Technical Report A

Number 51

Computer Laboratory

Using information systems to solve
recursive domain equations effectively

Glynn Winskel, Kim Guldstrand Larsen

July 1984

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 1984 Glynn Winskel, Kim Guldstrand Larsen

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

USING INFORMATION SYSTEMS
TO SOLVE RECURSIVE DOMAIN EQUATIONS EFFECTIVELY

Kim Guldstrand Laysen - Glynn Winskel
Department of Computer Science, Computer Laboratory,
University of Edinburgh, University of Cambridge,
King’s Buildings, Corn Exchange Street,
Mayfield Road, Cambridge.
Edinburgh. ST
Abstract.

This paper aims to make two masn contributions. One is to show how to use the
concrete nature of Scott’s information systems to advantage sn solving recursive domasn
equattons. The method ¢s based on the substructure relation between information systems.
This essentially makes a complete partial order (cpo) of information systems. Standard
domain constructions like function space can be made continuous on this cpo so the solution
of recursive domain equations reduces to the more familiar construction of forming the
least fized—point of a continuous function. The second contribulion again relies on the
concrete nature of information systems, this time to develop a basic theory of effectively
given information systems and through this present e simple treatment of effectively given
domains.

0. Introduction.

The mathematical theory of semantics of programming languages founded by Dana
Scott and Christopher Strachey has been based on partial orders of information. To give
the idea, in a simple imperative language 2 command might be denoted by a partial
function from a set of input states to a set of output states. When a function is more
defined we think of it as having more information because because it tells us more about
the input/output behaviour. In general of course the the partial orders of information can
be considerably more complicated, reflecting more intricate types of information, like for
instance that associated with a procedure which takes procedures as arguments. But the
central idea is still the same ; increasing in the partial order means increasing information.
Just as one thinks of computing an integer or a final state so can one think of computing
an element in these more abstract partial orders of information. And just as one has
computations from input states to output states one can have computations which from
input in one partial order of information compute output in another.

Not all partial orders make sense when these intuitions are refined and not surprisingly
to get the theory to work people had to narrow down to more specific kinds of partial order.
The most general partial orders in use are complete partial orders (abbreviated to cpos). -
A cpo has a least element I, called “bottom”, which stands for null information and
satisfies a completeness axiom which we try to motivate. Imagine computing an element
of information like a partial function. The information need not come in one indivisible
lump but may instead be presented as an increasing chain of elements of information, with
information accumulating as time goes on. In a cpo the accumulation of this information,
even over infinite time, is represented by an element of the partial order too. Formally, a
cpo must satisfy the condition that if zo £ 2 C --- C z, C --- is an increasing w—chain
then it has a least upper bound (lub) | |, ©» in the partial order.

Thus computing a value in a cpo is associated with an increasing chain of elements.
What if we want to compute output information from input information in this general
setting? We would naturally expect to model this as a function from one cpo to another.
However not all functions would be feasible from a computational viewpoint. To be feasible
a function f : D — E from one cpo to another should be continuous in the following sense.
Suppose information z in D is delivered in the form of achainzo Czy C---Cz, E -+, 80
T = Un€w z,,. More information as input should yield more information as output; in other
words the function f should be monotonic s.e. y C 2z implies f(y) C f(z). Thus as output
we expect f(zo) C f(z1) C --- C f(zn) C - and ultimately f(z). By monotonicity
Unew f(z2) T f(z) = f(lsew 2n)- To be continuous f should satisfy ||, f(za) =
f(ljned). Intuitively the ultimate output value should be no more than the limit of
the values determined at finite stages in delivering the input, so we can approximate the
ultimate output value arbitrarily closely by the output values at finite stages.

An important property of a continuous function f : D — D on a cpo is that it has
a least fixed point given in a simple way. It is given by fixf = |], f"(L). That this
gives a fixed point follows directly from continuity because f(fixf) = f(ll,c, f"(L1)) =

2

Upeo F®T (L) = fixf. That it is the least follows simply too. Assume = is another fixed
point, so f(z) = . Then L C z and inductively f*(L) C z for all », using monotonicity.
Thus from its definition fixf C z. (In our work we shall need this result not just for cpos
where the partial is over a set but also for large cpos which are over a class. However the
proof is the same.)

Cpos and continuous functions provide a category in which one can do a great deal
of denotational semantics but, in general, cpos are much too crude to support a theory of
computability. Before we can talk about a computable element of a cpo it must first be
presented in an effective way. Most of the cpos which arise in practice are w-algebraic,
which means that they have a countable basis of finite (or isolated, or compact) elements,
and it is via an enumeration of this basis that a concept of computable element can be
developed. The definition of finite element rests on the concept of a directed subset of a
cpo. A subset S of a cpo D is said to be directed iff it is non—null and satisfies Vs,t €
SdueS. sCu & tC u. Anelement z of a cpo D is finiteif e C |]S => Is€ .z s,
for all directed sets S. Intuitively a finite element is a element of information which if it is
realised—used or produced—in a computation is realised in finite time. The set of finite
elements of a cpo D is written as D°. A cpo D is algebraic iff every directed set has a
lub and for all elements = the set {¢ C = | ¢ € D°} is directed with lub z; it is said to
be w-algebraic if D? is countable. With respect to an enumeration of the countable basis,
we say an element is computable if it is the lub of a recursively enumerable set of finite
elements. (There are theories of computability for cpos which are not algebraic—see e.g.
[Sm}—Dbut algebraic cpos seem to do when information is discrete; algebraicity can fail for
the cpos of probability distributions in [S-D].)

The category of algebraic cpos has many nice properties but unfortunately lacks one
essential characteristic; algebraic cpos with continuous functions do not form a cartesian—
closed category because the function space of two algebraic cpos need not be algebraic.
As the function-space construction is used again and again in denotational semantics this
might be a serious drawback. Fortunately there are cartesian—closed (full) subcategories
of algebraic cpos, two of which are widely used.

One is the category of SFP objects and we shall say more on this in the conclusion.
The other, the one we shall be most concerned with here, is that of consistently complete
algebraic cpos with continuous functions. A cpo:is consistently complete iff every com-
patible set has a least upper bound. For X a subset of a partial order, we shall write X7
to mean X is a compatible subset t.e. JyVz € X. z € y. Consistently complete algebraic
cpos are often called domains and we shall write Dom for the category of domains and
w-Dom for the subcategory of domains with a countable basis. (The reader is warned
that “domain” is sometimes used very loosely and can refer to just a cpo.)

Domains have an appealing and suggestive representation as information systems in-
troduced by Dana Scott in [S]. An information system can be viewed as prescription, or
program, saying how to build a domain. In more detail an information system consists of
a set of tokens, to be thought of as assertions, or propositions, one might make about a

3

computation, which are related by entailment and consistency relations. So information
systems are well known and understood. What is novel is their tie~up with domains. An
information system determines a domain with elements those sets of tokens which are con-
sistent and closed with respect to the entailment relation; the ordering is just set inclusion.
Through them the elements of a domain are seen as the logically closed and consistent sets
of assertions. The information associated with an a computation is determined by the type
of assertions one chooses to make about it, 8o previously abstract domain constructions can
now be viewed as constructi?ns on the logical apparatus used to describe computations.

There are technical advantages to working with information systems rather than di-
rectly with domains. As pointed out in [S] properties of domains can be derived rather
than postulated and the representation makes them more amenable. In this paper we are
specifically concerned with solving domain equations using the representation of informa-
tion systems. Because information systems are based concretely on sets and relations they
can be ordered to form a cpo. All the usual domain constructions have their counterparts
as continuous operations on information systems. Recursive domain equations can then
be solved using just the simple results we have given here for finding the least fixed point
of a continuous function. The treatment is elementary, goes over readily to a theory of
computability in information systems, and the results translate over o domains.

This paper owes much to Dana Scott’s work. It is hoped that it will serve as a useful
companion to the introduction to information systems in [S]. However note we shall give
definitions which are slightly different from those given in [S] stemming from the fact that
we do not assume that the token sets always contain a distinguished element A (standing
for the always true assertion). In all cases the domains associated with constructions here
and those of the same name in [S] will be isomorphic.

1. Information systems.

An information system consists of a set of tokens, a consistency predicate and an
entailment relation. Tokens are the units of information which may be valid of a compu-
tation. Those tokens which are taken to be relevant to a computation can vary according
to which aspects one wishes to capture. They might be parts of bit patterns, at a concrete
level, or the input—output pairs of a function being computed at a more abstract level.

Tokens are in logical relationships with each other. In general not all subsets of tokens
will be consistent—the validity of some may exclude the validity of others. For example a
program computing a function on the integers cannot output two different numbers for the
same input. We express the consistency of a set of tokens through a consistency predicate
on finite subsets of tokens. And sometimes sets of tokens may entail others. For instance
two tokens will entail a third if this represents their conjunction. We express this aspect
through an entailment relation between sets of tokens. ' :
wumﬁ’té/@

1.1 Definition. An information system is defined to be a structure A = (4, Con, I),
where A is afset (the tokens), Con is a non-null subset of Fin(A) (the consistent sets) and
I is a subset of Con x A (the entaslment relation) which satisfy:

(i) XCY e€Con = XeCon

(i) a€ A= {a} €Con

(i) XFe = XuU{a}e€Con

(iv) X€Con & a€eX = Xtea

(v) (X, Ye€Con & VoY XFb & YFc¢)=> Xte.

Remark. Note, that unlike [S], we do not assume that the token sets always contain a
distinguished element A standing for the always true assertion.

Id

An information system determines a family of subsets of tokens, called its elements.
Think of the tokens as assertions about computations—assume that a token which is once
true of a computation remains true of it. Intuitively an element of an information system
is the set of tokens that can be truthfully asserted about a possible computation. This set
of tokens can be viewed as the information content of the computation. As such the tokens
should not contradict each other—they should be consistent—and should be closed under
entailment. Of course this is once it has been decided to view the computation at the level
of detail of the information system; in general there may be more than one information
system used to view a computation corresponding to the different levels of abstraction
involved.

1.2 Definition. "The elements, |A|, of an information system A = (4, Con, |) are those
subsets z of A which are

(i) finitely consistent: X Cf" z = X € Con

(ii) F—closed: XCz & Xta=>a€ux.

1.3 Lemma. Let A = (A, Con,|) be an information system. Suppose X € Con and let

Y be a finite subset of A.
(i) IfXFbforeverybeY then XUY € Con and ¥ € Con.
' (ii)) Theset X ={ac A| Xt a} is an element of A.

Proof. (i) Suppose X I b for every b € Y. We show X UY € Con and ¥ € Con by 2
simple induction on the size of ¥. Clearly it holds when Y is null. Suppose ¥ is non-null,
containing a token b, and X I- b for all b € Y. Then X F bfor all b € Y \ {b'} s0 by
induction XU(Y \{¥’}) € Con. By (iv) and (v), XU (¥ \{¥'}) - b'. By (iii), XUY & Con.
By (i), Y € Con too. :

(ii) It follows from (i) that X = {a | X I a} is consistent in the sense of 1.2(i). It is
F—closed because if Y C {a | X a} and Y I @' then X | @' by axiom (v) in the definition
of information systems. [

1.4 Notation. The entailment relation, between consistent sets and tokens, extends in

a natural way to a relation between consistent sets. Let X and ¥ be consistent sets of an

information system (A4, Con,). We write X - ¥ as an abbreviation for Va € Y.X - .
For X any subset of the tokens of an information system write

XZ@I {a|3ZCX.ZF a}.

Thus an information system determines a family of sets. Such families have a simple
characterisation.

1.5 Definition. A closed family of sets is a non—null set F of sets which satisfies
(i) I S is a directed subset of (F , C) then |JS € F and
(i) If U is a non-null subset of F then [\U € F .

Remark. Closed families are mentioned in [Gri] and [S1]. Peter Aczel has pointed out
an approach to domains virtually the same as the one here [A]; the only difference is that
his is based on closed families but as we now see there is a 1-1 correspondence between

information systems and closed families.

1.6 Theorem. .
(i) Let A be an information system. Then |A| is a closed family of sets.

(ii) Let F be a closed family of sets. Define

Ap =T,
X €Conp ¢ (IzeF . xcfirg,
Xtp ae XeConp & acdp & (VzeF.XCz=>a€x).

Then I(F) = (Ap , Conp , g) is an information system.

(iii) The maps A +— |A| and ¥ — I(F) are mutual inverses giving a 1-1 correspondence
between information systems and closed families: If A is an information system then
I(JA|) = A; if F is a closed family then | I(F) |=F

6

Proof.
(i) Let A = (A,Con,) be an information system. We show |A| is a closed family.

As Con is non-null and left—closed with respect to C the null set @ is consistent. By
lemma 1.3, 3 = {a € A | @} a} is an element of A. By axiom (v) it is F—closed. Clearly
@ C = for all z € |A|. Thus |A| has a (least) member @. So certainly JA| is a non-null
family of sets.

Now suppose § is a directed subset of |A|. We show JS € |A|. Firstly J§ is

consistent. Suppose X Cﬁn US. Then, because S is directed and X is finite, X C s for
some s € S. Therefore X € Con. Secondly | J S is F—closed. Suppose X € Con, X F aand
X CUUS. Then as X is finite X C s for some s € S. However s € |A| so a € s. Thus
a €JS. Thus [A] has unions of directed sets.

Suppose @ # U C |A|. We show (U € |A|. Take u € U. We see (U is consistent
as (YU C u. Suppose X C (YU and X }- ¢. Then X C u for all u € U. Each v € U is
k—closed so a € u. Thus a € [YU. Therefore (U is I-—closed and consistent so (YU € |A].

This proves |A| is a closed family.

(ii) Let F be a closed family. It is simple to check that J(®) is an information
system—we leave the details to the reader.

(iii) Let A = (4, Con, I-) be an information system. To show J(|A|) = A we need

A=UlA],

XecCones XCA & (FzelAl X cfing),
XFaeo XcCon & ac A & (Vze|A|. XCxz=ac€x).

Obviously 4 = (J|A| by condition (ii) on information systems.

Let X cfin 4, If X € Conthen XC X ={a| X} a} € |Al. If X C z, where
z € |A|, then by the definition of such eléments = we must have X € Con.

Supbose X € Con and a € A. Clearly if X I a then from the definition of elements
of A we must haveXCz:>a€zforanyz€|A| Suppose (Vz € |A]. X Cz = a € 1).
Then X = {b| X+ b} €|A|so X} a.

Therefore J(|A]) =
Let F be a closed family. We show |J(F)| =F

If z € F then z € |[I(F)|, directly from the definition of consistency and entailment
in I(F). Thus F C [I(F).

Now we show the converse inclusion |I(F)| CF . Write J(F) = (Ap ,Conp , Fp)
as above. Suppose X € Conp . Then U = {y € F | X C y} is a non-null subset of
F from the definition of Conp and X = U from the definition Fp . As F is a closed
family X € F. Nowif z € |J(F)| then § = {X | X clin z} is a directed subset of
(F,C). AsF isaclosed family z =JS € P . Thus |[I(F)|CF .

The two inclusions give |IT(F)| =F .

The facts, J(|A|) = A for all information systems A and |T(F)| = F for all closed
families F , provide a 1-1 correspondence between information systems and closed families.

Information systems determine a closed family. Ordered by inclusion these form a
domain. In fact all domains can be presented this way as we see later.

1.7 Theorem. Let A = (A, Con,) be an information system. Its elements, |A|, ordered
by inclusion form a domain t.e. a consistently complete, algebraic complete partial order.
Its finite elements are of the form X = {a € A | X - a}, where X € Con, and the least
element of |A| is @.

Proof. Let A = (A,Con,) be an information system with elements |A|. As |A| is a
closed family it is a cpo ordered by inclusion with 1 = @.

We require that |A| is consistently complete s.e. if Yz € V. £ C y, for V C |A| and
y € |A], then thereisalubof V in |[A|. HoweverifVee V. CythenU ={y|Vz€V.x C
y} is a non-null subset of the closed family |A|. Thus by property (ii) in the definition of
closed family we have [JU € |A|, and (U is clearly a lub of X.

We show |A| ordered by inclusion is an algebraic cpo.

Firstly we characterise the finite elements: Suppose z is a finite element of the cpo
|A|. Then z = J S where S is the directed set § = {X | X cfin z}. Because z is a finite

element, £ C X for some X gﬁ"’ z. Thus £ = X for some X gﬁ"' z. Conversely, assume z
is an element of the form X for some X € Con. Suppose z C |J § for some directed subset
of the cpo |A|. Then X C s for some s € S, making £ C s too. This argument shows the
finite elements of the cpo |A| are precisely those elements of the form X for X € Con.

Clearly for = € |A| we have z = J{X | X cfin z}. Thus each element of |A]
dominates, and is the lub of, a directed set of finite elements. So |A| ordered by inclusion

forms an algebraic cpo.

We conclude that (JA|, C) is a consistently complete algebraic cpo and so a domain.

Thus information systems determine domains of information. Notice how the subtle
idea of information introduced by Scott in his theory of domains now has a natural in-
terpretation. By representing a domain as an information system we see the information
associated with a computation as the set of tokens that are valid of it and an increase in
information as the addition of valid tokens to this set.

An arbitrary domain (consistently complete algebraic cpo) is associated with a natural
information system. The intuition is that a finite element is a piece of information that a
computation realises—uses or produces—in finite time, so it is natural to take the finite
elements as tokens. Then the consistency and entailment relations are induced by the
original domain. A finite set of finite elements is consistent if it is compatible and entails
an element if its least upper bound dominates the element.

1.8 Definition. Let (D, C) be a domain (a consistently complete algebraic cpo). Define
ISD = (D°,Con, I-) where D° is the set of finite elements of D and Con and I are defined

as follows:

X eCone XD & Xxi,
XFee XeCon & eC | X.

1.9 Proposition. Let D be a domain. Then ISD is an information system with a
domain of elements ordered by inclusion isomorphic to D. The isomorphism pair is

f:D — |ISD| given by 8 : d+ {e € D° | e C d},
¢ : |ISD| — D given by ¢ : z — | |=.

Thus we have shown how an information system determines a domain of elements and
vice versa how a domain determines an information system with an isomorphic domain of
elements. We are justified in saying information systems represent domains. In tiie next
section we see this expressed as an equivalence of categories.

2. The eategofy of information systems.

Information systems are equipped with morphisms called approximable mappings in
[S]. Approximable mappings between information systems correspond to continuous func-

tions between the associated domains.

2.1 Definition. Let A = (4,Con,) and B = (B, Con, I-) be information systems. An
approximable mapping r : A — B is a relation v C Cony X Conp such that:

(i) 9ro,

(i) Xr¥ & XrY'= Xr(YUY')

(i) X'FaX & XY & Y Fp V' = X'vY'
for all X, X' € Cony and Y,Y’ € Conp.

Intuitively an approximable relation expresses how information in one information
system entails information in another. For an approximable mapping v : A — B, XrY
can be read as information X in A entails information ¥ in B. In particular the relation
r might be induced by a computation which given information in A as input delivers

information in B as output—see [S] for further intuitions.
!

It is easy to see, and is shown in [S], that information systems with approximable
mappings form a category in which mappings are composed by the usual composition of
relations; the identity mapping on an information system A = (A4, Con, I) is the relation
l‘Ag CODA X CODA.

We have seen how an information system A represents a domain |A|. In a similar
way an approximable mapping r represent a continuous function |r|. This operation | — |

acting on both information systems and approximable mappings is a functor from the’

category of information systems to the category of domains. Conversely, we have seen how
a domain D can be associated with an information system IS D and this operation extends
to continuous functions so that a continuous function between domains is associated with
an approximable mapping between such information systems. This operation IS is a
functor from domains to information systems. Now when we represent a domain D as
an information system IS D, the domain |IS D] is isomorphic to D. And similarly when
we take the domain of an an information system A, to obtain |A|, and then form the
information system IS|A] this is isomorphic to the original information system A. In the
language of category theory the two functors | — | and IS passing back and forth between
the two categories determine an equivalence of the categories of information systems and
domains (see [Mac] for a precise definition of equivalence).

2.2 Proposition.
Let v : A — B be an approximable mapping. Then |r| : |A| — |B| given by

Irl(z) = J{Y | 3X C =. XrY}

is a continuous function between the domains |A| and |B| ordered by inclusion. In fact
| — | is a functor from the category ISys of information systems to the category Dom of

domains.

10

/

Let f': D = E be a continuous function between cpos D and E. Define the relation
ISf C COHISD X COHISE by

X(SHY & | ¥ c 7 | x%.

Then ISf : ISD — ISE is an approximable mapping. In fact IS is a functor from the
category Dom of domains fo the category ISys of information systems.

The functors | — | : ISys — Dom and IS : Dom — ISys establish an equivalence
of the categories ISys and Dom .

Because the categories ISys and Dom are equivalent, from a category-theoretic point
of view they are essentially the same; a categorical construction on one passes over via
the appropriate functor to the same categorical construction on the other. Still we have
gained something. The rather abstract category of domains of information and contin-
uous functions is represented by the more concrete category of information systems and
approximable mappings. We can work concretely, with basic set theory, to produce con-
structions on information systems. One bonus, as we shall see, is an elementary treatment

of recursive domain equations,

11

3. A complete partial order of information systems.

Because we work with a concrete representation of domains we can replace the usual
inverse limit constructions used in building up solutions to recursive domain equations by
a fixed—point construction on a complete partial order of information systems. The order
on information systems, 4, captures an intuitive notion, that of one information system
being a subsystem, or substructure, of another.

3.1 Definition. Let A = (4,Cony, F4) and B = (B,Conp, Fp) be information
systems. Define A 4 B iff

(i) ACB

(i) X€Congy & XCA & X€Conp

(iil) XFaeeo XCA & acA & Xlpa
When A 4 B, for two information systems A and B, we say A is a subsystem of B.

An information system A is a subsystem of another B iff A is a restriction of B to
the tokens of A. Precisely:

3.2 Definition. Let B = (B,Conp, Fp) be an information system and let A C B.
Define the restriction of B to 4 to be B[A =4¢; (4, Con’, ') where

XecCon' & XCA & X € Con and
XHbe XCA & becAd & X6

3.3 Proposition. Let B = (B, Cong, F-p) be an information system and let A C B.
Then B[A is an information system and B[A 4 B.

Let A = (A, Cong,t4) and B be information systems. If A « B then A = B[A.

Let A = (A, Conyg, 4) and B = (B, Cong, -g) be information systems. If their token—
sets are equal, i.e. A= B, and A 4B then A = B.

Proof. Obvious from the definition of 4. B

This definition of subsystem almost gives a complete partial order {cpo) of information
systems. There is a least information system, the unique one with the emptyset as tokens.
Each w—chain of information systems increasing with respect to ¢ has a least upper bound
(lub), with tokens, consistency and entailment relations the union of those in the chain.
But of course information systems form a class and not a set and for this reason alone
they do not quite form a cpo. We could say they form a large cpo. This is all we need.
(Very similar approaches to solving domain equations, or equations for structures very like
domains, occur in [BC], [W1], [A] and [S1].)

3.4 Theorem. The relation 4 is a partial order with L =4 (2, {@},0) as least
element. Moreover if Ag < A; <4 ... 94 A; 4 ... is an increasing w-chain of information
systems A; = (A;, Con;, F;) then there exists a least upper bound given by

UA.‘ = (U A,’,U F;,U Con;).

12

Proof. Clearly < is a partial order and L is the <¢least information structure.

Let Ag <« Ay a4 ... 4 A; 4 ... be an increasing w-chain of information systems
A; = (Ai, Cony, ;). Write A = (4,Con,) = (J; 4, U; Fi,U; Con;). It is routine to

check that A is an information system.

It is an upper bound of the chain: Obviously each A; is a subset of the tokens A;
obviously Con; C Con while conversely, if X C A; and X € Con then X € Con; for some
7 > 1 but then X € Con; as A; 4 Aj; obviously F;CI while conversely if X C 4;, a € 4;
and X I ¢ then X F; a for some j > § but then X F; ¢ as A; 4 A;.

It is a least upper bound of the chain: Assume B = (B, Cong,) is an upper bound
of the chain. Clearly then A = U,. A; C B. Clearly Con = U,- Con; C Cong. Alsoif X C A
and X &€ Conp then as X is finite X C A; for some 5. So X € Con; C Con as A; 4 B. Thus
XeCone XCA & X eCong. Similarly X Fa e X CA & a€c A & Xtpaea.
Thus A 4 B making A the lub of the chain. §

We extend the subsystem relation to n—tuples of information systems. They form a
large cpo too. ‘

3.5 Definition. For n € w write ISys" for all n-tuples (Ag,...,An_y1). Write I, for
the projection map I;(Aq,...,Ap_ 1) =A;
For (Ag,...,A, ;) and (Bo, B,_;) in ISys" write

(AOy"';An—-l)ﬂ(BO)-“aBn—l)@AOﬂBO & - & An—lﬂBn——l-

3.6 Notation. We shall often use the same notation for n—tuples of information systems
as for single ones. Whether A stands for a single information system or a fuple will always
be clear from the context.

3.7 Proposition The relation q is a partial order on ISys" with least element
(L, J_) There are least upper bounds of increasing w-chains in ISys™; in each co-
ordmate j the least upper bound U A; of a chain Ag < Ay 4... 4 A; 4 ... satisfies

I;(U; Ad) = U TL(A).

We shall be concerned with continuous operations on information systems and using
them to define information systems recursively.

3.8 Definition. Let F: ISys™ — ISys" be an operation on information systems.

The operation F is said to be monotonic (with respect to <) iff A «B = F(A) <« F(B)
for all information systems A € ISys™ and B € ISys".

The operation F is said to be continuous (with respect to <) iff it is monotonic and
for any increasing w-chain of information systems Ag 4 A; 4 ... 94 A; 4 ... in ISys™,
U; F(A;) = F(U; A:). (Notice that since F is monotonic | J; F(A;) exists.)

13

Thus, as an example, proposition 3.7 says the projection maps IL; are continuous on
tuples of informatioq systems ordered by «.

Fortunately in reasoning about the monotonicity and continuity of an operation we
need only consider one input coordinate and one output coordinate at a time because of
the following facts, well-known for cpos.

3.9 Proposition. Let F : ISys™ — ISys" be an operation on information systems.

It is monotonic, respectively continuous, (with respect to <) iff it is monotonic, re-
spectively continuous, in each argument separately (i.e. considered as a function in any
one of its argument, holding the others fixed).

Similarly it is monotonic, respectively continuous, (with respect to <) iff it is mono-
tonic, respectively continuous, considered as a function to each output coordinate (i.e.
each function Il; o F is continuous for j < n).

Thus in verifying that an operation is monotonic or continuous we ultimately have
to show certain unary operations are continuous with respect to the subsystem relation
4. The next lemma will be a great help in proving operations continuous. Generally it is
very easy to show that a unary operation is monotonic with respect to 4 and continuous
on the token sets, a'notion we now make precise.

3.10 Definition. Say a unary operation F on information systems is com‘{f'nuous on
token sets iff for any w-chain, Ag 9 A, 4...4A; 4..., each token of F(UiA,-)'is a token
of U; F(As). '

3.11 Lemma. Let F be a unary operation on information systems. Then F is continuous
iff B is monotonic with respect to 4 and continuous on token sets.

Proof. .

only ¢f: obvious.

if Let Ag 9« A; 94... 4 A; 4 ... be an w—chain of information systems. Clearly
U;F(A;) a4 F(U; A;) since F is assumed monotonic. Thus from the assumption the

tokens of |J; F(A;) are the same as the tokens of F(lJ; A;). Therefore they are the same
information system by proposition 3.3. §#

Now we relate the subsystem relation on information systems to corresponding rela-
tions on families of sets and domains. Recall information systems are in 1-1 correspondence
with closed families. The reader will have no difficulty in showing:

3.12 Proposition. For information systems A and B

AdB o [Al={ynd|ye|B]}.

14

The ordering < on information systems induces an embedding—projection pair between
domains. Recall the definition of embedding-projection pair.

3.13 Definition. For domains D and E we write DA Eiff0:D— Eand¢: E — Dare
continuous functions such that ¢o 8§ = 1p and o ¢ C 1g. Then @ is called an embedding
and ¢ is called a projection. :

8.14 Theorem. Let A = (A,Cong,t4) and B = (B, Cong, Fp) be two information
systems. Then A ¢ B = |A| <} |B| where f(z) = {b € B]3X C =. X tp b} and

$(y) =yn A.

Proof. 1t should be checked that § and ¢ are well-defined as mappings, that (z) € |B|
when z € |A| and ¢(y) € |A| when y € |B|, and also that the mappings are continuous.
This is left to the reader. '

The following proves that § and ¢ form an embedding-projection pair between [A|
and B}, t.e. (i) ¢of =1p and (ii) fod C 14:

(i) Let z € [B|. Then

(60 ¢)(2)=0(¢(2)) =0(zn A) ={be B]3X C(2nA). X Fp b}
C{beB|3XCz Xlpb} ==z

(ii) Let z € |A|. Then as A <B we have §(z)NA={a€ A|IX C z.X}F, a} = =

Because the categories of domains and information systems are equivalent, embeddings
and projections have their counterparts as approximable mapings. The approximable
‘mappings associated with functions # and ¢ above are IS¢ and IS¢ given by

X(IS)Y & XCA & YCB & XFpY
Y(IS) X X CA & YCB & Yhp X

Embedding-projection pairs are central to the inverse-limit method of constructing
solutions to recursive domain equations, the original method devised by Scott (see [St, P]).
Intuitively an embedding—projection pair tells you how one domain approximates another,
and solutions to recursive domain equations are built-up as inverse limits of chains of
embeddings. Working at the abstract level of domains, the embeddings are necessary to
express how one domain fits inside another. With information systems however, because
they are more concrete, the way in which one information system approximates another can
be expressed directly by <, based on inclusion of sets. Using the standard theory of least
fixed points for cpos we know that any continuous operation, F, on information systems has
a least fixed point fixF given by the least upper bound, | J; F*(L), of the increasing w-chain

15

to recursive domain equations using inverse limits the solution is generally a solution only
to within isomorphism, when we use least fixed points in the cpo of information systems

we have the equality fixF = F(fixF).

LaF(L)<aF?*(L)<g---aF*(L) <. Notice that whereas in constructing the solution

In the next section we shall see many examples of operations on information systems
and how we can use the large cpos of this section to obtain solutions to recursively defined
information systems. Because the machinery works for operations ISys™ — ISys™ we can
recursively define several information systems simultaneously.

One thing may be puzzling the reader; why do we build a large cpo from the relation
< rather than the simpler relation based on coordinatewise inclusion of on information in
another? This is a partial order and does indeed give another large cpo. It even has the
added bonus of having meets of arbitrary sets and forms a consistently complete algebraic
domain when restricted to information systems whose tokens all lie in some particular
set. (This domain could thus be represented by an information system itself.) However it
suffers a major drawback; the function space construction on information systems—defined
in the next section—while being continuous in its right argument is not even monotonic
in its left argument with respect to this inclusion order. :

16

4. Comnstructions.

In this section we give constructions of lifiing (——)1, sum +, separated—sum @, product
X and ezponentiation or function space — on information systems. They induce the usual
lifting, sum, separated—sum, product and function space of constructions on domains. We
choose them with a little care so that they are also continuous with respect to 4. In this way
we can produce solutions to recursive equations for information systems written in terms
of these constructions in a swift, uniform and elegant manner. Because each construction
extends to a functor on the category of information systems the apparatus transfers to the
equivalent category of domains, producing solutions to recursive domain equations there.

Our concrete constructions will rely on these simple operations on sets.

4.1 Notation. For two sets A and B let A W B be the disjoint union of A and B, i.e.
Ay B = ({0} x A)U ({1} x B). Write énj, : A > AW B and énj; : B — AW B be the
injections taking ¢nj, : @ — (0,a) for @ € A and snj, : b+ (1,0) for b € B. Define the
partial functions outy : AW B — A and out; : Aw B — B projecting out of the disjoint
union to the component parts by ouly : (0,a) +— a iff a € A and outy : (1,b) — b iff b € B.
We shall often extend functions on sets to functions on subsets in the natural way. For
example when X C AW B we write oulp X for {a € A | Ic € X.ouly(c) = a}.

So far we have constructed only one trivial information system L = (@, {@}, @) based
on the null set of tokens. Our constructions take—off with lifting.

4.2 Definition. Let A = (A4, Con,}) be an information system. Define the lifting of A
to be Ay = (4',Con’, ') where:
(i) A'={0}wA
(i) X € Con’ ¢ out; X € Con
(i) XHec e X#0O & (outg(c)=0 or
(Fe € A.outi(c) =a & outy X |- a)).

This construction like those that follow is best motivated by considering its effect on
the family of configurations. It prefixes the family by an element consisting of an extra
token.

4.3 Example. Define O = Ly. Then O has one token (0,0), consistent sets @ and
{(0,0)}, and entailment relation {(0,0)} I (0,0). Its elements ordered by inclusion form

the domain: { (0,0)}’

17

4.4 Proposition. Let A be an information system. Then Ay is an information system
with elements of the form

|At|={F}u{{0} wz | = € |Al}.

Proof. Firstly we show {@}U {{0}w=z | z € |A|} C |A;|. Obviously @ is consistent and
@ 1 ¢ for any c so @ € |Ay|. Assume now that z € |A|. We show y = {0} Wz is an
element .of |A|. Clearly y is consistent. Suppose X Cy & X ' ¢. Then X 7 @ and
either oufy(c) = 0 so ¢ € y or outy X - a where outy(c) = a. In the latter case oufy X C %
so @ € z, making ¢ € y. Thus y is consistent and H'—closed and so an element of A;.

Now we show the converse inclusion |Ay] C {@} U {{0} W=z | = € |A|}. Suppose
y € |At]| and y # @. As y is F'—closed it contains snj,(0). Take z = oufyy. Clearly z is
consistent in A. Suppose Z C z & Z + a. Then snj; Z -’ inj,(a) and snj; Z C y which
implies inj,(a) € y so a € z. Therefore y = {0} W for some element =z of A. §

4.5 Theorem. The operation A — A; is a continuous operation on information systems
ordered by 4.

Proof. We use lemma 3.11. We first show lifting is monotonic. Assume A 9 B for
two information systems A = (A4,Cong, F4) and B = (B,Cong, Fp). Write A; =
(A',Cong’,F4') and By = (B',Conp',Fp'). Let us check A; 4 By:

Obviously A’ = {0} w A C {0} w B = B';
Obviously X € Cony' & X C B & outy X € Conyg & X C A" & out; X € Conp;

Obviously

Xtplceo XCA & ced &
X#@ & (outy(c) =0 or (Ja € A.outi(c)=0a & out; X k4, a))
S XCA & cec A &
X#0 & (outy(c) =0 or (Ja € B.outy(c) =a & out; X Fp a)).

Thus Ay < By. Therefore (—), is monotonic. It remains to show that it acts continuously
on token-sets. Let Ag 9 A; 4 ... 4 A; 4 ... be an w—chain of information systems
A; = (A;,Con;, k). The seb of tokens of (U; As), is {0} @ (U; Ai) which is clearly equal
to U,({0} w A;) the set of tokens of |J;(A;);. Thus by lemma 3.11 we know lifting is a
continuous operation on information systems ordered by 4.

4.6 Example. Because lifting is continuous wrt < it has a least fixed point {1 = {};. As
an exercise the reader can work out the set of tokens and show that its domain of elements
|©2] is isomorphic to the order type w + 1.

18

Another useful construction is that of the sum of two information systems which is
formed by juxtaposing disjoint copies of the two information systems. It has the effect of
replacing the two bottom elements of the two sets of configurations by the single configu-
ration @ so joining disjoint copies of the elements at their bottom elements.

4.7 Definition. Let Ag = (4,Cong, Fo) and A; = (4,Con,, ;) be information
systems. Define their sum, Ao + Ay, to be C = (C, Con, I-) where:
(i) C=(Ao\{a|Dlroa})w(A1\{a|DBF;a})
(i) X € Con & IXp € Cong.X = injy Xy or IX; € Cony. X = snjy X4,
(iii) XkFa & 3X0,(10.X0 "‘0 ao & X = in]‘OXo & a= injo(ao) or
3X1,01.X1 b1y & X=inj, X, & a=inj(a;).

4.8 Example. We can define the information system of truth values by T = O + O. Its
domain of configurations looks like:

4.9 Theorem. The operation + is a continuous operation on information systems
ordered by 4.

Proof. It is necessary to verify that if A and B are information systems then so is their
sum A + B. That A + B satisfies the properties (i) to (v) follows, property for property,
from the fact that A and B satisfy (i) to (v).

We show that + is continuous with respect to 4. By definition of continuity we must
show that + is continuous in each argument. We prove + continuous in its first argument.
Then, by symmetry, it is easy to see that + will be continuous in its second argument too.

First we show + is monotonic in its first argument. Let A = (A,Conyg, F4), A’ =
(A’,Conyr, F4r) and B = (B,Conp, Fp) be information systems with A q A'. Write
C = (C,Con,F) = A +B and C' = (C’,Con’, ') = A’ + B. We require C 1 C' i.c.

(i) ccc
(i) X€Con & XCC & X e Con'
(i) XFae© XCC & ea€C & Xt'a
(i) From the definition of + and the assumption A 4 A’ we get C C C'.

(ii)“=". Let X € Con. Then X = {0} X X, for some Xy € Cong or X = {1} x X, for
some X; € Conpg. Assume X = {0} x Xo. Then clearly X C C and X, € Cony: since

19

A g A'. Therefore by:the definition of +, X € Con'. Now assume X = {1} x X; wheré
X, € Con,. Then directly from the definition of 4 we have X € Cong:-.

(ii) “<=”. Suppose X € Con' and X C C. Then either X = {0} X X for some X, € Cony:
or X = {1} x X, for some X; € Conp. In the former case Xo C A 8o, as A g A’ we
obtain X, € Cony. In the latter case X € Cong trivially.

(i) is very similar to (ii).

This shows + monotonic in its first argument. It remains to show that + acts con-
tinuously on the token-sets. Let Agp 4 A; 4...4 A; 4... be an w—chain of information
systems A; = (4, Cony, b). The set of tokens of (1J; As)+B is (Ui, 4:)\{a | 3. O
a}) w(B\ {b|DFp b}) which is equal to Usc,,((Ai\ {e | B Fia}) w(B\{b| D Fpb}))
the set of tokens of |J,(A; + B).

Thus + is continuous in its first and, by symmetry, its second argument, and is
therefore continuous. J

4,10 Proposition. Let A and B be information systems. Then

z€|A+B| & (Fy€lAlz=injo(y\ D)) or (y€|B|.z = injy(y\ D))

4.11 Example. Because + is confinuous we can construct the least information system
N such that N = O 4 N. Its elements form the flat (or discrete) domain of integers:

Another form of sum is common in the literature on cpos. It is the so—called separated
sum. It can be obtained by composing + with lifting.

4.12 Definition. Let A and B be information systems. Define their separated sum by
AoB= AT + By. .

4.13 Theorem. The operation @ is a continuous operation on information systems with
respect to 4.

Proof. Clear as separated sum is derived by composing the two continuous operations of
lifting and sum. §

20

If A and B are information systems the effect of separated sum on their domains of
elements can be illustrated by:

\Al |8l

The separated sum forms new bottom elements below the domains and fuses them together. .

The product construction on cpos is well-known; it is the coordinatewise order on
the cartesian product. The desired effect is obtained on information systems by forming
disjoint copies of the token sets and taking finite sets to be consistent if their projections
are consistent and a consistent set to entail a token if it does so when projected into the
appropriate component.

4.14 Definition. Let Ay = (4,Cony, o) and A; = (A4, Cony, F;) be information
systems. Define their product, Ag X A,, to be the information system C = (C, Con, I)
where: '
(i) C=A4ywAi,
(i) X € Con & outyX € Cony & out; X € Con,
(i) XFc e (¥oedo. a=oubo(c) = outeXtoa) &
a € Ay. a = outy(c) = out, X Iy a).

4.15 Theorem. The operation X is a continuous operation on information systems
ordered by <. ' '

Proof. 1t is routine to check that the product of two information systems is an information
system. We show that the product operation is monotonic and continuous on token-sets.
Then by lemma 3.11 we know it is continuous with respect to <.

Monotonsc. Let A a4 A’ and B be information systems. The tokens of A x B
obviously form a subset of the tokens of A’ x B. Suppose X is a subset of the tokens of
A x B. Then X is consistent in A x B iff {a | (0,¢) € X} and {b | (1,b) € X} are both
consistent in A and B respectively. Because A ¢ A’ this is equivalent to X being consistent
in A’ x B. Suppose X is 2 finite set of tokens of A X B and c is a token of A x B. Then
XFcin AxBiff (c =(0,a0) & {a](0,a) € X})or (c=(1,b;) & {b] (1,b) € X}).
Because A 4 A' this is equivalent to X ¢ in A’ x B. Thus A x B ¢ A’ x B, Thus x is
monotonic in its first argument.

Continuous on token—sets. Now let Ay 9« A; 4... 4 A; 4 ... be an w—chain of
information systems. A token of (|J; A;) X B is clearly a token of A; X B for some i € w,
and so a token of | J;(4; x B).

21

Thus by lemma 3.11, x is continuous in its first'argument. Similarly it is continuous
in its second argument. Thus X is a continuous operation on information systems with

respect to 4. f

As expected the elements of the product of two information systems have two com-
ponents corresponding to an element from each information system.

4.16 Propositioh, Let A and B be information systems. Then

z€|A X B| & outoz € |A| & oulyz € |B|.

4.17 Example. Now we know that the product construction x of information systems is
continuous wrt < we can form information systems like T as the least fixed point of the
continuous operation X + T x X, where T is the information for truth values. The domain
of its elements is isomorphic to infinite sequences of elements of T ordered coordinatewise.

From Scott’s work it is well-known that the continuous functions between domaing
themselves form a domain when ordered pointwise. Using information systems the function
space is represented by the following construction which has the approximable mappings
between two information systems as its elements. '

4.18 Definition. Let A = (4,Conga, F4) and B = (B,Conp, Fp) be information
systems. Define their function space, A — B, to be the information system
C = (C,Con, |-) where:
(i) © =Cony x Conpg
(ll) {(XO,YO),..,,(X _1,Yn_1)} € Con &
VIC{0,...,(n—-1)}.U{X; | i €I} € Cony = |J{Yi|s €I} € Conp
(i) {(Xo,Y0)y-+os(Xn—1, Yua} F (X, V) U{Y: | XFa X} B Y.

4.19 Theorem. The operation — is a continuous operation on information systems
ordered by 4.

Proof. Firstly we require that the ——operation produces an information system. Let A
and B be information systems. We should check that A — B is an information system.
The more difficult conditions are (iii) and (v) which we verify, leaving the others to the
reader:

(iii) Suppose {(Xo,Ys), .., (Xn-1,Yn-1)} F (X,Y). We require
{(Xo,Y), s (Xn1,Yu_1),(X,Y)} € Con.
Thus we require that if J C {0,...,n — 1} and Y{X; | 7 € J} UX € Cony then
U{Y; | j € J}UuY € Conp. Assume J{X; | j € JJUX € Conyg. Then J{X; | j €
JYUU{X: | X 4 X;} € Cong. Now as {(Xo,Ys),...,(Xn-1,¥Yn_1)} € Con this makes
U(Y; | j e JJUU{Yi | X Fa X;} € Conp. But | J{V; | X k4 X;} Fp Y, because

22

{(Xo0,Y0)y -, (Xp—1,Yu—1)} F (X,Y). Consequently U{V; | j € JJUW{Y:i | X Fa
X;}bp Y so|J{¥; | 7 € J}UY € Conp, as required to verify (iii).

(v) Suppose {(Xo,Y0),.-,(Xn—1,Yn1)} F {(Z0,V0),- -1 (Zm-1,Vin—1)} F (U,W).
We require {(Xo, Yo0),..-,(Xn—1,Yn-1)} F (U, W) s.c.

¥ | U kg X} - W

Suppose U +4-Z;. Then because J{¥; | Z; 4 X;} bp Vj wehave J{¥; | U b4 X;} Fp V.
Therefore J{V; | U Fa X} Fp U{V; | U k4 Z;} Fp W. By the transitivity of Fp we
obtain the required result, and have verified (v).

Satisfied that — is an operation on information systems we now show it is continuous
with respect to 4 in each argument separately. We use lemma 3.11.

First we show — is monotonic in its first argument. Suppose A 4 A' and B are
information systems. Write C = (C, Con,) = A — B and C’ = (C’,Cor’, H) = A’ - B.
We require C 4 C' so we check conditions (i), (ii), (iii) of 3.1 hold:

(i) Clearly C = Conz X Cong C Conyr X Cong = C'.

(ii) Let (Xo,Y0), .., (Xn—1,Yn—1) be tokens of C. Because A 4 A" wehave |J;, X; €
Cony iff U;c; Xi € Conly, for a subset I C {0,...,(n—1)}. So inspecting the definition of
the consistency predicate for the — construction we see that {(Xo, ¥o),...(Xn-1,Yn-1)} €
Con iff {(X(), Yo), o (Xn_l 5 Yn—l)} c COII'.

(iii) Suppose (Xo,Ys),...(Xn—1,Yn—1) and (X,Y) are tokens of C. Because A 4
A’ we have X k4 X; iff X k4 X;. So inspecting the definition of the entailment
relation for the — construction we see that {(Xo,Yo),...(Xn-1,¥n-1)} F (X,Y) iff
{(Xo,Yo)y .. (X1, Yua)} H (X, Y).

Thus C 4 C' so — is monotonic in its first argument.

Now we show — is continuous on token-sets in its first argument. Let Ag 4 A; «
...4A; 4... be an w—chain of information systems A; = (4;,Con;, ;). Let (X,Y) be a
token of (|J; A;) — B. Then X gﬁ" U; A; is a consistent set of tokens from | J; A;. Being
finite X C A; for some 7 € w. But then X € Con; so (X,Y) is a token of A; — B. Thus
as required (X,Y) is a token of | J,(A; — B;).

By lemma 3.11 we deduce that — is continuous in its first argument. A similar
but even simpler argument shows that — is continuous in its second argument too, and
therefore it is continuous. §

4.20 Proposition. Let A and B be information systems. The elements of A — B are
precisely the approximable mappings from A to B.

23

Remark. We could have constructed an isomorphic information system for the function
space A — B using tokens Cong x B instead of Cong x Conpg. For this alternative
construction the elements would only be in 1-1 correspondence, and not coincide precxsely,
with the approximable mappings. But of course that is not a problem.

As remarked in [S] it is the fact that products and function spaces exist, along with
some mappings natural to them, that makes information systems and approximable map-
pings form a cartesian closed category. But we have other constructions too. We can now
give definitions of information systems by composing the operations (-),, +, @, X, —,
tupling and projection starting from the information system L. Because these operations
are all continuous with respect to < the definitions can be recursive. Clearly these con-
structions can be used to give a semantics fo a language with which to define datatypes.
There are some well-known operations we have not mentioned yet like the Hoare and
Smyth powerdomains, strict function space and smash product. Their definition is left to
the reader (see [S]). Any operation on information systems, provided it is continuous with
respect to <, can be used in the recursive definition of information systems. One is free to

define and use them.

4.21 Example. Let A be some fixed information system. The operation

X +— A® (X — X) is a continuous operation on information systems. It has a least fixed
point D = A & (D — D). This information system, and its associated domain, gives a
nontrivial model for the A-calculus with atoms (see e.g. [St] or [P]).

24

5. Effectively given information systems.

At present information systems do not support a notion of computable element. This
in turn rests on what it means for an information system to be given effectively. In this
section we define effectively given information systems, their computable elements, and
effective morphisms between effectively given information systems and so begin to make
the work of the previous sections effective.

We restrict ourselves to information systems with a countable set of tokens. We shall
code the tokens of an information system as non-negative integers. We can code pairs via
the well-known 1-1 correspondence

(n,m) = %(n+m)(n+m+1)+m

between pairs of integers (n, m) and integers (n,m). We code triples by (p, (g, r)) which we
abbreviate to (p,q,r). Similarly we can code an arbitrary finite sequence of non-negative
integers (po,..-,Pn—1) 28 (Po,..-,Pn—1). Regarding a finite set of integers as a binary
numeral we can code finite sets via the 1-1 correspondence

PAEDIN
ieX
between finite sets of integers X and integers [X]. Note when X is null [X] = 0.

Throughout we will refer to fixed enumeration {¢, | n € w} of the partial recursive
functions and an accompanying enumeration {W, | n € w} of the recursively enumerable
(r.e.) sets such that s € W), iff ¢,,(5) = 1. We say n is the index of the partial recursive
function ¢,, and of the r.e. set W,.

An effectively given information system is an information system with a function
coding tokens as integers for which there are partial recursive functions which determine
if an integer codes a token, whether or not a finite set of tokens is consistent and whether
or not a consistent set entails a token, via their codes.

6.1 Definition. Let A = (4, Con, }) be an information system. A coding map for A is
a 1-1 function c¢d : A — w.
Let A = (4, Con, I) be an information system, cd a coding map for A and p,q,r
non-negative integers. Say (A, cd) is effectively given by index (p,q,r) iff
(i) ae€ Ao dp(cd(a)) =1,
(i) For X Cfin 4
X € Con & ¢4([cdX]) =1
X ¢ Con & ¢4([cdX]) =0,

(iii) For X" 4, ac4

Xta e ¢r({[cdX],cd(a))
XV ae ¢r({[cdX],cd(a))

1

1
0.

il

25

We say (A, cd) is an effectively given information system.

It is easy to see that the set of tokens, the consistency predicate and the entailment
relation correspond to r.e. sets via the coding map.

5.2 Proposition. Let (A, Con, I-,cd) be an effectively given information system. The
sets {cd(a) | @ € A}, {[cdX] | X € Con} and {{[cdX],a) | X |- a} are each r.e.

5.3 Notation. We write ISys, for the class of effectively given information sys-
tems. Write ISys,” for the class of n~tuples (Ao,...,A,_;) of effectively given in-
formation systems; say (Aq,...,Ap—1) has index k if each A; has index k; and k =
{(koy..vykiy-o-ykn_1). We shall often abbreviate (A,cd) to A, when (A,cd) is an effec-
tively given information system, and as before often write an n—tuple of effectively given
information systems simply as A when the context makes it clear.

Remark. The reader familiar with other approaches to effectively given domains may
be a little surprised by the way we code tokens. Usually the finite elements A of an
effectively given domain are enumerated by a map £ : w — A and the effective structure
is described with respect to this enumeration. While one can define effectively given
information systems in a similar way (see [CDL]) the codings become messy—essentially
because they do not respect inclusions of sets—and the advantages of the information
system approach over that of dealing directly with effectively given domains is lost. Our
way preserves the simplicity of the information—systems treatment of the previous sections,
and can be proved to induce the usual notion of effectively given domains. A domain D
is associated with the information system ISD. So of course we can say a domain D is
effectively given if ISD is effectively given. But here we have to be a little careful; there
is an established definition of effectively given domains and we must check our definition
agrees. In the appendix we present the usual definition of effectively given domains and
show how to pass from that notion to ours and back again.

We now define the computable elements of an effectively given information system.
An element of an information system is thought of as the set of tokens which hold of
a computation. Of course we expect the set of tokens describing a computation to be
generated effectively. Thus here where tokens are coded by integers it is natural to take
computable elements as those elements with associated sets of codes which are r.e.

5.4 Definition. Let A = (A,cd) be an effectively given information system. A,ﬁ element
z of A is computable, with index k, iff {cd(a) | e € =} is r.e., with index k. We write [A|,
for the set of computable elements.

Naturally we expect every finite element to be computable and they are. There are
several different ways of defining computability of an element. One way is to demand the
finite approximations of the element be r.e. (as is done for example in [CDL]). Another
is to insist a computable element is the limit of some an effective chain of finite elements
(as in [P] for example). Fortunately they are easily proved equivalent to the definition we
have given.

26

5.5 Proposition. Let A be an effectively given information system. Then every finite
element of A is computable,

Proof. A finite element has the form X = {a|X |- a} for some X & Con. So
{cd(a) |a€ X} ={cd(a) |a€ 4 & ¢,({[cdX],cd(a)) = 1} which is clearly re.

5.6 Theorem. Let (A, cd) be an effectively given information system. Then the following
conditions on an eIement z of A are all equzva]ent
(i) =z is computable,
(i) {JcdX]| X ™ 5} is re,
(iii) there is a recursive function h and a sequence of finite sets
‘ Xo,X1,...,Xq,... such that h(¢) = [cdX;] and Xy C X; C --- C
X - with lub =.

Proof.
(7) = (4t) is obvious.

(1) = (441): Let y be a recursive enumeration of {[cdY] | ¥ cfir z}. Then 5; =
[cdY;] for some unique ¥;. Inductively define Xy = ¥p and X;y; = X; U Yit1. Define
h(#) = [cdX;]. Because U is effective, h is recursive and is the required enumeration of a
chain of finite elements.

(¢42) => (4): Assume condition (4i¢) holds. Clearly a € z iff a is entailed by some X;
in the chain. This makes the set of codes of z re. J

What is a reasonable idea of effective mapping between effectively given information
systems? Certainly we expect the function space construction to be effective and so the
function space of two effectively given information systems should be effectively given. Its
computable elements should correspond to effective approximable mappings. This will be
so when we define an approximable mapping between two effectively given mformatlon
systems to be effective when the codes of its constituent pairs is r.e.

5.7 Definition. Let (A,cds) and (B,cdp) be effectively given domains. An effective ap-
proximable mapping r : (A,cd4) —, (B,cdp), with index k, is an approximable mapping
r: A — B such that

{{lcdaX],[cdpYT) | XrY}

is r.e. with index k.

5.8 Proposition. Effectively given information systems with effective approximable
mappings form a category with composition the usual composition of relations and iden-
tities the entailment relation on the consistency predicate.

The image of a computable element under an effective approximable mapping is com-
putable itself—the proof is left to the reader.

27

6.9 Proposition. Let v : A —. B be an effective mapping between information systems.
If z € |A|; then |r|(z) € |B|..

" Remark. There is a weaker notion of effectively given information system, and corre-
spondingly of effectively given domains. Instead of taking consistency of a set of tokens to
be recursive, take its complement, inconsistency, to be r.e and similarly take entailment to
just be r.e. too. This would allow for example the language of first order arithmetic with
the usual logical entailment and consistency to be an effectively given information system.
We do not know how a theory based on this idea shapes—up. It would give a theory of
effectively given domains different from the usual.

28

6. Effectively continuous operations on information systems.

We shall show our constructions on information systems induce effectively continuous
constructions and how to solve recursive equations for information systems effectively. First
we extend the subsystem order on information systems, <, to effectively given information
systems.

6.1 Definition. Let A = (A,cdy) and B = (B,cdp) be effectively given information
systems. Define (A,cds) ¢, (B,cdp) iff A 4B and cdg = cdp[A4, the restriction of the
coding function of B to the tokens of A. In this case we say A is an effective subsystem
of B.

We extend the effective subsystem relation to n—tuples as follows For (Ag,...,An_1)
and (Bo,...,B,_1) in ISys,™ write

(Agy...,Au_1) 9, (Boy..-,Buy) © Aga, By & -+ & An_i 9, B,_.

The definition of effective subsystem clearly gives a partial order of effectively given
information systems in ISys,". There is a least element, the n—tuple with each component
the null information system with the null coding, and the order is effectively complete in
the sense that all effectively given chains of effectively given information systems have a
least upper bound, which is itself effectively given. We need a definition to state this
formally.

6.2 Definition. A chain Ag g, Aj 4, ...4, A; 4, ...inISys," of n-tuples of effectively
given information systems is an effective chain, with index k, iff for all § € w the n—tuple
of effectively given information systems A; has index ¢r(%).

6.3 Theorem. The relation q, is a partial order of effectively given information systems.
There is a least element 1, = (L,) with respect toq,. Let Ag 9, Ay 4, ... 4, A; 4, ... be
an effective chain of effectively given information systems (Aj,cd;). Then (|J; Ai,U; cd;)
is an effectively given information system which is the least upper bound of the chain with
respect to 4,.

Similarly 1Sys," has a least element and least upper bound of effective chains; in each
coordinate they are defined as above.

Proof. We prove the existence of lubs of effective chains in ISys,, leaving the remaining
proof to the reader.

Let Aog 9, Ay g, ... 4, A; 4, ... be an effective chain with index k. Write A; =

8 e
(4, Cony, k4, cd;) and A = (A, Con, F,cd) = (U; 4i,U; Con;, U; Fi, U, cds) for the chain’s
tentative lub.

By assumption ¢x(%) :i(p,-,qg,r,-) is an index for A. We describe how to obtain an
index (p,q,r) for A. *

29

Clearly n € cd A iff n € cdA; for some ¢. As n € cdA; isr.e. in n using the machmes
indexed p;, the predicate n € cdA is r.e.. Take p to be the index of an associated machine.

Let X gﬁn A. Then X C A; for some ¢ and such an ¢ can be determined effectively;
run each machine indexed p; on input [cdX| until one terminates successfully. Now decide
whether or not X € Con; using the machine indexed g; on input [cdX|. If it is X € Con,
and otherwise not. This procedure is clearly effective in [cdX|. Take g to be the index of
the corresponding machine.

In a similar way a machine, with index v, can be constructed to decide whether or not
X+ a, for X cfi" 4andae A, by examining the input ([cdX],cd(e)). B

6.4 Notation. Write |JX for the lub of a set of n—tuples of information systems
X C ISys,” when it exists.

All the operations we defined previously, like product and function space, extend to
operations on effectively given information systems. They are effective operations in the
sense that they can be associated with recursive functions on the indices for the effectively
given information systems. We have seen that they are all continuous with respect to
<. Consequently their effective versions are continuous on effective chains. We state the

properties more formally.

8.5 Definition.
Let F : ISys,™ — ISys,” be an operation on effectively given information systems.

Say F is an effective operation with index k iff whenever the m—tuple A is effectively
given with index ! then F(A) is an effectively given n-tuple with index ¢ ({).
Say F is monotonic with respect to 4, iff A ¢, B = F(A) 4, F(B) for all m—tuples

A and B of effectively given information systems.
Say F is effectively continuous iff F is an effective operation which is monotonic wrt

<, and whenever Ay <, Ay 4, ... <, A; 4, ... is an effective chain in ISys,™ then
F(U, A;) = U; F(A;). (Note the rhs exists as it is the lub of an effective chain.)

8.6 Proposition. Effectively continuous operations are closed under composition.

We extend the constructions of lifting, sum, product and function space to operations
on effectively given information systems simply by acting on the coding functions in a way
that reflects the operation on the token sets. (Refer to the constructions of section 4.)

6.7 Definition.
Let A = (A4,Cony, Fa,cd4) and B = (B, Cong, F-p,cdp) be effectively given infor-

mation systems.
Effective lifting: Define Ay, to be ((4,Cong,4);,cd) where

, 0,0) if o’ = (0,0
cd(e) = {él,cd,;(a)) if a'=§l,a .

Net?

30

Effective sum: Define A +. B = (A + B, cd) where

0,cd4(a ifdac A. ¢c=(0,a
cd(c) = {él,cdﬁﬁb))f 3B, o ((l,b)).

Effective product: Define A X, B = (A x B, cd) where

0,cd4(a ifdec A. ¢ =(0,c
cd(e) = {§1,cd3§b;)) I B on ((1,1;)).

Effective function space: Define A —, B = (A — B, cd) where

d(X,Y) = ([cdaX], [cdp¥]).

6.8 Theorem. The operations (—)T y, +e¢, and —. define effectively given information
systems and are themselves effective. Each operation is effectively continuous.

Proof. We illustrate in 2 moderate amount of detail how to obtain an index for A —, B
effectively from indices for A and B, showing that —, is effective.

Let A = (A,Cong, F4,cd4) range over effectively given information systems with in-
dex k = (ko,k1,k2). Let B = (B, Conp, Fp,cdp) range over effectively given information
systems with index ! = (lp,l1,l2). Write A —, B = (C, Con, I-,cd).

There is a partial recursive function such that

f(k,,m) =16 3X,Y ™ un=([X],[Y])
‘ & (Vne X. ¢p,(n) =1 & ¢x,([X]) =1)
& (Vnel. ¢ ,(n)=1 & ¢,([Y])=1).

Then by the s—m-n theorem (see [C]) there is a total recursive function p such that
¢p(k',)(m) = f(k, l, m) 80

 p(1)(m) =1 4 Jc € Com = cd(c).

There is a partial recursive g such that when m has the form

m= [([XO]; rYO])) ‘ 7([X —l], [Y —l])]
for Xo,...,Xn_ gﬁ" cdgA and Yy, -, Y, g:_ﬁ” cdp B we have:

g(k,1,m) = {; iftZI C {0, yn = 1}¢h, ([Uses Xil = 1= 0, ([User Y1) =1
otherwise.

31

By the s—m-n theorem there is a recursive function ¢ such that ¢q(r1)(m) = g(k, 1, m).

Then
1 if Z € Con

da(rn)([cdZ]) = {0 it zcfrc & 7 ¢ Con.

Similarly there is a recursive function v such that

boam e ={) XL

when Z cfi" ¢ and c € C.

Thus there is total recursive function h : (k,l) — (p(k, 1), q(k,1),r(k, 1)) taking indices
of effectively given information systems A, B to an index of A —, B. Thus —, is an
effective operation with index any index of k.

Once it is shown the operations are effective, it follows from the fact that they are
continuous wrt g and the simple way codings are defined that the operations are effectively
continuous (or see the next theorem). §

It is easy to see that an operations like —. is effectively continuous because it is
effective and — is continuous. The next theorem shows that an effective operation is
continuous provided it is monotonic—a consequence of the Rice-Shapiro theorem. /

t

6.9 Theorem. Let F : ISys,™ — ISys,” be an operation on information systems.
Then F is effectively continuous iff it is effective and monotonic with respect to 4,

Proof.
“=" follows directly from the definition of effectively continuous.

“&” For simplicity assume F : ISys, — ISys,; the proof is similar when F is a more
general operation and is left to the reader.

Suppose F is monotonic wrt <, and effective with index k. Let Ag g, A1 4, ... 4,
A; 4, ...bean effective chain of information systems By monotonicity we know U, FA; <,
F(U; A) We show every token of F(|JA;) is a token of | J; FA;. It then follows that
U; FA; = F(|J, A:), thus establishing the continuity of F.

Let ¢ be a token of F(lJ; A;). We show ¢ € FA;, for some ¢, by using the Rice-Shapiro
theorem (see [C]) which says:

If W is a subset of r.e. sets such that {m | W,, € W} is r.e. then

we W e Jw, S w. wy e W.

32

‘However in order to apply the Rice-Shapiro theorem we first show how we can pass
effectively from arbitrary r.e. sets to effectively given information systems and, again
effectively, from effectively given information systems to r.e. sets.

We associate an r.e. set effectively with an effectively given information system as
follows. Let A = (4, Con,) be an effectively given information system. Define

SA = {{0,n) | n € cdA} U{(1,[X1]) | X € Con} U {(2, ([X],cd(n))) | X F a}.

Because this is effective there is a recursive function s such that if A has index [then SA
has index s(!).

Now we sketch how to obtain an effectively given information system from an r.e. set
effectively. Let w be an r.e. set. Define Jw to be the following effectively given information
system. As its set of tokens take {n | (0, n) € w} with codes cd(n) = n. Take its consistency
predicate, Con, and its entailment relation, F, to be the least sets such that

{X](1,[X]) € w} C Con,
{(X,n) | (2,([X],n)) ew} CF,

and ({n | (0, n) € w}, Con,) is an information system; the sets Con and I- can be built-up
inductively “closing-up” under the conditions (i)—(iv) required of an information system
in 1.1. Because this process is effective there is a recursive function ¢ such that ¢(m) is an
index of the effectively given information system I(W,,). Notice that if A is an information
system with index [then IS A is essentially the information system A but with its original
tokens replaced by their codes. For this reason ISA has index I (as well as ¢s(l)).

Now we can define W by:
W ={w | w is an r.e. set such that F(Iw) has cd(c) as a token}.

We have
Wi € W & 3p,q,1. dr((m)) = (p,q,7) & ¢p(cd(c)) =1

which is r.e. in m i.e. {m | W,, € W} is r.e.. We have assumed ¢ is a token of F(lJ, A;).
Consequently S(F(lJ; A;)) € W. By the Rice-Shapiro theorem there is a finite set F € W
such that F' C S(F(|J; A:)) € W. But then F' C SA; for some 4, which implies A; has
¢ as a token. Thus |J,FA; = F(U, A:). This completes the proof that F is effectively
continuous. f :

We show that effectively continuous operations on effectively given information sys-
tems have least fixed points which are themselves effectively given.

6.10 Theorem. Let F be an effectively continuous operation on effectively given infor-
mation systems. Then U;c, F'(L,, -, .L,) is an effectively given information system and
is the least fixed point of F.

33

Proof.
To simplify the presentation assume F is a unary operation.

Clearly the chain L, <, F(L,) 4, --- 9, F'(L,) 4, -+ - is effective. Since F is effectively
continuous the lub of the chain is the least fixed point of F by the standard argument. ‘

Information systems could form the datatypes of a programming language. They
would be defined by constructions like lifting, -+, %, — and fix for recursively defined
datatypes. The datatypes would possess operations natural to them including least fixed
point operators; for example a product would have projections and a function space would
have application. These could be extended to a language for defining elements. Because
all our constructions are effective, in principle we have an implementation too.

34

7. Conclusion, related work.

We have presented a simple treatment of recursively defined information systems and
through them an elementary treatment of recursive domain equations. And this was made
effective too. We turn to the relation with other work and where we think(!) the future
lies.

It is a pain working with indices. Recently David McCarty has shown how to do the
theory of effectively given domains inside a realisability model of constructive set theory
[Mc, Mcl]. One immediate advantage of his approach is that the work on indices is done
once and for all in building the realisability model. McCarty’s approach seems very general;
it appears to work for a much wider category of cpos than just domains. This seems a
good area to look for a smoother, more uniform treatment of effective structures.

Although information systems carry a strong intuition, as a category, with approx-
imable mappings, they are equivalent to category of domains, with continuous functions.
From the point of view of categorical constructions they say no more than domains; they
are just a representation of the old category of domains. (Yes, the cpo of information
systems was useful but it did nothing that could not have been done before using the
more abstract method of inverse limits or retracts on a universal domain.) But informa-
tion systems do have potentially more structure than domains and quite likely there are
morphisms on them which can respect this greater detail. With new morphisms come new
constructions, constructions that might take into account the internal structure of tokens.
If we are to take seriously the idea that tokens are assertions, or propositions, they had
better have internal structure which is taken account of by the morphisms. There would
be a strong point to this if it made closer the connection between denotational semantics
and the proof of properties of programs, and could exploit the idea that the denotation of
a programming construct can be the set of assertions which are provable of it.

In this paper we have said nothing about universal domains and the use of retractions
to solve domain equations. We say a little about that approach and how it relates to what
what we have described. The method was introduced by Dana Scott as an alternative to his
inverse limit construction, firstly for algebraic lattices using Pw as the universal w—algebraic
lattice [S3], and later for domains in [S1,52,S]. In [P2] Gordon Plotkin shows similar results
for those domains which are coherent using 7. The results for the universal domain in
[S1,52,S] are easily stated in the framework of information systems, which will explain the
sense in which the domain is universal. The universal domain used there—there are many
others—is the domain of theories of the propositional calculus. This naturally comes along
with the information system P = (P, Con, |-) which consists of tokens the propositions built
up from a countable set of propositional variables using logical connectives, |- the obvious
logical entailment, and Con the consistentj sets—those which do not simultaneously entail
a proposition and its negation. The inforn{lation system P is universal in the sense that any
countable information system can be found as a subsystem of it. And correspondingly any
domain with a countable basis can be embedded in its associated domain, |P|. Thus one
can talk about arbitrary domains in terms of projection mappings on |PP|. Now because the

35

domain is universal its own function space embeds in it, 80 such projections can themselves
be regarded as elements of |P|, and functors on domains can be represented as operations
on |P|. In fact domain equations can be solved by taking least fixed points of operations
on [P|. While it takes a little trouble to set up this machinery one clear advantage is that
. effective functors are now treated in exactly the same way as effective functions because
that is how they are represented in this approach.

Unfortunately the category Dom , and so ISys , does not have all the closure proper-
ties one could wish for. The Plotkin powerdomain of a domain need not be a domain. For
this reason Plotkin proposed the category of SFP objects, a full subcategory of w-algebraic
cpos which includes w-Dom (see [P1]). The category of SFP objects is closed under the
Plotkin powerdomain functor and is cartesian—closed. In fact, recently Mike Smyth has
proved a conjecture of Plotkin that it is the largest cartesian—closed full subcategory of the
w-algebraic cpos which affirms the naturalness of the category of SFP objects (see [Sml]).
Because SFP objects are a kind of algebraic cpo they can be represented as completions
by ideals of certain kinds of preorder. Whether or not they have quite as natural a repre-
sentation as information systems remains to be demonstrated. The work of Carl Gunter
[G] should help here. There is a characterisation of the three powerdomain constructions,
the Hoare, Smyth and the Plotkin powerdomain, in terms of modal assertions that can be
made about non—deterministic computations [W2] but the Plotkin powerdomain does not
quite fit into the scheme of information systems. (One can add disjunction to information
systems and change the definition of element a little so it does, but at present it is clumsy
and certainly not ready for the market.)

Information systems express the logical relations between assertions about a compu-
tation. On the other hand event structures [NPW, W, W1] express how the computation
behaves in time, how for example one event causally depends on others. The techniques
used for event structures are very close to those used for information systems. The 4 re-
lation on event structures corresponds to Kahn and Plotkin’s rigid embeddings [KP} and
is used to define event structures recursively. There must surely be a natural synthesis of
the two kinds of structure. There are already examples of the sort of thing we mean in the
bidomains of Gérard Berry [B, W] and the structures in [Cu] but it would be pleasant to
put all this in a general setting. It is also possible that the SFP objects can be represented

naturally in this way.

Acknowledgements

Our debt to the work of Dana Scott is clear. We are grateful to C.A.R. Hoare for
suggested improvements.

This work was supported in part by the Computer Science Department, Carnegie—
Mellon University.

36

: Appendix
The usual definition of effectively given domains related.

As explained the definition of effectively given domain induced by our definition of
effectively ‘given information system is not standard so in this appendix we relate our
definition to the usual one. Usually an effectively given domain is defined in the following

way—see e.g. [S1, PJ.

Al Definition.
Let D = (D, C, 1) be a domain. An enumeration of D is a function ¢ from the
non-negative integers onto the finite elements D°. We write the finite element é(n) as &,.
An effectively given domain with index k is an. enumeration of a domain (D,) such
that, writing k = (2, 7):
(]) 60 =1,
(i) &mn 1 én is recursive in m,n, with index 4,
(iii) & = €p U &,/ i8 recursive in m, n,n’, with index j.
An effectively given domain is an enumeration for which there is some such index k.
A computable element of an effectively given domain (D, €) is an element z € D for
which there is an r.e. subset of integers W such that £ = | [{é, | » € W}. The set of
computable elements is written as (D, £),.

A2 Proposition. Let (D, ¢) be an effectively given domain. The following are equivalent:
() ze(D, o)
(ii) the set {n | &, € z} is r.e,
(iii) there is a recursive function h such that €,(0) € €p(1) C -+ - C €p(s) C
- and z =i, &

It is quite easy to see how an effectively given domain defermines an effectively given
information system. The proof uses this proposition (to be found in [P]).

A3 Proposition. Let (D,€) be an effectively given domain. Then
(i) {énos .-y €n,, } is recursive in [ng,...,nm] and
(ii) & T Kénos--+s€n,.} is recursive in ([no,...,nm],{).

A4 Theorem. Let(D,¢€) be an effectively given domain. Define cd(e) = min{n | £, = ¢}
for e € D°. Then (ISD,cd) is an effectively given information system such that

z € |(ISD,cd)|. & | |= € (D, €)..

Proof.

Write ISD = (D°,Con, I-).

An integer n is a code cd(e) of some finite element e iff £, # &, for any m < n. This
is clearly recursive.

37

By the above proposition, {€nyy...&n,, }1 I8 recursive in [ng,..., 7, |. Let ¢ be an
index of this recursive function. Then clearly

_jo if X € Con
ba([cdXT) = {1 if X ¢ Con
for X cfin po,

By the above proposition, & C | [{¢n,,. - &n,. } i8 recursive in {[ng,...,nm],1). Let r
be an index of this recursive function. Then clearly

0 ifXFta
pllfcaxt,ca@) ={] §F5

for X /" P and e € DO.
Thus (ISD,cd) is an effectively given information system.

Obviously if z is a computable element of IS D then cdz is r.e. so | |z is a computable
element of D. Conversely suppose y is a computable element of D. Then y = | | €W for
some r.e. set W making {e C y | e € D°} a computable element of ISD. [

It is a little harder to show the converse that an eﬁ'ectivelj given information system
determines an equivalent effectively given domain.

A5 Theorem. Let (A,cd) be an effectively given information system. There is an
enumeration € such that (|A|, €) is an effectively given domain with the same computable

elements as (A, cd).
Proof. Let (4, Con, I-,cd) be an effectively given information system with index (p, g,).

Because {[cdX] | X € Con} is a non-null r.e. set it has a recursive enumeration ¢.
We can ensure ¢y = 0. For each n, ¢, = [cdX,,] for a unique X;, € Con. Define &, = X,,.

We check that (|A|, €) is effectively given.

Clearly £, =0 = L.

To decide whether or not £,, T £, is a matter of deciding the consistency of X,,, U X,,.
This is achieved by running the machine indexed ¢ on [cdX,,, UcdX,,], the code for their
union. Clearly this is effective in m and n.

Similarly, to decide whether or not &, = &, U &y is to decide whether or not every
token in X, is entailed by X, UX,,» and conversely, that every token in X,, UX,, is entailed
by X,,. This is achieved effectively by running the machine indexed r on the obvious finite

set of inputs.

38

Thus (|A|, €) is effectively given. Suppose z is a computable element of (JA], ¢). Then
x = | | éW for some r.e. set W. As ¢ is recursive, ¢ is an r.e. subset of C. Thus z is a
computable element of A. Conversely suppose z is a computable element of A. Then z is
an r.e. subset of tokens. Thus A = {cdX | X C z} is an r.e. subset of C. But then ¢~ !4
is an r.e. subset of w and clearly z = | [{¢, | n€ ¢ 4}. B

39

References

[A] Aczel, P., A note on Scott’s theory of domains. Unpublished note, Math. Dept.,
Univ. of Manchester, (1983).

[B] Berry, G., Modeles Completement Adequats et Stables des A—calculs typés. These
de Doctorat dEtat Université Paris VII (1979).

[BC] Berry, G., and Curien, P-L., Sequential algorithms on concrete data structures.
Report of Ecole Nationale Superieure des Mines de Paris, Centre de Mathematiques Ap-
pliquées, Sophia Antipolis (1981).

[C] Cutland, N. J., Computability, an introduction to recursive function theory. Cam-
bridge University Press (1980). ‘
[

[CDL] Coppo, M., Dezani, M., Longo, G., Applicative Information Systems. Proc.
of CAAP ’83, Springer Lecture Notes in Computer Science, vol. 1569 (1983).

: [Cu] Curien, P-L, Algorithmes sequentiels et extensionnalité. Rapport LITP 89-67
Université Paris VII (1982).

[Gri] Gritzer, G., Universal Algebra. Van Nostrand University series in Higher Math-
ematics (1968).

[G] Gunter, C., Ph.D. thesis. Math. Dept., University of Wisconsin, Madison, to
appear (1985).

[KP] Kahn, G., and Plotkin, G., Domaines Concrétes. Rapport IRIA Laboria No.
336 (1978).

[Mac] Maclane, S., Categories for the working mathematician. Springer —Verlag Grad-
uate texts in Math. (1971).

[Mc] McCarty, C., Information Systems, Continuity and Realizability. Notices of
AMS, August issue (1983).

[Mc1] McCarty, C., Constructivity, Realizability and Recursive Mathematics. D. Phil.
thesis, University of Oxford (to be submitted).

[NPW] Nielsen, M., Plotkin, G. and Winskel, G., Petri nets, event structures and
domains. Theor. Comp. Sc. (1981)

[P] Plotkin, G. D., The category of complete partial orders: a tool for making mean-
ings. Lecture notes, Pisa Summer School (1978).

[P1] Plotkin, G. D., A powerdomain construction. SIAM Journal on Computing, vol.
5, no. 3, p. 452-487 (1976)

[P2] Plotkin, G. D., T* as a universal domain. J. Comp. Sys. Sci., vol.17, pp. 209-236
(1978).

[S] Scott, D. S., Domains for Denotational Semantics. ICALP 1982.

[S1] Scott, D. S., Lectures on a mathematical theory of computation. Oxford Univer-
sity Computing Laboratory Technical Monograph PRG-19 (1981).

[S2] Scott, D. S., A Space of Retracts. Manuscript of a talk given at Bremen in
November 79 (April 1980).

[S3] Scott, D. S., Data types as lattices. SIAM J. on Computing, vol.5, pp.522-587
(1976).

[S-D] Saheb-Djahromi, N., Probabilistic Non-Determinism. Report CSR-7-77 of the
Dept. of Comp. Sc., University of Edinburgh (1977).

[St] Stoy, J. Denotational semantics: The Scott-Strachey approach to programming
language theory. MIT Press (1977).

[Sm] Smyth, M., Effectively given domains. Theoretical Computer Science, vol. 5,
pp. 257-274 (1977).

[Sm1] Smyth, M., The largest cartesian—losed category of domains. Theor. Comp.
Sc. (1983).

[W] Winskel, G., Events in Computation. Ph.D. thesis, Comp. Sc. Dept., University
of Edinburgh (1980).

[W1] Winskel, G., Event structure semantics of CCS and related languages. Report
of comp. Sc. Dept., Aarhus University, Ny Munkegarde, 8000 Aarhus C, Denmark, and
extended abstract in proc. ICALP 82 in Springer LNCS (1982).

[W2] Winskel, G., A note on powerdomains and modality. In proc. Foundations of
Computation Theory, ’83, Springer LNCS (1983).

