Technical Report VAN

Number 497

Computer Laboratory

Towards a formal type
system for ODMG OQL

G.M. Bierman, A. Trigoni

September 2000

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 2000 G.M. Bierman, A. Trigoni

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Towards a formal type system for ODMG OQL

G.M. Bierman A. Trigoni
University of Cambridge Computer Laboratory*

September, 2000

Abstract

In this paper we consider in detail the type system of the object-oriented database
query language, OQL, as defined by the ODMG [6]. Our main technical contribution
is a formal definition of the typing relation for OQL—surprisingly we could not find a
complete definition in the literature. We have also uncovered a number of inaccuracies
in the original ODMG proposal, and other work.

*Authors’ address: University of Cambridge Computer Laboratory, New Museums Site, Cambridge,
CB2 3QG. UK. Email: {gmb,at263}@cl.can.ac.uk

1 Introduction

“OQL is a functional language where operators can freely be
composed, as long as the operands respect the type system.”

ODMG [6, Page 89].

Object database management systems (ODBMS) provide an integration of (object-
oriented) programming languages and database systems. By the early 1990s a number
of proposals and systems were available, all with different underlying object models and
system-specific features. Rather than continuing to work in different directions, the major
companies and organisations in the ODBMS industry joined forces to form the Object
Database Management Group (ODMG). The aim of the ODMG is to provide a de facto
standard for ODBMS. To this aim they produced a book: the Object Data Standard (here-
after referred to simply as the Standard). The Standard consists of four major components:
an object model; an object specification language (ODL); an object query language (OQL);
and several programming language bindings (currently for Java, C++ and Smalltalk).

In this paper we will focus mainly on OQL. In particular we aim to make good the
claim in the Standard of a well-defined type system for OQL. In contrast to the Stan-
dard’s rather informal discussion, we present the type system formally using techniques
familiar in modern programming language design {7, 12, 4]. Our paper presents a precise,
mathematical description of the OQL type system which should be useful to both current
implementors (we found it straightforward to implement an OQL type inference engine
given our formal description), and for future extensions to the Standard.

Our paper is organised as follows. In Section 2 we identify a core OQL—a fragment
of the language defined in the Standard, but which has the same expressive power. In
Section 3 we define the notion of a type for OQL. In Section 4 we formalise the notion of
subtyping inherent in the object model and show how schema definitions yield a subtyping
relation. In Section 5 we give formal type rules for forming judgements about the type of
OQL programs, definitions and queries. In Section 6 we compare our work to other related
work. We conclude, in Section 7, with details of work in progress.

2 Core OQL

OQL is the object query language proposed by the ODMG to support their object data
model. In this paper we address primarily the type system of OQL. Despite their aims of
simplicity, the designers of OQL have, in many cases, provided several ways of writing the
same query. This has been motivated by the desire of compatibility with SQL 92 and other
query languages. For the purposes of this paper, however, we shall study a core OQL—a
fragment of the language in the Standard, but which has the same expressive power. (It
is easy to see how the full OQL can be translated into our core OQL.)
In the rest of this section we shall define the core OQL. First we shall assume a set of

binary operators and a set of unary operators as follows. '

binop = {and,or,intersect,union, except,=,!=,<,>, <=,>=,+, -, *, /, ||, mod}
unop = {first,last,max, min, avg, sum, count,distinct, listtoset,
element,flatten, abs,not, —}

The grammar for (untyped) OQL queries is then as follows.

| x

| bag(q,...,q)|set(q,...,q) | list(q,...,q) | array(q,...,q)
| dictiomary((q,q),...,(q,q)) | struct(l:q,...,1: Q)

| ¢(l:g,...,1:q)|q1](C)q

| dldlaingla()]alg,...,q)

l forallxinq:q[existsxing:q

|

|

q binop q | unop(q)
select [distinct]q

from(qasx,-:+,qasx)
where q

[group by (1:q,--+,1:q)]
[havingq]

[order by (q asc|desc, -+, q asc|desc)]

where b, f, 4, c, s range over booleans, floats, integers, characters and strings respectively, x
is taken from a countable set of identifiers, 1 is taken from a countable set of labels, and
C ranges over a countable set of class names.

In OQL we are able to make named definitions. A definition is given by the following
grammar.

d = definexasq
| definex(x:o,...,x:0)asq

An OQL program then consists of a number (maybe zero) of named definitions followed
by a query.
3 Types

OQL, or more generally the underlying object model, has a quite complex notion of a type.
Obviously our core OQL has a slightly simpler language of types—for example, we do not

consider the types defined in the Standard [§2.3.7] for dates and time-zones. However, even
with our core system we have a number of primitive types, n-ary function types, multiple
(arbitrarily nested) collection types, structures and classes (the underlying object model is

class-based).
More formally, the types for OQL are given by the following grammar.

o == int|float |bool|char |string|void
| ox---Xo—=0
| bag(o)|set(o)|1list(o) | array(o)
| dictionary(s,o)|struct(lic,::+,1:0)
| ¢

We use the ‘=’ symbol to denote a function type. For example, int — float is the
type of a function which expects an argument value of type int and returns a value of
type float. Function types arise when defining methods which take parameters.

The other types are self-explanatory. For example, the type bag(bool) is the type of
a bag of booleans, and the type set(list(string)) a set of lists of strings. The type
dictionary(string, set(int)) is the type of a dictionary with keys of type string and
associated values of type set(int). The type struct(a: int, b: struct(c: float,d: char)),
is the type of a structure with two fields: the first has label a with associated integer values,
the second field has label b with an associated structure value, which itself has two fields
(c and d).

We find it useful to adopt the following conventions. We will write Col(c), to denote
an arbitrary collection type (array, bag, dictionary, list or set), with elements of type o.
The types char, int, real and string are said to be orderable types. We will use the
symbol O to range over the subset of types that are orderable.

4 ODL Schema

4.1 Introduction

The Object Definition Language (ODL) is a language to define the specification of object
types that conform to the ODMG object model. In more traditional database parlance,
ODL is the data definition language for ODMG-compliant ODBMSs. We assume that the
reader is familiar with ODL (see, e.g. [11]).

To determine the type of an OQL program we obviously need to use certain type
information taken from the ODL schema. Primarily this includes the extents, attribute
names and their types, the method names and their types, and the relationship names and
their types. (The information concerning the type hierarchies is discussed in Section 4.2.)

We shall assume that from a given schema we have constructed a schema typing
environment, which contains the important typing information from the class definitions.

3

More precisely, a schema typing environment, written S, is a pair (C, E), where C is a
partial function mapping class names to their type information, and E is a set of extent
names along with their corresponding class identifiers. More formally

§=(C,E)

C : classId — Att X Rel x Meth

E : p(Id x Type) Att: p(Id x Type)
Rel : p(Id x Type) Meth : p(Id x Type)

For example, consider the following schema.

class C extends D

(extent Cs)

{ attribute int a;
float m (in int x)

};

This yields the following schema typing environment.

S = (C,E)
C = {C+ {arint} X @ x {m:int — float}}
E = {Cs:C}

In following sections we will find it useful to employ some shorthand. Given a schema
typing environment, S, and a class C, the collection of its attributes is denoted by A(S, C),
the collection of its relationships is denoted by R(S, C), and the collection of its methods is
denoted by M (S,C). The union of these three sets is denoted by I(S,C). Given a schema
typing environment, S, the collection of extents is denoted by E(S).

4.2 Subtyping

The ODL class definitions also contain the details of the type hierarchies, that is, the
sub-classing information. We can take a collection of class definitions and build a relation,
Cc , where C Cc D when class C extends class D (as in the example above). From this
sub-class relation we build a general subtype relation between types.! The idea is that o
is a subtype of T (conversely 7 is a supertype of o) if a value of type o can be used in any
context in which a value of type 7 is expected. This is written o < 7.
The rules for building a subtype relation from a sub-class relation are as follows.

In Java subtyping is often referred to as widening.

4

—— Top
C < Object

CCed o <o r<7
Sub-Class Sub-Fun
c<de o37<d =7

og <7 0 0k ST osT
Sub-Tuple Sub-Coll
L X XOog ST X oo X Ty Col(g) < Col(r)

or<7 v 0x < Tk Sub-Ghruct
ub-Struc

struct(11:01,..., 1! Ok e« oy Lictn! Ongn) < Struct(Lyiry,. .., L 7x)

o S a_’ o_l S a_ll
Sub-Refl - Sub-Trans

c<Llo

cLo

L 1

These rules are relatively straightforward, but it is perhaps worth explaining in some
detail the Sub-Fun rule. Another way of thinking about subtyping is to treat the relation
o < 7 as an assertion of a well-behaved ‘coercion’ function from values of type o to values
of type 7 [3]. Let us assume that 7 < 7/, i.e. we have a coercion function from values of
type 7 to values of type 7'. We can see that ¢ — 7 < ¢ — 7', i.e. we can coerce a function
of type ¢ — 7 to be one of type o — 7' by applying thé function to a given value of type
o and then coercing the result (which will be of type 7) to a value of type 7'.

The coercion of the domain type is more tricky. If we assume that ¢’ < o, then we can
show that 0 — 7 < ¢/ — 7/, which is perhaps the reverse of what one might first expect.
We can coerce a function of type o — 7 to be one of type ¢’ — 7 by first coercing a given
value of type o' to be one of type o, and then applying the function to produce a value of
type 7. :

In later sections we will use the notion of a least upper bound of two types, as described
informally in the Standard [§4.10].2 This notion can be defined formally as follows.

Definition 1 Given types o and o', their least upper bound (lub) is a type 7 such that

1. o<tando' <7, and

2.V o< and o' <7 thent < 7.

2Tt should be noted that given any pair of types, it is not necessarily the case that they have a least
upper bound, but rather several distinct upper bounds. Casting may be required, as is the case for Java.

5 The type system of OQL

This section contains the main technical contribution of our paper. In it we develop the
type system of OQL. In other words we give formal rules for determining the type of a given
OQL program. As this formal approach may not be that widely known in the database
community, we give a brief introduction in Appendix A. (A more complete introduction,
albeit one biased to programming languages, can be found in [4].)

5.1 Typing judgements

Let us now consider forming typing judgements for OQL programs, definitions and queries.
We shall give three type systems for these three syntactic categories (and we shall use
different symbols for the turnstile for clarity).

First let us consider OQL programs. As discussed in §4, to type an OQL program,
we need to use typing information extracted from the class definitions. In addition the
Standard [§4.10.2] states that query definitions are persistent. Thus we need to know the
type information from any previous query definitions. Also the Standard [§2.10] allows
named objects to be inserted into the database from a language binding, and moreover
to be referenced directly in OQL by their names. Hence we need the type information
concerning these named objects.

Thus rather than have just the one typing environment, we find it convenient to keep
the three typing environments (for the schema, definitions and named objects) separate.
A program typing judgement for a given OQL program, p, is written

S;D;N »p:o;D.

where S is a schema typing environment, D is a definition typing environment and N is
a named object typing environment. As the program p may extend the definition typing
environment D, the program typing judgement has also as a conclusion D', which is the
resulting definition typing environment.

A definition typing judgement for an OQL definition, d is written

SiD;Np>d= D

where S, D and N are as before. A query typing judgement for an OQL query q, is
written

S;D;N;QFqo

where S, D and N are as before. Q contains the types of any free identifiers in g, and is
known as the query typing environment.

In the following subsections we give complete type systems for OQL programs, defini-
tions and queries.

5.2 Typing OQL programs

The rules for forming program typing judgements are as follows.

SSDND>d=TD S$;DiN;0Fqo S;D;N;0Fqio
Prog-Def Prog-Query
S;D;Nw»dqgo;D S;D;N » q:o; D

| -]

Reading the first rule bottom-up, it states that to type the program d q, we first type
the definition d, to get a updated definition environment, D', which we use to type q, the
resulting type of which is the overall type of the program. (The second rule is just a nullary
version where there are no definitions.)

The reader will also note that in typing the query q in both rules, we have insisted that
the query environment is empty. In other words a top-level query may not have any free
query identifiers.’

5.3 Typing OQL definitions

The three rules for forming definition typing judgements are as follows.

S;D;N;0q T

Def-Nullary
S§;D;N > definefasq=D,f:7

S;D;N;x1:01, ..y xpiop QT
Def

S;D; N> define £(x4:01,...,%,:00) as
=D, fioy X" Xop—T
S;D;N>dy =D S;DiN D> dy = D"
S;D;N > dy;dp = D

1]

Def-Comp

Consider the rule Def—reading the rule top-down it states that if a query q has type
7 and free query identifiers x;,...,x, of types oy,...,0, respectively, then the type of the
definition f is the function type o1 X «++ X g, — 7.

It is important to note that there are three side conditions to the rules Def and
Def-Nullary. Firstly, we are not permitted to overload definition identifiers (the Standard
[§4.10.2]).

#Rather unfortunately the Standard [§4.10.1] has the erroneous statement that a query is an “expression
with no bound variables”.

"The second side condition is the definition identifier can not be an existing class name.
(Algebraically Vo.(f: o) & dom(S8).) The third side condition is that the definition identifier
can not coincide with an existing named object. (Algebraically Vo.(f: o) € NV.)

The rule Def-comp handles the case of multiple definitions, which are typed in the order
they are given.

5.4 Typing OQL queries

We now consider the rules for deriving query typing judgements. First are the axioms for
literals.

S;D;N; QF bibool S&;D;N;QF dzint S;D;N; Q F f:float

S;D;N;QF cichar S;D;N; QF s:string

Next are the axioms for identifiers. We have several axioms depending on what sort
of identifier we are dealing with: it is either an extent defined in a schema, a definition, a
object name or a query identifier.

e:C€ E(S
©) Extent-Id SD.doN-OFd Def-Id
S;D; N; Q | e:set(C) iD,dios N3 QFdio
Named-Object-Id Query-Id
§;D;N,n:o;QFnio S$;D;N;Q,x:0 Fxio

It is worth noting here our use of a convenient shorthand. Rather than writing an
extended typing environment, for example Q U {x: g}, we write instead Q,x: 0. In other
words the comma can be interpreted as set union.

Next we shall give the type rules for subtyping, which are as follows.

8;D;N;QFq:C c<D S;D;N;QFqo c<T
Casting Subtyping
S;D;N; @ F (D)g:D S;D;N;QFqrT

]

The Casting rule allows an expression of object type C to be explicitly cast to a super-
type D. In the Standard [§4.10.12.5] it is also allowed that an object type be downcast to
a subtype. This would entail changing our rule to:

8

S;D;N;QFq:C C<DorD<LC
8;D;/N;QF (D)a:D

Casting

It is important to note that this rule has the consequence of requiring run-time type
checking.

The Subtyping rule embodies our understanding of subtyping, i.e. if & < 7 then a value
of type o can be used in any context in which a value of type 7 is expected. Consequently
if we deduce that an expression is of type o, we can also deduce that it is of type 7 (if
g <)

The rules for structures are straightforward and are as follows.

S;D;N;QFqiioy - S§;D;N;QF qriog

8;D;N;Q b struct(11:aq,. .5 Li Q)
:struct(ly:o1,.. ., 1kt 0%)

Struct

8§;D;N; @ F q: struct(ly:oy,. .., 1k 0%)
S;D;N;QFqlyio;

Struct-Select

There are several rules to deal with various collections, which are given in Figure 1.
The important rule here is Collection. Reading the rule bottom-up, it reads that to assert
that the collection Col(qy,...,qx) has type Col(c), we must assert that each q; has the
type o. :

The Subtyping rule given earlier allows for such a simple typing rule (c.f. [§§4.10.4.4-
4.10.5.6] of the Standard). For example, imagine that expressions q; and q, are of type o;
and oy respectively, where o7 and oy have a lub 7. Thus we can form the following typing
derivation:

SiD;N;QF a0y S;D;N; Q1 qaion

Sub. ub.

S§;D;N;QF quir S;D;N;QF qui7
8;D;N; Q F set(ay,qz): set(r)

Colln

The rules for queries dealing with quantification over collections are as follows.

S$;D;N;QFqy:o S$;D;N;QF qeio
S;D;N;QFdiir - S;DyN;QFdlT

S;D;N; Q & dictionary((qs,q}),- -, (Qx qi)): dictionary(c, 7)

Dictionary

S$;D;N;QFaqiio -+ S;D;N;QF aqrio
Collection
S;D;N; @+ Col(qy, ..., ax): Col(a)

8;D;N; Q F q:list(o) 8;D;N; Q F q: array(o)

First-list First-array
8;D;N; @ & first(q):o S;D;N; QF first(q):o
S;D; N; @ F q: list(o) S;D;N; Q F q:array(o)

Last-list Last-array
S;D;N; Q k- last(q):o 8;D;N; QF last(q):o

8;D;N; O F qq:list(o) S;D;N; QF qoiint
S$;DiN; QF aifga]io

Index-list

8;D; N; Q & qq:array(o) S;D;N; QF gorint
S$;D;N;9F qifqo:o

Index-array

S;D;N; QF qudictionary(o,7) S;D;N;QF quio
S; Dy N; Q1+ qufgo]: 7

Index-Dict

S$;D;N;QFaquio 8;D; N; Q F go: Col{o)
8;D;N; @ - qq in ga: bool

Membership

Figure 1: Typing rules for collections

10

S;D;N;QF qi:Collo) S;D;N;Q,x:0 - go:bool
S;D;N; Q F forallx in qs:qgp:bool

Forall

8;D;N;9+F qu:Col(a) S;D;N; Q,x:0 F ga:bool
S8;D;N; Q F exists x in q;: qp: bool

Exists

Consider the Forall rule, reading from the top-down. First we have the judgement
that the expression q; is of type Col(o), with free query identifiers contained in the set
Q. We then have the judgement that the expression q, is of type bool, with free query
identifiers contained in the extended set Q,x:0. We can then infer that the expression
forall x in qq: q, is of type bool, with free query identifiers contained in Q. It isimportant
to note that x may be a free identifier in the expression q,, but it is bound in the expression
forallxinq;:qa.

The rules for object creation and method invocation are as follows.

$;D;N;QFquior -+ §;DN;QF qiiog $;D;N; QFq:C
Object Path
S;D;N; @ FC(Ly:qy,. .., Lkt 0k): C S;D;N;QFaqlio

The rule Object has an important side condition: to construct an object directly in
OQL, the values for the attributes and relationships must be of the expected types, as
declared in the schema. Put algebraically:

V1 <4<k (Li:05) € A(S,C) or (1;:0;) € R(S,C)

(Note that the Standard [§4.4.1] allows an object to be created with certain fields undefined—
these undefined attributes and relationships “are given a default value”.)

The rule Path also contains a side condition that the label 1 produces a valid path
expression for an object of type C. This can be expressed algebraically: (1:0) € I(S,C).
The case where the label 1 represents a method which takes a number of parameters is
handled by a combination of the Path rule and the App rule, which is explained later in
this section.

Now we turn our attention to the most important construct in OQL, the select query.
Rather than give a single rule handling all the forms at once, we tackle each form separately.
The rules for the various forms of select queries are given in Figure 2.

Consider the rule Vanilla-Select, reading from the top-down. First we have the judge-
ment that expression q is of type Col(o7), with free query identifiers contained in Q. Thus
query identifier x, is of type oy (which respects the semantic explanation given in the Stan-
dard [§4.10.9]) and may occur free in expression qs, along with any identifiers contained

11

S;D; N5 Q F qq: Col(ay)
8;D; N5 Q,x1: 01 F qa: Col(os)

S D N Q,X1 Oyeee g Xg1:0%q “‘qk: COI(O’k)
S; DN o, % a}~q” bool
S;D;N; o, %dkq:7

8;D; N; QF select q from(q; asxy,...,qx as xi) where q": bag(7)

Vanilla-Select

8;D;N; Q F qy: Col(ay)
S;D; N5 Q,x1: 01 F qg: Col(o2)

S D N; Q,x4: 01, » Xie—1: 0x—1 F qi: Col(oy)
S;D;N;9,%:6F g bool
S;D;N; Q,%:6 ¢ ”' :Oq

DN Q%7 q":0;
SD.N'Qi'aF-q T
"

8;D; N; @ +select q from (q; as xq,...,qx as Xx) where g

order by (q! asc|desc, .. ,q’J” asc|desc): 1ist(r)

Ozxder-Select

8;D;N; Q F q4: Col(oy)
S;D; N5 Q,%1: 01 = gg: Col(oz)

S§;D; N Q,xizai,...,xk_1:0'k_1 F qx: Col(o)
S;D;N; Q,%:6 F q":bool

S;DN; Q%0 ql"'n

S;D;N; 9,28, 1:m gy

DN 31, . .
S,D,N,Q,i.a,%‘i.Ti,...,lj_i.Tj_i}"qJ 1Ty

8;D;N; Q,%:3,1: 7, partition: bag(struct(®:)) Fq"":bool
S;D;N; Q,%:3,1: 7, partition: bag(struct(&:5)) F ¢ o

Group-Having-Select
S;D;N;QF select q from (q1 as xl, ., Gk as xx) where q”

group by (13:q7’,. qQ”)

having q"": bag(<p)

Figure 2: Typing rules for select queries

12

in Q. This continues until we have the judgement that expression qy is of type Col(oy),
with free identifiers from {xy,..., %1} and Q. We then form the judgement that q" is of
type bool, with free query identifiers from {xy,..., %} (which we abbreviate to X) and Q.
Similarly we form the judgement that the query q' has type 7, with free query identifiers
from ¥ and Q. Given these (k+2) judgements we can conclude that the select query is of
type bag(T).

It is important to notice that the free query identifiers of the select query are contained
in Q. In other words, the identifiers ¥ are bound by the query. This is an important
advantage of our use of formal typing rules—the distinctions of bound and free identifiers
is explicit in the rules themselves. (The precision and clarity of these rules should be
compared to the rather verbose description given in the Standard [§4.10.9, §4.10.15].)

The rule where the select query has a distinct clause is omitted for space reasons,
but is identical to the Vanilla-Select rule, except that the overall type of the query is a set
and not a bag (unless it it has an order clause, in which case it remains a list).

Discussion. It is important to point out here that there is a serious error in the informal
discussion of the typing of a select query in the Standard [page 111]. There they state that
the g; are “of type Collection”, i.e. the class type, and not the literal type Col(c;) as we
have given. We view this as a mistake—it certainly contradicts §4.10.4.3 of the Standard,
where it is stated that given the declaration “e as x”, then “e is of type collection(t) ”,
as well as their discussions of examples (e.g. [page 90]).

Unfortunately Alagié [1] has taken this erroneous statement at face value, and so pro-
poses the following (simplified) type rule (where any is a notional polymorphic class type,
no longer part of the ODMG standard).

8;D;N; QF qq:Collection S;D;N;Q,xi:anyl—q":ﬁool S;D;N;Q,xq:any - d'i T

S;D;N; Q I select ¢ fromq; as xy where q":Bag

Given this type rule, he concludes that “OQL queries cannot be type-checked in the
ODMG object model” [1, Theorem 2|. Given that the literal types we use in our rules are
certainly valid in the ODMG object model (see the Standard [§2.4.1.2]), we refute Alagi¢’s
theorem, and in fact assert the opposite.

Fact 1 OQL queries can be type-checked in the ODMG object model.
[

Discussion. The reader may have noticed that we have not provided a select x form.
Primarily this is because we view it as essentially syntactic sugar. More seriously, how-
ever, the way it is defined in the Standard [§4.10.9] breaks the convention that the query
identifiers in the ‘as’ clause are bound by the select query. The Standard [page 112] states
that the query

select *
from (Students as x, x.takes as y, y.taught_by as z)
where z.rank="Full Professor"

13

should be assigned the type bag(struct(x: Student, y: Section, z: Professor)). In other
words, the bound query identifiers become labels for the structure, i.e. they change their
syntactic category. We take the opinion that this confusion was an unfortunate design
error. In core OQL we insist that this query be written as follows.

select struct(x: x’, y: y’, z: 2’)
from (Students as x’, x’.takes as y’, y’.taught_by as z’)
where z’.rank="Full Professor"

|

Now we return to the rules for select queries, and consider that concerning an extension
with an order by clause. This rule is similar to the vanilla select rule. The important thing
to note is that the expressions which order the results, the q¥', must be of an orderable
type (as defined in Section 3). The Standard [§4.10.9.1, item 3] specifies that the type of
an ordered select query is always a list.

Discussion. The Standard does not specify what happens when the sort criterion in the
order clause does not distinguish completely between results, e.g. in the query

select x from Employees as x
order by x.Salary

what if there are employees with the same salary? Presumably their order in the resulting
list is system-dependent. To alleviate this problem we suggest that the resultant type in

the Order-Select rule be changed to list(bag(7)) (the duplicates are now stored in bags).
]

There are two remaining type rules which deal with the application of an expression of
a function type to appropriately typed arguments.

r

S;DIN;QF qoy X Xop = 7
S;D;N;QF qivoid —» 7 S$;D;N;QFqiior
App-Nullary -
S;D;N;QFa():r S DN QO F quion

S;D;N; Q¢ a(qt, .-,)iT

App

Consider the App rule, reading from the top-down. First we have the judgement that
the expression q is of a function type oy X+ - X 0, —* 7, i.e. it is a function of n parameters.
We then have a judgement for each of the n parameters that they are of the expected type.
Given these we can conclude that applying these n arguments to the expression q, gives
an expression whose type is 7.

We often use this rule in conjunction with the Path rule given earlier. Suppose we
have a class C which has a method m, which expects an input parameter of type float

14

and returns a value of type int. Then assuming that an expression q; is of type C, and
expression q, is of type float, we can form the following typing derivation.
S$;D;N;QFau:C
Path
S;D; N; Q F qi.m: float — int S8;D; N;QF qo:float
8;D;N; Q F qim(qy): int

To complete our discussion of the OQL type system we need to consider the types of
the unary and binary operators. Most of these operators are overloaded, in the sense
that they are intended to have a number of distinct types. Thus for each operator there

are a number of type axioms. For reasons of brevity we shall just give the four axioms for
the union operator, the others are self-apparent.

App.

I

S;D; N; @+ union: set(o) x set(o) — set(o)

S;D; N; Q| union: bag(o) X set(c) — bag(o)

S;D; N; Q- union: bag(o) x set(c) — bag(o)

S;D; N; @ I union: bag(o) x bag(c) — bag(o)

6 Related work

After completing the first draft of our paper, Alagié’s paper [1] was published. He also
considers a formalisation of the OQL type system, and claims that “several negative results
are proved about the ability to type-check queries”. We have seen earlier that his problems
concerning the OQL type system can be overcome by using a different typing rule (one
which is consistent with the Standard).

However, Alagi¢ also demonstrates a much more serious problem with the Java language
binding, although again we disagree with some of what he says. He gives a type rule [1,
Rule 26], which appears to be a rule for typing Java directly, i.e. he considers OQL as
a language extension of Java. Clearly there is a problem here as OQL has parameterised
types (e.g.bag(int)), but Java does not (all it has is covariant arrays). \

Using the host language type system to type queries has been a dream of OODBMS
designers (see, for example, [13, §2.3].) However, nowhere in the Standard does the ODMG
propose that the Java type system be used to type OQL. Instead the Standard gives a
number of language bindings, for example in [§7.4.2] it gives the following Java interface.

15

public interface O0QLQueryd{
public void create(String query)
throws (ueryInvalidException;
public void bind(Object parameter)
throws QueryParameterCountInvalidException,
QueryParameterTypeInvalidException;
public Object execute()
throws QueryException;}

So we would use these methods in our Java program to create and execute OQL queries,
for example:

OQLQuery example;
example.create("select x.age
from Persons as x
where x.name="Pat");
answers=(DBag)example.execute();

Thus we would expect the implementation of the create method, to actually implement
the type system described in this paper. If the query can not be well typed, then the
QueryInvalidException exception is raised. Alagié¢’s claim that this can not be done in
Java is quite wrong.

However, Alagic¢ is correct in pointing out the mismatch between the expressive power of
the OQL type system and that for Java—others [8] have criticised Java for this omission. As
a consequence, invocations of the bind method, which enable Java objects to be passed into
OQL queries, clearly require the Java objects to be re-typed under the ODMG type system
(again we assume this is why the ODMG specified a QueryParameterTypeInvalidException
method). How this is achieved, however, is clearly system-specific.

Riedel and Scholl [9] also set out to describe formally the type system underlying the
ODMG object model. There are certainly strong similarities between their presentation
and ours, but also some differences. Firstly, they study a much earlier version of the
Standard (version 1.2), so some of their work is no longer relevant. Secondly, they treat
class types quite differently to us (indeed, quite differently from the way they are treated
by Java). Finally, (despite their title) they do not give many formal details of the type
rules, but rather describe them using examples.

7 Conclusions and future work

In this paper we have studied closely the query language, OQL, proposed by the ODMG
for object databases. We have identified a core OQL which is of the same expressive
power as the full language, and for this core language we have given a complete set of type
rules. These specify precisely the valid judgements one can make concerning the type of a
given OQL program. In the process of defining the type rules we have shown what type

16

information needs to be extracted from the ODL schema and how the subtyping relation
is generated.

The principal feature of our work is the application of techniques familiar from modern
programming language design (see, for example, the work on SML [7], and Java [10, 12])
to database query language design. Of course, this has entailed the use of a modicum of
mathematical formalism (although no more than one can reasonably expect a Computer
Science graduate to understand). We can give a number of reasons (there are many more!)
why we think this is worthwhile.

e Precision. The use of mathematical formalism forces one to be completely precise
about the type system (certainly more precise than the Standard!).

e Conciseness. Typing rules are a very concise method for defining type systems.
Certainly the type rules for our core OQL take only a couple of pages. The type
rules for Standard ML, a high-level, general-purpose programming language with
higher-order functions, polymorphism, exceptions, user-defined recursive datatypes
and a powerful module system, takes under two dozen pages to define [7].

e Correctness. Given a mathematical description of a type system, one is then able to
prove (formally) facts about the system. Clearly it is very difficult to prove any facts
about a type system that has only been informally defined, but worse, it is easy to
come to false conclusions. For example, the informal description of the type system
for Eiffel, an object-oriented programming language, was thought to be correct before
a formal study showed it to be faulty [5].

e Flexibility. Our formalisation provides a flexible framework to study, for example,
possible extensions to the underlying object model (e.g. the possibility of allowing
parametric polymorphism for class types [8, 2]).

There are several areas of current work in progress, following on from that described
in this paper. One topic we are working on is the problem of type inference. This is the
process of discovering, automatically, the type of a given OQL program. The reader will
have noticed that nearly all our type rules are syntax-directed, in that for each program
construct there is only one rule which could be applied to produce a type derivation. The
exception is the Subtyping rule. This rule complicates the process of type inference (indeed,
without it, type inference would be triviall).

The solution is to provide an alternative set of rules which are syntax-directed, and thus
have the action of the Subtyping rule built into them. For example, here is a (simplified)
version of an application rule.

SiD;N; Qb quo—T S;D;N;QFquio’ o' <o
S;DiN; QF qi(qe)ir

In a forthcoming paper this syntax-directed typing system is proven correct with respect
to the system given in this paper.

17

We have implemented the type system described in this paper in Java. Given our
formal description of the type system, we found this a relatively straightforward process
(another advantage of our approach!). We used the Poet Object Server (version 6.0) to
store the objects and schema that are referenced in the OQL programs. We are currently
extending our implementation to cover the full OQL language.

Acknowledgements

We should like to thank Ken Moody for his guidance. Trigoni is funded by the National
Scholarships Institute of Greece and the National Bank of Greece.

References

[1] S. Alagié. Type-checking OQL queries in the ODMG type systems. ACM Transactions
on Database Systems, 24(3):319-360, 1999.

[2] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding genericity to the Java programming language. In Object-Oriented
Programming: Systems, Languages, Applications (OOPSLA). ACM, 1998.

[3] V. Breazu-Tannen, T. Coquand, C.A. Gunter, and A. Scedrov. Inheritance and im-
plicit coercion. Information and Control, 93(1):172-221, 1991.

[4] L. Cardelli. Type systems. In Handbook of Computer Science and Engineering, chapter
103. CRC Press, 1997.

[5] W.R. Cook. A proposal for making Eiffel type-safe. In Proceedings of the European
conference on object-oriented programming, pages 57-72. Cambridge University Press,
1989.

[6] R.G.G. Cattell et al. The Object Data Standard: ODMG 8.0. Morgan Kaufmann,
2000.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML
(Revised). MIT Press, 1997.

[8] A.C. Myers, J.A. Bank, and B. Liskov. Parameterized types for Java. In Proceedings
of Symposium on Principles of Programming Languages, pages 132-145, 1997.

[9] H. Riedel and M.H. Scholl. A formalization of ODMG queries. In Proceedings of the
7th IFIP 2.6 Working Conference on Database Semantics, 1997.

[10] D. Syme. Proving Java type soundness. Technical Report 427, Computer Laboratory,
University of Cambridge, 1997.

18

[11] J.D. Ullman and J. Widom. A First Course in Database Systems. Prentice-Hall
International, 1997.

[12] D. von Oheimb and T. Nipkow. Machine-checking the Java specification: Proving
type-safety. In Formal Syntaz and Semantics of Java, volume 1523 of Lecture Notes
in Computer Science, pages 119-156. 1999.

[13] S. Zdonik and D. Maier. Fundamentals of object-oriented databases. In Readings in
Object-oriented Database Systems, pages 1-32. Morgan Kaufmann, 1990.

19

A A brief introduction to type systems

Type systems are specified using a particular formalism. The basic building block is a
typing judgement. A typical typing judgement is of the form

I'ke:o

which is read as an assertion that from the assumptions contained in the set I, the expres-
sion e has type o (the symbol ‘- is often referred to as a turnstile). I' contains the types
of any free identifiers in the expression e, and is often called a typing environment.
Elements of a typing environment are written, for example y: bool, which states that the
identifier y is of type bool. For example, two typing judgements might be

@ F true:bool, and
x:float |- set(x, 3.14): set(float).

The former judgement states that from no assumptions we can conclude that the expression
true is of type bool; the latter that from the assumption that the identifier x is of type
float, then the expression set(x, 3.14) is of type set(float).

Any typing judgement is either valid (such as the two above) or invalid (such as @ F
‘c’ 4 3.6:int). We characterise the set of valid typing judgements by giving a number of
axioms and rules for forming these judgements. These axioms are essentially judgements
which are intrinsically valid. One example might be:

O+ 4:int
A type rule allows us to build valid typing judgements on the basis of other judgements
which are known to be valid. We write these rules in the form
P ...
C

where the P; are the premise judgements, and C the (single) conclusion judgement. When
all of the premises are satisfied, then the conclusion must hold. An example of a possible

type rule is:

T'Fe:int T'F£:int

I'Fe+f:int
This states that if the expressions e and f can be shown to be of type int, then the
expression e + f is of type int.

A collection of axioms and type rules is called a type system. A typing derivation
is a tree of judgements, where the leaves are axioms and where each typing judgement is
obtained from the ones above it using a particular type rule. Given a typing environment ',
an expression e is said to be well-typed, if there exists a type o such that we can construct
a typing derivation with the root I' I e:o. The process of discovering a derivation (and
hence the type) for a given expression is known as type inference and is discussed in
Section 7.

20

