
Hardware/Software Co-Design using Functional Languages

Alan Mycroft1,2

1Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, UK

am@cl.cam.ac.uk

Richard Sharp2

2AT&T Laboratories Cambridge
24a Trumpington Street

Cambridge CB2 1QA, UK

rws@uk.research.att.com
(Correspondence author)

Fax: +44 1223 313542

ABSTRACT
In previous work we have developed and prototyped a silicon
compiler which translates a functional language (SAFL) into
hardware. Here we present a SAFL-level program transfor-
mation which: (i) partitions a specification into hardware
and software parts and (ii) generates a specialised archi-
tecture to execute the software part. The architecture con-
sists of a number of interconnected heterogeneous proces-
sors. Our method allows a large design space to be explored
by systematically transforming a single SAFL specification
to investigate different points on the area-time spectrum.

1. INTRODUCTION
In [8] we introduced a hardware description language, SAFL
(Statically Allocated Functional Language), and sketched
its translation to hardware. An optimising silicon compiler
for SAFL targetting hierarchical RTL Verilog has been im-
plemented [13] and tested on a number of designs, includ-
ing a small commercial processor1. SAFL is a first-order
functional language with an ML [6] style syntax. We ar-
gue the case for functional languages over (say) Occam on
the grounds of easier and more powerful program analysis,
transformation and manipulation techniques. The essential
features of SAFL can briefly be summarised as follows:

• programs are a sequence of function definitions;

• functions can call other defined functions but recursive
calls must be tail-recursive2. (Section 2.5 addresses the
exact technical restrictions.)

This allows our SAFL silicon compiler to:

1The instruction set of Cambridge Consultants XAP pro-
cessor (see www.camcon.co.uk) was implemented. We did
not include the SIF instruction.
2Section 2.6.3 shows how this restriction can be removed by
mapping general recursive functions into software.

• compile SAFL in a resource-aware manner. That is we
map each function definition into a single hardware-
level resource; functions which are called more than
once become shared resources3.

• synthesise highly parallel hardware—referential trans-
parency allows one to evaluate all subexpressions in
parallel.

• statically allocate the storage (e.g. registers and mem-
ories) required by a SAFL program.

The SAFL language is designed to facilitate source-to-source
transformation. Whereas traditional “black-box” synthesis
systems synthesise hardware according to user-supplied con-
straints, our approach is to select a particular implementa-
tion by applying transformation rules to the SAFL source
as a pre-compilation phase. We have shown that applying
fold/unfold transformations [2] to SAFL specifications al-
lows one to explore various time-area tradeoffs at the hard-
ware level [8; 9]. The purpose of this paper is to demonstrate
how hardware/software partitioning can be seen as a source-
to-source transformation at the SAFL level thus providing a
formal framework in which to investigate hardware/software
co-design. In fact we go one step further than traditional co-
design since as well as partitioning a specification into hard-
ware and software parts our transformation procedure can
also synthesise an architecture tailored specifically for exe-
cuting the software part. This architecture consists of any
number of interconnected heterogeneous processors. There
are a number of advantages to our approach:

• Synthesising an architecture specifically to execute a
known piece of software can offer significant advan-
tages over a fixed architecture [12].

• The ability to synthesise multiple processors allows a
wide range of area-time tradeoffs to be explored. Not
only does hardware/software partitioning affect the
area-time position of the final design, but the num-
ber of processors synthesised to execute the software
part is also significant: increasing the number of pro-
cessors pushes the area up whilst potentially reducing

3All sharing issues are handled automatically by our silicon
compiler: arbiters are inserted where necessary to protect
shared resources and data-validity analysis is performed fa-
cilitating the generation of efficient inter-resource interface
logic [13].

execution time (as the processors can operate in par-
allel).

• Resource-awareness allows a SAFL specification to rep-
resent shared resources. This increases the power of
our partitioning transformation since, for example, mul-
tiple processors can access the same hardware resource
(see Figure 1 for an example).

1.1 A brief overview of the SAFL language
SAFL is a language of first order recurrence equations; a
user program consists of a sequence of function definitions:

fun f1(~x) = e1; . . . ; fun fn(~x) = en

Programs have a distinguished function, main, (usually fn)
which represents an external world interface—at the hard-
ware level it accepts values on an input port and may later
produce a value on an output port. The abstract syntax
of SAFL expressions, e, is as follows (we abbreviate tuples
(e1, . . . , ek) as ~e and similarly (x1, . . . , xk) as ~x):

• variables: x; constants: c;

• user function calls: f(~e);

• primitive function calls: a(~e)—where a ranges over
primitive operators (e.g. +, -, <=, && etc.);

• conditionals: e1 ? e2 : e3; and

• let bindings: let ~x = ~e in e0 end

See Figures 3 and 4 for concrete examples of SAFL code.

1.2 Comparison with other work
Although there has been a lot of work on using functional
languages to describe circuits concisely, e.g. muFP [14] and
Lava [1] by Sheeran and Hydra [10] by O’Donnell, it seems
as though the direct compilation of functional languages to
hardware has been less well-studied. Our approach takes
SAFL constructs (rather than gates) as primitives allow-
ing our SAFL compiler to perform a number of high-level
analyses and optimisations. (A more detailed comparison
of SAFL with other hardware description languages can be
found in [9]).
The idea of converting a program into a parameterised pro-
cessor and corresponding instruction memory is not new;
Page described a similar transformation [12] within the frame-
work of Handel [11] (a subset of Occam for which a silicon
compiler was written). However, the extra transformational
power provided by our functional specification language al-
lows us to generalise Page’s work in a number of ways.
Rather than synthesising a single parameterised processor
our method allows one to generate a much more general ar-
chitecture consisting of multiple communicating processors
accessing a set of (potentially shared) hardware resources.

2. TECHNICAL DETAILS
The first step in the partitioning transformation is to define
a partitioning function, π, specifying which SAFL functions
are to be implemented directly in hardware and which are
to be mapped to a processor for software execution. Auto-
mated partitioning is not the subject of this paper; we as-
sume that π is supplied by the user. For expository purposes
we initially describe a transformation where all processors

are variants of a stack machine: Section 2.1 describes the
operation of the stack machine and Section 2.2 shows how it
can be encoded as a SAFL function; a compiler from SAFL
to stack code is presented in Section 2.3. In Section 2.6.2
we generalise our partitioning transformation to a network
of heterogenous processors.
Let M be the set of processor instances used in the final
design. We define a (partial) partitioning function

π : SAFL function name ⇀ M

mapping the function definitions in our SAFL specification
onto processors in M. π(f) is the processor on which func-
tion f is to be implemented. If f /∈ Dom(π) then we realise
f in hardware, otherwise we say that f is located on machine
π(f). Note that multiple functions can be mapped to the
same processor.
We extend π to a transformation function

π̂ : SAFL Program → SAFL Program

such that given a SAFL program, P , π̂(P) is another SAFL
program which respects the partitioning function π. Fig-
ure 1 shows the effect of a partitioning transformation, π̂,
where

M = {M1, M2}; and

π = {(f, M1), (h, M1), (i, M2), (j, M2)}

In this example we see that g and k are implemented in
hardware since g, k /∈ Dom(π). π̂(P) contains function def-
initions: M1, M2, IM1, IM2, g and k where M1 and M2 are pro-
cessor instances and IM1 and IM2 are instruction memories
(see Section 2.2).

2.1 The Stack Machine Template
Our stack machine can be seen as a cut-down version of
both Landin’s SECD machine [5] and Cardelli’s Functional
Abstract Machine [3]. Each instruction has an op-code field
and an operand field n. The following instructions are de-
fined:

PushC(n) push constant n onto the stack;

PushV(n) push variable (from offset n into the current stack);

PushA(n) push the value of the stack machine’s argument
an (see Section 2.2) to the stack;

Squeeze(n) pop top value; pop next n values; re-push top
value;

Return(n) pop result; pop link; pop n arguments; re-push
result; branch to link;

Call Int(n) push address of next instruction onto stack
and branch to address n;

Jz(n) pop a value; if it is zero branch to address n;

Jmp(n) jump to address n;

Alu2(n) pop two values; do 2-operand builtin operation n
on them and push the result;

Halt terminate the stack machine returning the value on
top of the stack.

We define a family of instructions to allow the stack machine
to call external functions:

Partitioning: (a) shows the call-graph of a SAFL specification, P ; (b) shows the call-graph of π̂(P),
where π = {(f, M1), (h, M1), (i, M2), (j, M2)}. IM 1 and IM 2 are instruction memory functions (see
Section 2.2); (c) shows the structure of the final circuit after compilation. The box marked ‘A’
represents an arbiter (inserted automatically by the SAFL compiler) protecting shared resource k;
the bold arrows represent calls, the dotted arrows represent return values.

1M : f, h

1M : f, h 2M : i, j

IM2

IM1

IM1 IM2

SAFL SAFL

Hardware
Software

Final Design

Transform Synthesise

(a) (b) (c)
f g

h

j k

g

k

g

k

i A2M : i, j

Figure 1: A diagrammatic view of the partitioning transformation

Call Extf pops each of f ’s arguments from the stack; in-
vokes the external function f and pushes the result to
the top of the stack.

The stack machine template, SMT, is an abstract model of
the stack machine parameterised on the code it will have
to execute. Given a stack machine program, s, (i.e. a list
of stack machine instructions as outlined above) SMT 〈s〉
is a stack machine instance: a SAFL function encoding a
stack machine specialised for executing s. Our notion of a
template is similar to a VHDL generic.

2.2 Stack Machine Instances
A stack machine instance, SMi ∈ M, is a SAFL function of
the form:

fun SMi(a1, ..., ani
, PC, SP) = ...

where ni = max ({arity(f) | π(f) = SMi})

Arguments PC and SP are used to store the program counter
and stack pointer respectively; a1, . . . , ani

are used to re-
ceive arguments of functions located on SMi. Each stack
machine instance is associated with an instruction memory
function, IMi of the form:

fun IMi(address) =

case address of 0 => instruction 0

| 1 => instruction 1

... etc.

SMi calls IMi(PC) to load instructions for execution.
For example, consider a stack machine instance, SMf ,h , where
we choose to locate functions f (of arity 2) and h (of arity 3).
Then nf,h = 3 yielding signature: SMf ,h(a1, a2, a3, PC, SP).
IMf,h is an instruction memory containing compiled code
for f and h. To compute the value of h(x, y, z) we invoke
SMf ,h with arguments a1 = x, a2 = y, a3 = z, PC = ext hentry

(h’s external entry point—see Section 2.3) and SP = 0. Sim-
ilarly to compute the value of f(x, y) we invoke SMf ,h with
arguments a1 = x, a2 = y, a3 = 0, PC = ext f entry and
SP = 0. Note how we pad the a-arguments with 0’s since
arity(f) < 3.

The co-design of hardware and software means that instruc-
tions and ALU operations are only added to SMi if they ap-
pear in IMi. Parameterising the stack machine template in
this way can considerably reduce the area of the final design
since we remove redundant logic in each processor instance.
We can consider many other areas of parameterisation. For
example we can adjust the op-code width and assign op-
codes to minimise instruction-decoding delay [12]. Figure 4
gives the SAFL code for a 16-bit stack machine instance4.
An alu2 function, and an example stack machine program
which computes triangular numbers is shown in Figure 3.

2.3 Compilation to Stack Code
Figure 2 gives a compilation function from SAFL to stack
based code. Although the translation of many SAFL con-
structs is self-explanatory, the compilation rules for function
definition and function call require further explanation:

2.3.1 Compiling Function Definitions
The code generated for function definition

fun f(x1, . . . , xk) = e

requires explanation in that we create 2 distinct entry points
for f : fentry and ext fentry . The internal entry point, fentry ,
is used when f is invoked internally (i.e. with a Call Int

instruction). The external entry point, ext fentry , is used
when f is invoked externally (i.e. via a call to π(f), the
machine on which f is implemented). In this latter case, we
simply execute k PushA instructions to push f ’s arguments
onto the stack before jumping to f ’s internal entry point,
fentry .

2.3.2 Compiling Function Calls
Suppose function g is in software (g ∈ Dom(π)) and calls
function f . The code generated for the call depends on the
location of f relative to g. There are three possibilities:

4Approximately 2000 2-input equivalent gates when com-
piled using the SAFL silicon compiler. For simplicity we
consider a simple stack machine with no Call Ext instruc-
tions.

1. If f and g are both implemented in software on the
same machine (f ∈ Dom(π) ∧ π(f) = π(g)) then we
simply push each of f ’s arguments to the stack and
branch to f ’s internal entry point with a Call Int in-
struction. The Call Int instruction pushes the return
address and jumps to fentry ; the compiled code for f is
responsible for popping the arguments and link leaving
the return value on the top of the stack.

2. If f is implemented in hardware (f /∈ Dom(π)) then
we push each of f ’s arguments to the stack and invoke
the hardware resource corresponding to f by means
of a Call Extf instruction. The Call Extf instruction
pops each of f ’s arguments, invokes resource f and
pushes f ’s return value to the stack.

3. If f and g are both implemented in software but on
different machines (f, g ∈ Dom(π) ∧ π(f) 6= π(g))
then g needs to invoke π(f) (the machine on which
f is located). We push π(f)’s arguments to the stack:
the arguments for f possibly padded by 0s (see Sec-
tion 2.2) followed by the program counter PC initialised
to ext f entry and the stack pointer SP initialised to 0.
We then invoke π(f) using a Call Extπ(f) instruction.

2.4 The Partitioning Transformation
Having introduced the stack machine (Section 2.1) and the
associated compilation function (Section 2.3) the details of
the partitioning transformation, π̂, are as follows:
Let P be the SAFL program we wish to transform using π.
Let f be a SAFL function in P with definition df of the
form

fun f(x1, . . . , xk) = e

We construct a partitioned program π̂(P) from P as follows:

1. For each function definition df ∈ P to be mapped to
hardware (i.e. f /∈ Dom(π)) create a variant in π̂(P)
which is as df but for each call, g(e1, . . . , ek):

If g ∈ Dom(π) then replace the call g(~e) with a call:

m(e1, . . . , ek, 0, . . . , 0,
︸ ︷︷ ︸

arity(m)−2−k

ext gentry , 0)

where m = π(g), the stack machine instance on
which g is located.

2. For each m ∈ M:

(a) Compile instruction sequences for functions lo-
cated on m:

Codem = {[[df]] | π(f) = m}

(b) Generate machine code for m, MCodem, by re-
solving symbols in Codem, assigning opcodes and
converting into binary representation.

(c) Generate an instruction memory for m by adding
a function definition, IMm, to π̂(P) of the form:

fun IMm(address) =

case address of 0 => instruction 0

| 1 => instruction 1

... etc.

where each instruction i is taken from MCodem.

(d) Generate a stack machine instance, SMT 〈Codem〉
and append it to π̂(P).

For each m ∈ M, π̂(P) contains a corresponding processor
instance and instruction memory function. When π̂(P) is
compiled to hardware resource-awareness ensures that each
processor definition function becomes a single processor and
each instruction memory function becomes a single instruc-
tion memory. The remaining functions in π̂(P) are mapped
to hardware resources as required. Function calls are syn-
thesised into optimised communication paths between the
hardware resources (see Figure 1c).

2.5 Validity of Partitioning Functions
This section concerns some fine technical details—it can be
skipped on first reading.

We clarify the SAFL restriction on recursion5 given in the
Introduction as follows.

In order for a SAFL program to be valid, all recursive calls,

including those calls which form part of mutually-recursive

cycle, may only occur in tail-context. Non-recursive calls

may appear freely.

This allows storage for SAFL variables to be allocated stat-
ically as tail recursion does not require the dynamic alloca-
tion of stack frames.

Unfortunately, in general, a partitioning function, π, may
transform a valid SAFL program, P , into an invalid SAFL
program, π̂(P), which does not satisfy the recursion restric-
tions. For example consider the following program, Pbad :

fun f(x) = x+1;

fun g(x) = f(x)+2;

fun h(x) = g(x+3);

Partitioning Pbad with π = {(f, SM), (h, SM)} yields a new
program, π̂(Pbad), of the form:

fun IM(PC) = ...

fun SM(x,PC,SP) = ... let t = <top-of-stack>

in g(t) ...

fun g(x) = SM(x, <ext_f_entry>, 0) + 2;

π̂(Pbad) has invalid recursion between g and SM. The problem
is that the call to SM in the body of g is part of a mutually-
recursive cycle and is not in tail-context.

We therefore require a restriction on partitions π to ensure
that if P is a valid SAFL program then π̂(P) will also be
a valid SAFL program. For the purposes of this paper we
give the following sufficient condition:

π is a valid partition with respect to SAFL program, P , iff all

cycles occurring the call graph of π̂(P) already exist in the

call graph of P , with the exception of self-cycles generated

by direct tail-recursion.

Thus, in particular, new functions in π̂(P)—i.e. stack ma-
chines and their instructions memories—must not have mu-
tual recursion with any other functions.

5A more formal presentation can be found in [8].

Let σ, be an environment mapping variable names to stack offsets (offset 0 signifies the top of the stack). Let g
be the name of the function we are compiling. Then [[·]]gσ gives an instruction list corresponding to g. (We omit
g for readability in the following—it is only used to identify whether a called function is located on the same
machine).
We use the notation σ{x 7→ n} to represent environment σ extended with x mapping to n. σ+n represents an
environment constructed by incrementing all stack offsets in σ by n—i.e. σ+n(x) = σ(x) + n. ∅ is the empty
environment. The infix operator @ appends instruction lists. Repeat(l, n) is l @ . . . @ l (n times); (this is used
to generate instruction sequences to pad argument lists with 0s).

[[c]]σ
def
= [PushC(c)]

[[x]]σ
def
= [PushV(σ(x))]

[[f(e1, . . . , ek)]]σ
def
=







[[e1]]σ @ [[e2]]σ
+1 @ . . . @ [[ek]]σ+(k−1) @ [Call Extf] if f /∈ Dom(π)

[[e1]]σ @ [[e2]]σ
+1 @ . . . @ [[ek]]σ+(k−1)

@ [Call Int(fentry)] if f ∈ Dom(π) ∧ π(f) = π(g)

[[e1]]σ @ [[e2]]σ
+1 @ . . . @ [[ek]]σ+(k−1)

@ Repeat([PushC(0)], arity(π(f)) − 2 − k)
@ [PushC(ext f entry), PushC(0), Call Extπ(f)] if f ∈ Dom(π) ∧ π(f) 6= π(g)

[[a(e1, e2)]]σ
def
= [[e1]]σ @ [[e2]]σ

+1 @ [Alu2(a)]

[[let x = e1 in e2]]σ
def
= [[e1]]σ @ [[e2]]σ

+1{x 7→ 0} @ [Squeeze(1)]

[[e1 ? e2 : e3]]σ
def
= let l and l′ be new labels in

[[e1]]σ @ [Jz (l)] @ [[e2]]σ @ [Jmp (l′), label: l] @ [[e3]]σ @ [label: l′]

[[fun g(x1, . . . , xk) = e]]
def
= [label: gentry] @ [[e]]g∅{xk 7→ 1, xk−1 7→ 2, . . . , x1 7→ k} @ [Return(k)]

@ [label: ext gentry , PushA(1), . . . , PushA(k), Call Int(gentry), Halt]

Figure 2: Compiling SAFL into Stack Code for Execution on a Stack Machine Instance

2.6 Extensions
2.6.1 Fine Grained Partitioning
We have presented a program transformation to map func-
tion definitions to hardware or software, but what if we want
to map part of a function definition to hardware and the rest
to software? This can be achieved by applying fold/unfold
transformations before our partitioning transformation. For
example, consider the function

f(x,y) = if x=0 then y

else f(x-1, x*y - 7 + 5*x)

If we choose to map f to software our design will contain
a processor and associated machine code consisting of a se-
quence of instructions representing multiply x and y, sub-
tract 7, add 5 times x. However, consider transforming f

with a single application of the fold-rule [2]:

i(x,y) = x*y-7 + 5*x

f(x,y) = if x=0 then y else f(x-1, i(x,y))

Now mapping f to software and i to hardware leads to a
software representation for f containing fewer instructions
and a specialised processor with a x*y-7 + 5*x instruction.

2.6.2 Dealing with Heterogeneous Processors
So far we have only considered executing software on a net-
work of stack machines. Our framework can be extended to
handle a network of heterogeneous processors as follows:
Let Templates be a set of processor templates (c.f. the stack
machine template, SMT, in section 2.1).

Let Compilers be a set of compilers from SAFL to machine
code for processor templates.
As part of the transformation process, the user now specifies
two extra functions:

δ : M → Templates

τ : M → Compilers

δ maps each processor instance, m ∈ M, onto a SAFL pro-
cessor template and τ maps each m ∈ M onto an associated
compiler. We then modify the transformation procedure de-
scribed in Section 2.4 to generate a partitioned program,
π̂δ,τ (P) as follows: for each m ∈ M we generate machine
code, MCodem, using compiler τ(m); we then use proces-
sor template, MT = δ(m), to generate processor instance
MT 〈MCodem〉 and append this to π̂δ,τ (P).

2.6.3 Extending the SAFL Language
Recall that the SAFL language specifies that all recursive
calls must be in tail-context. Since only tail-recursive calls
are permitted, our silicon compiler is able to statically allo-
cate all the storage needed for a SAFL program.
As an example of these restrictions consider the following
definitions of the factorial function:

rfact(x) = if x=0 then 1 else x*rfact(x-1)

ifact(x,a) = if x=0 then a else ifact(x-1,x*a)

rfact is not a valid SAFL program since the recursive call is
not in a tail-context. However the equivalent tail-recursive
factorial function, ifact which uses a second argument to
accumulate partial results is a valid SAFL program.

Although one can sometimes transform a non-tail recursive
program into an equivalent tail-recursive one, this is not al-
ways easy or natural. The transformation of factorial into its
tail-recursive equivalent is only possible because multiplica-
tion is an associative operator. Thus, in general we require
a way of extending SAFL to handle general unrestricted re-
cursion. Our partitioning transformation provides us with
one way to do this:

Consider a new language, SAFL+ constructed by remov-
ing the recursion restrictions from SAFL. We can use our
partitioning transformation to transform SAFL+ to SAFL
simply by ensuring that each function definition contain-
ing recursion other than in a tail-call context is mapped to
software. Note that our compilation function (Figure 2) is
already capable of dealing with general recursion without
any modification.

3. CONCLUSIONS AND FURTHER WORK
Source-level program transformation of a high level HDL is
a powerful technique for exploring a wide range of architec-
tural tradeoffs from an initial specification. The partitioning
transformation outlined here is applicable to any hardware
description language (e.g. VHDL or Verilog) given suitable
compilation functions and associated processor templates.
However, we believe that our methods are particularly pow-
erful in the SAFL domain for two reasons:

• The functional properties of SAFL allow equational
reasoning and hence make a wide range of transfor-
mations applicable (as we do not have to worry about
side effects).

• The resource-aware properties of SAFL give fold/unfold
transformations precise meaning at the design-level (e.g.
we know that duplicating a function definition in the
source is guaranteed to duplicate the corresponding
resource in the generated circuit).

We are in the process of deploying the techniques outlined
here as part of a semi-automated transformation system for
SAFL programs. The goal of the project is to develop a
framework in which a SAFL program can be systematically
transformed to investigate a large number of possible imple-
mentations of a single specification. So far we have devel-
oped a library of transformations which allow us to repre-
sent a wide range of concepts in hardware design including:
resource sharing/duplication, static/dynamic scheduling [9]
and now hardware/software partitioning. In the future we
plan to investigate how partial evaluation techniques [4] can
be used to transform a processor definition function and its
corresponding instruction memory function into a single unit
with hardwired control.

Although initial results have been promising, the project is
still in its early stages. We are currently investigating ways
of extending the SAFL language to make it more expres-
sive without loosing too many of its mathematical proper-
ties. Our current ideas centre around adding synchronous
communication and a restricted form of π-calculus [7] style
channel passing. We believe that this will allow us to capture
the semantics of I/O whilst maintaining the correspondence
between high-level function definitions and hardware-level
resources.

4. ACKNOWLEDGEMENTS
This work is part of a collaborative project, “Self-Timed Mi-
croprocessors”, involving Cambridge University Computer
Laboratory (EPSRC grant GR/L86326), AT&T Laborato-
ries Cambridge and Cambridge Consultants Ltd.

5. REFERENCES
[1] Bjesse, P., Claessen, K., Sheeran, M. and Singh, S.

Lava: Hardware Description in Haskell. Proceedings
of the 3rd ACM SIGPLAN International Conference
on Functional Programming, 1998.

[2] Burstall, R.M. and Darlington, J. A Transformation
System for Developing Recursive Programs, JACM
24(1).

[3] Cardelli, L. The Functional Abstract Machine. Tech-
nical Report TR-107, AT&T Bell Laboratories, April
1983.

[4] Jones, N., Gomard, C. and Sestoft, P. Partial Evalu-
ation and Automatic Program Generation. Published
by Prentice Hall (1993); ISBN 0-13-020249-5.

[5] Landin, P. The Mechanical Evaluation of Expressions.
Computer Journal, Vol. 6, No. 4, 1964, pages 308-320.

[6] Milner, R., Tofte, M., Harper, R. and MacQueen, D.
The Definition of Standard ML (Revised). MIT Press,
1997.

[7] Milner, R. The Polyadic π-calculus: a tutorial. Tech-
nical Report ECS-LFCS-91-180, Laboratory for Foun-
dations of Computer Science, University of Edinburgh,
October 1991.

[8] Mycroft, A. and Sharp, R. A Statically Allocated Par-
allel Functional Language. Proc. of the International
Conference on Automata, Languages and Program-
ming 2000. LNCS Vol. 1853, Springer-Verlag.

[9] Mycroft, A. and Sharp, R. The FLaSH Project:
Resource-Aware Synthesis of Declarative Specifica-
tions. Proceedings of The International Workshop on
Logic Synthesis 2000. Also available as AT&T Techni-
cal Report tr.2000.6 via www.uk.research.att.com

[10] O’Donnell, J. Generating Netlists from Executable Cir-
cuit Specifications in a Pure Functional Language.
In Functional Programming Glasgow, Springer-Verlag
Workshops in Computing, pages 178-194, 1993.

[11] Page, I. and Luk, W. Compiling Occam into Field-
Programmable Gate Arrays. In Moore and Luk (eds.)
FPGAs, pages 271-283. Abingdon EE&CS Books,
1991.

[12] Page, I. Parameterised Processor Generation. In Moore
and Luk (eds.), More FPGAs, pages 225-237. Abing-
don EE&CS Books, 1993.

[13] Sharp, R. and Mycroft, A. The FLaSH Com-
piler: Efficient Circuits from Functional Specifica-
tions. AT&T Technical Report tr.2000.3. Available
from www.uk.research.att.com

[14] Sheeran, M. muFP, a Language for VLSI Design. Proc.
ACM Symp. on LISP and Functional Programming,
1984.

(* +---+

| |

| SAFL specification of simple stack processor |

| Richard Sharp and Alan Mycroft, July 2000 |

| |

+---+ *)

(* -------------------------------- ALU ------------------------------------ *)

fun alu2(op:16, a1:16, a2:16):16 =

case op of 0 => a1+a2

! 1 => a1-a2

! 2 => a1&&a2

! 3 => a1||a2

! 4 => a1^^a2

! 16 => a1<a2

! 17 => a1>a2

! 18 => a1=a2

! 19 => a1>=a2

! 20 => a1<=a2

! 21 => a1<>a2

(* ---------------- Instruction memory here --------------------- *)

(* The following codes: f(x) = if x then x+f(x-1) else 0; *)

(* i.e. it computes triangular numbers *)

fun load_instruction (address:16):24 = case address of

0 => %000010010000000000000001 (* pusha 1 *)

! 1 => %000001010000000000000011 (* call_int f *)

! 2 => %000000000000000000000000 (* halt *)

! 3 => %000000100000000000000001 (* f: pushv 1 *)

! 4 => %000001110000000000001100 (* jz l1 *)

! 5 => %000000100000000000000001 (* pushv 1 *)

! 6 => %000000100000000000000010 (* pushv 2 *)

! 7 => %000000010000000000000001 (* pushc 1 *)

! 8 => %000010000000000000000001 (* alu2 sub *)

! 9 => %000001010000000000000011 (* call_int f *)

! 10=> %000010000000000000000000 (* alu2 add *)

! 11=> %000001100000000000001101 (* jmp l2 *)

! 12=> %000000010000000000000000 (* l1: pushc 0 *)

! 13=> %000001000000000000000001 (* l2: return 1 *)

default => %101010101010101010101010 (* illop *)

external mem_acc (address:16,data:16,write:1):16

inline fun data_read (address:16):16 = mem_acc(address,0,0)

inline fun data_write (address:16,data:16):16 = mem_acc(address,data,1)

Figure 3: The Stack Machine (Part 1 of 2)

(* ---------------------- Stack Machine Instance ------------------------- *)

fun SMachine (a1:16, PC:16, SP:16):16 =

let var new_PC : 16 = PC + 1

var instr : 24 = load_instruction(PC)

var op_code : 8 = instr[23,16]

var op_rand : 16 = instr[15,0]

var inc_SP : 16 = SP + 1

var dec_SP : 16 = SP - 1

in

case op_code of

0 => (* halt, returning TOS *)

data_read(SP)

! 1 => (* push constant operation *)

data_write(dec_SP, op_rand);

SMachine (a1, new_PC, dec_SP)

! 2 => (* push variable operation *)

let var data:16 = data_read(SP+op_rand)

in data_write(dec_SP, data);

SMachine (a1, new_PC, dec_SP) end

! 9 => (* push a-argument operation *)

data_write(dec_SP, a1);

SMachine (a1, new_PC, dec_SP)

! 3 => (* squeeze operation -- op_rand is how many locals to pop *)

let var new_SP:16 = SP + op_rand

var v:16 = data_read(SP)

in data_write(new_SP, v);

SMachine (a1, new_PC, new_SP) end

! 4 => (* return operation -- op_rand is how many actuals to pop *)

let var new_SP:16 = inc_SP + op_rand

var rv:16 = data_read(SP)

in let var rl:16 = data_read(inc_SP)

in data_write(new_SP, rv);

SMachine (a1, rl, new_SP) end end

! 5 => (* call_int operation *)

data_write(dec_SP, new_PC);

SMachine (a1, op_rand, dec_SP)

! 6 => (* jmp (abs) operation *)

SMachine (a1, op_rand, SP)

! 7 => (* jz (abs) operation *)

let var v:16 = data_read(SP)

in SMachine (a1, if v=0 then op_rand else new_PC, inc_SP) end

! 8 => (* alu2: binary alu operation -- specified by immediate field *)

let var v2:16 = data_read(SP)

in let var v1:16 = data_read(inc_SP)

in data_write(inc_SP, alu2(op_rand, v1, v2));

SMachine (a1, new_PC, inc_SP) end end

default =>

(* halt, returning 0xffff -- illegal opcode *)

%1111111111111111

end

Figure 4: The Stack Machine (Part 2 of 2)

