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Abstract

This thesis describes techniques that exploit the distributed memory in massively
parallel processors to satisfy the peak memory requirements of some very large com-
puter algebra problems. Our aim is to achieve balanced memory use, which differen-
tiates this work from other parallel systems whose focus is on gaining speedup. It is
widely observed that failures in computer algebra systems are mostly due to mem-
ory overload: for several problems in computer algebra, some of the best available
algorithms suffer from intermediate expression swell where the result is of reason-
able size, but the intermediate calculation encounters severe memory limitations.
This observation motivates our memory-centric approach to parallelizing computer
algebra algorithms.

The memory balancing is based on a randomized hashing algorithm for dynamic
distribution of data. Dynamic distribution means that the intermediate data is
allocated storage space at the time that it is created and therefore the system can
avoid overloading some processing elements.

Large scale computer algebra problems with peak memory demands of more
than 10 gigabytes are considered. Distributed memory can scale to satisfy these
requirements. For example, the Hitachi SR2201 which is the target architecture in
this research provides up to 56 gigabytes of memory.

The system has fine granularity : tasks sizes are small and data is partitioned in
small blocks. The fine granularity provides flexibility in controlling memory balance
but incurs higher communication costs. The communication overhead is reduced by
an intelligent scheduler which performs asynchronous overlap of communication and
computation.

The implementation provides a polynomial algebra system with operations on
multivariate polynomials and matrices with polynomial entries. Within this frame-
work it is possible to find computations with large memory demands, for example,
solving large sparse systems of linear equations and Gröbner base computations.

The parallel algorithms that have been implemented are based on the standard
algorithms for polynomial algebra. This demonstrates that careful attention to
memory management aids solution of very large problems even without the benefit
of advanced algorithms. The parallel implementation can be used to solve larger
problems than have previously been possible.
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Chapter 1

Introduction

Computations with symbolic data items form a significant part of scientific compu-
tation methods. These differ from the more widely used systems for numerical data
manipulation in that the main goal of symbolic computation is exactness. Symbolic
manipulation may be considered to defer numerical computation; computing with,
and storing symbolic data delays the introduction of numerical constants, therefore
reduces numerical error propagation. Within the classification of symbolic compu-
tation, this work focuses on symbolic algebraic computation (SAC) or computer
algebra.1

This dissertation describes work on the development of a parallel computer al-
gebra system capable of performing algebraic manipulation on very large data sets.
The algebraic domains that are considered have arbitrary precision integers, poly-
nomials in several variables, and matrices with polynomial entries as basic data
objects.

Computer algebra systems are widely used in science and industry to perform
large calculations. For some users, they are powerful calculators providing higher
mathematical calculations that would be tedious and error-prone when performed
by hand. For these users, advanced commercial systems on single processor personal
computers are adequate.

On the other hand, some scientists making use of available systems are able to
stretch the resources, and often encounter the time or space limitations of current
systems. For these power users, computer algebra is an invaluable tool but they
require more from it. To address this need for powerful systems with more resources,
researchers in computer algebra have encouraged urgent attention to parallelism [23].

A report by Boyle and Caviness [14, pages 65–66], warns that

“. . . symbolic computation software development is lagging behind new
hardware technology. . . in the use of new architectures, including super-
computers.”

The authors recommend more research on parallel symbolic algorithms. This chal-
lenge is the starting point for the work reported here. The design and implementa-

1Other areas of symbolic computation include symbolic logic computation and automated the-
orem proving.
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tion of a parallel computer algebra system was undertaken with particular emphasis
on memory management.

1.1 Motivation

The pursuit of a parallel system for computer algebra leads to several theoretical,
system and application questions. At the theoretical level, the fundamental mod-
els of parallel computation apply, and many competing models and architectures
are available. Practical system development requires decisions on issues such as
granularity. The identification of computer algebra algorithms that have inherent
concurrency is a critical factor in application selection.

The main research question concerns the relative importance of the three key re-
sources in a parallel system: time, space and communication. This thesis emphasises
the critical nature of memory space for computer algebra problems.

Many parallel implementations (for computer algebra or other problems) aim to
make a computation faster, attaining speedup. This thesis suggests that, for parallel
computer algebra systems, the critical resource is memory space. The justification
for this approach relies on the following observations about computer algebra sys-
tems:

1. Intermediate expression swell,

2. Global memory overflow and

3. Node memory overflow

These are considered in turn and the issues arising in each case are highlighted.

1.1.1 Intermediate expression swell

Computation with algebraic terms has often been found to depend critically on
the maximum amount of memory required by the algorithm at any stage of the
computation [14]: the input size of a problem may be small, but its memory use
in intermediate stages of the calculation may grow very large. This phenomenon is
described by Tobey [118] as intermediate expression swell and has been observed
since the earliest computer algebra systems [19]. Consider the following example
from Char et al. [27]:

p1 = 91x99 + 6x89 − 34x80 − 20x76 + 56x54 + 25x52 + 86x44

+ 17x33 − 70x31 + 17

p2 = 16x95 + 46x84 + 38x76 + 88x74 + 81x72 + 21x52 − 91x49

− 96x25 − 64x10 + 20

These polynomials are relatively prime therefore gcd(p1, p2) = 1, but the compu-
tation of recursive polynomial remainder sequences shows growth in the number of
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Figure 1.1: Growing memory requirements for a GCD calculation

terms in the intermediate results and coefficient size before collapsing to the final
result. The growth in resource requirements is shown in figure 1.1.

The example is small by today’s standards and a naive GCD algorithm was
deliberately used so that the growth could be illustrated. For larger problems of the
same kind, state-of-the-art algorithms are often available, but many will still require
very large memory.

The example serves to demonstrate that the peak memory demands for larger
problems of this class may exceed available resources. Therefore memory resource
management becomes a key requirement for computer algebra systems.

Algorithmic improvements are the best way to manage expression size. The
subresultant algorithm [28, 18, 20] avoids intermediate expression swell in sequential
computation of polynomial gcd’s. Further algorithmic improvements have been
developed by Corless et al. [32] where hierarchical representation tools are employed
to reduce expression swell in perturbation problems. Such algorithmic improvements
are as yet available for a small number of algorithms. Parallel systems combined
with careful attention to the efficient use of memory [112] can provide an alternative
approach that satisfies the large memory requirements.

This research concentrates on memory allocation and space complexity, in con-
trast with some parallel computer algebra systems where the parallelism is used to
speed up computations that can take too much time on a workstation of typical
size. In this work, speedup is not the major goal, thus placing this work on a com-
paratively different footing from related studies in parallel computer algebra. The
critical role of intermediate expression swell demands a focus on memory systems
that cope with peak memory demand during a calculation, even when the final result
is a solution of modest size.
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1.1.2 Global memory overflow

Theoretical models of computation including Turing machines, register machines,
recursive functions and many more, assume unlimited memory [116]. However,
implementation in hardware gives finite memory, placing a physical limitation on
computation. Computations that require more memory than available encounter
memory overload and terminate.

In addition to the size of memory available, we have to address the performance
of memory. While processor speed continues to grow according to Moore’s Law,
the performance of memory has consistently been over 50% slower. The widening
processor-memory gap [61] shown in figure 1.2 places further constraints on systems.2

Fast caching principles and the memory hierarchy are successfully used to keep the
fast processor busy. However, 32-bit processors have a 4GB address space therefore
to provide over 10GB demands a parallel approach. The most scalable memory
architecture is the distributed memory machine since each additional node increases
the total storage by the amount of its local memory.

This research focuses on calculations that require a large amount of real memory.
While the use of virtual memory is a successful architectural feature for sequential
systems, it is worth noting that:

• Virtual memory provides large memory for problems with known locality of
data access. Applications targeted in this thesis display little data locality and
it is quite difficult to identify locality accesses.

• Virtual memory may become less effective for applications with irregular ac-

2As an example of the existing gap, an average workstation now has a 1GHz processor but only
128MB memory.
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cess to large amounts of data, due to thrashing. This thesis is concerned
with irregular computer algebra algorithms such as sparse systems of linear
equations, and these suffer from inefficiency in the use of the cache.

Algebraic computations, unlike purely numeric computation on a massively par-
allel processor, tend to have unpredictable data dependencies, irregular data access
patterns and varying computation time dependent on parameters such as order. All
these make it difficult to predict patterns of memory use, and therefore render some
of the current techniques ineffective.

1.1.3 Node memory overflow

The distributed memory parallel architecture distinguishes between local and global
memory. Each processor can directly access its local storage, but access to data in
other processing elements can only be accessed through communication messages.

Since each processor has a local address space, it is possible for one processor
to exceed its available memory, while there is still space available globally [103].
This may be referred to as node memory overflow. This would terminate the entire
computation, although the total available resources could have been enough for the
computation.

Avoiding these failures requires careful attention to memory demands. Memory
overload in a parallel system is difficult to anticipate since the global availability
does not prevent excess requirements in a single node.

1.2 Randomized dynamic distribution

A feature of our memory management solution is the use of dynamic relocation of
data during a computation, thus bounding the memory use per node.

The relocation is achieved through a randomized algorithm. The algorithm leads
to a good distribution of the data across all processing elements of the system.3 The
algorithm is based on distribution at fine granularity, where each buffer sent across
the network for storage at some processing element is of a small uniform size. Such
fine granularity leads to increased total number of messages and therefore higher
communication costs.

Dynamic distribution of data is a useful strategy in this case since static anal-
ysis before execution rarely gives much guidance about locality or the probability
of a high number of communication messages. However, random data placement
would be unsuitable for tasks where it is possible to make reliable predictions about
communication patterns and hence keep most communication local.

1.2.1 Static data distribution

The most widely used data distribution algorithms, such as block distribution, cyclic
distribution, and variations on these, are static. At the start of a computation, data

3The use of the word distribution here has a statistical meaning. In different contexts distribu-
tion refers to storage allocation. We will use the word relocate for operations that move data.



14

are divided between all available processors. The distribution algorithm is selected
to increase data locality giving each processor quick access to the data it requires.

In systems with static data distribution, the threat of node memory overflow
is increased: high memory demands on a single node, with no redistribution, can
quickly exhaust the local memory leading to failure.

On the other hand, a successful static distribution is cheap. The multiple instruc-
tion stream multiple data stream (MIMD) programming model implicitly requires
some initial data partitioning for the start of parallel computation (see Section 2.1.5).
For these reasons, a combined distribution strategy incorporating early static dis-
tribution and then dynamic relocation may be used.

1.2.2 Granularity

The granularity of a problem is a measure of the size of a block of computation
between communication steps. Problems may fall into one of two granularity classes:
coarse grain or fine grain problems. This classification is clearly very broad and the
boundary may vary. Fitch [44] defines coarse granularity as functional parallelism
at the level of function invocation, while fine granularity is algorithmic parallelism.

Granularity is inversely proportional to the communication time, therefore many
systems implement only coarse grain parallelism in order to reduce communication
time. Let τ be a lower bound on the communication time for parallel implementation
of a problem. Problems that can be implemented with minimal communication τ
will have coarse granularity.

Fine granularity incurs communication cost but gives greater flexibility in mem-
ory allocation,4 by allowing each small computation block to carry with it the
memory requirements. Coarse granularity will often create fewer communication
instances, and each message may involve movement of a larger block of data, thus
reducing the accuracy of any approximation of the memory size in use.

1.2.3 Load balancing

Load balancing measures the variance in the CPU time (execution time) for each
processor. The execution time for a computation is the maximum CPU time of all
processors. Consider a computation distributed across several processing elements
PE i, and let the execution time for a computation on each processor be Ei. Then
the total parallel execution time Tp for complete computation of is given by:

Tp = max(Ei) where 1 ≤ i ≤ p (1.1)

Then we may determine the idle time Ii for each processing element (PE) as the
difference between the its local execution time and the time to complete the com-
putation:

Ii = Tp − Ei

4A recurring point in this research is that where several options are weighed, the one that
simplifies the memory model is often adopted.
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The completion of execution is limited by the slowest running time of all PEs,
Tp = Ei + Ii, at some processor i. Therefore reduction of idle time through good
load balance is crucial.

Load balancing techniques minimize idle time by attempting to assign each PE
a task requiring an equal amount of CPU time. A good load balancing procedure
improves the speedup of a computation. The challenge is that our memory balanc-
ing procedure should provide enough data locality so that the CPU load on each
processor is maintained.

1.3 Algebraic structures

The implementation is restricted to a few algebraic structures, where suitable prob-
lems with intermediate expression swell can be found.

Definition 1.3.1 (Lipson [86]) An Ω-algebra (also called an algebraic system) is
a pair [A;Ω] where

• A is a set called the carrier of the algebra. A can be a finite or infinite set.
The number of elements of A, card(A), is called the cardinality of A.

• Ω is a collection of operations defined on A. An operation ω ∈ Ω of arity n
takes operands a1, . . . , an into ω(a1, . . . , an).

The scope of this thesis is restricted to a few clearly defined algebras suitable for
practical implementation and demonstration of the parallelization ideas presented.
The main algebras in our computer algebra system are:

1. The ring of integers with the usual operations for addition, subtraction and
multiplication [Z;+,−,×].

2. The ring of multivariate polynomials with integer coefficients and the usual
operations of polynomial addition, subtraction and convolution [Z[x1, . . . , xs];
+,−, ∗].

3. The ring of matrices over a ring R of integers or multivariate polynomials
[M(R);+,−, ∗]. The operations +,−, ∗ are the usual matrix addition, sub-
traction and matrix multiplication.

4. Multivariate polynomial division by extending the integers to the field of ra-
tionals [Q[x1, . . . , xn]; +,−, ∗, /].

The parallel operations in the above algebras form the kernel of the computer
algebra system, including support for arbitrary size integer arithmetic in parallel.

A basic linear algebra solver is an essential part of a computer algebra system.
This involves matrices whose entries integers or polynomials. In order to continue
to work in integral domains, the algorithms that are selected are division-free or
integer-preserving.
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Polynomial division is considered expensive as well as requiring an extension of
the base carrier, therefore the last of the above algebras is introduced late in this
work and mainly required for the section on Gröbner base computations.

The framework in figure 1.3 guides the development of a parallel computer alge-
bra system that incorporates the algebraic structures discussed here.

- Gröbner bases

ring Z

Arithmetic (+,*)
in the coefficient

Applications:

- sparse systems of
linear equations

Operations (+,*)
in the polynomial

Z[x1, . . . , xn]ring

Division and
rational arithmetic
in the field Q

Figure 1.3: Development of a parallel computer algebra system

1.4 Outline of the dissertation

Two main objectives emerge, and these are addressed in the rest of the dissertation:

1. To devise suitable data structures for parallelizing the data from the sets of
carrier ring A of the algebra.

2. To develop parallel algorithms for the algebraic operations Ω within each al-
gebra.

The first problem is addressed in chapter 3. Distributed data structures that
support efficient memory allocation are presented. These are based on a random-
ized hashing model which distributes data with fine granularity. A disadvantage of
fine grained algorithms is that communication is increased. This is countered by a
scheduler that overlaps communication and computation thus hiding the high cost
of communication.

The second problem is addressed in two stages. The first stage is the paralleliza-
tion of the basic arithmetic operations over arbitrary sized integers and multivariate
polynomials. This is discussed in chapter 4.

Applications that build on the polynomial and integer arithmetic are then dis-
cussed in chapter 5. Firstly, algorithms for solution of sparse systems of linear equa-
tions are discussed. The second application addresses the Gröbner base algorithm,
which is useful for solution of some systems of polynomial equations. The algorithm
requires a parallel division operation thus extending the arithmetic operations.
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Implementation of the system on the Hitachi SR2201 parallel computer enabled
us to evaluate the feasibility of randomized global storage allocation. The conclusion
in chapter 6 is that the system is suitable for solving large problems in polynomial
algebra.
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Chapter 2

Literature review

This chapter reviews parallel architectures and parallel algorithm design. The
breadth of parallel platforms has to be understood, to place this research in context.
There have been significant advances in applying parallelism to computer algebra,
and the algorithms and systems for parallel computer algebra are discussed.

While several systems have been developed for shared memory parallel archi-
tectures, there are few implementations of parallel computer algebra on distribed
memory massively parallel processors. Furthermore, many systems have been de-
veloped with the aim of gaining speedup, and do not fully address the memory
problems that may arise when some processing elements are overloaded with data.
In order to build on some of these previous results, some areas that continue to
provide unique challenges for parallel computer algebra are highlighted.

2.1 Target architecture

The target architecture is the class of massively parallel processors (MPPs), with
the following features:

1. Distributed memory (tightly coupled to each processor) with no global memory
pool.

2. Separate address spaces so that inter-process communication is solely through
sending and receiving messages.

3. Processing elements (PEs), consisting of processor and memory, are arranged
in a fixed physical topology. Each edge connecting a pair of PEs consists of a
fast interconnection channel with low latency.

A Hitachi SR2201 massively parallel processor was used in this research. The
particular installation has 256 processors at 150Mhz and 256MB of memory per
processor. The system is capable of a peak performance of 76GFLOPS and a total
memory availability of 56GB.

19
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Resource Metric
CPU time
Memory space
Network communication

Figure 2.1: Resources in a parallel system

2.1.1 Benefits of parallel implementation

Advances in processor technology governed by Moore’s Law have result in the dou-
bling of computing power every eighteen months. Workstations with a sequential
architecture now have powerful processors capable of high performance on large
problems.

The benefits of developing parallel implementations should therefore outweigh
the simple solution of waiting for a new powerful processor and, secondly, present a
strong case for climbing the steep learning curve required as programming parallel
systems remains an intricate process.

Parallel solutions are justified in two main classes of problems:

1. Problems whose solution on current sequential computers takes a long time
(often any algorithm with higher than quadratic complexity). For these prob-
lems the parallel methods aim to speed up the computation time by partition-
ing the problem and computing with the sub-problems on several processors
concurrently. This class of problems is referred to as processor bound.

2. Problems that cannot be solved given the resources of a single sequential com-
puter. The main culprit here is often the size of memory resources available.
Advanced virtual memory techniques have been effective for some problems in
capturing locality in data access. However, large irregular data access does not
benefit from virtual memory. This class of problems is called memory bound.

Much of the research in parallel systems today focuses on the first of these
problems. Frameworks similar to that developed in processor design [61] are used
mainly to pursue speedup in the overall execution time of a system.

Attacking problems in the second category requires a carefully balanced ap-
proach to all three parallel resources shown in figure 2.1. In particular, problems in
computer algebra require careful analysis of the memory requirements. Such mem-
ory bound problems are interesting in that their solution may add to the body of
knowledge enabling us to solve problems that have previously been too large.

2.1.2 Challenges of parallel implementation

The design and implementation of parallel algorithms continues to be a difficult task
dependent on the architecture and algorithms:

• Firstly, there is a wide and varied selection of parallel architectures. Systems
developed for one architecture are not portable to another.
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• Secondly, there is an inter-dependence between architecture and algorithms.
Parallel systems are highly dependent on the underlying hardware and the
resulting complexity in managing both hardware and software is often placed
firmly on the programmer.

There are two approaches to parallel system development: bottom-up design of
algorithms to suit architecture or top-down discovery of algorithms and building a
machine to suit them. In the later case, hardware implementations of some parallel
algorithms have been developed. For the bottom-up designs, many systems have
been developed for shared memory or distributed memory machines, and some have
been optimized for particular architectures such as the Cray T3D and the Hitachi
SR2201.

Some great advances in parallel processing have been made despite these prob-
lems.1 Architectural ideas have been filtered to bring about some form of conver-
gence to two classes of shared memory and distributed memory machines. Further-
more, there are now some emerging standards in parallel programming such as the
message passing interface (MPI) for distributed memory computers.

The advances in processor speed and low prices have also had a major impact on
parallel computers: the emergence of Beowulf clusters of commodity components to
form very powerful parallel machines [115] will possibly widen availability and use
of parallel systems due to their substantial price/performance advantage.

2.1.3 Comparison of architectures

The development of a parallel system requires consideration of concurrent algo-
rithms, parallel programming, and competing models for parallel systems. Parallel
architectures generally fall into two classes:

• Shared memory machines, in which several processors share one address space.
The shared memory may consist of one large common pool of memory. Hybrid
systems have a large common pool in addition to some locally attached memory
at each processor.

In the case of hybrid systems, each processor has access to every other pro-
cessors local memory, but there is a difference in access times due to fetching
from a remote location. These are referred to as non-uniform memory access
(NUMA) systems.

• Distributed memory machines, in which each processor has its own local mem-
ory and communication is only through message passing. These are also called
massively parallel processors (MPPs).

The number of processors in a shared memory architecture is limited by the
frequency of collisions when more than one processor requires access to a memory
word. A high level of collisions may lead to large wait delays or deadlock, therefore
any size of memory has a maximum number of processors that can be supported.

1It is possible that parallel systems have not delivered on the great expectation and huge
promises as envisaged during the 1980’s heyday.
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Figure 2.2: Classes of distributed memory parallel machines

In contrast, massively parallel processors may scale to a higher number of pro-
cessors and larger memory due to the fact that each will have its own memory. The
scale may be limited by the underlying communication network, as faster network
connections can support a larger number of processors.

Several different physical realizations depending on the number of processors
and the speed of the interconnection are shown in figure 2.2. The figure highlights
the challenge of portability of systems for any distributed memory parallel system;
it would be useful to have a system developed on one platform in figure 2.2 to be
executable on another platform without severe performance penalty.

In this study, portability is achieved between a MPP and a development platform
consisting of networked workstations. Cross-compilation between a Pentium PC
and a high performance Hitachi SR2201 successfully transfers algorithms between
the two platforms. In both cases the MPI message passing interface adds a level of
portability.

2.1.4 Parallel system components

Parallel systems can be viewed as several layers shown in figure 2.3, with the ap-
plication level software still very highly dependent on the underlying architecture.
This dependence points to a property of the intermediate layers that may be called
thin; the application layer is not completely shielded by any of the interim layers.
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Figure 2.3: Layering of parallel components

Contrast this with sequential processing where large systems with layers provide
abstraction, that is, the higher layers are shielded from the complexities of the un-
derlying system.

The concept of layer organisation for large systems has been closely associated
with modularization as tools for viewing large complex systems. These concepts
have been successfully applied in areas such as digital communications to create the
layered TCP/IP architecture. The layers are software modules that provide greater
abstraction to the higher layers, shielding users of higher layer services from the
details of any lower layers.

Parallel systems are different in that many algorithms are highly dependent on
the particular architecture. In addition, services such as communication between
two processors (and in some cases, whether these two processors can communicate
at all) are dependent on the underlying topology. Thus robust parallel systems will
rarely benefit from hidden layers given a top-down view of the system hierarchy.

A different approach is to provide parallel algorithms with an additional view:
slicing. A slice is defined as a system view that reveals all the layers at some time
t, and gives the option of selecting one to see in more detail. Therefore parallel
system developers are given two views of the parallel system allowing them to adapt
algorithms accordingly.

A useful tool is that the communication middleware message passing interface
(MPI) [41] can be installed on supercomputers and PC clusters therefore providing
the desired level of portability. In this thesis algorithms developed for supercomput-
ing environment (Hitachi SR2201) have also been executed on a cluster of personal
computers. This is effective for algorithms that are sufficiently general and not
sensitive to network latency. However, we will show that for many of the com-
puter algebra data structures that are discussed in this thesis, the fine granularity
is highly sensitive to the communication latency therefore the performance penalty
on a cluster with a slow communication network can be high.
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2.1.5 Parallel programming models

The message passing model defines primitives that allow the programmer to de-
scribe the parallel computation and determine the communication and computation
schedule. The complexity of parallel system design lies in the requirement for the
developer to manage all interactions within a system with potentially thousands of
processors and many millions of communications.

Some areas of concurrency may be identified and exploited with little additional
complexity for the developer. For example, Revesz [102] demonstrates the power of
implicit parallelism within functional programming, by reducing lambda terms in
parallel with different processors searching different branches of an expression graph.
Termination is determined when one of the processors reaches a normal form of the
expression.

The programming model determines an overall picture that a programmer has
about the system. The Flynn taxonomy [45] is widely accepted for describing the
different modes of computation:

SISD Single Instruction Stream Single Data Stream.

SIMD Single Instruction Stream Multiple Data Stream.

MISD Multiple Instruction Stream Single Data Stream.

MIMD Multiple Instruction Stream Multiple Data Stream.

The Hitachi SR2201 target architecture presents a programming model based on
MIMD in which each PE executes instructions taking a different path through the
program based on its unique identifier. The same program is distributed initially to
all participating PEs.

2.1.6 Parallel complexity models

Abstract models of computation are useful aids in understanding of algorithm design
and assist comparison of algorithms [2]. Several models for sequential machines (Tur-
ing machines, register machines, lambda calculus) have been proven to be equally
powerful.

The large number of different parallel machines make it difficult to obtain a
universally accepted model for parallel systems. This section briefly discusses the
parallel random access machine (PRAM) model.

The PRAM consists of a combination of random access machines (RAMs). In
a model used successfully in [49] each of the component RAMs is an arithmetic
processor and there is a synchronization primitive for communication between them.
Computation is initiated by a single processor called the root, and data is distributed
through task splitting with synchronous communication.

The standard PRAM requires shared memory between processors. A modi-
fied model is the LPRAM model [1] which describes a non-uniform memory access
(NUMA) computer consisting of:

• Unlimited number of processors
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• A global memory pool accessible to all processors

• Each processor has local, separately addressable memory

• A processor can have at most one communication request outstanding at any-
time

• A global synchronizing clock where each time step is either a computation or
communication step.

Although the LPRAM has local memory similar to MPPs, the model also has a pool
of shared address space therefore it cannot be used directly to model a MPP.

At the programming language level the LPRAM a language may differentiate
between local (private) variables and global (shared) variables. The distinct address
spaces in a distributed memory massively parallel processor are not encompassed
by LPRAM. A step towards providing separate address spaces is found in the work
by Roch and Villard [104]. They LPRAM at the language level by introducing
a language for asynchronous task handling (ATH) that has a greater restrictions
between local and global access. Since the change is at the language level, the
underlying architecture still has the LPRAM global memory pool. However, ATH
provides local and global memory access with the following features:

• Global memory access has cumulative concurrent read, concurrent write
(CRCW) semantics.

• Size of elementary instruction is enlarged to a block sequence of instructions.
The block is executed sequentially with local access.

The extended model becomes very close to distributed memory as the language
semantics CRCW can be mapped to a distributed memory architecture; the concur-
rent writes may be considered as providing each processor with local memory. The
important step of increasing unit grain to several instructions becomes important
in compensating for delays introduced by communication. However, the changes at
the semantic level are a step towards distributed memory, but the model still allows
shared address space therefore it does not fully describe our system.

2.2 Performance metrics

This section describes the performance metrics for evaluating performance of parallel
systems. It poses a slight modification of the question presented by Aho et al. [2]:
how can we compare a parallel algorithm with another that solves the same problem
and how do we judge the performance of systems that incorporate these algorithms?
Two levels of system evaluation are considered:

1. Empirical evaluation where tests are conducted on the Hitachi SR2201 to
provide some empirical measurements of the system.

2. Analytical evaluation which involves analysis of algorithms within a parallel
model and comparison based on asymptotic complexity of the algorithm.
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2.2.1 Empirical analysis of parallel systems

Performance analysis is based on the principle that the key resources in any system
are valuable. It may seem counter-intuitive to consider a parallel system as having
limited resources. However, this serves to emphasise that a parallel system increases
the actual available processing time or memory, but inefficient use of any of these
has a negative impact on the performance of the system.

Let n be the size of a problem (for example, the number of terms in a polynomial,
or the degree of a polynomial). In a parallel system, the data for any problem is
distributed across several processing elements, therefore n is the overall size of the
problem, and we let N be the size of the partitioned problem on each processor. For
simplicity let n = N × p. Then we may define functions T, S by:

T (n) = time

S(n) = space

where the time T (n) is a measurement of the elapsed time for computation with data
of size n and S(n) measures the amount of memory during execution of the pro-
gram. In analysis of parallel systems, a third resource is measured: communication
bandwidth. Communication between processors may be through shared memory, in
which case the bandwidth measures how many processors may access the data.

C(n) = communication time

In general, message-passing systems have a slow channel between processors
leading to a bottleneck. Moreover, the network is not fully connected therefore
communicating between processors will involve intermediate forwarding nodes.

2.2.2 Communication

Communication cost has to account for both latency and bandwidth. Commu-
nication latency may depend on the synchronization. In synchronous algorithms,
latency includes the transfer time for message from one processor to another, while
in asynchronous communication the latency is equal to local buffer setup time. In
synchronized algorithms, the communication is in phase, therefore the wait time
for any processor that has to wait for another to synchronize is high. Processor
requiring data from an asynchronous connection may have perform other functions
while the data is not available, and only wait when the scheduler determines that
there are no other local computations to be performed.

The communication patterns of algorithms differ and may be classified [39] as
uniform, bursty or periodic. Such a classification is a useful tool enabling allocation
of bandwidth depending on the the projected communication power spectrum. This
may be useful in lowering communication cost.

Communication within a message passing system is between source and des-
tination nodes. Several patterns emerge depending on the numbers of source or
destination nodes involved in a communication:
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• The one-to-one communication between one source and one destination is the
basic form of communication. Let the time to send a message from a source
to a destination be given by C1−1.

C1−1 = Ttransfer + Tdelay

where the transfer time is determined by the number of edges (hops) from the
source to the destination on a given route, and by the time to send a message
between two directly connected nodes with an edge between them.

Ttransfer = No. of hops ∗ Latency

The delay time incorporates time spent at the source arranging message pack-
ets and initiating transfer, and also the time for assembling at the destination
receiving messages.

Tdelay = Tsetup + Trecv

In most systems the delay time can be kept to a small constant and the latency
is determined by the speed of the interconnection network selected. Therefore
the communication time depends critically on the number of hops between the
source and destination. The topology of the interconnection network and the
routing algorithm determine the number of hops.

• A multicast involves one source and the destination nodes are a subset of all
nodes.

• The broadcast of a message requires that every node receive the message.
A broadcast may originate at one source (one-to-all) or may have all nodes
as a source and destination (all-to-all). The broadcast time Cbr is the time
elapsed from the beginning of a send until the last node has received a copy
of the message. Randomized broadcast algorithms have been developed for
radio networks [84] and poly-logarithmic algorithms for the number of hops
required are available.

The total communication time within a system will be accumulated from the
time taken for several broadcast or point-to-point messages within an algorithm.

Reduction of communication time in a parallel application leads to efficient use
of CPU time and therefore improved speedup for parallel implementations. The goal
in this section is to consider communication time at the application level, which can
be broken down into several constituents. The constituents are placed in a layer
as shown in figure 2.4. Each layer influences the communication patterns available
and contributes to the overall communication time. In most systems the mapping
of application communication graph to the underlying network, the message pass-
ing and the assignment of unique identifiers to the processors is performed by one
subsystem.

Our model for communication is based on specification of the communication
graph for an application and the ensuing network traffic. The model interacts with
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Figure 2.4: Communication layers

MPI which provides the facilities for the lower layers of mapping and message pass-
ing. If the communication pattern closely matches one of the known topologies it
can be efficiently mapped onto the underlying network, otherwise communication
proceeds in a partitioning provided by the message passing interface. For example
one of the widely used patterns in our system is a master-slave pattern which can
be closely mapped to a star network topology. However the target Hitachi SR2201
is a three dimensional torus therefore the message passing interface has to provide
a suitable close match.

The communication time is related to the following parameters:

• The granularity of the problem.

• The message size.

• Average network traffic.

The granularity of the problem determines the level of detail for sequential time
analysis. This means that either the computation on all local data in the parti-
tion size is used before any communication occurs, or the time is subdivided into
smaller grain size computations. Fine granularity has more communication steps
and therefore larger communication overhead than a coarse grained computation.

Let Ncomm be the count on the number of communication messages sent (this is
the number of messages for the particular granularity of the problem). Let Ccomm

be the time for each communication. The model for communication time is given
by:

C(n) = Ncomm × Ccomm

where
Ccomm = Csetup + Ctransfer + Crecv

The setup time Csetup is the time for initiating communication at the sender side.
This includes packing data, preparing a message envelope and initiating communi-
cation protocol.

The transfer time in sending data of size Nj from a processor j to k is determined
by the channel characteristics and the topology of the network:
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Ctransfer = max(Nj × bandwidthj) + (delayj × Number of hops) (2.1)

Network topology

In a distributed memory system, there is great flexibility in how the network is
organized. The differences in topology affect the communication times between any
two processors. Some widely used topologies are ring, mesh and cube [119, 99].

Hardware routing refers to the selection of a path for sending a message between
a pair of processors in a parallel system. This is highly dependent on the topology
of the system. The Hitachi SR2201 provides some hardware based routing mecha-
nisms for the most common typed of communication: one-to-one and broadcast. In
addition to the hardware based routing, a message passing library provides other
routing algorithms which may be deterministic or adaptive.

Deterministic algorithms select a single path for any communication. In com-
munication networks such as the mesh and crossbar, the most widely implemented
deterministic algorithm is XY routing which sends messages to the right set in an-
other dimension. The Hitachi SR2201 enhances XY routing with failure modes and
deadlock prevention making it a simple and effective communication routing.

Adaptive algorithms may take into account such factors as congestion on a par-
ticular channel to select an alternative route with better throughput. However, these
are more complex and prone to implementation error.

2.2.3 Space

The memory model determines the use of local memory on each PE and the dynamic
relocation with global memory use. Clearly the total amount of memory available
for an application is the sum of all local memory

S(n) =

p
∑

i=1

Si (2.2)

where the size of memory per node, Si, is expected to be a reasonable size for cur-
rent commercial systems (≈ 64 to 128MB, and continuing to rise). For 32bit CPU
architectures a ceiling of addressable space by a single processor is approximately
4GB. Thus any computation that requires more than 4GB of main memory cannot
be performed on a single workstation or a shared memory computer. Given these
considerations, the distributed memory model is the most suitable for our com-
puter algebra computations with large memory demands. The contribution of local
memory use to the total system load is determined by the global data distribution
algorithm.

2.2.4 Time

The CPU time in a parallel algorithm is the time that each PE is performing calcu-
lations. This may be delayed if some of the operands have not been received. The
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total execution time for a problem T , is given by the execution time on the slowest
processor:

T (n) = max
i

(Ti) 0 ≤ i ≤ p

This leads directly to the need for load balancing. A low standard deviation in Ti

indicates good load balancing and efficient processor use.
The effect of optimal load balancing is often to spread tasks among all available

processors, thus reducing memory locality. Similarly, optimizing for memory locality
will often starve some processors by clustering work on a few processors. Thus
achieving good time and space balance is a challenge [60].

Several researchers in parallel algorithm analysis consider the time and commu-
nication complexity of algorithms [1, 95] where the memory model is fixed.

2.2.5 Parameters for parallel algorithms

Parallel applications incur overheads adding to the total computation time. Several
parameters may be used to classify and compare parallel implementations.

Granularity The algorithms implemented in this research are mainly fine grain
algorithms. This has an impact on the other areas of the system such as
communication time.

Synchronization The communication system provides both synchronous and
asynchronous interfaces. Synchronization may be expensive in a system with
some load imbalance, therefore the choice for each communication is impor-
tant.

Scheduling The scheduler determines the overlap of communication and compu-
tation within an application. An efficient schedule overlaps the computation
and communication as far as possible to hide the communication delay. This
is difficult to achieve therefore several schedules may be available for selection.

Load balancing To improve performance of the parallel system, it is essential to
minimize the fraction of time that the CPU is idle. The load on each processor
is determined by the data partitioning algorithm that provides local work on
each PE.

Speedup Speedup measures the comparative improvement of the parallel imple-
mentation compared to a good sequential system.

2.2.6 Granularity

Granularity refers to the level of size of each computation step within a concurrent
computation. This corresponds to the abstract definition in general system design,
and often depends on the way in which the problem naturally partitions itself into
distinct operations. Two levels are defined: fine grain and coarse grain parallel
processes. These give an imprecise but useful classification of problems and their
solution.



2.2. Performance metrics 31

Coarse Coarse grained parallelism results in a system whose characteristics are
similar to those of a distributed system. The emphasis is placed on minimiz-
ing communication as communication cost for a large message is high. This
requires finding a data distribution algorithm that identifies a good level for
process size. A good coarse grained algorithm achieves high speedup.

Fine A fine grained parallel algorithm has a small task size. Sending a small mes-
sage between two PEs can be achieved with low latency. However the com-
munications are more frequent therefore the overall system often has a large
number of communications leading to high overhead. The fine granularity also
necessitates good synchronization between the processes. Speedup is adversely
affected but completion of the problem may be the main aim.

We will often quantify granularity in terms of the instructions executed in each
process, for example a task that executes in 10 ms could be considered ‘more fine
grained’ than division into tasks of 100 ms. A granularity measurements tells us
how sensitive the system is to the impact of a single data item. Thus a single term
in a fine grain system will invoke a distribution function, while such a term in a
coarse grain system is captured within some block without much overhead.

The quantitative measurement of granularity computes the average time to reach
an essential communication with another process. This gives a unit amount of useful
work. Then the granularity g(n) of an algorithm is given by the ratio of CPU time
T (n) and communication times C(n) [104]:

g(n) =
T (n)

C(n)

Figure 2.5 shows the effect of granularity with block distribution of data where
n/p = 4. In a fine grain computation, there is shorter computation time before
a necessary communication while a coarse grain algorithm will seek to minimize
communication and distribute data accordingly.

Fine grained systems place an emphasis on collaboration and coordination
whereas in coarse grained parallelism the emphasis is on division of labour. Some
algorithms have inherent coarse parallelism2 and can be implemented in parallel on
a loosely coupled distributed network of workstations. A collating process farms
out the computation to numerous worker processors and collects the results. This
method of parallel implementation has been successfully used for problems such
as partial evaluation [114] and large integer factorization [15] where the successful
factorization of a large integer was done over the Internet by volunteers running
some parts of the computation on their PCs when not in use. Coarse granularity
gives more stability to the system since we consider an entire block of instructions
and data items. Fine granularity has the advantage of greater flexibility.

Granularity has an inverse relation to communication cost therefore, reducing
grain size increases communication [105]. The algorithms discussed here have very
fine grained parallelism hence substantial communication. Two methods may be
used to contain the effects of communication: The first analyses the communication

2These are sometimes referred to as embarrassingly parallel algorithms [15, page 10].



32 Chapter 2. Literature review

Computation Communication

Fine Granularity

Coarse Granularity

Figure 2.5: Partitioning of data with different granularity

patterns of the algorithms and uses this information to inform decisions about the
details of the algorithms to reduce bottlenecks. The second option is to design
algorithms that overlap communication and computation thus masking the effects
of communication.

2.2.7 Synchronization

Specifying the communication pattern of a system with several processes executing
concurrently is quite difficult. We require minimal communication time, deadlock
prevention, and fault tolerant communication. Some widely used communication
patterns are:

Master-Slave In this case one processor is designated a master process and dis-
tributes work to all slave processes.

Linear Array Processes may have local communication with a subset of the avail-
able nodes in a nearest neighbour pattern.

Tree Communication takes place in synchronized steps with each parent process
communicating only with its child processes in a communication tree.

These communication patterns are supported by synchronous or asynchronous
structure. Further performance optimization in synchronous communication in-
volves resolution of resource contentions using mutual exclusion models [122]. These
optimizations may be extended to distributed memory architectures to give a per-
formance model that incorporates synchronization.

2.2.8 Scheduling

Scheduling for heavyweight processes in our parallel computer algebra system has
some interesting differences to other scheduling procedures. Firstly the system has
probabilistic distribution which creates some uncertainty regarding loads at any time
t. The inherent uncertainty affects the scheduling policy since most tasks will be
conditional on the current state.

One possibility for scheduling in such a system is to allocate lightweight threads
for each possible branch. This is the approach taken in [25, 4]. It increases the level
of parallelism as well as simplifying the scheduling since the scheduler would consist
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of ‘fork’ and ‘join’ commands for thread creation. However, the Hitachi SR2201 does
not provide lightweight threads and imposes a one-to-one relation between process
and processor. Each process executes on a single physical processor (this allows
us to use process and processor interchangeably). The scheduler for our parallel
computer algebra system has the following properties:

• The scheduler does not make use of threads therefore there are a fixed number
of processes and any dynamic increase in computation requirements cannot be
assigned to a newly created thread. It therefore relies on redistribution and
manipulation of granularity to balance the computation, communication and
storage requirements of the system.

• The scheduling is based on a model for the underlying architecture. Schedules
based on abstract models [100] have been discussed and shown to be adapt-
able to real architectures. Adaptive scheduling is a key technique in some
applications [22], however it has not been widely used in parallel computer
algebra.

• The scheduling of computation blocks has to minimize the overall completion
time for the algorithm. A schedule is dependent on several precedence con-
straints on the execution of blocks. Some operation pi cannot proceed before
pj completes. The scheduling problem can therefore be considered as an opti-
mization problem to minimize the execution time given certain constraints on
the order of block computation. A branching procedure [34] that generates a
search tree with minimal footprint makes efficient use of memory.

The probabilistic function for determining target communication means that the
communication pattern cannot be determined at compile time. The irregularity in
the communication patterns requires dynamic scheduling of communication and is
more expensive. The system generates good approximations to the optimal solution
and in practice these methods are very effective.

2.2.9 Load balancing

Load balancing refers to measurement of the efficiency of the computation distribu-
tion across all processors. There are two main strategies for load balancing: static
and dynamic.

Static load balancing

Static load balancing predicts the computation and communication patterns of an
application and determines the data distribution strategy before computation begins.
The most widely used data distribution strategies are:

1. Block distribution The data is divided into blocks of the same size m. If
the problem have data size n, and is to be distributed on a system with p
processors, then

m =
n

p
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The block distribution has the advantage of simplicity and for problems that
have regular data access patterns and good spatial locality, this is an effective
distribution scheme.

2. Cyclic distribution For applications that have weaker locality constraints
and access most of the data sets, a cyclic distribution can create smaller blocks
and assign them to processors in a cycle of period p.

3. Block cyclic Combines the advantages of block and cyclic distributions by
dividing data into blocks and having cyclic assignment within each block.

Application will often be tested with all the different distribution strategies to
determine their performance and the best strategy.

Dynamic load balancing

Static load balancing requires some knowledge of the behaviour of the application
and is inflexible once the computation begins. For irregular parallel applications
where prediction is difficult, we would like to make run-time decisions relieving any
processor that has fewer resources. There are three approaches:

• Redistribute the data.

• Migrate activities across available nodes.

• Random relocation.

2.2.10 Speedup

Speedup arises from improved performance due to parallel implementation of an
algorithm. It is defined by Hennessy and Patterson [61] as follows:

speedup =
total execution time without enhancement

total execution time using enhancement when possible

Now let Tp be the time to perform the task in parallel. This is expected to
be much less than the time Ts to perform the same task on a single processor
sequentially. Then

speedup =
Ts

Tp

Efficiency ξ measures the overhead incurred in moving the computation from
sequential to parallel:

ξ =
speedup

no. of processors
=

Ts

Tp × p

A computation that can be parallelized perfectly has efficiency 1, but in practice
0 ≤ ξ ≤ 1.
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2.3 Algorithms for data partitioning

This section briefly examines how to make use of the conventional partitioning tech-
nique of ‘blocking’ to enhance the new dynamic randomized partitioning of this
chapter.

The partitioning algorithm distributes data to PEs where space is available. The
data allocated to each PE forms local data, and the expectation is that each retrieval
will encounter data local to that processor.

The most widely used data partitioning algorithms are block algorithms that
divide the data into several blocks of size b. The block size is based on the granularity
of the problem, with more coarse grain algorithms having larger block sizes of several
terms or polynomials, and fine grain algorithms requiring small block size of a few
terms. Several options are available when distributing polynomials:

• The obvious distribution of several polynomials is to keep all the terms of each
polynomial on the same PE. Data is therefore partitioned along polynomial
lines: given a set of polynomials (p1, . . . , pk), each polynomial is assigned to a
processor.

In this way each polynomial is easily identified and polynomial operations can
proceed by sending one complete polynomial to another PE for computation.

This scheme clearly has its benefits but it also leads to inefficient use of the
PEs since some processors will have to be idle while others compute (we can-
not duplicate computations on all processors). In addition, if the number of
polynomials is less than the number of processors, then some processors will
not have any data at all!

• To alleviate the possibility of some processors not having any data at all, we
may partition the data at a finer granularity by creating blocks of individual
terms within a polynomial.

For example, in figure 2.6 the first block is stored on PE0 and the second block
on PE1. This method will work well for dense polynomials or matrices. For
sparse polynomials as shown in this case, the polynomials have terms with
the same exponent vector but the terms 2x2y2 and 5x2y2 are kept on different
processors.

In general, a block distribution partitions data into p blocks of equal size n/p
where p is the number of processors and n is the number of terms. As the
block partition is based on the order of terms, the mismatch of alignment is
a frequent occurrence and the resulting duplication of exponent vectors on
different PEs leads to poor performance.

• In order to keep related terms on the same processor we shall have to look at
the degree of each term and create blocks based on the degree. However the
block structure cannot be given strict ranges assigned to different processors
because then it will be possible to have some processors with no terms in their
degree range. This has a negative impact on the performance of polynomial
addition which is the most frequent operation.
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Polynomial A:

Polynomial B:

5xy3x4y + 2x2y2

2x4y2 + 2x3y2 5x2y2 + 4xy2

PE0 PE1

Figure 2.6: Block distribution

The restrictions on block structure and size motivate an approach based on ran-
dom selection to provide good load balancing while maintaining some data locality.
This relies on a distributed hash table data structure to provide global support for
data storage. Two levels of hashing are introduced: the first hash function deter-
mines the processor and the second hash function determines the placement within
the local processor hash table. The algorithms for randomized and probabilistic
distribution are described in chapter 3.

2.4 Computer algebra systems

The approach that is adopted in implementing a parallel computer algebra system
is of a bottom-up design, starting with the internal representation and data struc-
tures that incorporate an efficient memory model. While the interaction between
modules in the design support good memory efficiency, it appears that the interfaces
are similar to other parallel computer algebra systems such as the extended Maple
implemented by Bernadin [12]. In this section the similarities between our approach
and other parallel computer algebra platforms are explored, and the differences are
highlighted.

2.4.1 Approaches to parallelization

Several algorithms and systems for parallel computer algebra have been developed
with different requirements and for competing parallel architectures:

• Some systems add parallel primitives for communication and cooperation to
existing computer algebra systems. This has the benefit of lowering develop-
ment costs and reusing robust implementations. As Fitch [44] notes, algebra
systems “represent a large investment of intellectual effort which we can ill
afford to lose”.

• A large number of parallel computer algebra systems have been developed for
shared memory architectures.
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• Computer algebra hardware based on very large scale integration (VLSI) tech-
nology has been developed. The use of pipelining systolic architectures has
also received some attention.

• Distributed systems for loosely coupled PC networks or parallelism across the
Internet have been developed.

• Distributed memory systems based on standard communication middleware.

This work is based on distributed memory with standard message passing middle-
ware. It addresses a range of parallel architectures from MPPs to Beowulf clusters.

2.4.2 System design

In many ways the design and implementation of a robust, reliable, efficient and scal-
able computer algebra system relies on the same principles as other large systems;
computer algebra systems are large and highly sophisticated systems incorporating
a language, graphical user interface and other components. System design method-
ologies such as modularity and abstraction as used in other complex systems such as
operating systems [8], become equally useful and valid in the design of a computer
algebra system. On the other hand, some development problems are more specific
to the design of computer algebra systems:

1. The representation of basic objects in a computer algebra systems as integer
or polynomial data structures has direct impact on the algorithms. Whether
data is kept ordered or unordered also affects the system.

2. Domain specification. Computer algebra systems have to manage a highly
developed algebraic theory with a well defined structure.

3. Intermediate expression swell. Many computer algebra algorithms require
large memory working space even when the result is of modest size.

4. Irregular data [59]. Symbolic computation algorithms are highly dependent
on irregular data, therefore making it difficult to find a useful partitioning of
data at compile time.

5. The complexity of some algebraic calculations limits the estimation of resource
requirements, making the task of parallel resource allocation more difficult.

2.4.3 PACLIB

Systems that extend existing sequential uniprocessor CAS have been developed by
providing a supporting interface for multiprocessor systems. PACLIB [64, 65] is a
parallel computer algebra system that extends the general purpose algebra system
Saclib with lightweight processes resulting in a general parallel CAS. The main
features of the parallel interface include:
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• Concurrent tasks at multiple levels and each program function can be executed
as a separate task.

• Shared memory communication through access to shared data. Task argu-
ments and results are passed by reference therefore avoiding expensive copy-
ing of data structures. However, this requires careful mutual exclusion using
semaphores, and tasks waiting for data will block.

• Non-determinism and task termination. A task may wait for the results from
several other computing tasks. The waiting task will resume computation
when the first result is delivered. If delivery of one result renders some com-
puting tasks superfluous, they may be explicitly terminated.

• Streams and task pipelines. Tasks may be connected by streams of data form-
ing a conceptual pipeline. These provide an additional communication mecha-
nism through a stream of data 〈s1, . . . , sn〉. Each stream is a pair (f, rs) where
f is the data element to work on and rs is another stream for use in sending
to the next stage.

• Parallel garbage collection based on the ‘mark-and-scan’ method is also used in
Saclib. PACLIB provides a non-uniform memory system comprised of a local
allocation list (LAVAIL) and a global allocation list (GAVAIL). Memory is
allocated first from LAVAIL and if there are no free cells then data is placed in a
cell on the GAVAIL list. This combines the advantages of shared memory with
the availability of of distributed memory. The garbage collector is triggered if
no cell is found on either LAVAIL or GAVAIL.

The PACLIB memory system is an interesting hybrid pointing to gains in com-
bining different systems. However, the limitation of shared memory in terms of
scalability for very large problems will persist.

2.4.4 PARSAC

Kuechlin [81] introduced symbolic threads called s-threads for parallel symbolic
computation on a shared-memory processor. These special lightweight processes
are used in parallelizing the SAC-2 computer algebra system [29] resulting in the
PARSAC-2 parallel system [80]. The s-thread environment makes efficient use of
system resources. It has been used to gain significant performance improvements
for application such as Gröbner base computations [4].

A disadvantage of s-threads is that when a thread terminates, its working space
cannot automatically be deallocated without checking all references to it. This
system also uses shared memory.

2.4.5 Other parallel computer algebra systems

One view of developing parallel computer algebra systems is to exploit instruction
level parallelism. This approach relates the pipelining principles for hardware de-
sign [61] to the development of highly optimized computer algebra processors. The
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physical implementation in VLSI technology is the subject of studies by Smit [112]
where the model for a MIMD computer with large memory and limited number
of processors is used. The system was considered well-suited for memory inten-
sive computer algebra problems. This is encouraging for our present work targeted
at a MPP; when considered in the context of the overlapping architecture sets in
figure 2.2, this raises the prospect of portability of algorithms across VLSI imple-
mentations and MPP implementation provided the memory model is sufficiently
robust.

A different approach for hardware development was pursued in the work of Buch-
berger [21] with the design for the L-machine which was implemented in TTL logic
rather than VLSI. The system consists of a reconfigurable assembly of processor,
memory, an open/close bus switch, and a ‘sensor bit’. The sensor bit is used for
access rights to the shared memory and for synchronization. The processors can be
configured and extended for different purposes. A special L-language is provided
for parallel programming of computer algebra algorithms. The L-machine is more
suited to shared memory architectures, which makes it different from our system.

Systolic systems

Jebelean [67, 68] has developed systolic algorithms for symbolic integer arithmetic.
Multiprecision integers are represented with the ‘least significant digit first’ posi-
tional order. This leads to algorithms that exploit the data flow network of the sys-
tolic architecture and give significant improvements in performance. In considering
portability of these systolic algorithms to MPPs, it is clear that such an embedding
would significantly increase the number of algorithms available on massively par-
allel processors. However, enforcing a data flow network would be quite expensive
therefore our work considers implementations based on the classical algorithms no
restrictions on flow of data between any two processors.

Maple/Linda extensions

In developing completely new systems, only a few algorithms are tested, making the
systems too small for most practical uses. In addition, users will not have to learn a
new system. An alternative approach is to add parallelism to an established system
with a large number of implemented algorithms. The addition of parallel primitives
to an established computer algebra system such as Maple and has the advantage of
having access to a huge wealth of algorithms already implemented.

Watt [123] presents a parallel version of the Maple computer algebra system on a
distributed architecture network of workstations. This is a message-passing system
with primitives spawn and kill for creating and terminating processes consecutively.
The communication is provided by procedures for send, receive and reply. The
system is transparent to the user program therefore easier to program. Further
work in parallelising Maple has been performed and algorithms implemented on the
systems [96] for indefinite summation on rational functions. Another system based
on this approach is the Sugarbush system [26].

Bernadin [12] has implemented message passing interface to port Maple to the
Intel Paragon MPP, with gains in speedup. A master-slave approach to distributed
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scheduling is used to maintain a single node access in interactive use of Maple. A
similar approach is implemented in the STAR/MPI system [30] where the interactive
use is given special attention. STAR/MPI is available for at least two symbolic
algebra systems (GNU Common LISP and GAP) with these can be replaced by
other interactive languages.

The master/slave approach is limited by having only one node as the master
throughout a computation. In distributing fine grain computations, this often leads
to accumulation of wait time at the slave nodes. We will propose dynamic priorities
as a way of revolving the master label where any PE (but only one at a time)
can become master. This enables the system to control the allocation of tasks
dynamically.

There are some similarities between the nxcall() feature for integrating the
Maple library with the communication library in Bernadin’s system, and our MPI
conversions to integrate timing and synchronization data.

LISP extensions

Marti and Fitch [87] extended the LISP language with a tool for automatic identifi-
cation of concurrency. The system accepts a LISP program for a computer algebra
algorithm, analyses it for available concurrency and generates a program for parallel
execution on a multiprocessor comprising a network of workstations. The power
of this system lies in the data flow analyser which can be used to analyze a com-
plete symbolic algebra system such as REDUCE [44] and identify areas that can be
parallelized.

A different LISP extension is given by Halstead [59] where explicit concurrency
primitives future and delay are provided. The future primitive gives data-flow par-
allelism with demand-driven [108] evaluation.3 This creates a new concurrent task
and every parent task waits for a future to resolve. The concept of a future is car-
ried to a distributed network of workstations [107] with implementation of algebraic
algorithms.

DSC and FoxBox

The DSC system [37] for distributed symbolic computation is designed for symbolic
computation on heterogeneous network of workstations and across the Internet. The
system has a master scheduler to distribute tasks to workstations based on the avail-
able resources on each and determined by some threshold conditions. DSC has suc-
cessfully been used in algebraic computing with ‘titanic integers’ (having more than
103 decimal digits) and for solution of sparse systems of linear equations [36]. DSC
can support computations with ‘black box’ representations at coarse granularity.

The FoxBox system is designed for computation with objects in black box repre-
sentation [38]. The system provides for distributed computing with a client/server

3Demand-driven evaluation is also called lazy evaluation in functional programming terminol-
ogy, and refers to a scheme where an expression is not evaluated until it is required by some parent
node within the graph.
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interface to other computer algebra systems. Parallel computation utilizes the func-
tions distribute, wait, kill which are provided and compliant with the MPI standard.

2.4.6 Automatic parallelization

The generic attribute concurrency describes algorithms whose execution overlaps in
time. Concurrency can be exploited in different forms, however, not all algorithms
benefit from parallel implementation. Some algorithms are inherently sequential,
while others incur large overheads when parallelized therefore cancelling out the
benefits. It is necessary to avoid wasting resources in pursuing parallelization of
inherently sequential process, and one approach is to use automatic tools to detect
concurrency.

Instruction level parallelism as used in processor design [61] is identified automat-
ically by many compilers. Extension of the LISP language to a parallel implemen-
tation [87] based on an automatic tool has been discussed. Other work in this area
includes the emerging High Performance Fortran (HPF) compilers for parallelization
of numerical algorithms.

An interesting tool by Fahringer and Scholz [43] uses symbolic evaluation to de-
termine concurrency. This seems to point to the interesting situation of a computer
algebra system used to identify concurrency in another computer algebra algorithm.

Such tools are not yet available for large systems, therefore in building systems
we make specification decisions about which algorithms to pursue. In particular,
the following sources of concurrency are identified:

• Determine mutual exclusion between procedures [87].

• Identify recursion on data structures such as trees, lists and sets [59].

In terms of computer algebra problems, Smit [112] identified two categories of
algorithms that benefit from a memory intensive partition for parallel processing:

1. Algorithms that depend on identification of like terms, for example polynomial
addition.

2. Knowledge based algorithms such as symbolic differentiation and Gröbner base
computations.

This work addresses problems in the first category. Polynomial addition and
multiplication are parallelized. Other applications are then based on the underlying
parallel polynomial arithmetic.

2.5 Parallel arithmetic

Polynomial and integer arithmetic accounts for a large fraction of the computation
time. In Gröbner base computations, Jebelean [67] found that multiprecision inte-
ger multiplication accounts for 62% to 99% of the CPU time. Therefore efficient
implementation of these algorithms is essential.
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2.5.1 Multiprecision integer arithmetic

Parallel multiprecision integer arithmetic is a significant part of large calculations
such as factorization [15] and Gröbner base computation.

Fine grain arithmetic with integer coefficients can be inefficient for univariate
polynomials with small integer coefficients [12]. However our system for multipreci-
sion coefficients in large multivariate polynomials the need for performance improve-
ments in integer arithmetic becomes more acute. Therefore special attention is paid
to integer arithmetic in this work.

Many parallel algorithms are developed for parallel arithmetic in finite fields and
there is an implementation on a MPP [109]. Modular integer multiplication [35]
and exponentiation [91] on parallel architectures have been implemented. These are
quite different from the basic integer arithmetic in our system.

Systems for multivariate integer arithmetic on distributed memory machines
[103] and distributed computation on the Internet [15] share the essential character-
istics that are needed for our implementation.

The greatest common divisor is an important operation on both integers
and polynomials. Parallel integer GCD algorithms based on the Euclidean al-
gorithm [74] have been developed and they have sub-linear time complexity. Other
algorithms [90] use Fast Fourier Transform (FFT) methods.

Standard representation

The standard representation of a radix β integer takes the form of a linked list of
coefficients ai. An A has the following representation:

A =
n
∑

i=0

aiβ
i

This standard representation has been effectively used in multiplication of unsigned
numbers on shared-memory architectures [82]. The PARSAC-2 system gains parallel
speedup through creating multiple threads in implementing Karatsuba multiplica-
tion and FFT-based methods.

For systolic architecture, the standard representation has been used in a ‘least sig-
nificant digit first (LSD)’ representation suitable for systolic parallel arithmetic [67].
Related work by Brent and Kung [16] describes a parallel adder with a lookahead.
This is based on generate-propagate adders, and can be extended to multiple preci-
sion through pipelining of the single adders.

Signed digit representation

The signed digit representation by Avizienis [5] is suitable for distributed memory
implemenation. Each digit is signed therefore a number can be distributed across
several processors without loss of sign information.

The signed digit representation is used in the CALYPSO system [24]. CA-
LYPSO implements three multiplication algorithms: Karatsuba [77], 3-primes FFT
and floating point FFT. The selection of which algorithm to use is based based on
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performance thresholds in asymptotic analysis: on smaller inputs, Karatsuba is best
but for larger problems the FFT methods are better.

2.5.2 Parallel polynomial arithmetic

The operations on polynomial data influence the representation and data structures.
Interesting polynomial representations have been presented for systems where ‘shift’
operations are most frequent [128]. The vectorized monomial representations in [6]
are mainly targeted towards speeding up operations such as test for divisibility of two
monomials, computation of the degree, and ordering of monomials in a polynomial.
In our system polynomials are stored in an indexed hash table on each PE. The
global hashing distributes each term of a polynomial to a PE bucket. A second level
hashing procedure determines the position of each term in the local hash table.

The level 2 hash function places all terms with a similar exponent in one chain,
therefore addition of any two polynomials is very fast; simply walk down each chain
where the polynomials have terms. This ‘make addition fast’ is a significant feature
of the hash method used, since addition is the most common operation in polynomial
arithmetic.

2.6 Sparse systems of linear equations

Consider a linear system of equations

Ax = b (2.3)

where A is a square matrix of size n × n, x and b are vectos of size n × 1. The
solution to the system is a vector x satisfying the equation (2.3).

The density function quantifies the relative occupation of the matrix:

density =
no. of non-zero elements

total no. of elements

A matrix A is called sparse if a large fraction of the entries of A are zero
(density < 0.5 ). It is called dense otherwise. The methods of solving linear
systems of equations differ according to the density of the matrix and the coefficient
field in which the matrix entries lie.

This work considers algebraic methods for solution of sparse systems of linear
equations. Sparse systems can have a high level of parallelism making coarse grained
algorithms attractive [105]. However, these sparsity also leads to irregular data ac-
cess and huge memory demands, and the fine grain approach can be used. Consider
two main methods for solution of linear systems:

1. Cramer’s rule.

2. Gaussian elimination with back substitution.

Cramer’s rule relies on computation of determinants of the matrix. Let det(A)
be the determinant of A and det(Ai) be the determinant of the matrix formed by
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replacing column i in A by the vector b. Then Cramer’s rule is given in equation
(2.4).

xi =
det(Ai)

det(A)
(2.4)

Cramer’s rule is impractical for small workstations because of the large deter-
minant calculations. Consider that the determinant of a matrix A(n × n) is a
polynomial with n2 variables and n! terms [77], therefore determinant calculations
require a large amount of memory. Parallel systems with distributed memory can
provide the memory required for large determinant calculations.

Let A be a square matrix whose entries aij are multivariate polynomials. The
determinant of A is shown in equation (2.5):

det(A) =
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(2.5)

Efficient computation of determinants is the core step in Cramer’s rule, therefore
the focus is on parallelization of determinant calculations. In fact, these determi-
nant algorithms have wider applications in computing the characteristic polynomial
of a matrix, solving the eigenproblem by finding eigenvalues and eigenvectors, in
inverting matrices and other linear algebra problems.

Several methods for calculation of the determinant are considered: the Gaus-
sian elimination method, the Bareiss recurrence formula, and the classical minor
expansion along a row or column.

2.6.1 Determinant by Gaussian elimination

The Gaussian elimination method is based on the property that the determinant of
a triangular matrix is equal to the product of the diagonal entries. Therefore if L is
a lower triangular matrix lij = 0 ∀j > i then

det(L) = l11l22 · · · lnn

and similarly for an upper triangular matrix W where wij = 0 ∀j < i then

det(W ) = w11w22 · · ·wnn

The Gaussian elimination algorithm proceeds by eliminating entries below (or above)
the diagonal of the matrix until a triangular form is reached.

Matrix method

If matrix multiplication is efficient then elimination can be accomplished with multi-
plication by suitable coefficient matrices [17, 11]. Consider the matrix A. If a11 6= 0,
then there exists a matrix U(n × n) such that:
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UA =
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The matrix U is a lower triangular matrix given by:

U =















1
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where

uj1 =
−aj1

a11

j = 2, 3, . . . , n

Since a11 6= 0 then u2, . . . , un exist. All the entries on the main diagonal of U are 1,
hence det(U) = 1. Therefore

det(UA) = det(U)det(A) = det(A)

Recursively, a new multiplier matrix U1 is found such that

U =





















1
0 1 0

0 u32
. . .

... u42 0
...

0 un2 1





















Repeated application of the procedure will lead to an upper triangular matrix

X = Un−1Un−2 . . . UA

whose determinant is then calculated as the product of the diagonal entries in X.
Since each new application of U does not change the determinant, det(X) = det(A).
This algorithm may be used where there is fast matrix multiplication available [17].
A parallel algorithm that requires matrix multiplication can be found in [48].

Bareiss method

An elimination algorithm that uses field arithmetic and determinants of principal
(topmost-leftmost) minor is developed by Bareiss [10]. This is analysed by Horowitz
and Sahni [66] who present the algorithm in figure 2.7.
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1. a0
00 = 1

2. for (k = 1; k ≤ n − 1;k + +)

(a) for (i = k + 1;i ≤ n; i + +)

i. for (j = k + 1;j ≤ n ; j + +)

ii. ak+1
ij =

(ak
kk

ak
ij−ak

ik
ak

kj
)

ak−1

k−1,k−1

3. return det(A) = an
nn

Figure 2.7: The Bareiss determinant algorithm

Let ak
ij (k < i, j ≤ n) denote the entry at [i, j] after k iterations of Gaussian

elimination:
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(2.6)

Then the Bareiss method for the determinant of the matrix A proceeds through
n − 1 iterations and the result is that

det(A) = an
nn

.
The division in step 2a(ii) is proven to be exact [10], therefore exact division

algorithms [68] may be used to reduce the cost of division. However if the entries
are multivariate polynomials then each multiplication ak

kka
k
ij is also quite expensive.

An improvement due by Sasaki and Murao [106] reduces multiplication cost by
avoiding some extraneous polynomial multiplications.

2.6.2 Determinant by minor expansion

The determinant of a matrix can be calculated through recursive minor expansion
along a row or a column. The classical minor expansion [79, page 373] along a row
j where j ∈ {1, 2, . . . , n} is shown in equation (2.7).

det(A) =
n
∑

k=1

ajkCjk (2.7)

Cjk is called the cofactor and is defined by equation (2.8).

Cjk = (−1)j+kMjk (2.8)
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where Mjk is called the minor of ajk. The minor is a determinant of order n − 1
obtained from the sub-matrix of A by deleting the j-th row and the k-th column.

With reference to Berkowitz [11], we may also define the adjoint of A by trans-
posing the cofactor definition:

Adjjk(A) = (−1)j+kMkj (2.9)

The practicality of the minor expansion algorithm tends to be limited on sequen-
tial workstations as it quickly exceeds the memory available on many machines. The
analysis by Horowitz and Sahni [66] shows that the Bareiss determinant algorithm
is practical for large systems while the minor expansion algorithm quickly exceeds
available memory. However, in asymptotic time for minor expansion is less than
Gaussian elimination. In fact, minor expansion is optimal to within a constant
factor under certain conditions on the sparsity matrix.

Smit [111] has developed an algorithm that augments minor expansion with a
suitable factorization and ‘memo’ facility for identifying previously computed mi-
nors. The scheme effectively reduces the storage requirements and improves perfor-
mance, since minors are not re-computed and each computed minor is assigned a
key and stored in a hash table. A parallelization of this method would improve the
storage requirements and exploit the asymptotically fast time for minor expansion.

As our polynomial arithmetic already maintains a local hash table, parallelization
of Smit’s method can essentially proceed if the factorization that eliminates common
cancellations can be achieved in parallel. In chapter 5, the observation by Smit [110,
111] are incorporated in a parallelization of the recursive minor expansion algorithm
for the determinant.

Related work by Sasaki and Kanada [105] parallelizes the minor expansion algo-
rithm by computing each minor in block form by finding determinants of size n/2.
The algorithm uses re-ordering of rows and columns in a sparse matrix to move non-
zero entries close to the matrix diagonal. Recall that when two rows (or columns)
of a determinant are interchanged then the determinant changes sign. Thus an even
number of interchanges will not change the value of the determinant but may result
in a simpler calculation for some band matrices.

2.6.3 Other sparse methods

Wiedemann’s algorithm [124] is a randomized method for the solution of large sparse
systems over a finite field GF(2). The block Wiedemann algorithm [31] relies on
matrix-vector multiplication. An efficient parallelization of this method is achieved
by Kaltofen and Pan [73]. An abstraction of matrix multiplication leads to a matrix-
free algorithm where a black box representation of a matrix is used. A black box
representation of a matrix requires a procedure for polynomial evaluation at a vector
v. Distributed implementations of the algorithm with a black box representation
have been developed [69, 36].

The methods for finite fields are not applied to the case of integer or polyno-
mial coefficients. However, Kaltofen’s division-free method [71] works in arbitrary
commutative rings therefore widens the scope potentially to fields as well. It avoids
divisions in Wiedemann’s method. One may consider this as doing for Wiedemann’s
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algorithm what Smit’s [111] ‘cancellation-free’ approach achieves for the minor ex-
pansion algorithm.

A modular method for solving linear systems of equations with polynomial entries
has been developed by McClellan [89]. The system relies on Gaussian elimination
in finite fields and matrix multiplication for evaluation of polynomials at a vector.

2.7 Gröbner bases

This section reviews the sequential Gröbner base algorithm by Buchberger which has
application in solving systems of non-linear equations. Gröbner base computations
are large irregular applications [25]. The size of the computation and the irregu-
lar data structures required make parallelization an attractive option for improving
performance of the algorithm. However, parallelization based on static partition-
ing is not suited to the Gröbner base algorithm because there are no well-marked
computation and communication phases that can be identified.

Let K be a field and R = K[x1, . . . , xn] be a ring of multivariate polynomials
with coefficients in the field K. Consider a finite set of polynomials F = {f1, . . . , fm}
where each fi ∈ R (1 ≤ i ≤ m).

Definition 2.7.1 (Term) For any non-zero fi ∈ F , a term of the polynomial may
be written

cxα = cxα1

1 xα2

2 · · · xαn

n

where c is a coefficient, xα ∈ R is called a monomial. The vector α = (α1, . . . , αn) ∈
N

n is called an exponent vector.

Definition 2.7.2 (Monomial order) A monomial order in R is a relation > on
N

n such that

1. α > 0, ∀α ∈ N
n

2. For all α, β ∈ N
n, α = β, or α > β, or β > α.

3. α > β ⇒ α + γ > β + γ, for all α, β, γ ∈ N
n.

4. > is a well-order.

The standard monomial orderings are lexicographical order, graded lexicograph-
ical order and graded reverse lexicographical order. Given a monomial order > then
any f ∈ R with its terms ordered, will have a leading term c1x

α1 so that it can be
written

f = c1x
α1 + f ′

where

• the leading term of f under the monomial order > is denoted lt(f) = c1x
α1

• the leading coefficient of f , lc(f) = c1

• the degree of f , deg(f) = α1
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Definition 2.7.3 (Gröbner basis) A Gröbner basis for the ideal I generated by
the set F , with respect to an admissible order > is a set of polynomials G =
{g1, . . . , gr} such that lt(I) is the ideal generated by the set {lt(gi) : gi ∈ G}.

From the definition, the following hold:

1. gi ∈ I , for i = 1, . . . , r.

2. ∀h ∈ I,∃g ∈ G such that lt(g) divides lt(h).

Buchberger’s algorithm

Buchberger’s algorithm for computing the Gröbner base of a polynomial ideal is
shown in figure 2.8.

Input f1, . . . , fs ∈ F [x1, . . . , xn], and order >.

1. Initialize G = {f1, . . . , fs}

2. Form s-pairs P = {(gi, gj)} ∀i, j ∈ G

3. While P 6= ∅

(a) Select next s-pair (gi, gj) and form s-polynomial

sp = spoly(gi, gj)

(b) Reduce sp with respect to the current basis G,

r = sp rem(g1, . . . , gr)

(c) If r 6= 0 then add r to the basis, G = G ∪ {r}.
Form new s-pairs induced by the new basis element r, P = P ∪ (gk, r).

Figure 2.8: Buchberger’s algorithm for Gröbner basis

Several parallel implementations of the Gröbner base algorithm have been de-
veloped. The parallelization by Amrhein et al. [4] consists of parameterized work
distribution on a shared memory architecture. Related work [25] uses application
level threads on a distributed memory system. Reeves [101] implements a homoge-
neous Gröbner base algorithm on a distributed memory system.

The main challenge for our parallelization within our distributed representation is
the question of maintaining order where the polynomial terms are stored on different
PEs. As we will see, the data structures and operations in chapter 3 maintain a
robust memory model and efficient memory balance. However, these representations
are inherently unordered. Therefore strategies for provision of order information in
Gröbner base computations based on this representation is discussed.
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S-polynomials

The first step in a Gröbner base computation is the creation of s-polynomials from
s-pairs (f1, f2) ∈ G. The s-polynomial h is defined by

h = uf1 + vf2 (2.10)

where u and v are monomials. Let xα = xα1

1 xα2

2 · · · xαn
n be the leading monomial of

f1 and xβ = xβ1

1 xβ2

2 · · · xβn
n be the leading monomial of f2. Also, let m = lcm(xα, xβ),

then

u =
m

xα

v =
m

xβ

and the leading monomials of uf1 and vf2 are both equal to m.
The s-polynomials are generated for each pair. To gain an estimate of the number

of s-polynomials and pairs generated, we follow the analysis by Chakrabarti and
Yelick [25]. Suppose the input basis consists of s polynomials G = {f1, . . . , fs} and
the result basis after applying the algorithm has n ≥ s polynomials. Then the initial
number of pairs is given by:

‖P‖ =

(

s
2

)

.

Consider each new addition to the basis polynomial. The i-th addition creates i− 1
new pairs. The range of i is s ≤ i ≤ n − 1 therefore the number of pairs created is
given by equation (2.11).

(

s
2

)

+
n−1
∑

i=s

i =

(

s
2

)

+ (n − s)
n + s − 1

2
(2.11)

For many large problems the result basis is much larger than the input basis
(n >> s). Hence the right hand side of equation (2.11) gives O(n2 + ns) pairs
created. Now the basis only contains O(n) therefore there are about O(n2) number
pairs that reduce to zero.

Pair selection criteria

There is a large number of possible s-pairs that reduce to zero O(n2). This has lead
to several optimizations that use heuristic methods to identify the ‘critical pairs’
that do not reduce to zero. We briefly discuss the approaches taken in some parallel
Gröbner base implementations:

1. The parallelization due to Ponder [97] distributes the pairs f1, f2 across avail-
able processors and computes h1, . . . , hp in parallel.

The main shortfall of such a procedure is that it is overly dependent on initial
pair distribution, while the basis set is a dynamic set that is expanding during
execution. Therefore the initial distribution is incomplete and additional calls
to distribute pairs are needed whenever a new polynomial is added to the basis.
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2. Reeves [101] works with homogeneous polynomials whose terms all have the
same degree. A scheme where all the s-polynomials for all pairs are generated
and then ordered by the degree is implemented. Since all terms have the same
degree, each processor can keep track of the correct order.

The main drawback of this approach from the point of view of fine grained
distribution is that s-polynomials are computed first and then ordered. Re-
computing s-polynomials that are not selected would tend to be expensive.
In addition, inhomogeneous polynomials have to be homogenized and this can
become a bottleneck. The cost of homogenization may be reduced by a ‘sugar’
strategy introduced by Giovini et al. [54] which keeps a close approximation
(sugar) of the degree of a polynomial without full homogenization.

3. The system by Amrhein et al. [4] does not particularly order the pairs, but
creates blocks of pairs to fit a window of concurrent s-polynomials. The s-
polynomials in a block are distributed and reduced concurrently with the
expectation that in each window at least one s-polynomial will reduce to a
non-zero additional basis polynomial.

This concurrent block reduction is attractive in that it delays the introduction
of new pairs until a few of the old pairs have been considered. However, this
scheme is still not fully dynamic and it operates at more coarse granularity by
distributing full polynomials.

Our parallel implementation in section 5.1.1 simply reduces all s-pairs. This is
based entirely on the s-pairs therefore does generate the s-polynomials first. We
rely on an enumeration along the rows leading to a deterministic algorithm. An
alternative column major argument leads to a more heuristic algorithm which gives
the correct basis up to some probability.

2.8 Summary

The target parallel environment for this research is a distributed memory architec-
ture with a high speed interconnection network. A conceptual view of our parallel
environment is developed in section 2.1 and comprises of of a message passing model
with MIMD semantics. At the language level the C programming language and the
MPI communication library are used. The metrics used to determine the relative
merits of parallel systems were discussed in section 2.2. The main interest is in how
parameters such as speedup, communication, locality are affected by fine grained
randomized term distribution in the system.

Many of the parallel computer algebra systems that have been described extend
existing general purpose systems with new parallel interfaces resulting in improved
parallel functionality. The advantage of reusing the intellectual investment in the
current systems can be weighed against the flexibility of a new implementation. We
argue that a robust memory model is best incorporated in a suitable design and new
implementation rather than attempting to fit this to an existing system. Therefore
a small parallel computer algebra system with the memory-centric features will be
developed.
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The sequential algorithms for solution of sparse systems of linear equations and
for Gröbner base computations require large memory and long computation time.
Parallelization of these algorithms has mainly focused on speeding up the compu-
tation rather than balanced memory load. The challenges in developing parallel
implementation of determinant algorithms and Buchberger’s algorithm were dis-
cussed.



Chapter 3

Data structures and memory
allocation

In a distributed memory system, data has to be partitioned among the available
processors. The data structures supporting parallel computation therefore become
more complex. The issues that present a challenge for data structure design are the
following:

• Locality of data. Ideally data would be available on the processor that is
most likely to require it, and communication between PEs avoided. Such ideal
cases are rare, and for most computer algebra problems locality is difficult to
achieve.

• Granularity of distribution. The granularity of data determines how much
computation each PE can perform before essential communication. The de-
cision to implement fine granularity has an impact on data structures at the
level of integer arithmetic or polynomial operations.

• Memory balance. The system requires data placement that balances the mem-
ory load per PE, thus avoiding node memory overflow. Data structures sup-
porting block distribution, randomized hashing distribution or other methods
are possible. Our selection is based on the operations that will be performed
on the data.

• CPU balance. Efficient use of CPU time requires that idle time be minimal.
The CPU is idle mainly during communication or when data is not available
therefore the size of data allocated to each processor is a major consideration.

In this chapter techniques for global storage management with dynamic parti-
tioning are described. The techniques introduced by Norman and Fitch [93] based
on random generators for selecting the storage location of data at relatively fine
granularity (polynomial terms) are extended. The main supporting data structure
is a distributed hash table. Here hashing is considered as a dynamic mapping of data
to PEs and has wide implications for locality, granularity and load balancing.

53
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3.1 Data locality

Distributed memory parallel systems are built on the principle of spatial locality:
data that is likely to be needed soon should be kept local to the processor which
requires it. To achieve data locality, it is necessary to develop sophisticated parti-
tioning of data, often at the start of any computation, that can be shown to minimize
communication between processors. Data partitioning at the start of a computation
is referred to as static partitioning. The static partitioning techniques aim to keep as
much data as possible local to each PE, and therefore allocate data in large blocks
resulting in coarse granularity.

In the case of the polynomial data, the algorithms for polynomial multiplication,
division, or other operations do not have uniform access patterns that permit a
clean partition for locality. The polynomial matrices that considered are sparse and
irregular therefore they do not display any of the properties for smooth locality con-
straints. The sparse systems of linear equations and the Gröbner base computations
that are considered in this work have the interesting properties:

• The memory and CPU demands cannot be determined statically. In the case of
sparse matrices, we encounter fill in at execution time, which undermines any
initial static memory allocation. Gröbner base computations also generate new
sets of tasks at execution time which are induced by new basis polynomials.

• There are numerous possible execution paths making it difficult to select one
that minimizes execution time. In the case of finding the determinant of a
sparse matrix, the choice of row or column along which expansion proceeds
has an impact on the size of the computation. For Gröbner base computations,
the selection criteria for next spair that is to be reduced is crucial in reducing
execution time.

For these reasons, implementations based on the usual static data partition-
ing algorithms (block, cyclic, block-cyclic) cannot achieve suitable efficiency. For
the problems under consideration, communication is an inherent necessity. In this
work, dynamic rather than static data partitioning is used. The dynamic data par-
titioning means that as new polynomials ‘fill-in’ a matrix, or as new basis elements
are generated, their storage allocation is determined at the same time.

The locality can be measured by the inverse waiting time: a process that spends
a lot of time waiting for data has poor data locality. Figure 3.1 shows that the total
waiting time is dominated by the bottleneck in communicating with the master.
The randomized storage is fast in terms of the waiting time at the sending PE and
the waiting time at the receiving PE, which contribute less than 10% of the waiting
time.

The communication with the master to get new data reveals inefficiencies in the
model. This problem is addressed in two ways: a scheduler to overlap some of the
wait time with local computation, and block communication to pre-fetch some data.
The effects of block communication are discussed in section 3.2.1 while the scheduler
is described in section 3.9.
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Figure 3.1: Communication categories affecting data locality

3.2 Granularity

Granularity may be addressed at levels of large integer arithmetic, representation of
polynomials or basis reduction operations. At each of these levels, fine granularity
is supported by suitable data representation and algorithms.

3.2.1 Block integer representation

Multiprecision integer arithmetic represents m-digit integers in a radix β. In many
systems β is chosen to fit in one computer word as this is also convenient for com-
putations with small integers. Integers in this representation have variable length
of n words.

Communication with variable length messages is complex, therefore it is prefer-
able to transfer a fixed size integer. Clearly communicating a single word digit per
message leads to expensive n communications per integer.

To balance these requirements, a ‘block’ data structure is used. First select the
block size t where 1 < t <

√
n. Then each integer can be represented with n/t

words, and the radix β < 232t. The choice of block size affects the use of memory: if
t is large then there is inefficiency in representing small integers, but if t is small then
a large number will induce several communications to transfer to another PE. The
main advantage of a block strategy is that the message size can be kept uniform.

3.2.2 Representation of polynomials

Polynomials are mainly represented in distributed representation or recursive rep-
resentation. The recursive representation is used systems have many small polyno-
mials, and leads to coarse granularity at the polynomial level.
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Figure 3.2: Fine granularity during multiplication

In our study, not only can the system have many hundreds of polynomials but
each of the polynomials is very big: a multivariate polynomial in s variables with
degree t in each variable may have up to (t + 1)s terms. When computing with
such large polynomials, if each polynomial is stored on one processor, then any
binary operation on two polynomial operands on different processors would incur
the significant communication cost of transferring a very big polynomial to another
processor.

A distributed representation of polynomials provides the fine grain solution of
distributing the terms of each polynomial across different processors. In this way,
the common case which is polynomial addition can be made very fast. The fine
granularity during polynomial multiplication is shown in figure 3.2.

3.3 Randomized memory balancing

It is suggested in [127] that a distributed memory parallel system requires two data
structures:

1. a solution structure to hold partial solution of the final result, and

2. a scheduling structure to hold information about the tasks that have to be
executed.

This section describes the main solution data structure while the scheduling
structures are discussed in section 3.8. The main data structure for balancing mem-
ory use per PE is a global hash table as shown in figure 3.3. This global structure
supports distributed representation of polynomials. A hash function determines the
target location for storage of each term of the polynomial. The data partitioning is
dynamic since a hash function is computed for each newly created term at execution
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Figure 3.3: Randomized memory allocation

time. The data structure is global since the hash function is distributed to all partic-
ipating processing elements, and the storage allocation of each term is determined
separately and in parallel.

Consider each processing element as a storage bucket in a global hash table.
Hashing allocates objects from a dynamic set of multivariate polynomial terms U
to each bucket. The term k ∈ U is a key to the hash table. Then a hash function
h(k) maps each of the term keys to a storage location on a particular PE bucket.

The above procedure gives an effective and simple dynamic data mapping of
data to processors. The data is distributed at the term level rather than as full
polynomials, therefore we have

• Fine granularity and

• Increased communication.

The hash table has fixed size which is a count on the number of available pro-
cessors p. Recall from section 2.1 that the our parallel model has fixed topology
and also the implementation of MPI used here does not permit variable number
of processors.1 In normal hashing the size of the table is chosen to be a prime
number [78], but this would be too restrictive on the limited number of processors
available. Therefore the table size p can be statically chosen for any number of
available processing elements.

As the number of processors is small compared to the number of terms in a
system of polynomial equations, collision of terms k on the same processor results
in some data locality being maintained.

1The new standard MPI 1.2 does have threads and new processes can be created and terminated
at execution time.
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In the worst case, all terms map to the same processor leading to poor load
balance. However, the average case evenly distributes the data across all processors
giving acceptable levels of load balancing.

3.3.1 Duplicate terms

Keys are used to uniquely identify their records. In the case where the keys are
formed from the exponent vector of a polynomial created during a computation, it
is quite easy to see that the same key can be created more than once by a com-
putation such as multiplication. If a term is generated on PEi and the same term
generated at PEj with i 6= j, do these hash to the same bucket? As these may be
generated separately and concurrently, this places some demands on the function
and execution. Two cases arise:

1. Equal exponents, single polynomial: If a term with exponent vector (1, 4, 3, 2)
is created then this is hashed to some value and stored on a PE. If at some later
stage a new term, with possibly different coefficient, but the same exponent
vector (1, 4, 3, 2) is created, then we would like to combine the two terms and
form one term.

2. Equal exponents, different polynomials: If a polynomial p1 has a term 5x1y4z2

and polynomial p2 also has a term 2x1y4z2 the two keys are different but
addition would be much simpler if they were on the same processor. Therefore
the hash function should place these on the same PE.

The main requirement is that duplicate keys, that may be generated on differ-
ent processors, should hash to the same processor. This will enable addition and
evaluation operations on each PE to be conducted concurrently. To start with, we
will consider only the case where once an item has been placed in a bucket, it is
not relocated. In section 3.6 the issue of relocating some data to achieve a target
balance is considered.

3.4 Local memory allocation

The operation of inserting a new term into a distributed hash table is dependent on
the hash function. In a parallel system where each bucket is a processing element
as shown in figure 3.4, the cost of insertion includes the cost of communication:

Tinsert = Thash + Tcomm + Tupdate

The selection of local data representation depends on the operations on the data
and also on whether the algorithms required ordered data:

• Additive operations. Each PE is essentially an additive processor, and the
level 1 hashing ensures that like terms hash to the same PE. Therefore a
data structure that simplifies the most common operations of addition and
evaluation are essential.
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• Order. An unordered storage is less costly. However, if the system is to be
used primarily for applications such as Gröbner base computations, then order
is required, and the best way of achieving this is with a data structure that
supports sorting of terms.

The main options for local memory management are to keep terms unordered in
a hash table (a local one), or ordered in a list or heap. Local representations that
store data in sorted order are useful for the Gröbner base computation where finding
the ‘leading term’ of a polynomial is a key operation. Local storage in a heap data
structure results in a partial ordering of the terms of a polynomial where locating
the leading term is an O(1) operation. Maintaining a heap costs O(n log n) which
has to be offset against the other operations in the basis reduction algorithm.

Another sorted order approach maintains local term storage in a binary search
tree [76]. High performance polynomial multiplication algorithms based on this
representation can be performed in time O(n log n).

The implementation provides unordered storage. Polynomial terms are allocated
to a processor location through a randomized hash procedure. Local terms undergo
a second level of hashing to determine their placement in a local hash table H2.
The hash table storage is unordered, however the hash table has the capability of
aligning like terms from different polynomials. The alignment means that addition
of two or more polynomials is a fast sweep through one bucket of the hash table,
which makes hashing an attractive data structure.

The local hash insertion places one exponent vector (key) per bucket. Terms
from different polynomials that have the same exponent vector are chained to the
same bucket. Thus collision only occurs when two different exponent vectors hash
to the same bucket h2(ki) = h2(kj). In this case an open addressing [33] scheme
takes effect. A probe sequence is generated:

h1
2(k), h2

2(k), . . . , hn
2 (k)
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Figure 3.5: Margin of imbalance in memory load (κ)

The probe sequence is a permutation of the set of buckets and this determines the
order of checking buckets for an empty space.

3.5 Load factor

The load factor indicates the current number of terms on each PE. The relative sizes
of the load factor inform the distribution algorithm in determining the next target
for a term.

Let n be the number of keys that have to be stored, and m is the number of
buckets in a hash table, where each bucket can hold a maximum b keys. Then the
load factor ζ is defined by

ζ =
n

mb
The load factor gives the average number of key data in a particular bucket. Now
consider the case where each bucket is a processing element. Then m is the total
number of processors, and b is the size of available memory for storing polynomial
data on that processor.

Let p be the number of processors and ζi (0 ≤ i ≤ p) be the load factor for each
PE in the system. Then one can determine the imbalance in the memory load by
determining the variance

κ = max(‖ζi − ζj‖) where 0 ≤ i, j ≤ p

Figure 3.5 shows that as the number of PEs grows the distribution of data becomes
more even as κ decreases. Thus the system achieves a good memory distribution.

3.6 Relocation

The two levels of hashing described are an effective memory balancing system, which
lead to uniform distribution of the data. However, if the load factor is high, then
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this will lead to cases where the entire probe sequence is checked without a free
slot, and the PE encounters local memory overflow. This triggers a trap to global
relocation procedure. The following methods of dealing with such global relocation
are available:

1. Modified linear probing.

2. Cascading probe.

3. Larsen and Kajla method.

Modified linear probing

The sequential linear probing method searches through adjacent buckets until an
empty space is located. A simple parallel scheme will search the PEs in a sequence

h(k) − 1, h(k) − 2, . . . , 0, p − 1, p − 2, . . . , h(k) + 1 (3.1)

At each probe, the following protocol is engaged:

1. First, send a probe message requesting bucket status from the processor indi-
cated by i in the probe sequence.

2. The target replies with a yes or no depending on whether it can accept the
data.

3. If the target response is yes, then send data. Otherwise move to the next
probe in the sequence and begin again at step 1.

Each probe will require at least three messages making this protocol expensive if
the search is short (for example if space is available immediately on the first PE
h(k)− 1). However, the advantage of this method is that the data is sent only once
from the current processor to the target processor that has space available.

Cascading probe

To limit the number of point-to-point messages between a pair of PEs in a probe, a
cascading probe is useful. Cascading probe assumes it is cheaper to send one data
message than the three protocol messages. With fixed message size, a proper bound
on the size of data is available and therefore this assumption can hold. The simple
idea for the cascading probe is to generate the probe sequence ‘on the fly’ at each
PE. This exploits the fact that each of our buckets have processing power, which is
not the case when probing on a single processor.

In a cascading probe, only one message containing the full data is transmitted
per probe. The main requirement is that each processor generates the correct next
probe as if the probe were generated by a single processor. In this case the following
protocol is in effect:

1. Receive data.
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2. If there is no space on current PE whose identifier is i, then compute the next
PE in the sequence.

3. Let the target PE be k, then send data to PEk.

The method of Larson and Kajla

The cascading probe does not give a bound on the number of hops and may easily
send O(p) messages where p is the number of processors. Is it possible to determine
at the origin processor, where the correct empty bucket is without the communica-
tion overhead of the global linear addressing?

Larson and Kajla [85] describe a modification to open addressing adapted for
file storage. The use of objects called separators to identify the boundaries of stor-
age buckets in a probe sequence leads to highly efficient method of identifying the
location of a key.

The method of Larson and Kajla makes use of a small table to aid search-
ing through the a probe sequence, and can uniquely determine the correct bucket.
Therefore only one message is sent for each term storage.

The method selects the keys to be relocated from an overflowing bucket, based
on special identifiers called separators. The separator shows the maximum key that
can be held in a bucket and in the case of overflow, the separator is lowered and any
keys above the limit have to be hashed to a different location.

This method relies on dynamic relocation for data that is already inserted into
the storage. This presents a problem for our parallel system since the relocation
would need additional setup time and new buffers. For large number of processors
(> 512), this method can be used in conjunction with cascading where a suitable
cross over point is available.

3.7 Analysis of the randomized global hashing

How does the randomized memory distribution model balance memory requirements
and satisfy peak memory demand of algebraic algorithms? The algorithm dynam-
ically distributes additive terms from computations. Every PE within the system
uses the same algorithm, therefore the protocol is uniform [84] across all participat-
ing processors. The main item being distributed is a term, therefore the algorithm
may be classified as fine grain.

Consider the parallel system as a graph G = (V,E), where the vertices V are
the processors and the edges E are the connections based on the system topology.
If there are p processors then V = (PE1, . . . , PEp). The memory balance algorithm
is essentially a mapping

hij
1 (k) : PEi → PEj(1 ≤ i, j ≤ p)

where PEi is the source processor where the term k is generated, and PEj is the
destination processor where storage for the term is allocated. This definition clearly
permits i = j where storage is allocated on the same processor.
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Two random seeds s1, s2 are generated at the source processor PEi. Let v be
the length of the exponent vector. Then v keys are generated for by a random key
generator using the seeds:

keyd = rand(s1, s2) 0 ≤ d ≤ v.

The hash function makes use of the randomized keys to determine the target location
for each term:

hij
1 (k) =

(

v
∑

d=0

keydkd

)

mod p (3.2)

.
For each new term computed during an arithmetic operation, storage space is

allocated on a target PE. The number of PEs gives a count on the number of buckets
into which the term can be placed. This places a bound on cycle length for a random
placement algorithm.

The randomised algorithm is expected to select a destination processor PEj with
equal probability. Thus at each iteration a processor has expectation of O(p) incom-
ing communications. This means that some p−1 buffers have to be allocated for all
possible messages. In a system that is optimising memory, this is too much space.
The next section discusses introduction of a probabilistic weight that improves the
buffer allocation.

3.8 Weighted memory balancing

The global hashing gives a uniform probability distribution and the destination
processor PEj is selected with equal probability. The function in equation (3.2) is
independent of i, j. However, the communication channel is vulnerable to multiple
messages arising from concurrent execution of the function. At each iteration a
processor has anticipates p−1 incoming communications, therefore some p−1 buffers
are allocated for receiving messages from any other processor. A traffic analysis can
determine actual number of communications in a time slice t. Therefore a general
weight can be assigned to each new communication to improve the selection of the
least recently used channel for the PE to send data to and prediction of where to
receive data from. Two additional data structures in the form of matrices are used
by the scheduler to support the weight calculations.

The main scheduling data structures are a history matrix and a traffic matrix
on each PE. The history matrix allocates temporal locality to each PE, showing
the communication patterns in recent iterations. The traffic matrix shows total
communication traffic in order to identify potential ‘hot spots’ in communication
and avoids communication in that path even when the hash function gives that
destination.

Traffic model

To assess the message traffic within the system, a communication log is kept in two
matrices: A receive matrix R(l×p) and a send matrix S(l×3), where l is a variable
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size of the history to be saved. The receive matrix is a binary matrix where the
cell (i, j) is set if during the i − th iteration data was received from PEj. The send
matrix can be contracted in size by enumerating the message tags that indicate the
type of data. The matrices give temporal locality information so that the following
questions may be answered:

• Which is the least recently used receive/send port?

• What is the weight of communication on a link c?

Consider the receive matrix R. Let the first column indicate the previous send.
The rest of the p − 1 columns are for the previous receive. A schedule based on
the communication matrices introduces a probabilistic element to the computation
itself, as well as the selection of storage location. The weight can be based on three
options [98]: pairwise scheduling, balanced scheduling and greedy scheduling.

Traffic generated by the system can be analysed to evaluate the probability
of communication clash. These clashes will not usually generate deadlock, since
alternative routing through the network is possible, but such alternative routing
results in delays in transmission of messages. There are two potential hazards in the
communication generated:

1. The funnel hazard: Several processors sending to one processor at the same
time. This has the potential to delay all the messages in a queue which the
receiving processor handles each in turn.

2. The succession hazard: Successive send to the same processor. In this case
the second message may be delayed while the previous message is sent.

The randomized dynamic distribution algorithm is quite efficient in maintaining
data locality and local storage is preferred as shown in figure 3.6. The algorithm has
to ensure that when PEs begin to send messages to each other in quick succession,
the channel delay is not increased drastically. In figure 3.6, consider the time slice
30 where PE0 sends a message to PE1, and PE1 itself sends a message to PE0. This
concurrent send is likely to cause a delay to the next send in the next stage (time
35). This ‘succession hazard’ is flagged by weights wij at each PE, which are used
in the next time slice 35.

time 5 10 15 20 25 30 35 40 45
PE0 0 0 0 0 0 1 1 1 1
PE1 1 1 0 1 0 0

Figure 3.6: Traffic during multiplication with 2 PEs

The communication ‘hot spots’ resulting in succession hazards may be remedied
with block communication. Given a non-zero weight wij on a channel from source i
to destination j , a block size b = f(wij) b > 1 is calculated. Messages are then sent
when the block is full. In this way any successive sends to the same processor are
caught locally. However, any communication which involves just one message will
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be delayed until the final sweep of all buffers. If all messages are storage messages
with the data not being reused, then such delays are acceptable.

For a large number of PEs there is a second potential hazard for the commu-
nication channel: a ‘funnel hazard’ where tens of PEs are sending to the same PE
in one time slice. Note that this has no effect on the uniformity of the memory
allocation. However it is a hazard because it requires that p− 1 buffers be allocated
memory, and also potential delay as each message is received one at at time. The
example in figure 3.7 shows the spread of communication in terms of pairs involved.
Note also that in each of the columns, there is no occurrence of the same destination
number indicating that all processors are sending to the same PE. Thus the system
has efficient handling of the funnel hazard. Indeed, for this example, a blocking
factor of b = 2 fully controls the succession hazard as well.

time 5 10 15 20 25 30 35 40 45 50 55 60 65
PE0 2 2 0 0 0 0 1 1
PE1 0 0 2 2 2 2 1 1 2 2
PE2 1 0 0 0 1

Figure 3.7: Traffic during multiplication with 3 PEs

Channel selection

The traffic matrices can be used in a ‘least recently used’ protocol on the communi-
cation channels to say that if PEj has recently sent a term to PEk during iteration i
then it should not send another data item to the same processor at the next iteration
i + 1.

The probabilistic information has two important consequences:

1. The number of input buffers can be reduced by placing them all in one pool.
Incoming message are allocated the first buffer in the cyclic pool. This is be-
cause the expectation of incoming messages equal to the number of processors
is reduced, and the number of incoming messages far less than the normal
p − 1.

2. A cyclic pool is efficient in this case rather than a full array of p − 1 buffers.
This means that the size can be adjusted depending on the application, with
better tuning to the requirements of the system.

The probabilistic communication function to determine whether to send a mes-
sage µj should be sent to a destination PE or whether to perform a silent local
summation where the destination is the current PE. The processor therefore moves
into a new state depending on whether a non-local communication is being initiated.
At the end of these steps, each processor sends and receives all its messages.

Two important questions arise:

1. What is the probability that at time j processor PEk will receive p − 1 mes-
sages?
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2. What is the weight of a previous communication µj−1 in determining the next
communication?

The first question impacts on the number of receive buffers that each processor
needs to allocate for incoming communications. Memory space is expensive there-
fore we wish to limit the number of buffers without incurring the possibility of losing
messages. The second consideration relates to the communication patterns of the
algorithm. In a history based algorithm, the selection of appropriate target commu-
nication so that each PE does not communicate heavily with another will have an
impact on the communication.

From these two considerations, a successful time unit j is one where:

• number of messages received at vk is less than or equal to the number of buffers,
and

• all messages are guaranteed to be received.

3.9 The scheduler

A master/slave assignment of processes will often speed up distribution of data and
is useful as a funnel for operations such as Input/Output where concurrent access
to a shared stream is not provided.

The master/slave assignment can be relaxed to provide equivalence; each PE may
become a master process based on a floating token assignment. This generates a
more flexible cyclic processor alignment, where the processor that holds the ‘master’
token can broadcast data to all other processors.

The overhead of the dynamic scheme occurs when a change of status occurs. The
challenge is that the processor that is currently master must willingly relinquish its
master rights, and a new master selected from the slave processes. This process
occurs in several steps:

1. The master process informs all other processes that it is relinquishing the
master token. This can be achieved as the master process will have broadcast
rights. Therefore given a unique code, a message indicating the end of current
master rights is transmitted.

2. Each of the slave processes computes its elevation level depending on the
identity of the exiting master. One and only one processor should hold the
master token at a time.

3. All processors re-align their receive buffers to receive from the new master
process.

The simplest cyclic hand over of the master status between PEs is a round-
robin protocol. A fully distributed and orthogonal implementation of round-robin
relieves much of the inefficiency of a statically assigned master process which idles
throughout the computation after the system initialization.

Secondly, this is an important part of delivering fine grain distribution of data.
Since data is distributed at term level a ‘just-in-time’ transport of terms from the
master PE to all slave PEs avoids over crowding within the network.
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Figure 3.8: Local process scheduling

3.9.1 Process mode

In addition to a dynamic status, a process attains a mode. The classification of
process modes provided by the lowest scheduling level and essentially divides a
process time into work mode, communication mode, and resource management.

A process in work mode could perform local work where all the required data is
available locally. Dependent work relies on remote data on other processors and may
incur some wait time before the data is available locally. This allows us to perform
second level scheduling where dependent work has higher priority in order to clear
communication buffers.

The algorithm shown in figure 3.8 tests for incoming data in buffers and proceeds
to computations that depend on the data. If there is no incoming data, some local
work is performed until test window has expired.

The interleave function makes use of the resource manager to determine a heuris-
tic measure for the amount of local work that can be performed before a new test.
It is found to lead to acceptable waiting times.

An alternative strategy of performing local work until dependent data becomes
available requires a more robust interrupt service routine; it should be capable of
handling the worst case possibility of p− 1 processors sent to the same processor in
one cycle (even though there is low probability of this happening) .

3.9.2 System organization

The architecture of our parallel computer algebra system is shown in figure 3.9.
The kernel of a parallel computer algebra system determines the services offered to
application level programs and the functionality of the system. We have focused our
investigation on the representation and data structures on a MPP for Multiprecision
Integers and Multidimensional Polynomials. The implementation and support of
basic arithmetic operations based on the data structures are then clearly different.

We are in fact creating, bottom-up, a language and programming system capa-
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Figure 3.9: Architecture of a parallel computer algebra system
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ble of supporting very large symbolic and algebraic computations. To achieve this
requires a careful integration of the parallel paradigm within the known structures
for computing environments.

3.10 Summary

In this chapter a randomized memory distribution model to balance memory re-
quirements and satisfy peak memory demand of algebraic algorithms was described.
The algorithm uses a hash function to dynamically distribute additive terms from
computations. Every PE within the system uses the same algorithm therefore the
protocol is uniform [84] across all participating processors. The main item being
distributed is a term, therefore the algorithm may be classified as fine grain.

An integrated approach to the partitioning problem combines an initial static
partitioning with dynamic storage allocation at run time. Two methods of dynamic
storage allocation have been described: a random allocation method and a prob-
abilistic allocation method. Both these methods provide system-wide fine grain
control over memory allocation, and permit flexible load balancing at the cost of
increased communication. The dynamic distribution is supported by a distributed
hash table data structure which forms an important part of the system allowing
fast insert and internal conflict resolution. Relocation of data is not implemented,
although the method of Larson and Kajla shows a way of introducing relocation
while avoiding deadlock.
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Chapter 4

Parallel arithmetic

This chapter describes the parallelization of basic arithmetic on very large multi-
precision integers and on multivariate polynomials. The classical algorithms are
found to be flexible in terms of exploiting the fine grain data distribution from the
previous chapter. Faster algorithms for both integer and polynomial arithmetic have
been developed [70, 40, 13]. However the parallelization of classical algorithms en-
ables us to show that a robust memory management strategy leads to significant
performance improvement even with the very simplest algorithms.

4.1 Multiprecision integer arithmetic

The arithmetic kernel is comprised of suitable data representations and the main
operations of addition, multiplication and division as shown in figure 4.1.

The multiprecision integers are used as coefficients of polynomials therefore in-
teger and polynomial operations are discussed as related entities and not separate
packages, which has the following effects:

• Polynomial representation. Integer coefficients have to be included in the
representation of a polynomial.

• Term distribution. The distribution of integers is placed at the same level as
the distribution of terms of a polynomial.

• Message length. To keep message sizes uniform, large integers of variable size
will have to be represented in suitable sized blocks.

Redundant Block Representation
Classical methods

Addition and Carry propagation
Multiplication 
Coefficient within polynomial

Representation and
Data  Structures

Multiprecision Integers Multidimensional Polynomials

Arithmetic Operations
Division

Multiplication

Distributed Hashing
Randomized Placement
Non-replication  

Figure 4.1: Kernel components

71



72 Chapter 4. Parallel arithmetic

We first discuss the representation of multiprecision integers, and then in later
sections examine the consequences for polynomial representation, term distribution
and message length.

4.1.1 Redundant signed digit representation

Any representation balances two considerations: the sign data for negative integers
and carry propagation.

Consider an integer D written as a polynomial in a radix β as follows:

D = s
n
∑

k=0

dkβ
k

The sign s presents a difficulty for distributed representation of integers; if the
straight forward sign-magnitude representation were to be used, then the sign in-
formation would only be available on one PE making it necessary to search for the
sign in every arithmetic operation.

Since each digit dk is to be distributed, an appropriate representation is the
signed digit representation [5], which has the following benefits:

• Each digit encapsulates sign information, therefore arithmetic can be per-
formed on the digits concurrently.

• Signed digit representation limits carry propagation to adjacent digits. This
simplifies communication and leads to almost fully parallel arithmetic.

For other parallel environments such as systolic processors, redundant signed
digit representation may not be very attractive [67]. However, in a distributed
memory system where data is spread across several processors, there is a real saving
from avoiding communication for carry propagation or sign transmission.

The properties of a redundant signed digit representation with a radix β > 2 are
described below.

1. Each digit di is allowed to assume one of q values in the range

β + 2 ≤ q ≤ 2β − 1

This extends the range of allowed values of each digit beyond the β values of
the standard representation. The minimum redundancy is β + 2 which means
that there are at least 2 extra digits within the representation of each digit.

2. Subtraction is performed by adding the minuend to the additive inverse of
the subtrahend. Thus placing a requirement for the additive inverse of every
representable digit. To satisfy this condition, the absolute value of each digit
is bounded:

‖di‖ ≤ β − 1
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3. The intermediate sum wi is bounded so that if wmax is the maximum repre-
sentable integer per word, and wmin is the minimum. Then we have:

wmax − wmin ≥ β − 1

Therefore if the radix β is odd we get possible values completely symmetric
about zero and works with digits in the region

−1

2
(β − 1) ≤ wi ≤

1

2
(β − 1)

For example, for a radix 10000 the representable range would be −5000 to 4999.

Choice of radix

In most implementations the radix β is often chosen as a power of 2 with minimum
requirement is that β − 1 can be represented within one computer word. Therefore
the widely used radices are in the range β = 2a, (29 ≤ a ≤ 31). Additional
considerations regarding the radix include the following:

• An odd exponent a is useful in a redundant representation since it assures that
we have a unique representation for zero.

• An even exponent a makes binary splitting symmetric therefore if the main
operation is multiplication then an even radix may be preferred.

• Addition requires that an overflow check be performed. To check intermediate
overflow only once, we must have wmax > 3β. This needs 2 overflow bits. On
a 32 bit computer, this means β = 229. However, if we are willing to check
overflow twice then we can have wmax > 2β giving a minimum β = 230.

Block representation

To enforce uniform message size, variable length integers cannot be sent all in one
message. Therefore a fixed block size is selected, and blocks of digits transmitted at
a time. The block representation extends the radix beyond a representable integer.
This is similar to the PARSAC implementation [82] which makes use of blocks of size
m ≤ 8. In the current implementation with fine granularity, a size m ≤ 4 is used.
In fact, once the length of digits is fixed at 4 we may now consider the single digit
having length 4 words and adjust the radix to work in radix β ≤ 2128. A convenience
of this adjustment is that it is quite cheap to select an integer power of 10, which
simplifies decimal conversion [86]. Consider β = 1037, which meets the criteria for
β ≤ 2128 and simplifies conversion between decimal and internal representations.

Each digit dk is held in four computer words. The exponent of the radix is needed
to identify each block and in a coefficient representation, we can actually attach this
radix exponent to the exponent vector for the term and simplify memory allocation.
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carry = 0
for (i = 0; i ≤ l − 1; i + +)

carry = carry + ai + bi − ni

ci = carry mod β
carry = bcarry/βc

end

Figure 4.2: Multiprecision addition

Message size in communication

The distribution of the representation of integers of arbitrary size is dependent on the
communication. The most obvious representation creates a variable length object to
hold an integer so that arithmetic could be performed on a single processor and has
the advantage of clarity. However this imposes a heavy penalty on communication;
the messages to send an integer coefficient of a term would also have to be of variable
length. Variable sized data communication requires that the send and receive buffers
be at least large enough to hold the largest possible coefficient, therefore creating
space for only a few buffers and in most cases the integers will be of much smaller
size than the allocated space. The irregularity in communication and the need for
very large buffers with internal fragmentation suggests that the block representation
is more suitable for our purposes.

4.1.2 Operations on signed digit integers

The complexity in the data representation shown above, points to several ways of im-
plementing the basic arithmetic operations. The classical algorithms are preferred,
in order to display the performance of the underlying representation.

The signed digit representation limits the range to represent positive and negative
numbers. Arithmetic proceeds in two stages: first the operations per processor give a
result which may be outside the representable range. The second step approximates
carry propagation.

Addition

The classical addition algorithm in figure 4.2 is implemented on a MPP with signed-
digit representation and a carry-lookahead. We extend the parallel prefix algorithms
[42] for multiple bits per processor, to create an implementation with multiple bits
per digit. This gives the multiprecision integer and modification to the propagate
and generate bits in parallel.

The addition and subtraction of large integers is relatively cheap O(1). Carry
propagation with the signed digit representation is bounded, and addition can be
carried out as a sweep through the local hash table to a depth s, where s is the
number of integers being added.
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Multiplication

The parallel multiplication is based on the classical multiplication algorithms. As
each polynomial has a distributed representation, each processor can independently
compute a term multiplication, and form part of the result.

Division

The classical long division algorithm gives good performance for inputs up to 8192
bytes [24]. The key performance measures in a distributed division procedure are
efficiency and load balance.

The simplest implementation collects all the terms of the operands onto one
master process which performs an optimized division. This breaks the distribution
and leads to a sequential computation time. The other PEs will be idle while
the master computes therefore very poor efficiency is achieved. However, for short
numbers (and all those with 1 B-digit), this is a reasonably simple procedure.

For the special cases where the divisor is much shorter than the dividend, it is
possible to distribute all the terms of the divisor to each PE. This enables the local
computation of partial results in an efficient way.

Multiplication is a high speed operation in CABAL. This can be used in a division
algorithm that approximates the reciprocal of the divisor (using Newton-Raphson
iteration) before multiplying all the terms of the dividend.

In applications such as the Gröbner base computations in section 4.1.2 the frac-
tion can be kept as a numerator and denominator before a normalization step is
taken. Since a common operation in Gröbner base computations is lcm(a,b)

a
the rep-

resentation is efficient for the frequent case where a, b are relatively prime.

Rational arithmetic

Much of our arithmetic is with integer coefficients. However inexact division can
lead to rational numbers, therefore we briefly discuss the rational arithmetic.

A simple approximation to rational arithmetic that retains the integer represen-
tation is used. A common denominator Q is kept. The representation is then

c1x
α1 + c2x

α2 + . . . + cnx
αn

Q

This relies on the low expectation that the coefficients ci, 1 ≤ i ≤ n are coprime.
If a large number of coefficients do happen to be coprime, then Q becomes a very
large integer with the worst case

Q =
n
∏

i=1

ci.

Input/Output

A large fraction of the work in implementing a multiprecision arithmetic package is
in the conversion between different radices.
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The usual external representation of numbers is sign-magnitude form. The out-
put (printing) subsystem for the distributed redundant representation format has to
convert the internal form to the sign-magnitude format. It performs the following
steps:

1. First normalize the integer in radix β with a full second stage carry propa-
gation. This requires that each slave PE identifies its leading digit and send
the (sign, position) to the master processor. This information is used by the
master in determining the order for terms, and the overall sign of the multi-
precision integer.

In the worst case the recursion may be as deep as the number of digits O(n).
However the average case propagates to only two stages therefore this becomes
an O(1) operation.

2. When all the digits on all PEs are normalized, the master may merge the
ordered digits and send them to the output stream.

The conversions in I/O are expensive and in addition the streaming buffers for
the master require significant memory allocation in the final stage. Two heuristic
approaches to improving the final merge stage:

1. For integers with number of digits less than m each slave PE can send its
terms to the master, and let the master perform full sorting.

2. It may be necessary to cap the size of integers that may be printed so that
only digits up to some upper limit may be printed.

4.1.3 The impact of pseudo-vector processing

Few architectures provide integer arithmetic operations, therefore integer operations
and especially big number arithmetic is performed in the floating point unit. Integer
arithmetic is then performed in double precision and converted back to integers
without loss of accuracy.

In this section, a special feature of the floating point processor on the Hitachi
SR2201 is used for integer arithmetic. The Hitachi SR2201 architecture provides a
pseudo-vector processor (PVP) that is highly optimized for numerical computations.
The PVP operates on 128 registers with a fixed 32 register address space. This
provides an opportunity for prefetch and poststore operations that hide the memory
latency and speed up computations.

Each β-digit in the representation of integers is a vector of length at least 4. The
vector processor reduce the cost of memory latency pre-fetching all 4 words of a digit
in this representation (it can fetch up to 32 therefore 4 is a relatively small size).
Full use of the PVP window of 32 words could therefore compute with any integer
of up to 10296 decimal digits in working storage at register level. This number is
large enough for the usual purposes, and any larger integers can have some of the
digits stored in main memory.

This facility can be used to speed up integer arithmetic, with a few modifications.
A general algorithm for full vector processors is used [92], therefore the performance
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enhancement is useful beyond the SR2201 target architecture. However, full porta-
bility of the code cannot be guaranteed.

4.2 Parallel polynomial arithmetic

A multivariate polynomial with integer coefficients is represented as in distributed
form as a list of terms. Each term is made up of a coefficient and an exponent vector.
Let x = (x1, x2, . . . , xk) and αi = ai1, ai2, . . . , aik. Then xαi = xai1

1 xai2

2 · · · xaik

k . A
polynomial C is represented in distributed form:

C =
n
∑

i=0

cix
αi

where each coefficient ci may be of arbitrary length:

ci =
m
∑

k=0

dkβ
k

Space and uniformity considerations lead to two equivalent views:

• The coefficient may be represented in the uniform polynomial representation
of a list with exponent vectors having zero entries for all except one variable.

• The coefficient may be represented with an implicit univariate representation
of an array of ‘coefficients’ in the radix B.

Recall from the previous chapter that the block representation uses up the first
exponent in the vector αi so that in an array representation αi0 = k indicating
the position of the digit in the coefficient. The pairs (dk, αi) uniquely describe a
block within a term and they are distributed among the available PEs through the
randomized hashing algorithm (see chapter 3).

4.2.1 Polynomial addition

Addition of t polynomials proceeds by iteration on addition of 2 polynomials, there-
fore we consider addition of two multivariate polynomials p + q = r. Let p have n
terms partitioned such that there are N terms per PE. Also, q is of size m with M
terms per PE. The addition algorithm in figure 4.3 is executed by each PE separately
and in parallel.

Common exponent vectors will hash to the same bucket, therefore the first step
of the addition proceeds as a sweep down the linked list of terms in the bucket to
find the coefficients corresponding to p and q. This linked list has depth equal to the
number of polynomials in the system so the sweep is an O(t×max(N,M)) operation
where t is the number of polynomials.

After identifying the coefficients, each processor calls the algorithm in figure 4.2
to add two multiprecision integers. At this stage carries are not propagated beyond
the current term. Note that each of the terms holds just one positional digit in the
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1. for (i = 0; i < max(N,M); i + +)

2. add p[i] to r

(a) if (hash(p[i]) = hash(q[j]))

i. sweep down a shared bucket

ii. add coefficients over Z

iii. create block terms

(b) else add q[j] to r

Figure 4.3: Parallel polynomial addition

1. Increment the positional exponent ai0

2. Find PE location: target(ai0, ai1, . . . , aik)

3. Find bucket: hash2(ai0, ai1, . . . , aik)

Figure 4.4: Identifying blocks of the same term

coefficient therefore if there is a carry it will not affect other terms but it does affect
other blocks of the same coefficient.

The next step checks if there are higher positional blocks using the algorithm in
figure 4.4. Recall that the first index in the exponent vector indicates the positional
place for a block integer. The algorithm increments this and finds a new bucket.
If the higher positional integer block exists then the carry from the lower position
is added to it. The blocks are updated for each carry, and we have seen from
section 4.1.1 that the signed digit representation bounds such cascade of such carries
to 2 levels on average. Therefore the cost of this operation is about 2 × Ccomm .

From this analysis, the parallel addition has cost

O((t + 2Ccomm) × max(N,M))

and if the system achieves good memory balance then N = n/p and M = m/p.
The size of the problem can will be the maximum of n,m therefore the cost parallel
polynomial addition becomes:

O(
nt + 2nCcomm

p
)

The algorithm does not use a lot of auxiliary storage and the depth t in many
cases will be shallow (if the system is used only to find the sum of two polyno-
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mials then t = 2, but in a Gröbner base calculation t is equal to number of basis
polynomials).

4.2.2 Polynomial multiplication

Given the sparse representation of polynomials, multiplication using the classical
long multiplication algorithm gives acceptable performance: The distribution of data
results in speedup by a factor of at least 2. However, the computation incurs high
communication cost for storage allocation. To reduce the cost of communication
and overlap computation and communication, the algorithm is placed under the
management of a scheduler. Each step of the computation assumes a ‘state’ requiring
some auxiliary working memory.
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Figure 4.5: Parallel polynomial multiplication

The parallel multiplication tasks are shown in figure 4.5. The master token is
assigned at state 1. The simplest assignment is round robin, however this may be
changed. A master broadcasts data for new tasks in 2, and can then proceed to
performing local work in state 4.

Slave processes have to allocate persistent receive buffers at state 3. This should
ensure that when a master broadcasts new data, the slave is ready to receive. At
the start of the computation, many of the messages received by the slave at state
10 are from the master, and have a special tag MULT. However, the main receiving
task at 10 can also receive messages with several other tags to instruct the scheduler
on which task to start up next.

The scheduler for a slave process can select a new term to multiply with at
state 5. Data from the master has higher priority and a product is formed at 6. If
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there is no data from the master then a local product (from terms already on the
current PE) may be scheduled. New product terms are allocated storage space by
the randomized hash partition algorithm at state 7.

The algorithm terminates when all the master tasks have been distributed and
there are no outstanding messages in the communication pipeline.

The scheduler has some freedom in the above process to try to overlap commu-
nication and computation as far as possible. Thus there may be a wait associated
with receiving task data from a master process, another task may be scheduled in
the intervening time.

The scheduler can also take advantage of buffered communication to combine
data to destined for a particular PE so that instead of sending several messages, only
one message is sent. This is effective if the data is memory bound but not processor
bound, so that the recipient does not suffer from the delay in the data. The impact
of increased buffer size as shown in figure 4.6. This performance improvement may
be attributed to the fact that an increase in the size of blocks reduces communication
time for each multiplication.
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Figure 4.6: Execution time when increasing buffer size

4.3 Summary

Implementation of arithmetic for arbitrary size integers on a massively parallel pro-
cessor has been described. The redundant signed digit representation is combined
with randomized term distribution to support highly parallel forms of the classical
algorithms. Carry propagation during addition is bounded therefore communica-
tion can be delayed until a final normalization step when the data is used. The
polynomial arithmetic is dominated by multiplication. In this case the scheduler
is used to overlap communication and computation. At potential delay points in
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the algorithm, the scheduler can run some local tasks that are independent of any
communication.

The integer and polynomial arithmetic algorithms described in this chapter make
effective use of the distributed data structures. The global and local memory alloca-
tion procedures of the system give good memory balance. The use of the scheduler
to overlap communication and computation is a useful tool for reducing the impact
of the increase in number of communications due to fine granularity.
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Chapter 5

Systems of polynomial equations

In this chapter, parallel algorithms for solving systems of polynomials equations are
discussed. These problems require large amounts of memory and exhibit intermedi-
ate expression swell. Two classes of equations are considered:

• Sparse systems of linear equations. The main memory consuming function is
the computation of determinant. In addition, sparse systems encounter ‘fill in’
of new entries which add to the demand for memory during a computation.

• Solution of non-linear systems makes use of the Gröbner base algorithm which
requires large memory resources.

The above problems are capable of producing truly huge computations with signifi-
cant amount of intermediate data. The aim is to parallelize familiar algorithms for
solving sparse linear equations. In addition, the underlying polynomial arithmetic
adds a level of fine grained parallelism to the Gröbner base algorithm.

5.1 Parallel Gröbner base algorithm

Consider a set of multivariate polynomials F = {f1, . . . , fm} where F ⊂ K[x1, . . . , xn].
Let the ideal generated by the polynomials be

I = 〈f1, . . . , fm〉 =
m
∑

i=1

qifi qi ∈ R

A homogeneous system formed by these polynomials may be written as

f1(v) = 0

f2(v) = 0
...

...

fm(v) = 0

The variety of I denoted by V (I) is the set of vectors v that satisfy equation
(5.1). Thus

83
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V (I) = {v ∈ R : f1(v) = f2(v) = · · · = fm(v) = 0}
The Gröbner base algorithm is often used to answer questions about the algebraic

variety of a set of polynomials and also has wider applications in computer algebra.
The sequential algorithm for computing the basis is given in section 2.7, and several
parallel implementations have been discussed.

The parallelization of the sequential Gröbner base algorithm may occur in several
stages:

• Parallelize the monomial ordering.

• Parallelize the selection of s-pairs.

• Parallelize the coefficient arithmetic.

• Parallelize the basis reduction.

The expensive operation in the algorithm is the reduction step where each s-
polynomial is reduced by the entire intermediate basis. The multivariate reduction
algorithm is dependent on the monomial order of terms which are distributed ran-
domly and unordered. Therefore an intermediate procedure is required to transform
our underlying unordered storage to some partial ordering of the monomial terms.

5.1.1 Partial ordering of pairs

The main loop in the Gröbner base algorithm is dependent on the selection of the
next s-pair for the reduction. The simplest strategy of reducing all pairs is easy to
parallelize. It can also be used with finer granularity. We do not incur the cost of
finding an s-polynomial first, which is the case in the homogeneous methods [101].

The number of distinct pairs for a basis of size n is about O(n2/2) therefore we
can make use of diagonalization to produce a natural ordering of the set of s-pairs
with two important features:

1. The size n is used in a ‘step test’ to determine whether to move on to the
next line. Therefore n can change dynamically between tests to accommodate
growth in the basis.

2. Each processor can independently find the next pair without expensive com-
munication.

Row algorithm

Let each new addition to the basis be added to the last row. Then the selecting a
new pair consists of a walk below the diagonal for each row as shown in figure 5.1.

A new addition to the basis will be the last row and it will not have been
visited yet (otherwise it would have been generated previously). Consider an ex-
ample basis with four polynomials: the list of pairs in the order they are visited is
(1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (3, 2).

The full algorithm is shown in figure 5.2. This will generate all possible s-pairs
for the Gröbner basis. It has the following properties:
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Figure 5.1: Ordering s-pairs below the diagonal

i = 1;

while (i < n)
for (j = 0; j < i; j + +)

spair(i, j)
i + +;

Figure 5.2: Row algorithm for selecting critical s-pairs
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• The number of polynomials in the current basis n, can grow dynamically before
the next test for i at the while loop.

• Each row is bounded by the diagonal (j < i) therefore the algorithm will
always proceed to the next row if it exists. This means that if any new basis
polynomial is generated, we can be sure that the s-pairs induced by the new
polynomial will eventually be considered.

This partial ordering can be computed concurrently on each processor. Therefore
each PE can proceed independently if the data it requires is available.

Deletion of superflous pairs

The ordering of pairs that has been described does not take into account pairs that
do not give meaningful new basis elements. The process of identifying pairs that can
be deleted before the expensive reduction operation is performed can significantly
decrease the execution time of the algorithm.

In the case of homogeneous polynomials, a partial ordering induced by the degree
of the s-polynomial is available. Let in(f) be the leading monomial of a polynomial
f , and let the least common multiple of two numbers a, b be given by lcm(a, b).
Then the following deletion criteria may be formulated [101] where 0 ≤ i, j, k ≤ p:

1. chain criteria: For i, j < k, if

lcm(in(fi), in(fk))

divides
lcm(in(fj), in(fk))

then delete (fj, fk).

2. product criteria: If

lcm(in(fi), in(fj)) = in(fi) · in(fj)

then delete (fi, fj).

5.1.2 Finding the leading term

The need for a monomial order poses a particular problem within our distributed
representation; terms from a single polynomial may be stored on different proces-
sors. Therefore a total order of the terms would incur high communication cost in
transferring storage to a single PE.

However, observing that Gröbner base calculations and other algorithms make
use of order information to determine the leading term only, the order may be relaxed
to the weaker condition of finding the maximal term.

An algorithm based on the merge sort is a natural choice since the PEs have no
shared address space. Figure 5.3 shows an online merge and broadcast procedure
for identifying the leading term. At the end of the algorithm, each PE has a local
copy of the leading term that is not permanently stored.
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Global merge

Sort for leading term

Global broadcast

Global leading term

Local leading term

Local sorting PEpPE1

PEp

PE2

PE2PE1

Figure 5.3: Selecting leading term of a polynomial

5.1.3 S-polynomial computation

In our algorithm, the terms of f1, f2 are distributed across several processors. This
provides a way of computing the result of equation (2.10) in just 1 instruction instead
of the (mult,mult, add) sequence of the obvious scheme. Recall from section 2.7 that
an s-polynomial h of the two polynomials f1, f2 is defined by

h = uf1 + vf2

where u and v are monomials which are formed from the least common multiple of
the leading terms of the two polynomials.

The computation of s-polynomials only requires that the leading monomials be
known. The order of the terms in the tail end of the polynomial has little impact
on the computation. This observation enables us to relax the order requirement to
just finding the maximum within a given order.

The distributed algorithm therefore has to first compute the multipliers u and
v. Each PE finds a local leading term, and sends it to the master process. The
master process then sequentially computes u and v. These can then be broadcast
to all PEs.

The level of concurrency here is determined by the number of terms in f1 and
f2. Since these are large polynomials, distributing within each s-polynomial rather
than letting each processor compute a different s-polynomial leads to significant time
efficiency in computing the products uf1 and vf1 since u, v have only one term. The
multiplication can therefore be done in O(n/p) time rather than O(n) where n/p is
the average size of each data partition and n is the overall problem size.
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broadcast (u,v)
the MULBY tag indicates multiplication by f1 or f2

add into h
start next s-polynomial

Figure 5.4: Distributed s-polynomial computation

1. Is f reducible? The reducibility condition is used to check if lt(f) ∈ L(G).

2. If f is NOT reducible, then return f ′ = f .

3. Otherwise f is reducible, and ∃ti such that lt(f) =
∑

tilt(gi).

4. Let f1 = f −∑ tilt(gi). Since
∑

tilt(gi) = lt(f), the leading term of f is
cancelled, so deg(f1) <deg(f2).

5. Repeat until a reduced f ′ = fi mod (g1, . . . , gr), or a zero.

Figure 5.5: Reduction algorithm

5.1.4 Reduction algorithm

Consider a ring of multivariate polynomials R = K[x1, . . . , xn] with coefficients in
the field K. Let f ∈ R and G = {g1, . . . , gr} where each gi ∈ R. Let L(G) be the
leading term ideal of G, that is, the ideal generated by {lt(gi) such that gi ∈ G}.

Definition 5.1.1 (Reducible) f is reducible modulo G if f is non-zero and lt(f) ∈
L(G).

The reduction algorithm then consists of constructing an f ′ such that

f = f ′ mod (g1, . . . , gr)

where f ′ is reduced modulo G. The reduction algorithm as in Gianni et al. [53] is
given in figure 5.5.

The parallelization of the reduction algorithm in figure 5.6 makes use of the
polynomial multiplication and addition algorithms. Some computation time may be
saved in finding the leading term ideal by delaying the sequential merge operation.

5.1.5 Order

The hashing method for distributing data across the PEs creates an unordered stor-
age. However, the Gröbner base algorithm makes use of the leading monomial hence
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1. Use the algorithm in figure 5.3 to find the leading term of f .

2. Find a pseudo-leading term ideal of pL(G) by only finding the local leading
terms of the set of polynomials G (this makes use of only the first step in
figure 5.3, without the merge).

3. Check in parallel if lt(f) ∈ pL(G). If this condition is not satisfied then return
f ′ = f .

4. If lt(f) is in the pseudo ideal then use the leading term algorithm in figure 5.3
to find L(G).

5. Perform the multiplication and summation f1 = f −∑ tilt(gi) using the par-
allel algorithms from chapter 4.

6. If f ′ is non-zero then distribute its terms.

Figure 5.6: Parallel reduction algorithm

requires some ordering of the monomials. The computation is largely dependent on
the ordering of the monomials. We have two options on how to proceed:

1. Keep the unordered data structure and provide an additional facility for main-
taining order.

2. For Gröbner base computations, select a different data structure that simplifies
order decisions.

Ordered representations

An alternative method of maintaining order is to select a different polynomial rep-
resentation for computations that require order information. Two methods are pro-
vided: heap of terms, and a binary search tree (BST).

A term heap keeps the leading monomial (largest in a given order) at the root of
the heap. For Gröbner base computations, this means an O(1) retrieval of the leading
monomials when forming an s-polynomial. The heapify() procedure is O(n log n)
hence the high priority leading term can be found efficiently.

A BST sorts the terms of a polynomial and the leading monomials can be re-
trieved in O(log n) time. This is quite efficient for very large polynomials.

Ordered representations lose the relationships between terms within polynomials
since each is kept in a separate data structure. Therefore the performance enhance-
ment of fast addition in unordered storage is lost. However, this may be recovered
in the efficiency of the retrieval operations and faster algorithms for addition or
multiplication.
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5.2 Parallel sparse linear systems

Sparse systems of linear equations provide several challenges for memory manage-
ment:

• Managing ‘fill in’ of cells during computation. This will often result in signif-
icant increases in the memory requirements of a system.

• Partitioning data across several processors.

In this section, we consider parallel algorithms for matrices with polynomial
entries. Basic linear algebra operations include algorithms for computing the deter-
minant of large sparse polynomial matrices and finding the characteristic polynomial
of a matrix. The parallel multiplication from section 4.2 is utilized.

5.2.1 Polynomial matrices

Sparse matrices have many zero entries therefore a representation that preserves
memory by not storing empty cells is useful. The polynomial entries for the matrices
are stored in a polynomial table as described in chapter 3. The matrix representation
therefore keeps references into this polynomial table for every non-zero entry. This
creates some flexibility in how the matrix is stored, since it does not directly hold the
data. Some options have to be eliminated first: a block distribution of the matrix
could clearly allocate an empty block (whose entries are all zero) to a PE, therefore
an alternative is required.

The simplest solution is to let each processor hold the full matrix as references
to the non-empty entries. Since the polynomials are all distributed, it is possible
for a PE not to have any terms from a particular polynomial, but if it holds the
full matrix indicating that such a polynomial entry exists, then operations on that
entry are not affected.

Recall from chapter 3 the representation for polynomials. The sparse matrix is
then represented by a list of handles to data for the non-zero matrix entries. An
example is shown in figure 5.7.

A = 

0 0

20

1

0 35

0

Polynomial table

Hash table

Figure 5.7: Sparse matrix representation
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5.2.2 Parallel Bareiss algorithm

To parallelize the algorithm by Bareiss [10, 66], we would like to loosen the data de-
pendency between successive iterations in the algorithm 2.7 so that concurrent exe-
cution becomes possible. Recall that Bareiss algorithm is based on sub-determinants
of the form in equation (5.1).

ak
ij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1k a1j

a21 a22 · · · a2k a2j

...
...

. . .
...

...
ak1 ak2 · · · akk akj

ai1 ai2 · · · aik aij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.1)

Also note that this method is for Gaussian elimination, therefore at the k-th iter-
ation some of the entries below the diagonal are already zero. A modified derivation
of Bareiss method emphasises independent 2× 2 matrix determinants embedded in
the algorithm. Using additional observations from Smit [111] the exact division can
also be performed internally. Therefore the parallel implementation consists of:

• The 2 × 2 determinant as the main independent operation which can be per-
formed in parallel.

• Parallel polynomial arithmetic for computing the 2 × 2 determinant in two
parallel multiplications and one parallel subtraction.

The derivation manipulates Gaussian elimination where U is a lower triangular
matrix

U =















1
u21 1 0

u31
. . .

... 0
un1 1















and the entries of U are

uj1 =
−aj1

a11

j = 2, 3, . . . , n.

Expanding the product UA leads to a determinant form of Knuth [77]:

UA =















a11 a12 . . . a1n

0 a22 − a12(a21/a11) . . . a2n − a1n(a21/a11)
0 a32 − a12(a31/a11) . . . a3n − a1n(a31/a11)
...

...
...

0 an2 − a12(an1/a11) . . . ann − a1n(an1/a11)















(5.2)

The product matrix can be partitioned in the following way

UA =

(

a11 a12 . . . a1n

0 A1

)

(5.3)
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Recall the usual formula for the determinant of a 2 × 2 matrix:

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21 (5.4)

Now consider the entries in the submatrix A1 in equation (5.2). The entry [2, 2] is

a22 − a12
a21

a11

(5.5)

If we could multiply equation (5.5) by a11, then this would give the formula in
equation (5.4). To achieve this, we recall the determinant property that if one row
or column is multiplied by a factor α then the value of the determinant is also
multiplied by α. Hence multiplying the n − 1 rows of a matrix gives

det(αA) = αn−1 det(A) (5.6)

So let α = a11 and multiply rows 2, . . . , n of the matrix by a11 to get

det(UA) =
1

αn−1
det(αUA)

Rearranging the terms leads to the following alternative determinant presentation
by Smit [111]:

det(UA) =
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(5.7)

Now the calculation of a 2 × 2 determinant in equation (5.4) can be achieved
relatively cheaply with two polynomial multiplications and one polynomial addition
in parallel using our implementation in chapter 4.

In the Bareiss notation, let ak
ij be the element [i, j] after k iterations. After suc-

cessive iterations of the form in equation (5.7), we can see that the sub-determinants
are based on calculation of 2 × 2 determinants. For example the first three entries
on the main diagonal are:

a1
11 = a11 (5.8)

a2
22 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

(5.9)

= a11a22 − a21a12 (5.10)

= ak
kka

k
ij − ak

ika
k
kj (5.11)
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= a2
22a

2
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32a
2
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= ak
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k
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k
kj (5.15)

Equations (5.11) and (5.15) derive the main iteration in Bareiss algorithm:

ak+1
ij = ak

kka
k
ij − ak

ika
k
kj (5.16)

In this case the exact division is delayed until the main diagonal has been com-
pleted and cancellation by the fraction part

1

an−1
11

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

n−2

. . .

(5.17)

eliminates entries and the Bareiss algorithm returns the determinant

det(A) =
1

a11

an
nn (5.18)

where an
nn is the entry at (n, n) after the n-th iteration.

5.2.3 Parallelization of recursive minor expansion

Our approach to parallelizing the recursive minor expansion algorithm is to maintain
high level sequential operation, but parallelize the underlying arithmetic. We assume
that the multivariate polynomials within the matrix are very large, so that the cost
of arithmetic is the overriding concern.

The recursive minor expansion algorithm for the determinant of an (n×n) matrix
A is given by

|A(1 × 1)| = a11

|A(n × n)| =
∑n

k=1 ajkCjk

where the cofactor Cjk is given in terms of the (n − 1) × (n − 1) minor Mjk:

Cjk = (−1)j+kMjk.

To parallelize the recursive minor expansion algorithm, we first observe the re-
cursion tree for the algorithm. Figure 5.8 shows an example of the minor expansion
tree for a matrix of dimension 3. The leaf nodes are 1×1 determinants and a parent
node is multiplied by each of its child nodes.
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Figure 5.8: Recursion tree for minor expansion

depth cost
0 |A(n, n)|
1 (n − 1) |A(n − 1, n − 1)|
2 (n − 1)(n − 2) |A(n − 2, n − 2)|
...

...
n − 1 (n − 1)(n − 2) · · · |A(1, 1)|

Figure 5.9: Costs at different levels of recursion tree
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The tree has depth O(n) since each minor is computed from a sub-matrix in which
one row and one column are deleted. A parent node at depth d where 0 ≤ d ≤ n−1,
has n − 1 − d children. The cost of each level of the tree is shown in figure 5.9.

The sequential cost of the algorithm is O(n!). The recursion tree shows two clear
options for parallelization aligned with different methods for traversal of the tree:

1. A depth-first traversal of the tree follows the leftmost path to a leaf node.
This gives an algorithm where the minors are calculated sequentially. The
opportunity here is to parallelize the backtracking step.

2. A breadth-first traversal of the tree visits each node at depth d before moving
on to the next level at depth d + 1. Parallelization assigns each branch of the
tree to a different processor and calculates the minors in parallel.

5.2.4 Parallelization by breadth-first traversal

A parallel implementation of breadth-first traversal calculates all the minors at level
d concurrently to satisfy the breadth-first condition. Each branch of the recursion
tree may be assigned to a different processor to increase the parallelism and allow
asynchronous computation of minors. Once a minor has been computed, the result is
communicated to the parent node with a tree synchronization step (see section 2.2.7).
Then the parallel cost can be calculated as

Tp = max

(

n−1
∑

d=0

(n − d)Td−1

)

.

where Td−1 is the time to traverse a branch at depth d − 1 and there are n − d
multiplications for each completed branch.

The main advantage of a breadth-first algorithm is that given enough processors
the data distribution can be done dynamically and efficiently. The mapping of a
matrix entry to a PE for multiplication is performed by the scheduler. For example
a11 7→ PE1, a12 7→ PE2, and so on. The mapping performs a dynamic allocation of
data therefore large data sets can be used.

However, breadth-first suffers from a requirement for a large number of processors
(O(n2) in the worst case) and inefficiency due to the idle processor time until the
depth for that particular PE is reached.

In addition, breadth-first traversal commits to evaluating every minor. This has
implications in a sparse system, since sparse systems display numerous equal minors.
In a breadth-first system this sparsity is not fully exploited and nested minors can
be recomputed.

5.2.5 Parallelization by depth-first traversal

A depth-first traversal has two components:

• A forward step to discover the nodes in the leftmost path until the maximum
depth.
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• A backtracking step to complete a visit to a node when all nodes on its adja-
cency list have been examined.

The main objection to a depth-first traversal is that it has the forward sequential
component For the effect of the sequential part to be reduced, the individual minor
computations have to be very large and therefore offset the cost of committing all
parallel resources to computing one minor at a time. This condition is satisfied by
our target problems which are sparse matrices where each polynomial entry in the
matrix is very large. Hence applying depth-first with parallel polynomial operations
is justified.

We can therefore parallelize the polynomial arithmetic in the backtracking stage.
The backtracking stage of this algorithm performs n − d − 1 multiplications and at
depth d. These operations can be parallelized using the algorithms in section 4.2.

The scheduler for the depth first recursive minor expansion is shown in fig-
ure 5.10. This controls the forward step for visiting minors. This sequential compo-
nent essentially synchronizes all PEs to participate in finding the next minor. The
parallel stage performs polynomial operations, updates supporting data structures
and invokes a procedure to mark the completed minor. The scheduler can then
synchronize the processes to select the next minor.

splice out row i, column j

splice in cell i,j

select row/column (i,j)

backtrack

forward 

search

backtrack

Update histogram

mult mult mult Accumulate
minor

depth n? 

yes

no

Figure 5.10: Parallelizing recursive minor expansion

The main advantage of the depth-first algorithm is that computed minors will
be known at the time that a minor Mjk is computed. Therefore we can make use of
Smit’s histogram to avoid recomputing minors.

5.2.6 Zero minors

Large sparse systems have many hundreds of zero entries. A minor can have a zero
row or column due to deletion of the non-zero elements. Efficient minor expansion



5.3. Summary 97

relies on support data structures for identifying zero minors and selecting the best
row (or column) to expand. A minor that contains a zero row (or column) is equal
to zero (by expanding along the zero row). If such cases are identified then the
system can save time by returning zero immediately.

The difficulty here is that one PE may not hold any terms of a particular matrix
entry, but a complete sweep of the hash table to find empty cells is too expensive.

An occupation list keeps Boolean indicators that show whether a polynomial
exists on other PEs for that particular row. This is performed by capturing the
terminating messages with the ‘end’ tag. If such a message corresponds to an empty
entry in the occupation list, then the occupation list is updated.

5.3 Summary

Solving sparse systems of linear equations with entries from a polynomial field is
a problem that incurs irregular data access has the potential for matrix ‘fill in’.
The randomized distribution of data and parallel field arithmetic have been applied
to the parallelization of the standard determinant algorithms. Calculation of the
determinant is the main step in solving linear systems. The implementation also
has wider applicability to finding the characteristic polynomial of a system of linear
equations.

We have also applied the same randomized memory allocation algorithm in a par-
allel implementation of the Gröbner base algorithm. Our interest in this algorithm is
due to its resource requirements. Again we have focused on the design implications
when extreme fine tuning of memory allocation is employed. Our basic implementa-
tion is interesting for its handling of order within a distributed representation, and
ability to cope with increase in run time memory demands.

Our derivation of parallel algorithms is operational in that we rely on parallel
operations such as polynomial multiplication or a 2 × 2 determinants rather than a
higher level structural parallelism. The polynomials in our target applications are
large enough to make this operational parallelization of low level operations viable.
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Chapter 6

Conclusions

In this thesis we have advanced the case for deeper understanding of the memory
requirements of algebraic algorithms and how to meet these. We have started from
the perspective that the pursuit of speedup of computation time has been widely
investigated. Therefore the key motivation in this work has been balanced and
efficient use of distributed memory. An architecture to meet the peak memory
demands of symbolic algebraic algorithms has been proposed. We have argued
that an efficient and robust memory management scheme incorporates the following
features:

• Dynamic memory allocation, to catch any peaks in intermediate stages.

• Distributed representations and data structures, so that a polynomial is not
kept all in one processor, and also not replicated on all processors.

• Fine granularity, to give greater flexibility in tuning the allocation.

• Unordered storage, therefore dynamic partial ordering algorithms are required
for problems such as the Gröbner base algorithm.

6.1 Contributions

The phenomenon of intermediate expression swell has been observed from the very
earliest computer algebra systems. The main theme throughout this thesis has been
the requirement to manage intermediate expression swell and accommodate the peak
memory demands of computer algebra computations. This thesis has attacked the
problem through dynamic memory distribution with fine granularity. The following
contributions are highlighted:

1. A randomized algorithm for dynamic memory distribution. This method works
by determining storage location of data at the time the data is generated. A
key differentiator has been the fine granularity which greater flexibility and
fine-tuning of the memory allocation.

2. Asynchronous scheduling to reduce the impact of high latency communica-
tion. In addition, a traffic model for the communication pattern has been
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described for computation of probabilistic weights for channel selection dur-
ing communication. The system guarantees deadlock-free communication and
small requirements for send and receive buffer space.

3. Implementation of parallel polynomial and integer arithmetic. The system re-
lies on this operational level parallelism for higher applications. This approach
is justified by the huge size of polynomials generated within the system, there-
fore parallelising the field operations leads to an efficient implementation.

4. Application to two computer algebra problems with huge memory require-
ments and irregular data access patterns. Implementations for solving large
sparse systems of linear equations and for parallel Gröbner base computations
have been described.

6.2 Future directions

A framework for integrated memory management in parallel algebraic computation
has been advanced through this research. The interesting questions now relate to
how far such a memory-centric approach can be applied. We have seen that this
approach is particularly suited to some computer algebra problems because of their
vulnerability to intermediate expression swell. The next step is to identify further
application areas, and more than that, to identify potential concurrency within such
applications. Further investigation is required in the following key areas:

1. Garbage collection. The current work has focused on memory allocation and
not deallocation. This is because we have mainly considered the case where
the large storage requirement is for persistent data. However a good garbage
collector for deallocating unused memory can free up significant intermediate
storage. This presents a technical challenge for global garbage collection when
data may be referenced by distinct processors.

2. Partial order within a distributed representation. An early design choice for
this system was unordered storage. Therefore it was necessary to implement
partial ordering for the Gröbner base algorithm where the leading term of a
polynomial is needed. Maintaining order information in a distributed system
where the constant communication results in low data stability is a challenge.
The first steps have been made within our Gröbner base computation in sec-
tion 2.7 and a plug-and-play facility permits a replacement with an ordered
representation such as a heap if necessary. For further examination of this
problem, we propose to pursue partitioning algorithms that link the topologi-
cal mapping to the order of data.

3. Advanced parallel algorithms. We have implemented practical standard algo-
rithms on a massively parallel processor. From this we have gained insight
into the memory requirements of parallel systems. How much more can be
gained with the parallelization of more advanced algorithms but with a sim-
ilar memory scheme? Consider for example, how FFT multiplication would
benefit given our dynamic memory allocation.
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4. Portability to Beowulf clusters. This research has been targeted at supercom-
puters, however, there has been recent growth in the use of Beowulf clusters of
workstations. Cluster technology promises better price/performance for par-
allel machines hence we are confident that parallel systems for problems such
as computer algebra will be in high demand for these emerging architectures.
Portability has been achieved with the use of the standard MPI library, how-
ever we would have to re-examine the impact of fine granularity to account for
the higher latency for communication within Beowulf clusters.

The motivation for this work was drawn from definitive computer algebra chal-
lenges set in 1990 [14]. A new compilation of urgent research challenges for computer
algebra set out in the year 2000 [72] for a new decade of research, does not include
parallel systems. In the intervening years there has been much progress in parallel
computer algebra systems, but many interesting problems remain. As we have seen,
the parallel memory balancing problem is rich in subtle problems and further work
along the lines suggested here has the potential to improve our parallel systems.

6.3 Conclusions

Efficient memory balance in a distributed memory system cannot be achieved with
static data partitioning algorithms. This thesis makes use of dynamic memory
allocation procedure based on randomized hashing.

The aim has been to keep all the processors in a parallel system balanced in
terms of the amount of data stored on each. Balancing the memory load takes into
consideration the principles of data locality in order to achieve load balancing of the
CPU time as well. The randomized memory allocation is fine grain, allowing finer
control over the distribution and load metrics.

The implementation on a Hitachi SR2201 has been used to support the peak
memory demands of some computer algebra applications such as Gröbner base cal-
culations and large sparse systems of linear equations.

Memory availability and performance is particularly important for computer
algebra problems as they frequently suffer intermediate expression swell. The tech-
niques for distributed memory management that have been applied in this thesis
show potential for wide application in computations that have huge memory de-
mands.
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Appendix A

CABAL: a short manual

This appendix describes the implementation of CABAL version 2.0 (Cambridge
and Bath algebra system). It gives an overview of the system packages and the
specification of the main interfaces.

The first version of CABAL by Norman and Fitch [93] was written as a small
system for polynomial algebra. It used the PVM (parallel virtual machine) commu-
nication library [51, 50].

This report is based on our new development of the system [88] based on the
message passing interface (MPI). In addition, the memory model has been extended.
New packages for multiprecision integers, matrix algebra and Gröbner base compu-
tations have been added. As CABAL 2.0 is a much larger system, a restructuring to
move some of the facilities into reusable application libraries has been introduced.

The system is written in the C programming language. The development plat-
form consists of a network of workstations and a dual processor Pentium PC running
Linux. The MPI implementation installed here is the mpich [57, 56]. The production
testing is carried out on a Hitachi SR2201 which runs a high performance version
of Unix (HI-UX/MPP) and vendor implementation of MPI for massively parallel
processors.

The firmly held view in this study has been that the key issues in parallelism and
computer algebra are best discussed in the context of a real implementation. The
fundamental concepts and significant aspects of the design rationale have already
been described in the main body of the dissertation. This manual is useful in
that it presents the finer implementation details that can help clarify the points
made earlier, as well as helping programmers who use the system or do parallel
programming in general.

The implementation is organized in a few packages and a small number of inter-
faces. The main part of the system (the kernel) consists of the randomized hashing
distribution subsystem which directly interacts with MPI in allocating data to dif-
ferent processors, and at the higher level implements the algorithms for computing
the target storage location at very fine granularity for each term. MPI is described
further in appendix D, however we may reiterate that the implementation needs the
following capabilities from the communication library MPI:

• Assignment of unique identifiers to a fixed number of processing elements in
a set topology.
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Figure A.1: Application programming interface

• Point-to-point and collective communication enabling send and receive of data
between any two processing elements.

• Persistent communication capability which is essential to the efforts in over-
lapping communication and computation.

• A facility for packing data into one message.

CABAL can provide an application programming interface (API) for parallel
computer algebra programming in C. The simplest use of the system is as an oper-
ational system with state. This means that CABAL will handle initialization and
communication and global facilities such as polynomial and hash tables.

A.0.1 Incorporating the Library

The CABAL library may be used in any C program in an environment that includes
the MPI message passing library. The main CABAL interface can be included
through the header file cabal.h , therefore at the beginning of a C program the
include directives will be stdio.h, mpi.h, cabal.h .

The main interface cabal is supported by several packages for integer, polynomial,
matrix and Gröbner base computations. The application programming interface is
shown in figure A.1.

A.1 CommSystem interface

The CommSystem interface interacts with MPI initially to set up the system by
calling MPI_Init() to initialize MPI, and other initialization procedures such as
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MPI_Comm_rank() to assign each processing element a unique identifier. It also sets
up the log files and basic CABAL options. A user may run CABAL with some
random polynomials and specify the command line options -t for the number of
terms in a polynomial, -r to specify a random seed, -d for the maximum degree
of each polynomial. Other options include -n to control how many runs of the
program to execute when collecting data, -b to increase or decrease the number of
buffers for block communication which may improve communication time.

This package is kept very small so that many of the algebraic facilities are in the
application layer and can be reused. The main error handling facility is provided by
CommSystem. The procedures in the system may raise an error with a given code
depending on whether it is an algebraic error (such as division by zero), a terminal
system error (such as running out of memory), or several input/output errors which
may be encountered when the user makes a data entry error.

A.2 Polynomial interface

The polynomial interface provides a portable interface for polynomial operations.
The interface works with handles for polynomials which are indices into a global
polynomial table. This provides a ‘plug-and-play’ module where the underlying
storage allocation of a polynomial may change. The interface provides the following
procedures for polynomial operations:

• int polyNew() Get a new handle for a polynomial.

• polyAdd(int r,int a, int b) Add polynomials a and b and return the
result r.

• polySubtract(int r, int a, int b) Subtract b from a and the result in
r.

• polyMult(int c, int a, int b) Multiply a and b and put the result in c.

• polyGetLeadingTerm(int p,Term *t) Get the leading term of a polynomial
in a set standard order: lexicographic, graded lexicographic or reverse graded
lexicographic order.

• polyPrint(int p, FILE *printfile) Print a polynomial p to a file.

The main implementation of the polynomial interface is the TermHash imple-
mentation which provides a level 2 hash table for local term storage. Terms are
linked in both the polynomial and hash tables giving flexibility and speeding up
operations such as polynomial addition.

Although we have barely made use of the plug-in facility, it is useful to take
advantage of it to provide a different polynomial local storage facility. For example,
while our work in the main thesis body uses a level 2 hash table for local storage, it
may be faster to keep the terms of a polynomial in a heap so that the operation of
finding a leading term is faster as this is essential in Gröbner base calculations. To
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do this, one plugs in the TermHeap implementation of the polynomial interface to
replace the hash representation.

Other plug-ins such as a TermBST may be developed for suitable cases where
terms in a binary search tree provide fast total ordering. Some computer algebra
systems use such ordered representations for special operations.

A.3 Bignum interface

The main type for a multiprecision integer is a 4-word array forming a digit. In a
polynomial, a term with a long coefficient of more than one digit has a special place
in the exponent vector to indicate the position of the digit in a ‘bignum’.

• add37(unsigned int *a, unsigned int *b) This computes a = a + b
where a and b are single digits (4 words) of a multiprecision integer in the
range −β ≤ a, b ≤ β. The carry is added to a[4] until a normalization step.

• subtract37(unsigned int *c,unsigned int *a, unsigned int *b) Sub-
tract c = a − b. This will first negate b and use the addition code.

• mult37(unsigned int *ap1, unsigned int *bp1,unsigned int *c0) This
multiplies two 4-word digits ap1, bp1 and returns c0 of double length, with a
high digit c0[4], . . . , c0[7] and a low digit c0[0], . . . , c0[3].

• divrem37(unsigned int *ap,unsigned int *bp, unsigned int *c) Di-
vision with remainder.

• exactdiv37(unsigned int *ap,unsigned int *bp, unsigned int *c)

Exact division of ap by bp.

• print37(unsigned int *ap, int lz) Print a multiprecision integer. If lz
is set, then print exactly 37 decimal digits using padded zeros if necessary.
The 128-bit representation can hold 37 decimal digits therefore this is evident
here.

A.4 Grobner interface

The Grobner interface provides facilities for Gröbner base computations. A basis
table is kept, which indicates which of the polynomials in the normal polynomial
working table are part of the basis (at the start, all the polynomials may be part
of the input basis). The input polynomials should be placed in the basis table at
initialization and any further changes to the basis table is made only through the
grobner() procedure. The main procedures are:

• grobner(int order) Find the grobner basis induced by the initial polyno-
mials in the basis table.

• grobSpair(int *f,int *g) Selects the next s-pair by walking below the
main diagonal of the matrix formed by the current basis elements.
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• grobSpoly(int spoly) Creates a new s-polynomial. It calls grobSpair to
select the next s-pair from the current basis elements.

• grobReduce(int p, int r) Reduces the polynomial indicated by the han-
dle p, with respect to the current basis. The polynomial p is an s-polynomial
for a Gröbner base computation. The reduced polynomial is returned in r.
Note that in the case of just 2 polynomials in the input, the reduction can be
used to find the gcd of the two polynomials.

The result is that on exit from grobner(), the basis table holds the reduced Gröbner
basis. The Gröbner base package makes use of the parallel polynomial arithmetic
in the polynomial interface. Therefore there are at least two levels of parallelism:
parallelizing the polynomial arithmetic, and parallelizing the reduction operation.



108 Appendix A. CABAL: a short manual



Appendix B

The Hitachi SR2201

In any discussion of parallel systems and especially their performance, the target
machine has a large impact as the architectural specification may result in special
(non-portable) instructions. This leads to some difficulty comparing performance
and determining progress.1

In this chapter we will describe the architectural features of the Hitachi SR2201,
and the configuration as installed at the University of Cambridge high performance
computing facility (HPCF). The SR2201 is a massively parallel processor (MPP)
with scalable configuration capable of supporting 8 to 2048 processors. The Cam-
bridge system has 256 processors. This discussion relies mainly on the work of Fujii
et al. [47] concentrating on the hardware and the operating system interface. Addi-
tional information is drawn from lecture notes and user manuals for the Cambridge
HPCF [120].

B.1 The processor

Each processor on the SR2201 is a 64bit RISC processor with a clock speed of
150MHz. The architecture is enhanced with two floating point pipelines and one
load/store pipeline. The peak performance is over 76MFLOPS.2

The pipeline

Consider two large vectors A(1, n) and B(1, n) for n very large. The code for the
vector inner product of A and B is shown in figure B.1.

1Performance comparison between parallel implementations is notoriously prone to error [9] due
to difficulty of matching the many parallel architectures.

2An estimated factor of 2 faster than the Cray T3D.

for k = 1 to n step 1 do
S = S + A[k] ∗ B[k];

Figure B.1: Vector inner product
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PreloadA[1] → FPR8
PreloadB[1] → FPR9
PreloadA[2] → FPR10
PreloadB[2] → FPR11
...
PreloadA[40] → FPR86
PreloadB[40] → FPR87
Label A:
FMPY FPR8, FPR9 → FPR9 A[k] * B[k]
PreloadA[k + 40] → FPR88
FADDFPR9, FPR7 → FPR7 S = S + A[k]*B[k]
PreloadB[k + 40] → FPR89
FWSTPSET window switch
COM1B branch to label A

Figure B.2: Object code for vector inner product

An optimized code scheduler for the inner product generates the object code [62]
shown in figure B.2.

The loading of A[k] and B[k] takes 2 clock cycles and the multiplication takes 1
clock cycle therefore this loop has a theoretical peak performance of 150 MFLOPS.

B.2 Pseudo vector processing

The SR2201 provides an innovative performance enhancing feature called the
pseudo-vector processor (PVP). This is a key performance driver especially for
numerical calculations as it delivers levels of performance comparable with vector
processors on some vector code. Pseudo-vector processing creates cache bypass for
pre-loading and post-storing floating-point data for array sizes far beyond secondary
cache size. For long vectors, this reduces the cache miss rate and contributes to
significant performance improvement for large-scale numerical computation [47, 75].

The ALU addresses 32 registers, but the PVP function requires many target
registers for pre-loading, therefore the SR2201 has 128 physical floating point reg-
isters (FPR) per PE. The pseudo-vector processing function works by pre-loading
(analogously post-storing) data into all 128 registers.3 This is possible since there
are different floating point and load/store pipelines, which means a load instruction
can be issued in the same clock cycle as a floating-point operation.

Once the data is loaded, the PVP operates a sliding window over the registers to
select the logical 32 processors for current operations [47]. This is shown in figure B.3

Having a sliding window means that only a few changes are made to the con-
ventional instruction set architecture for the PA-RISC architecture on which the
processor is based, since the CPU still addresses 32 registers. Additional instruc-

3Effectively creating a 128 stride access compared to unit stride on normal uniprocessor CPUs
and 2 stride cache pre-fetch on the CRAY T3D.
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Figure B.3: Sliding windows for pseudo-vector processing

Instruction Usage Meaning
Preload A[40] →FPR122 load A[40] into register 122
Poststore FPR88 →C[10] store contents of register 88
FWSTPSET Window switch with offset

Figure B.4: Some additional instructions in SR2201

tions are needed for a few operations such as shown in figure B.4.

B.3 Interconnection network

The processors are arranged in a three dimensional switching crossbar communica-
tion link (hyper-link) capable of peak bandwidth of 300MB/s.

Each node connects to the crossbar through 3 dual communication ports: X,Y,Z
as shown in figure B.5. The X-crossbar switch can switch up to 8 × 8 connections.
The Y-crossbar and the Z-crossbar can switch up to 16 × 16 connections.4

The crossbar can switch to connect each node directly thus giving a virtual
totally connected network, but at a fraction of the cost. A communication path
between any two processors within the network has length less than 3.

The 3D crossbar facilitates hardware-based global communication. The barrier
synchronization and one-to-all broadcast are both performed in hardware taking
advantage of the network topology and therefore achieve very low latency.

However, the crossbar cost does not scale well for large number of processors
therefore the cost of the machine is dominated by the cost of the intercommuni-
cation network [83]. An intermediate network configuration that has much of the
functionality of the 3D Crossbar at less cost is the idea of a multistage interconnec-

4This gives a total number of processors up to 8 × 16 × 16 = 2048.
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Figure B.5: 3D crossbar switching network
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tion network [125].5 Reconfigurable networks [58] based on crossbar switching are
alternative designs that give good flexibility and mapping of several topologies.

B.4 Mapping of processors to topology

The 3D crossbar network is supported by robust routing through the switching
network [126]. This makes the Hitachi SR2201 very flexible and conducive to map-
ping algorithms for different network topologies. Programs requiring ring, mesh,
hypercube or tree-connected networks can be mapped onto the 3D crossbar effi-
ciently [126]. The MPI library provides a mapping interface that consists of a fully
connected graph with each PE capable of sending a message to another.

B.5 Inter-process communication

Processes on the Hitachi SR2201 execute on physical processor and there is no
thread library to support lightweight processes. Thus inter-process communication
(IPC) involves a transfer across the network, making the IPC protocol an important
consideration.

The Hitachi SR2201 implements a remote direct memory access (rDMA) facility
for direct transfer of data between processors with delayed interrupts and more
importantly without any Operating System memory copy.

To clarify the strong features of rDMA, consider the conventional distributed
IPC based on message passing. These systems create OS support for complex buffer
management and a detailed protocol for send and receive acknowledgement and
authentication [8, 117, 94]. The system overview is shown in figure B.6.

The Operating System first copies the message into allocated buffers within the
system space which is then transmitted across the network to the recipient’s address
space.6 The overhead for context switching and memory copying adds considerably
to the communication setup time.

In the SR2201 rDMA system, the OS reserves some buffers for user-space com-
munication (combuf). These are directly addressable through each PE publishing
its combuf ID and other information required for access. The DMA system uses
these to completely bypass the OS during a process communication by effecting a
direct transfer from the address space of the sender PE to the explicit address of
the receiver PE. This is shown in figure B.7. Since the cache is write-through, the
data sent in the message has also been written to the cache, while for the receiv-
ing process, when new data arrives through DMA, the cache data is immediately
invalidated and may be purged.

The remote DMA system clearly reduces communication overhead and simplifies
the transmission protocol. However, it does require more complex access control
mechanisms for start and completion indicators.

5The modular network in the SGI Origin 2000 [55] is an example of a multistage network.
6In a conventional distributed system the transmission protocol such as TCP/IP is layered

(packet, frame, physical etc.) and more copies between layers are introduced.
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Protocol latency (usec) bandwidth(MB/sec)
MPI 31 280
Express 26 104
PVM 77 89

Figure B.8: Comparison of some message passing systems

B.6 Memory hierarchy

The 128 registers per processor with sliding window form the first level of the memory
hierarchy in the SR2201.

The next level provides 16KB primary instruction cache and 16KB primary data
cache. Level 2 caches for instructions and data are 512KB each. Both caches are
direct mapped and write through:

• A direct mapped cache places a block that is fetched from memory only in one
place overwriting any previous data in that place:

cache address = memory block address mod number of blocks in cache.

Direct mapping simplifies replacement policy and speeds up translation.

• In a write through cache, on a store instruction, the data is written to both
the block in the cache and through to lower-level memory.

This gives simple cache coherency as the cache and memory are kept in step,
however it incurs a high write penalty due to the increased memory traffic.

Each processor has block translation lookaside buffers (bTLB) resulting in up to
32MB addressing on each TLB. Each PE has 258MB of RAM locally. Thus with
256 processors, we have 64GB global memory. However, 8GB of this is on the I/O
processors therefore programs have a global addressable space of 56GB. A RAID
(redundant array of independent disks) system provides 350GB of local disk space,
however in this work virtual memory is not used therefore disk storage is only for
persistent data from completed computations.

B.7 Programming environment

The SR2201 runs Hitachi HI-UX/MPP for massively parallel processors. This is a
micro-kernel based OS. The languages supported are Fortran90 and C/C++. The
Message Passing Interface (MPI) is the main messaging middleware. MPI imple-
ments the Single Program Multiple Data (SPMD) programming model, although
other distributions are possible and message-passing can be emulated.

The comparison in figure B.8 shows the communication latencies and bandwidth
on the Cambridge SR2201 [120].
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Appendix C

Network topologies

We briefly define several possible connections of processing nodes into a network.
Practical architectures will have a static communication network connecting mul-
tiple processors. Ideally, each node in the network should have a direct link with
another, however this requires O(p2) communication links and this quickly becomes
too expensive for large p. This discussion is based on that in Kumar et al. [83]. The
goal is to show alternative network architectures to support comparison with the
Hitachi SR2201 network architecture.

We compare networks according to several criteria:

Connectivity. The connectivity of a network is the number of possible paths be-
tween any two processors. A high connectivity leads to lower contention for
resources therefore is more desirable.

Diameter. The distance between any two processors within a network is the short-
est number of links between them (hops). The diameter of a network is max-
imum distance within the network.

Cost. The cost of a network may be measured in terms of the total number of links
required to connect p processors with the topology.

The different network topologies have better measures for different metrics and
therefore there is no clear determination of the best network, and the selection is
based on the application requirements and the cost of each. A useful feature is
embedding in which a topology may be simulated on a different physical network.
The flexibility of a network is determined by the ease of embedding other topologies
efficiently and therefore meeting the demands of different applications.

C.1 Fully connected network

Figure C.1 shows a network which is a complete graph of 4 processors. Each node
has a direct communication link with every other node in the network. This is the
ideal network topology with number of hops = 1. Therefore communication latency
between any two nodes is equal to the transfer time.
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Figure C.1: A fully connected network of 5 processors

(a) Ring (b) Linear (c) Star

Figure C.2: Ring, linear and star topologies

C.2 Ring network

A ring network connects each node to two neighbours. If the link is one-way then
minimum latency can be achieved if the source and destination nodes are adjacent.
However the ring has worst case maximum communication time requiring traversal of
the entire ring. On a duplex (two-way) link then a simple communication mechanism
is to send a message either to the left or right depending on which yields the shortest
path to the destination. In figure C.2, a ring network of 5 processors is shown.

Removing one link from the ring gives a flat linear array topology as shown in
figure C.2.

C.3 Star network

A star network has a central (master) processor to which all processors are connected.
Therefore communication between any non-central processors must pass through
the central processor. This means communication between any two processors will
require at most 2 hops, however it creates a bottleneck at the central processor if
the number of messages is high.

C.4 Tree network

A tree network arranges processors into (parent,child) pairs such that there is only
one path from parent to child. Thus there is only one path between any pair of
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Figure C.3: A binary tree

Figure C.4: A 2D mesh network

processors within the network. A balanced binary tree is shown in figure C.3 where
each processor also has a forwarding switch to the child processor.

An alternative arrangement would be to have all processors at the leaves and
the internal (parent) nodes act as forwarding switches. This leads to fat trees such
as the network used for the Connection Machine CM-5.

C.5 Mesh network

A two-dimensional mesh is shown in figure C.4. It extends a linear array to a matrix
with four-way connections for all internal nodes. A 2D mesh with M = n × m
processors may be square (n = m) or rectangular (n 6= m).

Each node in a mesh may be labelled with an integer coordinate pair (x, y).
Then two nodes (xi, yi) and (xj, yj) have a channel between them if

|xi − xj| + |yi − yj| = 1

A 3D mesh connects nodes in a further dimension. Adding a wraparound channel
between nodes at the ends creates a different topology called the torus.

C.6 Hypercube

A hypercube is a mesh with only 2 nodes in each dimension. A hypercube is d-
dimensional and can therefore be defined for any dimension d from zero. Hypercubes
of different dimensions are shown in figure C.5.
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Figure C.6: A 2D crossbar network

C.7 The crossbar

Crossbar networks extend the mesh and torus topologies by creating removing the
dependence on distance in any one dimension. This is achieved by creating a cross-
bar layer in each dimension, to which all processors that communicate in the row
are connected. An XY wormhole routing algorithm enables any two processors con-
nected to the same crossbar to communicate directly in one hop. If there is no
channel contention then the crossbar effectively bounds the number of hops for any
message to the number of dimensions in the network.

Crossbar networks give the widest flexibility in embedding other topologies and
are referred to in the literature as adaptable or reconfigurable topologies. A two di-
mensional crossbar switching network is shown in figure C.6. The three dimensional
crossbar used in the Hitachi SR2201 is in figure B.5.
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Appendix D

Message passing interface

The Message Passing Interface (MPI) [41, 46] is a standard providing communication
facilities for parallel applications. Several implementations of MPI are freely avail-
able. We have used the mpich [57, 56] implementation on a network of workstations
for initial development and testing before cross-compiling for the Hitachi SR2201.
This brings down development costs as time on the supercomputer is expensive.

Major vendors of massively parallel processors also support MPI as the standard
communication interface. The Hitachi SR2201 provides MPI with cross compiling
facilities to maintain portability when developing on a different platform. There is
therefore strong motivation for the use of MPI in developing any parallel application.

D.1 Features of MPI

The MPI library is designed for high performance on large massively parallel pro-
cessors. An MPI message packet has the structure shown in figure D.1. The main
features of the library are the following [52, 113]:

• A rich set of point-to-point communication capabilities. Processes may com-
municate by sending messages to a named destination nodes provided that
each send be matched by a corresponding receive at the destination node.
Communication can be blocking or non-blocking giving different completion
semantics.

• A large set of collective operations, where all processes in a group participate
in the communication. The broadcast messages to all other processes or syn-
chronize through a barrier call are basic collective communications, forming
the basis for a larger set of communication operations.

• MPI introduces process groups for safe communication among a subset of ex-
ecuting processes. Often, only one group including all the processes is used.

• The ability to specify process topologies is useful for arranging processes in log-
ical interconnection groups. The mapping to the underlying physical network
can often be assisted by the topology specification.
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Source

Communicator

Data

( int rank) 
/ Destination Tag

(message ID)
Data type

Status

Buffer

Request *

Data size

MPI Message Packet

Figure D.1: A message passing interface (MPI) packet

• Derived datatypes add to the MPI internal types and can describe non-
contiguous data. This enables creation of structures for types with different
data elements.

An MPI packet is shown in figure D.1. A message specifies a destination while
the receive call will specify a source. A unique tag identifies the message. If any
message from a particular source is to be received, then a wild card tag may be
specified. Persistent communications place a request for communication which may
be repeatedly activated. A communicator is required for every communication to
give a context for the communication, ensuring that any processes outside the com-
municator do not affect the message.

D.2 Communicators

A key concept within MPI is the communicator. The communicator binds a commu-
nication context to a process group. Every MPI message has communicator specified.
This means that only those processes that are within a particular communicator may
handle a message marked with that message. This forms a vital part of the MPI
message safety, providing that a message sent within a particular communicator
cannot be received in a different context.

The library provides a global communicator at startup, which is a constant

MPI_COMM_WORLD

The global communicator is the largest group formed by the number of processors
indicated at initialization of MPI. The global communicator is often adequate for
most applications and is used extensively in this work.

All other communicators are derived from the global communicator. Processes
gain new capabilities only within their communicators.

This communicator enables communication between all active processes within
the parallel environment. It creates a virtual fully connected graph so that each
process can send a message to every other process.

Effective use of communicators requires that there are clear means of creating and
freeing communicators, revoking capabilities and restructuring locality. The com-
munication patterns in Cabal are varied and dynamic and therefore would require
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several dynamic creation and freeing of communicators. It is often easier to utilize
the global communicator only, and have point-to-point communication determined
at each stage by a robust selection of the target processor.

D.3 Point-to-point communication

Point-to-point communication in MPI is enabled by send and recv functions between
two processors. MPI makes two requirements for successful communication:

• The ability to send from the source must be matched by a receive call at the
destination.

• The two communicating processes must be within the same communicator. If
the communicator is the global communicator, then any process may commu-
nicate with any other.

The communication latency is measured as the product of the transfer time
between processors with a physical channel connection, and the number of channel
hops selected by the distributed routing algorithm. The channel characteristics are
preset, therefore latency is directly dependent on the hops within the routing path.
The visibility of the total latency is determined by the communication protocol
selected; a communication may be blocking or non-blocking.

D.3.1 Blocking communication

A blocking communication executes a protocol that completes all changes of state
required by the communication (all the buffer data is removed in a send, or all data
is received for a receive call), before returning. Therefore after a blocking send, all
the buffer space for the sent data may be reused. Blocking send and receives are
quite slow since one of the pair of processes executing the call may have to wait for
the other to rendezvous before the communication can begin.

D.3.2 Non-blocking communication

Non-blocking communication is a useful feature of MPI, allowing completion of
a send or recv call before the transfer protocol actually finishes. Re-use of the
buffer resources for a non-blocking communication generates an error as the data
may not have been transferred. Non-blocking communications are a key feature in
overlapping communication and computation to hide latency. They enable the user
application to return from a send communication, proceed with other computations
while transfer occurs, and check the completion of the communication at a later
time.

D.3.3 Persistent communication

A very useful feature of the MPI standard is the provision for persistent communi-
cation requests. These provide a naming feature (comparable to port) for parts of
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MPI_Recv_init(&buffer_pool[i], MESSAGE_SIZE,

MPI_PACKED, MPI_ANY_SOURCE, CAB_ADDTERM,

MPI_COMM_WORLD, &request_pool[i])

Figure D.2: A persistent receive message

MPI_INTEGER, MPI_REAL, MPI_BYTE, MPI_PACKED

Figure D.3: MPI types

the message envelope so that the information can be reused on subsequent commu-
nications. The structure of a persistent receive is shown in figure D.2.

D.4 Type matching

All MPI communications require that the sender and receiver specify a datatype
for the message. Type matching is performed at each stage of the communication
protocol to ensure that the receiver has the right buffer for a requested message. The
MPI library specifies some MPI types from the list in figure D.3. These types match
the types for the user language either C or Fortran. In addition a type packed is
defined to enable different data types to be transmitted in one message. The receiver
will unpack a message to match the data of given type.

New types can be defined in MPI with the utility of derived datatypes to allow
messages whose data is comprised of different types. The core services of middleware
such as the MPI library is in providing a communication abstraction. An important
part of this is in enforcing a send/receive protocol. The MPI library performs type
matching at each phase of the communication protocol to ensure that messages are
received by the right PE.

D.5 Collective communications

Collective communication extends the point-to-point primitives to permit transfer
of data to all processes within a specific communicator. The two requirements for
point-to-point communication are modified only slightly:

• Any collective operation must be matched by a similar call on all processes
that take part in the communication.

• A collective communication occurs for all processes within a communicator.

Unlike point-to-point communication, collective communication is always blocking.
Therefore, while a matching collective operation may occur anywhere within the
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code executed by the other processes, the fact that the operation is blocking places
a scheduling requirement to avoid excessive waiting by any process. A notable omis-
sion is that collective communication does not include a provision for synchronizing
all calling processes. Different implementations may have synchronization as a side
effect, but the MPI standard merely allows each call to complete as soon as it is free
to reuse all the call resources.

Several collective functions are provided [41]:

• Barrier synchronization of all processes. This is the only call with explicit
synchronization semantics.

• Broadcast from one process to all. In some implementations, broadcast may
have a synchronizing side effect, but this is not required.

• Gather data from all processes to one.

• Scatter data from one process to all. This is different from broadcast in that
processes get different items of data, while in broadcast all processes receive
the same data. Scatter may be considered the inverse of gather.

• Global reduction operations such as summation, maximum, minimum where a
function takes data from all processes and broadcasts the result to all of them.

D.6 Process groups and topologies

The communicator is a convenient object for specifying a group of processes to par-
ticipate in a communication. It also enables a hierarchy of process groups. Processes
are identified relative to their group. Therefore several processes may have ID = 1,
but being in different communicators, these are interpreted differently. In any way
that this logical interpretation is created, there remains a requirement for how a
process is assigned a physical processor.

D.7 Comparison of MPI and PVM

The MPI specification is designed to be the standard for all parallel applications.
However, by its very generality, it is not the best available solution in all situations.

The Parallel Virtual Machine (PVM) was the first widely available established
communication middleware. The PVM model provides a virtual machine on a het-
erogeneous, loosely coupled networks of workstations. The virtual machine is an
abstraction that presents the different machines as a single parallel computer [50],
and communication is achieved through message passing. Several systems have been
built on the PVM model, and first versions of CABAL [93] were based on this model.

The virtual machine concept in PVM places stronger requirements on process
management facilities, making PVM stronger than MPI in several areas [52]:

• Fault tolerance. Since PVM is based on heterogeneous networks, the require-
ment for surviving node failures within the system are included. For example,
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when one workstation reboots, PVM notifies all the other processors that may
wish to communicate with it.

• Resource manager. PVM provides a resource manager for dynamically adding
or removing processors to the machine. The spawn function creates a named
new process and may be tracked throughout its lifetime.

The richer resource management facilities give greater flexibility to update resource
allocation, and may be used give interactive use.

The concept of a virtual machine is not part of MPI specification, therefore
MPI provides explicit message passing facilities. The advantage of not having a
virtual machine is that MPI can take advantage of any facilities in the underlying
hardware to speed up communication. For example, on the SR2201, the remote
DMA facility is available to the MPI implementation, leading to less portability but
better performance on the particular hardware. MPI also provides topology with
some of the functionality of a virtual machine.

Resource management was not part of the original MPI specification, but will
be introduced in MPI-2 [46]. Implementations of the standard often provide static
process creation at the beginning of each computation with no options to change
this dynamically. The static process creation improves performance while reducing
the overhead of resource management, however it is inflexible and provides limited
information.

Another key design specification in MPI is that quality of service is assured, that
is, fault tolerance is provided outside the standard. If any task fails, then the entire
application fails through a FINALIZE command.

D.8 Other communication libraries

Some applications where the PVM library may be a better choice for communication
have been shown. In addition, much effort has been directed at communication
infrastructure specifically supporting symbolic algebra.

The distributed symbolic computation (DSC) system [36, 37] is designed for dis-
tributing symbolic computations on a network. It greatly improve the performance
for symbolic computation. The FOXBOX system [38] is based on DSC and the
system has been successfully used in large primality testing problems [121].

The multi protocol (MP) system [7] connects established computer algebra sys-
tems, providing communication layer for polynomial computations. The exchange
of polynomial objects is facilitated by a dictionary of standard representations that
are interpreted by the different end nodes for system specific type and representation
information.
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