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On the Composition and Decomposition of Assertions.

by
Glynn Winskel
University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
~ Cambridge CB2 3QG.

0. Motivation.

Recently there has been a great deal of interest in the problem of how to compose
modal assertions, in order to deduce the truth of an assertion for a composition of processes,
in a parallel programming language from the truth of certain assertions for its components
e.g. [BKP], [St1,2].

This paper addresses that problem from a theoretical standpoint. I wish to focus on
the essential issues and so have not been concerned with whether or not the programming
language and assertions are “realistic”. The programming language is Robin Milner’s Syn-
chronous Calculus of Communicating Systems (called SCCS—see [M3] for an introduction
and motivation) and the language of assertions is a fragment of dynamic logic brought to
the fore because, despite its simplicity, it is expressive enough to characterise observational
equivalence, central to the work of Milner et al—see the papers [HM, M2, St1,2, P]. Colin
Stirling has tackled the problem of a proof theory for SCCS and CCS with modal assertions
and I have been strongly influenced by his approach in spirit, if not in detail.

It is shown how, with respect to each operation op in SCCS, every assertion has a
decomposition which reduces the problem of proving the assertion holds of a compound
process built-up using op to proving assertions about its components. These results provide
the foundations of a proof system for SCCS with assertions.

While preparing this paper another approach to such proof systems parallel languages
occurred to me. The approach uses a mix of the syntax of the programming language with
the syntax of assertions. Because this approach fits best with a different notation I shall
write it up‘in another paper [W2]. That will include a full treatment of the relationship of
the operational semantics here with a denotational semantics appropriate to observational

equivalence.

I have intended the work of these two papers to be a pilot study, to prepare my
way towards a clearer understanding of the proof theory of more general languages and
assertions. I believe many of the results and connections made will carry through and be
useful in a more general setting. '




1. The language SCCS.

Assume 2 set of process variables z € Var. Assume a set of elementary actions o € Act
forming a finite Abelian group (Act, e, 1, ~) with composition e, identity 1 and inverse .

The language of SCCS consists of the following terms
pu=0 ]z | ap| pt+p | p®p | p[A | reczp | rec”zp | 0
where z € Var, a € Act, A is a subset of Act containing 1 and n is a positive integer.

For convenience we have extended SCCS to include numbered terms of the form
rec"z.p and the complefely undefined term €. Intuitively the label on such a term bounds
the number of calls to the recursive definition. This will be useful later when we come to
give proofs involving induction on this number. As a useful convention we shall regard
rec’z.p as being {1, and sometimes use rec® z.p to mean recz.p.

We say a recursive definition recz.p is well-guarded when p has the form ag for some
term ¢ and action o € Act. However we shall not assume that recursive definitions .are

well-guarded in general.

Write P for the set of SCCS terms, and P¢ for the set closed of SCCS terms which
we shall call processes. We call a numbered term a SCCS term in which all occurrences
of rec are labelled by numbers, and write the set of numbered terms as Py and the set of

closed numbered terms as Pgoy.

We explain informally the behaviour of the constructs in the language SCCS. The
O term represents the nil process which has stopped and refuses to perform any action.
The behaviour of 2 will be the same as that of recz.z which is busily doing nothing of
interest. A guarded process ap first performs the action o to become the process p. A
sum p + q behaves like p or g. Which branch of a sum is followed will often be determined
by the context and what actions the process is restricted to; only in the case when both
component processes p and g are able to perform an identity action 1 can the process p+g
always choose autonomously, no matter what the context, to behave like p or q. A product
process p ® q behaves like p and ¢ set in parallel but in such a way that they perform
their actions synchronously, in “lock-step”, together performing the é—product of their
respective actions. (To avoid confusion later, we have chosen a notation different from
Milner’s, using ® instead of x.) The restriction p[A behaves like the process p but with
its actions restricted to lie in the set A. Restriction is a surprisingly powerful construction;
it is what determines what kind of communications are allowed between processes, and
without it two processes in parallel would behave in a manner completely independent of
eachother. We present the formal definition of behaviour in the next section.

Write FV(p) for the set of free variables of a term p.

A substitution is a map ¢ : Var — P assigning SCCS terms to variables. Given SCCS
term p and a substitution ¢ the term p[o] is the result of substituting o(z) for each free
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occurrence of & in p—we assume changes are made in the naming of bound variables to
avoid the binding of free variables in the substituted terms. We use [po/z1,- -+, Prs/Zim,y -]
as an abbreviation for the substitution which replaces free occurrences of the variables %,
by the terms p,, while leaving the other free variables the same.

Let p be a term. A valuation is a substitution ¢ : Var — P which assigns a closed
SCCS term to each variable. So, of course, p[¥] is 2 clogsed SCCS term.




2. The behaviour of SCCS.

Following Milner [M1,2,3], the behaviour of a process is represented as a labelled
transition system. Its states are processes and so the transition system can be given in a
syntax—directed way by defining inductively those transitions which are possible from each

process term.

2.1 Definition.
Define the labelled transition relation —2— between closed SCCS terms to be the least

relation closed under the following rules:

ap —*—p
p a:p' : q a|ql
ptg—=—p ptqg—=-¢

p-2sp g-Log
p®g 2L peq

A
P9 fach
p[A 2 q[A
plrecz.p/z] 2 q p[rec”z.p/z] 2 ¢
recz.p —2— q rec*tlz.p 2+ q

Notice there are no rules for O or £ because we do not wish there to be any transitions
from such terms.

Of course this is just an inductive definition of the labelled transition relation
U =
acAct

and later in proofs we shall use induction on the stages of the construction of the full
relation. For this reason it is convenient to spell out the details of the inductive construction

here.




2.2 Definition. TFor m € w, define the relations —2—  between terms P by taking
—%— to be the null relation and inductively defining the relations —*—_' by

o
ap m+lp

p-—=, p=ptg-ts P
g2 ¢ =>ptq — q

p _2_+wnpl & ¢ _Q_nn qI=>Z)@)q_JEﬂi_nn+l P eq
p—)‘—bm p' = p[A —‘L-»mﬂq[A ifaeh
plrecz.p/e] 24— _ ¢ = vecz.p ~2—
n+i$

m+1 9

plrec”z.p/z] %= g = rec P g O

2.8 Proposition. For each o € Act and processes p and ¢, p 24— q¢ & Im. p %= ¢
and p % _gq=p 2= __ g Thus 2=}, , ", The following equivalences
hold for SCCS processes: ’

(i) p+qg-2—orep-2sror g2y,

(i) p@&q¢-2=redpd,frfer=a b r=p0d & pLay &

g 1= ¢, |

(iii) p[A2—reIgr=p'[A & a€h & p Ty,

(iv) recz.p —%— v & plrecz.p/z} L= 7,

(iv) rec"z.p 2 v & plrec” 'z.p/z] 2.

Proof. Observe that each rule is finitary. Consequently the inductive definition has closure
ordinal w. (Refer to [Ac] for the basic notions of inductive definitions.) For each equivalence
(i)=(v) the “«” direction follows directly from the rules for -2, The directions “=”
follow by induction on m in the relation —%— __ e.g. the induction hypothesis for (i) is

Vp,q,7.p+q—2— r=>p-2sror g%

A process diverges if it can be forever busy performing internal events. In the case of
SCCS this can only arise through a process unwinding its recursive definition continually.
A diverging process has a somewhat dubious status. In the absence of communication
with the environment, it never settles down into a stable state, or settles on the full set
of actions it is prepared to do. Viewed behaviourally, from the outside so to speak, it
continues to “click and whir” and it never becomes clear whether an action not accepted
now will continue to not be accepted later. Mathematically it is the complementary notion
of convergence which has the more basic definition, by induction. ‘




2.4 Definition. For n € w, define the predicates |* on P by taking |°= @, the null
predicate, and inductively defining

0"+, ap|™t!,
pl* & ql"=(p+q)i"*!,
pl" & ql*=(p® )",
pi®=>(p[A)|"*,
(p[recs.p/z]) 1" =>(recz.p) |nre
(plrec'z.p/z]) " =>(rec'  z.p) |7+ .

where p and q are closed SCCS terms and [ is an non—negative integer.
Define |= | J,,¢,, |- Say a closed SCCS term p is convergent iff p|.
Say a closed term p diverges, and write p{, when p does not converge.

Intuitively a divergent term is one whose transitions are not completely specified by
a finite stage in the recursion. If all recursions were assumed to be well-guarded then all
closed terms but 2 would be convergent.

2.6 Lemma. Letp € Pc be convergent, i.e. p|. Then the set {g € P¢ | p -2~ q} is
finite for all @ € Act. :

Proof. We show by induction on n that
pl"=>{g€Pc |p g} < oo

for all p € P¢ and a € Act.

" If p|° then p has the form O, which has no transitions, or ¢, which has at most one
a—transition. This shows the basis of the induction.

Assume inductively that the hypothesis holds for n. We show it holds for n + 1 by
considering cases.

In case p is of form O or fq it is obvious, as above.

In case p has the form q + r, assuming p |"*! implies ¢ |* and r |*. We have
{P|p 29} ={r]qg-2p}u{p|r 2> p'} which is finite by the induction
hypothesis. '

Similarly, in case p has the form ¢ ® r, assuming p 1*t! implies ¢ |® and v |". This
time {p' |p 2 p'}={¢"® | ¢ —g—f»q' & r X1o v & feq=a). By induction the
sets {¢' | ¢ £~ ¢'} and {#’' | v -2 ¢’} are finite for all §,y € Act. Because Act is finite
this implies {p' | p —2— p'} is finite.




In the case where p has the form recs.q the assumption p |**! implies ¢[p/<] {".
As p and g[p/z| | have the same a-transitions, by the induction hypothesis we see that
{g | p %~ ¢} is finite, for any o € Act.

Similarly when p has the form rec™z.q and p |+ it has a finite set of a—transitions.

By induction we conclude that p | implies {g | p % ¢} ie finite, for any oo € Act.

Remark. By a fluke, the above result appears to be true in general without needing
convergence—though I haven’t a proof of this. However in all our proofs we shall only
require {q | p % ¢} finite when p converges.




3. Approximation and numbered term inductiox.

The number attached to occurrences of rec specifies how many times the recursive
definition can be unwound when determining the transition system associated with a term.
Roughly, the larger the numbers the larger the transition system associated with the term.
There corresponds an approximation relation between terms which we write as <.

3.1 Definition. Define < to be the least binary relation on P such that

1 <p, p<p

p<g=>oap<oq

p<p & q<qg =>p+gsp +¢
p<p & g<q¢ =>p®g<p O]
p<qg=>p[A<q[A

p<q & m<n=>rec"z.p < rec"z.q
p<qg=>rec”z.p < recz.q.

3.2 Lemma. The relation < is a partial order on P such that
{geP|g<pl<oo

for all p € Py. It has as least element ), and satisfies the property that any subset X of P
which is bounded above by an element of P has a least upper bound | | X in . A bounded
finite set of (closed) numbered terms has as least upper bound a (closed) numbered term.

Proof. By definition < is reflexive. Transitivity and antisymetry of < follow by structural
induction case by case. This shows < is a partial order.

The set {g € P | ¢ < p} is finite for p € Py by structural induction.
By definition 0 is the least element.

Let X Cfi" P and p € P. Let X < p abbreviate Vg € X. ¢ < p. It can be shown
by structural induction on p € P that: for all X cfinpit X < p then X has a least
upper bound, and that in the case where X is restricted fo being a ﬁmte subset of (closed)
numbered terms then its lub is a (closed) numbered term too. §

The order < on terms P respects the language of SCCS, as expressed in the following
lemma.

3.3 Lemma. Let o and ¢’ be substitutions in the relation ¢ < ¢’ ¢ 4.y Yz € Var. ofz] <
o'[z]. Let p,q be terms in the relation p < ¢. Then

plo] < qlo'].
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Proof. By structural induction on q.

Many proofs which can be tackled using structural induction together with induction
on the numbering on terms can be handled more conveniently by combining the subterm
relation with the approximation relation <. This produces a new well-founded ordering
< on which to do the induction “all in one go”.

3.4 Definition.
Let p and ¢ be numbered terms, in Py . Define

p = ¢ p<q for some subterm ¢’ of q.
Define p < g« p=<q & p#q.
3.5 Lemma. The relation < is a partial order on Py such that

{gePn | g2 p}<oo
forallpe Py. .

Proof. Obviously < is reflexive and transitive. It is antisymmetric because if p < g and
g < p then p and ¢ are subterms of eachother and so identical. It inherits the finiteness
condition from < and the subterm relation. §

Consequently we can do well-founded induction on <:

3.6 Proposition. (Numbered term induction)
Let @ be a predicate on . Then Vp € P. Q(p) iff

V? € P((Yg < p. Q(q)) = Q(p)).

Most of our proofs using numbered term induction will follow a similar pattern. We
would like to prove that a predicate R holds for all closed numbered terms P, but in
order to do so we extend the predicate R to a predicate R, on all open numbered terms
in the following way:

Ro(p) € 4ey V valuations 9. (Vz € FV(p). R(d]z])) = R(p[¥))

for open numbered terms p. If it can be shown that R,(p) holds for all numbered terms,
then in particular, by taking ¢ to be any valuation, we have that R(p) holds for all closed
terms p.

As an example we show that the the labelled transition relation —%— is Noetherian
on closed numbered terms, ¢.e. there are no infinite chains

LY

» P Boee s

xXg

Xy 5., En—1

Po > Py




with po, P1,.«-) Pny.-- 10 Pon.

8.7 Theorem. The relation —%— is Noetherian on Pcy.

Proof.

Let N be the predicate on closed numbered terms given by

ay ,,,, %n=1 apy .

N(p) iff there are no infinite chains pp —**— py > Pn
with p = po,P1,+ -+ Pny .- it Pon. Extend N to all numbered terms by defining
No(q) & V valuations #(Vz € FV(p). N(8[z])) = N(q[9]).

We prove Ny(q) holds for all numbered terms g by numbered term induction on g.
Let g € Py for which Ny(p) for all p < g. We show N(q).
Let ¢ be a valuation such that Vz € FV(q). N(d[z]).

A

Clearly N(¢]z]) for z a variable, and N(O[¥]) and N(Q1[9]) as O and @ make no
transitions.

If q[9] = ap[¥] could make an infinite chain of transitions then so could p[d] < g[¥)]
which is false by assumption. Thus N(g[¥9}).

Similarly if ¢ = p + v or ¢ = p® r, as N(p[¥]) and N(r[9]), then N(q(¥]).
Assume q = rec*z.p. We have
q[9] —2— r ¢ (plrec™ ' z.p/z])[8] 2 r.
Note p[rec® z.p/z][¥] = p|¢'] where ¢’ is the valuation
Sy] = { 9y} if y # 7,

rec* " lz.p fy==.

(s.e. ¥' = O]rec"!z.p/z] using an obvious notation.) As rec” 'z.p < q we obté'in N(¢'[=])
for all z € FV(p). As p < g we know No(p). Consequently N(p[¥']), so N(g[¥]).

Thus we see N(g[¥]) for all valuations ¥ for which Vz € FV(g). N(#[z]).

Thus the truth of Ny(g) follows from the truth of No(p) for all p < ¢g. By numbered-
term induction we establish Np(g) for all numbered terms, and in particular that each

closed numbered term is Noetherian.
3.8 Lemma. The set {q|p —2— q} is finite for all a € Act, p € Poy.
Proof. As above. @
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4. The assertion language.

Hennessy and Milner defined an equivalence relation between processes called obser-
vational equivalence in [HM, M1]. For our language of SCCS, two processes are observa-
tionally equivalent iff whenever one can do an action to become a process then so can the
other do the same action to become an equivalent process. They found an alternative char-
acterisation so that processes were observationally equivalent iff they satisfied the same
assertions in a simple language of modal assertions [HM]. However there are inadequacies
with this treatment of processes because it does not take proper account of divergence. So
Milner, in [M2], generalised the definition of observational equivalence and the definition
of a process satisfying a modal assertion in order to cope with divergence. (See [HP] for a
closely related but different extension of observational equivalence to diverging processes.)
In this way Milner extended the result he had obtained with Hennessy, so that in SCCS, for
example, two processes are observationally equivalent iff they satisfy the same assertions in
the modal language of Hennessy and Milner. In future, “observational equivalence” shall
refer to the more refined equivalence of [M2]. Following [P, St1,2] we have simplified the
modal language of Hennessy and Milner a little.

4.1 Definition.
The assertion language consists of simple modal expressions built up according to:

Azu=true | false | [\ A | \[ 4i | ()4 | [o}4

s€l iel

where I is a finite indexing sef and a € Act.
We shall call elements of this language assertions, and write the set of assertions as

Assn. ,

By convention we understand A;-; A; to be true and V/;.; 4; to be false when the
indexing set I is null. When the indexing set is I = {0, 1} we can write /\;., A; as Ao A 4,,
and \/;c; Ai 28 Ao V Ay.

The meaning of an assertions is given by specifying the subset II[A] of SCCS processes
P which satisfy A:

4.2 Definition. Define

I[true] = Pgo
I[false] = @
M 4 = (1A
i€l ier
[\, A = 4]
sef sel

Mf{a)A] = {p € Pc | Jg.p 2= g & g€ N[4]}
Mf{ajA] = {p e Pc | pl & Yg.p =— ¢ = q € II[A]}
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Write |= p: A ©gcy p € II[ A}, where p is 2 SCCS process and A is an assertion, and say p

satisfies A.
We call an element p: A a correctness assertion, for p an SCCS term and A an assertion.

So |= p: A means the correctness assertion p: 4 is true, Clearly |= p:{o)4 means the
process p can do an a-action to become a process satisfying 4, and |= p:[co/false means
the process p refuses to do an a-action. The latter kind of properties are important for
detecting deadlock. Notice that & Q:[ajfrue and [~ 03:[offalse because we insist diverging
processes, like {1, cannot satisfy any assertion of the form [a]A.

4.3 Proposition. Let p € Po. Then p|&|= p:|altrue, for any action a.
Proof. Directly from the definition of satisfaction for formulae of the form [ajtrue. @

Because the processes recz.p and plrecz.p/z] make the same transitions they satisfy
the same assertions, a fact we shall need later. ‘
4.4 Lemma. Letpc P with at most one free variable z. Let A € Assn. Then
= recz.p: A & p[recz.p/z]: A and
= rec™z.p: A &= plrec™ ' z.p/z]: A,

Proof. By structural induction on A using proposition 2.3.

Because we insist that a process satisfying a modal assertion [a]4 must converge,
satisfaction will be effective; if a process p in P¢ satisfies an assertion A then it can be
approximated by a numbered version p’ which also satisfies the assertion. To show this we
must first see how the transition system associated with a term p’ < p approximates, and
simulates, the transition system associated with p.

4.6 Lemma. For SCCS processes

(¢) Forp,p',¢' € P¢ |
p2sq & pP<p=>3qqd<q & p-2oq

(it) For p,q € P¢,q0 € Pon
p-23q & go<q=>I,d€Pey.P'<p & P -2¢ & g <.

(#4i) For p,p' € P¢
p'l& pP<p=>pl& (V. p 2> qg=>3¢" <q.p -2 ¢).

(iv) Forp € P¢,Y C Poy
pl& (Vg.p 2> q=>3g €Y. q <q)
=3 cPon.P<p & A
pPl& (Vg.p' 2+ g=>39 €Y. g <9)
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Proof.
The proofs follow by induction on n in —%—_ and l”.
(i) We take as induction hypothesis: For all p,p’,»q' € Pg
2= ¢ & p<p=3gq¢d<q & p-y,
which we prove by induction on m.
It is vacuously true when ym = 0.

Assume m > 0. Assume the induction hypothesis for m — 1. We show by considering
the possible forms of p' that the induction hypothesis holds for im.

For p = O and p = {1 it is obvious.

In the case where p’ = 7' ®¢,if p' %> _¢' & p’ < p then p=r®s for some r and s
with v/ —E—»m_l rand § —1— _ forsome f,ysuch that fey = & Then by the induction

hypothesis there are ¢ and u such that ¢ <¢ & r £ itand o' <u & s I u. Taking
g=tQ®ugives ¢ <g & p -%— g as required. '

Consider the case p = recz.r. i p' 2~ ¢' & p’ < p then ¥'[p'/z] 2= | q'
and p = recz.v for some v > ¢/. Now #'[p'/z] < r[p/z] so by the induction hypothesis
r[p/z] —%— q for some ¢ > ¢'. But then ¢’ < g and p —%— ¢ as required.

We leave the other cases to the reader. They are routine.

(ii) Take as induction hypothesis: For all p,q € P¢,q0 € Pon

p-2%+ q & q<qg=>3,¢c€Pen.p<p &y -2q¢ & ¢ <7,

and proceed by induction on m. The induction is similar to the previous case and is
omitted.

(iii) Take as induction hypothesis: For all p,p’ € P¢
Plm& p<p=pl& (Vg.p 2>, ¢3¢ <qp 29
It is vacuously true when m = 0, For the inductive step when m > 0 there is one case
of interest, that where p’ has the form recz.v’.
Then, assuming p' |™ & p’ < p we obtain:
v'[p'/z] ™" and p = rec’z.v for some j € wU {00} and 7 > .

13




By lemma 3.3, #'[p’/z] < r|p/z]. Thus by the induction hypothesis we see v|p/z] |.

Now assume p —*— _ ¢. Then rlp/z] —%—_ _, ¢. By the induction hypothesis we
obtain some ¢’ < ¢ such that v'[p'/z] -2 ¢'. Hence p' —2— ¢', as required.

(iv) Take as induction hypothesis

pl™ & (Vg.p 2>, _g=>Ig0 €Y. g < gq)
=3Jp' €Pen.p'<p &
p'l& (Vg.p' 2-qg=>3qp €Y. ¢ <q).

for all processes p and subsets of numbered terms Y.

Again the basis of the induction when m = 0 is vacuously true. 'We only show one
case in the inductive step, the most difficult case where p = r ® s.

Assume m > 0. Assume the inductive hypothesis holds for lesser values than m.
Assume p = v ® g and that

pl™ & Vg.p 2+ _q=>(q €Y. ¢ <q) 1)

for Y C Poy. Without loss of geﬁ‘erality we can assume Y is upwards—closed with respect
to < i.e.
VpGYVqGPCNoPGY & p<qg=>q€y,

because clearly if the inductive hypothesis holds for all upwards—closed subsets of Pgy
then it holds for arbitrary subsets of Poy.

By (1) we see v |™1 and s|™'.
Let B, € Act be such that fe y=oa.
If r —ﬂ—»m_l tand s -1 uthenp=r®s % {®u. Henceby (1)
Gu®@dhu€Y & g <t & dp <u
for some choice g u,dt,u € Pen.

Now define .
ke =| Hotuls 2>, v}

hu = U{dg,u l 7 ——p—Pm_l t}

the lubs of sets in Poy wrt <; these exist by lemma 3.2 as the sets are finite—because s |
and v ]—and bounded above by ¢ and u respectively.

14




Define
Wﬂ = {ke ' ¥ Lm—i i}

Zy={hy|s 1o u).

We show ‘ ‘
Vip € Wﬂ, Up € Z»,, (io ® uo) eY. (2)

Let to € Wg,uo € Z,. Then ¢y = k and uy = h, for some ¢, u with v —ﬁ——»m_l t and

31— u. Because

ke Z Gt,u & hu 2 Clt,u

we have tg @ ug = ki ® hy 2> gi,u ® dpy. So by the upwards—closedness of ¥ we obtain
to ® ug € Y.

Now 7 |™~! and ,
Vi v

B, L t= Tt eWp. b <t

Thus by the induction hypothesis we obtain some rg € Py such that vg < v and
rol & V. rp Lot =ty e Wty <t : (3),

and similarly some s, € Pcy such that s, < v and

syl & Yu. 8y T u=Jug € Z,. up < u. (4).

We can now define p' = | [{rg ® 5, | fe 7 = a} the lub of a set in Poy; it exists
as the get is finite—because the number of actions is finite—and is bounded above by p.
Clearly p' € Poy and p’ < p. As rp® s, ] whenever foy = o and p’ > v ® 3, we see by
part (iii) above that p’ | too.

We require further that Vq'. p’ % ¢’ = 3q0 € Y. go < q'. Suppose p' ~%— ¢'. Then
observing p’ and ¢' have the form p' = v @ ¢' and ¢' = #' ® v’ we know v £ ¢’ and
s’ 1 u' for some f,7 with f ey = o. By part (ii) above rg —£— ¢ for some ¢ < t'.
But then by the property of rg (3), there is some ¢y € W with ¢y < ¢. Thus t; < ¢/
and ty € Wps. Similarly, there is some ug < u' with up € Z,,. Take qo = o ® up. Then
o=t ®u <t'®u =¢" and go =1 @ uo € Y by (2).

This completes this case in the inductive step. The remaining cases are straightforward
and left to the reader [

Note that part (iv) above specialises to the result
pl=3p €Pon.p'<p & p'|
when we take ¥ = {Q}.
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4.6 Theorem. Letp € Pg. Then
EpAedp ePeon.p <p &=p':A
Proof. The proof is by structural induction on A using the above lemma parts (i), (ii) for
the modality (o) and (iii), (iv) for the modality [c}
Take as induction hypothesis:

VpePe. EprAdo I ePen.p'<p &P A

For the induction suppose the inductive hypothesis holds for all proper subassertions
of A. One considers all the possible forms of A and shows in all cases that the induction
hypothesis holds for A. We do only two cases leaving the remainder to the reader.

Assume A = (a)B. o

If p <pand |=p':{a)B for p' € Poy then p' ~2— ¢’ for some ¢’ s.t. |= ¢’': B. Thus
by lemma 4.5 (i) there is some ¢’ < g with p —%— g. But then by the induction hypothesis
= ¢: B which implies |= p:{a)B, as required.

If = p:(a)B then p —2— ¢ for some ¢ 8.t. |= ¢q:B. By the inductive hypothesns we

obtain some gy € Py with go < ¢ and |=go: B. By lemma 4.5(ii) there is some p' € Py
s.t. p’ < p and p' 2 ¢' with go < ¢’. Then |= ¢': B, again by the induction hypothesis.

Consequently |= p’:(a)B, as required.

Thus in the case where A = (a)B the induction hypothesis holds.

Assume A = [o]B.

Suppose p' < p and | p':[a]B for some p' € Poy. Then p’ | and Vq p-2-q¢ =
= ¢': B. Consequently by lemma 4.5 (iii), p| and if p 2 ¢ then p' —2— ¢’ for some
¢’ < g. By the induction hypothesis |= g: B. Thus |= p:[a]B.

Suppose |=p:[a]B. Then p| and Vq. p —%— ¢ =>}=q:B. Let

Y={g€Pen|Tg.p 2+q & qo <q & }=¢o:B}.

By the induction hypothesis if p —2— ¢ there is some go € ¥ s.t. go < ¢. Applying lemma
4.5 (iv), we obtain some p' € Poy for which

P'<p & pl& (Vg9 2+qg=>3IpEY.q<q)
Thus if p' ~%— ¢ then by the induction hypothesis we see |= q: B. Therefore }= p:[a]B.
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Thus in the case where A = [a]B the induction hypothesis holds.

A topology on processes: There is a natural topology om P¢ which is the Scott-
topology, seen in a slightly different setting than usual.

4.7 Proposition.  The family of sets of the form {p € P¢ | ¢ < p} for ¢ a closed
numbered term are the basis of a topology on P¢. So the open sets have the form

U={pePc|IpocX po<p}

for a subset X of numbered terms.
The open sets of P are those subsets U C P which are
(i) VYpgp>9eU=pel,
(ii) V¥ directed S CP¢. | |S€eU=IpeS.pel.

Proof. Routine. Use lemma 3.2 to check this is a basis of a topology. Recall a directed set
is a non-null subset S with the property that pe § & g€ S§=>3Ir€S.p<r & ¢ <.

Then theorem 4.6 says each assertion determines an open set of P i.e. II[A] is open
for each assertion A. In fact 4.6 can be made more general, and more useful if we were to
extend our present !anguage of assertions.

4.8 Lemma. Let a € Act. If U is an open set in the topology on processes then so are
the sets
(@)U =aey {p€Pc | g€ V. g %> p} and

[o)U =ger {p€Pc | pl & Yg.p 2= g=>qeU}.

Proof. The proof uses lemma 4.5 in the same way as the proof of theorem.4.6.

This topological view is in line with Dana Scott’s development of the theory of do-
mains from neighbourhood systems [S1] and with the ideas of Mike Smyth in [Sm], where
he proposes that computational properties of a topological space be identified with effec-
tive open sets. In the approach to domains using neighbourhood systems, to know more
information about a process is to know a smaller neighbourhood in which it is contained.
These topological ideas have been applied by Gordon Plotkin in [P] to extend the language
of assertions by intuitionistic negation and implication; their interpretation are those stan-
dard for topological models of intuitionistic logic, so in this extension of Assn one takes
I[A D B] = ((Pc \ M[A]) UTI[B])° where X° is the topological interior of the set X
(Plotkin’s topology is not that here however). One advantage of intuitionistic logic over
classical logic is that satisfaction is still effective even for this extended set of assertions.
We shall say more on denotational semantics in [W2].

A word on equivalences on programs: The work of Milner et al (see e.g. [M1]) shows
how much can be done with the observational and bisimulation equivalence those equiva-
lences induced by the assertions; recall we can take two processes to be equivalent iff they
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satisfy the same assertions. This argues that the assertions are sufficiently rich to capture
a great many of the properties of interest. This should not seem so surprising. Remember
a process denotes the set of assertions it satisfies so is essentially modelled as an (infinite)
conjunction of these assertions; only for a finite process would a single assertion in Assn
capture its full behaviour.

Although the assertions may make it possible to distinguish all the processes one could
wish, this is not to say the logic is as expressive as one would like from all points of view.
Clearly it is rather primitive. For example one would like the ability to specify infinite
behaviours by finite assertions.

Quite possibly there are other properties of interest to which the language of assertions
is blind. However it is interesting that two other well-known notions of equivalence can be
induced by taking fragments of the assertion language Assn. They are trace equivalence
and failure-set equivalence. Strictly speaking the failure-set equivalence has not been
defined on SCCS but the definition that follows has been based on the work of [HBR]
modified to take proper account of divergence. The use of traces and their associated
equivalence is widespread, see e.g. [H] and [HdeN|. As far as these two equivalences are
concerned Assn is certainly expressive enough. The assertions which suffice to induce the
trace—equivalence take the form

(ao)a)- - - {aj—1)true,

while the assertions for failure-set—equivalence take the form

(oo )ar)- -~ (a1 X \ [BYalse).

per
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. The decomposition of assertions.

We are interested in how the goal of proving an assertion holds of a process reduces
to the subgoals of proving assertions about its subprocesses, and in the converse problem,
of how assertions about subprocesses combine to yield assertions about the compound -
process., It is clear for example that an assertion ()4 holds of a process ap iff A4 holds
of p. Similarly [a]4 holds of a process p + ¢ iff [@]4 holds of both components p and g.
However |=p + ¢:{a)A iff |= p:{(a)A or |= q:{a)A; there is not 2 unique subgoal. Similarly
ther are many possible ways in which |= p ® g:(a)true; this holds whenever |= p: (f)true
and |= q:(y)true with fo 7= a. '

For each unary operation op of SCCS we show how for an assertion A there is an

assertion D,,[A] so that
= op(p): A &= p:Dop[A].

For each bin.a.ry operation op of SCCS we show how for an assertion A there is a finite set
of pairs of assertions D,p[A] so that

Ep®q:A iff 3(B,C) € DylA]. Ep:B & |=q:C.

Thus we see how, with respect to each operation op in SCCS, every assertion has a decom-
position which reduces the problem of proving the assertion holds of a compound process
built—up using op to proving assertions about its components. These results provide the
foundations of our proof systems for SCCS with assertions Assm, both here and in [W2].

The guarded—decomposition of assertions:

5.1 Definition. Let a € Act. Define the assertion D,[A], for an assertion 4, by the

structural induction:
Datrue] = true

Dy [false] = false
Dol \ 4 = N\ DalAi]

~

i€l iel
Dall\/ Ail = \/ Dal4i]
(134 i€l
[4 if=a
Pal(p)A] = {false if a £«

_JA if=a
Da[lAA] = {true if f# a.
The following result is essentially contained in [St1,2].
5.2 Theorem. Let o € Act. Let A be an assertion.
VpePe. Eap:A ©Fp:Du[A4].
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Proof. Let o € Act. We show by structural induction on A that
Vp e Pe. = op: A & p:Du[A].
When A is true or false this is clearly true as D, [true] = true and Dy f[false] = false.
Assume A = A; A;. Then
E (ap) :f\ A; & V5. = (ap): 4;
& Vi. Ep:Da[A:] by induction
ek p: /\ DallAi]
g

ok p:D.A].
Assume A = \/,; A;. Then
= (ap):v A; & 3. = (ap):As
‘ & 3i. = p:DaJAi] by induction
eEp: f\ DafAs}
o= p:DJ[A]-
Assume A = (a)B. Then clearly |= ap: (a)B iff |= p: B iff |= p: DafA]. Assume
A = (B)B where B # «. Then clearly |= ap:(6)B is false and so is equivalent fo |= p: false.

Assume A = [a)B. Then clearly = ap:[o|B iff |= p: B iff |= p: Da[A]. Assume
A = [B]B where B # a. Then clearly |= ap:[f]B is true and so is equivalent to |= p: true,
and Dy [[A] = true.

This completes the induction.
The sum~decomposition of assertions:

5.3 Definition. Define D, [A] by structural induction on the assertion A:
Dy [true] = {(true, true)}
Dy [false] = {(true, false), (false, true)}
DiI N\ Ad = {(\ 4o, )\ 4ir) | Vi € I.(Aio, Aix) € D, [A]))

i€l serl ict '
0.1\ Al = 0.4
iel 113

Dy [{a)A] = {({c)4, true), (true, (o))}
Dy l[olA] = {([od4, [ol4)}.
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The following result is essentially contained in [St1,2].
5.4 Theorxem. Forallp and g in Pe

Fp+q:Aw3IB,C)eD.jA]. Ep:B & |=q:C.

Proof. We prove by induction on the structure of A that

Vp,g€Pc. Fp+q:d i I(B,C)eD[A]. Ep:B & |=q:C.

It is trivial when A is frue and A is false.

Assume A = A; A;. Let p,q € Pe. Then

Ep+qgAeVi Ept+qid
& Vid(Ai, Air) € Di[A]. Ep:dio & =q: Ay by induction
& 3(B,C) € D, [A]. = p:B & = q:C,

by the definition of Dy [4].
Assume A = \/, 4;. Let p,q € Pg. Then

EptgAedi Eptqid
& 3:3(B,C) € D4 [As]. =p:B & |=¢:C by induction
& 3(B,C) € D, [A}. Ep:B & = q:C,

" by the definition of Dy [A].

Assume A = (a)B. Let p,q € Po. Then

Ep+q:(a)B & p:{a)B or | q:{a)B
&Ep:C & =q:D,

for some (C, D) € D, [A].
Assume A = |a]B. Then

Eptg:laBeptqglé Vrptq-2ovr=>E=vr:B
epl& Vrp 2sr=2E=rB &
gl& Vr.g 2> y=>f=r:B
o= p:la]B & = q:[oB.
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This completes the induction. [

The parallel decomposition of assertions: The problem of decomposition for ® is a
little more complicated.

5.5 Definition. Define Dg[A] by structural induction on the assertion A:

- De[[true]] = {(irue, true)}
De|false]] = {(true, false), (false, true)}

Dol /\ 4ill = {(/\ Aio, \ 4ix) | Vi€ (Ao, Asr) € Dg[Ad]))

icl tef sel
Dol 4il = | Pol4i]
iel sel

Del(c)A] = {({£)B,{1)C) | Be v =a & (B,C) € Dg[A]}
Dgl|ajd] = the set of pairs
(A BV A Baiiv A WV A Gy a,
peAct i€lpi€d 5 qeAct JEJI €Iy
such that
B ey = a = (Bpij, Cyij) € Do A].

5.8 Theorem. Forall p and qin P¢

Ep®q:A < I(B,C) € DolA]. Ep:B & |=q:C.

Proof. We prove by induction on the structure of A that

Vp,g€Po. Ep®q:A iff I(B,C)€DglA]. Ep:B & gq:C.

It is trivial when A is frue and A is false, and the cases where A = \; A; and A = \/, 4;
follow the proof in theorem 5.4 and are left to the reader.

Assume A = (a)B. Let p,g € Pc. Then

Ep®q:de 3,13, fer=a & pLop & g 1oq &P B
& 36,739 ,4'3(C,D) € Dg[B]. fer=a & p-Lap & g-2oq &
Ep':C &E4¢:D
& 30,73(C, D) € Dg[B]. fey = & p:{f)C & [=q:(7)D
& IE,F) e DglA]. Ep:E & =q:F.
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Assume 4 = [a]A’. Let p,q € Pc. Recall = p @ q:|a]d’ iff
(p®q)l & Vo, Wp',d Pev=a & p-Lap & ¢ 1o g =Epog:A.

Assume |= p®gq: [aJd. Assume foq = o Hp L. 9 and g I ¢' then, by
induction, there is a pair (Bgyrqr, Cyprqr) € Dg[A'] such that

|: pl:Bﬂprqr & I: q':C,,’p!ql.

Take
Ig={p'€Pc|p 'P'},

Jy={q €Pc | q-Lsq).
"As (p®q)] sodo p| and ¢, ensuring the sets Ig and J, are finite. Clearly we obtain

/\ B A B

lEIp JEJ 79-

= q:/\ ['7] \/ /\ C,“‘j:_

7 JeJ i€l .5

Conversely, if |= p: B and |= q:C where (B, C) € Dg[A] then B and C have the above
form with (Bgprg; Coyprqr) € Dg[A’]. Then p| and g so (p® g)|. Also

=9 :Bgpg & q:Chpg
whenever p —£— p' and ¢ -1 ¢' with fey = a. Then,.by induction, |=p' ® ¢': A'. Thus
Fp®q:laJA’ as required. §

The restriction—decomposition of assertions:

We can associate with any assertion 4 an assertion D, [A] so that A is satisfied by
p[A iff Dpp[A] is satisfied by p.

5.7 Definition. Let A be a subset of Act containing 1. Define D, [A], for an assertion
A, by the structural induction:

Dralltrue] = true
Dralfalse] = false

Pl Ad = A\ Dpalad)

el iel
ItV Al =\ opallAi
fer il
Dralie)A] = { }Zz)i“‘ 141 it ; !

Diallojag = { fFrabl et
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One clause of the above definition may be puzzling. Why do we take DralledA] =
[a)true if o ¢ A rather than taking it to be simply the assertion #rue? The answer: because

of divergence. For example, because €} diverges, b= Q[ A:[a]4 while |= (3: true.

5.8 Theorem. Let p € Pc and A be an assertion. Then

EplA:4 &F p:DpafA].

Proof. We show by structural induction on A that Vp € P¢. |=p[A: 4 & p:DpafA].
When A is #rue or false this is clearly true as Dyalltrue] = true and Dpa [[false] = false.

When A = A; A; or A= V; 4; the proof follows by induction as in theorem 5.2.
Assume A = (a)B and a € A. Then : .

= p[A:{a)B ¢ 3. p 2+ q & |=q[A:B
©3g.p 2+ q & |=q:Dpa[B] by induction
&k p:{a)Dpa[B]
ok p: DAl

Assume A = {a)B and o ¢ A. Then [~ p[A: A so |=p[A: A &= p: false, and in this
case false = D, [A].
Assume 4 = [a]B and a € A. Then

= p[A:[e]B & (p[A)L & Vq.p 2= q=q[A:B
& (p[A)] & VYq.p 2> q=>Fq:D[a[B] by induction
& pl & Yg. p -2 g == q: D4 B]
&= p:a)Dn 1B]
o p:DaA]-

Assume A = [a]B and a ¢ A. Then

= p[A:[e]B 4 (p[A) & p:[altrue &= p:Dpa [ 4].

This completes the induction.
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- 6. Proof rules.

We present a style of proof rules which makes essehtial use of process variables. By
using variables we can capture the decomposition results of section 5 in the proof system.
See [W2] for another way.

There is an obvious generalisation of the truth predicate = to o relation between
correctness assertions.

6.1 Definition. Let X be a finite subset of correctness assertions and let p: A be a-
correctness assertion. Define X |= p: A iff

V valuations 8. (V(q: B) € X. |=q|9]: B) == p[d]: A.

In other words, X |= p: A iff all the valuations which make every correctness assertions
in X true also make the correctness assertion p: A true.

We present a proof system for sequents of the form X F p: 4 where X is a finite set
of correctness assertions, p: A is a correctness assertion. It will be sound in the sense that

XFp:A= X|Ep:A,
and satisfy a form of completeness.

8.2 Notation. Let X be a set of correctness assertions. Let o be a substitution for X.
By X|o] we mean the set of correctness assertions {plo]: 4 | p: 4 € X}.
When X is a set of correctness assertions {po : Ao, -y Pn—1 : Apn—1} we sometimes
write X }=p: 4 as
Po:Ao, s Pa—1:dny [Epr A

and X F p:A as
PoiAoy Pt :Any Fpi A

omitting the set-brackets and, for example, abbreviate @ F p: 4 to - p: A.

6.3 Definition. Proof rules.
~ In the following let X,Y, .- be a finite set of correctness assertions, p, g, - - be SCCS
terms, z,y,--- process variables, and A, B,- .- assertions. Let F be the least relation
between correctness assertions closed under the following rules:

Structural rules

refl. rule X Fp:A if X contains p: A4
tran. Tule {(X FpA| (;;f)qeg}’ Y Fq:B
subs. rule X Fp:A

Xlo] ¥ plo]:A
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Logica! rules

true v. rule b z:irue
false 1. rule z:false F p: A for any term p and assertion A
Ar. rule {z:4; | i€} }-f:f\A,;
sel
AL rule z:/\Ag Fz:4; foranysel
i€T

Vr. rule z: Aq I—m:VAg

el

{X, p:4d; Fq:B|iel}

I. rule
v X, p:Vies Ai 2B

Corsrectness rules

O-[a] rule FO:[a]d

a—{a) rule z:A Faz:{a)d -

a—|a] rule z:A Faz:[ajd

a—[f] rule Faz:[flA ff#a
+—{a) rule z:{a)A F z+y:(a)d

y:{a)A Fz+y:{a)d

+-[a] rule z:|a]d,y:[a]d Fz+y:[ald

:B, y:C Fz®y:A

®@—(c) rgle 2B, 3:(C T 5 v (o)A provided fe = &
&-[a] rule {z:Bpg, y:C, Fz®y:A|Pey=a}
z:/\ﬁeAct [ﬂlBﬂs y3/\quct['7]C'1 F $®y:[a]A
z:A+Fz[A:B .
[A-()) rule VAT y[L: (B fAeh
z:A Fz[A:B . -
[A-[A] rule v DA T y[A: B ifAeAl
[A-|p] rule z:[pjtrue Fz[A:[p]d HpgA
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rec. rule plrecz.p/z]: A & vecx.p: A

-1

plrec”z.p/z]: A F rec"  up: A forn €w

6.4 Theorem. (Soundness) Let X be a finite set of correctness assertions and p: A be a
correctness assertion. Then

XFp A= X|=p:A
Proof. As usual one checks the soundness of each rule and as usual we leave that to the
reader.

The following lemmas, 6.6-6.10, show how the decomposition rules of section § are
. captured in the proof system. The results 6.6-6.8 are essentially contained in [St1].

6.5 Lemma. If}=1:4 then F 1:A. Moreover  Q1:A & | z:A for any variable z.

Proof. By structural induction on A using the structural rules and logical rules only which
treat {1 and z alike.

6.6 Lemma. Ifl=0:4 then  O:A.

Proof. By structural induction on A using the structural rules, logical rules and O-[a] rule
only. @

6.7 Lemma. For an assertion A
T: D [[A] F az: A

Proof. This is proved by structural induction on A using the structural and logical rules
and the a—({a) rule , a-[a] rule and a—[f]rule . @
6.8 Lemma. If (B,C) € D [A] then

z:B,y:C Fz+ y: A.
Proof. This is proved by structural induction on A using the structural and logical rules
and the +-(a) rule and +-[a]rule .
6.9 Lemma. If (B,C) € Dg[A] then

z:B,y:C Fz® y: A.
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Proof. We prove :B,y:C = ® y: A by structural induction on A.

To establish the basis of the induction: Assume A = true. We have I z : true by
the frue r. rule so by the subs. rule and fran. rule we obtain z:irue,y:true F zQ®y:
true, as required. Now assume A = false. We bave z:false,y:true - z®y: false and
z:true, y:false - = ® y:false by the tran. rule , subs. rule and false I. rule.

To establish the induction step we assume the induction hypothesis for all subformulae
of A and show for each form that A can take that the induction hypothesis is maintained.

Assume A = /\; A;. By the induction hypothesis
z:hAi0,y:An FzQy: A
for each i, and (Ajo, Aso) € DglAs]- Applying the Ar. rule, Al rule , and tran. rule we

obtain
x:/\Aio,y:/\Au F x®y:/\A,~,
i § i

where(A4yo, Aio) € Dg[As] for each i.

Assume A = \/; A;. This time one can show by applying the \/r. rule , \/I. rule, and
tran. rule that the hypothesis holds for A.

Assume A = (a)A'. Let B,C € Dg[A']. By induction z:B,z:C Fz® y: A'. By the
®(c) rule we deduce z:{f)B, z:(7)C F z ® y:{a)4.

Assume A = |a]A". If (B, C) € Dg[A] then B = Ap [BIBp and C = A, |1]C, where

By =\/ /\ Bsi; and Cy= V A G

i€k jeJ_ = JEJ i€ 0%
aef ]

such that f e 4 = a = (Bpij; Cyij) € DelA’]. Inductively z:Bpg;;,y:Cyij F z® y: A’ for
B,vsuch that fey=a & i€ lg & je€ J,. Let i € Iy and j € J, where fey = a.

Then :
I: /\ Bgij, y: /\ Crij Fz@y: A

je "0.79' I'EIO,Q:,'

by the tran. rule after two applications of the Al rule . Therefore

m:\/ /\ Bﬂ.’j,yf\/ /\ Cyij Fz@y: A

iely j€T, 5 €Ty i€ ooy
by the \/I. rule applied twice. Finally by the ®-|a] rule we get
z:B,y:C Fz®y:A
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as required.
6.10 Lemma. For an assertion A

z:D[A[[AE Fa[A: A

Proof. We prove z: Dy [[A] - z[A: A by structural induction on A.

When A is true it follows by the true r. rule and tran. rule . When 4 is false it follows
by the false . rule .

Suppose A = A\; 4;. By induction, for all ¢
x:D[AﬁAB-E F z[A: A
Therefore by applying the ¢ran. rule ;, Al. rule and Av. rule we obtain

z:[\ DialAs] F =[A: A.

Suppose A = \/; A;. By induction, for all §
IID[AHA,‘H - E[A:Ag.

By tran. rule , \/r. rule and \/L. rule we obtain
.:c:\/ DrallAs] + z[A:\/ A;

as required.
Suppose A = {a)B and « € A. By induction
z:Dra[B] F z[A:B.
Applying the [A—()}) rule we obtain
z:{a)Dpa[B] F z[A:{a)B,
as required.
Suppose A = (@)B and a ¢ A. Now D4 [A] = false and by the fqlse {. rule we have
z:false - z[A:{a)B,
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as required.
Suppose A = [A]B and X € A. By induction
z:Dja[B] + =[A:B.
Applying the [A-|A] rule we obtain
z:[A0ra [ Bf V- =[A:[A]B,
as required.
Suppose A = [p]B and g ¢ A. We require
z:[pltrue - z[A:[p]B.
But this is precisely the [A-[g]rule .
This completes the induction. B

8.11 Theorem. (Completeness)
Let p be SCCS term and A an assertion. Then |=p:A & F p: A

Proof.
“ <" By soundness.
« »
Let Q be the predicate on closed numbered terms given by
Q(p) Gacr VA. (E p: A= Vp' > p. Fp': A).
Extend @ to all numbered terms by taking
Qo(p) aes (V9 : Var — Poy. (Vz € FV(p). Q(#[z])) => Q(p[5])).

We show by numbered term induction using lemmas_6.5—6.10 that Qo holds for all num-
bered terms. Then we show the implication “ = follows.

Suppose p € Py such that
Vg < p. Qo(q)- (1)

We show Qo(p) by considering all the cases of p.

Let ¢ be a valuation such that Vz € FV(p). Q(t?ﬂ:v]]) Let A be an assertion for which
k= p[9]: A. We show in all cases of p that then

V' >p. Fp'iA. (2)
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Consider the possible forms of p:
p = {): In this case (2) follows by lemma 6.6.
p = O: In this case (2) follows by lemma 6.6.

p = ag: In this case | (ag)|¥] : A. By theorem 5.2, |= ¢|9] : Do[A]. By (1), the
inductive hypothesis, we know

Vq' > q[d]. F q':Da[A].

But by lemma 6.7, : D [A] F az: A. Thus by subs. rule and ¢ran. rule we obtain F aqg': A
for all ¢’ > g[9]. Therefore | p': 4 for all p' > p[¥] ¢.e. (2) holds in this case.

p = g+ 7: In this case as |= (¢ + 7)[¢]: 4 by theorem 5.4,
= q¥]:B and |=v]9]:C
for some (B, C) € D, [A]. By (1)
Vg’ >q[9]. F¢':B and VV". > r[9]. F¢':C.

By lemma 6.8, using the subs. rule and the tran. rule we obtain F ¢’ + ' : 4 for all
q' > q|9] and v’ > r[¥]. Therefore (2) holds in this case.

p = q® r: In this case as |= (¢ ® r)[9]: 4 by theorem 5.6,
=q[9]:B and |=v[d]:C

for some (B, C) € Dg[A]. As in the previous case, form (1), this time using lemma 6.9
with the subs. rule and tren. rule we obtain F ¢' @ v': 4 for all ¢' > ¢[¥] and ¥ > 7[¥)].
Therefore (2) holds in this case.

p = q[A: This time one uses theorem 5.8, lemma 6.10 with the subs. rule and fran. rule
to show (2) holds in this case.

p = rec”z.q: This is the most troublesome case. In this case as }= p[¥]: A we have
E (glrec”'z.q/z])[9]: A. Note (g[rec™ 'z.q/z])[¥] = q[¥'] where ¢ is the valuation given

by
R R fy+#z=
Flvl = { (vl‘leig‘”‘z.q)[t?] if z = 1.

By (1) we get Qo(rec® 'z.q) and so by the assumption on ¢ we get Q((rec” 'z.q)[¥]).
Thus Vz € FV(g). Q(¢'[z]]). By (1) we see Qo(q) as ¢ < p. Therefore Q(g[¥']), and as
E q|¥']: A we obtain

Vg' > q#'). Fq'iA. )
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Of course we require (2) which is not yet related to (3). We now put this to rights.

Let p’' > p|¥], so p' > (vec”z.q)[9]. Then p’ = rec™z.v for some m > n and r > g|o]

where o is the substitution i9[I | ity
— y|] ny#z
ofﬂyE-—{g if y==.

(Here we use the convention that m may be co where we understand rec®z.v to be recz.r
and take oo — 1 to equal 00.)" Clearly

rec™ z.r > rec” ' z.(qglo]) = (vec”'z.q)|¥).

Therefore by lemma 3.3,
r[rec"'—'ﬁ:.r/z] > (q[a])[rec”"lz.q/ax] = q[¥'].

Now by (3) we see F r[rec™ 'z.r/z]: A. By the rec. rule and #ran. rule we obtain
Frec™z.v: A e Fp' A ‘

S

Hence we have shown (2) in the case where p has the form p = rec®z.q.

As we have considered all the possible forms of p and in every case (2) holds for
valuations ¢ which satisfy Vz € FV(p). Q(¥]=]) and assertions A for which |= p[9]: 4 we
can deduce Qo(p). A

By numbered term induction we deduce that Qo(p) holds for all p € Py.

To complete the proof we require that = p: A = | p: A4 for arbitrary terms p, not
just numbered terms. To this end suppose p € P and |= p: A i.e. remembering p may
be open V valuations ¢. |= p[¢¥]: A. In particular we may choose ¢# = ¥ the valuation
which assigns 2 to each variable. Thus |= p[¥g]: A. By théorem 4.6 there is 2 numbered
term po < p|¥a] such that |= po: A. By the above result, Qo(po) so Vo' > po. F p': A.
In particular by lemma 3.3, p = p[Id] > p[¥qa] > po, as the identity substitution Id > dq.
Thus we see F p: A as required.

We conclude =p:A & | p:A for any term p € P and assertion A € Assn.

We do not have the strong form of completeness X |= p: 4 & X | p: A, but the
relation X |= p: A is probably not recursively enumerable. One could strengthen the proof
system by including rules to express modal tautologies, including e.g. the rule

z:A - xz:B
z:[a]d F z:[a]B

and perhaps by including such rules and insisting recursions be well-guarded one could
obtain a strongly complete proof system.
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7. Counclusion, related work, future work.

Colin Stirling has produced a related proof system for SCCS but without restriction
and in the case where recursive definitions are guarded. His proof system captures the
concept relative satisfaction, so he has proof rules which generate the relation p=5'; A with
this interpretation: if a process q satisfies B then p ® ¢ satisfies A; so relative satisfaction
takes account of the environment. Clearly we can translate relative satisfaction into our
notation by noting that p=°¢; 4 < =:B = p ® z: A. Our proof system suffers from the
defect that we do not have a strong form of completeness, but his sufférs from the same
fault. I suspect that it may be very difficult to extend his proof system to restriction.

We have seen how a range of different equivalences can be captured by restricting to
subsets of the assertion language. An interesting problem is that of how to turn proof
systems for processes with assertions into proof systems for equivalences of processes, a
more common approach in the theory of CCS, SCCS and CSP. There is the attractive
possibility that there is a proof system which includes proof systems for the multitude
of equivalences there are. One would need a suitable metatheory in which to embed
proof systems for assertions. Such metatheories are being developed for domain theory
underlying denotational semantics and it may not be too hard to adopt, for example, the
ideas of Abramsky, in [Ab}, to this end. :

Certainly, although the presentation here has been based on an operational semantics
for SCCS, the work can be seen from the viewpoint of denotational semantics. This is
followed through in [W2] which recasts the semantics of SCCS, in the traditional framework
of Scott-Strachey denotational semantics and one sees the translation between different .
semantics for e.g. Miluner’s bisimulation equivalence and Hoare’s failure-set equivalence
expressed as an embedding-projection pair between domains. This approach will make
clearer the relation with the work of Golson and Rounds [GR], Plotkin and Smyth [P,Sm],
and Hoare and Olderog [H, OH].

Future work: more complicated programming languages and logics of assertions; the
relations with intuitionistic logic are intriguing too.
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