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Fast Marching farthest point sampling for point clouds

and implicit surfaces

Carsten Moenning and Neil A. Dodgson

Abstract

In a recent paper [13], the Fast Marching farthest point sampling strategy
(FastFPS) for planar domains and curved manifolds was introduced. The version of
FastFPS for curved manifolds discussed in the paper [13] deals with surface domains
in triangulated form only. Due to a restriction of the underlying Fast Marching
method, the algorithm further requires the splitting of any obtuse into acute trian-
gles to ensure the consistency of the Fast Marching approximation. In this paper,
we overcome these restrictions by using Mémoli and Sapiro’s [11, 12] extension of
the Fast Marching method to the handling of implicit surfaces and point clouds.
We find that the extended FastFPS algorithm can be applied to surfaces in im-
plicit or point cloud form without the loss of the original algorithm’s computational
optimality and without the need for any preprocessing.

1 Introduction

In Moenning and Dodgson [13], the notion of Fast Marching farthest point sampling
(FastFPS) for planar domains and triangulated curved manifolds is put forward. FastFPS
makes use of Fast Marching [23, 24] for the incremental construction of uniform or non-
uniform distance maps across the sampling domain. As a result, an efficient progressive
sampling method based on the uniform farthest point principle introduced by Eldar et
al. [5, 6] and sharing its favourable properties such as excellent anti-aliasing properties,
a high data acquisition rate and an elegant relationship to the Voronoi diagram concept
is obtained. In addition, FastFPS provides a natural extension of the farthest point
principle to the case of non-uniform, adaptive progressive sampling without the loss of
computational optimality. A sampling technique featuring these properties is of particular
interest for applications such as progressive transmission of image or 3D surface data [10],
(progressive) rendering [14, 26], progressive acquisition [13] and machine vision [27].

FastFPS for triangulated surfaces requires the splitting of any obtuse into acute tri-
angles in a preprocessing step [13]. Although this preprocessing step does not add sig-
nificantly to the algorithm’s computational complexity, it affects its accuracy [7]. Fur-
thermore, numerical analysis over polygonal surfaces is generally less accurate and robust
than numerical analysis over Cartesian grids [4]. Finally, the surface domain may not be
readily available in triangulated form or the computation of a triangulation may involve
a performance penalty since it may otherwise not be required by the application.

Using Mémoli and Sapiro’s [11, 12] recent augmentation of the Fast Marching concept,
we propose an extended FastFPS method which may be applied to surfaces in implicit or
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point cloud form without the need for any preprocessing or prior triangulation. Surfaces
given in triangulated form may be dealt with by either using FastFPS for triangulated
surfaces [13] or implicitising the surface in a preprocessing step. The method works on a
Cartesian grid and retains the efficiency of FastFPS for triangulated surfaces [13].

We briefly review both the Voronoi diagram and the farthest point sampling as well
as the “conventional” Fast Marching concept and its extension suggested by Mémoli and
Sapiro [11, 12]. We then introduce our FastFPS algorithm for implicit surfaces and point
clouds and present a worked example for its application to point clouds. We conclude
with a brief summary and discussion.

2 Previous Work

2.1 Voronoi diagrams

Given a finite number n of distinct data sites P := {p1, p2, . . . , pn} in the plane, for pi,
pj ∈ P , pi 6= pj, let

B(pi, pj) = {t ∈ R
2|d(pi − t) = d(pj − t)} (1)

where d may be an arbitrary distance metric provided the bisectors with regard to d remain
curves bisecting the plane. B(pi, pj) is the perpendicular bisector of the line segment pipj.
Let h(pi, pj) represent the half-plane containing pi bounded by B(pi, pj). The Voronoi cell
of pi with respect to point set P , V (pi, P ), is given by

V (pi, P ) =
⋂

pj ∈P,pj 6=pi

h(pi, pj) (2)

That is, the Voronoi cell of pi with respect to P is given by the intersection of the half-
planes of pi with respect to pj, pj ∈ P , pj 6= pi.

If pi represents an element on the convex hull of P , V (pi, P ) is unbounded. For a fi-
nite domain, the bounded Voronoi cell, BV (pi, P ), is defined as the conjunction of the
cell V (pi, P ) with the domain.

The boundary shared by a pair of Voronoi cells is called a Voronoi edge. Voronoi edges
meet at Voronoi vertices.

The Voronoi diagram of P is given by

VD(P) =
⋃

pi ∈P

V (pi, P ) (3)

The bounded Voronoi diagram, BVD(P), follows correspondingly as:

BVD(P) =
⋃

pi∈P

BV (pi, P ) (4)

Figure 1 shows an example of a bounded Voronoi diagram.
Note that the Voronoi diagram concept extends to higher dimensions. For more detail,
see the comprehensive treatment by Okabe et al. [15] or the survey article by Aurenham-
mer [2].
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Figure 1: Bounded Voronoi diagram of 12 sites in the plane.

2.2 Farthest point sampling

Farthest point sampling is based on the idea of repeatedly placing the next sample point
in the middle of the least-known area of the sampling domain. In the following, we
summarise the reasoning underlying this approach for both the uniform and non-uniform
case presented in Eldar et al. [5, 6].

Starting with the uniform case, Eldar et al. [5, 6] consider the case of an image repre-
senting a continuous stochastic process featuring constant first and second order central
moments with the third central moment, i.e., the covariance, decreasing (exponentially)
with spatial distance. That is, given a pair of sample points pi = (xi, yi) and pj = (xj, yj),
the points’ correlation, E(pi, pj), is assumed to decrease with the Euclidean distance, dij,
between the points

E(pi, pj) = σ2e−λdij (5)

with dij =
√

(xi − xj)2 + (yi − yj)2.

Based on their linear estimator, the authors subsequently put forward the following rep-
resentation for the mean square error, i.e., the deviation from the “ideal” image resulting
from estimation error, after the Nth sample

ε2(p0, . . . , pN−1) =

∫ ∫

σ2 − UT R−1U dx dy (6)

where
Rij = σ2e−λ

√
(xi−xj)2+(yi−yj)2

and
Ui = σ2e−λ

√
(xi−x)2+(yi−y)2
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for all 0 ≤ i, j ≤ N − 1. The assumption of stationary first and second order central
moments has therefore yielded the result that the expected mean square (reconstruction)
error depends on the location of the N + 1th sample only. Since stationarity implies that
the image’s statistical properties are spatially invariant and given that point correlations
decrease with distance, uniformly choosing the N + 1th sample point to be that point
which is farthest away from the current set of sample points therefore represents the
optimal sampling approach within this framework.

This sampling approach is intimately linked with the incremental construction of a
Voronoi diagram over the image domain. To see this, note that the point farthest away
from the current set of sample sites, S, is represented by the centre of the largest circle
empty of any site si ∈ S. Shamos and Hoey [25] show that the centre of such a circle
is given by a vertex of the bounded Voronoi diagram of S, BVD(S ). Thus, as indicated
in figure 2, incremental (bounded) Voronoi diagram construction provides sample points
progressively.

Figure 2: The next farthest point sample (here: sample point 13) is located at the centre
of the largest circle empty of any other sample site.

From visual inspection of images it is clear that usually not only the sample covariances
but also the sample means and variances vary spatially across an image. When allowing
for this more general variability and thus turning to the design of a non-uniform, adaptive
sampling strategy, the assumption of sample point covariances decreasing, exponentially
or otherwise, with point distance remains valid. However, since Voronoi diagrams in
non-uniform metrics may lose favourable properties such as cell connectedness, Eldar et
al. [5, 6] opt for the non-optimal choice of augmenting their model by an application-
dependent weighting scheme for the vertices in the Euclidean Voronoi diagram.
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2.3 Fast Marching

Fast Marching represents a very efficient technique for the solution of front propagation
problems which can be formulated as boundary value partial differential equations. We
show that the problem of computing the distance map across a smooth sampling domain
can be posed in the form of such a partial differential equation and outline the Fast
Marching approach towards approximating its solution.

For simplicity, take the case of an interface propagating with speed function F (x, y, z)
away from a source (boundary) point (u, v, w) across a 3D Euclidean domain. When
interested in the time of arrival, T (x, y, z), of the interface at grid point (x, y, z), i.e., the
distance map T given source point (u, v, w), the relationship between the magnitude of
the distance map’s gradient and the given weight F (x, y, z) at each point can be expressed
as the following boundary value formulation

|∇T (x, y, z)| = F (x, y, z) (7)

with boundary condition T (u, v, w) = 0.
That is, the distance map gradient is proportional to the weight function. The problem
of determining a weighted distance map has therefore been transformed into the problem
of solving a particular type of Hamilton-Jacobi partial differential equation, the Eikonal
equation [8]. For F (x, y, z) > 0, this type of equation can be solved for T (x, y, z) using
Fast Marching.

Since the Eikonal equation is well-known to become non-differentiable through the de-
velopment of corners and cusps during propagation, the Fast Marching method considers
only upwind, entropy-satisfying finite difference approximations to the equation thereby
consistently producing weak solutions. As an example for a first order appromixation to
the gradient operator, consider [18]

[

max(D−x
ijkT,−D+x

ijkT, 0)2+

max(D−y
ijkT,−D

+y
ijkT, 0)2+

max(D−z
ijkT,−D+z

ijkT, 0)2
]1/2

= Fijk (8)

where Fijk ≡ F (i∆x, j∆y, k∆z). D−x
ijkT ≡ Tijk−Ti−1jk

h
and D+x

ijkT ≡ Ti+1jk−Tijk

h
are the

standard backward and forward derivative approximation with h representing the grid
spacing; equivalently for D

−y
ijkT , D

+y
ijkT , D−z

ijkT and D+z
ijkT . Tijk is the discrete approxima-

tion to T (i∆x, j∆y, k∆z) on a regular Cartesian grid.

This upwind difference approximation implies that information propagates from smaller
to larger values of T only, i.e., a grid point’s arrival time gets updated by neighbouring
points with smaller T values only. This monotonicity property allows for the maintenance
of a narrow band of candidate points around the front representing its outward motion.
The property can further be exploited for the design of a simple and efficient algorithm by
freezing the T values of existing points and subsequently inserting neighbouring ones into
the narrow band thereby marching the band forward. The basic Fast Marching algorithm
can thus be summarised as follows [23, 24]

0) Mark an initial set of grid points as ALIVE. Mark as CLOSE, all points neighbouring
ALIVE points. Mark all other grid points as FAR.

7



1) Let TRIAL denote the point in CLOSE featuring the smallest arrival time. Remove
TRIAL from CLOSE and insert it in ALIVE.

2) Mark all neighbours of TRIAL which are not ALIVE as CLOSE. If applicable, remove
the neighbour under consideration from FAR.

3) Using the gradient approximation, update the T values of all neighbours of TRIAL
using only ALIVE points in the computation.

4) Loop from 1).

Arrangement of the elements in CLOSE in a min-heap [21] leads to an O(N log N) imple-
mentation, with N representing the number of grid points. Note that a single min-heap
structure may be used to track multiple propagation fronts originating from different
points in the domain.

Unlike other front propagation algorithms [3], each grid point is only touched once,
namely when it is assigned its final value. Furthermore, the distance map T (x, y, z) is
computed with “sub-pixel” accuracy, the degree of which varies with the order of the
approximation scheme and the grid resolution. In addition, the distance map is com-
puted directly across the domain, a separate binary image indicating the source points
is not required. Finally, since the arrival time information of a grid point is only propa-
gated in the direction of increasing distance, the size of the narrow band remains small.
Therefore, the algorithm’s complexity is closer to the theoretical optimum of O(N) than
O(N log N) [23].

Kimmel and Sethian [7, 8] extend this “conventional” Fast Marching framework to
triangulated surfaces. Their algorithm, however, requires the splitting of any obtuse into
acute triangles as part of a preprocessing step. In the case of surfaces given in implicit or
point cloud form, this preprocessing step would further involve the triangulation of the
domain which may otherwise not be needed by the application.

Mémoli and Sapiro [11, 12] put forward an extension of the “conventional” Fast March-
ing method which allows for the computation of distance functions on implicit surfaces or
point clouds in three or higher dimensions without the need for any prior triangulation of
the domain.
Let M represent a closed hyper-surface in R

m given as the zero level-set of a distance
function φ : R

m → R. The r-offset, Ωr, of M is given by the union of the balls centred at
the surface points with radius r

Ωr :=
⋃

x∈M

B(x, r) = {x ∈ R
m : |φ(x)| ≤ r} (9)

For a smooth M and r sufficiently small, Ωr is a manifold with smooth boundary [11].
To compute the weighted distance map originating from a source point q ∈ M on M ,
Mémoli and Sapiro [11] suggest using the Euclidean distance map in Ωr to approximate
the intrinsic distance map on M . That is

|∇MTM(p)| = F (10)

for p ∈ M and with boundary condition TM(q) = 0 is approximated by

|∇TΩr
(p)| = F̃ (11)
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for p ∈ Ωr and boundary condition TΩr
(q) = 0. F̃ represents the (smooth) extension of

F on M into Ωr.
The problem of computing an intrinsic distance map has therefore been transformed
into the problem of computing a extrinsic distance map in an Euclidean manifold with
boundary. Mémoli and Sapiro [11, 12] show that the approximation error between these
two distance maps is of the same theoretical order as that of the Fast Marching algorithm.
With the order of the numerical approximation remaining unchanged, the Fast Marching
method can be used to approximate the solution to (11) in a computationally optimal
manner by only slightly modifying the Fast Marching technique to deal with bounded
spaces as follows

0) Mark an initial set of grid points in Ωr as ALIVE. Mark as CLOSE, all points which
neighbour ALIVE points and which fall inside Ωr. Mark all other grid points in Ωr

as FAR.

1) Let TRIAL denote the point in CLOSE featuring the smallest arrival time. Remove
TRIAL from CLOSE and insert it in ALIVE.

2) Mark all neighbours of TRIAL which belong to Ωr and which are not ALIVE as CLOSE.
If applicable, remove the neighbour under consideration from FAR.

3) Using the gradient approximation, update the T values of all neighbours of TRIAL in
CLOSE using only ALIVE points in the computation.

4) Loop from 1).

3 Fast farthest point sampling for implicit surfaces

and point clouds

In the following, we present the extension of the original FastFPS algorithm [13] to implicit
surfaces and point clouds. For simplicity, we consider the case of sampling from surfaces
in 3D and start with the uniform case.

The algorithm proceeds with the embedding of the given implicit surface or point
cloud in a Cartesian grid sufficiently large as to allow for a thin offset band, Ωr, around
the surface. To include the stencil used in a finite difference approximation such as (8),
the radius r needs to be at least as large as ∆x

√
m, where ∆x denotes the grid size. The

radius is bounded from above by the minimum of the maximal radius which does not
cause an intersecting boundary or an unconnected domain and the inverse of a bound for
the absolute sectional curvature of M . These bounds have to be met by r to be able to
obtain both a smooth extension of F on M into Ωr and a smooth boundary for Ωr. Note
that alongside the grid size ∆x, the radius r may be allowed to vary locally [11].

Given an initial set of sample points S in Ωr, we construct BVD(S ) by “simulta-
neously” propagating fronts from each of the initial sample points outwards. During
this propagation, only points located in Ωr are considered. This process is equivalent to
the computation of the Euclidean distance map across the domain given S and Ωr. It
is achieved by solving the Eikonal equation (7) with F (x, y, z) = 1 and using a single
min-heap.
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The vertices of BVD(S ) are given by those grid points entered by four or more propa-
gation waves (or three for points on the domain boundary) and are therefore obtained as
a by-product of the propagation process. The Voronoi vertices’ arrival times are inserted
into a max-heap data structure. The algorithm then proceeds by extracting the root
from the max-heap, the grid location of which represents the location of the next farthest
point sample. The sample is inserted into BVD(S ) by resetting its arrival time to zero
and propagating a front away from it. The front will continue propagating until it hits
grid points featuring lower arrival times and thus belonging to a neighbouring Voronoi
cell. The T values of updated grid points are updated correspondingly in the max-heap
using back pointers. New and obsolete Voronoi vertices are inserted or removed from the
max-heap respectively. The algorithm continues extracting the root from the max-heap
until it is empty or the sample point budget has been exhausted. Since points are sampled
in Ωr, the equivalent sample points on the implicit surface or point cloud are found at
any given time by projecting the sample points in Ωr onto the surface.
By allowing F (x, y, z) to vary with any (positive) weights associated with points in the
domain, this algorithm is easily extended to the case of non-uniform, adaptive sampling.
The algorithm can thus be summarised as follows

0) Embed the given surface in a Cartesian grid sufficiently large to allow for an offset
band of size r around the surface. Given an initial sample set S ∈ Ωr, n = |S| ≥ 1,
compute BVD(S ) by propagating fronts with speed Fijk from the sample points
outwards using “extended” Fast Marching. Store the Voronoi vertices’ arrival times
in a max-heap.

1) Extract the root from the max-heap to obtain sn+1. S ′ = S ∪ {sn+1}. Compute
BVD(S ′) by propagating a front locally from sn+1 outwards using Fast Marching
and a finite difference approximation such as (8)).

2) Correct the arrival times of updated grid points in the max-heap. Insert the vertices of
BV (sn+1 , S ′) in the max-heap. Remove obsolete Voronoi vertices of the neighbours
of BV (sn+1 , S ′) from the max-heap.

3) If neither the max-heap is empty nor the point budget has been exhausted, loop from
1).

Extracting the root from, inserting into and removing from the max-heap with subsequent
re-heapifying are O(log W ) operations, where W represents the number of elements in the
heap. W is O(N), N representing the number of grid points. The updating of existing
max-heap entries is O(1) due to the use of back pointers from the grid to the heap.
The detection of a (bounded) Voronoi cell’s vertices and boundary is a by-product of the
O(N log N) front propagation. Thus, the algorithm’s asymptotic efficiency is O(N log N).

4 Worked example

We consider the problem of (progressively) sampling a dense point cloud representation
of the Stanford Bunny shown in figure 3. The oversampling of the object is a typical
data acquisition result and usually requires data reduction before any kind of surface
reconstruction and/or rendering can be attempted. Instead of data reduction, we sample
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the point cloud using FastFPS for point clouds and render the resulting uniform and
adaptive point sets. To apply FastFPS for point clouds to this point set, we embed the

Figure 3: Full resolution representation of Stanford Bunny.

surface representation in a 3D Cartesian grid. The FastFPS algorithm is then used to
sample the point cloud both (irregularly) uniformly and adaptively following the selection
of a starting sample point within the outside offset band surrounding the surface. For
simplicity, r was set to a uniform 2∆x.

Figure 4 presents both the uniform and adaptive sample point sets produced by
FastFPS for sample point budgets of 1.4%, 2.8%, 11.1% and 22.2% of the size of the
original point set respectively. The non-uniform point sets were obtained by weighing
each surface point by an approximation of the local curvature. From the inspection of
figure 4, it is evident that in the non-uniform case, the majority of samples is placed in
regions which are relatively less smooth. For the Bunny model and the curvature approx-
imation used here, this leads to relatively poor results for small sample point budgets
when compared to the renderings of the corresponding uniform point sets. For larger
point budgets, however, non-uniform sampling yields increasingly better results due to
the availability of locally dense point samples in areas of relatively high curvature such
as the paws. This effect is strengthened when choosing a point-based local importance
measure such as Pauly et al [16] “surface variation” measure.
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5 Conclusions

We presented an extension of the Fast Marching farthest point sampling principle in-
troduced in Moenning and Dodgson [13] to the case of surfaces given in implicit or
point cloud form. By making use of a recently proposed extension to the Fast Marching
framework [11, 12], this extended FastFPS algorithm retains the computational efficiency
and ease of implementation of the basic FastFPS algorithm. The restrictive requirement
of (acutely) triangulated domains associated with the basic FastFPS algorithm for sur-
faces [13] is therefore overcome by the suggested extension and a new implicit surface
or point cloud sampling algorithm yielding uniform or adaptive sample point sets is ob-
tained.
Possible applications include progressive acquisition, surface encoding and compression,
progressive transmission and (progressive) rendering.

As regards further FastFPS-related research, we are currently working on detailed
comparative studies regarding the quality of FastFPS sample point sets generated from
images and surfaces relative to sample point sets produced by relevant alternative sam-
pling strategies. This work includes the analysis of any explicit guarantees which can be
made regarding the nature of FastFPS sample point sets.
On the application side, we are interested in using uniform FastFPS surface sample point
sets alongside subdivision displacement maps [9] for multiresolution surface representa-
tions. In the case of point clouds, point-based (multiresolution) representations for point-
based rendering are readily available [1, 10, 17].
With regard to adaptive point cloud sampling, we are investigating point-based curva-
ture approximations yielding results superior to the curvature approximation employed
in the previous section. Finally, we are exploring the use of FastFPS as a link between
the data acquisition and surface reconstruction/rendering steps in a fully integrated and
automated surface processing pipeline [19, 20]. With the help of point-based curvature
approximations and FastFPS, previously collected samples may be used for the deter-
mination of future sample point locations thereby, for example, concentrating relatively
more samples in regions of high curvature.
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