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A New Scheme for Writing Functional Operating Systemas.

William Stoye

University of Cambridge Computer Laboratory

Abstract

A scheme is described for writing nondeterministic programs in a functional
language. The scheme is based on message passing between a number of
expressions being evaluated in parallel. I suggest that it represents a significant
improvement over previous methods employing a nondeterministic merge
primitive, and overcomes numerous drawbacks in that approach. The scheme has
been designed in a practical context, and is being used to write an operating
gystem for SKIM, a functionally programmed machine. It is not yet well
understood in a mathematical sense.

Keywords: functional programming,
functional languages,
functional operating systems.

Nondeterminism

Expressions in a functional language denote a value, and the cvaluation of such
an expression results in this value and has no other effect. If a function f is
called with the same argument x in two different places in a functional program,
the two calls will yield the same value.

One aspect of pure functional languages is their inability to behave
nondeterministically. There are a number of reasons why nondeterministic

behaviour might be desirable.

1. In order to write operating systems

The behaviour of an operating system seems to be nondeterminisitc in certain
circumstances. These usually take the form of multiple simultaneous demands for
attention, e.g. break keys, the control of background tasks and so on.

2. In order to be sufficiently abstract
There are circumstances when one of a collection of results will do, and having

to make an arbitrary choice seems undesirable.




8. In order to represent certain objects correctly

The correct handling of infinite sets requires the ability to select a member of a
set nondeterministically. It is possible that cases 1 and 2 are covered by case 3,
when considered over sets of the correct domain.

4. For performance reasons when tackling certain problems.

Suppose that a problem has a number of possible solution strategies and a
number of possible correct solutions, and that a machine with several processors
is being used. Each processor should use a different strategy, and the first to
yield a solution should cause this solution to be printed and the all processors to
be stopped. Although there are perfectly good ways of controlling multiple
processors in a deterministic manner [Hughes 84], this example seems to require
genuine nondeterminism.

In practice it seems very difficult to add nondeterminism to functional
languages without destroying many of their desirable qualities.

Referential Transparency

Functional languages bear a strong resemblance to the lambda calculus.
Usually the only additions to the lambda calculus are a certain amount of
syntactic sugaring, and perhaps the addition of some basic data items like
integers and characters. For instance, consider the following program written in
the language SASL [Turner 76):

double n = n + n
double (double 3)

Although it may not appear so to a reader unfamilar with SASL, this program
is really the same as any of the following lambda expressions:

(Adouble . double (double 3)) (n. n + n)
(An.n+n) ((An.n + n) 3)

(An.n +n) (3 + 3)

(3+3) + (3 +3)

12

This close relationship with the lambda calculus that functional languages
enjoy leads to many desirable properties, which I refer to collectively by the term
referential transparency. Programs written in a functional language can be
transformed into equivalent programs by applying very simple rules. For
instance, consider the following three function definitions, provided in SASL and
in a well-known imperative language:




fnl ¥ = myfn x + myfn x
fn2 x = 2 * myfn x
fn3 x = 1 + 1 WHERE 1 = myfn x

INTEGER FUNCTION FN1i(X)
FNi = MYFN(X) + MYFN(X)
RETURN

END

INTEGER FUNCTION FN2(X)
FN2 = 2 % MYFNQX)
RETURN

END

INTEGER FUNCTION FN3(X)
I = MYFN(X)

FN3 =1+ 1

RETURN

END

The functions FNi, FN2 and FN3 above are probably the same, but there is no
way of being sure without knowing something about the code for MYFN, which
could contain updates or references to globals, input or output statements, or
anything else for that matter. But the value returned by a call to a function in
SASL is determined only by its arguments, and has no other effect except to
return that value. In the SASL version of the example above we can be
absolutely sure, without knowing anything about myfn, that fni, fn2 and fn3
are identical and interchangeable. The importance of this property of functional
languages is more fully described in [Turner 82] and [Darlington 82a].

Simple Input and Output

Functional languages are extremely powerful and succinct fools for expressing
algorithms, but the limitations described above on the properties of functions
seem to pose problems for input and output operations. For instance, it is not
possible for a function to return the next value from an input stream, because it
would need to return a different value every time it was called. It would not be
possible for a function to print its argument at the terminal and return some
useless value, for then the following two functions would not be interchangeable,

as they should be:

fni p = print n + print n
fn2 n = x + x WHERE x = print n

The usual way in which simple input and output are modelled is by viewing the

input and output streams as lists of data objects. For instance, consider the
following interactive program. The input from the keyboard is represented as a
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list of characters. The program evaluates to a list of characters, which are
printed on the screen.

screen = map uppercase keyboard_input

uppercase x = ... (takes character x, returns an uppercased version)

map fn (a:rest) = fn a : map fn rest
map fa {1 = []

(More details of the SASL language can be found in an appendix). uppercase
is used as a high level function by map, which applies it in turn to every member
of the list keyboard_input. Any function will do instead of map uppercase, I
merely wish to demonstrate the principle that the output is purely and simply a
function of the input. The result is that, for every character pressed on the
keyboard, the uppercase version of it appears on the screen. This interactive
program is a fairly trivial one, some more complex ones (built on the same lines)
can be found in [Henderson 84]. -

If this program is to run interactively it is necessary to evaluate the program
using normal order semantics. This is a scheme whereby values are only
computed when they are needed to produce the next part of the output. Using
normal order semantics, the value keyboard_input does not need to be fully
evaluated before some output appears. Thus, a functional program can be used
to describe an interactive activity.

Normal order semantics are usually implemented using lazy evaluation
[Henderson 76]. This is a particular technique for implementing normal order
semantics efficiently. It is important to note that, for many, lazy evaluation is a
useful way of improving the performance of functional programs, by avoiding
unnecessary work [Wadler 84]. But here it is being used to allow a functional
program to perform some interactive task. The value keyboard_input in the
program above represents what I shall call an “input stream”, and is a very
useful concept in trying to build functional programs that perform interactive
tasks.

Lazy evaluation causes values in a functional program to behave in ways that
many conventional programmers find counter-intuitive. For instance, a lazy
functional list may seem to correspond closely to a data structure in a
conventional program, but unlike the records of a conventional data structure the
elements of a lazy list are not all constrained to exist at once. It sometimes helps
to think of the lazy list as a partially formed data structure, with a closure (i.e.
an unevaluated function) as its tail, which can be called when more elements of
the list are needed. Under the scheme of lazy evaluation, when this closure is
called it will yield one more element of the list structure, and form another
closure which can be called when the rest of the list is required. Functional
programmers often think of lazy lists as streams of values rather than as
structures, and their use to represent communication with the outside world
seems an entirely natural consequence of this.




Operating Systems

In [Henderson 82], Henderson expands the idea of using lists as input and
output streams to deal with considerably more complex examples, including
programs that handle multiple files, users and devices. To do this he introduces
the idea of “tagging” and “untagging” lists of data items. A list of tagged data
items is a list of (tag, data-item) pairs. A function tag turns a list of data items
into a tagged list where all elements have the same tag. A function untag
extracts from a list of tagged data items those items with a particular tag.

tag t (x:rest) = (t:x) : tag t rest

tag t [] = ]

untag t ((t:x):rest) x : untag ¢ rest

untag t ((wrong:x):rest) = untag t rest

untag t [] = ]

; thus, tag 6 [i, 2, 3] = [(6:1), (6:2), (6:3)]

: and untag 5 [(6:1), (6:2), (6:3)] = [1, 3]

The use of these functions allows streams of values from several inputs to be
combined into a single list. The elements of the list can then be processed by a
function, and passed on to one of several outputs depending on where they came
from. His approach has, in my view, a number of drawbacks.

Another operation necessary: the merging of two (tagged) streams into a
single stream. Simply taking alternate elements from each of the two input
lists will not work: this operation will frequently be used on “input streams”
from the outside world, in which case we want to take the next element from
either list, whichever is ready first. This choice is nondeterministic.

The second problem is one of style. When ftrying progressively larger
examples the tagging, merging and untagging of multiple streams appears to

- form a web that is tangled and impenetrable, and the neat structure of the
program rapidly disintegrates. The term “spaghetti programming” has been
suggested to describe this. The operating systems of real machines involve a
flow of data that is far more complex than that of the examples that
Henderson tackles, and some experimentation indicates that this approach
goon leads to confusion, with functional programming acting as a hindrance
rather than as a help.

All of the tagging and untagging leads to considerable extra work, if it is
actually implemented with data manipulations as Henderson seems to suggest.
Sometimes values need several layers of tagging, in order to get from one
function to another, to which it is not directly connected. In a large, complex
program, this could lead to considerable inefficiency.

Henderson’s solution to the first problem 1is the introduction of a
nondeterministic operator which I call merge.




almost_merge (a:rest) b = a : almost_merge rest b
almost_merge a (b:rest) = b : almost_merge a rest

almost_merge [] rest = rest

almost_merge rest [] = rest

; e.g, merge [1, 2] [3, 4] = [i, 2, 8, 4]
; _ or [1, 3, 2, 4]
. or (1, 3, 4, 2]
. or [3,1, 2, 4]
: or [3, 1, 4, 2]
: or [3, 4, 1, 2]

merge behaves almost like the function defined above. If almost_merge were
typed into a real SASL system, it would merely append two lists together: SASL
systems try each clause of a function definition in turn, whereas what we want is
to apply whichever of the first two rules can be applied first. merge takes two
lists as arguments, and yields a single list containing all the elements of both. It
does this (in current practical implementations) by creating a new process, and
evaluating both of its arguments in parallel. Whichever produces a result first
causes that result to be available to anyone requiring the value of this call to
merge. _

Now, this is not a function, and does not obey the rules for SASL functions
that I described above. It does not have any side effects, but a given call to
merge may return different results on different occasions with the same
arguments. In particular, the expression

(Ax. fn x x) (merge a b)
is not at all the same as
fn (merge a b) (merge a b)

and so referential transparency is lost, and our ability to reason about functional
programs is undermined.

Overview of the New Scheme

I present a new scheme for writing nondeterministic programs in a functional
language. By avoiding the introduction of a primitive with a nondeterministic
result (such as merge), the referential transparency of the language is retained.
The idea of tagging streams of data items is retained, but large examples seem to
avoid the “spaghetti” effect, and manage to avoid much of its inefficiency.

The scheme is based on evaluating a number of functional expressions in
parallel. Each expression thus executed is called a process, and has a single
input stream and a unique process address. Each process evaluates to a list of
messages, which are pairs of the form (process address, data item). As each
message is evaluated its data jtem is added to the input stream of the process to
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which it is addressed.
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The New Message Passing Scheme in Action

The body of each process is a function which takes a list (the input of the
process) as its argument, and yields another list (the output of the process) as its
result. These output lists are all lists of messages. The system evaluates all the
processes in parallel, and acts like a sorting office for all the messages: each
message consists of an address and a data item, and each address designates the
input stream of some process. the data item in each message is sent to the input
stream of the process to which it is addressed.

In Henderson’s system merge may appear in any part of the program. This
system constrains the use of nondeterminism so that it may only appear at the
“bottom level” of a program. Programs written for it use no nondeterministic
primitives or contructs, so the desirable mathematical properties of functional
languages are retained.

A More Detailed Description

_ I now describe the operation of this system as a SASL program containting an
occurrence of merge. This program would be terribly inefficient to run, but it
serves as a very useful definition of the system as a whole. In the next section it
provides the basis for a number of small example programs.

A simple case is described. The system has three processes, whose addresses
are 1, 2 and 3. I have used numbers as addresses because later extensions to the
system will allow an arbitrary number of processes to run, and so the use of more
mnemonic identifiers seems inappropriate.

screen = untag 0 messages
input_to_1 = untag i messages
input_to_2 = untag 2 messages

input_to_3 = untag 3 messages
messages = merge3 (start_1i input_to_1)
(start_2 input_to_2)

q-




(start_3 input_to_3)
merge3 a b ¢ = merge a (merge b c)

A system of three processes

It is informative to attempt to study the types of the various subexpressions of
this program. I use a type notation that is somewhat informal, but based on that
of Ponder [Fairbairn 82|. Capitalised words are “types”, e.g. Int, or “type
generators”;, eg List[Int]. An arrow denotes a function type, so that for
instance the type of the integer addition function is Int -> Int -> Int. A
-double colon symbol means “is of type”.

The screen object

screen = untag 0 messages
screen :: List[Char] ,

screen is the list of characters sent to the screen, and constitutes the “answer”
in all of my examples. All messages sent to address 0 should have a character
data item. When such a message arrives at the screen handler the corresponding
character will appear on the screen.

The messages object

messages = merge3 (start_1 input_to_1)

(start_2 input_to_2)

(start_3 input_to_3)
messages :: List[Messagel
Message = Pair[Address, Data_item]
merge3 a b ¢ = merge a (merge b c)

messages is a list of all messages ever sent in the system, in the order in which

they are processed. It is formed by merging together the output from the three
active processes into a single list of messages, and then sending the data item in
each message in this list to its destination. The term “output” is used in an
informal way here, in fact it is the value of each expression which is considered.

The start objects

start_1i :: List[Data_item] -> List[Message]

start_2 :: List[Data_item] -> List[Messagel

start_3 :: List[Data_item] -> List([Messagel

These three functions are the bodies of the three processes. Each is applied to a
value representing the input stream of that process The resulting values should
be lists of messages.




Some Fxample Programs

1. A Simple Computation
start_i in = tag 0 ("the answer 1s " ++ comp)

In this example we wish to perform a deterministic computation and display
the result, as is possible with simpler systems. Only one process is necessary for
this. The computation is called comp here and evaluates to a list of characters.
The computation is performed yielding a list of characters, and this is converted
to a list of messages by consing the destination onto each character. Thus
start_1, when an argument has been applied to it, results in a list of messages.
All of the messages are addressed to process 0, and as a consequence will appear
in the input to address 0. Since address 0 designates the screen, the result of the
computation will appear on the screen, preceeded by the characters “the answer
is ”.

The style of programming takes a little while to get used to. Note that the
parameter of start_1i is not used, but only because this example is very simple.
It is necessary in order to ensure that start_1 is of the correct type to be made
into a process. Simple input and output are slightly more cumbersome than in
other functional programming systems, but an enormous degree of flexibility has
been gained, and as we show later the ability to hide the complexity of device
drivers and input/output operations has been provided. This function may seem
ugly and artificial, but the author of comp (the application program) does not
have to know anything about it.

2. A Nondeterministic Computation

start_1 in =

(0 : (hd in))

(0 : (hd (%1 in))) : (]
start_2 in = (1 : ‘a’) : [
start_3 in = (1 : °b*) : (]

hd and t1 are functions that yield the head and tail of a list. start_1
evaluates to a list of two messages, both of which are sent to the screen.
start_2 and start_3 both send a single message, with a character data item, to
start_1i. The result of this program is to print either “ab” or “ba” on the
screen.

The order in which operations occur when start_i is evaluated is very
important. Process 1 evaluates to a list of two messages, whose data items are
obtained by examining the process’ input stream. 1'aus, the behaviour that is
required of process 1 is as follows:

wait for an incoming message

gend a message containing that incoming data item

wait for a second incoming message

gend a message containing the second data item
Unfortunately, the program that I have specified so far will behave as follows:

send a message consisting of a closure, referring to the first

data item on the input stream

send a message consisting of a closure, referring to the second
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data item on the input stream

This is a consequence of the normal order semantics; the value of the data items
is not required when the message is sent, so it will produce output messages
(with unevaluated data items) before any input has arrived. The first
interpretation requires the evaluating system to fully evaluate the data item on a
message before it is sent, and in practice it’s the preferable interpretation. In
this particular example it makes no difference to the final result, but in many
other cases it can lead to a message being sent before it is really ready. For
instance, suppose that start_2 and start_3 were substantial calculations and
that there were other possible processes that could send messages to the screen.
If the second interpretation of the system’s semantics were used then the
calculations inherent in start_2 and start_3 would not be performed until the
messages had already been accepted by the screen. This would congest the
screen until those calculations had been performed.

Thus, the first suggested interpretation seems the best in almost all.cases. The
current system evaluates data items at the top level (but not completely, in the
case of a data item consisting of a function or structure) before allowing them to
be sent.

3. Input from the Keyboard

A convention will have to be decided upon for the behaviour of the keyboard
device. We will assume that, as each key is pressed, the corresponding character
is sent to process address 1. A program to echo the characters pressed on the
keyboard looks like this:

start_1 in = tag 0 in

Now, suppose that an application program wishes to take input from the
keyboard a line at a time. Echoing and the delete key should be handled by “the
system”, the user program wants keyboard input to appear as a list of strings.

On functional systems that evaluate a single functional expression it is usually
painfully obvious that this transformation (from a character based to a line based
keyboard) is going on. It would typically be achieved by a function called
something like ch_to_line_kbd, which takes a list of characters as input (the
characters from the keyboard) and produces two outputs, the lines for the
application program and the echoes to be sent to the keyboard. The use of
functions of this sort rapidly leads to “spaghetti”, and to data structures that
persist and grow throughout the life of the program. This not only results in
unclear programs, but if (for instance) it is necessary with file input and output,
it could be extremely inefficient.

This program performs the necessary transformation under the new scheme in
a painless way:
userprog line_kbd = ... (the client program, takes a list of strings

and yields a list of characters)

start_2 in = tag 0 (userprog in)

start_1 in = kbd_loop [] in
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kbd_loop [] (DEL : cB) kbd_loop (] cs
kbd_loop (deleted : charbuf)
(DEL : cs) = (0 : BS) : (0 :° °) : (0 : BS)
kbd_loop charbuf cs
kbd_loop charbuf (RET : e¢s) = (0 : CR) : (0 : LF) :
(2 : reverse charbuf) :
kbd_loop [] cs

The function kbd_loop in this program performs the echoing and the building
up of a line of input in a buffer. Its first argument is the character buffer, the
second is the input stream to process 1. It handles keyboard echo and the delete
key; and when return is pressed it sends a message containing a string to process
2.

The program may seem unpleasant at first sight, but it is painless in the sense
that the writer of the user program may be unaware of its existence. Note that
the systems programmer can implement whatever model he chooses for what to
do about typeahead, buffering user output and so on, and can render his choices
in a functional language.

(In the program, the identifiers DEL and CR are the codes generated by the
delete key and the carriage return key. CR, LF and BS are assumed to be the
control characters for carriage return, line feed and backspace. Delete is echoed
as backspace, space, backspace and return as carriage return and line feed).

4. Polling the keyboard

How can a user program poll the keyboard, and react in different ways
depending on the speed with which the user reacts? We will assume that the
keyboard behaves as described in example 3. Process 2 now provides a service
for the user process. It accepts two kinds of input messages: keys from the
keyboard, and “has a key been pressed yet?” requests from users. It keeps a list
of unclaimed keystrokes. This program is an example of a dialogue between two
processes,

start_1 in = kbd_loop [] in

kbd_loop keys (ch : in) = kbd_loop (keys ++ {[ch]) inm,
character ch

: the first clause is only taken if ch is a character -

kbd_loop (key : keys) (ad : in) = (ad : key) : kbd_loop keys in

kbd_loop [] (ad : in) = (ad : []) : kbd_loop [} imn

il

(kbdpoll : self) :

(0 : (null C(hd in) -> °x°: hd im))
user_process kbdpoll self (tl1 in)
:a -> b: ¢ means "if a then b else c"

user_process kbdpoll self in

The function kbd_loop runs as process 1, while the user program is process 2.
kbd_loop behaves in three different ways, depending on the characters sent to it:
If a character arrives, add this to the list of unclaimed characters.
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If a request arrives and we have characters saved up,
send the first character to the requester
If a request arrives an we have no characters saved up,
send a nil value to the requester
These are reflected in the three clauses of the function definition.
* The result of this example is a continuous stream of “x”s on the screen,
interspersed with the echo of the keys pressed on the keyboard when they occur.
More complex protocols will allow any type of interaction between processes,
based on question-and-answer type dialogue.

Creating New Processes

The previous section demonstrated a system involving a fixed, finite number of
processes communicating with each other via messages, and showed how such a
system could be used to build a number of interesting programs. In the examples
I have tried to show how it leads to better organised and more efficient programs
than the use of merge operators. In this section a mechanism is presented for
allowing such a network to change dynamically, so that new processes can be
created as required.

The creation of new processes works as follows. Each process executing has a
unique process address, to which messages may be sent. In addition to the
addresses of the processes executing there may be other addresses to which
messages can be sent, causing various special effects. One of these is the screen:
we have declared that any message sent to this address must have a character
data item, and that sending such a message will cause the character to appear on
the computer’s video screen.

In a similar way, there is another special address called the process creator.
Any messasge sent to this address must have as data item a function of a suitable
type (which is described more precisely below). Sending a message to this
address causes a new process address to be created, and starts up a new process
at that address using the data item of the message as its body.

This mechanism makes simple examples rather harder to understand. Because
processes are created dynamically, so too are process addresses. When a new
process is created its address must somehow be given to everyone who will want
to send messages to it. '

This operation is described with more detail and precision by the following
program. Address 0 is the screen, and 1 the process creator. There is now only
one initial user process, whose body is constructed from the function start and
whose address is 2. More processes can be created as required.

screen = untag O messages
process_bodies = start : untag 1 messages

messages = MERGE (apply_to_each process_bodies (2...))

A system supporting an arbitrary, dynamic number of processes
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The screen object
screen = filterout 0 messages
screen :: List([Char]

screen serves the same purpose as before, it is the “answer”, or output, of the
whole scheme. Note that in a more complex case there could be many other
devices and special addresses visible at this level, depending on the hardware
configuration involved. This is the level at which all such things get bound

together.

The list of process bodies

process_bodies = start : untag 1 messages

process_bodies :: List[Process_bodyl

Message = Pair(Address, Data_item]

Address = Int (in these examples)

Data_item = any type

Process_body = Address -> List[Data_item] -> List[Message]

]

process_bodies is the list of all process bodies that ever exist, in the order in
which they are created. This shows the precise type that is expected of an object
sent to the process creator, and how the new address is made accessible to the
program. The new process body has applied to it its own (newly created) process
address, and its own (newly created) input stream. It should then evaluate to a
list of messages. If this list is exhausted then the process is “dead” (messages
gent to it will have no effect).

The list of all messages
messages = MERGE (apply_to_each process_bodies (2...))

messages :: List[Message]

apply_to_each (body : bodies) (i : ads) =
body i (untag i messages)
apply_to_each bodies ads

This is a list of =ll messages ever sent in the system, in the order in which they
are processed. It is constructed by merging together all the members of a list of
lists of messages. Each of these lists is the output of a process. Each process
constructed by applying to a process body (which has been sent to process 1) a
new, unique address and an input stream. The 2... is an infinite list of integers
(i.e. the value [2, 38, 4, 5, 6, ...]) and is used as the generator of unique addresses.
Each body is applied to its own address (i.e. a value taken from 2...), and the list
of data items from all messages that are addressed to it (this is what the untag
i achieves).

MERGE (read as “big merge”) takes a list of lists as its input, and
nondeterministically merges all elements of these lists together into a single list.

This feature is included in the system currently being used on SKIM: in fact, it
was only recently that it occurred to me nof to use it. It would be instructive to
explore more fully the use of the system without this feature: a static collection of
processes seems much simpler, and could form the basis of the software for a
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machine with many processors. Rather than separating “processes” and
“processors” in the underlying machine, we force these to correspond exactly. It
is the responsibility of the functional programs to distribute work in a useful
manner. The bookkeeping involved in managing “processes” seems to be one of
the tricky aspects of multiprocessor design, which the use of such a scheme would
avoid.

Other Possible Extensions

Control over Scheduling

The current scheme runs on a single processor, and will run any process that is
eligible. It is not possible to implement a background task, whose scheduling is
under more precise program control. _

One possible method for implementing background tasks would be to designate
one process as “background”, and only run it if nothing else can. Alternatively,
some more complex scheme could be implemented in the underlying system
giving different priorities to the different tasks, and including a scheduling
algorithm based on these priorities.

A more powerful idea is to use the “engine” concept [Haynes 84]. A
“background” process is created in a special way that marks it as such. It may
only compute when a special “clock tick” message is sent to it. Other processes
comprising the operating system scheduler decide when some time can safely be
spent evaluating this background task and send a “clock tick” message to it when
this is the case. This is effectively permission to perform a small amount of
computation on this process, after which the scheduler should be run again and
may decide what to do. This scheme allows more precise control, for instance it
might be appropriate if multiple background tasks with complex priority
functions were required.

Another aspect of this is the use of the same system on a machine with several
processors. Although processes are able to pass objects (or functions) of any type
between them, there is no reason why they should all be running on the same
processor, or even in the same address space. By making the process creation
operation more complex it should be possible to write a system that runs on a
machine with several processors. The allocation of processors to processes could
be explicit, or performed by the system. One of the most pleasing aspects of the
scheme at the moment is how little it assumes about the computer on which it is
being run.

Error Recovery

This is very tricky, as there are a number of ways in which a user program
could go wrong, even if it has been proved “correct”.

The simplest case of this is a value error detected at runtime, such as an
attempt to divide by zero. Saying that the result is “error” is not really
adequate: some method is needed of telling the operating system that something
has gone wrong, and allowing the system to decide what to do about it.

The next example is an infinite loop, or a long computation that the user
realises that he did not want. The user signals impatience by hitting break, or
signalling in some other way that the attempt to evaluate this object should be
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abandoned. In this case the task should be killed - how is this to be achieved?
There seems a need for a “kill-process” primitive. (This is also necessary to
tackle case 4 in the introduction, where nondeterministic behaviour is being used
to perform a breadth-first search). This would be implemented as a “death”
message, a special data object which, when sent to a process, removes that
process from the system. ,

Even worse that this is a program that uses up all of store: an accidental
attempt to reverse an infinite list will do this. The machine must decide to
throw something away before it can allow any more functional programs to run,
as functional programs always need some spare heap in order to compute. In this
case it seems necessary to mark in some way which processes are “untrusted”. If
a store jam occurs, the machine throws away all untrusted processes and sends a
message to some agreed location to say that this has occurred.

What if this does not release any store? A user program creates a large
structure, and passes this to a trusted process, who unwittingly holds on to it.
This would prevent the garbage collector from reclaiming it, and the machine
would die for lack of store. Preventing this seems to require some care. One
method for presenting this is to keep a small reserve of store, which the user
cannot use up. This is only released when the machine is diagnosed as being full.
However, this will cause a reduction in processing power (because heap based
machines go faster if more free memory is available). Another idea is to control
objects passed from an untrusted program, and ensure that they are all fully
evaluated, and of controlled size. The user program is a function rather than a
process body, and so rules like this can be successfully enforced.

It is worth noting that recovery seems even more complex from certain errors
that involve multiple processes. For instance, a program that went wrong by
generating thousands of superfluous processes until the machine filled up might
be hard to recover from. Perhaps this would be solved by making the processes
created by an untrusted process also untrusted. More thought is needed in this
area,

Most user programs are deterministic, but some may not be. For instance, the
ability to run experimental versions of the operating system under the old one
would be extremely desirable. This may require a more complex version of the
“rust” mechanism, but would almost certainly be worth it.

Operating System Design

The new scheme is currently being used to write an operating system for SKIM,
a microcoded processor specifically designed for the execution of functional
languages. The intention is to make SKIM a self-supporting computer system, on
which functional programs can be edited, compiled and run: for this, a simple
operating system is required. Although this operating system is still under
development, some discussion is worthwhile on the ways in which this scheme
influences the design of the operating system.

The result is not, sadly, an explosion of new ideas on how operating systems
should be designed. But there is a clear impression that it is possible to do
things that conventional operating systems are able to do, and with no significant
loss of performance. I believe, although there is no evidence for this yet, that
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such an operating system can be constructed using clearer and simpler programs
than their conventional counterparts in a conventional operating system. If this
is the case it will be a considerable victory for functional programming.

Process Control

The kernel of an operating system is frequently thought of as that part which
controls processes and scheduling: if this is the case, to what extent has SKIM
cheated by implementing this sort of thing in microcode? In answer to this it
seems worth pointing out that the model of a process implemented here is very
much less complex than the processes implemented in a conventional operating
system. The processes in this scheme provide a basic mechanism for controlling
parallel execution, and are unlikely to correspond to what the user thinks of as
tasks being performed by the machine. Such ideas as who the process belongs to,
what the process is called and what resources it is allowed to access must be
organised by other programs. Many fundamental decisions concerning the
structure of the operating system are still to be made, and will be expressed in a
functional language. ‘

The Filing System

There is no reason why a filing system should not be built along much the
same lines as in conventional operating systems. At the lowest level programs
would communicate with the disc through messages, which read and write sectors
'on the disc. Further layers on top of this could control file structure, the garbage
collection of disc blocks, archiving, directories, version control and so on.

Alternatively, the storage on which the filing system is based could be available
over a local area network. Using similar communication protocols the functional
program can deal with such a situation in exactly the same way that a
conventional machine on a network does.

It would also be possible to use the disc to implement a virtual memory
system, which retains the integrity of the heap when the system is powered
down. This would allow objects to be “filed” simply by holding on to them as
data structures: a large virtual memory would ensure that they eventually
migrated onto disc, and the result is, to a far greater extent, a “functional”
program. My instinct, however, is to be wary of this approach for the following
reasons:

1. It demands far more implementation effort “beneath” the level of
functional programming. It is the low level parts of operating systems
whose semantics are most in doubt and where hidden bugs are most
harmful: this is where functional programming is needed most!

2. It seems more liable to disaster from some hidden bug in the operating
system. Merely discarding a pointer might discard the filing system,
requiring recovery in some manner “outside” the operating system.

3. It merely delays the issue of how one is to communicate with a
persistent outside world. Soomer or later the question of interfacing to
networds, remote filing systems and other computers must be faced.

How a f{iling system should be represented in a functional world, and the
application of such an approach to a networked world (with the functional
program being distributed over the network), are still the subjects of debate and
research in the functional programming community. But it is pleasing to note
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that the use of this scheme provides 2 wide range of choices, and that one ig not
limited by problems of efficient representation. In the particular case of the
SKIM machine, it seems most appropriate to stick to a conservative model of

what a filing system is.

The User Interface

The design of the user interface is not forced by this scheme in any way at all.
For instance, if desired a shell program could be written; along the lines of the
UNIX shell. This could take input from the keyboard and access the filing
system in order to perform tasks specified by the user. If required, it could
maintain a history of previous commands, and any other fancy features that are
required. Alternatively a menu scheme could be used.

It is amusing to note that the commands given to a shell effectively form an
imperative command language, and there is no reason why programs should not
be written by the user in this language. Hardly functional programming!
Somehow, it should be possible to find something a bit more functional: I
welcome suggestions. When sitting at a terminal giving individual commands to
a computer, the imperative paradigm really does seem the most appropriate. It
may be that this tendency can be minimised by providing a good menu-driven
interface, and a good collection of basic commands.

Some thought concerning commands available under the UNIX shell reveals
that many of them are almost functions: the construction of pipe expressions, for
instance, is very much like functional programming. In the command language of
a functional machine this style of programming would be heartily encouraged,
with the considerable bonus that such a style would not be constrained to work
merely with streams of characters. By doing a certain amount of type analysis,
as is performed in many of today’s functional languages, it should be possible to
provide considerable expressive power using this style of command language.

Part of the (highly successful) UNIX philosophy is to think of programs as
tools, allowing many common tasks to be performed simply by combining existing
programs using a functional style. This benefit is limited to programs that
communicate using streams of characters, and is distinct from the provision of
subroutine libraries for programming languages. By encouraging the use of a
functional style at every level (i.e. in the writing of applications and tools, and in
the command language) programming tools become even more general. We
approach a state where, if a programming task has been solved, the solution of
the problem is available for re-use at the command level and at the language

level.

Areas of Uncertainty

The scheme presented here grew from a practical requirement, the need for an
operating system on a real machine that could only be programmed in a
functional language. An acceptable mathematical characterisation for it has nof
yet been found. It may have many theoretical ramifications that have not yet

been fully explored.
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What are the semantics of this new system?

The semantic description of programs written under this scheme appears just
as hard as in a program involving nondeterministic merges. Are the programs
easier to control and understand if referential transparency is retained? The
system without the process creation mechanism may be considerably simpler.
What are its limitations for the writing of practical systems?

How useful is type checking in this regime?

I have glossed over some of the problems concerned with type checking in the
discussion above. If the items taken as input by a process form a list then all
objects sent to one particular process should all be of one type. This may be
~ inconvenient in sorme circumstances, but it is still perfectly possible. However, a
process can send messages containing data items of different types, provided that
each one is of an appropriate type for its receiver. So what exactly is the type
Message? Current type checking technology seems unable to describe it. Under
guch a scheme an Address would be a type generator rather than a type, so that
Address[T] is a process address to which objects of type T should be sent.

Message = Pair[Address[T], T] for some T, rather than for all T

; e.g, if intad :: Address{Int]
; and chrad :: Address[Char]
: then [(intad : 3), (chrad : °a°’)] is a legal list
of messages

Current languages seems unable to describe this type

The type system described in [McQueen 84] can describe this type, but no
mechanical checker for such types exists. SKIM’s operating system is in fact
written in Ponder, a language with a type system that is somewhat more
powerful than that of ML [Milner 78], but still unable to describe the type
Message. SASL has been used in examples here because it is more widely known
and more succinct. However, there are numerous places in the operating system
where the type-checking is sidestepped. It seems a shame that this should be
necessary.

It’s in a fanctional language, but is it fanctional programming?

The programs presented here have all been written in a functional language,
yet they display behaviour that is not normally associated with such programs.
Using processes “side effects” can easily be manufactured if desired, based on the
ability of a process to have a “state” which other processes can interrogate or
update. How will this affect large programs if such facilities are available? It
may be that programmers will be tempted to user methods just as bad as any
conventional program: this remains to be seen.

Functional programming has always been difficult to define precisely, and it
may be that, although concerned with functional languages, this scheme really
steps outside the realm of functional programming as it is generally accepted.
Programs are still functions, but their structure is quite complex. The value of
expressions under this scheme is still deterministic, but the scheme does more
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than just take the value of an expression. On the other hand, something has to
be done if functional languages are to be used to describe and implement time-
dependent and nondeterministic systems. This scheme represents an attempt to
achieve just that.
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Appendix 1

The SASL Language

SASL [Turner 76] is a simple, succinct functional language. It is strongly
related to KRC [Turner 82) and Miranda [Turner 7). This guide is intended not
as a complete language reference manual, but as an aid to those seeking to
understand the examples in the previous text.

Functions
The main operation for combining values in SASL is function application,
which is denoted by juxtaposition. So, the expression

fn x

has a value that is obtained by applying the value x to the value fn. Function
application associates to the left, and brackets may be used to indicate grouping.
So,

plus x 3
is the same as
(plus x) 3

and denotes x added to 3 (assuming that is what the function plus does). All
functions are fully curried, i.e. arguments may be applied to them one at a time.
Functions may be used as first class data objects. The value that a function
yields is uniquely defined by the arguments passed to it, and two textually
identical expressions (in the same context) will always yield the same value.
There are no “side effects” or assignment statements.

Primitive Data Types
- All objects in a SASL program are integers, characters, pairs or functions. The
language has no type checking scheme, so type errors may occur at run time and
will presumably produce some message of complaint from the language system.
SASL closely resembles the lambda calculus in its semantics, but in order to
make simple operations easier to understand some primitive data objects have
been added. These are characters, integers and pairs. Character constants can
be included in a program as the intended character in single quotes. Integer
constants are a sequence of digits, with an optional leading minus sign. Pairs are
written using an infix colon.

"A° 'B° '$° character constants

23 128 156 integer constants

‘a’ ¢ 28 a pair consisting of a character
and an integer

i :2:3 read as (1 : (2 : 3))
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A list iz a sequence of pairs, terminated with the “nil” value, which is written as
[1. A list may be written as

(1, 2, 3, 4]

which is a shorthand for

1:2:8:4:1]

In addition, string quotes may be used to denote a list of characters. So,
"hello"

is a shorthand for

*h® : ‘e’ : °1° : °1° : ‘0’ : []

Expressions -
There are a number of predefined primitive functions and infix operators in the

 language. For instance,

+ - %/ simple arithmetic operators

hd t1 operations to extract the left and right parts
of a pair

++ append lists

Function Definition Clauses
A function is defined by a sequence of one or more “clauses”. For instance,

double x = x + X

is a clause which gives a value to the name double. A clause cousists of the name
to be defined, followed by zero or more arguments, followed by an equal sign, and
then the corresponding expression. Thus, double can be thought of as the

lambda expression
(Ax. x + x)

Arguments can be patterns instead of simple names, indicating that “this
clause is only appropriate if the actual argument matches the pattern”. This can
lead to the need for more than one clause in the definition of a function name.

For instance,

append (a:x) y = a : append x y
append [] y =y

This function append appends two lists together. The first clause only applies if
the first argument to append is a pair: if it is, the body of the clause is the result
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of the call to append, using a and x to denote the left and right parts of the
first argument. The second clause only applies if the first argument is nil. When
evaluating a call to append, each clause is tried in turn until one matches: this is
then taken to define the value returned by the call.

Note that recursion may be used freely.

Note that argument passing is a way of giving names to subexpressions.

Another method of doing this is the WHERE construct. This takes the form
<expression> WHERE <sequence of clauses>

allowing a large expression to be broken up into a number of smaller ones. For
example,

fn a b c= (xi / quot) : (x2 / quot)
WHERE xi = b + d
x2=Db - d
quot = 2 * a
d=Db*b-4%axc

High Level Functions

Functions can be manipulated as values in the language. This extremely
powerful facilitiy replaces the need for many looping and other control constructs.
The functions map and fold illustrate this:

fold op s [] = 8
fold op 8 (a:x) = op a (fold op 8 x)

map fn [] = []
map fn (a:x) = fn a : map fn x

map takes two arguments, a function and a list. The function is applied to
every member of the list, and the result of the call to map is another list
consisting of the results of these calls. These small examples show typical uses of
map:

map double [i, 2, 3] is [2, 4, 6]
plus a b=a + b
map (plus 3) [i, 2, 3] is f4, 5, 6]
map (map double) [[1, 2], is [[2, 4],
(31, fel,
(4, 611 [8, 10]1]

The second and third examples show how arguments may be passed to a function
one at a time. For instance, plus in the second example is a function that takes
two integers and yields another integer. plus 1 is a function that takes one
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integer and yields another. In a similar way, map (map double) is a function
that takes a list of lists of integers and yields another list of lists of integers.

The function fold is slightly more complex, and the best way to understand it
is to try it on a few sample arguments.

fold plus 0 [1, 3, 12] equals i6 (the sum of the 1list)
fold append [1 [[i, 21, [3], [4, 61] equals (1, 2, 3, 4, b]
fold°s first argument should be a dyadic function (a function expecting two

arguments), and its third argument should be a list. The function is applied
“between” the elements of the list.
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Appendix 2

An Efficient Implementation

The SKIM machine is a microcoded combinator reducer. In addition to a
reducer, the microcode also includes a timeslicing mechanism which implements
the scheme described in this paper. This appendix describes how it works at the
machine level, and may be of interest to other implementors. The scheme is
described for a combinator reducer, but is equally applicable to any other form of
lazy evaluator.

The Heap .

SKIM’s memory is organised as a heap of Lisp-like “nodes”. Each node
contains two “values”, the “head” and the “tail” of the node. Values consist of a
20 bit “data” field and a 4 bit “tag” field. The tag can take one of the following
values:

valve Is abbreviation dato is
application app | heap pointer
pair pair heap pointer
process address addr heap pointer
integer int vafue

character char ASCII code

nil nil 2]

combinator comb microcode address

Types of value on the SKIM machine

For instance, the value S a b ¢ is represented as:

[ Te]

The representation of S a b ¢ in SKIM’s memory

The store is organised as a heap, and the garbage collector uses the tags on all
values to determine which parts of memory are accessible and which are garbage.
There are also other bits on each cell in memory which are used by the garbage
collector to arrange this.

The Reducer

The bulk of SKIM’s microcode is a normal order graph reducer, as described in
[Turner 79, Stoye 84]. It uses pointer reversal to crawl over a graph of
application pointers, which is continuously transformed until it will not reduce
any further. For instance, if given the expression S a b c the reducer would
perform the following transformation:
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c ts transformed inte aec (b ¢)
Conventional reduction of the S combinator

S a

T

Thus the result of the reduction is a ¢ (b ¢}, as we expect.

The Input Stream
In order to implement input streams, a special combinator called R (for
“read”) is used. The input list’s value is initially represented as an application

pointer to:

n vnused

An input 11st’s value is an application pointer to a cell like this

The keyboard system also keeps a pointer to this cell, which is known as the
“readin” cell. When a key is pressed, this cell is overwritten like this:

o]

—— {8 an applicotion pointer

p——> I8 a pafr pointer

The readin value after a key has been pressed

The cell on the ieft used to contain an R

The I cell is necessary because the initial cell will have application pointers fo
it. The second cell is a pair cell, and the readin cell (where the next character
will appear) has advanced to being the cell on the right.

The Slicer Data Structures

The microcode that controls the scheduling of the processor is called the
“slicer”. It keeps a circular queue of “active” processes, i.e. those that may be
evaluated. FEach process is represented in this list merely by its value. Each
process also has an input stream, at which messages sent to it appear. If an
attempt is made to evaluate a readin cell then the running process will wait until
something is sent to that readin cell, Thus the process is removed from the list of
active processes and added to the list of processes waiting for something to arrive
at this input cell.

Note that the value of a process (i.e. the stream of messages output from the
process) and its input stream are not bound together in any way. Because
partially unevaluated messages can be sent, there is no reason why a process
should not end up attempting to evaluate the input stream of another process,
indeed this sometimes happens in real programs. An arbitrary number of
processes can be suspended, waiting for input at one readin cell.
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For this reason each input cell is represented by the following arrangement:

indirecttion cell

(R F—{wt [ 4— - —fon o]

—~—3% {8 an application pointer

p——% is a palr pointer
a——% is an address pointer
readin cell I1st of processes waiting on this readin cell

The full structure of a readin cell

The tail half of the read cell holds the list of those waiting for input at this cell.
The process address is represented by pointers to an indirection cell. If a
message with data item x is sent to this cell, all the waiting processes will be
added to the active queue and the readin structure will be turned into:

a indtrection cell
pointe at new readin cell

I = K = e I KX
oid
readin cell pair new readin cell
(with empty list of waiters)
—3 is an application pointer
p—> {2 a pair pointer
a——» is an address pointer

A readin cell after a message send

The Action of the Slicer

The slicer runs the reducer on the process on the head of the queue of active
processes. The process should evaluate to a list of messages. It evaluates the
first list cell, the cell representing the first message, the head of that cell (i.e. the
destination address), and the tail of that cell (i.e. the message’s data item). This
action is performed until:

The process evaluates to nil:
The process is removed from the active queue: it is dead. The slicer
continues by evaluating the next active process.

5000 reductions have been performed (i.e. an arbitrary time limit):
The slicer advances to the next member of the active queue. This is to
prevent a process preforming intensive computation from locking the others
out.

The evaluator attempts to evaluate an R combinator:
Further reduction of this value is dependant on a message arriving at the
readin cell. This process is removed from the active queue and added to
The slicer continues by evaluating the next active process.
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The process evaluates enough to produce a well formed message:

This is equivalent to sending a message. The message will have two parts, a
destination address (fully evaluated) and a data item (evaluated at top
level). The process value in the active queue is overwritten with its tail, so
that futher reduction on this process will yield the next message in the list.
Unless the destination address is something special, the data item is added
to the input stream indicated by the destination address, and all waiters are
removed from that readin cell and added to the active queue. The slicer
proceeds by evaluating the next active process.

Special destination addresses include any devices, and the process creator. The
action for devices is device dependant but not hard to decide upon. Note that
the evaluator may have to poll input devices and stop so that they can send their
input messages in some way. The action for the process creator, when sent a
process body x, is to add the following structure, as a process to be evaluated, to
the active queue.

The structure of a new process using process body x
——3 §8 an application pointer

p——3 I8 a pair pointer
a—— 18 an address pointer

The result is added to the active queue as a process to be evaluated.

Discussion

The mechanism has a pleasing feel of being minimal in some sense: there are
very few arbitrary choices in its design, and no special cases or features. It is
reasonably fast, and has no gradual space leak. However, there are some points
that need more thought:

1. The SKIM reducer reverses pointers while reducing an expression, and a
process switch requires any existing chain of pointers to be re-reversed, so that
the new running process does not fall foul of the reversed pointers of the other
processes. Thus some task switches may take rather a long time. This happens
when waiting for a message, and when the time limit comes into effect.
Removing this overhead seems quite hard, and would probably need considerable
changes to the reduction method.

One possibility is to mark in some way cells that have reversed pointers in
them (at the moment it is not possible to detect them). If a process meets a
reversed value then it and another process both need some common subvalue, but
the other process has already started evaluating it. So add a “branch” fo the
reversed chain and suspend the current process, in such a way that it is restarted
when the other process un-reversed this list. In a conventional system this is
unlikely to be worth the effort, but arrangements of this sort might be quite
useful in a multi-processor machine.

-20-




2. Ensuring fairness needs a certain degree of care and comproimises response
time. This is the requirement that no combination of processes should be able to
grab all CPU time by sending messages to each other. When choosing which
process to run next, it is best to choose one which has not been involved in the
last transaction, in case two processes (by furiously sending messages to each
other) manage to lock all the others out. This means that, when a message is
sent, the activated process should not be the next one to rum: even if it is
probably the one who should run next if response time to devices is to be
improved.
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