
An Algebraic Framework for Modelling and Verifying

Microprocessors using HOL

Anthony Fox

Computer Laboratory, University of Cambridge

March 23, 2001

Abstract

This report describes an algebraic approach to the specification and verification of micro-

processor designs. Key results are expressed and verified using the HOL proof tool. Particular

attention is paid to the models of time and temporal abstraction, culminating in a number of

one-step theorems. This work is then explained with a small but complete case study, which

verifies the correctness of a datapath with microprogram control.

Contents

1 Introduction 2

2 Related Work 3

3 Algebraic Models 4

3.1 State Functions and Iterated Maps . 4

3.2 State-Dependent Temporal Abstraction . 5

3.3 Data Abstraction . 6

3.4 Implementation Correctness . 6

4 Algebraic Models for Superscalar Processors 7

4.1 Adjunct Immersions . 7

4.2 Superscalar Implementation Correctness . 8

5 One-Step Theorems 8

5.1 Uniform Temporal Abstraction . 9

5.2 Time-Consistency . 10

5.3 Time-Consistency with an Immersion . 12

5.4 One-Step Time-Consistency Verification . 12

5.5 One-Step Correctness Verification . 13

5.6 Uniform Adjunct Immersions . 13

5.7 One-Step Superscalar Correctness Verification . 14

1

6 Example: A Datapath with Microprogram Control 14

6.1 PM Specification . 15

6.2 AC Specification . 15

6.3 Correctness Statement . 19

6.4 Verification . 19

6.4.1 Preliminaries . 19

6.4.2 Time-Consistency . 20

6.4.3 Correctness . 21

7 Future Work and Conclusions 22

1 Introduction

This report describes a number of definitions and theorems, using the HOL proof tool, which con-

stitute a structured framework for the specification and verification of microprocessor designs. A

constructive approach is taken, both to the modelling of state systems, and to the modelling of data

and temporal abstraction. For example, initialisation and next-state functions are used instead of

invariants or predicates over valid state streams, and temporal abstraction is defined by means of

duration functions.

An initialisation function init : A → A is used to map arbitrary states from some state-space A

to valid initial states. For example, the pipeline of a pipelined processor cannot be filled arbitrarily

because each pipeline stage (such as, fetch, decode and execute) is expected to be working on

consecutive instructions. A trivial initialisation function for such a pipelined design would simply

ensure that the pipeline was empty (flushed), ready to be filled with instructions. A more complex

initialisation function may, instead of always resetting the pipeline, preserve states for which the

pipeline is correctly filled, thus ensuring init a = a wherever possible.

A next-state function next : A → A is used to specify the behaviour of a system over time. If the

current state of the system is a ∈ A then this will be followed by the state next a. For example, the

next-state function in the specification of a computer architecture would model the state change

caused by instruction execution.

This approach contrasts with less constructive (and more declarative) treatments, in which

hardware is not modelled exclusively in terms of equations. For example, to capture the notion of a

valid state, a predicate Inv ⊆ A may be used (in place of an initialisation function) to specify the set

of all states that the system may exhibit. Also, if N → A denotes the set of all possible behaviours

(i.e. state streams—maps from discrete time N to a state-space A) then a predicate P ⊆ (N → A)
could specify the set of valid behaviours for the given device. Such an approach has the advantage of

being able to specify non-deterministic systems i.e. those for which the next state of the system need

not be a function of the current state. Temporal abstraction can also be modelled using predicates.

For example, if P ⊆ N is a predicate that identifies ‘times of interest’ then, by progressively counting

the number of times P is true, one can re-number a state stream Q ⊆ (N → A) to eliminate

all the states that are of no interest—this new (sampled) stream is a temporal abstraction of the

original. This report takes a slightly different approach to temporal abstraction. Times of interest

are identified using duration functions, which, when given the current state, specify the number of

states to be ‘skipped’ before the next state of interest arises. This is possible when the system under

consideration is deterministic, and the required temporal abstraction is strongly state dependent.

By restricting the use of predicates and giving an operational semantics, specifications can be

readily executed, for example, to simulate the execution of machine code program. Moreover this

2

approach has the advantage that verification proofs are conceptually simple, being founded in first-

order equational logic. This helps in terms of the level of human expertise required to understand

and carry out proofs, but it also means that a wider range of proof tools can be used.

By using the HOL proof tool, the approach to verification is primarily based around symbolic

execution, as opposed to pure model checking, although hybrid approaches are not ruled out. A

number of one-step theorems are proved, and these demonstrate that, although time is a useful tool

in the specification of processors, correctness proofs need not explicitly involve induction over time.

This is achieved by verifying that correctness holds at just two times, t = 0 and t = 1, where t is the

time at the level of an abstract specification. This is possible when initialisation functions behave

like state invariants. That is to say, if the range of init is an invariant (specifying all the states that

can occur) then it is never necessary to consider the state of the system at times t > 1 because

all pairs of consecutive states (at, at+1) correspond with some pair (a0 = init a, a1 = next a0) by

virtue of the initialisation function’s range and as a consequence of determinism.1 The proof effort

is, therefore, dominated by state-based case analysis, equational reasoning and term-rewriting. As

such, much of the proof effort can be carried out automatically by the proof tool. This framework

ensures that the approach to the specification and verification of different designs is well-founded

and has continuity i.e. follows exactly the same lines at the top-most level.

Section 3 describes an approach to modelling the correctness of conventional processor designs.

This is then extended, in Section 4, to take into consideration the temporal behaviour of superscalar

designs. Section 5 introduces the mathematical tools required to ensure that correctness proofs are

free from induction over time. This work is then explained with a small but complete case-study in

Section 6.

2 Related Work

Recent work on microprocessor verification has focused on pipelined and superscalar designs, for ex-

ample: Tahar and Kumar [28] using HOL, Burch and Dill [3, 2] using model checking; Skakkebæk,

Jones and Dill [26] using the Stanford Validity Checker (SVC); Hosabettu, Srivas and Gopalakr-

ishnan [17], and Cyrluk [6] using PVS; and Sawada and Hunt [25] using ACL2 [20]. Particular

attention has been paid to managing the complexities associated with such designs, for example,

out-of-order issue and interrupts. Topics addressed include, decomposing verifications, developing

conducive data/system abstractions, refinements and invariants.

It is worth noting that the models of correctness presented in this report are not necessarily

equivalent to those used elsewhere. In particular, none of the approaches listed above use a for-

mal model of temporal abstraction. This report focuses on producing generic models for the study

of state systems: these models must be widely applicable and essentially fundamental. Strongly

implementation dependent verification methodologies are not examined in any detail within this

report.

Other significant work on microprocessor specification and verification includes: work on the

SECD chip by Graham and Birtwistle [14]; the verification of the AAMP5 avionics processor by

Srivas and Miller [27]; the FM8501 processor verification by Hunt [19]; work on the VIPER mi-

croprocessor (reviewed in [1]); Windley’s work on Generic Interpreters [31] and the correctness of

pipelined processors with Coe [32]; Gordon’s work with HOL and LCF-LSM, for example [11, 12];

and Melham’s work on abstraction mechanism for hardware verification [22, 23].

1This example is a slight simplification of the full account because it does not take into consideration the effects of

temporal abstraction.

3

The algebraic approach to modelling microprocessors, as presented and implemented here, was

originally developed at the University of Wales Swansea. This work has its foundations in Alge-

braic Specification and Universal Algebra (for overviews, see [33, 21]) and the study of Synchronous

Concurrent Algorithms [29, 30]. Work on microprocessors includes [16], which looked at a micro-

programmed example based on Gordon’s computer [12], and [9, 10] which looked at superscalar

correctness models. A simple pipelined processor was verified in [15] using Maude [5]. The ground

work for this report can be found in the thesis [7], which also explains how models with input and

output can be supported within this framework.

HOL is founded on Church’s theory of simple types [4], and has its origins in Edinburgh LCF [13]

and Cambridge LCF [24]. The version of HOL used in the production of this report is HOL98 Taupo-

5, which is written in Standard ML (specifically MoscowML). The current HOL distribution, and

additional information, may be found at www.cl.cam.ac.uk/Research/HVG/HOL. The source for

the HOL theories developed in this report may be found at www.cl.cam.ac.uk/~acjf3.

3 Algebraic Models

This section introduces modelling techniques suitable for a wide range of processor designs. State

systems are considered in Section 3.1, temporal and data abstraction are covered in Sections 3.2

and 3.3 respectively, and correctness is defined in Section 3.4. The approach to temporal abstrac-

tion, and consequently correctness, is re-examined in Section 4.

3.1 State Functions and Iterated Maps

A state function is any G : T → A → A where T = {0, 1, . . . } is a set of cycles (called a clock), and

A is any non-empty set or state-space. The state (G t a) represents the state of the system at time t

given a preliminary state a. Time is considered in a purely mathematical sense, each cycle need not

last for the same amount of time as measured in seconds. One cycle (change of state) could take an

hour and the next could take a small fraction of a second—this is not specified.

State systems will be modelled deterministically by means of iterated maps; these construct se-

quences of the form

init a, next(init a), next(next(init a)), . . . , next t(init a), . . .

for any given state a. Preliminary states are transformed into initial states using the initialisation

function init and all subsequent states are generated by repeated application of the next-state function

next . The system is deterministic because each successive state is a function of the previous state.

An iterated map G : T → A → A, with initialisation function init : A → A and next-state

function next : A → A, is defined by the equations

G 0 a = init a,

G (t + 1) a = next(G t a)

Both init and next are required to be primitive recursive; this ensures that G is a total function over

T and A. This equational style of presentation is founded in Algebraic Specification, see [33]. Such

an approach has the advantage that proof tools, such as HOL, can be used to automatically evaluate

ground terms using first-order reasoning. Although curried functions are used in this report (which

are not first-order), in each case, cartesian versions can be considered if necessary, for example, a

state function can be presented as G : T × A → A.

4

Iterated maps allow one to specify synchronous, deterministic state systems and have been

found particularly suited to modelling the operational semantics of microprocessor architectures

and micro-architectures (organisations). These levels of abstraction are more amenable to deter-

ministic approaches because it is not the intent to be wholly true to the physical behaviour of wires

and circuitry (where non-deterministic models might be more appropriate). Note that although

state transition is synchronous (i.e. clocked), this does not prevent one from specifying processors

with clock-less or asynchronous implementations; it is just that, at the level of temporal abstraction

modelled, the device behaves synchronously. By considering multiple levels of abstraction one is

able to carry out reasoning at levels suitable for the problems at hand. At the level of the micro-

architecture (or organisation) one is primarily concerned with the overall functional correctness of

a design (be it, microprogrammed, pipelined or superscalar) with respect to the architecture. This

level may be modelled in a style significantly more abstract than a register-transfer level description,

wherein one would be making more concrete decisions about timing and control signals.

The predicate IMAP G init next is defined in HOL to express that G:num→’a→’a is the

iterated map with initialisation function init:’a→’a and next-state function next:’a→’a.
IMAP def

` ∀ G init next.

IMAP G init next =

(∀ a. G 0 a = init a) ∧ ∀ t a. G (SUC t) a = next (G t a)

Type variables (place holders for concrete types) are preceded with a quote, for example, ’a is used

to represent any state-space. The HOL type num is used instead of creating a clock datatype from

scratch. The natural numbers are a suitable model for a clock, and since extensive theories for the

natural numbers have already been developed in HOL, it is judicious to take this route. This mean

that no distinction is made, in HOL, between the types of clocks at different levels of abstraction.

State functions and iterated maps with I/O can also be considered, although it is not done so

here. This allows one to modularize and compose specifications, thus providing an abstraction

mechanism that accommodates a degree of non-determinism with respect to state (by means of

input streams) and covers entities that would not form part of a processor’s state-space; for example,

interrupts, main memory (in the case when one only wishes to model the processor’s cache), co-

processors and other devices.

3.2 State-Dependent Temporal Abstraction

Temporal abstraction is used as a mechanism for hiding the rate of state transition. This section

introduces models of temporal abstraction for circumstances in which each state of a slower system

corresponds with one or more states of a faster system. In such cases one system is said to be

consistently faster than the other, and temporal abstraction may be likened to sampling the faster

clock. This sampling will be modelled using a class of functions called immersions. State-dependent

temporal abstraction is where the abstraction process is wholly determined by one state of the faster

system. The dependence upon a single state arises as a consequence of the fact that the system

of interest (i.e. that modelled by a state function) is deterministic and defined with respect to one

preliminary state.

An immersion Imm : A → T → S is any function defined by, for all t1, t2 ∈ T and a ∈ A

Imm a 0 = 0 and t1 < t2 ⇒ Imm a t1 < Imm a t2

The second condition states that Imm a is monotonic. This is sufficient to ensure that clock S is

consistently faster than clock T , and consequently, there is never a discrepancy in the ordering of

5

T 0

Imm a

1

Imm a

2

Imm a

3

Imm a

S 0 1 2 3 4 5 6 7 8

Figure 1: (Imm a) : T → S for state a ∈ A.

events and the abstraction is infinite. Figure 1 shows an immersion that starts by mapping cycles

0, 1, 2 and 3 on the slow clock T to cycles 0, 3, 4 and 7 on the faster clock S.

The predicate IMM Imm is defined in HOL to express that Imm:’a→num→num is an immersion.
IMM def

` ∀ Imm.

IMM Imm =

(∀ a. Imm a 0 = 0) ∧ ∀ a t1 t2. t1 < t2 ⇒ Imm a t1 < Imm a t2

3.3 Data Abstraction

Data abstraction is modelled by means of a map between state-spaces. If Abs : A → B is a data

abstraction from A to B then, in general, one would expect that for each abstract state b ∈ B there

is a concrete state a ∈ A, but this a need not be unique (i.e. Abs is surjective), and hence the map

represents an abstraction. In practice the minimum condition placed upon a data abstraction is

expressed by the HOL predicate ONTO_INIT Abs init init’, which holds when the composition

of abstraction and implementation initialisation (Abs o init’):’a→’b is surjective with respect

to the range of the specification initialisation init:’b→’b.
ONTO INIT def

` ∀ Abs init init’.

ONTO_INIT Abs init init’ = ∀ b. ∃ a. Abs (init’ a) = init b

This condition will be used to ensure that all the initial states of a specification have at least one

representative as an initial state in the implementation.

3.4 Implementation Correctness

A state function Impl : S → A → A is a correct implementation of Spec : T → B → B with respect

to an immersion Imm : A → T → S and data abstraction Abs : A → B if, and only if, for all

t ∈ T and a ∈ A

Spec t (Abs a) = Abs (Impl (Imm a t) a).

This correctness condition is illustrated with the following commutative diagram

B
Spec t

B

A
Impl s

Abs

A

Abs

where s = Imm a t for all a ∈ A and t ∈ T .

6

This shows that by using the data abstraction Abs (which hides the representation of data) and

the temporal abstraction Imm (which hides the rate of state change) it is possible to mimic Spec

via Impl . Notice that time is quantified at the level of the specification and state is quantified at the

level of the implementation. This has occurred because the immersion Imm is, strictly speaking,

carrying out the inverse of temporal abstraction i.e. mapping an abstract clock cycle to a concrete

clock cycle. The real abstraction Ret : A → S → T is called a retiming; but in practice it is easier

to define and work with immersions. By the given definition of correctness, the data abstraction

relationship (between the states of the implementation and specification) is allowed to break down

at cycles between Imm a (t + 1) and Imm a t. This need not matter, provided one is aware that

correctness only refers to implementation states occurring at cycles in the range of Imm.

The predicate CORRECT Spec Impl Imm Abs is defined in HOL to expresses that the state func-

tion Impl:num→’a→’a is a correct implementation of the state function Spec:num→’b→’b with

respect to the immersion Imm:’a→num→num and data abstraction Abs:’a→’b.
CORRECT def

` ∀ Spec Impl Imm Abs.

CORRECT Spec Impl Imm Abs =

IMM Imm ∧ ONTO_INIT Abs (Spec 0) (Impl 0) ∧

∀ t a. Spec t (Abs a) = Abs (Impl (Imm a t) a)

4 Algebraic Models for Superscalar Processors

In this section the mathematical tools of Sections 3 are extended in order to take into consideration

the more complicated form of temporal abstraction that arises when considering the correctness of

superscalar processors.

4.1 Adjunct Immersions

Section 3.2 introduced maps called immersions, which enabled one to model temporal abstraction

in the cases when one clock is consistently faster than another. Superscalar processors have a

more complicated timing behaviour than this, and this means that the definition of correctness

contained in Section 3.4 is no longer adequate. Superscalar processors execute instructions in

parallel and, therefore, one is no longer able to capture their timing behaviour using a total function

from the instruction counting clock T to the implementation’s clock S, i.e. using an immersion

Imm : A → T → S. Instead a third clock R is considered; this clock is used to enumerate

the execution of blocks of instructions. Two immersions are then used to define the relationship

between clocks T and S; one immersion maps from R to T and the other maps from R to S.

In this way the specification Spec can be perceived as a concrete form of an even more abstract

specification, where any number of instructions can execute at the same time.

Figure 2 shows how three clocks and two immersions can be used to express the temporal char-

acteristics of a superscalar processor. The figure shows that the processor starts (from state a) by

executing two instructions in four machine cycles, and then three instruction in two cycles. The

bottom immersion Imm2 is defined in a similar way to the immersion of a conventional processor.

The top immersion Imm1, referred to as an adjunct immersion, is closely related to Imm2 but rather

than specifying the number of machine cycles it specifies the number of instructions executed.

7

T 0 1 2 3 4 5

R 0

Imm2 a

Imm1 a

1

Imm2 a

Imm1 a

2

Imm2 a

Imm1 a

S 0 1 2 3 4 5 6

Figure 2: (Imm1 a) : R → T and (Imm2 a) : R → S for state a ∈ A.

4.2 Superscalar Implementation Correctness

A state function Impl : S → A → A is a correct superscalar implementation of Spec : T → B → B

with respect to an adjunct immersion Imm1 : A → R → T , immersion Imm2 : A → R → S and

data abstraction Abs : A → B if, and only if, for all r ∈ R and a ∈ A

Spec (Imm1 a r) (Abs a) = Abs (Impl (Imm2 a r) a).

This correctness condition is illustrated with the following commutative diagram

B
Spec t

B

A
Impl s

Abs

A

Abs

where t = Imm1 a r and s = Imm2 a r for all a ∈ A and r ∈ R.

The predicate CORRECT SUP Spec Impl Imm1 Imm2 Abs is defined in HOL to expresses that

the state function Impl:num→’a→’a is a correct implementation of Spec:num→’b→’b with

respect to the adjunct immersion Imm1:’a→num→num, immersion Imm2:’a→num→num and data

abstraction Abs:’a→’b.
CORRECT SUP def

` ∀ Spec Impl Imm1 Imm2 Abs.

CORRECT_SUP Spec Impl Imm1 Imm2 Abs =

IMM Imm1 ∧ IMM Imm2 ∧ ONTO_INIT Abs (Spec 0) (Impl 0) ∧

∀ r a. Spec (Imm1 a r) (Abs a) = Abs (Impl (Imm2 a r) a)

5 One-Step Theorems

This section will focus on the verification of implementation correctness, as defined in Sections 3.4

and 4.2. It will be shown that, by imposing conditions upon the construction of state functions and

immersions, it is possible to simplify the correctness condition to just considering the cases t = 0
and t = 1; thus reducing verifications to case-analysis over the state-space. These results are called

one-step theorems.

8

T 0

Imm a

1

Imm a

2

Imm a

S 0 · · dur a0̄ · · dur a0̄ + dur a1̄

Figure 3: Uniform immersion Imm : A → T → S with respect to the maps G : S → A → A and

dur : A → S+, where at̄ = G (Imm a t) a.

5.1 Uniform Temporal Abstraction

A uniform immersion is an immersion constructed using a state function and a duration function,

which maps states to clock cycles. Uniform immersions have some desirable properties: they provide

a mechanism for connecting state evolution, data abstraction and temporal abstraction, and they

are required for the one-step theorems.

Given a state function G : S → A → A and a function dur : A → S+, the uniform immersion

Imm : A → T → S with respect to G and dur is defined by the equations

Imm a 0 = 0,

Imm a (t + 1) = dur(G (Imm a t) a) + Imm a t.

The expansion of this definition, for two cycles, is illustrated in Figure 3. Observe that the interval

Imm a (t + 1) − Imm a t is a function of the implementation state at time t, thus a recurrent

state will induce the same temporal abstraction and the immersion will appear to be, in some sense,

uniform.

In most cases the temporal characteristics of an implementation (for example, the number of

cycles required to execute an instruction) can be expressed as a function of the state of the imple-

mentation. Uniform immersions can provide a link with data abstraction because the concept of

executing an instruction may be expressed in terms of data abstraction, i.e. the next instruction is

executed when the abstracted state of the implementation changes in some prescribed way.

Example. Let state function F1 : T → N → N and duration function dur 1 : N → S be defined by

the equations:

F1 t n = t̄ + n,

dur 1 n =

{

1, if n is even

2, otherwise;

where ·̄ : T → N gives the natural number of a clock cycle. Furthermore, let F2 : T → N → N and

dur 2 : N → S be defined by:

F2 t n = (t̄ + n) mod 2,

dur 2 n = ñ + 1

where ·̃ : N → S gives the S clock cycle of a natural number.

The uniform immersion Imm : N → T → S with respect to F1 and dur 1 is also the uniform

immersion with respect to F2 and dur 2. There are two possible temporal abstractions represented

9

by Imm n, these being, cycles 0, 1, 2, 3, 4, 5, . . . map to:

0, 1, 3, 4, 6, 7, . . . if n is even, and

0, 2, 3, 5, 6, 8, . . . if n is odd.

This illustrates an important characteristic of uniform immersions. The definition of the temporal

abstraction is wholly dependent upon state, through the definitions of state and duration functions.

If regular state sequences are generated by this pair of functions then the associated temporal ab-

stractions will also be regular. In the case of F1 and dur 1, the state function is monotonic increasing

and the duration function produces alternating durations, and with F2 and dur 2 the state function

produces alternating states from which the monotonic increasing duration function produces alter-

nating durations.

The predicate UIMM Imm G dur is defined in HOL to express that Imm:’a→num→num is the

uniform immersion with respect to G:num→’a→’a and dur:a’→num.
UIMM def

` ∀ Imm G dur.

UIMM Imm G dur =

(∀ a. 0 < dur a) ∧ (∀ a. Imm a 0 = 0) ∧

∀ a t. Imm a (SUC t) = dur (G (Imm a t) a) + Imm a t

Notice that a condition is placed upon the range of dur to ensure that the immersion is monotonic.

This gives the following lemma, stating that uniform immersions are indeed immersions.
UIMM IS IMM LEMMA

` ∀ Imm G dur. UIMM Imm G dur ⇒ IMM Imm

This result is relatively straightforward to prove in HOL using theorems from arithmeticTheory

and prim_recTheory.

5.2 Time-Consistency

In the same way that uniform immersions can be viewed as constructive forms of immersions, time-

consistency is a condition which ensures that state functions are defined constructively, enabling

the state function to be composed without difficulty.

A state function G : T → A → A is time-consistent if, and only if, for all t1, t2 ∈ T and a ∈ A

G (t1 + t2) a = G t1 (G t2 a)

This is illustrated with the following commutative diagram:

A

A
G t2

G (t1+t2)

A

G t1

An iterated map is time-consistent if, and only if, its initialisation function is idempotent on all

states generated by the state function, that is, for all t ∈ T and a ∈ A

init (G t a) = G t a.

This follows by observing that the two paths from the bottom-left to the top, in the commutative

diagram, differ only in an initialisation occurring after t2 cycles.

10

Example. Let iterated map F : T → N
3 → N

3 have definition

F 0 (n, s, d) = (n, n2, 2n + 1),

F (t + 1) (n, s, d) = f(F t (n, s, d))

where f(n, s, d) = (n+1, s+d, d+2). The iterated map F is time-consistent because the next-state

function f maintains the relationship between n, s and d that is established by the initialisation

function (F 0).
If F 0 (n, s, d) = (n, s, d) then F would also be time-consistent, but it would have a markedly

different behaviour. The next-state function is monotonic, therefore, for F to be time-consistent

the initialisation function must not set any of the components to a constant value. Furthermore,

if F 0 (n, s, d) = (n, n2, 2n) then time-consistency would be lost because, after applying the next-

state function, s would fail to equal (n + 1)2.

The time-consistency property arises (for the one-step simplification of verification) because

the correctness criteria of Section 3.4 relies on the presence of initialisation functions instead of

explicitly using an invariant. The implementation’s initialisation function init is expected to gen-

erate the necessary concrete states. If initialisation is too weak (i.e. has too large a range) then

correctness may not hold, and if it is too strong (i.e. has too small a range) then (i) the property

ONTO_INIT may not hold, and (ii) time-consistency may not hold and one cannot, for example,

use the one-step theorem in Section 5.5. Time-consistency ensures that, as well as producing a

know valid initial state (for example, by resetting a pipeline) it also generates all the states that

occur at cycle t = 1 (for example, including those for full and partially full pipelines). Thus, time-

consistency requires init to do the job of an invariant, and consequently defining an initialisation

function for a time-consistent iterated map is non-trivial for complex microprocessor designs such

as superscalar micro-architectures.

The predicate TCON G is defined in HOL to express that the state function G:num→’a→’a is

time-consistent.
TCON def

` ∀ G. TCON G = ∀ t1 t2 a. G (t1 + t2) a = G t1 (G t2 a)

The following result (proved using HOL) shows that time-consistency implies that the state

function G has an iterated map specification, i.e. it is deterministic. This is easy to prove once one

observes that the specification is: init = (G 0) and next = (G 1).
TC IMP IMAP

` ∀ G. TCON G ⇒ ∃ init next. IMAP G init next

The following result (proved in HOL) shows that the time-consistency of an iterated map can

be expressed as a constraint on the behaviour of the initialisation function.
TC LEMMA

` ∀ G init next. IMAP G init next ⇒ (TCON G = ∀ t a. init (G t a) = G t a)

The following result (proved in HOL) shows that the identity combinator I, when used as an

initialisation function, guarantees time-consistency.
TC I LEMMA

` ∀ G next. IMAP G I next ⇒ TCON G

11

5.3 Time-Consistency with an Immersion

A state function G : S → A → A is time-consistent with respect to an immersion Imm : A →
T → S if, and only if, for all t1, t2 ∈ T and a ∈ A

G (Imm (G (Imm a t2) a) t1 + Imm a t2) a = G (Imm (G (Imm a t2) a) t1) (G (Imm a t2) a).

This definition may appear unwieldy but the concept is the same as conventional time-consistency.

The left-hand side corresponds with a single application of the state function and the right-hand

side corresponds with two application of the state function. The state function is not required to

be time-consistent on all cycles s ∈ S, only those for which s = Imm a t for some t ∈ T and state

a ∈ A. A good example of this is to be found in Section 6.

The predicate TCON_IMM G Imm is defined in HOL to express that the function G:num→’a→’a

is time-consistent with respect to the immersion Imm:’a→num→num.
TCON IMM def

` ∀ G Imm.

TCON_IMM G Imm =

∀ t1 t2 a.

G (Imm (G (Imm a t2) a) t1 + Imm a t2) a =

G (Imm (G (Imm a t2) a) t1) (G (Imm a t2) a)

The following result is trivial to prove and shows that time-consistency implies time-consistency

with respect to any immersion.
TC IMP TC IMM

` ∀ G. TCON G ⇒ ∀ Imm. TCON_IMM G Imm

The following result (proved in HOL) shows that time-consistency with respect to an immersion

effectively places a constraint on the initialisation function at times given by the immersion.
TC IMM LEMMA

` ∀ G init next Imm.

IMM Imm ∧ IMAP G init next ⇒

(TCON_IMM G Imm = ∀ t a. init (G (Imm a t) a) = G (Imm a t) a)

5.4 One-Step Time-Consistency Verification

This section introduces two results which show that the time-consistency of an iterated map can be

verified by analysis of the cases t = 0 and t = 1. In the case of time-consistency with respect to an

immersion, the result follows when the immersion is uniform.

The HOL theorem TC_ONE_STEP_THM proves that the time-consistency of an iterated map spec-

ification reduces to proving the idempotency of initialisation at cycles 0 and 1.
TC ONE STEP THM

` ∀ G init next.

IMAP G init next ⇒

(TCON G = (∀ a. init (G 0 a) = G 0 a) ∧ ∀ a. init (G 1 a) = G 1 a)

This result is extended with the HOL theorem TC_IMM_ONE_STEP_THM, which proves the same

result for time-consistency with respect to a uniform immersion.

12

TC IMM ONE STEP THM

` ∀ G init next Imm dur.

IMAP G init next ∧ UIMM Imm G dur ⇒

(TCON_IMM G Imm =

(∀ a. init (G (Imm a 0) a) = G (Imm a 0) a) ∧

∀ a. init (G (Imm a 1) a) = G (Imm a 1) a)

These two results are proved by induction over the abstract clock and using the results TC_LEMMA

and TC_IMM_LEMMA respectively.

5.5 One-Step Correctness Verification

This section introduces a one-step theorem for the verification of correctness. This theorem states

that provided:

l an immersion Imm is uniform with respect to an implementation Impl and some duration
function dur ; and

l both Impl and the specification Spec are time-consistent iterated maps (Impl need only be
time-consistent with respect to the immersion),

then the correctness of Impl is proved if, for all a ∈ A

Spec 0 (Abs a) = Abs (Impl (Imm a 0) a),

Spec 1 (Abs a) = Abs (Impl (Imm a 1) a)

where Abs is the data abstraction. This theorem provides for a systematic approach to the verifica-

tion of correctness. One must first prove that the necessary uniformity and time-consistency con-

ditions hold2 and then proceed by expanding the definitions of Spec and Impl using case-analysis

over the state-space A.

The theorem ONE_STEP_THM is proved in HOL.
ONE STEP THM

` ∀ Spec Impl initf nextf initg nextg Imm dur Abs.

UIMM Imm Impl dur ∧ ONTO_INIT Abs initf initg ∧

IMAP Spec initf nextf ∧ IMAP Impl initg nextg ∧ TCON Spec ∧

TCON_IMM Impl Imm ⇒

(CORRECT Spec Impl Imm Abs =

(∀ a. Spec 0 (Abs a) = Abs (Impl (Imm a 0) a)) ∧

∀ a. Spec 1 (Abs a) = Abs (Impl (Imm a 1) a))

5.6 Uniform Adjunct Immersions

In order to prove a one-step theorem for superscalar implementation correctness, one must first

consider the construction of adjunct immersions. A uniform adjunct immersion is constructed

using a state function, duration function and a regular uniform immersion.

Given a state function G : S → A → A, a function dur 1 : A → T+ and a uniform immersion

Imm2 : A → R → S (defined with respect to G and some dur 2 : A → S+), then the uniform

2Uniformity should follow from the definition of the immersion. Time-consistency may be quite difficult

to prove (i.e. involve a great deal of case-analysis) but can be done using the theorems TC ONE STEP THM and

TC IMM ONE STEP THM.

13

adjunct immersion Imm1 : A → R → T with respect to G, dur 1 and Imm2 is defined by the

equations

Imm1 a 0 = 0,

Imm1 a (r + 1) = dur 1(G (Imm2 a r) a) + Imm1 a r.

This immersion differs in construction from a regular uniform immersion because the state of the

implementation at cycle r is not determined by Imm1 itself, but is given by the predefined uniform

immersion Imm2.

The HOL predicate AUIMM Imm1 Imm2 G dur1 dur2 is used to express that the immersion

Imm2:’a→num→num is uniform with respect to state function G:num→’a→’a and duration func-

tion dur2:’a→num, and that Imm1:’a→num→num is a uniform adjunct immersion with respect to

G, dur1:’a→num and Imm2.
AUIMM def

` ∀ Imm1 Imm2 G dur1 dur2.

AUIMM Imm1 Imm2 G dur1 dur2 =

UIMM Imm2 G dur2 ∧ (∀ a. 0 < dur1 a) ∧ (∀ a. Imm1 a 0 = 0) ∧

∀ a t. Imm1 a (SUC t) = dur1 (G (Imm2 a t) a) + Imm1 a t

The lemma AUIMM_IS_IMM_LEMMA shows that Imm1 and Imm2, as defined above, are both im-

mersions.
AUIMM IS IMM LEMMA

` ∀ G Imm1 Imm2 dur1 dur2.

AUIMM Imm1 Imm2 G dur1 dur2 ⇒ IMM Imm1 ∧ IMM Imm2

5.7 One-Step Superscalar Correctness Verification

The theorem ONE_STEP_SUP_THM is proved in HOL and is a superscalar variant of the theorem

ONE_STEP_THM.
ONE STEP SUP THM

` ∀ Spec Impl initf nextf initg nextg Imm1 Imm2 dur1 dur2 Psi.

AUIMM Imm1 Imm2 Impl dur1 dur2 ∧ ONTO_INIT Psi initf initg ∧

IMAP Spec initf nextf ∧ IMAP Impl initg nextg ∧ TCON Spec ∧

TCON_IMM Impl Imm2 ⇒

(CORRECT_SUP Spec Impl Imm1 Imm2 Psi =

(∀ a. Spec (Imm1 a 0) (Psi a) = Psi (Impl (Imm2 a 0) a)) ∧

∀ a. Spec (Imm1 a 1) (Psi a) = Psi (Impl (Imm2 a 1) a))

It is worth noting that the time-consistency of Spec is not expressed in the more general setting

i.e. with respect to the immersion Imm1. The reason for this is that the state function for an

architecture will invariably be fully time-consistent because it is possible to execute (specify) each

instruction one at a time.

6 Example: A Datapath with Microprogram Control

The methods and techniques of Sections 3 and 5 are demonstrated with a relatively simple, but

complete, example. Section 6.1 gives a Programmer’s Model (PM) specification of a device, which

consists of: a read-only memory, a counter and an accumulator. An implementation of this device

14

is then specified in Section 6.2. The implementation is modelled as an Abstract Circuit (AC), em-

ploying a single-bus datapath with microprogram control. The correctness of the AC, with respect

to the PM, is defined in Section 6.3, and this is then verified in Section 6.4. Although the device is

not as complex as a microprocessor, the methods used (both in the specification and verification of

the AC) are equally suited to the verification of a microprocessor with microprogram control logic.

6.1 PM Specification

In this section a simple device is formally specified using HOL. The device has three components: a

read-only memory m, a counter pc and an accumulator acc. The memory is indexed by the counter

and each address contains a single bit of data. The intended Programmer’s Model (PM) behaviour

of the device is as follows:

If the bit m(pc) is set then the counter is added to accumulator acc:=acc+pc, otherwise a no-

op (no-operation) occurs. In both cases, the counter is incremented and the device continues

in this manner ad infinitum.

The state-space and underlying operations are under-specified. That is to say, the counter and

accumulator could range over the natural numbers, with the memory being infinite. On the other

hand, they could range over a single bit or bit-vector—this would mean that the state-space is finite,

registers would overflow and the behaviour of the device would be cyclic (repeat the same sequence

of states). In either case, the device does not have any obvious purpose, beyond that which it is put

to here.

The state-space of the device is specified in HOL with the following type declarations.

new_type {Arity = 0, Name = "word"};

Hol_datatype ‘state_PM = PM of (word->bool)=>word=>word‘;

The state-space is represented by the type state_PM. The type word is declared, together with the

operations ADD:word→word→word and INC:word→word, but no attempt is made to ascribe a

semantics. The memory is modelled as a map from word to bool.

The PM state function STATE PM:num→state PM→state PM is defined as follows:
STATE PM def

` (∀ a. STATE_PM 0 a = a) ∧

∀ t a. STATE_PM (SUC t) a = NEXT_PM (STATE_PM t a)

The PM next-state function STATE PM:state PM→state PM is defined as follows:
NEXT PM def

` NEXT_PM (PM m pc acc) =

(if m pc then PM m (INC pc) (acc ADD pc) else PM m (INC pc) acc)

There are two cases, one of which is a no-op.

6.2 AC Specification

The PM device is implemented as an Abstract Circuit (AC), which contains a single-bus datapath

and employs microprogram control, see Figure 4. The bus is capable of carrying one word at a time

and the Arithmetic-Logic Unit (ALU) can perform one addition (or increment) per cycle. Conse-

quently, more than one cycle is required for the AC to implement the functionality of the PM. The

15

pc acc buf arg

ir

m

ALU

BUS

uir

warg

upc

addr 3

jmpmode

a
l
u
m
o
d
e

r
p
c

w
p
c

w
a
c
c

w
b
u
f

w
i
r

r
a
c
c

r
b
u
f

MUX

read

MMEM

Figure 4: The AC datapath and microprogram control.

Line Micro-instruction Comment

0 read, wir ; 1 Fetch instruction

1 jmpmode ; ir ⇒ 3 | 2 Decode instruction

2 ; 6 No-op

3 racc, warg ; 4 Read accumulator

4 rpc, add ; 5 . . . perform addition with pc

5 rbuf, wacc ; 6 . . . store result in acc

6 rpc, inc ; 7 Increment pc

7 rbuf, wpc ; 0 . . . store result in pc

Table 1: The microprogram MMEM. The mnemonic add is used to indicate that both wbuf and

alumode are set, and inc is a pseudonym for wbuf. The value after the semi-colon gives

the next micro-instruction address. If jmpmode is set then the next line is determined by

the register ir, see Figure 4.

16

datapath is controlled by a series of single-bit control flags, contained in a 14-bit micro-instruction

uir. The overall behaviour of the AC is controlled by the contents of the microprogram memory

MMEM, from which the current micro-instruction fetched using a microprogram-counter upc. An

annotated description of the microprogram MMEM is provided in Table 1. The implementation is

somewhat artificial; for example, it would be more sensible to dispense with the arg register, con-

necting the pc register directly to the ALU. The given arrangement has been chosen because it

provides a fair representation of the datapath of microprogrammed microprocessor.

The state-space of the AC is specified in HOL with the following type declarations.

Hol_datatype ‘upc = MPC of bool⇒bool⇒bool‘;

Hol_datatype ‘uir = MIR of bool⇒bool⇒bool⇒bool⇒bool⇒bool⇒bool⇒
bool⇒bool⇒bool⇒bool⇒bool⇒bool⇒bool‘;

Hol_datatype ‘datapath = DP of word⇒bool⇒word⇒word⇒word‘;

Hol_datatype ‘state_AC = AC of (word→bool)⇒datapath⇒upc⇒(upc→uir)‘;

The microprogram-counter is three bits long and the micro-instruction register is 14 bits long.3 The

datapath DP pc ir acc buf arg does not include the read-only memory.

The AC state function STATE AC:num→state AC→state AC is defined as follows:
STATE AC def

` (∀ a. STATE_AC 0 a = INIT_AC a) ∧

∀ t a. STATE_AC (SUC t) a = NEXT_AC (STATE_AC t a)

The AC initialisation function INIT AC:state AC→state AC is defined as follows:
INIT AC def

` INIT_AC (AC m datapath upc um) = AC m datapath (MPC F F F) MMEM

The initialisation function sets the microprogram counter to address zero and the microprogram

to the constant MMEM (see Figure 5). By treating the microprogram as part of the state-space (as

opposed to hard-wiring it in the definition of the next-state function), this emphasises the fact that

the device could be correct when initialised with different microprograms.

The AC next-state function NEXT AC:state AC→state AC is defined as follows:
NEXT AC def

` NEXT_AC (AC m datapath upc um) =

(let uir = um upc in

AC m (BUS_READ uir datapath (BUS_WRITE uir m datapath))

(NEXT_MPC uir (IR datapath) um)

The functions BUS_WRITE, BUS_READ and NEXT_MPC are all defined in Figure 5. The function

IR:datapath→bool simply projects out the instruction register ir. One can identify three parts to

micro-instruction execution: (i) the micro-instruction register uir is fetched, to become um(upc),

(ii) there is a write to the bus, from a source controlled by uir, followed by a read from the bus, to

a destination controlled by uir; and (iii) the microprogram counter is updated.

3In hardware not all micro-instruction words are valid: one must ensure that certain control flags are mutually

exclusive (disjoint). For example, attempts to simultaneously write multiple values to the bus must be precluded. This

potential problem is not reflected directly in the specification of AC, wherein nested-if structures effectively prioritises

bus read/write control signals. Though the microprogram MMEM (Figure 5) would not cause a problem in hardware.

17

val BUS_WRITE_def =
` ∀ uir m pc ir acc buf arg.

BUS_WRITE uir m (DP pc ir acc buf arg) =
(if READ uir then

PAD (m pc)
else
(if RPC uir then

pc
else
(if RACC uir then

acc
else
(if RBUF uir then buf else PAD ARB))))

val ALU_def =
` ∀ uir arg bus.

ALU uir arg bus = (if ALUMODE uir then arg ADD bus else INC bus)

val BUS_READ_def =
` ∀ uir pc ir acc buf arg bus.

BUS_READ uir (DP pc ir acc buf arg) bus =
(if WPC uir then

DP bus ir acc buf arg
else
(if WIR uir then

DP pc (TRIM bus) acc buf arg
else
(if WACC uir then

DP pc ir bus buf arg
else
(if WBUF uir then

DP pc ir acc (ALU uir arg bus) arg
else
(if WARG uir then

DP pc ir acc buf bus
else
DP pc ir acc buf arg)))))

val NEXT_MPC_def =
` ∀ uir ir.

NEXT_MPC uir ir = (if JMPMODE uir ∧ ir then MPC F T T else ADDR uir)

uir = (MIR read rpc wpc wir racc wacc rbuf wbuf warg alumode jmpmode addr2 addr1 addr0)

val MMEM_def =
` (MMEM (MPC F F F) = MIR T F F T F F F F F F F F F T) ∧

(MMEM (MPC F F T) = MIR F F F F F F F F F F T F T F) ∧

(MMEM (MPC F T F) = MIR F F F F F F F F F F F T T F) ∧

(MMEM (MPC F T T) = MIR F F F F T F F F T F F T F F) ∧

(MMEM (MPC T F F) = MIR F T F F F F F T F T F T F T) ∧

(MMEM (MPC T F T) = MIR F F F F F T T F F F F T T F) ∧

(MMEM (MPC T T F) = MIR F T F F F F F T F F F T T T) ∧

(MMEM (MPC T T T) = MIR F F T F F F T F F F F F F F)

Figure 5: The main AC functions and the microprogram memory MMEM. The twelve projection

functions READ:uir→bool, RPC:uir→bool and so forth, have obvious definitions. In

the case of the single bit register ir, the maps PAD and TRIM are used when writing to,

and reading from, the bus.

18

6.3 Correctness Statement

The correctness of the AC is expressed in HOL using the predicate CORRECT from page 7.
CORRECT AC def

` CORRECT STATE_PM STATE_AC IMM_AC ABS_AC

The data abstraction ABS AC:state AC→state PM is defined as follows:
ABS AC def

` ABS_AC (AC m (DP pc ir acc buf arg) upc um) = PM m pc acc

The abstraction function projects out the memory, counter and accumulator from the AC state.

In many cases, data abstractions will be based around projection. Though care must be taken

with pipelined designs, where the AC program-counter is allowed to run ahead of the PM program-

counter.

The immersion IMM AC:state AC→num→num, defined below, is uniform with respect to the

state function STATE_AC and duration function DUR_AC.
IMM AC def

` (∀ a. IMM_AC a 0 = 0) ∧

∀ a t. IMM_AC a (SUC t) = DUR_AC (STATE_AC (IMM_AC a t) a) + IMM_AC a t

The duration function DUR AC:state AC→num is defined as follows:
DUR AC def

` DUR_AC (AC m (DP pc ir acc buf arg) upc um) = (if m pc then 7 else 5)

By examining the microprogram MMEM (Table 1), one can observe that there are only two possible

program traces: lines 0, 1, 3, 4, 5, 6, 7, 0 if m(pc) is set, and lines 0, 1, 2, 6, 7, 0 otherwise. Hence

the PM instruction execution is complete (upc equals zero) at cycles seven and five respectively.

Clearly microprocessors will have more complex duration functions, and one might consider

using a bounded search to establish when instructions have been committed. In many cases though,

the temporal characteristics are remarkably easy to deduce because this information is reflected in

the control logic. Certain classes of instructions and events (such as interrupts) will have know

temporal characteristics.

6.4 Verification

The theorem ONE_STEP_THM (page 13) is used to verify the correctness of the AC. Before applying

this theorem to the correctness statement, a number of conditions must be satisfied. One must

prove that: both of the state functions are iterated maps; the immersion is uniform; the ONTO_INIT

property holds (page 6); and both state functions are time-consistent.

6.4.1 Preliminaries

The theorem STATE_PM_THM confirms that STATE_PM is an iterated map, with the identity map I

as the initialisation function and NEXT_PM as the next-state function.
STATE PM THM

` IMAP STATE_PM I NEXT_PM

The theorem STATE_AC_THM shows that STATE_AC is an iterated map with initialisation function

INIT_AC and next-state function NEXT_AC.

19

STATE AC THM

` IMAP STATE_AC INIT_AC NEXT_AC

Both of the theorems above follow from the construction of the state functions and have one line

proofs in HOL.

The following theorem shows that the immersion IMM_AC is uniform.
IMM AC UNIFORM

` UIMM IMM_AC STATE_AC DUR_AC

This result follows from the construction of IMM_AC. During the proof it is necessary to prove that

zero is not in the range of the duration function DUR_AC. This may be established by trivial case-

analysis: there are only two possible durations (seven and five cycles) both of which are non zero.

The result AC_ONTO_INIT establishes that all the initial PM states are represented by a concrete

initial state in the AC.
AC ONTO INIT

` ONTO_INIT ABS_AC I INIT_AC

This result is proved in HOL using EXISTS_TAC to give witness to the necessary implementation

states: components that ABS_AC projects out (to form the specification state) are set appropriately,

and all other values are instantiated with ARB=εx.T to denote arbitrary values.

6.4.2 Time-Consistency

Having established that STATE_AC is an iterated map and IMM_AC is a uniform immersion, it is

possible to verify the following result using TC_IMM_ONE_STEP_THM from page 12.
AC TCON IMM

` TCON_IMM STATE_AC IMM_AC

After applying TC_IMM_ONE_STEP_THM to the initial goal, the following two subgoals emerge:

INIT_AC (STATE_AC (IMM_AC a 1) a) = STATE_AC (IMM_AC a 1) a

0. IMAP STATE_AC INIT_AC NEXT_AC

1. UIMM IMM_AC STATE_AC DUR_AC

INIT_AC (STATE_AC (IMM_AC a 0) a) = STATE_AC (IMM_AC a 0) a

0. IMAP STATE_AC INIT_AC NEXT_AC

1. UIMM IMM_AC STATE_AC DUR_AC

The first sub-goal (t = 0) is easy to prove: it simply compares two applications of INIT_AC with one

application. The second sub-goal (t = 1) is dealt with by case-analysis using the following lemma.
AC LEMMA

` ∀ a. (a = AC m (DP pc ir acc buf arg) upc um) ⇒

(STATE_AC (IMM_AC a 1) a =

(if m pc then

AC m (DP (INC pc) T (acc ADD pc) (INC pc) acc) (MPC F F F) MMEM

else

AC m (DP (INC pc) F acc (INC pc) arg) (MPC F F F) MMEM))

20

If m(pc) is set then the next-state function NEXT_AC is applied for seven cycles, otherwise it is

applied for five cycles. In both cases one can observe that the microprogram memory MMEM is

not altered and the microprogram-counter upc is restored to line zero. These are the only two

components that could have been altered by the initialisation function, consequently applying

INIT_AC has no affect and time-consistency is proved.

This lemma is also used in the next section where the correctness of the AC is finally proved.

Symbolically evaluating the state function with this lemma prevents repeating the same re-writes

and simplifications in different parts of the proof.

This example highlights the fact that the initialisation function INIT_AC is being used to

check the consistency of the implementation’s state, after having applied the next-state function

i.e. it is expressing an implicit invariant condition. If the microprogram were changed, or if the

microprogram-counter had an unexpected value, then this would have been picked up during the

proof for time-consistency. Failure to be time-consistent need not imply incorrect behaviour but it

does preclude the use of ONE_STEP_THM. If one is confident that the emergent behaviour is correct

then one may choose to modify an initialisation function accordingly. Notice that the initialisation

function could have been weakened (to cover more cases) without good reason, for example, to

consider the cases where the AC was some way through the execution of an microprogram instruc-

tion sequence. This would lead to achieving full time-consistency, as given by the predicate TCON in

Section 5.2. By expressing time-consistency in terms of the immersion IMM_AC, it is only necessary

to consider states corresponding with the completion of PM instructions.

AC_LEMMA is proved using a single application of the HOL tactic RW_TAC. The following simpset

is used:
exec ss

std_ss++rewrites [INIT_AC_def,NEXT_AC_def,NEXT_MPC_def,TRIM_AX,

BUS_READ_def,BUS_WRITE_def,ALU_def,IR_def,READ_def,RPC_def,WPC_def,

WIR_def,RACC_def,WACC_def,RBUF_def,WBUF_def,WARG_def,ALUMODE_def,

JMPMODE_def,ADDR_def,MMEM_def]

Term rewriting with this simpset, together with case-splitting, is sufficient to generate all the pos-

sible next state cases for the AC. One case-split is introduced for every cycle of the PM clock, and

because the one-step theorems are being used, it is only necessary to consider a single cycle. When

verifying microprocessors, the number of cases will typically scale with the size of the instruction

set, the length of pipelines, and the width of superscalar designs. Finding ways to manage the poten-

tially huge number of state cases inherent in current microprocessor designs (with multiple execute

units, interrupts and very long pipelines) is an active research area.

6.4.3 Correctness

All of the apparatus is now available to complete the AC correctness verification. The proof starts

by assuming the results established in the last couple of sections. The time-consistency of the

specification is then deduced using TC_I_LEMMA. After this, the theorem ONE_STEP_THM can be

used to re-write the proof obligation, thus eliminating the time variable. The state is then expanded,

using Cases_on, to give all the components of the AC state-space; this expression is abbreviated

later using ABBREV_TAC.

The t = 0 case is readily proved using the simplifier tactic SIMP_TAC. This confirms that the

AC starts in a valid initial state because INIT_AC does not change any of the PM components. The

proof is finished off (t = 1 case) by calling upon AC_LEMMA followed by one application of RW_TAC,

which is where the next states of the implementation (as defined by the lemma) are compared with

those of the specification.

21

The complete proof is as follows:

CORRECT STATE_PM STATE_AC IMM_AC ABS_AC

--

MAP_EVERY ASSUME_TAC [STATE_PM_THM,STATE_AC_THM,IMM_AC_UNIFORM,

AC_ONTO_INIT,AC_TIME_CON_IMM]

THEN ‘TCON STATE_PM‘ by IMP_RES_TAC TC_I_LEMMA

THEN ‘CORRECT STATE_PM STATE_AC IMM_AC ABS_AC =

(∀ a. STATE_PM 0 (ABS_AC a) = ABS_AC (STATE_AC (IMM_AC a 0) a)) ∧

∀ a. STATE_PM 1 (ABS_AC a) = ABS_AC (STATE_AC (IMM_AC a 1) a)‘

by IMP_RES_TAC ONE_STEP_THM

THEN POP_ASSUM (fn th => REWRITE_TAC [th])

THEN REPEAT STRIP_TAC

THEN Cases_on ‘a‘

THEN Cases_on ‘d‘

THENL [

SIMP_TAC std_ss [STATE_PM_def,STATE_AC_def,IMM_AC_def,INIT_AC_def,ABS_AC_def],

ABBREV_TAC ‘a = AC f (DP w b w0 w1 w2) u f0‘

THEN POP_ASSUM (fn th ⇒ ASSUME_TAC (SYM th))

THEN IMP_RES_TAC AC_LEMMA

THEN RW_TAC std_ss [ONE,STATE_PM_def,NEXT_PM_def,ABS_AC_def]]

7 Future Work and Conclusions

This report has established that the HOL proof tool can be used to support an algebraic framework

for modelling and verifying microprocessors. This has involved formalising models of data and

temporal abstractions, in order to present a precise and general formulation of correctness. It is

asserted that this work is applicable to a wide range of deterministic state systems, including abstract

models of pipelined and superscalar processors. This material was then explained and demonstrated

with a methodical verification of a microprogrammed abstract circuit.

This framework has been used to verify a pipelined design [8]. To take this work forward, a far

more sizable case-study will be undertaken. A large part of the ARM instruction set will be specified

in HOL, together with a pipelined implementation, loosely based around the ARM6 core. Initially

this will establish whether or not such a specification and verification is feasible in HOL, using the

methods presented in this report. In the long term it will hopefully provide a basis for looking at

other features, for example, the incorporation of caches, interrupts, and multi-processor systems.

References

[1] Bishop C. Brock and Warren A. Hunt, Jr. Report on the formal specification and partial verification

of the VIPER microprocessor. Technical Report 46, Computational Logic, Inc., Austin, Texas, January

1990.

[2] Jerry R. Burch. Techniques for verifying superscalar microprocessors. In 33rd Design Automation Confer-

ence, pages 552–557. ACM Press, 1996.

[3] Jerry R. Burch and David L. Dill. Automatic verification of pipelined microprocessor control. In

David L. Dill, editor, Proceedings of the 6th International Conference, CAV ’94: Computer Aided Verifica-

tion, volume 818 of Lecture Notes in Computer Science, pages 68–80, Berlin, 1994. Springer-Verlag.

[4] Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56–68, 1940.

22

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer,

and José Quesada. Maude: Specification and programming in rewrite logic. Technical report, Computer

Science Laboratory, SRI International, March 1999.

[6] David Cyrluk. Microprocessor verification in PVS: A methodology and simple example. Technical

Report SRI-CSL-93-12, Computer Science Laboratory, SRI International, Menlo Park, 1993.

[7] Anthony C. J. Fox. Algebraic Models for Advanced Microprocessors. PhD thesis, University of Wales

Swansea, 1998.

[8] Anthony C. J. Fox. The specification and verification of a 4-stage RISC pipeline using HOL. Technical

report, Computer Laboratory, University of Cambridge, 2001. In preparation.

[9] Anthony C. J. Fox and Neal A. Harman. An algebraic model of correctness for superscalar micro-

processors. In Mandayam K. Srivas and Albert Camilleri, editors, Proceedings of the First International

Conference, FMCAD ’96: Formal Methods in Computer-Aided Design, volume 1166 of Lecture Notes in

Computer Science, pages 346–361. Springer-Verlag, 1996.

[10] Anthony C. J. Fox and Neal A. Harman. Algebraic models of superscalar microprocessor implementa-

tions: A case study. In B. Möller and J V Tucker, editors, Prospects for Hardware Foundations, volume

Lecture Notes in Computer Science 1546, pages 138–183. Springer-Verlag, 1998.

[11] Mike J. C. Gordon. LCF-LSM: A system for specifying and verifying hardware. Technical Report 41,

University of Cambridge Computer Laboratory, 1983.

[12] Mike J. C. Gordon. Proving a computer correct with the LCF-LSM hardware verification system. Tech-

nical Report 42, University of Cambridge Computer Laboratory, 1983.

[13] Mike J. C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanised

Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[14] Brian Graham and Graham Birtwistle. Formalising the design of an SECD chip. In Miriam E. Leeser

and Geoffrey M. Brown, editors, Proceedings of the Mathematical Sciences Institute Workshop on Hardware

Specification, Verification and Synthesis: Mathematical Aspects, volume 408 of Lecture Notes in Computer

Science, pages 40–66. Springer-Verlag, 1990.

[15] Neal A. Harman. Verifying a simple pipelined microprocessor using Maude. Technical Report 4, De-

partment of Computer Science, University of Wales Swansea, 2000.

[16] Neal A. Harman and John V. Tucker. Algebraic models of microprocessors: The verification of a sim-

ple computer. In V Stravridou, editor, Mathematics of Dependable Systems II, pages 135–170. Oxford

University Press, 1997.

[17] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Decomposing the proof of correctness

of pipelined microprocessors. In Hu and Vardi [18], pages 122–134.

[18] Alan J. Hu and Moshe Y. Vardi, editors. Computer Aided Verification: 10th International Conference,

CAV’98 Proceedings, volume 1427 of Lecture Notes in Computer Science. Springer, 1998.

[19] Warren A. Hunt, Jr. FM8501: A Verified Microprocessor. PhD thesis, University of Texas at Austin,

December 1985.

[20] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: An Approach.

Kluwer Academic Publishers, June 2000.

[21] Karl Meinke and John V Tucker. Universal algebra. In S Abramsky, D Gabbay, and T S E Maibaum,

editors, Handbook of Logic in Computer Science, pages 189 – 411. Oxford University Press, 1992.

23

[22] Thomas F. Melham. Abstraction mechanisms for hardware verification. In Graham Birtwistle and P. A.

Subrahmanyam, editors, VLSI Specification, Verification and Synthesis, pages 267–291. Kluwer Academic

Publishers, 1988.

[23] Thomas F. Melham. Higher Order Logic and Hardware Verification, volume 31 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1993.

[24] Larry Paulson. Logic and Computation: Interactive Proof with Cambridge LCF, volume Cambridge Tracts

in Theoretical Computer Science 2. Cambridge University Press, 1987.

[25] Jun Sawada and Warren A. Hunt, Jr. Processor verification with precise exceptions and speculative

execution. In Hu and Vardi [18], pages 135–146.

[26] Jens U. Skakkebæk, Robert B. Jones, and David L. Dill. Formal verification of out-of-order execution

using incremental flushing. In Hu and Vardi [18], pages 98–109.

[27] Mandayam K. Srivas and Steven P. Miller. Applying formal verification to the AAMP5 microprocessor:

A case study in the industrial use of formal methods. Formal Methods in Systems Design, 8(2):153–188,

March 1996.

[28] Sofiène Tahar and Ramayya Kumar. A practical methodology for the formal verification of RISC pro-

cessors. Formal Methods in Systems Design, 13(2):159–225, September 1998.

[29] Ben C. Thompson. A Mathematical Theory of Synchronous Concurrent Algorithms. PhD thesis, Depart-

ment of Computer Studies, University of Leeds, 1987.

[30] Ben C. Thompson and John V. Tucker. Equational specification of synchronous concurrent algebras

and architectures. Technical Report CSR-9.91, Department of Computer Science, University College

Swansea, 1991.

[31] Phillip J. Windley. A theory of generic interpreters. In George J. Milne and Laurence Pierre, editors,

Correct Hardware Design and Verification Methods, volume 683 of Lecture Notes in Computer Science, pages

122–134. Springer-Verlag, 1993.

[32] Phillip. J. Windley and Michael L. Coe. A correctness model for pipelined microprocessors. In Ramayya

Kumar and Thomas Kropf, editors, Proceedings of the 2nd International Conference, TPCD ’94: Theorem

Provers in Circuit: Theory, Practice and Experience, volume 901 of Lecture Notes in Computer Science,

pages 33–51. Springer-Verlag, 1995.

[33] Martin Wirsing. Algebraic specification. In J van Leeuwen, editor, Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics, pages 675 – 788. Elsevier, 1990.

24

