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Abstract

The generating function formalism is used to analyze the continuity
properties of univariate ternary subdivision schemes. These are compared
with their binary counterparts.

1 Introduction

Most work in the area of subdivision schemes has considered binary schemes
with an even number of control points. Following a similar argument to that
used in [2], we decided to investigate schemes with an odd number of control
points, specifically 3-point schemes. This led to a more general investigation of
ternary subdivision schemes.

For symmetry reasons, it is obvious that an interpolating binary subdivision
scheme which utilizes the closest &k points, for k odd, reduces to a scheme which
utilizes just the closest k£ — 1 points, kK — 1 even. There is thus no 3-point in-
terpolating binary subdivision scheme. Ternary subdivision, on the other hand,
does allow for an interpolating 3-point subdivision scheme. A family of such
schemes has been shown to exist and have C! continuity, as demonstrated later
in this report. Further investigation led to discovery of a family of interpolating
4-point ternary subdivision schemes which have C? continuity [5].

Investigation of approximating 3-point schemes has led to two interesting
subdivision schemes. An approximating 3-point ternary scheme has been found
and shown to have C? continuity. An approximating 3-point binary scheme,
which uses corner-cutting similar in spirit to the 2-point scheme %[1, 3,3,1], can
be derived and shown to have C? continuity. Both schemes are presented in full
later in this report.

We have investigated these schemes using the generating function formalism,
which lends itself well to deriving sufficient conditions for subdivision schemes
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Interpolating
Scheme | Highest continuity Mask
2-point CO 31,2,3,2,1]
3-point Cct [a,0,b,1—a—0b,1,1—a—b,b,0,d]
4-point C? [as, ag,0,a2,a1,1,a1,a2,0, a9, as)
Approximating
3-point C? \ >-[1,4,10,16,19,16,10,4,1]
where
3
a = b— 9
B 1 1
S T
131
S T
71
@ = 5Tk
B 1 1
as 7178 + g,u
and
2
9 < b < 9
1 1
T

Figure 1: Table showing results for ternary schemes.

to be C*. For binary schemes the subdivision step can be compactly written in
a single equation

P =" agn—jphs (1)
kEZ

and similarly for ternary schemes

péﬂ = Za(Sk—j)pZa (2)
kez

where o = (o) is the mask of the scheme and p are the set of points after the
i*" subdivision step. The principal results for the ternary schemes are tabulated
in Figure 1 and compared with those for binary schemes tabulated in Figure 2.

The results for the 2-point interpolating schemes are trivial. [5] shows the
derivation of the ternary 4-point interpolating scheme. [4] derives the results
for the binary 4-point interpolating scheme and [7] derives the results for the
binary 6-point interpolating scheme. Chaikin first proposed the binary 2-point
approximating scheme in [1], which was shown to produce the quadratic b-spline



Interpolating

Scheme | Highest continuity Mask

2-point CO 1[1 2,1]

4-point Cct %[ 1,0,9,16,9, —1]

6-point C? [0,0,—30 — 167O 20 + 6,1,29+ E’O —360 — 16,0 0
Approximating

2-point CcT 111,3,3,1]

3-point c? 7z [1,5, 10, 10 5,1]

where 0 < 6 < 0.02.

Figure 2: Table showing results for binary schemes.

at the limit [6] and it can be shown that the ternary 3-point approximating
scheme produces the cubic B-spline at the limit and that the binary 3-point
approximating scheme produces the quartic B-spline.

In the following we will describe the generating function formalism and how
it is used to derive continuity.

2 Generating function formalism

2.1 Binary Schemes

From the method of Dyn [3], after some computation we, see that the subdivision
step for binary schemes can be expressed in the generating function formalism
as a simple multiplication of the corresponding symbols:

P(z) = a(z)P'(2?), 3)

where

= Zp;-zj, a(z) = Zajzj. (4)

2.1.1 Sufficient conditions for C*

Now we will state sufficient conditions for a binary scheme to be C*. The proof
is given in [3].

For any given binary subdivision scheme, S, with a mask « satisfying (5),
we can prove S PO ¢ CF by first deriving the mask of %S;H_l and then com-
puting 1(3Sk+1)%||oo for i =1,2,3,... L, where L is the first integer for which
[(3Sk+1)"|loc < 1. If such an L exists and the mask of S satisfies (5) VI < k
then S> PO e OF.

ZO@QJ‘ = I,Za2j+1 =1 (5)

JEZ JEZ

= fmax E ’0627

] 5 ©)

1
H25k+1 Q541




where

2:[0M(2)] = [V (2)](1 +2) (7)
= 2a® = aFt 4 oY (8)

2.2 Ternary Schemes

Again following the method of Dyn [3], after some computation, we see that the
subdivision step for ternary schemes can be expressed in the generating function
formalism as a simple multiplication of the corresponding symbols:

P(z) = a(2)P'(2%), 9)

where

Pi(z) = sz»zj, a(z) = Zajzj. (10)

2.2.1 Sufficient conditions for C*

Now we will state sufficient conditions for a ternary scheme to be C*. The proof
is given in [5].

For any given ternary subdivision scheme, S, with a mask « satisfying (11),
we can prove S®P°? ¢ C* by first deriving the mask of %SkJrl and then com-
puting ||(2Sk+1)%||eo for i = 1,2,3,... L, where L is the first integer for which
1(3Sk+1)"|loc < 1. If such an L exists and the mask of S satisfies (11) VI < k
then S PY ¢ Ck.

Za3j = I,Zang = 1»Za3j+2 =1 (11)

JEZ JEZ JEZ

1 1 k1 k+1 k+1
H?)Sk“ = gmax Z ‘ai(’)j ) »Z ‘ai(%j+1) »Z ‘ai(%j+2) (12)
> JEL JEZ JEL
where
322 [a(k)(z)] = [a(k+1)(z)](1 + 24 2°%) (13)
= 3ak) R G (14)

3 Continuity of interpolating 3-point ternary sub-
division
For this scheme we have

a =[ ...,0,0,a,0,b,1—a—-0b,1,1—a—10,b,0,a,0,0,...] (15)
oM =3[ ...,0,0,a,—a,b,1—2b,b,—a,a,0,0,..] (16)

It is easy to verify that a satisfies (11).



1
Hssl

= max (|1 — 20| + 2|al, |a| + |b], |a] + |b]) < 1 (17)

oo

then this scheme has C° continuity.
Now for C! continuity we first need a(!) to satisfy (11). This implies

1
=b——. 18
a=b- (18)
and so we have
11 1 1
M =3[ ...,0,0,b—=,=—b,b,1—2b,b,— —bb—=,0,0,...] (19
a [ A ] 373 b 773 b 37’7 ] ()
1 2 1 2 1
@ =9 ...,0,0,b—=,2—2b2b——=,= —2b,b——,0,0,... 20
a [ ] 3’3 b 373 ) 3’77 ] ()
= 1 1 1 1
=S = 91b—=|,9|b— ,3126— =) <1 21
[55:{ = (oo =) o p- 332 3]) @)
then we have C! continuity.
2 3 3
—<b< —-,a=b—— 22
9< <9,a 9 (22)
(23)

satisfies (17) and (21).
For C? continuity we would require o(? to satisfy (11). This implies b = 2,
but with this value H%SQHOO =1. Forb=2

9
o® =] ...,0,0,-1,2,1,2,-1,0,0,.. ] (24)
()2 =[ ...,0,0,1,—4,2,0,11,0,2,-4,1,0,0,.. ] (25)

= 19—9. Thus it looks as if there is no C? 3-point interpo-
oo

Hence H(%ng’
lating ternary subdivision scheme.
Hence a C! ternary 3-point interpolating subdivision scheme can be defined

by (15), where 2 <b < 2 and a =b — 3.

4 Continuity of the approximating 3-point ternary
scheme

There are several ways to arrive at this scheme. One is through the generating
function formalism as followed above, another method is to use the matrix
formalism, and finally it can be arrived at from the cubic B-spline itself. Here
we will just prove the continuity of the scheme using the generating function
formalism.

For this scheme we have

o =

Q) =

L[ ...,0,0,1,4,10,16,19,16,10,4,1,0,0,.. ] (26)
i ...,0,0,1,3,6,7,6,3,1,0,0,...] (27)



It is easy to verify that « satisfies (11).

11 1>
=max|-,-,5 ) <1 (28)
o <3 3°3
Hence this scheme has C° continuity.
Now for C' continuity we first need a!) to satisfy (11), which it does. Now

1
Hssl

1
a® :g[...,0,071,2,3,2,170,0,...} (29)
111
> sl = (5g5) <1 )

Hence this scheme has C*! continuity.
Now for C? continuity we first need a(?) to satisfy (11), which it does. Now

a®  =1[..,0,0,1,1,1,0,0,...] (31)
111
= []58s]] :max<3,3,3)<1 (32)

Hence this scheme has C? continuity.
Now for C? continuity we first need a®) to satisfy (11), which it does. But

a® =3[...,0,0,1,0,0,...] (33)
= J|38s||.  =max(1,0,0)>1 (34)

(@®)2  =9[...,0,0,1,0,0,...] (35)
N H(%S?’)ZHOO = max (1,0,0) > 1 (36)

Hence this scheme does not have C® continuity.

5 Continuity of 3-point approximating binary
subdivision

This scheme can be easily derived from the quartic B-spline. Here we take a
different approach. We start from the general form of a binary 3-point subdivi-
sion scheme. We then apply continuity requirements in order, showing that the
quartic B-spline scheme is the only scheme of this type which has C3-continuity,
but that there are an infinite range of schemes with lower continuity.

There is no point in having a 3-point interpolating binary scheme, as such
a scheme would reduce to the 2-point scheme: %[1,27 1]. However, a 3-point
approximating binary scheme may be possible. This would be a corner-cutting
scheme similar to the 2-point scheme: %[1, 3,3,1]. Its mask is

a=la,b,l—a—-b1—a—>bb,al (37)

For C° continuity we require that the mask satisfy (5), which it does, and
[1351]] <1
271 !

a® =2[...,0,0,a,b—a,1—2bb—a,a,0,0,...] (38)
= 35|, =max(]1—2b]+2al,2[b—al) <1 (39)



For C' continuity we require that a(!) satisfy (5), which implies that b =
a+ i, and also H%SQHOO < 1.

1 1
af :4[...,O,O,a,1fa,ffa,a,O,O,...] (40)

4

S 135 :2|a|+2‘i—a<1 (1)

For C? continuity we require that o(?) satisfy (5), which is true, and also
[1555]] <1
293 oo :

1
a® :8[...70,0,65,1—2a,a,0,0,...] (42)
= |[38s]|, =max(|8al,]1—-8a|) <1 (43)

which implies that 0 < a < %.
For C® continuity we require that a(3) satisfy (5), which implies that a =

%, which incidentally meets the criterion in equations (39) and (41), and also
18 1
1384l < 1.

a® =[..,0,0,1,1,0,0,.. ] (44)
TN :max(;,;><l (45)

To go to C* continuity we require that o(* satisfy (5), which it does, and
also H%S5Hoo < 1, which it does not:

al®) =38[...,0,0,2,0,0,...] (46)
= |38l =1 (47)

Thus the limit curve for the binary scheme with the mask o = % [1,5,10,10,5,1]
has C® continuity.
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