BuDDy BDD package

Mike Gordon* and Ken Friis Larsen'

December 15, 1999

Abstract

Theorem provers descended from LCF allow their users to write com-
plex proof tools with high assurance that false theorems will not be
proved. This report describes an experimental system that extends the
LCF approach to enable combinations of deduction and BDD-based
symbolic calculation to be programmed with a similar assurance. The
deduction is supplied by the Hol98 system and the BDD algorithms
by Jorn Lind-Nielsen’s BuDDy package.

The main idea is to provide LCF-style support to a set of inference
rules for judgements p ¢ — b, where p is an order-inducing map from
HOL variables to BDD variables, ¢ is a HOL term and b is a BDD.
A single oracle rule allows a HOL theorem F ¢ to be deduced from
p t — TRUE.

This report is intended to serve as documentation for the Hol98 li-
brary HolBddLib. It is partly an exposition of standard results, partly
tutorial and partly an account of research in combining deduction and
symbolic state enumeration.

*Univerity of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,
Cambridge CB2 3QG, United Kingdom, Email: mjcg@cl.cam.ac.uk
tIT University of Copenhagen, Glentevej 67, Denmark, Email: kfl@itu.dk
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1 Background and lntroductlon e

‘"Theorem proving and model checking are complementary. Theorem proving
can be applied to expressive formalisms (such as set theory and higher order
logic) that are capable of modelling complex systems like complete processors.
However, theorem proving systems require skilled manual guidance to verify
most properties of practical interest. Model checking is automatic, but can
~only be applied to relatively small problems (e.g. fragments of processors)
It can also provide counter-examples of great use in debugging.

The ideal would be to be able to automatically verify properties of com- -
plete systems (and find counter-examples when the verification of properties
fail). This is not likely to be practical in the foreseeable future, so various
compromises are being explored; for example

1. adding a layer of theorem proving on top of existing model checkers, to
enable large problems to be deductively decomposed into smaller pieces
that can be checked automatically [9, 1];

2. adding checking algorithms to theorem provers so that Subgoals can be
verified automatically [14] and counter-examples found..

These two approaches differ rnainly in the starting point: (1) starts from a
model checker and (2) starts from a theorem prover. The goal i is the same:
combine the best of model checking and theorem proving.

This paper describes some experiments in adding simple model checking in-
frastructure to the Hol98 theorem prover (and so falls under 2 above).

The HOL theorem prover is based on Milner’s LCF approach [7] in which
there is an abstract type of theorems whose primitive operations are the ax-
ioms and rules of inference of a logic (higher order logic in the case of HOL).
Theorem proving tools, such as decision procedures, proof search strategies,
simplifiers etc., are implemented by composing together the primitive infer-
ence rules using programs in the ML programming language (Moscow ML in
the case of Hol98).! The ML type discipline ensures that theorem-values can
only be created via sequences of primitive inferences. There is a long-standing
controversy concerning whether this LCF-approach can achieve good enough

In this report, ‘HOL’ refers to the HOL system(s) generically and ‘Hol98’ to the a
particular version.



efficiency. In a surprising number of cases adequate efficiency can be achieved
[3] as is illustrated by existing tools in HOL. However, programming decision
procedures and theorem provers in an LCF-style is more demanding than just
implementing them as algorithms. Thus, even if a pure LCF-style solution is
possible, it might be more cost-effective to use a simpler non-LCF approach.
For this (and other) reasons, some modern LCF-style provers (e.g. HOL and
Isabelle [12]) allow ‘oracles’ to create theorems. Such oracles can either be
ML programs that operate directly on the datastructures representing terms,
or they might be external tools implemented in other languages (e.g. C).

As part of the Prosper project? there is currently considerable research into
making HOL the basis of a tool integration platform. Part of this work
has resulted in the definition and implementation of a plug-in interface that
enables external tools® (e.g. oracles) to be ‘plugged-in’ to HOL. This enables
the easy implementation of the kind of linking of theorem proving and model
checking done in pioneering studies with PVS [14].

The work described here differs from the plug-in approach in that it aims to
provide general infrastructure enabling users to implement their own bespoke
BDD-based verification algorithms and then to tightly integrate them with
existing HOL tools like the simplifier. Currently, a plug-in is loosely coupled:
it supports a “black box” style of integration in which HOL lobs a problem
at an external tool down the plug-in interface and the tool then:lobs back
a result via the interface. Boyer and Moore [4] have argued that decision
procedures need to be tightly integrated with other tools (e.g. simplifiers
and normalisers). The same point has been reiterated by the designers of
PVS [13], which is built around a powerful suite of cooperating decision
procedures. ' |

Whilst we do not claim that tight-integration is always the best way to con-
nect external tools, we think that the work described here provides evidence

2http://www.dcs.gla.ac.uk/prosper

3 At the time of write there exist prototype plug-ins for:
Clam (http://www.cl.cam.ac.uk/Research/HVG/Clam.HOL/),
Acl2 (http://www.cs.utexas.edu/users/moore/acl2/),
Gandalf (http://www.cs.chalmers.se/~tammet/gandalf/),
Prover (http://wuw.prover.com),
SVC (http://sprout.Stanford.EDU/SVC/),
SMV (http://www.cs.cmu.edu/~modelcheck/smv.html),
Mona (http://www.brics.dk/mona/).




_of its benefits for some applications.

Eventually, it is hoped that our expenence Wlll be combmed Wlth that gamed
from the various Prosper plug-ins to enable a second generation tool integra-
tion platform to be implemented that supports a spectrum spanning both
loose and tight integration of external tools.

Many verification algorithms, mcludmg symbolic model checking [10], repre-
sent Boolean formulae as reduced ordered binary decision diagrams (ROB-
DDs or BDDs for short) [5]. As part of a project on formal verification of
Verilog programs, Ken Larsen interfaced Jgrn Lind-Nielsen’s BuDDy BDD
package?®, which is implemented in C, to Moscow ML®. The BuDDy package |
provides state-of-the-art implementations of standard BDD algorithms [2].

2 MuDDy: The ML interface to BuDDy

The Moscow ML 1nterface to BuDDy provides ML functions for constructing
and manipulating BDDs. The storage management of ML and BuDDy is
linked: for example, whenever a BDD is garbage collected by ML its reference
count in BuDDy is decreased and hence it may be subsequently garbage
collected by the BDD package. The combination of ML and BuDDy is called
MuDDy ©. It makes BuDDy available in Moscow ML via three structures:

‘e bdd defines an ML type bdd representing'nodes in BuDDy’s BDD space,
and operations for creating and manipulating ML values representing
BDDs;

e £dd provides support for blocks of BDD variables used to encode values
representing elements of finite domains;

e bvec provides support for Boolean vectors.

The current }H0198+BuDDy system only uses bdd and so the documentation
of £dd and bvec provided here is minimal (see Sections 2.9 and 2.10 below).

‘nttp://wuv.itu.dk/research/buddy/
Shttp://www.dina.kvl.dk/~sestoft/mosml.html
Shttp://www.itu.dk/research/muddy/



2.1 Initialisation and termination of sessions

The BuDDy package must be initialised before any BDD operations are done.
Initialisation is done with the ML function

init : int * int -> unit
Evaluating init m n initialises BuDDy with m nodes in the nodetable and
a cachesize of n. The library HolBddLib (Section 4) initialises the nodetable

to 1000000 and cachesize to be 10000. The following is a quotation from the
BuDDy documentation [8].

Good initial values are

Example nodenum cachesize
- Small test examples 1000 100
Small examples 10000 1000
‘Medium sized examples 100000 10000
Large examples 1000000 10000

Too few nodes will only result in reduced performance and this
increases the number of garbage collections needed. If the package
needs more nodes, then it will automatically increase the size of
the node table.

The function
done : unit -> unit

frees all memory used by BuDDy and resets the package to its initial state.
The function

isRunning : unit -> bool

tests whether BuDDy is running (i.e. init has been called and done has
not been called). It is useful for checking if initialialisation is needed — see
Section 4.

The functions init and done should only be called once in a session.
Statistical information from BuDDy is available using the function stats

7



_stats : unit -> {produced _ __:dimt, _ . .

nodenum :vint,
maxnodenum : int,
freenodes : int,
minfreenodes : int,
varnum : int,
cachesize  : int,
gbcnum - : int}

The meaning of the values of the various named fields in the record returned
by evaluating stats() are

Field name | Meaning

‘produced total number of new nodes ever produced

nodenum currently allocated number of BDD nodes

maxnodenum user defined maximum number of BDD nodes

freenodes number of currently free BDD nodes

minfreenodes | minimum number of nodes left after a BDD garbage collection
varnum number of defined BDD varlables '

cachesize number of cache entries

gbcnum : number of BDD garbage collections done

2.2 BDDs representing true and false

The atomic BDDs representing the two truthvalues are bound to the ML
identifiers TRUE and FALSE, both of type bdd.

Functions for mapping from ML Booleans to BDDs and vice versa are, re-
spectively

fromBool : bool_->-bdd
toBool : bdd -> bool

The function toBool returns true on TRUE and false on FALSE. It raises
the exception Domaln on non-atomic BDDs.

‘equal : bdd -> bdd -> bool -

tests the equality of two BDDs. Thus TRUE is equal to fromBool (true) and
FALSE is equal to fromBool(false).



2.3 Variables

In BuDDy, BDD variables are encoded as integers (type int in ML) and the
BDD variable ordering is the numerical ordering. Thus to build a BDD to
represent a HOL term with a particular variable ordering it is necessary to
map HOL variables to integers so that the numerical order corresponds to
the desired variable order.

- 'The number of variables in use must be declared using

setVarnum : int -> unit
Evaluating setVarnum n declares that the n variables 0, 1, ... , n—1 are
available for use. The number of variables can be increased dynamically

during a session by calling setVarnum with a larger number. The number of
variables cannot be decreased dynamically. The function

getVarnum : unit -> int

returns the number of variables in use (i.e. the argument of the last applica-
tion of setVarnum).

2.3.1 Creating new variable nodes
The function
ithvar : int -> bdd

maps an ML integer to a BDD that consists of just the variable corresponding
to the integer and

nithvar : int -> bdd

maps an integer to BDD representing the negation of the variable.

Note that evaluating ithvar n or nithvar n will raise an exception if n has
not been declared as in use, i.e. if setVarnum m has not been previously
evaluated for some m greater than n.




- 2.3.2. ,,S,ets,,,of;valfiables,,and,,quantiﬁcation,,,,,,,,,,,v,,,,,, S

BuDDy provides operations on BDDs for quantifying with respect to sets of
variables. ‘bdd provides a type varSet to represent such sets with, respec-
tively, a constructor and two destructors:

makeset : int list -> varSet

scanset : varSet -> int vector
fromSet : varSet —-> bdd

The destructor scanset returns a vector of the variables in the set and

the destructor fromSet returns a BDD representing the conJunctlon of the
variables in the set.

The function forall umversally and exist eXIStentlally quantlﬁes a BDD
with respect to a set of variables: :

forall : varSet -> bdd -> bdd
exist : varSet -> bdd -> bdd

2.3.3 Sets of pairs of variables and substitution

The structure bdd provides a type pairSet representlng sets of pairs of vari-
ables, with constructor

makepairSet : (int * int)list -> pairSet
Evaluating makepairSet[(z;,z}), ... , (zn,7,)] creates a set of pairs
specifying that z be substituted for z; ( for 1 < i < n). Such a substitution
is performed on a BDD with the function '

replace : bdd -> pairSet -> bdd
A variable can be replaced with a BDD using

compose : bdd -> bdd -> int -> bdd

- Evaluating compose b; by n substitutes b, for the variable n in b;.

10



2.4 Boolean operations on BDDs

The structure bdd introduces a type bddop corresponding to Boolean opera-
tions on BDDs. The ML function '

apply : bdd -> bdd -> bddop -> bdd

applies a BDD operation to BDD values.

BuDDy provides functions for calculating in a single step the result of per-
forming a Boolean operation and then quantifying the result with respect to
several variables.

‘appall : bdd -> bdd -> bddop -> varSet -> bdd
appex : bdd -> bdd -> bddop -> varSet -> bdd

The function appall universally quantifies the result of the Boolean opera-
tion and appex existentially quantifies it.

MuDDy provides ten operations of type bddop and for each of these an ML
infix of type bdd * bdd -> bdd.

bddop || bdd * bdd -> bdd | Result of applying to (b1, bs) |
And AND bl N b2
Nand | NAND —(by A by)
Or OR bl \% b2
Nor NOR "'(bl V bg)
Biimp BIIMP b1 - b2
Xor X0R _I(bl = b2)
Imp IMP bi=bs
Invimp || INVIMP bo=>b;
Lessth || LESSTH =b; A b
Diff DIFF by A b,

The ML infixes are pre-defined using apply, for example

fun AND(b1,b2) = apply bl b2 And

There is no type of unary operators analogous to the binary operator type
bddop, but MuDDy does provide a negation operator

NOT : bdd -> bdd

This negates a BDD using the negation program in BuDDy.

11




2.5 ,,,I,nspecti,ng,, BDD nodes

" The integer labelling a BDD node and the BDDs corresponding to the high
(i.e. true) and low (i.e. false) nodes are obtained, respectively, with

var : bdd -> int
high : bdd -> bdd
low : bdd -> bdd

Thus if b is the BDD of “sf = then tl' else to” then var b will return the
number representing variable z, high b will return the BDD of ¢; and low b
will return the BDD of #,. \ '

Note that var, high and low raise an exception if apphed to TRUE or FALSE.
The entire BuDDy node table of a BDD can be coppied into ML using

‘nodetable : bdd -> int * (int * int * int)vector

The integer returned as the first component of the pair is a pointer (starting
from 0) into the second component, a vector of node descriptors. This pointer
points to the root node. Each node descriptor is a triple of integers (v, 1, h),
where v is the node label (i.e. a number representing a vanable) [ points to
the low (false) node in the vector and h points to the high (true) node.
The first two nodes in the vector are special: they represent true and false;
 respectively, and arbitrarily have the structure (0,0, 0).

The number of nodes in a BDD is computed by the function’>

nodecount ‘: bdd -> int |
This could be defined by

fun nodecount bdd = Vector. length(snd(nodefable bdd));
However, nodecount defined this way is likely to run’out of space on large
BDDs (since it involves copying the argument BDD from BuDDy’s repre-

sentation into an ML vector). Thus the ML function provided by MuDDy
invokes BuDDy’s nodecount function directly and so is space-efficient.

12



2.6 Printing BDDs

BuDDy provides two ways of printing BDDs: (i) as the set of paths from
the root node to the true node and (ii) to the format used by the dot graph
drawing program’. ' |

The functions for printing BDDs are;

printset : bdd -> unit
printdot : bdd -> unit
foprintset : string -> bdd -> unit
fnprintdot : string -> bdd -> unit

printset and printdot print to standard output, whilst fnprintset and
fnprintdot print to a file with the supplied name.

printset and fnprintset print out a sequence of paths, each one having
the form

< MQ:iNg, --- , M1

where the ng, ..., n; after the colon (:) are 0 or 1 and indicate that the
next node in the path is reached by following the low (false) or high (true)
pointer, respectively.

For example, evaluating

printset (AND(ithvar O, OR(ithvar 1, NOT(ithvar 2))))
results in

<0:1, 1:0, 2:0><0:1, 1:1>

which is best understood by looking at the diagram of the BDD drawn by
dot that appears below. |

To illustrate printing to dot format, the same BDD can be printed to a file
ex by evaluating ‘
fnprintdot "ex" (AND(ithvar 0, OR(ithvar 1, NOT(ithvar 2))))

executing dot -Tps ex > ex.ps (in Unix) results in the following Postscript
diagram of a BDD

"http://www.research.att.com/sw/tools/graphviz/

13




2.7 Mlscellaneous BDD operatlons

The structure bdd prov1des a miscellaneous selectlon of BDD operatlons from
BuDDy.

2.7.1 restrict(

BDDs can be restricted by instantiating variables to true.or false. Such
an instantiation is represented by an ML value of type restriction, which
has a constructor

makeRestriction : (int * bool)list -> restriction

Evaluating makeRestriction[(v;,t1), ... , (vn,t,)] creates a restriction
specifying that each v; be instantiated to the truth—value t; (for 1<i<n).

The function
| resﬁrict : bdd -> restriction -> bdd
instantiates thé Variables in a BDD as specified in the supplied restriction.
2.7.2 simplify
The ML function
simplify : bdd -> bdd -> bdd

14



simplifies its second argument under the assumption that the first argument
is true. Thus evaluating simplify b; b, results in a BDD b, hopefully sim-
pler than by, such that b, = (b = b)) or, equivalently, b; A by = by A b).
More precisely, the relationship between b,, by and b, is that the BDD
IMP (b, ,BIIMP (b, b5)) is the BDD TRUE (or, equivalently, that AND (b, ,bs) ‘
and AND(b;,b,) are equal, i.e. the same BDD).

For more details see Henrik Reif Andersen’s lecture notes on BDDs [2], where
the algorithm underlying simplify is described and attributed to a paper
by Courdert, Berthet and Madre [6].

2.7.3 satcount

The number of assignments to all variables in use in the current session that
satisfy a BDD (i.e. make it true) is given by the ML function

satcount : bdd -> real
The answer is exact until the result is too big to be represented as a Moscow

ML integer. Real numbers are used so that results can be returned when this
happens.

2.7.4 support
The function
support : bdd -> varSet

gives the variables that a BDD depends on. |
An application is to define a function that counts the number of valuations

of a BDD using satcount.

statecouni: : bdd -> real

The definition of statecount is

15



, fun statecount bdd

let val sat _ satéount bdd
val total = Real.fromInt(getVarnum())

val sup = = scanset(support bdd)
val numsup = Real.fromInt(Vector.length sup)
val free = total - numsup -

in

if equal bdd TRUE

~then 0.0

else sat / Math.pow(2.0, free)
end ‘ ’

Ifa BDD is representing a set of states, then statecount gives the number
of states in the set (hence the name).

2.8 Dynamic variable reordering

BuDDy provides functions for dynamic variable reordering using a variety of
methods. See the BuDDy documentation [8] for further details. The dynamic
reordering functions provided in ML via MuDDy are in the structure bdd.

2.9 The MuDDy structure fdd .

The structure £dd provides functions for manipulating values of finite do-
mains. Functions are provided to allocate blocks of BDD variables to repre-
‘sent integer values instead of only Booleans.

Encoding is done with the least significant bits first in the BDD ordering. For
example, if variables vy, vy, V9, v3 are used to encode 12, then the encoding
would yield vg =0, v; =0,v; =1 and v3 = 1. ’

See the BuDDy documentation [8] for further details. See the ML structure
fdd for the BuDDy facilities provides in ML via MuDDy.

2.10 The MuDDy structure bvec

The structure bvec provides tools for encoding integers as arrays of BDDs,
where each BDD represents one bit of an expression.

16



See the BuDDy documentation [8] for further details. See the ML structure
bvec for the BuDDy facilities provides in ML via MuDDy.

2.11 Technical Details

The heart of the MuDDy package is mostly stub code that mirrors the BuDDy
API and takes care of translating C values into SML values and vice versa.

The most tricky part is to make the Moscow ML garbage collector cooperate
with the BuDDy garbage collector (we don’t want either collector to try to
collect the other’s garbage). The cooperation is done by using the finalized
values facility of the Moscow ML runtime system. That is, whenever a bdd
value is returned from the BuDDy library, MuDDy register it as an external
root (via bdd_addref) and wraps it into a finalized value.

A finalized value, in the Moscow ML runtime system, is a pair where the first
component is the destructor (a function pointer) and the second component
is the data (typicaly a pointer). When the Moscow ML collector collect a
finalized value it apply the destructor on the data. In the case of the MuDDy
package the destructor is bdd_delref and the data is the node-index returned
by BuDDy. | '

3 Formal link from HOL terms to BDDs

In pure HOL, theorems are an abstract datatype, with the initial pre-defined
values corresponding to axioms and the operations corresponding to rules of
inference. Thus I~ ¢ is implemented as ¢ being computable using inference
rules starting from axioms. '

Theorems are one kind of judgement. Consider now another kind of judge-
ment:

pt—b

This means that the HOL Boolean term ¢ is represented by the BuDDy
BDD b with respect to a mapping p from HOL variables to ML integers
(representing BDD variables).

A mapping from HOL variables to BuDDy variables is called a variable map.
The notation {a — 3,b+> 4,¢c+— 5} denotes a variable map that maps a to
3,bto 4 and ¢ to 5.

17




~ Two examples of ' judgements p t — b with the same ¢, but dlfferent psare

{a—3,b—>4,c—5} (aAb)V(—aAc) —

and

{a—=5,b—4,c—3} (aAb)V(-aAc) —

3.1 BDD rules for quantifed Boolean formulae

Rules for these BDD Judgements that relate HOL loglcal variables to BuDDy
variable nodes are -

plv) =n nithvar plv) —
pv +— ithvar n p v +— nithvar n

Rules that relate HOL truthvalues and BuDDy atomic BDD nodes are

ithvar -

TRUE p T — TRUE FALSE p F — FALSE |
Rules that relate HOL and BuDDy B_oolean‘ operations are
pt—b | |

T == NOT b |

plimb  ptarby Ptimb ptarrby
AND OR

ptl/\tg — blANDbQ ptiViy — b10Rb2

) ptll—)bl ptgl—‘)bg | ptli—)bl ptgl—)bg
NAND p “l(tl AN t2) +—> by NAND b, NOR p _l(t1 V tz) > b; NOR bo
IMP p b p ta > by INVIMP piy—b p ta > by

p t1=>1ts — b; IMP b, p t2=}t1 — b, INVIMP bo

18



Mp ptirsb  pta by XOR ptim b piy— by

BII

pt1 =1 — b, BIIMP b, p (tl = tz) — b; XOR bs
pth—)bl ptgl—)bg ptlk-—)bl ptgi—)bg
DIFF
LESSTH p -ty Nty — b1 LESSTH b2 pti Nty — bl DIFF bs

The rule for the universal quantifier is

pt—=b  plu)=n - pluy) =mp

f
orall pVuy «+- up. t — forall (makeset[n;,...,np|) b

The rule for the existential quantifier is

ptosb  pw)=m o plu) =,
pJuy -+- u,. t — exist (makeset[n,...,np|) b

exist

If ¢t is a quantified Boolean formula® and p maps all the variables in ¢ to
distinct numbers, then it is clear that the rules above enable a (necessarily
unique) BDD b to be deduced such that p ¢ — b.

The Hol98+BuDDy system maintains an extendable list of BDD judgements
called the BDD map (see Section 4.1) and provides a function termToBdd that
takes a term ¢ and, using the judgements in the BDD map and the above
rules, tries to compute a BDD b such that p ¢ — b, using a variable map
p that is either explicitly supphed by the user or derived from the order in
which variables are encountered..

3.2 Deriving HOL theorems via a BuDDy oracle

The only rule for deriving HOL theorems from BuDDy is

p t — TRUE
Ft

A rule for transferring BDD representations across HOL equalities is

bddOracle

=19 ptzf—')b
pt1|—>b

Fi
addEquation L

Hol98+BuDDy is a fully-expansive system whose inference rules are the
union of the HOL logic for theorem judgements - ¢ and BDD rules such as
those above for BDD judgements p ¢ — b

8 A quantified Boolean formula (QBF) is a formula built out of Boolean variables and
constants using Boolean operations and quantification over Boolean variables.
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__The term ¢t in any judgement p t > b that can be derived will have HOL

“type bool and will only contain free variables of type bool. However t need
not be a quantified Boolean formula, because it might contain non-Boolean
subterms (e.g. quantifications over non-Boolean variables).

- 3.3 Example proof using BDD rules

Model checking consists of algorithmically checking tha.t all executions of a
model of a system satisfy a property. Checkable properties are often ex-
pressed in temporal logic and models are specified in application-specific
languages. The standard semantics of temporal logic defines the truth-value
of temporal formulae with respect to sequences of states — called traces —
that represent successive states of a system. Thus a temporal formula can be
considered to be a predicate on sequences of states, i.e. a formula of the form
®(0), where @ is the property and o a sequence of states (trace). A model
defines a set of sequences of states corresponding to possible executions of
a system. Thus a model can also be represented as a predicate on traces,
M(o) say. To check that property ® holds of all executions of model M it
is sufficient to check the truth of the formula Vo. M(o) = ®(0).

In this section we outline a special case in which the property ® is AG P
of CTL [10] (i.e. P true at all points in the trace) and M is given by a
transition system (R, B), where B:state->bool defines an initial set of states
and R :state#state->bool is a next-state relation (transmon relation). The
type state is a Cartesian product of bool.

Assume terms B(s) and R(s, s') are given, define
Mizs)(@) = B(o(0) A ¥n. R(o(n), o(n+1)
(AG P)(¢) = Vn. P(co(n)) |
Then proving Yo. Mz 5)(0) = (AG P)(0) is an example of a model checking

problem: P holds globally (AG) of all executions of Mz 5. We sketch how
the problem can be solved using Hol98+BuDDy .

First, inductively define S, to be a predicate that is true of a state s if and
only if s is reachable from a state satisfying B in n or fewer R-steps.

So(s) = B(s)
Sns1(s) = Su(s) vV (Fu. Sn(u) A R(y,s))

The formula 3n. S,(s) true if s is reachable from B via some number of
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R-steps.
Now clearly if Mz g)(o) then the nth state in the trace o is reachable in n
R-steps, so F Vo. Mz (o) = VYn. Sp(o(n)).

Now suppose we can show that
Vs n. Sp(s) = P(s)
then it would follow by specialising s to o(n) that
Vo n. §,(0(n)) = P(o(n))
and hence
Vo. Mg (o) = Vn. P(o(n))
which is
Vo. Mz)(0) = (AG P)(o)

This shows that the model checking problem above can be reduced to the
state exploration problem Vs n. S,(s) = P(s). Such a reduction is easily
done automatically by deduction in HOL.

To solve the state exploration problem, note the following obvious fixed-point
lemma (obvious because the sets corresponding to S; increase as ¢ increases).

(Si(5) = Siz1(5)) = ((An- Sa(s)) = Sils))

The outline deduction below shows how a mixture of BuDDy BDD calcula-
~tion and HOL proof can be used to deduce Vo. Mz 5y(c) = (AG P)(0).
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Judgement  Justification

pSo(s)—>by o : termToBdd
p 820(3) — bog o _ terinTode
p So1(s) = by ' termToBdd
p (520.(8) = 821( )) > bog BIIMP bo; BIIMP

- Sx(s) = Sai(s) o “bddOracle

_ (assuming beg BIIMP by; is TRUE)
- (Sa0(8) = Sa1(s)) = (n. Su(s)) = Sao(s) Fixed-point lemma (i = 20)
= (

In. Sp(s)) = Sao(s) | - Modus Ponens
p (An. 8,(s)) + bao - addEquation
-~ p P(s) = bp : | termToBdd
p (3n. 8,(s)) = P(s) > by IMP bp IMP
F (3n. Su(s)) = P(s) : bddOracle
_ (assuming byg IMP bp is TRUE)
F Vn. Sp(s) = P(s) - Deduction
FVo. Mz g (o) = (AG P)(o) | Argument given above

.'Sueh combinations of deduction and BDD calculation illustrate how symbolic
model checking can be implemented in Hol98+BuDDy .

3.4 Miscellaneous BDD rules

The senlantics of the BuDDy operations described in Section 2.7 ean be
“succinctly specified using BDD judgements. : :

In the rule restrict below ¢, ..., ¢, are Boolean constants (ie. Tor F), uy,
., Up, are variables, t[u,,.. up] denotes a term containing u,, ..., 4, and
tler, - - -, ¢p) denotes the term obtained by substituting ¢; for u; (1 S i <p).
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restrict
ptlul,...,u)—=>b  pur—my p Up > Ny
ptler,...,¢) > restrict(makeRestriction|(n,c1),...,(np,cp)]) b

The rule simplify below is experimental. Note that this rule is currently not
available in Hol98+BuDDy as an oracle (the only oracle is bdd0Oracle). The
ML function simplify, as described in Section 2.7, is available for construct-
ing BDDs, but it is not clear how it can be used in conjunction with HOL
(adding the rule simplify as an additional oracle would be a possibility, but
this requires further thought).

simplify

pt— b p to > by pt— simplify b; b
Ft = (t2 = t)

4 Introduction to HolBddLib

The library Ho1BddLib enables Boolean HOL terms to be easily represented
as BDDs and then BDD calculations to be mixed with HOL deduction. The
implementation uses the generalised ‘LCF-like’ or ‘fully expansive’ approach
described above in Section 3. A

HolBddLib currently contains two structures: HolBdd which has general tools
for connecting HOL and BuDDy, and StateEnum (which uses HolBdd) which
defines some simple symbolic state enumeration programs.

Loading HolBddLib first loads HolBdd (which loads the BuDDy structures
bdd, fdd and bvec), next StateEnum is loaded, and finally BuDDy is ini-
tialised with a nodesize of 1000000 and cachesize of 10000. If you want to
perform your own BuDDy initialisation with different values, then instead of
loading Ho1BddLib, load StateEnum and then call bdd.init.

The rest of this section describes and documents the tools in HolBdd.

Section 5 presents a simple use of the Ho1Bdd tools, together with some timing
data.

Section 6 is a tutorial introduction to using HolBdd for simple symbolic state
enumeration. It is illustrated with running examples.

Section 7 documents the modest state enumeration tools that are pre-deﬁned
in StateEnum.
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- 4.1 Representing HOL terms as BDDs: termToBdd. - .

“The functions

ternToBdd . term -> bdd
pureTermToBdd : term -> bdd

try to represent a HOL term as a BDD using a variable ordering held in an
extendable datastructure®, called the variable map, that maps HOL variables
to integers. At the start of a session using HolBddLib the user can explicitly
declare a variable ordering (using the function initHolBdd described below).
Without such a declaration, the system orders variables in the order in which
they are encountered: a side-effect of a call to termToBdd is to add any previ-
ously unseen variables to the variable map (the exact order is implementation
dependent, but is normally left to right).

The difference between pureTermToBdd and termToBdd is that the latter
makes use of a dynamically extendable global table that maps HOL terms to
BDDs. This table is called the BDD map and is described later. Evaluating
TermToBdd ¢ will attempt to construct a BDD of ¢ using any BDDs of sub-
terms of ¢ that are stored in the table. This enables hierarchical specification
to be efficiently managed: the BDDs of components are precomputed and
stored in the table, then if ¢ represents a combination of instances of these
components, its BDD is easily computed from their BDDs.

If ¢ is a pure quantified Boolean formula, then it may be more efﬁment to
compute its BDD directly by pureTermToBdd ¢, which does not try to ﬁnd
precomputed BDDs of subterms of ¢ in the table.

A simplified ML pseudo-code description of the algorithm used by termToBdd
- is given below. The algorithm used by pureTermToBdd is the same as that
for termToBdd, but without the first two conditionals.

In the pseudo-code, if op is a HOL logical operator (e.g. A) then 0p is the cor-
responding BDD operator from the table on page 11 (e.g. And). The equality
operator = only corresponds to Biimp when its arguments are Boolean (see
8th, 10th and 12th conditional in pseudo-code below). The equality of pairs
of Booleans is reduced to the conjunction of the equality of the components
(see 9th conditional).

9 Actually a binary map http://www.dina. kvl.dk/~sestoft/mosmllib/Binarymap.html.
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fun termToBdd ¢ =

if t is in the table

then return corresponding BDD else

if t matches a term in table

then return corresponding BDD instance else
if t is a new wvariable

then add variable to the wvariable map and then

return ithvar n for appropriate n else

if ¢t i¢s variable number n in variable map

then ithvar n else

if ¢t = (M. tl)tg

then compose (termToBdd t;) (termToBdd t) (termToBdd v) else
if ¢t = :

then TRUE else

ift =
- then FALSE else
if £ = -t

then NOT(termToBdd t;) else

if ¢ = ((t1,22) = (t3,%4))

then AND(termToBdd (¢; = t¢3),termToBdd (ty = t4)) else

if t =1 op fs

then apply (termToBdd #;) (termToBdd tz) 0p else

if ¢ = (tl — to | t3)

then let val (b1,b2,b3) = (termToBdd t;,termToBdd t,,termToBdd t3)
in OR(AND(b1,b2) ,AND(NOT(b1),b3)) end else

ift =3z ... z,. £ op to

then appex (termToBdd %;) (termToBdd t;) op {a:l, .»Zn} else

if ¢t =3z, ... z,. k3

then exist {zi,...,Zn} (termTode t1) else

if t =V ... z,. t1 0p 1o

then appall (termToBdd ?;) (termToBdd t2) 0P {z1,...,T,} else

ift=Vz ... 2,. 1

then forall {z;,...,z,} (termToBdd #;) else

raise holToBddError

The phrase ‘return corresponding BDD instance’ used in the pseudo-code is
implemented by a fairly complex and somewhat heuristic mixture of HOL
deduction and BuDDy operations. For example, replace can only replace
distinct variables with distinct variables. Suppose we have in the BDD
map an entry for Foo(u,v,w,x,y,2z) and we want to compute the BDD of
Foo(a,b,p,q,p,(x/\y)) (note that p is repeated). The current implemen-
tation of termToBdd uses a special HOL conversion (BDD_CONV) to rewrlte
this to
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'z. (57 =p) A\ (z=x /\y)) \Foo (a, b, p, q, ¥y, 2

~ and then computes the BDD of this. Note that in the rewritten term Foo
is applied to distinct variables. Setting the ML reference BDD_CONV_flag to

true will cause theorems generated by BDD_CONV to be printed. '
It is expected that in the future the definition of termToBdd will be further
tuned to better exploit combinations of replace and compose, and possibly
other BDD-building algorithms avallable in BuDDy, but for the time being
performance seems adequate.

Note that termToBdd and pureTermToBdd may have the sidefeffect of ex-
tending the variable map. o .

The function bddToTerm is total and creates a nested conditional correspond-
ing to a BDD.

bddToTerm : bdd -> term

The BDD map can be manipulated explicitly by the user or by verification
programs. The table uses the ML structure Polyhash to hash terms to BDDs

~ that represent them. It also uses the HOL structure Net to index terms so

that it can be efficiently determined whether a given term is an instance of a
term that already has an associated BDD. This is used in the 2nd conditional
of the termToBdd pseudo-code. The ML data structure bdd_map is a hash
table paired with a term net: | '

type bdd_map = (term, robdd) hash_table * (term)net
During a session a reference to a pair consisting of the variable map and the
BDD map is maintained. This pa1r is called the BDD table and is initialised
with the function

initHolBdd : (string)list -> unit
Evaluating initHolBdd[z¢,z:,...,Z,] initializes the variable map with the

“variables ordered as listed (i.e. z; > @ for 0 < ¢ < n). It also initializes the
BDD map to have an empty hash table and term net. ' '

A new entry is added to the BDD table using the function
addEquation : thm -> (term * bdd)
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Evaluating addEquation(l ¢; = ¢;) applies termToBdd to #, to compute a
BDD, b, say, and then puts {{; — by} into the BDD map (i.e. hashes #; to
b, and enters t; in the net). Note that the call of termToBddd may extend
the variable map. An exception is raised by addEquation if it is not applied
to an equation or if termToBdd fails. ,
When termToBdd ¢ is evaluated, the BDD hashed to ¢ is returned, if one
exists. If not, then a list of terms with pre-computed BDDs and that can
be instantiated to ¢ is obtained from the net. A simple heuristic!® is used
that aims to select from the list the term whose BDD requires least work to
instantiate to t; the resulting instantiated BDD is then returned.

The BDD a term hashes to can be removed from the BDD table using the
function

deleteBdd : term -> bdd

Removing terms from the BDD table may enable the BuDDy garbage col-
lector to reclaim space. Note that not all side effects resulting from adding
a term to the BDD table are undone by deleteBdd — in particular, any ex-
tensions to the global variable ordering made when the term was added will
persist.

4.2 Inspecting the variable and BDD maps

The following functions return, respectively, the current variable map and
BDD map.

showVarMap : unit -> (string #* int)list
showBddMap : unit -> (term * bdd)list

The current variable order is returned by
showVarOrd : unit -> string list
which is just defined by

fun showVarOrd() =
map fst (sort (fn(_,m)=>fn(_,n)=>m<n) (showVarMap()));

10Tnitial experiments show that the heuristic used works well, but further experiments
and performance analysis might lead to a better implementation (see Section 7.4).
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4.3 ,,,,Val,igus,,B,DD:b,as,ed checking functions

Tautoldgy checkers -

tautCheck : term -> (bool)option
 pureTautcheck : term -> (bool)option

can be defined by

fun tautCheck tm = ‘
- SOME (toBool (termToBdd tm)) handle _ => NONE
and pureTautCheck tm = :

SOME (toBool (pureTermToBdd tm)) handle _ => NONE

Evaluating tautCheck ¢ or pureTautCheck ¢ returns SOME true if the BDD
of t is a tautology (i.e. is TRUE), returns SOME false if the BDD of ¢ is a con-
tradiction (i.e. is FALSE) and returns NONE otherwise (i.e. if the construction
of the BDD of ¢ fails, or the BDD is neither a tautology or contradiction).

A term can be tested for equivalence to T or F:

isT : term => bool
isF : term -> bool

These are defined by

fun isT tm =

case tautCheck tm of SOME true => true | _ => false;
and
fun isF tm = .
- case tautCheck tm of SOME false => true | _ => false;

The functions isT and isF do not raise an exception if the BDD of the -
argument can’t be computed: they just return false. The equivalence of
two terms can be tested by

eqCheck : term * term -> bool
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The definition is simply:
fun etheck(t1,£2) = isT(mk_eq(t1,t2));

Note that these function do not create HOL theorems, merély return ML
Booleans.

4.4 Finding models and refutations

The functions

findModel : term -> term
findRefutation : term -> term

try to find a conjunction of the variables or negated variables occuring in a
term that makes it true (findModel) or false (findRefutation). Thus, for
a suitable term ¢m, it should be the case that

|- ~(findModel tm) ==> tm
|- ~(findRefutation tm) ==> “tm

For example, applied to (x /\ y) \/ ("x /\ z), the function findModel

returns “x /\ z and findRefutation returns "z /\ ~“x. Exceptions are
raised on tautologies and contradictions.

4.5 The oracle bddOracle

‘The oracle function
bddOracle : term -> thm

returns the theorem I ¢, if termToBdd ¢ successfully evaluates to the BDD
representing T.

This function is the only way that HOL theorems can be created via BuDDy.

Theorems created using bddOracle are tagged with "BDD" and the Hol98
tagging mechanism propagates this tag to any theorems deduced from results
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_ of bddOracle, so that the provenance of theorems is explicit (i.e. ‘whether

they are proved using only the rules of higher order logic, or proved from
theorems created using BuDDy).

To use BuDDy to prove %, and %, equivalent, it is sufﬁment to evaluate
bddOracle (; = t5). The following function does this

bddEqOracle : term * term -> thm
The definition is simply
fun bddEqOracle(t1,t2) = bddOracle(mk_eq(t1,t2));

A special case is proving that a term is equal to the HOL representation of
its BDD:

bddRepOracle : term -> thm
The definition is simply
fun bddRepOracle t = bddEqOracle(t, bddToTerm(termToBdd t));

4.6 Printing BDDs with variable names

The BDD state contains, via the variable map, the encoding of variables as
numbers. The function showTerm enables the BDDs of HOL terms to be
displayed with nodes labelled with variables.

showTerm : term -> unit

‘Evaluating showTerm ¢ has the side-effect of writing a file scratchBDD.ps in
the current directory containing a diagram of the BDD of t drawn with the
dot program. For example

showTerm ‘‘A /\ (B \/ “C)‘¢

writes a file scratchBDD .ps containing the following BDD diagram
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showTerm is a special case of a more general function

termToBddDiagram : ~
string -> string -> term -> (bdd * (string * int)list)

Evaluating termToBddDiagram filename label t writes a file called filename.ps
containing a diagram of the BDD of ¢ labelled with the string label. The BDD
of ¢ is returned, together with the variable map used to convert the BuDDy
node labels to HOL variable names.

5 Example: tautology checking

As a simple example, consider disjunctive normal form tautologies created
by the following program

fun DNF n = let fun sum_of_prod_terms 0 =
let val v = mk_var("v""(int_to_string 0), bool)
in
[[v], [mk_neg v]]
end
| sum_of_prod_terms n =
let val v = mk_var("v""(int_to_string n), bool)
val dnf = sum_of_prod_terms(n-1)

in
map (cons v) dnf) @ (map (cons(mk_neg v)) dnf
end
in -
list_mk_disj(map list_mk_conj (sum_of_prod_terms n))
end
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~ For example, DNF 1 is (v1Av0) V (v1 A—w0) V (~v1Av0) V (=01 A—w0). Note
“that DNF n is a term containing 2"*! x (n+1) distinct literals (variables or
negated variables). ,

The table shows the runtime and garbage collection time (GC) of creating
DNF n; a HOL term, and then the additional times to check that it is a
tautology using TAUT (Hol98’s built-in non BDD-based tautology checker),
tautCheck and pureTautCheck.

Times are also given for a bespoke ML program bddDNF that builds the BDD
of the DNF directly using bdd operations (i.e. it doesn’t go via HOL terms).
Note that once the BDD is built it will just be TRUE, so there is no significant
additional time needed to check that it’s a tautology!

The definition of bddDNF is

fun bddDNF n =

(if not(getVarnum() > n) then setVarnum(n+l) else ();
let

fun sum_of_prod_bdds O

| sum_of_prod_bdds n

[[ithvar 0], [mithvar 0]]

let val v = ithvar n

val vn = nithvar n

val dnf = sum_of_prod_bdds(n-1)
in
map (cons v) dnf @ map (cons vn) dnf
end

in : ’
foldl OR FALSE (map (foldl AND TRUE) (sum_of_prod_bdds n))
end)

The times in the following table are rounded to the nearest second.!

11333MHz Intel Pentium II (Deschutes) processor with 387780 KB of memory, running
Linux.
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n DNF TAUT tautCheck pureTautCheck | bddDNF
Run | GC |Run | GC |Run | GC Run | GC Run | GC
0 |0 0 0 0 0 0 0 0 0 0
1 |0 0 0 0 0 0 0 0 0 0
2 |0 0 0 0 |0 0 0 0 0 0
3 [0 0 0 0 0 0 0 0 0 0
4 |0 0 2 0 0 0 0 0 0 0
5 |0 0 13 0 0 0 0 0 0 0
6 |0 0 89 2 0 0 0 0 0 0
7 10 0 668 |9 1 0 0 0 0 0
8 |0 0 5573 | 58 | 2 0 0 0 0 0
9 |1 0 9 1 0 0 0 0
10 | 2 0 34 7 1 0 0 0
11 | 4 1 147 48 2 0 0 0
12 19 2 703 320 5 1 1 0
13 [ 21 7 3733 2235 12 3 2 1
14 | 57 27 23142 | 17217 | 32 12 4 2
151175 | 111 156574 | 133044 | 88 | 46 10 |6
16 | 590 | 453 280 | 183 25 16

As n increases the work done by tautCheck becomes increasingly dominated
by lookups in the BDD table and hence pureTautCheck, which omits this
lookup, is faster. The function bddDNF doesn’t build any HOL terms and
just builds BDDs directly*2.

The table above illustrate why building large terms and then converting them
to BDDs is to be avoided. As long as BDDs are built hierarchically out of
small components, with the hierarchy represented in the BDD map, then
terms in HOL representing large BDDs in BuDDy can be built incrementally
inside HOL. Fortunately, complex designs are often built hierarchically out
of components!

If large BDDs are to be built non-incrementally, then they should be con-
structed in BuDDy space by directly calling the bdd functions, as in done
by bddDNF. If this is done then the resulting BDD can be associated with a
term in the BDD table, however care must be taken that the BDD is a valid
representation of the term. This kind of purely external creation of BDDs is
not explored here, though HolBddLib provides the necesssary infrastructure
to support it. In what follows, all entries in the BDD table are created using
addEquation, which ensures the table’s soundness.

12Note that the resultant BDD is just TRUE. The point is the time taken to build the
BDD, not the size of the result!
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6 Exa_mple computing reachable states

In this section a complete ML program to compute the set of reachable :
states of a transition system is described. This is intended to be a tutorial

illustration of how model checkers can be written in Hol98+BuDDy .

The state enumeration tools provided by HolBddLib are documented in Sec-
tion 7. The programs in thls sectlon are designed to illustrate ideas and are
simplified.

The theory HoledTheory contains HOL deﬁmtlons and theorems that pro-
vide a formal basis for representing transition systems.

6.1 A partial description of HolBddTheory

Definitions and theorems are shown in a format similar to that used in
HolBddTheory.sig. The statement of a definition or theorem is followed
by a brief explanation.

[Next_def]

Definition

|- 'R B state. Next R B state = . 7
?state_. B state_ /\ R (state_,state)

This is the definition of the constant Next. The ML name of the defini-
tion, shown in square brackets, is Next_def. The definition states that
Next R B state is true if state is reachable in one R-step from a state
state. for which B is true. Sets of states are represented by predicates and
transition relations by predicates on pairs of states. Thus Next R B repre-
sents the image of the set represented by B under relation R.

[ReachIn_def]
Definition
|- ('R B. ReachIn R B 0 = B) /\
('R B n. ReachIn R B (SUC n) = Next R (ReachIn R B n))

ReachIn R B nisdefined by primitive recursion to be the set of states reach-
able in exactly n R-steps.
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[ReachIn_rec]

Theorem
|- (IR B state. ReachIn R B 0 state = B state) /\

(IR B n state.
ReachIn R B (SUC n) state =
?state_. ReachIn R B n state_ /\ R (state_,state))

This theorem, which is used below, is just the result of unfolding the definition
of Next in ReachIn_def. ’

[ReachBy_def]
Definition
|- 'R B n state. -
ReachBy R B n state = ?m. m <= n /\ ReachIn R B m state

ReachBy R B n is defined to be the set of states reachable in n or fewer
R-steps.

[ReachBy_rec]

Theorem
|- (IR B state. ReachBy R B 0 state = B state) /\

('R B n state.
ReachBy R B (SUC n) state =

ReachBy R B n state \/
?state_. ReachBy R B n state_ /\ R (state_,state))

This theorem could have been taken as a primitive-recursive definition of
ReachBy. It shows how to compute ReachBy n R B for successive values

of n.
[Reachable_def]

Definition
|- IR B state. Reachable R B state = ?n. ReachIn R B n state

Reachable R B is defined to be the set of states reachable in some finite
number of R-steps. It is thus the set of reachable states.
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.. [ReachBy_fixedpointl . _
- Theorem
|- 'R B n. _
(ReachBy R B n = ReachBy R B (SUC n)) ==>
(Reachable R B = ReachBy R B n) |

~ The theorem ReachBy_fixedpoint shows that the set of all reachable states
has been reached as soon as the set reachable in n steps is the same as the set
reached in SUC n steps. Thus Reachable R B can be computed by iteratively
computing ReachByRB1, ReachByRB2, ... until the sets stop increasing. -

6.2 Programming symbolic state enumeration

The 2-bit binary counter from McMillan’s book [10, Page 29,3.1] will be used
as a first running example. The material shown in boxes with numbers in
their top right hand corners constitute a continuous session. Sometimes the
output from Hol98 is edited, for example, printed terms may be reformatted
to fit in the boxes and ML types may be deleted. Voluminous output that is
not illuminating is usually deleted. Any output shown is indicated with > at
its start. ' ’

The first step is to load and open HolBddLib.

L1

- load "HolBddLib"; open HolBddLib;

The counter is defined by giving its transition relation as a predicate Count
on pairs of states - |

L2

- val Count_def =
bossLib.Define
‘Count ((vO,v1),(v0’,v1’)) =
(v0? = "v0) /\ (v1’ = “(vO = v1))¢;
Definition stored under "Count_def".
> val Count_def =
|- 'v0 v1 vO? v1’. _
" Count ((vO,v1),v0’,v1’) =
(v0? = “v0) /\ (v1’ = “(v0

vl))

and specifying the set of initial states with a predicate Zero on states
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L3 |

Definition stored under "Zero_def"
> val Zero_def = |- !v0 vl1. Zero (vO,vi) = “v0 /\ “vi

In general, a state transition system is specified by a pair of theorems,
(Rth,Bth) say, of the form

(- R,y 0p), (W), 0)) = tr, F Blor,...,v5) = tg)

defining a transition relation R and set of initial states B.

- These theorems could be definitions, or equations derlved by proof. In the
example R is Count and B is Zero.

The ML programs described here are simpler than the ones in the ‘system
(e.g. less error trapping, more rigid requirements on the form of the supplied
theorems, no output during calculation).

We are going to Write an ML function

ComputeReachable : thm * thm -> thm
that takes a pair (Rth,Bth) and returns a théorem of the fofm

|- Beachable R B (v;,...,v,) = ReachBy R B i (v1,...,0;)
ComputeReachable works by computing thé BDDs of ReachBy R B n for

successive values of n until a fixed point (n = i) is reached and then using
the theorem ReachBy_fixedpoint.

To prepare for computing the reachable states, the theorem ReachBy.rec
needs to be instantiated using the specifications Rth and Bth. The function
MakeIterRthms defined below does this instantiation.
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-~ fun MakeIterThms iter_th (Rth,Bth) = L
let :
val (R,_) = dest_comb(lhs(concl(SPEC_ALL Rth)))
val (B,s) = dest_comb(lhs{(concl(SPEC_ALL Bth)))
val ntm = ‘““n:num‘¢
val th_O = ISPECL[R,B,s] (CONJUNCT1 iter_th)
val th_SUC = GEN ntm
(Ho_rewrite .REWRITE_RULE
[pairTheory.EXISTS_PROD]
(ISPECL[R,B,ntm,s] (CONJUNCT2 iter_th)))
in '
(th_0,th_SUC)
end;
> val MakeIterThms = fn : thm -> thm * thm -> thm * thm

The effect of MakeIterThms is illustrated by

- val (ReachIn_O,ReachIn_SUC) = L2
MakeIterThms HolBddTheory.ReachIn_rec (Count_def,Zero_def);
val ReachIn_SUC =
|- 'n.
- ReachIn Count Zero (SUC n) (vO,vl) =
?p_1 p_2. ReachIn Count Zero n (p_1,p_2)

/\
Count ((p_1,p_2),v0,v1)

- val (ReachBy_0,ReachBy_SUC) =
MakeIterThms HolBddTheory.ReachBy_rec (Count_def,Zero_def);
> val ReachBy_0 = :
|- ReachBy Count Zero 0 (vO,vl) = Zero (vO0,vl)
val ReachBy_SUC = .
|- !n.
ReachBy Count Zero (SUC n) (vO,vl) =
ReachBy Count Zero n (v0,vi) \/
7p_-1 p_2. ReachBy Count Zero n (p_1,p_2)
/\
Count ((p_1,p_.2),v0,vl)

The main work done by ComputeReachable is an iteration to find an i such
that ReachBy R B 1 equals ReachBy R B (SUC i). The iteration can be
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_done. manually to. illustrate_the process___E_lrst _compute the BDDs of the . .

initial set of states and Vthe transition relat,lc_)n.

. [ 6
- addEquation Zero_def;
> val it = (‘Zero (v0,v1)‘, <bdd>) : term * bdd
- addEquation Count_def;
> val it = (‘Count ((vO,v1),v0’,v1’)‘, <bdd>) : term * bdd
'Next, compute the BDD of ReachBy Count Zero 0 (v0,v1).
]

- addEquation Re achBy-O
> val it = ( ReachBy Count Zero 0 (vO,v1)“, <bdd>)

- Compute the BDD of ReachBy Count Zero (SUC 0) (v0,v1) by specialis-
ing n in ReachBy_SUC to 0.

8
- SPEC “‘0°¢¢ ReaChBy SUC L
> val it =
|- ReachBy Count Zero (SUC 0) (vO,vi) =
ReachBy Count Zero 0 (vO,v1) \/
?p_1 p_2. ReachBy Count Zero O (p_1,p_2)
/\ :

By Count ((p 1,p_2) v0,vl)
- addEquation it;
> val it = (‘ReachBy Count Zero (SUC 0) (v0,v1)‘, <bdd>)

Check whether the fixed point has been reached:

- isT ‘‘ReachBy Count Zero 0 (v0,vl) =
| . ReachBy Count Zero (SUC O) (vO,vl)‘*;
> val it = false : bool

The ﬁxed point has not been reached.

Compute the BDD of ReachBy Count Zero (SUC(SUC 0)) (v0,v1) by spe-
cialising n in ReachBy_SUC to SUC 0.
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[10]

SPEC ‘‘SUC 0‘‘ ReachBy_SUC;
> val it =
|- ReachBy Count Zero (SUC(SUC 0)) (vO,vl) =
ReachBy Count Zero (SUC 0) (vO,v1) \/
?p_1 p_2.
ReachBy Count Zero (SUC 0) (p_1,p_2)
/\
Count ((p_1,p_2),v0,vl)
addEquation it;
val it =
(‘ReachBy Count Zero (SUC(SUC 0)) (vO,v1)‘, <bdd>)

v 1

Check whether fixed point reached:

[ 11
- isT ‘‘ReachBy Count Zero (SUC 0) (vO,vl) =

ReachBy Count Zero (SUC(SUC 0)) (v0,v1)‘‘;
> val it = false : bool

The fixed point has not been reached.
Compute the BDD of ReachBy Count Zero (SUC(SUC(SUC 0))) (v0,v1).

{ 12
- SPEC ‘‘SUC(SUC 0) ‘¢ ReachBy_SUC;

> val it = :
|- ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,vl) =
ReachBy Count Zero (SUC(SUC 0)) (vO,vi) \/
7p_.1 p_2.
ReachBy Count Zero (SUC(SUC 0)) (p_1,p_2)
/\
Count ((p_1,p_2),v0,vl)
addEquation it;
val it = .
(‘ReachBy Count Zero (SUC(SUC(SUC 0))) (v0,v1)‘, <bdd>)

v i

Check for fixed point:

[ 13
- isT ‘‘ReachBy Count Zero (SUC(SUC 0)) (v0,v1) =

ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,v1)‘‘;
> val it = false : bool
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~ The fixed point has still not been reached, so iterate.

[17]

SPEC ‘¢ (SUC(SUC(SUC 0)))‘‘ ReachBy_SUC;
val it =
|- ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (vO,vl) =
ReachBy Count Zero (SUC(SUC(SUC 0))) (v0,v1) \/
?p_1 p_2. :
ReachBy Count Zero (SUC(SUC(SUC 0))) (p_1,p_2)
/\
Count ((p_1,p_2),v0,vl)
addEquation it;
val it =
(‘ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (vO,v1)‘, <bdd>)

v

v

Check for fixed point:

[ 15
- isT ‘‘ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,vl) =

'ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (vO,v1)‘‘;
> val it = true : bool ’ '

The fixed point has now been reached and a justifying theorem can be derived
using bddOracle.

[ 16
- bddOracle

‘ ‘ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,vl) =
ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (vO,v1)‘‘;
> val it = _
|- ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,vl) =
ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (v0,vi)

Rather than interactively computing the fixed point, as laboriously done
above, the ML procedure iterate defined below can be used to do the iter-
ations.
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[I7]

- fun iterate suc_thm ntm rtm =
let val th = SPEC ntm suc_thm
val rtm’ = lhs(concl th)
in addEquation th;
if eqCheck(rtm,rtm’)
then bddEqOracle(rtm,rtm’)
else iterate suc_thm ‘‘SUC “ntm‘‘ rtm’
end;
> val iterate = fn : thm -> term -> term -> thm

Invoking iterate computes the fixed point and returns the justifying theo-
rem.

| (18]
iterate ReachBy_SUC ‘‘0¢¢ ¢ ‘ReachBy Count Zero 0 (vO,v1) ‘¢; ,
> val it =
|- ReachBy Count Zero (SUC(SUC(SUC 0))) (vO,vi) =
ReachBy Count Zero (SUC(SUC(SUC(SUC 0)))) (vO,vl)

Recall that ReachBy_fixedpoint is an implication between predicate equa-
tions. ‘

[ReachBy_fixedpoint]
Theorem
|- 'n R B.

(ReachBy R B n

(Reachable R B

ReachBy R B (SUC n)) -

ReachBy R B n)

To use ReachBy_fixedpoint on the theorem just computed, the variables v0
and v1 can be cancelled by extensionality. The rule HolBddLib.PGEN_EXT

does this, ' ‘

, [ 19
- PGEN_EXT it;

> val it =
|- ReachBy Count Zero (SUC(SUC(SUC 0))) =
ReachBy Count Zero (SUC(SUC(SUC(SUC 0))))

Applying MATCH MP to ReachBy_fixedpoint and the theorem just proved
gives an equation for Reachable Count Init.
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[20]

> val Reach_thm =
|- Reachable Count Zero =
ReachBy Count Zero (SUC(SUC(SUC 0)))

The function ComputeReachablé can now be defined

- fun ComputeReachable(Rth,Bth) = L2
let val (ReachBy_0,ReachBy_SUC) =
MakeIterThms HolBddTheory.ReachBy_rec (Rth,Bth)
.val reachO_tm = lhs(concl ReachBy_0)
val vars = rand reachO_tm
in ‘ ' ‘
addEquation Rth;
addEquation Bth;
addEquation ReachBy_O
let val fix_thm = iterate ReachBy_SUC € reachO tm
in
MATCH_MP HolBddTheory.ReachBy_fixedpoint (PGEN_EXT fix_thm)
end '
end; ,
> val ComputeReachable = fn : thm * thm -> thm
Using this function the fixed point is easily computed.
(22

Be ComputeReachable(Count def,Zero def)
> val it = :
|- Reachable Count Zero = ReachBy Count Zero (SUC(SUC(SUC 0)))

The definition of ComputéReachable can be improved to use numerals, rather
than SUC(---(SUC 0)---). Observe that:

23|
- CONV_RULE(TOP_DEPTH_CONV reduceLib.SUC_CONV) it;

> val it = |- Reachable Count Zero = ReachBy Count Zero 3

.I_n addition, BDDs that are no longer needed can be deleted. The function
delBdd applies deleteBdd if a flag deleteBdd_flag is set. :
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[27]

- val deleteBdd_flag = ref true;
> val deleteBdd_flag = ref true : bool ref
fun delBdd tm =
if !deleteBdd_flag then (deleteBdd tm;()) else ();
val delBdd = term -> unit :

v

A version of iterate with these two optimisations is given below. Note
that iterate now takes an ML integer as argument, rather than a term
representing a HOL numeral. The conversion from integers to terms is done
using intToTerm. So that progress can be monitored, iterate prints out a
dot each time it is called.

25
- fun iterate suc_thm n rtm =
let val ntm = intToTerm n
val th = CONV_RULE

(TOP_DEPTH_CONV reduceLib.SUC_CONV)
(SPEC ntm suc_thm) '

val rtm’ = lhs(concl th)
in addEquation th;
print ".";

if eqCheck(rtm,rtm’)

then bddEqOracle(rtm,rtm’)

else (delBdd rtm; iterate suc_thm (n+1) rtm’)

end; ' .
> val iterate = fn : thm -> int -> term -> thm
- iterate ReachBy_SUC O ‘‘ReachBy Count Zero O (vO,vi)‘‘;
ce..> val it =
|- ReachBy Count Zero 3 (vO,vl) =
ReachBy Count Zero 4 (v0,vl)

The definition of ComputeReachable needs to be adjusted to work with the
new version of iterate.
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‘| - fun ComputeReachable(Rth,Bth) = —
let val (ReachBy_0, ReachBy_SUC)
MakeIterThms HolBddTheory. ReachBy rec (Rth Bth)
‘val reachO_tm = lhs(concl ReachBy_O)
in
addEquation Rth;
addEquation Bth;
addEquation ReachBy_0;
let val fix_thl = iterate ReachBy_SUC O reachO_tm
val fix_th2 = (* evaluate ‘‘SUC n’’ to numeral *)
CONV_RULE
((RHS_CONV o RATOR_CONV o RAND_CONV)
numLib.num_CONV)

fix_thil
in : , ‘
MATCH_MP HolBddTheory.ReachBy_fixedpoint (PGEN_EXT fix_th2)
end '
end;

val ComputeReachable = fn : thm * thm -> thm
ComputeReachable (Count_def ,Zero_def);

v

[26] | |

v

val it = |- Reachable Count Zero = ReachBy Count Zero 3

As all states are reachable, the BDD of ReachBy Count Zero 3 is just TRUE.

bddToTerm(termToBdd “ReachBy Count Zero 3 (vO, v1)“),

lﬂ‘.

> val it = “‘T‘‘ : term
- bdd0Oracle ‘‘ReachBy Count Zero 3 (v0,vl)‘‘;
> val it = |- ReachBy Count Zero 3 (vO,vl) : thm

The example in the next section computes a more interesting set of reachable
startes. '

6.3 A version of Peg Solitaire

Consider a game like Peg Solitaite played on a board made of hexagoris, eachr ‘

with a hole in the middle into which a peg can be inserted:!®

3Do not confuse Peg Solitaire with the card game having the same name!
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N/ 06 \____/ 15 \___../
/ \ / \ / \
/ 02 \___./ 10 \____/ 18 \
\ / \ / \ /
N/ 08 N\___./ 14 \___./
/ \ / \ / \
/ 01 N____/ 09 \___./ 17 \
\ / \ / \ /
N/ 08 \___/ 13 \___./
\ / \ /
\eeea/ 08 \___/

\ /

oo/

Initially all the hexagons except the middle one (numbered 10 above) have a
peg. A move consists in a peg hopping over an adjacent one into a hexagon
whose hole is empty. The peg that is hopped over is removed, leaving a hole.
For example, in the initial state 03 could hop over 06 into 10, with 06 being
removed. The goal is to devise a sequence of 17 moves that will result in
there being only one peg left on the board in the middle hexagon (i.e. at
position 10). |

Let us investigate this problem using BDDs. The state can be represented
by 19 Boolean variables v01 to v19, with a variable being T meaning that
there is a peg in the corresponding hexagon. The initial state is defined by

(28]

- val HexSolitairelnit_def =
bossLib.Define
‘HexSolitaireInit
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
v11,v12,v13,v14,v15,v16,v17,v18,v19) =
v01/\v02/\v03/\v04/\v05/\v06/\v07/\v08/\v09
/\"v10/\
v11/\v12/\v13/\v14/\v15/\v16/\v17/\v18/\v19¢;

The transition relation HexSolitaireTrans(s,s’) is quite complex since s
and s’ are tuples of 19 variables, and there are many possible moves. Rather
than write out the definition of the relation explicitly, we’ll generate it with
an ML program. In the sessions that follow, output is often not shown to
save space.

First, functions for constructing Boolean state variables of v01, v02, ..., v19
are defined.
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[29]

fun mk V- S S o . ,,,:,,,,v,,,, PRI ,,,,‘,,,,, S

if n<10 then mk var(" 0"“(1nt to strlng n) bool)
_ else mk_var("v"~(int_to_string n),bool);
val mk_v = fn : int -> term
fun mk_v’ n =
if n<10 then mk_var("vO0"~(int_to_string n)“"’" bool)
else mk_var("v"" (int_to_string n)~"’",bool);
val mk_v’ = fn : int -> term

Next, the vectors s and s’ of state varlables and primed state variables,
respectively, are defined.

val vl = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] ;
val 8 = list_mk_pair(map mk_v v1) '
and s’ = list_mk_pair(map mk_v’ vl);
val s =
ce(vo1, v02 v03,v04,v05,v06,v07, v08 v09,vio,
vi1,v12,v13,v14,v15,v16,v17,vi8,v19) ‘¢
val s’ =
¢¢(v01’ v02’,v03’,v04’ v05’,v06’,v07’,v08’ v09’,
v1i0’,v11’,v12’,v13’,vi4’, vi5?,v16°,vi7’,v1i8’,v19°) ‘¢

The function make move takes a triple of integers (n1,n2,n3) representing
a possible move in which a peg at n1 takes a peg at n2 and moves into n3,
and returns a transition terms representing the move.
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- fun make_move (ni,n2,n3) =
let val (_,unchanged) =
List.partition (fn n => mem n [n1,n2,n3]) vl
in .
list_mk_conj
([mk_v nil,mk_v n2,mk_neg(mk_v n3),
mk_neg(mk_v’ nl) ,mk_neg(mk_v’ n2),mk_v’ n3]
Q
map (fn n => mk_eq(mk_v’ n,mk_v n)) unchanged)
end;
> val make_move = fn : int * int * int -> term
- make_move (03,06,10);
> val it =
“‘v03 /\ v06 /\ ~v10 /\ ~v03’ /\ ~v06’ /\ vi0’ /\ |
(v01°’=v01) /\ (v02’°=v02) /\ (v04’=v04) /\ (v05°=v05) /\
(v07°=v07) /\ (v08’=v08) /\ (v09’=v09) /\ (vii’=vi1) /\
(v12°=v12) /\ (v13’=v13) /\ (vi4’=vi4) /\ (vi15’=vi5) /\
(vi6’=v16) /\ (vi7’=v17) /\ (vi8’=vi8) /\ (vi19’=v19) ‘¢

[ 31

The complete list of moves is

- val moves =

[(01,02,03),(01,05,10),(01,04,08),
(02,06,11),(02,05,09),
(03,07,12),(03,06,10), (03,02,01),
(04,05,06) ,(04,09,14),
(05,06,07) , (05,10,15), (05,09,13),
(06,11,16),(06,10,14), (06,05,04) ,
(07,11,15),(07,06,05),
(08,04,01),(08,09,10), (08,13,17),
(09,05,02),(09,10,11), (09,14,18),
(10,09,08),(10,05,01), (10,06,03),
(10,11,12),(10,15,19),(10,14,17),
(11,10,09),(11,06,02),(11,15,18),
(12,11,10),(12,07,03),(12,16,19),
(13,09,05),(13,14,15),
(14,09,04),(14,10,06), (14,15,16),
(15,14,13),(15,10,05),(15,11,07),
(16,15,14),(16,11,06), '
(17,13,08),(17,14,10),(17,18,19),
(18,14,09),(18,15,11),
(19,18,17),(19,15,10),(19,16,12)];

3]
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__This _ hst ‘was obtained by 1ust inspecting the diagram and manually listing =

all three position line segments.

The transition relation can now be defined (only the first two of the 54
disjuncts are shown).

- val HexSolitaireTrans_def =
bossLib.Define ‘HexSolitaireTrans("s,”s’) =
“(list_mk_disj(map make_move moves))‘-
> val HexSolitaireTrans_def =
|- 1v01 v02 v03 v04 v0O5 v06 v07 v08 v09 viO viil v12 vi3
vi4 v1i5 v16 v17 v18 v19 v01’ v02’ v03’ v04’ v05’ v06’
v07’ v08’ v09’ v10’ vi1’ vi12’ vi13’ vi14’ v15’ vi6’ vi7’
vi8’ v19’. '
HexSolltalreTrans
((v01,v02,v03,v04,v05,v06,v07,v08,v09,vi0,vil,vi2,vi3,
vi4,v1i5,v16, vi7,vi8,v19), _
(vO01’,v02°’,v03’,v04’,v05’,v06°,v07’,v08°,v09° ,v10’,
vil?,v12’,v13’,v14’,v15°,v16°’,v17’,v18°,v19?)) =
v01 /\ v02 /\ “v03 /\ “v01i’ /\ "v02’ /\ v03’ /\
(v04’=v04) /\ (v05’=v05) /\ (v06°’=v06) /\ (vO7’=v07) /\
(v08°=v08) /\ (v09’=v09) /\ (v10’=v10) /\ (vil’=vil) /\
(v12’=v12) /\ (v13’=v13) /\ (vi4’=v14) /\ (v15°=vib) /\
(vi6’=v16) /\ (vi7’=v17) /\ (v18’=vi8) /\ (v19’=v19)
\/ _
v01 /\ v05 /\ “v10 /\ “vO01’ /\ “v05’ /\ vi10’ /\ -
(v02°=v02) /\ (v03’=v03) /\ (v04’=v04) /\ (v06’=v06) /\
(vO77=v07) /\ (v08’=v08) /\ (v09’=v09) /\ (vii’=vii) /\
(v12°=v12) /\ (v13’=v13) /\ (vi14’=vi4) /\ (v15’=v15) /\
(vi6’=v16) /\ (vi7’=vi7) /\ (v18’=v18) /\ (v19’=v19)
\/

[33]

Now ComputeReachable can be called. We use time to get the time taken to
reach the fixed point (numerous occurences of <$>, which indicate BuDDy
garbage collections, have been deleted from the output)
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[ 34|

- val reach_th =
time v
ComputeReachable (HexSolitaireTrans_def ,HexSolitaireInit_def);
runtime: 694.060s, gctime: 63.040s, systime: 0.480s.
> val reach_th =
|- Reachable HexSolitaireTrans HexSolitaireInit =
ReachBy HexSolitaireTrans HexSolitaireInit 16

reach_th is an equation between predicates. It can be easily converted to a
Boolean equation, and then the BDD of the set of reachable states computed.

, [ 35
- AP_THM reach_th s; |

> val it =
|- Reachable HexSolitaireTrans HexSolitaireInit
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,v13,v14,v1i5,v16,v17,v18,v1i9) =
ReachBy HexSolitaireTrans HexSolitaireInit 16
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vili,v12,v13,v1i4,v1i5,v16,vi7,v18,v19)
- addEquation it; '
> val it =
(¢ ‘Reachable HexSolitaireTrans HexSolitairelInit
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,v13,v14,v15,v16,v17,v18,v19) ‘¢, <bdd>)

Now we can check whether a solution to the puzzle exists. A solution consists
in a state in which just one peg is left in the middle of the board (i.e. at
position 10). Thus we want to see if

(F,F,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F,F,F)

is reachable.

(3]

- isT ‘‘Reachable HexSolitaireTrans HexSolitaireInit
(F,F,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F,F,F)‘;
> val it = false : bool

20



Thus there is no solutlon' Actually, ‘this could ‘already be deduced from the >

number of dots printed out by iterate: since only 17 dots were prmted
before the fixed point was reached, it is clear that two pegs must be left in
all final states.

We did not specify an explicit variable ordering, so variables were automat-
ically ordered in the order in which they were encountered by termTode -
We can obtaln this orderlng using showVarOrd

37]
- showVarOrd();

> val it = : ,

[llvOlll R Ilv02ll R "V03" s "VO]. n s llvo2) n 5 llv03 n s llv04 n s »l|vo4ll s
Ilvos) n s llv05l:l , "V06 n , "V06" , llv07 »n , llv07ll s Ilvos b s llv08ll ,
"v09’", "v09", "v10°Y, "v10", "vi1’", "v11", "v12’", "y12",
llv13)ll’ llv13ll’ llv14)ll’ Ilv14"’ llv15,ll’ "V15", Ilv167ll’ Ilv16ll ,
Ilv17'7 " s Ilv17ll s Ilv18) 1] , llv1.81l s llv193 L1} s llvlgll , "P_l" , llp_llll ,
Ilp_12" , llp_13ll , llp_14ll s llp.—is" s "P_16" , Ilp_17ll s "P_18" ,
"P_19" , "p_110" s "p_111" s up_112n . np_113u . "P_114" s
||p_115u , "p_116" , "p_1 17" s up_2u] :

: string list - )

It turns out that this ordering is fortuitously a good one: a general heuriestic
~is to use an ordering in which state variables are interleaved with next-state
(primed) variables, e.g.: v01 < v01’ < v02 < v02’ < v03 < v03’ etc.
The order of occurrence of variables in HexSolitaireTrans_def, as shown
above, is fairly close to this good ordering. If all the variables v01, ..., v19
had all been ordered before any of v01’, ..., v19’, then the time to compute
reach_th using ComputeReachable would have been nearly ten times longer.

An even better variable ordering could be forced by executing the following
before computmg the fixed point. :

fun shuffle (11,12) = - o
ListPair.foldr (fn(x1,x2,1) => x1 :: x2 :: 1) [I (11,12);

initHolBdd
(shuffle
(map (fst o dest_var o mk_v) vl,
map (fst o dest_var o mk_v’) vl));
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The effect of this is only to reduce the time to compute the fixed point by
about five percent (compared with multiplying it by ten if the really bad
ordering were used).

Since the original puzzle is unsolvable, let us try to invent a solvable puzzle by
coming up with a new final state that is reachable. To this end we investigate
the set of states reached after 16 iterations by computing

ReachIn HexSolitaireTrans HexSolitaireInit 16
using the theorem ReachIn rec. Since ReachIn is not monotonic, it won’t

reach a fixed point. Let us generalise iterate to use a user-supplied ML
predicate to terminate iteration.

- fun gen_iterate stop suc_thm n rtm = L2
let val _ = print "."
val ntm = intToTerm n
val th = CONV_RULE

(TOP_DEPTH_CONV reduceLib.SUC_CONV)
(SPEC ntm suc_thm)
val rtm’ = lhs(concl th)
val eqtm = mk_eq(rtm,rtm’)
in addEquation th;
if stop(n,rtm,rtm’)
then (n,rtm,rtm’)
else (delBdd rtm; gen_iterate stop suc_thm (n+1) rtm’)
end;
> val gen_iterate =
fn : (int * term * term -> bool)

-> thm -> int -> term -> int * term * term

The stopping criterion is supplied by the user in the form of an ML predi-
cate stop whose argument is a triple (n,rtm,rtm’), where rtm is the n-th
iteration and rtm’ the n+1-th iteration. The triple is returned as the result
of gen_iterate.

Using gen_iterate we define a function to iterate until stop holds.
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[39]
let val (iter_0,iter_SUC) = MakeIterThms 1ter th (Rth Bth)
val reachO_tm = lhs(concl iter_0)
in :
- addEquation Rth;
addEquation Bth;
addEquation iter_O;
gen_iterate stop iter_SUC O reachO_tm
end; ’
> val Iter =
fn : (1nt * term * term -> bool)
-> thm -> thm * thm -> int * term * term

Iter, like gen_iterate, returns a friple (n,rtm,rtm’). It can be used to
implement ComputeReachable by taking the stoppmg criterion to be the
equahty of the BDDs of rtm and rtm’.

[ 40|

- fun ComputeReachable(Rth,Bth) =
let val (n,rtm,rtm’) = , ,
Iter (fn(_,rtm,rtm’) => isT(mk_eq(rtm, rtm?’)))
HolBddTheory.ReachBy_rec
(Rth,Bth) 4 ’ ‘
val fix_th = CONV_RULE ((RHS_ CONV o RATOR_CONV o RAND_CONV)
Num_conv.num_CONV)
(bddEqOracle(rtm,rtm’))
in '
MATCH_MP HolBddTheory.ReachBy_fixedpoint (PGEN_EXT fix_th)
end;

Iter can also be used to iterate ReachIn_rec until the set of states becomes
empty. In this case the stopping criterion is that the BDD of rtm’ is FALSE
(i.e. the set of successor states is empty).
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. [ 41
- val (n,rtm,rtm’) =
Iter (fn(_,_,rtm’) => isF rtm’) HolBddTheory.ReachIn_rec
(HexSolitaireTrans_def ,HexSolitaireInit_def);

val rtm =
‘‘ReachIn HexSolitaireTrans HexSolitaireInit 16
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vii,v12,v13,v14,v15,vi6,v17,v18,v19) ¢
val rtm’ =
‘‘ReachIn HexSolitaireTrans HexSolitaireInit 17
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vii,v12,v13,v14,v15,v16,v17,v18,v19) ‘¢

Our goal is to look at the set of final states and to choose one as the goal for
a solvable puzzle. First we check to see how many states there are.

[ 42 ]

- statecount (termToBdd rtm);
> val it = 30.0 : real

Printing out the BDD of the set of states as a conditional will result in a
large inscrutable nested conditional, so we first rewrite the conditional using
COND_NORM

(33
- val COND_NORM =

bossLib.DECIDE
‘((if b then bl else b2) = (b /\ b1) \/ ("b /\ b2))
/\ '
((d /\ (b1 \/ b2))
/\

(((b1 \/ b2) /\ b)

((d /\ b1) \/ (b /\ b2)))

((b1 /\ b) \/ (b2 /\ b)))*;

Let us look at those final reachable states that have one of the two remaining
pegs in the middle (i.e. v10=T).
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REWRITE_RULE

[COND_NORM]

(bddRepOracle N

¢ ‘ReachIn HexSolitaireTrans HexSolitaireInit 16
(v01,v02,v03,v04,v05,v06,v07,v08,v09,T,
_ _ vii,vi2,v13,v14,v15,v16,v1i7,v1i8,v19) ‘) ;
> val reachablel0 =
|- ReachIn HexSolitaireTrans HexSolitaireInit 16
(v01,v02,v03,v04,v05,v06,v07,v08,v09,T,
vil,vi2,v13,v14,v15,v16,v17,v18,v19) =

“v01/\v02/\~v03/\"v04/\"v05/\~“v06/\"v07/\~v08/\~v09/\
“v11/\"v12/\"v13/\"v14/\"v15/\"v1i6/\"v17/\"v18/\"v19 \/
~v01/\"v02/\~v03/\v04/\~v05/\~v06/\~v07/\"v08/\"v09/\
“v11/\"v12/\"v13/\"v14/\"v15/\"v16/\"v17/\"v18/\~v19 \/
“v01/\"v02/\"v03/\~v04/\~v05/\~v06/\v07/\~v08/\~v09/\
“v11/\"v12/\"v13/\"v14/\"v15/\"v16/\"v1i7/\"v18/\~v19 \/
“v01/\~"v02/\"v03/\"v04/\~v05/\~v06/\~v07/\~v08/\~v09/\
“v11/\"v12/\v13/\"v14/\"v15/\"v16/\"v17/\"v18/\~v19 \/
“v01/\"v02/\"v03/\"v04/\"v05/\"v06/\"v07/\"v08/\"v09/\
“v11/\"v12/\"v13/\"v14/\"v15/\v16/\"v1i7/\"v18/\"v19 \/
~v01/\"v02/\~v03/\~v04/\~v05/\~v06/\~v07/\~v08/\~v09/\
“v11/\"v12/\"v13/\"v14/\"v156/\"v16/\"v17/\vi8/\"v19

From this we see that the other pegs must be at position 2, 4, 7, 13, 16 or
18. ' ' ' ‘

Let us now define our new solvable game to be the problem of constructing a
sequence of moves from the initial state to the state with two pegs remaining
at positions 2 and 10.

| 45

- isT ‘‘Reachable HexSolitaireTrans HexSolitaireInit
(¥,T,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F,F,F)‘¢;
1> val it = true : bool : : '

We will write an ML function to compute a sequence of states from an initial
state to a goal state. Such a sequence is called a trace and defined by the
predefined predicate IsTrace that satisfies
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[IsTrace_def]
Theorem
|- (IsTrace RB Q [ =F) /\ (IsTrace RBQ [s] =B s /\ Q s)

/\
(IsTrace R B Q (s0::s1::tr) =
B sO /\ R (s0,s1) /\ IsTrace R (Eq s1) Q (s1::tr))

~ where the function Eq is just curried equality (Eq is used here instead of $=
for purely cosmetic reasons).

[Eq_def]
Definition

|- !'state0 state. Eq state0 state = state0 = state

The meaning of IsTrace is illustrated by

- REWRITE_CONV 46
[HolBddTheory.IsTrace_def ,HolBddTheory.Eq_def]
‘‘IsTrace R B Q [s0;s1;s2;s3;s4]°¢;
> val it =
|- IsTrace R B Q [s0; si1; s2; s3; s4] =
B s0
/\
R(s0,s1) /\ R(s1,s2) /\ R(s2,s3) /\ R(s3,s4)
/\
Q s4
The solution to which we want to find a path is defined by
[47]

- val HexSolitaireSoln_def =
bossLib.Define
‘HexSolitaireSoln :

(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vi1,v12,v13,v14,v15,v16,v1i7,vi8,v19) =
“v01
/\v02/\
“v03/\~"v04/\"v05/\"v06/\"v07/\"v08/\"v09
/\v10/\
“vi1/\"v1i2/\"v13/\"v1i4/\"v15/\"vi6/\"v17/\"v18/\"v19¢;
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__In this case there only one state satlsfymg the predlcate but in other exam-

ples there mlght be more.

" The function findModel can be used to extract a description of a state
satisfying a predicate:

addEquation HexSolitaireSoln_def;
findModel
¢ ‘HexSolitaireSoln _
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,v12,v13,v14,v15,v16,v17,v1i8,v19)

/\
ReachIn HexSolitaireTrans HexSolitaireInit 16
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,.
vii,v12,v13,v14,v15,v16,v17,v1i8,v19) ¢ ¢;
> val it = ,
¢ ¢~¢01/\v02/\~v03/\"v04/\"v05/\"v06/\~"v07/\"v08/\"v09/\

(]

v10/\"v11/\"v12/\"v13/\"v14/\"vi5/\"v16/\"v17/\"v1i8/\"v19‘®

To get an actual state vector from this term is easy:

- rhs(concl(REWRITE CONV [ASSUME 1t]s))

(@]

> val it = ‘‘(F,T,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F, F F)¢‘ : term

Call this s16. Next we want to find s15 such that

ReachIn HexSolitaireTrans HexSolitaireInit 15 si5

/\
HexSolitaireTrans(s15, 316)
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[30]

- addEquation HexSolitaireTrans_def;
- findModel
¢ ¢‘ReachIn HexSolitaireTrans HexSolitaireInit 15
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vii,v12,v13,v14,v15,v16,v17,vi8,vi9)
/\
HexSolitaireTrans
((v01,v02,v03,v04,v05,v06,v07,v08,v09,vi0,
vil,vi2,v13,v14,v15,v16,vi7,vi8,v19),
(F,T,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F,F,F))‘;
> val it =
¢ ¢~v01/\v02/\"v03/\~v04/\~"v05/\"v06/\~v07/\~v08/\~v09/\
“v10/\"v11/\"v12/\"v13/\"v14/\v15/\"v16/\"v1i7/\"v18/\

vig“*
- val s15 = rhs(concl(REWRITE_CONV[ASSUME it]s));
> val si5 = ‘‘(¥,T,F,F,F,F,F,F,F,F,F,F,F,F,T,F,F,F,T)‘

This can be repeated to get s14 (omitting some output):

{ 81
- findModel

‘‘ReachIn HexSolitaireTrans HexSolitaireInit 14
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vii,vi2,v13,v14,v15,v16,v1i7,v1i8,v19)

/\
HexSolitaireTrans
((v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,v13,v14,v15,v16,v17,v18,v19),
(F,T,F,F,F,F,F,F,F,F,F,F,F,F,T,F,F,F,T))‘;
- val s14 = rhs(concl(REWRITE_CONV[ASSUME itls));
> val si14 ¢¢(F,T,F,F,F,F,F,F,F,F,F,F,F,F, T,F,T,T,F)‘‘ : term

An ML function BackIter to compute the whole trace is easy to write:
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let val (R,_.)
val (B,s)
val mtm

in

end;

val state_

-~ fun-BackIter (Rth;Bth) state 0-
| BackIter (Rth,Bth) state n =

BackIter (Rth,Bth) state_

dest_comb(1lhs (concl(SPEC_ALL Rth)))

= dest_comb(1lhs(concl (SPEC_ALL Bth)))

findModel
‘‘ReachIn "R "B ‘(1ntToTerm(n—1)) ~s
/\ ’
"R("s, state) ‘¢
rhs(concl(REWRITE CONV[ASSUME mtm]s))

(n-1) @ [statel

=W[stateiwm*”w~w~~'*“*~'*4WLﬂ**mm*

A sequence of states can then be computed |

- val trace =
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BackIter (HexSolitaireTrans_def,HexSolitaireInit_def)
¢¢(,T,F,F,F,F,F,F,F, T,F,F,F,F,F,F,F,F,F)‘¢

T,F,T,T,T,T,T,T,T,T,T)¢¢,

T,T,T,T,T,T,F,T,T,T,F)‘¢,

T,F,T,T,T,T,T,T,T,T,F)¢¢,

F,T,T,T,T.T,T,T,T,T,F)‘¢,
F,T,T,T,T,T,T,T,T,T,F)¢*,
T,F,F,T,T,T,T,T,T,T,F)¢*,
T,T,F,T,T,T,T,T,T,T,F)‘°,
T,F,F,T,T,F,T,T,T,T,F)‘¢,
T,F,F,F,T,F,T,T,T,T,F)¢°,
T,T,F,F,T,F,T,T,T,T,F)‘°¢,
T,F,F,F,T,F,F,T,T,T,F)‘¢,
F,T,F,F,T,F,F,T,T,T,F)‘¢,
F,F,F,F,T,F,T,T,T,T,F)¢¢,
F,F,F,F,T,T,F,F,T,T,F)¢¢,
F,F,F,F,F,F,T,F,T,T,F)‘¢,
F,F,F,F,F,F,T,F,F,F,T)¢¢,
F,T,F,F,F,F,F,F,F,F,F)¢‘]

(53]

This is the result of an ML computation. A theorem certifying that it is a

trace is easily proved:
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[ 54
- bddRepOracle ‘

(fst
(addEquation
(REWRITE_CONV
- [HolBddTheory.IsTrace_def ,HolBddTheory.Eq_def]
¢¢IsTrace
HexSolitaireTrans
HexSolitairelnit
HexSolitaireSoln
~(mk_list(trace,type_of (hd trace)))“)))
> val it =
|- IsTrace HexSolitaireTrans HexSolitaireInit HexSolitaireSoln
(¢r,17,1,7,7,T7,7,7,T,F,T,T,T,T,T,T,T,T,T);

(r,7,T1,7,7,71,71,71,7T,7T,71,T,T,T,F,T,T,T,F);
(r,1,7,7,F,71,T1,7,T1,F,T,T,T,T,T,T,T,T,F);
(r,r,T1,7,F,T,T,F,F,T,1,7,T,T,T,T,T,T,F);
(F,7,T,F,F,T1,7,71,F,T,T,T7,T1,T,T,T,T,T,F);
(f,T,T,F,F,r,7,7,T,F,F,T,T,T7,T,T,T,T,F);
(F,T,F,F,F,F,17,7,7,71,F,T,T,T,T,T,T,T,F);
(F,T,F,F,F,7,7,7,T,F,F,T,T,F,T,T,T,T,F);
(f,T,T,F,F,T,F,T,T,F,F,F, T,F,T,T,T,T,F);
(F,T,F,F,F,F,F,T7,T7,T,F,F,T,F,T,T,T,T,F);
(F,T,F,%,T,F,F,T,T,F,F,F,T,F,F,T,T,T,F);
(F,T,F,F,T,F,F,F,F,T,F,F,T,F,F,T,T,T,F);
(F,T,F,F,F,F,F,F,F,F,F,F,T,F, T,T,T,T,F);
(F,T,F,F,F,F,F,F,F,F,F,F,T,T,F,F,T,T,F);
(F,T,F,F,F,F,F,F,F,F,F,F,F,F,T,F,T,T,F);
(F,T,F,F,F,F,F,F,F,F,F,F,F,F,T,F,F,F,T);
(F,T,F,F,F,F,F,F,F,T,F,F,F,F,F,F,F

,F,F)1 =T

Normally, it would be overkill to formally verify that an ML-computed trace
is actually a trace, but it is possible.

The standard game of Peg Solitaire can also be solved using the methods just
described. It takes several hours to compute a solution by iterating ReachIn.
See Section 7.4 for further discussion.
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6.4 Efficient image computation

The computation of ReachBy R B (SUC n) using

[ReachBy_rec]
Theorem ~ : :
|- ('R B state. ReachBy R B 0 state = B state) /\
('R B n state. '
ReachBy R B (SUC n) state =
ReachBy R B n state \/ ’
- 7state_. ReachBy R B n state_ /\ R (state_,state))

is sometimes called computing the forward image of ReachBy R B n under
~ R. This computation can be optimised using a standard method called early
quantification [10, page 45] or disjunctive partitioning'*. The idea will be
illustrated using three machines running asynchronously in parallel:

= *
X

= ¥
¥

vgv z

This can be modelled by a transition relation R of the form
R(.’E, Y z)7 (:LJ: Y, zl)) = |

(2 = Ex(z,y,2) N Y=y AN 2Z=2)V

('=z AN y=Eyz,y,2) N Z=2)V

(=2 AN yY=y AN Z=E/(z,92)

Assume a predicate B specifies the set of initial states Let S(p,g,r) abbre-
viate ReachBy n R B(p, ¢q,r) then:

1n the theorem proving literature, early quantification is called ‘miniscoping’ and can
reduce proof length more than exponentially [11].
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3p ¢ r. ReachBy n R B(p,q,7) A R((p,q,7), (2,¥, 2))
= dpqgr. Sp,q,r) N R((p,q,7), (2,9, 2))

= 3pqgr.8p,q,7) N ((x =Ez(p,g,7) N y=q A z=71)V
(z=p A y=Ey(p,g,7) AN 2=1)V

(x=p N y=q A z=E,(p,q,7)))

= (Fpqr Sp,q,7) N z=Ei(p,q,7) Ny=q A z=1)V
(Gpgr. Slp,q,7) AN x=p A y=E,(p,q,7) A 2=1)V

(Fpgr Slp,g,r) Nx=p A y=q A z=E,(p,q,7))
= ((3p. 8, y,2) Nz=Ey(p,y,2)) A (3g. y=q) A (3r. z=1)) V
(Gp. z=p) A (¢ S(z,q, z) Ay=Ey(z,q,2)) A (Ir. z=1)) V
(Gp. z=p) A (F¢- y=g) A (3r. 8(z,y,7) A 2=E;(z,y,7)))
(Fp. S(py,2) A = Es(p,y,2)) v
(3g- S(z,9,2) N y= Ey(z,9,2)) V
(3r. S(z,y,7) A 2= E;(z,y,7))
Thus the BDD of 3p ¢ . ReachBy n R B(p,q,7) A R((p,q,7), (z,y, 2)) can
be computed without ever computing the BDD of R((p, ¢,7), (z, v, 2))-
In Hol98, early quantification can be done using off-the-shelf tools from
simpLib. To illustrate this, we first compute the state transition equations
for HexSolitaire.
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MakeIterThms _
- HolBddTheory.ReachBy_rec
: (HexSolitaireTrans_def, HexSolltalreInlt _def);
> val ReachBy_0 =
|- ReachBy HexSolitaireTrans HexSolitaireInit O
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,vi3,v14,v15,v16,v17,v1s8, v19)
HexSolltalreInlt
(v01,v02,v03,v04,v05,v06, v07 v08,v09,v10,
vi1,v12,v13,v14,v15,v16,v17,v18, v19)
val ReachBy SUC =
|- !n.

ReachBy HexSolltalreTrans HexSolltalreInlt (SUC n)
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,vi3,v14,v15,v16,v17,vi8,v19) =

ReachBy HexSolitaireTrans HexSolitairelnit n
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,

vil,vi2,vi3,vi4,v15,v16,vi7,vi8,v19) \/

?p_1 p_11 p_12 p_13 p_14 p_15 p_16 p_17 p_18 p_19
p_-110 p_111 p_112 p_113 p_114 p_115 p_116 p_117 p_2.
ReachBy HexSolitaireTrans HexSolitairelnit n

(p_1,p_11,p_12,p_13,p_14,p_15,p_16,p_17,p_18,p_19,
p_110,p_111,p_112,p_113,p_114,p_115,p_116,p_117,p_2)
/\ ‘ ' '
HexSolitaireTrans
((p.1,p.11,p_12,p_13,p_14,p_15,p_16,p_17,p_18,p_19,
p_110,p_111,p_112,p_113,p_114,p_115,p_116,p_117,p_2),
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,

- {---val —(ReachBy-0;ReachBy_SUE) -= - - - == o o ooy i o TE

vii,v12,v13,vi4,v15,v16,v17,v18,v1i9))

The following box shows the result of rewriting ReachBy_SUC with the defini-
tion of HexSolitaireTrans (only 2 of the 54 disjuncts inside the existential

quantification are shown).

63




56
- val ReachBy_SUC_exp = [ 56 |

REWRITE_RULE [He’xSolitaireTrans_def] ReachBy_SUC;
> val ReachBy_SUC_exp =
|- !'n. ReachBy HexSolitaireTrans HexSolitaireInit (SUC n)
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,v12,v13,v14,v15,v16,v17,v18,v19) =
ReachBy HexSolitaireTrans HexSolitairelnit n
(v01,v02,VO3,vO4,v05,v06,v07,v08,v09,v10,
vil,v12,v13,v14,v15,v16,v17,v18,v19)
\/ :
?p_1 p_11 p_12 p_13 p_14 p_15 p_16 p_17 p_18 p_19 p_110
p-111 p_112 p_113 p_114 p_115 p_116 p_117 p_2.
ReachBy HexSolitaireTrans HexSolitairelInit n
(p_1,p_11,p_12,p_13,p_14,p_15,p_16,p_17,p_18,p_19,
p-110,p_111,p_112,p_113,p_114,p_115,p_116,p_117,p_2)
/\

P-1/\p_11/\"p_12/\"v01/\"v02/\v03/\(v04=p_13)/\
(v05=p_14)/\(v06=p_15) /\ (vO7=p_16) /\ (v08=p_17) /\
(v09=p_18) /\(v10=p_19) /\(v11=p_110) /\(v12=p_111)/\
(v13=p_112)/\(v14=p_113) /\(v15=p_114) /\(v16=p_115)/\
(v17=p_116)/\(v18=p_117) /\(v19=p_2)

\/
P-1/\p_14/\"p_19/\"v01/\"v05/\v10/\(v02=p_11)/\
(v03=p_12) /\(v04=p_13) /\(v06=p_15) /\ (vO7=p_16)/\
(v08=p_17) /\(v09=p_18) /\(v11=p_110)/\(vi2=p_111)/\
(v13=p_112)/\(v14=p_113)/\(v15=p_114)/\(v16=p_115)/\
(v17=p_116)/\(v18=p_117) /\(v19=p_2)

\/

The early quantification simplification will eliminate all the existential quan-

tifiers in the right hand side completely! This is illustrated below, where only
3 of the 55 disjuncts are shown.
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simpLib.SIMP_RULE
HOLSimps.hol_ss
[AND_OR,EXISTS_OR_THM]
ReachBy_SUC_exp;
> val ReachBy_SUC_simp =
|- !n. ReachBy HexSolitaireTrans HexSolitairelnit (SUC n)
' (v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,v11,
vi2,v13,v14,v15,v16,v1i7,v18,v19) =
ReachBy HexSolitaireTrans HexSolitairelnit n
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,v12,v13,vi4,v1i5,v16,v1i7,v1i8,v19)
\/ .
‘ReachBy HexSolitaireTrans HexSolitairelnit n
(T,T,F,v04,v05,v06,v07,v08,v09,v10,
vii,v1i2,v13,vi4,v15,v16,v17,v1i8,v1i9) /\
“v01 /\ ~v02 /\ vO03
\/ |
ReachBy HexSolitaireTrans HexSolitairelInit n
(T,v02,v03,v04,T,v06,v07,v08,v09,F,
vii,vi2,v13,v14,v15,v16,v17,v1i8,v19) /\
“v01 /\ “v05 /\ v10
\/

The difference in using ReachBy_SUC_exp and ReachBy_SUC_simp to compute
the BDD of ReachBy HexSolitaireTrans HexSolitaireInit (SUC 0) is
dramatic (<$> indicates a BuDDy garbage collection).
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58]

- addEquation ReachBy_0O;
(* Needed for subsequent BDD calculation *)
- time addEquation (SPEC ‘‘0‘‘ ReachBy_SUC_exp);
<P><P><PO<PI<PEO>PEO<PO<PO<EOPO<PO<PO<P><PO PP <P >< B>
<P><P><P><EO<EO><EOPEO<EOEO<POLPO<PO<P><PO<P><PO><PO<P><P><H>
<P><P><E><PO<P><EO<P><P><P><EO<EO<PO<E> PO P>
<P><E><P><PO<PO<EO<EO<PEO<EO<POEO<PO<E><EO<P><P><PO><P><E><H>
<E>LE><P><PEOPI<PS<P><PO<PO<PO<PO<P> P> P> <P><PO><P><P><P>< P>
runtime: 604.320s, gctime: 86.690s, systime: 0.570s.
> val it =
(¢ ‘ReachBy HexSolitaireTrans HexSolitaireInit (SUC 0)
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vii,vi2,v13,v14,v15,v16,v1i7,vi8,v19) ‘¢, <bdd>)
- time addEquation (SPEC ‘‘0‘‘ ReachBy_SUC_simp);
runtime: 2.510s, gctime: 0.420s, systime: 0.010s.
> val it = .
(¢ ‘ReachBy HexSolitaireTrans HexSolitaireInit (SUC 0)
(v01,v02,v03,v04,v05,v06,v07,v08,v09,v10,
vil,vi2,v13,v14,vi5,v16,v17,v18,v19) ‘¢, <bdd>)

Early quantification can also be used to find paths to counter-examples. To
apply it, the computation of the trace is reformulated in terms of computing
backward images of the transition relation.

The backward image of @ under R is 3s’. R(s,s’) A Qs
HolBddLib supports backward images via a defined constant Prev

[Prev_def]
Definition
|- 'R Q state.
Prev R  state = 7state’. R(state,state’) /\ Q state’

A trace sq, 81, ..., Sp is computed by working backwards from s,, as already
illustrated. The state s;_; is obtained from s; by using findModel to pick s
such that

ReachBy R B (i—1) s A Pre R (Eq s;) s
Note that the BDDs for ReachBy R B ¢ s (for i = 0,1,...,n) will already
have been computed when searching for s,.
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Note alse that Prev R Q s can be deductlvely simplified usmg early quan-

tification so that its BDD can be computed without having to compute the
BDD of the transition relation R.

7  The HolBddLib structure StateEnum

The structure StateEnum in HolBddLib provides tools for computing sets of

reachable states similar to those described earlier. These are a bit more ro-
bust and efficient than the pedagogical tools described in Section 6. StateEnum
also contains some miscellaneous functions, documented in Section 7.3.

7.1 Symbolic state enumeration tools

Each function in this section takes as argument a pair of theorems (Rth,Bth)
say, of the form

(I—. R((v1,...,0p), (W,...,1)) = tr, & Bv,...,v) = i)

defining a transition relation R and set of initial states B (the theorems can
- be closed under universal quantification).

The functions

MakeSimpReachInRecThm : thm * thm -> thm
MakeSimpReachByRecThm : thm * thm -> thm

return, respectively, theorems of the form

- (ReachIn R B 0 (vy,...,7p) = i8)
/\
(ReachIn R B (SUC n) (v1,...,7p) = Leimp)

I (ReachBy R B 0 (v;,...,vp) = tg)
/\

(ReachBy R B (SUC n) (V15.-,Up) = Lsimp)

where tsim,p is computed by early quantification.
The functions '
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ComputeReachable
: thm * thm -> {ReachThm : thm, iterations : int}

ComputeSimpReachable
: thm * thm -> {ReachThm : thm, SimpTransThm : thm, iterations : int}

compute theorems of the form
I Reachable R B (vl,...,‘vp) = ReachBy R B i (v1,...,7p)

where 7 is the number of iterations to a fixed point. The difference between
the two functions is that ComputeReachable doesn’t use early quantification
to simplify the next-state calculation, but ComputeSimpReachable does.

7.2 Computing traces

val FindRefutationTrace : thm * thm * thm -> thm list

This takes a triple (Rth,Bth,Qth), where Rth and Bth define a transition
relation and set of initial states, respectively, as above. The third argument
Qth defines a predicate, Q say, by

}'— Q(vl,...,vp) = tQ

that is intended to hold of all reachable states.
The function FindRefutationTrace seaches for a counter-example to show
that in fact there is a reachable state, sy say, for which @ fails. An ML list
of theorems is returned:

[F B sy, - Next R (Eq 5m) Sm—1, --- »- Next R (Eq s1) s, F~(Q s0) ]
The sequence s, ..., Sp is a sequence of states, of minimal length, from an
initial state to a reachable state refuting Q.

FindRefutationTrace tries to use early quantification to simplify both the
forward (Next) and backward image (Prev) calculations.

Note that applying
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map (simpLib.SIMP_RULE
HOLSimps. hol_ss
[HoledTheory Next_def HoledTheory Eq_def])

to the list of vtheor‘em above results in _
[F B sm, FR(SmySm-1), --- »& R(s1,50), F (2 50) ]

7.3 ’Miscellaneous ML functibns

The functions listed here are miscellaneous ML and HOL tools that have
been mentioned earlier. Various other functions are provided by HolBddLib
(e.g. for encoding HOL enumerated types as products of bool). These will
be documented in future versions of this report. |

intToTerm : int -> term
Converts an ML integer to a HOL ﬁumeral.
val PGEN_EXT : thm -> thm

Implements a version of extensionality:

‘ FP =@
FVu, -+ v, P(vl,...,v,) = Qvl,...,v,)

7.4 -Efﬁciency issues

On small examples the fairly naive implementation described here (and avail-
able with the first release of Ho1BddLib) seems to work well. However, larger
examples reveal that there are some efficiency problems. For example, using
ComputeReachable the computation of the sets of reachable states of the
standard game of Peg Solitaire grinds to a halt around depth 16. However,
~ a pure MuDDy solution that directly computes the BDDs without going via
HOL formulae can calculate the BDDs of all depths in a few hours.

It is hoped that by comparing the BDD operations performed by the pure
MuDDy solution with those invoked via ComputeReachable it will be possible
to improve to tools in StateEnum to match the pure MuDDy performance.
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