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Abstract

The purpose of this thesis is to introduce proposition-oriented behaviours and apply

them to the verification of asynchronous circuits. The major contribution of proposition-

oriented behaviours is their ability to extend existing formal notations to permit the

explicit use of both signal levels and transitions.

This thesis begins with the formalisation of proposition-oriented behaviours in the context

of gate networks, and with the set-theoretic extension of both regular-expressions and

trace-expressions to reason over proposition-oriented behaviours. A new trace-expression

construct, referred to as biased composition, is also introduced. Algorithmic realisation

of these set-theoretic extensions is documented using a special form of finite automata

called proposition automata. A verification procedure for conformance of gate networks

to a set of proposition automata is described in which each proposition automaton may be

viewed either as a constraint or a specification. The implementation of this procedure as

an automated verification program called Veraci is summarised, and a number of example

Veraci programs are used to demonstrate contributions of proposition-oriented behaviour

to asynchronous circuit design. These contributions include level-event unification, event

abstraction, and relative timing assumptions using biased composition. The performance

of Veraci is also compared to an existing event-oriented verification program called Versify,

the result of this comparison being a consistent performance gain using Veraci over Versify.

This thesis concludes with the design and implementation of a 2048 bit dual-rail asyn-

chronous Montgomery exponentiator, mod exp, in a 0.18µm standard-cell process. The

application of Veraci to the design of mod exp is summarised, and the practical benefits

of proposition-oriented verification are discussed.
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Chapter 1

Introduction

1.1 Synchronous and Asynchronous Design

MOS transistors are voltage controlled devices, and the state of a digital circuit can

therefore be determined directly from the voltage levels on all its wires. To change the

state of a digital circuit at least one wire must change level. A change in level is called

an event and it is the sequence in which events occur that determines the behaviour of a

digital circuit.

Since it is events that determine behaviour but levels that control transistors, the designers

of digital MOS circuits are faced with an inherent level-event conflict that must be resolved

before relating algorithm to logic. Synchronous design is a technique that resolves this

conflict by asserting that time be quantised according to only one event on one wire,

the clock. With every clock event the level on other circuit wires is sampled and that

sample remains fixed until the following clock event. In this sense synchronous design

eclipses all references to events not on the clock, and enables synchronous designers to

adopt a logic-centric computation model that accurately relates computation to transistor

functionality.

Asynchronous design is a term used to classify all digital circuits that are not synchronous,

and therefore do not employ the use of global clocking. The resulting lack of a quantised

timeline makes asynchronous circuits potentially sensitive to events on any wire, which

the designers of asynchronous circuits typically resolve by adopting a channel-centric com-

putation model. Channel-centric computation differs from logic-centric computation in

that circuit operation is dependent on the movement of data between functional units, and

level-event conflicts are resolved using dedicated communication protocols across channels.

Channel-centric computation complements logic-centric computation in that more atten-

tion is drawn to the connectivity between logic, and less to the logic itself. For example,

the FLEET architecture of Sun Microsystems [23] permits only one instruction MOVE A,B
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where A is the output of one functional unit and B is the input to another functional unit.

Computation in a FLEET machine is based entirely on which values are moved where.

Thirty years ago, in the early days of integrated circuit manufacture, it was the transistors

and not the interconnect that dominated cost and performance. Synchronous designs

produced faster, cheaper chips than their asynchronous counterparts, and were therefore

deemed to be superior. The persistent and exponential growth of the semiconductor

industry since those early days has resulted in a world where commercial asynchronous

design is almost extinct. However, this is not to say that the extinction is justified, and

in particular, the underlying relationship between transistors and interconnect is now

inverted with respect to the past: Interconnect is now slow and takes substantially more

chip area than transistors.

Although it is unclear whether asynchronous design will ever receive the same commercial

success as its synchronous counterpart, the case in favour of asynchronous circuits is now

strong, and research into asynchronous design methods remains active.

1.2 Formal Verification

A circuit is considered correct if the sequences of events that it performs result in the in-

tended behaviour on its outputs, provided its inputs also behave as intended. Since intent

is something internal to the mind of a designer, until intentions have been documented

in some tangible form, be it on paper, or by word of mouth, correctness is by necessity

something private between designer and circuit. To verify that a circuit is correct its

intended behaviour must first be articulated in some unambiguous way, referred to as a

specification. Once a specification has been made a well-defined procedure can then be

executed to determine whether that circuit conforms to its specification.

When the specification and the conformance checker have a formal foundation, verification

is akin to a mathematical proof that the circuit will always behave as intended. Such a

proof is in contrast to simulation where it is merely demonstrated that a circuit responds

in a certain way to a specific set of input stimuli. Unfortunately, formal verification is

both computationally complex and its formal foundation unnatural for many hardware

engineers. Consequently, the commercial cost of formal verification is often high, making

its use uncommon when compared to simulation.
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1.3 Objectives of this Thesis

The foundation of this thesis is the observation that resolution of the level-event conflict

inherent to digital MOS circuit design is not absolute. Existing notations for circuit

design adopt either a level-oriented or an event-oriented methodology. Although both

these methodologies are sufficient for describing circuit behaviour, hardware engineers are

free to reason with either levels or events, and in practice use both, even within the same

design style.

The objective of this thesis is to embrace both levels and events under a common um-

brella, called proposition-oriented behaviour, and in doing so to offer hardware engineers

a greater degree of freedom than is possible using either their level or event-oriented

counterparts. This freedom is also intended to be practical, and a proposition-oriented

verification program, Veraci, is therefore evolved and used to demonstrate the benefits of

applying proposition-oriented behaviours to the field of asynchronous circuit design.

1.4 Structure of this Thesis

This thesis consists of eight chapters. Chapter 2 presents an overview of asynchronous

design, including a summary of existing formal methods, notations, and tools from the lit-

erature. Chapter 3 introduces proposition-oriented behaviours and evolves a set-theoretic

semantics for two notations over proposition-oriented behaviours. Chapter 4 describes a

special type of finite automata called proposition automata, into which the proposition-

oriented notations from Chapter 3 can be translated. Chapter 5 builds on Chapters 3

and 4 to define a verification procedure for proposition-oriented behaviours using Binary

Decision Diagrams. Chapter 6 documents the implementation of this procedure in the

verification program Veraci, which is then used to outline key benefits of proposition-

oriented behaviours to the field of asynchronous design. Chapter 7 applies Veraci to the

design and implementation of an asynchronous public-key cryptographic unit, mod exp,

and Chapter 8 concludes the thesis, including a discussion of possible further work.
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Chapter 2

Background

2.1 Introduction

The design of asynchronous circuits is a diverse, well documented field, and research into

techniques for asynchronous design is active in both academic and industrial institutions

worldwide. The major contribution of this thesis is proposition-oriented behaviour, and

the purpose of this chapter is therefore to develop a framework within which proposition-

oriented behaviours can be related to previously published work.

This chapter comprises of two sections: Section 2.2 presents two different classifications

of asynchronous design, and Section 2.3 overviews existing formal methods applicable

to asynchronous design. Although neither of these sections is exhaustive in its cover-

age of published work, it is hoped that sufficient material has been referenced to relate

proposition-oriented behaviours to the literature. Further information on asynchronous

design can be found in survey papers by Sutherland [97], Hauck [45], Davis [29, 30], and

a generic survey of formal methods in hardware design can be found in Gupta [43]. Ref-

erence books on asynchronous design and its associated formal methods have also been

published by both Springer-Verlag [16] and Wiley [75].

2.2 Asynchronous Design Styles

There is no unique way to design an asynchronous circuit. Different styles of asynchronous

design can be classified according to different metrics, each of which quantifies certain

design assumptions or architectural techniques that are adopted by the underlying circuit.

The purpose of this section is to present two alternative classifications of asynchronous

design, and to summarise some practical differences between the elements of each of these

two classifications.
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2.2.1 Modes of Operation

Global clocking permits synchronous designers to assert that chip function be sequential

with respect to a quantised timeline. Asynchronous circuits lack such a quantised timeline,

and must therefore generalise circuit operation according to different modes, each of which

equates to a set of assumptions about the possible orders in which events can occur. Once

a mode of operation is defined, it is possible to restore sequential function using further

circuit-level techniques such as handshake protocols.

Fundamental Mode

An asynchronous circuit is said to be operated in fundamental mode if the time between

input changes is no shorter than the maximum response time of that circuit to any input

change [102]. Fundamental mode operation relates closely to synchronous design where

the terms setup and hold -time are used to assert that a flip-flop has sufficient time to

latch its input data value on each rising clock edge.

Speed Independent

An asynchronous circuit is said to be speed independent if its correct operation depends

only on the assumption that wire delays are zero. Speed independence was first formalised

by Muller in 1955 [73]. The only way to find out whether a speed independent circuit

has finished a computation is to have it indicate completion on one of its outputs, often

referred to as an acknowledge.

Semi-Modular

Semi-modular circuits form a proper subset of speed independent circuits in which no gate

output can ever glitch. Semi-modularity can be formalised as the assertion that excited

gate outputs can only become quiescent if they also change value [74]. Semi-modularity is

useful since it quantifies a circuit-level property that can be checked independently of any

functional requirements for that circuit. Semi-modularity also relates closely to hazard

freedom [30].

Delay Insensitive

An asynchronous circuit is said to be delay insensitive if its correct operation depends nei-

ther on the delay of any gate nor the delay on any wire [68, 101]. Delay insensitive circuits

form the most robust class of asynchronous circuit since their correctness is guaranteed

for arbitrary gate and wire delay. However, delay insensitive circuits cannot be built using

conventional single output logic gates alone, and require a more complex set of primitive
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Figure 2.1: Isochronic forks of depth one (a), and two (b).

components, some of which have more than one output [35, 59]. Physical construction

of these primitive components using single output logic gates can only be achieved by

asserting alternative modes of operation internally.

Quasi-Delay Insensitive

An asynchronous circuit is said to be quasi-delay insensitive if its correct operation de-

pends only on the existence of one or more isochronic forks [60]. A fork is said to be

isochronic if the difference in delay on each branch is no more than the minimum delay

of the two components to which each branch leads, see Figure 2.1(a) [5]. Quasi-delay in-

sensitive operation is superior to the assumption that wire delay be zero since isochronic

forks can be validated using static timing analysis tools, whereas zero gate delay is in

practice impossible to achieve. However, quasi-delay insensitive circuits in which every

fork is isochronic are operationally equivalent to speed independent circuits, and speed

independent operation can be modelled mathematically using a smaller state space than

quasi-delay insensitive circuits.

Q∗DI

Q∗DI circuits generalise the class of quasi-delay insensitive circuits to include isochronic

forks of arbitrary depth [7]. For example a Q2DI circuit asserts the existence of one or

more isochronic forks of depth 2, see Figure 2.1(b). Assertion of a Q∗DI mode of operation

can simplify circuit design considerably and yet the underlying isochronic forks can all

still be validated using static timing analysis tools.

2.2.2 Handshake Protocol Schemes

A digital circuit is distinct from an analogue circuit in that the voltage on every wire is

assumed to be at one of two discrete levels: Logic High or Logic Low. The transmission of
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Figure 2.2: A generic handshake protocol.
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Figure 2.3: Bundled-data encoding.

data along a digital wire requires that these two levels be used to indicate both value and

sequence: value is required to give data meaning and sequence is required to distinguish

one data value from the next.

In synchronous design sequence is separated from value by a global drumbeat called a

clock: every time the clock ticks the voltage level on each data wire is sampled, and this

level used to denote a binary value from the set {0, 1}. In asynchronous design no global

drumbeat is available, so value and sequence are often combined into a handshake protocol,

see Figure 2.2. The purpose of a handshake protocol is to implement the point-to-point

transmission of data from a Sender to a Receiver across a virtual channel. Handshake

protocols can be classified according to two orthogonal metrics, their data encoding scheme

and their signalling convention.

Data-Encoding Scheme

Data-encoding is the term used to describe how value is associated with a request in

a handshake protocol. A data-encoding scheme may be either bundled-data or delay-

insensitive. Bundled-data encoding splits request and value into separate wires [39]. Value

is encoded as in a synchronous circuit using k wires to denote a k-bit number, and request

is encoded using a dedicated request wire, request, see Figure 2.3.

Bundled-data encoding requires the explicit insertion of delay in the request wire to ensure

that a request is never received before the bundled value is valid. Conversely, delay-
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Figure 2.4: Delay insensitive n-of-m encoding.

insensitive encoding makes value implicit in the request and no delay insertion is therefore

required. Delay-insensitive encoding can be described using an n-of-m notation [38, 105]

to indicate that the transmission of data consists of making n requests out of a possible m,

see Figure 2.4. Since there are mCn ways to make n requests out of m, n-of-m encoding can

be likened to communication in base mCn. The most common delay insensitive encoding

is 1-of-2 or dual-rail, in which two request wires are used to send a single bit of data [12].

Although delay-insensitive encoding does not require the explicit insertion of delay, the

use of multiple request lines to send a single data value necessitates completion detection

to determine when all these requests have arrived at the Receiver.

Signalling Convention

Signalling is the term used to describe a sequence of actions sufficient to implement a

single data transfer across a channel using digital wires. A signalling convention may be

either two-phase or four-phase. Four-phase signalling associates handshake actions with

voltage levels, whereas two-phase signalling associates handshake actions with transitions

in voltage levels, see Figure 2.5.

Every four-phase handshake consists of two two-phase handshakes: an ‘asserting’ hand-

shake and a ‘clearing’ handshake. In this sense a four-phase handshake can be likened to
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the alternating presence and absence of data in a channel, whereas a two-phase handshake

can be likened to the transient transmission of data using transitions.

Although two-phase handshaking uses fewer transitions than four-phase handshaking, this

efficiency need not translate to a faster implementation: transistors are level-sensitive de-

vices, and a transition-sensitive handshake protocol therefore requires dedicated circuitry

to alternate level-sensitivity from one handshake to the next. However, if interconnect

delay is dominant, as for example in inter-chip bus communication, then delay-insensitive

two-phase handshaking can offer significant benefits over alternative four-phase handshak-

ing schemes [3].

Both two and four-phase signalling assume that every wire is driven by a unique logic

gate. Single-track signalling [6] combines request and acknowledge actions onto a single

tri-state wire, alternately driven by the Sender and Receiver, see Figure 2.6. Single-

track handshaking can be viewed as either two-phase or four-phase since it combines

the transition efficiency of two-phase signalling with the level-sensitivity of four-phase

signalling. Single-track bundled-data handshaking has been successfully used by Sun

Microsystems to develop a high performance asynchronous design style called GasP [96].

2.3 Formal Methods in Asynchronous Design

A technique is considered formal if its meaning and criteria for use are bounded by rules

that obey the principles of reason. The use of formal methods in hardware design is

motivated by a desire to eliminate human error and improve designer productivity through

use of unambiguous notations that prevent mis-communication between designers.

This section begins by introducing some generic formal terminology, and by overviewing

some generic formal methods called logic systems. This section continues to classify further

formal methods in asynchronous design according to two generic concepts: sequence and

concurrency. The motivation behind this classification is to observe that most notations for

concurrency build directly on a simpler notation which reasons over sequential behaviours

alone. Furthermore, this precipitation of sequence and concurrency also approximates

the distinction between notations that have been applied to synchronous design from

notations that have been applied to asynchronous design: Asynchronous circuits do not

enforce sequence according to a global clock and concurrency is often fine-grained and

10
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explicit in circuit functionality. Conversely, it is well-known that synchronous circuits can

always be abstracted to sequential machines of either the Moore or Mealy type [113].

This section concludes by summarising some different notions of equivalence between

formal models, and by introducing a data-structure called Binary Decision Diagrams,

whose application to the field of formal verification is discussed further in Chapter 5.

2.3.1 Problem Dimensions

The application of formal methods to hardware design typically consists of three basic

problem dimensions: specification, model, and satisfaction criterion.

Specification. A specification, S, is a formal definition of a circuit property or behaviour

described using a formal notation. Formal notations differ from informal notations in

that any expression given in a formal notation has an associated mathematical meaning

or semantics.

Model. A model, M , is a formal notation from which the behaviour of a circuit can be

described mathematically. Given any circuit C, the model M(C) of C denotes an abstract

entity which mimics the physical behaviour of C, but which can also be reasoned with

mathematically.

Satisfaction criterion. A satisfaction criterion is a mathematical relationship between

specification and circuit model. A satisfaction criterion may be used for verification, where

a circuit model and specification are shown to ‘conform’ according to a certain satisfaction

criterion. A satisfaction criterion may also be used for synthesis to demonstrate that the

synthesised circuit will function as specified. Satisfaction criteria can be categorised into

two general types:

• M(C) ⇒ S. The circuit model implies the specification.

• M(C) ≡ S. The circuit model is equivalent to the specification.

2.3.2 Logic Systems

Logic is generally regarded as the study of the principles of reason. A logic system consists

of a formal language and a set of axioms and rules for deducing proofs. A logic system is

sound if all things provable in it are logically true. Conversely, a logic system is complete

if all logically true formulas within it are provable. Logic is central to all formal methods

12
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b
a ∧ b 0 Φ 1

0 0 0 0
a Φ 0 Φ Φ

1 0 Φ 1

Table 2.1: Truth table for the ternary AND operator.

in that it provides the foundation on which both formal models and satisfaction criteria

can be described. A detailed introduction to logic systems can be found in Chang and

Lee [19].

Propositional Logic

Propositional logic is a notation of reasoning with the boolean constants True (T) and

False (F). Propositional logic assumes the existence of an infinite set of propositional

variables, each of which may take on either of these two constant values. Formulae in

propositional logic are constructed from propositional variables and the constants T,F

using the boolean operators and (∧), or (∨), and not (¬). Propositional logic is both

sound and complete.

Ternary Logic

Ternary logic extends propositional logic to reason with three-valued truths [16]. Ternary

logic begins with the notion of the three constant values False (0), Uncertain (Φ), and

True (1). Ternary logic extends each of the boolean operators in propositional logic to

apply to these three constant values, see for example Table 2.1. Ternary logic is significant

to asynchronous design since it can be efficiently used to determine the outcome of an

Extended Multiple Winner analysis on gate networks, see “Gate Networks” in Section

2.3.4.

Quaternary Logic

Quaternary logic is an extension of propositional logic proposed by Gaubatz [40]. Quater-

nary logic asserts existence of the four constant values, Low (ll), Rising (lh), High (hh),

Falling (hl), and extends each of the boolean operators in propositional logic to apply to

these four constant values, see for example Table 2.2.

Quaternary logic is significant because it treats both levels and events as explicit logic

constants. However, given any pair of different levels it is always possible to infer the

intermediate edge and in this sense quaternary logic offers no theoretical benefit over

propositional logic in the context of circuit design.
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b
a ∧ b ll lh hh hl

ll ll ll ll ll
a lh ll lh lh ll

hh ll lh hh hl
hl ll ll hl hl

Table 2.2: Truth table for the quaternary AND operator.

First-Order Logic

First-order logic is an extension of fixed-constant logics, including propositional logic,

ternary logic, and quaternary logic, to permit reason over members of any non-empty

universe of constant symbols. It introduces the concept of functions between any two uni-

verses, and predicates as special functions from any universe to the propositional universe

{T, F}. First-order logic also permits universal (∀) and existential (∃) quantification over

the elements in any universe. First-order logic is both sound and complete.

Higher Order Logic

Higher-order logic extends first-order logic so that function arguments can range over

constants, functions and predicates. Higher-order logic is the most powerful of all logics,

and all formal methods described in this chapter can be embedded in higher-order logic.

However, higher-order logic is not sound. For example, consider the expression P (P )

where P (x)
def
= ¬(P (x)). Higher-order logic is also incomplete and fully-automated proof

of higher-order logic theorems therefore impossible.

Higher-order logic can be made sound by introducing a notion of type to each formula

and requiring that valid formulae adhere to a set of rules referred to as a type system.

The HOL system [42] is a mechanised tool for deriving proofs in typed higher-order logic.

Since typed higher-order logic is still incomplete the use of HOL to derive a proof may

require human assistance, although in practice this requirement is rare.

The application of higher-order logic to circuit design been discussed at length by Camil-

leri, Gordon and Melham [18].

Temporal Logics

Temporal logics extend first-order logic to reason over a notion of states in time. Linear

Time Logics (LTL) assert that time is linear whereas Branching Time Logics (BTL) assert

that time is branching [54, 58]. Linear and Branching Time Logics can be distinguished

by considering a relation < between pairs of states in time. If < is a total order, meaning
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that for any two different states s, t in time, either s < t or t < s, then time is said to be

linear. If < is a partial order, meaning that for any three states s, t, u in time with t < s

and u < s, either t < u or u < t or u = t, then time is said to be branching. Temporal

logics reason over states in time using explicit temporal predicates:

• Safety, denoted 2P . Means that P holds at all times in the future.

• Liveness, denoted 3P . Mean P will eventually hold.

• Precedence, denoted [PUQ]. Means that P will hold until Q does.

Temporal logics are less expressive than higher-order logic, but they are complete, and

automated proof of temporal formulae is therefore possible. Computation Tree Logic

(CTL) is a branching time logic defined by Clarke and Emerson that has received sig-

nificant attention in the field of circuit design [21, 22, 32]. An efficient algorithm for the

automatic proof of CTL formulae using Binary Decision Diagrams has been implemented

in a tool called SMV [62]. Linear Temporal Logic has also been successfully applied to

circuit design using a verification tool called SPIN [104].

2.3.3 Sequential Systems

State Graphs and Transition Systems

A state graph or labelled transition system is a labelled directed graph G = 〈Σ, V, E〉 with

a finite set of vertices, V , and a finite set of labelled edges E ⊆ V × Σ × V over a finite

alphabet of symbols Σ. A state graph is a generic graphical model of sequential behaviour

in which sequences of symbols in Σ can be visually equated to paths in a labelled directed

graph. If G = 〈Σ, V, E〉 is a state graph and (v1, a, v2) ∈ V × Σ × V then v1
a

−→ v2 is

often used as shorthand for the assertion that (v1, a, v2) ∈ E.

Finite Automata

Finite automata extend state graphs to include a notion of start and finish states. A finite

automaton is a 5-tuple M = 〈Q,Σ, S, T, F 〉 where Q is a finite set of states, Σ is a finite

alphabet of input symbols, S ⊆ Q is a set of start states, F ⊆ Q is a set of finish states,

and T ⊆ (Q × Σ) × Q is a labelled transition relation. If |S| = 1 and T is injective then

M is deterministic, otherwise M is non-deterministic. Finite state automata are often

depicted by a labelled directed graph in which start states are identified by a free floating

incoming arc, and finish states are identified by a double ringed vertex, see Figure 2.7.
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Figure 2.7: An example of a finite automaton.

If M is a finite automaton then any sequence of symbols matched by a path in M from

an initial state to a finish state is said to be accepted by M . The set of all sequences

accepted by M is the language, L(M), of M . If M = 〈Q,Σ, S, T, F 〉 is a non-deterministic

finite automaton then M may always be translated into a deterministic finite automaton

D with O(2|Q|) states such that L(M) = L(D). This translation is known as the powerset

construction [112], and is important since it demonstrates that non-determinism does not

increase the expressivity of finite automata.

Finite automata can be extend to include empty transitions, denoted by the special label

ε 6∈ Σ. The purpose of an empty transition s
ε

−→ s′ is to permit the instantaneous tran-

sition from state s to state s′. The use of empty transitions can simplify finite automata

considerably, however empty transitions do not increase the expressivity of finite automata

since every finite automaton M can always be translated into a ε-free finite automaton D

such that L(M) = L(D) [112].

Finite automata and their associated languages have been extensively classified, modified

and specialised to particular problems. For a detailed introduction to finite automata see

Hopcroft and Ullman [48] or Booth [9].

Regular-Expressions

A regular-expression over a finite alphabet Σ is any expression R that can be formed from

one or more applications of the following grammar:

R ::= ε
∣

∣ a
∣

∣ RR
∣

∣ R + R
∣

∣ R∗

a ::= any symbol in Σ

Regular-expressions are a generic textual notation for describing sequences of symbols

from Σ. If R is a regular-expression then the language, L(R) of R is a set of sequences
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Figure 2.8: A brief summary of Petri-nets and STGs.

from Σ. If R = ε then L(R) = {ε} contains the empty sequence, ε, and if R = a then

L(R) = {a} contains the singleton sequence, a. L(R1R2) contains sequences that are

concatenations of sequences from R1, R2, and L(R1 + R2) contains any sequence from

either L(R1) or L(R2). L(R∗) contains any sequence formed from the concatenation of

zero or more sequences in L(R). If a sequence σ ∈ L(R) then R is said to accept σ.

Regular-expressions and finite automata have much in common. In particular, it can

be shown that the language of every regular-expression is also the language of a finite

automaton, and vice-versa [48].

2.3.4 Concurrent Systems

Petri-nets

A Petri-net is a directed graph N = 〈P, T, F, m0〉 with vertices P ∪ T formed from two

disjoint sets P , T , and edges F ⊆ (S × T ) ∪ (T × S). Vertices v ∈ P are known as places

and vertices v ∈ T are known as transitions. The purpose of a Petri-net is to extend finite

automata with an explicit notion of concurrency, represented by tokens. Each state of

a Petri-net is defined by a marking function m ∈ P → N, denoting a number, m(p), of

tokens for each place p ∈ P . The initial state of N is defined by its initial marking, m0.
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A transition t ∈ T is enabled in state mi if all its predecessor places contain at least one

token. If t is enabled then it may fire, causing one token to be removed from each of

its predecessor places and causing one token to be added to each of its successor places,

see Figure 2.8(a). Any valid sequence of transitions from the initial marking is called a

feasible trace. The set of all feasible traces for N is known as the feasible trace-set of N .

A marking m is reachable if it can be obtained by a finite number of transitions from the

initial marking. If all reachable markings have m(p) ≤ k for k ∈ N then N is said to be

k-bounded. If N is k-bounded then there can only be a finite number of markings, and

these markings can be used to construct a reachability state graph with paths equivalent

to feasible traces in N .

Petri-nets provide a very general model of concurrency that need not describe a digital

circuit. The application of Petri-nets to circuit design is achieved by equating Petri-net

transitions to events or edges on circuit wires. An event is a symbol, x, used to denote a

level change on a single circuit wire, x. An edge is a qualified event, denoted by one of two

symbols, x+ or x−. An interpreted Petri-net where transitions correspond to events or

edges on circuit wires is called a Signal Transition Graph [20, 87]. STGs are often drawn

in shorthand form, where places with a unique input and output transition are omitted,

see Figure 2.8(b,c).

STGs are well suited to the synthesis of speed-independent circuits, see for example the

synthesis tool Petrify [24]. In particular, the markings of a 1-bounded STG can be related

to the logic values on each of the wires to which its transitions refer. If this relation is

one-to-one then the STG is said to have Unique State Coding. If CSC does not hold,

then it can be satisfied automatically by inserting new wires in the circuit to distinguish

previously indistinguishable states [26].

A detailed introduction to Petri-nets, STGs, and their application to asynchronous design,

verification and synthesis can be found in Kondratyev [53].

Burst-Mode Specifications

A burst-mode specification is a five-tuple M = 〈X, Y, Z, z, δ〉 where X is a finite set of

input actions, Y is a finite set of output actions, Z is a finite set of states, z ∈ Z is an

initial state, and δ ∈ Z × (2X × 2Y ) → Z is a labelled transition function between states

in Z. The purpose of a burst-mode specification is to label each edge of a state graph
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Figure 2.9: An example of a burst-mode specification.

with a pair of actions (x, y) ∈ 2X × 2Y , where x ⊆ X denotes an input-burst and y ⊆ Y

denotes an output-burst, see for example Figure 2.9.

Burst-mode specifications extend finite automata to include concurrency by asserting

that all actions in a burst may happen in any order. If a burst-mode specification M =

〈X, Y, Z, z, δ〉 is in state s ∈ Z with (s, (x, y), s′) ∈ δ, then after receiving input-burst x,

M will perform output actions a ∈ y in an unspecified order and proceed to state s′.

Burst-mode specifications cannot accommodate non-determinism outside of a burst, and

no input-burst can therefore be the subset of another input-burst leading from the same

state.

Extended burst-mode specifications augment the burst-mode transition relation δ to per-

mit the use of boolean guards on any transition. Both burst-mode and extended burst-

mode specifications have received significant attention in the literature due to an algo-

rithm for their efficient hazard-free synthesis into low latency fundamental mode circuits

[79, 114, 115]. An implementation of this algorithm is available in the synthesis tool 3D.

Trace Structures

A trace structure is a triple T = 〈A, B, X〉 where iT
def
= A is an alphabet of input symbols,

oT
def
= B is an alphabet of output symbols and tT

def
= X is a set of sequences or traces

over symbols in aT
def
= A ∪ B. The purpose of a trace structure is to combine a set

of traces and the symbols over which those traces are defined into a single entity. Trace

structures can be applied to circuit design by equating symbols in aT to events on the

wires of a circuit.

Trace-expressions are an extension of regular-expressions to apply to trace structures.

Trace-expressions differ from regular-expressions in that they introduce an explicit con-

currency construct ‖ known as parallel composition [31] or weave [34]. The purpose of
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Figure 2.10: Example delay insensitive components and their trace-expressions.

parallel composition is to take two trace-expressions S, T and construct a trace structure

that contains all possible interleavings of traces in both S and T . If t is a sequence of

symbols from alphabet Σ and P ⊆ Σ, then t↾P denotes the sequence remaining after all

symbols not in P have been removed from t. A trace t ∈ t(S ‖ T ) if and only if t↾aS ∈ tS

and t↾aT ∈ tT . A generic trace-expression grammar is as follows:

T ::= ǫ
∣

∣ x?
∣

∣ x!
∣

∣ [T ]
∣

∣ T1; T2

∣

∣ T1|T2

∣

∣ T1 ‖ T2

∣

∣ pref T

x? denotes an input action, x! denotes an output action, [T ] denotes arbitrary repetition

of traces in tT , and pref T denotes prefix-closure on traces in tT . Trace structures have

been used extensively in the design of delay insensitive circuits [36, 80, 85, 93], and delay

insensitivity of a trace structure has been formalised by both Ebergen [34] and Dill [31].

Some examples of delay insensitive components and their associated trace-expressions are

shown in Figure 2.10. Automated verification procedures based on trace structures have

also been developed by both Dill [31] and Ebergen [33].

Communicating Processes

Communicating processes are an abstract model of concurrency built on the concept of

processes interacting through channels or actions. Notations for communicating processes

have been proposed independently by both Hoare and Milner.

According to Milner a Calculus of Communicating Systems (CCS) is a formal model

defined in terms of labelled transition systems [64]. A CCS expression P is considered to
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be an atomic entity capable of performing sequences of actions over a definite alphabet,

denoted αP . The performance of any action a ∈ αP is regarded as a labelled transition

P
a

−→ Q that transforms a CCS expression P into a new CCS expression Q.

CCS differs from trace structures in that each observable action a ∈ Σ has two forms:

positive, denoted a, and negative, denoted a. Performance of an action a equates to

synchronisation of two CCS expressions a.P and a.Q, denoted by the transformation

a.P [] a.Q
a

−→ P []Q. A CCS action a therefore models a two way handshake between pro-

cesses P and Q rather than the blind sending of an event a along a wire in a circuit. CCS

actions may also embed the transmission of value, denoted a(v1, v2, . . . , vn).P . Embedding

of value in actions permits CCS to directly model the transfer of data along channels, an

ability with immediate application to asynchronous design. CCS also makes a distinction

between hidden and observable actions by introducing the notion of a hidden transition,

denoted by the special action τ . A cut-down grammar for CCS expressions is as follows:

P ::= NIL
∣

∣ P + P
∣

∣ a(v1 . . . vn).P
∣

∣ a(v1 . . . vn).P
∣

∣ τ.P
∣

∣ P []P
∣

∣ P \ a

NIL denotes the terminal expression that can’t do anything, a.P denotes an expression

capable of performing the positive action a, a.P denotes an expression capable of perform-

ing the negative action a, and τ.P denotes an expression capable of performing a hidden

action τ . P + Q denotes an expression that may behave either as P or Q, and P []Q de-

notes the concurrent execution of P and Q. For example, x.P +y.Q differs from x.P [] y.Q

in that x.P + y.Q
x

−→ P whereas x.P [] y.Q
x

−→ P [] y.Q. P \ a makes a, a actions hidden

in expression P . For example, (a.P [] a.Q) \ {a}
τ

−→ P []Q. An interactive environment

for visualising CCS expressions and for deciding equivalences between them can be found

in the Edinburgh Concurrency Workbench [67].

The π-calculus is a successor to CCS that introduces a notion of mobile connectivity be-

tween processes [66]. The π-calculus and its derivatives are an active area of research.

However it should be noted that an integrated circuit never dynamically changes its struc-

ture and so the π-calculus has so far offered little advantage over CCS in the field of circuit

design.

Communicating Sequential Processes (CSP) are an alternative notation for communicating

processes due to Hoare [11, 46]. Language constructs in CSP have much in common with

CCS, and every CSP expression P is also defined over a definite alphabet αP . However,
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CSP differs formally from CCS in that the meaning of a CSP expression is set-theoretic

and is not based on labelled transition systems: in CSP, each expression P is in one-to-

one correspondence with a set F = failures(P ) of pairs 〈s, X〉 such that the following

conditions apply:

1. s is any sequence over αP , and X ⊆ αP .

2. 〈ε, ∅〉 ∈ F .

3. If 〈st, ∅〉 ∈ F then 〈s, ∅〉 ∈ F .

4. If 〈s, Y 〉 ∈ F and X ⊆ Y then 〈s, X〉 ∈ F .

5. If a ∈ αP and 〈s, X〉 ∈ F and 〈sa, ∅〉 6∈ F then 〈s, X ∪ {a}〉 ∈ F .

The purpose of 〈s, X〉 ∈ failures(P ) is to assert that after performing the sequence of

actions denoted by s, P will reject any of the actions contained in X. If 〈s, ∅〉 ∈ failures(P )

then s is is a valid trace of P . The purpose of Condition 2 is to assert that the empty

sequence is always a valid trace, and the purpose of Condition 3 is to assert that valid

traces are prefix-closed. The purpose of Condition 4 is to assert that any subset of rejected

actions is also rejected, and the purpose of Condition 5 is to assert that impossible events

are always rejected.

Further to CSP, CCS, and the π-calculus, a communicating process notation called Com-

municating Hardware Processes (CHP) has also been defined by Martin. CHP has much

in common with CSP however it has no underlying formal semantics, and is defined qual-

itatively in terms of translation into quasi-delay insensitive circuits [60].

CSP and CCS also serve as a generic platform on which other process-oriented notations

can be evolved. For example, the Rainbow environment [4] is a multi-lingual system

whose underlying semantics is defined in terms of a process notation similar to CCS and

CSP. Rainbow is aimed specifically at the design of asynchronous circuits, and each of its

front-end languages targets different aspects of asynchronous design. For example, the

Green language offers a data-flow oriented notation, whereas the Yellow language offers a

control-flow oriented language.

Gate Networks

A gate network is a representation of concurrent behaviours as a set of independent state

graphs. Each vertex in each state graph uniquely determines a vector of binary output
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Figure 2.11: Example gate network module definitions.

values, and each edge of each state graph is labelled with a vector of binary input values.

State graphs are coupled together by virtue of the fact that an output value of one state

graph may be an input value to another state graph. The purpose of a gate network is as

a generic model of a circuit in which each primitive component or gate is modelled by an

independent state graph, and connectivity between components is determined by binary

input and output values on wires.

According to Brzozowski and Zhang [15], a gate network is a pair 〈N, P 〉 where N =

{M1, . . . , Mn} is a set of independent modules and K is a connectivity function. Each

module Mi is a five-tuple 〈Si, Xi, Zi, λi, δi〉, where Si is a unique set of internal states, Xi

is a unique set of binary input variables, Zi is a unique set of binary output variables,

λi ∈ Si → {0, 1}|Zi| is an output value function, and δi ∈ (Si ×{0, 1}|Xi|) → (2Si −{∅}) is

an excitation function such that for every (s, z) ∈ (Si × {0, 1}|Xi|) either δi(s, v) = {s} or

s 6∈ δi(s, v). A connectivity function is a bijection K ∈ (
⋃

i Xi →
⋃

i Zi) connecting each

module output to a unique module input.

Each module Mi ∈ N can be likened to a state graph where vertices are states in Si

and where edges are labelled with binary value assignments to each input variable in

Xi. For each state-input pair (s, v) ∈ Si × {0, 1}|Xi|, the excitation function δi either

asserts stability, δi(s, v) = {s}, or asserts excitation, s 6∈ δi(s, v). Some example module
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definitions are shown in Figure 2.11.

The state of a gate network is defined by a vector s ∈ (S1 × · · ·×Sn) of state assignments

to each of its internal modules. Transition from one gate network state to the next is

determined by an execution model relation R ⊆ (S1 × · · · × Sn) × (S1 × · · · × Sn). An

execution model may be either Single or Multiple-Winner [16]. A Single-Winner execution

model asserts that at most one module can change state per gate network transition,

whereas a Multiple-Winner execution model asserts that any number of modules can

change state per gate network transition.

The Extended Multiple-Winner execution model is an extension of the Multiple-Winner

execution model to apply to gate networks where the values on inputs and outputs can

be either 0, Uncertain (Φ), or 1. Analysis of gate networks under an Extended Multiple-

Winner execution model can be efficiently implemented using a technique called ternary

simulation [16].

Process Spaces

Process spaces are a model of concurrency built on an abstract notion of execution that

makes no explicit reference any notion of sequence [76]. In process space theory, a process

P over E is a pair (X, Y ) where E is an abstract set of executions and X ∪ Y = E . A

process P = (X, Y ) represents a contract between a device and its environment. This

contract asserts that the device only accesses executions in asP
def
= X, and that the

environment only accepts executions in atP
def
= Y . For each process P = (X, Y ) the sets

gP
def
= X ∩ Y , rP

def
= Y , and eP

def
= X denote a partitioning of E into three parts: gP

denotes goals, which are valid executions conforming to the device-environment contract;

rP denotes rejects, which are executions that must be avoided by the environment; and

eP denotes errors, which are executions that must be avoided by the device.

If P and Q are processes over E then the concurrent composition of P and Q can be

expressed in one of two ways:

1. P × Q
def
= ((asP ∩ asQ), (atP ∩ atQ) ∪(eP ∩ rQ) ∪ (rP ∩ eQ))

2. P ⊕ Q
def
= ((asP ∩ asQ) ∪ (eP ∩ rQ) ∪ (rP ∩ eQ), (atP ∩ atQ))

Both P × Q and P ⊕ Q model concurrency between two contracts by asserting that

executions acceptable to both processes remain acceptable, and that executions accessible

to both processes remain accessible. P×Q and P⊕Q differ in their treatment of executions
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that are errors to one process but rejects to the other. P ×Q asserts that such executions

become errors whereas P ⊕Q asserts that such executions become rejects. This difference

equates to an assertion regarding whether it is the devices or the environments that are

interacting: in the case of P × Q it is the devices that are interacting and an error for

either device is an error for the composition. In the case of P ⊕ Q it is the environments

that are interacting and a reject by either environment is a reject by the composition.

Process spaces are significant because they present a purely set-theoretic model of pro-

cesses and concurrency that is void of sequence, connectivity, wires, events, levels, inputs

or outputs. Process spaces are discussed in detail by Negulescu [76, 77] where they are

used as the foundation for an automated verification program called Firemaps.

DI-Algebra

The DI-algebra [49] is a notation for describing concurrent processes that can only com-

municate with each other across a delay insensitive interface. A delay insensitive interface

is an interface that may delay any signal for an arbitrary amount of time. DI-algebra

has an underlying failure-set semantics similar to the trace structures of Dill [31] and the

Communicating Sequential Processes of Hoare [46].

DI-algebra begins with the assertion of a finite set A = ((I ×{?})∪ (O ×{!})) of symbols

where a? ∈ A denotes an input symbol and a! ∈ O denotes and output symbol. A DI-

specification is a set of possibly recursive concurrent process equations Xi = Ei where Xi

are process variables and Ei are process expressions formed from one or more applications

of the following grammar:

E ::= ⊥
∣

∣ Xi

∣

∣ E ⊓ E
∣

∣ [ choice ]

choice ::= (guard → E)
∣

∣ (guard → E) 2 choice

guard ::= skip
∣

∣ a?
∣

∣ a!

⊥ denotes the degenerate or chaos process that can do anything. E⊓F denotes a process

that can non-deterministically choose to behave either as E or as F . [choice] denotes the

guarded-choice between a set of guards of the form (guard → F ). The guard (a? → F )

matches an input on a and then behaves as F , the guard (a! → F ) outputs an a and

then behaves as F , and the guard (skip → F ) can always be matched. A process [choice]

that is able to match one of its guards must eventually do so, however if more than one

guard can be matched then that process can non-deterministically select any one of its
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Interpretation Explanation

⊤ Reject
∇ Process must output something
2 Quiescent
∆ Process must receive something
⊥ Error

Table 2.3: State interpretations in the XDI model.

matching guards. Two common shorthands for guarded-choice are a?; E
def
= [a? → E]

and a!;E
def
= [a! → E].

DI-specifications assert a set of laws that must be adhered to by their underlying semantics.

For example, a?; b?; E = b?; a?; E since a delay insensitive interface implies that the order

in which inputs arrive cannot be determined. DI-algebra also defines a partial refinement

ordering ⊒ between processes such that P ⊒ Q if and only if P ⊓ Q = Q. If P ⊒ Q then

P can not be distinguished from Q by any environment, and may therefore replace Q in

any implementation. An important law of refinement is E ⊒ ⊥ which asserts that any

process E is a refinement of the chaotic process ⊥. In this sense ⊥ is a least element of ⊒

and can be used to solve the recursive Xi = Ei equations that form a DI-specification by

computing least fixed-points with respect to ⊒.

A DI-specification differs from other concurrent notations in that concurrency is implicit in

the underlying algebra. For example, consider the join element shown in Figure 2.10 with

trace-expression M = pref [(a?; x!) ‖ (b?; x!)]. An equivalent specification in DI-algebra

need only describe an “example” execution sequence for the join, such as M = a?; b?; x!;M ,

with the underlying algebraic laws performing closure on any concurrency that must ensue

when the interface to M is delay-insensitive.

The Extended Delay Insensitive (XDI) Model is an alternative model of delay insensitive

processes in which the underlying semantics are based on state graphs [106, 107]. Although

it is also possible to translate DI-specifications into finite automata [57], the XDI Model

extends DI-algebra further by augmenting each process state with one of the interpreta-

tions shown in Table 2.3. The result of this extension is an ability to treat process and

environment with a symmetry not possible using a failure-set semantics of DI-algebra.

This symmetry permits the XDI model to express progress constraints for both the envi-

ronment and the process where failure-sets can only express progress constraints for the

process.
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Figure 2.12: (a) Non-deterministic choice (b) Structural inequality.

2.3.5 Equivalences

An equivalence is a relationship between two entities. In Section 2.3.1 equivalence between

model and specification was outlined as a type of satisfaction criterion. Equivalences are

also necessary for state minimisation [1] since two states of a model can only be combined

into one if they are known to be equivalent. The purpose of this section is to present

a brief outline of those equivalences most relevant to the formal methods in hardware

design. Further information on equivalence, and a formal definition of the equivalence

relations that follow can be found in Shiple [92].

Trace equivalence

Trace equivalence asserts that two processes are equivalent if their corresponding sets of

valid executions are identical. Trace equivalence is applicable to all the models discussed

here, but it is also the weakest in that it asserts the largest number of processes in each

equivalence class.

Failure-trace equivalence

Failure-trace equivalence asserts that two processes are equivalent if their corresponding

sets of both valid and invalid executions are identical. Failure-trace equivalence extends

trace-equivalence to distinguish between the two different types of non-deterministic choice

shown in Figure 2.12(a).

Observational equivalence

Observational equivalence asserts that two processes are equivalent if neither can be dis-

tinguished from the other by any number of experiments at their external interface. Ob-

servational equivalence enables hierarchical abstraction of circuit models by permitting

certain actions or symbols to be considered hidden or internal.
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Bisimulation equivalence

Bisimulation equivalence asserts that two processes are equivalent if each process can

simulate the other action for action. Strong bisimulation requires that hidden actions are

included in these simulations, whereas weak bisimulation requires only that simulations

apply to visible actions [65].

Structural equivalence

Structural equivalence or graph isomorphism is the strongest form of equivalence which

asserts that two models are the same except for a renaming of variables or terms. Struc-

tural equivalence is in most cases too strong to be of any practical use, see for example

Figure 2.12(b).

2.3.6 Efficient Implementation using Binary Decision Diagrams

A Binary Decision Diagram (BDD) over a finite set of variables V is a binary tree B

formed by one or more applications of the following grammar [13, 14]:

B ::= T
∣

∣ F
∣

∣ node(v, B, B)

v ::= any element of V

If B = node(v, P, Q) then var(B)
def
= v, then(B)

def
= P , and else(B)

def
= Q. The purpose of

a BDD B is to represent a boolean expression over the variables in V . This representation

equates boolean value assignments to V with paths from root to leaf in B. If a particular

value assignment results in a path to T then B evaluates to T and if a particular value

assignment results in a path to F then B evaluates to F. A BDD B can be converted to

a boolean expression [[B]] recursively as follows:

[[T]]
def
= T

[[F]]
def
= F

[[node(v, P, Q)]]
def
= (v ∧ [[P ]]) ∨ (¬v ∧ [[Q]])

If the variables in V are ordered by <, and for every BDD B = node(v, P, Q) the following

two conditions apply then B is said to be an Ordered-BDD (OBDD):

1. If P 6∈ {T, F} then var(B) < var(P ).

2. If Q 6∈ {T, F} then var(B) < var(Q).
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Figure 2.13: A Reduced-OBDD for A(BC ∨ B) ∨ A C.

If B is an BDD and v ∈ V then B↓v denotes the BDD for B with the value T substituted for

v. If B is a BDD and v ∈ V then B↓v denotes the BDD for B with the value F substituted

for v. If B = node(w, P, Q) is an OBDD and v < w then B↓v = B↓v = B. If B =

node(w, P, Q) is an OBDD and v = w then B↓v = P , B↓v = Q. Hence if B is an OBDD

and v ≤ w then B↓v and B↓v can be computed in constant time. Using this assertion it is

possible to implement all boolean operators on OBDDs efficiently using a single generic if-

then-else algorithm, ite(F, G, H), to compute the OBDD for (F ∧G)∨(¬F ∧H) recursively

on the structure of F, G, H as follows:

ite(T, G, H) = G

ite(F, G, H) = H

ite(node(v, P, Q), F, F) = F

ite(node(v, P, Q), F, T) = node(v, Q, P )

ite(node(v, P, Q), T, F) = node(v, P, Q)

ite(node(v, P, Q), T, T) = T

ite(node(v, P, Q), node(w, R, S), node(x, T, U)) =

let a = min(v, w, x) in node(a, ite(P↓a, R↓a, T↓a), ite(Q↓a, S↓a, U↓a))

A Reduced-OBDD (ROBDD) is an OBDD in which every node is distinct, and therefore

any two branches to identical sub-trees share the same pointer, see Figure 2.13. ROBDD

function libraries are both memory efficient and fast [83] and have been extensively applied

to formal verification for the purpose of reachability analysis on state graphs [50].

2.4 Summary

The purpose of this chapter was to present a brief introduction to asynchronous design

and its associated formal methods. Two different classifications of asynchronous design

style were presented, and formal methods in asynchronous design were classified according
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to two simple criteria: sequence and concurrency. An important foundation behind this

classification was a desire to overview differences between the semantics of each formal

notation in such away that similarities between their underlying symbols and constructs

remained clear. In particular, the reader’s attention is now drawn to the observation

that encoding of events or actions as elements from a finite set of symbols is ubiquitous.

This observation was an important inspiration behind the proposition-oriented methods

evolved in the following chapters.
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Chapter 3

Extending Events to Propositions

3.1 Introduction

If C is a circuit with n wires then the digital value on all of these wires can be represented

by a bit-vector s = 〈b1, b2, . . . , bn〉 of length n. Any sequence S = s0s1s2 . . . of such

bit-vectors can be used to represent an execution of C. Any S of this form is said to

be a relative-time execution since it does not contain any absolute timing information.

Any pair (si, si+1) of consecutive states in S identifies a set of level changes or events

on a certain subset ei of the wires in C. For every si and ei it is possible to deduce

si+1, and therefore by induction, provided the initial state s0 is known, any sequence

of event-sets e1e2e3 . . . may also be used to denote an execution of C. A sequence of

bit-vectors denotes a level-oriented execution whereas a sequence of event-sets denotes

an event-oriented execution. An edge-oriented execution is an event-oriented execution

where every ei is partitioned into two parts: one part containing rising events and the

other part containing falling events.

Any relative-time execution may be restricted by asserting that no two events can occur

simultaneously. This restriction is referred to as a Single-Winner model of behaviour.

In the context of a Single-Winner event-oriented execution every ei contains exactly one

element, and in the context of a Single-Winner level-oriented execution every pair (si, si+1)

of consecutive states differ in exactly one bit position. A Single-Winner restriction is

justifiable for relative-time executions since any two consecutive relative-time events may

be arbitrarily close together in absolute-time. Conversely any two apparently simultaneous

events can always be ordered with sufficient absolute-time resolution. A relative-time

execution which is not Single-Winner is referred to as a Multiple-Winner execution. Single-

Winner event-oriented executions are often denoted as a sequence of wire names. Single-

Winner edge-oriented executions are often denoted as a sequence of wire names in which

each wire name w is also identified as either a rising or a falling event: for example as w+

or w−.
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abstractionoperation

events

other
abstractions?

levels specificationcircuit designer

Figure 3.1: Abstractions between circuit and specification.

In the context of circuit verification, the underlying model of execution limits both the

circuit behaviours that can be modelled and the type of specifications that can be made:

something that cannot be modelled cannot be verified. Furthermore, since a MOS tran-

sistor is a voltage controlled device, the operation of a digital circuit is dependent on

levels not events. Event-based models of behaviour are necessarily abstractions that infer

events from levels for the purpose of designer convenience, see Figure 3.1. If a circuit

is described directly using an event-oriented model of behaviour then the abstraction

still exists, it is just that the translation from level-oriented behaviour to event-oriented

behaviour has been performed by hand. The wide-spread success of notations such as

Petri-nets, trace-expressions, burst-mode machines, and DI-algebra is a strong indication

that event-oriented abstractions are effective for asynchronous circuit design, however this

thesis aims to demonstrate that an alternative abstraction may be more appropriate.

The alternative abstraction is referred to as proposition-oriented behaviour. Its origin lies

in the observation that verbal building blocks for describing circuit behaviours include

any statement which identifies meaningful instants or intervals in time. For example, the

verbal statements “dual-rail wires a0, a1 assert a data-value” and “a rises when b and c

are low” both identify meaningful instants in time. Alternatively, “a is low” or “b is low

and c is high” are also meaningful verbal statements that identify well-defined intervals in

time. A proposition-oriented execution is any sequence φ0φ1φ2 . . . of boolean propositions

in which each φi matches a definite set of level-oriented (si, si+1) pairs, see Figure 3.2.

Proposition-oriented executions include both event-oriented and edge-oriented executions

as special cases in which only certain types of proposition may be used.

The purpose of this chapter is to document a formal foundation for proposition-oriented

behaviours that is suitable for asynchronous circuit verification. Section 3.2 describes

some mathematical preliminaries. Section 3.3 defines an underlying level-oriented model
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(s0, s1) (s1, s2) (s2, s3) (s3, s4)

s0 s1 s2 s3 s4

φ0 φ1 φ2 φ3

level-oriented sequence:

transitions:

propositions:

Figure 3.2: Proposition-oriented behaviour.

of behaviour on which two proposition-oriented abstractions are then built in Sections

3.5 and 3.6: Section 3.5 describes a proposition-oriented form of regular-expression, and

Section 3.6 describes a proposition-oriented form of trace-expression. The application of

both proposition-oriented regular-expressions and proposition-oriented trace-expressions

to asynchronous circuit design are discussed in detail in Chapter 6. Section 3.4 shows how

some basic circuit building blocks such as AND-gates, C-elements, and arbiters can be

encoded using the level-oriented model of behaviour defined in Section 3.3.

3.2 Mathematical Preliminary

3.2.1 Set Notation

If X is a set then x ∈ X means that x is an element of X, and x 6∈ X means that x is not an

element of X. |X| denotes the number of elements in X. If X and Y are sets then X ⊆ Y

means that X is a subset of Y . If X ⊆ Y and X 6= Y then X ⊂ Y meaning that X is a

proper subset of Y . If |X| = 0 then X = ∅ is the empty set. 2X = {Y | Y ⊆ X} denotes

the set of all subsets of X, also called the power set of X. ∀x ∈ X denotes universal

quantification over all elements x in X, and ∃x ∈ X denotes existential quantification

over some element x in X.

If X and Y are sets then X × Y = {(x, y) | x ∈ X and y ∈ Y } denotes the product set of

X and Y . X → Y denotes the set of all total functions from X to Y and X ⇁ Y denotes

the set of all partial functions from X to Y . If f ∈ X → Y then f(x) = y is shorthand

for (x, y) ∈ f . f ∈ X → Y and f ∈ X ⇁ Y are different from f ⊆ X × Y in that if

x ∈ X then any f ∈ X → Y must have |{y | f(x) = y}| = 1 and any f ∈ X ⇁ Y must

have |{y | f(x) = y}| ≤ 1. If X and Y are sets then X ∪ Y denotes set union, X ∩ Y

denotes set intersection, and X ⊎ Y denotes disjoint union. X − Y = {x | x ∈ X and

x 6∈ Y } denotes set subtraction. If X = {x1, x2, . . . , xn} then
⋂

x∈X f(x) is shorthand for
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f(x1) ∩ f(x2) ∩ · · · ∩ f(xn) and
⋃

x∈X f(x) is shorthand for f(x1) ∪ f(x2) ∪ · · · ∪ f(xn).

Define
⋃

x∈∅ f(x)
def
= ∅ and define

⋂

x∈∅ f(x)
def
= Ω where Ω is the universe of discourse

appropriate for f(x).

3.2.2 Boolean Expressions

If V is a finite set of variable names then the set Bexp of all boolean expressions over V

is defined recursively as follows:

Bexp ::= T
∣

∣ F
∣

∣ v
∣

∣ ¬Bexp
∣

∣ Bexp ∧ Bexp
∣

∣ Bexp ∨ Bexp
∣

∣ Bexp ⊕ Bexp
∣

∣

Bexp ⇒ Bexp
∣

∣ Bexp ⇔ Bexp
∣

∣ v = v
∣

∣ v 6= v

v ::= Any element of V

The meaning [[B]]V ⊆ 2V of a boolean expression B over is defined inductively on the

structure of B as follows:

• [[T]]V
def
= 2V . Denotes the boolean constant true.

• [[F]]V
def
= ∅. Denotes the boolean constant false.

• [[v]]V
def
= {X ⊆ V | v ∈ X}. Denotes the boolean variable v.

• [[¬B]]V
def
= 2V − [[B]]V . Denotes boolean negation.

• [[B1 ∨ B2]]V
def
= [[B1]]V ∪ [[B2]]V . Denotes logical or.

• [[B1 ∧ B2]]V
def
= [[B1]]V ∩ [[B2]]V . Denotes logical and.

• [[B1 ⊕ B2]]V
def
= [[(B1 ∧ ¬B2) ∨ (¬B1 ∧ B2)]]V . Denotes logical exclusive-or.

• [[B1 ⇒ B2]]V
def
= [[¬B1 ∨ B2]]V . Denotes boolean implication.

• [[B1 ⇔ B2]]V
def
= [[(B1 ⇒ B2) ∧ (B2 ⇒ B1)]]V . Denotes boolean double-implication.

• [[B1 6= B2]]V
def
= [[B1 ⊕ B2]]V . Denotes expression inequality.

• [[B1 = B2]]V
def
= [[¬(B1 6= B2)]]V . Denotes expression equality.

Every s ∈ [[B]]V denotes the characteristic set for a particular binary value assignment

A ∈ V → {0, 1} to the variables in v ∈ V : if v ∈ s then A(v) = 1 else A(v) = 0.

Define bool(V )
def
= 2V so that s ∈ 2V can be re-written as s ∈ bool(V ) whenever s is to

be interpreted as the characteristic set for a boolean variable value assignment. Define
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bexp(V ) to be the set of all boolean expressions over the variables in V . If B1 and B2 are

boolean expressions over the variables in V then define B1 ≡ B2
def
= [[B1]]V = [[B2]]V .

If B is a boolean expression over V and V ⊆ W then define [[B]]W
def
= {b ⊆ W | b ∩ V ∈

[[B]]V }. If B1 is a boolean expression over V1 and B2 is a boolean expression over V2 then

any boolean expression B1 op B2 constructed from B1 and B2 is defined over the variables

in V1 ∪ V2.

If B is a boolean expression over V1, q is a boolean expression over V2, and x ∈ V1,

then define B[q/x] to denote the boolean expression over V1∪V2 obtained by replacing all

instances of x in B by q. If Q ∈ V1 ⇁ bexp(V2) and V1∩V2 = ∅ then define B[Q] to denote

the iterative application of B[q/x] for each (x, q) ∈ Q. Note that since V1 ∩ V2 = ∅ the

order of these applications does not matter. If B does not depend on x then B[q/x] ≡ B

and if B = x then B[q/x] ≡ q.

If B is a boolean expression over V and x ∈ V then define ∃x.B
def
= B[T/x] ∨ B[F/x]

and define ∀x.B
def
= B[T/x] ∧ B[F/x]. If X = {x1, . . . , xn} ⊆ V then ∃X.B is shorthand

for ∃x1. · · · .∃xn.B and ∀X.B is shorthand for ∀x1. · · · .∀xn.B. If B = {b1, b2, . . . , bn} ⊆

bexp(V ) then
∧

b∈B b is shorthand for b1 ∧ b2 ∧ · · · ∧ bn and
∨

b∈B b is shorthand for

b1 ∨ b2 ∨ · · · ∨ bn. Define
∨

b∈∅ b
def
= F and define

∧

b∈∅ b
def
= T.

3.2.3 Finite Sequences

If Σ is a finite set of symbols and n ∈ N, then any function σ ∈ {0 . . . (n−1)} → Σ is a finite

sequence of length n over Σ. Define |σ| = n. The sequence of length zero is the empty

sequence and is denoted by the symbol ε. If |σ| > 0 then define last(σ)
def
= σ(|σ| − 1).

The concatenation of two sequences σ1 and σ2 over Σ is a function σ1σ2 ∈ {0 . . . (|σ1| +

|σ2| − 1)} → Σ such that σ1σ2(i) = σ1(i) if i < |σ1| and σ1σ2(i) = σ2(i − |σ1|) if i ≥ |σ1|.

For every s ∈ Σ, 〈s〉Σ denotes the singleton sequence of length 1 with 〈s〉Σ(0) = s. If σ

is a finite sequence over Σ and A ⊆ Σ then σ ↾ A denotes the finite sequence formed by

removing all symbols not in A from σ. If σ is a finite sequence over Σ then the pairwise

extension of σ is the finite sequence σ2 over Σ × Σ defined as follows: if |σ| < 2 then

σ2 def
= ε else |σ2| = |σ| − 1 and σ2(n)

def
= (σ(n), σ(n + 1)).

A set of finite sequences over Σ is any set X such that every x ∈ X is a finite sequence

over Σ. If X is a set of finite sequences over Σ and n ∈ N then Xn is defined recursively as

follows: X0 def
= {ε} and Xn+1 def

= {σ1σ2 | σ1 ∈ X and σ2 ∈ Xn}. Define X∗ def
=

⋃

n∈N
Xn.
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If X is a set of finite sequences over Σ then pref X
def
= {σ1 | ∃σ2. σ1σ2 ∈ X} denotes the

prefix-closure of X, and stpref X
def
= (pref X) − X denotes strict prefix-closure of X.

3.3 Component Network Model of Behaviour

In Section 3.1 a relative-time level-oriented execution of circuit C was defined as a sequence

s0s1s2 . . . of bit-vectors. Each si = 〈b0b1b2 . . .〉 determined a particular binary value

assignment to the level of every wire in C. Gate network models [15] are a representation

of the set of all relative-time level-oriented executions for C as sets of state graphs, see

Section 2.3.4. The purpose of this section is to introduce a new gate network model,

referred to as a component network model, from which proposition-oriented behaviours

can then be formalised.

3.3.1 Primitive Component

A primitive component C is a state graph 〈ins, outs, S, T, I〉 where:

• ins is a finite set of input wire names.

• outs is a finite set of output wire names.

• S ⊆ bool(outs) is a finite set of component states such that each state s ∈ S

identifies a unique binary value assignment to each output wire w ∈ outs. If s ∈ S

and w ∈ outs then define λw(s)
def
= 1 if w ∈ s, and define λw(s)

def
= 0 if w 6∈ s.

• T ⊆ S × bool(ins) × S is a labelled transition relation over value assignments to

the wires in ins. If s1 ∈ S, s2 ∈ S, and e is a boolean expression over the variables

in ins then define s1
e

−→ s2
def
= {(s1, l, s2) | l ∈ [[e]]ins}.

• I ⊆ bool(ins) × S is a set of possible initial configurations for C. I is not defined

as I ⊆ S since in general the initial state of C might depend on the initial values of

its inputs. Defining I ⊆ bool(ins) × S allows initial states of C to be bound to

certain initial input values and thus enables this dependency to be expressed.

Since T is a relation and not a function, the behaviour of C is non-deterministic. Non-

determinism is necessary if components involving arbitration are to be successfully mod-

elled by C. C is also a wire-state only model [16] in that its state can always be determined

from the binary values on its outputs. A wire-state only model is chosen since it prevents
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C from hiding internal state at its outputs, a property which is discussed further in Section

4.1.

If C is a primitive component then C.S denotes the states of C, C.outs denotes the output

wire names for C, C.λx denotes the output valuation function for output x ∈ C.outs, and

so forth.

3.3.2 Component Network

For any finite set N = {c1, c2, . . . , cn} of primitive components define:

• driven(N)
def
=

⋃

c∈N (c.outs).

• wires(N)
def
=

⋃

c∈N (c.outs ∪ c.ins).

If driven(N) = wires(N) and ∀c ∈ N. driven(N − c) ∩ c.outs = ∅ then N is called a

component network. If driven(N) ⊂ wires(N) then there is at least one wire without any

output valuation function. If driven(N − c) ∩ c.outs 6= ∅ for some c ∈ N then there is at

least one wire with more than one output valuation function.

A component network N can be constructed from any digital circuit provided every primi-

tive gate in that circuit has an analogous primitive component definition. The translation

from circuit to component network requires a unique c ∈ N for every primitive gate in-

stance, and a unique identifier w ∈ wires(N) for every wire. If w ∈ ci.outs then wire w

is driven by ci and has value ci.λw(s) when ci is in state s. If w is also in cj .ins then

component cj has wire w as one of its inputs. Requiring driven(N) = wires(N) ensures

that no wires are left floating and requiring that ∀c ∈ N. driven(N−c)∩c.outs = ∅ ensures

that no wire has multiple drivers.

Component Network Model

If N = {c1, c2, . . . , cn} is a component network then the component network model for N

is an automaton 〈states(N), trans(N), init(N)〉 where:

• states(N)
def
= c1.S × c2.S × · · · × cn.S is the product state-set formed from the

individual primitive component state-sets in N .

• proj(s ∈ S, c ∈ N) ∈ c.S denotes the element of s representing a state in c.S.

• parent(x ∈ wires(N)) ∈ N denotes the unique primitive component in N for which

x ∈ c.outs.
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• val(x ∈ wires(N), s ∈ S)
def
= parent(x).λx(proj(s, parent(x))) is the value of wire x in

network model state s.

• inset(c ∈ N, s ∈ S)
def
= {x ∈ c.ins | val(x, s) = 1} denotes the set of inputs to

primitive component c that are at level 1 in network model state s.

• trans(N)
def
= {(s1, s2) ∈ S × S | ∀c ∈ N. (proj(s1, c), inset(c, s1), proj(s2, c)) ∈ c.T} is

a transition relation including all pairs of states (s, s′) such that each of the ci

makes a valid transition.

• alltrans(N)
def
= states(N) × states(N) is the maximal possible set for trans(N).

• init(N)
def
= {s ∈ S | ∀c ∈ N. (inset(c, s), proj(s, c)) ∈ c.I} is a set of possible initial

states.

The component network model for N is a form of product state graph which models the

concurrent execution of each C ∈ N but requires that any coupling between inputs and

outputs is adhered to. The behaviour of a component network model is identical to that

of a Multiple-Winner execution model since more than one primitive component may

change state per component network transition and therefore more than one wire may

change level per component network transition.

3.3.3 Network Executions

If N is a component network then a network execution of N is any finite sequence σ over

states(N) where if |σ| > 0 then σ(0) ∈ init(N) and if |σ| > 1 then ∀n ∈ {0 . . . (|σ| −

2)}. (σ(n), σ(n + 1)) ∈ trans(N). A network execution of N represents any sequence

of states beginning with an initial state of N and continuing in such a way that every

consecutive pair of states is a valid transition of N . Define the language of N to be the

set L(N)
def
= {σ over states(N) | σ is a network execution of N}.

Level-Oriented Network Executions

If N is a component network then define the level-oriented execution of N to be the finite

sequence σl over bool(wires(N)) where σl(n)
def
=

⋃

c∈N proj(σ(n), c). Each σl(n) denotes

the set of all component network wires whose level is 1 in component network state σ(n),

and since component networks are a wire-state only model, σl and σ are in one-to-one

correspondence. Define the level-language of N to be the set

Ll(N)
def
= {σl over bool(wires(N)) | σ ∈ L(N)}.
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Figure 3.3: Transition relation for Csingle.

3.4 Primitive Components for Asynchronous Design

This section documents some basic primitive components sufficient to model most asyn-

chronous circuit designs. Each of these components adopts an inertial model of delay

[16]: any output y of circuit element E that is enabled to change its value may wait an

arbitrary number of component network transitions before doing so. If, while waiting,

the inputs to E continue to change so as to disable y, then y may no longer change its

value. In the context of a primitive component C, an output y is enabled in configuration

(s1, l) ∈ C.S × bool(C.ins) if there exists another state s2 6= s1 with (s1, l, s2) ∈ C.T and

C.λy(s1) 6= C.λy(s2).

3.4.1 Generic Single Output Gate

Conventional boolean logic gates have single outputs. Many basic gates in asynchronous

design also have single outputs. Buffers, inverters, complex gates, C-elements, generalised

C-elements, and threshold gates [94] are all examples of single output devices. The tran-

sition relation for a generic primitive component Csingle = 〈ins, {y}, bool({y}), T, I〉 with

a single output y is shown in Figure 3.3. Csingle has two states ∅ and {y}. If Csingle is in

state ∅ then λy(∅) = 0 and if Csingle is in state {y} then λy({y}) = 1. The behaviour of y is

inertial and therefore s0
T

−→ s0 and s1
T

−→ s1 since y may always retain its previous value.

The condition under which y can fall from level 1 to 0 is identified by the predicate clear,

and the condition under which y can rise from level 0 to 1 is identified by the predicate

set.

If E is the circuit element being modelled by Csingle then set represents a pull-up transistor

stack for y in E and clear represents a pull-down transistor stack for y in E. If set∧clear 6≡

F then it is possible to enable both the pull-up and pull-down stacks simultaneously and

consequently create a short from VDD to ground. All practical instances of Csingle must

therefore have set ∧ clear ≡ F. For a conventional boolean gate it is also true that

set ∨ clear ≡ T, however this does not apply to certain asynchronous components with

memory, such as a C-element.
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Figure 3.4: Primitive Component Icons.

Csingle can start up in any state except for initial configurations where either set or clear

are true in which case the initial state of Csingle is determined by the transistor stack

which is active during circuit initialisation. A formal definition of I is as follows:

I
def
= (bool(ins) × bool({y})) − {(l, ∅) | l ∈ [[set]]ins} − {(l, {y}) | l ∈ [[clear]]ins}

3.4.2 C-element

Let Ccelem be the primitive component model for an n-input symmetric C-element. Let

Ccelem.ins = {x1, x2, . . . , xn} as shown in Figure 3.4(a). Ccelem can now be constructed

from Csingle by defining set = x1 ∧ x2 ∧ · · · ∧ xn and clear = ¬x1 ∧ ¬x2 ∧ · · · ∧ ¬xn. An

input xi can be made asymmetric [39] either by removing xi from set or by removing ¬xi

from clear. If xi is removed from set then xi is a negative(−) asymmetric input and if ¬xi

is removed from clear then xi is a positive(+) asymmetric input.

3.4.3 Boolean Functions as Complex Gates

Let Cf be the primitive component model for a single complex gate implementing the

boolean function f of arity n. Let Cf .ins = {x1, x2, . . . , xn} as shown in Figure 3.4(b).

Cf can now be constructed from Csingle by defining set = f(x1, x2, . . . , xn) and clear =

¬f(x1, x2, . . . , xn).

The primitive component model for an inertial delay element Cdelay, see Figure 3.4(c), is

identical to that of a complex gate Cid where id is the identity function id(x) = x. The

implementation of an inertial delay element as a complex gate may also be referred to as

a buffer.

40



Extending Events to Propositions

r1

¬r1
¬r2

r2

rn

T
T TT

¬rn

∅ {a1} {a2} {an}

Figure 3.5: Transition relation for Carbiter(n).

3.4.4 Arbiter

Let Carbiter(n) = 〈{r1, r2, . . . , rn}, {a1, a2, . . . , an}, {∅, {a1}, {a2}, . . . , {an}}, T, I〉 be the

primitive component model for an n-input arbitration element with n-outputs. The tran-

sition relation for Carbiter(n) is shown in Figure 3.5, and its associated circuit icon is shown

in Figure 3.4(d). Carbiter(n) has n + 1 states. If Carbiter(n) is in state ∅ then no output

is granted and every ai is at level 0. If Carbiter(n) is in state {ai} then the ith output is

granted and ai only is at level 1. To grant output i input ri must be at level 1, and to

revoke a grant on output i input ri must be at level 0. If i 6= j then Carbiter(n) cannot make

a transition from state {ai} to state {aj} without entering state ∅ in between. Carbiter(n)

always starts up in state ∅ even if some of the ri are at level 1 during circuit initialisation.

A formal definition for I is I
def
= {(l, ∅) | l ∈ bool(ins)}.

3.4.5 Source

A source component Csource
def
= 〈∅, {y}, bool({y}), T, I〉 is a special form of primitive

component with no inputs and a single output y that can always change its value:

I = bool(∅) × bool({y}) and T = bool({y}) × bool(∅) × bool({y}).

Csource does not model any physical device, and is intended merely as the model for a

wire y whose behaviour is unknown or unconstrained. A circuit icon for Csource is shown

in Figure 3.4(e).

3.5 Proposition-Oriented Regular-Expressions

The purpose of this section is to evolve a basic sequential notation over proposition-

oriented behaviours in the context of a component network model. In order to do this a

special type of proposition called a network proposition is first defined. A simple regular-

expression-like specification language is then formalised from which proposition-oriented

behaviours can be related to component network executions.
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3.5.1 Network Proposition

For any component network N define:

• wires′(N)
def
= {w′ | w ∈ wires(N)} to denote a duplicate set of wire names w′ for

each wire w ∈ wires(N).

• dprime(x ⊆ wires(N))
def
= x ∪ {w′ | w ∈ x} is the set of wire names from x in both

primed and unprimed form. For example, if x = {w1, w2} then

dprime(x) = {w1, w2, w
′
1, w

′
2}.

• dwires(N)
def
= dprime(wires(N)) is the set of all component network wire names in

both primed and unprimed form.

• curr(x ⊆ dwires(N))
def
= x ∩ wires(N) is the set of all unprimed variables in x.

• next′(x ⊆ dwires(N))
def
= x ∩ wires′(N) is the set of all primed variables in x.

• next(x)
def
= {w | w′ ∈ next′(x)} is the set of all primed variables in x renamed back

to unprimed form.

• oneset(s ∈ states(N))
def
= {w ∈ wires(N) | val(w, s) = 1} is the set of all wires

whose value is 1 in component network state s.

• smap(x ∈ wires(N))
def
= {s ∈ states(N) | oneset(s) = x} is the set of all component

network states s with oneset(s) = x.

• tmap(x ⊆ dwires(N))
def
= {(s1, s2) | s1 ∈ smap(curr(x)) and s2 ∈ smap(next(x))} is

the set of component network transitions from states matching curr(x) to states

matching next(x).

Every wire name w ∈ wires(N) occurs twice in dwires(N), once in primed form and

once in unprimed form. Any subset x of dwires(N) can therefore be used to denote two

sets of value assignments to the wires in wires(N). The unprimed variables in curr(x)

denote one of these assignments and the primed variables in next′(x) denote the other

assignment. Every curr(x) identifies a specific set smap(curr(x)) of component network

states which result in the same value assignment to the wires in wires(N) as curr(x). A

similar set smap(next(x)) is identified by next(x). It is entirely possible for smap(curr(x))

or smap(next(x)) to be empty. tmap(x) denotes the complete set of network transitions

from states in smap(curr(x)) to states in smap(next(x)). tmap(x) may be empty, as may

tmap(x) ∩ trans(N).
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Figure 3.6: Relationship between network propositions and network executions.

A network proposition for N is any boolean expression over the variables in dwires(N).

The set of all possible network propositions for N is denoted by allprops(N). Network

propositions are closed under the boolean expression operators defined in Section 3.2.2:

if p1 and p2 are network propositions then so are ¬p1, p1 ∧ p2, p1 ∨ p2, and so forth. A

network proposition p is safe if p 6≡ F. Every network proposition p identifies a unique set

of network transitions labels(p) ⊆ alltrans(N) where:

labels(p)
def
=

⋃

x∈[[p]]dwires(N)

(tmap(x))

The relationship between network propositions and network executions is summarised in

Figure 3.6. It is important to note that network propositions reason with component

network transitions not states, and therefore the pairwise extension σ2 of a network ex-

ecution σ must always be constructed before σ can be related to a sequence of network

propositions. If a ∈ wires(N) and b ∈ wires(N) then define a+ def
= a = 0 ∧ a′ = 1,

a−
def
= a=1 ∧ a′=0, and a∗

def
= a 6= a′.

3.5.2 Regular-Expressions over Network Propositions

If N is a component network then the set Rexp of all regular-expressions over network

propositions for N is defined recursively as follows:

Rexp ::= p
∣

∣ Rexp ; Rexp
∣

∣ Rexp | Rexp
∣

∣ [Rexp ]
∣

∣ Rexp & Rexp

p ::= any safe network proposition.
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For every E ∈ Rexp the language Lre(E) of E is defined recursively on the structure of

E as follows:

• Lre(p)
def
= {〈l〉alltrans(N) | l ∈ labels(p)} is the set of singleton sequences for each

network transition labelled by p.

• Lre(E1 ; E2)
def
= {σ1σ2 | σ1 ∈ Lre(E1) and σ2 ∈ Lre(E2)} denotes expression

concatenation.

• Lre(E1 | E2)
def
= Lre(E1) ∪ Lre(E2) denotes expression alternation. σ is in

Lre(E1 | E2) if σ is in Lre(E1) or σ is in Lre(E2).

• Lre([E ])
def
= (Lre(E))∗ denotes arbitrary repetition of the sequences in Lre(E).

• Lre(E1 & E2)
def
= Lre(E1) ∩ Lre(E2) denotes expression intersection. σ is in

Lre(E1 & E2) if σ is in Lre(E1) and σ is in Lre(E2).

This definition of Lre(E) is identical to a conventional definition of regular-expression lan-

guages [48] in all cases except for Lre(p): a conventional definition of Lre(p) would have

been as Lre(p)
def
= 〈p〉allprops(N) denoting the singleton sequence for p over allprops(N).

However, in the context of network-propositions, every σ ∈ Lre(E) is intended to de-

note the pairwise extension of some network execution and not a sequence of network-

propositions. Lre(p) is therefore defined instead to match the set of singleton sequences

〈l〉alltrans(N) for each l ∈ labels(p), and the alphabet of every E ∈ Rexp is alltrans(N) not

allprops(N) as might otherwise be expected.

If N is a component network then a network execution σ ∈ L(N) is said to match

E ∈ Rexp if σ2 ∈ pref Lre(E). Example applications of proposition-oriented regular-

expressions to the verification of asynchronous circuits are given in Chapter 6.

3.6 Proposition-Oriented Trace-Expressions

A proposition-oriented regular-expression can be built using any symbol from an expressive

alphabet: boolean expressions over (current,next)-state wire value pairs. For example

[a = a′ ∧ b = b′] can be used to match any network execution where wires a and b never

change value or [¬a∗]; a∗; [¬b∗] can be used to match any network execution where wire b

never changes value after a has changed value. A proposition-oriented regular-expression

does however suffer from a limited ability to express the concurrency inherent to most
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[x∗; y∗] [d∗; a∗] [d∗; b∗]
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Figure 3.7: Hardware concurrency and regular-expressions.

asynchronous hardware design. Trace-expressions extend regular-expressions in such a

way as to counteract this limitation as follows:

Firstly, every trace-expression T is assigned a sort ΣT denoting a particular set of wire

names. If wire x ∈ ΣT then T is identified as “observing” events on wire x. In a

conventional definition of trace-expressions the underlying model of behaviour is Single-

Winner event-oriented and the symbols from which T is built are wire names not network

propositions: symbol a denotes an event on wire a. In this case the sort of T is just the

set of all symbols occurring in T . For example Σ[x;y] = {x, y}. If σ is a Single-Winner

event-oriented execution then the trace-expression language of T differs from the regular-

expression language of T in that all symbols σ(n) 6∈ ΣT are thrown away from σ before it

is matched against T .

Secondly, trace-expressions extend the grammar for regular-expressions to include a spe-

cial parallel composition operator “‖” that can be used to combine multiple specifications

for connected components: suppose T1 and T2 are trace-expressions for two connected

modules. To match Single-Winner event-oriented execution σ against the parallel com-

position T1 ‖ T2, all symbols σ(n) 6∈ ΣT1 are thrown away from σ before it is matched

against T1, and all symbols σ(n) 6∈ ΣT2 are thrown away from σ before it is matched

against T2. T1 ‖ T2 matches σ provided both cut-down sequences match their respective

trace-expressions.

As an example of the benefit of trace-expressions over regular-expressions consider the

component network outlined in Figure 3.7. There are four components, Y, A, B, and Q.

Components Y, A, and B are intended to behave in such a way that their input and output

events alternate. For example, component A has input wire d and output wire a, and its

intended behaviour is described by the regular expression [d∗; a∗]. Nothing is required

of component Q. Components A and B share the same input d and their operation is
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therefore related whereas the operation of components Y and Q is independent of either

A or B. An attempt to merge the regular-expressions for all four components into a single

regular-expression denoting the intended behaviour for the complete component network

raises the following two concerns:

• [d∗; a∗] only matches network executions in which either d or a change value on

every transition. What about transitions where any of x, y, b, c, p, or q are changing

value instead? What about transitions where no wire changes value? A similar

concern applies to [d∗; b∗] and [x∗; y∗].

• Every valid network execution must match both [d∗; a∗] and [d∗; b∗]. Every d∗ must

therefore be followed by both an a∗ and a b∗ before the next d∗ can occur, but the

order in which a∗ and b∗ happen is not important. The number of ways to

permutate n items is n! and n! grows exponentially with n. An enumeration of all

n! possible sequences as a regular-expression therefore also grows exponentially

with n. Can this be avoided?

If all of the regular-expressions are viewed as a trace-expression then both concerns dis-

appear: the first concern is resolved by the way in which symbols are thrown away from

circuit executions based on Σ and the second concern is resolved by using the parallel com-

position operator. As a result, [d∗; a∗] ‖ [d∗; b∗] ‖ [x∗; y∗] denotes the correct combined

trace-expression for the complete component network.

A migration of trace-expressions to reason over network propositions requires a meaningful

redefinition of the sort ΣT of trace-expression T in a proposition-oriented context. Since

the purpose of ΣT is to identify those wires which should be observed by T , redefinition

of ΣT in a proposition-oriented context requires that the concept of “observability” be

extended first to network propositions themselves. If the network proposition is a∗, a+, or

a− then the extraction of wire name a is not difficult, however extracting the appropriate

wire names from b∗ ⊕ c∗ or b∗ ∧ (c = 0) requires further thought: consider the trace-

expression T = [a∗; (b∗ ∧ c=0)] where the intention is for events on a and b to alternate

but for c to be at level 0 every time an event on b occurs. T does not assert anything

regarding when or how c should change level, it merely asserts that c = 0 when b∗. Events

on c must therefore be ignored by T even though c appears somewhere in the definition

of T . Conversely if T = [a∗; (b∗ ⊕ c∗)] where the intention is for events on a to alternate

with events on either b or c, then T must not ignore events on c. This distinction can be
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related closely to the addition of read-arcs into an STG [69], where the value of certain

signals can be passively bound to the enabling of a transition firing.

In the context of proposition-oriented behaviours, the determination of the sort Σp for

a network proposition p relates directly to those events that must happen for p to be

satisfied. For example b∗ ∧ (c=0) necessitates an event on b whereas b∗ ⊕ c∗ necessitates

an event on either b or c. If p is satisfiable when no wires change value, such as ¬a∗, then

p is passive and cannot meaningfully observe any wire including a. Active propositions

are a special subset of network propositions, each of which can be meaningfully argued as

observing at least one wire. An active proposition can be viewed as a formal definition

of the generic notion of an event: every active proposition identifies a well-defined set

of instants in time. For example, a∗ ∧ b = 0 is an active proposition whereas ¬a∗ is

not. Furthermore, a∗ ∧ b∗ cannot be an active proposition since it attempts to package

two events into one, an assertion that can always be violated if enough absolute-time

resolution is available. If a∗∧b∗ cannot be active then a∗∨b∗ cannot be active either since

it includes, as a subset, the same impossible instants as a∗ ∧ b∗. a∗ ⊕ b∗ is however a valid

active proposition since it excludes those instants where both a∗ and b∗ can occur.

Active propositions are defined in Section 3.6.1 below, and proposition-oriented trace-

expressions over active propositions are then defined in Section 3.6.2.

3.6.1 Active Propositions

If N is a component network and p is a network proposition for N then define:

• stable(W ⊆ wires(N))
def
=

∧

w∈W (w = w′) is a network proposition requiring that

all wires w ∈ W don’t change their value.

• allstable(N)
def
= stable(wires(N)).

• changeone(w ∈ wires(N))
def
=

∧

x∈wires(N)−{w}(x = x′) ∧ w∗ is a network

proposition matching any network transition where only wire w changes value.

• activeset(p)
def
= {w ∈ wires(N) | p ∧ changeone(w) 6≡ F} is the set of all wires w

where a value change on w alone might satisfy p. If w ∈ activeset(p) then p is said

to be active on w.

• twoevents(W ⊆ wires(N))
def
=

∨

w1∈W

∨

w2∈W−{w1}
(w∗

1 ∧ w∗
2) is a network

proposition that is satisfied whenever at least two wires in W change value

simultaneously.
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Condition
Proposition activeset(p) live notempty complete mutex Active?

¬a∗ – No – – – No
a∗ ∧ b∗ ∅ Yes No – – No
a∗ ∨ (b∗ ∧ c∗) {a} Yes Yes No – No
a∗ ∨ b∗ {a, b} Yes Yes Yes No No
a∗ {a} Yes Yes Yes Yes Yes
a∗ ⊕ b∗ {a, b} Yes Yes Yes Yes Yes
a∗ ∧ b=0 {a} Yes Yes Yes Yes Yes

Table 3.1: Comparison of active and inactive propositions.

A network proposition p is an active proposition if the following conditions are met:

• live: p ∧ allstable(N) ≡ F. At least one wire in wires(N) must change value if p is

to be satisfied.

• notempty: activeset(p) 6= ∅. p must be active on at least one wire.

• complete: stable(activeset(p)) ∧ p ≡ F. p cannot be satisfied if all wires on which

it is active remain stable.

• mutex: twoevents(activeset(p)) ∧ p ≡ F. Any pair of events on two different

active wires for p must be mutually exclusive. If |activeset(p)| = 1 then this

condition is vacuously true.

Conditions live and notempty encapsulate the generic concept of an event: something

which cannot be satisfied when no wires change value, and can be satisfied when only

one wire changes value. Conditions complete and mutex assert practical constraints to

ensure that every active proposition is meaningful in a relative-time execution model: for

example a∗ ∧ b∗ cannot be active since simultaneity is impossible in a relative-time execu-

tion model. A demonstration of each of the four conditions being applied to distinguish

active and inactive propositions is shown in Table 3.1.

3.6.2 Trace-Expressions over Active Propositions

If N is a component network then the set Texp of all trace-expressions over active propo-

sitions for N is defined recursively as follows:

Texp ::= p
∣

∣ Texp ;Texp
∣

∣ Texp | Texp
∣

∣ [Texp ]
∣

∣ Texp &Texp
∣

∣ Texp ‖ Texp
∣

∣

Texp 6< Texp

p ::= any active network proposition.
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If T ∈ Texp then define the sort ΣT of T recursively on the structure of T as follows:

• Σp
def
= activeset(p).

• ΣT1;T2 = ΣT1|T2
= ΣT1&T2 = ΣT1‖T2

= ΣT1 6< T2

def
= ΣT1 ∪ ΣT2 .

• Σ[T ]
def
= ΣT .

If p is an active proposition for component network N and Σ ⊆ wires(N) is a set of wires

in N , then define tother(Σ, p)
def
= stable(Σ − activeset(p)) to be a network proposition

labelling any network transition where every wire w ∈ Σ − activeset(p) remains stable.

If N is a component network and W ⊆ wires(N) is a set of wires in N then define

tlabels(W ⊆ wires(N))
def
= labels(¬stable(W )) to denote the set of network transitions in

which at least one wire w ∈ W changes value. Define the language of a trace-expression

T ∈ Texp as Lte(T )
def
= tlang(ΣT , T ) where tlang(Σ, T ) is defined recursively on the

structure of T as follows:

• tlang(Σ, p)
def
=

⋃

l∈labels(p∧tother(Σ,p)){σ | (σ ↾ tlabels(Σ) = 〈l〉alltrans(N)} denotes the

set of all finite sequences over alltrans(N) which when restricted to transitions in

tlabels(Σ) leave the singleton sequence 〈l〉alltrans(N) for some transition in

l ∈ labels(p ∧ tother(Σ, p)).

• tlang(Σ, T1 ; T2)
def
= {σ1σ2 | σ1 ∈ tlang(Σ, T1) ∧ σ2 ∈ tlang(Σ, T2)} denotes

expression concatenation.

• tlang(Σ, T1 | T2)
def
= tlang(Σ, T1) ∪ tlang(Σ, T2) denotes expression alternation.

• tlang(Σ, [T ])
def
= (tlang(Σ, T ))∗ denotes arbitrary repetition.

• tlang(Σ, T1 & T2)
def
= tlang(Σ, T2) ∩ tlang(Σ, T1) denotes expression intersection.

• tlang(Σ, T1 ‖ T2)
def
= tlang(Σ − (ΣT2 − ΣT1), T1) ∩ tlang(Σ − (ΣT1 − ΣT2), T2)

denotes parallel composition.

• tlang(Σ, T1 6< T2)
def
= (stpref tlang(Σ−(ΣT2 −ΣT1), T1))∩tlang(Σ−(ΣT1 −ΣT2), T2)

denotes biased composition.

If N is a component network then a network execution σ ∈ L(N) is said to match T ∈ Texp

if σ2 ∈ pref Lte(T ).

This definition of tlang(Σ, T ) relates closely to conventional trace-expression semantics

that have been presented in the literature [31, 34]. tlang(Σ, T ) differs from convention
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Σ Σ

= Σ − (ΣT1
− ΣT2

)

ΣT1

ΣT2

ΣT1

ΣT2

= Σ − (ΣT2
− ΣT1

)

Figure 3.8: Sub-alphabets for tlangΣ(T1 6< T2) and tlangΣ(T1 ‖ T2).

in that Lte(T ) is defined over sequences of network transitions not sequences of wire

names. The purpose of tlabels(Σ) in case tlang(Σ, p) is to permit the singleton sequence

〈l〉alltrans(N) to be surrounded by an arbitrary number of network transitions in which

no wire w ∈ Σ changes value. The augmentation of l ∈ labels(p) to l ∈ labels(p ∧

tother(Σ, p)) in case tlang(Σ, p) is to ensure that any network transition l belongs to

both labels(p) and labels(tother(Σ, p)). The augmentation is necessary since component

network executions may incur multiple wire value changes per transition: if σ ∈ Lte(T )

and σ(i) ∈ alltrans(N) identifies a change on more than one wire, then at most one

of the wires whose value is changing can belong to the sort ΣT of T . For example, if

T = [a∗; b∗; c∗] then when proposition a∗ is being matched wires b and c must remain stable.

Since Σ[a∗;b∗;c∗] = {a, b, c}, ΣT − activeset(a∗) = {b, c} and therefore tother(ΣT , a∗) ≡

stable({b, c}) as required.

In the case of Lte(T1 ‖ T2) the parallel composition of T1 and T2 must be performed. If

wire w ∈ ΣT1 −ΣT2 then w is connected to T1 but not connected to T2 and consequently w

must be removed from the sort Σ passed to tlang(Σ, T2). If w were included in tlang(Σ, T2)

then T2 would erroneously assert that wire w never change value. Conversely if wire

w ∈ ΣT2 −ΣT1 then w is connected to T2 but not connected to T1 and must not be placed

in the sort Σ passed to tlang(Σ, T2). Figure 3.8 shows two Venn diagrams that visualise

the resulting sort modifications performed by tlang(T1 ‖ T2).

Case tlang(T1 6<T2) denotes a new operator called biased composition. The purpose of

T1 6< T2 is to denote a special form of parallel composition that only matches network

executions σ where the restricted version of σ2 must match T1 before it matches T2.

Biased composition is discussed in more detail in Chapter 6 where is it used to describe

a generic form of relative timing assumption that is similar to, but more expressive than,
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the chain-constraints of Negulescu and Peeters [78].

Example applications of proposition-oriented trace-expressions to the verification of asyn-

chronous circuits are given in Chapter 6.

3.7 Summary

The purpose of this chapter was to introduce proposition-oriented behaviours and to ex-

plain their foundation. This introduction was given in the context of a gate network

circuit model called a component network. A set-theoretic semantics for two different

proposition-oriented notations was given. The first of these notations extended regular-

expressions to reason over proposition-oriented behaviours, and the second notation ex-

tended trace-expressions to reason over proposition-oriented behaviours. The extension of

trace-expressions to reason over proposition-oriented behaviours led to the introduction

of active propositions, an abstract notion of event more generic than x∗, x+ or x−, but

specific enough to retain the validity of a conventional trace-expression semantics.
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Chapter 4

Proposition Automata

4.1 Introduction

A fundamental assumption behind classical automata-theory is the notion of a finite alpha-

bet of input symbols Σ. Quantification over a ∈ Σ is used extensively in state-minimisation

algorithms, and table-based representations of transition relations are often indexed with

(current state, input symbol) pairs [1]. Whenever such quantification or indexing occurs

it is ubiquitously assumed that no two different input symbols may be matched simulta-

neously. In the context of proposition-oriented specifications the “alphabet” of symbols

available to a designer are network propositions, and it is entirely possible for an arbi-

trary pair p, q of network propositions to be matched simultaneously, even if p 6≡ q. For

example, T, x∗, x+ are all matched by any component network transition in which x = 0

and x′ = 1.

The loss of exclusivity between pairs of input symbols occurs because a network proposi-

tion p is merely a convenient shorthand for a set labels(p) of component network transi-

tions. If N is a component network then the underlying alphabet of symbols available to

a designer writing a proposition-oriented specification is in fact the set of all component

network transitions, alltrans(N). For example, if [x∗; y∗] is a proposition-oriented regular

expression, then x∗ is semantically equivalent to the alternation (t0|t1| · · · |tn), where each

of the ti are symbols from the alphabet alltrans(N), and {t0, t1, . . . , tn} = labels(x∗). The

expressivity of any proposition-oriented notation is therefore bounded by the expressivity

of any symbol-based notation in which the alphabet of symbols is alltrans(N). The primi-

tive component definitiion in Section 3.3.1 was purposefully defined using a wire-state only

model [16] so that any subset l of alltrans(N) can be identified by at least one network

proposition p such that labels(p) = l. In this sense proposition-oriented behaviours over

component networks are therefore equally expressive to any symbol-based notation over

alltrans(N).

If component network N has n = |wires(N)| wires then there are 2n possible value assign-
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ments to those n wires. In the case of a network proposition p the size of labels(p) therefore

grows exponentially with n and an explicit enumeration of labels(p) in the encoding of p

must therefore also grow exponentially with n. Conversely, a direct encoding of p as a

boolean-expression is of constant size with respect to n, and in practice an encoding of p

as labels(p) would therefore be extremely inefficient.

The purpose of this chapter is to introduce a special type of finite automaton, called a

proposition automaton, whose transitions are labelled with boolean expressions, and there-

fore whose exclusivity between input symbols cannot be assumed. Proposition automata

are important because they formalise an efficient representation with which to encode

both proposition-oriented regular-expressions and proposition-oriented trace-expressions.

In the sections that follow, Section 4.2 defines proposition automata. Section 4.3 describes

the translation from proposition-oriented regular-expressions to proposition automata,

and Section 4.4 describes the translation from proposition-oriented trace-expressions to

proposition automata. Section 4.5 combines these translations by introducing a new nota-

tion, referred to as proposition-expressions, in which proposition-oriented trace-expressions

are embedded into proposition-oriented regular-expressions using an explicit trace con-

struct. Section 4.6 explains how to convert a non-deterministic proposition automaton

into a deterministic proposition automaton, and Section 4.7 describes a minimisation al-

gorithm for deterministic proposition automata. The purpose of deterministic proposition

automata is discussed further in Chapter 5, where deterministic proposition automata and

component networks form the foundation of a proposition-oriented verification procedure

based on Binary Decision Diagrams.

4.2 Proposition Automaton

If N is a component network then a proposition automaton M over N is a tuple 〈S, I, A, T 〉

where:

• M.states
def
= S, M.init

def
= I, M.acc

def
= A, M.trans

def
= T .

• S is a finite set of states.

• I ⊆ S is a set of initial states and A ⊆ S is a set of accepting states.

• T ⊆ S × bexp(dwires(N)) × S is a transition relation. Require that for all

(s1, s2) ∈ S × S there exists exactly one p such that (s1, p, s2) ∈ T . Every pair
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(s1, s2) of states in S × S therefore identifies a unique boolean expression

p ∈ bexp(dwires(N)) such that (s1, p, s2) ∈ T .

A path in M is any sequence σ over S such that if |σ| > 0 then σ(0) ∈ I and if |σ| > 1

then for all i ∈ {0 . . . |σ| − 2} it is true that (σ(i), F, σ(i + 1)) 6∈ T . If last(σ) ∈ A then σ

is said to be an accepting path in M .

Define any sequence α over alltrans(N) to be an input sequence for M . If α 6= ε is an input

sequence for M , and σ is a path in M , then σ is said to support α in M if |σ| = |α| + 1

and for all i ∈ {0, . . . , |α| − 1} with (σ(i), p, σ(i + 1)) ∈ T , it is true that α(i) ∈ labels(p).

Given any input sequence α 6= ε over alltrans(N), M is said to accept α if there exists a

supporting path for α in M that is also accepting. If A ∩ I 6= ∅ then M is said to accept

the empty sequence ε. Given any (s1, p, s2) ∈ T , if p ≡ F then M may never transition

from state s1 to state s2. Conversely, if p ≡ T then M can always transition from state

s1 to state s2. Define the language L(M) of M as

L(M)
def
= {α over alltrans(N) | M accepts α}.

If any two (s1, p, s2) ∈ T and (s1, q, s3) ∈ T with s2 6= s3 have p∧ q 6≡ F then M is said to

be non-deterministic since any l ∈ labels(p∧ q) may result in a transition in M from state

s1 to state s2 or from state s1 to state s3. M is deterministic if it is not non-deterministic

and |M.init| = 1. If M is deterministic then every input sequence α has at most one

accepting path in M .

4.2.1 Normalising Proposition Automata

If T does not contain a unique (s1, p, s2) for each (s1, s2) then M is said to be de-

normalised. A de-normalised M can be normalised by computing normalise(M), see Al-

gorithm 4.1. normalise(M) iteratively reduces any two (s1, p, s2) ∈ T and (s1, q, s2) ∈ T

such that p 6= q to (s1, (p∨q), s2). New transitions (s1, p, s2) can be added to a normalised

M without incurring de-normalisation by calling addtrans(M, s1, p, s2), see Algorithm

4.2.

In the pseudo-code examples that follow, the expression “M := new propautN (S, I, A, T )”

denotes the creation of a new proposition automaton M = 〈S, I, A, Tn〉 where Tn =

normalise(S, T ). The unqualified term “propautN” is used to denote the set of all possible

proposition automata over component network N . If m1, m2 are proposition automata and

X ⊆ m1.states and Y ⊆ m2.states then X⊎Y denotes the disjoint union of X and Y and is
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defined as X ⊎Y
def
= {(s, 1) | s ∈ X}∪{(s, 2) | s ∈ Y }. If X ⊆ m1.trans and Y ⊆ m2.trans

then X ⊎ Y also denotes the disjoint union of X and Y , however it is defined instead as

X ⊎ Y
def
= {((s1, 1), p, (s2, 1)) | (s1, p, s2) ∈ X} ∪ {((s1, 2), p, (s2, 2)) | (s1, p, s2) ∈ Y }.

function normalise (S, ref M : propautN )

for all (s0, s1) ∈ M.states × M.states do

T := T ∪ {(s0, F, s1)}
while there exists an (s0, p, s1) ∈ M.trans and (s0, q, s1) ∈ M.trans with p 6= q do

M.trans := (M.trans − {(s0, p, s1), (s0, q, s1)}) ∪ {(s0, (p ∨ q), s1)}
end while

end for

end function

Algorithm 4.1: Normalise a proposition-oriented automaton.

function addtrans (ref M : propautN , s0 : M.states, p : bexp(dwires(N)),
s1 : M.states)

let (s0, q, s1) ∈ M.trans

M.trans := (M.trans − {(so, q, s1)}) ∪ {(s0, (q ∨ p), s1)}

end function

Algorithm 4.2: Add a new transition to a proposition automaton.

function kill dead (ref M : propautN )

while ∃x ∈ (M.states − M.acc) such that ∀(x, p, y) ∈ M.trans. p ≡ F or x = y do

M.states := M.states − {x}
M.acc := M.acc − {x}
M.init := M.init − {x}
M.trans := M.trans − {(x, p, y) | ∃y, p. (x, p, y) ∈ M.trans}

end while

end function

Algorithm 4.3: Remove dead states from a proposition-oriented automaton.

4.2.2 Dead States in Proposition Automata

Let M be a proposition automaton over component network N . A state s ∈ M.states is

dead if s 6∈ M.acc and every (s, p, d) ∈ M.trans with s 6= d has p ≡ F. Any state s ∈ M

that is dead may be removed from M without affecting L(M). Since the removal of a

dead state may subsequently render states that were previously alive as dead, a procedure

to remove all dead states from M must therefore have the capacity to iterate over several

cycles, see procedure kill dead(M) in Algorithm 4.3.
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function complete (ref M : propautN )

kill dead(M)
for all s ∈ M.states do

addtrans(M , s, ¬exits(s), err)
end for

addtrans(M , err, T, err)
M.states := M.states ∪ {err}

end function

Algorithm 4.4: Completion of a proposition automaton.

4.2.3 Complete Proposition Automata

Let M be a proposition automaton over component network N . If α ∈ L(N) is a network

execution such that α2 ∈ L(M) then M must have at least one accepting supporting path

σ in M . Conversely, if α 6∈ L(M) then there can be no accepting supporting paths σ for

α2 in M . However, if α 6∈ L(M) then there may or may not be non-accepting supporting

paths for α2 in M . If any sequence α over alltrans(N) has some supporting path in M

then M is said to be complete.

For each state s ∈ M.states let exits(s)
def
=

∨

(s,p,x)∈M.trans(p) be a network proposition

identifying all component network transitions supported by M from state s. A procedure

complete(M) for making M complete without affecting L(M) is shown in Algorithm 4.4.

Execution of complete(M) inserts a transition from each state s ∈ M.states to a special

dead state err under any input symbol not already matched by an existing transition from

s. State err is then made terminal through the addition of transition (err, T, err). Since

complete(M) invokes kill dead(M) prior to the insertion of state err, on completion

of complete(M) state err identifies the only dead state in M . As a result, any input

sequence α2 6∈ pref L(M) can only be supported by paths in M that terminate in state

err.

4.2.4 Support Sets for Proposition Automata

Let M be a proposition automaton over component network N . For any sequence α over

alltrans(N) define support(M, α)
def
= {σ | σ is a supporting path for α2 in M}. If M is

deterministic then every α over alltrans(N) has |support(M, α)| ≤ 1. If M is complete then

every α over alltrans(N) has |support(M, α)| ≥ 1. If M is both complete and deterministic

then every α over alltrans(N) has |support(M, α)| = 1.
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Figure 4.1: Proposition-oriented regular-expressions as proposition automata.

4.3 Regular-Expressions as Proposition Automata

This section explains how proposition-oriented regular-expressions can be translated into

non-deterministic proposition automata with the same language. Let E be a proposition-

oriented regular expression over component network N . A procedure mk regexp(E) for

constructing a proposition automaton M such that Lre(E) = L(M) is shown in Algorithm

4.7. mk regexp(E) is recursive on the structure of E and its operation parallels the

definition of Lre(E) as discussed in Section 3.5.

In the case of mk regexp(n1 & n2) a proposition automaton M must be constructed that

accepts the intersection of L(m1) and L(m2). This intersection can be computed as the

product automaton mk product(m1, m2) of m1 and m2, see Algorithm 4.5: A product

automaton m12 = mk product(m1, m2) for proposition automata m1 and m2 denotes

the concurrent execution of both m1 and m2 and is accepting if and only if both m1 and

m2 are accepting.

A proposition automaton has no notion of an empty transition, and as a result both

cases mk regexp([n]) and mk regexp(n1; n2) employ the use of a special procedure

addempty, see Algorithm 4.6. The purpose of addempty(M, X, Y ) is to mimic the

insertion of an empty transition in M from every state x ∈ X to every state y ∈ Y :

Each transition (s, p, x) ∈ M.trans with x ∈ X is duplicated as a transition (s, p, y) to all

states y ∈ Y . Conversely, each transition (y, p, s) ∈ M.trans with y ∈ Y is duplicated as

a transition (x, p, s) from all states x ∈ X.

Two examples of proposition-oriented regular-expressions and their equivalent proposition

automata are shown in Figure 4.1.

58



Proposition Automata

function mk product (M1 : propautN , M2 : propautN ) : propautN

M := new propautN (M1.states × M2.states, M1.init × M2.init, M1.acc × M2.acc, ∅)
for all ((x1, p, y1), (x2, q, y2)) ∈ (M1.trans × M2.trans) do

addtrans(M, (x1, x2), p ∧ q, (y1, y2))
end for

return M

end function

Algorithm 4.5: Construct a product automaton.

function addempty (ref M : propautN , X ⊆ M.states, Y ⊆ M.states)

for all (f, p, t) ∈ M.trans such that t ∈ X do

for all y ∈ Y do addtrans(M, f, p, y) end for

end for

for all (f, p, t) ∈ M.trans such that f ∈ Y do

for all x ∈ X do addtrans(M, x, p, t) end for

end for

end function

Algorithm 4.6: Add empty transitions to a proposition automaton.

function mk regexp (D : node) : propautN

switch D
case n1; n2

let m1 = mk regexp(n1) and m2 = mk regexp(n2)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ ∅), (∅ ⊎ m2.acc), T )

case n1 |n2

let m1 = mk regexp(n1) and m2 = mk regexp(n2)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ m2.init), (m1.acc ⊎ m2.acc), T )

case n1 & n2

let m1 = mk regexp(n1) and m2 = mk regexp(n2)
M := mk product(m1, m2)

case [n]
let m = mk regexp(n)
M := new propautN (m.states, m.init, (m.init ∪ m.acc), m.trans)
addempty(M, m.acc, m.init)

case p
M := new propautN ({0, 1}, {0}, {1}, {(0, p, 1)})

end switch

return M

end function

Algorithm 4.7: Make a proposition automaton from a regular-expression.
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Figure 4.2: Proposition-oriented trace-expressions as proposition automata.

4.4 Trace-Expressions as Proposition Automata

This section explains how proposition-oriented trace-expressions can be translated into

non-deterministic proposition automata with the same language. Let E be a proposition-

oriented trace expression over component network N . A procedure mk trexp(E, ΣE) for

constructing a proposition automaton M such that Lte(E) = L(M) is shown in Algorithm

4.8. mk trexp(E, Σ) is recursive on both E and ΣE and its operation parallels the

definition of tlang(E, Σ) as discussed in Section 3.6.2.

If E 6= n1 ‖ n2, E 6= n1 6< n2, and E 6= p then execution of mk trexp(E, Σ) can be

likened to execution of mk regexp(E). If E = p then M = mk trexp(p, Σ) differs

from mk regexp(p) in that M must also restrict all input sequences σ to σ ↾ tlabels(Σ).

In the context of M this restriction can be encoded through the addition of transitions

(0, stable(Σ), 0) and (1, stable(Σ), 1) to M.trans: M must ignore any input symbol i ∈

alltrans(N) such that i ∈ stable(Σ).

If E = n1 ‖ n2 or E = n1 6< n2 then the each recursive call to mk trexp must be given

a restricted alphabet ΣE − (Σn2 − Σn1) or ΣE − (Σn2 − Σn1) as discussed in Section

3.6.2. In order to perform the appropriate restriction the alphabets Σn1 and Σn2 must

be determined. If E is a proposition-oriented trace-expression then ΣE can be trivially

computed as shown by procedure sigma(E) in Algorithm 4.9.

If E = n1 6< n2 then M must accept the intersection of stpref L(m1) and L(m2). This

intersection can be computed using procedure mk product provided a proposition au-

tomaton sp m1 can be computed such that L(sp m1) = stpref L(m1). If m1 has no dead
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states then computation of sp m1 can be achieved merely by swapping accepting and

non-accepting states in m1: Since m1 has no dead states, for every path σ1 in m1 that is

not accepting there must exist another sequence σ2 6= ε over m1.states such that σ1σ2 is

an accepting path in m1.

Two examples of proposition-oriented trace-expressions and their equivalent proposition

automata are shown in Figure 4.1.

function mk trexp (D : node, Σ : wire set) : propautN

switch D
case n1; n2

let m1 = mk trexp(n1, Σ) and m2 = mk trexp(n2, Σ)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ ∅), (∅ ⊎ m2.acc), T )

case n1 |n2

let m1 = mk trexp(n1, Σ) and m2 = mk trexp(n2, Σ)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ m2.init), (m1.acc ⊎ m2.acc), T )

case n1 & n2

let m1 = mk trexp(n1, Σ) and m2 = mk trexp(n2, Σ)
M := mk product(m1, m2)

case n1 ‖ n2

let Σ1 = sigma(n1) and Σ2 = sigma(n2)
let m1 = mk trexp(n1, Σ−(Σ2−Σ1)) and m2 = mk trexp(n2, Σ−(Σ1−Σ2))
M := mk product(m1, m2)

case n1 6< n2

let Σ1 = sigma(n1) and Σ2 = sigma(n2)
let m1 = mk trexp(n1, Σ−(Σ2−Σ1)) and m2 = mk trexp(n2, Σ−(Σ1−Σ2))
kill dead(m1)
sp m1 := new propautN (m1.states, m1.init, (m1.states − m1.acc), m1.trans)
M := mk product(sp m1, m2)

case [n]
let m = mk trexp(n)
M := new propautN (m.states, m.init, (m.init ∪ m.acc), m.trans)
addempty(M, m.acc, m.init)

case p
ensure that p is active
let T = {(0, p ∧ tother(Σ, p), 1), (0, stable(Σ), 0), (1, stable(Σ), 1)}
M := new propautN ({0, 1}, {0}, {1}, T )

end switch

return M

end function

Algorithm 4.8: Make a proposition automaton from a trace-expression.
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function sigma (D : node) : wire set

switch D
case n1; n2

∣

∣ n1 |n2

∣

∣ n1 & n2

∣

∣ n1 ‖ n2

∣

∣ n1 6< n2

return sigma(n1) ∪ sigma(n2)
case [n]

return sigma(n)
case p

return activeset(p)
end switch

end function

Algorithm 4.9: Computation of Σ for a trace-expression.

4.5 Proposition-Expressions

Sections 4.3 and 4.4 combined demonstrate that both proposition-oriented regular ex-

pressions and proposition-oriented trace-expressions can be translated into proposition

automata. In this sense both types of expression are indistinguishable once translated

into proposition automata. In particular, every proposition-oriented trace-expression has

an equivalent proposition-oriented regular-expression. For example, the proposition ori-

ented trace-expression r+; a− is equivalent to the proposition-oriented regular-expression

[¬r∗ ∧ ¬a∗]; r+; [¬r∗ ∧ ¬a∗]; a+; [¬r∗ ∧ ¬a∗]. Proposition-oriented trace-expressions can

be embedded into proposition-oriented regular-expressions by providing an explicit trace

construct to identify when to assert a trace-expression semantics as follows:

Pexp ::= p
∣

∣ Pexp ; Pexp
∣

∣ Pexp | Pexp
∣

∣ [Pexp ]
∣

∣ Pexp & Pexp
∣

∣ trace(Texp)

p ::= any safe network proposition.

(for a definition of Texp see Section 3.6.2)

If expression E ∈ Pexp then E is said to be a proposition-expression, and may be translated

into a proposition automaton using procedure mk pexp, see Algorithm 4.10. mk pexp

is identical to procedure mk regexp except that an extra case statement has been added

in Line 20 to pass all occurrences of trace(E) to procedure mk trexp(E, sigma(E)). If

E is a proposition-expression then trace(E) differs from E in that it implies E be treated

as a proposition-oriented trace-expression rather than a proposition-oriented regular-

expression.

An embedding of trace-expressions within regular-expressions results in a flexible nota-

tion where a trace-expression semantics can be asserted locally within sub-expressions as
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desired. In the context of proposition-oriented behaviours, where alphabet symbols are

network propositions, this flexibility enables a variety of behaviours to be specified that

have no equivalents outside of a proposition-oriented domain. The benefits of proposition-

expressions are discussed further in Chapter 6.

function mk pexp (D : node) : propautN

switch D
case n1; n2

let m1 = mk pexp(n1) and m2 = mk pexp(n2)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ ∅), (∅ ⊎ m2.acc), T )

case n1 |n2

let m1 = mk pexp(n1) and m2 = mk pexp(n2)
let S = (m1.states ⊎ m2.states) and T = (m1.trans ⊎ m2.trans)
M := new propautN (S, (m1.init ⊎ m2.init), (m1.acc ⊎ m2.acc), T )

case n1 & n2

let m1 = mk pexp(n1) and m2 = mk pexp(n2)
M := mk product(m1, m2)

case [n]
let m = mk pexp(n)
M := new propautN (m.states, m.init, (m.init ∪ m.acc), m.trans)
addempty(M, m.acc, m.init)

case p
M := new propautN ({0, 1}, {0}, {1}, {(0, p, 1)})

20: case trace(n)
M := mk trexp(n,sigma(E))

end switch

return M

end function

Algorithm 4.10: Make a proposition automaton from a proposition-expression.

4.6 Deterministic Proposition Automata

The purpose of this section is to explain how a non-deterministic proposition automaton

can be translated into a deterministic proposition automaton with the same language. If

N is a component network and M is a proposition automaton over N then conversion of

M to a deterministic proposition automaton parallels conversion of conventional finite au-

tomata into deterministic finite automata using a powerset construction [48]. Conversion

using proposition automata differs from conversion using conventional finite automata in

that input symbols to proposition automata are not mutually-exclusive. For example, let

wires(N) = {a, b} and suppose M is as shown in Figure 4.3(a). Each of the two transi-
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Figure 4.3: Proposition automaton label exclusivity.

tion labels a∗ and b∗ identifies a set of boolean value assignments to the wire names in

dwires(N), see Figure 4.3(b). Since certain value assignments l ∈ [[a∗ ∧ b∗]]dwires(N) are

identified by both transition labels, M is therefore non-deterministic. To convert M to

a deterministic proposition automaton using a powerset construction, [[a∗]]dwires(N) and

[[b∗]]dwires(N) must first be partitioned into mutually-exclusive subsets, each of which can

be identified by a new boolean expression, see Figure 4.3(c). A powerset construction can

then be applied to Figure 4.3(c) resulting in the deterministic automaton shown in Figure

4.3(d).

Let P and Q be sets of boolean expressions over dwires(N). Define Q to be a cover of P

if properties mutex, sufficient, and complete hold as follows:

• mutex: ∀q1 ∈ Q, q2 ∈ Q − {q1}. q1 ∧ q2 ≡ F

No two different q1, q2 share a common value assignment.

• sufficient: ∀p ∈ P. ∃X ⊆ Q. p ≡
∨

x∈X(x)

Every p ∈ P can be formed as the disjunction of a subset of Q.

• complete:
∨

p∈P (p) ≡
∨

q∈Q(q)

P and Q identify the same set of value assignments.
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sufficient
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Figure 4.4: Boolean expression exclusivity.

If Q = P then properties sufficient and complete can be trivially satisfied. Hence, if

property mutex holds for P then P is a cover of P . If property mutex does not hold for

P then procedure cover can be called to construct a cover, cover(P ), of P as shown in

Algorithm 4.11. Execution of cover(P ) equates to the repeated refinement of any pair

{p1, p2} ⊆ P such that p1 ∧ p2 6≡ F to a triple {(p1 ∧ ¬p2), (p1 ∧ p2), (p2 ∧ ¬p1)}, see

Figure 4.4(a). Each refinement removes at least one violation of property mutex and

is invariant on properties sufficient and complete, see Figure 4.4(b). On completion

cover(P ) satisfies all three properties mutex, sufficient and complete, and therefore

Q = cover(P ) denotes a valid cover of P as required.

function cover (P : bexp(dwires(N)) set) : bexp (dwires (N)) set

while there exists a {p1, p2} ⊆ P such that p1 ∧ p2 6≡ F do

P := (P − {p1, p2}) ∪ {(p1 ∧ ¬p2), (p1 ∧ p2), (p2 ∧ ¬p1)}
end while

return P − {F}

end function

Algorithm 4.11: Construct a mutually-exclusive cover set.

If P = {p | ∃s1, s2. (s1, p, s2) ∈ M.trans} denotes the set of all transition labels in M

then cover(P ) identifies a minimal set of “conventional” input symbols from which every

p ∈ P can be constructed as an alternation. In the worst case every p ∈ cover(P )

has |[[p]]dwires(N)| = 1, and cover(P ) is in bijection with the set [[
∨

p∈P (p)]]dwires(N) ⊆

bool(dwires(N)), denoting all boolean value assignments to variables in dwires(N) that

are matched by some transition label in M . In the context of Figure 4.3, Figure 4.3(b)

equates to such a worst case partitioning whereas Figure 4.3(c) equates to a minimal

partitioning such as that returned by cover({a∗, b∗}).

65



Proposition Automata

1 2

1 2

1 2

1

3

4

2

3
c+

(a) Non-Deterministic

T

a∗

¬a∗ a∗

¬a∗

(b) Deterministic

[T]; a∗ [T]; a∗

b∗

a∗

a∗

a∗ ∧ ¬c+

b∗

b∗

a∗ ∧ c+

¬a∗ ∧ c+

[a∗; b∗]; c+[a∗; b∗]; c+

Figure 4.5: Deterministic and non-deterministic proposition automata.

A procedure mk dfa(M) for constructing a deterministic proposition automaton from a

non-deterministic proposition automaton M is shown in Algorithm 4.12. The operation

of mk dfa(M) equates to that of a powerset construction in which a set todo ⊆ 2M.states

is used to identify reachable powerset states that have yet to be processed. The initial

value of todo is set to {M.init}. For every S1 ∈ todo the set P of all transition labels

leading from each s1 ∈ S1 is constructed. For every q ∈ cover(P ) the set S2 ⊆ M.states

of possible destination states for each s1 ∈ S1 is determined, and if S2 6= ∅ then transition

(S1, q, S2) is added to the powerset transition relation trans. Predicate p ∧ q ≡ q is used

in Line 7 to determine if q ∈ cover(P ) belongs to the subset X ⊆ cover(P ) for which
∨

x∈X(x) ≡ p.

Two examples of non-deterministic proposition automata and their deterministic coun-

terparts are shown in Figure 4.5.

4.7 Deterministic Proposition Automata Minimisation

The purpose of this section is to demonstrate the application of cover sets to the problem

of deterministic proposition automaton minimisation. Cover sets are important since

they permit an algorithm operating on proposition automata to enumerate over a set
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function mk dfa (M : propautN ) : propautN

todo := states := init := {M.init}
while todo 6= ∅ do

pick an S1 ∈ todo
P := {p : bexp (dwires (N)) | ∃s1 ∈ S1, s2 ∈ M.states. (s1, p, s2) ∈ M.trans}
for all q ∈ cover(P ) do

7: S2 := {s2 ∈ M.states | ∃s1 ∈ S1, p ∈ P. (s1, p, s2) ∈ M.trans and p ∧ q ≡ q}
if S2 6= ∅ then

trans:= trans ∪{(S1, q, S2)}
if S2 6∈ states then

todo := todo ∪ S2

states := states ∪ S2

end if

end if

end for

todo := todo − S1

end while

acc := {S ∈ states | ∃s ∈ S. s ∈ M.acc}
return new propautN (states, init, acc, trans)

end function

Algorithm 4.12: Conversion to a deterministic proposition automaton.

of mutually-exclusive input symbols. In the context of classical automata minimisation,

input symbol enumeration is ubiquitous, since it is over sequences of input symbols that the

equivalence of two states is defined: Let M be a deterministic proposition automaton over

component network N . A pair s0, s1 of states in M are equivalent if L(M0) = L(M1) where

Mi
def
= propautN (M.states, {si}, M.acc, M.trans)) is a proposition automaton accepting

input sequences in M that start from state si. A recursive procedure equiv(M, s0, s1, ∅)

for determining the equivalence of two states s0, s1 in M is shown in Algorithm 4.13. The

operation of equiv parallels that of its classical finite automaton counterpart and can be

explained as follows:

If s0 ∈ M.acc and s1 6∈ M.acc then s0, s1 are not equivalent since ε ∈ L(M0) whereas

ε 6∈ L(M1). If s0, s1 are both accepting or both non-accepting then equivalence of s0 and

s1 requires recursion on pairs d0, d1 of states reachable from s0, s1 under every possible

input symbol l ∈ bool(dwires(N)). Since M is deterministic the set P0 = {p | ∃y ∈

M.states. (s0, p, y) ∈ M.trans} and the set P1 = {p | ∃y ∈ M.states. (s1, p, y) ∈ M.trans}

are both valid covers of themselves, however this does not imply that P0 ∪ P1 denotes a

valid cover of itself. Consequently, the set
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equiv(M, s0, s1, S)

x = c∗ ∧ ¬b∗

s0

b∗ ∨ c∗

s1

d0

cover({b∗ ∨ c∗, b∗}) = {c∗ ∧ ¬b∗, b∗}

x = b∗

actions0 = {(s0, b
∗ ∨ c∗, d0)}

actions0 = {(s0, b
∗ ∨ c∗, d0)}

d1

b∗

actions1 = {}
return F

equiv(M, d0, d1, S ∪ {{s0, s1}})
actions1 = {(s1, b

∗, d1)}

Figure 4.6: An example of recursion in procedure equiv.

Q = cover(P0 ∪ P1) = cover({p | ∃x ∈ {s0, s1}, y ∈ M.states. (x, p, y) ∈ M.trans}) is

used to denote a valid cover of all transition labels possible from state s0 or state s1.

For each x ∈ Q, actions0 denotes the set of transitions possible from s0 under input

symbol x, and actions1 denotes the set of transitions possible from s1 under the same

input symbol x. Since M is deterministic |actions0| ≤ 1 and |actions1| ≤ 1, and since

Q = cover(P0 ∪ P1) either |actions0| > 0 or |actions1| > 0. If |actions0| 6= |actions1| then

s0 cannot be equivalent to s1 since only one of s0 and s1 can transition on input symbol x.

If |actions0| = |actions1| = 1 then s0 is not equivalent to s1 only if d0 is not equivalent to

d1. An example of recursion in procedure equiv is shown in Figure 4.6. The purpose of

variable S in Line 4 is to detect any loops within the recursion of equiv. A return value

of T on detection of such a loop equates to the assertion that any pair s0, s1 of states in

M are equivalent until such time as it can be shown otherwise.

Procedure equiv provides a means to minimise the number of states in a deterministic

proposition by iterative refinement on an equivalence relation between states, see proce-

dure mk min dfa in Algorithm 4.14. If M is a deterministic proposition automaton over

component network N then Mmin = mk min dfa(M) denotes a deterministic proposition

automaton with the minimum number of states possible such that L(Mmin) = L(M). The

operation of mk min dfa equates to the iterative refinement of state equivalence from

both above and below: Refinement from above is denoted by a relation E identifying states
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function equiv (M : propautN , s0 : M.states, s1 : M.states, S ⊆ M.states×M.states)
: {T, F}

if s0 ∈ M.acc and s1 6∈ M.acc then return F end if

if s1 ∈ M.acc and s0 6∈ M.acc then return F end if

4: if {s0, s1} ∈ S then return T end if

let Q = cover({p | ∃x ∈ {s0, s1}, y ∈ M.states. (x, p, y) ∈ M.trans})
for all x ∈ Q do

let actions0 = {(s0, p, d0) ∈ M.trans | p ∧ x ≡ x}
let actions1 = {(s1, q, d1) ∈ M.trans | q ∧ x ≡ x}
if |actions0| = |actions1| = 1 then

let {(s0, p, d0)} = actions0 and {(s1, q, d1)} = actions1
if ¬equiv(M, d0, d1, S ∪ {{s0, s1}}) then return F end if

else

return F

end if

end for

return T

end function

Algorithm 4.13: Determine if two proposition automaton states are equivalent.

function mk min dfa (M : propautN ) : propautN

D := {{s0, s1} | s0 ∈ (M.states − M.acc) and s1 ∈ M.acc}.
E := {{s} | s ∈ M.states}
for all (s0, s1) ∈ M.states × M.states such that s0 6= s1 do

if {s0, s1} 6∈ D and s0 6∈ [s1]E then

if equiv(M, s0, s1, ∅) then

E := (E − {[s0]E , [s1]E}) ∪ {[s0]E ∪ [s1]E}.
else

D := D ∪ {{s0, s1}}
end if

end if

end for

Mmin := new propautN (E, {[s]E | s ∈ M.init}, {[s]E | s ∈ M.acc}, ∅)
for all (e1, e2) ∈ E × E do

for all (s1, s2) ∈ e1 × e2 such that (s1, p, s2) ∈ M.trans do

addtrans(Mmin, e1, p, e2)
end for

end for

return Mmin

end function

Algorithm 4.14: Minimise a deterministic proposition automaton.
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that are known to be equivalent. Refinement from below is denoted by a relation D identi-

fying states that are known to be distinguishable. Relation E is symmetric, reflexive, and

transitive whereas relation D is symmetric and necessarily not reflexive. Consequently,

mk min dfa represents E as a partition of the set M.states, and D as a set of unordered

state pairs {s0, s1} ⊆ M.states. The initial value of D is set to distinguish accepting and

non-accepting states, and the initial value of E places every s ∈ M.states in an equivalence

class on its own. After initialising E and D, procedure mk min dfa then proceeds to

determine equivalence or distinguishability for every pair (s0, s1) ∈ M.states×M.states by

evaluating equiv(M, s0, s1, ∅). Note that if s ∈ M.states then the expression [s]E denotes

the unique equivalence class X ∈ E such that s ∈ X.

On completion of refinement on E and D, mk min dfa then constructs a minimal propo-

sition automaton Mmin where each state s ∈ Mmin.states denotes an equivalence class in

E. The equivalence class containing the initial state of M is the initial state of Mmin and

the equivalence classes for each accepting state in M are the accepting states of Mmin.

4.7.1 Alternative Minimisation Algorithms

Cover sets denote a generic mapping from proposition automata to conventional finite

automata. In this sense cover sets can be used to extend many different algorithms based

on conventional finite automata to operate on proposition automata. The minimisation

procedure mk min dfa is only one of many possible minimisation algorithms, and is pre-

sented here merely as an example application of cover sets to deterministic proposition

automata minimisation. In the context of the verification program described in Chap-

ter 6, deterministic proposition automata minimisation applies only as an optimisation

technique to help reduce the total number of states over which reachability analysis is per-

formed. Since proposition automata minimisation time is in practice small when compared

to reachability analysis time, an explanation of more efficient minimisation algorithms is

also unnecessary for this thesis.

4.8 Summary

The purpose of this chapter was to introduce proposition automata, a special form of fi-

nite automata in which transitions are labelled with boolean expressions and are therefore

not mutually-exclusive. Proposition automata were shown to encode both proposition-

oriented trace-expressions and proposition-oriented regular-expressions efficiently. These
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encodings led to the introduction of a new notation, referred to as proposition-expressions,

in which proposition-oriented trace-expressions were embedded into proposition-oriented

regular-expressions using an explicit trace construct. A mapping from proposition-

automata to conventional finite automata was defined in terms of cover sets, and this

mapping used to compute deterministic proposition automata from non-deterministic

proposition automata. Cover sets were also used to describe an algorithm for the minimi-

sation of deterministic proposition automata.
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Chapter 5

Proposition-Oriented Verification

5.1 Introduction

Proposition automata realise proposition-oriented behaviours in a form well suited to

algorithmic manipulation. The purpose of this chapter is to build on proposition automata

and describe a simple proposition-oriented verification procedure, pcheck, for component

networks and proposition automata that is based on symbolic reachability analysis using

Binary Decision Diagrams (BDDs). The objective of pcheck is to provide a simple but

flexible platform on which the benefits of proposition-oriented behaviours can then be

evaluated. pcheck does not evolve new techniques for formal verification, and is built

using methods already well documented in the literature.

In the sections that follow Section 5.2 introduces the satisfaction criterion on which pro-

cedure pcheck is based. Section 5.3 shows how satisfaction according to this criterion can

be determined using reachability analysis on a special form of product automaton called

a network product. Section 5.3.1 also introduces the notion of a deterministic network

product, in which each of the underlying proposition automata are assumed to be deter-

ministic. The relationship between non-deterministic and deterministic network products

is then used to explain why reachability analysis using deterministic network products is

superior to reachability analysis using non-deterministic network products.

Section 5.4 builds on Section 5.3 to describe the symbolic encoding of deterministic net-

work products using BDDs, and Section 5.5 gives an algorithmic definition of procedure

pcheck based on this encoding. Section 5.6 overviews those BDD-based optimisations

that can be applied to procedure pcheck, and Section 5.7 introduces a special type of

proposition automata called protocol automata whose purpose is to permit the description

of circuit-environment contracts using proposition-oriented trace-expressions.
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5.2 Satisfaction Criterion

Let N be a component network and let S be a set of proposition-expressions over N .

Assign to each expression E ∈ S a sense and type as follows:

5.2.1 Sense Assignment

The sense of a proposition-expression E can be either always or never:

• If E is of sense always then E refers to behaviours that are valid. Define

always(E)
def
= {σ over states(N) | σ2 ∈ pref L(E)} to be the set of network

executions σ in N for which σ2 ∈ pref L(E).

• If E is of sense never then E refers to behaviours that are invalid. Define

never(E)
def
= {σ over states(N) | σ2 6∈ L(E)} to be the set of network executions σ

in N such that σ2 6∈ L(E).

An assignment of sense to each proposition-expression E ∈ S serves as an alternative to

the explicit extension of grammar Pexp to include constructs for prefix-closure, pref (E),

and expression negation, !E. The foundation of this alternative is the observation that in

practice use of pref (E) and !E is restricted: pref (E) is used to assert that the prefix

of a valid execution is also valid, and !E is used when a designer is reasoning about

invalid behaviours. Since erroneous executions are not prefix-closed and since valid things

are rarely described by negation, pref !E and !pref (E) are in practice never used. The

replacement of pref , ! with always, never enforces the restriction that use of pref , ! can

only be at the top level, and never in combination.

5.2.2 Type Assignment

The type of a proposition-expression E can be either verify or cut. If E is of type verify,

denoted verify sense(E), then E is a specification for N and the conformance of E to N

requires determination of the set-containment problem L(N) ⊆ sense(E). If E is of type

cut, denoted cut sense(E), then E is a constraint on N and the application of E to N

asserts that any σ ∈ L(N) with σ 6∈ sense(E) be removed from L(N).

If
⋂

cut denotes intersection over all E ∈ S of type cut, and
⋂

verify denotes intersection

over all E ∈ S of type verify, then conformance of N to P equates to evaluation of the

satisfaction criterion:

∀σ ∈ L(N). σ ∈
⋂

cut sense(E) ⇒ σ ∈
⋂

verify sense(E)
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5.3 Network Product

Let S = {E1, . . . , En} be a set of proposition-expressions over a component network N ,

and assign to each Ei ∈ S a sense and a type as discussed in Section 5.2. For each Ei ∈ S

compute a complete proposition automaton Mi with a single dead state err such that

L(Mi) = L(Ei). Let P = {M1, . . . , Mn}, and assign to each Mi the same sense and type

as Ei.

For each network execution σ ∈ L(N) computation of the set support(Mi, σ) of supporting

paths for σ2 in Mi is sufficient to determine σ ∈ sense(Mi) as follows:

• σ ∈ always(Mi) if and only if ∃α ∈ support(Mi, σ). last(α) 6= err. If

α ∈ support(Mi, σ) and last(α) 6= err, then α is the prefix of an accepting

supporting path in Mi and hence σ2 ∈ pref L(Mi).

• σ ∈ never(Mi) if and only if ∀α ∈ support(Mi, σ). last(α) 6∈ Mi.acc. If every

α ∈ support(Mi, σ) has last(α) 6∈ Mi.acc then there are no accepting supporting

paths for σ2 in Mi and hence σ2 6∈ L(Mi).

Since both σ ∈ always(Mi) and σ ∈ never(Mi) depend only on last(α) determination of

σ ∈ sense(Mi) may be simplified further as follows:

• Define slast(Mi, σ)
def
= {last(α) | α ∈ support(Mi, σ)} to denote the set of possible

ending states for supporting paths of σ2 in Mi.

• σ ∈ always(Mi) if and only if ∃s ∈ slast(Mi, σ). s 6= err.

• σ ∈ never(Mi) if and only if ∀s ∈ slast(Mi, σ). s 6∈ Mi.acc.

If determination of σ ∈ sense(Mi) depends only on slast(Mi, σ) then any two σ1 ∈ L(N),

σ2 ∈ L(N) such that slast(Mi, σ1) = slast(Mi, σ2) are indistinguishable by sense(Mi). To

assert that N conforms to P it is therefore sufficient to consider every tuple s ∈ X where

X = {(slast(M1, σ), . . . , slast(Mn, σ)) | σ ∈ L(N)}. Define the network product N ·P of N

and P to be the finite automaton formed by augmenting each state s ∈ states(N) with a

set of possible proposition automaton states for every Mi ∈ P as follows:

• states(N ·P )
def
= states(N) × 2M1.states × · · · × 2Mn.states.

• If x = (sN , sM1 , . . . , sMn
) ∈ states(N ·P ) then let x↓N denote sN and for each

Mi ∈ P let x↓Mi
denote sMi

.
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• alltrans(N ·P )
def
= states(N ·P ) × states(N ·P ).

• If t ∈ alltrans(N ·P ) = (s1, s2) then let t↓N denote (s1↓N , s2↓N ) and for each Mi ∈ P

let t↓Mi
denote (s1↓Mi

, s2↓Mi
).

• image(Mi ∈ P, S ⊆ Mi.states, l ∈ alltrans(N))
def
= {s2 | ∃(s1, p, s2) ∈ Mi.trans. s1 ∈ S

and l ∈ labels(p)} denotes the set of states in Mi that can be reached from states in

S under input symbol l.

• trans set(Mi ∈ P, l ∈ alltrans(N))
def
= {(s, image(Mi, s, l)) | s ∈ Mi.states} denotes

the set of all (s, image(Mi, s, l)) pairs in Mi.

• init(N ·P )
def
= {(s, init(M1), . . . , init(Mn)) | s ∈ init(N)} is a set of initial network

product states.

• trans(N ·P )
def
= {t ∈ alltrans(N ·P ) | t↓N ∈ trans(N) and ∀Mi ∈ P.

t↓Mi
∈ trans set(Mi)} is a set of network product transitions.

A path in N·P is any sequence σ over states(N·P ) such that if |σ| > 0 then σ(0) ∈ init(N·P )

and if |σ| > 1 then (σ(i), σ(i + 1)) ∈ trans(N ·P ) for all i ∈ {0 . . . |σ| − 2}. Define

L(N ·P )
def
= {σ | σ is a path in N ·P}. If σ ∈ L(N ·P ) then define the network extraction

of σ to be the unique network execution σ ↓ N ∈ L(N) such that |σ ↓ N | = |σ| and

σ↓N (i) = σ(i)↓N for all i ∈ {0 . . . |σ| − 1}. If σ ∈ L(N ·P ) then by induction on the length

of σ, last(σ)↓Mi
= slast(Mi, σ↓N ). Consequently,

{last(σ) | σ ∈ L(N ·P )} = {(last(σ↓N ), slast(M1, σ↓N ), . . . , slast(Mn, σ↓N )) | σ ∈ L(N ·P )}

= {(last(α), slast(M1, α), . . . , slast(Mn, α)) | α ∈ L(N)}

and conformance of N to P is decidable by considering every reachable network product

state s ∈ {last(σ) | σ ∈ L(N ·P )}.

5.3.1 Deterministic Network Product

If each of the Mi ∈ P are both deterministic and complete then for every α ∈ L(N),

|support(Mi, α)| = 1. If σ ∈ L(N ·P ) has |support(Mi, σ↓N )| = 1 then |slast(Mi, σ↓N )| = 1.

Hence, if every σ ∈ L(N·P ) has |support(Mi, α)| = 1 then every s ∈ {last(σ) | σ ∈ L(N·P )}

has s↓Mi
∈ { {s} | s ∈ Mi.states} and N ·P may be simplified as follows:

• states(N ·P )
def
= states(N) × M1.states × · · · × Mn.states.
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• init(N ·P )
def
= {(s, I1, . . . , In) | s ∈ states(N) and ∀Mi ∈ P. {Ii} = init(Mi)}.

• trans(N ·P )
def
= {(x, y) ∈ alltrans(N ·P ) | (x, y)↓N ∈ trans(N) and ∀Mi ∈ P. {y↓

Mi
} = image(Mi, {x↓Mi

}, (x, y)↓N )}.

The relationship between 2M1.states × · · · × 2Mn.states and M1.states × · · · × Mn.states

equates directly to the relationship between non-deterministic automata and their de-

terministic equivalents based on a classical powerset construction. If each Mi ∈ P is

non-deterministic then N ·P can still be constructed over M1.states× · · · ×Mn.states pro-

vided each Mi ∈ P is first converted into a deterministic proposition automata using a

procedure such as mk dfa. Conversion of Mi ∈ P into deterministic proposition automta

prior to the construction of N ·P is superior since |mk dfa(Mi).states| < 2|Mi.states| is in

practice common and 2M1.states × · · · × 2Mn.states is therefore excessive when compared to

mk dfa(M1).states×· · ·×mk dfa(Mn).states. Furthermore, if each Mi ∈ P is converted

to a deterministic proposition automaton independently from the construction of N·P , then

the determinised Mi may also be minimised using a procedure such as mk min dfa(Mi).

In the sections that follow each Mi ∈ P is therefore required to be both complete and

deterministic, and a deterministic network product therefore always constructed.

5.4 Symbolic Encoding Using Binary Decision Diagrams

This section explains how a deterministic network product N·P can be constructed symbol-

ically using Binary Decision Diagrams (BDDs). It is assumed throughout the explanation

that some form of BDD function library is available to the programmer [10], and that

all primitive boolean-expression operators on BDDs are provided for by this library. A

generic type bdd(V ) is used to denote the set of all BDDs over the variables in set V . Con-

ceptually, bdd(V ) may be viewed merely as a practical implementation of the set-theoretic

type bexp(V ) from Section 3.2.2.

5.4.1 Symbolic Encoding of a Set

Consider an arbitrary finite set S. In order to encode S using BDDs each element s ∈ S

must be identifiable as a BDD. An encoding of S using BDDs is therefore a function

enc ∈ S → bdd(V ) of each element s ∈ S to a BDD enc(s) over some set V of boolean

valued BDD variables. This encoding can be visualised as a labelling of each state s ∈ S

with some set [[enc(s)]]V of value assignments to the variables in V . An encoding enc is

valid if the following two requirements are met:
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S = {s1, s2, s3, s4, s5}
V = {v0, v1, v2}

si enc(si) [[enc(si)]] state labels

s1 ¬v0 ∧ ¬v1 ∧ ¬v2 {∅} 000

s2 ¬v0 ∧ ¬v1 ∧ v2 {{v2}} 001

s3 ¬v0 ∧ v1 ∧ ¬v2 {{v1}} 010

s4 ¬v0 ∧ v1 ∧ v2 {{v1, v2}} 011

s5 v0 {{v0}, {v0, v2}, {v0, v1}, {v0, v1, v2}} 100, 101, 110, 111

Figure 5.1: Example symbolic encoding of a set.

• ∀s ∈ S. enc(s) 6≡ F. Every state s ∈ S is labelled by at least one value assignment

to the variables in V .

• ∀s1 ∈ S, s2 ∈ S − {s1}. enc(s1) ∧ enc(s2) ≡ F. No two different states share the

same label.

An example symbolic encoding of a set is shown in Figure 5.1. Once S has been encoded

by a valid encoding function enc any subset X ⊆ S can be encoded as bddset(X, enc)
def
=

∨

x∈X(enc(s)). Note that bddset(S, enc) 6≡ T is possible since not every label in bool(V )

need be assigned to a state in S. If set S1 is encoded by enc1 ∈ S1 → V1 and set S2 is

encoded by enc2 ∈ S2 → V2 with V1 ∩ V2 = ∅, then the product set S1 × S2 can be con-

structed by forming the product encoding enc12(s1 ∈ S1, s2 ∈ S2)
def
= enc1(s1) ∧ enc2(s2).

Note that bddset(S1 × S2, enc12) = bddset(S1, enc1) ∧ bddset(S2, enc2) and therefore that

“∧” denotes the BDD encoding equivalent of “×”.

Since enc(s) = bddset({s}, enc), both the element s and the singleton set {s} have the

same BDD encoding. If X ⊆ S and Y ⊆ S have symbolic BDD encodings X and Y

respectively, then X∧Y encodes X ∩ Y , X∨Y encodes X ∪ Y , ¬X encodes S − X, and

X ⊆bdd Y
def
= X ∧ Y ≡ X encodes the set-containment problem X ⊆ Y . Note also that

enc(s) ∈bdd X
def
= enc(s) ∧ X≡ enc(s) encodes element-containment s ∈ X identically to

set-containment {s} ⊆ X.

5.4.2 Simple Automaton Encoding

Let F be an automaton with a finite set S of states. Let I ⊆ S denote a set of initial states

of F and T ⊆ S×S denote a set of unlabelled transitions for F . Define encF ∈ S → vars(F )

to be a valid encoding function for S to some set vars(F ) of boolean-valued BDD variables.

Define vars′(F )
def
= {v′ | v ∈ vars(F )} to be a second set of BDD variable names consisting
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of all names v ∈ vars(F ) in primed form. If v is a boolean-valued BDD variable then define

prime(v)
def
= v′ to denote the boolean-valued BDD variable v′ and unprime(v′)

def
= v to

denote the boolean-valued BDD variable v. The domain of prime is the set of all possible

unprimed BDD variables and the domain of unprime is the set of all possible primed BDD

variables. It is assumed that a BDD variable may be primed at most once and therefore

that the intersection of these two domains is empty. The BDD encodings S, I and T of

S, I and T respectively are defined as follows:

• S
def
= bddset(S, encF ).

• I
def
= bddset(I, encF ).

• T
def
=

∨

(s1,s2)∈T (encF (s1) ∧ (encF (s2)[prime])) where encF (s2)[prime] denotes the

BDD obtained after each v ∈ vars(F ) is replaced by v′ = prime(v) ∈ vars′(F ) in

encF (s2).

The purpose of vars′(F ) is to identify a second domain of BDD variables that can be used

to store a distinct copy of any BDD over vars(F ). In order to represent transitions of F

as pairs (s1, s2) ∈ S × S two distinct encodings of S are required, one for s1, denoted

encF (s1), and one for s2, denoted encF (s2)[prime]. prime and unprime serve merely as

renaming functions that permit a BDD X over vars(F ) to be transfered to and from

vars′(F ) without otherwise changing the subset X ⊆ S encoded by X . If l ∈ [[S]]vars(F ) is

a label for some s ∈ S then define Prime(l)
def
= {prime(v) | v ∈ l} and define Unprime(l)

def
=

{unprime(v) | v ∈ l} to denote the casting of l to vars(F ) and vars(F ′) respectively.

Simple automata encodings formalise some generic constructs that facilitate the symbolic

encoding of a deterministic network product using BDDs. In the remainder of this section,

refinements of simple automata encodings are used to encode both component networks

and proposition automata.

5.4.3 Primitive Component Encoding

Let N be a component network. Assign to each primitive component C ∈ N a unique set

vars(C) of boolean valued state-encoding variables. Define encC ∈ C.S → bdd(vars(C)) to

be a valid encoding function for C.S. Define vars′(C) = {v′ | v ∈ vars(C)}. The complete

encoding C of a primitive component C ∈ N is a triple 〈C.S, C.I, C.T 〉 as follows:

• wexp(w ∈ wires(N))
def
= bddset({x ∈ C.S | C.λw(x) = 1}, encC) where

C = parent(w) is a BDD identifying the set of all value assignments to the

variables in vars(C) for which w is at level 1.
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• wexp′(w′ ∈ wires′(N))
def
= wexp(w)[prime] is a BDD identical to wexp(w) except

that each variable v ∈ vars(C) is replaced by v′ ∈ vars′(C).

• invars(C)
def
=

⋃

w∈C.ins(vars(parent(w))) denotes the set of state-encoding variables

necessary to determine a value for every input wire w ∈ C.ins.

• lexpC(l ⊆ C.ins))
def
=

∧

w∈l(wexp(w)) is a BDD identifying all value assignments to

the variables in invars(C) for which only inputs that are in l are at level 1.

• C.S
def
= bddset(C.S, encC) is a BDD over vars(C) encoding the set of states in C.

• C.I
def
=

∨

(l,s)∈C.I(lexpC(l) ∧ encC(s)) is a BDD over vars(C) ∪ invars(C) encoding

the set of possible initial configurations C.I of C.

• C.T
def
=

∨

(s1,l,s2)∈c.T (encC(s1) ∧ lexpc(l) ∧ (encC(s2)[prime])) is a BDD over

vars(C) ∪ invars(C) ∪ vars′(c) encoding the transition relation C.T of C.

5.4.4 Component Network Encoding

Let N be a component network. Define N
def
= {C | C ∈ N} to be the BDD encoding of

N . Let vars(N)
def
=

⋃

C∈N (vars(C)) and vars′(N)
def
=

⋃

C∈N (vars′(C)). Define states(N ),

init(N ), and trans(N ) as follows:

• states(N )
def
=

∧

C∈N (C.S) is a BDD over vars(N ) encoding the set states(N) of

states in N .

• init(N )
def
=

∧

C∈N (C.I) is a BDD over vars(N ) encoding the set init(N) of initial

states in N .

• trans(N )
def
=

∧

C∈N (C.T ) is a BDD over vars(N ) ∪ vars′(N ) encoding the transition

relation trans(N) of N .

5.4.5 Network Proposition Encoding

Let N be a component network, and let p be a network proposition for N . Define the BDD

encoding of p to be the boolean expression p[wexp][wexp′] resulting after each occurrence

of w ∈ wires(N) in p has been expanded to wexp(w) and each occurrence of w′ ∈ wires′(N)

in p has been expanded to wexp′(w′).
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5.4.6 Proposition Automaton Encoding

Let M be a proposition automaton over component network N . Assign to M a unique

set vars(Mi) of boolean-valued state encoding variables. Define encM ∈ M.states →

bdd(vars(M)) to be a valid encoding function for vars(M). Define vars′(M)
def
= {v′ | v ∈

vars(M)}. The complete BDD encoding M= 〈M.states,M.init,M.acc,M.trans〉 of M is

defined as follows:

• M.states
def
= bddset(M.states, encM ) is a BDD over vars(M) encoding the set

M.states of states in M .

• M.init
def
= bddset(M.init, encM ) is a BDD over vars(M) encoding the set M.init of

initial states in M .

• M.acc
def
= bddset(M.acc, encM ) is a BDD over vars(M) encoding the set M.acc of

accepting states in M .

• M.trans
def
=

∨

(s1,p,s2)∈M.trans(encM (s1) ∧ p[wexp][wexp′] ∧ (encM (s2)[prime])) is a

BDD over vars(M) ∪ (vars(N) ∪ vars′(N)) ∪ vars′(M) encoding the transition

relation of M .

If P = {M1, . . . , Mn} is a set of proposition automata over N then define the set P
def
=

{M1, . . . ,Mn} of encoded proposition automata over N as follows:

• vars(P )
def
= vars(M1) ∪ · · · ∪ vars(Mn) is the set of variables over which the encoded

Mi are defined.

• vars′(P )
def
= vars′(M1) ∪ · · · ∪ vars′(Mn).

• states(P)
def
=

∧

M∈P (M.states) is a BDD over vars(P ) encoding the set M.states of

states for each M ∈ P .

• init(P)
def
=

∧

M∈P (M.init) is a BDD over vars(P ) encoding the set M.init of initial

states for each M ∈ P .

• trans(P)
def
=

∧

M∈P (M.trans) is a BDD over vars(P ) ∪ vars′(P) encoding the

transition relation M.trans of each M ∈ P .
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5.4.7 Deterministic Network Product Encoding

Let N be a component network and P = {M1, . . . , Mn} be a set of proposition automata

over N . Require that each Mi ∈ P be both complete and deterministic. Define the

deterministic network product encoding N ·P of the deterministic network product N ·P

as follows:

• vars(N ·P )
def
= vars(N) ∪ vars(P ) is the set of BDD variables over which the states

of N ·P are defined.

• vars′(N ·P )
def
= vars′(N) ∪ vars′(P ).

• states(N ·P)
def
= states(N ) ∧ states(P) is the set of states in N ·P.

• init(N ·P)
def
= init(N ) ∧ init(P) is a BDD over vars(N ·P ) denoting the set of

possible initial states for N ·P.

• trans(N ·P)
def
= trans(N ) ∧ trans(P) is a BDD over vars(N ·P ) ∪ vars′(N ·P )

denoting a set of possible transitions for N ·P.

Each value assignment l ∈ [[states(N ·P)]]vars(N·P ) denotes the concatenation of a unique

state l ∩ vars(N) ∈ [[states(N)]]vars(N) and a unique state l ∩ vars(Mi) ∈ [[Mi.states]]vars(Mi)

for each Mi ∈ P . A path in N ·P is any sequence σ over [[states(N ·P)]]vars(N·P ) such that:

• If |σ| > 0 then σ(0) ∈ [[init(N ·P)]]vars(N·P ).

• If |σ| > 1 then ∀i ∈ {0 . . . |σ| − 2}. σ(i) ∪ Prime(σ(i + 1)) ∈ [[trans(N ·P)]]vars(N·P ).

If σ is a path in N ·P then σ identifies a unique network execution σ ⇓ N such that

∀i ∈ {0 . . . |σ| − 1}. σ(i) ∩ vars(N) ∈ [[encN (σ⇓N )]]vars(N). Furthermore, if σ is a path in

N ·P then for every Mi ∈ P , σ identifies the unique supporting path σ⇓Mi
for (σ⇓N )2 in

Mi such that ∀j ∈ {0 . . . |σ| − 1}. σ(j) ∩ vars(Mi) ∈ [[encMi
(σ⇓Mi

(j))]]vars(Mi).

Define the language of N ·P as L(N ·P)
def
= {σ | σ is a path in N ·P} and define

L⇓N (N ·P)
def
= {σ⇓N | σ ∈ L(N ·P)}. Note that L⇓N (N ·P) = L(N) is always true since

every Mi ∈ P is complete.

Construction of N ·P binds every Mi ∈ P to N such that transitions of N denote input

symbols to M and such that paths in N ·P denote both executions of N and associated

supporting paths for each Mi ∈ P . The operator σ⇓X denotes the extraction and decoding

of a particular sub-path X from some path σ in N ·P: If σ ∈ L(N ·P) and Mi ∈ P then

σ⇓N (j) ∈ states(N) decodes the state of component network N in σ(j) and σ⇓Mi
(j) ∈

Mi.states decodes the state of proposition automaton Mi in σ(j).
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print counter ex

mk counter exs

Figure 5.2: Breadth-first reachability analysis.

5.5 Symbolic Verification using Binary Decision Diagrams

Let S = {E1, . . . , En} be a set of proposition-expressions over component network N , and

assign to each Ei ∈ S a sense and a type as discussed in Section 5.2. For each Ei ∈ S

compute a complete and deterministic proposition automaton Mi such that L(Mi) =

L(Ei). Let P = {M1, . . . , Mn} and require that each Mi ∈ P contain a unique dead

state err. Assign to each Mi ∈ P the same sense and type as E. A procedure pcheck for

determining conformance of N to S based on the network product encoding N ·P is shown

in Algorithm 5.1. For convenience it is assumed that vars(N ·P ), vars′(N ·P ), trans(N ·P),

and init(N ·P) are all available as global variables.

The operation of pcheck equates to a symbolic breadth-first search of the set {last(σ) | σ ∈

L(N ·P)} of states reachable in N ·P. Each Rn encodes a set containing those states

reachable within n transitions of an initial component network state, see Figure 5.2(a).

Rn+1 is computed by extending Rn with the image-set of those transitions Ri∧trans(N ·P)

possible from each state s ∈ [[Rn]]vars(N·P ). R0 is assigned the set of initial states in N ·P

and the repeat loop iterates until Rn ≡ Rn−1, at which point all reachable states have been

visited. Procedure image cut, see Algorithm 5.2, ensures that N ·P only exhibits network

executions that do not violate any of the constraints imposed by each Mi ∈ P of type cut.

Procedure image verify, see Algorithm 5.3, catches any network executions possible in

N ·P that violate a specification imposed by some Mi ∈ P of type verify. The correctness of

image cut and the correctness of image verify is based on the assertion from Section 5.3

that if each Mi ∈ P is both complete and deterministic then |slast(Mi, σ)| = 1, and hence

reachable component network states are in one-to-one correspondence with supporting

proposition automata states.
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function pcheck

n := 0
R := R0 := init(N ·P)
repeat

Im := (∃vars(N ·P ). Rn ∧ trans(N ·P))[unprime]
image cut(Im)
err states := image verify(Im)
if err states 6≡ F then

print counter ex(err states, Rn)
end if

n := n + 1
Rn := Im ∨ Rn−1

until Rn ≡ Rn−1

end function

Algorithm 5.1: Symbolic procedure for determining conformance of N to P .

function image cut (ref Im : bdd(vars(N ·P )))

for all Mi ∈ P do

if cut never(Mi) then

Im := Im ∧ ¬Mi.acc
end if

if cut always(Mi) then

Im := Im ∧ ¬encMi
(err)

end if

end for

end function

Algorithm 5.2: Symbolic removal of erroneous reachable states in N ·P.

function image verify (Im : bdd(vars(N ·P ))) : bdd(vars(N ·P )))

for all Mi ∈ P do

err states := F

if verify never(Mi) then

err states := Im ∧ Mi.acc
end if

if verify always(Mi) then

err states := Im ∧ encMi
(err)

end if

if err states 6≡ F then

Violation of specification M .
return err states

end if

end for

return F

end function

Algorithm 5.3: Symbolic detection of erroneous network executions in N ·P.
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If a specification verify sense(Mi) is violated by N then a counter example to the specifica-

tion can be generated by procedure print counter ex(err states, Rn), see Algorithm 5.4.

Execution of print counter ex begins with a call to mk counter exs which performs a

backwards breadth-first search starting from erroneous states in err states. The sequence

σ constructed by mk counter exs identifies the set of all erroneous network executions

leading to states in err states. Once σ is computed, procedure print counter ex walks

forwards over σ picking an example minimum length erroneous network execution, see

Figure 5.2(b).

function print counter ex (Err : bdd(vars(N ·P )), R : bdd(vars(N ·P )))

σ := 〈Err〉
mk counter exs(R, σ)
for i := 0 to |σ| − 2 step 1 do

5: pick any state s ∈ [[σ(i)]]bdd(vars(N·P ))

print s
let B be a BDD such that [[B]]vars(N·P ) = {s}

8: Im := (∃vars(N ·P ). B ∧ trans(N ·P))[unprime]
σ(i + 1) := σ(i + 1) ∧ Im

end for

pick any state s ∈ [[last(σ)]]bdd(vars(N·P ))

12: print s

end function

function mk counter exs (R : bdd(vars(N ·P )), σ : bdd(vars(N ·P )) sequence)

PreIm := ∃vars′(N ·P ). σ(0)[prime] ∧ trans(N ·P) ∧ R
image cut(PreIm)
if PreIm ∧ init(N ·P) ≡ F then

σ := 〈PreIm〉σ
mk counter exs(R ∧ ¬PreIm, σ))

else

σ := 〈PreIm ∧ init(N ·P)〉σ
end if

end function

Algorithm 5.4: Counter-example generation.

5.6 BDD-based Symbolic Searching Optimisations

The optimisation of symbolic breadth-first searching using BDDs has been extensively

documented in the literature [50, 100]. Although a detailed analysis of these optimisations

is beyond the scope of this thesis, this section aims to overview those optimisations that

are most relevant to the proposition-oriented verification procedure pcheck.
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5.6.1 Frontier-Set Reduction

Each iteration of a symbolic breadth first search can be equated to the computation of

Rn+1 := Rn ∨ (∃V. Rn ∧ T )[unprime], where T is a transition relation and V is a set of

current-state variables. The purpose of this computation is to extend an existing set, Rn

of reachable states with the image-set (∃V. Rn ∧ T )[unprime] of states reachable from Rn

using transitions in T .

At each iteration the difference, Rn − Rn−1, is referred to as a frontier-set, and denotes

those states reachable in no less or more than n transitions of an initial state. Using

an inductive argument it is possible to show that Rn ∨ (∃V. Rn ∧ T )[unprime] = Rn ∨

(∃V. (Rn−Rn−1)∧T )[unprime], and therefore that Rn+1 need only be computed using the

image of the frontier-set and not the image of Rn. This inductive argument generalises

to any set Fi such that Rn − Rn−1 ⊆ Fi ⊆ Rn. Frontier-set reduction is a technique

that uses a special BDD operator reduce [28] to attempt to pick the Fi with the smallest

BDD encoding. Execution of reduce at each iteration takes time, however the reduction

in size of the frontier-set BDD can significantly reduce the time taken to perform image

computations.

5.6.2 Relational Product

The core operation behind a symbolic breadth-first search is the image-set computation

∃V. Rn ∧ T . Image-set computation generalises to the expression ∃X. A ∧ B, known as

a relational product [50]. Relational products can be efficiently computed using a single

atomic BDD operation which conjoins the binary trees for A and B simultaneously with

quantifying out those variables in X. The use of an atomic relational product operator

has been shown to dramatically reduce symbolic breadth-first search times, and can be

directly applied to Line 5 of procedure pcheck, see Algorithm 5.1.

5.6.3 BDD Variable Ordering

Practical BDD function libraries use a fixed BDD variable ordering and share pointers to

equivalent subtrees. These libraries are referred to as Reduced-Ordered-BDD (ROBDD)

libraries and permit constant-time BDD negation and equality computation. Although the

semantics of BDDs are independent of any chosen variable ordering, the size of a BDD and

the performance of boolean operations on it is dependent on the chosen variable ordering.

Heuristics for improving ROBDD variable orderings can, in certain cases, significantly

86



Proposition-Oriented Verification

reduce breadth-first search times. However, since re-ordering of ROBDD variables requires

reconstruction of all BDDs in existence, these reduction in search times must be tempered

by the time penalty incurred in having performed the re-orderings in the first place [84].

5.6.4 Conjunctively Partitioned Transition Relation

A network product N·P is a form of product automaton formed from a set of primitive com-

ponents, N = {C1, . . . , Cn}, and a set of proposition automata P = {M1, . . .Mm}. When

encoded symbolically using BDDs, a network product transition relation trans(N ·P)

equates to the conjunction of a set of smaller transition relations:

trans(N ·P) ≡ (C1.T ) ∧ . . . ∧ (Cn.T ) ∧ (M1.trans) ∧ . . . (Mm.trans)

The explicit computation of trans(N ·P) is referred to as a monolithic transition relation

and can limit the performance of symbolic breadth-first searching procedures. However,

the explicit computation of trans(N ·P) is not necessary, and it is also possible to com-

pute reached states ∧ trans(N ·P) iteratively using n + m conjunctions of the individual

component transition relations that comprise trans(N ·P). The implicit repesentation of

trans(N ·P) as the conjunction of component transition relations is referred to as a con-

junctively partitioned transition relation [50].

5.6.5 Early Quantification

In general, a conjunctively partitioned transition relation T = {T1, . . . Tn} encodes a

product T1 ∧ . . . ∧ Tn, where each Ti is an individual component BDD over a set V ∪ V ′

of boolean variables such that V ∩ V ′ = ∅. If R is a BDD over V encoding a set of

reachable states then the image computation ∃V. R ∧ (
∧

Ti∈T Ti) can be computed by

considering each of the Ti in any order. Early quantification of a conjunctively partitioned

transition relation atempts to distribute the existental quantifications for each v ∈ V over

the product R∧
∧

Ti∈T Ti [50]. Distribution of existential quantification in this way permits

each v ∈ V to be quantified out as soon as possible, but is dependant on the order in

which each of the Ti are considered.

For any given ordering of the Ti it is possible to determine a maximal set Vi for each

Ti ∈ T such that

∃V. R ∧ (
∧

Ti∈T Ti) ≡ ∃Vn. (. . . . (∃V2. (∃V1. R ∧ T1) ∧ T2) . . .)

87



Proposition-Oriented Verification

Early quantification reduces each breadth-first search step of a conjunctively partitioned

transition relation to a sequence of relation products, one for each component transition

relation. A common heuristic for ordering the Ti is to first pick the Ti that depends on

the smallest number of variables in V [50].

5.7 Protocol Proposition Automata

Proposition-expressions encapsulate the application of proposition-oriented behaviours to

both a sequential notation, regular-expressions, and to a notation for concurrency, trace-

expressions. The objective of this application is to provide a simple platform on which

the benefits of proposition-oriented behaviours can be demonstrated in the context of

asynchronous design. However, regular-expressions and trace-expressions are themselves

simple notations on which significant further research has been based. In particular,

process spaces [76], DI-algebra [49], and the XDI model [57] all extend event-oriented

behaviours to encapsulate relationships between system and environment, and to express

notions of liveness and progress.

Protocol automata are a simple extension to complete proposition automata in which a

second dead state, rej, is introduced. rej relates closely to rejections in process spaces and

to the miracle state in XDI models, and is motivated by a desire to enable a single propo-

sition automaton to describe both a circuit specification and its associated environmental

assumptions: Network executions supported by paths ending in state rej denote failures

due to the environment, whereas network executions supported by paths ending in state

err denote failures due to the circuit. Protocol automata enable a proposition-oriented

trace-expression t to assert this contract between circuit and environment, provided those

wires w ∈ Σt that are circuit inputs can be identified: If w ∈ Σt is a circuit input then

network executions that are unsupported due to events on w denote failures due to the en-

vironment. If w ∈ Σt is not a circuit input then network executions that are unsupported

due to events on w denote failures due to the circuit.

Protocol automata differ from process spaces and XDI models in that the relationship

between rej and err is not embraced explicitly in their semantics, and notions of liveneess

between circuit and environment therefore cannot be evolved. A superior treatment of

system-environemt contracts and liveness in the context of proposition-oriented trace-

expressions is beyond the scope of this thesis.
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Figure 5.3: A simple C-element component network.

An example application for protocol automata is as follows: Let S = (a∗; c∗) ‖ (b∗; c∗)

denote a proposition-oriented trace-expression specification for the component network N ,

see Figure 5.3. Conformance of N to verify always(S) is dependant upon events on both

a and b interleaving events on c, which is not true since wires a and b may change value

arbitarily. An ability to partition network executions using rej and err permits failures

due to a, b and failures due to c to be distinguished, thus enabling S to assert instead that

the behaviour of c be verified under the assumption that a, b are well behaved.

5.7.1 Protocol Completion

Let t be a proposition-oriented trace-expression over component network N and let

M = mk trexp(t, sigma(t)) be a proposition automaton with L(M) = Lte(t) that con-

taines no dead states. Let inputs(t) ⊆ Σt denote those wires in N that are to be considered

as inputs to t from the environment. The protocol completion protocol(M, inputs(t))

of M is a refinement of the completion complete(M) of M as shown in Algorithm

5.5. protocol(M, inputs(t)) differs from complete(M) in that the network proposition

¬stable(inputs(t)) is used to partition unsupported network executions according to the

circuit-environment contract described above: If a network execution is unsupported due

to a component network transition in which no input wire changes value, denoted by

stable(inputs(t)), then that network execution must lead to state err, otherwise it leads to

state rej.

Conformance of a component network N to a protocol automaton M can be determined

by extending procedures image cut and image verify to include a new protocol type as

shown in Algorithms 5.6 and 5.7. Since a notion of rej is not meaningful if the sense of

a proposition automaton is never, protocol automaton need not be assigned a sense since

that sense can only be always.
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function protocol (ref M : propautN , i : bexp(dwires(N)))

kill dead(M)
for all s ∈ M.states do

addtrans(M , s, ¬exits(p) ∧ ¬stable(i), rej)
addtrans(M , s, ¬exits(p) ∧ stable(i), err)

end for

addtrans(M , err, T, err)
addtrans(M , rej, T, rej)
M.states := M.states ∪ {err, rej}

end function

Algorithm 5.5: Completion of a proposition automaton.

function image cut (ref Im : bdd(vars(N ·P )))

for all Mi ∈ P do

if cut never(Mi) then

Im := Im ∧ ¬Mi.acc
end if

if cut always(Mi) then

Im := Im ∧ ¬encMi
(err)

end if

if protocol Mi then

Im := Im ∧ ¬encMi
(rej)

end if

end for

end function

Algorithm 5.6: Addition of protocol type to image cut.

function image verify (Im : bdd(vars(N ·P ))) : bdd(vars(N ·P )))

for all Mi ∈ P do

err states := F

if verify never(Mi) then

err states := Im ∧ Mi.acc
end if

if verify always(Mi) or protocol Mi then

err states := Im ∧ encMi
(err)

end if

if err states 6≡ F then

Violation of specification M .
return err states

end if

end for

return F

end function

Algorithm 5.7: Addition of protocol type to image verify.
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5.8 Summary

The purpose of this chapter was to evolve a simple verification procedure for proposition

automata over component networks. The operation of this procedure was shown to equate

to reachability analysis on a special type of product automaton called a network product,

and this demonstration was used to justify an implementation based on symbolic reach-

ability analysis using BDDs. BDD-based optimisations were summarised, and a special

type of proposition automata called protocol automata were introduced. The purpose of

proposition automata was to permit the description of simple circuit-environment con-

tracts using proposition-oriented trace-expressions.
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Chapter 6

Veraci

6.1 Introduction

The purpose of this chapter is to demonstrate the application of proposition-oriented

verification to asynchronous circuit design. This demonstration is facilitated through

the use of a custom-built verification program, Veraci, implemented using the algorithms

described in Chapters 4 and 5. Veraci takes as its input a circuit described in a subset of

standard Verilog [99] that has been annotated with one or more Veraci-fragments. These

Veraci-fragments can be used both to denote assumptions regarding the behaviour of a

circuit and to describe specifications that must adhered to by that circuit.

The application of Veraci to asynchronous design is described in part by the syntax of

Veraci itself, and in part through a number of small example circuits, each of which aims

to demonstrate a different benefit of proposition-oriented behaviours over alternative level

and event-oriented notations. The performance of Veraci is also discussed and compared

to that of Versify [86], a Petri-net-oriented verification program.

In the sections that follow Section 6.2 describes the syntax and functionality of Veraci.

Section 6.3 outlines how a combination of levels and events into network propositions can

be used to facilitate bundled-data asynchronous design. Section 6.4 demonstrates how

active propositions permit event abstraction in the context of a delay insensitive data-

encoding scheme. Sections 6.5 and 6.6 describe how proposition-oriented verification can

be applied to safety conditions and to causality without progress. Section 6.7 demonstrates

the application of proposition-oriented behaviours to timing assumptions, and Section 6.8

documents an application of Veraci not due to the author. This application includes a

demonstration of counter-example generation in Veraci. Section 6.9 concludes the chapter

by investigating Veraci performance.
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a

b

c
y

assign y = (a | b) & c;

Figure 6.1: An assign statement per complex gate in Veraci.

and G(out, in1, in2, ...)

nand G(out, in1, in2, ...)

or G(out, in1, in2, ...)

nor G(out, in1, in2, ...)

xor G(out, in1, in2, ...)

xnor G(out, in1, in2, ...)

celem C(out, ±in1, ±in2, ...)

arbiter A(g1,r1, g2,r2, ...)

A
G

in1
in2 out

in1
in2 out

g1
g2r2

r1

±
± C

Figure 6.2: Gate instantiations accepted by Veraci.

6.2 Veraci Syntax

Veraci is a command-line driven verifier written in C++ [95]. The underlying verification

engine on which Veraci is built is based on the procedures described in Chapter 5, and

uses an off-the-shelf ROBDD function library written in C [56]. Veraci accepts as its input

a circuit described in a subset of standard Verilog that contains only gate instantiations

and continuous assignments.

Veraci uses the circuit described by its Verilog input to construct a component network

as described in Section 3.4. Top-level inputs to the main module are connected to source

components; continuous assignments are translated into complex gates, see Figure 6.1;

and gate instantiations are translated as described in Figure 6.2. Veraci’s treatment of

gates celem and arbiter as primitive is non-standard to Verilog, but is accepted by Veraci

for convenience in asynchronous design. Veraci also permits asymmetric C-elements to be

described by prefixing any celem inputs with either a + or a - symbol.
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veraci-fragment ::= type sense
∣

∣ protocol

::=type cut
∣

∣ verify

always::=sense
∣

∣ never

Texp
Pexp (for a definition of Pexp see section 4.5)

(for a definition of Texp see section 3.6.2)

Figure 6.3: Veraci-fragment grammar.

6.2.1 Veraci-fragments

Each Verilog module input to Veraci may be augmented with proposition-oriented as-

sertions and specifications, referred to as Veraci-fragments. A Veraci-fragment is dis-

tinguished from a circuit component by enclosing it in double-angled brackets, <<· · · >>,

and consists of a proposition-expression or a proposition-oriented trace-expression pre-

fixed by one or more sense and type modifiers, see Figure 6.3. If module m contains a

Veraci-fragment of the form << protocol t >> then inputs(t) is defined as:

inputs(t)
def
= {w | w ∈ Σt and w is an input to m}

In this sense each Verilog module, including the main module, considers its inputs to be

controlled by the environment. Alternative circuit-environment strategies are possible,

but the use of module hierarchy in this way is both convenient and simple.

6.2.2 Network Propositions

A network proposition is a boolean expression over current-next state wire values. Veraci

permits any Verilog wire name w to be used in a network proposition either in primed,

w′, or un-primed, w, form: w denotes the value of wire w in the current component

network state and w′ denotes the value of wire w in the next component network state.

The syntax for network propositions in Veraci is outlined in Table 6.1, and mimics those

boolean operators used in standard Verilog.

The syntactic use of ‘&’ rather than ‘∧’, and ‘|’ rather than ‘∨’ in network propositions

leads to ambiguity with respect to the proposition-expression constructs ‘&’ and ‘|’, used

to denote proposition-expression product and alternation respectively. This ambiguity is

resolved syntactically in Veraci, where proposition-expression product is denoted instead

as ‘&.’, and proposition-expression alternation is denoted instead as ‘|.’.
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Construct Meaning

p ::= 1 T

| 0 F

| w current-state wire name
| w’ next-state wire name
| w* w 6= w′

| w+ w∗ ∧ ¬w
| w- w∗ ∧ w
| (p)’ p[prime]
| (p)* p 6= (p[prime])
| (p)+ p∗ ∧ ¬p
| (p)- p∗ ∧ p
| ~p ¬p
| p1 & p2 p1 ∧ p2

| p1 | p2 p1 ∨ p2

| p1 ^ p2 p1 ⊕ p2

| p1 => p2 p1 ⇒ p2

| p1 = p2 p1 = p2

Table 6.1: Network propositions in Veraci.

6.2.3 Excitation Propositions

If N is a component network and w ∈ wires(N) then define

enabled(w)
def
= {s1 ∈ states(N) | ∃s2. (s1, s2) ∈ trans(N) and val(w, s1) 6= val(w, s2)}

to denote the set of all component network states in which w is enabled to change value.

Define excited(w) to be any network proposition over N such that labels(excited(w)) =

{(s1, s2) ∈ alltrans(N) | s1 ∈ enabled(w)}. The purpose of excited(w) is to label any

component network transition where w is enabled to change value in the current state.

For example if w is the output of a two-input and-gate with inputs a, b, then excited(w) ≡

(a ∧ b ∧ ¬w) ∨ (¬(a ∧ b) ∧ w). excited can be applied to network propositions in Veraci

using the excited construct in either of two ways as follows:

1. Qualified: excited(w1,. . .,wn)
def
= excited(w1) ∨ · · · ∨ excited(wn).

2. Unqualified: excited
def
=

∨

w∈W (excited(w)) where W is the set of all wire names

in the current Verilog module that are not input wires.

For example, (excited(x) => ~a) and (excited & b) are both valid network proposi-

tions in Veraci. The unqualified use of excited is intended as shorthand for excitation

of the whole current module. Input wires are excluded from W in unqualified uses of

excited since input excitation is external to the current module.
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Function-lets for reasoning with dual-rail protocols

dr_plus(a,b) = ((a+ & b=0 & b’=0) ^ (b+ & a=0 & a’=0))

dr_minus(a,b) = ((a- & b=0 & b’=0) ^ (b- & a=0 & a’=0))

dr_event(a,b) = dr_plus(a,b) | dr_minus(a,b)

dr_clear(a,b) = ~a & ~b

dr_data(a,b) = a ^ b

dr_error(a,b) = a & b

Function-lets for reasoning with inverted dual-rail protocols

dri_plus(a,b) = ((a- & b=1 & b’=1) ^ (b- & a=1 & a’=1))

dri_minus(a,b) = ((a+ & b=1 & b’=1) ^ (b+ & a=1 & a’=1))

dri_event(a,b) = dri_plus(a,b) | dri_minus(a,b)

dri_clear(a,b) = a & b

dri_data(a,b) = a ^ b

dri_error(a,b) = ~a & ~b

Table 6.2: Function-let declarations used in this thesis.

6.2.4 Semi-modularity Propositions

If N is a component network and w ∈ wires(N) is a wire in N then w is said to be

semi-modular if whenever w is enabled to change value it is never disabled unless it also

changes value. If every wire in N is semi-modular then N is said to be semi-modular. If

w ∈ wires(N) then the semi-modularity of w can be expressed as the network proposition

semi(w)
def
= excited(w) ∧ ¬(excited(w)[prime]) ⇒ w∗. semi(w) asserts that if w is excited

in the current component network state but not in the next component network state

then w must change its value. In Veraci it is possible to use semi(w) directly in network

propositions using the construct ‘semi’ in either qualified or unqualified form:

1. Qualified: semi(w1,. . .,wn)
def
= semi(w1) ∧ · · · ∧ semi(wn).

2. Unqualified: semi
def
=

∧

w∈W (semi(w)) where W is the set of all wire names in the

current Verilog module that are not input wire names.

The application of excited and semi to asynchronous design is discussed further in Sec-

tions 6.5 and 6.7.

6.2.5 Function-Let Declarations

The network proposition constructs defined in Table 6.1 can be extended to include new

constructs by providing Veraci with any number of function-let declarations of the form:

let fn name(arg1, arg2, . . .) = p
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Each function-let definition defines a new function fn name which can be used as short-

hand for the network proposition p. For example, the expression let plus low(a,b) =

a+ & b=0 can be used to declare the construct plus low(a, b) which labels any compo-

nent network transition where wire a is rising but wire b is low. Function-let declarations

can be packaged into a library for inclusion with any Veraci input file. The function-let

declarations used in this thesis are outline in Table 6.2.

6.2.6 Delay Models

Veraci requires that each Verilog module definition be identified as either SI or DI, see

Figure 6.4(a). A module that is declared as SI is verified under a speed independent delay

model in which wire delays are assumed to be zero and gate delays are assumed to be

arbitrary but finite. A module that is declared as DI is verified under a delay insensitive

delay model in which both gate and wire delay are assumed to be arbitrary but finite.

Veraci does not permit a delay insensitive module to be instantiated inside of a speed

independent module. If a speed independent module is instantiated inside of a delay

insensitive module then Veraci creates a foam-rubber-wrapper [68] by placing wire delays

on each input to the speed independent module, see Figure 6.4(b).

6.2.7 Circuit Initialisation

The set of possible initial states of a component network is determined by the valid initial

configurations for each of its individual primitive components. The primitive components

described in Section 3.4 adopt a quiescent initialisation model in that valid initial config-

urations are ones where no output is excited to change its value. The exceptions to this

rule are the arbiter component, which always initialises with all outputs at level 0, and

the source component which is always excited and can initialise in any state.

Veraci permits a designer to place further constraints on the initial configurations of a

component network. This is done through the use of special “initial p” fragments where

p is any boolean expression over current-state wire names only. If N is the component

network to be verified by Veraci then the application of initial p to N causes Veraci to

remove all component network states not in
⋃

x∈[[p]]wires(N)
(smap(p)) from the initial states,

init(N), of N .
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(b)(a)

module SI latch(q, qb, s, r);

endmodule

module DI latch(q, qb, s, r);

endmodule endmodule

module SI latch(q, qb, s, r);

endmodule

module DI latch2(q, qb, s, r);

latch L(q, qb, s, r);

qb

q
r

s

L

s

r

qb

q

Figure 6.4: Different delay models in Veraci.

6.2.8 Counter-example Generation

Veraci uses its input file to determine both a component network and a set of proposi-

tion automata. The component network is determined from Verilog constructs, and the

proposition automata are determined from Veraci fragments. Veraci uses the component

network and proposition automata combined to compute a network product from which

conformance is determined by a symbolic BDD-based breadth first search as described in

Section 5.5. If the component network does not conform to the Veraci fragments then

Veraci computes a minimal length counter-example which is displayed to the user as an

erroneous sequence of events from some possible initial circuit state.

6.3 Combining Levels and Events

The foundation of this thesis was a desire to unify levels and events under a common

behavioural paradigm. The purpose of this section is to demonstrate a simple bene-

fit of level-event unification by example. The example chosen is the specification of a

four-phase bundled-data multiplexer circuit, bdmux, see Figure 6.5. bdmux was orig-

inally developed by Peeters [81] for use with the Philips in-house asynchronous design

language Tangram [8], where its function was to implement the non-arbitrating merge of
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bs

ba

ca

aa

as

ar

cr

br

x

y

z

Figure 6.5: Single-rail multiplexer.

adata

bdata

cdata

bs as

Figure 6.6: Data value multiplexing using as and bs.

two bundled-data channels, (ar, aa), (br, ba), onto a single bundled-data channel c. This

merger can be described using the conventional trace-expression:

[ (b+
r ; c+

r ; c+
a ; b+

a ; b−r ; c−r ; c−a ; b−a ) | (a+
r ; c+

r ; c+
a ; a+

a ; a−r ; c−r ; c−a ; a−a ) ]

which asserts that data is exchanged either from a to c or from b to c an arbitrary

number of times. bdmux is interesting because it also defines two outputs as and bs that

denote level-sensitive control wires used to multiplex values on the datapath, see Figure

6.6. In order to describe the behaviour of as and bs using event-oriented notations it is

necessary to augment the trace-expression above to describe when as and bs should rise

and fall. However, as and bs only change value during a data exchange if they need to

and this extension is therefore non-trivial. A conventional trace-expression that describes

the merger operation and includes the behaviour of as and bs is as follows:
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[ [b+
r ; c+

r ; c+
a ; b+

a ; b−r ; c−r ; c−a ; b−a ]; a+
r ; (a+

s ‖ b−s ‖ (c+
r ; c+

a ; a+
a ; a−r )); c−r ; c−a ; a−a ;

[a+
r ; c+

r ; c+
a ; a+

a ; a−r ; c−r ; c−a ; a−a ]; b+
r ; (b+

s ‖ a−s ‖ (c+
r ; c+

a ; b+
a ; b−r )); c−r ; c−a ; b−a ]

|

[ [a+
r ; c+

r ; c+
a ; a+

a ; a−r ; c−r ; c−a ; a−a ]; b+
r ; (b+

s ‖ a−s ‖ (c+
r ; c+

a ; b+
a ; b−r )); c−r ; c−a ; b−a ;

[b+
r ; c+

r ; c+
a ; b+

a ; b−r ; c−r ; c−a ; b−a ]; a+
r ; (a+

s ‖ b−s ‖ (c+
r ; c+

a ; a+
a ; a−r )); c−r ; c−a ; a−a ]

The problem with describing the behaviour of as, bs using event-oriented notations is that

as, bs are level-sensitive not event-driven. In the context of Tangram, as and bs are defined

according to a ‘late’ data-valid scheme: the data bundled on output channel c must have

the right value multiplexed on it by the time cr falls. Proposition-oriented verification

permits the levels on as, bs to be bound to certain other events by extending the notion

of an ‘event’ to include any active proposition. An alternative specification for the merger

operation using a Veraci-fragment is as follows:

protocol [ (br+;cr+;ca+;ba+;br-;(cr- & ~as & bs);ca-;ba-) |.

(ar+;cr+;ca+;aa+;ar-;(cr- & ~bs & as);ca-;aa-) ]

This Veraci-fragment cleanly expresses the intended use of as, bs in a late data-valid

scheme. It is not however equivalent to the trace-expression outlined previously since

it does not assert exactly when as, bs can change value, only that that as, bs hold the

right value at the right time. A protocol automaton for this Veraci-fragment, excluding

transitions to the dead states rej and err, is shown in Figure 6.7. An important observation

to make of Figure 6.7 is that neither as nor bs is in the sort for (cr- & as & bs) or

(cr- & bs & as), and therefore that the protocol automaton can only observe but not

constrain the values on as, bs.

6.4 Event Abstraction

Active propositions abstract conventional definitions of an event to include a more generic

class of component network transitions than x∗, x+ or x−. The purpose of this section is

to demonstrate the practical benefits of active propositions to the design of asynchronous

circuits that employ a dual-rail delay insensitive data encoding scheme [12], although

the demonstration given generalises directly to arbitrary delay insensitive data encoding

schemes. If G is the generic dual-rail logic gate shown in Figure 6.8 then the correct

operation of G is dependent on G only asserting a data value on its output after both its
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1

2

3

4

5

6

7

8

c+
r ∧

c+
a ∧

a+
a ∧

a−
r ∧

c−a ∧

2

3

4

5

6

7

8

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A)

stable(A − {cr})

stable(A − {ca})

stable(A − {aa})

stable(A − {ar})

stable(A − {cr})

stable(A − {ca})

stable(A − {cr})

stable(A − {ca})

stable(A − {cr})

stable(A − {ca})

b+
r ∧ stable(A − {br})

stable(A)

stable(A − {ba})

stable(A − {br})

a−
a ∧ stable(A − {aa}) b−a ∧ stable(A − {ba})

a+
r ∧ stable(A − {ar})

c+
r ∧

c+
a ∧

b+
a ∧

b−r ∧

c−a ∧

c−r ∧ ¬bs ∧ as∧ c−r ∧ ¬as ∧ bs∧

A = {cr, ca, ar, aa, br, ba}

Figure 6.7: A mixed levels-events protocol automaton.

inputs have asserted a data value, and upon G only clearing the data value on its output

after both its inputs have cleared their data value.

These two dependencies combined are known as Seitz’s rules [90], and can be likened to the

semantics of a C-element in which events on wires have been abstracted to events on dual-

rail data values. An example of this likeness is shown in Figure 6.10, where the dual-rail

AND-gate component shown in Figure 6.9 is verified as conforming to Seitz’s rules: The

protocol definition, [(dr event(x0,x1) || dr event(y0,y1)); dr event(z0,z1)], is

structurally identical to the Veraci-fragment [(a*||b*);c*], which is a suitable specifi-

cation for any C-element module with inputs a, b and output c.
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G (z0, z1)
(x0, x1)

(y0, y1)

Figure 6.8: A generic 2-input dual-rail logic gate.

x0

x1

y0

y1

z0

z1

datay

datax

zen

C

C

C

Figure 6.9: speed independent dual-rail AND-gate.

module SI DRand(x0,x1, y0,y1, z0,z1);

input x0,x1, y0,y1;

output z0,z1;

wire data_x, data_y, z_en, z0_pre, z1_pre;

celem (z0, z0_pre, z_en);

celem (z1, z1_pre, z_en);

celem (z_en, data_x, data_y);

assign data_x = x0 | x1;

assign data_y = y0 | y1;

assign z0_pre = x0 & y0;

assign z1_pre = x1 | y1;

<<

initial dr_clear(x0, x1) & dr_clear(y0, y1)

protocol [ (dr_event(x0,x1) || dr_event(y0,y1)); dr_event(z0,z1) ]

>>

endmodule

Figure 6.10: Veraci program for a speed independent dual-rail AND-gate.
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6.5 Extended Safety Conditions

The purpose of this section is merely to observe that Veraci-fragments are able to express

safety conditions, which are assertions that must hold for every reachable state of a system.

In the context of Veraci, a safety condition can be expressed using a network proposition

p, and can be verified using the Veraci-fragment verify always [p]. Veraci can also be

used to enforce a safety condition p using the Veraci-fragment cut always [p].

Network propositions reason over current-next state pairs not just current states. In

this sense verify always [p] and cut always [p] actually assert that p hold for every

reachable component network transition not state. The extension of safety conditions

to reachable transitions rather than reachable states has the benefit that it is possible

to express safety conditions that require both the current and next component network

states to be known. An example of such an extended safety condition is semi-modularity:

If m is a Verilog module input to Veraci then m is said to be semi-modular if every wire

in m is semi-modular, see Section 6.2.4. Using Veraci the semi-modularity of m can be

verified merely by placing the Veraci-fragment verify always [semi] at some point in

the definition of m as follows:

module m(...);

...

<< verify always [semi] >>

endmodule

6.6 Causality Fragments

The purpose of this section is to demonstrate how proposition-expressions can be used

to reason with fragmented assertions that do not describe cyclic behaviours. The exam-

ple circuits used to facilitate this demonstration are the four-phase bundled-data latch

controllers described by Furber and Day [39].

A four-phase bundled-data latch controller is a circuit used to control a single bundled-data

pipeline stage using a four-phase handshake protocol on both the input and output data

channels. The latch controllers described by Furber and Day are considered as having two

input terminals, Rin, Aout, and three output terminals, Rout, Ain, Lt. Terminals Rin, Ain

denote the input data channel handshake control wires, and terminals Rout, Aout denote

the output data channel handshake control wires. Terminal Lt denotes a signal used to
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Lt−
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Figure 6.11: Furber-Day specification fragments for a four-phase latch controller.

open and close transparent latches on a bundled-data datapath: if Lt is high then the

datapath latches are closed, and if Lt is low then the datapath latches are open.

In their paper, Furber and Day describe several different four-phase latch controllers, each

of which which provides a different level of decoupling between the input and output data

channels. Each of these latch controllers is manually synthesised from a different closed

STG, and each of these closed STG specifications is itself constructed as a composition

of six independent STG ‘fragments’ identified by Furber and Day as sufficient to ensure

correct latch controller operation. A copy of these six fragments is shown in Figure 6.11

and can be interpreted as follows:

1. Ain and Rin obey a four-phase handshake protocol.

2. Aout and Rout obey a four-phase handshake protocol.

3. Input and output handshakes never get out of step.

4. Rising and falling events on Lt alternate.

5. It is never possible to have have an A+
in after a R+

in without the datapath latches

closing in between, denoted by an intervening Lt+.

6. It is never possible to have two A+
outs without the datapath latches opening in

between, denoted by an intervening Lt−.

Verification that any of Furber and Day’s latch controllers conforms to its original closed

STG specification is not difficult, and can be done using an existing verification tool such

as Versify [86]. The application of Veraci to four-phase latch controllers is interesting

because using Veraci it is possible to express the six generic STG ‘fragments’ directly as
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Veraci-fragments and therefore to verify that all of Furber and Day’s latch controllers do

indeed conform to the same original specification.

Verification using the six fragments shown in Figure 6.11 is difficult because Fragments 3-6

do not identify cyclic behaviours of the form [· · · ], and do not describe both rising and

falling events for wires on which they depend. For example in Fragment 6, the behaviour

of event Lt− is described but the behaviour of event Lt+ is not. This difficulty can be

overcome in Veraci by translating Fragments 3-6 into expressions of the form verify

never [1];x;([~y] &. B) where x, y, and B are defined as follows:

x = A network proposition identifying a start event.

B = A Veraci-expression identifying a set of behaviours to observe after the start event.

y = A network proposition identifying an action that must happen at some point

during the observation period.

Expressions of this form are referred to here as causality-fragments since they assert

that a certain action, y, must happen during certain fragments, B, of network execu-

tions. Causality-fragments are built from two different types of proposition-oriented sub-

expression:

• [1];E where E is any proposition-expression. Ignores zero or more component

network transitions before beginning to match E.

• [p] &. E where E is any proposition-expression and p is any network proposition.

Matches network executions that match E but also never violate the safety

condition asserted by p.

In the context of Figure 6.11, Fragments 3-6 can be expressed using the causality-fragments

outlined in Figure 6.12. Fragment 4 has no associated causality-fragment since it asserts

only that rising and falling events on wire Lt alternate, which, since Veraci does not

consider liveness, is always true. Of particular interest is Fragment 3, which asserts

that the two handshake channels do not get out of step. An initial interpretation sug-

gests that the required causality-fragment for Fragment 3 should be [1];Rin+;([~Rout+]

&. trace(Rin+)). However, in practice an R+
out need only happen before the latch con-

troller acknowledges the start of a second input data item. The required causality-

fragment can therefore only assert that R+
out happens before a second A+

in event is traced

on terminal Ain. This can be achieved by observing those network execution fragments

matching trace(Ain+;Ain-;Ain+).
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111

[1];Rin+;([~Rout+] &.
trace(Ain+;Ain-;Ain+))

[1];Aout+;([~Lt-] &.
trace(Aout+))

[1];Rin+;([~Lt+] &.
trace(Ain+))
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Figure 6.12: Causality fragments in Veraci.

module SI full_dec_latch(Rin, Ain, Rout, Aout);

input Rin, Aout;

output Rout, Ain;

wire Lt, neg_Aout, neg_Rout, A, B, neg_B;

assign neg_Aout = ~Aout;

assign neg_Rout = ~Rout;

assign neg_B = ~B;

assign Lt = A;

celem (A, +Rin, neg_B, neg_Rout, -neg_Aout);

celem (B, -Lt, Ain);

celem (Rout, +neg_Aout, A);

celem (Ain, +Lt, neg_B, -Rin);

<<

initial ~Rin & ~Aout

protocol [Rin+;Ain+;Rin-;Ain-] // fragment 1

protocol [Rout+;Aout+;Rout-;Aout-] // fragment 2

verify never [1];Aout+;([~Lt-] &. trace(Aout+)) // fragment 6

verify never [1];Rin+; ([~Lt+] &. trace(Ain+)) // fragment 5

verify never [1];Rin+; ([~Rout+] &. trace(Ain+;Ain-;Ain+)) // fragment 3

>>

endmodule

Figure 6.13: Veraci program for the fully-decoupled latch controller.

107



Veraci

− +

+

Lt

AinRin

A
B

Aout Rout

−

+

−

C
C

C

C

Figure 6.14: Fully-decoupled latch controller circuit.

An example Veraci program for verifying a bundled-data four-phase latch controller is

shown in Figure 6.13. This Veraci program describes Furber and Day’s fully-decoupled

latch controller, and can be used to verify that the circuit shown in Figure 6.14 does

indeed conform to the six generic STG fragments which originally inspired it.

6.7 Timing Assumptions

The purpose of this section is to outline some of the ways in which Veraci-fragments can

be used to verify circuits that contain timing assumptions.

6.7.1 Fundamental-mode operation

Fundamental-mode operation [102] is an assertion about the behaviour of a circuit’s en-

vironment. This assertion guarantees that a circuit is always allowed to stabilise between

successive events on its input wires. Fundamental-mode operation simplifies asynchronous

design considerably but places timing restrictions on the environment of a circuit.

If m is a Verilog module input to Veraci, and m has input wires i1, · · · ,in, then the

fundamental-mode operation of m can be assumed by augmenting the definition of m with

the safety condition: cut always [excited => ~i1* & · · · & ~in*]

This Veraci-fragment ensures that no input wire changes value when m has internal ex-

citation. Fundamental-mode operation can be localised either by restricting excited to
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apply to only a subset of wires in m, or alternatively by removing certain input wires from

the right-hand side of the implication.

6.7.2 Gate Delay Removal

All circuits modelled by Veraci exhibit arbitrary but finite inertial delay for each un-

derlying primitive component. Arbitrary gate delay is a very conservative assumption

and practical circuits may need to violate this assumption in certain cases. For example,

the ability to assert that certain gate delays should be ignored is often required by the

synthesis tool Petrify when an inverter precedes a complex gate input [27].

The removal of gate delay in Veraci can be viewed as a form of safety constraint: if a

zero-delay gate output is ever enabled to change value then it must do so immediately.

For example, if w is the output of a gate G then the removal of delay from gate G can

be achieved by augmenting the Verilog module in which G is instanced with the Veraci-

fragment cut always [excited(w) => w*].

6.7.3 Relative Timing Assumptions

Relative timing assumptions are assertions regarding the relative delays between events.

The application of relative timing to two divergant paths in a circuit has been considered

at length by Negulescu [78] using a technique called chain-constraints. The purpose of a

chain-constraint is to enforce a timing assumption of the form ex1x2 · · ·xn < ey1y2 · · · ym

where ex1x2 · · ·xn and ey1y2 · · · ym denote two divergent sequences of events xi, yj with

a common start event e. Each such timing assumption asserts that after event e the

sequence x1x2 · · ·xn must complete before the sequence y1y2 · · · ym.

Negulescu implements chain-constraints as a process-space automaton which mimics an

n + m + 1 dimensional hypercube. This automaton has 2n+m+1 states each of which

identifies a particular level on each of the n+m+1 wires. A certain state of the hypercube

automaton is identified as a base state from which ‘tracking’ of the two divergent event

sequences xi and yj can begin. If the ym event is ever tracked before the xi sequence

completes then the hypercube automaton enters an a special error state which can then

be detected by Negulescu’s verifier, Firemaps. A chain-constraint is a conservative timing

assumption in that it identifies a specific sequence of events from a specific base state. If

the initial levels on the n + m + 1 wires are wrong or an xi, yj event ever happens out of

order then the chain-constraint ‘aborts’ tracking.
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trace(a+;b+ ~< x+;y+)

trace(a+;b+ || x+;y+)
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∧ stable(b, x, y)

a+
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∧ stable(b, y)

x+
∧ stable(a, b, y)

b+ ∧ x+
∧ stable(a, y)

b+ ∧ stable(a, x, y)

b+ ∧ y+
∧ stable(a, x)

b+ ∧ stable(a, x, y)

y+
∧ stable(a, b, x)

y+
∧ stable(a, b, x)

x+
∧ stable(a, b, y)

b+ ∧ stable(a, x, y)

Figure 6.15: Proposition-automata outlining the relationship between 6< and ‖.

The purpose of this section is to outline an alternative approach to chain-constraints that

is based on the the biased composition construct 6< , denoted ~< in Veraci. The motivation

behind biased-composition was the observation that the tracking of two concurrent event

paths equates to the parallel composition of two event paths, except that the objective

is to detect when one path completes before the other, and not when both paths have

completed.

For example, the Veraci-expressions trace(a+;b+ || x+;y+) and trace(a+;b+ ~<

x+;y+) can be compared as shown in Figure 6.15: the biased composition of a+;b+ and

x+;y+ matches any network execution where x+;y+ completes before a+;b+, denoted by

States 4 and 7. The proposition-automaton for trace(a+;b+ ~< x+;y+) contains those

states in the proposition-automaton for trace(a+;b+ || x+;y+) that are predecessors of

States 4 and 7.
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To convert the biased composition trace(a+;b+ ~< x+;y+) into a relative timing as-

sumption a common start event must be introduced from which tracking must begin. In

the context of proposition-oriented verification this start event can be any active propo-

sition, p. If pa+b+ < px+y+ is a relative timing assumption then implementation of

pa+b+ < px+y+ as a Veraci-fragment can be achieved as follows:

cut never [1];trace(p;a+;b+ ~< p;x+;y+)

which may also be written:

cut never [1];trace(p;(a+;b+ ~< x+;y+))

The use of biased composition to implement relative timing assumptions has two key

advantages over Negulescu’s chain-constraints:

• If x1 · · ·xn and y1 · · · ym are two sequences of events, then the biased composition

of xi and yi has n × m states whereas a hypercube automaton for xi and yi has

2n × 2m states. Chain-constraints require 2n × 2m states to track the levels on

every wire. These levels are needed to identify a base state from which tracking

begins. Proposition-oriented verification permits p to be augmented with level

constraints, see Section 6.3, and level identification by proposition automaton state

is therefore not needed.

• Biased composition can be applied to more complex sub-expressions than just

event sequences. In particular relative timing assumptions with a common start

event can often be combined into a single Veraci-fragment containing only one

biased composition construct.

As an example application of chain-constraints to asynchronous design Negulescu and

Peeters consider the bundled-data multiplexer circuit, bdmux, see Section 6.3, which

requires the following relative timing assumptions in order to function correctly:

a+
r x−a+

s < a+
r c+

r c+
a z−a+

a a−r c−r

a+
r x−y+b−s < a+

r c+
r c+

a z−a+
a a−r c−r

a+
r x−y+ < a+

r c+
r c+

a z−

b+
r y−b+

s < b+
r c+

r c+
a z−b+

a b−r c−r

b+
r y−x+a−s < b+

r c+
r c+

a z−b+
a b−r c−r

b+
r y−x+ < b+

r c+
r c+

a z−

In the context of proposition-oriented verification with Veraci these six fragments can

converted into six Veraci-fragments as follows:
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cut never [1];trace((ar+ & x & ~y);(x-;y+ ~< cr+;ca+;z-))

cut never [1];trace((ar+ & x & ~y);(x-;as+ ~< cr+;ca+;z-;aa+;ar-;cr-))

cut never [1];trace((ar+ & x & ~y);(x-;y+;bs- ~< cr+;ca+;z-;aa+;ar-;cr-))

cut never [1];trace((br+ & ~x & y);(y-;x+ ~< cr+;ca+;z-))

cut never [1];trace((br+ & ~x & y);(y-;bs+ ~< cr+;ca+;z-;ba+;br-;cr-))

cut never [1];trace((br+ & ~x & y);(y-;x+;as- ~< cr+;ca+;z-;ba+;br-;cr-))

Furthermore, these six Veraci-fragments can be compacted into four by combining like

sub-expressions, resulting in a completed Veraci program for bdmux as shown in Figure

6.16.

Implementation of relative timing using biased composition also has relevance with re-

spect to recent work by Cortadella [25] and Peña [82] on the application of relative timing

assumptions to state transition graphs using event structures. In particular the under-

lying state graph model for an event structure that implements the biased composition

x∗
1; x

∗
2; . . . ; x

∗
n 6< y∗1; y

∗
2; . . . ; y

∗
m also has n × m states. Biased composition is different to

an event structure since its semantics is given with respect to two arbitrary proposition-

oriented trace-expressions, whereas event structures are a representation of partial order-

ings between events. A detailed discussion of biased composition in the context of event

structures is beyond the scope of this thesis.

6.8 Clock Generator

The purpose of this section is to document an application of Veraci that is not due to

the author, and to present a demonstration of counter-example generation in Veraci. The

application chosen is that of a clock generator, clkgen, see Figure 6.17. The objective

of clkgen is to generate a synchronous clock, clk, using delay line, D, which may be

stopped and started under the control of a four-phase handshake protocol on sleep, sleep-

ing, and may be calibrated according to an external source when not in use. Decoupling

between the delay line and arbitration on sleep is achieved using a C-element to combine

an arbitrated clock-grant, gnclk, with the output of the delay line, delay nclk.

clkgen has been implemented in silicon by Taylor using a two-input and-gate to detect

sleeping according to the product sleeping = nclk∧gsleep [98]. Unfortunately, this product

is insufficient to ensure the inactivity of D, and the silicon implementation of clkgen

therefore exhibits erroneous glitching during calibration [72].
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module SI BDmux(cr, ca, ar, aa, br, ba, as, bs);

input ar, br, ca;

output cr, aa, ba, bs, as;

wire x, y, z;

assign cr = (ar | br);

assign x = ~(ar | y);

assign y = ~(br | x);

assign as = ~x;

assign bs = ~y;

assign aa = ~(x | z);

assign ba = ~(y | z);

assign z = ~ca;

<<

initial ~ar & ~br & ~ca

cut never [1];trace((ar+ & x & ~y);(x-;y+ ~< cr+;ca+;z-))

cut never [1];trace((ar+ & x & ~y);(x-;(as+||y+;bs-) ~< cr+;ca+;z-;aa+;ar-;cr-))

cut never [1];trace((br+ & ~x & y);(y-;x+ ~< cr+;ca+;z-))

cut never [1];trace((br+ & ~x & y);(y-;(bs+||x+;as-) ~< cr+;ca+;z-;ba+;br-;cr-))

protocol [ (br+;cr+;ca+;ba+;br-;(cr- & ~as’ & bs’);ca-;ba-) |.

(ar+;cr+;ca+;aa+;ar-;(cr- & ~bs’ & as’);ca-;aa-) ]

>>

endmodule

Figure 6.16: Veraci program for the bundled-data multiplexer control circuit.

A
sleep

sleeping

gsleep

gnclk

nclk

clk

D

delay nclk

C

Figure 6.17: Clock generator circuit.

113



Veraci

The correct operation of clkgen under the augmented product sleeping = nclk ∧ gsleep ∧

delay nclk has since been verified by Taylor using the Veraci program shown in Figure

6.18 [98]. This Veraci program uses three Veraci-fragments to concisely specify the desired

operation of clkgen as follows:

• protocol [sleep*; sleeping* ]

Requests on sleep alternate with acknowledgements on sleeping.

• verify always [ sleep & sleeping => ~excited(delay nclk) ]

delay nclk is inactive whenever clkgen is sleeping.

• verify always [ ~gsleep => excited(clk,nclk,delay nclk,gnclk) ]

Clock generation is active whenever clkgen is awake: If sleep is not granted then

there is always excitation somewhere in the two decoupled clock generation loops.

If the underlined “& delay nclk” is removed from Figure 6.18, then Veraci generates a

counter-example to demonstrate an erroneous execution in which sleeping+ occurs when

nclk=1 but delay nclk=0, see Figure 6.19. The execution predicted by this counter

example equates directly to the observed erroneous operation of clkgen in silicon.

Note that each line of a counter-example output by Veraci lists a set of events that occur

simultaneously under a Multiple-Winner execution model, whereas events on adjacent

lines are considered ordered in time from top to bottom.

6.9 Veraci Performance

The underlying verification engine behind Veraci implements the symbolic verification

procedure pcheck as described in Chapter 5. Veraci is also capable of applying either of

the following two BDD-based search-optimisations on demand:

• Option -r Frontier-set reduction.

• Option -q Early quantification using a partitioned transition relation.

All proposition automata constructed by Veraci are minimised prior to their symbolic

BDD encoding, and all symbolic searching performed by Veraci uses an atomic relational

product operator wherever possible. Veraci execution times for each of the example circuits

contained in this thesis are summarised in Table 6.3.
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module SI clkgen(clk, sleeping, sleep);

output sleeping, clk;

input sleep;

wire nclk, delay_nclk, gsleep, gnclk;

assign nclk = ~clk;

assign sleeping = nclk & gsleep & delay_nclk;

celem (clk, gnclk, delay_nclk);

buf D(delay_nclk, nclk);

arbiter A(gsleep, sleep, gnclk, nclk);

<<

initial ~sleep & ~clk

protocol [sleep*; sleeping* ]

// when sleeping delay line inactive

verify always [ (sleep & sleeping)’ => ~excited(delay_nclk)]

// when awake delay line active

verify always [ ~gsleep => excited(clk,nclk,delay_nclk,gnclk) ]

>>

endmodule

Figure 6.18: Veraci program for the clock generator clkgen.

(violation on line 18)

verify always [ sleep & sleeping => ~excited(delay_nclk)]

Initial State:

nclk = 1

delay_nclk = 1

sleeping = 0

clk = 0

gsleep = 0

gnclk = 0

sleep = 0

Path:

gnclk+ sleep+

clk+

nclk-

delay_nclk- gnclk-

clk-

nclk+ gsleep+

sleeping+

Figure 6.19: Example of a counter-example output from Veraci.
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Execution platform: 400MHz Sun Ultrasparc ii

Circuit Time (s)

Bundled-data multiplexer 1.37
Dual-rail AND-gate 0.05
Fully-decoupled latch controller 0.24
Clock generator 0.01
Ask-do module 1.24
A-odd module 0.25
Dual-rail full-adder 0.25

Table 6.3: Veraci verification times for example circuits in this thesis.

The verification times shown in Table 6.3 are all small, and do not give any indication of the

relative performance of Veraci with respect to other verification programs. However, since

proposition-oriented behaviours are more expressive than their level and event-oriented

counterparts it is not in general possible to apply a Veraci program to an alternative

verification program. An improved evaluation of Veraci performance can be obtained

by benchmarking Veraci execution times according to a scalable circuit, and to pick a

specification for this circuit that can be applied to alternative verification programs.

The benchmarks shown in Figure 6.20 summarise the evaluation of Veraci performance

with respect to an alternative event-oriented verification tool also based on BDDs called

Versify [86]. Each of these benchmarks relates Veraci and Versify execution times for

an asynchronous pipeline constructed from a particular type of control element. The

specification used for each benchmark was protocol [Rin*;Ain*] || [Rout*;Aout*]

where Rin,Ain denoted the pipeline input channel and Rout,Aout denoted the pipeline

output channel.

Proposition oriented verification makes both current and next-state variables explicit in

the semantics of a network proposition. The ability to reason over (current,next)-state

pairs enables proposition-oriented verification to unify levels and events, leading to no-

tations that are more flexible than conventional event-oriented notations. This increased

flexibility was expected to incur a cost in performance, yet the benchmarks in Figure 6.20

indicate a persistent eventual performance gain of Veraci over Versify.

A possible explanation for this performance gain is that Veraci adopts a Multiple-Winner

execution model, whereas Versify adopts a Single-Winner execution model: Multiple-

Winner execution models can step through several concurrent actions in one circuit model

transition. This extra functionality equates to a transition relation with more transitions,
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Figure 6.20: A comparison between Veraci to Versify.

however when encoded as a BDD, a larger transition relation need not imply a larger

BDD. In the context of Figure 6.20, a fully-decoupled latch controller pipeline has more

sequential behaviour internal to each stage than a simple C-element pipeline, however any

pipeline structure is an inherently concurrent system. Under the proposed explanation,

both types of pipeline therefore benefit from a Multiple-Winner execution model, however

the C-element pipeline will benefit the most first.

An extension from Single to Multiple-Winner execution models relates directly to an

extension from events to propositions in that both extensions abandon the notion of

symbol exclusivity: two different network propositions can be matched simultaneously,

and two events can happen simultaneously under a Multiple-Winner execution model. To

construct a representation of the conventional trace-expression a ‖ b under a Multiple-
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Figure 6.21: Trace-expressions and a Multiple-Winner execution model.

Winner execution model, the possibility of both a and b happening simultaneously must be

accounted for, see Figure 6.21(a,b). This accountability necessitates the introduction of an

explicit mechanism, such as proposition-oriented behaviours, to denote their simultaneous

occurrence, see Figure 6.21(c). Proposition-oriented behaviours are significant in this

context since they are the first such mechanism to be defined for trace-expressions.

6.10 Summary

The purpose of this chapter was to introduce Veraci, a proposition-oriented verification

program, and to use Veraci to demonstrate the benefits of proposition-oriented behaviours

over their level and event-oriented counterparts. These benefits included level-event unifi-

cation, event abstraction, and relative timing assumptions using biased composition. An

example application of Veraci that is not due to the author was also presented and used

to facilitate the demonstration of counter-example generation in Veraci. The performance

of Veraci was also evaluated, and an initial comparision made to a competing verification

program called Versify.
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Chapter 7

Asynchronous Montgomery

Exponentiation

7.1 Introduction

Montgomery exponentiation is an efficient method for computing exponentiations in mod-

ular arithmetic [63]. These exponentiations embody the core operation responsible for

encrypting and decrypting messages in RSA public-key cryptography [91]. Asynchronous

circuits that use some form of delay-insensitive data-encoding scheme have a number of

potential benefits over synchronous designs when subjected to power analysis attacks [71]

and are therefore of considerable interest to the manufactures of cryptographic devices

such as smartcards. Unfortunately, there have as yet been no published implementa-

tions of Montgomery exponentiation using asynchronous logic that take steps towards

demonstrating these benefits. The Montgomery exponentiator presented in this chapter

is intended to fulfil two aims:

• To demonstrate an implementation of Montgomery exponentiation using delay

insensitive dual-rail asynchronous logic.

• To investigate the application of Veraci to a real design project.

In the sections that follow, Section 7.2 describes some preliminary mathematics for the

chapter. Section 7.3 explains the application of Montgomery multiplication and expo-

nentiation to RSA cryptography, and Section 7.4 explains the suitability of Montgomery

multiplication to implementations in hardware. Section 7.5 extends this demonstration

to describe asynchronous Montgomery exponentiation in hardware, and documents the

design and implementation of a dual-rail asynchronous Modular exponentiator, mod exp,

in a 0.18µm standard-cell process. Section 7.6 concludes the chapter by highlighting the

application of Veraci to the design of mod exp.
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7.2 Mathematical Preliminary

7.2.1 Modular Arithmetic

For every integer a > 0 define Za
def
= {0, . . . , |a| − 1} to denote the set of residues modulo

a. If a and b are integers then define (b div a) and (b mod a) to be the unique integers

such that a = (b div a)a + (b mod a) and (b mod a)∈ Za. If (b mod a) = 0 then a is said

to divide b, written a|b.

Greatest Common Divisor. If a, b, and c are integers such that a|b and a|c then a is

a common factor of b and c. Let gcd(b, c) denote the greatest common factor of b and c.

For every pair of integers a and b, gcd(a, b) = s0a + t0b for two other integer constants s0

and t0: let V = {v | v = sa + tb for some integers s, t}. Let h = s0a + t0b be the smallest

element in V which is greater than zero and let a = qh + p for some p ∈ Zh. If a = qh + p

then p = a − qh = (1 − qs0)a + (0 − qt0)b and hence p ∈ V . If p ∈ V and p ∈ Zh then

p = 0 since h is the smallest element in V which is greater than zero. If p = 0 then a = qh

and therefore h|a. By a similar argument h|b. Furthermore, since h = s0a + t0b any other

value which divides both a and b must also divide h. Hence h = s0a + t0b = gcd(a, b) is

the greatest value such that h|a and h|b.

Co-Prime. If b and c are integers and gcd(b, c) = 1 then b and c are said to be co-

prime. If a is co-prime to c and b is co-prime to c then ab is co-prime to c. Define

Uc
def
= {b ∈ Zc | gcd(b, c) = 1} to denote the set of units modulo c and define φ(c)

def
= |Uc|

to denote the number of units modulo c. If c is prime then φ(c) = c − 1.

Multiplicative Inverse. If a and b are co-prime then gcd(a, b) = 1 and therefore 1 =

sa + tb for two integer constants s and t. If 1 = sa + tb then sa ≡ 1 (mod b) and tb ≡ 1

(mod a). If sa ≡ 1 (mod b) then s is said to be a multiplicative inverse of a modulo b. If

the modulus b is unambiguous then a−1 can be used to denote the multiplicative inverse

of a modulo b.

Congruence. If a, b and n are integers then define a ≡ b (mod n) if and only if (a mod n)

= (b mod n). If a ≡ b (mod n) then a is said to be congruent to b modulo n.

Euler’s Theorem. If a is co-prime to n then aφ(n) ≡ 1 (mod n): for every u ∈ Un, au

is co-prime to n since both a and u are co-prime to n. If {u1, u2} ⊆ Un and au1 ≡ au2

(mod n) then n|a(u1−u2) and therefore n|(u1−u2) since n and a are co-prime. However,

n|(u1 − u2) is impossible since 0 < u1 < n and 0 < u2 < n, and therefore any {u1, u2} ⊆
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Un must have au1 6≡ au2 (mod n). Consequently, {(au mod n) | u ∈ Un} = Un and
∏

u∈Un
(au) ≡ aφ(n)

∏

u∈Ua
(u) ≡

∏

u∈Ua
(u) (mod n). Furthermore, since each u ∈ Ua is

co-prime to n,
∏

u∈Ua
(u) must also be co-prime to n and therefore aφ(n) ≡ 1 (mod n).

Chinese Remainder Theorem. If m and n are co-prime then for any pair of integers

a, b there exists a unique x modulo mn such that x ≡ a (mod m) and x ≡ b (mod n): since

gcd(m, n) = 1 there must exist unique integers s, t such that sm + tn = 1. If sm + tn = 1

then tn ≡ 1 (mod m) and sm ≡ 1 (mod n). Let x = bsm + atn. Since x ≡ ant (mod m)

and tn ≡ 1 (mod m) have x ≡ a (mod m). A similar argument applies for x ≡ b (mod n).

x is unique modulo mn since any other x′ such that x′ ≡ a (mod m) and x′ ≡ b (mod n)

must have x− x′ ≡ 0 (mod m) and x− x′ ≡ 0 (mod n). Hence x− x′ ≡ 0 (mod mn) and

x and x′ are indistinguishable modulo mn.

φ is multiplicative If m and n are co-prime integers then φ(mn) = φ(m)φ(n): for

each (a, b) ∈ Um × Un there exists a unique x such that x ≡ a (mod m) and x ≡ b (mod

n). Since a is co-prime to m and b is co-prime to n, x must be co-prime to both m and

n. Hence x is co-prime to mn. Furthermore, x is unique modulo mn and no other pair

(a′, b′) ∈ Um × Un − {(a, b)} can identify the same x. Consequently, Um × Un and Umn

are in one-to-one correspondence and |Um| · |Un| = |Umn| as required.

Further information on modular arithmetic and primality can be found in Giblin [41].

7.2.2 RSA Public-Key Cryptography

Let N = pq be the product of two prime numbers p and q. Pick an integer d ∈ Uφ(N)

and let e ∈ Zφ(N) denote the multiplicative inverse of d modulo φ(N). Since ed ≡ 1 (mod

φ(N)) there must exist an integer constant k such that ed = kφ(N) + 1.

Let 0 ≤ M < N represent a message. To encode M compute E(M)
def
= M e mod N .

To decode M compute D(M)
def
= Md mod N . D(E(M)) = M can be shown as follows:

D(E(M)) ≡ M ed ≡ Mkφ(N)+1 ≡ (Mφ(N))kM ≡ (Mφ(p)φ(q))kM . If p does not divide M

then since p is prime gcd(p, M) = 1 and Mφ(p) ≡ 1 (mod p). Consequently, (Mφ(N))kM ≡

M (mod p). Conversely, if p divides M then (Mφ(N))kM ≡ M ≡ 0 (mod p) is trivially

true, and therefore (Mφ(N))kM ≡ M (mod p) holds for all M . A similar argument applies

for (Mφ(N))kM ≡ M (mod q). If (Mφ(N))kM ≡ M (mod p) and (Mφ(N))kM ≡ M (mod

q) then by the Chinese Remainder Theorem, E(D(M)) ≡ M ed ≡ (Mφ(N))kM ≡ M (mod

pq) as required.
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The pairs (e, N) and (d, N) denote public and private keys respectively. Decoding and

encoding are symmetric and E(D(M)) can therefore be used instead of D(E(M)) as a

means of digitally signing a message. RSA public-key cryptography is due to Rivest,

Shamir and Adleman [91].

7.2.3 Fixed Precision Integers

Let X = 〈xn . . . x0〉b denote an n + 1 digit integer in base b. Require that each xi ∈

{0 . . . b− 1} and that X = bnxn + bn−1xn−1 + · · ·+ bx1 + x0. If X = 〈xn . . . x0〉b then the

base of X is b and the precision of X is n + 1.

7.3 Montgomery Exponentiation

The underlying operation performed by the RSA encoding and decoding functions com-

putes the remainder (ME mod N) when ME is divided by N for a particular M and

E. Computation of (ME mod N) is referred to as modular exponentiation and may be

efficiently computed as a sequence of at most 2 log2(E) modular multiplications, see pro-

cedure bin mod exp in Algorithm 7.1. Procedure bin mod exp is referred to as binary

modular exponentiation and belongs to the repeated square-and-multiply category of gen-

eral purpose exponentiation algorithms [63]. Binary exponentiation can be shown to be

correct by observing that if E = 〈en−1 . . . e0〉2 then e = e0+2(e1+2(e2+· · ·+2(en−1) · · · )).

function bin mod exp (N : N, M : ZN , E : N) : ZN

let E = 〈et . . . e0〉2
A := 1
for i := t down to 0 step 1 do

5: A := (A · A mod N)
6: if ei = 1 then A := (A · M mod N) end if

end for

return A

end function

Algorithm 7.1: Binary modular exponentiation.

7.3.1 Montgomery Multiplication

The efficiency of procedure bin mod exp is dependent on the efficiency with which the

modular multiplications in Lines 5 and 6 are performed. Montgomery multiplication [70]
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is an algorithm for efficient computation of modular products in which no explicit division

of the result by the modulus N is required.

To perform a Montgomery multiplication one must first pick an R > N such that

gcd(R, N) = 1. For any X ∈ ZN and Y ∈ ZN Montgomery multiplication computes

the product (XY R−1 mod N) where R−1 ∈ ZN denotes the multiplicative inverse of R

modulo N . Montgomery multiplication does not avoid trial division altogether it merely

translates the divisor from N to R at the cost of augmenting the product with the factor

R−1. Montgomery multiplication is useful since if R is a power of two then division by

R is trivial when X, Y, N are represented in binary. Furthermore, in the context of RSA

cryptography, R = 2k is always possible for a large enough k since N is always odd and

therefore gcd(2k, N) = 1 is necessarily true.

function mmult (b : N, N : N, X : ZN , Y : ZN ) : ZN

assert gcd(b, N) = 1
let N = 〈Nn−1 . . . N0〉b and X = 〈xn−1 . . . x0〉b and Y = 〈yn−1 . . . y0〉b
A = 〈an . . . a0〉b := 0
for i := 0 up to n − 1 step 1 do

Q := ((a0 + xiy0)(b − N0)
−1 mod b)

A := (A + xiY + QN)/b
8: end for

if A ≥ N then A := A − N end if.
return A

end function

Algorithm 7.2: Montgomery Multiplication.

Procedure mmult(b, N, X, Y ) in Algorithm 7.2 outlines the Montgomery multiplication

of two n-digit numbers X and Y modulo N in base b. mmult can be shown to return

A = (XY R−1 mod N) where R = bn and where gcd(R, N) = gcd(b, N) = 1 as follows:

Each successive computation A := (A+xiy+QN)/b is exact: Q ≡ (a0+xiy0)(b−N0)
−1 ≡

(A+xiY )(−N)−1 (mod b) since only the least significant digits of A, Y , and N contribute

to the value of (A + xiY )(−N)−1 modulo b. If Q ≡ (A + xiY )(−N)−1 (mod b) then

QN ≡ −(A + xiY ) (mod b) and therefore A + xiy + QN ≡ 0 (mod b).

The value of A is bounded by N + Y < 2N and can therefore be stored with precision

n + 1: let Ai denote the ith value of A. If Ai < N + Y then from Line 8, Ai+1 <

(Ai +(b− 1)Y +(b− 1)N)/b < ((N +Y )+ (b− 1)(Y +N))/b < b(Y +N)/b < N +Y ,
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Figure 7.1: Conventional paper-based long multiplication.

and since A0 = 0, by induction A < N +Y . Furthermore, if biAi ≡ Y 〈xi−1 . . . x0〉b (mod

N) then:

bAi+1 ≡ Ai + xiY (mod N) [ Line 8 ]

bibAi+1 ≡ biAi + bixiY (mod N)

bi+1Ai+1 ≡ Y 〈xi−1 . . . x0〉b + bixiY (mod N) [ Inductive hypothesis ]

≡ Y 〈xi . . . x0〉b (mod N)

and therefore by induction biAi ≡ Y 〈xi−1 . . . x0〉b (mod N). Consequently,

bnAn ≡ Y 〈xn−1 . . . x0〉b (mod N)

RAn ≡ XY (mod N) [ R = bn ]

R−1RAn ≡ R−1XY (mod N)

An ≡ XY R−1 (mod N) [ RR−1 ≡ 1 (mod N) ]

and since A < 2N at most one subtraction is necessary, see Line 10, to ensure that

A = (XY R−1 mod N) as required.

In conventional paper-based long multiplication, the product X × Y is computed as a

sequence of additions of increasing significance, see Figure 7.1(a). Each row of a long

multiplication table for two n-digit numbers X and Y identifies a multiple xiY of the

multiplicand Y , computed using a single digit xi of the multiplier X, see Figure 7.1(b).

Montgomery multiplication can be likened to a form of long multiplication where a special

multiple of N is added at each row. The particular multiples of N that are chosen

result in a product where the most significant n + 1 digits denote (XY R−1 mod N) or

(XY R−1 mod N)+N and where the least significant n digits are all zero, see Figure 7.2.
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Figure 7.2: Visualisation of Montgomery multiplication.

7.3.2 Binary Montgomery Exponentiation

The factor R−1 cannot be removed from a Montgomery product using Montgomery

multiplication alone, and Montgomery multiplication is therefore of no benefit when

applied to a single modular multiplication. However, if Z = XY then the identity

(XR)(Y R)R−1 ≡ (XY )R ≡ ZR (mod N) implies that Montgomery multiplication is

well-defined over the integers {iR | i ∈ ZN}, referred to as Montgomery residues. Fur-

thermore since R and N are co-prime, if i 6= j then iR 6≡ jR (mod N), and hence

{iR | i ∈ ZN} = ZN . Montgomery multiplication can therefore be equated to conven-

tional modular multiplication except in a world where the integers modulo N are ordered

0, (1R mod N), (2R mod N), . . . , ((N − 1)R mod N) rather than 0, 1, 2, . . . , N − 1.

If a long sequence of modular multiplications is to be performed then the time required

to convert between conventional residues and Montgomery residues becomes insignificant

when compared to the time saved by permitting Montgomery multiplications to be per-

formed. Binary Montgomery exponentiation is a form of binary modular exponentiation

in which Montgomery multiplications are employed, see procedure mexp in Algorithm

7.3. Procedure mexp differs from procedure bin mod exp in that the initial value of

A is set to the Montgomery residue for 1, (R mod N), and each multiplication by M is

performed as a multiplication by the Montgomery residue for M , MR = (MR mod N).

The extra multiplication in Line 12, is used to convert the final value of A back from the

Montgomery residue (MER mod N) into the conventional residue (ME mod N).
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function mexp (N : N, M : ZN , E : N) : ZN

assert N is odd
let N = 〈Nn . . . N0〉2 and M = 〈mn . . .m0〉2
let E = 〈et . . . e0〉2
let R = 2n+1

MR := (MR mod N) [ compute by conventional means ]
A := (R mod N)
for i := t down to 0 step 1 do

A := mmult(2, N , A, A)
if ei = 1 then A := mmult(2, N , A, MR) end if

end for

12: A := mmult(2, N , A, 1)
return A

end function

Algorithm 7.3: Binary Montgomery exponentiation.

7.4 Montgomery Multiplication in Hardware

Montgomery multiplication is ideally suited to digital methods since if the base b = 2 then

division by b equates merely to a bit-shift of 1, see procedure hw mmult in Algorithm 7.4

[37]. If b = 2 then to ensure that every division by 2 is exact, hw mmult must guarantee

that each Ai is even before dividing by 2 in Line 8. Since any N with gcd(N, 2) = 1 must

be odd, an odd A can always be made even by computing A := A + N without changing

the value of A modulo N , see Line 7.

Procedure hw mmult can be implemented in hardware as an array of single-bit full-

adders, see Figure 7.4. The physical structure of this array equates directly to the vi-

sualisation depicted in Figure 7.2: each row consists of up to two additions, one for the

product xiY and the other for the modulus N . Each of these two additions is constructed

from n full-adders, see Figure 7.3, and carry rippling is computed concurrently with row

traversal by passing each cout both down and to the right. An extra full-adder, see the

shaded boxes in Figure 7.4, is required for each N addition since intermediate values of A

are bounded by 2N not N .

Figure 7.4 can be related to conventional carry-sum hardware multiplication [113] but

where there are 2n rows rather than n: each horizontal cross-section identifies a set of

carry-sum pairs to be passed to the next row, and an explicit carry ripple is only required

during the final additions in the last row of the array.
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function hw mmult (N : N, X : ZN , Y : ZN ) : ZN

assert N is odd
let N = 〈Nn−1 . . . N0〉2 and X = 〈xn−1 . . . x0〉2 and Y = 〈yn−1 . . . y0〉2
A = 〈an . . . a0〉2 := 0
for i := 0 up to n − 1 step 1 do

if xi = 1 then A := A + Y end if

7: if a0 = 1 then A := A + N end if

8: A := 〈0an . . . a1〉2 [ Note that a0 = 0 ]
end for

if A ≥ N then A := A − N end if.
return A

end function

Algorithm 7.4: Montgomery Multiplication in Hardware.
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Figure 7.3: Full-adder cell description.
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Figure 7.4: Carry-Sum Montgomery multiplication.
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Figure 7.5: Systolic Montgomery multiplication window traversal.

7.4.1 Window-Based Traversal

If the precision, n, becomes too large then the area cost of implementing a complete n×n

carry-sum can become unacceptable. Computation of (XY R−1 mod N) using a smaller,

k × k array can be achieved by performing a systematic traversal of the complete n × n

array using a k × k window, see Figure 7.5. Traversal begins with the least significant

bits of both X and Y and computes n/k iterations of the for loop in hw mmult for

each complete traversal of a row in the n × n array. With each movement of the window

position across a row, k new bits of the current value, Ai, of A are introduced and k

new bits of the next value, Ai+k, of A are computed. The k + 1 most-significant bits

are computed as k carry-sum pairs which are subsequently fed back into the top of the

next window position as the initial carry-sum value for Ai, see Figure 7.6. This feedback

is necessary since each window position computes half of the additions required for 2k

bits of Ai+k and not all of the additions required by k bits of Ai+k. No carry rippling is

required until the last row of the last window position since the carry-sum feedback path

incorporates any carry ripple between one window position and the next.

7.5 Montgomery Exponentiation in Hardware

The purpose of this section is to describe mod exp an implementation of the binary

Montgomery exponentiation procedure mexp in which each Montgomery multiplication

is computed using a delay insensitive asynchronous dual-rail datapath with with data-

independent power-consumption. mod exp can perform either 1024 or 2048 bit modular

exponentiations, and uses a 32 × 32 bit window-based traversal method for each Mont-

gomery multiplication.
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Figure 7.6: Systolic Montgomery multiplication window stepping.

mod exp has been fabricated as a 1.4 × 1.3mm block on a 0.18µm CMOS standard-cell

process, and uses conventional single-port memories for its main register banks. Post-

production tests indicate that mod exp is fully functional, taking 0.15 seconds to per-

form a 1024 bit modular exponentiation and 1.1 seconds to perform a 2048 bit modular

exponentiation. mod exp is integrated into a larger test chip containing a number of

asynchronous XAP microcontrollers [17], each of which can control mod exp through a

synchronous memory-mapped IO interface.

7.5.1 Datapath Handshake Protocols

The use of a return-to-zero protocol in a delay-insensitive encoding scheme significantly

reduces the area and complexity of individual logic elements, however it requires that

computation consist of two phases: an assert phase in which data values are computed and

a clear phase in which previous data values are removed. In the context of window-based

traversal a return-to-zero protocol doubles the cycle-time of each window position. This

doubling can be avoided by pipelining the carry-sum array into two stages so that asserting

and clearing happen concurrently and in alternation as shown in Figure 7.7. Since the area

overhead of a single pipeline stage is substantially less than the area overhead of using a

non-return-to-zero protocol, the carry-sum array in mod exp was therefore implemented

in this way.

7.5.2 MOD EXP Architecture

An overview of mod exp operation is outlined in Algorithm 7.5, and a summary of

its top-level architecture shown in Figure 7.8. mod exp contains four data registers
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Figure 7.7: Pipelined Montgomery multiplication.

N , (R2 mod N), MR, E and two work registers P , Q used to store both intermediate

values and the final result. A global flag long selects either 1024 or 2048 bit opera-

tion, and a global flag inP is used to determine which work register the result of each

Montgomery multiplication lies in. mod exp makes use of a special value, (R2 mod N),

which must be externally provided, to compute (MR mod N) as the Montgomery prod-

uct (M)(R2 mod N)(R−1) ≡ MR (mod N). The external computation of (R2 mod N)

is preferable to the external computation of (MR mod N) since (R2 mod N) is constant

for any given N and therefore need only be computed once for multiple exponentiations

with the same modulus.

The correct operation of mod exp requires two work registers rather than one in order to

ensure that the work register used by MMULT is never the same as either the multiplier

X or the multiplicand Y . The if statements in Lines 13, 16, and 20 are used to set two

pointers A and B such that A always points to the conflict-free work register. The initial

value 〈1N [n − 1] . . . N [1]1〉2 assigned to P in Line 10 can be shown to equal (R mod N)

by observing that 〈0N [n − 1] . . . N [1]1〉2+〈0N [n − 1] . . . N [1]1〉2 = 2n = R, and that since

N is odd, N [0] = 1 is always true. The same value 〈1N [n − 1] . . . N [1]1〉2 is used a second

time in Line 31 to identify the value −N as the two’s-complement of N . If the addition

of A and 〈N [n − 1] . . . N [1]1〉2 results in a carry overflow, c = 1, then A − N is positive

and (XY R−1 mod N) lies in B. If B − N is negative then (XY R−1 mod N) lies in A
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function mod exp

register long, inP : bit

register N , (R2 mod N), (MR mod N), E : bit [2048]
register P , Q : bit [2049]

assert M value is loaded into register P
if long then n := 2048 else n := 1024 end if

inP := 1
MMULT((R2 mod N), P )

9: if inP then (MR mod N) := P else (MR mod N) := Q end if

10: P := 〈0N [n − 1] . . . N [1]1〉2
inP := 1
for i := 2047 down to 2048 − n step 1 do

13: if inP then let B = P , A = Q else let B = Q, A = P end if

MMULT(B, B)
if E[i] then

16: if inP then let B = P , A = Q else let B = Q, A = P end if

MMULT(B, (MR mod N))
end if

end for

20: if inP then let B = P , A = Q else let B = Q, A = P end if

MMULT(B, 1)

if inP = 1 then the (ME mod N) is in P otherwise it is in Q
sub function MMULT (X, Y )

assert A does not point to X or Y
A := 0
for j := 0 up to n − 1 step 1 do

if X[j] then A := A + Y end if

if A[0] then A := A + N end if

A := 〈0A[n] . . . A[1]〉2
end for

31: 〈cB[n] . . . B[0]〉2 := A + 〈1N [n − 1] . . . N [1]1〉2
if ¬c then inP := ¬inP end if

end sub function

end function

Algorithm 7.5: Functional operation of mod exp.
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Figure 7.8: mod exp top-level architecture.

and inP must be flipped so that it points to the correct result register.

With each new window position, 32 new bits of Ai must be obtained from memory as Ahigh

and 32 completed bits of Ai+32 must be written back out to memory from Asave high-

Asave low. Furthermore, 32 new bits of both Y and N must be read from memory. New

X bits need only be loaded each time the array is moved into the start position for a new

row. The particular distribution of registers across the three memories MEM00, MEM01,

and MEM10, ensures that no Montgomery multiplication views more than one of A, X,

or Y as living in the same memory. This assurance permits the four required memory

accesses per window position to be paired into two conflict-free single-port access cycles

as follows:

1. (Read from register A, Read from register N)

2. (Write to register A, Read from register Y )

Each of these access cycles is linked respectively to the assert-clear cycle a pipeline stage in
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the carry-sum array. This mode of operation is safe provided, as in the case of mod exp,

the cycle-time for each pipeline stage is large with respect to the minimum memory cycle

time. A similar linking is also applied to the counters used for indexing column, row,

and exponent bit positions. This linking is safe provided, as in the case of mod exp, the

complete array cycle time is large with respect to the minimum counter cycle-times.

mod exp is controlled through a synchronous external interface which permits all of its

registers and flags to be directly read and written. A special pair of flags, go exp and

done exp, are used to activate and detect completion of mod exp according to a four-

phase handshake protocol. go exp and done exp are not shown in Algorithm 7.5. An

outline of the final place-and-routed mod exp design is shown in Figure 7.9.

7.5.3 Other Architectures

Research into methods of Montgomery exponentiation is active both in industry and

academia, and a comprehensive treatment of Montgomery exponentiation is beyond the

scope of this thesis. The window-based traversal method described here was chosen for

its simplicity, and for the ease with which it could be applied to a scalable asynchronous

implementation. Window-based traversal methods can also be applied to windows of size

k× l where k 6= l, however if k = l then all word sizes are constant and accesses to register

memories for Y and N are minimised.

If communication between every array position in a Montgomery carry-sum array is

pipelined, then a systolic implementation of is achieved [109]. Systolic Montgomery mul-

tipliers can process up to 2n multiplications simultaneously at throughputs bounded only

by the cycle time of a single full-adder: the longest pipeline path is between the top

right-hand and bottom left-hand corner of the matrix, and a new result may be produced

by every full-adder every cycle. Systolic Montgomery multiplication generalises to any

base, and when the height of the array is one, reduces to a conventional linear pipeline

structure that is both compact and efficient [110]. Recent publications [44, 108] have also

demonstrated that the speculative subtraction of N at the end of each Montgomery mul-

tiplication can be avoided by adding one bit to the size of each work register and iterating

over n + 1 steps rather than n.

7.5.4 MOD EXP Performance and Resistance to attack

mod exp is not a high-performance architecture, and is slow when compared to commer-

cial full-custom cryptographic accelerators designed for use in e-commerce applications.
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Figure 7.9: Taped-out mod exp design.
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For example, the pccc-ises from Securealink [88] takes 0.003s per 1024 bit modular ex-

ponentiation, and the Intel Itanium is predicted to advance this to 0.001s [47]. However,

when compared to other embedded public-key encoder-decoders for use in smartcards and

smartcard readers the performance of mod exp is competitive: The pcc810 smartcard

reader from Securealink [89] has identical performance to mod exp, and the PrivateCard

smartcard from Algorithmic Research [2] takes 0.6s per 1024 bit modular exponentiation.

Furthermore, in the context of resistance to attack, mod exp has two potential benefits

over competing synchronous implementations:

Data-independent power consumption [52]

The dual-rail datapath in mod exp consumes identical power to compute both a logic one

and a logic zero. Furthermore the speculative subtraction at the end of each Montgomery

multiplication is always computed, making mod exp power consumption identical across

multiplications.

Data-independent timing [51]

The execution time of mod exp depends only on the number of ones in the exponent.

Since the execution time of individual Montgomery multiplications is data-independent

and since speculative subtractions are always performed [111], the location of these ones

cannot be determined using timing attacks alone.

7.6 Application of Veraci to MOD EXP

The purpose of this section is to demonstrate how Veraci was used to facilitate the design

of mod exp. This demonstration consists of three example Veraci programs, each of which

was used to verify a particular building block from inside of mod exp. mod exp serves

as an interesting case study for Veraci because it contains a mixture of both bundled-data

and delay-insensitive communication protocols. Furthermore, some of the building blocks

in mod exp also employ relative timing assumptions or fundamental-mode environmental

constraints.

7.6.1 Symmetric Dual-Rail Addition

A key motivation behind the use of a delay-insensitive data encoding scheme in mod exp

is the ability achieve a data-independent power signature [52]. This ability stems from

the design of delay-insensitive gates that are symmetric. A symmetric delay-insensitive
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Figure 7.10: Symmetric dual-rail adder circuit.

gate is a gate that consumes the same amount of power to compute output values for all

possible input value combinations.

The power consumed by mod exp is dominated by the array of 32 × 64 dual-rail full-

adders used to compute a Montgomery product. The design of dual-rail full-adders are

considered at length by Martin [61], however his designs assume a full-custom design flow

and are not symmetric. The dual-rail full-adder design presented here was motivated by

a desire to achieve symmetric power consumption using gates available in a conventional

standard-cell library.

A dual-rail full-adder is a combinational function with three dual-rail inputs a, b, c and two

dual-rail outputs sum, carry such that carry
def
= (a∧b)∨ (c∧ (a∨b)) and sum

def
= a⊕b⊕c.

A symmetric delay-insensitive dual-rail full-adder can be constructed directly from a sum-

of-products expansion for sum and carry as shown in Figure 7.10.

Although simple, the circuit in Figure 7.10 is both large and slow, particularly if the avail-

able standard-cell library cannot offer a compact implementation of a 3-input C-element.

In the context of mod exp, the circuit in Figure 7.10 can be significantly improved by
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Figure 7.11: Optimised symmetric dual-rail adder circuit.

asserting that the data-clear cycle-time is sufficiently long for the C-elements to be re-

placed with NAND gates as shown in Figure 7.11. This assertion is comfortably realised

by mod exp since the entire carry-sum array is pipelined into only two stages.

The circuit in Figure 7.11 differs from the circuit shown in Figure 7.10 in that the dual-rail

protocol on its outputs is inverted with respect to the dual-rail protocol on its inputs. The

use of NAND gates as opposed to C-elements also requires that extra circuitry be included

to ensure that each output does not clear before all the inputs have cleared. This extra

circuitry equates to the use of half-latches on each output wire, and the use of a special

data signal that clears these half-latches once all the inputs have cleared.

A Veraci program for the optimised dual-rail full-adder circuit is outlined in Figure 7.11.

This Veraci program can be used to verify that the optimised full-adder only asserts

and clears data-values on its outputs according to Seitz’s rules, see Section 6.4. The

Veraci-fragment cut always [ IN DATA- => data ] is used to enforce the assumption

that data-clear cycle-times exceed the time taken for data to be set: at the instant in time

when the last of the three dual-rail inputs clears, data must be at level 1.

The circuit in Figure 7.11 has a mirror implementation in which a NOR-NOR expansion
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module SI DRadd(s, carry, a, b, cin);

output [1:0] s, carry;

input [1:0] a, b, c;

...

<<

initial ~(a[0] | a[1] | b[1] | b[1] | c[1] | c[1])

let A = dr_event(a[0],a[1])

let B = dr_event(b[0],b[1])

let C = dr_event(c[0],c[1])

let CARRY = dr_event(carry[0],carry[1])

let SUM = dr_event(sum[0],sum[1])

protocol [ (A || B || C) ; (CARRY || SUM) ]

// large cycle-time assumption

let IN_DATA = dr_data(a[0],a[1]) & dr_data(b[0],b[1]) & dr_data(c[0],c[1])

cut always [ IN_DATA- => data ]

>>

endmodule

Figure 7.12: Veraci program for the symmetric dual-rail adder circuit.

is used rather than a NAND-NAND expansion. This mirror implementation takes an

inverted dual-rail protocol on its inputs and generates outputs that conform to a non-

inverted dual-rail protocol. The carry-sum array in mod exp therefore alternates between

NOR-NOR and NAND-NAND implementations from one row to the next in order to avoid

converting between inverted and non-inverted protocols.

7.6.2 A-odd Detection

Each row of the 32× 32 bit carry-sum array in mod exp consists of up to two additions,

one for the product xiY and the other for the modulus N . Each addition of N is dependent

on the least significant bit, a0, of the running sum A, see Algorithm 7.4: if a0 = 1 then A

is odd and N must be added to A. Each time a new value for a0 is computed this value is

required by every full-adder in a complete 1024× 1024 or 2048× 2048 bit carry-sum row,

see Figure 7.4. Since mod exp traverses the complete carry-sum array using a 32×32 bit

window, the value for a0 must also be latched until traversal of an entire carry-sum row

has completed.

In mod exp, the delivery of a0 across each row of the 32 × 32 bit array is implemented

using a bundled data protocol controlled by the circuit Aodd, see Figure 7.14. The

purpose of Aodd is to take the dual-rail value a0, denoting a0, and to compute a pair of
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module DI Aodd(data, ready, odd, a0, clear);

output data, ready, odd;

input [1:0] a0;

input clear;

...

<<

initial ~clear & ~a0[0] & ~a0[1]

// desired value for odd when ready = 1

let valid = a0[0] & ~odd | a0[1] & odd

protocol [ dr_plus(a0[0],a0[1]);(ready+ & valid);dr_minus(a0[0],a0[1]);

[ dr_plus(a0[0],a0[1]);dr_minus(a0[0],a0[1]) ];

clear+;ready-;clear- ]

// fundamental-mode operation

cut always [excited => ~a0[0]* & ~a0[1]* & ~clear*]

>>

endmodule

Figure 7.13: Veraci program for the A-odd generation circuit.
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Figure 7.14: A-odd generation circuit.
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Figure 7.15: Ask-do control circuit.

values, (ready,odd) such that if ready = 1 then odd = a0. Each time ready is set, the value

of odd will not change until Aodd is cleared by asserting the signal clear. Once cleared,

Aodd waits for the first new data value on a0 and then re-assigns the desired new value

to odd .

If mod exp computes a 1024 bit modular exponentiation then there are 32 window po-

sitions per 1024 × 1024 bit carry-sum row. If mod exp computes a 2048 bit modular

exponentiation then there are 64 window positions per carry-sum row. Consequently, the

value of odd is only re-assigned once every 32 or 64 systolic window positions and the per-

formance of Aodd is therefore not critical. The Aodd implementation shown in Figure

7.14 assumes a fundamental-mode of operation, and can be verified by the Veraci program

outlined in Figure 7.13.

7.6.3 Ask-Do Control

The mixture of bundled-data and dual-rail protocols used by mod exp extends to the

top-level control logic where a number of global flags are used to control sequencing and

repetition. The ask-do circuit shown in Figure 7.15 is an example of a custom designed

handshake module that was used extensively in mod exp.

The purpose of an ask-do circuit is to perform one of two different four-phase handshakes

depending on the result of a special query handshake, controlled by ask. A Veraci program
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for the ask-do circuit is outlined in Figure 7.16. Correctness of the ask-do circuit is based

on the assumption that the time between done+ and done- is sufficient for whichever latch

was set to clear. This assumption can be expressed as two relative timing assumptions,

one for the case where ask+ has been acknowledged by yes+, setting yq; and one for the

case where ask+ has been acknowledged by a no+, setting nq:

cut never [1];trace(done+;(yq-;Lyes.q_bar- ~< done-))

cut never [1];trace(done+;(nq-;Lno.q_bar- ~< done-))

These two timing assumptions are structurally identical and differ only in their attention

to either latch Lyes or latch Lno. Since the protocol specification for an ask-do circuit

asserts that events yes+, no+ be mutually exclusive, events yq-, nq- and Lyes.q bar-,

Lno.q bar- must also be mutually exclusive. These two timing assumptions can therefore

be conveniently combined into the single veraci-fragment:

cut never [1];trace(done+;((yq ^ nq)-;(Lyes.q_bar ^ Lno.q_bar)- ~< done-))

Realisation of this timing assumption in the context of mod exp was not difficult since

the time between done+ and done- included two external paths, and therefore at least

four gate delays. Conversely, the time between done+ and the reset of either Lyes or Lno

included only a local path of two gate delays.

7.7 Summary

The purpose of this chapter was to document implementation of the asynchronous dual-rail

Montgomery Exponentiator mod exp in a 0.18µm standard-cell process, and to highlight

the application of Veraci to its design. The objective of mod exp was to demonstrate the

application of asynchronous design to Montgomery exponentiation, and in particular to

take steps towards achieving data-independent power and timing from a delay insensitive

dual-rail datapath. mod exp was also shown to be useful as a non-trivial case study for

Veraci due to its internal mix of data-encoding schemes and relative timing assumptions.

7.7.1 Practical Experiences with Veraci

Short verification times and a Verilog-based input-file format make Veraci ideally suited to

use as an interactive design tool: A circuit that is considered to be incorrect by Veraci can

be corrected either by admitting to certain timing assumptions or by inserting additional

141



Asynchronous Montgomery Exponentiation

module SI latch(q, q_bar, s, r);

output q, q_bar;

input s, r;

assign q = ~(r | q_bar);

assign q_bar = ~(s | q);

<< initial q_bar & ~q >>

endmodule

module SI ask_do(done, ask, go_yes, go_no, go, yes, no, done_yes, done_no);

output done, ask, go_yes, go_no;

input go, yes, no, done_yes, done_no;

...

latch Lyes(yq, yqb, yes, done);

latch Lno(nq, nqb, no, done);

...

<<

initial ~go & ~yes & ~no & ~done_yes & ~done_no

protocol [ go+;ask+; (

yes+;(ask-;yes- || ((go_yes+;done_yes+);(done+;go- || go_yes-;done_yes-))) |.

no+; (ask-;no- || ((go_no+;done_no+); (done+;go- || go_no-;done_no-)))

); done- ]

// assert that there is enough time to clear the latches

cut never [1];trace(done+;((yq ^ nq)-;(Lyes.q_bar ^ Lno.q_bar)- ~< done-))

>>

endmodule

Figure 7.16: Veraci program for the ask-do control circuit.

circuitry. Although this chapter did not document any specific examples of errors detected

by Veraci during the design of mod exp, such errors were common during the interactive

design of many modules. In particular, both Aodd and the Ask-Do modules proved prob-

lematic when the synthesis of speed-independent solutions was attempted using Petrify

[24]. The adoption of an interactive design methodology using Veraci permitted the au-

thor to assert certain timing assumptions that simplified these circuits considerably, yet

could easily be accommodated by the chosen mod exp architecture.
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Chapter 8

Conclusions

The purpose of this thesis is to demonstrate that proposition-oriented verification is both

flexible and practical. The original inspiration behind proposition-oriented behaviour

stemmed from the observation that common verbal building-blocks for describing circuit

behaviours include levels and events. Conventional level and event-oriented behaviours

assert that only levels or events are necessary to describe a circuit execution, and therefore

that a choice be made between the two. This thesis challenges this assertion, arguing that

a choice between behavioural models should not be driven by mathematical economy, but

by the accuracy with which these models mimic their verbal counterparts.

8.1 Summary

This thesis consists of five work chapters, Chapters 3 to 7. Four of these five work

chapters document the evolution of a proposition-oriented verification methodology and

its implementation in the automatic verification program Veraci. The evolution begins

in Chapter 3, where proposition-oriented behaviour is formalised in the context of gate

networks as a sequence of network propositions. These sequences are then used as a set-

theoretic foundation on which two simple proposition-oriented notations are introduced.

The first notation extends regular-expressions to reason over network propositions, and

the second notation extends trace-expressions to reason over network propositions.

Chapter 4 builds on the set-theoretic model presented in Chapter 3 and demonstrates

an algorithmic translation from proposition-oriented specifications into special finite au-

tomata called proposition automata. Proposition automata differ from conventional fi-

nite automata in that their input symbols are network propositions and are not therefore

mutually-exclusive. This lack of exclusivity necessitates modification of conventional finite

automata construction algorithms before they can be applied to proposition automata.

Chapter 4 addresses this issue and, in particular, articulates the notion of a mutually-

143



Conclusions

exclusive cover set as the mapping between proposition automata and conventional finite

automata.

Chapter 5 describes a verification procedure for component networks and proposition

automata that is based on a symbolic representation using Binary Decision Diagrams.

This verification procedure classes proposition automata into two types and two senses:

the type of a proposition automaton determines whether it is a constraint or a specification,

and the sense of a proposition automaton determines whether it is an assertion of the valid

or an assertion of the invalid.

Chapter 6 documents implementation of the verification procedure presented in Chapter 5

as the design tool Veraci. Chapter 6 then uses Veraci to quantify a number of advantages

of proposition-oriented behaviour over level and event-oriented behaviours: Sections 6.3

and 6.4 document level-event unification and event-abstraction; Sections 6.5 and 6.6 docu-

ment the application of network propositions to safety and causality without progress; and

Section 6.7 introduces a new trace-expression operator called biased composition, which

is shown to efficiently encode relative timing assumptions similar to the chain constraints

of Negulescu and Peeters [78]. Chapter 6 concludes with an initial investigation on the

performance of Veraci in comparison to Versify [86], an automatic event-oriented verifica-

tion program also based on BDDs. In the context of the simple conflict-free benchmarks

used, the result of this investigation is a consistent eventual performance gain by Veraci

over Versify.

Chapter 7 moves away from formal verification to the design of a 2048 bit dual-rail asyn-

chronous Montgomery exponentiator for use cryptographic devices. This exponentiator,

called mod exp, intends to fulfil two aims: to demonstrate the application of asynchronous

logic to Montgomery exponentiation, and to investigate the application of Veraci to a non-

trivial design project. The first aim is satisfied by the successful tape-out an subsequent

working silicon for mod exp in a 0.18µm standard-cell process, and the second aim is

satisfied by example Veraci programs used to verify hand-crafted circuit modules from

inside of mod exp.

8.2 Discussion

The formal verification of asynchronous circuits is an active area of research, and there

are many different notations each of which has its strengths and weaknesses. The most
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notable theoretical difference between proposition-oriented behaviours and either their

event or level-oriented counterparts is a loss of exclusivity between alphabet symbols. The

most notable practical difference between proposition-oriented behaviours and either their

event or level-oriented counterparts is an ability to freely mix levels and events. These two

differences do not however imply that proposition-oriented behaviours are more expressive

than their level and event-oriented counterparts. The reason for this is that it is always

possible to infer a set of level or event-oriented behaviours from a single proposition-

oriented behaviour, and conversely to infer a proposition-oriented behaviour from any

level or event-oriented behaviour. The significance of proposition-oriented behaviours is

their ability to offer the designer a perceived increase in flexibility at little cost to the

underlying verification engine.

The example Veraci programs in Chapters 6 and 7 are intended as demonstrations of the

ways in which levels and events can be usefully mixed. They are also intended to empha-

sise that practical asynchronous circuits may depend on a variety of assertions including

speed-independence, delay-insensitivity, fundamental-mode operation, and relative timing

assumptions.

Some possible relatives of network propositions that can be found in the literature include

the generalised STGs of Vanbekbergen [103] and Lamport’s Temporal Logic of Actions

[55]. Generalised STGs relate to proposition-oriented behaviours as a form of syntactic

sugaring applied to STGs: arcs in a generalised STG can be augmented with boolean

guards, and transitions in a generalised STG may be identified as level-transitions which

assert only the next-state value of a wire. For example, a level-transition to 1 on wire x,

denoted x1, equates to x+ only if the current value of x = 0. Lamport’s TLA relates to

proposition-oriented behaviours in that an explicit notion of actions as propositions over

current-next state pairs is also used. TLA actions differ from active propositions in that

their purpose is effectively to build transition relations rather than to abstract the generic

concept of an event in a relative-time execution model. TLA actions are therefore free of

any correctness conditions and include any network proposition as opposed to only active

propositions.

The final contribution of this work is the dual-rail asynchronous Montgomery exponen-

tiator, mod exp, which is significant since it is the first Montgomery exponentiator to be

fabricated using asynchronous logic. Although the performance of mod exp could have

been improved, it is competitive when compared to existing embedded RSA encoder-
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decoders. Furthermore, working silicon from the foundry makes mod exp an effective

platform on which to validate predictions regarding the resistance of delay-insensitive

asynchronous circuits to both data-dependent timing and power attacks [71]. A discus-

sion on these claims is beyond the scope of this thesis since power analysis tests have yet

to be performed on mod exp.

8.3 Further Work

Proposition-oriented behaviours are a generic concept orthogonal to many other formal

methods in asynchronous design. In this sense the proposition-oriented methodology

evolved in Chapters 3 to 6 is no more than a proof of concept platform on which further

formal methods can be applied.

8.3.1 Other Proposition-Oriented Notations

Network propositions need not apply to regular-expressions and trace-expressions alone.

The application of network propositions to other formalisms such as process spaces and

DI algebrae is entirely possible, and represents an interesting topic for further research.

8.3.2 Liveness and Progress

Liveness and progress are assertions that certain behaviours will happen. This thesis

does not consider liveness, and the proposition-oriented verification methodology behind

Veraci is only capable of reasoning with behaviours that can already happen. Liveness is an

important property and the ability to confirm liveness can improve a formal methodology

considerably. Since proposition-oriented behaviours do not preclude notions of liveness,

the extension of Veraci to account for liveness is in principle possible, and in practice

would enable Veraci to detect a number of subtle circuit errors that it cannot currently

account for.

8.3.3 Synthesis

Synthesis differs from verification in that it infers an implementation automatically from a

specification. The synthesis of circuits from proposition-oriented specifications is beyond

the scope of this thesis, but represents another interesting topic for further research.
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8.3.4 Refinement

Refinement is a relationship between two behavioural models. It is used to assert that one

model is a suitable alternative for the other. Refinement relations can be used to formalise

structured translation from specification to circuit, and are common to delay-insensitive

models of behaviour [49, 106]. This thesis does not consider refinement relationships be-

tween different proposition-oriented specifications, however this it not to say that such

refinement is impossible. Of particular relevance to further research is the application of

event abstraction to refinement, in which different delay-insensitive data encoding schemes

might be viewed as refinements of generic delay-insensitive data values.

8.3.5 Execution Models

It is the opinion of the author that any performance gain between Veraci and Versify stems

primarily from the use of a Multiple-Winner execution model instead of a Single-Winner

execution model. The comparison between Veraci and Versify in Chapter 6 is not proof

of this claim, but merely an observation that that the relative performance between Sin-

gle and Multiple-Winner execution models using BDD-based verification requires further

research.

147



148



References

[1] Alfred V. Aho, Revi Sethi, and Jeffrey D. Ullman. Compilers – Principles,
Techniques, and Tools. Addison Wesley, 1986.

[2] Algorithmic Research Inc. PrivateCard: an advanced cryptographic public/private
key smarcard. http://www.issos.com/catalog/arx/PrivateCard Complete Datasheet.pdf.

[3] W. J. Bainbridge and S. B. Furber. Delay insensitive system-on-chip interconnect
using 1-of-4 data encoding. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 118–126. IEEE Computer
Society Press, March 2001.

[4] H. Barringer, D. Fellows, G. D. Gough, P. Jinks, B. Marsden, and A. Williams.
Design and simulation in Rainbow: A framework for asynchronous micropipeline
circuits. In A. G. Bruzzone and U. J. H. Kerckhoffs, editors, Proceedings of the
European Simulation Symposium, volume 2, pages 567–571. Society for Computer
Simulation International, October 1996.

[5] Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI
Programming, volume 5 of International Series on Parallel Computation.
Cambridge University Press, 1993.

[6] Kees van Berkel and Arjan Bink. Single-track handshaking signaling with
application to micropipelines and handshake circuits. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
122–133. IEEE Computer Society Press, March 1996.

[7] Kees van Berkel, Ferry Huberts, and Ad Peeters. Stretching quasi delay
insensitivity by means of extended isochronic forks. In Asynchronous Design
Methodologies, pages 99–106. IEEE Computer Society Press, May 1995.

[8] Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij.
The VLSI-programming language Tangram and its translation into handshake
circuits. In Proc. European Conference on Design Automation (EDAC), pages
384–389, 1991.

[9] T. L. Booth. Sequential Machines and Automata Theory. John Wiley and Sons,
Inc., New York, 1967.

[10] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient Implementation of a BDD
Package. In 27th ACM/IEEE Design Automation Conference, pages 40–45,
Orlando, Florida, June 1990. ACM/IEEE, IEEE Computer Society Press.

[11] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. Journal of the ACM, 31(3):560–599, 1984.

[12] Erik Brunvand. Translating Concurrent Communicating Programs into
Asynchronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

149



References

[13] R.E. Bryant. Graph-based algorithms for boolean function manipulation. In
Proceedings of the 27th ACM/IEEE Design Automation Conference, 1990.

[14] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams. ACM Computing Surveys, 24(3):293–318, September 1992.

[15] J. A. Brzozowski and H. Zhang. Delay-insensitivity and semi-modularity. Technical
Report CS-97-11, Dept. of Comp. Science, Univ. of Waterloo, March 1997.

[16] Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits.
Springer-Verlag, 1995.

[17] Cambridge Consultants Ltd. The xap asic processor.
http://www.camcon.co.uk/xap.html.

[18] A. Camilleri, M.J.C. Gordon, and T.F. Melham. Hardware verification using
higher order logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed
Correct Circuit Designs, pages 41–66, Amsterdam, September 1986.
North-Holland.

[19] C.-L. Chang and R.C.-T. Lee. Symbolic Logic and mechanical Theorem Proving.
Academic Press, 1973.

[20] Tam-Anh Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications. PhD thesis, MIT Laboratory for Computer Science, June 1987.

[21] E.M. Clarke and E.A. Emerson. Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic. In Logics of Programs: Workshop, volume 131 of
Lecture Notes in Computer Science, Yorktown Heights, New York, May 1981.
Springer-Verlag.

[22] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic. In Proceedings of the
tenth Annual ACM Symposium on Principles of Programming Languages, 1983.

[23] William S. Coates, Jon K. Lexau, Ian W. Jones, Scott M. Fairbanks, and Ivan E.
Sutherland. FLEETzero: An asynchronous switch fabric chip experiment. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 173–182. IEEE Computer Society Press, March 2001.

[24] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers. IEICE Transactions on Information and Systems,
E80-D(3):315–325, March 1997.

[25] Jordi Cortadella, Michael Kishinevsky, Steven M. Burns, and Ken Stevens.
Synthesis of asynchronous control circuits with automatically generated timing
assumptions. In Proc. International Conf. Computer-Aided Design (ICCAD),
pages 324–331, November 1999.

[26] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alex Yakovlev. Methodology and tools for state encoding in asynchronous circuit
synthesis. In Proc. ACM/IEEE Design Automation Conference, 1996.

150



References

[27] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexandre Yakovlev. Petrify: a tool for manipulating concurrent specifications and
synthesis of asynchronous controllers. In XI Conference on Design of Integrated
Circuits and Systems, Barcelona, November 1996.

[28] O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential
machines using symbolic execution. In Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 365–373, Grenoble, France, June 1989.
Springer-Verlag.

[29] Al Davis and Steven M. Nowick. Asynchronous circuit design: Motivation,
background, and methods. In Graham Birtwistle and Al Davis, editors,
Asynchronous Digital Circuit Design, Workshops in Computing, pages 1–49.
Springer-Verlag, 1995.

[30] Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design.
In A. Kent and J. G. Williams, editors, The Encyclopedia of Computer Science
and Technology, volume 38. Marcel Dekker, New York, February 1998.

[31] David L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[32] D.L. Dill and E.M. Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings, 133 Part E(5):276–282, September 1986.

[33] Jo Ebergen and Robert Berks. VERDECT: A verifier for asynchronous circuits.
IEEE Technical Committee on Computer Architecture Newsletter, October 1995.

[34] Jo C. Ebergen. A technique to design delay-insensitive vlsi circuits. Research
Report CS-R8622, Centrum voor Wiskunde en Informatica, July 1986.

[35] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits.
Distributed Computing, 5(3):107–119, 1991.

[36] Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and analysis of
delay-insensitive circuits. In Jørgen Staunstrup and Robin Sharp, editors,
Designing Correct Circuits, volume A-5 of IFIP Transactions, pages 27–46.
Elsevier Science Publishers, 1992.

[37] Stephen E. Eldridge and Colin D. Walter. Hardware implementation of
montgomery’s modular multiplication algorithm. IEEE Transactions on
Computers, 42(6):693–699, 1993.

[38] S. B. Furber, A. Efthymiou, and Montek Singh. A power-efficient duplex
communication system. In Alex Yakovlev and Reinder Nouta, editors,
Asynchronous Interfaces: Tools, Techniques, and Implementations, pages 145–150,
July 2000.

[39] Stephen B. Furber and Paul Day. Four-phase micropipeline latch control circuits.
IEEE Transactions on VLSI Systems, 4(2):247–253, June 1996.

151



References

[40] D. A. Gaubatz. Logic Programming Analysis of Asynchronous Digital Circuits.
PhD thesis, Cambridge University, 1991.

[41] Peter Giblin. Primes and Programming: An Introduction to Number Theory with
Computing. Cambridge University Press, 1993.

[42] M.J.C. Gordon. HOL: A machine oriented formulation of higher order logic.
Technical Report 68, Computer Laboratory, University of Cambridge, May 1985.

[43] A. Gupta. Formal hardware verification methods: A survey. Journal of Formal
Methods in System Design, 1:151–238, 1992.

[44] Gael Hachez and Jean-Jacques Quisquater. Montgomery exponentiation with no
final subtractions: Improved results. In Cryptographic Hardware and Embedded
Systems, pages 293–301, 2000.

[45] Scott Hauck. Asynchronous design methodologies: An overview. Technical Report
TR 93-05-07, Department of Computer Science and Engineering, University of
Washington, Seattle, 1993.

[46] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[47] Intel Inc. Intel itanium processor: High performance on security algorithms (rsa
decryption kernel). http://developer.intel.com/design/itanium/downloads/itaniumssl.pdf.

[48] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[49] M. B. Josephs and J. T. Udding. An overview of DI algebra. In T. N. Mudge,
V. Milutinovic, and L. Hunter, editors, Proc. Hawaii International Conf. System
Sciences, volume I, pages 329–338. IEEE Computer Society Press, January 1993.

[50] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic Model Checking for Sequential
Circuit Verification. In Proceedings of VLSI’91, pages 49–58, Edinburgh,
Scottland, August 1990.

[51] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, RSA, DSS,
and other systems. In CRYPTO, pages 104–113, 1996.

[52] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

[53] A. Kondratyev, J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Taubin. The
use of Petri nets for the design and verification of asynchronous circuits and
systems. Journal of Circuits, Systems and Computers, 8(1), 1998.
ftp://ftp.u-aizu.ac.jp/u-aizu/async/pn-review98.ps.gz.

[54] Leslie Lamport. “Sometime” is sometimes “Not never” – On the temporal logic of
programs. In Conference Record of the Seventh Annual ACM Symposium on
Principles of Programming Languages, pages 174–185, Las Vegas, Nevada, 1980.

[55] Leslie Lamport. A temporal logic of actions. Technical Report SR57, Digital
Equipment Corporation, Systems Research Center, April 1990.

152



References

[56] D. E. Long. CMU BDD package. http://emc.cmu.edu/pub/bdd/bddlib.tar.Z., 1993.

[57] Willem C. Mallon and Jan Tijmen Udding. Building finite automatons from DI
specifications. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 184–193, 1998.

[58] Z. Manna and A. Pnueli. Verification of concurrent programs: The temporal
framework. In R.S. Boyer and J.S. Moore, editors, Correctness Problems in
Computer Science, pages 215–273, London, 1982. Academic Press.

[59] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Advanced Research in VLSI, pages 263–278. MIT Press,
1990.

[60] Alain J. Martin. Programming in VLSI: From communicating processes to
delay-insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency
and Communication, UT Year of Programming Series, pages 1–64.
Addison-Wesley, 1990.

[61] Alain J. Martin. Asynchronous datapaths and the design of an asynchronous
adder. Formal Methods in System Design, 1(1):119–137, July 1992.

[62] K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, May 1992. CMU-CS-92-131.

[63] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[64] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1980.

[65] R. Milner. Communication and Concurrency. Prentice-Hall International, London,
1989.

[66] R. Milner. The polyadic pi-calculus: a tutorial. Technical report, LFCS University
of Edinburgh, October 1991.

[67] Faron Moller and Perdita Stevens. Edinburgh Concurrency Workbench user
manual (version 7.1). http://www.dcs.ed.ac.uk/home/cwb/.

[68] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of
delay-insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on
Very Large Scale Integration, pages 67–86. Computer Science Press, 1985.

[69] U. Montanari and F. Rossi. Acta informatica, 1995.

[70] P. L. Montgomery. Modular Multiplication Without Trial Division. Mathematics
of Computation, 44(170):519–521, April 1985.

[71] S. W. Moore. Protecting consumer security devices. In Smart Card Programming
and Security, volume 2140 of Lecture Notes in Computer Science, page 1, 2001.
International Conference on Research in Smart Cards, E-smart 2001, Cannes,
France, September 19-21, 2001.

153



References

[72] S. W. Moore, G. S. Taylor, R. D. Mullins, and P. Robinson. Report on our first
test chip. In 10th UK asynchronous forum, 2001.

[73] D. E. Muller. Theory of asynchronous circuits. Technical report, University of
Illinois Digital Computer Laboratory, December 1955.

[74] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In
Proceedings of an International Symposium on the Theory of Switching, pages
204–243. Harvard University Press, April 1959.

[75] Chris J. Myers. Asynchronous Circuit Design. Wiley, 2001.

[76] Radu Negulescu. Process spaces. Technical Report CS-95-48, Department of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada, December
1995.

[77] Radu Negulescu. Process Spaces and Formal Verification of Asynchronous
Circuits. PhD thesis, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, August 1998.

[78] Radu Negulescu and Ad Peeters. Verification of speed-dependences in single-rail
handshake circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 159–170, 1998.

[79] Steven M. Nowick. Automatic Synthesis of Burst-Mode Asynchronous Controllers.
PhD thesis, Stanford University, Department of Computer Science, 1993.

[80] Priyadarsan Patra and Donald Fussel. Efficient building blocks for delay
insensitive circuits. In Proc. International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 196–205, November 1994.

[81] Ad M. G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Eindhoven
University of Technology, June 1996.

[82] Marco A. Peña, Jordi Cortadella, Alex Kondratyev, and Enric Pastor. Formal
verification of safety properties in timed circuits. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
2–11. IEEE Computer Society Press, April 2000.

[83] R. L. Rudell R. E. Bryant, K. S. Brace. Efficient implementation of a BDD
package. In ACM/IEEE Degign Automation Conference, pages 40–45, 1990.

[84] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
IEEE /ACM International Conference on CAD, pages 42–47, Santa Clara,
California, November 1993. ACM/IEEE, IEEE Computer Society Press.

[85] Martin Rem, Jan L.A. van de Snepscheut, and Jan T. Udding. Trace theory and
the definition of hierarchical components. In Third CalTech Conference on Very
Large Scale Integration, pages 225–239. Computer Science Press, Inc., 1983.

[86] Oriol Roig. Formal Verification and Testing of Asynchronous Circuits. PhD thesis,
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