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July 10, 2002

Abstract

We derive a ternary interpolating subdivision scheme which works on

the regular triangular mesh. It has quadratic precision and fulfils the stan-

dard necessary conditions for C2 continuity. Further analysis is required

to determine its actual continuity class and to define its behaviour around

extraordinary points.

1 Introduction

Building on our discovery of a family of C2 ternary interpolating univariate sub-
division schemes [5] we investigate the possibility of there being useful ternary
interpolating subdivision schemes on the triangular mesh. The hope is that we
will find a C2 interpolating scheme for triangular meshes. Derivation of the
ternary scheme mirrors that of the binary butterfly scheme [2] from the binary
univariate interpolating scheme.

We first present the univariate interpolating subdivision schemes in both
binary and ternary cases. We then demonstrate the derivation of the binary
butterfly scheme, which has a single free parameter. We perform the same
derivation for the ternary interpolating scheme, which has three free parameters.

It remains to perform analysis to find the continuity class of the derived
scheme, to determine the best values for the three free parameters, and to
define the scheme’s behaviour around extraordinary points.

2 Univariate interpolating subdivision schemes

Binary and ternary interpolating subdivision schemes have been derived by Dyn
et al [4] and Hassan et al [5] respectively. The non-trivial stencils of these
schemes can be seen in Figure 1. Their masks are:

[b 0 a 1 a 0 b] binary (1)

[d c 0 b a 1 a b 0 c d] ternary (2)

∗correspondence should be sent by e-mail to: nad@cl.cam.ac.uk
†also at Numerical Geometry Ltd.
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Figure 1: The non-trivial stencils of the binary (left) and ternary (right) uni-
variate subdivision schemes.

where, in the binary case:

a = 1

2
+ w (3)

b = −w (4)

with the scheme being C1 for 0 < w < 1

8
and the commonly-used scheme being

the case when w = 1

16
. The z-transform of the scheme can be divided by the

binary box-spline mask, (1+z), twice for general w and four times for the special
case of w = 1

16
. In the latter case the z-transform is:

1

16
(−1 + 9z2 + 16z3 + 9z4 − z6) = 1

16
(1 + z)4(−1 + 4z − z2) (5)

It is not clear what behaviour is indicated by the ability to divide a scheme
by the box-spline k times. It does show that the maximum possible continuity
of the limit curve is C(k − 1) because the proof that a scheme has continuity
C(k − 1) requires analysis of a Laurent polynomial which can be multiplied
by (1 + z)k to produce the z-transform of the scheme [1, 2], thus this Laurent
polynomial must exist for the proof to proceed. While this gives a maximum,
the actual continuity may be of a lower order. The triangular mesh schemes,
which are derived later, also have the property that they can be divided by
box-splines.

In the ternary case:

a = 1

18
(13 + 9µ) (6)

b = 1

18
(7 − 9µ) (7)

c = 1

18
(−1 − 3µ) (8)

d = 1

18
(−1 + 3µ) (9)

with the scheme being C2 for 1

15
< µ < 1

9
. The z-transform of this scheme can

be divided by the ternary box-spline mask (1 + z + z2) three times to get:

1

18
(1+z+z2)3((−1+3µ)+(2−12µ)z+(18µ)z2+(2−12µ)z3+(−1+3µ)z4). (10)

If µ = 1

27
then an extra factor of (1 + z + z2) can be extracted, but this value

of µ lies outside the range of values for which the scheme is C2. Again, it is not
clear whether any useful conclusions can be drawn from the number of times
that we can divide through by the box-spline mask.

3 Bivariate binary subdivision

The butterfly subdivision scheme [3] is an extension of the binary univariate
subdivision scheme to the case of the triangular mesh. Figure 2 shows the
stencil used to generate a new vertex’s value in the regular case. It is necessary
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Figure 2: The non-trivial stencil of the butterfly scheme in the regular case.
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Figure 3: The mechanism for deriving the butterfly scheme from the binary uni-
variate interpolating scheme. In each diagram assume that the control points
have a constant value along each dotted line. In the left hand case, the inter-
polated point must match that which would be interpolated by the univariate
scheme. In the right hand case the interpolated point must match the constant
value.

to derive values for α, β, and γ. Dyn [2] does this by considering the cases shown
in Figure 3. In these, each of the dotted lines indicates a set of vertices with
the same value. The new vertex’s value must be that which would be generated
by the univariate scheme for the left-hand case in Figure 3, and must be the
appropriate constant for the right-hand case. The left-hand case leads to the
two equations:

a = β + α + γ (11)

b = γ (12)

where a and b are defined in Equations 3 and 4. The right-hand case leads to
the two equations:

0 = β + 2γ (13)

1 = 2α (14)

Combined with the standard condition that all values in the stencil must sum
to one (2α + 2β + 4γ = 1), we get:

α =
1

2
(15)

β = 2w (16)

γ = −w (17)



6





















0 γ γ 0
γ 0 β 0 γ

γ β α α β γ

0 0 α 1 α 0 0
γ β α α β γ

γ 0 β 0 γ

0 γ γ 0





















=





1 1
1 2 1
1 1



 ∗













0 γ 0
γ π π γ

0 π σ π 0
γ π π γ

0 γ 0













Figure 4: The mask of the butterfly scheme (left) can be decomposed into a
discrete convolution of the three-direction box-spline mask (centre) with the
mask at right.
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Figure 5: The non-trivial stencils of the ternary interpolating scheme in the
regular case.

For the special case of w = 1

16
, we get the scheme which is generally imple-

mented. Dyn [2] states that the butterfly scheme is C1 on a regular grid for
0 < w < w∗. While we know that w∗ > 1

16
, the maximum value of w∗ is not

known.
The butterfly scheme’s mask can be divided by the three-direction box-spline

mask to give a smaller mask, as shown in Figure 4. Here, we can calculate that:

γ = −w (18)

π = 2w (19)

σ = 1

2
− 6w (20)

This decomposition is used in the analysis of the continuity of the butterfly
scheme [1]. It is not certain what other conclusions can be drawn from the fact
that the scheme can be decomposed into convolution of a smaller mask with the
three-direction box-spline.

4 Bivariate ternary subdivision: derivation

Ternary interpolating subdivision on a triangular mesh has two non-trivial sten-
cils on the regular grid. Figure 5 shows these stencils with ten unknowns. These
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are the maximum size that the stencils can be while keeping the mask within
the 2-ring on the original triangular mesh. It may be that some of the unknowns
could be set equal to zero.

Applying the condition that each stencil must sum to one gives:

6θ + 3κ + 3η = 1 (21)

2δ + 2γ + 2ξ + ε + α + β + ν = 1 (22)

The “constant line” conditions provide equations for the ten unknowns in terms
of the four known univariate parameters a, b, c, and d (Equations 6–9). For the
left-hand stencil in Figure 5, we get (from top row to bottom row in the Figure):

d = 2θ (23)

b = η + 2κ (24)

a = 2η + 2θ (25)

c = κ + 2θ (26)

For the right-hand stencil in Figure 5, we get (for the top and middle rows in
the Figure, the bottom row being equivalent to the top):

0 = δ + γ + ξ (27)

1 = ε + α + β + ν (28)

and (for the left diagonal through to the right diagonal):

c = δ + ε (29)

a = γ + α + δ (30)

b = ξ + β + γ (31)

d = ν + ξ (32)

This set of equations can be solved to give the ten unknowns in terms of
three parameters: µ from the original Equations 6–9, along with ε and ν, two
of the unknowns:

θ = 1

36
(−1 + 3µ) (33)

κ = 1

36
(−12µ) (34)

η = 1

36
(14 + 6µ) (35)

ξ = 1

36
(−2 + 6µ) − ν (36)

δ = 1

36
(−2 − 6µ) − ε (37)

γ = 1

36
(4) + ε + ν (38)

β = 1

36
(12 − 24µ) − ε (39)

α = 1

36
(24 + 24µ) − ν (40)

Again, we can decompose the interpolating scheme’s mask into convolution
of a smaller mask with the mask of the three-direction box-spline (Figure 6).
The values in the mask are:

π = 1

36
(−1 + 3µ) − ν (41)
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Figure 6: The mask of the ternary interpolating scheme (left) can be decomposed
into a discrete convolution of the three-direction box-spline mask (centre) with
the mask at right.
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Figure 7: For µ = 1

27
, ε = −5

243
, and ν = −2

243
, the mask of the ternary interpolat-

ing scheme can be decomposed into a discrete convolution of the three-direction
box-spline mask with itself and then with the small mask at right.

ρ = 1

36
(2 − 6µ) + ε (42)

σ = 1

36
(−12µ) − 2ε + 2ν (43)

τ = 1

36
(2 + 18µ) + 2ε − ν (44)

υ = 1

36
(−36µ) − 6ε (45)

We assume that this decomposition will allow us to follow Dyn’s method for
analysing convergence and smoothness using Laurent polynomials [1]. Again,
it is not clear what other conclusions can be draw from this decomposition
into a box-spline and a smaller mask, although we note that it allows for an
implementation of the ternary scheme as a two-pass method.

For the special case of µ = 1

27
, ε = −5

243
, and ν = −2

243
, the mask can be de-

composed into the convolution of the three-direction box-spline with itself and
then with a very small third mask. These masks are shown in Figure 7. Unfor-
tunately, this setting of the parameters leads to a scheme which eigenanalysis
shows is at most C1.
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5 Basic eigenanalysis

Eigenanalysis provides various conditions on the continuity of the limit surface
[7]. In particular, studying the eigenvalues provides necessary conditions, giving
the maximum continuity which a scheme could exhibit. We demonstrate ranges
of the three parameters for which the scheme could be C2. We show that, given
certain conditions on the three parameters, the eigenvectors are such that the
scheme has quadratic precision.

The region around a vertex mark point is shown in Figure 8. If

Pn = [A,B1, B2, B3, B4, B5, B6, C1, C2, C3, C4, C5, C6, D1, D2, D3, D4, D5, D6]
T

and

Pn+1 = [a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5, c6, d1, d2, d3, d4, d5, d6]
T

then

Pn+1 = MPn (46)

where M is given in Figure 9. The eigenvalues of this matrix are:

1
1

3
(twice)

1

9
(three times)

1

6
− 5

6
µ (three times)

1

9
− 1

3
µ + 2ν + ε

1

12
− 1

4
µ + ν + ε (twice)

1

18
− 1

2
µ (three times)

1

36
− 1

12
µ (twice)

− 1

2
µ − ν − 5

2
ε ± 1

6

√

441ε2 + 126µε + 180νε + 9µ2 + 72νµ − 180ν2 + 12ν

Note that the last entry in this list represents two eigenvalues (the “±” on the
square root) and that either of these two could be one of the larger eigenvalues,
depending on the values of the parameters.

The eigenvectors associated with the first six eigenvalues in the list (1, 1

3
,

1

3
, 1

9
, 1

9
, 1

9
) are such that the scheme will have quadratic precision if these six

eigenvalues are the six largest.

Analysing these eigenvalues for general µ, ν and ε could be tricky. Consider,
however, the case ν = 0 and ε = 0. We get the eigenvalues:

1, 1

3
, 1

3
, 1

9
, 1

9
, 1

9
,−µ, 1

6
− 5

6
µ, 1

6
− 5

6
µ, 1

6
− 5

6
µ,

1

9
− 1

3
µ, 1

12
− 1

4
µ, 1

12
− 1

4
µ, 1

18
− 1

2
µ, 1

18
− 1

2
µ, 1

18
− 1

2
µ, 1

36
− 1

12
µ, 1

36
− 1

12
µ, 0

which indicates that the limit surface could be C2 only for the range 1

15
< µ < 1

9
.

This is, unsurprisingly, the same range of values of µ as in the univariate case
[5]. The first six eigenvalues are the same for all values of µ in this range. For
the special value of µ = 1

11
, the seventh eigenvalue is minimized and, indeed,

the seventh through tenth eigenvalues are then all equal to 1

11
.



10

B5

C6
D6

C1

D1

C2

D5

C5

D4

C4

D3
C3 D2

d5 c6

b5

B6

d6

b6

a

A c1

b1

b2

d1

c2

d2

B1

B2

B4
c5

d4 b4

c4 b3

d3

B3

c3

Figure 8: The region around a vertex mark point.





































































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
α β γ δ ε δ γ ξ ξ 0 0 0 0 ν 0 0 0 0 0
α γ β γ δ ε δ 0 ξ ξ 0 0 0 0 ν 0 0 0 0
α δ γ β γ δ ε 0 0 ξ ξ 0 0 0 0 ν 0 0 0
α ε δ γ β γ δ 0 0 0 ξ ξ 0 0 0 0 ν 0 0
α δ ε δ γ β γ 0 0 0 0 ξ ξ 0 0 0 0 ν 0
α γ δ ε δ γ β ξ 0 0 0 0 ξ 0 0 0 0 0 ν

η η κ θ θ κ η κ θ 0 0 0 θ θ 0 0 0 0 θ

η η η κ θ θ κ θ κ θ 0 0 0 θ θ 0 0 0 0
η κ η η κ θ θ 0 θ κ θ 0 0 0 θ θ 0 0 0
η θ κ η η κ θ 0 0 θ κ θ 0 0 0 θ θ 0 0
η θ θ κ η η κ 0 0 0 θ κ θ 0 0 0 θ θ 0
η κ θ θ κ η η θ 0 0 0 θ κ 0 0 0 0 θ θ

β α γ ξ ν ξ γ δ δ 0 0 0 0 ε 0 0 0 0 0
β γ α γ ξ ν ξ 0 δ δ 0 0 0 0 ε 0 0 0 0
β ξ γ α γ ξ ν 0 0 δ δ 0 0 0 0 ε 0 0 0
β ν ξ γ α γ ξ 0 0 0 δ δ 0 0 0 0 ε 0 0
β ξ ν ξ γ α γ 0 0 0 0 δ δ 0 0 0 0 ε 0
β γ ξ ν ξ γ α δ 0 0 0 0 δ 0 0 0 0 0 ε





































































Figure 9: The matrix, M , around a vertex mark point. The horizontal and
vertical lines are merely to show the internal structure of the matrix.
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Consider now the behaviour of the other two free parameters. If we set
µ = 1

11
and ν = 0 while allowing ε to be free, we find the eigenvalues:

1, 1

3
, 1

3
, 1

9
, 1

9
, 1

9
, 1

11
, 1

11
, 1

11
, 1

99
, 1

99
, 1

99
,

−6ε − 1

11
, ε + 8

99
, ε, ε + 2

33
, ε + 2

99
, ε + 2

33
, ε + 2

99
.

This requires:

−10

297
< ε < 1

297

as the maximum range for which the scheme could have C2 continuity with
µ = 1

11
and ν = 0.

Now, we do the same thing for ν, by setting µ = 1

11
and ε = 0 while allowing

ν to be free. We find the eigenvalues:

1, 1

3
, 1

3
, 1

9
, 1

9
, 1

9
, 1

11
, 1

11
, 1

11
, 1

99
, 1

99
, 1

99
,

−ν − 1

22
± 1

66

√
−21780ν2 + 2244ν + 9,

2ν + 8

99
, ν + 2

33
, ν + 2

33
, −ν + 2

99
, −ν + 2

99
.

Note that the expression containing the square root represents two different
eigenvalues. The maximum range of values for which the scheme could be C2
is:

−0.003865 < ν < 0.003587

to four significant digits, with µ = 1

11
and ε = 0.

The special case shown in Figure 7 has, as its first nine eigenvalues:

1, 1

3
, 1

3
, 11

81
, 11

81
, 11

81
, 1

9
, 1

9
, 1

9

which indicates that it is at most C1.

It is clear that ε and ν cannot vary far from zero and still retain the possibility
that the limit surface is C2. There is, however, no clear intuition as to the
effect on the limit surface of varying these parameters. It may be thought that
ν = ε = 0 would be the best choice, but we note that this would create a scheme
with fractal support [6]. Further analysis is required.

6 What we have proven so far

We have derived a ternary interpolating scheme for the regular triangular mesh.
The scheme has three parameters: µ, ν, and ε. The scheme is C2 along each
of the three principal directions of the mesh for 1

15
< µ < 1

9
for the case of

data extruded along a principal direction. Eigenanalysis shows that for ν = 0,
and ε = 0, the scheme could be C2 in the regular case for the same range of
µ. Ranges for ν and ε have been found which retain this C2 condition for the
case where the other parameter is set to zero and µ = 1

11
. For values of µ, ν

and ε for which the six largest eigenvalues are 1, 1

3
, 1

3
, 1

9
, 1

9
, 1

9
, the scheme has

quadratic precision.
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7 Remaining work

Several things are left to do.

• We need to perform continuity analysis on the scheme to ascertain the
actual continuity of the limit surface in the regular case. More detailed
eigenanalysis and Laurent polynomial (z-transform) analysis are thus re-
quired.

• We need to get some intuition as to the meaning of the new parameters,
ν and ε, and find appropriate values for them.

• We need to work out what to do around extraordinary points.

• While every effort has been made to ensure the correctness of the deriva-
tion presented here, it would be helpful if the derivation of the ternary
interpolating scheme’s mask was independently checked for correctness.
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