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Summary

Conventional embedded microprocessors have traditionally followed the footsteps of high-
end processor design to achieve high performance. Their underlying architectures priori-
tise tasks by time-critical interrupts and rely on software to perform scheduling tasks.
Single threaded execution relies on instruction-based probabilistic techniques, such as
speculative execution and branch prediction. These techniques might be unsuitable for
embedded systems where real-time performance guarantees need to be met [1, 2].

Multithreading appears to be a feasible solution with potential for embedded proces-
sors [3]. The multithreaded model benefits from sequential characteristic of control-flow
and concurrency characteristic of data-flow [4]. Thread-level parallelism has a potential to
overcome the limitations of insufficient instruction-level parallelism to hide the increasing
memory latencies. Earlier empirical studies on multithreaded processors [5, 4, 6, 7, 3]
demonstrated that exploiting thread-level concurrency not only offers latency tolerance,
but also provides predictable performance gain.

A MulTithreaded Embedded Processor (MulTEP) is designed to provide high per-
formance thread-level parallelism, real-time characteristics, a flexible number of threads
and low incremental cost per thread for the embedded system. In its architecture, a
matching-store synchronisation mechanism [4] allows a thread to wait for multiple data
items. A tagged up/down dynamic-priority hardware scheduler [8] is provided for real-
time scheduling. Pre-loading, pre-fetching and colour-tagging techniques are implemented
to allow context switches without any overhead. The architecture supports four additional
multithreading instructions (i.e. spawn, wait, switch, stop) for programmers and ad-
vance compilers to create programs with low-overhead multithreaded operations.

Experimental results demonstrate that multithreading can be effectively used to
improve performance and system utilisation. Latency operations that would otherwise
stall the pipeline are hidden by the execution of the other threads. The hardware scheduler
provides priority scheduling, which is suitable for real-time embedded applications.
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Chapter 1

Introduction

If we knew what it was we were doing,
it would not be called research, would it?

Albert Einstein

1.1 Prelude

Embedded processors are increasingly deployed in applications requiring high performance
with good real-time characteristics whilst consuming low power. Contemporary high
performance embedded architecture often follow the footsteps of high-end processor design
and prioritise tasks by time-critical interrupts leaving software to perform scheduling.
Parallelism has to be extracted in order to improve the performance at an architectural
level. Extracting instruction level parallelism requires extensive speculation which adds
complexity and increases power consumption.

Multithreading appears to be a feasible alternative candidate approach. The multi-
threading model benefits from the sequential characteristic of control-flow and concurrency
characteristic of data-flow [4]. Many embedded applications can be written in a threaded
manner and therefore multithreading in hardware may extract parallelism without spec-
ulation whilst keeping each component of the system quite simple.

The structure of this chapter is as follows: Section 1.2 discusses my motivations
to research in the area of embedded design and multithreaded architectures. Section 1.3
states the aims of my research. Section 1.4 presents the structure of the remaining chapters
of this dissertation.
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1.2 Research Motivation

This research is driven by two key observation:

1. There is a rapid growth in the embedded processor market which shows no signs of
abating.

2. It is unclear how to provide this market with high performance processors which are
low power, have good real-time properties and are not overly complex to implement.

The following sections address the issues that surround these observations.

1.2.1 Inspiration for Targeting the Embedded Processor Market

The functionality of embedded processors is determined by the processor market. Derived
from McClure’s survey [9], the trend of volume-shipment of general purpose processors1

shows that approximately 100 million general purpose processors were shipped in year
2000 with a 10% yearly growth rate (see Figure 1.1).

Figure 1.1: Shipment trends of general and embedded processors [9].

Devices ranging from industrial-automated lines to commercial-mobile equipment
require embedded processors. Even PCs, which already contain a powerful CPU, also use

1General purpose processors from McClure’s survey [9] represent microprocessors.
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additional embedded processors (e.g. drive controllers and peripheral-interface devices).
The shipment of embedded processors is around 4 billion in the year 2000. This is approx-
imately 40 times greater than the shipment of general purpose processors with a potential
growth-rate of around 35% per year [9]. This trend reflects that the functional require-
ments from the market focus on the embedded models. Thus, designing a processor to
support embedded system constraints is an interesting research area.

1.2.2 Inspiration for Multithreaded Execution

In a processor design, high computational performance is attained by minimising the
execution time (Texe) of a system. The execution time Texe is a combination of the service
time of the processor (Tserv) and its wasted latency (Tlatency)

2, as shown in Equation 1.1.

Texe = Tservice + Tlatency (1.1)

Many research approaches have been proposed to reduce both the service time and
the latency period. Equation 1.2 presents that the service time can be reduced by reducing
the time spent per cycle (Tclk), reducing the number of instructions (ninst) or increasing
the number of Instructions Per Cycle (IPC).

Tservice =
Tclk × ninst

IPC
(1.2)

To reduce Tclk, faster implementation technologies have been exploited [10]. Archi-
tectural techniques such as deeper pipelines, easy to decode instructions (Reduced Instruc-
tion Set Computers — RISC [11, 12]) and advanced circuit techniques have been used
to shorten critical paths. However, the development in these areas is slowing because of
physical limitations in semiconductor fabrication technologies [13, 14]. Furthermore, 50
years of research in low level architecture and circuit techniques has left little scope to
make improvements here.

To reduce ninst, ideas from Complex Instruction Set Computers (CISC) [15, 16, 17,
18, 19] and Reconfigurable Instruction Set Processors (RISP) [20] could be exploited. The
disadvantage of these processors is the increase in Tclk due to their instruction complexity
which requires complex implementations.

Single pipelines allow us to improve the IPC up to one instructions per clock cycle.
Multiple pipelines are used by multiple instruction issue architectures to push IPC to mul-
tiple instructions per clock cycle. Example multi-issue architectures include: superscalar,
Very Long Instruction Word (VLIW) [21] or Explicitly Parallel Instruction Computer
(EPIC) [22]. The superscalar approach requires aggressive instruction scheduling at the

2Tlatency occurs when a processor has to wait for memory access or some certain operations (e.g. PC
redirection from a branch instruction) during the execution.
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hardware level which results in complex implementations which grow alarmingly as the
number of pipelines increases. VLIW and EPIC push some of the instruction scheduling
burden into the compiler.

Figure 1.2 illustrates an improvement in processor performance of 35-55% a year
due to alterations in the architecture3. In contrast, memory access latency, Tlatency, only
improves around 7% per year. This memory access latency is increasingly a crucial factor
which limits performance. Thus, the trend presents a growing gap between processor
cycle times and memory access times at approximately 50% per year [23].
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Figure 1.2: The increasing trend of processor-memory performance gap [23].

Tlatency is reduced by the use of caches [24], vector operations [25] and speculative
prefetching/pre-loading mechanisms [26]. Alternatively, latency (Tlatency) can be hidden
by concurrent execution. Today’s high-end processors execute many instructions per cycle
using Instruction Level Parallelism (ILP). Instruction level parallelism is exploited using
statistical speculations, such as dynamic scheduling and branch prediction. Speculative
execution to exploit instruction level parallelism requires additional dedicated hardware
units, which consume power, and extra operations to eliminate mispredicted tasks.

Parallelism beyond instruction level parallelism in the processor, such as process
level parallelism and thread level parallelism, have been further explored. In 1992, DEC
architects believed that up to ten times of performance improvement could be gained by

3The improvement is based on the processor performance since 1980.
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the contribution of Thread Level Parallelism (TLP) [27] with in 20 years. A number of
investigations [28, 29, 30] indicate that thread level parallelism, i.e. multithreading, at the
hardware level has great potential to efficiently hide the memory and I/O access latencies.

Though thread level parallelism has a potential to improve processing performance,
a framework to support thread level parallelism at the hardware level has not yet been
standardised. As a result, thread level parallelism has not been utilised to the same
degree as a pipelining or superscalar techniques that effectively provide instruction level
parallelism. There is plenty of room for research in this area.

1.3 Research Aims

My research aims to develop a high-performance multithreaded processor architecture for
embedded environments. A number of design challenges to support such a requirement
are first identified (§1.3.1), followed by main contributions that this research intends to
offer to the architectural community (§1.3.2).

1.3.1 Challenges

To design a multithreaded embedded architecture, a number of challenges arose:

1. Exploit thread level parallelism to improve performance by hiding operating laten-
cies (e.g. memory access, branch delay slots).

2. Support a flexible number of threads with a minimal incremental cost per thread.

3. Be able to schedule the threads in order to meet real-time constraints.

4. Avoid speculative execution mechanisms that degrade real-time performance, con-
sume extra power executing instructions whose results are never used, and require
extra memory to store and analyse statistical data.

1.3.2 Contributions

This section outlines the contributions of this thesis in areas central to the development
of a MultiThreaded Embedded Processor (MulTEP):

1. An effective framework to support multithreading in hardware:

• Minimal mechanisms to progress a thread through its life cycle.

• Minimal mechanisms to provide low overhead context switching.

• Minimal mechanisms to schedule threads that have a dynamic characteristic
(i.e. a change of deadline/priority).

2. A solution to provide a minimal incremental cost per thread.
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3. A model to support a flexible number of threads in hardware.

4. A scheduling mechanism that offers real-time response.

5. A strategy to exploit thread level parallelism without resorting to speculative exe-
cution.

1.4 Dissertation Outline

The rest of the thesis is structured as follows:

Chapter 2: Architectural Level Parallelism

This chapter reviews the architectural level parallelism in three key areas: the
control-flow model, the data-flow model and the memory hierarchy. This chap-
ter critiques related work and determines the main requirements that the design
and implementation of a processor architecture must satisfy.

Chapter 3: Multithreaded Processors

In this chapter, key multithreading theories are examined. Design criteria for mul-
tithreaded architectures are established. The current state-of-the-art is evaluated.

Chapter 4: Background to Embedded Design

This chapter addresses embedded environment constraints and requirements. Then,
current solutions in the embedded design space are surveyed.

Chapter 5: System Overview

In this chapter, three desirable characteristics (high-performance multithreading,
real-time operation and low-power consumption) are identified. Key design strate-
gies in the project, their integration and the overall architecture from the program-
mer’s point of view are then described.

Chapter 6: Hardware Architecture

This chapter details the MulTEP hardware architecture, which comprises the Pro-
cessor Unit (PU), the Load-Store Unit (LSU), the Multithreading Service Unit
(MSU) and the Memory Management Unit (MMU).

Chapter 7: Software Support

In this chapter, software support tools (i.e. MulTEP assembler, Java-to-native,
MulTEP macros and Thread-0 system daemon) for the MulTEP architecture are
presented.

Chapter 8: Evaluation and Results

This chapter describes evaluation methodologies and procedures for examining the
MulTEP system. Then, evaluation results are presented.
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Chapter 9: Conclusions

Conclusions of this research are drawn in this chapter. Areas of possible future
research are then suggested.
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Chapter 2

Architectural Level Parallelism

The performance improvement to be gained from
using some faster mode of execution is limited by
the fraction of the time the faster mode can be used.

Amdahl’s Law

2.1 Introduction

Parallelism has long been employed at an architectural level in order to improve both per-
formance and utilisation efficiency of a processor. In architectural design, there are two
predominant architectural models. One is a control-flow processor model which executes
instructions in sequential order as presented in Figure 2.1(a). The other is a data-flow pro-
cessor model where instructions are executed concurrently in a data dependent ordering
as illustrated in Figure 2.1(b).
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Figure 2.1: A control-flow architecture and a data-flow architecture.
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This chapter focuses on the design evolution to support parallelism at the architec-
tural level. It first provides an overview of parallelism offered by the control-flow processor
model (Section 2.2) and the data-flow processor model (Section 2.3). The memory sys-
tem to support architectural level parallelism is then investigated (Section 2.4). Finally,
a summary of the current architectural level parallel issues are presented (Section 2.5).

2.2 Control-flow Architectures

Based upon Babbage’s proposal in 1838 [31], Eckert, Mauchly and von Neumann suc-
cessfully introduced a control-flow processor model in 1944 [26]. The architecture is a
design for processing a list of programming instructions according to their sequence. It
uses a Program Counter (PC) to indicate the current executed position in the execution
sequence as depicted in Figure 2.1(a). The flow of execution is controlled by manipulating
the value of PC using instructions such as branches and jumps which may be conditionally
executed. Intermediate processed values are typically stored in local registers, an accu-
mulator or a nearby stack [32]. Various mechanisms have been implemented to improve
functionality and performance, which has enabled the model to dominate the computer
industry for over 50 years.

This section surveys the developments of the control-flow architectural design to
support parallelism. The section first focuses on how an instruction encoding influences
a control-flow architectural design (§2.2.1). Then, instruction level parallelism in control-
flow architectures is explained (§2.2.2), followed by a discussion of adding thread level
parallelism to the control-flow models (§2.2.3). Further details of the control-flow architec-
tures in the other aspects can be found in these computer architecture texts [24, 26, 33, 34].

2.2.1 Instruction Encoding

An instruction consists of an opcode and its operands. Opcode is shorthand for operation
code; it explicitly presents the controls of execution or implicitly represents an index to
a set of microcodes that control the different parts of the processing element. Operands
are either an immediate value, a displacement, an index into a register set, an index to
a memory address or an additional operating function. CISC and RISC are two extreme
foundational Instruction Set Architectures (ISA). The remainder of this section analyses
how the two techniques deal with parallelism.

Complex Instruction Set Computer (CISC)

CISC philosophy compresses an instruction into its most compact form as illustrated in
Figure 2.2(a). Its encoding technique causes instructions to be vary in length (e.g. from 4
up to 56 bytes in VAX [17]). The compact form offers a set of instructions from the simple
(e.g. “add”) to the complex (e.g. “evaluate polynomial”). The complex instructions in
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a compact form enable a program to be compiled into a condensed binary object. The
condensed object reduces memory bandwidth requirements and memory space.

SIB

immediate

32 bits

opcode

6 bits 26 bits

target J−Type

opcode rd rs rt sh

6 bits 5 bits 5 bits 6 bits5 bits 5 bits

func R−Type

opcode rd rs immediate

6 bits 5 bits 5 bits 6 bits

I−Type

B−Typeopcode rd rs target

6 bits 5 bits 5 bits 6 bits

displacement

32 bits

prefix

or

or

(a) CISC x86 instruction encoding (b) RISC MIPS IV instruction encoding

opcode immediate

or or or

16 bits

displacement

Figure 2.2: Instruction encoding of representative CISC and RISC.

Disadvantages of CISC stem from implementation complexities. The architecture
contains much temporal and area overhead in order to decode complicated instructions.
Its intermediate computation stages and values are not easily separated. Hence, the
architecture has a significant burden when it needs to switch its execution context. In
addition, around 20% of instructions are used frequently whilst a number of circuits
provided for the other 80% are not effectively utilised. Hardware complexity results in
large area and high power dissipation.

This architecture has successfully dominated commodity microprocessors (e.g. Intel
x86 [15], Motorola 68k [16]) and was common for minicomputers (VAX [17], PDP-11 [18]).
Modern CISCs often decode instructions into one or more RISC-like operations (e.g.
Intel’s µops [15], AMD’s r-ops [19]).

Reduced Instruction Set Computer (RISC)

RISC philosophy is based on the goal of “making the common case fast”. Its architecture
provides rapid execution by using a small set of simplified fixed-length instructions as
presented in Figure 2.2(b). This encoding allows instructions to be aligned on word
boundaries to be fetched in a single cycle. Opcodes and operands are easily segmented
and quickly decoded due to their fixed positions. This feature allows the architecture to
have a short and simpler pipeline [11].

RISC code density is not as good as CISC. Complicated operations need to be
constructed from a sequence of instructions. Fixed length instructions limit the number
and size of operands so that multiple memory operands become impractical. RISC has
to eliminate complex addressing modes and, instead, relies on register -based addressing
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modes and specific load and store instructions to access memory. Because of this limita-
tion, data needs to be transferred to registers prior to their usage, resulting in a larger
number of registers.

Advantages of RISC are its simple architecture that allows a rapid design and im-
plementation cycle; the separation of memory access instructions (i.e. load and store)
that helps the compiler to schedule instructions efficiently1; the possibility of an inde-
pendent load/store unit that handles memory access instructions separate from the other
computational instructions; and room to add new instructions [12].

Processors based on RISC ISA have been used in the domains of servers (e.g.
SPARC [35], MIPS [36], Alpha [27], PowerPC [37], System/370 [25], PA-RISC [38], IA-
64 [22]) and embedded applications (e.g. ARM [39], SuperH [40]).

2.2.2 Instruction Level Parallelism

The concept of Instruction Level Parallelism (ILP) was first described by Wilkes and
Stringer in 1953 [41]:

In some cases it may be possible for two or more micro-operations
to take place at the same time.

Early ILP is based on two concepts. The first concept segments operation hori-
zontally into pipeline stages as presented in Figure 2.3(a). The second concept increases
parallelism vertically in a superscalar form as illustrated in Figure 2.3(b).

(b) Superscalar(a) Pipelining

Horizontal/Temporal Instruction Level Parallelism Vertical/Spatial Instruction Level Parallelism

Figure 2.3: Horizontal and vertical instruction level parallelism.

The following sections review pipelining and superscalar techniques which are used
to exploit horizontal and vertical ILP. Then, alternative ILP architectures, a VLIW and
an EPIC, are investigated.

1Compiler can schedule instructions in the delay slots immediately after a load instruction.
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Pipelining

The data path of a processor consists of multiple stages (e.g. instruction fetch, instruction
decode, operand fetch, execution, memory access and register write back). Pipelining is
introduced to improve processor utilisation by dividing the data path into stages in order
to reduce cycle per instruction down to 1 [24].

Pipelining uses latches to separate intermediate results from each functional block.
Thus, a clock cycle is effectively shortened to the amount of time it takes for the slowest
stage. The technique automatically exploits temporal instruction level parallelism by
overlapping the execution of sequential instructions in various functional units.

Unfortunately, pipelining introduces interdependencies between stages. Thus, the
processor requires a hazard detection mechanism to deal with the following data, control
and structural hazards:

1. Data hazard : an instruction requires the result of a previous instruction.

2. Control hazard : PC needs to be corrected because of a previous branch instruction.

3. Structural hazard : two instructions need access to the same resource.

Once one of the interdependent violations occurs, the hazard detection stalls its
relevant functional units until all conflicts are resolved. This technique introduces idle
periods in the pipeline, called bubbles. In order to reduce bubbles, a number of techniques
are used:

To reduce data hazards – data forwarding or bypassing paths are introduced to make
recent intermediate results available before they are written to the register file.

To reduce control hazards – a branch prediction mechanism is used. This mecha-
nism reduces branch delays and decreases incorrect instruction fetches. However,
it requires large support units such as a branch history table, n-bit local/global
predictors, and a branch target buffer.

To reduce structural hazards – more access to shared resources, such as register ports,
are introduced in order to avoid resources conflicts.

The disadvantages of pipelining are longer execution latencies for individual in-
struction and many additional hardware mechanisms, especially for branch prediction.
However, the disadvantages are often outweighed by faster clock speeds and higher in-
struction throughput. As a result, by the early 1990s, all major processors from both
the industry and the academia incorporated pipelining techniques into their architectural
design [42].

Superscalar

Not all instructions have the same latencies (i.e. integer, floating point, multiply/divide,
memory access). To deal with this, multiple subpipelines are introduced in order to
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simultaneously execute various computations in different functional units. This technique
is called superscalar, a technique to exploit spatial instruction level parallelism.

Because superscalar needs multiple instructions per cycle, it requires a large win-
dow over an instruction stream. In each window, there is no explicit information about
dependencies between instructions which must be determined by the hardware. Dynamic
scheduling is used to extract multiple independent instructions. Where control and data
dependencies permit, instructions may even be issued out-of-order .

Regrettably, the technique introduces additional structural conflicts on shared re-
sources, especially, when register write-backs from each subpipeline do not occur in order.
Thus, a reorder buffer and a register colouring technique are required for the final stage
to keep instructions in order, to remove false dependencies and to undo the changes after
the exceptions. The resolution for such structural conflicts require multiple stalls before
they can be resolved.

In addition, a number of studies in [43, 44, 45] report that only few instructions
(typically 2 to 4) can be executed in parallel in one basic block. It is possible to execute 5
to 9 instructions in parallel, but only when impractical design choices are made: an infinite
table for branch prediction, a perfect register alias analysis and a large instruction issuing
window [46]. The lack of instruction level parallelism limits the number of functional
units that can be utilised.

Speculative execution is proposed to provide sufficient instructions even before their
control dependencies are resolved. This technique strives to issue an instruction to each
subpipeline every cycle. It requires a register renaming mechanism to allocate a virtual
register space to each speculative instruction. This mechanism requires a register alias
table to map processor registers to a much larger set of temporary internal registers, and a
scoreboard2 to keep track of register usage. The result is higher utilisation and statistically
better performance.

Nevertheless, mis-speculations need to be discarded. All effects of the speculatively
executed instructions must be disposed. This wastes both energy and execution time on
the mis-speculated path. In terms of hardware cost, the number of functional units goes
up linearly with the required degree of parallelism. The complexity of interconnection
network between functional units grows exponentially, i.e. O(n2), with the degree of
parallelism (n) [47]. This results in large complex hardware with very significant wiring
complexity which pushes up power consumption and forces a lower clock rate.

VLIW and EPIC

A Very Long Instruction Word (VLIW) [21] is introduced to exploit instruction paral-
lelism vertically. The architecture gains benefit from a compiler which statically allocates
instructions to each subpipeline. Therefore, the architecture issues only one large fixed-
length instruction to be processed on multiple independent subpipelines simultaneously.
The operation occurs without issue-check resulting in a high clock speed.

2Scoreboard bits on registers are similar to presence bits used in the static data-flow model (see §2.3.1).
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However, because the utilisation relies heavily on the compiler, a compiler is required
to be specifically built for every possible implementation of each architecture in order to
distribute suitable instructions to their supported subpipelines. An interrupt/exception
in one functional unit causes a detrimental delay in all following functional units because
the later static issuing process need to be stalled. The resulting code density is quite
poor because a number of NOP (no-operation) instructions need to be issued when there
is insufficient instruction-level parallelism from the software. Also, a single flow of control
still lacks adequate independent instructions for this architecture [46].

To deal with VLIW’s poor code density, Intel introduced an evolution of VLIW
called Explicitly Parallel Instruction Computer (EPIC), aka IA-64 [22]. This architecture
uses a template to determine an appropriate instruction bundle and a stop bit as a barrier
between independent groups resulting in a better code density. Therefore, it offers better
code compression. Its compiler supports different processors. Nevertheless, it still requires
a hardware interlock mechanism to stall the pipeline to resolve structural hazards and
heavily relies on state-of-the-art compiler technology in order to deliver high performance.

2.2.3 Thread Level Parallelism

This section reviews the support of thread level parallelism in a traditional control-flow
single processor and multiprocessors.

Single processor

A single processor sequentially executes instructions and benefits from efficient use of
local storages. Disrupting the process requires the current execution context to be saved
in order to be restored later.

To support thread level parallelism in such a processor, interrupts are used to disrupt
the flow of control [48]. The context switch is then conducted by the software scheduler.
The process includes context save & restore, pipeline flush & refill and cache behaviour
manipulation. This context-switching overhead is large so that the technique is only
appropriate when the context switch is really necessary and occurs infrequently.

Multiprocessors

Parallel execution of threads may be achieved using multiple control-flow processors. The
multiprocessor architecture can be designed in a form of Multiple Instruction streams,
Multiple Data streams (MIMD) [49]. There are two categories of MIMD architectures.
The first one is a shared-memory MIMD where all processors have uniform access to a
global main memory and require a hardware mechanism to maintain cache coherency. The
second one is a distributed-memory MIMD where each processor has its own local mem-
ory. Data communication on the distributed-memory machine is effectively performed by
message passing in a form of token to another address. Coarse-grained TLP is achieved
when each processor works on a specific thread and communicates when necessary.
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Nevertheless, the cost and complexity of the network for communication are very
high. With the current compiler technology, it is difficult to extract parallelism from single
thread group and still requires programmers to write parallel codes. Thus, multiprocessors
are often designed for high computational performance in applications such as scientific,
visualisation, financial model and database server.

2.3 Data-flow Architectures

In the early 1970s, Dennis [50, 51] derived the fundamental principles of a data-flow model
from a data-flow graph. For this architecture, a program is explicitly represented as a
directed graph where nodes represent instructions and arcs represent data dependencies.
The operation in each node is executed, i.e. fired, when a matching-store mechanism [52]
indicates that all inputs are present, and its outcome is propagated to one or more nodes
in the form of a token. This model naturally offers instruction level parallelism where data
dependencies impose order of execution. The architecture eliminates the requirement of
a program counter [53, 54]. It requires a coordination from a hardware scheduler to issue
independent instructions as appropriate.

The remainder of this section presents three paradigms of the data-flow model –
a static data-flow model (§2.3.1), a dynamic data-flow model (§2.3.2) and an explicit
token-store data-flow model (§2.3.3).

2.3.1 Static Data Flow

In a static data-flow model (e.g. TI’s DDP [55], DDM1[56]), all nodes are pre-specified
and at most one token (datum) per arc is allowed at a time. A node is enabled, i.e.
updated, as soon as a token is present on its arc. For instance, a node is active when a
predecessor count reaches zero in the TI’s DDP [55]. The system uses a backward signal
to inform previous nodes when its result has already been obtained. However, its static
style restricts an implementation of shared function. Mutual exclusion is needed to be
enforced when issuing operations and needs an inefficient replicating functional units as
its solution.

2.3.2 Dynamic Data Flow

The dynamic data-flow model [57, 58] is more flexible than the static model. Additional
nodes may be generated at run-time and allow multiple coloured tokens to be stored on
one arc. The colour consists of the address of the instruction and the computational
context identifier in which that value is used.

Each invocation of a function gives a unique colour in order to represent functions
recursively. Only tokens with the same colour are allowed to be matched in dyadic oper-
ations.
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The problems with this model are: the colour-matching mechanism is expensive and
temporally unpredictable due to its storage bounds; fan-out is uncontrollable and may
result in matching store overflow when too many concurrent parts need to be initiated [4].

2.3.3 Explicit Token-store Data Flow

An explicit token-store data-flow model [59, 60, 61] allocates a separate memory frame per
functional invocation called an Activation Frame (AF) [59]. This alleviates the matching
bottlenecks in the dynamic model by explicitly using the address token-store (computed by
the composition of frame address and operand offset) for matching and firing operations.

The firing operation is driven by two different mechanisms. The first mechanism
is data-driven where operations may be executed when input data is available. Uncon-
strained parallelism can place a large burden on the matching-store mechanism. The
matching mechanism unavoidably ends up being the bottleneck.

The second mechanism is a demand-driven mechanism. The demand-driven scheme
only fires operations when their results are requested. The disadvantage of this data pull
scheme is that an additional operation-lookahead circuit is required [62].

The explicit token-store architecture naturally exploits ILP asynchronously because
all active instructions may be executed simultaneously. It exposes maximum instruction
level concurrency and allocates option for execution without any need for caches (e.g. tol-
erates memory latency). However, it requires data synchronisation on every event forcing
data to go via a data-matching mechanism which may act as an access bottleneck; the
matching scheme may be extended to gain control-flow’s advantage by allowing intermedi-
ate results to be held in registers which reduces the number of accesses to the token-store
matching mechanism (e.g. in EM-4 [60]).

2.4 Memory System

As parallelism increases, so do the demands on the memory system for both programs
and data. This section analyses the memory hierarchy (§2.4.1), virtual space (§2.4.2)
and protection mechanisms (§2.4.3). The analysis focuses on their features to support
architectural level parallelism. Details of further enhancements for multithreading (i.e.
thread-level parallelism) will be mentioned in the next chapter.

2.4.1 Memory Hierarchy

Due to an increase in the performance gap between a processor and its main memory
mentioned in the previous chapter, several levels of fast caches are introduced in order to
store some recently-used memory areas to alleviate memory latency problems. However,
adding more units along the access path lengthens the main memory’s access latency.

31



Chapter 2. Architectural Level Parallelism

The caches are placed in such an order that the fastest, smallest one lies closest to
the processor and the other slower, larger caches are located farther away. Valid data
can be obtained immediately from caches if their identity fields are matched, i.e. hit.
Otherwise, if there is a data miss, a suitable block of cache needs to be reloaded from a
lower level thereby suffering a large miss-penalty.

Based on the Harvard architecture [24], the first level cache (L1) has been divided
into an instruction cache and a data cache with completely separate data and address
buses. Therefore, L1 I-cache can be single-ported, read-only and wide access while L1
D-cache is multiported, read & write. This solution widens the memory bottleneck which
results in a higher access utilisation.

When designing a memory organisation, data locality and access latency are two
factors that need to be investigated. This section first reviews methods to provide data
locality along with comments about their benefits and possible enhancements for paral-
lelism. Then, the section focuses on access latency and how it influences architectural
design.

Data locality

The locality of the data has a strong impact on processor performance and power utilisa-
tion. It is common practice to exploit the following principle of locality [24]:

1. Spatial locality : addresses nearby the previous access tend to be referenced in the
near future.

2. Temporal locality : recently accessed addresses are likely to be accessed again soon.

To help exploit spatial locality, cache fetches data/instructions in a block, or a cache
line. Each cache line contains the requested data/instruction and its neighbours. Fig-
ure 2.4 presents an address interpretation for obtaining data from a cache. A tag field in
the address is used as a block identification where an index points to. A number of bits
in an offset field is an important factor that determines its space.

In order to support temporal locality, a block replacement policy incorporates time
into its decision. Thus, a close-by cache tends to hold the most recently-used data.
However, though a Least-Recently Used (LRU) replacement policy is the most natural
method, its implementation is inefficient. Instead, a random replacement policy may
be used which proves to be efficient. Without adding much extra hardware, random
replacement can be further improved by combining it with a Not Last Used (NLU) policy.

A block placement technique is important. The simple direct-mapped cache is cheap
in terms of circuit and power, but provides low-hit ratio. At the other extreme, a high-
hit ratio fully associative cache unavoidably introduces high complexity in the memory
system. Thus, in general, a medium n-set associative cache turns out to be preferable
and proves to be sufficient with a value of n around 2 to 8 [24].

32



2.4. Memory System

Offset
Block

IndexTag

Block Identification

Address

...

Valid Tag

...

...

...

...

...

...

...... ... ... ......
enble?

= Multiplexer

Data

Cache line

Figure 2.4: An address interpretation for obtaining data from a cache.

Access Latency

A cache access time is a combination of parameters as presented in Equation 2.1.

A = (1 − p)C + pM (2.1)

where A is an access time.

C is the cost of a hit.

p is the proportion of misses.

M is the miss penalty.

Parameter A and C are mostly influenced by a physical level design and the structure
of the memory hierarchy. Parameters p and M are affected by architectural level design.
The miss rate p is reduced by increasing the block size to exploit spacial locality, increasing
the cache associativity, and using a suitable replacement policy that works well with the
characteristics of the benchmarks. The miss penalty M depends on how cache writes are
handled [26]. There are two approaches to handling writes:

1. Write-through approach:

A cache with a write-through approach replicates all written data to the lower levels.
The approach takes time when writing, so it needs a write buffer to accept data from
the processor at full-rate. The advantage is that cache lines need only be allocated
on read misses. Additionally, the approach ensures that the data seen by multiple
devices remains coherent.

2. Write-back approach:
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A cache with a write-back policy stores the data in the cache and only writes it
back to the lower level on the cache spill. A cache line is allocated whenever there
is a read or write miss. This reduces the write traffic to lower levels of the memory
hierarchy. This method makes the store process faster but requires mechanisms
to handle the data consistency, especially when the address space is shared among
various processes.

In addition, access latency may be reduced by techniques such as allowing hit-after-
miss, or fetching with an early restart, i.e. critical word first. The latter technique is used
to deliver a requested word to the processor as quickly as possible without waiting for the
complete transfer of the cache line.

2.4.2 Virtual Memory

In general, programs, data or devices are indexed in a memory by a physical address.
However, logical address space is normally larger than physical address space. For exam-
ple, an architecture with a 32 bit address bus can support up to 4GB (232) of memory.
The availability of virtual space is ideal for parallel applications because it allows them
to view the memory space independently. Access by virtual address also simplifies the
allocation of physical memory resources.

The virtual address space is typically divided into pages. The address of each page
has to be translated from a virtual address to a physical address. Virtual-to-physical page
translations are normally held in a translation table, which is allocated in the memory
itself. However, it is impractical to access memory every time a virtual address needs
to be translated. Therefore, an additional cache, called a Translation Look-aside Buffer
(TLB), is provided to store a set of recent translations [26]. Traditionally, the TLB does
not only hold the page translations, but it also provides additional information to let the
system validate the access permissions of the transaction before it accesses the physical
memory.

2.4.3 Protection Mechanism

A protection mechanism is required to prevent each process from any malicious or acciden-
tal modification by unwelcome processes. Its duties are to distinguish between authorised
and unauthorised usage, to specify the controls to be imposed and to provide a means of
enforcement. Protection information is typically stored with virtual address translations
since they both refer to pages in memory.

2.5 Summary

Architectural-level parallelism is required for both performance improvement and pro-
cessor utilisation. Though the traditional control-flow programmers model executes in-
structions sequentially, implementations now support instruction level parallelism using
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pipelining, superscalar, VLIW and EPIC approaches. These implementations allow a
processor element to simultaneously execute multiple instructions from a single thread
stream. Additionally, concurrency from multiple threads may be imposed on a single
processor via an interrupt mechanism leaving scheduling and context switching to soft-
ware. In shared-memory multiprocessors, thread level parallelism is available but at the
expense of a complexity and non-coherent protocol which requires a high performance
interconnection network. Loosely-coupled multiprocessors has limited applications.

A data-flow model naturally supports instruction-level concurrency. Both static and
dynamic data-flow models exploit uncontrolled parallelism. Their performance is throt-
tled by matching store transactions. Nevertheless, ideas from such architectures inspired
processor architects to enhance the control-flow model with data-dependent features, such
as a register scoreboarding and an out-of-order execution.

Instruction encoding strongly influences architectural design. The simplicity in RISC
architectures allows its design and implementation to be faster than that of CISC architec-
tures. Memory access via load and store instructions in RISC allows flexible instruction
scheduling and independent data transaction operations.

Memory access via virtual address imposes order between concurrent processes. The
next chapter describes extended models to support thread-level parallelism, demonstrates
how an amalgam of control-flow and data-flow techniques can support thread level paral-
lelism in hardware.
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Multithreaded Processors

Computing is similar to cookery. Programs, like recipes, are lists of
instructions to be carried out. The raw materials, like ingredients,
are data which must be sliced & diced in exactly the right way, and
turned into palatable output as quickly as possible.

The Economist, April 19th 2001

3.1 Introduction

A multithreaded processor employs multiple streams of execution to hide idle periods due
to memory access latency or a non-deterministic interval when a processors waits for data
dependency resolution (e.g. identifies independent instructions in an instruction window
for issuance) [6]. The architecture trades design simplicity for efficiency by combining
control-flow and data-flow at the hardware level as illustrated in Figure 3.1.
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Figure 3.1: The combination of control flow and data flow.
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This chapter is divided into four parts. Section 3.2 first reviews the development
of multithreaded architectural design. Their supportive software and memory systems
are further discussed in Section 3.3. Section 3.4 presents essential efficiency factors and
appropriate evaluation methods for multithreaded processors. Section 3.5 summarises the
necessary requirements for multithreaded architectural design.

3.2 Multithreaded Architectures

The idea of supporting multiple contexts in a single pipeline was first proposed around
1958 by both Honeywell [63] and Gamma 60 [64] (see Figure 3.2). In 1964, Cray CDC
6600 supercomputer proved that the architecture gained benefit by running multiple in-
dependent operations in parallel on its peripheral processor.
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Figure 3.2: The design development of multithreaded architectures.

Later in 1976, the first commercial TLP architecture called Heterogeneous Element
Processor (HEP) [28] was released. The HEP architecture was designed to support a
large scientific calculation. Unfortunately, the HEP was not successful. Perhaps, this
is due to the immaturity of software to exploit TLP and the fact that memory access
latency was not significant during the period. Nevertheless, its existence demonstrated
that a complete multithreaded system was feasible and served as a basis for subsequent
architectures.

In 1995, Tera Corporation successfully introduced a MultiThreading Architecture
(MTA) [29] to the market [5]. The architecture contributes a reduction of programming
effort in scientific computing with scalable performance on industrial applications where
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parallelism is difficult to extract. Recently, Intel released a commodity multithreaded
processor for servers, the Pentium IV Xeon, based on a hyper-threading technology, i.e.
Simultaneous MultiThreading (SMT) [30].

Various aspects of multithreaded architectural design are presented in the remain-
der of this section. A context switch mechanism in a single pipeline is first explained
(§3.2.1). Then, different styles of execution contexts from a range of architectures are
presented (§3.2.2), followed by a concurrency control model of the multithreaded archi-
tecture (§3.2.3). The section finishes off with multithreaded extensions to a multiple-issue
model (§3.2.4).

3.2.1 Context-switching Mechanisms

For the execution of a single pipeline, there are two main approaches for context switching:
a cycle-by-cycle context switching and a block context switching. Figure 3.3 presents
the overview of these two switching mechanisms compared with the context switching
illustration in the single-threaded processor.
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Figure 3.3: Context switching mechanisms.

Cycle-by-cycle Switching

Cycle-by-cycle switching statically interleaves threads every clock cycle using a round-
robin schedule (e.g. HEP [28], Tera MTA [29], Monsoon [59], TAM [65]). The advantages
of this fine-grained technique are its zero context-switching overhead and the absence of
any complex circuits that are needed to handle instruction, data and control dependencies
(e.g. issue speculation, data forwarding, and branch prediction)
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Nevertheless, cycle-by-cycle switching poses the following disadvantages:

• The optimal number of active threads needs to be equal to or greater than the
number of pipeline stages to support sufficient parallelism (e.g. Tera MTA provides
128 threads per pipeline).

• The performance of a single thread is degraded because the execution time is shared
by multiple threads.

• The pipeline could be under-utilised when it processes an inadequate number of
threads (e.g. less than the number of pipeline stages).

Block Switching

This technique, sometimes referred to as coarse-grain switching, allows a thread to run
for a number of cycles before being switched out for the following reasons:

1. A latency event is encountered – A switching point is implicitly indicated by a
cache miss, a branch delay slot, a failed synchronisation (e.g. Alewife’s Sparcle
processor [66]) or an invalid flag in a scoreboard that indicates an invalid value of
the required register [67].

2. A context-switch indicator is reached – Context switching is explicitly indicated by
special instructions. The switching signal is provided to break the current running
thread into short control-flow microthreads [4]. The mechanism is necessary to avoid
the domination of a single thread.

Context switching to another register space is done by either windowing a different
register set on a larger register space or selecting an alternative register set using fast
crossbars or multiplexers.

There are a number of advantages of the block-switching technique:

• It requires a smaller number of threads for multithreading.

• The design allows each thread to execute at full processor speed.

• The load instructions can be grouped into one thread for prefetching its subsequent
thread operands in order to avoid load latency penalties.

Though switching a register set with these approaches is very efficient, it supports
only a restricted number of threads. Boothe and Ranade’s study [68] indicates that the
mechanism is inefficient at handling short latency events if they occur frequently. This is
because the run-length can be overshadowed by the context-switching penalty of several
cycles to clear the processor pipeline.
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3.2.2 Multiple Execution Contexts

For the control-flow based architecture, the execution context of one thread consists of a
PC and a register set. In order to support multithreading at the hardware level, multiple
contexts are employed in the hardware level. A number of contexts in the architecture is
generally based on a hardware budget and the cost of context switching.

In early 1980s, multithreaded architectures were designed to minimise context switch-
ing by using a minimum context size (e.g. HEP’s context is only the PC [28]. An INMOS
Transputer’s context is just two registers, one for a workspace pointer and the other for
the PC [69]). However, intermediate calculation results in such architectures need to be
transferred to/from the memory. This imposes a huge burden on the memory hierarchy.
Later on, more use was made of registers (e.g. *T reduced data transferring by load-
ing all necessary context into registers [70]). The context switch operation is still rather
expensive.

Later models (e.g. Alewife [66], SMT [30]) added more register sets to store a few
active contexts in the pipeline. The systems which evolve from data-flow architecture such
as EM-4 [60], MDFA [71] and Anaconda [4] store their execution contexts in Activation
Frames (AF). The usage of AFs breaks through the limitation in a number of contexts
because it is relocatable to any memory space. In Anaconda [4], an execution context is
additionally associated with presence and deadline bits for concurrency support.

3.2.3 Concurrency Control

Operating multiple threads needs a robust concurrency model to co-ordinate all activities
in the system. Parallelism at the hardware level requires mechanisms to handle thread
communication, thread synchronisation and thread scheduling as presented below:

Thread Communication

Data dependencies exist between multiple threads. Multithreaded architectures prefer
low inter-thread communication overhead. There are two methods through which threads
can communicate to one another. The first method is based on a shared memory (i.e.
HEP [28], EM-4 [71] and Monsoon [59]). The method uses thread synchronisations such
as mutual exclusion or monitors in order to wait for the data from the remote mem-
ory space. The second method is conducted via message passing (i.e. Alewife [66] and
Transputer [69]) by which a data package is directly transferred to the other threads.

Thread Synchronisation

Thread synchronisation is a mechanism where an activity of one thread is delayed un-
til some events from other threads occur. Control dependencies exist between multiple
threads. The inter-thread synchronisation is required for co-ordinating the dependencies
by synchronising their signals and data. There are two types of synchronisation. The first
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type is a co-operative synchronisation where threads wait for either data or controls from
one another. An example of this method is a producer-consumer model [72].

The second type is a competitive synchronisation which prevents interference on
shared resources. Otherwise, simultaneous accesses of multiple threads may lead to data
corruption. Mutual exclusion is provided to prevent the competitive case. To support
this, only a key is allowed as a guard. Only one thread is handed a key to access, i.e. lock,
the protected resource while the others have to wait until the resource is released, i.e.
unlocked. Each thread simultaneously holds many keys, hence it reserves many resources
at the same time.

Synchronisation techniques in multithreaded architectures vary greatly. It can be
a signal-graph consisting of local counters for fork/join [28, 73], full/empty bits [74], a
memory based data-flow sequencing [59] or data-flow presence flags [60, 75, 29].

Thread Scheduling

Thread scheduling is crucial for multithreaded operation. The mechanism avoids resource
allocation problems such as a deadlock and starvation. A thread scheduler determines
the execution order of all ready threads. These threads are waiting to be dispatched in
accordance with their priorities or deadlines.

In practice, scheduling multiple threads at the hardware level has usually been im-
plemented with a simple queue that provides First-In-First-Out (FIFO) order, or with
a simple stack that offers Last-In-First-Out (LIFO) order. However, such simple tech-
niques are inadequate both for avoiding the starvation problem or in providing real-time
scheduling. Therefore, information from the application level, such as a thread’s priority
or deadline, needs to be incorporated into the scheduling mechanism. Thus, a hardware
sorting queue is required.

A number of hardware sorting queues have been introduced (e.g. a parallel sorter [76],
a sorting network [77], a systolic-array sorter [78]). However, they either require more
than a single cycle to make a decision, or need O(n) comparators to sort n elements.
Fortunately, Moore introduced a fast scheduling queue called a tagged up/down priority
queue [8] as depicted in Figure 3.4.

The tagged up/down priority queue provides four advantages:

1. Data insertion and data extraction are performed every cycle.

2. The identical priorities/deadlines are extracted in the FIFO order of insertion in
order to preserve their sequential properties.

3. Queue status (empty and full signals) is provided.

4. Only n
2

comparators are required to sort up to n data entries.
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Figure 3.4: The tagged up/down priority queue.

3.2.4 Multiple-issue Models

Scaling conventional multiple-issue processors for multithreading increases complexity and
cost. Thus, sufficient parallelism is exploited to meet a high-throughput goal. Three
different implementations were introduced to allow instructions to be concurrently issued
from multiple threads: a trace processor, a Simultaneous MultiThreading (SMT) and
a Chip Multi-Processors (CMP). Figure 3.5 illustrates their multithreaded operations in
comparison to two samples of single-threaded’s multiple-issue architectures – a superscalar
architecture and a VLIW architecture.
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Figure 3.5: The illustration of multithreading with multiple-issue.
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Trace Processor

Trace processors require very complex hardware to exploit parallelism by speculatively
spawning threads without the need of software re-compilation [79, 80]. They normally
use a trace cache [81] to identify threads at runtime. Inter-thread communication is then
performed with the help of a centralised global register. The architecture exploits both
control-flow and data-flow hierarchies using a statistical method for speculative execution
supported by a misprediction handling mechanism.

Unfortunately, the additional complexity in the control logic introduces a delay into
the system. Also, a large amount of hardware for speculative execution wastes power
during the execution of parallel applications.

Simultaneous MultiThreading

Simultaneous MultiThreading (SMT) [30], or hyper-threading used in Intel Pentium IV
Xeon processor for servers [82], is designed to combine hardware multithreading with
superscalar’s out-of-order execution. The architecture simultaneously issues instructions
from a small number of threads. It aggressively shares all functional units among threads
in addition to ILP obtained from dynamic scheduling. Different threads may issue in-
structions in the same cycles. This eliminates poor ILP between the subpipelines and
to hide latencies within the subpipelines. This architecture supports register-to-register
synchronisation and communication. It uses a special register-name checking mechanism
to hide the conflicts from inter-thread competition over shared resources [83].

Nevertheless, the architecture needs to replicate register renaming logic and a return
stack pointer; a number of shared resources, such as a re-order buffer, a load/store buffer
and a scheduling queue, need to be partitioned; and the scheduling unit is complex because
it has to dynamically allocate the resources with a speculative pre-computation that leads
to a delay in every cycle.

Chip MultiProcessor

Chip MultiProcessor (CMP) [84, 85] (e.g. Sun’s MAJC [86] and Raw [14]) is a symmetric
out-of-order multiprocessor. This architecture decentralises functional units and requires
a mechanism to distribute threads to each processor.

There are a number of advantages introduced by this architecture. Firstly, a delay
from crossbars or multiplexers, used for context switching, is eliminated. This simpli-
fies the circuity and benefits to faster execution rates. Secondly, the number of thread-
processing elements for CMP increases linearly where as the growth in the other multiple-
issue multithreaded architectures is quadratic because their register sets and pipelines are
fully connected. Lastly, its simpler design lay-out and interconnection effectively reduces
the cost of design and verification.

The disadvantages of CMP are a long context-switching overhead and the under-
utilised processing elements when programs exhibit insufficient parallelism. This reflects
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that some functional units could be better utilised by being shared.

3.3 Support Environment

This section investigates two support environments that are crucial for multithreaded
operations: a memory management system (§3.3.1) and the support from the software
level (§3.3.2).

3.3.1 Memory Management

A processor normally builds up a thread’s soft context in the memory hierarchy during
execution. To support multiple soft contexts in multithreaded architecture, the roles of
instruction cache, data cache and TLB need to be adjusted.

In practice, both instructions and data rely on pre-fetching/pre-loading into caches
prior to execution. Often, pre-fetching and pre-loading operations are conducted by using
a statistical pattern-based table or a special address translation from Speculative Precom-
putation (SP) [87]. The technique reduces performance degradation even though cache
misses may have already been hidden by multithreading [88].

The first level cache is typically addressed with virtual addressing to allow the system
to perform cache access in parallel with address translation. However, different contexts
may use the same virtual address to refer to different physical addresses. This introduces
a virtual space conflict. Possible solutions for such a case is to either associate a process
identifier to each cache line or to use a virtually indexed, physically tagged cache, although
temporal nondeterminism may occur if the number of entries required by active threads
exceeds the resources.

Anaconda [4] offers a scalable memory tree, whose topology is extensible by a router
where a message-passing scheme is used for communication. The structure results in an
O(log(size)) memory access latency. PL/PS [89] proposes non-blocking threads where all
memory accesses are decoupled from a thread and pre-loaded into a pipelined memory.

3.3.2 Software Support

Concurrency primitives in programming languages are increasingly common. For example,
thread libraries or thread objects in Java [90], multithreading ID [91], Sisal [92], and Tera
C [93] languages offer various multithreading models. Occam [94] has been designed to
facilitate parallel INMOS Transputer [69]. Multilisp language [95] has been implemented
to support the nested functional language with additional operators and semantics to
handle parallel execution for the MASA architecture [96]. A number of thread libraries
exist for high-level programming languages. Among them, the POSIX thread library, the
UI thread library and the Java-based thread library have competed with one another to
become the standard programming method for multithreading [97].
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Operating Systems (OSs) additionally support multiple threads via multitasking.
Early OSs (e.g. Window 3.x, Mac 9.x) used a co-operative multitasking which relied on
the running programs to co-operate with one other. However, because each program is
responsible for regulating its own CPU usage, ill-behaved programs may monopolise the
processor resulting in the halting of the whole system. Alternatively, pre-emptive multi-
tasking is preferred by modern OSs (e.g. UNIX, Window NT). These OSs conform to the
IEEE POSIX thread 1003.x [98] standard to be pre-emptive multithreading, symmetric
load balancing and portable (e.g. Lynx, VxWorks, Embedded Linux, and PowerMac).
Most of them transform thread deadlines into priorities.

Window CE, Mac OS X, Sun Solaris, Digital Unix and Palm OS have a common
backbone which naturally supports the execution of multiple threads in accordance with
the Unix International (UI) standard [97]. In UI standard, a thread of execution contains
the start address and the stack size. The multithreading features is the same as those
required by PThread such as pre-emptive multithreading, semaphores and mutual exclu-
sion. The pre-emptive multithreading strictly enforces time-slicing. The highest runnable-
priority thread is executed at the next scheduling decision, pushing the currently-running
thread back to a dispatched queue. Time-slicing can be used for preventing low-priority
starvation by running in round-robin order for fairly scheduling threads of the same pri-
ority.

3.4 Efficiency Factors

This section introduces the design trade-offs in multithreaded architectures (§3.4.1). Pro-
cessor efficiency is then reviewed (§3.4.2), followed by the distribution of the efficiency
(§3.4.3). The section finishes off with a useful cost-effectiveness model (§3.4.4).

3.4.1 Design Trade-offs

Although multithreaded architectures offer enormous potential for performance improve-
ment, the following trade-offs should be addressed:

• A higher hardware cost :
Hardware cost becomes higher because complex mechanisms, extra storages and
interconnections are needed for multithreading.

• An incremental cycle time:
Extra multiplexing/interconnections at the hardware level tends to add computa-
tional delay to each execution cycle.

• Memory Bandwidth bottleneck :
Simultaneous execution of multiple threads increases the memory traffic.

• Poor cache hit ratio:
Moving from single thread support to multiple threads reduces data locality, thereby
reducing the cache efficiency.
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3.4.2 Processor Efficiency

Multithreaded processors exhibit more parallelism than their single threaded counterparts.
Performance is effectively gained by context switching rather than stalling, for example,
for long latency memory or branch operations. However, the balance between the perfor-
mance and the cost of hardware needs to be justified. Theoretically, the efficiency (E) of
multithreaded processor is determined by the following four factors [99]:

1. The number of contexts supported by the hardware (n).

2. The context-switching overhead (S).

3. The run length in instruction execution cycles between switches (R).

4. The latency of the operations to be hidden (L).

Figure 3.6 presents the relationship between the processor efficiency (E) and the
number of execution contexts (n). There are two regions on this processor efficiency
graph: a linear region on the left and a saturation region on the right. The saturation
point is reached when the service time of the processor completely conceals the latency,
i.e. (n−1)(R+S) = L. The efficiency is assessed using Equation 3.1 for the linear region
and Equation 3.2 for the saturation region.
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Figure 3.6: Relationship of processor efficiency and the number of contexts.

Elinear =
nR

R + S + L
(3.1)
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Esaturation =
R

R + S
(3.2)

The equations suggest that, before reaching saturation, the processor efficiency may
be improved by reducing L or S, or increasing n. Likewise, in the saturation region, the
processor efficiency increases by lowering the value of S.

3.4.3 Efficiency Distribution

Although Equation 3.2 indicates that the system may offer full processor efficiency (i.e.
Esat=1.0) if the context-switching overhead S is zero in the saturation region, however, the
full efficiency case is impossible because, in reality, a multithreaded processor is utilised
dynamically.

For the saturation region, Agarwal extended an analytical model to rely more on
service/workload distribution information [100]. In the model, service time intervals be-
tween context switches are distributed geometrically. A latency penalty is distributed
exponentially. The processor efficiency distribution is based on a M/M/1//M queueing
model [101] as presented in Equation 3.3.

E(n) = 1 − 1
n
∑

i=0

(

r(n)
l(n)

)i
n!

(n−i)!

(3.3)

where n is the degree of multithreading

r(n) is the mean service time distribution

l(n) is the mean latency penalty distribution

E(n) is the processor efficiency distribution

3.4.4 Cost-effectiveness Model

It is insufficient to focus on improving only efficiency without considering the increased im-
plementation costs (e.g. power, increased transistor count and design complexity). Culler
has proposed a cost-effectiveness (CE) matrix to measure multithreading efficiency [3] as
follows:

CE(n) =
E(n)

C(n)
(3.4)

C(n) =
Cs + nCt + Cx

Cb

(3.5)

47



Chapter 3. Multithreaded Processors

where E(n) is the processor efficiency distribution

n is the degree of multithreading

Cs is the cost for a single threaded mechanism

Ct is the incremental cost per thread

Cx is the incremental cost of thread interactions

Cb is the base cost of an equivalent single thread processor

C(n) is the total implementation costs

When the cost per thread (Ct) increases, the cost-effectiveness decreases as shown
in Figure 3.7. Therefore, it is necessary to minimise the number of threads supported in
the hardware in order to obtain the peak cost-effectiveness result.
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Figure 3.7: Cost-effectiveness of a multithreaded processor when varying Ct.

3.5 Summary

Multithreaded architectures have the potential to offer performance improvements by ex-
ploiting thread-level parallelism. This parallelism is capable of overcoming the limitations
of instruction-level parallelism. However, sufficient instructions need to be obtained to
cover long latencies (e.g. memory access, control dependencies). There are different ap-
proaches to multithreaded processor design. On the one hand, a single instruction thread
size (e.g. cycle-by-cycle switching model) is desirable because of the absence of pipeline
dependencies. However, this approach degrades the performance of a single thread. On
the other hand, a coarse-grained thread size has better support for sequential execution.
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Its performance on single threaded applications is competitive with conventional control-
flow architectures, provided that the context-switching overhead is small.

Hardware support for multithreaded parallelism must address the key issues of com-
munication, synchronisation and scheduling. Thread communication could be performed
using shared memory or shared registers. Thread synchronisation is required to avoid
conflicts of data. One approach is to use data-flow style synchronisation based on pres-
ence flags. Thread scheduling should be simple. However, to meet real-time constraints,
a hardware scheduler is required using a priority or a deadline scheme.

Multithreaded architectures can be enhanced to support multiple issues. This is done
by either decentralising the activities to compromise with hardware complexities such as
the design in chip multiprocessors, or sharing functional units in order to eliminate all
horizontal and vertical wastes in a way similar to simultaneous multithreading.

At the software level, a number of standard thread libraries and multithreaded appli-
cations are begining to be widely available. Various operating systems naturally provide
multiple threads by multitasking. A number of operating systems offer a preemptive mul-
titasking, which explicitly enforces a time-slice during an operation to prevent starvation
problems.

The efficiency model indicates the need for a minimum number of execution con-
texts in the processing elements, a simple concurrency mechanism that provides a low
context-switch overhead; a simple multithreading scheduler that offers real-time support;
and an efficient synchronisation mechanism. For embedded systems not only execution
performance is concerned, but also the cost effectiveness of the hardware and the power
efficiency.
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Chapter 4

Embedded Systems Design

So you can find the hidden doors to places no one’s been before
And the pride you’ll feel inside is not the kind that makes you fall,
it’s the kind that recognises... the bigness found in being small.

A. A. Milne

4.1 Introduction

The architectures of embedded processors are substantially different from desktop proces-
sors. Embedded systems have more stringent constraints that are mostly determined by
the characteristics of applications they support. In general, the systems often respond to
external events, cope with unusual conditions without human intervention with operations
that are subjected to deadlines.

Section 4.2 identifies design constraints that should be considered in developing
feasible solutions for embedded systems. Section 4.3 introduces novel embedded architec-
tural techniques and extensions for multithreaded operations. Section 4.4 summarises the
issues raised in this chapter.

4.2 Design Constraints and Solutions

There are two important trends in the embedded market. The first trend is the growth of
multimedia applications [14]. This has stimulated a rapid development for real-time media
calculation (e.g. video/music coding, speech processing, image processing, 3D animation).
The second trend is the growth in demand of inexpensive gadgets [102], for example, fully
integrated mobile phone, game, camera, recorder, PDA and movies player.
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These trends demand higher computing power, yet have minimal size, weight and
power consumption. Though different embedded applications have their own sets of con-
straints, the nature of applications that use embedded devices shares the following five
constraints:

1. Real-time response (§4.2.1)

2. Low power consumption (§4.2.2)

3. Restricted cost (§4.2.3)

4. Physical limitation (§4.2.3)

5. Application specifications (§4.2.4)

4.2.1 Real-time Response

In many embedded systems, an ability to respond (produce appropriate output) within a
specified time after an input stimulus is as important as the computational performance.
However, in embedded architectures the speed of a computation is not as important as
knowing the time required to complete a computation. This requirement differs from
general fast systems which are typically designed to minimise the average execution time
in order to get overall high performance [103] and often respond to an external interrupt
with a considerable context-switch overhead. For embedded designers, real-time response
is another challenge.

Generally, embedded architectures reduce their interrupt latency by using a flexible
register window to each execution process from a large set of registers (e.g. 192 registers
in AMD 29K [104] or 6 overlapping sets of registers in ARM [39]). Its context-switching
overhead is reduced because the current executing context is not required to be saved
immediately.

Systems supported by a flexible register window benefit when used in conjunction
with techniques derived from multithreaded architectures, such as the use of priority
scheduling in Anaconda [4], or the ready/switch technique in MSPARC [105].

One characteristic of real-time processes is the need to accurately predict bounds
on execution times to ensure deadlines can be met. Therefore, instruction speculations
(i.e. branch prediction, dynamic scheduling), which are non-deterministic probabilistic
mechanisms, are usually avoided by embedded systems. Embedded architectures employ
alternative techniques. To lessen a role for the branch predictor, a set of predicated
instructions have been introduced (e.g. ARM [39], PA-RISC [38] and TI DSP [106]).
This enhancement extends the opcode of instructions with a conditional code, allowing
the processor to execute them with fewer branches. This results in denser code and faster
execution.

The correctness of timing is achieved through support in software. Currently, sub-
stantial real-time languages (e.g. real-time Java [107], Ada95 [108], SPARK [109], Raven-
scar [110]) require mechanisms to handle their timing analysis, communication and con-
currency. Timing analysis is normally achieved using worst case timing estimation [111]
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(e.g. assume that all loads will cause a cache miss). Communication and concurrency
support in the embedded hardware is an on-going topic of research.

4.2.2 Low Power Consumption

Power consumption is critical in embedded systems. Lowering power dissipation, improves
battery life, reduces heat, lowers radio electromagnatic emissions, reduces battery size and
minimises manufacturing costs. The power consumption is a combination of dynamic,
leakage, and static power as presented in Equation 4.1 [112].

P = Pdynamic + Pleakage + Pstatic

=
(

∑

aici

)

V 2
ddf + nVddIleakage + Pstatic (4.1)

where, P is the power consumption

ai is the activity factor of unit i

ci is the capacitance of unit i

Vdd is the power supply voltage

f is the input frequency

n is the number of transistors

Vth is the threshold voltage

Ileakage is the leakage current

A quadratic reduction of dynamic power is achieved by lowering the supply voltage
(Vdd) [113]. The SIA International Technology Road-map (2002 edition) [10] predicts that
the voltage could be reduced to 0.4V by 2016.

The left-hand chart in Figure 4.1(a) presents evidence that decreasing the supply
voltage (Vdd) or increasing the threshold voltage (Vth) reduces power consumption. Never-
theless, these adjustments increase the circuit delay as illustrated in Figure 4.1. Therefore,
Vdd cannot simply be reduced because it affects the necessary timing assumptions. The
minimum gate delay of the chip directly depends on the switching threshold of the tran-
sistor (Vth) and the supply voltage (Vdd) as presented in Equation 4.2 [114]. Due to this
reason, most embedded processors operate with a slow clock in order to save power.

tmin ≈ Vdd

(Vdd − Vth)α
(4.2)

where, tmin is the minimum gate delay (cycle time)

α is the constant value, currently around 1.3
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Figure 4.1: The relationships of power consumption and circuit delay with the supply
and the threshold voltage [115].

On the other hand, lowering the supply voltage (Vdd) also reduces the noise margin
and increases leakage. This is because the 10-15% decrement of Vdd directly reduces Vth as
shown in Figure 4.1. The reduction of Vth doubles the leakage current (Ileak) as presented
in Equation 4.3. This shows that Vdd can only be reduced to a value that allows reliable
operation in the envisaged environment.

Ileak ∝ e
−qVth

kT (4.3)

where, q, k and T are constant values

Alternative techniques for lowering power consumption are transistor sizing, dy-
namic voltage scaling [116, 117], dynamic frequency scaling, dynamic pipeline scaling [118],
transition reduction and clock gating [119]. The purpose of these techniques is to reduce
activity (ai) and circuitry (ci), which are responsible for the dynamic power consumption
by using a power operating mode (i.e. running, standby, suspend and hibernate). These
various techniques can be combined to reduce power consumption. But all of these power
saving techniques come at the expense of performance [118, 120].

As transistor geometries decrease, leakage power is increasing as presented in Fig-
ure 4.2. Instead of wasting leakage power, instruction level parallelism utilises otherwise
idle functional units by maintaining their operation. However, this technique is specula-
tive and may waste a significant amount of power on mispredicted tasks. Further research
is required to exploit parallelism in an energy efficient way.

53



Chapter 4. Embedded Systems Design

Figure 4.2: Leakage power on the increase [113].

4.2.3 Low Cost and Compact Size

Embedded processors trade performance for a lower cost and a smaller size. For a compact
size, embedded architectures often have shallower pipelines, which operates with a small
number of registers and uses a reduced bus bandwidth [120]. The cost of a processor
is influenced by architectural features, materials, packaging techniques, on-chip circuits,
fabrication yields and design & development costs.

By the year 2006, the state-of-the-art in Very Large Scale Integration (VLSI) is ex-
pected to provide one billion transistors on a single chip [10]. As the number of transistors
increases, more components (e.g. memories and peripherals) are being integrated onto
one chip to produce System On Chip (SOC) [13].

Advances in many factors are driven by improvements in transistor lithography
processes [10]. A trend in [121] proposes that on-chip caches increasingly dominate chip
area. These caches reduce the number of memory accesses, thereby reducing latency and
power. Bigger caches allow a larger working set to be held from one application and
reduce contention for concurrent applications.

The performance of caches relies on statistical properties which become less effective
when running multiple applications in parallel. The cache area could be reduced without
performance penalty provided the cache area is managed better by exploiting knowledge
about scheduling decisions. Furthermore, the saving in cache area could be used to support
such a management mechanism.
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4.2.4 Application Specifications

Performance improvements for embedded systems are often obtained by tailoring the pro-
cessor design to its application requirements. In general, there are several degrees of
application specifics as classified in Figure 4.3. This figure presents the trend of perfor-
mance improvement, power dissipation and flexibility when architectures dedicate their
hardware infrastructures to specific applications.
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Figure 4.3: Embedded Processor Classification [122].

General-purpose embedded processors (e.g. ARM9E [39], MIPS32 [36], Motorola
68K [16] and AMD 29K [104]) are the most flexible architecture designed for personal
handheld equipment such as PDAs, mobiles, cameras, which must support an embedded
OS (e.g. Windows CE, Embedded Linux, Symbian). Therefore, the core architectures
mostly inherit from successful general-purpose processor designs, however using a lower
scale for reducing power and size.

Digital Signal Processors (DSPs) are available for numerically intensive applications
with streamed data. Their architectures often offer mechanisms to accelerate signal pro-
cessing such as single-cycle multiply-and-accumulation, saturation arithmetic, fixed-point
notation, extended addressing modes for array & circular buffer handling and multiple
memory accesses [106].

A processor can be enhanced when co-designing its core with specific software sup-
port in the form of Application Specific Signal Processors (ASSP). The ASSP core benefits
from application-specific instructions that are tailored for particular calculations to serve a
narrowly defined segment of services. These processors are designed to be programmable
in order to have flexible extensions. Examples include media processors which are de-
signed for massive floating point calculation with high memory bandwidth [123, 40] and
network processors that focuses on rapid communication [124].
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Field Programmable Devices(FPD) enable users to customise task-specific processors
by using device programming utilities [125]. Better still are Application Specific Integrated
Circuits (ASIC) which achieve a more compact computation core. Furthermore, full
custom physically-optimised IC designs is available for the highest level of optimisations.

4.3 Techniques in Embedded Architectures

Embedded processors employ various techniques from microprocessors. In general, em-
bedded architectures rely on a flexible processing element that consists of approximately
3 to 6 pipeline stages. Their execution units approximately support a 16-bit to 32-bit
data/instruction width and issue approximately 1-4 instructions per cycle (e.g. integer,
floating point, load/store and MAC subpipelines).

The following sections explain the details of critical features of architectural innova-
tion for the embedded domain such as a compact instruction encoding (§4.3.1), predicated
instructions (§4.3.2), subword-level manipulation (§4.3.3) and thread level parallelism sup-
port (§4.3.4).

4.3.1 Specially Compact Instruction Encoding

An embedded processor can have an instruction set architecture based on CISC (e.g.
Motorola 68K [16]) or RISC (e.g. ARM [39], MIPS [36]) approaches. The advantage
of CISC instructions is good code density, which allows efficient use of memory, reduces
the instruction bandwidth and provides an unaligned access capability. The disadvan-
tages of CISC are that registers are inefficiently used which increases memory traffic, and
instruction decoding is complex which results in complex control.

RISC achieves high performance due to hardware simplicity. However, RISC in-
structions are less dense than CISC ones. Thus, some embedded RISCs offer a solution
in the form of two instruction formats: full and compact forms, e.g. ARM and ARM
Thumb [39], MIPS32 and MIPS16 [36]. The compact form can offer a 40% reduction in
memory footprint [1], despite requiring more instructions to complete the same task.

4.3.2 Predicated Instructions

Processors waste a significant number of cycles because of branch mis-predictions. This
is because, all mispredicted instructions must be flushed from the pipeline. Therefore, a
branch predictor is required [26]. However, these mechanisms are expensive in terms of
circuit area and power consumption.

ARM [39] goes to the extreme of making every instruction predicated. Predicated
instructions are used to reduce the number of branches. These instructions are only al-
lowed to commit their results to the registers if their conditions match the status register.
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Using them, a high proportion of conditional branches are avoided. The usage of pred-
icated instructions instead of some branches leads to a compact instruction stream due
to an elimination of a number of branch delay slots. Nevertheless, the implementation of
predicated instructions requires additional bits for a predicated field.

A compromise solution to let an instruction remain compact but avoid a number
of branch usages is based on partial predication such as conditional moves and condi-
tional loads. Such technique moves/loads value when its condition is true. Using these
instructions has proved to provide an acceptable ratio of branch elimination [27].

4.3.3 Subword-level Manipulation

Programmes that manipulate data at the bit level are necessary in some embedded do-
mains. Bit manipulating instructions such as bit test, bit clear and bit set [16] have been
introduced to handle encryption algorithms, calculate checksums, and control peripheral
hardware. Furthermore, subword-level manipulation instruction such as BSX (Bit Sec-
tion eXtension [126]) has been used to reduce the overhead of packing/unpacking narrow
width data (e.g. less than a word but more than one bit).

4.3.4 Thread Level Parallelism Support

Conventional embedded processors handle time-critical events by interrupting the current
process. In order to simulate concurrency, the single threaded control-flow processor
must perform a software driven context switch which has considerable overhead. On the
other hand, multithreaded processors provide hardware support for context management.
Furthermore, low level scheduling decisions may be performed in hardware [4, 105] rather
than in the core of a Real-Time Operating System (RTOS).

Hardware support for best-effort scheduling needs only use a couple of shared register
sets to hold the contexts and a simple priority based scheduling scheme. For example, the
differential MultiThreading (dMT) [127] architecture for embedded processors supports
two active contexts by duplicating the PC, register file, fetch-decode latch, decode-execute
latch and execute-memory latch. The thread is switched out when a cache miss occurs
and will be resumed when the cache miss is resolved provided no higher priority thread is
available. Of course multithreading can be combined with chip multiprocessor technique
(see Chapter 2) to allow more than one thread to be executed in parallel.

Embedded systems with multiple competitive threads require good scheduling to
meet real-time needs. A hardware scheduler that makes best-effort decisions on a couple of
execution contexts appears to be inadequate. To meet real-time constraints, an alternative
multithreading architecture that can make decisions based on all execution contexts is
required.
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4.4 Summary

The embedded market is growing and requires an architecture that can provide real-time
response, low power, low cost, compact size and high performance. Although there are
trade-offs between hardware performance and power dissipation in an embedded processor,
various techniques have been proposed to meet these challenges:

1. Power operating modes -

Power management decisions need to be made at an architectural level in order that
higher level information (e.g. scheduling decisions) can be used to control power
saving circuits. This control information might be communicated as power operating
modes, e.g. running, standby, suspend and hibernate.

2. Stripped down circuits -

To fit with embedded constraints, non-deterministic mechanisms such as speculative
scheduling or branch prediction are avoided. Embedded architectures employ alter-
native techniques to compensate for the elimination of mechanisms such as branch
prediction. For example, rather than predicting branches, the number of branches
could be reduced by using predicated instructions.

3. Multithreading -

Processing a single thread stream often leaves many functional units of the pro-
cessor under-utilised which wastes leakage power. Speculative branches combined
with instruction level parallelism may improve functional unit utilisation though
complexity goes up and predictability reduces. Exploiting concurrency at a thread
level appears to be a better approach provided context switch overheads can be min-
imised. A multithreaded approach appears to offer good thread level parallelism,
and could support real-time systems if an appropriate scheduling mechanism were
used. Thus, there is room for much improvement.
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Chapter 5

System Overview

One must learn by doing the thing,
for though you think you know it,
you have no certainty until you try.

Aristotle

5.1 Introduction

The investigation of architectural level parallelism in Chapter 2 and the review of multi-
threaded processor architectures in Chapter 3 suggest that thread level parallelism at the
hardware level is a tangible approach to improve processor performance. Nevertheless,
enhancing a processor to exploit thread level parallelism is often limited by a number of
embedded design constraints as reviewed in Chapter 4 . As a result, alternative design
choices are proposed in this chapter for my MultiThreaded Embedded Processor (MulTEP)
architecture.

Section 5.2 starts with the background to MulTEP. Section 5.3 presents MulTEP’s
programming model. Section 5.4 shows my theoretical investigations on the design choices,
which were conducted prior to its implementation. Section 5.5 summarises the system
overview of MulTEP.

5.2 Background to the MulTEP Architecture

As mentioned in Chapter 1, the research is motivated by the growth of the embedded
systems market and my personal interest to implement a novel architecture. This section
addresses my research objectives (§5.2.1), the design challenges of the architecture being
considered (§5.2.2) and the design choices made (§5.2.3).
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5.2.1 Objectives

My research attempts to bring the advantages of Thread Level Parallelism (TLP) to
embedded systems. In correspondence to this attempt, my objectives are:

• To improve processing performance by effectively hiding idle slots in one thread
stream (e.g. from the increasing memory latency or branch/load delay slots) with
the execution of other threads.

• To schedule threads to respond to their requests in real-time.

• To implement thread level parallelism and real-time support at the hardware level
without much incremental hardware cost.

5.2.2 Project Challenges

Before implementing a multithreaded embedded architecture, I identified design challenges
using the background knowledge as reviewed in Chapter 3 and Chapter 4, and then
prioritised them with regards to my research objectives. Table 5.1 presents the criteria
with the priorities I assigned.

Aspect of Design Challenge Priority
Research Critical High Moderate

Multithreading Support TLP in hardware
√

Avoid high memory bandwidth
√

Avoid cache conflicts
√

Reduce physical complexity
√

Allow thread scalability
√

Embedded system Response in real-time
√

Use power effectively
√

Compact Size
√

Work in harsh environments
√

Low radio emission
√

Low cost of end product
√

Table 5.1: Project criteria and the given priorities.

For multithreaded design, I gave a critical priority to the implementation of thread
level parallelism in hardware. The side effect of incorporating thread level parallelism into
hardware, namely memory access bottlenecks, cache conflicts and design complexities, are
given a high priority since ignoring them may severely degrade the performance. For em-
bedded design, I have given real-time response and power efficiency with a critical priority.
I assigned a high priority to scalability because it is important for further improvement.
For the other embedded challenges, which rely on fabrication techniques, such as cost,
size, reliability and radio emissions, a moderate priority is given.
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5.2.3 Design Choices

This section presents design choices that are raised to satisfy the selected critical-priority
and high-priority challenges presented in the previous section. Table 5.2 shows a list of
design choices from the multithreaded design viewpoint.

Challenge Priority Design Choice

TLP in hardware Critical C1: Provide a mechanism to progress a thread

through its life cycle

C2: Provide thread concurrency mechanisms

C3: Eliminate context-switch overhead

C4: Prevent thread starvation

Memory bandwidth High H1: Provide a hardware mechanism to handle

memory traffic of multiple threads

Cache conflict High H2: Enhance cache replacement policy

Physical complexity High H3: Avoid very large register sets and

complex control structures

Thread scalability High H4: Allow the number of threads to scale

without significant architectural change

Table 5.2: Multithreaded design challenges.

To implement thread level parallelism in hardware, design choices C1 and C2 are
proposed to distinguish multithreaded architecture from the single-threaded architecture.
Additionally, I introduced design choice C3 because, in my opinion, a multithreaded pro-
cessor should benefit from the execution of multiple threads without any wasted cycles
on context-switching overhead.

Design choice C4 is concerned with the situation that may arise when concurrency
support is migrated from software to hardware.

Side effects of multithreading result in design choices H1 and H2. Design choice
H1 reflects my belief that introducing a separate hardware mechanism to handle memory
traffic may reduce the memory bandwidth limitations. For cache conflicts (H2), the conflict
is a result of multiple threads competing against each other by repeatedly swapping out
of each other’s working sets. Therefore, I believe that an enhanced cache replacement
policy may minimise the problem. For the physical complexity challenge, design choice
H3 is proposed since a smaller number of registers will reduce the physical complexity.
However, this small number must yield sufficient performance to allow the processor to
benefit from multithreading. Design choice H4 is my proposal for flexible scalability in
terms of the number of threads.

Table 5.3 presents design choices to satisfy the embedded design challenges. Design
choice C5 is inspired by the availability of multiple priority levels for real-time support
in many embedded OSs (see Chapter 4). Design choice C6 is required for an effective
real-time response. However, there should be a compromise between this choice and the
need to reduce physical complexity (H3). The power efficiency goal (C7) reflects the desire
to provide power saving control from an architectural level (see Chapter 4) though specific
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power saving circuits is beyond the scope of this thesis.

Challenge Priority Design Choice

Real-time response Critical C5: Provide a hardware mechanism to issue threads

with regards to their priorities

C6: Allow a hardware to make a scheduling decision

based on the requests of all threads

Power efficiency Critical C7: Design a hardware mechanism to provide

operating modes for power saving

Table 5.3: Embedded Design challenges.

5.3 MulTEP System

Architectural approaches raised in the previous section are implemented in MulTEP.
These approaches are summarised in Table 5.41 together with forward references to im-
plementation details.

Choice Technique Approach Implementation

C1: ⊲ Hardware thread life cycle model see §5.3.4 see §6.3

⊲ Software support daemon see §7.3 see §7.3.1

C2: ⊲ Synchronisation mechanism see §5.3.5* see §6.3.3

⊲ Scheduling mechanism see §5.3.6* see §6.2.3, §6.3.4

⊲ Multiple execution contexts see §5.4.1 see §5.3.2

C3: ⊲ Zero-cycle context switches see §5.3.6 see §6.2

C4: ⊲ Dynamic-priority mechanism see §5.3.6 see §6.3

C5: ⊲ A priority-based scheduler see §5.3.6 see §6.3.4

C6: ⊲ A Tagged up/down scheduler see §3.2.3* see §8.2.1

C7: ⊲ Power operating modes see §4.2.2* see §5.3.8

H1: ⊲ Load-store unit see §6.4 see §6.4

H2: ⊲ Tagged priority cache line see §6.5 see §6.5

H3: ⊲ 4 contexts for 2 processing elements. see §5.4 see §6.2

H4: ⊲ An activation frame representation see §2.3.3* see §5.4.2

Table 5.4: The MulTEP solutions.

In the next section, an overall picture of the MulTEP system is presented (§5.3.1).
The execution context storage is explained in (§5.3.2). This is followed by the instruction
set architecture (§5.3.3) and thread life cycle model (§5.3.4). Synchronisation (§5.3.5) and
scheduling (§5.3.6) are then introduced followed by the memory protection (§5.3.7) and
power operating modes (§5.3.8).

1An entry marked by ’*’ is an idea borrowed/inspired from techniques in the other architectures.
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5.3.1 Overall Picture

The overall picture of the system from the user level to the hardware level is illustrated in
Figure 5.1. Programs from the user level are compiled to native code. Software tools then
either convert the programs into several threads (e.g. Program A) or preserve the existing
flow of instructions (e.g. the sequential form of Program B and the multithreaded form
of Program C). Threads from the kernel level are issued to the hardware level according
to their priority.
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Figure 5.1: The overall picture of MulTEP.

Each program is represented as a directed graph where nodes represent nanothread
blocks [128, 129] and arcs represent their communication events. Nanothreads sequen-
tially operate using the control-flow model, yet effectively realises the natural concurrency
behaviour of the data-flow model to support multithreading.

The processor consists of two processing elements sharing four execution contexts
(see §5.4.1). Excess execution contexts spill out to the memory in forms of activation
frames (see §5.3.2). Circuits for non-deterministic operations, such as branch prediction
and out-of-order execution, are excluded from the design leaving the architecture to rely
on thread-level parallelism.

Threads progress through their life cycle (see §5.3.4) using four multithreading in-
structions: spawn, switch, wait and stop (see §5.3.3). Thread scheduling is dynamic and
based on priorities (see §5.3.6). A mechanism to switch execution contexts operates when
a stall or an NOP occurs (see §6.3.4). MulTEP uses a multiple data entry matching-store
for thread synchronisation, which is similar to that used by Anaconda [4].
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5.3.2 Execution Context

The processing element prototype is based on the RISC processor DLX [24] since the
instruction format is simple to decode, the integer pipeline is simple and yet gives good
performance (see Chapter 3 for background requirements). Thus, the execution context
of one thread consists of a program counter, 31x32-bit integer registers (excluding register
$zero whose data is always 0) and 32x32-bit floating-point registers. The left-hand part
of Figure 5.2 presents the execution context of the processor. The right-hand part of
the figure shows the preserved form of the execution context, called an Activation Frame
(AF) [4], which may be spilled to the memory system.
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Figure 5.2: The execution context and the activation frame.

In each activation frame, a space for the register $zero, called PP, is reserved for
two purposes. The first 8 bits store a priority for scheduling. The next 24 bits store
presence flags , which indicate the presences of 24 input parameters, for handling complex
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data dependencies. AT, K0 and K1 are reserved2. AT stores a program counter. K0 stores a
group ID and a status3. K1 stores a nanothread pointer (i.e. the start PC of the thread).

5.3.3 Instruction Set Architecture

MulTEP is based on the 32-bit MIPS IV instruction set [130]4. The processing element
is divided into five execution units: a load/store group, an ALU group, a jump/branch
group, a miscellaneous group and a multithreading group.

Load/Store Instructions

The load/store instructions support both big-endian and little-endian on byte, halfword,
word, double word, unaligned word and unaligned double word data. Signed and unsigned
data of different sizes are transferable by sign-extended and zero-extended mechanisms.
The register+displacement addressing mode is supported by the architecture as follows:

• [load|store] reg, offset(base)
opcode base reg offset

6 bits 5 bits 5 bits 16 bits

ALU Instructions

The ALU group consists of arithmetic and logical instructions. Each may operate with an
operand from a register or a 16-bit immediate value. Arithmetic instructions are signed
and unsigned based on a two’s complement representation. The instructions are coded as
follows:

• r-type rd, rs, rt
opcode rs rt rd sh func

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

• i-type rt, rs, immediate
opcode rs rt immediate

6 bits 5 bits 5 bits 16 bits

• [mul|div] rs, rt
0x00 rs rt 0x00 mul/div

6 bits 5 bits 5 bits 10 bits 6 bits

Speculative execution of branches is not supported (see §5.3.1). To reduce the per-
formance penalty of branches, predicated instructions are used. The MulTEP architecture
adds predication indicators to the sh field of register-based arithmetic instruction as a list
of ISA pro-fixes presented in Table 5.5.

2Registers $at, $k0 and $k1 are originally preserved for the kernel.
3The status area of register $k0 is reserved for flags Negative (N), Zero (Z), Carry (C), oVerflow (V),

Greater (G), Lower(L), Equal (E) and execution Mode (M).
4MulTEP is enhanced with the MIPS IV ISA in addition to the MIPS I ISA from the RISC DLX

architecture to match code produced by the cross compiler (see Chapter 7).
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ISA pro-fix Flags
Zero Negative Greater Lower Equal

-z 1 - - - -
-ltz - 1 - - -
-gtz - 0 - - -
-eq - - 0 0 1
-lt - - 0 1 0
-lte - - 0 1 1
-gt - - 1 0 0
-gte - - 1 0 1

Table 5.5: The representations of flags in the status register.

Jump/Branch Instructions

The branch instructions are PC-relative and conditional. Jump instructions are either
PC-relative unconditional or absolute unconditional. Their formats are:

• b-type rs, rt, offset
branch rs rt offset

6 bits 5 bits 5 bits 16 bits

• j-type target
jump offset

6 bits 26 bits

Miscellaneous Instructions

The miscellaneous group consists of software exceptions, such as SYSCALL and BREAK

(s-type), sync, conditional move and pre-fetch instructions, for example:

• s-type
0x00 code func

6 bits 20 bits 6 bits

• sync
0x00 code rt sync

6 bits 15 bits 5 bits 6 bits

Multithreading Instructions

Four additional instructions to control threads (see §5.3.4) are implemented:

1. spawn reg, address
0x1C reg address

6 bits 5 bits 21 bits

2. wait reg
0x1D reg 0

6 bits 5 bits 20 bits 1

3. switch
0x1D 1

6 bits 25 bits 1
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4. stop reg
0x1E reg

6 bits 5 bits 21 bits

5.3.4 Thread Life Cycle

MulTEP is able to progress a thread through its life cycle as presented in Figure 5.3 using
four multithreading instructions (see §5.3.3). A thread is created by the spawn instruction
and then waits in the non-running state (i.e. born, joining, blocked, suspended, sleeping
and waiting). A Store instruction is sent to synchronise the thread through a hardware
matching-store synchroniser. A thread becomes ready when all inputs are present. The
hardware scheduler promotes the highest-priority ready thread to the running state.

Born,
Joining,
Blocked,
Suspended,
Sleeping,
Waiting

{s
w

itc
h}

{spawn}

{stop}

{stop}

{stop}

An input is not present
[Hardware synchroniser]

RunningDead

Ready

[Hardware scheduler]

All inputs are present

{wait 0}

Register miss

{wait $reg}

P
ro

m
ot

e

Figure 5.3: A thread life cycle in hardware [131].

The hardware mechanism to enable this life cycle is presented in Section 6.3. While
running, a thread can be switched back to the ready state by the switch instruction which
releases the processing element so that it can be used by another thread. The switch
occurs when the execution has to wait for a register. This arises when the execution
reaches the wait $reg instruction or detects a register miss, i.e. accessing a not-ready
register indicated by the scoreboard.

The wait 0 instruction represents the completion of a nanothread block5. During
execution, a thread can be killed by the stop instruction issued either by itself or by
another thread.

5The pseudo code of the wait 0 is end (see Chapter 7)
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5.3.5 Synchronisation Technique

Thread synchronisation is achieved through message passing via a store instruction. As
execution contexts are memory-mapped in the form of activation frames, threads commu-
nicate by storing data to appropriate activation frames. A thread whose entire presence
flags are asserted can be dispatched to the processing unit by the hardware scheduler with
regard to its priority. Otherwise, the thread needs to wait.

For example, in Figure 5.4, Thread A1 sends a value N to register x of Thread A2.
The matching-store synchroniser translates the destination to a specific memory address
and then stores the value N to that address. Concurrently, the synchroniser turns on
the presence flag of that register. As the synchroniser detects that all inputs are present,
the thread ID and its priority are dispatched to a data and a key of the tagged up/down
scheduler, respectively.

111111111111111111111111

Hardware Synchroniser

Hardware Scheduler

Thread A1: store N to register x of thread A2
(thread A2 = 0xFFFF0000, register x = 0x40)

Virtual Memory

register x = N

PP

X

K1

All inputs are present
x

Thread ID

0xFFFF0000

0xFFFF0040

Priority

datakey

1

Figure 5.4: The store signal is used for synchronising thread.

5.3.6 Scheduling Technique

Scheduling multiple threads is determined by thread priorities. Pre-emptive multi-tasking
is applied to enforce time-slicing. This prevents a high priority thread from dominating
shared resources (see §6.2.1). Figure 5.5 presents an example of thread scheduling. The
hardware scheduler is based upon the tagged up/down priority queue [8]. To prevent the
lowest priority thread from starving, all in-queue priorities are incremental when a new
thread arrives (see Appendix A.2.1).
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Figure 5.5: Dynamic-priority multithreading illustration.

5.3.7 Memory Protection

To protect unwanted interferences between threads, I introduced two protection modes:
user mode and system mode. Most threads are executed in user mode. The system mode
is provided for kernel operations such as exception handling threads, housekeeping system
daemon threads and software traps.

The protection mode is tagged with the virtual page on the Translation Look-aside
Buffer (TLB) line. A group ID is added to provide separate virtual address spaces for
groups of threads. To guide the cache line replacement policy, a cache line incorporates
the thread priority of its owner. The association of a thread priority is introduced to
minimise cache conflicts caused by competitive working sets.

5.3.8 Power Operating Modes

MulTEP offers four power operating modes: running, standby, suspend and hibernate.
The system operates in the running mode when a thread is available in the pipeline. The
standby mode is activated once the pipeline becomes empty, detected by the absence of
threads from all execution contexts. The suspend mode is encountered when there are
no threads in either the execution contexts or the scheduling queue. The hibernate mode
is issued when only a kernel thread is available in the system, which is waiting to be
activated by a timing signal.

These four power operating modes are available for implementers to supply a suitable
power management technique (see §4.2.2). Figure 5.6 illustrates the state diagram and
the I/O interfaces of the power-mode generator. The power operating modes reflect the
scheduling information. To maintain this, the generator is allocated in the multithreading
service unit (see §6.3).
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Figure 5.6: An overview of the power-mode generator.

5.4 Architectural Theoretical Investigation

This section presents a couple of investigations that demonstrate how some design choices
satisfy the challenges arisen in §5.2.3. Real-time performance, design constraints, cache
conflicts and access bottlenecks are left to be evaluated by benchmarking (see Chapter 8
for its evaluation result).

The structure of this section is as follows: relevant factors for maximising the util-
isation of processing elements from the usage of multiple threads are first investigated
(§5.4.1). The minimum incremental expense per thread is then revealed (§5.4.2).

5.4.1 The Utilisation of the Processing Elements

An investigation into the utilisation of the processing elements was carried out using
queueing analysis [101]. The queue is a space-limited set of execution contexts (C) in
the processing unit. The service stations of this queue are MulTEP’s multiple processing
elements (s). The inter-arrival time distribution from the queue and the service time
distribution of each processing element are both exponential (M) from Agarwal’s mul-
tithreading study [100]. Based on these facts, the utilisation of the processing elements
was analysed using the M/M/s/C model as depicted in Figure 5.7.

The fraction of time each server is busy, i.e. the processing element utilisation (U),
in M/M/s/C is calculated by Equation 5.1 [101].

U =

C−1
∑

n=0
λpn

sµ
(5.1)
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...

µλ...Trans In
B

ValidValid

x

Fetch an execution context

Execution Contexts (C)
[Multi−servers][A space−limited queue]

PE[0]

PE[s]

Processing Elements (s)

Figure 5.7: The model of the MulTEP processing unit (M/M/s/C).

where, pn =

{

(ρs)n

n!
p0 (n = 1, 2, ..., s − 1)

ρnss

s!
p0 (n = s, s + 1, ..., C)

p0 = 1 −
C

∑

n=1

pn

ρ =
λ

sµ

To derive the processing element utilisation U , the arrival rate λ (i.e. the fetch
rate) and the service rate µ (i.e. 1

run length) were first identified. The fetch rate λ was

calculated from the number of execution contexts (C), its context size (x), the input
bandwidth (B) and the run length (µ−1) [132] as the formula presented in Equation 5.26.

The arrival rate λ = The fetch rate

λ =
Fr + Ft

C

=
(C − 1)F + (1 · i)F

C

=
(C − 1)F + B

x
F

C

=
(C − 1 + B

x
) ts

t

C

=
(C − 1 + B

x
) µ−1

µ−1+ x
B

C
(5.2)

6It is assumed that the execution contexts are perfectly utilised.
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where, Fr is the fetch rate of Valid contexts

Ft is the fetch rate of the Trans In context

F is the average fetch rate

i is the input rate of the Trans In context

ts is the service time per context

t is the total consume time per context

To calculate λ for MulTEP, the input bandwidth B is 128 bits/cycle (see Section 6.2).
The context size x can be up to 64x32 bits in the worst case when contexts are transferred
between the different thread groups.

The service rate µ depends on the mean time to complete the service µ−1. According
to the study in [133], a service block larger than 48 instructions per window yield almost
no performance benefit. Hence, my investigation focuses on a run length that covers this
range and a little bit further (from 8 to 64 instructions per service).

Table 5.6 illustrated the outcomes when the model was analysed with the different
number of processing elements (p), the number of contexts (C) and the different sizes of
service block (µ−1). These results show that when the service time is shorter than the
the context-switching time, the utilisation U is degraded.

Table 5.6: Utilisation U with the different value of p, C and µ−1.

Figure 5.8 depicts the utilisation trends when the mean service time µ−1 is increasing
with different number of contexts per processing element (C

p
). Models with a higher

number of contexts per processing element (C
p
) yield better processing element utilisation.

However, a high ratio C
p

could waste circuits if applications provide an insufficient number

of threads to utilise them. Furthermore, the ratio C
p

needs to be small to reduce physical

complexity in order to result in a cost-effective performance (see §3.4.4).

For cost-effective performance, models with C
p

= 2 seems to be the suitable choice,

especially when the run length is greater than or equal to the context-switching period (16
instructions) where the utilisation is greater than 95%. Among the members of the C

p
= 2

group, the model with two processing elements provides the highest average utilisation as
illustrated in Figure 5.9. Thus, this model is used in the MulTEP architecture.
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Figure 5.8: Utilisation U with the different value of C and µ−1.

Figure 5.9: Processor utilisation with the different value of p and µ−1.
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5.4.2 Incremental Cost per Thread

In conventional multithreading architectures, a simple approach to provide hardware sup-
port for multithreading is to duplicate hardware resources to store execution context of
additional threads. The register file grows linearly with the number of thread contexts
(see Chapter 3 for more details). As such, the incremental hardware-cost per thread is
the additional Program Counter (PC), Register set (Rset) and Context Pointer (CP) to
be latched in each pipeline stage. Figure 5.10 depicts an additional cost in pink for one
processing element.
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Figure 5.10: Incremental parts per one thread in the processing element.

Figure 5.11 illustrates the incremental cost per thread in MulTEP. MulTEP of-
fers an alternative approach by having only a slightly larger register file and fetch unit
but providing a closely-coupled activation-frame cache to store inactive contexts. If the
activation-frame cache overfills, contexts will be spilled to the rest of the memory hi-
erarchy. The pink parts presents units that need to be altered if the architecture has
to support a number of threads greater than 216. Otherwise, there is no incremental
hardware-cost per thread from this architecture.
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Figure 5.11: The affected part after adding one thread in MulTEP.

5.5 Summary

My research focuses on designing a high performance multithreading architecture for
embedded systems. The main objectives of this research are:

• To improve performance by context switching rather than stalling the pipeline

• To schedule threads according to their real-time requirements
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• To minimise incremental hardware costs

Thread level parallelism, real-time response and low-power consumption become a
set of crucial design challenges. To satisfy these challenges, MulTEP has been imple-
mented. Its processing element is developed from RISC DLX with extensions to support
the MIPS IV instruction set architecture. Predicated r-type instructions are added to min-
imise a number of context-switching indicators, i.e. branch instructions. Furthermore,
four multithreading instructions (i.e. spawn, wait, switch and stop) are introduced to
progress a thread through its life cycle.

MulTEP is modelled with two processing elements and four execution contexts for
utilisation and cost-effectiveness. Thread scheduling is priority based using the modified
tagged up/down priority queue to meet real-time requirements. The scheduler incor-
porates dynamic-priority and time-slicing policies to prevent thread starvation. Thread
synchronisation are handled by a matching-store mechanism. The synchroniser is facili-
tated by message passing via a store instruction.

The architecture is capable of executing a large and flexible number of threads in
accordance with their priorities. The execution context is that of the program counter,
the 31x32 integer registers and the 32x32-floating point registers. Though the number of
register sets is fixed to four, excess execution contexts can be spilled out to the memory
in the form of an activation frame, which is cached. This scheme results in a minimal
incremental hardware-cost per thread.

Low-power dissipation is supported by eliminating non-deterministic mechanisms
such as a branch prediction or a speculative instruction scheduling. Power operating
modes (i.e. running, standby, suspend and hibernate) are provided to allow an imple-
menter to supply suitable power management circuits.
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Hardware Architecture

Two roads diverged in a wood, and I -
I took the one less travelled by,
and that has made all the difference.

Robert Frost

6.1 Introduction

The MulTEP architecture has been designed to provide thread level parallelism which
is suitable for embedded environments. In accordance with my architectural decisions in
Chapter 5, MulTEP consists of four components connected to one another as illustrated in
Figure 6.1. A Processing Unit (PU) contains two processing elements. A Multithreading
Service Unit (MSU) provides multithreading operations for synchronisation and schedul-
ing mechanisms. A Load-Store Unit (LSU) is designated to organise the load and store
operations. A Memory Management Unit (MMU) handles data, instructions and I/O
transactions.

The structure of this chapter is as follows: Section 6.2 illustrates the design strategies
and the supported mechanisms of the processing unit. Sections 6.3 and 6.4 describe the
multithreading service unit and the load-store unit, respectively. Section 6.5 shows the
techniques used in the memory management unit. Section 6.6 summarises the MulTEP
hardware architecture.

6.2 Processing Unit

The project focuses on implementing hardware multithreading for the embedded sys-
tems. Multiple threads often compete for shared computational resources. Thus, support

77



Chapter 6. Hardware Architecture

Processing Element 0 (PE0)

Processing Element 1 (PE1)

Processing Unit (PU)

Transfer Context Between AF−Cache and Main Memory

In
fo

S
to

re

Lo
ad

*

Signal (Store to AF)

Context*, Feedback

and information
Multithreading control command

Load

Load−Store Unit (LSU)

In
fo

Mem I/O

Memory Management Unit (MMU)

F
et

ch
*

D
at

a*In
st

ru
ct

io
n 

A
dd

re
ss

shared resources

Memory Hierarchy

Store Multithreading Service Unit (MSU)

AF Cache

Synchronisation

Scheduling

Note: ’*’ indicates the priority−based transfer bus.

L0

Figure 6.1: The MulTEP hardware architecture.

hardware for thread collaboration and competition need to be included in a core compu-
tational component. Because of this, the Processing Unit (PU) of MulTEP is designed for
multithreading by employing a number of potential techniques described in Chapter 3 .

According to the design decisions in Chapter 5, an abstract hardware block of the
processing unit is illustrated in Figure 6.21. The processing unit is capable of handling up
to four execution contexts from different thread streams by using two processing elements
(see §5.4.1). The unit supports thread competition and collaboration by using message
passing through the load-store unit where the destination of the message is identified with
a thread ID (see Section 6.4).

Contexts are switched when a context-switch instruction is received or when the
execution of a thread needs to be stalled because a register is still waiting for data from
the memory. The underlying mechanisms of the processing unit incorporate pre-fetching,
pre-loading and colour-tagging techniques to allow execution contexts to switch without
unnecessary overhead.

For pre-fetching, the fetch stage is associated with a level-0 instruction cache and a
block detector to pre-fetch instructions for at least four different threads. For pre-loading,
the unit offers four register sets which contain the four highest-priority execution contexts
extracted from all runnable threads in the multithreading service unit. The pre-loading
process is supported by an outside-PU context-switching mechanism. The operation of
each thread is tagged with a register set’s identifier, i.e. a colour identity, which enables

1The processing unit is depicted with a complete illustration of detailed I/O ports and an intercon-
nections to the other units.
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the write back stage and data-forwarding unit to select a destination with regards to its
colour identity.

Each processing element in the processing unit is an enhanced form of the classic
RISC DeLuX (DLX) pipeline [24] which has 5 pipeline stages: fetch, decode, execute,
memory access and write back. Speculative execution mechanisms are eliminated to
minimise power consumption (see design motivation in §5.4.1).

The remainder of this section presents detailed design of each component in the
processing unit. The level-0 instruction cache is first explained (§6.2.1), followed by the
fetch mechanism (§6.2.2), context-switch decoder (§6.2.3), modification of the execution
unit (§6.2.4) and write back which uses colour tagging (§6.2.5).

6.2.1 Level-0 Instruction Cache

Multiple instruction streams need to be fetched from the memory in order to exploit
thread level parallelism. Unfortunately, pre-fetching multiple thread streams often results
in competition for resources. To alleviate the competition and further accelerate multi-
threaded operations, a Level-0 Instruction cache (L0-Icache) is introduced. The level-0
instruction cache pre-fetches instructions in accordance with the scheduling commands
from the multithreading service unit.

Time-slicing preempts thread execution. This prevents the highest priority thread
from dominating the pipeline. As such, it helps the scheduling to eliminate starvation
that may occur with low-priority threads. Each cache line of the L0 I-cache is designed
to support up to 32 instructions. If the run length is more than 32 instructions further
cache lines will be used.

In order to support instruction pre-fetching, the L0 I-cache consists of 2n cache
lines where n represents the number of execution contexts. This number is provided for
zero-cycle context switches because n cache lines can hold instructions for n executing
thread streams while the other n cache lines are used to pre-fetch the next instruction
blocks. Hence, eight cache lines are provided in the L0 I-cache to support four execution
contexts in MulTEP.

To make use of the scheduling information from the multithreading service unit, four
cache-line states (e.g None, InQ, Next and Ready) are provided with different priorities
shown in Figure 6.3 and Table 6.1.

State Priority Detail
None 00 Hold no instructions (owner does not exist in the PU)
InQ 01 Hold instructions of the inserted thread in a ready queue
Next 10 Hold a next pre-fetched block of the thread in the PU
Ready 11 Hold a set of the extracted thread, reserved for execution

Table 6.1: The states of a cache block in the level-0 instruction cache.

The lowest priority cache line is replaced if and only if the replacement cache line is
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(Preparing the next instruction block)
MSU extract a thread

Figure 6.3: A state diagram of each level-0 instruction cache line.

of a higher priority2.

Figure 6.4 illustrates how the pre-fetching mechanism alters a cache-line state. The
first cache line has held instructions starting with Address1 since time n. Its InQ state
indicates that its owner, i.e. Thread 1, has already been inserted into a scheduler of the
multithreading service unit3 (see more details in Section 6.3). At time n+2, the execution
context of Thread 1 is extracted to register set 1 of the processing unit. The state of the
first cache line is then changed to Ready.
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Figure 6.4: Pre-fetching operation on the level-0 instruction cache.

An incomplete instruction block is indicated by a block detector when a branch, a
jump or a wait opcode could not be found in the pre-fetched instructions. In the case that

2The operation is conducted with the same mechanism as the LRU replacement policy [26].
3The operation to set a cache line to InQ state is also shown in times n+1 of Figure 6.4
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the current block is incomplete, the rest of the instructions are required to be pre-fetched.
At the next clock cycle, after an incomplete block is selected by the processing element, a
new block starting with the next location (Address1+block size) is pre-fetched4 and the
cache-line state is set to Next.

Figure 6.5 depicts an access procedure in the L0 I-cache. The upper 25-bit tag field5

is first compared to every tag field in the L0 cache table. A matched entry with a valid
status provides an index to the corresponding cache line. The 5-bit offset is then used to
locate the required instruction.
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Figure 6.5: The access procedure in the level-0 instruction cache.

6.2.2 Fetching Mechanism

As reviewed in Chapter 2, the operation of a single thread stream often introduces a num-
ber of bubbles caused by pipeline conflicts or memory access latency. Chapter 3 demon-
strates that these wasted bubbles can be replaced by alternative thread streams. To assist
this, multiple thread streams need to be pre-fetched.

In MulTEP, two processing elements share four fetch elements. This requires a
special fetching strategy to fill all fetch units in order to switch contexts without any
overhead. As mentioned in §6.2.1, pre-fetched instructions of the extracted threads are
prepared in the 8-set L0-cache adjacent to the fetch unit. Therefore, a fetch queue is
provided to sort the extracted threads’ start addresses in accordance with their priorities.

4Instruction pre-fetching is conducted if the replacement policy allows this to happen.
525 bits are the rest of the instruction address after its 32 bits is subtracted by the 5-bit offset size

(32 instructions per cache line) and the 2-bit instruction size (4 bytes).
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The fetch queue is implemented with a tagged up/down priority queue [8] because
it is capable of sorting prioritised data within a single clock cycle. In the priority queue,
only two LR elements are required to buffer four addresses since the other four addresses
of the eight maximum cache lines of the L0-Icache will be held in the fetch unit. The
input key of the priority queue is a 8-bit thread priority and the input data is a 30-bit
start address6. The sorting policy is “extract maximum”7.

In the example presented in Figure 6.6, three fetch units contain executable threads
whose addresses start from A1, A2 and A3. The first two cache lines are limited by the
boundary of 32 instructions and still need more instructions. The remaining cache lines
starting with A1+32 and A2+32 have already been pre-fetched into cache lines 5 and
68. At time n, one fetch element is available. The fetch unit immediately extracts a L0
cache-line pointer whose priority is the highest (i.e. cache line 4) from the fetch queue.
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Figure 6.6: Fetching and pre-fetching operation by the fetch unit.

At time n + 1, the highest prioritised address (i.e. A4) is loaded into the available
fetch element. The address is simultaneously used to fetch an instruction from the L0-
Icache via the L0-Icache table. The instruction will be returned to the fetched element in
the next clock cycle. During the address resolution, if the complete flag in the L0-Icache
table is clear9, the next block of instructions will be pre-fetched to another appropriate
cache line in the L0-Icache in the next clock cycle. The pre-fetching address for that
appropriate cache line starts with the address of the incomplete cache line plus a block
size (A4+32). Consequently, the priority of the continuous cache line is set to Next.

6Start address is only 30 bits because the lower 2 bits are always 0.
7With the extract maximum key policy, the unused key value is set to 0.
8Cache lines 5 and 6 are available because their previous instructions are incomplete and those incom-

plete cache lines have already been selected by the processing unit.
9An complete flag indicates that the block is complete. Hence, if the flag is valid, no further instructions

need to be loaded.
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6.2.3 Context-switch Decoder

To maximise benefits of multithreading, idle units should be detected as early as possible
and filled with alternative streams of instructions. Most of the time, bubbles are generally
found by the decode stage because it is capable of detecting most of the data, control and
structural conflicts. Therefore, the context switch decision is made in this stage of the
pipeline. The decoder also understands special multithreading instructions which indicate
context switch signals (see §5.3.3).

In general, the decoder translates an opcode to its corresponding control signals10

and extracts operands according to the field allocation specified by the type of the opcode
(see §5.3.3). Decoding the opcode allows the unit to detect switch, wait and stop, which
are three special opcodes that indicate context-switches. Decoding the operands allows
the unit to detect data-conflict bubbles early (e.g the scoreboard indicates that a data for
one of its registers is being loaded). Therefore, the execution can be switched to another
thread instead of issuing a bubble.

The decoder is also capable of interpreting stall signals from the other units, such
as an instruction miss from the fetch unit. These signals are used to make context switch
decisions.

There are two levels of context-switching operations. The first operation is an inside-
PU context switch which is provided to switch an execution context without any overhead.
The second operation is an outside-PU context switch which is provided to allow the
system to support a flexible number of threads. Operations of these two context switches
are described as follows:

1. Inside-PU context switch

The inside-PU context switch is simply done by changing a Context Pointer (CP)
of the available decode element to point to an alternative context in the processing
unit. This alternative context should have the highest priority and has not been
selected by the other decode element.

In MulTEP, the context pointer is obtained from the decode queue, which is a two-
entry tagged up/down priority queue. In the sorting queue, the package’s key is an
8-bit thread priority and the package’s data is a 2-bit register index. The extracted
register index from the queue is also used to signal instruction pre-fetch for the
L0-Icache.

2. Outside-PU context switch

An outside-PU context switch is provided to exchange an execution context in a
register set with its activation frame held in the multithreading service unit. The
operation combines the following two methods:

• Eliminate unnecessary transferring traffic

10Simple operations such as load/store, multithreaded, logical and arithmetic instructions are directly
translated, leaving more complicated opcodes such as multiply, divide and floating point to be used as
an index to their microcode [24].
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The underlying context-switching method is similar to Dansoft’s nanothreading
approach [129] which reduces context transferring traffic when contexts within
the same thread group need to be exchanged. In such a case11, the context
transaction is reduced by transferring only the priority information, the pro-
gram counter and the parametric registers12 (see detail in §5.3.2). Therefore,
only 26 words are transferred instead of the whole 64 words. Switching the
full execution context occurs when the exchange of threads is required by two
different thread groups, or when an incoming context’s start PC (field K1) is
different from the nanothread pointer (field K1).

• Associate context status with each execution context

Execution contexts in both the register sets and the program counters can
be spilled out as activation frames to the multithreading service unit. Each
register set and its corresponding program counter are usually shared by more
than one activation frame. Therefore, it is necessary to harmonise multiple
execution contexts on each shared resource. As a result, each execution context
is associated with a suitable context status indicator.

In general, the status typically represents whether a context is valid, invalid,
being used or being transferred. The transfer states reflect the need to transfer
contexts over multiple clock cycles due to bandwidth limitations between the
register set and the activation frame. Figure 6.7 presents a state diagram for
context transferring. In total, there are eight context states represented by a
3-bit state value. The initialised state is the Invalid status.
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Figure 6.7: The 3-bit state diagram of the context status.

An Invalid context is activated by a waitThread signal when there is a wait-
ing thread requiring its context to be transferred in. MulTEP dedicates two
separate buses for transferring execution contexts in and out. Each execution

11The exchange within the same group occurs when the upper 16 bits of $at from the register file
equals the upper 16 bits of field K1 in the activation frame

12The parametric registers are ranging from register $v0 to register $t9.
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context bus is 128-bit wide to transfer 4 words per cycle13. Therefore, the
number of cycles (i.e. 7 or 16 cycles) is required for outside-PU context switch.

The CtxtIn counter starts with the number of cycles required to undertake
the transfer. The context remains in the Transfer In state until this counter
reaches zero. After that, the context status is changed to be either Valid (if
an instruction pointed to by the program counter is available in the fetch unit)
or Wait for Instruction (to be validated when the instruction is available).

A Valid context can be selected by a decoder and changed to status Used.
The context leaves the Used status when:

– An I-cache miss is detected.

– The context is deselected.

– The execution of the thread is completed.

– An outside-PU context-switching is activated.

If the context needs to be transferred out, the status is changed to either
Transfer Out if no thread waits to be transferred in, or Transfer Out/In

when contexts in the register set are being transferred in and out simultane-
ously. When the transferring out process is completed and there is no waiting
thread to be transferred in, the status is changed to Hold.

The context is held ready to be activated later or replaced when another thread
in the same thread group needs to be transferred in. The context is capable of
resetting back to Invalid once a kill signal occurs, except during the Transfer
Out/In process because the other thread is being transferred in.

6.2.4 Execution Units

The execution unit consists of four subpipelines to support multi-cycle instructions (see
Chapter 2). The unit comprises an integer pipeline, a Floating-Point (FP) adder sub-
pipeline, an FP/integer multiplier subpipeline and an FP/integer divider subpipeline as
presented in Figure 6.8.

The execution of a single-precision floating-point multiplier is based on a Verilog
6-stage confluence FP/integer multiplier core introduced by the Opencore initiative [135].
The FP adder is a standard RISC DLX integer ALU [24]. A single-precision [136] FP/in-
teger divider emulates the 15 levels of pipeline developed by the DFPDIV development
of the Digital Core Design [137].

Data feed-forwarding for all subpipelines is similar to the mechanism in DLX [24]. A
slight difference is its support for multithreading where additional register set ownership

13The size of context bus is designed to be the same as the size of data bus in commercial embedded
processors [37, 134].
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Figure 6.8: The extended execution stage of one processing element.

is required on top of the register index. This requirement only results in two additional
bits per data-feed forwarding package14.

Unexpected exceptions from the subpipelines are handled by imprecise roll-back
techniques [24, 26, 33, 34]. Whilst MulTEP takes advantage of multiple instruction is-
sue, speculative execution is not used since speculative techniques consume extra power
and reduce real-time predictability. Furthermore, performance gained from thread level
parallelism is believed to compensate the need for instruction level parallelism extraction
using speculation.

6.2.5 Colour-tagged Write Back

A thread is tagged with an index into its register set called a colour. With this tech-
nique, each colour-tagged operation flows in a processing element with a reference to its
corresponding register set. Figure 6.9 illustrates the flow of multiple threads through two
integer subpipelines.

The figure shows that the blue thread stream, executed in the PE1, is switched to
the PE0 at time n without any overhead. Instructions are processed independently in
accordance with its colour supported by data forwarding and the write-back stage. A
data feed-forwarding unit is shared between the two pipelines. This unit is necessary for
zero-cycle context switch support in the execution stage (i.e. an integer subpipeline) as
illustrated at times n+1 and n+2.

The scoreboard prevents data hazards which may be caused by a duplicate reference
to the same register15. This allows the write-back stage to be independent. Thus, up to
eight write requests16 may coincidently arrive at the same register set. However, a register
set with 8 write ports is impractical. Thus, the design uses a traditional 2 write ports
with 4 buffers for each subpipeline17. All write-back requests are queued and granted in

14Seven bits are required for register identification (two bits is used to identify the register set and five
bits is used to identify the register).

15The issuance of an instruction whose register is invalid is not permitted.
16From 4 subpipelines of 2 processing elements
17The pipeline will be stalled if the queue is full.
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a round robin order.

With this colour-tagging scheme, if sufficient18 execution contexts have already been
pre-loaded and sufficient instructions have already been pre-fetched, the processing unit
is capable of switching contexts without any overhead.

6.3 Multithreading Service Unit

As discussed in Chapter 1 and §5.2.3, MulTEP aims to be capable of simultaneously
handling a large and flexible number of threads. Nevertheless, the processing core is
designed to support only a fixed number of threads, i.e. 4 execution contexts, in order to
minimise both context switch delay and implementation size. Therefore, excess threads
need to be handled by an additional mechanism. As a result, in order to support this
requirement, I decided to introduce a Multithreading Service Unit (MSU) into the MulTEP
architecture.

In accordance with the proposed strategies in Section 5.3, the multithreading service
unit holds excess execution contexts in the form of Activation Frames (AFs) in a local
fully-associative activation-frame cache. The size of the activation-frame cache does not
limit the number of execution contexts because they are extensible to the main memory.

Activation frames preserve the execution contexts of both excess runnable threads
and non-runnable threads. The multithreading service unit schedules runnable threads
with a tagged up/down priority queue (see scheduling details in §5.3.6). The unit syn-
chronises non-runnable threads by using a matching-store mechanism (see synchronisation
details in §5.3.5).

The multithreading service unit additionally provides activation-frame allocation
and deallocation mechanisms to facilitate thread creation and thread termination in ac-
cordance with messages received from the processing unit. Figure 6.10 presents how these
two operations influence the allocation of activation frames in the activation-frame cache.
Empty activation frames are held in a linked list. The head of the list is pointed to by an
EmptyH pointer, which is available for thread creation (see §6.3.2). The tail of the list is
pointed to by an EmptyT pointer, which is available for thread termination (see §6.3.5).

Underlying mechanisms inside the multithreading service unit are presented in Fig-
ure 6.11. The following sections introduce the details of these mechanisms starting with
the request arbiter (§6.3.1). Next, four mechanisms to provide multithreading services,
namely a spawning mechanism (§6.3.2), a synchronising mechanism (§6.3.3), a switching
mechanism (§6.3.4) and a stopping mechanism (§6.3.5), are described.

18Sufficient execution contexts occur when the number of valid execution context exceeds the number
of processing elements.
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6.3.1 Request Arbiter

More than one multithreaded operation (i.e. spawning, synchronising, switching and
stopping) may request to access shared resources (i.e. the activation-frame cache table
and the activation-frame cache) at the same time. To prevent an undesirable clash, the
multithreading service unit needs a request arbiter at the unit’s front end (as depicted
in blue on Figure 6.11). With the arbiter, requests from two processing elements of the
processing unit (i.e. PUin[0] and PUin[1]), a request from the load store unit (i.e.
SQueue), a request from the spawning preparation (see §6.3.2) and a request from the
switching preparation (see §6.3.4) are separately selected according to their priorities. If
their priorities are the same, then round robin ordering is applied.

In general, the arbiter makes a decision on every clock cycle. However, in the
case that a previous operation needs more than one clock cycle to complete, which are
a switching operation in §6.3.4 and an activation-frame cache miss penalty, incoming
requests are blocked.

6.3.2 Spawning Mechanism

In conventional processors, or even in most multithreaded processors, initialisation of a
new thread is performed by software [5]. With such a design, the processor performs the
following sequence: reserve stack space and create a thread’s initial context. Thus, the
spawning operation often consumes a large number of processing cycles which may limit
processing performance, obstruct real-time response and waste power. To eliminate the
time-consuming spawning operation, MulTEP provides a simple but quick independent
spawning mechanism19 in the multithreading service unit. The spawning mechanism
delegates the task to the multithreading service unit freeing up the processing elements.

The spawning operation consists of the following two steps:

1. Prepare an empty activation frame

An empty activation frame is extracted from the head of the empty-AF linked list.
This empty activation frame is available in advance. Figure 6.12 illustrates the
case that the empty activation frame header is the last entry in the linked list.
The spawning mechanism speculates that additional activation frames are required
when this last empty activation frame is used. Thus, the mechanism simultaneously
sends a request signal for additional empty activation frames to be allocated from
the main memory20.

2. Spawn a thread

Once the token arrives, the mechanism creates a new thread context in the empty
activation frame and simultaneously sends the activation-frame address back to a

19A spawning operation is additionally supported by a reserved activate thread table in the memory
model (see Section 6.5) and a preparation of such a table by the kernel level (see §7.3.1).

20Additional empty activation frames are allocated with support from an interrupt daemon (see Chap-
ter 7).
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parent thread that issued this spawn instruction as acknowledgement. The mech-
anism performs and acknowledges the spawning request in a single clock cycle as
shown in Figure 6.13.

An acknowledgement package is delivered to its parent thread via the load-store
unit21 in the form of a STORE DAT package (see §6.4.4). Simultaneously, the empty
activation frame is initialised as follows (see §5.3.2):

• The AT field, i.e. a PC space, and the K1 field, the re-activate location, are
both initialised with the address.

• The K0 field is initialised with the parent ID and the thread ID.

• The priority and presence fields are initialised with the value in the PP operand,
obtained from the $v0 register of the parent thread.

• The SP field is initialised with a stack operand, obtained from the $sp register
of the parent thread.

6.3.3 Synchronising Mechanism

The hardware mechanism to support thread synchronisation is similar to Anaconda’s
matching-store mechanism [4]. However, it is slightly different because MulTEP delegates
the match process to the load-store unit (see Section 6.4). A store message to an activation

21The parent thread may either remain in the processing unit or have already been switched out (see
Section 6.4).
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frame is a synchronisation event handled by the multithreading service unit. This process
is illustrated in Figure 6.14.

The destination address is identified by a thread ID and a register ID. The thread
ID indicates the activation-frame address22. The register ID indicates the location where
data will be stored and asserts the corresponding presence flag.

The remaining mechanism will validate the status of the updated activation frame.
If these presence flags are all present, then the updated thread is runnable and dispatched
to the tagged up/down scheduler. In the tagged up/down scheduler, priority 0 is reserved
to indicate an empty entry. Therefore, the runnable thread’s priority is increased by 1

before being inserted into the queue to avoid a coincidental occurrence of priority 0.

6.3.4 Switching Mechanism

To support a large number of threads, MulTEP provides a mechanism to switch execution
contexts between the processing unit and the multithreading service unit. The switching
mechanism collaborates with the outside-PU context-switching operation in the processing
unit (see §6.2.3).

From the processing units perspective, the lowest-priority register set, which is not
in use23, is swapped out to the multithreading service unit. Simultaneously, the highest-
priority runnable activation frame from the multithreading service unit is swapped in.

Prior to the swapping procedure, a switching decision needs to be made. The switch-
ing decision requires two steps because both the address of the highest runnable activation
frame and the address of the lowest not-used activation frame have to be queued for ac-
cessing the shared activation-frame cache table as follows:

22The figure illustrates a case when a thread is presented in the activation-frame cache.
23A context status is not Used (see §6.2.3).
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1. Prepare the address of the highest runnable activation frame

Prior to the arrival of a switch package, the index of the highest-priority activation-
frame address is prepared in an AFout register. The highest-priority activation frame
is obtained from the thread ID of the valid24 R[0].Data of the tagged up/down
scheduler (see Figure 6.15).

2. Issue a switching decision to the context-switch handling unit.

The switching decision for the context-switch handling unit consists of:

• A pointer to a register set where the contexts will be swapped.

• An “in” activation frame index for an execution context from the processing
unit to the multithreading service unit.

• An “out” activation frame index for an execution context from the multithread-
ing service unit to the processing unit.

When a switch token arrives, the following process occurs (see Figure 6.16):

• The register set pointer is sent to the context-switch handling unit.

• The thread ID resolves the index of the “in” activation frame and sends it to
the context-switch handling unit.

• The index in the AFout, which has already been prepared, is sent to the context-
switch handling unit.

24The valid entry is indicated by the non-zero value of R[0].Key.
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As MulTEP uses 128-bit buses to transfer contexts, the context-switch handling
unit is capable of transferring a context at the speed of 4 words per cycle to transfer up
to 64 words in and out of the multithreading service unit. Based on this, the transferring
process consumes either 7 clock cycles for the exchange of execution context within the
same thread group, or 16 clock cycles for the exchange of execution context between the
different thread groups (see §5.3.2).

When the transferring process is complete, the context-switch handling unit signals
the arbiter to release its lock (see §6.3.1). The unit simultaneously notifies the load-store
unit via an UPDATE PUInfo command (see §6.4.4) to update the location of the transferred
activation frames.

6.3.5 Stopping Mechanism

Terminated activation frames should be freed so that they are available for thread creation.
This is provided by a stopping mechanism as shown in Figure 6.17. The mechanism frees
the terminated activation frame, indicated by the thread ID of the stop token, by adding
the activation frame to the empty-AF linked list. Simultaneously, a DEL PUInfo command
(see §6.4.4) is generated to the load-store unit in order to remove all of its correspondence
entries (see Section 6.4).
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Additionally, a thread can be killed by another thread including a thread which is
waiting to be scheduled. To avoid scheduling a terminated thread, the stopping mech-
anism searches through the tagged up/down scheduler in parallel. If a matched thread
ID entry is found, its priority is set to zero and the zero-priority token will be effectively
removed by the tagged up/down mechanism25.

6.4 Load-Store Unit

In MulTEP, store instructions are used for thread synchronisation and play a critical role
in hardware multithreading. Analyses of the flow paths of the load and store commands,
has resulting in seperate paths between the Processing Unit (PU) to the Multithreading
Service Unit (MSU) and the Memory Management Unit (MMU) are separate. This
is because the path between the processing unit and the multithreading service unit is
provided for thread synchronisation, while the path between the processing unit and the
MMU is provided for data transfer.
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Figure 6.18: Instruction flows of load and store instruction without the LSU.

Figure 6.18 illustrates the MulTEP architecture without a load-store unit. Fig-
ure 6.18(c) depicts that data could be loaded from the memory by a thread which was
switched out of the processing unit. Thus, a return of the loaded data would require the
processing unit to generate a corresponding store command to the multithreading service
unit. Centralising load/store execution on the processing unit wastes its service time and
bus bandwidth, which are critical for the system.

In order that loads can bypass the processing unit, an alternative functional unit
called a Load-Store Unit (LSU) was introduced into the architecture because it has the
potential to alleviate the problem based on the investigation of load/store independence
presented in Chapter 2. The load-store unit is provided to handle the flow of load and
store instructions in MulTEP as illustrated in Figure 6.19(a).

25If the dead thread is in the R[0] of the tagged up/down sorter, the zeroth priority level will be
extracted from the scheduler in the next clock cycle
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The load-store unit does not only handle data independently from the processing
unit but also allows the processing unit to continue without stalling for load operations.
Figure 6.19(b) and Figure 6.19(c) present the flow of load and store transactions of data
that are irrelevant to the processing unit.

The underlying architecture of the load-store unit and its I/O interfaces to the
processing unit, the multithreading service unit and the data memory are presented in
Figure 6.20. Inside the load-store unit, two separate input queues are available for load/-
store commands from each processing element26 (§6.4.1), and three groups of mechanisms
are provided to independently handle transactions as depicted with different colours in
the figure. Mechanisms in green support load operations (§6.4.2). Mechanisms in pink
handle store signals (§6.4.3). Mechanisms in blue handle all influences caused by load
and store communications and support a couple of operations required by multithreaded
operations (§6.4.4).

6.4.1 Load/Store Queues

The load-store unit consists of a number of mechanisms to be shared by the two processing
elements. In order to prevent a clash access to these shared resources, arrival load/store
requests from the two processing elements need to be queued.

The size of each input queue was estimated using the operation analysis [138] (λT ).
From cache performance results in [139], an arrival rate of load/store instructions (λ) is
23.20% of the total instructions.

Estimated from the cache design and conflicts of 4 threads obtained from [139],
the worst data cache-miss rate (p) is 20%. As MulTEP is simulated with a cache miss-
penalty (M) of 200 cycles and the cost of a hit (C) is 5 cycles [24], T is computed using
Equation 2.1. To maximise the coverage of binary indexing bits, the size of the queue
(N) should be a power of two:

26The load/store queues are separated because load/store events may arrive at the same time

98



6.4. Load-Store Unit

5  bits
3  bits
2  bits
1  bit

Radd[1]

Rdat[1]

Rtype[1]

Rrd[1]

Rid[1]

Rr/~w[1]

Request[1]

From MSU

ContextInfo

Ccp

Cadd

Cdat

Rdat[0]

Radd[0]

Rtype[0]

Rrd[0]

Request[0]

Rr/~w[0]

Rid[0]

From PU

Valid

Vadd

Vdat

Sack

Sadd

=

MSUin

Valid

Vcp

To PU

Vdat

Vrd

RQFull[1]

To MSU

CQFull

RQFull[0]

Sdat

Sadd

Stype

Saf/~d

re
m

o
v

e

a
d

d

Squeue

swaitStore Data

From MMU & MSU

AF?

PUInfo

Load−Store Unit

lwait

lo
a

d
e

d
 d

a
ta

Load ReturnLRet[1]*

re
tu

rn

Store

SMode

To MMU

VQFull

To MMU & MSU

Load

LMode

Sin

Load Request hit

miss

16 bits
25 bits
30 bits
32 bits

8 bits

Rpriority[0]

Rpriority[1]

PUin[0]*

PUin[1]*

LRet[0]*

Ladd

add

Steering
Lane
SByte

Steering
Lane
LByte

SgID

Note: * indicates that a queue is the tag up/down priority queue

LgID

Figure 6.20: The load-store unit.

99



Chapter 6. Hardware Architecture

N = 2⌊log2λT ⌋ (6.1)

= 2
⌊log2

(

0.232023(pM+(1−p)C)
)

⌋

= 2⌊log2(0.232023(0.20·200+0.8·5))⌋

= 2⌊log25.568552⌋

= 8 (6.2)

From the calculation, the suitable size of the queue is eight entries. Further evalua-
tion beyond this theoretical estimation of the queue’s size is conducted in Chapter 8 using
simulations where the length of this queue is varied to figure out the optimum performance.

To support real-time requirements of MulTEP, each PUin is a tagged up/down
priority queue [8]. The sorting key is an 8-bit thread priority and the data is the input
package. To prevent a worst case queue-full situation, an RQFull signal is provided.
This signal is asserted when the queue becomes full to stall the corresponding integer
subpipeline.

6.4.2 Load Operations

The load-store unit redirects load-return transactions to their appropriate destination.
For threads which have been switched out of the processing element, its load request is
transferred to its activation frame in the multithreading service unit. In the interest of
fairness and a simple implementation, load requests from the load/store input queues are
selected in round-robin order through a multiplexer. To minimise the wasted state, the
multiplexer’s selector is capable of waiving the round robin opportunity if the next-turn
input queue is empty. I designed a waiver by simply xoring the queue’s round-robin turn
with the empty flag of the round-robin queue as presented in Table 6.2.

Round robin PUin[0] empty PUin[1] empty Selector
0 0 - 0
1 - 0 1
0 1 - 1
1 - 1 0

Table 6.2: A round-robin waiver logic table.

To prevent undesired read before write conflicts, the selected load address is com-
pared with all addresses of the waiting store operations in a store-wait buffer (swait). If
the address matches, then the data is returned to the first load return (LRet[1]) queue
and waits to be sent back to the processing unit. A load-return data from the swait is
buffered in the LRet[1] queue because multiple load-return data may also arrive from
both data memory and the activation frame at the same time.

If the loading address is not located in the swait buffer, then the loading address,
its protection mode and its group ID are sent out to acquire a datum. Simultaneously, its
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register destination, its thread priority and its thread ID are all kept in a load wait buffer
(lwait). Once a valid datum returns, such an entry in the lwait buffer is sent to the
zeroth load return (LRet[0]) queue. Consequently, the entry is removed from the lwait

buffer. Valid data from load return queues and from some multithreading operations in
the multithreading service unit (see details in §6.4.4) are selected in a round-robin order.

Before being transferring out load-return data to the processing unit, it is sent
through a byte-lane steering unit. The byte-lane steering operates sign extension and
adjusts big-endian/little-endian as appropriate. The unit additionally allows the load
data to be unaligned or be represented in a byte, a halfword or a word.

6.4.3 Store Operations

Thread synchronisation of MulTEP is based on the matching-store methodology (see
Chapter 2). Store instructions for activation frames are crucial for synchronising the
execution of multiple threads. Therefore, it is necessary to let the load-store unit re-
direct these store instructions to the multithreading service unit instead of to the data
memory.

Two store requests are from the processing unit and the other one is from a store
in queue (Sin). These requests are handled in round robin order. The Sin store-signal
queue is an important element to re-direct load-return data to the multithreading service
unit instead of to the processing unit. This redirection occurs when the execution context
of the package’s owner has already been switched out of the processing unit.

To redirect the flow of store transactions to their appropriate locations, an AF-
address comparator is provided to let the store mechanism detect whether the address
of a store request targets an activation frame (i.e. starts with 0xFF) or not. If the
destination is an activation frame, the store instruction is sent to the multithreading
service unit. Otherwise, the instruction is sent to the data memory. Simultaneously, the
store instruction is accumulated in the swait buffer 27 and remains there until its store
acknowledgement is returned. The acknowledged store package is then removed from the
swait buffer.

MulTEP allows the processor unit to issue an incomplete store request in order to
allow the execution to continue to the next instruction without stalling (see an example
in §8.2.2). The incomplete request is a store package whose data, address, or both, are
not available. To support this, the load-store unit holds incomplete packages in the swait
buffer and validates them with entries in the lwait buffer for data consistency. When
an entry becomes complete, it is removed from the swait buffer to be transfered to its
appropriate destination.

27The swait buffer is available to prevent the read before write conflicts.
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6.4.4 Multithreaded Operations

As mentioned in the first two sections, the load-store unit supports thread communication
by filtering incoming addresses and then directing them to their appropriate destination.
The destinations of the load-return data are indicated by an information in a PUInfo

table. The table consists of two entries: one for a thread ID and the other for a pointer
to its register set. If the load-return thread ID exists in the table, the flow is sent to
the processing unit. Otherwise, it is changed to a store instruction to be sent to the
multithreading service unit.

The load-store unit is additionally capable of generating load and store instructions
in correspondence with the multithreading requests of the multithreading service unit (see
details in Section 6.3). These additional load and store packages are necessary to allow
additional multithreading instructions to be effectively executed.

Table 6.3 shows how the 2-bit ContextInfo of the multithreading service unit rep-
resents four multithreading commands.

Command Value Meaning
NONE 00 No request
UPDATE PUInfo 01 Update PU info about contexts allocation
STORE DAT 10 A store instruction from the MSU
DEL PUInfo 11 Delete PU info of a dead thread

Table 6.3: The ContextInfo states from the MSU to the LSU.

A default command is NONE which represents that there is no request from the
multithreading service unit. An UPDATE PUInfo command indicates that an execution
context, pointed to by a Cdat (see the MSU input in Figure 6.20), has already been sent
to a register set, indicated by a Ccp. The UPDATE PUInfo command arrives when an
outside-PU context-switching finishes. A STORE DAT command is available to support a
spawn instruction. This command lets the load-store unit generate a load-return package
to send the location of a spawned activation frame back to its waiting register (details to
be found in §6.3.2).

A DEL PUInfo command is generated when a thread in the processing unit has
already been stopped to let the load-store unit remove its corresponding entry from the
PUInfo table.

6.5 Memory Management Unit

The Memory Management Unit (MMU) is a hardware mechanism that handles memory
access authorisation, virtual memory addressing and paging translation. The system
consists of a cache hierarchy, a couple of translation look-aside buffers, a multithreading
access-control mechanism and address translation logic. The memory management unit
incorporates the protection mode into the predefined memory domain. Its underlying
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mechanisms give priority to load data over store data to reduce the access latency of the
memory hierarchy.

The following section starts with the memory hierarchy of MulTEP (§6.5.1). The
predefined memory mapping area is then explained (§6.5.2), followed by the address trans-
lation (§6.5.3).

6.5.1 Memory Hierarchy

The memory hierarchy of MulTEP is illustrated in Figure 6.21. Virtual addresses are
translated and validated through the TLB before accessing caches. This avoids the alias
problem when multiple virtual addresses refer to the same physical address (see Chap-
ter 2). L1 I-cache is a 16 kB direct-mapped unit with 1 kB block size. It needs a 5-cycle
access latency supported by a least-priority28 but Not Last Used (NLU) replacement with
read allocation policy.
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Figure 6.21: The memory management unit.

The D-cache is 16 kB 4-way set-associative with 128-byte block size and write back.
The access latency is set out to be 5 cycles since this reflects current cache designs [140].

28An 8-bit priority is associated to every cache lines.
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The replacement policy is least-priority but not last used. Main memory access latency
is assumed to be 200 cycles in simulation.

6.5.2 Memory Address Mapping

MulTEP’s virtual memory is segmented and reserved for different purposes as presented in
Figure 6.22. MulTEP requires additional specific areas for keeping track of multithreaded
operations and storing execution contexts in the form of activation frames. The areas
in red are reserved for system accesses only and consist of the kernel system daemons,
the address translation table, and a set of tables for multithreading (see §7.3.1). The
instruction, data, and stack area are similar to the other architectures as found in [24, 26,
33, 34].
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Figure 6.22: Virtual address segmentation and address mapping.

With the assigned mapping presented in Figure 6.2229, a translation entry can be
identified by a tag in a translation base address as shown in Figure 6.23 (see §6.5.3). This

29This physical memory is used in the initialised model of the simulator (see Chapter 8)

104



6.5. Memory Management Unit

division of the translation base address allows one tag to cover up to 2M page entries
(221).

Translation Base Address
FE Tag 000

8 bits 21 bits 3 bits

Figure 6.23: Translation Base Address.

The virtual address of an activation frame is represented in Figure 6.24. MulTEP
supports up to 216 number of threads each of which contain 64 bytes for storing a thread’s
execution context. The mapping on the physical memory presented is an initialised map-
ping. Further physical area can be added by the dynamic address allocation which will
create more entries in the translation table area and will rearrange the mapped addresses
of the physical memory.

Activation Frame Address
FF ThID RegID xx

8 bits 16 bits 6 bits 2 bits

Figure 6.24: Activation Frame Address.

6.5.3 Address Translation

A virtual address needs to be translated into a physical address. A translation look-aside
buffer is used to cache recent virtual-to-physical address translations for rapid translation.
The translation of a virtual address in the multithreaded system needs to incorporate some
thread information in each entry in order to eliminate conflicts caused by duplicated
virtual addresses from multiple threads. Thus, a huge amount of space for translation
entries is required.

However, some of them may never be used. To avoid the waste of space, a mul-
tilevel paging scheme is selected for MulTEP to minimise space required for address
translation [24]. For an address translation process, a translation look-aside buffer is first
searched in parallel when the virtual address arrives (see Figure 6.25). The matched tag
indicates an appropriate virtual page translation and a protection for the incoming vir-
tual address. A “hit” on the translation look-aside buffer occurs when the incoming tag
field is matched with the virtual page, and the incoming information is qualified. Other-
wise, a “miss” on the translation look-aside buffer occurs indicating that the translation
information should be loaded from memory.

In Figure 6.25, an input load request consists of an operation mode30, a read/write
flag, a 16-bit group ID and a 32-bit virtual address. The upper 20 bits of the virtual

30Value 0 represents a user mode, value 1 represents a system mode
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memory is first matched with all tags of the DTLB in parallel. The protection bits
(valid, sys read, sys write, user read and user write) are validated. The group ID
is checked, if and only, if the private bit is equal to 1 indicating that the target page does
not allow public access. If the physical page is available, then it is concatenated with the
rest of the 12 bits of the page offset and sent as a physical address to the data cache.
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Figure 6.25: A virtual address translation when TLB hit.

A translation which misses in the translation look-aside buffer needs to be retrieved
from the main memory. Multilevel paging requires two accesses to the memory as pre-
sented in Figure 6.26. For the first access, a 10-bit Tag 1 of the miss virtual address is
used together with a 20-bit page base31 to retrieve the second-level page based address.

For the second access, the second-level page base address is added to 32 bits of Tag 2,
shifted left by 3 bits. The result is a pointer to the required 8-byte translation entry. The
physical page of this translation entry is then concatenated with the page offset, a lower
section of the input virtual address, to construct the physical address. Simultaneously,
the translation entry replaces a random but not-last-used entry in the TLB.

31The 20-bit page base is provided in the page-base register of the memory management unit
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Figure 6.26: A virtual address translation when TLB miss.
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Figure 6.27 illustrated an initialised translation table in the main memory of Mul-
TEP. Entries in pink are reserved for the first-level page-bases. Entries in yellow are
reserved for the second-level virtual-to-physical address translations.
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Figure 6.27: The initial state of a translation table in MulTEP.

6.6 Summary

The MulTEP hardware architecture supports a large number of threads based on a data-
driven nanothread model. Priority-based switching and scheduling mechanisms are in-
cluded for high-performance multithreading. Load and store instructions are used for

108



6.6. Summary

thread synchronisation. These operations are supported by the following four hardware
components:

1. The Processing Unit (PU)

The processing unit has two processing elements, each of which consists of four
subpipelines (integer, FP/multiplier, FP adder and FP/divider). Both processing
elements share four execution contexts in order to support thread level parallelism
at the hardware level.

MulTEP uses pre-fetching, pre-loading and colour-tagging mechanisms to switch
threads without any context switch overhead. Pre-fetching is provided by the col-
laboration of the level-0 instruction cache and the fetch sorted queue. Pre-loading is
supported by an outside-PU context switch mechanism. This switching mechanism
allows the context to be available in advance. Colour-tagging is the association of a
register set index to the package that flows within the processing unit. With colour-
tagging, the package is allowed to flow independently while maintaining a reference
to its corresponding content.

2. The Multithreading Service Unit (MSU)

The multithreading service unit supports a flexible number of threads. The under-
lying mechanisms consist of the activation-frame cache, synchronisation circuit and
tagged up/down scheduler. This unit handles thread creation, thread synchronisa-
tion, thread scheduling and thread termination.

3. The Load Store Unit (LSU)

The load-store unit reduces traffic to the processing unit. It enables faster loads
and allows the processor to continue without stalling due to load and store opera-
tions. The underlying architecture supports data transfer of signed, unsigned, byte,
halfword and word in both big-endian and little-endian data formats.

4. The Memory Management Unit (MMU)

The memory management unit supports virtual memory addressing and memory
protection. The memory hierarchy consists of two separated TLBs and caches for
instructions and data.
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Software Support

Daring ideas are like chessmen moved forward;
they may be defeated, but they start a winning game.

Johann Wolfgang von Goethe

7.1 Introduction

Two software tools (i.e. the j2n and the MulTEP assembler) were written to facilitate
multithreaded program creation for MulTEP. These tools support a number of thread
standards and are adequate for evaluating the MulTEP architecture. An overview of
software support for MulTEP is displayed in Figure 7.1.

The remainder of this chapter is structured as follows. Section 7.2 presents MulTEP
low-level software support (as categorised in Figure 7.1). Section 7.3 shows MulTEP
kernel-level support. Section 7.4 describes how some high-level languages make use of
the lower level support along with suggestions for further implementation. Section 7.5
summarises the software tools designed for the MulTEP system.

7.2 Low-level Software Support

This section introduces two MulTEP low-level software tools. The first tool is a MulTEP
assembler (§7.2.1) which is required to compile assembly language for MulTEP’s instruc-
tion set architecture. The second tool is a set of MulTEP assembly macros (§7.2.2) which
are provided to allow software to easily use multithreading features in MulTEP.
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Figure 7.1: Software Overview for MulTEP.
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7.2.1 MulTEP Assembler

In MulTEP, multithreaded operations are represented in assembly as a set of referable
macros. A MulTEP assembler was built to support MIPS IV and multithreading instruc-
tion extensions (i.e. spawn, switch, wait and stop instructions). The assembler was
implemented in C. There are two phases to the assembly process:

1. Code and data segments are separated. Instructions are re-ordered after a branch
(i.e. add a single delay slot after a branch instruction). All label variables are
represented with their correct absolute addresses.

2. All label variables are replaced with absolute addresses. Opcodes and operands are
encoded in a series of 32-bit instructions.

The assembler parses MulTEP instructions (see §5.3.3) based on Backus-Naur Form
(BNF) grammar as shown in Figure 7.2 and Appendix D.

<code> → {<comms>} .text <main> .data <data> .end

<comms> → #<text> {<comms>}

<main> → main: <inst> {<comms>} <m inst> end

<inst> → <LSopcode> <reg>,<number>(<reg>) |
<Sopcode> k1,<reg>(<reg>) |
<Ropcode><cond> <reg>,<reg>,<reg> |
<Ropcode> <reg>,<reg>,<reg> |
<Iopcode> <reg>,<reg>,<number> |
<Bopcode> <reg>,<reg>,<label> |
<BZopcode> <reg>,<label> |
<Sopcode> <reg>,<label> |
<Jopcode> <number> |
<ROpcode2> <reg>,<reg> |
<IOpcode2> <reg>,<number> |
<Opcode1> <reg> |
<Opcode0>

<LSopcode> → <Lopcode> |
<Sopcode>

<m inst> → {<label>:} <inst> |
{<label>:} <inst> <m inst>

<data> → <label>: d<Dtype> <Ddat> {<comms>} |
<label>: d<Dtype> <Ddat> {<comms>} <data>

Figure 7.2: MulTEP assembler’s grammar in BNF.
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7.2.2 MulTEP Assembly Macros

A generic life cycle of a thread is presented in Figure 7.3. There are four thread states in
the life cycle, namely a new thread state, a runnable state, a non-runnable state and a
dead state. To progress a thread through its life cycle, the system requires four commands,
namely create, block, resume and terminate.

New Thread Runnable Not Runnable

Dead

Create

Block

Resume

Terminate Terminate

Figure 7.3: The generic life cycle of a thread.

Figure 7.4 illustrates Java thread life-cycle1 as one example model to show that
it is compatible with the generic model (Figure 7.3). A thread cycles through the Java
thread model based on pre-emptive multithreading using a time-slicing methodology. The
diagram uses the same style of group colours as shown in the generic model: blue for the
new thread group, green for the runnable group, pink for the non-runnable group and red
for the dead group.
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Figure 7.4: The life cycle of a Java thread.

To progress a thread through its life cycle, a number of MulTEP assembly macros are
provided for used by high-level languages/compilers. These macros make use of MulTEP’s
multithreading feature for create, block, resume and terminate commands as follows.

1The reason that the Java model is presented in details is because its thread object was used in
benchmarking the system (see Chapter 8).
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Create

To initialise a new thread, two steps must be undertaken. The first step is thread con-
struction where a thread and its environment are created. In object-based languages such
as Java [90] and C# [141], a thread is born after being instantiated with a new indicator.
In functional languages using a thread library such as PThread [98] or UI [97], a create

function is used. To support thread construction, a macro called new is provided (see
Figure 7.5). The operation of this macro first sets a priority, updates all presence flags,
creates a stack and then spawns the thread.

;; ————————————————————————————–
;; Macro: new

;; Input: $a0 is the start address of a spawn thread
;; $a1 is the initial priority
;; $a2 is the presence flags
;; $a3 is the stack location
;; Output: $v0 is the AF address of the spawn thread
;; ————————————————————————————–

sll $v0, $a1, 24 ; Set the priority
or $v0, $v0, $a2 ; Set presence flags
mov $sp, $a3 ; Set the stack location
spawn $v0, $a0 ; Spawn a thread pointed to by $a0

Figure 7.5: A new macro.

The second step for thread creation is to activate a thread. A start macro is
provided to support this as presented in Figure 7.6.

;; ————————————————————————————–
;; Macro: start

;; Input: $a0 is the AF address of a start thread
;; Output: -
;; ————————————————————————————–

xor $s0, $zero, $zero ; Prepare presence flags
swl $s0, 0x0($a0) ; Start a thread pointed to by $a0

Figure 7.6: A start macro.

Block

Blocking is used to synchronise execution ordering and to share data among threads [72].
Examples for the these operations are wait(), suspend() and join() functions from
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object-oriented languages [90, 141], and cond wait and cond signal functions from
thread libraries [98, 97]. To support all these blocking functions, at least four block-
ing characteristics are required. The first blocking characteristic is a suspension with
timer. I decided to provide a sleep macro for this as presented in Figure 7.7.

;; ————————————————————————————–
;; Macro: sleep

;; Input: $a0 is the AF address of a thread
;; $a1 is the start timer
;; $s6 is an available wait-for-timer entry
;; Output: -
;; ————————————————————————————–

sw $a0, 0x0($s6) ; Create a new sleeping entry
sw $a1, 0x4($s6) ; Set the start timer
wait $v0 ; Wait for time up (signal via $v0)

Figure 7.7: A sleep macro.

The second type of block is when a thread is waiting for completion of another
thread. A join macro is provided as presented in Figure 7.8.

;; ————————————————————————————–
;; Macro: join

;; Input: $a0 is the AF address of a waiting thread
;; $a1 is the AF address of a waited thread
;; $s5 is the wait-for-join pointer
;; Output: -
;; ————————————————————————————–

sw $a0, 0x0($s5) ; Create a join entry
sw $a1, 0x4($s5) ; Set the thread ID to be waited for
wait $v1 ; Wait for join (signal via $v1)

Figure 7.8: A join macro.

The third type of block is a wait for a resume signal which needs to specifically
target the waiting thread. To support this, I decided to provide a suspend macro as
presented in Figure 7.9.

The forth type of block is a wait for a general notify signal which will activate the
first wait-for-notify thread in the queue. A wnotify macro is provided for this purpose
as shown in Figure 7.10.
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;; ————————————————————————————–
;; Macro: suspend

;; Input: -
;; Output: -
;; ————————————————————————————–

wait $a0 ; Wait for resume (signal via $a0)

Figure 7.9: A suspend macro.

;; ————————————————————————————–
;; Macro: wnotify

;; Input: -
;; Output: -
;; ————————————————————————————–

wait $a1 ; Wait for notify (signal via $a1)

Figure 7.10: A wnotify macro.

Resume

A resume operation allows a non-runnable thread to return to its runnable state. Func-
tional libraries [98, 97] uses unlock functions with different parameters to resume from
the lock status. Object-oriented languages [90, 141] use either a specific resume signal
(i.e. a join-success notification, an I/O completion, an interval expiration or a resume()

function) or a generic resume signal (i.e. a notify() function or a notifyAll() func-
tion). To meet these requirements, MulTEP provides both specific and generic macros.
The specific resume is a resume macro (see Figure 7.11).

;; ————————————————————————————–
;; Macro: resume

;; Input: $a0 is the AF address of the resuming thread
;; Output: -
;; ————————————————————————————–

sw $k1, $a0($a0) ; Signal a wait-for-resume field (A0)

Figure 7.11: A resume macro.

The generic resume is a notify macro (see Figure 7.12).
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;; ————————————————————————————–
;; Macro: notify

;; Input: $s7 is the wait-for-notify pointer
;; Output: -
;; ————————————————————————————–

lw $t0, 0x0($s7) ; Load a wait-for-notify thread ID
sw $k1, $a1($t0) ; Signal a wait-for-notify field (A1)

Figure 7.12: A notify macro.

Termination

Thread termination eliminates the thread and its environment (i.e. its stack space and
its activation frame). Objected-oriented languages [90, 141] kill a thread via a stop()

function. Functional libraries [98, 97] uses a return indicator to identify completion of
the thread and a kill function to terminate the thread. Since MulTEP has the stop

instruction, which effectively handles the thread termination in hardware, the kill macro
is trivial (see Figure 7.13).

;; ————————————————————————————–
;; Macro: kill

;; Input: $a0 is the AF address of a thread to be killed
;; Output: -
;; ————————————————————————————–

stop $a0, ; Kill a thread pointed to by $a0

Figure 7.13: A kill macro.

7.3 Support for System Kernel

This section describes three kernel-level MulTEP multithreading features: system dae-
mons (§7.3.1), interrupt daemons (§7.3.2) and non-running states (§7.3.3).

7.3.1 System Daemon

Daemon threads are a set of endless loops waiting to provide important services to the
other threads. A high-priority timer daemon is required to be executed at regular intervals
to wake up all sleeping threads whose timers have expired. The wake up process is done
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through a quantum expiration signal. A low-priority garbage collector is used to clear up
the stack spaces and unwanted data that is left over in the system.

A system daemon, called Thread 0, is provided to handle multithreading services
and is given the highest priority level (see Appendix C.3). Thread 0 is a very small thread.
It is woken up at regular intervals by a signal sent to its register, $t0, once the daemon-
thread timer reaches zero. It undertakes house-keeping procedures such as checking the
timeout periods of suspended threads, joining threads after wait-to-be-joined threads are
complete, notifying waiting threads and checking the status of the hardware scheduler.

A range of virtual addresses from 0xFD000000 to 0xFD000FFF is specially provided
for Thread 0. These addresses are permanently available in the D-cache because their
owner is the system daemon with the highest priority. The segment consists of an
activated-thread table, a wait-for-join table, a wait-for-timer table and a wait-for-notify
table, which are pointed to by registers $s4, $s5, $s6, and $s7, respectively.

Active-thread Table

When a thread is terminated, its execution environment needs to be cleared from the
system. In some hardware units, such as a pipeline and caches, garbage from dead threads
is naturally eliminated when time passes by or cleared via the stop operation in the
multithreading service unit (see §6.3.5). However, skeletons of dead threads held by the
software still remain. These skeletons are threads that could be waiting for a timer, to
be joined or to be notified. To eliminate them from the memory system, I decided to
provide a record of all current active threads in an active-thread table as presented in
Figure 7.14. The structure of the table is implemented as a linked list2. Register $t1 in
Thread 0 indicates the head of empty space for additional active threads. Thus, insertion
is conducted in a single clock cycle by hardware support in the multithreading service
unit (see Section 6.3). Register $s4 in Thread 0 indicates the head of the active thread
linked list. Search and extract operations take O(n) cycles in software3.

One active-thread entry consists of four fields: a 16-bit thread ID, a 3-bit thread
state (see 7.3.3), a single-bit expandable flag (Ex) and a 12-bit link for the next entry
(within the active-table area). To allow a system to go beyond 512 threads limited by the
active table space, an expandable mode is provided. When the table is almost full, the
single-bit expandable flag Ex of the penultimate entry asserts. As shown on the right of
Figure 7.14, the next referenced entry holds a virtual address of the next thread in the
main memory.

2The linked-list structure is used because of the limited implementation time (i.e. most of the time
are spent for hardware improvement) as the structure does not much degrade the processing performance
due to its infrequent usage.

3Though the operation performance is not yet critical, to improve both searching and extracting
performance, a better data structure than an unsorted linked list such as a hash table may be implemented
instead (see §9.5.7).
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Figure 7.14: An active-thread table and its extension to the main memory.

Wait-for-join Table

With the matching-store paradigm, synchronisation is conducted in a single clock cycle in
the multithreading service unit via a store instruction to an appropriate activation frame
(see §6.3.3). One of the typical thread synchronisation function is join. A thread uses
join to suspend its operation when it has to wait for other threads to complete their
operations.

MulTEP offers direct support in Thread 0 to retrieve the join location in a couple
of cycles. Figure 7.15 illustrates the structure of a wait-for-join table, pointed to by the
$s6 register in Thread 0. The structure is a linked list. Insertion completes in a single
clock cycle by the multithreading service unit with the help of Thread 0’s register $t2, a
pointer to the table’s empty space. Search and extract operations take O(n) cycles4.
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Figure 7.15: A wait-for-join table and its extension to the main memory.

One entry consists of a 16-bit thread ID of the waiting thread, a 16-bit thread ID

4To improve both searching and extracting performance, a better data structure than an unsorted
linked list, such as a heap sort, can be implemented (see §9.5.7).
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of a thread to be waited on and a 32-bit next entry pointer. Though, 256 entries are
reserved to store a wait-for-join in the D-cache, the table can be extended to the main
memory via a simple reference method as presented in the right-hand part of Figure 7.15.

Wait-for-timer Table

Timing is obviously important for embedded environments. In most conventional archi-
tectures, the kernel is used to manage time-constrained synchronisation. This consumes
a number of cycles and may be inefficient for real-time systems. Instead, MulTEP pro-
vides timing information for thread synchronisation via a wait-for-timer table. This table
stores the timer of all suspended threads which are waiting for quantum expirations. These
timers are decremented at regular intervals. If a quantum-expired thread is detected, a
thread will be re-activated within a couple of clock cycles.

The linked list structure of a wait-for-timer table is presented in Figure 7.16. One
entry comprises a 16-bit thread ID, a 12-bit next entry link and a 32-bit timer.

Thread 30xFD000A00 0 0

Time 3

Main Memory

...

32 bits

Thread 6

Thread 5

$s6 $s6

32 bits

...
Wait−for−timer Table

0xFD000800

0xFD000804

0xFD000808

0xFD00080C

0xFD000BF0

Time 1

0x8080
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Time 4

Thread 4 1 0xBF0
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−
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Time 5

Time 6
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Wait−for−timer Table

0xFD000800

0xFD000804

0xFD000808

0xFD00080C

0xFD000BFC

Time 1

0x8080

Thread 2

Thread 1

Time 2

0 0xA00

0

...
...

0xFD000BF8$t3

...
...

0

$t3

0

Figure 7.16: A wait-for-timer table and its extension to the main memory.

To conform to the standard kernel requirements [97, 98], the timing resolution is
one millisecond and supports up to 232 ms, i.e. almost 50 days [97, 98]. Up to 256 entries
are provided in the data cache. Excess entries are expandable to the main memory as
shown in the right part of Figure 7.16.

Wait-for-notify Table

A number of programming languages provide thread synchronisation through wait and
notify pairs to protect shared resources [90, 141]. With this scheme, a thread waits to
be notified by any other threads in first-in, first-out ordering. To support this, MulTEP
provides a record of wait-for-notify entries in a linked list as illustrated in Figure 7.17. One
entry consists of a 16-bit thread ID, an expandable bit and a 12-bit next entry pointer.
The table supports up to 512 entries in the data cache and can be spilled to the main
memory using the same method as the active-thread table.
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Figure 7.17: A wait-for-notify table and its extension to the main memory.

7.3.2 Exception/Interrupt Daemons

Exception/interrupt daemons, such as an arithmetic error and divide by zero, are high
priority threads (their priority levels are still lower than the system daemon). These
threads wait to be activated by store messages to exception/interrupt activation frames.

7.3.3 Non-runnable States

Instead of wasting a number of cycles to figure out which appropriate interpretation
should be applied to each incoming synchronisation request, Thread 0 directly obtains
thread non-runnable state from the active-thread table and operates a suitable procedure.

There are 8 thread states as shown in Table 7.1 (see §5.3.4). Six of them are non-
runnable states which are born, sleeping, joining, blocked, suspended and waiting. A born
thread waits for the data of all parametric registers, i.e. from $v0 to $t9. A sleeping
thread, a joining thread, a suspended thread and a waiting thread monitor a signal to
register $v0, $v1, $a0 and $a1, respectively. A blocked thread is a general thread waiting
for any incomplete data. Specific register locations wait for incoming store signals that
can activate a thread to be runnable when all parametric registers are present.

State Value Wait For

dead 000 -
born 001 all
sleeping 010 $v0

joining 011 $v1

blocked 100 x
suspended 101 $a0

waiting 110 $a1

run 111 -

Table 7.1: A state of the thread.
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7.4 Support for High-level Languages

This section starts with a discussion about real-time embedded languages and their re-
lation to MulTEP (§7.4.1). Then, a Java-to-native post-compiler, i.e. j2n, is described
(§7.4.2). After that, suggestions for implementing a MulTEP native compiler is explained
(§7.4.3).

7.4.1 Real-time Embedded Languages

A number of real-time languages for embedded systems such as concurrent Ada 95 [142]
and real-time Java [143] are supported by concurrent operations [144]. The languages
are designed to provide real-time, pre-emptive multitasking applications (i.e. Real-time
Java is supported by a javax.realtime package [145]). The specialities of these real-time
embedded languages are their features that allow users to access the hardware such as
thread scheduling and event handling and controlling memory accesses.

Applications written in real-time embedded languages are capable of providing a
rapid interrupt response through a fast context switch and a priority-based scheduling. As
MulTEP naturally supports concurrency in hardware, special features of these languages
directly benefit from the architecture as follows:

1. The asynchronous event handler

Events often occur asynchronously and need to be handled in real time. The
event handler (e.g. an AsyncEventHandler class in the real-time Java, or an
Asynchronous Task Control class in Ada 95) should be generated dynamically in a
form of a thread. In MulTEP, the event handler object can be initially created with
a spawn instruction with one or more incomplete parameters (i.e. some registers
are still waiting for data). The asynchronous event (e.g. an AsyncEvent object in
the real-time Java) is then transformed to a store instruction targeting the missing
parameter of the suitable event handler.

2. The priority-based scheduler

Real-time embedded languages have features that allow a thread to be associated
with a priority and pre-emptive scheduled in accordance to its priority level. Real-
time Java’s 128 priority levels (e.g. in a RealtimeThread class) and concurrent
Ada 95’s 256 priority levels (e.g. in a Dynamic Priority package) fit well within
MulTEP’s 256 priority levels. Furthermore, an instance of a scheduler/dispatcher
can be directly handled by the MulTEP hardware (i.e. the multithreading service
unit) thereby removing software overhead.

7.4.2 Java-to-native Post-compiler

The java-to-native post-compiler (j2n) was implemented for system benchmarking via
Java-threaded programs (see Chapter 8). A Java thread is created by sub-classing the
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Thread class [90]. The public method run() is in the main body. Its life cycle is shown in
Figure 7.4. The underlying mechanism for porting Java’s byte-codes to MulTEP assembler
is extended from the Kaffe virtual machine [146]. A Java program is first compiled into
Java byte-codes by a javac compiler (see Figure 7.185).

javac j2n

...

newll7 thread2 = ll7(c, r)

thread1.
start

();start
();

try {

thread1.

thread2.

thread2.
join
join

();
();

} catch (InterruptedException e) {}

}

ll7 {
int  start;
int  stop;

public ll7(int start, int stop) {
   this.start = start;
   this.stop = stop;
}

public void run() {

}
}

ll7(l, c)ll7 thread1 =

class         extend Thread

...
...

64  invokespecial #13 <Method ll7(int, int)>
63  iload_3
62  iload_1
61  dup
58  new #10 <Class ll7>

67 astore_2

...

Java−thread Program Java bytecodes

$a2,$a2,0xFFF2
$a2,0x00FF

$s3,$a1($t2)
$s2,$a0($t2)

$s2,$a1($t1)
$s1,$a0($t1)

...
...

end
...

ll7:

end

...

new

92  aload_2
93  invokesvirtual #23 <Method void start()>

68  new #10 <Class ll7>
71  dup
72  iload_3

74  invokespecial #13 <Method ll7(int, int)>
77 astore_3

73  iload_4
...

...
...

Method ll7(int,int)
 0  

Method void run()

...

 0  

...

96  aload_3
97  invokesvirtual #23 <Method void start()>

100  aload_2
101  invokesvirtual #19 <Method void join()>
104  aload_2
105  invokesvirtual #19 <Method void join()>

MulTEP Assembler

start

start

join

join

addui
lui

la $a0,ll7
mov $a1,$zero

mov $a3,$sp

mov
sw
sw

mov $t2,$v0

$t1,$v0

sw
sw

mov $a0,$t1

mov $a0,$t2

mov $a0,$at
mov $a2,$zero
mov $a3,$t1

$a3,$t2mov

new

new

Figure 7.18: Java-threaded code compilation.

The j2n post compiler transforms Java byte-codes into the MulTEP assembly codes
by replacing threaded commands with the MulTEP macros (see Section 7.2) to utilise
MulTEP’s multithreading instructions (spawn, switch, wait and stop). The number of
instructions is reduced since j2n uses load registers instead of emulating Java’s operand
stack.

7.4.3 Native Compiler Implementation

A native compiler is required to exploit the full potential of the MulTEP architecture.
However, because the project is constrained by the limited research period, a suitable
native compiler tool has not yet been implemented. A framework for implementing a
MulTEP compiler is, instead, suggested in §9.5.7.

5For the simple presentation, new, start and join macros are not expanded in Figure 7.18.
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7.5 Summary

To utilise the multithreading features in MulTEP, a couple of software tools are provided.
From the low-level software, the MulTEP assembler offers methods for assembling spawn,
switch, wait and stop multithreading instructions. The MulTEP macros using these
instructions were implemented for multithreaded operations to progress a thread through
its life cycles: thread creation is supported by the new and start macros; thread blocking
is supported by the sleep, join, suspend and wait macros; thread resuming is supported
by resume and notify macros; and thread termination is supported by the kill macro.

MulTEP’s kernel-level software performs key house keeping functions which ensures
the hardware runs smoothly. The system daemon, Thread 0, is provided with the high-
est priority level. Its data is stored in a reserved address that always remains in the
data cache. The reserved address range contains the active-thread, wait-for-join,
wait-for-timer and wait-for-notify tables. By verifying information within these ta-
bles, the daemon adjusts the thread state to be dead, born, sleep, join, wait, suspend,
blocked or run.

Support for high-level software includes the java-to-native post-compiler called j2n.
This tool is built for benchmarking purpose. It compiles Java-threaded programs into
the MulTEP assembly with the help of the javac compiler and the MulTEP macros for
multithreaded operations.
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Chapter 8

Evaluation and Results

All that we are is the result of
what we have thought.

Buddha

8.1 Introduction

Empirical studies were performed to ensure that the MulTEP architecture complies with
its proposed design goal:

A design and implementation of a high-performance architecture for multi-
threading in embedded processors.

An object-based MulTEP simulator was built for easy implementation and evalu-
ation of the research instead of constructing massively detailed circuitry. The MulTEP
simulator was implemented using the hardware design presented in Chapter 6. The ar-
chitecture was evaluated using the software tools mentioned in Chapter 7: the MulTEP
assembler, the MulTEP macros, the j2n post-compiler and the thread-0 system daemon.

This chapter is structured as follows: Section 8.2 describes how the MulTEP ar-
chitecture is simulated. Section 8.3 presents results in terms of processor performance,
efficiency of the multithreading mechanisms, real-time response and memory side-effects.
Section 8.4 remarks on MulTEP’s evaluation and results.
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8.2 Simulating the MulTEP Architecture

Practical means for evaluating the MulTEP architecture were investigated prior to the
implementation. In my trial experiments, a number of investigations were conducted
using hardware design tools, such as the Altera’s Max+Plus and Cadence’s Verilog-XL.
These tools required detailed descriptions for most circuits and interconnection routes.
This resulted in inflexible models which were difficult to parameterise in order that a wide
range of design choices could be assessed.

Instead of using the hardware description tools, I decided to investigate alternative
discrete event simulator-based methodologies. On the one hand, most relevant simulators,
such as SimpleScalar [147] and Kaffe [146], are unfortunately hand-written in sequential
programming languages that require much time for re-targeting a new architecture. On
the other hand, Architecture Description Languages (ADLs) [148, 149, 150, 151] focus
on modelling instruction set architecture. However, I would like to analyse details at the
micro-architecture level. Hence, the features of ADLs are insufficient for my investigation.

Consequently, I chose to create a detailed cycle-accurate simulator for my research.
A MulTEP simulator based on C++ object modelling has been specially implemented.
The remainder of this section first describes the preparations undertaken prior to the
implementation of the simulator (§8.2.1). The MulTEP simulator is then explained in
detail (§8.2.2), followed by the analysis of its simulating abilities (§8.2.3).

8.2.1 Pre-simulation Strategies

It was necessary to validate my selected simulation methodology prior to real usage. Two
validation procedures were conducted. The first step was to simulate a priority-based
tag up/down priority queue and then was validate with its Verilog Hardware Description
Language (HDL) version for a detailed cycle-accurate comparison. Next, the simulation
of a MIPS R3000 5-stage pipeline with only integer support was created and validated
with its Verilog HDL version for an abstract architectural level comparison.

Detailed Cycle-accurate Comparison

The tag up/down priority queue is a necessary hardware circuit for scheduling multiple
competitive threads in the architecture. The underlying model emulates the design in [8]
with a modification to extract a maximum priority instead of a minimum deadline (see
detail in Chapter 6). The Verilog HDL code for the modified hardware1 is presented in
Appendix A.1. The simulation output of the Verilog model was monitored in a waveform
viewing tool as presented in Figure 8.1.

Likewise, the priority queue was simulated in C++. The TgSort class (see Ap-
pendix A.2.1) inherits properties from a generic SimObj class (see §8.2.2). The TgSort

object (see Appendix A.2.2) consists of 10 LR objects to match with the number of the LR

1Without a dynamic-priority modification
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Figure 8.1: Results from simulating tgsort in Verilog.

modules in the Verilog model. All event simulations (e.g. clock, inputs) and the necessary
execution details in each clock cycle (e.g. the key and the data values of each LR unit)
were generated as presented in Figure 8.2.

Figure 8.2: Results from simulating tgsort in C++.

The results from both methods in terms of the order of sort and the number of
clock cycles exactly matched. This demonstrates that the C++ simulation is capable of
modelling cycle-accurate operations. Furthermore, the output of the C++ simulator are
easier to interpret, for instance, the detailed movement of keys and data inside the sorting
elements.
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Abstract Architectural Level Comparison

The MIPS R3000 integer pipeline was developed in Verilog and C++. The main pipeline is
the PE object. The original PE requires support from five objects, namely: fetch, decode,
execute, memory and writeb units. The Fibonacci algorithm was executed to appraise
the correctness of the simulated pipeline. When simulating with Verilog, operations in
every stage and the total number of clock cycles for completion were monitored (see an
example in Figure 8.3).

Figure 8.3: Results of the Verilog simulation of the MIPS pipeline.

The results of the Verilog simulation were stored in a file via the monitor command
in Verilog-XL. Figure 8.4 samples monitored data from 5 top-level pipeline stages in the
C++ simulator. The monitored data from both the C++ and Verilog-XL simulations
were repeatedly compared with the Fibonacci loop counter n (n ranged from 2 to 1,000).
Results from both simulations exactly matched. This confirms that the C++ simulation
is capable of accurately modelling an abstract-level architectural design.

8.2.2 The MulTEP Simulator

My cycle-accurate simulator is implemented using C++ objects corresponding to hard-
ware modules with characteristics conforming to the recommendation in the Liberty sim-
ulation environment [152]. Figure 8.5 presents an interpretation of the SimObj template.
The template is used as the generic parent for all hardware units. Its input and out-
put signals are referred by variables in the InPut and OutPut classes, respectively. The
function() of an object that inherits from SimObj encapsulates both characteristic and
underlying mechanism of the unit. The function() is activated when the simclk()

function is invoked.

In accordance with the design described in Chapter 6, an illustration of how the
embedded objects are structured in the architecture is depicted in Figure 8.6.
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Figure 8.4: Results of the C++ simulation of the MIPS pipeline.

simclk

outin SimObj

class SimObj {
public:

// input/output variable
InPut
OutPut

virtual void

out;
in;

function() = 0;
};

void simclk();

template<class InPut, class OutPut>
void

function();
}

Simobj<InPut, OutPut>::simclk() {

template<class InPut, class OutPut>

Figure 8.5: An interpretation of the SimObj definition.
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outPE0

PE0
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Figure 8.6: The structure of the sample embedded objects in MulTEP.
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From the top level, MulTEP consists of four main units, namely the Processing Unit
(PU), the Multithreading Service Unit (MSU), the Memory Management Unit (MMU)
and the Load-Store Unit (LSU). The MSU is embedded with the Tag up/down priority
queue (Tgsort) for thread scheduling. Tgsort unit also has ten LRs sorting elements
embedded inside. The PU comprises the Fetch Unit (FU) and two processing elements,
each of which contains the subpipeline of four objects, ranging from the Decode Unit (DU)
to the Write Back unit (WB).

For the simulation process, one invocation of the simclk() function virtually gener-
ates one clk pulse. The pulse is used to activate all embedded modules and to enable all
data to be transferred simultaneously.

8.2.3 MulTEP Simulation Analysis

The simulation of MulTEP was analysed using three criteria: dynamic multithreading
behaviour, data movement in the critical path and synchronisation of multiple threads.

Dynamic Multithreading

For dynamic multithreading analysis, three threads with different characteristics were
issued to the system. The PEs, L0 cache and two multithreading-service units were
monitored as depicted in Figure 8.7.

In this example, the priority of Thread 1 was set to 128 to simulate a high-priority
interrupt event raised by a kernel system. Thread 2 and Thread 3 represented two normal
threads with different run lengths and low priority levels. At time T5, a stall occurred in
Thread 1. The system switched to Thread 3 since its instruction set and execution context
had already been fetched and loaded into the processing unit, respectively. At time T6,
the stall of Thread 1 was resolved. Thread 1 with address A1+15 was immediately sent
to the processing element ready queue and then was consequently dispatched to the PE0.
This event interrupted the execution of Thread 3 because it has the lowest priority in the
processing unit.

The context-switch mechanism reserved the interrupted location of Thread 3 in the
ready queue for its later execution. When the PE1 was available (at time T9), the context
of Thread 3 was switched in. The execution carried on until the completion of its block
at time T122. Because the processing unit found out that there was no other thread
to be scheduled in the queue, execution of Thread 3 continues on the next instruction
block3. This demonstration illustrates that the architecture supports dynamic behaviours
of multiple threads including unexpected events, such as stalls. Priority-based scheduling
determines the order in which contexts are switched.

2There is no other interruption during the execution of Thread 3 from T9 to T12.
3The continuation is allowed if and only if L0-cache has already pre-fetched its next instruction block

such as the complete of preparation in time T6 in the example.
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Chapter 8. Evaluation and Results

Data Movement in the Critical Path

Thread synchronisation in MulTEP is performed using store commands. Hence, data
movement from such commands are crucial to the system. Because of this, the load-store
unit plays an important role in handling thread synchronisation over and above its duty
to alleviate the data-bandwidth bottleneck between the other units (see Section 6.4 for
details of how bottleneck is alleviated).

Data movement in the critical path in the load-store unit have been monitored in the
simulation during the implementation process. Figure 8.8 presents an example when both
processing elements issue different store packages to the load-store unit4. The example
for PE1 is the case when a thread required the content from a register whose data is still
being loaded. When the processing unit is waiting for the data from the load-store unit,
context switch occurs5. In such a case, a store package embedded with the invalid data
whose source register is $r2 was released. The invalid status at the data source indicated
that the field was waiting for load-return data.

mov r1,r2

sw r0,add

r2

(have data)

2. Continue next inst

PU

2. Switch threadnew thread

(score boarding: r0 data is ready) M
U

X

To shared circuits

LSU

(score boarding: r2 is being loaded)

1PE0

PE1

1. Create a store package

1. Create a store package

1

ThID

RA+r1

add

ThID

[r0]1 1

10

Load/store queue of PE1 (PUin[1])

Load/store queue of PE0 (PUin[0]) selected by round robin

Figure 8.8: The PEs issue different store packages to the MSU.

Figure 8.9 presents a situation when load-return data arrived. Thereby, the status
of the field in the package was changed to be valid.

1

PU

0

M
U

X

To shared circuits

LSU

PE0

PE1

RA+r1r2ThID 1 1

1. Match package (both ThID and rID)
2. Change an invalide bit in store buffer to be a valid (1−>0)

Load/store queue of PE0 (PUin[0])

Load/store queue of PE1 (PUin[1])

Load−return data
(ThID=F000, rID=r2)

selected by round robin

Figure 8.9: The required loaded data updates an invalid stored package.

4Information are extracted from the operation of two LL7 threads (see Section §8.3.2)
5move is a special store operation if its operand is indicated invalid in a scoreboard.
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Owing to the analysis of data movement in the load-store unit, I had found that the
size of the queue is one of the most crucial factors which directly effects the processing per-
formance. This is because a decrease in queue size directly increases the data-bandwidth
bottleneck.

An assessment of queue size on performance was undertaken using run-times as the
metric. Run-times for a particular queue size were normalised against run-times for an
infinite queue size (i.e. where the queue is no longer a bottleneck). Figure 8.10 depicts
the normalised run-times of three Livermore Loop 7 (LL7) workloads as presented in
Figure 8.11 with different numbers of loop iterations (n is equal to 20, 30 and 50).

Figure 8.10: The normalised run time with different queue size.

Figure 8.10 shows that the data-bandwidth bottleneck is reduced when the queue
size increases. When the queue size is at least eight, the difference of all normalised run-
times become less than 1%. Load/store input queue packages of size eight are used and
conform to the sizes of the operation analysis of the load-store unit in Section 6.4.

Thread Synchronisation

Synchronisation and communication are two of the three crucial features in multithreaded
design that need to be evaluated6. The underlying synchronising mechanicsm that support
extensive communication of data and control were validated before benchmarking the
system. To assess thread synchronisation, multithreaded version of Livermore loop 7 [4]
(see Appendix B.3) was created with a large number of inter-loop dependencies resolved
using inter-thread synchronisation. Results are shown in Figure 8.11.

6The other is a scheduling mechanism, which has already been analysed in §8.2.1
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Init

x: prep(y,z) y: prep(u)

z: join

spawn

sync

spawn

spawn

sync

spawn

x[i] = u[i] + r*(z[i]+r*y[i]) + t*(u[i+3] + r*(u[i+2]+r*u[i+1]) + t*(u[i+6] + q*(u[i+5]+q*u[i+4])))

0: check n

continue

1: get(y,z,i:i+5) 2: get(u,i:i+11)

3: cal(t1,i:i+5) 4: cal(t2,i:i+5) 5: cal(t3,i:i+5)

syncsync

sync

sync

syncsyncsync

sync sync

sync

6: cal(t4,i:i+5)

sync

7: cal(t5,i:i+5)

loop
8: cal(x,i:i+5)

sync

preload u[i:i+5]

preload z[i:i+5]

preload y[i:i+5]

for i=1 to n step 5 do

in parallel k=i to i+5 do

t1 = r*(z[k]+r*y[k])

t2 = u[k+3]+r*(u[k+2]+r*u[k+1])

t3 = t*(u[k+6]+q*(u[k+5]+q*u[k+4]))

t4 = u[k]+t1

t5 = t*(t2+t3)

x = t4 + t5

end in parallel

end for

print(x)

prep(u)

prep(y,z)

for i=1 to n do

9: print(x)

Figure 8.11: The multithreading version of Livermore Loop 7.

136



8.3. MulTEP Simulation Results

The main thread initially spawned 3 sub-threads, namely Threads x, y and z, which
inject data. Thread z then spawns the main loop which consists of Threads 0 to 9.
Thread 0 handles the loop termination checking. Threads 1 to 8 represent calculation
of six unrolled-loops. These threads were separated with respect to their shared data
and independent characteristics. When the calculation was accomplished, Thread 9 was
activated to summarise the results.

Concurrent execution of more than one LL7 programs require extensive data and
control synchronisation. Figure 8.12 illustrates the execution of two LL7 programs. The
intra-process synchronisation is represented by a pink line on the two top diagrams. The
inter-process synchronisation on shared resources, such as the execution contexts and the
processing elements, is reflected in the form of the coherency of resource utilisation (see
two bottom diagrams of Figure 8.12).

Evaluating the synchronisation of multiple threads with the LL7 benchmark demon-
strates the correctness of the synchronisation mechanism. The monitored data indicates
that the context switches in the processing unit and the changes in context were correct.
Their behaviour matches the dynamic priority and the context-switching state diagram.

8.3 MulTEP Simulation Results

This section presents simulation results of the MulTEP architecture. The section starts
with an introduction of the selected benchmarks (§8.3.1), followed by the MulTEP evalua-
tion results in terms of the processor performance (§8.3.2), the efficiency of multithreading
mechanisms (§8.3.3), the real-time response (§8.3.4) and the memory side-effects (§8.3.5).

8.3.1 Selected Benchmarks

There are two areas where the MulTEP system needs to be evaluated. The first area
is its performance when the multithreading mechanisms are utilised. To support this, a
benchmark with a high-degree of thread level parallelism is required. Because of this, the
multithreading version of Livermore Loop 7 (see §8.2.3) was selected. The calculation
characteristic of Livermore Loop 7 is also very close to some highly parallel embedded
applications such as the hidden markov model and a neural network model, which are
generally used for image and speech recognition.

The second area is to evaluate MulTEP with different applications. Hence, a set of
wellknown benchmarks with variety functional characteristics becomes the area of interest,
especially those that have been selected by the majority of multithreaded architectures.
Based on this, six programs in the standard SPEC CPU2000 benchmark are selected.
These programs represent different types of applications covering both integer and floating
point calculation (see Table 8.1).
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8.3. MulTEP Simulation Results

8.3.2 Processor Performance

Two set of evaluations were performed to evaluate MulTEP performance. The first set is
an evaluation when MulTEP was supplied with multithreaded workloads. The second set
is an evaluation when MulTEP was supplied with a number of single-threaded workloads
from the SPEC CPU2000 benchmark suite.

Performance of Multithreaded Workloads

The first set of evaluations focuses on the system performance of MulTEP when operating
with multithreaded workloads. The objective of this multithreading appraisal is to answer
the following questions:

1. How well can MulTEP perform over a baseline single-threaded processor?

2. How much can MulTEP benefit from multithreaded code?

I used a 2-issue MIPS R3000 with static scheduling as baseline integer processor. For
system benchmarking, two versions of the standard LL7 algorithm with 1,000 iterations
were implemented in Java. The first version is single-threaded code (see Appendix B.1)
and the second version is multithreaded code (see Appendix B.2). The multithreaded code
spawns 5 sub-threads, each of which separately handles 200 iterations of the standard LL7
algorithm.

Three experiments were conducted. The first experiment monitors the run-times of
the baseline processor operating with the different numbers of single-threaded workloads
(coded SB: Single-threaded code on the Baseline CPU ). The second experiment focuses
on the run-times of MulTEP operating with the same number of single-threaded work-
loads (coded SM: a Single-threaded code on MulTEP). The third experiment examines the
run-times of MulTEP, operating with some number of multithreaded codes (coded MM:
Multithreaded code on MulTEP).

To answer the first question, Figure 8.13 displays the speedup of the SM and MM

based on the SB. The workload on an x-axis represents the number of LL7 programs
excluding kernel thread (thread 0). The figure shows that MulTEP offers a speedup (i.e.
24.29% on average) when it is supplied with more than 2 single-threaded workloads7.
When the number of threads is greater than the number of the processing elements (2),
a significant trend of performance improvement is present (i.e. 31.23% average speedup).
This reflects that MulTEP tolerates data transfer latencies when it is able to schedule
additional workloads to achieve significant speedup. When the number of programs is
less than that of the processing elements, the multithreaded performance of MulTEP is
worse than the baseline experiment. This is because the program length of multithreaded
code plus thread-0 are longer than the program length of single-threaded code8.

Figure 8.13 illustrates that the highest speedup (60%) is obtained when executing
three single-threaded programs. However, as depicted in Figure 8.14, some processing

7The number of single-threaded workloads are more than the number of the PEs.
8The length of the thread 0 approximately equals the length of the LL7 code.
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Figure 8.13: Speedups of MulTEP with single-/multi-threaded codes.

elements and some execution contexts are partly utilised when the number of threads is
less than four (i.e. the number of the execution contexts).

Figure 8.14: PE/Rset Utilisation of single-threaded code.

To answer the second question, Figure 8.15 depicts the speedup of the MM run-times
compared with the SM run-times. These speedups reflect the benefits of the multithreading
features in MulTEP if the code is supplied with MulTEP’s multithreading instructions
(i.e. spawn, switch, wait, stop). The figure presents that the operation of multithreaded
codes offers 16% average speedup9 when the number of workloads is greater than three.

However, the performance of multithreaded code is worse than the performance of
single-threaded code when the number of workloads is no more than three. There are
two reasons for this. The first reason is that the run length of multithreaded code is
40% longer than the run length of single-threaded code due to overheads associated with
handling Java’s threads. The second reason arises when the number of threads is less than
the number of execution contexts (4) since executing from one to three threads can be
conducted without much competition for execution contexts. Thus, the execution from

9There is a decreasing trend in the multi-threading features speedup. Further analysis to find out the
root cause of this decreasing trend is conducted in 8.3.5.
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8.3. MulTEP Simulation Results

one to three single-threaded codes can avoid the outside-PU context-transferring overhead
(i.e. 7 to 16 cycles per transaction).

Figure 8.15: Speedup from multi-threading features in MulTEP.

Performance of Single-threaded Benchmarks

Although the previous section presents performance improvement of a single-threaded
LL7 when the number of workload is more than the number of processing elements, it is
insufficient to draw conclusions based on one program. Therefore, additional experiments
were conducted using the SPEC CPU2000 suite. Table 8.1 lists the selected benchmarks
from the suite for system evaluation10:

Program Description Parameters

164.gzip Data compression utility smred.log 1

175.vpr FPGA circuit routing test small.arch.in -route only ..

181.mfc Minimum cost network flow solver lgred

197.parser Natural language processing 2.1.dict -batch < lgred.in

179.art FP neural network simulation -stride 5 ... -objects 1

188.ammp FP computational chemistry < lgred.in

Table 8.1: Selected single-threaded benchmarks from SPEC CPU2000.

SimpleScalar [147], a well-known tool in the architecture community, is used as a
baseline model for the evaluation. The SimpleScalar PISA model, a MIPS-like model, was
augmented with similar memory hierarchy and functional units as that for the MulTEP
architecture as shown in Figure 8.16.

10Only the base version is used (not the peak/optimised version)
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Figure 8.16: Similarity in memory hierarchy and functional units.

PISA binaries11 of the benchmark programs listed in Table 8.1 were obtained from
the MIRV project [153]. The sstrix-objdump tool was used to disassemble the PISA
objects and the mipsel-as assembler, obtained from the Linux VR project [154], repacked
them into MIPS objects for the simulation. The MinneSPEC data [155] were used as
inputs to the benchmark programs.

The benchmarks were executed on both the SimpleScalar’s sim-outorder (see Ap-
pendix C.2) and the MulTEP simulations. Figure 8.17 presents the run-time speedup of
MulTEP compared with SimpleScalar. MulTEP performs worse than SimpleScalar when
the number of threads is less than the number of the processing elements. This is because
MulTEP needs to execute additional instructions and it cannot extract instruction level
parallelism. A few instructions are required for multithreading and Thread-0 imposes
some overhead12.

MulTEP offers 12% average speedup and 18% average speedup when the number of
threads is equal to or greater than the number of the processing elements. The benchmark
results demonstrate that performance is effectively gained when the number of threads is
sufficient for multithreading.

Figure 8.18 presents the speedup of MulTEP’s performance based on the perfor-
mance of two enhanced superscalars with the number of threads ranges from 1 to 6. The
enhanced superscalar (simulated by SimpleScalar’s tool sim-outorder) is configured with
the parameter in Table 8.213.

11PISA instructions are close to MIPS instructions but encoded with different format
12Thread 0’s time interval is 10,000 cycles in the MulTEP simulation
13The enhanced superscalar is inspired by architectures in MICRO-35 Conference.
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Figure 8.17: The speedup of MulTEP based on the SimpleScalar simulation.

Figure 8.18: The speedup of MulTEP based on 2 out-of-order superscalars.
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L1-Icache 1KB of 8 sets, fully associative, 1 cycle
L2-Icache 16KB of 16 sets, direct-mapping, 5 cycles
L1-Dcache 16KB of 128 sets, 4-way set-associative, 5 cycles
Cache Miss Penalty 200 cycles
Issue to Decoder 16 instructions
Register Renamer 16 instructions
Branch Predictor 128K-entry global & share, 64K-entry local
Branch Target Buffer 4K entries
Return Stack 32 entries
Mis-prediction Latency 20 cycles
Out-of-order Window 512 entries

Table 8.2: The configuration of the enhanced superscalar.

The overall speedup over the out-of-order superscalar is lower than the previous
speedup results. The reduced speedup value is due to a better performance of the out-
of-order superscalar which reflects in a degraded speedup when the number of threads
is only 1 or 2. However, MulTEP is capable of offering 9.7% average speedup when the
number of threads is equal to or exceeds the number of the processing elements.

8.3.3 Efficiency of Multithreading Mechanisms

The previous section indicates that the performance can be improved when there are
sufficient threads to allow data access latencies to be hidden by rescheduling. This section
evaluates the efficiency of the multithreading mechanisms: pre-fetching, pre-loading and
colour-tagging.

The efficiency of the multithreading mechanisms can be measured by looking at the
percentage of zero-cycle context switches. Figure 8.19 presents the zero-cycle overhead
ratio when the MulTEP system was benchmarked with the number of threads ranging
from 1 to 6.

The results of Figure 8.19 illustrate that the percentage of zero-cycle context switches
dramatically increases when the number of workloads increases from 1 to 3. The zero-
cycle context-switching percentage is more than 90% when the number of workloads is at
least four, which is the number of execution contexts.

The high percentage of zero-cycle context switches indicates that the pre-loaded
execution contexts are available in the system prior to the usage. This is because the
pre-loading mechanism executes in accordance with the scheduling decision indicated by
the multithreading service unit.

Instruction pre-fetching in the L0-Icache also benefits from the scheduling informa-
tion indicated by the multithreading service unit. Figure 8.20 illustrates the hit ratio
of the L0-Icache when MulTEP was benchmarked with different workloads. The results
show a 99.57% average hit ratio. The results reflect a high efficiency of the pre-fetching
mechanism when compared to most conventional architectures where the average hit ratio
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Figure 8.19: The percentages of zero-cycle context switches.

on a similar instruction cache can provide only 98% [139].

Figure 8.20: Hit ratios of the L0-Icache with various numbers of workloads.

8.3.4 Real-Time Response

A thread is associated with a priority. A priority can be assigned by either real-time
embedded languages or a real-time kernel (see Chapter 7). The evaluation of MulTEP’s
real-time feature was based on the dynamic scheduling capability. In the evaluation,
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the start and completion time of each thread were analysed to determine whether they
conformed to their priorities or not.

Observations were firstly made in §8.2.3. As displayed in Figure 8.12, the upper set
of threads which have a higher priority are handled earlier than the lower set of threads
in every decision making period. To extend the real-time analysis to the SPEC CPU2000
benchmark, different priorities were associated with six benchmarking workloads as illus-
trated in Figure 8.21.

Figure 8.21: The run length in % of execution time.

The priority (p) is 128 for the first thread and reduced by p

n
for the following spawned

thread (n represents the total number of threads). A thread with a higher priority is
serviced and completes its execution prior to a thread with a lower priority. This re-
sult demonstrates that the scheduler supports a priority-based scheduling policy. This
scheduling policy matches many of those present in real-time OSs (see Chapter 7).

8.3.5 Side-effect Evaluation

One drawback of multithreaded operation is the side effect on other competitive resources
like the caches. The results in §8.3.2 present a slightly decreasing trend in performance
when the number of threads increases, even though there are a sufficient number of threads
to provide concurrency. The cause of the decrease is suspected to be a result of thread
competition in both first level instruction and data caches.

The suspicion is based on the fact that L1-Icache and D-caches are the first resources
shared by multiple threads without the scheduling information from the multithreading
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service unit14. Figure 8.22 presents the hit ratio in the L1-Icache15. The figure depicts
decreasing hit ratios when the number of threads increases, especially when the number of
threads is equal to or greater than the number of the execution contexts in the processing
unit.

Figure 8.22: Hit ratios of L1-Icache with various numbers of workloads.

Figure 8.23 illustrates the hit ratio in the L1-Dcache16. The figure presents a de-
creasing trend in the hit ratio when the number of threads is on the increase. Even though
a cache line has already associated with a thread identifier, each replacement of the cache
block is based on priority and since each thread has a different priority value, the cache
conflicts of multiple threads still occur.

8.4 Summary

A C++ simulation of MulTEP was produced. This simulation demonstrates a range
of architectural features, including the ability to dynamically schedule and synchronise
threads. A number of benchmark simulation models were used to test that the C++ sim-
ulation framework produced cycle accurate results in comparison with equivalent Verilog
models.

The results of the Livermore Loop 7 and SPEC CPU2000 benchmark evaluations
reflect that MulTEP is efficient when there are at least as many threads as processing

14L1 caches cannot utilise the scheduling in the MSU because the length of all instructions to be loaded
and the space allocation of data on the memory are unpredictable.

15Instruction cache level 1 is a 16 kB cache with 16 sets using a direct-mapping policy (see Chapter 6 for
more details)

16L1-Dcache is 16 kB with 128 sets using a 4-way set-associative policy (see Chapter 6).
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Figure 8.23: Hit ratios of DCache with various numbers of workloads.

elements. These results demonstrate that sufficient thread level parallelism provides high
execution performance, especially when multithreaded source code is provided.

The efficiency of the multithreading mechanisms is relatively high. Pre-fetching
instructions in L0-Icache offers approximately 99.57% hit ratio. Contexts are switched
without any overhead for more than 90% of the total context switches when there are
at least as many threads as execution contexts. This illustrates that pre-loaded contexts
are well utilised. These features guarantee that real-time response can be attained when
threads are appropriately prioritised.

The processing performance is degraded when the number of threads increases. This
is due to conflicts on shared resources, primarily the first level of data and instruction
caches. Nevertheless, even with this cache side effect, the results demonstrate that Mul-
TEP is capable of providing 12% average speedup.
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Chapter 9

Conclusions and Future Directions

The day of work is done.
Hide my face in your arms, mother.
Let me dream.

Rabindranath Tagore

9.1 Introduction

This thesis tackles the demands of high performance embedded processors with a novel
architecture called the MultiThreaded Embedded Processor (MulTEP). The MulTEP sys-
tem aims to deliver high performance processing with real-time response by exploiting
thread level parallelism whilst avoiding non-deterministic speculative execution.

This chapter summarises key contributions derived from my study, starting with
an overview of the MulTEP system (Section 9.2). Key results from implementing the
MulTEP model are then discussed (Section 9.3). A comparison with related architectures
is then presented (Section 9.4). Finally, the future directions are suggested (Section 9.5).

9.2 Overview of MulTEP

MulTEP combines RISC processing engines extended to support a small number of
threads with an activation frame cache to store spilled thread contexts. The memory
hierarchy is tuned to handle multiple threads. A scheduling mechanism is provided to
issue threads in priority order. Synchronisation is supported by a matching store.

Programs are represented by multiple data-driven nanothreads. Each nanothread
is a non pre-emptable control-flow section of code containing 1 to 32 instructions. In
the processing unit, up to 8 nanothreads are pre-fetched and up to 4 execution contexts
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are pre-loaded. Each thread stream is tagged with its register identifier (colour tagging).
These pre-loading, pre-fetching and colour-tagging techniques are provided to switch con-
texts without any overhead. Simulation results indicate that contexts are switched with
zero-cycle overhead for more than 90%, if all execution contexts can be preloaded.

Thread level parallelism yields good performance gains by increasing processing el-
ement utilisation. Its underlying model allows concurrency to be expressed without the
need for speculative execution and branch prediction. The elimination of these mecha-
nisms simplifies the architecture.

The synchronisation and scheduling mechanisms used by MulTEP build on the Ana-
conda processor [4]. In the Anaconda architecture, data-flow style concurrency primitives
supplement control-flow sequential execution primitives. Control-flow like execution al-
lows efficient use of intermediate results. Data-flow like synchronisation allows a thread
to wait for multiple data items.

The matching-store synchroniser allows a thread to wait for up to 24 data items.
Each item is sent via a store instruction to a suitable activation frame. The hardware
scheduler is capable of issuing the highest priority thread in a single clock cycle. This
mechanism is provided to support real-time execution. To avoid starving low-priority
threads, priorities are dynamically increased each time a thread is inserted into the sched-
uler.

The execution pipelines are similar to simple RISC DLX pipelines but with slightly
more functional units to support multiple execution contexts. The majority of extra
hardware is contained in the additional multithreading service unit. This unit provides
hardware support to progress a thread through its life cycle.

Furthermore, the multithreading service unit handles excess execution contexts
which are spilled to the memory hierarchy in the form of activation frames. The un-
derlying mechanisms in this unit allow MulTEP to support up to 216 threads without any
incremental cost per thread.

Four additional multithreading instructions (i.e. spawn, switch, wait and stop) are
provided for programmers and advance compilers to allow a thread to progress through its
life cycle. The processing unit decodes these instructions and sends them to be serviced
by the multithreading service unit. The multithreading service unit provides most of the
multithreaded support in hardware though it does rely on the thread-0 system daemon
to perform house keeping.

To reduce memory traffic, the load-store unit operates independently. The underly-
ing mechanism of the load-store unit sends load and store tokens to either the activation-
frame cache or the data cache. If the thread is switched out of the processing unit, its
load-return data will be redirected to its activation frame by the load-store unit.

As each virtual-to-physical address translation includes a thread group ID, MulTEP
allows multiple threads to refer to the overlapping virtual memory space. The same virtual
addresses of different threads are translated to different physical locations. The system
tries to resolve cache conflicts by associating a thread priority with each cache line in the
first level cache. Nevertheless, my analysis shows that this enhanced replacement strategy
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is not sufficient to resolve all conflicts caused by multiple threads.

To save power, MulTEP analyses the status of the processing unit along with the
scheduling information and then offers four power operating modes. The modes are:
running, standby, suspend and hibernate. These operating modes could be used as part
of the power management strategy for an implementation.

The performance of some standard benchmarks indicates that MulTEP benefits from
multithreading when there are enough threads (i.e. there are at least as many threads
as processing elements). Furthermore, the system demonstrates that the priority-based
hardware scheduler may support real-time execution.

9.3 Key Contributions

The design work undertaken for MulTEP resulted in the following novel architectural
features:

• A mechanism to support zero-cycle context switches

To switch the execution context without any overhead, it is necessary to pre-fetch
instructions, pre-load execution contexts and tag execution streams with a thread
identifier. To maximise zero-cycle context switching, the optimum number of reg-
isters sets was found to me 2p to support p processing elements. The optimum
number of L0 caches lines is 4p. This allowed the processing elements to be kept
busy (typically 99%). Fewer register sets or a smaller L0 cache reduced perfor-
mance significantly. More register sets or a larger L0 cache yielded little benefit and
increased the hardware cost.

• Combining multithreading with parallel processing elements

Two mechanisms are introduced to support multithreading across parallel processing
elements. Firstly, the data-forwarding unit is extended to allow forwarding of results
between processing elements. Secondly, for each processing element, a queue needs
to be added to the load/store unit and multithreading-service unit. These queues are
serviced by each unit in thread priority order, or round robin order if the priorities
are the same.

• A framework to support flexible multithreading with fixed implementa-
tion cost

As summarised in Section 9.2, MulTEP offers a framework to support a flexible
number of threads by using an activation-frame cache. This cache holds spilled con-
texts close to the processing elements. Consequently, only 2 contexts per processing
element are required. At any one time, the p processing elements are executing
threads with contexts stored in p register sets. The remaining p register sets hold
contexts of threads waiting to execute, or the context is being transfered to or from
the activation frame cache.

• Instructions to support multithreaded operation
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MulTEP’s programmer’s model allows programs to control the progress of each
thread using only four additional multithreading instructions: spawn, switch, wait
and stop. These instructions are demonstrably sufficient to support a wide range
of thread models including the Java virtual machine.

9.4 Related work

A Comparison with related architectures has been conducted by analysing both mul-
tithreading efficiency and embedded system design aspects. Based on an investigation
proposed in the Anaconda project [4], one view of the multithreaded design space can
be obtained by plotting the amount of available concurrency supported by the hardware
against the size of the non-preemptable executable unit. Figure 9.1 presents a range
of architectures from traditional control-flow (CISC and RISC) designs which exhibit
little concurrent behaviour, to data-flow machines which exhibit excessive concurrent be-
haviour.
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Figure 9.1: Comparison with other related work.

Further comparison has been conducted. On the one hand MulTEP was compared
with its anchester, Anaconda. On the other hand, it was compared with the following
architectural designs, which have been used in, or are purposed to be used for, embedded
systems.

• MultiThreading Architecture (MTA)
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Fine-grained interleaving technique from TERA’s MTA is used in Sanders’ MTA
real-time engine [156] and XInC wireless processor [157].

• Simultaneous MultiThreading (SMT)

This technique is used in MIPS’s MultiThread Application-Specific Extension (MT-
ASE) for embedded systems, Ubicom’s MASI embedded processor and XStream
processor core for embedded application [158].

• Chip MultiProcessor (CMP)

CMP architectural technique is used in Edinburgh’s asynchronous multithreaded ar-
chitecture [159, 160], the VLSI Architecture Using Lightweight Threads (VAULT) [161],
the extended CMP version of the differential MultiThreading (dMT-CMP), Clear-
Speed’s CS301 processor [162] and Intel’s IXP 1200 network processor [163].

An overall comparison is presented in Table 9.1 where r represents the number
of register sets on each processing unit, C represents the context switching overhead in
cycles, c represents the context size, N represents the number of threads, R represents
the run length per thread and n represents the size of a thread.

Features MTA SMT CMP Anaconda MulTEP

Switching overhead (C) 0 0 0-c 0-8 0-16

Number of threads (N) r r p × r > 1 > 1

Run length (R) 1 1-n 1-n 8-n 1-n

Thread synchronisation software hardware hardware hardware hardware

Thread scheduling FIFO speculative speculative deadline priority

Design complexity low high medium medium medium

Change thread state software software software software hardware

Table 9.1: A comparison of multithreaded embedded architectures.

As presented in Chapter 3, high processor efficiency is obtained with a low value
of context switching overhead (C), a large number of threads (N) and a long run length
(R). For the first parameter (C), all multithreaded architectural techniques for embedded
system have been designed to be capable of switching contexts with very low overhead (e.g.
C → 0). MTA uses a simple context interleaving to guarantee zero-cycle context switches.
SMT benefits from aggressive data/control prediction and dynamic scheduling to utilise its
shared resource hence it automatically provides zero-cycle context switches. Nevertheless,
this technique relies on statistical speculation and wastes power in mispredicted tasks.
CMP maintains zero-cycle context switching on a condition that it has a sufficient number
of register sets in each processing element, i.e. r > 1, and the run length is sufficiently
long. Otherwise, its context switch is likely to be longer than zero cycle due to the bus
bandwidth limitation. MulTEP has a hardware mechanism which typically enables over
90% of the context switches to complete in zero cycle (see Chapter 8).

For the second parameter (N), the number of threads in both MTA and SMT are
limited by the number of register sets, which is restricted because a large register file will
directly slow down the pipeline’s decoding stage. CMP escapes from such a restriction
by adding more processors (p > 1). Nevertheless, the number of threads is limited by
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the total number of registers in the system. In contrast, Anaconda and MulTEP have a
comparatively small number of registers and rely on an activation frame cache mechanism
to store excess thread contexts.

For the third parameter (R), MTA’s run length is very small (1 cycle) so it requires
a large number of threads to hide memory latency. SMT provides flexible fine-grained
instruction level parallelism (R > 1) by relying on data and control prediction together
with a dynamic scheduling. The run lengths of CMP, Anaconda and MulTEP architec-
tural techniques are also flexible. However, as the context switching overhead in CMP is
often longer than zero cycle, CMP’s run length is required to be long enough to give a
good processor utilisation.

In terms of the architectural details, MTA is not complex but the system relies
on software for thread synchronisation. Software synchronisation is substantially slower
than hardware synchronisation hence the architecture is not a suitable choice for mul-
tithreaded applications which have significant data interdependancies between threads.
Thread scheduling on MTA is also rather primative: a FIFO queue provides round robin
scheduling which is insufficient for real-time systems. SMT architecture is more complex
because it requires an aggressive speculation to utilise its shared resources and to support
dynamic thread scheduling. CMP and Anaconda are moderately complex because they
also need some units to support multithreading activities (e.g. thread synchronisation
and scheduling).

MulTEP introduces some design complexity in its multithreading service unit (see
Chapter 6). The advantage of having such a unit is that it allows a thread to progress
through its life cycle in hardware within a couple of clock cycles without relying on
software routines. This feature differentiates the MulTEP architecture from the other
models. Furthermore, MulTEP dynamically determines when context switches occur
where as some other architectures require explicit thread controls to be inserted. The
architecture does provide thread control instructions and these are capable of supporting
a wide range of software thread models. MulTEP also supports an arbitrary run length
and consequently it can efficiently execute single threaded code as well as multithreaded
code.

9.5 Future Directions

This section presents my suggestions for possible future extensions. The suggestions
emanate from experiences that I have gained during this research project.

9.5.1 Multi-ported Priority Queue

Currently, the scheduling of threads inside the MulTEP’s processing unit is based on a
2-element pre-scheduled queue. The queue is implemented using a tagged up/down sorter
which is limited to output one item per clock cycle. If we wish to simultaneously schedule
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more than one thread, this queue becomes a bottleneck. A multiported front-end to the
queue would be a small advantage.

9.5.2 Further Enhancements to the L0-cache

The current L0-cache is a traditional fully associative cache. A pre-fetched nanothread is
1 to 32 instructions and is placed in a 32 word cache line. Therefore, even though the run
length of a nanothread is very fine grained (e.g. less than 32 instructions), the current
I0-cache ends up fetching unrelated instructions. In the degenerate case, the required
instructions straddle two cache lines resulting in a considerable number of extraneous
instructions being fetched. This wastes both time and power.

One possible solution is to allow cache-lines to be filled starting at arbitrary addresses
rather than being on fixed cache-line boundaries.

9.5.3 Thread-0 Daemon Performance Improvements

The Thread-0 daemon performs house keeping functions. To simplify the design during
development, link lists were used to store the active-thread and wait-for-join tables. This
design decision had little impact on the benchmark results. Nonetheless, performance
gains could me made by using more sophisticated data structures (e.g. a hash table for
the active-thread table and a heap for the wait-for-join table).

9.5.4 Processor Scalability

Even though MulTEP is designed with two processing elements and four execution con-
texts, further modification can be conducted. As presented in Equation 5.2, the utilisation
of the processing elements relies on the characteristic of a thread’s run length, its con-
text size and its input bandwidth. In order to scale the number of processing elements,
these parameters need to be adjusted. The first parameter, a thread’s run length (µ−1),
typically depends on the application which is imposed on the hardware. As a result, the
later two parameters, the context size (x) and input bandwidth (B), become the key
architecture scalability factors.

With regards to the queueing model as presented in Section 5.4, the number of
processing elements (s) can be increased while still providing a good processing element
utilisation (U →1) in accordance to the following equation:

s ∝
C−1
∑

n=0

[

(C − 1 +
B

x
)
( µ−1

µ−1 + x
B

)

]n

(9.1)

The number of processing elements s can be increased when the context size x
decreases or the bus bandwidth B increases if the run length is sufficiently long (i.e. more
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than x
B

). However, such an increment is bounded with the minimum context size and the
maximum bandwidth of the bus.

For a large number of processing elements, alternative structures, such as a cluster of
the processing units that consists of a small number of processing elements and execution
contexts together with a local multithreading service unit that contains only a small
activation-frame cache, might be a more appropriate design. These clusters can share
a global activation-frame cache in the similar fashion to the memory hierarchy. The
detail of their mechanisms, such as an interconnection network and a wide-issue hardware
scheduler, are interesting areas for further investigation.

9.5.5 Cache Conflict Resolution

As presented in the side effect experiments (8.3.5), the association of thread priorities
is not sufficient to resolve the conflicts caused by multiple threads competing for unsu-
pervised shared resources (i.e. L1 data and instruction caches). As for the L0 I-cache,
scheduling information could be used to assist the cache management of the L1 data and
instruction caches.

9.5.6 Application Specific Processor Refinement

MulTEP was designed to be a general purpose processor, but it could be tuned for a
particular application adding application specific features and removing unused features.
For example, the activation frame cache size or the number of register sets could be
adjusted or the floating point instructions could be removed.

9.5.7 Software Support

There is a great deal of scope to design better compilers to support multithreaded proces-
sors. There is probably many PhDs worth of work in extracting thread level concurrency
from sequential programs.

Intel’s OpenMP high-level hyper-threading compiler for C++ and Fortran 95 [164]
were investigated. The OpenMP compiler incorporates a number of well-known optimi-
sation techniques for a high degree of parallelism, such as automatic loop parallelisation
and OpenMP directive-guided and pragma-guided parallelisation.

OpenMP is a portable programmability model for shared-memory parallelism [165,
166] which exploits medium- and coarse-grained parallelism for the architecture. There
are four phases of compilation in total. The first phase reconstructs generic procedures
of the code and provides inter-procedural optimisation. The second phase incorporates
OpenMP, automatic parallelisation and vectorisation. This phase is crucial for providing
the multithreaded result. The third phase applies high-level and scalar optimisation. The
forth phase offers lower-level code generation where MulTEP’s multithreading functions
could be used (e.g. via the provided macros in Chapter 7).
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Finally, the thread-0 system daemon would need to be included into a standard
operating systems. Thus, there is much room left for future research into software support.
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Appendix A

Tagged Up/Down Sorter

A.1 The verilog HDL source code

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\
∗ Program : t g s o r t . v ∗
∗ ∗
∗ A v e r i l o g HDL f i l e to s imu l a t e Tag s o r t i n g queue ∗
∗ ∗
∗ by : Pani t Watcharawitch ( pw240 ) ∗
∗ v e r s i o n : 2 . 0 ∗
∗ Last update : 2 7/03/01 ∗
\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

// General De f i n i t i o n
‘ define MAX KEY 8
‘ define KEY MIN 8 ’ h00
‘ define KEY MAX 8 ’hFF

‘ define MAX DATA 16
‘ define DATA MIN 16 ’ h0000
‘ define DATA MAX 16 ’hFFFF

module t g s o r t ( ) ;
reg c l k ;

// Input
reg i n s e r t ;
reg ex t ra c t ;
reg [ ‘MAX KEY−1 :0 ] ikey ;
reg [ ‘MAX DATA−1 :0 ] idata ;

// Output
reg [ ‘MAX KEY−1 :0 ] key ;
reg [ ‘MAX DATA−1 :0 ] data ;
wire empty ;
wire f u l l ;

// I n i t i a l
i n i t i a l begin

$monitor (” time=%0d ex t ra c t=%0d okey=%0d odata=%0d” , $time , extract , okey , odata ) ;
c l k = 0 ;

// $ c l kde f ( c lk , 2 0 , 4 0 , 4 0 ) ; // only f o r cadence 1999 ve r s i on

// i n s e r t i o n
i n s e r t = 1;
ex t ra c t = 0 ;
key = 0;

ikey = 3 ; idata =0;
#60 ikey = 2 ; idata =1;
#40 ikey = 1 ; idata =2;
#40 ikey = 5 ; idata =3;
#40 ikey = 6 ; idata =4;
#40 ikey = 7 ; idata =5;
#40 ikey = 3 ; idata =6;

#40 // stop i n s e r t
i n s e r t = 0;
ex t ra c t = 1 ;

#500 $stop ;
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$ f i n i s h ;
end // i n i t i a l begin

always

#20 c lk = ˜ c lk ; // Delay (20 ns ) i s s e t to ha l f the c l ock cyc l e
// only f o r cadence ( ve r i l ogy−XL) 2001 ve r s i on

// Core o f Tgsort
wire [ ‘MAX KEY+‘MAX DATA: 0 ] L0 , L1 , L2 , L3 , L4 , L5 , L6 , L7 , L8 , L9 ;
wire [ ‘MAX KEY+‘MAX DATA: 0 ] R0 , R1 , R2 , R3 , R4 , R5 , R6 , R7 , R8 ;
wire [ ‘MAX KEY−1 :0 ] okey ;
wire [ ‘MAX DATA−1 :0 ] odata ;
wire otag ;

always @( posedge c lk&ext ra c t ) begin

key <= okey ;
data <= odata ;

end

// Connection here ;
LR l r 0 ( clk , i n s e r t , extract , { ikey , idata , 1 ’ b0 } , L0 , R0 , { okey , odata , otag } ) ;
LR l r 1 ( clk , i n s e r t , extract , L0 , L1 , R1 , R0 ) ;
LR l r 2 ( clk , i n s e r t , extract , L1 , L2 , R2 , R1 ) ;
LR l r 3 ( clk , i n s e r t , extract , L2 , L3 , R3 , R2 ) ;
LR l r 4 ( clk , i n s e r t , extract , L3 , L4 , R4 , R3 ) ;
LR l r 5 ( clk , i n s e r t , extract , L4 , L5 , R5 , R4 ) ;
LR l r 6 ( clk , i n s e r t , extract , L5 , L6 , R6 , R5 ) ;
LR l r 7 ( clk , i n s e r t , extract , L6 , L7 , R7 , R6 ) ;
LR l r 8 ( clk , i n s e r t , extract , L7 , L8 , R8 , R7 ) ;
LR l r 9 ( clk , i n s e r t , extract , L8 , L9 , { ‘KEY MIN, ‘MAX DATA’ b0 , 1 ’ b0 } , R8 ) ;

assign empty = ( key==‘KEY MIN)&(okey==‘KEY MIN) ;
assign f u l l = ((L9>>(‘MAX DATA+1))!= ‘KEY MIN) ;

endmodule

module LR( clk , i n s e r t , extract , inL , outL , inR , outR ) ;
input c l k ;
input i n s e r t ;
input ex t ra c t ;
input [ ‘MAX KEY+‘MAX DATA: 0 ] inL ;
input [ ‘MAX KEY+‘MAX DATA: 0 ] inR ;
output [ ‘MAX KEY+‘MAX DATA: 0 ] outL ;
output [ ‘MAX KEY+‘MAX DATA: 0 ] outR ;

reg [ ‘MAX KEY−1 :0 ] Lkey , Rkey ;
reg [ ‘MAX DATA−1 :0 ] Ldata , Rdata ;
reg Ltag , Rtag ;

reg oldx ;

i n i t i a l begin

Lkey = ‘KEY MIN;
Ldata = 0 ;
Ltag = 0;
Rkey = ‘KEY MIN;
Rdata = 0 ;
Rtag = 0;
oldx = 0;

#10
Lkey = ‘KEY MIN;
Rkey = ‘KEY MIN;

end

wire x = (( oldx&(Lkey==Rkey ) ) | ( Lkey<Rkey ) | ( ˜ oldx&Rtag ))&˜( oldx&Ltag ) ;
wire ac = (x&i n s e r t ) | ( ˜ x&ext ra c t ) ;
wire bc = (˜x&i n s e r t ) | ( x&ext ra c t ) ;
wire atc = i n s e r t | ( ˜ x&ext ra c t ) ;
wire btc = i n s e r t | ( x&ext ra c t ) ;

wire [ ‘MAX KEY+‘MAX DATA: 0 ] Ain = (x ) ? inL : inR ;
wire [ ‘MAX KEY+‘MAX DATA: 0 ] Bin = (x ) ? inR : inL ;

always @( posedge c lk ) begin

i f ( ac ) begin

Lkey <= Ain>>(‘MAX DATA+1);
Ldata <= Ain>>1;

end

i f ( atc ) begin

Ltag <= (Ain&1)|˜x ;
end

i f ( bc ) begin

Rkey <= Bin>>(‘MAX DATA+1);
Rdata <= Bin>>1;

end

i f ( btc ) begin

Rtag <= (Bin&1)|x ;
end

i f ( i n s e r t | ex t ra c t ) begin

oldx <= x ;
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end

end // always @ ( posedge c lk )

assign outL = (x ) ? { Lkey , Ldata , Ltag } : { Rkey , Rdata , Rtag } ;
assign outR = (x ) ? {Rkey , Rdata , Rtag } : { Lkey , Ldata , Ltag } ;

endmodule

A.2 The simulation source code

A.2.1 tgsort.hh

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| Program : t g s o r t . hh |
| De t a i l s : Tagged Up/Down Sor t e r |
| Vers ion : 2 . 0 ( Mar 16 th , 2 0 0 1 ) |
| By : Pani t Watcharawitch |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
#include ” conio . h”

#define Q SIZE 100
#define S SIZE 10 // max s o r t = 20 e lement
#define K TYPE unsigned int

#define D TYPE int

#define ZERO PRI fa l se

#define DYNAMIC fa l se

#define TRACE 1
#define T SIZE 3

int t r a c e ;

struct Package {
K TYPE key ;
D TYPE data ;
BIT tag ;

} ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ LR Objec t ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗/

struct LR In {
Package L , R;
BIT in s e r t , ex t r a c t ;

} ;

struct LR Out{
Package L , R;

} ;

template<class InPut , class OutPut>
class LR : public SimObj<InPut , OutPut>{
public :

LR( ) ;

void f unc t i on ( ) ;

private :
Package L , R;

void cmp swap ( ) ;
} ;

// House k e ep ing
template<class InPut , class OutPut>
LR<InPut , OutPut > : :LR( ) {

in . L . key = (K TYPE)0 ;
in . L . data = 0 ;
in .R. key = (K TYPE)0 ;
in .R. data = 0 ;
in .R. tag = fa l se ;

L . key = (K TYPE)0 ;
L . data = 0 ;
R. key = (K TYPE)0 ;
R. data = 0 ;
R. tag = fa l se ;

}

// I n t e r f a c e f un c t i o n
template<class InPut , class OutPut>
void LR<InPut , OutPut > : : f unc t i on ( ) {

i f ( in . i n s e r t ) L = in .L ;
i f ( in . ex t r a c t ) R = in .R;

cmp swap ( ) ;
i f ( t r a c e ) p r i n t f ( ” [(%d,%d) (%d,%d ) ]\ n” , L . key , L . data , R. key , R. data ) ;
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out .L = L ;
out .R = R;

}

template<class InPut , class OutPut>
void LR<InPut , OutPut > : : cmp swap ( ) {

Package Temp;

i f ( ( L . key>R. key ) | | L . tag ) { // comparison
Temp = L ; // swap
L = R;
R = Temp;
R. tag = true ;

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Tag So r t i n g Ob j ec t ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

struct TgSort In {
BIT i n s e r t ;
BIT ex t ra c t ;
K TYPE key ;
D TYPE data ;

} ;

struct TgSort Out {
K TYPE key ;
D TYPE data ;
BIT empty ;
BIT f u l l ;

} ;

template<class InPut , class OutPut>
class TgSort : public SimObj<InPut , OutPut>{
public :

void f unc t i on ( ) ; // I n t e r f a c e f u n c t i o n s

private :
LR<LR In , LR Out> l r [ S SIZE ] ;

void connect ion ( ) ; // I n s i d e f u n c t i o n s
} ;

// I n t e r f a c e f u n c t i o n s
template<class InPut , class OutPut>
void TgSort<InPut , OutPut > : : f unc t i on ( ) {

short i ;

i f (TRACE) {
t e x t a t t r (GREEN) ; p r i n t f ( ”−−− c l k = %d −−−\n” , c l k +1) ; t e x t a t t r (NORMAL) ;

i f ( in . i n s e r t ) {
t e x t a t t r (BROWN) ; p r i n t f ( ” In :(%d,%d ) ” , in . key , in . data ) ;
t e x t a t t r (NORMAL) ;

} else p r i n t f ( ” In :(− ,−) ” ) ;
i f ( in . ex t r a c t ) {

t e x t a t t r (YELLOW) ;
p r i n t f ( ”Out:(%d,%d)\n” , l r [ 0 ] . out .R. key , l r [ 0 ] . out .R. data ) ;
t e x t a t t r (NORMAL) ;

} else p r i n t f ( ”Out:(− ,−)\n” ) ;
}

// pre−c l k
i f (ZERO PRI ) l r [ 0 ] . in . L . key = in . key + 1 ;
else l r [ 0 ] . in . L . key = in . key ;
l r [ 0 ] . in . L . data = in . data ;
l r [ 0 ] . in . L . tag = fa l se ;
l r [ S SIZE −1] . in .R. tag = fa l se ;
i f (ZERO PRI ) out . key = l r [ 0 ] . out .R. key − 1;
else out . key = l r [ 0 ] . out .R. key ;
out . data = l r [ 0 ] . out .R. data ;

// main f un c t i o n
for ( i =0; i<S SIZE ; i ++) {

t r a c e = TRACE&&(i<T SIZE ) ;

l r [ i ] . in . i n s e r t = in . i n s e r t ;
l r [ i ] . in . ex t r a c t = in . ex t ra c t ;
l r [ i ] . s imc lk ( ) ;

}

connect ion ( ) ; // wire−connec t i on
}

// I n s i d e f u n c t i o n s
template<class InPut , class OutPut>
void TgSort<InPut , OutPut > : : connect ion ( ) {

short i ;

for ( i =0; i<S SIZE ; i++)
i f (DYNAMIC) {

l r [ i +1] . in . L = l r [ i ] . out . L + 1;
l r [ i ] . in .R = l r [ i +1] . out .R + 1;

} else {
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l r [ i +1] . in . L = l r [ i ] . out . L ;
l r [ i ] . in .R = l r [ i +1] . out .R;

}

out . empty = ( l r [ 0 ] . out .R. key==(K TYPE) 0 ) ;
out . f u l l = ( l r [ S SIZE −1] . out .L . key !=(K TYPE) 0 ) ;

}

A.2.2 tgsort.cc

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| Program : t g s o r t . cc |
| De t a i l s : Tagged Up/Down Sor t e r |
| Vers ion : 2 . 0 ( Mar 16 th , 2 0 0 1 ) |
| By : Pani t Watcharawitch |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
#include < s t d i o . h>

#include < s t d l i b . h>

#include ” simobj . hh”
#include ” t g s o r t . hh”

// G loba l Var i a b l e
K TYPE queue [ Q SIZE ] ;
D TYPE data [ Q SIZE ] ;
int c l k ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Main Program ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void show help ( ) {
p r i n t f ( ”Format : t g s o r t number ( s ) . . . \ n” ) ;
p r i n t f ( ”Example : t g s o r t 2 1 5 6\ n” ) ;

e x i t (EXIT FAILURE) ;
}

void i n i t a i l i s e ( int argc , char ∗ argv [ ] ) {
int i ;

c l k =0;

t e x t a t t r (CYAN) ;
p r i n t f ( ”Tagged Up/Down Sor te r Vers ion 2 . 0\n” ) ;
p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
p r i n t f ( ” Input : ” ) ;
t e x t a t t r (BROWN) ;

for ( i =0; i<argc −1; i ++) {
queue [ i ] = a to i ( ( char ∗ ) ( argv [ i +1 ] ) ) ;
p r i n t f ( ”(%d,%d ) ” , queue [ i ] , i ) ;

}
t e x t a t t r (NORMAL) ;

p r i n t f ( ”\n” ) ;
}

void f i n a l i s e ( int s i z e ) {
short i ;

t e x t a t t r (CYAN) ; p r i n t f ( ”Output : ” ) ; t e x t a t t r (YELLOW) ;
for ( i =0; i<s i z e ; i ++) p r i n t f ( ”(%d,%d ) ” , queue [ i ] , data [ i ] ) ;
t e x t a t t r (CYAN) ;

p r i n t f ( ”\n\n” ) ;
p r i n t f ( ”Total key = %d\n” , s i z e ) ;
p r i n t f ( ”Total c l o ck = %d\n” , c l k ) ;
p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
t e x t a t t r (NORMAL) ;

}

int main ( int argc , char ∗ argv [ ] ) { TgSort<TgSort In , TgSort Out > t g s o r t ;
short i ;
int s i z e = argc −1;

i f ( argc <2) show help ( ) ;

i n i t a i l i s e ( argc , argv ) ;

// I n s e r t i o n
t g s o r t . in . i n s e r t = true ;
t g s o r t . in . ex t r a c t = fa l se ;
for ( i =0; i<s i z e ; i ++) {

t g s o r t . in . key = queue [ i ] ;
t g s o r t . in . data = c lk ;
t g s o r t . s imclk ( ) ;
c l k++;

}

// Ex t r a c t i on
t g s o r t . in . i n s e r t = fa l se ;
t g s o r t . in . ex t r a c t = true ;
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A.2. The simulation source code

for ( i =0; i<s i z e ; i ++) {
t g s o r t . s imclk ( ) ;
queue [ i ] = t g s o r t . out . key ;
data [ i ] = t g s o r t . out . data ;
c l k++;

}

f i n a l i s e ( s i z e ) ;

return EXIT SUCCESS ;
}
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Appendix B

Livermore Loop 7

B.1 The single-thread java code

class l l 7 s {
public stat ic void main ( St r ing [ ] a rgs ) {

int N = 1000;
int LL = 7;

int [ ] u = new int [N+LL ] ;
int [ ] x = new int [N ] ;
int [ ] z = new int [N ] ;
int [ ] y = new int [N ] ;

int t = 1 ;
int r = 2 ;
int l , k ;

// i n i t i a l i s e
for ( l =0; l<N+LL ; l ++) u [ l ] = LL−l ;
for ( l =0; l<N; l ++) {

z [ l ] = l ;
y [ l ] = 2∗ l ;

}

// l i v e rmor e l oop 7
for ( k=0 ; k<N ; k++ ) {

x [ k ] = u [ k ] + r ∗ ( z [ k ] + r∗y [ k ] ) +
t ∗ ( u [ k+3] + r ∗ ( u [ k+2] + r∗u [ k+1] ) +

t ∗ ( u [ k+6] + r ∗ ( u [ k+5] + r∗u [ k + 4 ] ) ) ) ;
}

System . out . p r i n t l n ( ”Livermore loop 7 : ” ) ;

for ( k=0 ; k<N ; k++ )
System . out . p r i n t l n ( ”x [ ” + k + ” ] = ” + x [ k ] ) ;

}
}

B.2 The multithreaded java code

class l l 7 m {
stat ic int N = 15;
stat ic int LL = 7;
stat ic int th = 5 ;
stat ic int [ ] x = new int [N ] ;
stat ic int [ ] u = new int [N+LL ] ;
stat ic int [ ] z = new int [N ] ;
stat ic int [ ] y = new int [N ] ;
stat ic int t = 1 ;
stat ic int r = 2 ;

public stat ic void main ( St r ing [ ] a rgs ) {
int l ;

// i n i t i a l i s e
for ( l =0; l<N+LL ; l ++) u [ l ] = LL−l ;
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for ( l =0; l<N; l ++) {
z [ l ] = l ;
y [ l ] = 2∗ l ;

}

// l i v e rmor e l oop 7
l l 7 t1 = new l l 7 ( 0 , 3 ) ;
l l 7 t2 = new l l 7 ( 3 , 6 ) ;
l l 7 t3 = new l l 7 ( 6 , 9 ) ;
l l 7 t4 = new l l 7 ( 9 , 1 2 ) ;
l l 7 t5 = new l l 7 (12 ,N) ;

t1 . s t a r t ( ) ;
t2 . s t a r t ( ) ;
t3 . s t a r t ( ) ;
t4 . s t a r t ( ) ;
t5 . s t a r t ( ) ;

try {
t1 . j o i n ( ) ;
t2 . j o i n ( ) ;
t3 . j o i n ( ) ;
t4 . j o i n ( ) ;
t5 . j o i n ( ) ;

} catch ( Inter ruptedExcept ion e ) {}

System . out . p r i n t l n ( ”Livermore loop 7 : ” ) ;

for ( l =0 ; l<N ; l ++ )
System . out . p r i n t l n ( ”x [ ” + l + ” ] = ” + x [ l ] ) ;

}
}

class l l 7 extends Thread {
int s t a r t ;
int stop ;

// c on s t r u c t o r
public l l 7 ( int s ta r t , int stop ) {

this . s t a r t = s t a r t ;
this . s top = stop ;

}

public void run ( ) {
int k ;

for ( k=s t a r t ; k<stop ; k++) {
l l 7 m . x [ k ] = l l7 m . u [ k ] +

l l7 m . r ∗( l l 7 m . z [ k]+ l l7 m . r∗ l l 7 m . y [ k ] ) +
l l7 m . t ∗( l l 7 m . u [ k+3] +

l l7 m . r ∗( l l 7 m . u [ k+2] +
l l7 m . r∗ l l 7 m . u [ k+1] ) +

l l7 m . t ∗ ( l l 7 m . u [ k+6] +
l l7 m . r ∗ ( l l 7 m . u [ k+5] +

l l7 m . r∗ l l 7 m . u [ k +4 ] ) ) ) ;
}

}
}

B.3 The 14-thread assembly code

;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
; ; l l 7 m . s ( ve r s i on 4.1 −− 19/2/2002 by Panit Watcharawitch )
;;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

. t ext

main : l u i $v1 , 0 x00FF
addiu $v0 , $v1 , 0xFF7F ; wait for $t1
s t a r t $s6 , prepX ; ∗∗∗ prepX ∗∗∗ (10 c )

addiu $v0 , $v1 , 0xFF0F ; wait for $a2−t1
s t a r t $t1 , a f1 ; ∗∗∗ af1 ∗∗∗ (1 c0 )
sw $t1 , $t1 ( $s6 ) ; a f1 −> prepX

addiu $v0 , $v1 , 0xFEFF ; wait for $t2
s t a r t $s7 , prepY ; ∗∗∗ prepY ∗∗∗ (14 c )

addiu $v0 , $v1 , 0 xFF83 ; wait for $t0 , $a0−3
s t a r t $t2 , a f2 ; ∗∗∗ af2 ∗∗∗ (23 c )
sw $t2 , $t2 ( $s7 ) ; a f2 −> prepY

addiu $v0 , $v1 , 0 x307F ; wait for $t1 −7 , s0−1
s t a r t $t0 , a f0 ; ∗∗∗ af0 ∗∗∗ (17 c )

addiu $v0 , $v1 , 0 x001F ; wait for $a3 , $t0−s1
s t a r t $t4 , a f4 ; ∗∗∗ af4 ∗∗∗ (380)

addiu $v0 , $v1 , 0 x0017 ; wait for $a1 , $a3 , $t0−s1
s t a r t $t5 , a f5 ; ∗∗∗ af5 ∗∗∗ (43 c )
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l u i $v1 , 0 x00C0
addiu $v0 , $v1 , 0 x007F ; wait for $t1 −7 , $s2−7
s t a r t $t3 , a f3 ; ∗∗∗ af3 ∗∗∗ (2 dc )

addiu $v0 , $v1 , 0 xC08F ; wait for $t2 −7 , $s2 −7 , $a2 −3 , $t0
s t a r t $t6 , a f6 ; ∗∗∗ af6 ∗∗∗ (528)

addiu $v0 , $v1 , 0 x00F3 ; wait for $t2 −7 , $s0 −7 , $a0−1
s t a r t $t7 , a f7 ; ∗∗∗ af7 ∗∗∗ (570)

addiu $v0 , $v1 , 0 x00BB ; wait for $t0 −7 , $s0 −7 , $a0 , $v1
s t a r t $t8 , a f8 ; ∗∗∗ af8 ∗∗∗ (5 e8 )

addiu $a0 , $sp ,232 ; x ( $a0 )
sw $a0 , $s0 ( $t0 ) ; x −> af0
sw $zero , $s1 ( $t0 ) ; 0 −> af0 ( i n i t )
sw $t1 , $t1 ( $t0 ) ; a f1 −> af0
sw $t2 , $t2 ( $t0 ) ; a f2 −> af0
sw $t3 , $t3 ( $t0 ) ; a f3 −> af0
sw $t4 , $t4 ( $t0 ) ; a f4 −> af0
sw $t5 , $t5 ( $t0 ) ; a f5 −> af0

sw $t3 , $t1 ( $t1 ) ; a f3 −> af1

sw $t4 , $a1 ( $t2 ) ; a f4 −> af2
sw $t5 , $a2 ( $t2 ) ; a f5 −> af2
sw $t6 , $a3 ( $t2 ) ; a f6 −> af2

l i $s1 , 2 ; r ( $s1 )
sw $s1 , $s1 ( $t3 ) ; r −> af3
sw $t1 , $t1 ( $t3 ) ; a f1 −> af3
sw $t6 , $s0 ( $t3 ) ; a f6 −> af3

sw $t7 , $s0 ( $t4 ) ; a f7 −> af4
sw $t2 , $a3 ( $t4 ) ; a f2 −> af4
sw $s1 , $s1 ( $t4 ) ; r −> af4

l i $a1 , 1 ; t ( $a1 )
sw $a1 , $a1 ( $t5 ) ; t −> af5
sw $t7 , $s0 ( $t5 ) ; a f7 −> af5
sw $t2 , $a3 ( $t5 ) ; a f2 −> af5
sw $s1 , $s1 ( $t5 ) ; r −> af5

sw $t2 , $a2 ( $t6 ) ; a f2 −> af6
sw $t3 , $a3 ( $t6 ) ; a f3 −> af6
sw $t8 , $t0 ( $t6 ) ; a f8 −> af6

sw $a1 , $a1 ( $t7 ) ; t −> af7
sw $t4 , $s0 ( $t7 ) ; a f4 −> af7
sw $t5 , $s1 ( $t7 ) ; a f5 −> af7
sw $t8 , $a0 ( $t7 ) ; a f8 −> af7

l i $t9 , s t2
sw $t9 , $a0 ( $t8 ) ; s t2 −> af8
sw $zero , $a1 ( $t8 ) ; 0 −> af8
sw $a0 , $t0 ( $t8 ) ; x −> af8
sw $t6 , $s0 ( $t8 ) ; a f6 −> af8
sw $t7 , $s1 ( $t8 ) ; a f7 −> af8

l i $a0 , s t1
j a l 0 ; p r i n t f s t1
stop $at
end ; end main

;;−−−−−−−−−−−−−−−−−−−−
; ; a f1 −> $t1

prepX : addiu $a2 , $sp ,292 ; y
sw $a2 , $a2 ( $t1 ) ; s i g n a l ( y −> af1 )
addiu $a3 , $sp ,352 ; z
move $t3 , $a3
move $v1 , $zero
l i $a0 ,15

i n i t z y : s l l $v0 , $v1 , 0 x1 ; $v0 = $v1 x 2
sw $v1 , 0 ( $a3 )
sw $v0 , 0 ( $a2 )
addiu $v1 , $v1 , 1
addiu $a3 , $a3 , 4
addiu $a2 , $a2 , 4
bne $v1 , a0 , i n i t z y

sw $t3 , $a3 ( $t1 ) ; s i g n a l ( z −> af1 )
stop $at
end

;;−−−−−−−−−−−−−−−−−−−−
; ; a f2 −> $t2

prepY : move $t3 , $sp ; u
move $a0 , $t3
l i $v1 ,21
l i $t1 , 7

i n i t u : addi $v1 , $v1 ,−1
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sw $t1 , 0 ( $t3 )
addiu $t3 , $t3 , 4
addi $t1 , $t1 ,−1
bgez $v1 , i n i t u

sw $a0 , $a0 ( $t2 ) ; s i g n a l ( u −> af2 )
stop $at
end

;;−−−−−−−−−−−−−−−−−−−−
; ; x −> $s0
; ; i n i t (0) −> $s1
; ; af1 −5 −> $t1−5

af0 : s l t i $v0 , $s1 ,15
move $t8 , $s1
addiu $s1 , $s1 , 6 ; i += 6 // here f o r f a s t c a l
b l e z $v0 , f i n i s h

sw $at , $t0 ( $t1 ) ; s i g n a l to $t0 o f a f1 ( a c t i v a t e )
sw $at , $t0 ( $t2 ) ; s i g n a l to $t0 o f a f2 ( a c t i v a t e )
l u i $v0 , 0 x01FF
addiu $v0 , $v0 , 0xFE7F ; wait for $t1−2
sw $v0 , 0 ( $at ) ; r e s e t a f0 i t s e l f ( wait for $v0 , $v1 )
j endaf0

f i n i s h : stop $t1
stop $t2
stop $t3
stop $t4
stop $t5
stop $at

endaf0 : end

;;−−−−−−−−−−−−−−−−−−−
; ; y −> $a2
; ; z −> $a3
; ; a f0 −> $t0
; ; a f3 −> $t1

a f1 : lw $t2 , 0 ( $a2 ) ; $t2 = y [ i ]
lw $t3 , 4 ( $a2 ) ; $t3 = y [ i +1]
lw $t4 , 8 ( $a2 ) ; $t4 = y [ i +2]
lw $t5 , 1 2 ( $a2 ) ; $t5 = y [ i +3]
lw $t6 , 1 6 ( $a2 ) ; $t6 = y [ i +4]
lw $t7 , 2 0 ( $a2 ) ; $t7 = y [ i +5]

lw $s2 , 0 ( $a3 ) ; $s2 = z [ i ]
lw $s3 , 4 ( $a3 ) ; $s3 = z [ i +1]
lw $s4 , 8 ( $a3 ) ; $s4 = z [ i +2]
lw $s5 , 1 2 ( $a3 ) ; $s5 = z [ i +3]
lw $s6 , 1 6 ( $a3 ) ; $s6 = z [ i +4]
lw $s7 , 2 0 ( $a3 ) ; $s7 = z [ i +5]

sw $t2 , $t2 ( $t1 ) ; s t o r e to $t2 @ af3
sw $t3 , $t3 ( $t1 ) ; s t o r e to $t3 @ af3
sw $t4 , $t4 ( $t1 ) ; s t o r e to $t4 @ af3
sw $t5 , $t5 ( $t1 ) ; s t o r e to $t5 @ af3
sw $t6 , $t6 ( $t1 ) ; s t o r e to $t6 @ af3
sw $t7 , $t7 ( $t1 ) ; s t o r e to $t7 @ af3
sw $s2 , $s2 ( $t1 ) ; s t o r e to $s2 @ af3
sw $s3 , $s3 ( $t1 ) ; s t o r e to $s3 @ af3
sw $s4 , $s4 ( $t1 ) ; s t o r e to $s4 @ af3
sw $s5 , $s5 ( $t1 ) ; s t o r e to $s5 @ af3
sw $s6 , $s6 ( $t1 ) ; s t o r e to $s6 @ af3
sw $s7 , $s7 ( $t1 ) ; s t o r e to $s7 @ af3

addiu $a2 , $a2 ,24 ; y [ i ] <− y [ i +6]
addiu $a3 , $a3 ,24 ; z [ i ] <− z [ i +6]

l u i $v0 , 0 x00FF
addiu $v0 , $v0 , 0xFF3F ; wait for $t0 , $t1
sw $v0 , 0 ( $at ) ; r e s e t a f1 i t s e l f
sw $at , $t1 ( $t0 ) ; s i g n a l a f0
end ; end af1

;;−−−−−−−−−−−−−−−−−−−
; ; u −> $a0
; ; a f0 −> $t0
; ; a f4 −> $a1
; ; a f5 −> $a2
; ; a f6 −> $a3

af2 : lw $t4 , 1 6 ( $a0 ) ; $t4 = u [ i +4]
lw $t5 , 2 0 ( $a0 ) ; $t5 = u [ i +5]
lw $t6 , 2 4 ( $a0 ) ; $t6 = u [ i +6]
lw $t7 , 2 8 ( $a0 ) ; $t7 = u [ i +7]
lw $s0 , 3 2 ( $a0 ) ; $a0 = u [ i +8]
lw $s1 , 3 6 ( $a0 ) ; $a1 = u [ i +9]
lw $s2 , 4 0 ( $a0 ) ; $a2 = u [ i +10]
lw $s3 , 4 4 ( $a0 ) ; $a3 = u [ i +11]
lw $t1 , 4 ( $a0 ) ; $t1 = u [ i +1]
lw $t2 , 8 ( $a0 ) ; $t2 = u [ i +2]
lw $t3 , 1 2 ( $a0 ) ; $t3 = u [ i +3]

167



Appendix B. Livermore Loop 7

lw $t9 , 0 ( $a0 ) ; $t9 = u [ i ]

sw $t4 , $t0 ( $a2 ) ; s t o r e to $t0 @ af5
sw $t5 , $t1 ( $a2 ) ; s t o r e to $t1 @ af5
sw $t6 , $t2 ( $a2 ) ; s t o r e to $t2 @ af5
sw $t7 , $t3 ( $a2 ) ; s t o r e to $t3 @ af5
sw $s0 , $t4 ( $a2 ) ; s t o r e to $t4 @ af5
sw $s1 , $t5 ( $a2 ) ; s t o r e to $t5 @ af5
sw $s2 , $t6 ( $a2 ) ; s t o r e to $t6 @ af5
sw $s3 , $t7 ( $a2 ) ; s t o r e to $t7 @ af5

sw $t1 , $t0 ( $a1 ) ; s t o r e to $t0 @ af4
sw $t2 , $t1 ( $a1 ) ; s t o r e to $t1 @ af4
sw $t3 , $t2 ( $a1 ) ; s t o r e to $t2 @ af4
sw $t4 , $t3 ( $a1 ) ; s t o r e to $t3 @ af4
sw $t5 , $t4 ( $a1 ) ; s t o r e to $t4 @ af4
sw $t6 , $t5 ( $a1 ) ; s t o r e to $t5 @ af4
sw $t7 , $t6 ( $a1 ) ; s t o r e to $t6 @ af4
sw $s0 , $t7 ( $a1 ) ; s t o r e to $t7 @ af4

sw $t9 , $t2 ( $a3 ) ; s t o r e to $t2 @ af6
sw $t1 , $t3 ( $a3 ) ; s t o r e to $t3 @ af6
sw $t2 , $t4 ( $a3 ) ; s t o r e to $t4 @ af6
sw $t3 , $t5 ( $a3 ) ; s t o r e to $t5 @ af6
sw $t4 , $t6 ( $a3 ) ; s t o r e to $t6 @ af6
sw $t5 , $t7 ( $a3 ) ; s t o r e to $t7 @ af6

addiu $a0 , $a0 ,24 ; u [ i ] <− u [ i +6]

l u i $v0 , 0 x00FF
addiu $v0 , $v0 , 0 xFF87 ; wait for $t0 , $a1−3
sw $v0 , 0 ( $at ) ; r e s e t a f2 i t s e l f
sw $at , $t2 ( $t0 ) ; s i g n a l a f0
end ; end af2

;;−−−−−−−−−−−−−−−−−−−
; ; a f6 −> $s0
; ; r −> $s1
; ; a f1 −> $t1

a f3 : mult $s1 , $t2 ;
mflo $t2 ;
addu $s2 , $s2 , $t2 ;
mult $s1 , $s2 ;
mflo $s2 ; $s2 = r ∗( z [ i ]+ r∗y [ i ] )

mult $s1 , $t3 ;
mflo $t3 ;
addu $s3 , $s3 , $t3 ;
mult $s1 , $s3 ;
mflo $s3 ; $s3 = r ∗( z [ i +1]+r∗y [ i +1])

mult $s1 , $t4 ;
mflo $t4 ;
addu $s4 , $s4 , $t4 ;
mult $s1 , $s4 ;
mflo $s4 ; $s4 = r ∗( z [ i +2]+r∗y [ i +2])

mult $s1 , $t5 ;
mflo $t5 ;
addu $s5 , $s5 , $t5 ;
mult $s1 , $s5 ;
mflo $s5 ; $s5 = r ∗( z [ i +3]+r∗y [ i +3])

mult $s1 , $t6 ;
mflo $t6 ;
addu $s6 , $s6 , $t6 ;
mult $s1 , $s6 ;
mflo $s6 ; $s6 = r ∗( z [ i +4]+r∗y [ i +4])

mult $s1 , $t7 ;
mflo $t7 ;
addu $s7 , $s7 , $t7 ;
mult $s1 , $s7 ;
mflo $s7 ; $s7 = r ∗( z [ i +5]+r∗y [ i +5])

sw $s2 , $s2 ( $s0 ) ; s t o r e to $s2 @ af6
sw $s3 , $s3 ( $s0 ) ; s t o r e to $s3 @ af6
sw $s4 , $s4 ( $s0 ) ; s t o r e to $s4 @ af6
sw $s5 , $s5 ( $s0 ) ; s t o r e to $s5 @ af6
sw $s6 , $s6 ( $s0 ) ; s t o r e to $s6 @ af6
sw $s7 , $s7 ( $s0 ) ; s t o r e to $s7 @ af6

l u i $v0 , 0 x00C0
addiu $v0 , $v0 , 0 x80FF ; wait for $t2 −7 , $s2 −7 , $s0
sw $v0 , 0 ( $at ) ; r e s e t a f3 i t s e l f
sw $at , $t1 ( $t1 ) ; s i g n a l a f1
end ; end af3

;;−−−−−−−−−−−−−−−−−−−
; ; a f7 −> $s0
; ; a f2 −> $a3
; ; r −> $s1

a f4 : mult $s1 , $t0 ;
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mflo $t0 ;
addu $t0 , $t0 , $t1 ;
mult $s1 , $t0 ;
mflo $t0 ;
addu $t0 , $t0 , $t2 ; $t0 = u [ i +3]+r ∗(u [ i +2]+r∗u [ i +1])

mult $s1 , $t1 ;
mflo $t1 ;
addu $t1 , $t1 , $t2 ;
mult $s1 , $t1 ;
mflo $t1 ;
addu $t1 , $t1 , $t3 ; $t1 = u [ i +4]+r ∗(u [ i +3]+r∗u [ i +2])

mult $s1 , $t2 ;
mflo $t2 ;
addu $t2 , $t2 , $t3 ;
mult $s1 , $t2 ;
mflo $t2 ;
addu $t2 , $t2 , $t4 ; $t2 = u [ i +5]+r ∗(u [ i +4]+r∗u [ i +3])

mult $s1 , $t3 ;
mflo $t3 ;
addu $t3 , $t3 , $t4 ;
mult $s1 , $t3 ;
mflo $t3 ;
addu $t3 , $t3 , $t5 ; $t3 = u [ i +6]+r ∗(u [ i +5]+r∗u [ i +4])

mult $s1 , $t4 ;
mflo $t4 ;
addu $t4 , $t4 , $t5 ;
mult $s1 , $t4 ;
mflo $t4 ;
addu $t4 , $t4 , $t6 ; $t4 = u [ i +7]+r ∗(u [ i +6]+r∗u [ i +5])

mult $s1 , $t5 ;
mflo $t5 ;
addu $t5 , $t5 , $t6 ;
mult $s1 , $t5 ;
mflo $t5 ;
addu $t5 , $t5 , $t7 ; $t5 = u [ i +8]+r ∗(u [ i +7]+r∗u [ i +6])

sw $t0 , $t2 ( $s0 ) ; s t o r e to $t2 @ af7
sw $t1 , $t3 ( $s0 ) ; s t o r e to $t3 @ af7
sw $t2 , $t4 ( $s0 ) ; s t o r e to $t4 @ af7
sw $t3 , $t5 ( $s0 ) ; s t o r e to $t5 @ af7
sw $t4 , $t6 ( $s0 ) ; s t o r e to $t6 @ af7
sw $t5 , $t7 ( $s0 ) ; s t o r e to $t7 @ af7

l u i $v0 , 0 x00FF
addiu $v0 , $v0 , 0 xC03F ; wait for $t0−7
sw $v0 , 0 ( $at ) ; r e s e t a f4 i t s e l f
sw $at , $a1 ( $a3 ) ; s i g n a l a f2
end ; end af4

;;−−−−−−−−−−−−−−−−−−−
; ; a f7 −> $s0
; ; a f2 −> $a3
; ; r −> $s1
; ; t −> $a1

af5 : mult $s1 , $t0 ;
mflo $t0 ;
addu $t0 , $t0 , $t1 ;
mult $s1 , $t0 ;
mflo $t0 ;
addu $t0 , $t0 , $t2 ;
mult $a1 , $t0 ;
mflo $t0 ; $t0 = t ∗(u [ i +6]+r ∗(u [ i +5]+r∗u [ i +4]))

mult $s1 , $t1 ;
mflo $t1 ;
addu $t1 , $t1 , $t2 ;
mult $s1 , $t1 ;
mflo $t1 ;
addu $t1 , $t1 , $t3 ;
mult $a1 , $t1 ;
mflo $t1 ; $t1 = t ∗(u [ i +7]+r ∗(u [ i +6]+r∗u [ i +5]))

mult $s1 , $t2 ;
mflo $t2 ;
addu $t2 , $t2 , $t3 ;
mult $s1 , $t2 ;
mflo $t2 ;
addu $t2 , $t2 , $t4 ;
mult $a1 , $t2 ;
mflo $t2 ; $t2 = t ∗(u [ i +8]+r ∗(u [ i +7]+r∗u [ i +6]))

mult $s1 , $t3 ;
mflo $t3 ;
addu $t3 , $t3 , $t4 ;
mult $s1 , $t3 ;
mflo $t3 ;
addu $t3 , $t3 , $t5 ;
mult $a1 , $t3 ;
mflo $t3 ; $t3 = t ∗(u [ i +9]+r ∗(u [ i +8]+r∗u [ i +7]))
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mult $s1 , $t4 ;
mflo $t4 ;
addu $t4 , $t4 , $t5 ;
mult $s1 , $t4 ;
mflo $t4 ;
addu $t4 , $t4 , $t6 ;
mult $a1 , $t4 ;
mflo $t4 ; $t4 = t ∗(u [ i +10]+r ∗(u [ i +9]+r∗u [ i +8]))

mult $s1 , $t5 ;
mflo $t5 ;
addu $t5 , $t5 , $t6 ;
mult $s1 , $t5 ;
mflo $t5 ;
addu $t5 , $t5 , $t7 ;
mult $a1 , $t5 ;
mflo $t5 ; $t5 = t ∗(u [ i +11]+r ∗(u [ i +10]+r∗u [ i +9]))

sw $t0 , $s2 ( $s0 ) ; s t o r e to $s2 @ af7
sw $t1 , $s3 ( $s0 ) ; s t o r e to $s3 @ af7
sw $t2 , $s4 ( $s0 ) ; s t o r e to $s4 @ af7
sw $t3 , $s5 ( $s0 ) ; s t o r e to $s5 @ af7
sw $t4 , $s6 ( $s0 ) ; s t o r e to $s6 @ af7
sw $t5 , $s7 ( $s0 ) ; s t o r e to $s7 @ af7

l u i $v0 , 0 x00FF
addiu $v0 , $v0 , 0 xC03F ; wait for $t0−7
sw $v0 , 0 ( $at ) ; r e s e t a f5 i t s e l f
sw $at , $a2 ( $a3 ) ; s i g n a l a f2
end ; end af5

;;−−−−−−−−−−−−−−−−−−−
; ; a f2 −> $a2
; ; a f3 −> $a3
; ; a f8 −> $t0

a f6 : addu $t2 , $t2 , $s2 ; $t2 = u [ i ]+ r ∗ ( . z . y . )
addu $t3 , $t3 , $s3 ; $t3 = u [ i +1]+r ∗ ( . z . y . )
addu $t4 , $t4 , $s4 ; $t4 = u [ i +2]+r ∗ ( . z . y . )
addu $t5 , $t5 , $s5 ; $t5 = u [ i +3]+r ∗ ( . z . y . )
addu $t6 , $t6 , $s6 ; $t6 = u [ i +4]+r ∗ ( . z . y . )
addu $t7 , $t7 , $s7 ; $t7 = u [ i +5]+r ∗ ( . z . y . )

sw $t2 , $t2 ( $t0 ) ; s t o r e to $t2 @ af8
sw $t3 , $t3 ( $t0 ) ; s t o r e to $t3 @ af8
sw $t4 , $t4 ( $t0 ) ; s t o r e to $t4 @ af8
sw $t5 , $t5 ( $t0 ) ; s t o r e to $t5 @ af8
sw $t6 , $t6 ( $t0 ) ; s t o r e to $t6 @ af8
sw $t7 , $t7 ( $t0 ) ; s t o r e to $t7 @ af8

l u i $v0 , 0 x00C0
addiu $v0 , $v0 , 0xC0BF ; wait for $t0 , $t2 −7 , s2−7
sw $v0 , 0 ( $at ) ; r e s e t a f6 i t s e l f
sw $at , $a3 ( $a2 ) ; s i g n a l a f2
sw $at , $s0 ( $a3 ) ; s i g n a l a f3
end ; end af6

;;−−−−−−−−−−−−−−−−−−−
; ; a f8 −> $a0
; ; t −> $a1
; ; a f4 −> $s0
; ; a f5 −> $s1

a f7 : addu $t2 , $t2 , $s2 ;
mult $a1 , $t2 ;
mflo $t2 ; $t2 = t ∗(321+ t654 )

addu $t3 , $t3 , $s3 ;
mult $a1 , $t3 ;
mflo $t3 ; $t3 = t ∗(321+ t654 )

addu $t4 , $t4 , $s4 ;
mult $a1 , $t4 ;
mflo $t4 ; $t4 = t ∗(321+ t654 )

addu $t5 , $t5 , $s5 ;
mult $a1 , $t5 ;
mflo $t5 ; $t5 = t ∗(321+ t654 )

addu $t6 , $t6 , $s6 ;
mult $a1 , $t6 ;
mflo $t6 ; $t6 = t ∗(321+ t654 )

addu $t7 , $t7 , $s7 ;
mult $a1 , $t7 ;
mflo $t7 ; $t7 = t ∗(321+ t654 )

sw $t2 , $s2 ( $a0 ) ; s t o r e to $s2 @ af8
sw $t3 , $s3 ( $a0 ) ; s t o r e to $s3 @ af8
sw $t4 , $s4 ( $a0 ) ; s t o r e to $s4 @ af8
sw $t5 , $s5 ( $a0 ) ; s t o r e to $s5 @ af8
sw $t6 , $s6 ( $a0 ) ; s t o r e to $s6 @ af8
sw $t7 , $s7 ( $a0 ) ; s t o r e to $s7 @ af8
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l u i $v0 , 0 x00C0
addiu $v0 , $v0 , 0xC0FB ; wait for $a0 , $t2 −7 , s2−7
sw $v0 , 0 ( $at ) ; r e s e t a f7 i t s e l f
sw $at , $s0 ( $s0 ) ; s i g n a l a f4
sw $at , $s0 ( $s1 ) ; s i g n a l a f5
end ; end af7

;;−−−−−−−−−−−−−−−−−−−
; ; a f6 −> $s0
; ; a f7 −> $s1
; ; x −> $t0
; ; n −> $a1
; ; s t2 −> $a0
; ; wait for $s2 −7 , $t2−7

af8 : addu $t2 , $t2 , $s2 ; $t2 = u [ i ]+ rzy+t321654
addu $t3 , $t3 , $s3 ; $t3 = u [ i +1]+rzy+t321654
addu $t4 , $t4 , $s4 ; $t4 = u [ i +2]+rzy+t321654
addu $t5 , $t5 , $s5 ; $t5 = u [ i +3]+rzy+t321654
addu $t6 , $t6 , $s6 ; $t6 = u [ i +4]+rzy+t321654
addu $t7 , $t7 , $s7 ; $t7 = u [ i +5]+rzy+t321654
sw $t2 , 0 ( $t0 ) ; x [ i ] = $t2
sw $t3 , 4 ( $t0 ) ; x [ i +1] = $t3
sw $t4 , 8 ( $t0 ) ; x [ i +2] = $t4
sw $t5 , 1 2 ( $t0 ) ; x [ i +3] = $t5
sw $t6 , 1 6 ( $t0 ) ; x [ i +4] = $t6
sw $t7 , 2 0 ( $t0 ) ; x [ i +5] = $t7

move $t9 , $zero
p r in t : lw $a2 , 0 ( $t0 ) ; s e t output parameter 2

addiu $t9 , $t9 , 1
s l t i $v0 , $t9 , 6
addiu $a1 , $a1 , 1
addiu $t0 , $t0 , 4
j a l 0 ; c a l p r i n t f s t2 with a1 & a2
beq $v0 , $zero , next

s l t i $v0 , $a1 ,15
bnez $v0 , p r in t

stop $s0
stop $s1
stop $at

next : sw $at , $t0 ( $s0 ) ; s i g n a l a f6
sw $at , $a0 ( $s1 ) ; s i g n a l a f7
l u i $v0 , 0 x00C0
addiu $v0 , $v0 , 0xC0FF ; wait for $t2 −7 , s2−7
sw $v0 , 0 ( $at ) ; r e s e t a f8 i t s e l f
end

. data

s t1 : ds ”Livermore loop 7 : ”
s t2 : ds ” ∗ x[%d] = %d”

. end
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Appendix C

The Simulator

C.1 The MulTEP configuration

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ sim . hh v e r s i on 4 . 1 ∗
∗ June 18 th , 2 0 0 3 ∗
∗ −− Pani t Watcharawitch ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// Genera l
#define MAX PE 2 // number o f PE
#define MAX CTXT 4 // number o f c o n t e x t s .
#define MAX REG 64 // r e g i s t e r s in each PE
#define MAXSWQ 32 // max s t o r e queue
#define AF BW 4 // 4 words ( 1 2 8 b i t s )
#define MAX IDLE 500 // Change from 64

#define TEMP SIZE 100
#define INST SIZE HEX 8
#define RUN LENGTH 32
#define TIMER 10000

#define IBLK 0x1000

// Thread Leve l
#define USER 0
#define SYSTEM 1

// Contex t In f o S i g na l ( From MSU to LSU)
#define NONE 0 // 00
#define UPDATE PUInfo 1 // 01
#define DEL PUInfo 3 // 11
#define STORE DAT 2 // 10

// Re g i s t e r F i l e s S t a t u s // used t h i s now
#define INVALID 0 // 000
#define TRANSIN 1 // 001
#define WAITINST 2 // 010
#define VALID 3 // 011
#define HOLD 4 // 100
#define TRANSOUT 5 // 101
#define TRANSIO 6 // 110
#define USED 7 // 111

// Mu l t i t h r e a d i n g Commands (PU −> MSU : 2 b i t s ) − note : NONE i s 00
#define STOP THREAD 1 // 01
#define START THREAD 2 // 10
#define SWITCH 3 // 11

// DATA SIZE
#define BYTE 8
#define HALFWORD 16
#define WORD 32

// D e f i n i t i o n s f o r PE
#define RESET PC 0x40000040
#define EXITCLK 10000000

/∗∗∗∗∗∗∗ De f i n i t i o n s f o r MMU ( in words ) ∗∗∗∗∗∗∗∗∗∗∗/
#define MAXMEM 0x680000 // 26M Byte Phy s i c a l Memory
#define MAP ENTRIES MAXMEM/0x400 // lower 12 b i t s f o r page o f f s e t
// MMU Vi r t u a l Space
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#define DMMEM 0x00000000 // DM Area 0 x00000000−0x00000FFF
#define USER MEM 0x00001000 // User Area 0 x00001000−0xFEFFFFFF
#define START SP 0xF0000000 // S t a r t S tack Area
#define END SP 0xF001FFFF // End Stack Area
#define AVMEM 0xFD000000 // AV Area 0xFD000000−0xFD0003FF
#define WJMEM 0xFD000400 // WJ Area 0xFD000400−0xFD0007FF
#define WTMEM 0xFD000800 // WT Area 0xFD000800−0xFD000BFF
#define WNMEM 0xFD000C00 // WN Area 0xFD000C00−0xFD000FFF
#define END WN 0xFD001000 // END WN Area
#define TL MEM 0xFE000000 // TL Area 0xFD001000−0xFD001FFF
#define START AP 0xFF000000 // AF Area 0xFF000000−0xFFFFFFFF
#define MAXVM 0xFFFFFFFF // Max V i r t u a l Memory
// Genera l D e f i n i t i o n
#define SYS MEM 0xFD000000
#define SYS MASK 0xFF000000
#define AV BLK 8
#define WJ BLK 12
#define WT BLK 12
#define WN BLK 8
#define TL TAG1 10 // Tran s l a t i on Tag1
#define TL TAG2 10 // Tran s l a t i on Tag2
#define TL OFFSET 12 // Tran s l a t i on O f f s e t
#define TL TAG MASK 0x3FF // Tran s l a t i on Tag Mask
#define TL MASK 0xFFF // Tran s l a t i on Mask
#define PHY BIT 9 // Phy s i c a l Page B i t s
#define PHY MASK 0x1FF // Phy s i c a l Page Mask
#define LRU SIZE 3 // LRU S i z e
#define MAX DTLB 32 // MAX Data TLB
#define MAX ITLB 32 // MAX In s t r u c t i o n TLB
#define MAX AFTLB 16 // MAX AF TLB
#define LQUEUE SIZE 32 // Load FIFO b u f f e r
#define D LATENCY 5 // PE−D c lock−c y c l e l a t e n c y
#define L1 LATENCY 5 // L0−L1 c l ock−c y c l e l a t e n c y
#define MEM LATENCY 200 // L1/D−MEM clock−c y c l e l a t e n c y
#define TL LATENCY 200 // TLB−MEM clock−c y c l e l a t e n c y
// L0 I n s t r u c t i o n Cache −− Fu l l y a s s o c i a t i v e ( no i d x ) −−
#define L0 SIZE 0x100 // 1KB L0−Cache f o r i n s t
#define L0 BLOCK SIZE 0x20 // L0 Block S i z e (32W −> 128B)
#define L0 SET L0 SIZE/L0 BLOCK SIZE // 8 Se t s
#define L0 OSIZE 7 // 2ˆ(5+2) = 32∗4
#define L0 OMASK 0x1F // 5 b i t s
#define L0 TAG MASK 0x3FFF // 14 b i t s (+7 = 21 b i t s )
// L1 I n s t r u c t i o n Cache −− Dire c t Mapping −−
#define L1 SIZE 0x1000 // 16KB L1−Cache f o r i n s t
#define L1 BLOCK SIZE 0x100 // L1 Block S i z e ( 1KB)
#define L1 SET L1 SIZE/L1 BLOCK SIZE // 16 Se t s
#define L1 OSIZE 10 // 2ˆ(8+2) = 256∗4
#define L1 OMASK 0xFF // 8 b i t s
#define L1 INOFF SIZE 4+L1 OSIZE // 2ˆ4 = 16 = 4K/256
#define L1 IDX MASK 0xF // 4 b i t s
#define L1 TAG MASK 0x7F // 7 b i t s (+4+10 = 21 b i t s )
// Data Cache −− 4−way se t−a s s o c i a t i v e −−
#define DWAY 4 // 4−ways ( 2 b i t s )
#define D SIZE 0x1000 // 16KB D−Cache f o r data
#define D BLOCK SIZE 0x20 // Cache Block S i z e ( 1 2 8 B)
#define D SET D SIZE/D BLOCK SIZE // 128 s e t s
#define D OSIZE 7 // 2ˆ(5+2) = 32∗4
#define D OMASK 0x1F // 5 b i t s
#define D INOFF SIZE 7+D OSIZE // 2ˆ7 = 4K/32
#define D IDX MASK 0x7F // 7 b i t s
#define D TAG MASK 0x7F // 7 b i t s (+7+5+2 = 21 b i t s )
// Ac t i v a t i o n Frame Cache −− Fu l l y a s s o c i a t i v e −−

// For Ac t i v a t i o n Frame ho l d i n g a l l 6 4 r e g i s t e r s
#define ZERO 0 // Zero
#define PP 0 // p r i o r i t y / pre s ence b i t s ( $ z e ro )
#define AT 1 // micro−t h r ead code p o i n t e r
#define V0 2 // v a l u e s f o r r e s u l t s & exp .
#define V1 3 // v a l u e s f o r r e s u l t s & exp .
#define A0 4 // arguments
#define A1 5 // arguments
#define A2 6 // arguments
#define A3 7 // arguments
#define T0 8 // t empora r i e s
#define T1 9 // t empora r i e s
#define T2 10 // t empora r i e s
#define T3 11 // t empora r i e s
#define T4 12 // t empora r i e s
#define T5 13 // t empora r i e s
#define T6 14 // t empora r i e s
#define T7 15 // t empora r i e s
#define S0 16 // saved
#define S1 17 // saved
#define S2 18 // saved
#define S3 19 // saved
#define S4 20 // saved
#define S5 21 // saved
#define S6 22 // saved
#define S7 23 // saved
#define T8 24 // more t empora r i e s
#define T9 25 // more t empora r i e s
#define K0 26 // op e r a t i n g sys tem r e s e r v e
#define K1 27 // op e r a t i n g sys tem r e s e r v e
#define GP 28 // g l o b a l p o i n t e r
#define SP 29 // s t a c k p o i n t e r
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#define FP 30 // frame po i n t e r
#define RA 31 // r e tu rn addre s s
#define F0 32 // FPreg 0
#define F1 33 // FPreg 1
#define F2 34 // FPreg 2
#define F3 35 // FPreg 3
#define F4 36 // FPreg 4
#define F5 37 // FPreg 5
#define F6 38 // FPreg 6
#define F7 39 // FPreg 7
#define F8 40 // FPreg 8
#define F9 41 // FPreg 9
#define F10 42 // FPreg 10
#define F11 43 // FPreg 11
#define F12 44 // FPreg 12
#define F13 45 // FPreg 13
#define F14 46 // FPreg 14
#define F15 47 // FPreg 15
#define F16 48 // FPreg 16
#define F17 49 // FPreg 17
#define F18 50 // FPreg 18
#define F19 51 // FPreg 19
#define F20 52 // FPreg 20
#define F21 53 // FPreg 21
#define F22 54 // FPreg 22
#define F23 55 // FPreg 23
#define F24 56 // FPreg 24
#define F25 57 // FPreg 25
#define F26 58 // FPreg 26
#define F27 59 // FPreg 27
#define F28 60 // FPreg 28
#define F29 61 // FPreg 29
#define F30 62 // FPreg 30
#define F31 63 // FPreg 31

// For MSU
#define MAX AF 32 // Wi l l c o r r e c t soon
#define START LOCAL V0
#define END LOCAL T9
#define PRESENCE (END LOCAL−START LOCAL+1)
#define NOT TRANS MAX REG−PRESENCE−2
#define PRIORITY MASK 0xFF
#define PRESENCE LOC 2
#define PRESENCE MASK 0xFFFFFF
#define MAX GTRANS MAX REG/AF BW

// For LSU
#define MAX LWAIT 16

#define l ID ( i ) ( Ctxt [ i ] . r [AT]&0xFFFF)
#define gID ( add ) ( ( ( add)>>16)&0xFFFF)
#define thID ( add ) ( ( ( add)>>7)&0xFFFF)
#define regID ( add ) ( ( ( add)>>2)&0x1F)
#define thEq ( i , n ) ( lID ( i )==n)
#define g e tp r i (pp ) ( ( ( pp)>>PRESENCE)&PRIORITY MASK)
#define APadd( th , r ) (START AP+(( th)<<7)+(( r )<<2))
#define presence (x ) ( ( ( x)&PRESENCE MASK)==PRESENCE MASK)

// G loba l non−c l o c k component ;
struct Context {

short s t a tu s ; // 2 b i t s
REG pc ; // 30 b i t s
DAT fe t ch ; // 32 b i t s
BIT i n s t ; // 1 b i t
REG r [MAX REG] ; // 32 x 32 b i t s

} ;

FILE ∗ f l o g ;
short workload , numthread ;

DAT SE AV , SE WJ , SE WT, SE WN; // s t a r t empty p o i n t e r s o f AF t a b l e s
DAT EE AV, EE WJ, EE WT, EE WN; // end empty p o i n t e r s oo AF t a b l e s
DAT ED AV, ED WJ, ED WT, ED WN; // end data p o i n t e r s oo AF t a b l e s

// ∗∗∗ Globa l f u n c t i o n ∗∗∗
char ∗ r name ( char r ) {

switch ( r ) {
case ZERO: return ” $zero ” ; break ; // th e con s t an t v a l u e 0
case AT: return ” $at ” ; break ; // r e s e r v e d f o r a s s emb l e r
case V0 : return ”$v0” ; break ; // v a l f o r r e s u l t & expr e v a l
case V1 : return ”$v1” ; break ; // v a l f o r r e s u l t & expr e v a l
case A0 : return ”$a0” ; break ; // arg
case A1 : return ”$a1” ; break ; // arg
case A2 : return ”$a2” ; break ; // arg
case A3 : return ”$a3” ; break ; // arg
case T0 : return ” $t0 ” ; break ; // temp
case T1 : return ” $t1 ” ; break ; // temp
case T2 : return ” $t2 ” ; break ; // temp
case T3 : return ” $t3 ” ; break ; // temp
case T4 : return ” $t4 ” ; break ; // temp
case T5 : return ” $t5 ” ; break ; // temp
case T6 : return ” $t6 ” ; break ; // temp
case T7 : return ” $t7 ” ; break ; // temp
case S0 : return ” $s0 ” ; break ; // saved
case S1 : return ” $s1 ” ; break ; // saved
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case S2 : return ” $s2 ” ; break ; // saved
case S3 : return ” $s3 ” ; break ; // saved
case S4 : return ” $s4 ” ; break ; // saved
case S5 : return ” $s5 ” ; break ; // saved
case S6 : return ” $s6 ” ; break ; // saved
case S7 : return ” $s7 ” ; break ; // saved
case T8 : return ” $t8 ” ; break ; // more temp
case T9 : return ” $t9 ” ; break ; // a c t i v a t i o n frame po i n t e r
case K0 : return ”$k0” ; break ; // r e s e r v e d f o r OS
case K1 : return ”$k1” ; break ; // r e s e r v e d f o r OS
case GP: return ”$gp” ; break ; // g l o b a l p o i n t e r
case SP : return ”$sp” ; break ; // s t a c k p o i n t e r
case FP : return ” $fp ” ; break ; // frame po i n t e r
case RA: return ” $ra ” ; break ; // r e tu rn addre s s
case F31 : return ” $f31 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F30 : return ” $f30 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F29 : return ” $f29 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F28 : return ” $f28 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F27 : return ” $f27 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F26 : return ” $f26 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F25 : return ” $f25 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F24 : return ” $f24 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F23 : return ” $f23 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F22 : return ” $f22 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F21 : return ” $f21 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F20 : return ” $f20 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F19 : return ” $f19 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F18 : return ” $f18 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F17 : return ” $f17 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F16 : return ” $f16 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F15 : return ” $f15 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F14 : return ” $f14 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F13 : return ” $f13 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F12 : return ” $f12 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F11 : return ” $f11 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F10 : return ” $f10 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F9 : return ” $f9 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F8 : return ” $f8 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F7 : return ” $f7 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F6 : return ” $f6 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F5 : return ” $f5 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F4 : return ” $f4 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F3 : return ” $f3 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F2 : return ” $f2 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F1 : return ” $f1 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
case F0 : return ” $f0 ” ; break ; // f l o a t i n g po i n t r e g i s t e r
default : return ”” ;
}

}

C.2 The SimpleScalar configuration

−f e t ch : i f q s i z e 2 # Fetch width per PE ( 2 PEs)
−f e t ch : speed 2 # Front end f e t ch r a t i o 1 : 1 for each FU
−decode : width 1 # decode 1 i n s t r u c t i o n per PE
− i s s u e : width 1 # i s s u e 1 i n s t r u c t i o n per PE
− i s s u e : i no rde r # In order execut ion ( remove when OOO requ i r ed )
−ruu : s i z e 2 # 2 register f i l e for 2 PEs
−l s q : s i z e 8 # load / s t o r e queue s i z e
−r e s : i a l u 1 # an i n t e g e r ALU
−r e s : imult 1 # an i n t e r g e r mult ( emulates FP d i v i d e r s )
−r e s : fpa lu 1 # a f l o a t i n g point ALUs
−r e s : fpmult 1 # a f l o a t i n g point mu l t i p l e r s
−bpred nottaken # Nottaken branch p r ed i t o r
−cache : d l 1 l a t 1 # Act ivat ion Frame acce s s l a t ency
−cache : d l1 dl1 : 1 6 : 6 4 : 3 2 : l # AF, 3 2 se t s , 6 4 regs , f u l l assc , LRU
−cache : d l 2 l a t 5 # Level 1 data acc e s s l a t ency
#−cache : d l2 dl2 : 6 4 : 1 6 : 4 : l # L1−Dcache , 1 2 8 se t s , 1 6 words , 4 ways , random
−cache : i l 1 l a t 1 # Level 0 i n s t r u c t i o n acc e s s l a t ency
−cache : i l 1 i l 1 : 4 : 6 4 : 8 : l # L0−Icache , 8 se t s , 6 4 words , f u l l assc , LRU
−cache : i l 2 l a t 5 # Level 1 i n s t r u c t i o n acc e s s l a t ency
−cache : i l 2 i l 2 : 8 : 1 2 8 : 1 : l # L0−Icache , 8 se t s , 6 4 words , f u l l assc , LRU
−mem: l a t 200 1 # Main memory acc e s s l a t ency [ f i r s t r e s t ]
−mem: width 8 # Memory bus 8 bytes
−t l b : l a t 200 # TLB miss 200 cy c l e s
−t l b : dt lb dt lb : 1 6 : 2 0 4 8 : 4 : l # 32 e n t r i e s data TLB
−t l b : i t l b i t l b : 1 6 : 2 0 4 8 : 4 : l # 32 e n t r i e s i n s t r u c t i o n TLB
#−i compress # Compress i n s t r u c t i o n to 32 b i t s

C.3 The Thread-0 System Daemon

; ; $t0 = timer
; ; $s0 = number o f a c t i v a t i on threads
; ; $s1 = number o f w a i t f o r j o i n threads
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Appendix C. The Simulator

; ; $s2 = number o f wa i t f o r t ime r threads
; ; $s3 = number o f w a i t f o r n o t i f y threads
; ; $s4 = po in t e r to act ive−thread tab l e
; ; $s5 = po in t e r to w a i t f o r j o i n tab l e
; ; $s6 = po in t e r to wa i t f o r t ime r tab l e
; ; $s7 = po in t e r to w a i t f o r n o t i f i c a t i o n tab l e

. t ext

main : wait $t0 ; Th0 , wait for t iming ( conta ins t imer i n f o )

move $t9 , $s2
move $t5 , $s6

Mtimer : bne $t9 , $zero , Ctime ; Check wa i t f o r t ime r e n t r i e s

move $t9 , $s1
move $t5 , $s5

Mjoin : bne $t9 , $zero , Cjoin ; Check w a i t f o r j o i n e n t r i e s

Mnoti : bne $s3 , $zero , Cnoti ; Check wa i t f o r n o t i f y e n t r i e s
j main

; ; Check wa i t f o r j o i n e n t r i e s

Cjoin : lw $a1 , 4 ( $t5 ) ; Waiting for Thread ID ( in a form of AF lo c )
lw $a2 , 8 ( $t5 ) ; Next w a i t f o r j o i n entry

move $t7 , $s4
move $t4 , $s0

NTID: beq $t4 , $zero , Ajoin ; No Thread − Act ivate wait for j o i n
lw $v0 , 0 ( $t7 ) ; Act ivate Thread ID ( in a form of AF lo c )
lw $v1 , 4 ( $t7 ) ; Next a c t i v a t e thread
beq $v0 , $a1 , Jnext ; Equal − break ( the entry has to ’ wait ’ )
move $t7 , $v1 ; Not Equal − check next ThID
addi $t4 , $t4 ,−1
j NTID

Ajoin : lw $a0 , 0 ( $t5 ) ; Request ThID & reg ( in a form of AF lo c )
addi $s1 , $s1 ,−1 ; Remove the ac t i va t ed entry
sw $k1 , 0 ( $a0 ) ; Act ivate w a i t f o r j o i n entry
bne $s5$ , $t5 , Nst1 ; $t5 i sn ’ t a s t a r t po s i t i o n
move $s5 , $a2 ; Remove the f i r s t entry
j Jnext

Nst1 : sw $a2 , 8 ( $t6 )
Jnext : move $t6 , $t5

move $t5 , $a2
addi $t9 , $t9 ,−1
j Mjoin ; Check more w a i t f o r j o i n e n t r i e s

; ; Check wa i t f o r t ime r e n t r i e s

Ctime : lw $a0 , 0 ( $t5 ) ; Timed Thread ID
lw $a1 , 4 ( $t5 ) ; Timer
lw $a2 , 8 ( $t5 ) ; Next wa i t f o r t ime r entry

sub $a1 , $a1 , $t0 ; Reduce t imer
b l e z $a1 , Txpire ; Time exp i r e
sw $a1 , 4 ( $t5 ) ; s t o r e new timer
j Tnext

Txpire : sw $k1 , 0 ( $a0 ) ; Act ivate wa i t f o r t ime r entry
addi $s2 , $s2 ,−1 ; Remove the ac t i va t ed entry
bne $s5$ , $t5 , Nst2 ; $t5 i sn ’ t a s t a r t po s i t i o n
move $s5 , $a2
j Tnext

Nst2 : sw $a2 , 8 ( $t6 )
Tnext : move $t6 , $t5

move $t5 , $a2
addi $t9 , $t9 ,−1
j Mtimer

; ; Check w a i t f o r n o t i f i c a t i o n e n t r i e s

Cnoti : lw $a0 , 0 ( $s7 )
lw $a2 , 4 ( $s7 )
sw $k1 , 0 ( $a0 ) ; Act ivate w a i t f o r n o t i f y entry
move $s7 , $a2
addi $s3 , $s3 ,−1
j Mnoti

. end
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Additional BNF for MulTEP assembler

<Lopcode> → lb | lbu | ld | ldc1 | ldc2 | ldl | ldr | lh | lhu | ll |
lld | lw | lwc0 | lwc1 | lwc2 | lwc3 | lwl | lwr

<Sopcode> → sb | sc | scd | sdc1 | sdc2 | sdl | sdr | sh | sw | swc0 |
swc1 | swc2 | swc3 | swl | swr

<Ropcode> → sll | sllv | sll | slt | sltu | sra | srav | srl | srlv |
sub | add | addu | and | dadd | movn | movz | nor | or |
xor | cvt.s.w | cvt.d.s | l.s

<Iopcode> → slti | sliu | addi | addiu | andi | daddi | daddiu |
ori | pref | xori

<Bopcode> → beq | beql | bne | bgt | bnel
<BZopcode> → bgez | bgezal | bgezl | bgtz | bgtzl | blez | blezl |

bltz | bltzal | bltzall | blezl | bnez
<Sopcode> → spawn

<Jopcode> → j | jal2 | jalr | jr
<ROpcode2> → div | div.s | divu | dsll | dsll32 | dsllv | dsra |

dsra32 | dsrav | dsrl | dsrl32 | dsrlv | dsub |
dsubu | move | mult | multu | teq | tge | tgeu | tlt |
tltu | tne | abs.s | abs.d | add.s | add.d |
c.cond.s | c.cond.d | ceil.l.s | ceil.l.d |
ceil.w.s | ceil.w.d | cfc1 | ctc1 | signal

<IOpcode2> → li | lui | teqi | tgei | tgeiu | tlti | tltiu
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Appendix D. Additional BNF for MulTEP assembler

<Opcode1> → cop0 | cop1 | cop2 | cop3 | mfhi | mflo | mthi | mtlo |
bc1f | bc1fl | bc1t | bc1tl | wait | stop

<Opcode0> → break | sync | syscall | switch | end | nop

<cond> → z | lz | gtz | eq | lt | lte | gt | gte

<reg> → $zero | $at | $v0 | $v1 | $a0 | $a1 | $a2 | $a3 | $t0 |
$t1 | $t2 | $t3 | $t4 | $t5 | $t6 | $t7 | $s0 | $s1 | $s2 |
$s3 | $s4 | $s5 | $s6 | $s7 | $t8 | $t9 | $k0 | $k1 | $gp |
$sp | $fp | $ra | $f0 | $f1 | $f2 | $f3 | $f4 | $f5 | $f6 |
$f7 | $f8 | $f9 | $f10 | $f3 | $f11 | $f12 | $f13 | $f14 |
$f15 | $f16 | $f17 | $f18 | $f19 | $f20 | $f21 | $f22 |
$f23 | $f24 | $f25 | $f26 | $f27 | $f28 | $f29 | $f30 |
$f31
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