
Technical Report
Number 578

Computer Laboratory

UCAM-CL-TR-578
ISSN 1476-2986

Linear types for packet processing
(extended version)

Robert Ennals, Richard Sharp, Alan Mycroft

January 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Robert Ennals, Richard Sharp, Alan Mycroft

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

Series editor: Markus Kuhn

ISSN 1476-2986

Linear Types for Packet Processing

(extended version)

Robert Ennals Richard Sharp Alan Mycroft

Abstract

We present PacLang: an imperative, concurrent, linearly-typed language de-
signed for expressing packet processing applications. PacLang’s linear type system
ensures that no packet is referenced by more than one thread, but allows multiple
references to a packet within a thread . We argue (i) that this property greatly sim-
plifies compilation of high-level programs to the distributed memory architectures
of modern Network Processors; and (ii) that PacLang’s type system captures that
style in which imperative packet processing programs are already written. Claim
(ii) is justified by means of a case-study: we describe a PacLang implementation
of the IPv4 unicast packet forwarding algorithm.

PacLang is formalised by means of an operational semantics and a Unique
Ownership theorem formalises its correctness with respect to the type system.

1 Introduction

Network Processors (NPs) [1, 10, 19] are programmable, application-specific hardware
architectures designed to facilitate high-speed packet processing. NPs typically contain
multiple processor cores (allowing multiple network packets to be processed concurrently)
and multiple memory banks. The majority of NPs are based on what is known as a
distributed memory architecture: not all memory banks are accessible from all processor
cores.

State-of-the-art programming techniques for NPs are invariably low-level, requiring
programmers to specify explicitly how data will be mapped to, and dynamically moved
between, complex arrays of available memory banks. This results in design flows which
are difficult to master, error prone and inextricably tied to one particular architecture.
Our research attempts to address this problem by developing higher-level languages and
tools for programming NPs.

This paper formally defines an imperative language which provides an architecturally
neutral concurrent programming model—multiple parallel threads accessing a shared
heap—and considers the problem of compiling this language to NP-based architectures.
We argue that although, in general , the efficient compilation of a high-level concurrent
language to a diverse range of NP architectures is very difficult, in the domain of packet
processing the problem is more tractable. Our argument is based on the observation that
a great deal of network processing code is written in a restricted data-flow style, in which
network packets can be seen to “flow” through a packet processing system. We formalise
this restricted style of programming by means of a linear type system and prove a unique

3

ownership property : if a program is typeable then at any given point in its execution,
each packet in the heap is referenced by exactly one thread. It is this property that we
argue simplifies the process of compiling for network processors.

Contributions of this paper:

The contributions of this paper are:

• The formalisation of a concurrent, first-order, imperative language which we argue
is well suited for compiling to a diverse range of NP architectures.

• A simple, intuitive linear type system in which no packet is referenced by more than
one thread but multiple references to packets within a thread are allowed.

• A case-study that demonstrates both that the type system is applicable to the
domain of packet processing (i.e. not overly restrictive) and that the resulting code
is comprehensible to C/C++ programmers.

Previous research [17] has shown that (i) locking is unnecessary for linearly typed ob-
jects; and (ii) memory leaks can be detected statically as type errors. Although these are
not direct contributions of this paper, they are nevertheless benefits enjoyed by PacLang
programmers.

Structure of this paper:

We outline the design of an NP-based platform and explain how our unique ownership
property helps us target such architectures (Section 1.1). Section 2 gives formal syntax
and types for PacLang and Section 3 defines its linear typing judgements along with
more intuitive explanation. An operational semantics for the language is presented and
the unique ownership property formalised (Section 4) and proved (Appendix A). To jus-
tify that our linear type system is not overly restrictive in the domain of packet processing
applications, we present a case study which shows how PacLang can be used to imple-
ment an IPv4 packet forwarder (Section 5). Finally we consider related work (Section 6)
and conclude, giving directions for future research/development (Section 7).

1.1 Compiling for Network Processors

Figure 1 gives a concrete example of an NP-based system: the Intel IXDP2400 [9]. The
platform consists of two Intel IXP2400 NPs [10] connected in a pipeline configuration.
Each NP contains 16 small RISC processors called micro-engines (labelled µE-1,. . .,µE-
16), a single Intel X-Scale processor and some on-chip shared RAM. Each micro-engine1

has its own local memory. The external SRAM and DRAMs can be accessed by all the
cores on the NP to which they are connected. Micro-engines are equipped with next
neighbour registers . The next neighbour registers of µE-i are accessible to µE-(i+1),
forming a uni-directional datapath between consecutive micro-engines.

1Note that each micro-engine actually supports 8 hardware-level threads. This level of detail is beyond
the scope of the paper.

4

Receive packets from network Transmit packets to network

Media Switch Fabric Interface

uE-1 Mem.

uE-16 Mem.

X-Scale
Core

SRAM DRAM

IXP2400

on chip
shared
memory

uE-2 Mem.

Media Switch Fabric Interface

uE-1 Mem.

uE-16 Mem.

X-Scale
Core

SRAM DRAM

IXP2400

on chip
shared
memory

uE-2 Mem.

Figure 1: Simplified diagram of IXDP2400 NP evaluation board

When programming for architectures such as this a great deal of low-level knowledge is
required to decide how packets should be represented in memory and how packets should
be transferred between different memory banks2. For example, if a small amount of data
needs to be transferred between two threads running on µE-1 and µE-2, then the most
efficient mechanism may well be to move the data across the serial datapath connecting
µE-1 and µE-2. Conversely, if we have data already in DRAM that needs to be transferred
between threads running on µE-1 and the X-Scale core then leaving the data where it is
and passing a reference to it is the obvious choice. When passing data between the two
separate IXP2400s we must pass-by-value since the two processors have no memories in
common.

Clearly, if we are to succeed in our goal of designing a high-level language that can
be compiled to a variety of different NP architectures then a compiler must be free to
choose how data will be passed between threads (e.g. pass a reference pointing to shared
memory, or pass the data itself over a shared bus). Unfortunately, conventional imperative
languages (e.g. C/C++) are unsatisfactory in this respect since they force the programmer
to explicitly specify whether data will be passed by value or passed by reference. Note
that a compiler cannot simply transform pass-by-value into pass-by-reference (or vice
versa); sophisticated alias analysis is required to determine whether this transformation
is semantics-preserving—an analysis that is undecidable in general.

In contrast, in the PacLang framework, the unique ownership property (provided by
our linear type system) gives us two key benefits: (i) a thread can dynamically move an
object it owns to a new location without worrying about dangling references; and (ii)
pass-by-value and pass-by-reference are semantically indistinguishable when transferring
data between threads. This gives a PacLang compiler the freedom to make decisions
regarding both the flow of packets between available memory banks and the low-level
mechanisms employed to implement these transfers, on a per-architecture basis.

2Moving a packet between different memories as it “flows” through a packet processing application is
crucial to achieving efficient implementation on the IXP (and other NPs). Data should be located “as
close as possible” to the thread operating on it in order to reduce memory latency.

5

v ← i integer constant
| b boolean constant
| x variable

e ← if v then e1 else e2 conditional
| let (x1, . . . , xj) = f(v1, . . . , vk) in e (j, k ≥ 0) call
| return (v1, . . . , vk) (k ≥ 0) return

d ← (σ1, . . . , σj) f(ρ1 x1, . . . , ρk xk){e} (j, k ≥ 0) function definition
| packetQueue q; queue definition

p ← d1 . . . dn top-level program

ρ, σ, τ ← int | bool | packet | !packet types

Figure 2: Syntax of PacLang, our simple first-order CBV language.

2 A Packet Processing Language

PacLang is a concurrent, first-order, imperative language with a linear type system; its
syntax is presented in Figure 2. Concurrency is supported by the simple expedient of
treating functions whose name is spelt main1, . . . , mainn, as representing the entry points
of n static threads (n ≥ 1)3. Such functions take no arguments and return no results.
Statically allocated, synchronous (blocking) packet queues are provided to facilitate inter-
thread communication.

Expressions, e, comprise conditionals, function calls and returns. Note that Pa-
cLang syntax forces all function return values to be explicitly bound to variables (cf.
A-Normal Form [6]); this simplifies subsequent typing and semantic rules. In addition to
function names defined by function definitions we assume some functions to be built-in,
e.g. arithmetic and queue manipulation primitives (see later); both forms may be called
using the let construct. We use v to range over simple expressions (constants and vari-
ables). A program, p, consists of a sequence of function and queue definitions, d. Note
that functions take multiple arguments and return multiple results.

In contrast to most languages in the linear types literature, PacLang has imperative
features. Given a packet reference p, an integer offset i and a value v, the built-in function
update(p,i,v) updates p to contain v at offset i. The packet read function read(p,i)
returns the value stored at offset i in packet p.

Global queues also provide side-effecting enqueue and dequeue operations. To simplify
the presentation we assume built-in enq and deq functions replicated over queue names.
We write q.enq(p) to enqueue a packet p in the queue declared with name q. Similarly,
q.deq() returns a packet dequeued from q. The semantics of queues are formalised in
Section 4.

We also provide built-in functions new(i) which given an integer size i, creates a new

3In practice a compiler may wish to transform a single programmer-specified thread into several finer-
grained threads for efficient implementation on certain NP architectures. Such automated partitioning is
beyond the scope of this paper.

6

packet buffer of size i, returning its associated packet reference; and kill(p), which takes
a packet reference p, consumes it, deallocates the associated packet and returns nothing.
In PacLang packets are simply dynamically created arrays. As well as representing
network packets, they can also be used as containers for arbitrary (non-pointer) data
within a PacLang program.

Syntactic sugaring is employed to increase readability for those familiar with C. We
write “f(v1, . . . , vk); e” to abbreviate “let () = f(v1, . . . , vk) in e”. We allow nested
function calls to be written directly, assuming a left-to-right evaluation order. For exam-
ple, the expression “let x = f(g(x), h(y)) in e”, becomes “let z1 = g(x) in let z2

= h(y) in let x = f(z1, z2) in e” where z1, z2 /∈ fv(e). We add types to the variables
following let (corresponding to the return type of the called function) as usual in C, and
also drop the let keyword and parentheses entirely. We write void in place of () in the
signature of functions that return an empty tuple of values and adopt the convention that
an expression without an explicit return implicitly returns a value of type void. We also
introduce a switch/case construct which is translated into nested ifs in the usual way.
We write update(p,a,v) using C-like syntax, p[a] = v, and use array subscript nota-
tion, p[a], for read(p,a). To avoid the extra syntax required for explicit while-loops, we
use recursion to model iteration in this presentation. (Of course, a PacLang compiler
would implement tail-call optimisation to ensure the generated code is as efficient as if it
had been written with while-loops.)

3 Linear Type System

An industrial NP programming textbook [11] observes: “In most designs processing of
a packet by multiple threads simultaneously is rare, but using multiple threads to process
packets at different points in the packet’s lifetime is common.” This quote summarises the
philosophy behind PacLang’s linear type system: we (i) guarantee that, in a well typed
program, a packet, p, cannot be accessed by multiple threads simultaneously; whilst (ii)
allowing p to be transferred between threads as it flows through an application. Unlike
many linear type systems, we allow p to be referenced multiple times (aliasing). However,
we require that all references to p reside in the same thread. Allowing intra-thread aliasing
is crucial to the readability of PacLang code. It is this property that allows PacLang
programmers to write in the familiar imperative (pass-by-reference) style—see Section 5.
In many ways, PacLang’s type system is inspired by Kobayashi’s work on Quasi-Linear
Types [12].

We start by defining some terminology. A variable, x, that holds a reference to a
packet p, will either be of type packet or !packet :

• If x has type packet then, at any point where x is in scope, there are no other
references to p. We say that x is an owning variable and holds an owning reference
for p. If one has an owning reference to p then one can safely move p to another
thread without creating dangling references.

• If x has type !packet then other references to p may exist, but they must be on the
same thread as x. We say that x is an alias for p. An alias cannot escape from its
enclosing scope.

7

Value types, int and bool, are non-linear and behave as is normal.
Our type rules use arrow-notation for vectors. We write ~τ to represent a vector of

types and similarly ~x and ~v for vectors of variables and values respectively. We let ρ, σ, τ
range over types. Function types are written ρ1× . . .× ρk → σ1× . . .× σj or more briefly
as ~ρ → ~σ. Given a function name f , F(f) gives its type signature. For user-defined
functions this comes from the textual definition; the types of built-in functions are given
in Figure 4.

Typing judgements for expressions (`
e
) take the form Γ `

e
e : ~τ where Γ is a typing

environment, e is an expression (generally returning a tuple) and ~τ is the return type
(generally a tuple type). Γ can be regarded as the set of capabilities that e requires
during its execution. Each capability in Γ takes the form x :ρ specifying that x is used as
ρ in e. We adopt the usual notation of writing Γ, x :τ to represent Γ extended to include
the capability x : τ (note that scope shadowing is problematic in linear type systems so
we will simply presume that all variable names are distinct).

The typing rules for PacLang, rely on two partial binary operators, “+” and “;”
which operate on type environments. An expression which requires capabilities in Γ1 and
then subsequently the capabilities in Γ2, can equivalently be said to require the capabilities
in environment Γ1; Γ2. Similarly, if an expression requires capabilities in both Γ1 and Γ2

in an unordered fashion, it requires Γ1 + Γ2. We first define, “+” and “;” over types:

int + int = int
bool + bool = bool

!packet + !packet = !packet

int ; int = int
bool ; bool = bool

!packet ; !packet = !packet
!packet ; packet = packet

If no rule is given then that signifies a type error. Note that “;” is a strict superset of
“+”. We extend these operators to type environments by the following definitions (here
⊗ ranges over “+” and “;”):

Γ1 ⊗ Γ2

def
= {x : τ | x : τ ∈ Γ1 ∧ x /∈ dom Γ2} ∪

{x : τ | x : τ ∈ Γ2 ∧ x /∈ dom Γ1} ∪

{x : τ1 ⊗ τ2 | x : τ1 ∈ Γ1 ∧ x : τ2 ∈ Γ2}

Figure 3 presents the linear type rules. Typing rules for definitions (`
d
), programs

(`
p
) and simple expressions (`

v
) are self-explanatory, although note that, in contrast to

non-linear type systems, the (var) rule only holds if the environment contains the single
assumption, x :τ .

The typing rules for expressions (`
e
) deserve more detailed explanation. Essentially

they ensure (i) that an owning variable x for a packet p goes out of scope for the lifetime
of any aliases to p; and (ii) that an owning variable x may no longer be used if its owning
reference is passed to another owning variable.

For a variable x to be of type !packet , x must be bound as a formal parameter of its
enclosing function definition. When calling a function, f , the (apseq) rule allows aliases to
be created from an owning variable provided that the owning variable goes out of scope4

4In PacLang this is ensured by the absence of nested function definitions and the absence of global
packet variables.

8

(var)
{x : τ} `

v
x : τ

(int)
∅ `

v
i : int

(i ∈ Z) (bool)
∅ `

v
b : bool

(i ∈ B)

Γ1 `
v
v1 : ρ1 . . . Γk `

v
vk : ρk Γ0, x1 :σ1, . . . , xj :σj `

e
e : ~τ

(apseq)
(Γ1 + . . . + Γk); Γ0 `

e
let (x1, . . . , xj) = f(v1, . . . , vk) in e : ~τ

provided F(f) = (ρ1 × . . .× ρk)→ (σ1 × . . .× σj)

Γ1 `
v
v1 : τ1 . . . Γj `

v
vj : τj

(ret)
Γ1 + . . . + Γj `

e
return (v1, . . . , vj) : τ1 × . . .× τj

provided no τj is !packet

Γ1 `
v
v : bool Γ2 `

e
e1 : ~τ Γ2 `

e
e2 : ~τ

(if)
Γ1; Γ2 `

e
if v then e1 else e2 : ~τ

Γ `
e
e : ~τ

(weak)
Γ, x : ρ `

e
e : ~τ

provided ρ is not packet

{x1 :ρ1, . . . , xk :ρk} `
e
e : σ1 × . . .× σj

(fundef)
`
d
(σ1, . . . , σj) f(ρ1 x1, . . . , ρk xk){e}

(qdef)
`
d
packetQueue q;

`
d
d1 . . . `

d
dn

(prog)
`
p
d1 . . . dn

Figure 3: Linear typing rules

during the call, and that the alias dies before the function returns. It is the use of the
environment sequencing operator “;” in the consequent of the (apseq) rule that facilitates
the creation of aliases from an owning variable. (Recall that !packet ; packet = packet).

The (ret) rule types its subexpressions in environments Γ1, . . . , Γj respectively, and uses
the “+” operator to combine these environments in the antecedent. The “+” operator is
used in this context to prevent owning references being duplicated. We prevent values of
type !packet being returned because the enclosing scope may contain the corresponding
owning variable.

The type signatures of built-in functions are given in Figure 4. Note that inter-thread
communication primitives, q.enq and q.deq , enqueue and dequeue values of type packet

int 〈arith-op〉 (int x, int y); bool 〈bool-op〉 (bool x, bool y);

bool 〈rel-op〉 (int x, int y);

packet new(int size); void kill(packet p);

packet q.deq(); void q.enq(packet p);

int read(!packet p, int offset);

void update(!packet p, int offset, int value);

Figure 4: Type signatures of the built-in functions expressed in C-like syntax

9

(i.e. owning references). Thus when transferring a packet between threads, the packet can
be physically relocated.

We assume the existence of special queues, receive and transmit which repre-
sent the external network interface. receive.deq() reads a packet from the network;
transmit.enq(p) schedules packet p for transmission. In reality a network appliance
would typically contain multiple network interfaces and one would expect a variety of
more sophisticated range of read/write calls. However, since this does not affect the fun-
damental concepts expressed in PacLang, we stick to the simple interface above for the
purposes of this paper.

The following two examples (in de-sugared form) help to illustrate PacLang’s linear
type system. First consider the following valid PacLang expression:

let packet x = new(10) in

let () = update(x,0,5) in

let () = update(x,1,10) in

let () = transmit.enq(x) in

return ()

This code will type check successfully as, although x is accessed multiple times, update
only requires a local alias to x (!packet) and so does not prevent x being passed as type
packet to transmit.enq.

Conversely, consider the following invalid PacLang expression:

let packet x = new(10) in

let () = kill(x) in

let () = transmit.enq(x) in

return ()

The type system rejects this program since x is passed twice as type packet : once to the
kill function and then again to the transmit.enq function. Once x has been passed as
type packet , it effectively disappears and cannot be used again.

4 Operational Semantics

In this section we define the language formally by means of a small-step operational
semantics modelled on the Chemical Abstract Machine [2]. States of the machine are an
unordered multiset of reacting molecules. We let W range over machine states. The “|”
operator separates molecules in the multiset solution (cf. parallel composition). Molecules
take the following forms:

M ← [({~x}e)]f (function definition)

| 〈〈Q〉〉q (queue)

| 〈H〉 (shared heap)
| (|e, Σ|) (thread: expression and its stack frames)

We let α range over an infinite set of heap-bound packet reference values5. We extend
the syntactic category, v, allowing values also to be packet references, α, in addition to
integer and boolean constants.

5There is no syntactic (compile-time) form of such values.

10

Core language primitives:

[({~x}e1)]f | (|let ~y = f(~v) in e2, Σ|) [({~x}e1)]f | (|e1{~v/~x}, ({~y}e2) • Σ|) (user-call)

(|let x = v1 op v2 in e, Σ|) (|e{v/x}, Σ|) where v = v1 op v2 (basic-op)
(|return ~v, ({~x}e) • Σ|) (|e{~v/~x}, Σ|) (ret)

(|if true then e1 else e2, Σ|) (|e1, Σ|) (if
1
)

(|if false then e1 else e2, Σ|) (|e2, Σ|) (if
2
)

Packet manipulation:

〈H〉 | (|let x = new(i) in e, Σ|) 〈H[α 7→ empty i]〉 | (|e{α/x}, Σ|) (new)
where α is a fresh name

〈H〉 | (|let () = kill(α) in e, Σ|) 〈H\α〉 | (|e, Σ|) (kill)
〈H〉 | (|let x = read(α, i) in e, Σ|) 〈H〉 | (|e{H(α)(i)/x}, Σ|) (read)

〈H〉 | (|let () = update(α, i, v) in e, Σ|) 〈H[α 7→ H(α)[i 7→ v]]〉 | (|e, Σ|) (update)

Queues:

〈〈α •Q〉〉q | (|let x = q.deq() in e, Σ|) 〈〈Q〉〉q | (|e{α/x}, Σ|) (deq)

〈〈Q〉〉q | (|let () = q.enq(α) in e, Σ|) 〈〈Q • α〉〉q | (|e, Σ|) (enq)

Figure 5: Operational Semantics for PacLang

A function molecule, [({~x}e)]f , corresponds to a source-level function definition for f ,
with formal parameters, ~x, and body e. Function molecules themselves do not perform
computation, they exist merely to provide their bodies to callers.

A queue molecule, 〈〈Q〉〉q has name q and contents Q, where Q takes the form of a list
of elements separated by the associative operator •. An empty queue is written ε. In the
semantics presented here, queues are unbounded with synchronous (blocking) behaviour.

A heap molecule, 〈H〉, maps packet references , α, onto packets, p. A packet, p, is a
finite mapping from integer offsets, i, to integer values, p(i)6. We define emptyk as the
empty packet of size k: emptyk = {0 7→ 0, . . . , (k−1) 7→ 0}. We write 〈H\α〉 for the heap
which is as 〈H〉 but no longer contains an entry for α. The heap, which is as 〈H〉 but maps
α to p, is written 〈H[α 7→ p]〉. Thus, updating the ith element of the packet referenced by
α to value 42 is written 〈H[α 7→ H(α)[i 7→ 42]]〉. Note that the heap molecule need not
be implemented as a single shared memory. The central result of this paper is that, due
to PacLang’s unique ownership property, a compiler is free to map the packets in 〈H〉
to the multiple memory banks of a distributed memory architecture.

A thread molecule, (|e, Σ|), corresponds to one of the main-functions (see Section 2)
where e is an evaluation state and Σ is a stack of (function-return) continuations as in
Landin’s SECD machine. As with queue molecules, we use the associative operator, •, to
separate elements on the stack and write ε for the empty stack. The syntax of evaluation
states, e, is essentially the same as the syntax of expressions given in Figure 2, save that as
noted above unbound variables do not occur but values may also be packet references, α.

6If the offset is outside the domain of the packet the result is undefined.

11

We write “{~x}e” for the continuation that binds variables ~x and continues as evaluation
state e.

We write init(P) to denote the initial state for program P . It consists of a function
molecule, [({~x}e)]f , for each function definition, f(~x){e}, in P ; a thread molecule, (|ej, ε|),
for each definition mainj(){ej} in P ; an empty queue molecule 〈〈ε〉〉q for each queue defi-
nition in P ; and an empty heap 〈 〉.

The semantics is given as a transition relation, →, on states (multisets of molecules).
For convenience, we define→ in terms of an operator, , which operates on only a subset
of the molecules in a complete state:

M1 | . . . |Mn M ′

1
| . . . |M ′

n
()

∆1 | . . . | ∆k |M1 | . . . |Mn → ∆1 | . . . | ∆k |M
′

1
| . . . |M ′

n

where ∆1, . . . , ∆k are molecules that form part of the state, but are not of interest to the
 -transition. Figure 5 gives transition rules for PacLang. Capture-free substitution of
values ~v for variables ~x in expression e is written e{~v/~x}.

The outside world interacts with the program by placing network packets on the
receive queue and removing network packets from the transmit queue. In reality these
queues would be filled and emptied by hardware. However, to avoid extra semantic rules
to express this, we can model a generic network interface as if it were two system-provided
threads, one of which dequeues packets from transmit and frees them; the other of which
constructs and allocates appropriate packets and enqueues them on receive.

4.1 Unique Ownership

Recall from Section 1 that the primary motivation for our type-system is to ensure that
every packet in the heap is referenced by exactly one thread. We have argued that
this unique ownership property makes practical the mapping of a high-level program to
a variety of diverse hardware architectures (see Section 1.1). In this section we define
unique ownership formally.

Let, pr(M), be the set of packet references, α, that occur in molecule M (This is
empty for function molecules, but generally non-empty for thread and queue molecules;
pr(·) is not applied to the heap molecule). We write S1] S2 to be the union of sets S1

and S2 under the condition that the elements of S1 and S2 are disjoint (S1 ∩ S2 = ∅).

Definition 1 (Unique Ownership)

UniqueOwn(M1 | . . . |Mn | 〈H〉) ⇐⇒ pr(M1)] . . .] pr(Mn) = dom H

Theorem 1 (Preservation of Unique Ownership) If a program, P , types then any
state, W , resulting from execution of P satisfies unique ownership:

`
p
P ∧ init(P)

∗

→ W ⇒ UniqueOwn(W)

A proof of this theorem is presented at the end of this document (see Appendix A).

12

5 Case Study: An IPv4 Packet Forwarder

In this section we outline the PacLang implementation of the IP (version 4) uni-cast
packet forwarding algorithm. The precise details of IP packet forwarding are not the focus
of this section and, indeed, due to space constraints are not described here (the interested
reader is referred to the IETF standards [13, 14]). Instead, the purpose of the example
is to outline the implementation of a realistic application, demonstrating that (i) packets
are indeed treated as linear objects in real-life applications; and (ii) that the PacLang
type-system is intuitive and easy to use.

Figure 6 shows the top-level structure of our PacLang IPv4 packet forwarder; we omit
many of the function bodies, giving only their signatures. Function eth readAndClassify()

reads ethernet packets from the network interface and classifies them according to their
type. Function ip lookup performs a route lookup (on an externally defined routing
table) returning both the next hop IP address and the network interface on which to
forward the packet. (Note that since the external routing table component only contains
ints, we do not have to worry about it breaking unique ownership.)

The program is divided into two separate threads (main1 and main2). The main1

thread sits in a tight loop, repeatedly calling the read/classify function. Packets which
require ICMP processing are written to the icmpQ queue. The main2 thread reads packets
from icmpQ and performs the ICMP processing. The details of this thread are omitted. An
example of a side-effecting function that manipulates packets is given by the ip dec ttl

function which decrements the IP Time-To-Live field.
The PacLang code given here demonstrates that our linear type system naturally

models the way packets flow through the system as a whole. Note particularly that aliases
(!packet types) allow us to express imperative operations on packets without requiring a
packet’s owning reference to be tediously threaded through all imperative operations (cf.
the Clean language [8]).

Let us now consider compiling the PacLang IPv4 packet forwarder to the architecture
shown in Figure 1.1. Due to PacLang’s unique ownership property a compiler is free to
choose between either (say) implementing both threads on a single IXP2400, implementing
the queue using a shared memory; or placing main1 on the first IXP2400, and main2 on
the second, passing packets by value between the two. In the latter case the queue itself
could be located on either the first or second network processor and, further, as soon as a
packet is transmitted from the first to the second IXP it can be immediately deallocated
from the memory of the first. Although PacLang makes these tradeoffs very easy to
reason about, recall that this is not the case in the framework of traditional imperative
languages (e.g. C/C++)—see Section 1.1.

6 Related Work

There has been a great deal of work in the area of linear types. Of this, our research
is most closely related to Kobayashi’s quasi-linear type system [12]. Aliases in our work
(!packet) correspond to δ-uses in the quasi-linear framework. Similarly, owning references
(of type packet) correspond to 1-use types. There are three major differences between
our work and Kobayashi’s. Firstly, we do not deal with higher-order functions: these add
much of the perceived complication of linear types; hence this makes our type system

13

int eth_type(!packet p); // read type-field of ethernet frame

void eth_gen_arp_response(packet p); // generate response to ARP query

void eth_proc_arp_response(packet p); // process ARP response packet

void ip_local_packet(packet p); // send packet to local network stack

void ip_process_options(!packet p); // process IP options

void ip_transmit(packet p, int tx_interface, int ip_nexthop);

// do MAC-level processing, get MAC address of next hop and transmit

int eth_rx_iface(!packet p); // which interface was packet from?

packetQueue icmpQ; // queue for packets which require ICMP processing

(int, int) ip_lookup(int dest_ip_addr);

// lookup IP address and network interface for next-hop in route

void eth_readAndClassify() {

packet p = receive.deq();

switch (eth_type(p)) of {

case ARP_QUERY: eth_gen_arp_response(p);

case ARP_RES: eth_proc_arp_response(p);

case IP: ip_forward(p);

default: kill(p); }}

void ip_forward(packet p) {

if (ip_packet_for_localhost(p)) ip_local_packet(p);

else {

(int nexthop, int iface) = ip_lookup(eth_ip_dest_addr(p));

if (nexthop == 0) icmpQ.enq(p);

else { if (iface==eth_rx_iface(p)) icmpQ.enq(p);

else ip_forward_packet(p,iface,nexthop); }}}

void ip_forward_packet(Packet p, int iface, int nexthop) {

if (ip_dec_ttl(p)) icmpQ.enq(p);

else { ip_process_options(p);

ip_transmit(p,tx_iface,ip_nexthop); }}}

bool ip_dec_ttl(!packet p) {

if (p[ip_ttl]==0) return true;

else { p[ip_ttl] = p[ip_ttl]-1; return false; }}

// thread 1 -- read, process, transmit loop:

void main1() { eth_readAndClassify(); main1(); }

// thread 2 -- process icmp packets:

void main2() { packet p = icmpQ.deq(); ... ICMP processing ...; main2(); }

Figure 6: Top-level structure of an IPv4-over-ethernet packet forwarding engine

14

much simpler and, we argue, more accessible to industrial software engineers. Secondly,
we work with a concurrent language. Thirdly, whereas Kobayashi is primarily concerned
with eliminating garbage collection, we use linear types to assist in the mapping of high-
level specifications to distributed memory architectures.

Clarke et al. have proposed ownership types [5, 4] for object-oriented languages. Each
ownership type is annotated with a context declaration. The type system ensures that
types with different declared contexts cannot alias. Ownership types have been applied
to the detection of data races and deadlocks [3].

The auto ptr template in the C++ standard library [15] exploits the notion of “unique
ownership” dynamically . Suppose p1 and p2 are of type auto ptr, then the assignment
p2 = p1 copies p1 to p2 as usual but also nulls p1 so it cannot be used again. Similarly,
if an auto ptr is passed to a function it is also nulled. In this framework violation of
the unique ownership constraint is only detected at run-time by a null pointer check.
However, the widespread use of auto ptrs in practical C++ programming suggests that
working software engineers find the notion of object ownership intuitive and useful.

Region-based memory management allows a programmer to declare regions : unbounded
areas of memory where values can be allocated. When the objects in a region, r, are
no-longer required, r (and thus all the objects it contains) is deallocated in one fell
swoop. A number of researchers have shown how type-systems which control the al-
location/deallocation of regions can support safe explicit memory management without
the need for garbage collection [16, 7]. Although regions provide a structured way to
deal with explicit memory allocation/deallocation, they do not enforce the linear “unique
ownership” property that PacLang exploits. Walker and Watkins have explored the
relationship between using regions and linear types for memory management in more
detail [18].

7 Conclusions and Future Work

We have formally defined the PacLang language and claimed, with reference to a case-
study, that it is capable of specifying realistic packet processing applications. Our linear
type system enforces a unique ownership property whilst allowing software engineers to
program in a familiar style. We have argued that unique ownership greatly simplifies the
compilation of a high-level program to a diverse range of NP architectures.

There are a number of ways in which PacLang must be extended if it is to be used on
an industrial-scale. For example, the type system needs to be able to differentiate between
different types of packet (e.g. IP packets, UDP packets etc.); support for structured types
(such as records and tuples) and a module system are also required. However, much of
this work amounts to engineering rather than research effort. We believe that PacLang,
as presented in this paper, captures the essence of packet-processing, providing a solid
foundation for the development of an industrial-scale packet processing framework.

Our current work focuses on the implementation of a PacLang compiler which targets
a variety of platforms, including Network Processors. This implementation effort will
provide insights that can be fed back into the PacLang language design.

We hope that the ideas presented in this paper can be applied to the automatic
partitioning of high-level code across multi-core architectures more generally (i.e. not
just Network Processors). Since industrial trends suggest that such architectures will

15

become more prevalent (as silicon densities continue to increase) we believe that this is
an important topic for future research.

Acknowledgements

The authors wish to thank Tim Griffin and Lukas Kencl for their valuable comments and
suggestions. We are grateful for the generous suppport of Microsoft Research, who funded
the studentship of the first author.

A Preservation of Unique Ownership

In Section 4.1 we claimed that if a PacLang program is accepted by the type-checker of
Section 3 and executed using the operational semantics of Section 4 then all intermediate
program states must be such that every packet in the heap is referenced by exactly one
molecule. In this appendix, we prove that this is indeed the case.

The preservation of unique ownership theorem can be stated formally as follows:

`
p
P ∧ init(P)→∗ W ⇒ UniqueOwn(W)

where UniqueOwn is defined in Section 4.1.
To prove this theorem, we first strengthen UniqueOwn to a stronger WellFormed

property (Section A.1). We show that any well-formed state must satisfy unique owner-
ship (Section A.1.1). Finally, we show that wellformedness is preserved by each of the
transitions given in the operational semantics of Section 4 and that the initial state of a
program will always be well-formed. We thus conclude that the preservation of unique
ownership theorem is indeed correct.

A.1 Type-Checking States

We start by extending the type system of Section 3 so that it can type check states of the
operational semantics. Recall from Section 5 that evaluation states of thread molecules
extend expressions by allowing packet references, α, as values. We extend the typing rules
of Figure 3 accordingly, by allowing type environments Γ to include capabilities of the
form α : σ in addition to capabilities of the form x : σ. In the case of a packet reference,
α, the type will always be packet or !packet. Just as a capability, x : σ allows x to be used
as a type σ, a capability, α : σ allows packet references α to be used as type σ. To reflect
this, we add a typing rule for packet references as follows:

(p-reference)
{α : τ} `

v
α : τ where τ ∈ {packet, !packet}

To check that a thread molecule (|e, Σ|) is well typed, we have to type check the stack
Σ as well as the evaluation state e. Stacks can be type-checked using the following rules:

Γ1, ~x :~ρ `
e
e : ~σ Γ2 `

Σ

~σ B Σ
(cont-step)

Γ1; Γ2 `
Σ

~ρ B {~x}e • Σ

(cont-empty)
∅ `

Σ

ρ B ε

16

We write Γ `
Σ

~ρ BΣ to mean that the continuation on top of the stack expects to have
values of types ~ρ returned to it and requires the capabilities given in Γ. Since we know
that the evaluation state, e, will be fully evaluated before executing the continuations in
Σ we use “;” to sequence Γ1 and Γ2 in the consequent of rule cont-step.

We are now in a position to type-check molecules, and hence to type check the multiset
of molecules which constitutes a program state.

Definition 2 We write, Γ `
m

M , to mean that the molecule M is well typed, and requires
the capabilities in Γ. This relation is defined by the following rules, one for each form of
molecule (except heaps, which are treated specially):

Γ1 `
e
e : ~ρ Γ2 `

Σ

~ρ B Σ
(thread)

Γ1; Γ2 `
m

(|e, Σ|)

(queue)
{α1 : packet, . . . , αi : packet} `

m
〈〈α1 • . . . • αi〉〉q

{~x :~ρ} `
e
e : ~σ

(fun)
∅ `

m
[({~x}e)]f

provided F(f) = ~ρ→ ~σ

The (thread) rule checks that the type of the expression state, e, is the type that the stack,
Σ, expects to be returned to it. The (queue) rule states that a queue owns of all of the
packet references contained in the queue. The (fun) rule does not require ownership of
any packets. It merely checks that its body expression is well typed under the rules given
in Figure 3. Recall that function molecules do not themselves perform computation and
cannot have any free variables.

We now define our WellFormed(·) property over states of the operational semantics:

Definition 3 (WellFormed)

Γ1 `
m

M1 . . . Γn `
m

Mn Γ1 + . . . + Γn = {α : packet | α ∈ dom H}
(ok)

WellFormed(〈H〉 |M1 | . . . |Mn)

If WellFormed(W) holds, then every molecule in the program types, and every packet
in the heap is referenced by exactly one such molecule.

A.1.1 Relating WellFormed to UniqueOwn

From the rules defining `
m

we can see that, if a molecule M types with an environment
Γ, then the packet references contained in Γ are exactly those packet references contained
in M . That is:

Γ `
m

M ⇒ ((∃ρ.(α 7→ ρ) ∈ Γ) ⇐⇒ α ∈ pr(M))

This follows from the fact that any packet references α in M must be free (there are
no binding constructs for packet references, only for the variables that hold them). We
can thus observe from the type rules that any packet references that appear in M must

17

find their way into the top level type environment, Γ. We can similarly see that no packet
reference can appear in Γ unless it is mentioned somewhere in M .

Given this, and the definition of ‘+’, we see that WellFormed is indeed a stronger
condition than UniqueOwn. That is:

WellFormed(W)⇒ UniqueOwn(W)

A.2 Lemmas

In this section we prove a few lemmas that turn out to be useful for our proof.

A.2.1 Lemma: Substitution

Γ1 `
v
v : ρ ∧ Γ2, x : ρ `

e
e : ~σ

⇒
Γ1 + Γ2 `

e
e{v/x} : ~σ

if dom (Γ1) ∩ dom (Γ2, x : ρ) = ∅

If an expression e expects a variable x with type ρ, and a value v has type ρ, then we
can substitute v for x in e without changing e′s type. The capabilities required by the
new expression will be e’s own capabilities Γ2 and the capabilities Γ1 required in order to
evaluate v.

The proof of this property turns out to be straightforward. v must either be a variable
x′, a packet reference α or an integer or boolean constant. We consider each of these cases
separately:

• If v is a variable x′, then Γ1 = {x′ : ρ}. We know that x′ cannot appear in Γ2, thus
Γ2 + Γ1 is simply Γ2, x

′ : ρ. The effect is simply to substitute one variable name for
another. The type rules are insensitive to name choice and so the consequent holds
trivially.

• The case where v is a packet reference, α, is the same as the case for a variable.
The type rules treat packet references and variables identically and so replacing a
variable with a packet reference cannot have an effect on the type. It can be helpful
to think of a packet reference as being a variable that is bound by the heap, rather
than by a function argument or let expression.

• If v is an integer or boolean constant then Γ1 = ∅ and ρ is non-linear. From observing
the rules for ‘`

v
’ we can see that substituting a constant for an appropriately typed

variable leaves the type unchanged, and merely removes x from the environment.
We can also observe that, if x does not appear in an expression, then that expression
cannot require x in its environment. This is exactly what we want.

By applying this rule repeatedly we see that the following, more general, property
holds:

Γ1 `
v
v1 : ρ1 ∧ . . . ∧ Γj `

v
vj : ρj ∧ Γ, x1 : ρ1, . . . , xj : ρj `

e
e : ~σ

⇒
Γ + Γ1 + . . . + Γj `

e
e{v1/x1, . . . , vj/xj} : ~σ

if dom (Γ1 + . . . + Γj) ∩ dom (Γ, x1 : ρ1, . . . , xj : ρj) = ∅

18

A.2.2 Lemma: associativity of ;

(Γ1; Γ2); Γ3 = Γ1; (Γ2; Γ3)

Proof by inspection of the rules defining ‘;’.

A.2.3 Lemma: commutativity of +

Γ1 + Γ2 = Γ2 + Γ1

Proof by inspection of the rules defining ‘+’.

A.3 Preservation of WellFormedness

Having strengthened UniqueOwn to WellFormed we can similarly strengthen preservation
of unique ownership to preservation of wellformedness. We thus seek to prove the following
theorem:

`
p
P ∧ init(P)→∗ W ⇒ WellFormed(W)

If the program P is well typed, then any state W reachable from the initial state init(P)
through evaluation transitions must be well formed (and thus satisfy unique ownership).

The proof of this theorem proceeds by induction over the number of evaluation steps
between init(P) and W .

The base case (zero steps) is easy. Recall from Section 4 that, in the initial state
init(P), the heap is empty, all queues are empty, all stacks are empty, and the bodies of
the threads are the bodies of the (closed and well typed) bodies of the main functions. It
thus follows trivially that all such initial states must be well formed.

The inductive step is somewhat harder. We must show that, if a state W is well
formed, and the semantics can transform the state W into a new state W ′ then W ′ must
also be well formed. That is:

WellFormed(W) ∧ W → W ′ ⇒ WellFormed(W ′)

In the following subsections we prove that this holds for all rules defining →. For
each rule, we assume well-formedness for the antecedent and prove well-formedness for
the consequent.

A.3.1 Rule (let):

~∆ | [({~x}ef)]f | (|let ~y = f(~v) in eb, Σ|) → ~∆ | [({~x}ef)]f | (|ef{~v/~x}, {~y}eb • Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | [({~x}ef)]f | (|let ~y = f(~v) in eb, Σ|)

W ′ = ~∆ | [({~x}ef)]f | (|ef{~v/~x}, {~y}eb • Σ|)

19

If WellFormed(W) holds, then it must be the result of an application of rule (ok). In
which case, the following must hold:

~∆ = 〈H〉 | ∆1 | . . . | ∆n (1)

Γd1
`
m

∆1 . . . Γdn
`
m

∆n (2)

∅ `
m

[({~x}ef)]f (3)

Γ `
m

(|let ~y = f(~v) in eb, Σ|) (4)

Γ + Γd1
+ . . . + Γdn

= {α : packet | α ∈ dom(H)} (5)

If (4) holds, then it must be the result of an application of rule (thread) in which case
the following must hold:

Γ = Γ1; Γ2 (6)

Γ1 `
e
(let ~y = f(~v) in eb) : ~τ (7)

Γ2 `
Σ

~τ B Σ (8)

If (7) holds, then it must be the result of an application of rule (apseq)7, in which case
the following must hold:

Γ1 = (Γa1
+ . . . + Γaj

); Γb (9)

F(f) = ρ1 × . . .× ρj → σ1 × . . .× σi (10)

Γa1
`
v
v1 : ρ1 . . . Γaj

`
v
vj : ρj (11)

Γb, y1 : σ1, . . . , yi : σi `
e
eb : ~τ (12)

If (3) holds, then it must be the result of an application of rule (fun). Given that we
know (10), we can deduce that:

x1 : ρ1, . . . , xj : ρj `
e
ef : σ1 × . . .× σi (13)

From (5), (6), (9) and the definition of ‘;’ we can deduce that dom (Γa1
+ . . . + Γaj

)
contains only packet references (it cannot contain variables). Thus:

dom (Γa1
+ . . . + Γaj

) ∩ dom (x1 : ρ1, . . . , xj : ρj) = ∅ (14)

By (13), (11), (14) and Lemma (A.2.1) we can deduce that:

Γa1
+ . . . + Γaj

`
e
ef{~v/~x} : τr1

× . . .× τri
(15)

Given (12) and (8), we can apply rule (cont-step), giving:

Γb; Γ2 `
Σ

~σ B {~y}eb • Σ (16)

From (6), (9) and Lemma (A.2.2) we can deduce that:

Γ = Γa1
+ . . . + Γaj

; (Γb; Γ2) (17)

7It cannot be an application of rule (weak) because we know from (5) and (6) that all bindings in Γ1

must be for type packet or !packet.

20

Given (15), (16) and (17) we can apply rule (proc), giving:

Γ `
m

(|ef{~v/~x}, {~y}eb • Σ|) (18)

Given (1), (2), (3), (18), and (5) we can apply rule (ok), giving:

WellFormed(~∆ | [({~x}ef)]f | (|ef{~v/~x}, {~y}eb • Σ|)) (19)

which is what we wanted.

A.3.2 Rule (return):

~∆ | (|return ~v, {~x}e • Σ|) → ~∆ | (|e{~v/~x}, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | (|return ~v, {~x}e • Σ|)

W ′ = ~∆ | (|e{~v/~x}, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = 〈H〉 | ∆1 | . . . | ∆n (1)

Γd1
`
m

∆1 . . . Γdn
`
m

∆n (2)

Γ `
m

(|return ~v, {~x}e • Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α : packet | α ∈ dom(H)} (4)

If (3) holds then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
return ~v : ~τ (6)

Γ2 `
Σ

~τ B {~x}e • Σ (7)

If (6) holds, then it must be the result of an application of rule (ret)8, in which case:

Γ1 = Γv1
+ . . . + Γvi

(8)

Γv1
`
v
v1 : τ1 . . . Γvi

`
v
vi :e τi (9)

no τ1 . . . τi is !packet (10)

Similarly, if (7) holds, then it must be the result of an application of rule (cont-step), in
which case:

Γ2 = Γe; Γs (11)

Γe, ~x : ~τ `
e
e : σ (12)

Γs `
Σ

σ B Σ (13)

8Again, we know from (4) and (5) that Γ1 cannot contain non-linear types and thus the (weaken)
rule cannot be applied.

21

From (4), (5), (8), and (10) we can see that Γ1 can only contain packet reference
bindings, and all such bindings have type packet. Hence, by (5) and the definition of ‘;’
we can observe that Γ1 and Γ2 have disjoint domains. Hence, by (11), (8) we can observe
that:

dom (Γv1
+ . . . + Γvi

) ∩ dom (Γe, ~x : ~τ) = ∅ (14)

From (9), (12), (14) and Lemma (A.2.1) we can deduce that:

Γe + Γv1
+ . . . + Γvi

`
e
e{~v/~x} : σ (15)

We know that none of the environments Γv can contain !packet types ((10)). It is thus
possible to rewrite (15) as:

Γv1
+ . . . + Γvi

; Γe `
e
e{~v/~x} : σ (16)

Similarly, we can observe from (5), (8), (11) and associativity of environment sequencing
(Lemma A.2.2) that:

Γ = (Γv1
+ . . . + Γvi

; Γe); Γs (17)

Using (16), (13) and (17) as assumptions, we can apply rule (proc) to give:

Γ `
m

(|e{~v/~x}, Σ|) (18)

Combining (18) with (1), (2) and (4), we can apply rule (ok) giving:

WellFormed(~∆ | (|e{~v/~x}, Σ|)) (19)

as required.

A.3.3 Rules if
1

and if
2

We will give a proof for if
1
. The proof for if

2
is virtually identical.

~∆ | (|if true then e1 else e2, Σ|) → ~∆ | (|e1, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | (|if true then e1 else e2, Σ|)

W ′ = ~∆ | (|e1, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = 〈H〉 | M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|if true then e1 else e2, Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α : packet | α ∈ dom(H)} (4)

22

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
if true then e1 else e2 : ~σ (6)

Γ2 `
Σ

~σ B Σ (7)

If (6) holds, then it must be the result of an application of rule (if) in which case:

Γ1 = Γ3; Γ4 (8)

Γ3 `
v
true : bool (9)

Γ4 `
e
e1 : ~σ (10)

Γ4 `
e
e2 : ~σ (11)

(9) can only be the result of an application of rule (bool), in which case:

Γ3 = ∅ (12)

Hence, from (8) and the definition of ‘;’, we can see that:

Γ1 = Γ4 (13)

Using (10), (7) and (5) as assumptions, and noting (13) we can apply rule (proc) to
give:

Γ `
m

(|e1, Σ|) (14)

Combining (14) with (1), (2) and (4), we can apply rule (ok) giving:

WellFormed(~∆ | (|e1, Σ|)) (15)

as desired.

A.3.4 Rule new

~∆ | 〈H〉 | (|let x = new i in e, Σ|) → ~∆ | 〈H[α 7→ empty i]〉 | (|e{α/x}, Σ|)
where α is fresh

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈H〉 | (|let x = new i ine, Σ|)

W ′ = ~∆ | 〈H[α 7→ empty i]〉 | (|e{α/x}, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let x = new i in e, Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (4)

23

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
let x = new i in e : ~τ (6)

Γ2 `
Σ

~τ B Σ (7)

If (6) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

F(new) = int → packet (8)

∅ `
v
i : int (9)

Γ1, x : packet `
e
e : ~τ (10)

By (10), Lemma (A.2.1), we can deduce the following for fresh α:

Γ1 + {α : packet} `
e
e{α/x} : ~τ (11)

Given (11) and (7) we can apply rule (proc), giving:

Γ1 + {α : packet}; Γ2 `
m

(|e{α/x}, Σ|) (12)

By Lemma (A.2.3) and (5), this can be rewritten as:

{α : packet}+ Γ `
m

(|e{α/x}, Σ|) (13)

Given (4) and the freshness of α, we can deduce that:

{α : packet}+ Γ + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H[α 7→ empty i])} (14)

Given (1), (2), (13), and (14) we can apply rule (ok), giving:

WellFormed(~∆ | 〈H[α′ 7→ empty i]〉 | (|e{α′/x}, Σ|)) (15)

which is what we wanted.

A.3.5 Rule kill

~∆ | 〈H〉 | (|let () = kill α in e, Σ|) → ~∆ | 〈H \ α〉 | (|e, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈H〉 | (|let () = kill α in e, Σ|)

W ′ = ~∆ | 〈H \ α〉 | (|e, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let () = kill α in e, Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (4)

24

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
let () = kill α in e : ~τ (6)

Γ2 `
Σ

~τ B Σ (7)

If (6) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

Γ1 = {α : packet}; Γ3 (8)

F(kill) = packet→ () (9)

{α : packet} `
v
α : packet (10)

Γ3 `
e
e : ~τ (11)

Given (11) and (7) we can apply rule (proc), giving:

Γ3; Γ2 `
m

(|e, Σ|) (12)

Given (5), (8) and Lemma (A.2.2) we can deduce that:

Γ = {α : packet}; (Γ3; Γ2) (13)

We can observe that {α : packet} contains no !packet types. It is thus possible to rewrite
(13) as:

Γ = {α : packet}+ (Γ3; Γ2) (14)

Given (4) and (14) we can deduce that:

(Γ3; Γ2) + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H \ α)} (15)

Using (1), (2), (12) and (15), we can apply rule (ok), giving:

WellFormed(~∆ | 〈H \ α〉 | (|e, Σ|)) (16)

as required.

A.3.6 Rule read

~∆ | 〈H〉 | (|let x = read(α, i) in e, Σ|) → ~∆ | 〈H〉 | (|e{H(α)(i)/x}, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈H〉 | (|let x = read(α, i) in e, Σ|)

W ′ = ~∆ | 〈H〉 | (|e{H(α)(i)/x}, Σ|)

25

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let x = read(α, i) in e, Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (4)

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
let x = read(α, i) in e : ~τ (6)

Γ2 `
Σ

~τ B Σ (7)

If (6) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

F(read) = packet× int → int (8)

Γ1, x : int `
e
e : ~τ (9)

By (9) and Lemma (A.2.1) we can deduce that:

Γ1 `
e
e{H(α)(i)/x} : ~τ (10)

Given (10), (7) and (5), we can apply rule (proc), giving:

Γ `
m

(|e{H(α)(i)/x}, Σ|) (11)

Given (1), (2), (11), and (4), we can apply rule (ok), giving:

WellFormed(~∆ | 〈H〉 | (|e{H(α)(i)/x}, Σ|)) (12)

as required.

A.3.7 Rule update

~∆ | 〈H〉 | (|let () = update(α, i, v) in e, Σ|) → ~∆ | 〈H[α 7→ H(α)[i 7→ v]]〉 | (|e, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈H〉 | (|let () = update(α, i, v) in e, Σ|)

W ′ = ~∆ | 〈H[α 7→ H(α)[i 7→ v]]〉 | (|e, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let () = update(α, i, v) in e, Σ|) (3)

Γ + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (4)

26

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (5)

Γ1 `
e
let () = update(α, i, v) in e : ~τ (6)

Γ2 `
Σ

~τ B Σ (7)

If (6) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

F(update) = packet× int × int → () (8)

Γ1 `
e
e : ~τ (9)

Given (9), (7) and (5), we can apply rule (proc), giving:

Γ `
m

(|e, Σ|) (10)

Given (1), (2), (10), and (4), we can apply rule (ok), giving:

〈H[α 7→ H(α)[i 7→ v]]〉 | (|e, Σ|) (11)

as required.

A.3.8 Rule deq

~∆ | 〈〈α •Q〉〉q | (|let x = q.deq() in e, Σ|) → ~∆ | 〈〈Q〉〉q | (|e{α/x}, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈〈α •Q〉〉q | (|let x = q.deq() in e, Σ|)

W ′ = ~∆ | 〈〈Q〉〉q | (|e{α/x}, Σ|)

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = 〈H〉 | M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let x = q.deq() in e, Σ|) (3)

Γq `
m
〈〈α •Q〉〉q (4)

Γ + Γq + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (5)

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (6)

Γ1 `
e
let x = q.deq() in e : ~τ (7)

Γ2 `
Σ

~τ B Σ (8)

27

If (7) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

F(q.deq) = ()→ packet (9)

Γ1, x : packet `
e
e : ~τ (10)

From (4), (5) and (6) we can deduce that:

α /∈ dom (Γ1) (11)

By (10), (11) and Lemma (A.2.1) we can deduce that:

Γ1 + {α : packet} `
e
e{α/x} : ~τ (12)

Given (12) and (8) we can apply rule (proc), giving:

Γ1 + {α : packet}; Γ2 `
m

(|e{α/x}, Σ|) (13)

By Lemma (A.2.3) and (6), this can be rewritten as:

{α : packet}+ Γ `
m

(|e{α/x}, Σ|) (14)

If (4) holds, then it must be the result of an application of rule (queue). We can thus
deduce that:

Γq = {α : packet}+ Γ′

q (15)

Γ′

q `
m
〈〈Q〉〉q (16)

From (5), (15) and the associativity of +, we can deduce that:

{α : packet}+ Γ + Γ′

q + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (17)

Given (1), (2), (14), (16), and (17), we can apply rule (ok), giving:

WellFormed(~∆ | 〈〈Q〉〉q | (|e{α/x}, Σ|)) (18)

as required.

A.3.9 Rule enq

~∆ | 〈〈Q〉〉q | (|let () = q.enq(α) in e, Σ|) → ~∆ | 〈〈Q • α〉〉q | (|e, Σ|)

Referring to the property we wish to prove, we see that:

W = ~∆ | 〈〈Q〉〉q | (|let () = q.enq(α) in e, Σ|)

W ′ = ~∆ | 〈〈Q • α〉〉q | (|e, Σ|)

28

If WellFormed(W) holds, then it must be the result of an application of rule (ok), in
which case the following must also hold:

~∆ = 〈H〉 | M1 | . . . | Mn (1)

Γd1
`
m

M1 . . . Γdn
`
m

Mn (2)

Γ `
m

(|let () = q.enq(α) in e, Σ|) (3)

Γq `
m
〈〈Q〉〉q (4)

Γ + Γq + Γd1
+ . . . + Γdn

= {α′ : packet | α′ ∈ dom(H)} (5)

If (3) holds, then it must be the result of an application of rule (proc), in which case the
following must hold:

Γ = Γ1; Γ2 (6)

Γ1 `
e
let () = q.enq(α) in e : ~τ (7)

Γ2 `
Σ

~τ B Σ (8)

If (7) holds then it must be the result of an application of rule (apseq), in which case the
following must hold:

Γ1 = {α : packet}; Γ′

1
(9)

F(q.enq) = packet→ () (10)

{α : packet} `
v
α : packet (11)

Γ′

1
`
e
e : ~τ (12)

Given (12) and (8) we can apply rule (proc), giving:

Γ′

1
; Γ2 `

m
(|e, Σ|) (13)

Given (6), (9), Lemma (A.2.2) and the lack of !packet types in {α : packet} we can
deduce that:

Γ = {α : packet}+ (Γ′

1
; Γ2) (14)

Given (4) and the definition of rule (queue) we can deduce that:

{α : packet}+ Γq `
m
〈〈q •Q〉〉q (15)

(16)

Given (5), (14), (15) and the associativity of + we can deduce that:

(Γ′

1
; Γ2) + ({α : packet}+ Γq) + Γd1

+ . . . + Γdn
= {α′ : packet | α′ ∈ dom(H)} (17)

Using (1), (2), (13) and (17), we can apply rule (ok), giving:

WellFormed(~∆ | 〈〈Q • α〉〉q | (|e, Σ|)) (18)

This completes the proof of the preservation of well-formedness.

29

References

[1] Allen, J et al. PowerNP network processor: Hardware, software and applications.
IBM Journal of research and development 47, 2–3 (3003), 177–194.

[2] Berry, G., and Boudol, G. The chemical abstract machine. Theoretical Com-
puter Science 96 (1992), 217–248.

[3] Boyapati, C., Lee, R., and Rinard, M. Ownership types for safe program-
ming: Preventing data races and deadlocks. In Proceedings of the 17th Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA-
02) (Seattle, WA, November 2002), ACM Press.

[4] Clarke, D., and Wrigstad, T. External uniqueness is unique enough. In Proceed-
ings of the 17th European Conference for Object-Oriented Programming (ECOOP)
(July 2003), vol. 2743 of LNCS, Springer-Verlag.

[5] Clarke, D. G., Potter, J. M., and Noble, J. Ownership types for flexible
alias protection. In Proceedings of the 13th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA-98) (New York, NY, October
1998), vol. 33:10 of ACM SIGPLAN Notices, ACM Press, pp. 48–64.

[6] Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. The essence
of compiling with continuations. In Proceedings ACM SIGPLAN 1993 Conf. on
Programming Language Design and Implementation, PLDI’93, Albuquerque, NM,
USA, 23–25 June 1993, vol. 28(6). ACM Press, New York, NY, 1993, pp. 237–247.

[7] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Ch-
eney, J. Region-based memory management in Cyclone. In Proceedings of the 2002
Conference on Programming Language Design and Implementation (PLDI), ACM
press.

[8] Hilt High Level Software Tools B.V. Concurrent clean language report.
Available from: ftp://ftp.cs.kun.nl/pub/Clean/Clean20/doc/CleanRep2.0.pdf.

[9] Intel Corporation. Intel IXDP2400 & IXDP2800 advanced development plat-
forms product brief.
Available from: http://www.intel.com/design/network/prodbrf/ixdp2x00.htm.

[10] Intel Corporation. Intel IXP2400 Network Processor: Flexible, high-
performance solution for access and edge applications.
Available from: http://www.intel.com/design/network/papers/ixp2400.htm.

[11] Johnson, E. J., and Kunze, A. IXP-1200 Programming: The Microengine Coding
Guide for the Intel IXP1200 Network Processor Family. Intel Press, 2002.

[12] Kobayashi, N. Quasi-linear types. In Proceedings of The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 99) (San An-
tonio, TX, 1999), pp. 29–42.

30

[13] Postel, J. Internet Protocol RFC 791. Internet Engineering Task Force, September
1981. Available from: http://www.ietf.org/rfc.html.

[14] Postel, J. Internet Control Message Protocol, RFC 792. Internet Engineering Task
Force, September 1981. Available from: http://www.ietf.org/rfc.html.

[15] Stroustrup, B. The C++ programming language (third edition). Addison-Wesley.

[16] Tofte, M., and Talpin, J.-P. Region-based memory management. Information
and Computation (1997).

[17] Turner, D. N., Wadler, P., and Mossin, C. Once upon a type. In Functional
Programming Languages and Computer Architecture (1995), ACM Press.

[18] Walker, D., and Watkins, K. On regions and linear types. In International
Conference on Functional Programming (2001), ACM press, pp. 181–192.

[19] Yavatkar, R., and H. Vin (eds.). IEEE Network Magazine. Special issue on
Network Processors: Architecture, Tools, and Applications 17, 4 (July 2003).

31

