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Abstract

A key task in computer graphics is the rendering of complex models. As a
result, there exist a large number of schemes for improving the speed of the
rendering process, many of which involve displaying only a simplified version
of a model. When such a simplification is generated selectively, i.e. detail
is only removed in specific regions of a model, we term this selective mesh
refinement.

Selective mesh refinement can potentially produce a model approximation
which can be displayed at greatly reduced cost while remaining perceptually
equivalent to a rendering of the original. For this reason, the field of selec-
tive mesh refinement has been the subject of dramatically increased interest
recently. The resulting selective refinement methods, though, are restricted
in both the types of model which they can handle and the form of output
meshes which they can generate.

Our primary thesis is that a selectively refined mesh can be produced by
combining fragments of approximations to a model without regard to the
underlying approximation method. Thus we can utilise existing approxima-
tion techniques to produce selectively refined meshes in n-dimensions. This
means that the capabilities and characteristics of standard approximation
methods can be retained in our selectively refined models.

We also show that a selectively refined approximation produced in this
manner can be smoothly geometrically morphed into another selective refine-
ment in order to satisfy modified refinement criteria. This geometric morph-
ing is necessary to ensure that detail can be added and removed from models
which are selectively refined with respect to their impact on the current view
frustum. For example, if a model is selectively refined in this manner and
the viewer approaches the model then more detail may have to be introduced
to the displayed mesh in order to ensure that it satisfies the new refinement
criteria. By geometrically morphing this introduction of detail we can ensure
that the viewer is not distracted by “popping” artifacts.

We have developed a novel framework within which these proposals have
been verified. This framework consists of a generalised resolution-based
model representation, a means of specifying refinement criteria and algo-
rithms which can perform the selective refinement and geometric morphing
tasks. The framework has allowed us to demonstrate that these twin tasks
can be performed both on the output of existing approximation techniques
and with respect to a variety of refinement criteria.
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Glossary

Area Of Interest, AOI : an area of a model which is required to be dis-
played at a higher resolution than its surrounding region.

Continuous Resolution Model Representation, CRMR : the form in
which we represent a computer graphics model prior to producing a
selectively refined version.

CRMR Hypermesh : the component of a CRMR which stores fragments
of approximations to the original model.

CRMR DAG : the Directed Acyclic Graph component of a CRMR which
represents the overlapping nature of the fragments contained in the
associated Hypermesh.

Geometric morphing, Geomorphing : the process of smoothly interpo-
lating between two different representations of a model.

Level Of Detail, LOD : a single-resolution approximation to a model.

MultiTriangulation, MT : Puppo and De Floriani’s structure which can
represent models in a resolution-based manner [Pup96, DPM96].

Progressive Mesh, PM : Hoppe’s resolution-based model representation
and associated approximation method [Hop96, Hop97b].

Refinement fragment : the term which we use to denote a fragment of an
approximation to a model. Specifically, a refinement fragment can be
used to replace a particular region of a lower resolution approximation
to produce a higher resolution approximation.

Refinement operation : the process of refining a model approximation by
inserting a refinement fragment.

Resolution Control Function, RCF : our composition of the criteria
specifying the resolution which is required in a selectively refined ver-
sion of a model.

Selective Mesh Refinement, SMR : the process of producing a selec-
tively refined version of a model.

Virtual Reality Modelling Language, VRML : a 3D file interchange
format used to provide 3D environments on the World Wide Web.
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1.1

Chapter 1

Introduction

Think of the screen as a window into a virtual world. The task of
computer graphics research is to make the picture in the window
look real, sound real, interact real, feel real. [Sut65]

The “task” to which Ivan Sutherland referred in 1965 seems no closer to
completion now than at the time of his visionary statement — improving the
quality of such “virtual worlds” is an open-ended research problem. This
dissertation tackles the problem by proposing a framework which provides
a flexible approach to reducing the geometric detail contained in graphical
models selectively. In addition, the framework offers a mechanism for inter-
polating between such selectively refined models. We demonstrate that the
resulting reduction in polygonal complexity can permit faster rendering and
animation without significantly affecting the viewer’s perception of a scene.
An example of a selectively refined model is given in Figure 1.1.

Background

One way to reduce the cost of rendering a model is to display only an ap-
proximation of that model. There is a large (and rapidly expanding) set
of schemes for producing such model approximations. Each of these ap-
proximation schemes can handle a particular class of model and produces
approximations which have certain characteristics, e.g. triangular or polyg-
onal, topologically equivalent or modified, etc. These approximation tech-
niques are generally computationally expensive and, if they are to improve
the speed with which a model can be manipulated, they must be performed
as an off-line pre-processing step.

If only a single approximation of a model is prepared and stored as a
representation of that model then this approximation is likely to reduce any
storage and transmission costs relative to the original. This single approx-
imation, though, can improve the rendering ability of an application only
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(b) Selectively refined model with reduced reso-
lution apparent on the cockpit windscreen, star-
board wing and tail.

(a) Viewpoint Datalabs’ VRML Cessna model.

Figure 1.1: Example of a selectively refined model.

when the distance from the viewer to the model is within a certain range.
Figure 1.2 presents an example of a single approximation to a model, specif-
ically a triangulation which represents the terrain surface of Mt St Helens,
Washington. This approximation cannot be distinguished from the original
data when its distance from the viewer is in the illustrated range. When
the viewer is closer to this approximation, though, the fact that data has
been removed is apparent and it would have been preferable to display a
higher resolution representation; on the other hand, when the approximation
is further away, its resolution could have been decreased without reducing
the quality of the displayed image.

It is possible to realise the benefits of using an approximated model
and also to render an image which is perceptually equivalent to the origi-
nal model at any viewing distance. The simplest approach to this objective
is to prepare and store more than one approximation of a model. This is
the form of detail management which is invoked by both Open Inventor and
VRML [Wer94, CB97]. A model can be stored as a set of approximations
of which one is selected according to a simple criterion which determines
the approximation which is appropriate for the requirements of the current
scene. Each approximation is generally termed a Level Of Detail (LOD).
Figure 1.3 illustrates the selection of different representations according to
their distance from the viewer.
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g : : —~
Approximation

. Suitable viewing distance Approximation Yiewing
Viewer over-simplified for approximation too detailed distance

Figure 1.2: One approximation of Mt St Helens and the range of viewing dis-
tances for which it may be a suitable representation.

‘ :/9 1 1
‘ ) Detailed approximation (;() Medium resolution (;() Simple approximation Viewing
Viewer approximation distance

Figure 1.3: A set of three approximations of Mt St Helens from which one
would be selected when the distance to the viewer lay in the ranges
indicated. LOD switching would occur at points (X) and (Y).
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There are a number of drawbacks to this multiple LOD approach to using
model approximations:

e the individual LODs must be pre-calculated and, while there are now
tools available to assist with this process (such as SGI's Cosmo Worlds!,
InnovMetric’s IMCompress? and HP’s DirectModel?), there is usually
a degree of manual input required. Puppo [PS97] examines these tools
in detail;

e as the viewer moves through a scene, the resulting changes in LODs
will be apparent to the viewer as “popping” between different model
approximations. There is no requirement for coherency between the
LODs and hence no way in which one LOD can be smoothly trans-
formed into another;

e there can be no selective refinement within the surface of a large object
and so, even if only a small portion of a large object is being viewed
in one frame, a high-resolution approximation of the entire object may
be required;

e the time which is required to retrieve and render a particular LOD
is not taken into consideration by the LOD selection criterion. Thus
the user may have to wait for a high-resolution representation to be
retrieved when a coarser LOD would have been sufficient;

e even if one LOD of an object has already been retrieved, the informa-
tion contained in this representation is not used when another LOD of
the same object is required later.

An extension of this multiple LOD approach was suggested in 1976 by
Clark [Cla76] and this was the first paper to advocate a multiresolution ap-
proach to modelling. Clark suggested that an object can be represented by a
hierarchy of components. The root of this hierarchy is a crude approximation
of the object and every other node contains an improved approximation of
a component which is represented in its parent node. A selection of these
nodes can be used to represent the object for a particular scene such that the
amount of detail in each object component is proportional to its projected
area in screen-space. Also, by checking whether the bounding box of each
node is on-screen, visibility culling can be performed. Thus the number of
polygons which has to be rendered in each frame can be reduced significantly.

Thttp://cosmo.sgi.com /products/studio/worlds/datasheet.html
2http:/ /www.innovmetric.com /anglais /page_ed.html
3http://hpcc920.external.hp.com/wsg/products/grfx/dmodel
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Figure 1.4: A hierarchy of object components representing a simple human
body. The head and an arm are refined to two levels. The body
on the right has been constructed from the set of components con-
tained in the dashed outline.

The example which Clark gave, of a hierarchy representing a human body,
is represented diagrammatically in Figure 1.4. If a model of a body is suf-
ficiently far away from the viewer then it may cover only a few pixels when
rendered and so the top level (coarsest) approximation in the hierarchy can
instead be rendered at a much reduced cost and with minimal impact on the
viewer’s perception of the scene. If the viewer moves closer to the body then
this approximation may no longer be sufficiently representative of the body
and so the next level of the hierarchy may be used as a set of approximations
to the body’s components, e.g. its arms, legs, head and torso. This form of
recursive descent can be used to determine the component approximations
which are the minimum necessary to render a particular scene.

Sewell detailed a number of techniques to handle the tasks associated
with this form of model hierarchy, such as the identification of model com-
ponents [Sew96]. He also demonstrated that this approach reduces the gran-
ularity of the problems associated with merely selecting between complete
model LODs. The remaining disadvantages are that a large surface such
as a terrain cannot easily be resolved into separate components and also
“popping” artifacts still arise when component LODs are switched.

As a means of resolving the first issue, papers in the area of terrain mod-
elling (including [DP95, CPS95, dD95]) described how approximation tech-
niques can be invoked locally such that a representative surface is produced
which has a varying degree of detail across its surface. This is particularly




Introduction

1.2

relevant to terrain scenes because the disparity between distances in object-
space from the viewpoint to the closest and furthest points of the rendered
surface is often large. Hence this selective refinement can usefully be applied
to increase the resolution of a rendered surface close to the viewer while re-
ducing the resolution of the surface in more distant regions. In this way, the
polygon count of a displayed terrain can be reduced without affecting the
perceived quality of the scene.

The task of selectively refining terrain surfaces has been the subject of dra-
matically increased interest recently but this selective refinement approach
to scene optimisation can also usefully be applied to rendering more general
forms of three-dimensional models. Given the rendering requirements of a
particular scene, we could reduce the rendered polygon count by completely

- replacing those objects, or groups of objects, which project onto a small area

of the screen (as Sewell advocated [Sew96]) and, in addition, selectively re-
fine the more significant objects before rendering. The surfaces of these latter
objects could be selectively refined according to criteria such as their prox-
imity to the viewer, the prominence of their features, and also the resolution
required in certain areas of the screen.

Authors such as Hoppe [Hop97b] and Xia and Varshney [XV96] have
recently presented methods which can perform this selective refinement of
three-dimensional models. One advantage of Hoppe’s method is that ge-
ometric morphing (or geomorphing) can be performed between selectively
refined meshes and hence this can resolve the final problem associated with
multiple LOD selection — the “popping” artifacts.

Motivation

The previous section has highlighted how approximations of computer graph-
ics models can be generated and used in rendering. The most recent of
the available approximation methods can produce an approximation whose
quality of representation can vary within its extent, i.e. they can produce a
selectively refined approximation. This implies that we can specify the reso-
lution requirements of a particular scene and then generate approximations
to models in the scene which closely match these requirements. Thus we can
produce a representation of a scene which is the most efficient in terms of
the number of rendered polygons.

The polygonal reductions which can be achieved by this approach to
rendering have been demonstrated by Xia, Varshney and Hoppe [XV96,
Hop97b]. The selective refinement methods which these authors proposed
are limited by being inextricably linked to a particular method of approx-
imating a model. Thus their selectively refined representations reflect the
characteristics of the underlying approximation method and these character-
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istics are not necessarily suitable for every application.

This constraint on the production of selectively refined representations
seems unnecessary when we consider Cignoni’s approach to generating se-
lectively refined terrain surfaces [CPS95]. This author demonstrated how
restricted forms of selectively refined surfaces can be produced by combining
fragments of single-resolution approximations to a terrain surface.

We expand the scope of this fragment-based approach beyond its limited
domain of a specific approximation method operating on terrain surfaces
and producing restricted selectively refined versions. We wish to produce
unconstrained selectively refined representations of n-dimensional models as
the result of applying any of a wide range of approximation methods. This
would permit an existing approximation method to be applied to a model
when the characteristics of that method were appropriate to either the model
or the intended application. The resulting selectively refined version could
then maintain those characteristics.

The fragment-based nature of this potential selective refinement process
also appears to lend itself to geomorphing between selectively refined meshes
without using the specific approximation technique of Hoppe [Hop97b|. If
we can localise the necessary geometric morphing to the regions of these
approximation fragments, it should also be possible to decouple the geomor-
phing process from the underlying approximation method. Thus we could
ensure that if, for example, the resolution criteria of a scene changed during
an animation of a selectively refined representation, the selective refinement
could be adapted to meet the new resolution criteria without any “popping”
artifacts.

Thesis

Our primary thesis is that an n-dimensional selectively refined mesh can be
constructed from a series of single resolution Levels Of Detail without re-
gard to the approximating process which constructed these LODs. Further,
that geomorphing can also be performed independently of the original ap-
proximating process. As a result, a wide range of existing single-resolution
approximation methods can be combined with the twin processes of selective
refinement and geomorphing.

The Selective Mesh Refinement framework

In the process of exploring our thesis, we have developed a framework for
performing selective refinement and geomorphing. This framework fulfills
our objective of permitting these processes to be performed on the output
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of existing single-resolution approximation methods. The key concept of our
Selective Mesh Refinement (SMR) framework is that it separates the process
of producing a resolution-based representation of a model from the associated
tasks of:

1. extracting a selectively refined mesh which represents the model, and;
2. geomorphing between selectively refined meshes.

To facilitate this separation, we have developed a novel form of repre-

’ senting computer graphics models. This stores the information which can

be generated by applying an existing approximation method to a model at
a range of resolutions. We can extract from this information the portions of
pre-generated approximations which can be combined into a complete repre-
sentation of the original model. This selectively refined version of the model
can be guaranteed to satisfy the current resolution criteria.

In addition, if the resolution criteria change, we can adapt an existing
selective refinement to meet these new requirements. This process of adap-
tation can be performed as a sequence of localised modifications which can
be geometrically morphed. Hence we can geomorph between selectively re-
fined models without regard to the approximation method from which they
originated.

Contribution

This section outlines the contribution of this dissertation to the field of com-
puter graphics.

We introduce a generalised, lossless, continuous resolution format for rep-
resenting models. This representation extends the existing concept of storing
a set of fragments of approximations to a terrain [CPS95] by permitting the
fragments to be generated by a range of approximation methods which op-
erate on n-dimensional models. Furthermore, we permit certain topological
operations to be represented by the fragments which we store and this permits
us to handle a wider range of both approximation methods and approximated
models than previously.

This model representation format can be implemented using a novel ex-
tension of a standard computer graphics data structure. This standard basis
permits existing algorithms for essential operations such as point location to
be easily adapted for use on our model representations.

Representing models in. this resolution-oriented fashion is necessary to
provide the input to our selective refinement algorithms. We present two
algorithms which can selectively refine n-dimensional models with respect to
some resolution specification. A selectively refined version of a model can
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be generated by combining a selection of the fragments of approximations
to that model which have been stored in our resolution-based representa-
tion. Thus, uniquely, we can demonstrate that the approximating process
which generated the original single-resolution model approximations is not
restricted to a specific method, as existing selective refinement techniques
demand, but can be drawn from a wide range of existing methods. Hence
we can permit the use of standard approximation methods which have been
developed to operate on particular classes of model, such as terrain surfaces,
or which generate approximations with desirable characteristics, e.g. smooth
meshes. Such characteristics are retained in our selectively refined models.

We can prove that the selective refinements which our algorithms generate
are guaranteed to satisfy the resolution criteria which have been specified
as essential for a particular scene. We uniquely combine resolution criteria
which have been specified in terms of both the space in which the model
has been specified and that in which it is to be displayed. Thus we can
ensure that, for example, the geometric error across the displayed portion
of a selectively refined terrain surface is within a prescribed tolerance, while
detail in the region outside the current view frustum can be culled. Also,
we suggest how complex resolution requirements for terrain surfaces can be
specified and visualised. Of particular interest here is how we can specify the
regions of a terrain which are critical for all viewpoints, such as the ridges
and peaks of mountains.

We have already noted the requirement for smoothly modifying a selec-
tively refined model when resolution requirements change. Thus the process
of geomorphing is inherently linked to the process of selective refinement.
We present a geomorphing algorithm which can operate on our selectively
refined models and hence is novel in being independent of the underlying
approximation method.

This dissertation also presents the first quantitative comparison of selec-
tively refined models produced using alternative approximation methods and
with respect to a range of resolution criteria.

The specific details of this dissertation’s contribution are presented in
depth in Section 4.1.

Structure of the dissertation

The remainder of this dissertation is arranged in the following order.
Chapters 2 and 3 consider related background material. Chapter 2 in-
troduces terminology associated with the field of model approximation and
surveys a wide range of approximation methods. Chapter 3 considers exist-
ing methods which can generate selectively refined models from the output
of these approximation methods and also how the resolution criteria which
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these models are intended to meet can be specified.

Our Selective Mesh Refinement framework is detailed in Chapters 4 thr-
ough 6. The first of these introduces definitions associated with our frame-
work, our resolution-based model representation and the means by which
we specify resolution requirements. Chapters 5 and 6 present our selective
refinement and geomorphing algorithms respectively.

The results of applying our algorithms to various models and resolution
criteria are presented in Chapter 7.

Finally, our conclusions and suggestions for areas of future exploration
are detailed in Chapter 8.



2.1

2.1.1

Chapter 2

Mesh Simplification

The range of application areas in which approximating techniques for ge-
ometric meshes are required is reflected in the wide variety of these tech-
niques. Each of these techniques has unique characteristics which determine
its applicability and usefulness with respect to the requirements of specific
applications.

In this chapter we identify approximation techniques which are relevant
to our Selective Mesh Refinement framework and the field in which it lies.
This is not intended as an exhaustive survey of mesh approximation methods;
no such survey exists, although Heckbert and Garland [HG95, Hec97] and
Puppo and Scopigno [PS97] have examined similar subsets of the field.

The purpose of this chapter is to examine how these approximation meth-
ods can produce one or more meshes which represent a given model. The
potential to link these meshes in some manner, and extract a selectively re-
fined representation due to this structuring, is examined in the next chapter.
By separating the approximation methods from any mesh linkage which they
may introduce, we attempt to treat these existing methods in the manner in
which they can be incorporated into our framework.

We first introduce some of the standard terminology which is used to
describe the types of meshes which can be handled by the methods in this
chapter. This is followed by brief descriptions and discussion of each of the
approximation methods which we have identified as being relevant, cate-
gorised according to the classes of models which they can handle.

Preliminaries

Surface definitions

In this section we present standard formal definitions of the categories of
surfaces which can be handled by the approximating methods discussed in
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2.1.1.1

2.1.1.2

Figure 2.1: Mt St Helens datapoints relative to their planar domain.

this chapter [PS97].

Scalar fields

A scalar field is a continuous function ® : @ — R, where 2 is a connected
domain in R¥, k > 1. The image of ® embedded in R¥*! space, i.e.

F={(X,®(X))|X € Q} c R

is called a hypersurface.

When k& = 2, F is called a height field. A common example of a height field
is a terrain surface, where the domain  is R? and ® is specified by elevation
values at discrete sample points. Figure 2.1 shows the US Geological Survey’s
terrain data for Mt St Helens (subsampled by a factor of 4) displayed as a
surface relative to a planar domain.

Manifold surfaces

A manifold surface S is a subset of Euclidean space R¥, for some k > 3, such
that the neighbourhood of each point of S is homeomorphic to the open disc
in R%2. A simple example of this kind of surface is the surface of a sphere or
a closed polyhedron.

A manifold surface with boundary S is a subset of Euclidean space R, for
some k > 2, such that the neighbourhood of each point of S is homeomorphic
to either the open disc, or to the half-disc (which is obtained by intersecting
the open disc with the closed half-plane of the positive x coordinates). The
boundary S of such a surface is the set of all points of S which do not have
a neighbourhood homeomorphic to the open disc. The classic example of a
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(a) One edge adja- (b) Two cubes
cent to three facets. joined along an
edge.

Figure 2.2: Examples of non-manifold surfaces.

manifold surface with boundary is the Utah teapot, in which the boundary
of the otherwise closed surface is the rim of the spout.

To clarify these definitions using counter-examples, two non-manifold sur-
faces are presented in Figure 2.2.

Simplicial meshes

All of the outputs of the approximation methods which this chapter discusses,
apart from the wavelet-based methods, can be represented as simplicial
meshes, i.e. meshes of triangles or tetrahedra. We introduce these meshes by
following the definitions of Popovi¢, Puppo and Moore [PH97, PS97, M0092]
which themselves are extensions of the standard topological definitions of
Spanier [Spa66].

A simplex is the most elementary geometric figure of a given dimension
(Figure 2.3). Formally, a k-simplex is a subset s of R®, 0 < k < n, which is
the locus of points that are convex combinations of the k& + 1 vertices of s.
The faces of a simplex s are the non-empty subsets of s (Figure 2.4).

A finite set S of simplices in R" is a simplicial mesh when the following
conditions hold:

1. for each simplex s € S, all the faces of s belong to S;

2. for each pair of simplices sg,s; € S, either so Ns; = 0 or s N sy is a
simplex of S;

3. each simplex s is a face of some simplex s’ (possibly coincident with s)
having maximum dimension among all of the simplices of S.
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(@) (b) (c) (d)

Figure 2.3: 0,1,2- and 3-dimensional simplices: point, line, triangle and tetra-
hedron.

PN
v

{ab,c} { {a}, {b}, {c}, {a,b}, {ac}, {bc}, {a,bc} |

Figure 2.4: A 2-simplex (a triangle) and its faces.

A simplicial mesh S is called a d-simplicial mesh if d is the maximum
among the dimensions of the simplices belonging to S. We refer to a d-
simplicial mesh simply as a mesh, when no ambiguity will result. An example
of a set of simplices which is not a simplicial mesh is given in Figure 2.5.

Height field approximation

The task of approximating height fields is a significant one, notably because
the demand for real-time performance in flight simulators involves the use
of approximated terrain surfaces. Indeed, this demand has led to a wide
range of terrain approximators, of which the most significant are considered
here. As we shall see in Sections 2.3 and 2.4, the key concepts of these
approximation methods are reflected in a number of the methods which can
handle manifold and non-manifold meshes.

Height field representation schemes can be classified as either regular or
irreqular according to whether they use datapoints which lie in a regular grid.
The original flight simulators [Sch83, CMR90] used a grid-based system and
this is also the case with most of their current descendants [Mue95]. The
use of irregular representations is a relatively recent innovation and is almost
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Figure 2.5: Two simplices of mixed dimensionality do not satisfy the third
condition which is required of a simplicial mesh.

Origin vector

Sample of
coordinate vector:

Grid,
spacings

'

ElevmionT

values

(a) Storage required for regular grid data. This (b) A sample of the vector triples required to
is one of the standard forms in which the US store an irregular terrain mesh.

Geological Survey distribute their data, known

as the Digital Elevation Model format [EC84].

Figure 2.6: Grid versus TIN storage.

entirely confined to triangle-based systems, whose underlying structure is
termed a Triangulated Irreqular Network (TIN).

Representating a terrain as a grid of elevation values has the advantage of
simplicity — only the grid’s origin, the grid spacing and the elevation values
themselves must be stored (Figure 2.6a). In contrast, a TIN requires each
datapoint to be stored as a coordinate triple (Figure 2.6b).

An initial examination of these alternative schemes may therefore suggest
that the grid-based system is inherently more compact. The advantage of
a TIN, though, is that it can be adaptive with respect to the detail in a
surface. Thus highly-detailed areas such as mountains can be represented by
a higher density of datapoints and areas of low detail, such as East Anglia,
can be represented using proportionally less data (Figure 2.7). Whether
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Figure 2.7: A TIN representing the Mt St Helens dataset with its adaptive
nature apparent in the highly-detailed crater area in the centre of
the dataset.

the adaptive nature of a TIN sufficiently counteracts its increased storage
per data element is a moot point — see [Kum94] and [Hec97] for conflicting
views.

We examine a set of grid-based terrain approximation schemes in Sec-
tion 2.2.1 and then their TIN-based counterparts in Section 2.2.2. One other
method which is of interest due to its consideration of the critical lines (ridges,
channels, etc) in a terrain is mentioned in Section 2.2.3.

Regular grids

In this section we discuss how the inherent redundancy of grid-based sys-
tems has been partially eliminated in the implementations of Evans and
Sutherland [CMR90] and the Naval Postgraduate School’s NPSNET system
[FZPM93]. We also examine a more recent grid-based method [LKR*96]
which can guarantee the screen-space accuracy of a displayed terrain and a
wavelet-based technique [GGS95] which provides local control over the out-
put surface detail.

The simplicity and compact nature of grid-based representation were the
factors which motivated its use in Evans and Sutherland’s commercial flight
simulator systems after their earlier experimentation with TIN representa-
tions [Sch83, Mue95]. Cosman [CMR90] described an E&S visual system
whose database contains regular grids of elevation values. This data is stored
as layers of Level Of Detail grids, where each LOD is subsampled to a quarter
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Lowest resolution LOD

NN

Highest resolution LOD

Figure 2.8: Cosman’s layers of regular grid LODs.

of the number of points in its parent LOD, as in Figure 2.8.

Cosman did not describe the linkage between these LODs explicitly but
their hierarchical nature is similar to the quadtree-based [Sam84] system of
Falby et al's NPSNET visual simulation environment [FZPM93|. At the
highest level of detail, polygons which are the cells between the finest reso-
lution grid data points are held in the leaves of a quadtree. These are then
combined in fours to produce successively lower resolution representations
until a 1km square of terrain is represented by the node at the root of a
quadtree. These 1km squares are paged in and out of memory as required
by the viewer’s movement within a scene.

Figure 2.9a contains a subset of the quadtree which could be used to
link the terrain polygons of Figure 2.8. Specifically, this quadtree subset
could generate the plan view of Figure 2.9b. In this view, we can see that
the depth of the nodes used to generate the surface is proportional to the
nodes’ significance in the scene, i.e a view-dependent approximation has been
produced. As the plan view illustrates, this has resulted in higher resolution
nodes being used in the area around the viewer. The nodes which are visible
in the plan view have been shaded in Figures 2.8 and 2.9.

Although such grid-based LODs can be generated and stored in a hier-
archy relatively easily, a further polygonalisation step is required to combine
multiple layers of these LODs into a seamless surface. The plan view of Fig-
ure 2.9 illustrates the T-vertez problem which results when polygons from
LODs in different levels of the hierarchy are adjacent in an extracted sur-
face.. These T-vertices would be visible as gaps if this surface was displayed.
DeHaemer and Zyda [DZ91] described a number of ways in which a surface
extraction algorithm could eliminate T-vertices from an approximating sur-
face; the standard approach is to triangulate the lower-resolution polygon
adjacent to a T-vertex (Figure 2.10). The 16 possible triangulations which
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Figure 2.9: NPSNET hierarchy and plan view.

may be required between mis-matched LOD nodes which vary by only 1 level
in a hierarchy were illustrated by Gross et al [GGS95].

Another disadvantage of using grid-based systems was highlighted by
Scarlatos [Sca90]. She demonstrated that the use of subsampling to produce
LODs in a grid-based system can cause the representations of significant fea-
tures to appear to move between Levels Of Detail and hence concluded that
transitions between these LODs could not be smooth.

This conclusion was invalidated by Lindstrom et al's “continuous level-
of-detail” grid-based system [LKR*96] which guarantees an upper bound on
the screen-space error resulting from the display of an approximated portion
of terrain. In addition, this method avoids the T-vertex problem associated
with grid-based LODs by representing the surface as a hierarchy of right
triangles. This use of right triangles, combined with a restriction that trian-
gles are combined pair-wise at each level in the hierarchy, results in a simple
dependency graph (Figure 2.11). The decision as to whether a particular
triangle is extracted for the current scene is made using an approximation
of the screen-space error which that triangle would introduce. The compact
nature of the triangle dependency graph and the efficiency with which this
screen-space error measure can be implemented was demonstrated by the
real-time performance which Lindstrom presented.

The final grid-based system which we shall briefly examine is Gross et
al's wavelet-based technique [GGS95, GSG96]. This method uses a wavelet
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Figure 2.10: Two LOD nodes from a grid-based hierarchy are joined by a sim-
ple split of the lower-resolution LOD.
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Figure 2.11: The basis of Lindstrom’s grid-based hierarchy: pairs of right tri-
angles which can be combined to form other right triangles.
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transform to identify the significant areas of a terrain and then applies the
inverse wavelet transform to identify the nodes of a quadtree which are re-
quired for a particular scene. Although this kind of wavelet-based technique
lies outside the scope of our SMR framework, the significant aspect of this

“technique is how the output surface’s resolution can be controlled. An Area

Of Interest (AOI) can be specified by a Gaussian weighting function ap-
plied to the coefficients of the wavelet transform. We shall see later that the
method by which AOIs are specified in our framework can be viewed as an
adaptation of this method.

TINs

Schemes to approximate a height field using a Triangulated Irregular Network

- can be classified according to whether or not the topology of their TINs is

2.2.2.1

determined by elevation information. Triangulations which take this into
account are called data dependent. In this section we review typical examples
of both data dependent and data independent triangulation methods. A
feature common to all of these methods is that they can be viewed as making
repeated local modifications to an approximating surface. We shall see later
that this attribute makes them suitable candidates for inclusion in our SMR
framework.

Data independent triangulations

The most common data independent triangulation method, i.e. a method

* which only considers the datapoints’ (z, y) domain positions, is the Delaunay

criterion. A Delaunay triangulation 7 is such that for each triangle ¢ in T,
there is no vertex of 7 in the interior of ¢’s circumcircle [Law77, GS77, PS85].
As Figure 2.12 illustrates, this triangulation criterion ensures that triangles
have good aspect ratios and hence sliver triangles are avoided. Sliver trian-
gles are undesirable for applications such as Finite Element Modelling and
graphical rendering since their shape can cause numerical inaccuracies in
FEM calculations and visual discontinuities in smoothly shaded surfaces.
Fowler and Little [FL79] are often cited as the originators of Delaunay
approximating TINs. These authors construct a TIN in two stages. First,

~ the structure of a terrain is characterised as a graph in terms of its significant

points by passing a 2 x 2 filter over the data (see Section 2.2.3 for details).
Secondly, a set of points with the highest approximation error is added to

" this skeleton so that the model meets a specified error tolerance. The re-

triangulation during this stage is performed with respect to the Delaunay
criterion. _ '
The second step in Fowler and Little’s method — greedy point inser-

. tion [Hec97] — is a common feature of many triangulation schemes. Points are
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Figure 2.12: A Delaunay triangulation (a) overlaid with the circumcircles of
its triangles (b) to demonstrate that none encloses another vertex
of the triangulation.
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Figure 2.13: The Delaunay selector criterion. The next candidate point for

insertion is the one which is furthest removed, vertically, from
the current approximating surface. This error term, at a point P,
can be written as e(P) = |z~ f(P)| where P = (z,y, 2) and f(P)
is the surface elevation at P computed as a linear interpolation
of the z values at the vertices of the triangle whose projection
encloses the projection of P.

inserted, either singly or in parallel, to an existing mesh in order to improve
the quality of its approximation to a surface. The insertion step is termed
“sreedy” because the decision as to which points to insert is irrevocable.
The points inserted are typically the ones which are at the maximum abso-
lute distance from the current approximating surface (Figure 2.13). When
this criterion is used to insert points in a Delaunay triangulation, it is known
as the Delaunay selector criterion [DFP85].

The retriangulation step which is invoked by Fowler and Little’s method
requires the Delaunay quality of a triangulation to be maintained during se-
quential point insertions. When a point is inserted in a triangle, the original
edges of that triangle may have to be swapped if the newly-created subtrian-
gles do not satisfy the Delaunay criterion (Figure 2.14a). In turn, this may
force other edges to be swapped (Figures 2.14b,c). The effect of a point inser-
tion is localised, though, to a star polygon of triangles which are coincident
with the inserted point (Figure 2.14d).

De Floriani et al [DFP83, DFP85] demonstrated that this Delaunay re-
triangulation step can be used in isolation, i.e. without Fowler and Little’s
initial feature detection, to approximate a height field. The base mesh to
which De Floriani’s method sequentially adds points according to the De-
launay selector criterion is simply a planar TIN covering the boundary of
the input dataset’s domain. Points are added until the model matches the
original data to within a certain tolerance. Optimised algorithms for this
scheme were presented by Heckbert and Garland [HG95, GH96].

De Floriani and her co-authors have used Delaunay triangulations ex-
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(a) Point P from Figure 2.13isin-  (b) Edges @ and b have been
serted into its surrounding trian- swapped with the opposite diago-
gle; edges a, b and ¢ are checked nals in their containing quadrilat-
against the Delaunay criterion. erals. As a result, edges d, e, f

and g must be revalidated (assum-
ing that this is a portion of a larger

triangulation).
(c) Edge f has been similarly ) In a plan view of the scene, the
swapped; a further two edges must star polygon of modified trlangles
be checked against the Delaunay around P is highlighted.

criterion.

Figure 2.14: A point insertion in a Delaunay triangulation.

tensively as height field approximators. Extensions presented by these au-
thors include Delaunay triangulation over arbitrarily-shaped (rather than
strictly convex) domains [DFP85]; a constrained Delaunay triangulation al-
gorithm [DP92b] which produces a triangulation containing given straight-
line segments; and hierarchical adaptations [De 87, DMP93, DP92a, De 89].
This hierarchical work will be covered in Chapter 3.

Schréder and Roflbach [SR94] took the opposite approach to De Flori-
ani’s technique of repeatedly making local refinements to an approximating
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Figure 2.15: Schroder’s measure of roughness at point P is the maximum an-
gle between the averaged normal n and its adjacent triangles’
normals, n; ...ns.

surface: they argued that it is easier to find insignificant points on the sur-
face than it is to detect the most important ones. Therefore Schroder and
RofBbach’s method initially generates a high resolution TIN representing the
given surface and then repeatedly reduces the number of points in this mesh.
The criterion which is used to assess the significance of a point calculates a
measure of the “roughness” of the terrain at that point (Figure 2.15). When
the roughness value of a point indicates that it can be removed from the mesh
without affecting the overall representation significantly, the area around the
removed point is retriangulated.

Two of the original hierarchical triangulation methods which De Floriani
addressed are mentioned here to complete our examination of data indepen-

dent triangulation techniques.

e A nested ternary triangulation [DFNP82] can be constructed by iter-
atively inserting the data point with maximum error and simply con-
necting that point to its surrounding triangle’s vertices. This inevitably
leads to an approximating surface which contains long thin triangles
(Figure 2.16a) whose lack of suitability for representing a surface vi-
sually was apparent in the contours which were extracted from such a
representation in [DFNP82].

e A nested quarternary triangulation [De 87] can be created by repeatedly
subdividing each triangle into four subtriangles. These subtriangles
are formed by joining three points, each lying on a different side of
the original triangle (Figure 2.16b). This structure avoids the sliver
triangles of the ternary version, but introduces the T-vertex problem
which was discussed for grid-based solutions in Section 2.2.1.
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(a) Ternary triangulation. (b) Quarternary triangulation.

Figure 2.16: Simple triangulations.

Figure 2.17: Sliver triangles are required to give a good approximation of this
curved surface.

2.2.2.2 Data dependent triangulations

Although the Delaunay criterion produces a “good quality” triangulation
in terms of its triangles’ aspect ratios, it does not necessarily produce the
triangulation which is the best approximation to a given height field for two
reasons:

1. sliver triangles are necessary to give a good approximation to some
surfaces (Figure 2.17) [Rip92b];

2. the swapping of edges which the Delaunay criterion invokes can cause
artificial break lines where none exist in the original terrain (Figure 2.18)
[Sca90, SP92].

Both of these reasons were cited by Scarlatos as justifications for her
two non-Delaunay triangulation methods. The coarsening process described
in [Sca90] repeatedly removes the least significant points in a high resolution
triangulation. The “significance” of a point is determined by a) the difference
between its elevation and the weighted average of its adjacent vertices, and
b) the number of its adjacencies. The retriangulation which is invoked after
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(a) Channel line be- (b) Ridge line ver-
tween two triangles. sion.

Figure 2.18: The effect in three dimensions of swapping an edge within a
quadrilateral. The accuracy with which this approximation re-
sembles a height field will be affected by such an edge swap.

each point removal attempts to retain the terrain’s critical lines which are
present in the resulting star polygon.

This critical line maintenance also featured in [SP92]. The method in
this paper reverts to greedy point insertion but, unlike De Floriani et al's
approach, when a triangle is split due to the introduction of new points
the splitting process is governed by the critical lines which pass through
that triangle. The five possible resulting retriangulations are depicted in
Figure 2.19a. The algorithm can also split an existing line in order to ac-
commodate a new point which lies close to it rather than force the creation
of a sliver triangle (Figure 2.19b). ,

Data-dependent triangulations were also explored by Rippa [Rip92a] and
Garland [GH96] using error terms involving either the normals of pairs of
triangles or the Ly norm (the sum of squares of the absolute vertical errors
of all the datapoints). These authors concluded that a more accurate trian-
gulation than a Delaunay one could be produced at greater computational
expense. In one example, a 12% improvement in the error of a Delaunay

" greedy insertion algorithm was obtained at a cost 3-4 times greater [Hec97].

Feature-based

There are other triangulation methods which follow the example of Fowler
and Little (Section 2.2.2.1) by triangulating the points and lines in a terrain
dataset which have been flagged as being “significant”. These methods are
regarded as producing inferior quality approximations compared to other
techniques [Hec97] but we shall examine one method whose feature detection
criteria is used later.

Douglas [Dou86] presented an entirely different terrain representation
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(O] (i)

(b) Insertion of point P normally leads to the in-
troduction of a long, thin triangle as in (i). Scar-
latos modifies an original line to accommodate P

(a) Five possible split strategies for pre-
serving cartographic coherence. The
points which have been detected as ly-
ing on critical lines are highlighted. as in (ii).

Figure 2.19: Scarlatos’ data dependent triangulation (from [SP92]).
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Figure 2.20: Candidate points would be detected on the three break lines
indicated (two ridges and a channel) by the initial convolution
of Peucker and Douglas’ method. These could be connected by
traversing through the candidate points in the directions shown,
starting first from candidate point P and then from Q).

model to those described previously, which he called a richline model. This
representation stored the “information rich” lines which were extracted from
a terrain surface; these lines were defined to be the ridges, channels and other
breaks in slope.

Several methods for detecting these critical lines were described by Dou-
glas and we elaborate on one of the most simple, which was applied by Fowler
and Little. This method, originated by Peucker and Douglas [PD75], is a lo-
cal method whereby a 2 X 2 matrix is passed over the dataset, marking the
two elements which are not its highest and lowest components in every posi-
tion. Once this convolution is complete, the rémaining unmarked points are
potential ridge and channel candidate points. Fowler and Little use a hill-
climbing algorithm to connect these candidates into lines. Starting from a
point which is a candidate and is lower than all its neighbouring candidates,
the algorithm repeatedly climbs to the highest neighbouring ridge candidate
until a peak or an existing ridge is encountered. The nature of this algorithm
is indicated in Figure 2.20.

Manifold surface approximation

Although many manifold-handling approximation techniques work in the
same manner as height field approximators, i.e. they repeatedly make lo-
cal approximations to an approximating surface, a manifold has no analogue
of a height field’s planar domain. This introduces complexities to both the
calculation of the quality of an approximation and also to any retriangulation
step. Note that an approximating technique which can handle a manifold
surface with boundary can also, of course, approximate a height field.

In this section we discuss a method which approximates a manifold surface
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using refinement in Section 2.3.1 and then its converse, decimating methods
which repeatedly remove points from a high resolution representation of a
manifold surface, in Section 2.3.2. Turk’s retiling method and other meth-
ods which also use optimisation techniques are discussed in Sections 2.3.3
and 2.3.4. Finally, as an aside we mention wavelet-based manifold approxi-
mators in Section 2.3.5. All of the methods described in this section, except
the refinement technique of Section 2.3.1, can handle manifold surfaces with
or without boundaries.

Reﬁnement

Faugeras et al [FHMB84| extended De Floriani’s nested ternary triangulation
(which applies only to a height field; see Section 2.2.2.1) to any input mesh
which can be represented by a planar graph embedded on the surface of an
object of genus 0, i.e. an object homeomorphic to a sphere.

Faugeras’ method creates this graph by repeated refinement of an initial
“pancake-like” [Hec97] two-triangle approximation bounded by three vertices
from the input mesh. Each point in the mesh is associated with its closest
triangle in the current approximation. The refinement step adds the point
with maximum error to its containing triangle and splits that triangle ac-
cordingly. Edges can also be split to avoid the sliver triangle problem of the
ternary version but in general the resulting graph retains the poor quality of
approximation associated with that height field method.

Decimation

The term decimation was introduced by Schroeder et al [SZL92] to describe
the repeated removal of points from a TIN to produce a mesh of lower com-
plexity which corresponds to the original to within a given tolerance. We
discuss Schroeder’s method and similar approaches which use alternative er-
ror measures and retriangulation steps. In the same vein, we examine two
techniques which can guarantee that an output decimated surface lies within
a certain tolerance from the original model. To conclude this section, we
mention some methods which identify those facets of a model which are
sufficiently planar to permit merging of these facets and thus reduce the
complexity of a model.

Schroeder et al [SZ1.92], adopted a simpler local error measure than that
of Schroder and Rofibach which was described in Section 2.2.2.1. Schroeder’s
measure simply ascertains the distance from a vertex P to the average plane
obtained from its surrounding triangles (Figure 2.21). If this distance is less
than a specified parameter then P can be removed and the resulting star
polygon retriangulated. An additional feature of this method is that sharp
edges and corners are identified and retained during the decimation process.




30

Mesh Simplification

Figure 2.21: Schroeder’s error measure: the distance between a vertex P and
the plane formed as the average of P’s surrounding triangles.

Klein et al [KLS96] and Bajaj and Schikore [BS96] are among the authors
who have proposed variants of Schroeder’s basic decimation step. Both of
their methods concentrate on ensuring that there is a global upper bound
on the error of the decimated meshes. The former method guarantees that
the Hausdorff distance between a decimated mesh and the original is less
than a user-specified tolerance. The Hausdorff distance #(S1,S2) between
two surfaces (S, S2) is the maximum of the max-min distances between any
point on S; and a point on S, and vice versa. Formally, the Hausdorff
distance is defined as:

H(S1, 52) = max(max min [|z — ||, max min |lz — y)

This is the standard measure of consistency between two surfaces; it has the
property that S; = Sy <= H(S51,S:) = 0.

The task of providing global error control is central to Cohen et al's
simplification envelopes method [CVM*96, Var94]. This method initially es-

tablishes an inner and an outer simplification envelope around the surface
to be approximated. These polygonal envelopes are approximations to offset

" surfaces of the original model, the major difference being that the envelopes

are guaranteed to be non-self-intersecting. Then a form of mesh decimation
can be performed locally or globally on the original surface while ensuring
that the retriangulated modifications lie between the inner and outer simpli-
fication envelopes. Thus the approximated surface can be guaranteed to lie
within a given error tolerance from the original surface.

Cohen suggested that the simplification envelopes method could be made
locally adaptive by making the “width” between the inner and outer en-
velopes inversely proportional to the distance from the viewer (Figure 2.22),
but this would not be computationally feasible for a dynamic scene.

A method which can be viewed as the dual of the simplification envelopes
approach is Guéziec’s simplification inside a tolerance volume [Gué96]. In-

- stead of predefining the volume within which simplification can proceed,
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Outer envelope

<

Viewer

Inner envelope

Figure 2.22: Cohen’s simplification envelopes bounding the volume within

which simplification can take place (the inner envelope lies in-
side the object). Here, the displacement between these envelopes
is inversely proportional to the distance from the viewer to give
a form of static view-dependency.

Guéziec’s method maintains, during a set of local decimation steps, a vol-
ume which is defined as the convex hull containing projections of the errors
which have been introduced at each vertex (Figure 2.23). This volume grows
as the simplification proceeds and the process terminates when the volume
reaches the size of a given tolerance volume.

An alternative scheme for determining which vertices in a surface can
be decimated was proposed by Hinker and Hanson [HH93|. Their method
permits nearly coplanar facets to be identified and merged. To be fully
efficient, this requires adjacent near-coplanar sets to be identified in order
for their boundaries to be similarly simplified. Figure 2.24 shows how the
number of facets in a planar area can be drastically reduced if the boundary of
this area is also simplified. Similar approaches were suggested by DeHaemer
and Zyda [DZ91] and (for height fields) Taylor and Barrett [TB94].

Re-tiling

Turk [Tur92] advocated introducing new points onto a polygonal mesh by
a method of point repulsion which adds more vertices in regions of higher
curvature. The old points can then be discarded, with repeated local retri-
angulation (or re-tiling) as necessary, until a new mesh consisting of the new
points is obtained. This approximated surface is guaranteed to be topologi-
cally equivalent to the original. '

This approximation technique works best for smooth surfaces with no
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Figure 2.23: The volume within which simplification can proceed for a single
triangle in Guéziec’s method. The volume is formed as the convex
union of a set of spheres whose radii are the errors which previous
simplification has introduced across the surface of the triangle.

(@ (®)

Figure 2.24: A coplanar (or nearly coplanar) set of facets (a) can be reduced
’ to a simpler set (b) if the boundary of the region can be simplified
correspondingly. . :
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edge co‘lly

Figure 2.25: The three possible local modifications invoked by Hoppe
(from [HDD*93}).

discontinuities.

Energy optimisation

Hoppe et 'al [HDD%93, Hop94] posed the mesh simplification task as an energy
minimisation problem. Their energy function combines a measure of the
geometric similarity between an approximating mesh and the original data

with a cost proportional to the number of datapoints in the approximating -

mesh. An additional term, which Hoppe called “spring energy”, assists the
optimisation process in finding a consistent local minimum.

Their method repeatedly coarsens an approximating simplicial mesh dur-
ing the minimisation process using local modifications (Figure 2.25). Only
modifications which maintain the topological type of the mesh are permitted.
The new vertices which can be introduced by an edge collapse or an edge
split are positioned according to a local optimisation strategy.

Hoppe later refined this method as the Progressive Meshes (PM) ap-
proach [Hop96]. This approach uses only the edge collapse operation to
produce simplified meshes and specifies an efficient variable resolution repre-
sentation for polygonal meshes which takes advantage of the invertible nature
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Figure 2.26: Hoppe’s edge collapse and vertex split operations (from [Hop96)).

of this operation. Also, the spring energy term was removed from the energy
function and replaced with a measure of the significance of each edge to the
discontinuity curves in the mesh. This ensures that discontinuities such as
colour changes and sharp edges can be retained in simplified meshes.

In the PM approach, the edge collapse transformation is viewed as in
Figure 2.26. An edge collapse transformation (ecol) unifies two vertices into
one and removes two triangles in the process. Its inverse operation is termed
a vertex split (vsplit).

The PM representation of a model is a base coarse mesh together with
a sequence of vertex splits which can be used to recreate the original mesh
(Figure 2.27). Hoppe demonstrated that a PM representation can permit:

e smooth geometric morphing (or geomorphing) between approximations
extracted at different points along the sequence of vertex splits. Note -
that these meshes are still single-resolution approximations, i.e. the
resolution is fixed across an entire mesh; ‘

e a model to be progressively transmitted by initially sending the base
mesh and then successively adding detail (by geomorphing) when the
vertex splits are sent;

e a space-efficient form of representation;

e a degree of selective refinement. The limitations of Hoppe’s original
selective refinement scheme, together with his later extensions, are dis-
cussed in Section 3.2.2.

2.3.5 Wavelets

Multiresolution analysis of surfaces for graphical rendering was pioneered by
Lounsbery and Eck et al [LDW94, EDD*95]. These authors demonstrated
that a surface can be represented by a base mesh together with a set of
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Figure 2.27: A base mesh (a) together with a sequence of vsplits are an object’s
PM representation (outlined). This can be used to reconstruct the
original mesh (b).

local modifications in the form of wavelet coefficients. This wavelet-based
approach can lead to a more compact representation and naturally permits
the extraction of multiple single-resolution approximations. In addition, ge-
omorphing can be performed between these approximations.

Lounsbery noted that multiresolution editing of a wavelet-represented
model is possible, i.e. that changes can be made at various levels of detail
and these changes will be reflected throughout the range of resolutions at
which approximations can be extracted. A wavelet representation cannot,
however, directly permit a selectively refined approximation to be extracted
in the manner of our SMR framework. As we discussed in Section 2.2.1,
Gross combined a wavelet technique with a quadtree structure to permit this
kind of variable resolution extraction.

2.4 Non-manifold approximation

Although the SMR framework which this thesis describes cannot handle non-
manifold models, this section reviews a number of non-manifold-handling
approximation methods since one of the most recent [GH97] could be adapted
to work within the framework. The natural ancestors of this method are
reviewed primarily for completeness, but also as a basis for the discussion of
how the framework could be extended in the future.

The significance of these non-manifold approximation methods, apart
from the extension to the range of models which can be approximated, is
their ability to modify the topology of an input model during the approxi-
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mating step. This topology-modifying characteristic was originally advocated
by Rossignac [RB93] but was denigrated by contemporary authors [Sew96,
HG94]. The view that a topology-preserving method (such as any of the
ones previously described) was superior to a topology-modifying one was
due to the belief that all of the topological features of a model were signif-
icant and that their elimination detracted from an approximation [Sca90].
This argument has been overshadowed recently, though, by the demand for
approximators to handle non-manifold models, and also for full-range approz-
imation [RR96], i.e. the ability to reduce any model to a minimal represen-
tation such as a tetrahedron or sphere. This latter requirement ensures that
any model viewed from afar can be represented by a suitably small number
of facets; also, if progressive transmission of a model is desired (such as in
the Progressive Mesh approach reviewed in Section 2.3.4) then the base mesh
can be transmitted with a guaranteed cost.

We first examine Rossignac’s vertex clustering approach and its descen-
dants (Section 2.4.1). This is followed by a discussion of non-manifold-
handling edge collapsing methods (Section 2.4.2). We conclude with a discus-
sion of Popovi¢ and Hoppe’s Progressive Simplicial Complezes (Section 2.4.3)
which can be viewed as a non-manifold extension of Hoppe’s PM approach.

Vertex clustering

The approximation methods described in this section satisfy the non-manifold
and full-range requirements by their use of a relatively crude approximating
step. This vertez clustering step can be viewed as an extension of localised
vertex decimation (Section 2.3.2) in that a group of vertices are identified
for elimination and then they are replaced by a single representative vertex.
The simplicity of this step permits its application to vertices and faces for
which no topology has been defined.

Rossignac [RB93] originated this form of approximation process and his
method can be partitioned into the following phases.

Grading Each vertex is assigned a weight according to its estimated percep-
tual importance. This is determined by the likelihood that a vertex can
appear on a silhouette edge and also whether it lies on the boundary
of a large face.

Clustering The space within which the vertices lie is partitioned into voxels
of uniform size and vertices are clustered into their containing voxel.

Synthesis A representative vertex is identified for each cluster. This vertex
is one which is geometrically close to the average of all the vertices
in its cluster, weighted by their grading. If links between the original
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vertices and their representatives are maintained, smooth transitions
between levels of detail can be performed.

This linkage was combined with an octree spatial subdivision hierar-
chy by Luebke [LE97] to permit the production of selectively refined
representations from vertex clustering approaches. Such representa-
tions suffer from the low quality of approximation inherent in these
approaches.

Elimination The result of clustering vertices into representative examples
is that triangles can collapse into points or lines and edges can collapse
to points. These degenerate cases can be eliminated.

Low and Tan [LT97] offered a more accurate method of estimating the
importance of each vertex in the grading phase and modified the clustering
step to permit vertices to move between cells and hence removed the artificial
uniformity of the voxelisation process.

Edge collapsing

The edge collapse operation, whose use on manifold surfaces was described
above, was applied to non-manifold meshes in a topology-varying manner by
Ronfard [RR96] and Garland [GH97]. The aim of these authors’ methods is
to retain a closer geometric similarity between approximated meshes than is
possible with the vertex clustering approach.

Both of these methods perform local edge collapse operations and op-
timise the position of the replacement vertex (as depicted in Figure 2.26).
The resulting approximation error can be measured as the sum or maximum
of the distances from the new vertex to the planes of the original object’s
surfaces. While Ronfard accumulates at a vertex the planes of the origi-
nal object whose surfaces have been approximated by that vertex, Garland
maintains this error measure more efficiently in the form of quadric matrices.

Garland also permits pair contractions rather than just edge contractions:
a pair of vertices can be aggregated even if they are not connected by an edge.
This permits previously disconnected regions of a model to be combined and
hence non-manifold surfaces can be approximated with greater accuracy and
efficiency.

Progressive Simplicial Complexes

" Popovi¢ and Hoppe’s Progressive Simplicial Complexes (PSC) representa-

tion [PHI7] takes both Hoppe’s Progressive Mesh approach and Garland’s
pair contraction step to their logical conclusions. The PSC representation
adheres to the PM concept of a model being represented by a base entity
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together with a set of refining modifications. Where the PSC method gen-
eralises the PM approach is that it uses a vertex split modification which is
potentially topology-modifying.

This generalised vsplit operation permits the PSC representation to han-
dle non-manifold objects and also allows it to perform full-range approxima-
tion. Thus the PSC representation of an arbitrary triangulated model is a
single vertex together with a set of these generalised wvsplit operations.

Popovié described how geomorphing these wsplits could be performed in
a similar manner to the PM geomorphing, but no means of producing a
selectively refined approximation was suggested.

Summary

This chapter has considered a range of existing approximation techniques
which can handle a variety of model classes — height fields and manifold and
non-manifold surfaces. Many of these techniques have a common mode of
operation which is to make repeated local modifications to an initial approx-
imation. We shall see later how such methods can be incorporated into our
Selective Mesh Refinement framework.
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Chapter 3

Variable Resolution Schemes

In this chapter we describe how the approximation methods which were de-
tailed in Chapter 2 have been used in previous work to generate some form
of selectively refined output, i.e. an approximation whose resolution varies
within its extent. Also under consideration is whether it is possible to geo-
morph between the approximations output by these methods.

Chapter 1 introduced some approaches which fall within the general um-
brella of “multiresolution” methods but which cannot produce selectively
refined approximations. For completeness, we indicate how some of the ap-
proximation methods previously discussed can generate such non-variable
resolution output in Section 3.1.

Sections 3.2 and 3.3 detail how some of the approximation methods previ-
ously described can produce selectively refined approximations. In the first of
these sections, we consider techniques which explicitly constrain an approx-
imating technique in order to permit variable resolution mesh extraction.
In the second, we describe Cignoni’s variable resolution terrain extraction
scheme [CPS95] which was the inspiration for our SMR framework.

Section 3.4 describes the MultiTriangulation approach of Puppo and De
Floriani which is contemporary with our work and which concentrates on the
selective refinement of terrain surfaces.

Section 3.5 reviews the approximation methods which have been discussed
in this chapter and the previous one.

Finally, Section 3.6 examines the resolution criteria which have been ap-
plied in previous work to generate selectively refined output.

Other multiresolution methods

The following two sections consider methods which add some degree of “mul-
tiresolution” ability to the output of specific single-resolution approximation
techniques. Section 3.1.1 describes two simple forms of linkage between LODs
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which can assist with certain mesh-related operations. Section 3.1.2 describes
how variable resolution meshes can be obtained from the output of particular
approximation methods by performing some remeshing to “splice” together
several single-resolution meshes.

Multiple LODs

The original and simplest form of “multiresolution” modelling is the multiple
single-resolution Levels Of Detail scheme which is utilised by Open Inventor
and VRML. This method, together with its drawbacks, was introduced in
Section 1.1. The major advantages of this method are its simplicity and
universality: any approximation-producing algorithm can be incorporated
into this scheme.

There are obvious benefits to be realised by establishing some form of
correspondence between the multiple LODs in this scheme. We consider
below two methods which retain connections between multiple LODs in or-
der to tackle a specific task. In general, the benefits of these methods are

. offset by their requirement that the LODs must be generated by a specific

approximation method.

Pyramidal linkage By linking the triangles which overlap in adjacent Lev-
els Of Detail, De Floriani [De 89] and Scarlatos [Sca90] described how
point location and other domain searches could be performed more ef-
ficiently than on a single approximation. In addition to storing each
LOD as a standard triangulation, their methods explicitly link every
triangle in an LOD to those triangles which it overlaps in the preceding
and succeeding LODs.

Figure 3.1 shows the links which would result from two point insertions
in a small triangulation. In practice, the differences between each LOD
would be greater since space constraints would limit the number of
LODs which could be stored in a pyramid.

Fragment tracking Turk and Rossignac suggested how their specific ap- -
proximation techniques (of re-tiling and vertex clustering, respectively;
Sections 2.3.3 and 2.4.1) could admit a form of geometric morphing
between LODs generated by these methods. In each case this can be
performed using links created during the algorithms’ local modification
steps.

During the re-tiling step of Turk’s method (Section 2.3.3), each re-tiled
region can be projected onto its lower resolution equivalent and the
intersections between these two triangulations retained (Figure 3.2)
so that the fragments of one can be smoothly interpolated into the
triangles of the other when required.




3.1 Other multiresolution methods 41

AN

A By € DI E RS FpG H I, LM N O P Q

A, B, C, D2V2 R282F2G2H212 L, M2T2 U2N202 P2 Q2

Figure 3.1: Pyramidal linkage between triangles in LODs (adapted
from [De 89]). The impact of two point insertions is reflected in
the links between overlapping triangles in adjacent LODs.
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a) A region ABCD which is to be morphed (b) Points P and @ introduce a higher
1nto a higher resolution version. resolution triangulation of ABCD. We

wish to interpolate between the triangles
' B
R Q
A
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D A

(ADB,CBD) and their higher resolution
equivalents.

(c) A plan view of region ABCD. Note that (d) The projections of P and @ onto the

the line PQ intersects the low resolution tri- original triangulation are stored as well as

angulation at R. R and its projection so that the line PQ) can
be linearly interpolated from the fragment
which existed prior to the introduction of
the higher resolution triangulation.

Figure 3.2: Information required for the smooth introduction of a higher res-
olution triangulation according to Turk’s method.

3.1.2 Selective refinement by remeshing

A hierarchy of component LODs such as the human body example given in
Section 1.1 can permit a scene to be displayed which contains distinct ob-
jects, or components of objects, at differing resolutions (Figure 3.3). Such
a hierarchy cannot, though, provide a variable resolution solution for large
objects if they do not lend themselves to being partitioned into components.
Also, the use of an LOD hierarchy can only assist with geomorphing be-
tween LODs if the underlying approximation method provides an approach
such as the fragment tracking described above to permit the necessary mor-
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Figure 3.3: An object extracted in a view-dependent manner from the hierar-

chy of Figure 1.4, i.e. with higher resolution components in the
viewer’s foreground.

phing. As an aside, we note that hardware transparency blending can be
used to circumvent both of these problems: LODs can be smoothly intro-
duced/removed /merged using blending. This requires hardware which sup-
ports blending and also incurs the additional cost of rendering more than one
LOD of a single object during an LOD transition.

This section discusses some advances on Clark, Funkhouser and Sewell’s
component-based LOD hierarchies [Cla76, FS93, Sew96] which permit LODs
to be combined using a degree of remeshing to provide selective mesh refine-
ment. We do not regard this as “true” selective mesh refinement because the
remeshing step removes any guarantee on the quality of the output surface
and also adds complexity to the geomorphing problem.

The pyramidal structures of De Floriani and Scarlatos [De 89, Sca90]
which were described in the previous section do not immediately lend them-
selves to producing a variable resolution surface [DP92a|. Scarlatos stated
that such a surface could be produced by “fusing” the LODs contained in her
pyramidal structure and Figure 3.4 demonstrates this for the previous simple
pyramid example. If we wish to merge the left portion of the lower resolution
LOD from Figure 3.1 with the right portion of the higher resolution LOD in
that diagram then the unshaded set of triangles in Figure 3.4 could be ex-
tracted by a single pass through the pyramid. The shaded triangle represents
a hole in the extracted surface for which there is no existing triangulation
in the pyramid. Filling this hole with one or more triangles invalidates any
guarantee of the resolution of the output surface because the accuracy with
which these triangles represent the original object is not known. The com-
plexity of the retriangulation necessary for a real example would depend on
the coherency of the pyramid’s LODs.

An alternative hierarchical system which requires retriangulation to gen-
erate a variable resolution output is the quadtree structure which Cosman
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Figure 3.4: To satisfy some resolution criterion, the triangles created by the
first point insertion in Figure 3.1 have not been included in this
mesh, but those which were caused by the second point insertion
have. This results in a hole in the triangulation (shaded) for which
no compatible set of triangles exists in the pyramid of LODs.

and Zyda [CMR90, FZPM93] used in their simulators. The quadtree T-vertex
problem which necessitates remeshing at the boundaries of these LOD nodes
was covered in Section 2.2.1.

Ferguson’s continuous terrain LOD system [FEKR90] presents a means
of avoiding the T-vertex remeshing which would otherwise be required when
selectively refining a quarternary triangulation. His surface extraction algo-
rithm instead moves nodes’ boundary vertices when necessary to extract a
seamless surface from the quarternary hierarchy. Figure 3.5 illustrates one
vertex movement which would be performed if two triangles from different
levels in a hierarchy were adjacent in an extracted surface. A similar means of
meshing triangulated nodes from a hierarchy was adopted by Scarlatos (Sec-
tion 2.2.2.2) to combine fragments which could have non-matching boundary
edges.

Ferguson suggested that this vertex movement could be performed using
linear interpolation to smoothly introduce vertices when higher resolution
quarternary subdivisions are used to replace lower resolution triangles. In
this way, geomorphing could be performed between such remeshed variable
resolution surfaces.

Constrained approximation

In this section we discuss more complex algorithms and structures which
discard the multiple LOD system and permit true selective mesh refinement,
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Figure 3.5: The edge vertices of a quarternary subdivision of a triangle are as-

sociated with their projections on the original boundary (a). When
this subdivided node is adjacent to a non-subdivided triangle (b),
edge vertex P is retained at its lower resolution position P'.

i.e. a variable resolution surface can be generated from the precomputed
representations without further remeshing. A common characteristic of these
methods is that such surface extraction is enabled by placing constraints on
the approximation process.

We first examine how constraints placed on some of the approximation
methods which we introduced in Section 2.2.2 can enable the generation
of selectively refined surfaces representing height fields. This is followed
by a detailed study of how a Progressive Mesh representation can produce
selectively refined manifold surfaces.

Variable resolution height fields

The simplest structure from which a variable resolution representation of
a height field can be produced is De Floriani’s nested ternary triangula-
tion [DFNP82]. For example, the set of point insertions which produced
the subdivision of Figure 2.16a can be represented by the hierarchy of Fig-
ure 3.6. A variable resolution surface can be extracted from this structure
by a recursive traversal of the tree, starting at the root node, which queries
whether or not each node meets the resolution requirements of its domain.
If a node does indeed meet these requirements then its triangles are added
to the current triangulation, otherwise the traversal continues on its child
nodes. Such a traversal produces a complete surface because each node is
a direct replacement of its parent triangle, i.e. the boundary of each node
retains the three edges of its parent triangle — each node is said to be com-
patible with its siblings. Unfortunately, the sliver triangles which a ternary

© triangulation contains are unacceptable for rendering purposes.
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Figure 3.6: Part of the tree which could represent the point insertions used to
produce Figure 2.16a.

Combining compatible triangulated fragments to provide a variable res-
olution surface, though, is an approach which has been adopted by many
authors and it forms the basis for our SMR framework. The requirement to
use'a more suitable, and hence more complex, triangulation approach than
the ternary one implies that a more complex structure is required to manage
the relationships between triangulated fragments.

Lindstrom’s vertex dependency tree which was discussed in Section 2.2.1
is one structure which can be used to perform very efficient variable resolution
surface extraction. However, the highly-constrained approximation method
which is the basis for this method’s real-time performance means that it can
only be applied to grid-based height fields.

The two alternative structures which we review in the following sections
can handle irregular triangulations and are more relevant to our primary aim
of a flexible scheme for variable resolution surface extraction.

3.2.1.1 De Floriani’s HTIN

De Floriani initially presented her Hierarchical TIN (HTIN) [DP92a, DMP93]
as an alternative scheme to the pyramidal linkage discussed above. That is,
she described how surfaces of constant, but not variable, resolution could
be extracted from an HTIN. In this section we concentrate on her later
work [DP95] which presented two variable resolution extraction routines,
one of which requires a remeshing step.

An HTIN is constructed with respect to an increasing set of resolution
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values, {€q,...&r}. The root level of an HTIN is a TIN which satisfies some
precision gg. Each triangle of this TIN is then refined individually into a
triangulation which satisfies ;. This operation is performed recursively on
every new triangulation until each portion of the original domain has been
refined to the highest required tolerance, ¢y.

The HTIN triangle-to-triangulation refinement step initially inserts ver-
tices at the points of maximum error on the edge of a triangle and then retri-
angulates the interior using the Delaunay selector criterion to insert points
as necessary to meet the given resolution tolerance for that triangle. This is
illustrated in Figure 3.7a.

The edge point insertions are constrained to match those on adjacent
triangles at the same level in the hierarchy (Figure 3.7b). Thus a single-
resolution surface can be extracted from this hierarchy by a simple recursive
procedure which traverses down to the necessary level of the hierarchy. The
boundary matching rule guarantees that the resulting surface will be com-
plete.

If a variable resolution surface is extracted using the same recursive rou-
tine, nodes from different levels in the hierarchy which do not match along
their adjacent boundaries may be extracted and hence only a generalised
triangulation (containing T-vertices) may be extracted [DP95]. This can be
retriangulated to produce a complete surface but, as before, this step invali-
dates any guarantee of the resolution of the surface.

De Floriani also adapted Cignoni’s variable resolution extraction algo-
rithm [CPS95] to produce a true selectively refined surface from an HTIN.
This algorithm is dlscussed in Section 3.3.

3.2.1.2 De Berg and Dobrindt’s star polygon graph

De Berg and Dobrindt presented an alternative scheme for combining De-
launay triangulations such that both constant and variable resolution sur-
faces can be extracted [dD95]. This was the first scheme which ensured that
its output variable resolution surfaces also satisfied the Delaunay criterion.
Unfortunately, its extraction algorithm cannot guarantee that these output
surfaces satisfy the input resolution criterion.

The layers of de Berg and Dobrindt’s hierarchical structure correspond to
Delaunay triangulations produced by repeated coarsening of a high resolution
triangulation. This coarsening step is constrained by permitting only non-
adjacent vertices to be removed. The resulting retriangulation is therefore
restricted to the regions of a number of disjoint star polygons (Figure 3.8).

Rather than linking the pre- and post-coarsening triangles between LODs
individually, as in De Floriani’s pyramidal linkage, de Berg and Dobrindt’s
triangles are associated with the star polygon in which they reside (Fig-
ure 3.9). The complete set of star polygons which result from a sequence
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(i)

(a) Triangle refinement in an (b) A portion of an HTIN hijerarchy. Note the
HTIN. The points with signifi- matching boundaries of triangulations at each
cant error on the edges of a tri- level in the hierarchy.

angle are detected (i) and tri-

angulated (ii). Further points

are added into the triangula-

tion to satisfy the resolution

requirement for this level of

the HTIN (iii).

Figure 3.7: HTIN refinement and hierarchy (from [DP92al).
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Figure 3.8: A set of pairwise non-adjacent vertices (circled on left) whose star
polygons are retriangulated to form a coarser LOD (from [dD95)).

Figure 3.9: A star polygon linking two sets of compatible triangles.

of coarsenings of the original triangulation are then linked by arcs which
represent their overlapping dependencies. ‘

De Berg and Dobrindt’s surface extraction algorithm which operates on
this structure is essentially greedy in nature and, while it uses the star poly-
gon graph to ensure that a complete surface is produced, it does not make
full use of the dependencies between the star polygons. As a result, triangles
which do not satisfy the resolution criterion may be added to the output
surface.

Cohen-Or and Levanoni [CL96] simplified de Berg and Dobrindt’s ap-
proach by omitting the pairwise non-adjacent constraint on the vertices
removed during the coarsening phase. They also reduced the dependency
structure between retriangulated regions to a tree (rather than a graph) and
decreased the number of levels in the hierarchy. This simplified their extrac-
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Figure 3.10: Two triangulations which could be smoothly interpolated by
Cohen-Or’s method (from [CL96]).

“tion procedure at the cost of increasing the size of the fragments from which

a variable resolution surface could be constructed, and hence reducing the
amount of variability which is possible across such a surface.

These authors therefore concentrated on a means to geomorph between
the pre- and post-coarsening sets of triangles in a fragment so that the visual
effect of a transition between these large triangulations could be minimised.
Rather than the naive fragment tracking approach to geomorphing which was
presented in Section 3.1.1, they demonstrated a morphing technique which
did not introduce any additional intermediary triangles. By sliding the in-
terior vertices of a fragment to its boundary and then moving the resulting
interior lines as necessary, smooth transitions between general polygonal frag-
ments such as those shown in Figure 3.10 could be effected.

Progressive Meshes and extensions

The Progressive Mesh approach which was described in Section 2.3.4 is un-
suited to producing variable resolution output. In this section we examine
the reason for this and then describe how Hoppe and Xia independently
added hierarchical structures to the PM representation to enable true selec-
tive refinement to be performed [Hop97b, XV96].

Recall that the PM representation of a model is a base mesh together
with a sequence of vertex split operations. Consider the variable resolution
mesh generation problem: we wish to iterate through the sequence of vertex
splits, performing only those which are necessary for the production of a
mesh which meets the input resolution criterion.

As Figure 2.26 shows, there are inherent dependencies between vertex
splits which must be taken into consideration — a vertex split vsplit; cannot
proceed unless the v,, v; and v, vertices upon which it operates exist in the
current mesh. If one of these vertices should have been introduced by a pre-
vious wsplit; but this vsplit; was not performed because it was not required
by the resolution criterion then it would appear that the desired split, vsplit;,
cannot be performed. Hoppe originally circumvented this problem by defin-
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Figure 3.11: Xia’s edge collapse and vertex split operations.

ing the closest living ancestor of a vertex to be a neighbouring one which
does exist in the current mesh and which can be used as a substitute vertex
for a wvsplit [Hop96]. This permits a variable resolution mesh to be produced
which is selectively refined according to some criterion with only a single pass
through the wsplit records. However this construction method can provide
no guarantee of the resolution of an output surface.

Xia and Varshney [XV96] demonstrated that such selection of wsplits from
a sequence which has been designed for producing single-resolution meshes
will not necessarily generate the simplest possible selectively refined mesh.
They therefore suggested that a merge tree (which is actually a forest of
binary trees) is required to represent the parent-child relationship between
the original vertex which preceded a wsplit and the two vertices which are
produced by that operation. During the generation of this structure, the ecol
operation is restricted to merging one vertex with another, as in Figure 3.11,
rather than producing an intermediate vertex like Hoppe’s vsplit. Also, as
many independent edge collapses as possible are performed at each level of the
merge tree in the style of de Berg and Dobrindt’s pairwise non-adjacent vertex
removal (Figures 3.12 and 3.13) but without their Delaunay retriangulation.
Both of these limitations reduce the quality of the approximating process
and its resulting meshes.

Xia and Varshney were able, though, to perform selective refinement with-
out resorting to the “closest living ancestor” fix which Hoppe described.
These authors associate with each ecol or vsplit operation the vertices which
surround the region in which that transform operates. These vertices are
then regarded as prerequisites which must exist in the mesh before the corre-
sponding operation can be performed. The merge tree permits forwards and
backwards traversals (via wsplits and ecols) through these dependencies to
ensure that a complete mesh which satisfies the current resolution criterion
can always be generated.

A similar, though less constrained, hierarchy of dependencies was devel-
oped independently by Hoppe [Hop97b] as an extension to his PM representa-




Variable Resolution Schemes

Figure 3.12: Child vertices (circled on left) are merged with their parents to
form a coarser LOD (cf. the higher quality retriangulation in
Figure 3.8).

Figure 3.13: A level of the merge tree resulting from the merges of Figure 3.12.
Each arrow indicates a parent vertex which could be split to create
a child by a wsplit operation.

TN

Figure 3.14: Hoppe’s view-dependent PM updated wvsplit/ecol notation. The
named faces on the left and right are the dependencies of the ecol
and wsplit operations respectively.
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tion. Rather than limiting the PM construction process, Hoppe preprocesses
a standard PM representation into a vertex hierarchy by linking them in a bi-
nary forest like Xia and Varshney’s. He also associates the faces in the region
of a wsplit/ecol with the corresponding vertex as dependencies of those oper-
ations. Figure 3.14 indicates the faces which Hoppe regards as prerequisites
for a wsplit or ecol operation.

The combination of this vertex hierarchy and the transform prerequisites
permitted Hoppe to describe an algorithm which can traverse through the
current active set of vertices and use view-dependent resolution criteria to
determine whether each vertex should be left as it is, split or collapsed. The
resulting set of extracted faces remains a manifold surface which satisfies the
current resolution critera.

HyperTriangulation

In this section we discuss Cignoni’s HyperTriangulation structure and the
associated algorithms which can permit a complete selectively refined terrain
surface to be produced for a specific resolution criterion [CPS95].

A HyperTriangulation (HT) explicitly stores the fragments of a terrain
surface which are affected by a sequence of point insertions. Each point
insertion, which is made accofding to the Delaunay selector criterion, induces
a local retriangulation. This retriangulation is “pasted” onto the current
approximation along the edges of the fragment’s boundary as a “bubble”
above that approximation (Figure 3.15). Thus a HyperTriangulation can
store a base mesh together with a history of the resolution changes made to
that mesh by a sequence of point insertions.

Two error values are associated with each triangle in an HT to identify
the point at which they were generated during the approximation process:

e birth error: the global error in the approximation just before the tri-
angle was created;

e death error: the global error in the approximation just before the tri-
angle was destroyed (which is zero if the triangle is part of the highest
resolution triangulation).

Cignoni et al gave algorithms for extracting a surface at a constant or
variable resolution. A restriction on the latter surface extraction routine is
that the error function against which a variable resolution approximation can
be constructed must be of the form:

E(p) = fe(d(vp, p))

where f. : R — R is a monotonically non-decreasing function, d is the
Euclidean distance in R? and v, is a fixed point (typically the viewpoint).
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Figure 3.15: Plan (top) and perspective views of two point insertions. A point
inserted in mesh (a) adds a “bubble” of facets on top of that mesh

(b) and a second point insertion adds a further refinement region
(c). From [CPS95].

A standard error function which meets this criterion is an inverted Gaussian
distribution, centred at the viewpoint. Applying this error function would
produce a selectively refined surface with increased resolution close to the
viewer. This kind of variable resolution extraction can be useful for flight
simulator applications but it cannot take into account the importance of

other regions of a landscape.

Related work

The recent increased interest in the field of selectively refined meshes which
Chapter 1 noted has centred around the work of Puppo and De Floriani.
Their work concentrates on the generation of selectively refined terrain sur-
faces and especially on the theoretical aspects of the structures required to
perform this generation. In this section we examine the work of these au-
thors which was developed independently and in parallel with our own [Bro96,
Bro97a, Bro97b].

Puppo and De Floriani introduced their MultiTriangulation (MT) ap-
proach to the problem of selectively refining a terrain surface (or higher
dimensional scalar field) in [Pup96], [DPM96] and [DMPB96]. These pa-
pers formalised and generalised Cignoni’s HyperTriangulation structure by
defining a MultiTriangulation as a partially ordered set of fragments of ap-
proximations to a terrain. Thus a MultiTriangulation of fragments could, by

‘
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implication, be created from a number of approximating methods. A selec-
tively refined surface could be extracted from this partially ordered set by
a two-pass algorithm which first identified a superset of the triangles which
would lie in the selectively refined surface and then removed the unnecessary
triangles from this set. Cignoni’s constraint on the output resolution function
was eliminated by the selective refinement algorithm presented in [Pup96].
This set of papers dealt exclusively with the theoretical aspects of the par-
tially ordered set from which a MultiTriangulation could be constructed as
well as the data structures which could be used to represent an MT.

The first demonstrations of an implementation of a MultiTriangulation
were presented in [DMP97b, DMP97c]. These showed that approximations
produced according to the Delaunay criterion could be combined, using the
algorithms associated with the MultiTriangulation, into a surface which sat-
isfied a resolution function which was proportional to the distance to the
viewer, in the same manner as Cignoni’s HyperTriangulation algorithm.

De Floriani extended the MultiTriangulation’s capabilities to handling
fragments of manifold approximations in [DMP97b]. This paper provided an
alternative definition of the fragments from which an MT was constructed
which eliminated the original two-dimensional domain test. This permitted
Puppo to use the MT as a basis for discussing the merits of a range of approx-
imation methods in [PS97]. Furthermore, an image of a selectively refined
three-dimensional model was presented by De Floriani [DMP97a] although
no quantitative results regarding this mesh were given. The resolution func-
tion against which this mesh was generated was the same as that used for the
terrain examples, i.e. the distance to the viewer determined the resolution
of the mesh.

This last paper by De Floriani et al also presented an algorithm which
permitted an existing mesh to be modified to satisfy new resolution criteria.
This algorithm operated by refining an existing surface without considering
the possibility that resolution requirements can decrease. Hence it will not
necessarily produce the surface with the minimal set of facets which satis-
fies given resolution requirements. The potential for geomorphing between
existing and modified meshes was not considered by De Floriani.

Review of approximation schemes

The following table presents a comparison of the approximation methods
and variable resolution mesh generators which have been discussed in this
chapter and the previous one. They have been classified according to the
class of model which they can take as input (height field, manifold or non-
manifold); the ordering within these categories is consistent with that in
which they were described.
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The columns of the table indicate:

e whether the corresponding approximation method operates by repeated
local modifications of the input mesh;

e whether the approximation method can vary the topology of the input
mesh;

e whether the approximation method can provide some form of variable
resolution output. The elements in parenthesis in this column indicate:
de Berg and Dobrindt’s variable resolution extraction routine does not
necessarily meet the input criterion; Cignoni’s HyperTriangulation is
limited to a specific form of input resolution criterion; and producing a
variable resolution output from the simplification envelopes approach
requires a complex resolution specifier.

e whether geomorphing between surfaces generated at different resolu-
tions is possible;

e whether the output of the method can be treated as a set of simplices;

e whether the method can be incorporated into our SMR framework.
The edge collapsing method of Garland and Heckbert is marked in
parenthesis here since we shall indicate in Chapter 8 how it could be
modified to work within the framework.

A complementary table which covers a similar set of approximation meth-
ods but which concentrates on detailing the output characteristics of single-
resolution methods was provided by Puppo [PS97].

Resolution criteria

If a model is to be represented by a selectively refined approximation then
the resolution criteria which this approximation is required to satisfy must
be specified. These criteria can be written in terms of either the space in
which the model is defined or the screen on which the approximation is to be
rendered. We refer to these forms of resolution criteria as object-space and
screen-space respectively. This section classifies the resolution criteria which
have been used in previous work according to these categories.

Open Inventor and VRML [Wer94, CB97] use a simple criterion to select
which of a given set of Levels Of Detail is appropriate for a particular scene.
The criterion used by these environments has converged to an object-space
measure which depends on the distance between the centre of an object and
the viewer (see Sewell [Sew96] for details of the variations between Inventor
and VRML).




3.6 Resolution criteria 57
n
Slw| 8] vl
.- e 'i 3 E‘ 2
(] Q I o b0 = =
B |H| el 2 8|5 §
(% o] ! o -
I
= S22 lEEl
AEEE I
Input Method A | RBE|> |0 @@
Height | Quadtrees [CMR90, FZPM93, Sam84] | 16 o | o
field | Right triangles [LKR*96] | 18 o | o o
Wavelet /quadtree [GSG96] | 18 o | o
Delaunay ; [FL79] | 20 | e o | o
HTIN [DP92a] | 22,46 | » o
Decimation [SR94]| 23 | e o | o
Ternary [DFNP82| | 24,45 | o o o | o
Quarternary [De87]| 24 | e e | o
Pyramidal [Sca90, De 89| | 25,40 o | o
Cartographic coherence [SP92] | 26 | e o o[ o
Richline [Dou86] | 26
Continuous terrain LOD [FEKR90| | 44 | e NI
Star polygon graph [dD95] | 47 | e (o) o | o
Temporal continuity [CL96] | 49 | e NEEERE
HyperTriangulation [CPS95] | 53 | e (o) o | o
MultiTriangulation (1996) [Pup96, DPM96| | 54 | e ° o | o
Manifold | Refining [FHMBS84] | 29 | e o | o
Decimation [SZ1.92, KLS96, BS96 29 | e o | o
Simplification envelopes [CVM*96] | 30 (o) o
Tolerance volume [Guéde] | 30 o
Coplanar decimation [HH93, DZ91] | 31 | e o | o
Re-tiling [Tur92 31 o | o
Energy optimisation [HDD*93] | 33 .
Progressive Meshes [Hop97b, XV96] | 33,50 . .
Wavelets [LDW94, EDD*95] | 34
MultiTriangulation (1997) [DMP97b, PS97| | 55 | e o o | o
Non- | Vertex clustering [RB93, LT97] | 36 |e | @ .
manifold | Hierarchical Dynamic Simplification [LE97] | 37 |e | @ | e .
Edge collapsing [RR96, GHI7] | 37 |e | @ o | (o)
Progressive Simplicial Complexes [PH97] | 37 |e | o .

Table 3.1: Pertinent attributes of the methods reviewed in Chapters 2 and 3.
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Figure 3.16: The graph at the top of the diagram depicts qualitatively how the

minimum object-space resolution which we require in a particular
triangle can be allowed to vary with respect to the angle between
that triangle’s normal and the viewing direction. Specifically,
when the triangle is perpendicular to the viewer its resolution is
not significant but when it is parallel to the view direction its
associated object-space resolution (r) must be compared with the
minimum acceptable screen-space resolution.

Cignoni, Puppo and De Floriani also use an object-space measure [CPS95,
Pup96, DPM96]. The aim of their measure, though, is to identify the max-
imum permissible error in each facet of a triangulated mesh. These authors
use a function which linearly decreases with distance from the current view-
point and can therefore be specified as a tolerance for each point p of a mesh:

7(p) = K x d(p, v)

where v is the viewpoint, K is a positive constant specified by the user, and
d denotes the Euclidean distance [DMP97c].

Lindstrom et al and Hoppe [LKR*96, Hop97b| advocate an alternative,
view-dependent, resolution criterion. These authors project their object-
space approximation errors with respect to the current view direction to
assess the impact of these errors in the viewing plane. Figure 3.16 illustrates
such a criterion.

Lindstrom’s error projection can be reduced to 6]((0,0,1) x ¥|| where &
is the object-space error value at a mesh point and ¥ is a unit vector along
the viewing direction. Figure 3.17 shows the value of this projection as a
function of view direction — the resulting graph is a “bialy” [LKR*96], or
solid ‘torus, of radius d.

Hoppe supplements this projection formula with terms which capture
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Figure 3.17: Lindstrom’s error projection.

dependencies due to both surface normals and also edges which represent
discontinuities in the mesh. He specifies a deviation space Dz(u, ) which is
parameterised with respect to a normal 7 and whose projected radius along
a direction ¥ is max(y,d||7i x ¥]|). The terms p and § are illustrated in
Figure 3.18a. These parameters are calculated for each vertex in a PM rep-
resentation such that each vertex’s deviation space encloses the error vectors
associated with sampled points on the facets in the neighbourhood of that
vertex.

The graph of the projected radius of Hoppe’s deviation space for a surface
normal of (0,0, 1) is shown in Figures 3.18(b) and (c). As can be seen, this is
the same graph as for Lindstrom’s projection, but unioned with a sphere of
radius pu. The result of using this as a screen-space resolution criterion is that
the resolution of a region which is perpendicular to the viewer is guaranteed
to be above a given minimum, whereas Lindstrom’s method would permit
this region to be displayed at the lowest possible resolution.

Hoppe augments this screen-space similarity check with frustum culling
and back-face culling tests which are described below.

View frustum A bounding sphere is associated with each vertex in a PM
hierarchy such that the sphere contains all of the faces in the neigh-
bourhoods of that vertex and its descendants. If a vertex’s bounding
sphere lies outside the view frustum then its surrounding region does
not need to be refined.
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Figure 3.18: Hoppe’s screen-space resolution criterion (from [Hop97b]).

Figure 3.19: The normals of the facets in the original mesh which correspond
to the facets around v can be bounded by a cone of normals.
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Surface orientation The normals of the facets in the original model which
are approximated by the region around a PM vertex and its descendants
are contained in a cone of normals. This cone is associated with that
vertex in the PM hierarchy (Figure 3.19). If the orientation of vertex
v’s cone of normals is such that we can guarantee that all of the faces
in that region of the mesh are back-facing then v’s region does not need
to be refined.

Summary

This chapter and the previous one have established that there is a wide vari-
ety of approximation methods which take specific classes of models as input
and produce single-resolution meshes with varying characteristics. We have
also described how some of the approximation methods can produce vari-
able resolution meshes directly and others can be combined with additional
structures and algorithms to permit the generation of such meshes. These
observations underlined the fact that, regardless of how deeply an existing
approximation method appears embedded in its associated variable resolu-
tion mesh generator, it is possible to distinguish between these processes.
This chapter has also established that, prior to the recent work of Puppo
and De Floriani, there was no method for incorporating existing approxima-
tion methods into a selective refinement technique. Even when the contem-
porary MultiTriangulation approach is considered, there remains a need for
a selective refinement framework which can handle a range of approximation

.methods operating on both scalar fields and manifold meshes and which pro-

vides the capability to geomorph between meshes. This is the aim of our
SMR framework which is introduced in the next chapter.
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Chapter 4

The Selective Mesh' Refinement
Framework

The previous two chapters have introduced a wide range of scalar field and
manifold approximating methods, many of which operate by performing re-
peated local modifications on an existing approximation. Of particular note
is Cignoni’s HyperTriangulation approach (Section 3.3) which retains the
local modifications associated with a particular terrain approximation tech-
nique in order to permit a selectively refined surface to be generated. In this
chapter we introduce our SMR. framework which extends this work in a num-
ber of directions in order to provide a flexible approach to the generation and
geometric morphing of selectively refined simplicial meshes in n-dimensions.

We first detail the specific achievements of our SMR framework with ref-
erence to previous work in Section 4.1. We also consider how the SMR frame-
work relates to other scene optimisation techniques in Section 4.2. Section 4.3
covers terminology which we shall use in the remainder of this dissertation.
This is followed by a description of our resolution-based model representa-
tion in Section 4.4 and the structures with which this representation can be
implemented in Section 4.5. The manner in which we specify the resolution
which is required of an output mesh is detailed in Section 4.6.

SMR framework features

The components of our SMR framework are visualised in Figure 4.1 and the
novel features of the framework are introduced below.

e A resolution-based representation of a model is constructed during a
pre-processing step. This means that some simplicial mesh-based ap-
proximation process is applied to the model and the local modifica-
tions which this process generates are stored as individual simplicial
fragments in a Continuous Resolution Model Representation (CRMR).
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Figure 4.1: Selective Mesh Refinement framework

These fragments are ordered such that they are refinements of a base
mesh. This explicit separation of the approximation process from the
production of a selectively refined mesh is the basis for the flexibility
of the framework.

Our CRMR takes the concept of Cignoni’s HyperTriangulation, which
was restricted to terrain surfaces and a Delaunay approximation pro-
cess, to its logical conclusion by permitting the fragments contained in
a CRMR to be generated by a range of scalar field and manifold approx-
imating techniques. The concept of our CRMR is also similar to the
most.recent papers regarding Puppo and De Floriani’s MultiTriangu-
lation (Section 3.4; [DMP97b, PS97]) in which they define an MT such
that it can handle fragments of approximations to three-dimensional
manifold meshes. ‘

Our CRMR is unique in permitting certain topological operations to be
performed by the fragments generated by the underlying approximation
process. Specifically, fragments can introduce either holes in a mesh or
additional simplicial meshes. This latter option means that a CRMR
can actually represent the resolution information associated with a set
of simplicial meshes.

The two abstract structures, which we refer to as the Hypermesh and
DAG, with which we represent a CRMR are also novel. The Hyper-
mesh maintains the adjacency information of simplices in a CRMR’s
fragments in both the spatial and resolution senses. The DAG contains
an abstraction of this information which relates to the overlapping na-
ture of the fragments in the spatial dimension and also their ordering
with respect to resolution.

Our Hypermesh is similar in concept to Cignoni’s HyperTriangulation
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but differs in retaining the boundary edges of each fragment as dis-
tinct versions of their predecessors (unlike the “bubbles” of Cignoni’s
fragments in Figure 3.15). The implementation which we present for
our Hypermesh in 2%— and 3-dimensions reflects this difference as a
novel structure which extends Guibas and Stolfi’s manifold-representing
quadedge data structure [GS85].

The other input to the selective refinement process which is shown in
Figure 4.1 is a Resolution Control Function (RCF). This is our collec-
tive term for the resolution criteria which an output selectively refined
mesh must satisfy. Section 3.6 discussed various existing resolution cri-
teria and drew the distinction between object-space and screen-space
criteria. Cignoni, Puppo and De Floriani concentrated exclusively on
generating selectively refined meshes with respect to object-space reso-
lution criteria and their results to date have used only a simple object-
space criterion which depends on the distance to the viewpoint. In
contrast, Hoppe advocated and demonstrated only screen-space reso-
lution criteria.

Our RCF provides a consistent interface which permits these two kinds
of criteria to be combined in the specification of a particular scene.

The selective refinement process which is central to Figure 4.1 is the
task of producing a selectively refined mesh from the fragments con-
tained in a CRMR such that the mesh satisfies the given Resolution
Control Function. We refer to this task as the SMR process.

We present two algorithms which can perform the SMR process — the
minimal surface and reduced extraction algorithms. Both algorithms
can generate a selectively refined mesh which satisfies any resolution
requirement presented by the RCF and hence we have eliminated the
non-decreasing constraint which was essential to Cignoni’s output reso-
lution function (Section 3.3). This resolution constraint was also elim-
inated by Puppo’s MultiTriangulation algorithm [Pup96] and Hoppe’s
view-dependent Progressive Mesh paper [Hop97b].

Our algorithms are novel in that they separate the task of identifying
the fragments which are necessary for the generation of a selectively
refined mesh from that of generating a mesh using these fragments.
This distinction has two major advantages:

1. the set of fragments from which an existing selectively refined
mesh was constructed can potentially be used for future operations
such as geomorphing;

2. our traversal over a set of fragments which generates a selectively
refined mesh can proceed in the nature of an advancing front algo-
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rithm. This means that the adjacencies of the extracted simplices
can be maintained and also that the regions of highest resolution,
and therefore greatest significance, can be extracted first. Hence
if the traversal process is being used to render a mesh and this
rendering process has to be aborted by a frame-time constraint
then the displayed mesh will not necessarily be complete but it
will contain the most significant features of the underlying model.

In contrast, Puppo’s algorithm combines traversals of fragment and
triangle queues and Hoppe’s is only suitable for generating a selectively
refined Progressive Mesh.

The additional novelty of the reduced extraction algorithm which we
present is that it attempts to reduce the cost of the first phase of our
selective refinement process (that of identifying the fragments which
are necessary for the output mesh).

e We also present a geomorphing algorithm which can smoothly morph
between two selectively refined meshes and which may be invoked due
to an alteration of the resolution criteria. This algorithm is indepen-
dent of the approximation method which generated the given CRMR
because it can reduce the regions which must be morphed to the lo-
cality of individual fragments in the CRMR. We assume that external
routines exist which permit such localised morphing.

This geomorphing ability is unique among fragment-based selective re-
finement systems (i.e. the HyperTriangulation and MultiTriangulation
approaches) and is made possible by our selective refinement algorithms
not only generating a mesh but also the set of fragments from which
that mesh was constructed. Hoppe presented a geomorphing algorithm
for his view-dependent Progressive Mesh representation [Hop97b] but
this is specific to the PM approach.

e Finally, our results chapter (Chapter 7) provides the first quantitative
examination of selective mesh refinement applied to various terrain and
three-dimensional manifold datasets and also with respect to a range
of resolution criteria.

The SMR context

The intended role of the SMR process in a rendering system is indicated in
Figure 4.2. Every object in a virtual environment is held as a CRMR. The
initial scene optimisation step, as in Sewell [Sew96], is a fast visibility check
to determine which models lie inside the view frustum and hence require
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Figure 4.2: The SMR process (bold arrow) as a component of a rendering
system. '

further processing. Those which are insignificant in terms of their projected
screen area can be replaced by rough approximations such as bounding vol-
ume representations, etc. The remaining CRMRs can be selectively refined
according to the current resolution requirements before being passed to the
rendering process.

Note that when a selectively refined mesh is rendered in a scene, it is
dependent on the current resolution requirements which themselves may de-
pend on the current view frustum. Hence geomorphing may be required
between any displayed selectively refined meshes and their updated versions.
This feedback loop is not depicted in Figure 4.2.

4.3 Terminology

4.3.1 Dimensions

When the input to the SMR framework is from a terrain approximation
method, we say that 2%-dz‘mensional selective refinement is being performed.
If the input is from a three-dimensional manifold approximation process then
this is denoted, naturally, as the 8-dimensional case. Since these are the typi-
cal instances for which selective mesh refinement will be invoked in rendering
applications, we concentrate on describing the 2%— and 3-dimensional cases.
‘The SMR framework is extensible, though, to other dimensions. The
lé—dimensional case, for example, would be where a function y = f(z), f :
"R — R was approximated by a series of line segments and these segments
were then input as a CRMR to the SMR framework (Figure 4.3). The 33-
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(b) Three single-resolution (c) The fragments which

approximations to the can be extracted from these

function in (a). approximations, shown
linked at their correspond-
ing points. A selectively
refined approximation to
(a) could be extracted from
this information.

(a) A function y = f(z).

Figure 4.3: Example of 1%—dimensional input to the SMR framework.

dimensional case would involve selectively refining a volumetric visualisation
of a function w = g(z,y,2), g: R - R

Simplicial mesh notation

To assist with our description of SMR. in three-dimensional Euclidean space,
we require a means of describing 2-simplicial meshes, i.e. two-dimensional
surfaces which satisfy the properties identified in Section 2.1.2. We specify a
2-simplicial mesh as a tuple M = (V, F, A) where

o V = {#,...,7,} is the set of position vectors of the vertices of the
mesh; ‘

e F' is a set of ordered triples of vertex indices corresponding to the
faces in the mesh. These faces are of course the 2-simplices (triangles)
of a 2-simplicial mesh and it is in this form that the notation can
be generalised to higher dimensions — the set F' could contain the n-
simplices of an n-simplicial mesh;

e A is the attribute information associated with the mesh. A may include
discrete and scalar attributes such as material identifiers, normals, etc,
as Hoppe described in [Hop96]. If we are dealing with 21-dimensional
SMR, one of the attributes contained in A will be the elevation values
associated with the 2-dimensional position vectors in V.
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4.3.3

4.4

Figure 4.4 shows possible V and F' sets for a simplicial mesh representing
the surface of a cube.

i/

—

: v1’627637774765,66a67768 }
: {172} 3}){1a374}7

\\ : N {57 87 6}’ {67 8’ 7},
I

——

N {5,1,4},{5,4,8},
{6,2,5},{2,1,5},
Oy, . {2,6,7},{3,2,7},

/”’- | fmmm K {3a 7,8},{3,8,4} }

e -

V3 Va

Figufe 4.4: The triangulated surface of a cube and the correspond-
ing V and F sets in our notation of this simplicial
mesh.

We define the boundary of a simplicial mesh, B(M) to be the set of
directed edges of triangles in M such that each edge € € B(M) lies on only
one triangle in the mesh and is directed such that this triangle lies to its left

(where the orientation of the triangle is defined by the ordering of its vertices
in F).

Edge notation

We use the €.Sym notation of Guibas and Stolfi’s quadedge data struc-
ture [GS85] to indicate the mirror image of a directed edge € (i.e. an edge
with the opposite direction to €). We also use the quadedge notation to
denote the previous and next edges around a triangle lying to the left of an
edge € as €. Lprev and €.Lnext respectively (Figure 4.5).

Continuous Resolution Model Representation

The basis of our selective refinement process is that a selectively refined mesh
can be generated by combining fragments of triangulated approximations to
an object (if we assume that we are working in the 2%— and 3-dimensional
cases), where these approximations have been generated at a range of reso-
lutions. We require a novel data structure to permit our SMR algorithms to
traverse between fragments’ facets which are adjacent in either the spatial or
resolution sense. This is the purpose of a CRMR.
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Figure 4.5: The Lprev and Lnext operators.
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Figure 4.6: Pre-processing CRMR creation step

We follow the concept introduced by Cignoni of representing a model as a
base, coarse, approximating mesh together with a history of the refinements
which are required to improve the base mesh with respect to some resolution
metric (Section 3.3). Our Continuous Resolution Model Representation is
more general, though, than previous such fragment-based representations.
This means that we can transform the output of many existing approxima-
tion methods into a CRMR (the table on page 57 indicates which of the
reviewed methods are amenable to generating a CRMR). Specifically, we can
preprocess the output of any height field or manifold approximating method
which produces simplicial meshes and which operates by making repeated
local modifications to a mesh. This latter requirement ensures that there
is a degree of edge correspondence between the resulting fragments and this
increases the potential for variability in the output selectively refined meshes.

The off-line pre-processing step in which a CRMR of an object can be pro-
duced is depicted in Figure 4.6. This shows that the kind of single-resolution
approximation method with which we are concerned can produce either a set
of single-resolution approximations (LODs), or a base mesh together with
a set of incremental changes to that mesh. Examples of the former include
pyramidal methods (Section 3.1.1), and notable examples of the latter (which
we shall demonstrate within the SMR framework later) include the Delaunay
triangulation and Progressive Mesh approaches (Sections 2.2.2.1 and 3.2.2).
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Figure 4.7: A refinement operation transforming one 2-simplicial mesh into
another. In the process, two of the original vertices are removed
and six others are added.

From all of these methods we can generate the information which is stored
in a CRMR, i.e. a base mesh and a set of modifications of that mesh.

We term these modifications of a base mesh refinement operations. Each
refinement operation is characterised explicitly by the set of triangles which
it replaces, together with the simplicial mesh or meshes which it introduces.
The diagram in Figure 4.7 shows a simple refinement operation transforming
one simplicial mesh into another.

We can therefore define a CRMR as a base mesh, M® = (V9 F0 A0)
together with a sequence of refinement operations, {R!,..., R™}. The refine-

ment operations are a set of transformations which can produce a sequence of
single-resolution meshes {M?!,..., M™} from the base mesh M9, such that

M =R (M"1),1<i<m

We require that the ordering of refinement operations {R!,..., R™} is
such that the resolution of the meshes M°, ..., M™ is increasing with respect
to some resolution metric, r, which operates on these meshes. We adopt the
convention that the range of r is [0,1] and is such that r(M°®) = 0 and
r(M™) =1.

As we have seen, the standard resolution metric for 2%-dimensional sur-
faces is the maximum vertical displacement between an approximating sur-
face and the original dataset. Also, the Hausdorff distance is one measure of
resolution for three-dimensional approximations (Section 2.3.2). Our resolu-
tion metric, 7, can be generated trivially by these standard measures. For
example, the Hausdorff distance could be converted using:

H(M, M™)
H(MO, M™)

Refinement operations are defined formally in Section 4.4.1 and the res-
olution attributes which we associate with each operation are discussed in

r(MH) =1-— :0<i<m
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Section 4.4.2. The conversions which may be required to produce a CRMR
from the output of existing approximation methods are presented in Sec-
tion 4.4.3.

Refinement operations

We proceed to formalise our previous description of a refinement operation
as a transformation of one mesh into another which is of a higher resolution.

A refinement operation R{(M®1) = M’ is characterised in the most
generic form possible, which is to explicitly store the portion of the simplicial
mesh in M*~! which R affects, together with the simplicial mesh with which
that area of the mesh is replaced. Thus we associate with R* the following
attributes (for 1 < ¢ < m):

e PreF(R') = F*"!\F is the set of triangles which existed in M*™! and
which were replaced by R?. PreF (R') is referred to as the pre-operation
set.

o V(R = Vi\V* ! is the set of position vectors of the vertices which
did not exist in M?~! and which were introduced by R'. Note that
although our framework can handle refinement operations whose pre-
operation set of triangles contains vertices which do not exist in M,
we simplify our notation by not representing this kind of operation.

e F(RY) = F\F* is the set of triangles which were introduced by R":
F(RY) is referred to as the post-operation set. F(R') is a set of triples
of vertex indices and we assume that these indices are unique over the

sets V(R?) ... V(R™) in order to permit set comparisons between the
F(R)’s;

o ‘A(R?) is the set of attributes associated with V(R') and F(R").

For completeness, we let R® be a pseudo refinement operation representing
MO, where PreF(R%) = 0, V(R%) = V° F(R") = F° and A(R®) = A°
Hence the approximating meshes M. .. M™ are completely represented by
RC...R™

Figure 4.8 shows a sequence of refinement operations in diagrammatic
form. We describe the space in which the 2%—dimensional fragments are
viewed in this diagram as 2%—dimensional resolution space. We also use this
abstract form to represent 3-dimensional resolution spaces in which the base .
mesh may be a simplicial mesh without a boundary even though we still
visualise it as a planar bounded region.

To conclude the specification of refinement operations, we also require
that they are both complete and minimal, where we define:



4.4 Continuous Resolution Model Representation

Resoluion < > -

A
v O o —

y ® >
<RI

- X

Figure 4.8: A sequence of 2%-dimensi0nal refinement operations represented
by an abstract form of the fragments which they introduce.

e R is complete iff the boundary of the set of triangles which this op-
eration affects is equal to, or is contained within, the boundary of its
replacement triangles. This holds for all pre-operation edges except
those which lie on the boundary of M*~! — each of these boundary
edges may be replaced by a set of edges to permit refinement along
manifold boundaries.

Figures 4.9 and 4.10 demonstrate (for non-boundary refinement op-
erations) that this definition permits a range of modifications to be
specified, notably the topology-varying ones of Figures 4.9(b) and (d).

The refinement operation depicted in Figure 4.9d is particularly signif-
icant because this implies that an operation can “spawn” a separate
simplicial mesh which itself may be the subject of further refinement
operations. Thus our CRMR and SMR framework can handle models
which are constructed from one or more simplicial meshes, although we
continue to refer to the output of our SMR process simply as a “mesh”.

The ability to handle a set of simplicial meshes is necessary if the model
represented by a CRMR 1is a set of unconnected manifolds, which is
the case for many VRML models. Chapter 7 contains an example
of a model which utilises this ability. Such unconnected manifolds
may also be generated by approximation methods such as Garland and
Heckbert’s topology-modifying method (Section 2.4.2).

Formally, this definition can be phrased as:

R' is complete <= Ve € B(PreF(R}))\B(M'1),e € B(F(RY))
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(a) Contiguous set (b) Refinement op- (c) Disjoint simpli- (d) Refinement op-
of triangles replaced eration which intro- cial meshes which eration which re-
by another. duces a hole. are part of one re- fines an existing re-
finement operation. gion and also intro-
duces a new simpli-

cial mesh.

4.4.2

Figure 4.9: Complete refinement operations

e R'is minimal <= AS, C PreF(R"),S, C F(R') s.t. B(S;) = B(S,),
i.e. there is no chain of edges in PreF(R?) which also occurs in F(R?)
and hence there is no subset of triangles in PreF (R') which can be com-
pletely replaced by a subset of F/(R!). Thus we ensure that refinement
operations are specified as locally as possible which increases the poten-
tial variation in the selectively refined meshes which can be produced
by these refinement operations. Figure 4.9c represents a non-minimal
refinement operation.

Successive refinement operations will re-use some of the post-operation
facets of other refinement operations in their pre-operation set. To avoid
duplication, therefore, we need only store the post-operation facets of each
refinement operation. Each post-operation facet group, F(R!), is what we
refer to as a refinement fragment, or simply a fragment.

Resolution attributes

One of the tasks of the attribute set, A(R), is to associate resolution in-
formation with a refinement operation. We adapt the birth error and death
error terms of Cignoni et al (Section 3.3) to conform to our resolution-based
notation.

We say that a refinement operation R has a birth resolution, birthres',
which is the maximum resolution in the mesh M*~! just before R' was per-
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(a) Incomplete pre- (b) Incomplete
refinement set of post-refinement set
triangles. of triangles.

Figure 4.10: Incomplete refinement operations.

formed (we assume birthres® = 0); and each triangle ¢ in F(R?) has a death
resolution, deathres(t), which is the maximum resolution in the overall mesh
just before ¢ was replaced by another refinement operation (or 1 if ¢ is part
of M™).

The previous requirement for the resolution of the refinement operations
to be monotonically increasing implies that birthrest > birthres'—! for 0 <
i < m.

The diagrams such as Figure 4.8 which contain an abstract representa-
tion of refinement operation’s fragments can be regarded as visualising these
fragments at their birth resolutions.

CRMR construction

In this section we consider how refinement operation information can be
extracted from the output of the simplicial mesh-producing approximation
methods described in the previous chapters.

These methods can be categorised as:

e those which produce multiple LODs which may have to be split into
fragments before they can be incorporated into a CRMR;

o those which are directly compatible with a CRMR (i.e. they operate
by producing fragments corresponding to local modifications);

e those which may require some reordering of the fragments which they
produce, and;
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e those whose fragments require adaptation to comply with our specifi-
cation of refinement operations.

These classes of methods are considered in turn below.

4.4.3.1 Multiple LOD generators

Methods such as De Floriani’s and Scarlatos’ pyramidal schemes (Section
3.1.1) generate Levels Of Detail which do not necessarily have any edge co-
herency, i.e. there may be no edges which persist between LODs. Such
pyramidal methods can be converted to a refinement operation representa-
tion trivially by holding each LOD as the post-operation simplicial mesh
which a refinement operation produces. If the LODs can be split into more
localised fragments, though, then this will permit the production of variable
resolution meshes. The potential for localisation can be checked using the
refinement operation minimality test described above. If multiple minimal

- refinement operations can be identified within one LOD then a unique birth

resolution must be associated with each of these operations.

4.4.3.2 Directly compatible methods

The majority of the reviewed approximation methods are refining methods.
That is, they can be regarded as producing a coarse base mesh together
with a sequence of refining fragments which can directly satisfy our refine-
ment operation completeness and minimality conditions. These are Fowler
and Little’s Delaunay-generating method (page 20), the ternary triangula-
tion (page 24), Faugeras’ manifold refining method (page 29), De Berg and
Dobrindt’s method (page 47), Cignoni’s HyperTriangulation (page 53) and
Puppo’s MultiTriangulation (page 54). Lindstrom’s right triangles (page 18)
can also be regarded in this category if the triangles are combined as refine-
ment fragments in pairs or fours as indicated in Figure 4.11.

4.4.3.3 Fragment reordering

The output of a decimating approximation method, i.e. one which operates
on a high resolution mesh and monotonically decreases the resolution of this
mesh by making local modifications, such as Schroeder’s method [SZL92],
can be easily converted to a CRMR by reversing the order of the resulting
meshes.

We can also create a CRMR from a refining or decimating process which
is non-monotonic with respect to the resolution of its output approximations.
This will be true of a Progressive Mesh representation, for example, if the
fragments are created with respect to the standard monotonically increasing
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Figure 4.11: The fashion in which Lindstrom’s right triangles could be com-

bined in order to produce a CRMR (cf. Figure 2.11).

energy function but we desire a selective refinement to be produced with
respect to a similarity-based metric such as the Hausdorff distance.

If we assume that an approximating process has produced a set of ap-
proximations by repeated local refinement and as a result we have a set
{M°, ..., M™} such that M™ is finer than M°, but M#*! is not necessarily
finer than M for 0 < i < m. As before, we create the pseudo refinement op-
eration R? from MY and initially create the refinement operations R' ... R™
by comparing M® with M1 for 1 < i < m.

To ensure that the refinement operations are in birth resolution order,
though, some reordering and coalescing of their fragments may now be nec-
essary. We iterate through the set of refinement operations, comparing
birthres with birthres for 1 < i < m. If R’ is coarser than R*! and
F(R')N F(R*1) = ( then there is no overlap between these fragments and
so we can swap R’ and R*! and then repeat this test for R*~! and R'~2,
etc (Figure 4.12a). If R is coarser than R*™! but F(RY) N F(R!) # ( for
some % in this iteration then we must coalesce these operations’ fragments by
setting:

PreF(R7Y) PreF(R) U (PreF (R1)\F(RY))
V(R = V(RFYHYUV(RY
F(RY) = F(R-YHU(F(R)\PreF(R1))
ARTY = AR UARY

and then removing R’ (Figure 4.12b).

4.4.3.4 Fragment adaptation

Finally, some approximation methods generate fragments which have points
inserted on their boundaries, and these boundaries do not necessarily coin-
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(a) Two refinement operations need to be re- (b) Two overlapping refinement operations can
ordered and they do not overlap so the reordering be reordered by coalescing the finer one into the
is trivial. coarser.

Figure 4.12: Reordering refinement operations to ensure monotonicity in their
birth resolutions.

cide with the boundary of one of the meshes MY ... M™. This kind of frag-
ment breaks the refinement operation completeness requirement. Examples
of this category of approximation method are De Floriani’s HTIN (page 22),
the quarternary triangulation (page 24), Scarlatos’ cartographic coherence
(page 26), co-planar decimation (page 31) and Ferguson’s continuous terrain
LOD (page 44).

To handle this case, we can either treat the method as per the multiple
LODs approach, which typically results in large fragments since there is not
necessarily a high degree of edge coherency between the output LODs, or we
can adapt the approximation method. This is the preferred approach since
the above methods all produce fragments which can be easily constrained
to satisfy the completeness and minimality conditions. For example, the co-
planar decimation approach could produce valid refinement operations if we
prevented the removal of vertices on the boundary of any patch which was
identified as being nearly coplanar.

4.5 CRMR structures

We require two structures to maintain both the spatial and resolution topolo-
gies of the refinement fragments in a CRMR. The Hypermesh component
stores the complete spatial topology of each fragment but only represents
that fragment’s relationships with other fragments by linking its boundary
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edges with corresponding edges in these fragments (Section 4.5.1). The DAG
component is a Directed Acyclic Graph which represents an abstraction of
the Hypermesh structure; this is described in Section 4.5.2.

CRMR Hypermesh component

Section 3.3 described Cignoni’s HyperTriangulation (HT) structure which
maintains the spatial and resolution topologies of fragments of triangulated
approximations to a terrain surface. These relationships are retained by asso-
ciating the boundary edges of each successive fragment with their correspond-
ing edges on the previous mesh (Figure 3.15). This edge correspondence is
essential to our selective refinement approach and hence the Hypermesh com-
ponent of a CRMR maintains these relationships for a sequence of refinement
operations using an adaptation of Cignoni’s HT.

The two conceptual differences between our Hypermesh and Cignoni’s
HyperTriangulation are: a) we invert the approximation metric, which is
now based on “resolution” rather than “error”; and b) we distinguish be-
tween edges which are geometrically identical but which exist on different
fragments.

The primary reason for these two modifications is to permit the Hyper-
mesh structure to handle models in such a way that the Resolution Control
Function can be easily specified. The first modification permits us to take
a more consistent approach throughout the SMR framework to the metric
against which a model is selectively refined. As well as being a useful syntac-
tic alteration (we can refer to a finer fragment as “higher”, for example), the
benefits of being able to specify an RCF as the minimum resolution which is
required throughout a model are demonstrated in Section 4.6.

The second modification means that if a single geometric edge lies on
more than one fragment then there exists a version of this edge for each of
the fragments on which it lies. Cignoni’s “bubbles” of fragments can therefore
be viewed as planar regions in the 2%-dimensional case, as Figure 4.13 shows.
Hence we say that an edge is “born” when a fragment of which it is part is
“born”. Similarly, an edge “dies” (perhaps to be replaced by a copy of itself
over a new resolution range) when a triangle of which it is a boundary “dies”.

To maintain the version relationships, an edge may be linked to finer and
coarser versions of itself. If such versions exist then they will be “alive” for
intervals of resolution which do not intersect with that of the original edge.
The refinement operation completeness condition permits an edge which is
on the boundary of a mesh to be refined into a set of edges and therefore
along mesh boundaries the finer/coarser relationships may be one-to-many
and many-to-one, respectively, rather than the normal one-to-one (see Fig-
ure 4.14). If a fragment boundary edge surrounds a hole in the interior of
that fragment, or the edge is part of a separate simplicial mesh which has
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Figure 4.13: Planar regions corresponding to the fragments caused by two
point insertions (cf. Figure 3.15).

been spawned by this fragment (as in Figures 4.9(b) and (d)), then the edge
has no coarser versions. *

By distinguishing between geometrically identical edges which have been
created at different resolutions, we can simplify both the visualisation and
implementation of the Hypermesh structure compared to the HyperTriangu-
lation. Cignoni’s visualisation of a fragment as a “bubble” of faces pasted
on top of an existing mesh becomes confusing if a sequence of refinement
operations are to be viewed. If we embed our planar fragments in three-
dimensional space (for the 2%—D case which Cignoni considered) then we can
directly relate them to the Resolution Control Function and the significance
of this will be discussed in Section 4.6.2. The novel data structure with
which we implemented our Hypermesh for the 2%— and 3-dimensional cases
is described in the next section.

4.5.1.1 Hypermesh implementation

The data structure which Cignoni used to represent a HyperTriangulation is
based on the facet-edge structure which was described by Dobkin and Las-
zlo [DL89] for the purpose of representing cell complexes in three dimensions.
The basic primitive in this structure is a face and one of its edges — a facet-
edge. ,

Cignoni explained this structure further using Figure 4.15a. A facet-
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Figure 4.14: An edge may be refined into a set of edges along the boundary of
' a mesh. Otherwise, the finer/coarser relationship between edge
versions is strictly one-to-one.

edge fe denotes two rings in a cell complex C: the edge-ring is formed by
all the edges of the boundary of face f; the facet-ring is formed by all the
faces incident at edge e. The traversal functions enezt and fnezt permit
movement from one facet-edge to the next along the edge-ring and facet-ring
respectively.

In order to apply the facet-edge structure to the task of terrain modelling,
Cignoni augmented the structure. Each facet-ring was split into two separate
bidirectional chains, according to which side of the corresponding edge its
triangles lay (Figure 4.15b). A further link was maintained from each facet-
edge to another facet-edge on the other side of the edge. Hence, for each
facet-edge, a facet-ring was handled by the operators:

o fnezt: next facet-edge (with lower error) in the facet-ring;
o fprev: previous facet-edge (with higher error) in the facet-ring;

e fother: facet-edge on the other side of the edge.

This modified facet-edge data structure enabled Cignoni to present the
constant resolution and variable resolution extraction algorithms mentioned
in Section 3.3. As a representation for a HyperTriangulation, though, this
structure is unnecessarily complex since its ability to model a three-dimens-
ional structure is only being applied to the problem of modelling links be-
tween two-dimensional meshes. This led us to propose our fanedge data
structure as a simple means of handling a Hypermesh.
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o

(a) A number of facet-edges (b) A cross-section of (a) show-
are depicted around one (bold) ing the two chains of facets
edge; the facet-ring and edge- (fnext and fprev) into which
ring of one particular facet- the facet-ring would be di-
edge are highlighted vided.

Figure 4.15: Facet-edges (from [CPS95]).

Our fanedge structure is based on Guibas and Stolfi’s quadedge struc-
ture, which is a well documented structure for handling subdivisions of 2-
manifold meshes. The primary reason for using the quadedge structure as
the foundation of our Hypermesh representation is to enable the use of exist-
ing quadedge-based algorithms for tasks such as point location and Delaunay
triangulation [GS85, Lis94].

Guibas and Stolfi’s quadedge data structure is similar to Baumgart’s
winged-edge structure for modelling solids [Bau75]. A set of quadedges can be
used to represent simultaneously a general subdivision of a two-dimensional
manifold and its dual. Each edge in the subdivision is represented by one
quadedge structure. Internally, a single undirected subdivision edge is rep-
resented by four directed versions in the quadedge. These versions are the

two directed forms of that subdivision edge and the two directed forms of

the dual of that edge. The four forms in which a subdivision edge is stored
within a quadedge structure are shown in Figure 4.16a.

We define a fanedge as one or more quadedges which are ordered with
respect to the resolutions at which they were created (their birth resolutions).
Traversal operators finer and coarser are provided to permit movement to
the next higher, or lower, resolution quadedge (Figure 4.16b). This can be
extended trivially to permit the one-to-many relationships which are required
at a mesh boundary edge whereas the corresponding extension to the facet-
edge structure would be more complex.

The final item of information which we store in each quadedge is the birth
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finer quadedge

*
| =5
B ) A

\ coarser quadedge
(a) The four directed versions (b) A fanedge consisting of
of a single real edge which are three (abstract) quadedge lay-

stored in a quadedge. ers.

Figure 4.16: A quadedge and a fanedge.

resolution of that layer. From this, we can infer both the birth and death
resolutions of each quadedge in a fanedge since the birth resolution of one
quadedge is the death resolution of its predecessor.

CRMR DAG component

The Hypermesh component alone could be used to perform simple selective
refinement by making only minor modifications to Cignoni’s Hypertriangu-
lation variable resolution algorithm. As we discussed in Section 3.3, such
selective refinement would be restricted to producing a mesh which satisfies
a monotonically decreasing error function (Figure 4.17).

Cignoni’s algorithm starts from the finest triangle which is required in
the output surface (e.g. one of the unshaded set of triangles on the left of
Figure 4.17) and iteratively adds triangles to the output surface in order of
increasing error. Thus the output surface can be viewed as being “grown”
around a starting triangle.

We wish to remove the non-increasing error constraint (or, in our ter-
minology, non-decreasing resolution constraint) from the resolution specifier.
This could obviously be handled by locating the maxima of a given RCF and
hence determining the set of facets at which extraction should be initiated
and around which the output mesh could be grown using a parallelised form
of Cignoni’s method. The disadvantage of this approach, though, is that
it is not always possible to determine the maxima of a resolution specifier,
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Figure 4.17: A set of triangles which may be extracted by Cignoni’s variable
resolution algorithm in order to satisfy some non-decreasing er-
ror function. The diagram on the left shows, in 2%—dimensional
resolution space, the set of fragments which have been used to
construct the mesh on the right.

particularly if it is view-dependent.

The mesh extraction algorithms which are described in the following chap-
ter can take advantage of the Hypermesh structure to avoid determining an
RCF’s maxima. To do this, though, they require an abstraction of the infor-
mation contained in a Hypermesh, which we call the Directed Acyclic Graph
(DAG) component of a CRMR. '

A CRMR’s DAG is a graph whose nodes represent the refinement opera-
tions contained in the Hypermesh and whose arcs represent the overlapping
nature of these operations’ fragments.

We define the sets of children and parents of a refinement operation R as

children(R) = { RF:F(R)NPreF(RF)#0 }
parents(R)) = { RF:PreF(R)NF(RF)#0 }

The sets of ancestors and descendants of a particular operation R’ can be
defined as extensions of these sets in the usual way.

We define a CRMR’s DAG as the set of nodes {R’,..., R™} together
with the set of arcs {(R, RY) : R/ € children(R%)}. The oot of a DAG
is R°. The arcs in Figure 4.18 indicate the inverse children and parent re-
lationships which a DAG represents as an abstraction of its corresponding
Hypermesh. Note that although this diagram indicates the spatial extent of
each of its nodes’ refinement fragments, this information is only stored in the
Hypermesh.
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parent ———————— child chil{ —————————=—— parent

(a) Child arcs. (b) Parent arcs.

Figure 4.18: The DAG corresponding to the Hypermesh of Figure 4.8. The

fragment associated with R? is shaded in both diagrams.

Resolution Control Function

Resolution Control Function (RCF) is the term we use to encompass all of
the resolution constraints which must be met by a mesh produced from the
SMR process. An RCF can be regarded as an “oracle” to which fragments
are passed to determine whether they satisfy the current resolution criteria.
The following sections first outline the components from which an RCF
may be constructed and the interface which we require of an RCF (Sec-
tion 4.6.1). We then examine the potential object-space and screen-space
resolution criteria which an RCF may contain (Sections 4.6.2 and 4.6.3).

RCF components

A Resolution Control Function is typically composed of a number of com-
ponents, each dealing with an aspect of the resolution which is desired in
a particular output scene. If we assume that each component takes a re-
finement fragment, B¢, as input and returns whether it satisfies a particular
resolution criterion then the following queries will typically be encapsulated
in an RCF’s components:

e does any part of F(R") lies inside the view frustum?

e is F(R') completely back-facing, i.e. does none of its facets face towards
the viewer?
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e is F(RY) sufficiently similar to the portion of the original model which
that fragment represents? Such a similarity criterion can be phrased in
terms of object-space or screen-space dependencies, i.e. in terms of the
approximation error between a fragment and its corresponding model
region or-in terms of the projected size of that error.

These queries are the ones which Hoppe identified as suitable refine-
ment criteria and which we discussed in terms of his Progressive Meshes
approach in Section 3.6. Indeed, we use the bounding sphere and “cone of
normals” tests which Hoppe advocated as our view frustum and back-face
culling checks. We translate his vertex-based refinement criteria into our
fragment-based RCF approach in Figure 4.19. This specifies the order of the
tests which we use to determine whether a refinement operation satisfies the
minimum resolution criterion which the RCF specifies. If this true then we
say that the refinement operation is finer than the RCF. Note that if a frag-
ment is not visible in the current frame (i.e. it is outside the view frustum
or is back-facing) then we automatically return that its refinement operation
is finer than the RCF with the aim of reducing the resolution in this area of
the mesh.

Function: IsFiner

In: R': refinement operation to be tested against the RCF
Out:  True or False
begin

if F(R') is outside the view frustum then return True
if F(R!) is back-facing then return True
if F(R?) satisfies the similarity criterion then return True
return False
end

Figure 4.19: Pseudo-code outlining an RCF’s resolution tests.

The similarity criterion which is the third test in Figure 4.19 can be
specified in terms of either object- or screen-space characteristics. This test
can also be performed on the pre-operation facets of a refinement operation
in which case the test becomes:

if PreF(R?) satisfies the similarity criterion then return True

We can use this line to replace the third test in the pseudo-code of Figure 4.19
and if a fragment satisfies this new RCF check then it is deemed to be
completely finer than the RCF. For completeness, we specify that R is never
completely finer than the RCF since PreF(R?) is defined to be null.
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An implementation of this form of RCF can cache the view frustum and
back-face culling tests’ results within the “IsFiner” and “IsCompletelyFiner”
checks for each refinement operation since these results are independent of
the similarity criterion.

Object-space resolution criterion

An example of an application for which a guarantee on the object-space res-
olution of a selectively refined mesh could be important is a flight simulator.
For example, if a simulated flight is close to the surface of a terrain (termed
nap-of-the-earth flying [Sch83]) then it is important that the geometric differ-
ence between the displayed surface and the terrain data should be minimal
in certain areas, notably the region around the aircraft and along silhouette
edges. This requirement is more complex than the simple object-space res-
olution criteria which have been used previously (Section 3.6). This section
concentrates on how we can specify a complex 2%—dimensi0nal object-space
resolution criterion and also discusses how a 3-dimensional criterion can be
implemented.

We can specify the minimum object-space resolution which is required
over the domain, 2, of a “half-dimensional” surface as a function which
has the same dimensionality as the surface. For example, an object-space
resolution function for the Mt St Helens terrain data of Figure 2.1 could
be as depicted in Figure 4.20. This 2%—dimensional function has a domain
which is equal to the domain of the terrain dataset and a range of [0, 1]. The
higher regions of the function indicate areas in which the surface’s object-
space resolution must be correspondingly higher — hence both the Mt St
Helens crater and an off-centre region are of particular interest according to
this function.

This 2%—dimensional resolution space visualisation of the object-space res-
olution criterion can be combined with an embedding of the Hypermesh to
obtain a visual comparison of a CRMR’s fragments and the resolution cri-
terion. Rather than Cignoni’s qualitative embedding of his HyperTriangu-
lation’s fragments in three dimensions, we can position each triangle of a
CRMR with an elevation which is equal to its death resolution. Figure 4.21a
shows how the pre- and post-operation triangles of one refinement operation
can be visualised in resolution space; the shaded triangles represent the re-
finement fragment. Figure 4.21b shows all the refinement fragments from a
CRMR of the Mt St Helens dataset in resolution space.

The object-space RCF similarity test can then be applied by comparing
each triangle in a fragment with the value of the object-space resolution
function in the triangle’s domain: if the triangle is completely higher than
the function then that triangle satisfies the criterion.

More formally, the minimum resolution required of each triangle in a 2%-
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Figure 4.20: An object-space resolution specifier for the Mt St Helens dataset.
The viewpoint is close to the edge of the domain; an additional
Area Of Interest is centred on the mountain’s crater. A critical
line detector has also identified important lines in this area.

Resolution

A

death resolutions of triangles
in refinement op. (shaded)

~ birth resolution of refinement op.

(a) The pre- and post-operation triangles of one
refinement operation in 2%-dimensi0nal resolu-
tion space. The additional triangles attached to
the refinement fragment’s triangles are the pre-
operation sets of other operations.

(b) The pre-operation triangle sets for
all of the refinement operations in a
CRMR of the Mt St Helens dataset
viewed in resolution space.

Figure 4.21: Refinement operations in resolution space.
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dimensional selectively refined surface is specified as a single-valued bivariate
function g : Q2 — [0,1]. A triangle ¢ in the extracted surface is said to satisfy
this function if Vp € D(t), deathres(t) > g(p), where D(t) is the domain of
the projection of ¢ on €.

The object-space RCF test then becomes, for the IsFiner and IsComplete-
lyFiner tests, respectively:

e R'satisfies the similarity criterion if V¢ € F(R'),Vp € D(t), deathres(t) >
g(p), i.e. if the post-refinement set of triangles in operation R’ satisfies
qg.

e R' satisfies the similarity criterion if Vp € D(R?), birthres' > g(p), i.e.
if the pre-refinement set satisfies the RCF.

The object-space resolution function, g, can be specified by combining
bell-shaped functions, such as that in the foreground of Figure 4.20 which
specifies an Area Of Interest, and the output of terrain feature detectors. The
former are similar in concept to the “magnifying glass” Gaussian weighting
functions which were applied by Gross (Section 2.2.1) to wavelet transforms
in order to highlight certain regions. An example of thresholded output from
our terrain feature detector, which applies Peucker and Douglas’ critical line
detector (Section 2.2.3), is given in Figure 4.22d. This could be used as an
object-space resolution criterion to ensure that the critical lines in a terrain
are retained in every frame of a fly-through.

Figure 4.22 illustrates how other resolution requirements, including a view
frustum test, can be incorporated into an object-space RCF. The minimum
object-space resolution of all the triangles in the view frustum denoted by
the orange lines is specified to be 0.5 by component (a); an area of enhanced
resolution in the centre of the screen is simulated by requiring the triangles
which lie in the corresponding object-space cone (b) to be at a higher reso-
lution; and the viewpoint is highlighted by a Gaussian function centred on
that point in (c); component (d) is the result of applying our critical line
detection technique to the Mt St Helens data. Components (b), (c¢) and
(d) were clipped by the view frustum and then added to (a) to produce the
object-space function of Figure 4.22e.

The general form of this object-space resolution specifier is applicable
to SMR in 1%- and 2%—dimensions and is extensible to the other “half-
dimension” cases. It is less applicable in cases which are analogous to three
dimensions.

In these cases, we may still wish to specify significant regions of a model
which should be retained at a higher level of resolution than their surround-
ings. Our strategy for meeting this requirement is rather “ad hoc”, but our
primary aim is to permit a simple means by which these significant regions
can be specified and we are not aware of an existing comparable method.
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(a) View frust- (b)  Enhanced (¢) Area Of (d) Critical (e) Function
um component. screen area Interest cen- lines’ en- obtained by
component tred on the hancement combining these

viewpoint. component. components.

Figure 4.22: Components of a complex object-space function for the Mt St
Helens model. The orange lines denote the extent of the view
frustum in the xy-plane.

Taking the 3-dimensional case as an example, we first embed the given
CRMR’s refinement fragments in a three-dimensional “resolution space”.
This embedding is performed by projecting each vertex of the fragments’
triangles along its “current” normal, where the current normal of a vertex
v in F(R?) is defined as the average of the normals of the faces adjacent to
v in M? (i.e. the mesh after R’ has been invoked). The distance along its
current normal that each vertex is projected is equal to the death resolution
of the fragment within which the vertex lies, scaled by the approximation
error in the base mesh of the CRMR. This scaling is necessary to relate our
[0, 1] range of resolution values to the space in which the model was defined.

The positioning of fragments in 3-dimensional resolution space can be
compared to the production of an “exploded diagram” of the original model.

We can then specify the significant regions of a model as volumes, typi-
cally spheres, centred at the point of significance. These volumes are termed
volumes of significance. For fine control over the object-space resolution of a
mesh, the radius of a volume of significance (if it is a sphere) can be set equal
to the minimum resolution at which we wish the surrounding region of the
model to be displayed, multiplied by the maximum error in the base mesh.
Figure 4.23a shows the mesh of a sphere which has been selectively refined
according to the two spherical volumes of significance illustrated. These are
centred at two points on the surface of the original model and have radii
equal to 0.997 x maximum error in the sphere CRMR’s base mesh. The re-
gions around these spheres have been refined accordingly.

Alternatively, a coarse level of object-space resolution control can be
gained by positioning relatively large volumes of significance around regions
of the model which we wish to refine completely. Figure 4.23b shows four




4.6 Resolution Control Function

91

4.6.3

(a) Sphere selectively refined with respect (b) Cessna selectively refined with respect
to the two object-space volumes of signifi- to the four volumes shown.
cance shown.

Figure 4.23: Object-space RCF tests applied to two CRMRs.

volumes of significance placed around a model of a Cessna which have radii
far in excess of the maximum error in the CRMR’s base mesh. These regions
of the mesh have been refined to the level of the original model.

This formulation of the object-space RCF test means that it can be
treated as a geometric test between the pre- or post-operation triangles of
a refinement operation and the specified volumes of significance. A trian-
gle satisfies the object-space criterion if it lies outside all of the volumes of
significance in resolution space (or if its fragment has no children). Such a
test can be regarded as an inverted form of Cohen’s simplification envelopes
(Section 2.3.2) since it specifies that triangles are valid only if they lie outside
given volumes.

The two disadvantages of this approach are that a highly-specific region
of significance may require a complex volume definition and also projected
fragments can intersect at corners of a model which may result in a volume
of significance causing more refinement than was desired. We feel that these
drawbacks are offset by the simplicity of the approach.

Screen-space resolution criterion

Our RCF screen-space resolution test is an adaptation of Hoppe’s view-
dependent formula which was described in Section 3.6. We remove the pu
component from this equation because our birth and death resolution terms
are scalar terms from which we cannot derive a deviation space (and hence
we revert in part to the screen-space test of Lindstrom which was depicted
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4.7

in Figure 3.17). We also have to adapt our resolution-based terms to match
Hoppe’s error-based scheme. The screen-space similarity tests are carried
out, for the IsFiner and IsCompletelyFiner tests, respectively, as:

e R satisfies the similarity criterion if
Vt € F(RY), (1 — deathres(t))e ||, x 7] < QT(ﬁ)Cotg

where ¥ is a unit vector in the direction from the viewer to the centre
of the fragment’s bounding sphere, 7i; is the normal of triangle ¢, p, is
the projected centre of t, 7 is the screen-space tolerance as a fraction of
viewport size (parameterised with respect to screen position), € is the
approximation error in the CRMR’s base mesh and ¢ is the field-of-view
angle. The right-hand side of this equation converts the screen-space
tolerance (which we allow to vary within the extent of the viewport)
to a pixel-based measure, as per Hoppe [Hop97b].

e R satisfies the similarity criterion if

(1 — birthres')e ||fi x & < 27() cotg

where 7 is the average normal of the facets in F(R') and p is the
projected centre of F(R'). In our implementation, we approximate p
by the projected centre of F'(R')’s bounding sphere.

7 : R? — [0,1] is the screen-space tolerance function. This may be a
constant value if we wish to guarantee that the pixel-based difference between
the selectively refined mesh and the original is below this given minimum
everywhere. Alternatively, we can use 7 to specify screen-based Areas Of
Interest. For example, we can specify that the centre of a scene should be
displayed at an enhanced resolution to permit degradation of detail in the
periphery of a head-mounted display, as advocated by Watson [WWHR97].

Summary

This chapter has introduced our Selective Mesh Refinement framework. The
components of this framework which are passed as inputs to the SMR process,
the Continuous Resolution Model Representation and the Resolution Control
Function, have been described in detail. The former represents a model in a
resolution-based manner as a base approximation together with a sequence
of refinements. Our RCF provides a consistent fragment-based interface for
a variety of existing object-space and screen-space refinement criteria.
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Chapter 5

Selective Mesh Refinement

This chapter presents two alternative algorithms which perform the SMR

" process, i.e. the production of a selectively refined mesh from the CRMR

and RCF inputs detailed in the previous chapter. Qur minimal surface
method generates the selectively refined mesh containing the smallest set
of facets which represents the original model and which satisfies the given
RCF. A modification of this, the reduced extraction technique, also produces
a representative selectively refined mesh which satisfies the given resolution
requirements, but this method improves the speed of the SMR process at the
cost of producing a non-minimal mesh.

These algorithms are described in Sections 5.1 and 5.2 together with
proofs of the properties which we assert for the output of these algorithms. To
simplify our terminology and notation, this chapter concentrates on describ-
ing the generation of selectively refined meshes in the 21- and 3-dimensional
SMR cases, although the algorithms and proofs are extensible to other dimen-
sions, e.g. if we replace “triangle” by “tetrahedron” and “edge” by “face”.

Minimal surface SMR

The minimal surface SMR task is to produce a selectively refined mesh which
meets the following conditions:

e the mesh represents the original model, i.e. it is constructed from the
refinement fragments contained in a CRMR in such a way that each
portion of the mesh is part of one of the single-resolution approxima-
tions from which the CRMR was produced;

e all of the facets in the mesh satisfy the given RCF;

e the mesh is the smallest set of facets which meet the above two condi-
tions;
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e the mesh satisfies the Delaunay criterion if the input CRMR’s refine-
ment fragments satisfy this criterion (Section 2.2.2.1).

The minimal surface selective refinement algorithm meets these objec-
tives by first selecting an appropriate set of refinement operations from a
CRMR and then combining them to produce the desired mesh. This first
stage — refinement operation extraction — uses the CRMR’s DAG to infer the
spatial dependencies between refinement fragments in order to ensure they
can be combined by the second stage. This latter stage, called surface ezpan-
sion, then uses the CRMR’s Hypermesh to perform a single pass through the
extracted operations’ fragments, expanding those triangles which are neces-
sary and sufficient to produce a representative mesh which satisfies the given
RCF.

These two stages are detailed in Sections 5.1.1 and 5.1.2. The algorithmic
complexity of the minimal surface SMR process is noted in Section 5.1.3 and
proofs of the resulting mesh’s properties are presented in Section 5.1.4.

Refinement operation extraction

We construct a list, X, of refinement operations ordered by increasing birth
resolution by performing a partial traversal of the given CRMR’s DAG. X
must contain sufficient operations to permit a complete mesh to be extracted
from the fragments of these operations such that the mesh satisfies the given
RCF. The traversal proceeds by placing R° on X and continues until:

ReX < i=0or
(3R’ € X : R* € children(R?), R’ is not finer than
the RCF and R’ is not completely finer than the RCF) or
JR* € X : R* € ancestors(R*)

Informally, this means that a) the children of every operation in X which
does not satisfy the RCF are also in X if they themselves are not completely
finer than the RCF and b) the ancestor operations of every operation in X
are also in X. As Figure 5.1 shows, this equates to making a “cut” through
the CRMR’s DAG and placing all of the refinement operations which fall
below that cut on X.

Figure 5.2 presents the refinement operation extraction process in algo-
rithmic form. This routine is initiated by a call to AddToList(R°, X) where
X has been initialised to (). This initially places R on the list X and then
adds elements as necessary to ensure that the above condition is satisfied.
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Figure 5.1: The set of refinement operations (drawn as fragments with solid
borders) which would be placed on the list X according to the
definition on page 94 to satisfy an RCF which specified that oper-
ations above the dashed line were completely finer than the RCF.
Note that our definition of X in the minimal surface method does
not assume that every RCF can be represented by such a simple
partitioning of a CRMR’s DAG.

Function: AddToList
In: R®: operation which may be added to list
In/Out: X: list of extracted operations
begin
if R' ¢ X then
X:=XUR
if R? is not finer than the RCF then
for each child, R?, of Rt do
if R is not completely finer than the RCF then
AddToList(R/,X)
endif
endfor
endif
for each parent, R, of R* do
AddToList(RF,X)
endfor
endif
end

Figure 5.2: The AddToList routine.

5.1.2 Surface expansion

The purpose of the surface expansion step is to obtain a mesh which satisfies
the RCF from the refinement fragments of operations on the extracted list X.
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Our surface expansion algorithm can perform this task in a single traversal
of X.

Figure 5.3 gives an indication of how our algorithm would operate on
the set of refinement operations which were indicated in the previous ex-
ample. As this diagram illustrates, we traverse the members of X in order
of decreasing resolution and therefore, with respect to the CRMR’s DAG,
we perform a bottom-up breadth-first search on these fragments. Trian-
gles are expanded from these fragments such that they can be visualised
as “cascading” from certain completely-expanded fragments in the CRMR’s
Hypermesh. Alternatively, as Figure 5.3 shows, the resulting mesh can be
viewed as being “grown” around particular fragments — such fragments are
regarded as “starting points” for the surface expansion procedure.

The surface expansion operation can therefore be regarded as an instance
of the advancing front class of algorithms [Lo85], although our front may
be more than one contiguous set of edges. A useful side-effect of this mode
of operation is that triangles are expanded in an order which is related to
their resolution, i.e. highest resolution first. Thus, for example, if the SMR
process is being used to generate a mesh for a rendering application which
requires a guaranteed frame rate then the surface expansion process can be
aborted on each frame refresh with the expectation that the mesh already
expanded will contain the significant features of the model.

As is the nature of an advancing front algorithm, we add entities to an
active front in such a way that the front is extended by these additions. The
active front in our method is a set of directed edges. This set is a subset
of the edges bounding the currently-expanded mesh because we omit edges
which correspond to holes in refinement fragments (i.e. they are “internal”
fragment boundaries). We denote the current set of expanded simplices as
mesh M and the set of directed edges which is the current active front as E.
Figure 5.4 highlights M and E during the expansion of a mesh.

We define an operation Infill which performs the two actions of adding
triangles to a currently-expanded mesh and extending the active front. As
Figure 5.3 shows, we must avoid adding triangles which overlap with ones
which have already been expanded. Specifically, Infill acts on a refinement
operation from X, R, and adds those triangles in R’s fragment which are
not elements of the pre-operation sets of fragments which have already been
added to M.

This definition suggests that we must retain a list of the fragments which
have been added to M, but this is obviated by our use of the active front.
We define the direction of the edges in £ to be such that the current set
of expanded triangles is on the left of these edges (where “left” is defined
locally by the orientation of the triangles adjacent to each edge in the active
front). Therefore Infill acting on R* must add the triangles in F(R*) which
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(a) One refinement fragment is com- (b) A second, disjoint, fragment is
pletely expanded, i.e. all of its tri- completely expanded.

angles are added to the output mesh

(shaded in the lower figure).

(c) The uncovered region of another (d) This process continues until the
fragment is added to the existing traversal through X is complete.
mesh.

Figure 5.3: The progress of our surface expansion routine in abstract views of
both the CRMR’s DAG and the output mesh.

lie to the right of E to M. Simultaneously, of course, the active front must
be updated to reflect the new additions to M.
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() (d)

Figure 5.4: The advancing front (dashed lines) viewed on top of the output
mesh corresponding to the surface expansion of Figure 5.3.

We specify the exact operation of Infill on R by a set of rules which are
detailed below. In this set of rules, and the remainder of this chapter, we
refer to an additional attribute, E(R!), of refinement operation R’ which is
the set of directed edges corresponding to the edges in fragment F(R?). Thus
the edges of each triangle in F(R?) are represented twice in E(R'), i.e. once
for each of their two possible directions.

1. We first determine whether the refinement fragment of R! is a “starting
point” around which the output mesh will be grown, i.e. it corresponds
to a local resolution maximum among the refinement operations in
the list X. As Figures 5.3(a) and (b) illustrate, such fragments are
expanded completely.

A refinement operation R’ is an expansion starting point if none of its
fragment’s edges are on the active front and none of the children of R
have previously been encountered in this traversal, i.e. £ N E(R') =
and either children(R') = () or no member of children(R') has pre-
viously been encountered. When these conditions are met, F(R?) is
completely added to M and the boundary of F(R!) is added to E.

Note that the conditions which determine whether an operation is a
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(a) The normal linkage be- (b) The potential many-to- (c) Internal boundary edges
tween the boundary edges one relationship between a of a fragment have no
of a fragment (represented fragment’s boundary edges coarser versions.

by the upper plane) and which lie on the boundary

their coarser versions. of the original model and

their coarser version.

Figure 5.5: The three possible linkages from the boundary edges of a fragment.

surface expansion starting point cannot be reduced to checking only
whether none of its fragment’s edges lie on the active front. This may
be true of starting point fragments as well as fragments which are
completely “covered” by higher resolution refinement operations which
are also on X.

. If some of R¥’s fragment edges lie on the active front, i.e. EﬂE(Ri) #0

then the action of Infill is to add to M the triangles in F'(R') which
lie to the right of E, updating the active front to the resulting new
boundary of the expanded region. Any edges added to E will lie on the
boundary of F(R"). This is the case illustrated by Figure 5.3(c).

. The above two rules cause edges on the boundary of a refinement frag-

ment to be added to E. The nature of the CRMR, though, requires the
active front to progress in both the spatial and resolution directions.

Recall that Section 4.5.1 described that the boundary edges of each
fragment may be linked to one or more coarser versions in the corre-
sponding Hypermesh. A boundary edge normally has one coarser ver-
sion, but will not have a such a version if it is on the internal boundary
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of a fragment, i.e. it bounds a hole in a fragment. Alternatively, a
boundary edge can have more than one coarser version if it represents
the boundary of the original model. These three cases are illustrated
in Figure 5.5.

When a fragment boundary edge, €, is encountered by the above two
rules and € has at least one coarser version then these coarser version(s)
are used to replace € in E. Note that we determine the coarser versions
of € here as the closest coarser versions of € which lie on a fragment
which is in X. This definition will be modified in our description of the
reduced extraction SMR algorithm.

The above explanation completely defines the surface expansion step of
the SMR process. For completeness, pseudo-code of the Infill routine and its
subroutine, PerformEzpansion, are presented in the sections below.

5.1.2.1 The Infill routine

Infill(R?) expands the triangles of F(R') which are in the area bounded by
the fragment’s perimeter and the active front, E. In addition, if an expanded
triangle contains a boundary edge, €, then that edge is replaced in the active
front by its appropriate coarser versions. As in rule (3) above, this usually
means that € is replaced by another edge which is the closest coarser version
of € which is on a fragment on X. If € (or one of its coarser versions) is a
boundary edge then that edge may have more than one replacement, in which
case the search for coarser edges on X will continue for each replacement.
Alternatively, if € is an internal boundary edge of F(R?) then it will have no
coarser version and so & can be removed from E without replacement. ,

In the pseudo-code in Figure 5.6, the first if statement relates to the first
rule which was specified in the definition of Infill above, i.e. whether F(RY)
is a “starting point” fragment which should be completely expanded. If this
condition is true then the complete expansion of F(R') is initiated by calling
PerformEzpansion to expand a single triangle to the left of some directed
edge, € € E(R'), and then placing that edge on the active front to ensure
that there is a complete chain of directed edges in E. This is depicted in
Figure 5.7a.

For simplicity, the Infill pseudo-code assumes that fragments are con-
nected regions, although the definition on page 72 permits them to be dis-
joint groups of triangles. Our implementation handles this by associating
with every fragment a list which contains one triangle from each unconnected
component of that fragment. The “starting point” expansion then proceeds
by calling PerformEzpansion for each of these unconnected components.

The while...endwhile loop which completes the Infill routine expands
all of the triangles in F(R) which lie to the right of the active front. When
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Function: Infill :
In: R!: refinement operation whose fragment is to be “infilled”
" X: extracted operations list
In/ Out: M: current expanded mesh
E: current active front
begin
// check whether this fragment should be expanded completely
if 5N E(R') = 0 and children(R) N X = 0 then
// initiate the complete expansion of this fragment by expanding one
// triangle
let € be some directed edge of E(R?)
PerformEzpansion(€, F(RY), X, M, E)
// complete the chain of active front edges on this fragment
E:=Eu{e
endif
// expand all triangles outside the active front in this fragment
while 3¢ € E s.t. €€ E(R) do
let € be some directed edge s.t. €€ Eandée E(RY)
E=E\{&)
if 2.Sym € E then
// we have already expanded to the right of €, so merge the active front
// along this edge
E = E\{e.Sym}
else
// extract the triangle to the right of €
PerformEzpansion(€.Sym, F(RY), X, M, E)
endif
endwhile
end

Figure 5.6: The Infill routine.

an edge € is removed from the active front and its symmetric equivalent,
€.5ym, does not exist in the active front then the triangle to the right of € is
extracted, as in Figure 5.7b. Alternatively, if both of these edges existed in
the active front then we simply remove them as Figure 5.7¢ demonstrates.

This approach lends itself to an efficient implementation using the OpenGL
graphics library. The shaded set of triangles in Figure 5.7c indicates how our
implementation can make use of the OpenGL triangle fan construct. A tri-
angle fan in this sense is a set of triangles which share a common point, as
in Figure 5.8. If we can send the triangle data to the OpenGL pipeline as a
set of fans then the amount of vertex data which has to be processed can be
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(a) Starting the complete
expansion of a fragment.
The triangle to the left of
some edge € € E(RY) is
added to M and its bound-
ary edges (including €) are

(b) One edge of the active
front resulting from (a) is
now taken as edge €. This
edge is removed from E and
the triangle to its right is
added to M.

(c) I the process in (b)
continues for edges €1 ...€;
then a complete ring of tri-
angles would be extracted.
If we now operate on edge
€, its symmetric equivalent
will also be found on the ac-

placed on E.

5.1.2.2

tive front and so Eoth will
be removed from E.

Figure 5.7: The operation of the Infill routine.

reduced. This can be realised by modifying the Infill and PerformExztraction
routines presented here such that each edge which is taken from the active
front continues the current triangle fan if at all possible (we do this by always
adding €.Lnext to E in PerformEgziraction and treating Easa stack). In this
way, all triangle data can be sent in the form of triangle fans and a fan need
only be terminated when one is completed (as in Figure 5.7c), a fragment
boundary edge is encountered, or there is a discrete attribute change across

a triangle boundary (such as a colour change).

The PerformExpansion routine

If there is a triangle to the left of the given edge, €, in F(R?) then Perform-
Ezpansion expands that triangle by adding it to M and advancing the active
front to the triangle’s other edges, as Figure 5.7b illustrates. If there is no
triangle to the left of &, i.e. € is on the clockwise perimeter of the fragment
F(R?), then we replace € by its appropriate coarser versions as detailed in the
description of the Infill routine above and demonstrated in Figure 5.9. For
simplicity, the PerformEzpansion pseudo-code in Figure 5.10 assumes that
every edge in the Hypermesh has only one coarser version.
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Figure 5.8: A fan of triangles which can be sent to the OpenGL pipeline by
referencing only vertices vg. . . v4.

Figure 5.9: The coarser version of an edge, €, which lies on the boundary of
a fragment may be selected as the one on fragment B rather than
the version on fragment A because the operation whose fragment
is A is not a member of the extracted operations list, X.
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Function: PerformExpansion
In: & directed edge. If there is a triangle to the left of & in F(R?)
then it is expanded
F(R?): fragment which contains €
X: extracted operations list
In/ Out: M: current expanded mesh
E: current active front
begin
if there is no triangle to the left of € in F(R!) then
// find the closest coarser version of &€ which is on a fragment in X
&= coarser(€)
while fragment on which ¢ lies ¢ X do
¢ := coarser(E)
endwhile
// add this replacement edge to the active front
E := Eu{e.Sym}
else
// expand the triangle to the left of &
M:=MU {triangle to the left of & in F(R')}
// add the other edges of the expanded triangle to the active front
E := EU{é.Lnest, &.Lprev}
endif
end

Figure 5.10: The PerformEzpansion routine.

5.1.3 Algorithmic complexity

The complexity of the above algorithm is a combination of the costs of both
the refinement operation extraction and surface expansion steps.

A trivial upper bound on the cost of the former step is O(m), where m
is the number of refinement operations embedded in the CRMR and hence
is a factor which is introduced by the approximation process from which
the CRMR of a model was produced. The Delaunay approximation method
which is used by our implementation, for example, generates refinement op-
erations such that m ~ 1[V™|, where [V™| is the number of vertices in the
highest resolution triangulation of the input CRMR.

The complexity of the refinement operation extraction step can also be
viewed as ©(|X|) since |X| is the number of refinement operations extracted.

The cost of the other step — the surface expansion step — is ©(]M|) since it
expands exactly |M| triangles. Alternatively, this cost can also be regarded
as ©(|X|) since the triangulation M is generated by a traversal through | X|
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Figure 5.11: An example X list, showing a set of refinement fragments
R™ ... R™ (as fragments with solid outlines) which have been
extracted from a CRMR’s DAG.

extracted refinement operations and we can assume that there is a constant
upper bound on the number of triangles in each refinement fragment since,
by the nature of the CRMR generating process, each refinement operation
should be localised.

Hence the overall cost of the minimal surface SMR process is ©(]|X]).
Figures for | X| are detailed in the results chapter.

5.1.4 Proofs of expanded mesh properties
This section present proofs of the following theorems.
e An expanded selectively refined mesh satisfies the RCF.

e An expanded mesh represents the original model from which the given
CRMR was constructed.

e An expanded mesh is the smallest set of facets which can be expanded
from the given CRMR which both satisfies the RCF and represents the
original model.

o If the refinement fragments in a 2%—dimensional CRMR satisfy the De-
launay criterion then meshes expanded from that CRMR. will also sat-
isfy this criterion.

Lemma 5.1.1 An expanded selectively refined mesh M which has been
constructed from a list X is equivalent to a combination of the refinement
operations in this list.

Proof: We assume that we are given a list X which has been
produced according to the definition on page 94 and therefore
that X contains the refinement operations {R™, R™ ... R™}
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for some j s.t. 0 < j < m and my = 0. Figure 5.11 depicts an
example of such an X.

The Infill operation, according to our original definition on
page 96 is such that it “acts on a refinement operation from X,
R‘, and adds those triangles in R"’s fragment which are not ele-
ments of the pre-operation sets of fragments which have already
been added to M”.

Hence, remembering that the Infill operation is applied to a set
of refinement operations in finer to coarser order, we can state
the result of the Infill operation applied to the set X as:

Infll({R™,...,R™,R™}) = Infill({R™,...,R™})U
[F(R™)\ | .PreF(R"‘k)]
— F(R™)U ” (5.1)
[F(R™i-1)\ PreF (R™)| U
[F(Rm-2)\ | ]  PreF(R™)U

k={m;_1,m;}

[F(R™)\ | ] PreF(R™)]

1<k<;]

Also, each refinement operation R acting on M*~! is defined to
be the removal of the set of facets PreF(R?) and the insertion
of the replacement set F(R!). Therefore the set of refinement
operations in X can be written in the form:

——

M = RI(R-M...R™(R™(F(R™)))...)
— RI(RY(...R™(F(R™)U[F(R™)\PreF (R™)])...))
— F(R™)U (5.2)
[F(R™—)U
...
[[F(R™)U
[F(R™)U
[ (B™)\ PreF (R™)]
J\PreF (R™)]
I\ PreF (R™)]
] |
J\PreF (R™)]
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By inspection, Equations 5.1 and 5.2 are equivalent. Therefore we
have verified that a mesh created by the surface expansion step
is identical to that which would be produced by a combination of
refinement operations.

Theorem 5.1.1 All of the triangles in M satisfy the RCF, i.e. Vt € M

3R’ s.t. t € F(R') and R! is finer than the RCF (5.3)
or AR? s.t. t € PreF(R?) and R’ is completely finer than the RCF

Also, every triangle added to M is compatible with the existing expanded
mesh. Specifically, Vt € M

AR s.t. t € PreF(RY) (5.4)
or 3R s.t. t € PreF(R’) and R’ ¢ X and descendants(RI)NX =0

Proof: Assume we have a set X = {R™, ... R™} which meets
the minimal surface definition of X and that we wish to demon-
strate the above statements for M = Infill(X), as in the previous
proof.

Statements (5.3) and (5.4) are both true after Infill(R™) since
the definition of X ensures that descendants(R™) N X = () and
that R™ is finer than the RCF.

We assume that both of these statements hold for the mesh pro-
duced by Infil({R™,R™-1,... ,R™}) for some k: 0 < k < 7.

We must now prove that Infill({R™,..., R™-1}) satisfies state-
ments (5.3) and (5.4).

If no triangles were added to the currently-expanded mesh by the
addition of R™#-1 to the set upon which Infill performs, then the
statements obviously remain true.

Alternatively, if a triangle ¢ was added to the mesh during the
inductive step then the specification of the result of the Infill
operation in Lemma 5.1.1 above implies that

t ¢ PreF(R™)U...U PreF(R™)

and hence either children(R™-1) = () or t € PreF (R®) for some
R* ¢ X. In the former case, R™-1! must be finer than the RCF
and ¢t must be compatible with the triangles curren
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R® ¢ X=descendants(R*) N X = () and
ZRY € X : R*® € children(RY), RY is not finer than
the RCF and R® is not completely finer than the RCF
= R™k-1 ig finer than the RCF or
R? is completely finer than the RCF

Hence t satisfies the RCF and descendants(R®) N X = (). There-
fore ¢ has no spatial dependencies with any of the triangles al-
ready in the mesh and we can say that ¢ is compatible with the
currently-expanded mesh.

Theorem 5.1.2 A selectively refined mesh M is a representation of the
original model M from which the given CRMR was constructed.

Proof: Lemma 5.1.1 has shown that M is equivalent to a combi-
nation of the refinement operations in a given list X and therefore
M is a combination of M?, ..., M™, where these are the approx-
imations to M which are contained in the given CRMR.

Theorem 5.1.1 has, in addition, shown that this combination of
refinement operations is such that each addition of a triangle to
the current expanded mesh is compatible with that mesh.

Therefore, the iteration of Infill on list X from R™ to R° ensures
that a mesh which is representative of M is generated.

Theorem 5.1.3 M is the smallest triangle set which can be generated from
a combination of the refinement operations in a CRMR such that M is a
representation of the original model which satisfies the given RCF.

This theorem assumes that the fragments of R?,..., R™ are such that
|PreF(RY)| < |F(RY)| for 0 < 4 < m, i.e. that each refinement operation
introduces more points than it removes and its post-operation fragment is a
larger set of triangles than its pre-refinement set. Puppo [Pup96] terms this
the monotonicity condition.

Proof: Assume, as before, that we have constructed mesh M

as Infill(X) from a list X = {R™,...,R™} which meets the

previous definition of X.

Now assume that we can construct an alternative selectively re-
1 ——

fined mesh, M , which contains less triangles than M and still

satisfies the RCF. This implies that ﬁl is constructed from a list
X which omits one or more of the elements of X and replaces
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5.2

them with one or more alternative refinement operations from
the CRMR.

If X' omits a refinement operation R* from X where R' is a “start-
ing point” for surface expansion then R must be replaced by at

—
least one of its children in order to ensure that M s/aiilsﬁes the
RCF and the monotonicity condition implies that M cannot
therefore be smaller than M.

Alternatively, X’ may remove a refinement operation R/ from X
where RJ is not a “starting point” for expansion but is such that
one or more triangles of F(R?) are included in M. The minimal-
ity condition of refinement operations (Section 4.4.1), though,
implies that we cannot replace R’ by other operations which will
be compatible with the child operations of R/ and therefore a
complete mesh cannot be constructed.

Theorem 5.1.4 If SMR is performed for the 2%—dimensi0na1 case and the

fragments of the refinement operations, R°, .. ., R™ satisfy the Delaunay cri-

terion (Section 2.2.2.1) then the output mesh, M, also satisfies this criterion.
Proof: Following de Berg and Dobrint’s Delaunay-satisfiability
proof [dD95], we note that the vertices in each refinement frag-
ment R 1 < i < m, cannot have an influence, in terms of the
Delaunay criterion, outside that fragment. Hence when we add
triangles to the currently-expanded mesh during iterations of In-
fill, these triangles will not affect the Delaunay nature of the
mesh.

Reduced extraction SMR

This section describes a modified version of the above algorithm in which
the factor which governs the running-time of the process — the cost of the
refinement operation expansion step — is decreased. This modified process,
termed the reduced extraction method, is restricted to performing SMR. in
the “half-dimensional” cases introduced in Section 4.3.1, i.e. 13- and 23-
dimensions, etc. Also, the given RCF must be able to be represented (in
the 2%—D case) by a bivariate piecewise-continuous function which bisects
the input CRMR’s Hypermesh into those refinement operations which are,
and those which are not, completely finer than the RCF. Thus the object-
space resolution functions which were presented in Section 4.6.2 are generally
applicable to this method.

The key operation in the above algorithm is the detection of “starting
point” fragments around which an expanded mesh is “grown”. We can iden-
tify such refinement fragments without requiring that the ancestors of all of
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the corresponding refinement operations in X are also present in that list,
but only if we can make the above assumption regarding the RCF bisecting
the CRMR’s Hypermesh.

Removing this requirement from the refinement operation extraction pro-
cedure also means that the surface expansion step may be required to add
further operations to X in order to permit the generation of a complete mesh.
Another implication of this modification is that the test for whether a given
refinement fragment is a “starting point” for surface expansion must verify
that the fragment does not overlap with the currently expanded mesh and
hence we must perform a geometric domain intersection test — this is the
factor which limits this method to operating on “half-dimensional” cases.

The results presented in Chapter 7 demonstrate that this approach re-
duces the running-time of the refinement operation extraction step, which
is the major cost of the minimal surface algorithm, and that the increased
complexity in the surface expansion step does not impact on the overall im-
provement in the speed of the SMR. process. It should be noted, though, that
the mesh output by this algorithm has all of the attributes of one generated
by the previous method bar the minimality property. The asymptotic com-
plexity of the mesh generation process is not improved by this method and
therefore if the cost of rendering the output mesh is more significant than
the complexity of the SMR. process then the minimal surface algorithm may
be, overall, a more efficient approach to the selective refinement problem.

5.2.1 Algorithm

The reduced extraction selective refinement algorifhm proceeds in two stages,
as before, with the following modifications to the minimal surface algorithm.

e The modified refinement operation extraction process does not require
that all of the ancestors of each refinement operation in the extracted
operations’ list, X, are also in that list. We again construct X by
performing a partial traversal of the CRMR DAG, but now the traversal
terminates when:

ReX < i=0or (5.5)
(AR7 € X : R € children(RY), R’ is not finer than
the RCF and R is not completely finer than the RCF)

Less formally, this means that an operation R* € X iff R is the base
mesh or R is not completely finer than the RCF and also R* has a par-
ent which is in X and which is not finer than the RCF. Figures 5.12(a)
and (b) illustrate the effect of this modification.
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(a) The minimal surface algorithm’s
operation extraction step would add
the shaded fragments to list X to sat-
isfy the definition on page 94 for the
given RCF (dashed line).

(b) The reduced extraction algo-
rithm’s definition of X would only re-
quire these shaded fragments to be
added to the list.

(c) During the reduced extraction
algorithm’s surface expansion step,
other operations may have to be added
to the X shown in (b) in order to pro-
duce a complete mesh. The thick ar-
rows indicate the “cascading” flow of
the surface expansion operation.

Figure 5.12: A comparison of the operation of the minimal surface and reduced

extraction algorithms.
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Figure 5.13: A subgraph of a CRMR’s DAG, illustrating a case for which the
reduced expansion algorithm’s domain intersection test is nec-
essary. We assume that fragment B was not placed on list X
by the refinement operation extraction step and that fragment C
was. The surface expansion process then added the refinement
operation whose fragment is A onto list X; this fragment com-
pletely covers fragments B and C. If we merely checked whether
fragments’ children had been encountered, fragment C could be
expanded even though its domain had already been covered by
the triangles expanded from A.

e This reduced extraction of operations in X means that we must add
an extra condition to the step which identifies whether a fragment is a
“starting point” for surface expansion (step (1) in the surface expansion
process). In addition to checking that no edges of the fragment are on
the active front, we must verify that none of the descendants of R
have been encountered (i.e. not just that none of its children have
been encountered). Figure 5.13 illustrates a case which requires this
extra test to ensure that a valid mesh is extracted.

Performing this test for descendants (i.e. descendants(R') N X = ()
on every element of X could be a costly recursive procedure. Instead,
we implement the condition in two clauses: firstly, as before, a check
that none of the children of R’ have been encountered; and, secondly,
a geometric test to ensure that the domain of this fragment does not
intersect with the currently expanded mesh. The “domain”, D(F(R")),
of a fragment in the 1%— and 2%—dimensi0nal cases is the domain of
its projection on the 1- or 2-dimensional basis for the space in which
SMR is being performed (e.g. the domain of a terrain fragment is its
projection onto the xy-plane). This test cannot easily be extended to
non- “half-dimensional” cases.

Thus we phrase the descendants’ test as:

——

children(R) N X = () and D(F(R')) N D(M) =0

The first of these two clauses involves information which is immediately
available from a CRMR’s DAG and our experiments have shown that
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the second, more costly, clause is rarely invoked. This means that most
fragments which are potential “starting points” for surface expansion,
because none of the edges in the active front lie on these fragments, can
be dismissed immediately because one or more of their children have
already been encountered.

The domain intersection test can be performed in the 2%—dimensional
case by checking whether all of the boundary vertices of F'(R?) lie inside
the current domain of M using a simple method such as Surany’s point-
in-polygon test [Sur85].

e The new refinement operation extraction step produces a list which is
a subset of that produced by the minimal surface operation extraction
process. Let us call the list produced by the new extraction step X*.
This list is sufficient for step (1) of the surface expansion procedure
to identify the “starting points” for surface expansion but it will not
necessarily contain sufficient operations to permit a complete mesh to
be generated from their corresponding fragments.

We must therefore amend step (3) of the surface expansion process.

When a fragment boundary edge, €, is encountered and that edge has

at least one coarser version then these version(s) are added to the active
front and the operation R whose fragment contains those edges is
added to X* if R? is not already on the list (Figure 5.12c).

The impact of these modifications on the pseudo-code presented above
for the minimal surface algorithm is discussed in the next two sections.

5.2.1.1 Refinement operation extraction

The key difference between this algorithm and the minimal surface one is
that the ancestors of every operation added to the list X are not necessarily
also on that list. Therefore the new AddToList routine differs from the one
in Figure 5.2 in that we remove the loop which adds any parents of R* to X.

5.2.1.2 Surface expansion

The new Infill and PerformEzpansion routines both differ from those pre-
sented previously in that the list of extracted operations, X, is an “In/Out”
parameter rather than only an input (and we now term this parameter “X*”).

The only other change to the Infill routine given in Figure 5.6 is a modifi-
cation to the condition which identifies the surface expansion “starting point”
fragments. We add the geometric fragment domain test described above to
give the line

if ENE(R') = 0 and children(R)NX* = 0 and D(F(R))ND(M) = 0 then
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5.2.2

The operation of PerformFEzpansion diverges from the code given in Fig-
ure 5.10 in its selection of the coarser version(s) of a fragment’s boundary
edge € and also because it may have to add more operations to X*. The
resulting code is sufficiently different from the previous routine to warrant
its inclusion as Figure 5.14. Again note that we simplify the pseudo-code by
assuming that if € is a fragment boundary edge then it has one, and only
one, immediately coarser version.

Function: PerformExpansion
In: & directed edge. If there is a triangle to the left of € in F(R?)
then it is expanded
F(R?): fragment which contains &
In/Out: X*: extracted operations list
M: current expanded mesh
E: current active front
begin
if there is no triangle to the left of & in F(R?) then
// obtain the closest coarser version of €
C := coarser(€) ,
// place this replacement edge on the active front
E = EU{&Sym}
// add a refinement operation to X+ if necessary
if the refinement operation whose fragment contains ¢ is not in X* then
Xt := X* U{ refinement operation whose fragment contains ¢ }
endif
else
// expand the triangle to the left of €
M := M U {triangle to the left of & in F(R)}
// add the other edges of the expanded triangle to the active front
E=Eu {€.Lnext, € Lprev}
endif
end

Figure 5.14: The PerformEzpansion routine for the reduced extraction SMR
process.

Proofs of expanded mesh properties

This section presents proofs that a mesh generated by the reduced extraction
method is complete (Theorem 5.2.1), satisfies the RCF (Theorem 5.2.2) and
can satisfy the Delaunay criteria (Theorem 5.2.3).
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To simplify our terminology, we prove these mesh properties for the 2%—
dimensional case but the proofs also hold in other “half-dimensions”. We use
Q) to denote the 2-dimensional planar domain of the 2%—dimensional case.

Lemma 5.2.1 We can reduce the reduced extraction definition of X (Eq. 5.5)
to R € X <= i=0 or R is not completely finer than the RCF.

Proof: One implication of the above statement, R* € X = i =0
or R! is not completely finer than the RCF, follows automatically
from the definition (Eq. 5.5). We prove the reverse implication,
R! is not completely finer than the RCF or i = 0 = R’ € X, by
induction:

e Firstly, i = 0 = R' € X is true from the definition of X
trivially.

e Assume true for R?, for some 5,1 <j<m

e Require to prove that R7*! is not completely finer than the
RCF = Ri*! ¢ X.

R/*! is not completely finer than the RCF
= 3R* € parents(R/*1) s.t. RF is not finer than the RCF
= 3R* € X : R*! € children(R*) and
RF is not completely finer than the RCF, by assumption
= R/*1 € X from the definition of X

Lemma 5.2.2 Vp € Q, 3t € F(R') s.t. p € D(t) and ¢ is finer than the
RCF, where D(t) is the projection of ¢ onto Q and triangle ¢ is finer than the
RCF implies (as in Theorem 5.1.1):

R is finer than the RCF ‘
or JRI s.t. t € PreF(R?) and R’ is completely finer than the RCF

Thus the new specification of X ensures that for every point in the domain
there is a triangle which contains that point, is finer than the RCF and is in
the fragments of the members of X.

Proof: By Lemma 5.2.1, for every triangle ¢ in a fragment F(R?),
where R’ € X, such that ¢ is not finer than the RCF, we can find
another refinement operation in X with a higher birth resolution
which contains a refinement of the domain of ¢. The result follows
by induction and our assumption regarding the RCF bisecting the
Hypermesh.
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Lemma 5.2.3 Let K be the set of directed edges which are projections on
Q of the directed edges in the active front E. (Hence K represents the
projection on {2 of the boundary of the currently expanded mesh.) A loop
invariant of the surface expansion routine is:

e the directed edges in K form a set of one or more closed loops in €2
such that the domains of these closed loops are disjoint, and;

e for all of the edges in E, there is some ¢ € [0, 1] for which the edges are
e-alive. By this, we mean that each edge e of triangle ¢ on fragment
F(R?) is alive for the resolution interval [birthres', deathres(e)], where
deathres(e) = deathres(t), and that all of the resolution intervals of
the edges in E overlap at a particular €. This diverges from Cignoni’s
terminology [CPS95] due to our different scheme for handling edges
in a CRMR’s Hypermesh and hence we regard edges as being alive for
only a subset of the intervals in which their adjacent triangles are alive.

Proof: In the first call which we make to Infill(R?), R' is the
finest node in X*. Hence E N E(RY) = 0, children(R) N X+ =0
and D(F(R))) N D(M) = 0, so F(R) will be expanded com-
pletely. Once that has occurred, the parents of the bound-
ary edges of F(R!) will be the only elements in K and hence
D(K) = D(F(R")). Thus K will be a set of one or more closed
loops in Q. Also, V€ € E, deathres(€) = birthres', and so we can
say that the edges in E are e-alive for & = birthres'.

Assume the loop invariant in the above Lemma is true at some
stage during the expansion process — after performing Infill( R?),
say, for 0 < j < m.

Now we must prove that the loop invariant holds after the next
call to Infill, which will be made for the region R" where R" €
Xtand Al :r <l<jst. R € Xt. Note:

ENE[R)=0forj<s<m (5.6)

since either R® ¢ X%t or the set {€': e € E N E(R®)} will have
been emptied by a previous call to Infill( R®).

We first examine the case where E N E(RT) = 0, children(R") N

——~

Xt =0 and D(F(R")) N D(M) = 0. Before Infill(R"), we know
that:

max birthres(€) < birthres’
éE :

min deathres(€) > birthres”
écE
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due to Eq. 5.6, the fact that E N E(R") = () and the expansion
of refinement operations being in finest to coarsest order. As in
the first call to Infill, F/(R") will be expanded completely and
each edge, €, which is added to E will be such that deathres(€) =
birthres”. Hence we can say that Ve € E, € is e-alive for ¢ =
birthres” before the Infill( R™) call and that this remains true after
the call. Also, we have added to the mesh a fragment which was
previously disjoint from the region bounded by F and hence K
will remain a set of closed loops.

Now consider the case where ENE(R") # 0 on entry to Infill(R")
and R" is a starting point for expansion. At this point, we know
that:

max birthres(€) < birthres’
eck
min deathres(€) > birthres”
éck

Once the set {€: e € EN E(R")} has been emptied by the while
loop, the edges, €, which were added to E will have been such
that deathres(€) = birthres” and hence the edges of E will still be
e-alive. Also, the action of “infilling” this region will have added
the edges on the boundary of a set of disjoint triangles in F(R")
to K and hence K will remain a set of closed loops of directed
edges.

Corollary 5.2.1 After Infill(R') has been performed for i = 0, D(K) will
cover {).

Theorem 5.2.1 The triangles expanded by iterating Infill over X* form a
complete triangulation, M, of the domain, 2.

Proof: The PerformEzpansion routine expands triangles to the
left of the directed edges in E. Lemma 5.2.3 indicates that these
edges are e-alive throughout the expansion process and hence
triangles expanded adjacent to E will be compatible with (i.e. will
not overlap) the currently-expanded triangulation, M. Corollary
5.2.1 implies that the triangulation will cover Q on completion of
the iteration of Infill.

Corollary 5.2.2 t ¢ F(R!) is expanded by Infill(R?) iff D({) N D(M) = 0
i.e. a triangle is expanded iff no other triangles which overlap its domain
have already been expanded.
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Theorem 5.2.2 The expanded mesh satisfies the RCF throughout the do-
main, i.e.

Vpe Q,3t € Mst. pe D(t) and t € F(R') and either: (5.7)
R' is finer than the RCF :
or 3R/ s.t. t € PreF(R?) and R’ is completely finer than the RCF

Proof: We again use induction to prove this theorem, examining
the first call to Infill and then a later call to the same function,

and hence show that Eq. 5.7 is a loop invariant of the iteration
of Infill over X*.

On the first call to Infill, the finest refinement fragment in X+
is expanded completely. At this stage, X* = X and hence
Lemma 5.2.1 proves that Eq. 5.7 is true.

Assume that Eq. 5.7 is true at some stage during the expansion
process — after performing Infill(R?), say, for 0 < j < m.

Now we must prove that Eq. 5.7 holds after the next call to
Infill, which will be made for the refinement operation R" where
ReXtand Al:r<l<jst. ReXt

If R ¢ X then this is trivially true since, from Lemma 5.2.1,
such an R" must be completely finer than the RCF and hence
the addition of any of the triangles in F(R!) to M will not affect
Eq. 5.7.

If we assume R™ € X and that Infill(R") expands a triangle ¢
from F(R") which invalidates Eq. 5.7, i.e. either R" is not finer
than the RCF or t € PreF(R®) and R*® is not completely finer
than the RCF, then by Lemma 5.2.2, for all p € D(¢),
e F(R*): R* € X,r <u<m, st. p€ D(t)

and t satisfies the RCF (as in the statement of this theorem)

and hence, by Corollary 5.2.2, triangle  or a refinement of  would
already have been expanded and this contradicts our assumption
that ¢ is expanded by Infill(R").

Theorem 5.2.3 The minimal surface method’s theorem and proof regarding
the Delaunay criterion (Theorem 5.1.4) also holds for the reduced extraction
method.
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5.3

Summary

This chapter has presented two algorithms for producing a selectively refined
mesh from a given CRMR such that the output is guaranteed to satisfy
the resolution criteria specified in an RCF. The minimal surface algorithm
generates the selectively refined mesh which contains the smallest set of facets
which can represent the original model while satisfying the given RCF. The
alternative reduced extraction algorithm takes a more direct approach to
generating a selectively refined mesh and will not necessarily produce the
minimal mesh.
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6.1

Chapter 6

Geomorphing

The process of geometric morphing, or geomorphing, was introduced by
Chapter 4 as a subsidiary task within the SMR. framework. In this chapter
we view the geomorphing process as central to the framework if a selectively
refined mesh is to be animated without “popping” artifacts (Figure 6.1). We
describe an algorithm which performs geomorphing on a mesh generated by
the minimal surface selective refinement algorithm by smoothly adapting the
mesh on a fragment-by-fragment basis. In this way we can perform geometric
morphing on selectively refined meshes generated from any of the approxima-
tion methods identified previously if we are given a means to morph locally
between the pre- and post-refinement facets of a refinement operation.

We introduce our geomorphing technique and its particular prerequisites
in Sections 6.1 and 6.2. The geomorphing algorithm itself and proofs of the
result of this process are given in Sections 6.3 and 6.4.

Introduction

The resolution criteria in an RCF may change during an animated sequence
which contains a rendering of a selectively refined mesh produced by one
of the SMR algorithms from the previous chapter. If the RCF contains
view-dependent components, such as those described in Section 4.6.3, then
movement of the viewpoint will induce a change in the RCF. This may result
in different selectively refined meshes being produced for successive frames
and if these were displayed without modification then the resulting temporal
discontinuities would be distracting to the viewer. We therefore require a
method of smoothly geometrically morphing between two such meshes.

Any correspondence between the facets of meshes generated according to
two different RCF's is not immediately obvious. For example, Figure 6.2 de-
picts the triangles in a simple selectively refined terrain mesh which would be
affected by the movement of an Area Of Interest. The AOI peak in the RCF
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Figure 6.1: The geomorphing process can be regarded as central to our SMR
framework (cf. Figure 4.1).

~ has been moved towards the viewer between Figures 6.2(a) and (d) (in which
the expanded surface’s triangles are coloured according to the refinement
fragments of which they are part), with the result that the low-resolution
triangles in the foreground cannot satisfy the new RCF and hence some of
these have been replaced by higher resolution triangles. Figures 6.2(c) and (f)
highlight the triangles which have been geomorphed, and the retriangulation
into which they were morphed, due to the modification of the RCF.

We identify the correspondences between such meshes by considering the
differences between the lists of refinement operations from which the pre-
and post-morph meshes can be produced, i.e. the X lists of Chapter 5. Our
geomorphing process can operate on the X (or X*) lists generated by the
minimal surface and reduced extraction algorithms of the previous chapter,
although the optimality of the minimal surface algorithm makes it more
desirable for use in geomorphing.

The geomorphing algorithm operates by first coarsening an existing, pre-
morph mesh, and then refining the resulting mesh until it meets the new
resolution criteria. Thus its operation can be visualised as in Figure 6.3
where a list of refinement operations is viewed in the context of its CRMR’s
DAG. We visualise the coarsening phase as reducing a mesh down to one
which is generated by a set of refinement operations such that this set is the
common denominator of those in the pre- and post-morph X lists.

Note that our geomorphing process therefore coarsens a mesh during the
transition phase in such a way that it will not necessarily meet either the
pre- or post-morph RCFs. It would be trivial to reorder the coarsening and
refining phases so that these criteria were satisfied throughout the transi-
tion and hence a superset of refinement operations would be the interme-
diary stage. This is the approach which is taken by Hoppe’s geomorphing
method [Hop97b], which is specific to the Progressive Mesh representation.
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(a) Pre-morph RCF together (b) Pre-morph perspective (¢) Pre-morph plan view;
with the expanded triangles view of the expanded surface. the triangles which were re-
at their death resolutions in placed during the geomorph
resolution space. are highlighted.

(d) Post-morph RCF to- (e) Post-morph perspective (f) Post-morph plan view; the
gether with the new set of view of the new selectively re- triangles which were intro-
expanded triangles at their fined surface. duced during the geomorph
death resolutions. are highlighted.

Figure 6.2: Simple demonstration of the operation of a geomorph on a low-
resolution representation of the Mt St Helens dataset. The geo-

morph was necessitated by the movement of an object-space Area
Of Interest in the RCF.

We take the alternative approach because additional facets may have to be
introduced during the geomorphing phase to ensure a smooth traversal be-
tween two meshes and the computational savings associated with selective
refinement would be lost if an excessively complex mesh was displayed during
the geomorphing phase. Also, geomorphing takes place, by definition, when
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(a) The pre-morph list of
extracted operations, X, is
shown as solid refinement
fragments in the CRMR’s
DAG.

(b) The desired post-morph
X list which corresponds to
the list of refinement op-
erations which would have
been extracted if one of the
SMR algorithms had been
applied to the new RCF.

(c) During a geomorphing
transition, the original X
list is reduced to those re-
finement operations (drawn
as solid fragments) which
are common to both the

pre- and post-morph lists.

Figure 6.3: The modifications made to an extracted list of refinement opera-
tions during a geomorphing transition.

either an object or the viewer is moving and hence the viewer’s perception
of detail will be naturally reduced during the transition phase. Thus a lower
resolution mesh should be acceptable during this phase.

6.2 Requirements

This section details the minor modification which our geomorphing procedure
requires of the previous selective mesh generation algorithms and also the
local morphing routines which are prerequisites of the procedure. The local
morphing routine which we have developed for transitions between Delaunay
triangulations is described in detail.

The modification which we make to our selective mesh refinement algo-
rithms is that we maintain a list, C C X, of refinement operations whose
fragments have been completely extracted in the current selectively refined
mesh. C is initialized to an empty list at the start of the surface expansion
process and “starting point” refinement operations are added to it by the
Infill routine.

The two morphing routines which our geomorphing procedures requires
are denoted MorphCoarsen(R') and MorphRefine(R'). These are defined
as performing a smooth geometric transition between the post-refinement
facets of operation R' and the pre-refinement facets of R’, and the reverse,
respectively. We can only invoke these routines if all of the facets upon which
they operate exist in the current selectively refined mesh. This constraint
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governs our overall geomorphing strategy.

We associate MorphCoarsen and MorphRefine routines with a model’s
CRMR since their transitions between pre- and post-operation facets are
dependent on the approximation method used to generate such a CRMR. The
style of vertex introduction and removal which was utilised in the Progressive
Mesh approximation method (shown in Figure 2.26) permits simple local
transitions between pre- and post-refinement fragments. In general, though,
approximation methods provide no such correspondence between their pre-
and post-refinement fragments and hence a method such as Cohen-Or’s for
morphing between polygonal fragments could provide a non-specific basis for
MorphCoarsen/Refine. This technique was discussed in Section 3.2.1.2.

When implementing our geomorphing algorithm for a Delaunay-generated
CRMR, though, we found that Cohen-Or’s fragment morphing method was
not suitable because:

1. it requires every interior vertex of a fragment to be connected by an
edge to the exterior of that fragment;

2. the method cannot easily be extended to handle pre-refinement triangle
sets which contain interior vertices;

3. the morphing process proceeds in two phases and the latter of these is
itself a number of steps, where the number of steps is unbounded and
dependent on the complexity of the fragment being morphed.

As a result, we developed our own method of morphing between Delaunay
triangulations which proceeds in two (single-step) phases. The information
which this morphing method requires is described below and can be gathered
during the incremental generation of a Delaunay triangulation.

e One phase of our local geomorphing transition involves interpolating
between the location of a point and its originator. An originator point
is associated with each inserted point, where a point’s originator is
defined as one of the vertices of the triangle in which the point was
inserted.

e Information about any edge swapping which the Delaunay criterion
necessitates is also retained. Specifically, we note the projected point
where an edge and its swapped version intersect, taking into account
the fact that one of the endpoints of the swapped version may be moved
to the location of its originator when the swap is effected during geo-
morphing. We clarify this by demonstrating how we would perform a
simple coarsening geomorph in Figure 6.4. Here, edge e has swapping
information associated with it and this is used during the second phase
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6.3

A=A

V

[

Figure 6.4: A coarsening geomorph of the finest fragment in Figure 2.14 is
shown in an aerial view. Point P is initially moved to its originator,
(2, and then the effect of swapping one edge within its quadrilateral
is performed by splitting that quadrilaterial into four triangles and
morphing them into the coarser form of the region.

of the coarsening. The reverse of this operation, refining, can be per-
formed by invoking any swapping initially and then sliding points from
their originators to their intended positions.

This example also demonstrates that some of the edge swaps which were
performed during the creation of the Delaunay triangulation are not nec-
essarily performed during geomorphing. This is due to the fact that the
selection of the originators can reduce the amount of swapping which has to
be effected during geomorphing. For this reason, we choose the originator of
a point to be the vertex on its original surrounding triangle which is adjacent
to the greatest number of edges which were swapped due to the insertion of
that point.

A more complex refining geomorph is demonstrated in Figure 6.6. This
uses information which was extracted from the series of Delaunay point inser-
tions in Figure 6.5. The arrows in Figure 6.6¢ indicate that the geomorphing
transition introduces one point by linear interpolation from an originator
which is itself interpolated from its own originator. This is how we remove
Cohen-Or’s requirement to have interior points associated with ones on the
boundary of a fragment — our linear interpolation process can be recursive.

To conclude this section, we note that the discrete and scalar attributes
associated with the facets of a refinement fragment can be introduced during
geomorphing by interpolating them as Hoppe described for the Progressive
Mesh representation [Hop96.

Algorithm

Our geomorphing algorithm proceeds in the following two phases. Note that
both the list X of refinement operations extracted for the current mesh and
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Figure 6.5: The finer fragment in Figure 3.10 as generated by a series of point
insertions which satisfy the Delaunay criterion. Each new point is
denoted by a filled circle and its originator by an empty circle.

@_’@_ .ﬁ@
@ (b) ©) (@

Figure 6.6: The process by which the information from Figure 6.5 can be used
to smoothly refine the fragment. A single edge swap is effected
between (a) and (b) by treating the quadrilateral in which the
thick lines lie as four triangles and morphing appropriately in that
region. The interior points can then introduced smoothly as indi-
cated by the arrows in (c).
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the list C of operations which could potentially be coarsened must have been
created by a selective refinement algorithm or a previous geomorph.

1. Coarsening
We repeatedly identify refinement operations in X whose fragments
have been completely expanded in the current mesh and which are
unnecessary for the new RCF.

On each iteration, we traverse list C in order of decreasing resolution
until we find an operation R* € C which is completely finer than the
RCF. We then render the mesh by performing the surface expansion
part of the selective refinement algorithm and call MorphCoarsen(R)
when R is encountered during the expansion process. Once the visual
morph of this region has been completed, we can delete R from X so
that X now reflects the set of refinement operations from which the
displayed mesh originates. Note that the action of expanding a mesh
will have modified the list C' in preparation for the next iteration of
this coarsening step.

When no operations in C' are completely finer than the new RCF, X
contains the set of refinement operations which are common to both
the pre- and post-geomorph meshes. This is the intermediary point
indicated by Figure 6.3c.

2. Refining
We traverse the list of extracted operations, X, from its coarsest el-
ement to its finest in order to further extract some of the operations
from the CRMR and hence ensure the fragments of the operations in

X are sufficient to permit the expansion of a mesh which will satisfy
the new RCF.

If an operation R! € X is not finer than the RCF then we perform
a set of refining morphs which are compatible with the current mesh
and which result in all of the members of children(R’) which are not
completely finer than the RCF being members of X. Specifically, for
such a region R!, we create a set containing the elements of children(R?)
which are not completely finer than the RCF as well as the ancestors of
these operations which are not already in X. The fragments of this set
are then morphed into the current mesh by performing MorphRefine
on the elements of the set in order of increasing resolution.

The simplicity of this refining step is demonstrated by the following
pseudo-code. First, we determine the set, Y, of operations which must
be added to X in order to permit the expansion of a mesh which satisfies
the new RCF: ‘
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if R® is not finer than the RCF then
for each R’ € children(R?) do
if R7 is not completely finer than the RCF and R/ ¢ X then
AddToList(R?, Y)
endif
endfor
endif

Now we must add the fragments from the operations in Y to the existing
mesh in such a way that the additions are compatible with the current
mesh at all times:
while Y # ) do
remove R from Y where R* is the element of Y with lowest
birth resolution
X =X URF
~ expand mesh, calling MorphRefine(R* ) when RF is encountered
" endwhile

A degree of parallelisation can be introduced into the two phases of the
geomorphing process described above. Where these coarsening and refining
steps remove a single operation from a list (C in the former and Y in the
latter), we can permit a group of operations to be removed if there are no
dependencies between these operations. For the coarsening step, suitable
operations can be removed from C' until one is encountered which is a parent
of those which are already in the removed group. At this point, a mesh
can be generated and the appropriate local geomorphs can be performed in
parallel. Similarly, we can remove a group of elements from Y in the refining
step if each element of this group is such that none is a child of another in
the group.

If there is a requirement to perform a geomorph within a certain time
limit and parallelisation is not sufficient to meet this requirement then we
can enforce a maximum geomorphing period. This is defined to be the period
between the start of successive coarsening phases. To implement such a con-
straint, we start a timer when a coarsening phase is entered and only perform
each necessary coarsening or refining if there is sufficient time remaining in
the current geomorphing period. In addition, the refining phase is only en-
tered if the maximum geomorphing period has not been exceeded at that
point. This means that coarsenings are more likely to be performed during
a time-limited geomorph which naturally assists with reducing the current
geomorphing period since the complexity of the displayed approximation will
be progressively reduced if necessary.

Our implementation enforces a maximum geomorphing period while the
user is rotating a selectively refined mesh in our interactive application.
When movement of the model ceases, the maximum geomorphing period
is removed so that any pending coarsenings or refinings can be performed.
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Thus the detail in the selective refinement can “catch up” with the demands
imposed by the user.

6.4 Proofs of geomorphed mesh properties

We consider the effect of a geomorph on a list of extracted operations X which
has been generated by the minimal surface selective refinement algorithm.
We show that the coarsening step ensures that the list X satisfies some
“common denominator” RCF during the transition.

We assume that the refinement operation extraction step of the minimal
surface algorithm has been performed for an RCF, RCF,,,, and that the
geomorphing step is intended to transform the set of operations in X into
one from which a mesh can be expanded which will satisfy a modified RCF,
RCFeq-

Corollary 6.4.1 The above assumption implies that the operations which
are initially in X are such that they meet the definition given on page 94
with respect to RCFyy, i.e.

ReX <« i=0or
(AR € X : Rt € children(R?), B! is not finer than
RCF,, and R’ is not completely finer than RCFy)
or 3R ¢ X : R € ancestors(RF)

Theorem 6.4.1 The operations in X after the coarsening step are those
which could have been placed in X if the operation extraction step of the
selective refinement algorithm had been performed for a “common denomi-
nator” RCF, RCF,_4, where this is defined implicitly by:

e R'isfiner than RCF,; <= R'is finer than both RCF,y and RCF,.y;

e R'is completely finer than RCF,y; <= R is completely finer than
both RCF,; and RCF, .

Proof: We are setting out to verify that after the coarsening step
the operations in X satisfy:

ReX < i=0or (6.1)
(ARJ € X : R € children(R’), R? is not finer than
RCF,y and R is not completely finer than RCF,,)
or 3R* ¢ X : R € ancestors(R¥)
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We first prove that:

1=0or

(3R? € X : R* € children(R?), R is not finer than

RCF,; and R is not completely finer than RCF,,)
or AR* € X : R’ € ancestors(R¥) = Riec X

The coarsening step removes operations from X only if they have
been placed on list C' and are completely finer than RCF,.,,.
Hence only operations which are completely finer than RCF,4
will be removed from X and thus both

i=0=>RecX
and

AR’ € X : R' € children(R’), R? is not finer than RCF,, and
R is not completely finer than RCF,; = R € X

will remain true.

Also, the definition of the surface expansion “starting point” frag-
ments whose operations are placed on C implies that

VR, children(R))NX #0 = Ri ¢ C

and therefore the coarsening step will never remove an operation
which is an ancestor of another on X. Hence the statement IR* €
X : R € ancestors(R*) = R' € X will remain true.

The reverse implication of statement (6.1) can be proved by con-
tradiction. Assume that after the coarsening step an operation
R! exists in X which is not R® but is completely finer than RC F,4
and is such that ZR* € X : R' € ancestors(RF). This last point
means that R* would have been placed on list C before the coars-
ening step was invoked and, since our assumption implies that
R! is completely finer than RCF,,,,,, it would have been removed
from X by the coarsening step. This contradicts our assumption.

Therefore the refining step, which is effectively the minimal surface meth-
od’s refinement operation extraction step, acts on an existing list of opera-
tions which satisfy the properties identified in Section 5.1.4. Hence the result
of the geomorphing process is a list X which is identical to the one which
would have been produced if the post-morph RCF had been applied to the
selective refinement algorithm directly. It follows that the geomorphed mesh
satisfies the minimal surface properties. (Corresponding properties can be
demonstrated for a geomorph applied to a mesh produced by the reduced
extraction algorithm.)
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6.5

Summary

The task of geomorphing is closely linked to that of selective mesh refine-
ment. Geomorphing is necessary, for example, to ensure that a selectively re-
fined surface matches view-dependent resolution criteria during an animated
sequence which contains that surface. We have presented a geomorphing al-
gorithm which can smoothly modify an existing selectively refined mesh into
another which matches new resolution criterion. This algorithm maintains
our desire for independence from the underlying approximation method by
invoking simple local morphing routines.
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7.1.1

Chapter 7

Results

This chapter presents the results of applying the selective mesh refinement
and geomorphing algorithms to a selection of 2%— and 3- dimensional mod-
els. Section 7.1 describes the pre-processing which was performed to generate
CRMRs from these datasets. Section 7.2 then presents the selectively refined
meshes which were obtained by applying various RCFs to these CRMRs. Sec-
tion 7.3 presents the results of geomorphing these meshes due to changes in
the resolution criteria caused by traversing over the meshes. Finally, Sec-
tion 7.4 compares our results with those of contemporary papers.

CRMR generation

The following sections describe how both terrain datasets and three-dimens-
ional models were converted into Continuous Resolution Model Represen-
tations. A Delaunay triangulation approximating method was applied to
the terrain surfaces and Hoppe’s Progressive Mesh approximation technique
was applied to both classes of model. For comparison with other representa-

tions, Section 7.1.3 contains details of the space requirements of the resulting
CRMRs.

Delaunay CRMR generation

The Delaunay selector criterion which was described in Section 2.2.2.1 was
used to produce a CRMR for several terrain datasets obtained from the US
Geological Survey. Starting with a planar triangulation of each terrain’s do-
main, points were inserted in sequence in accordance with the selector crite-
rion. Each local retriangulation invoked by these point insertions was treated
as a refinement fragment and inserted into the corresponding CRMR’s Hyper-
mesh. Points were inserted in parallel when necessary to ensure that these
fragments were produced with monotonically increasing birth resolutions and
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hence that the approximation method could be treated as a directly compat-
ible method (as defined by Section 4.4.3.2). Thus we ensured that each
fragment added to the CRMR was in non-decreasing order of resolution, as
required by Section 4.4.

The replacement of triangles by higher resolution versions during each
point insertion in this process was monitored to obtain the CRMR’s DAG
which reflected the overlapping nature of the fragments in the corresponding
Hypermesh.

Statistics obtained during the production of our example CRMRs are
presented in Table 7.1. This indicates that approximately 4% of the original
datasets’ points were inserted into each approximation. Note also that the
resulting CRMRs had approximately half this number of refinement frag-
ments which implies that an average of two points were inserted in each step
of the approximation process.

Dataset Points in Highest resolution mesh, M™ Fragments
dataset | Points Triangles Render time(s) | in CRMR
Mt St Helens | 145360 | 6000 11863 0.24 3045
Emory Peak 160801 | 6000 11875 0.24 3303
Crater Lake 153765 | 6000 11845 0.20 3102
Honolulu 196024 | 6000 11893 0.26 3150

Table 7.1: Terrain datasets and generated CRMRs.

The CRMRs generated by producing approximations of the US Geological
Survey’s Mt St Helens, Emory Peak, Crater Lake and Honolulu datasets
in the manner described above are illustrated in Figure 7.1. This figure
shows the highest resolution meshes which could be obtained by applying
the surface expansion algorithm to the complete set of fragments in each
CRMR. As is the convention in this chapter, the boundaries of the view
frustum of the perspective scenes in this figure are drawn as yellow lines in
their corresponding plan views.

The time to render each of these high resolution terrain meshes is given
in Table 7.1. All of the timing results in this chapter were obtained on an
SGI Indigo? 175MHz R10000 Solid Impact with 64Mb RAM. Note that all
timings refer to the time required to display the filled triangles of a particular
mesh without rendering their wireframe outlines.

The CRMR Hypermesh and DAG which were produced during the ap-
proximation of the Mt St Helens dataset are shown explicitly in Figure 7.2.
The fragments of the Hypermesh have been coloured randomly and are po-
sitioned in resolution space at their birth resolutions in Figure 7.2a. Each
node of the DAG in Figure 7.2b is represented by a red sphere drawn at the
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(c) Crater Lake. (b) Emory Peak. (a) Mt St Helens.

(d) Honolulu.

Figure 7.1: The highest resolution meshes obtainable from our terrain CRMRs.
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centre of a triangle in the corresponding refinement fragment, positioned at
its birth resolution in resolution space, and the arcs of the DAG are drawn
as green lines. This demonstrates that the DAG is highly interconnected.

(a) Fragments of the Mt St Helens (b) Mt St Helens CRMR’s DAG
CRMR in resolution space. drawn in resolution space.

Figure 7.2: The Mt St Helens Delaunay-generated CRMR and DAG.

7.1.2 Progressive Mesh CRMR generation

The Progressive Mesh approximation technique (Section 2.3.4) was used to
produce CRMRs of several VRML models. This was performed primarily by
modifying Hoppe’s publicly-available code', which implemented his original
surface simplification and reconstruction techniques [HDD'93], to comply
with his later Progressive Mesh paper [Hop96, Hop97a].

A further conversion routine was required to produce CRMRs from the
Progressive Mesh representations which this code generated. This conversion
was necessary because the PM energy optimisation function is dependent on
terms other than geometric similarity and we wished to produce selective
refinements with respect to geometric resolution requirements. We therefore
reordered and/or coalesced the PM fragments as described in Section 4.4.3.3
to ensure that they were in monotonic order with respect to the Hausdorff
distance resolution metric.

The statistics of the base and highest resolution meshes obtainable from
the resulting CRMRs of several VRML models are detailed in Table 7.2.
These meshes are illustrated in Figure 7.3.

Table 7.2 also includes an entry for a CRMR of Mt St Helens which was
obtained via the Progressive Mesh approach. This CRMR was generated by
applying the Progressive Mesh approximation technique to the 6000 point

Thttp://www.cs.washington.edu /research/projects/grail2/www /software-data.html
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(c) Apple. (b) Cessna. (a) Sphere.

(d) Statue.

Figure 7.3: The base and highest resolution meshes obtainable from the
CRMRs of 3D models which were used in this chapter. The base
meshes are shown on the left; the highest resolution meshes (M™)
are drawn in the middle column with wireframe outlines and on
the right without.
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Model Base mesh, M" Highest resolution mesh, M™ | Fragments
Pts Tris Render time(s) | Pts  Tris Render time(s) | in CRMR
Sphere 26 49 0.01 1602 3200 0.10 1415
Cessna 314 586 0.02 3745 7446 0.28 2592
Apple 22 37 0.01 867 1704 0.06 710
Statue 21 40 0.01 2490 4976 0.16 2088
Mt St H. | 109 115 0.01 6000 11863 0.24 4148

Table 7.2: 3D models approximated using Progressive Meshes and converted
into CRMRs.

model of Mt St Helens depicted in Figure 7.1a. This CRMR contains sig-
nificantly more fragments than the corresponding Delaunay version which
reflects the fact that only one vertex is inserted by each standard PM frag-
ment (before coalescing).

7.1.3 CRMR space requirements

Although our CRMR format was not primarily designed for space efficiency,
the space required by the PM-generated CRMRs of our example models is
presented in Table 7.3 for comparison with some alternative representations
of these models.

This table gives the size of the VRML files from which these CRMRs
were derived, for both the VRML ASCII-format file and its gzipped version
(which is currently the only agreed standard for compressed VRML files).
The gzipped size of our own CRMR files is contained in the next column of
the table. Finally, an estimate of the size of the gzipped files which would
be generated by Hoppe’s implementation of his PM representation is given.
These last numbers were obtained by multiplying the number of points in
each dataset by 24.9 bytes, which is the average number of bytes per vertex
in the PM statistics presented by Hoppe in [Hop97b].

Firstly, note that the figures for the VRML sphere files appear anoma-
lous because the sphere is a basic primitive in VRML and hence it can be
represented by a single VRML node. All of the other models had to be rep-
resented by a number of “IndexedFaceSet” nodes, i.e. sets of vertices and
vertex indices.

The main conclusions which can be drawn from these statistics are that
the gzipped VRML files are almost always smaller than the PM representa-
tions and that these in turn are significantly smaller than our CRMRs. The
relatively small increase which a PM representation requires over its corre-
sponding VRML version is offset by the advantages which can be derived
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7.2

7.2.1

7.2.1.1

VRML
Dataset ASCII  Gazipped CRMR | PM
Sphere 140bytes 138bytes | 104K | 40K
Cessna 277K 71K 227K | 93K
Apple 122K 30K 52K 22K
Statue 159K 55K 298K | 62K
Mt St Helens 624K 121K 655K | 149K

Table 7.3: Comparison of the space required by alternative representations of

example datasets.

from the continuous resolution nature of a PM representation. The 2-4 times
increase which our CRMR format represents over its PM counterpart can be
accounted for by the fact that a CRMR makes no assumptions about the
approximation technique which was used to create its fragments and hence
has to represent each fragment completely.

Selective Mesh Refinement results

This section details the results of applying our selective mesh refinement al-
gorithms to the CRMRs described above. Specifically, we present the outputs
obtained by applying RCFs which were based on object-space and screen-
space terms to these CRMRs. Selective refinement of the Delaunay-based
CRMRs is considered in Section 7.2.1 and that of the Progressive Mesh
CRMRs in Section 7.2.2.

SMR of Delaunay CRMRs

Our consideration of the results obtained from selectively refining the exam-
ple Delaunay CRMRs is divided into the application of object-space RCF
functions (Section 7.2.1.1) and screen-space RCFs (Section 7.2.1.2).

Object-space RCFs

Section 4.6.2 described how suitable object-space functions could be applied
as RCFs to ensure that the critical features of terrain surfaces were retained
in selectively refined versions of the surfaces. This section uses object-space
RCF functions which were generated by a combination of manual and auto-
matic techniques to produce selectively refined terrain meshes. The particu-
lar features of each of the meshes in Figure 7.1 are considered in turn, with
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Mt St

Figure 7.4: Mt St Helens object-space RCF function used to generate Fig-
ure 7.5.

the aim of producing a selectively refined mesh which is appropriate to the
perspective views in that figure.

Helens The object-space RCF function which we applied to the Mt St
Helens CRMR was intended to highlight the crater in the centre of the dataset
as well as an area in the foreground of the perspective view. Figure 7.4 views
this function in resolution space. In resolution terms, this function can be
described as having a base level of 70%, a circular thresholded region in
the centre of the domain which rises to 95%, critical-line-detected elements
which rise a further 3% above this threshold and a Gaussian element in the
foreground which peaks at 99%.

The semi-circular nature of the crater can be observed in the elements
added by the critical line detection routine (Section 2.2.3). There is lit-
tle connectivity between these elements because we found that this level of
line-detection was sufficient for input to the SMR process without applying
Peucker and Douglas’ suggested methods for ensuring connectivity.

The output mesh obtained from the minimal surface SMR algorithm is
given in Figure 7.5a. Comparison with Figure 7.1a shows that the high tri-
angle density around the crater region has been maintained (in particular,
the details of the ridge line of the crater have been retained) while the den-
sity outside this region has been drastically reduced. Figure 7.5b shows the
triangles of the expanded surface in the same resolution space as the RCF
object-space function and hence we can verify visually that the refined surface
satisfies this function since all of the triangles lie above the RCF function.

The reduced triangle count of this selectively refined mesh is reflected in
the statistics of this mesh in the first two rows of Table 7.4. The columns of
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(a) Mesh generated by the minimal surface algorithm ac- (b) Triangles of (a) drawn

cording to the object-space function of Figure 7.4 and with at their death resolutions

frustum and back-face culling enabled in the RCF. together with the object-
space RCF function from
Figure 7.4.

(c) Mesh generated by the reduced extraction algorithm (d) Triangles of (c¢) drawn

according to the object-space function of Figure 7.4 and at their death resolutions to-

with frustum and back-face culling enabled in the RCF. gether with the object-space
RCF function.

Figure 7.5: The minimal surface algorithm applied to the Mt St Helens CRMR
of Figure 7.2 and the object-space RCF function of Figure 7.4
generated the top row of images; the reduced extraction algorithm
generated the corresponding bottom row.
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this table are:

e the number of extracted refinement operations, | X|;

e the number of extracted refinement operations after surface expansion
for the reduced extraction case, | X*|;

e the time to extract the elements of list X;
e the number of triangles in the expanded surface, |F1

e the average number of triangles per triangle fan in the expanded sur-
face;

e the time to traverse and render the expanded surface, and;

the total time to extract and expand the surface.

The second row of the table indicates that no benefit was gained from
applying the frustum and back-face culling RCF tests to the Mt St Helens
scene since the resolution of that selectively refined mesh was already low
outside the view frustum. The resulting minimal surfaces, though, could be
rendered in 0.03s and the combined extraction and expansion time was less
than that required to render the highest resolution surface in the CRMR.

The “triangles/fan” column in Table 7.4 shows that the surface expansion
of a selectively refined mesh produced from a Delaunay-generated CRMR
gives a consistent average of 1.3 triangles per triangle fan. This represents a
significant saving over specifying each triangle individually, but the relatively
low value reflects the fact that neither the refinement fragments generated by
Delaunay triangulation nor the surface expansion procedure are particularly
suited to the application of triangle fans.

The reduced extraction algorithm produced a selectively refined mesh of
Mt St Helens which was perceptually similar to that produced by the minimal
surface algorithm for the same object-space RCF function (Figure 7.5¢). The
results in Table 7.4 show that the algorithm performed as expected, i.e. the
number of refinement operations extracted was initially lower than for the
minimal surface algorithm and this situation was reversed after the surface
was expanded. As a result, the number of triangles in the expanded surface
was higher than for the minimal surface algorithm but the extra cost of
rendering these triangles had no impact on the overall time saving.

Emory Peak A similar object-space RCF function was applied to the Emory Peak

CRMR, with a Gaussian Area Of Interest around the viewpoint and a circular
thresholded Area Of Interest in the centre of the view frustum (Figure 7.6¢).
The top row of Figure 7.6 presents the output of the minimal surface al-
gorithm applied to this object-space function with frustum and back-face
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CRMR Ref. op. extraction Surface expansion Total
Algorithm |X| |X*| Time(s) | |F| Triangles/fan Time(s) | time(s)
Mt St Helens
M.S., culling 462 - 0.20 1708 1.35 0.03 0.23
M.S., no culling | 462 - 0.20 1708 1.35 0.03 0.23
R.E., culling 236 541 0.15 2235 1.36 0.04 0.19
Emory Peak
M.S., culling 1052 - 0.22 3744 1.32 0.08 0.30
M.S., no culling | 1184 - 0.28 4115 1.30 0.09 0.37
R.E., culling 801 1309 0.19 4781 1.32 0.09 0.28
Crater Lake
M.S., culling 2256 - 0.54 7189 1.28 0.18 0.72
M.S., no culling | 2265 - 0.54 7206 1.28 0.17 0.71
R.E., culling 2006 2335 0.42 7503 1.28 0.24 0.66
Honolulu
M.S., culling 2336 - 0.43 8207 1.31 0.21 0.64
M.S., no culling | 2396 - 0.43 8343 1.30 0.21 0.64
R.E., culling 2099 2434 0.39 8620 1.31 0.27 0.66

Table 7.4: Results of applying the minimal surface (M.S.) and reduced extrac-
tion (R.E.) algorithms to the Delaunay CRMRs with object-space
RCF functions.
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culling enabled. As Figure 7.6b demonstrates, this means that culled tri-
angles may lie beneath the object-space RCF function in resolution space if
they are not required to satisfy that function. Figures 7.6(d) and (e) present
the mesh which was generated when culling was disabled.

(a) Mesh generated with frustum and back-face culling (b) Triangles of (a) drawn

enabled in the RCF. at their death resolutions to-
gether with the object-space
RCF function of (c).

(c) Object-space RCF func-  (d) Mesh generated without (e) Triangles of (d) drawn

tion. frustum or back-face culling. at their death resolutions to-
gether with the object-space
RCF function.

Figure 7.6: Meshes output when the minimal surface algorithm was applied to
the Emory Peak CRMR and an object-space RCF function. The
top row shows the output generated when frustum and back-face
culling was applied; this was disabled to generate (d) and (e).

The figures in Table 7.4 for the Emory Peak CRMR are similar to those
of the Mt St Helens example, although the overall time for extraction and ex-
pansion was not lower than the time to render the CRMR’s highest resolution
mesh in this case.
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Crater

Lake An RCF object-space function which was generated solely by our
critical line detection routine was applied to the Crater Lake CRMR. This
function is shown in Figure 7.7b and represents a base resolution level of 90%
together with critical-line-detected elements which rise 8% above that base.
The planar “crater” area is clearly specified in this function as being of low
importance.

(a) Mesh generated with frustum and back-face culling in ~ (b) Object-space RCF func-
the RCF. tion.

Figure 7.7: Mesh output when the minimal surface algorithm was applied to
the Crater Lake CRMR and the object-space RCF function in (b).

The output from the minimal surface algorithm applied to this RCF func-
tion with culling enabled is given in Figure 7.7a. This mesh is very similar
to the high resolution version in Figure 7.1c, although areas in which large
triangles are present can be observed to contain less detail. Table 7.4 also
demonstrates that this selectively refined mesh contains a larger proportion
of the high resolution version’s triangles than in the previous examples. The
time to render this expanded surface is correspondingly higher, although less
than the time required to render the highest resolution mesh.

Honolulu A thresholded Area Of Interest augmented by critical-line-detected ele-

ments was used as the object-space RCF function for the Honolulu CRMR.
Figure 7.8b illustrates that the valleys in this dataset are visible between
the critical line elements in the object-space function. This RCF produced
the surface illustrated in Figure 7.8a when applied via the minimal surface
algorithm.

In this case, the time to perform surface expansion under the reduced
extraction scheme was longer than the time to display the highest resolution
mesh. This was caused by the severe “step” in the RCF object-space function
leading to a large number of refinement operations being added to the list
Xt during the surface expansion phase.




146

Results

(a) Mesh generated with frustum and back-face culling in ~ (b) Object-space RCF func-
the RCF. tion.

Figure 7.8: Mesh output when the minimal surface algorithm was applied to

the Honolulu CRMR and the object-space RCF function in (b).

7.2.1.2 Screen-space RCF's

This section presents images and timings obtained from applying screen-space
RCFs to the terrain CRMRs using the minimal surface algorithm.

Figure 7.9 illustrates two meshes which were obtained from the Mt St
Helens CRMR for a typical screen-space RCF which combined a particular
screen-space tolerance with frustum and back-face culling. (Recall from Sec-
tion 4.6.3 that the tolerances are expressed as percentages of the viewport’s
width.) The effect of this RCF is particularly noticeable in Figure 7.9d,
where a low screen-space tolerance ensured that the triangle density inside
the view frustum was high while the frustum-culling component reduced the
density outside the viewspace. The statistics associated with these meshes
are presented in the first two rows of Table 7.5. Note that this table (and its
successors in the remainder of this chapter) differs from Table 7.4 in that the
column labelled | X" | has been omitted since the reduced extraction algorithm
is not compatible with a screen-space RCF (Section 5.2).

All of the entries in this table demonstrate that the triangle count and
computational cost of a selectively refined mesh is inversely proportional to
its screen-space tolerance. Thus the cost of displaying a scene is directly
proportional to its quality. In all of the example cases, the selectively refined
surfaces were rendered more quickly than their highest resolution versions
from Figure 7.1 (although the combined extraction and expansion times were
longer).

Section 4.6.3 discussed how a screen-space Area Of Interest could be
implemented using a variable screen-space tolerance. Figure 7.10 presents an
example of a screen-space AOI for the Mt St Helens CRMR. In this case, the
tolerance used in determining whether a fragment satisfies the screen-space
RCF is reduced to 0% when the fragment’s bounding sphere intersects with
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(a) 0.033% screen-space tolerance.  (b) Plan view of (a). 3

(c) 0.010% screen-space tolerance.  (d) Plan view of (c).

Figure 7.9: Mt St Helens selectively refined according to screen-space RCFs.
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(a) 0.033% screen-space tolerance (b) Plan view of (a).
outside the yellow box and 0% tol-
erance inside (3537 triangles).

Figure 7.10: Refinement with respect to a screen-space Area Of Interest.




148 Results

CRMR Ref. op. extraction Surface expansion Total
Tolerance | |X| Time(s) |F|  Triangles/fan Time(s) | time(s)
Mt St Helens
0.033% 899 0.23 3117 1.32 0.06 0.29
0.010% 2746 0.53 9218 1.29 0.21 0.74
Emory Peak
0.033% 1154 0.24 3989 1.29 0.09 0.33
0.010% 1962 0.32 6648 1.30 0.18 0.50
Crater Lake
0.033% 642 0.18 1952 1.26 0.04 0.22
0.010% 3145 0.65 9735 1.27 0.24 0.89
Honolulu
0.033% 1516 0.33 5304 1.30 0.12 0.45
0.010% 3213 0.60 10947 1.29 0.26 0.86

Table 7.5: Results of applying the minimal surface algorithm to the Delaunay
CRMRs with screen-space RCFs.

the view-space projection of the AOI. The increased triangle density in this
region is apparent in both the perspective and plan views (cf. Figure 7.9a,b).

Figure 7.11 presents two further meshes produced using screen-space
RCFs (with frustum and back-face culling), this time applied to the Emory
Peak CRMR. The perspective views in particular demonstrate how varying
the screen-space tolerance can affect the size of triangles throughout a scene.

To assess what contribution each of the individual components of a screen-
space RCF made to the triangle-count of a selectively refined mesh, the
components of the RCF which was used to generate Figures 7.11(a) and (b)
were applied separately to the Emory Peak CRMR. The resulting selectively
refined meshes are presented in Figure 7.12 together with the number of
triangles in each mesh.

The first point which these plan views demonstrate is that the back-face
culling RCF component did not make a significant impact on the highest
resolution mesh’s triangle count of 11875. This was not unexpected since the
nature of this terrain surface, combined with the elevation of the viewpoint,
implied that few polygons were eligible for back-face culling in this scene.
Secondly, both the frustum culling and screen-space tolerance RCF compo-
nents produced meshes which had markedly fewer triangles than the highest
resolution mesh but it was only when all three components were combined
that a major reduction in triangles was obtained.
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(a) 0.033% tolerance.

(c) 0.010% tolerance. (d) Plan view of (c).

Figure 7.11: Emory Peak selectively refined according to two screen-space tol-
erances.

(a) Frustum culling only (b) Back-face culling only (c) 0.033% screen-space tol-
(6713 triangles). (11845 triangles). erance only (7027 triangles).

Figure 7.12: Emory Peak selectively refined according to the individual com-
ponents of the screen-space RCF used in Figure 7.11(a).
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7.2.2 SMR of Progressive Mesh CRMRs

As for the Delaunay-generated CRMRs, we consider first the application of
object-space RCF functions to our example Progressive Mesh CRMRs (Sec-
tion 7.2.2.1) and then the results obtained by applying screen-space RCFs
(Section 7.2.2.2). All of the results in this section were obtained using the
minimal surface algorithm.

7.2.2.1 Object-space RCFs

This section presents two demonstrations of the “volumes of significance”
which Section 4.6.2 suggested could be used to specify regions of interest for
three-dimensional models.

The yellow wireframe spheres in Figure 7.13a indicate the extent of two
volumes of significance. These are spheres which are centred at points diamet-
rically opposed to each other on the sphere model’s CRMR and which have
radii equal to (0.997 x geometric error in the sphere CRMR’s base mesh).
The resulting selectively refined mesh shows that the two sides of the sphere
have been highly refined while a band of triangles on the centreline is clearly
at a lower resolution.

(a) Mesh selectively refined with (b) Fragments of (a) drawn at
respect to the two object-space their death resolutions in resolu-
volumes of significance shown. tion space.

Figure 7.13: An object-space RCF applied to the sphere CRMR.

Figure 7.13b shows the same selectively refined mesh with each fragment
drawn at its death resolution in the three-dimensional resolution space de-
scribed in Section 4.6.2. The viewpoint of this scene is the same as that of
Figure 7.13a and hence we can see that the volumes of significance are com-
pletely enclosed by the selectively refined fragments and thus that the output
mesh satisfies the object-space RCF. Although the smaller and larger trian-
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gles in this image have different birth resolutions, the gaps between these
triangles in their projected positions are too small to be visible.

The top row of Table 7.6 gives the statistics for this SMR example. While
the resulting mesh has a suitably reduced rendering time compared to its
highest resolution version, the refinement operation extraction process is
computationally expensive due to the three-dimensional geometric object-
space RCF test.

CRMR Ref. op. extraction ) Surface expansion Total
X Time(s) |F|  Triangles/fan Time(s) | time(s)

Sphere | 1039 0.73 2312 1.38 0.08 0.81

Cessna | 1897 1.21 5798 1.42 0.21 1.42

Table 7.6: Results of applying the minimal surface algorithm to two Progres-
sive Mesh CRMRs with object-space RCFs.

Table 7.6 also presents results for the application of an object-space RCF
to the Cessna CRMR and the extraction cost for this example is similarly
high. The volumes of significance in this case were defined to completely
enclose the regions of interest in the model, rather than to lie inside the frag-
ments of the CRMR in its resolution space, and hence ensured that certain
parts of the CRMR were completely expanded. Figure 7.14a shows the four
volumes of significance centred on the propellors, the nose and tail. This im-
age demonstrates that these areas of the model were refined to a high degree
while the main fuselage was retained at a much lower resolution.

Figure 7.14b shows that these volumes of significance lie outside the ex-
panded fragments at their death resolutions. Although the projection of the
vertices along their “current normals” is not particularly noticeable in this
diagram, the propellor blades can be observed to be enlarged.

7.2.2.2 Screen-space RCF's

In this section we present the results of applying various screen-space RCFs
to the Progressive Mesh CRMRs using the minimal surface algorithm.
Figure 7.15 presents selectively refined versions of the sphere CRMR. Fig-
ure 7.15a shows a selectively refined mesh which was obtained using a screen-
space tolerance of 0.01%, together with frustum and back-face culling. This
mesh is perceptually very similar to its CRMR’s highest resolution version
in Figure 7.3a while containing approximately half the number of triangles.
Note that the triangles directly in front of the viewpoint are at a lower
resolution than their surrounding facets because these triangles are almost
perpendicular to the viewer and hence the screen-space RCF test described
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(a) Mesh selectively refined with respect (b) Fragments of (a) drawn at their death
to the four object-space volumes of signif- resolutions in resolution space.
icance shown.

Figure 7.14: An object-space RCF applied to the Cessna.

on page 91 reduces the resolution required in that region. The plan view
of Figure 7.15b demonstrates that the back-face culling component of the
screen-space RCF has reduced the resolution at the back of the sphere. The
final image in this top row shows the selectively refined mesh from the same
viewpoint as (a) with the refinement fragments coloured randomly to illus-
trate the fact that the surface was constructed as a combination of a large
number of fragments.

Figure 7.15d shows the effect of moving the viewpoint away from the
selectively refined mesh of (a) while using the same RCF. The screen-space
tolerance component of the RCF permits the triangle count to be reduced
markedly as the model recedes into the distance.

The individual components of this RCF are demonstrated separately in
Figures 7.15(e), (f) and (g), in a similar manner to Figure 7.12.

Table 7.7 details the statistics for the selective refinement depicted in
Figure 7.15a together with other meshes obtained using alternative screen-
space tolerances for the other Progressive Mesh-generated CRMRs. In all
cases, the refinement operation extraction time is significantly faster than
that for the object-space RCF examples. Also, the expansion and rendering
time for the expanded surfaces is always faster than for the corresponding
highest resolution versions.

The compromise between image quality and mesh generation/rendering
time is apparent in this table, as it was for the selective refinement results of
the Delaunay CRMRs.

Figure 7.16 presents the Cessna selective mesh refinement results of Ta-
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(a) Mesh selectively refined with 0.01% screen- (b) Plan view of (a). (c) Fragments of mesh
space tolerance. in (a) coloured individ-
ually.

(d) A sequence of images produced using the same RCF as (a) while
moving the viewpoint away from the model. Meshes contain 1612,
1292 and 712 triangles respectively.

(e) Mesh selectively refined using only frustum (f) Mesh produced (g) Mesh selectively re-

culling with respect to the frustum on the left using  only back- fined using only 0.01%

(1826 triangles). The image on the right gives face culling, viewed screen-space tolerance

an overview of this scene and its frustum. from the back (2800 constraint (2124 trian-
triangles). gles).

Figure 7.15: Selective refinement using screen-space RCFs on the sphere
CRMR. The top and middle rows present the results of applying
a standard screen-space RCF with frustum and back-face culling
enabled. The individual components of this RCF were used sep-
arately to produce the bottom images.
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CRMR Ref. op. extraction Surface expansion Total

Tolerance | |X| Time(s) |F|  Triangles/fan Time(s) | time(s)
Sphere

0.010% 794 0.08 1730 1.41 0.05 0.13

0.005% 873 0.09 1894 1.42 0.06 0.15
Cessna

0.010% 333 0.05 1384 1.53 0.04 0.09

0.001% 1865 0.32 5634 1.44 0.20 0.52
Apple

0.500% 341 0.03 892 1.49 0.03 0.06

0.010% 544 0.05 1325 1.45 0.04 0.09
Statue

0.010% 751 0.11 2052 1.49 0.06 0.17

0.001% 1859 0.32 4490 1.44 0.15 0.47
Mt St Helens

0.033% 1208 0.23 3595 1.54 0.09 0.32

0.010% 2583 0.61 7945 1.48 0.23 0.84

Table 7.7: Results of applying the minimal surface algorithm to the Progres-
sive Mesh CRMRs with screen-space RCFs.
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ble 7.7 in pictorial form. This CRMR is significant in that its base mesh is
a set of unconnected manifolds and hence it makes use of the ability of our
refinement operations to “spawn” separate simplicial meshes (as described in
Section 4.4.1). The lack of connectivity in the base mesh and the selectively

refined versions of the CRMR is particularly visible around the propellor
blades.

(a) Mesh selectively refined with 0.01% screen-space tolerance.

(b) Mesh selectively refined with 0.001% screen-space tolerance.

Figure 7.16: Cessna selectively refined with two screen-space tolerances.

Figures 7.17(a) and (b) show a standard 0.5% screen-space tolerance RCF
applied to the apple CRMR. This was augmented by a screen-space Area Of
Interest in the mesh shown in (c); the screen-space tolerance inside the yellow
box was 0%. As can be seen, this caused the region of the selectively refined
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mesh which projected into the AOI’s box to be represented by triangles from
the highest resolution mesh.

) Mesh selectively refined with 0.5% screen- (b) Reverse view of (a (c) Screen-space AOI
spa(‘e tolerance. (950 triangles).

Figure 7.17: Apple selectively refined according to one screen-space tolerance
and also using a screen-space Area Of Interest.

Figure 7.18 shows a selectively refined version of the statue CRMR. Of
particular note here is that the version without wireframe lines is visually
very similar to that in Figure 7.3d even though the selectively refined version
contains only 37% of the original triangles. The reduction in detail was
particularly drastic on the reverse side of the model in this case.

(a) Mesh selectively refined with 0.001% screen-space tol-  (b) Reverse view of (a).
erance.

Figure 7.18: Statue selectively refined using a screen-space RCF.

Our final example of screen-space RCFs applied to Progressive Mesh
CRMRs is on the Mt St Helens PM CRMR. Figure 7.19 presents exam-
ples of selectively refined meshes generated by two different screen-space
tolerances. In comparison with the meshes generated from the Delaunay
CRMR in Figure 7.9, the PM versions have more evenly-distributed points
and smoother surfaces. This is due to the PM energy optimisation tech-
nique repelling points on the mesh during the PM approximation process.
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The statistics from these related selectively refined meshes (Tables 7.5 and
7.7) are remarkably similar, although the PM 0.01% tolerance mesh contains
more fragments and triangles than its Delaunay equivalent.

(a) Mesh selectively refined with
0.033% screen-space tolerance.

(c) Mesh selectively refined with  (d) Plan view of (c).
0.010% screen-space tolerance.

Figure 7.19: Screen-space selective refinements of a CRMR produced using the
Progressive Mesh approximating technique applied to the Mt St
Helens dataset (cf. Figure 7.9).

7.3 Geomorphing results

This section presents geomorphing results obtained by moving the viewpoint
while viewing meshes which were selectively refined according to screen-space
RCFs.

We first examine a traversal over the Mt St Helens Delaunay-generated
CRMR. The starting point for this traversal was the scene in Figure 7.9a,
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Figure 7.20: Selectively refined mesh of the Mt St Helens CRMR at the end
point of the geomorphing traversal with 0.033% screen-space tol-
erance and no time limit on the geomorphing.

with a 0.033% screen-space RCF applied to the Mt St Helens CRMR. The
viewpoint was then stepped forwards along the current view direction until
the scene shown in Figure 7.20 was reached.

The numerical results obtained during this traversal are shown in the
graphs on the top row of Figure 7.21. The numbers of refinement operation
refinings and coarsenings which were pending during each frame are graphed
in Figure 7.21a, where the number of refinings pending is on the positive axis
and the number of coarsenings on the negative. The oscillating pattern of this
graph reflects the nature of the geomorphing algorithm described in Chap-
ter 6. That is, a sequence of coarsenings was applied, the next set of refinings
was determined and applied, and then the whole process was repeated. Each
refining and coarsening was performed by our own MorphCoarsen() and Mor-
phRefine() operations, which required several frames to complete each local
morph and thus each “bar” of this graph is more than one frame in width. It
was frequently possible, though, to perform a number of these local morphs
in parallel or to discard coarsenings and refinings due to frustum culling and
hence the number of these operations which were pending could be reduced
by more than a single element on many occasions (notably immediately after
frame 150).

The number of triangles in the selectively refined meshes which resulted
from the Mt St Helens traversal is given in Figure 7.21b. This illustrates that
the triangle count was decreased at almost every frame during the traversal.
By implication, this means that the effect of reducing the area of the mesh
inside the view frustum was greater than the requirement to ensure that the
screen-space tolerance criterion was met.

Figure 7.21c graphs the total time per frame of this traversal, together
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Figure 7.21: Geomorphing results during two traversals over the Mt St Helens

CRMR, the second one restricted by a maximum geomorphing

period of 0.1s.
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7.4

with a line indicating a rendering time which would permit 10 frames/sec
for comparison. This shows that the time to display each selectively refined
mesh was around 0.06s but that the additional time which was required to
determine whether any refinings had to be invoked frequently raised the total
time per frame to above 0.15s.

To demonstrate how our geomorphing process could avoid these frequent
excessive frame times, the same traversal was also performed with a con-
straining maximum geomorphing period of 0.1s (Section 6.3). The results of
this traversal are graphed in Figures 7.21(d)-(f). Firstly, note that the ge-
omorphing during this traversal was almost entirely limited to coarsenings.
This is because the refining process is only initiated if there is sufficient time
remaining after any coarsenings have been performed in the current geomor-
phing period. The only occasions on which this was permitted are visible as
the peaks in Figure 7.21f above 0.1s. As a result, the number of triangles in
the resulting meshes was significantly less than those produced during the
unconstrained geomorph and this assisted in reducing the overall time per
frame.

The results of two further geomorphing traversals are given in Figure 7.22.
These traversals were performed on the sphere CRMR and involved moving
the viewer closer to the model. The start and end points of the traversal
are illustrated in the right and left images of Figure 7.15d respectively. The
traversals were performed with screen-space tolerances of 0.01% and 0.005%.
The coarsenings/refinings graphs of these traversals are noteworthy for their
“saw-tooth” nature which reflects the smooth introduction of sets of refine-
ment operations by a series of refinings. Also, the tall thin bars in these
graphs indicate sets of refinement operations which had to be added to the
current selectively refined mesh but which were back-face culled and hence
did not require to be morphed into position. The other graphs of both traver-
sals are closely related: the triangle count increases markedly in both cases
and the time per frame is almost always lower than 0.1s.

The significant result which can be drawn from this section is that every
set of local morphs which were necessitated by a movement of the view-
point was a small percentage (less than 5%) of the number of refinement
operations in the currently expanded mesh at that time. Thus geomorphing
selectively refined meshes in the manner described in Chapter 7 is possible
within reasonable time constraints.

Comparison of results
This section examines our timing results in relation to the few other compa-

rable results in contemporary papers.
Xia and Varshney [XV96] presented the results of their Progressive Mesh-
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Figure 7.22: Geomorphing results during two traversals over the sphere CRMR

with differing screen-space tolerances.
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style selective refinement approach for a number of datasets. Most of these
are larger than the ones with which we experimented due to memory limita-
tions. Xia and Varshney’s results for their sphere dataset, though, contain
figures which are very similar to our Cessna CRMR (and which were gener-
ated on a machine with comparable processing power to ours). An original
mode] of 8192 triangles was reduced to 537 triangles on screen and displayed
in 0.09s which compares with 7446 triangles of our Cessna model which were
reduced to 1384 and displayed in a total time of 0.09s with a screen-space
tolerance of 0.01%.

Hoppe [Hop97b] presented timings for a geomorphing fly-through of a
PM representation which originally contained 400,000 faces and which was
reduced to approximately 2,000-11,000 during the traversal. Hoppe’s im-
plementation gave a frame time in the region of 0.07-0.13s throughout the
traversal. This dataset is much larger than any of our examples but we have
to conclude that Hoppe’s implementation of his PM approach is inevitably
more efficient, though less flexible, than our SMR framework.

The only timings which have been presented for Puppo and De Florani’s
MultiTriangulation approach were given for a terrain dataset in [DMP97b].
The original dataset contained 14,767 vertices and 73,901 triangles. Selec-
tively refined versions of this surface were produced which contained 6,322
and 12,402 triangles according to a simple object-space distance-to-viewpoint
measure by algorithms operating on two alternative MT data structures.
These surfaces were generated in 0.110s and 0.972s respectively. Again, we
have no dataset of a comparable size but the Honolulu dataset of 11,893 tri-
angles was reduced to 8,207 by the minimal surface algorithm operating on
a more complex object-space RCF function in 0.64s.

7.5 Summary

In summary, the results presented in this chapter have demonstrated that se-
lective mesh refinement and geomorphing of scalar field and three-dimensional
manifold surfaces is possible within the SMR framework. Also, these opera-
tions can be performed with speeds which would permit a degree of interac-
tivity with the rendered meshes. Optimisation of our implementation could
lead to truly interactive selectively refined meshes.



Chapter 8

Conclusions

This dissertation has verified our primary thesis that a selectively refined
version of a computer graphics model can be constructed from a series of
single-resolution approximations to the model without regard to the original
approximation technique. We have also demonstrated that a selectively re-
fined mesh produced in this manner can be smoothly geometrically morphed
into another mesh which satisfies modified resolution criteria.

The medium for this investigation has been presented as a novel frame-
work within which the twin tasks of selective mesh refinement and geomorph-
ing can be performed. The components and capabilities of this SMR frame-
work can be summarised as follows.

A model is represented by information obtained from applying a stan-
dard simplicial mesh approximation technique to that model at a range
of resolutions. The differences between each resulting approximation
can be treated as localised refinement fragments and inserted into our
resolution-based representation of this model — its Continuous Resolu-
tion Model Representation (CRMR).

The resolution criteria which specify the requirements of a selectively
refined version of a model are provided as the components of a Reso-
lution Control Function (RCF).

A selectively refined version of a model can be obtained from its CRMR
with respect to an RCF by applying either our minimal surface or
reduced extraction algorithms. These first identify the set of refinement
fragments which are necessary and sufficient to produce a mesh which
meets the criteria presented by the RCF. This set of fragments can then
be traversed to obtain a subset of their facets which will be a complete
representation of the original model which satisfies the RCF.

The extracted set of fragments can also be retained for future modifica-
tion when the resolution criteria change. Our geomorphing algorithm
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identifies refinement fragments which can be removed from, or added
to, this original set of fragments while permitting a complete selectively
refined mesh to be maintained during this process. The order of these
modifications is such that the removals and additions of fragments can
be performed using geometric morphing routines which are local to
each fragment.

The results of applying the framework to various example CRMRs and
RCFs were presented in the previous chapter. These results demonstrated
that both selective mesh refinement and geomorphing could be performed
as proposed on polygonal model fragments which were generated by existing
approximation techniques.

The specific achievements of this framework are discussed in more detail
in Section 8.1. Potential extensions to this framework and its implications
for the wider field of computer graphics are presented in Section 8.2.

Specific achievements

This section reviews, in relation to previous work, the original aspects of our
SMR, framework.

The selective mesh refinement algorithms which were presented in Chap-
ter 5 permit a selectively refined mesh to be generated from a CRMR of a
model, which is a resolution-based representation of that model. This decou-
pling of the selective refinement process from the approximation technique
which generated the CRMR extends the concept of Cignoni’s HyperTriangu-
lation (Section 3.3), which was restricted to handling the fragments of terrain
surfaces generated by a Delaunay approximation process. In contrast, our
algorithms can operate on n-dimensional approximations which have been
generated by many existing techniques. Our algorithms also eliminate the
non-decreasing constraint on the resolution of the output surface which was
necessary for Cignoni’s selective refinement algorithm.

The task of our minimal surface selective refinement algorithm can be
directly related to the description of Puppo’s MultiTriangulation algorithm
[Pup96]. Puppo acknowledged the independent nature of our contemporary
terrain refinement work [Bro96] in [PS97, Pup97].

Both of our selective mesh refinement algorithms are original, however,
in the nature of their operation. They first identify those fragments from the
CRMR which are necessary and sufficient to produce a complete selectively
refined mesh which will satisfy the given resolution criteria. These fragments
are then traversed using an advancing front algorithm to extract the sim-
plices of the output selectively refined mesh. This means that the set of
fragments from which an existing mesh has been constructed can be used for
later operations, notably geomorphing, and that the process of extracting the
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simplices of the output mesh can maintain the adjacencies of these simplices.
Furthermore, the advancing front nature of this latter phase implies that the
regions of greatest significance in a particular scene are extracted first and
hence, if this process is being used for rendering, it can be interrupted at

" any point with the knowledge that the current mesh will contain the most

significant features for the displayed view, even if it is not complete.

Our reduced extraction algorithm takes advantage of this separation of
tasks in the selective refinement process by attempting to reduce the cost of
the first, fragment identification, phase specifically for scalar field meshes and
restricted resolution criteria. We have presented results which demonstrate
that this objective was achieved in all except one of the example cases.

The ability of both of our selective mesh refinement algorithms to op-
erate on the results of many existing approximation methods is dependent
upon the nature of our Continuous Resolution Model Representation. Our
specification of the fragments from which a CRMR can be constructed is de-
signed to permit a CRMR to be generated from any n-dimensional simplicial
mesh-generating approximation technique which makes repeated local mod-
ifications to a mesh. In addition, our CRMR fragments can introduce either
holes in a mesh or additional simplicial meshes which means that a CRMR
can represent a set of simplicial meshes. This ability was demonstrated in
the Cessna model presented in the results chapter and in [Bro97b.

-In contrast, Puppo and De Floriani’s parallel MultiTriangulation rep-
resentation (Section 3.4) has only recently been adapted to handle models
which are not scalar fields [DMP97b, PS97] and cannot handle a set of man-
ifolds such as the Cessna model.

The abstract structures which we use to represent our CRMR, the Hy-
permesh and the DAG, are also original. The data structure with which
we implemented the Hypermesh for the 2%— and 3-dimensional cases, our
fanedge structure, is a novel extension of Guibas and Stolfi’s quadedge data
structure. The advantage of this is that existing quadedge algorithms for
operations such as Delaunay retriangulation and point location can be easily
adapted for use with the Hypermesh. The Hypermesh and DAG structures
cannot be implemented as efficiently as Hoppe’s Progressive Mesh represen-
tation (Section 3.2.2), but this is offset by the independence of our CRMR
from any specific approximation technique.

Hoppe’s PM approach also takes advantage of the simple nature of the

- dependencies between fragments in a PM representation to enable geomor-

phing between selectively refined Progressive Meshes but we have presented a
geomorphing algorithm which can operate on a selectively refined mesh with-
out regard to the underlying approximation method. This unique capability
is made possible by the fact that our selective refinement algorithms generate
the list of fragments from which a selectively refined mesh is produced.
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The consistent fragment-based nature of our framework is also reflected
in our resolution specifier, the Resolution Control Function. This permits
object-space and screen-space dependencies to be combined in the specifica-
tion of a particular scene.

This ability was demonstrated in the results of Chapter 7, in which our
selective mesh refinement algorithms were applied to a range of terrain and
three-dimensional manifolds with respect to various resolution criteria. This -
is the first quantitative examination of selective mesh refinement applied to
resolution-based model representations generated by alternative approxima-
tion methods. Previously, Puppo and De Floriani have presented the results
of their MultiTriangulation algorithms only for terrain surfaces approximated
by Delaunay methods according to a simple object-space resolution criterion.
Also, Hoppe has only demonstrated selective refinement of terrain and three-
dimensional PM representations with respect to screen-space criteria.

The implementation of our algorithms and structures was designed as
a “proof of concept” rather than an optimised selective mesh refinement
generator, but our results have shown that:

e our Continuous Resolution Model Representation can handle the out-
put of Delaunay approximations of terrain datasets as well as Progres-
sive Mesh representations of terrain and three-dimensional manifold
models;

e our selective refinement algorithms can generate meshes according to

object-space or screen-space resolution criteria or a combination of
both;

e the reduced extraction algorithm can reduce the cost of the initial phase
of selective mesh refinement and also the overall cost of the process in
almost all of the object-space terrain examples;

e all of the selectively refined meshes presented have been expanded in
less time than their corresponding original models were rendered and
they are all perceptually equivalent to their originals to a greater or
lesser extent;

e the cost of the surface extraction phase of our selective refinement algo-
rithms is proportional to the number of triangles being displayed and
hence selective mesh refinement could be used in a rendering system to
provide a trade-off between image quality and rendering speed;

e the cost of geomorphing a selectively refined mesh according to a chang-
ing view frustum is within the range required for the interactive display
of a scene. In addition, the ability to constrain the time permitted for
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8.2

geomorphing could be used to guarantee the interactive quality of a
scene;

e the Progressive Mesh-generated CRMR of a terrain surface produces
smoother selectively refined meshes than that from the corresponding
Delaunay-generated CRMR. This is the first comparison of PM- and
Delaunay-generated meshes.

Future work

This section discusses potential extensions and applications of the SMR
framework.

The area which offers the greatest scope for immediate improvement of
the framework is the optimisation of its implementation. All of the imple-
mentations of our algorithms and data structures have been designed pri-
marily for extensibility and robustness rather than speed of operation. A
fully-optimised version of the framework should be comparable in terms of
speed with Hoppe’s view-dependent Progressive Mesh implementation. To
match the rendering speed of Hoppe’s system, though, a means would be
required for generating triangle strips (a generalisation of the triangle fans
described in Section 5.1.2.1) during our surface expansion process.

Another feature of the OpenGL graphics library, apart from triangle fans
and strips, which can be used to optimise rendered scenes is display lists.
These are groups of OpenGL commands which are sent by an application
to the graphics hardware and retained there for later, potentially optimised,
execution. Thus display lists are particularly suited for static models and
contribute little towards the dynamic tasks of selective mesh refinement and
geomorphing. If selective mesh refinement is to become a useful tool for
visualising large models then support for data structures and algorithms
such as those proposed by our framework must be provided by graphics
hardware. The simplicity of our algorithms means that they lend themselves
to implementation in hardware.

In terms of space costs, though, a CRMR could never be compressed
to the same degree as a PM representation because the specific nature of
the PM approximation method allows a high degree of compression in its
corresponding representation. It is this space efficiency which would be the
major consideration if these representations were used to transmit a graphical
model over a network. As Hoppe noted [Hop97b}, a resolution-based model
representation together with a selective mesh refinement algorithm offer the
potential for models to be progressively transmitted since the base mesh of
a model could be transmitted initially and then detail added as bandwidth
and resolution requirements permit.



168 Conclusions

We discussed how our SMR framework related to the client-server model
for transmitting 3D data in [Bro97b], where a server identifies the fragments
of a CRMR which have to be transmitted to a client and the client constructs
a selectively refined mesh from these fragments. Our framework is uniquely
suited to this client-server approach because of the two-phase operation of our
selective mesh refinement algorithms. The ability of our framework to handle
a wide range of approximation techniques could be particularly applicable to
the various encoding capabilities demanded by the proposed MPEG-4 SNHC
(Synthetic/Natural Hybrid Coding)' standard. A quantitative examination
of the speed of our framework applied to the progressive transmission problem
is left for future exploration. :

The.ultimate aim of progressively transmitting three-dimensional mod-
els on the Internet should be to obtain a three-dimensional equivalent of the
two-dimensional interlaced GIF images which can be handled by current Web
browsers. An interlaced GIF is stored by reordering the lines of the original
image such that a complete low resolution image can be retrieved quickly and
finer detail can be added when further lines of information are obtained. The
simplicity and generality of this approach cannot be matched by any exist-
ing three-dimensional approximation or selective refinement techniques. The
Progressive Mesh approach, for example, is not sufficiently general to han-
dle non-manifold meshes or permit topological modifications and its related
approach which can handle these factors, Progressive Simplicial Complexes,
has not received a similar level of acceptance.

With respect to the SMR framework, a first step towards further general-
ity would be to develop a topology-modifying approximation method which
produces manifold meshes. This would permit the CRMR’s ability to handle
topology-modifying fragments to be utilised. Such an approximation method
could be an adaptation of Garland and Heckbert’s quadric error measure
method (Section 2.4.2). By restricting the vertex pair contractions which
this method permits, we could ensure that the output meshes retain their
manifold property while allowing some topological modifications.

Alternatively, the concept of the CRMR could be extended to handle
non-manifold models. This would require each fragment to be treated as a
group of simplices rather than as a simplicial mesh (since the simplices may
be of mixed dimensionality). To contain these fragments in a Hypermesh,
the linkages between fragments would have to allow links between elements
of mixed dimensions. While the refinement operation extraction phase of
our selective mesh refinement algorithms would remain unaffected by these
changes, the advancing front nature of our surface expansion step may no
longer be suitable.

It is this advancing front nature, though, which provides a final area

Ihttp://www.es.com/mpegd-snhc
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for investigation. The potential which this offers to terminate a rendering
process early while still displaying the significant features of a mesh could
be used to cull facets outside the view frustum. In addition, a guaranteed
rendering time could be enforced using an extension of Funkhouser’s cost-

benefit analysis for LOD usage [FS93].
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