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Abstract

We implement a model checker for the modal mu-calculus as a derived rule in a fully expan-
sive mechanical theorem prover, without causing an unacceptable performance penalty.

We use a restricted form of a higher order logic representation calculus for binary
decision diagrams (BDDs) to interface the model checker to a high-performance BDD
engine. This is used with a formalised theory of the modal mu-calculus (which we also
develop) for model checking in which all steps of the algorithm are justified by fully
expansive proof. This provides a fine-grained integration of model checking and theorem
proving using a mathematically rigourous interface. The generality of our theories allows
us to perform much of the proof offline, in contrast with earlier work. This substantially
reduces the inevitable performance penalty of doing model checking by proof.

To demonstrate the feasibility of our approach, optimisations to the model checking
algorithm are added. We add naive caching and also perform advanced caching for nested
non-alternating fixed-point computations.

Finally, the usefulness of the work is demonstrated. We leverage our theory by proving
translations to simpler logics that are in more widespread use. We then implement an
executable theory for counterexample-guided abstraction refinement that also uses a SAT
solver. We verify properties of a bus architecture in use in industry as well as a pedagogical
arithmetic and logic unit. The benchmarks show an acceptable performance penalty, and
the results are correct by construction.
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Chapter 1

Introduction

This dissertation addresses the verification problem in computer science. The broad area
of research is known as formal verification. Formal verification provides a mathematical
justification that a given system of artificial design and construction does what it was
designed to do: it exhibits all the desired properties and no undesirable ones.

1.1 Motivating Formal Verification

On 4 June 1996, the Ariane 5 space launcher broke up 40 seconds into its maiden flight.
The cost of this failure was estimated at about half a billion US dollars. The inquiry
board set up to investigate this disaster traced the fault to a small error in the flight
control software [115]. The inquiry board concluded:

This loss of information was due to specification and design errors in the
software of the inertial reference system.

...

The extensive reviews and tests carried out during the Ariane 5 Development
Programme did not include adequate analysis and testing of the inertial refer-
ence system or of the complete flight control system, which could have detected
the potential failure.

...

This means that critical software – in the sense that failure of the software
puts the mission at risk – must be identified at a very detailed level, that
exceptional behaviour must be confined, and that a reasonable back-up policy
must take software failures into account.

The pervasive presence of computers in our lives means that we rely on the correct
functioning of computer software and hardware systems for countless tasks, some of them
critical. They are the engines that run modern information economies and mistakes in
hardware and software design can have serious economic and commercial repurcussions
[96, 187]. Flaws in such systems have caused loss of life [114] and brought humanity to
the brink of global nuclear war [15]. The more critical the system, the more stringent and
rigorous the design and implementation process should be. However, computer systems

11



12 CHAPTER 1. INTRODUCTION

have become so complex that exhaustive manual testing cannot cover even the obvious
patterns of behaviour, let alone check for extreme situations.

Formal verification uses mathematical techniques to launch a more powerful attack
on the problem. These techniques and the hardware on which they are implemented
have now improved to the point where real-world systems can be analysed. NASA, the
American space agency, formally verified the control software for deep space probes [84].
The UK Defence Evaluation and Research Agency used formal verification to analyse
command and control systems for the Ministry of Defence [193]. Industry giants Intel
Corporation and Microsoft Corporation use formal verification for critical sub-systems
[11, 83]. Fuelled by these success stories, the perception of formal verification as the
ultimate test of correct design and implementation for critical systems is gaining ground.
It is now the case that in the Common Criteria,1 qualifying for the highest security level
essentially requires formal verification.

1.2 An Overview of Formal Verification

In theory at least, formal verification can be carried out by a human. However, the proofs
involved in formal verification are typically not of the “deep” sort that require human
insight, but do involve a mass of technical detail that computers are ideally suited for
working with. In practice then, verification assumes the use of mechanised automatic or
semi-automatic techniques. One of the earliest references to verification can be traced to
a paper by Alan Turing, the Cambridge mathematician who is considered the founder of
computer science. He writes (c. 1949) [185]:

How can one check a large routine in the sense that it’s right?

In order that the man who checks may not have too difficult a task, the pro-
grammer should make a number of definite assertions which can be checked
individually, and from which the correctness of the whole program easily fol-
lows.

Turing talks about a human rather than a mechanised checker, but, broadly inter-
preted, this is effectively how formal verification works today. The designer of the system
makes assertions about the design, in the sense that the design or implementation of the
system satisfies its specification, i.e. the system does what it is supposed to do (called
liveness properties) and nothing undesirable (called safety properties). Automatic or semi-
automatic tools are then used to check that the assertions are true for the system. The
mathematical underpinnings of the tools ensure – in theory at least2 – that the truth of
individual assertions can be combined into an assertion for the whole system. In other
words, they ensure compositionality. Work on these ideas has continued since the 1960s
[62, 87, 124, 141].

It follows from a celebrated result of Turing [184] that the verification problem in
general is unsolvable. It is beyond the scope of this account to discuss his result here.
Even if the problem were in theory solvable for a given system, there are two common

1An industry standard for secure systems [45].
2In practice, finding the right assertions, problems with tools and the human element complicate

matters [120].
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reasons that make a solution impractical: the behaviour of the system or parts of the
system may not be amenable to a mathematical treatment, or the system may simply be
too complex for verification to be feasible. This still leaves a large class of systems for
which a verification attempt can be successful. Such systems include computer programs
as well as electronic circuits and network protocols.

The systems one is attempting to verify exist in the physical world. A physical confir-
mation (as opposed to experimental validation) of mathematical properties is of course im-
possible. Formal verification techniques instead work with mathematical descriptions (or
models) of the system. This is made possible by the uniquely logical nature of computer-
based systems even at low levels of abstraction. This ensures that the assumptions justi-
fying a mathematical abstraction of the physical process are never so unrealistic that the
verification is not useful.

The verification problem can be approached from two opposing extremes. One way
is to exhaustively examine all possible states the system can ever be in, and subject
each state (or sequences of states) to all possible combinations of internal and external
stimuli and check that only the desired properties hold, i.e. the system can never be in an
undesirable state. This is the state-based approach to formal verification. The proof-based
approach concentrates instead on using properties of the design to derive a proof, using
formalised mathematics, that the system exhibits all and only the required properties.

1.3 Model Checking

Of state-based approaches, model checking has been particularly successful. A state of
the system under consideration is modelled as a snapshot of the system at some point
in time, given by the set of the values of the variables of that system at that time. The
system is then modelled as a set of states together with a set of transitions between states
that describe how the system moves from one state to another in response to internal
or external stimuli. Model checking tools are then used to verify that desired properties
(expressed in some assertion language) hold in the system.

In global temporal model checking, mathematical assertion languages that can describe
the states of a system over time, also known as temporal logics, are used to express desired
properties of the system. Then algorithmic techniques for state space exploration are
applied to discover whether a given property expressed as a sentence of a temporal logic
holds true for required states of the system. Well known temporal model checking tools
are cadence smv [127] and nusmv [33, 109].3

In local temporal model checking, the model checking algorithm is based on a reduction
relation over formulae of temporal logics. Certain properties can be verified without
having to explore the entire state space. Thus, infinite state spaces can be explored.
Work on this includes [17, 179, 191].

In automata-theoretic model checking, two models of the system at different levels of
abstraction (typically the specification and implementation) are represented as automata
and techniques to discover containment of one automaton in the other, i.e. that all be-
haviours of one are encompassed by the other, are applied. Thus we can check whether
the design satisfies the specification. The spin [90] and cospan [106] model checkers fall

3There is a plethora of verification tools of any type. We list a well known representative subset.
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in this category.

In refinement-based model checking we again have two models of the system at different
levels of abstraction, but the behaviour is described in terms of sets of traces (sequences
of input/output ending in termination) and optionally failures (sequences ending due to
failure) or divergences (sequences that do not end) of the system. The tools can once again
check containment (called refinement in this case) of the sets, with similar applications
as before. The Concurrency Workbench [135] and fdr [63, 157] tools use this
technique.

In symbolic trajectory evaluation (STE) [4], the states of circuits are modelled by
assigning each state-carrying variable a value from a four-valued lattice. Temporal re-
lationships between nodes in a circuit can be checked by evaluating trajectories (state
sequences) symbolically instead of by brute-force simulation. This is a more specialised
state based approach and in fact can be seen as a special case of temporal model checking
[192]. The forte [1] and voss [166] systems are examples of this.

In bounded model checking [16], the transition relation is unfolded up to a fixed depth
and satisfiability over paths is checked using efficient decision procedures for boolean
formulae. The prover cl [7] and nusmv [33] tools use this technology.

Most of these techniques have become powerful enough over time to attack real world
problems. An important development that helped this progress is reduced ordered binary
decision diagrams (ROBDDs or just BDDs) [25]. BDDs often provide an extremely com-
pact yet canonical representation for boolean formulas, and efficient operations for their
manipulation. BDD tools include buddy [144], bddlib [117] and cudd [22, 176]; model
checkers using these are often called symbolic model checkers [51, 126, 152].

Another technique that has helped extend the scope of model checking is an efficient
decision procedure for boolean satisfiability, known as a SAT solver [55, 169, 170]. SAT
solvers can decide satisfiability of very large boolean formulas (up to millions of variables
and clauses) in reasonable time. Well known SAT solvers include zchaff [136], grasp
[122] and berkmin [69].

Since state sets can be represented as boolean formulas, and since most model checking
techniques manipulate state sets, BDDs and SAT solvers have enormously boosted their
speed and applicability.

Several other more general techniques, which can be applied to most of the types of
model checking described above, have improved the efficiency of model checking. These
include partial order reduction [100, 188], symmetry reduction [60], assume-guarantee
reasoning [65, 116, 134], and abstraction [37, 52, 111, 161], among others. It is beyond
the scope of this introduction to discuss them in detail. Some will be discussed within
the context of their use in this work.

A state-based approach known as boolean equivalence checking uses BDDs and SAT
solvers to decide the equality of circuit models. In terms of expressiveness it lies somewhat
below STE.

Boolean equivalence checking deserves a special mention, even though it is informally
not regarded as model checking. It is the only formal verification techonology that has
entered the mainstream electronic design automation (EDA) workflow in industry. There
are several tools [47] which integrate industrial hardware specification languages, pro-
prietary or standard assertion languages, equivalence checking and debugging facilities.
Model checking has also been used for industrial EDA, but typically in niche applications
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where the extra power is worth the effort.

The state-based approach has two important advantages. First, once the correct
design of the system and the required properties have been fed in, the verification process
is typically fast and fully automatic. Second, in the event of a property not holding
true for some states, the verification process is able to produce a counterexample (i.e. an
instance of the behaviour of the system that violates the property) which is extremely
useful in helping the human designers pinpoint and fix the flaw.

Unfortunately, the number of possible states of real-world systems is typically very
large, usually several orders of magnitude greater than the estimated number of atoms in
the known universe. This restricts the scope of model-checking techniques. Nonetheless,
significant systems have been verified using this method [41].

1.4 Theorem Proving

Theorem proving has come to dominate proof-based approaches to formal verification.
Here the system under consideration is modelled as a set of mathematical definitions in
some formal mathematical logic. The desired properties of the system are then derived as
theorems that follow from these definitions. The method of derivation or proof borrows
heavily from standard results in mathematical logic. However, techniques have been
developed to automate much of this process by using computers to handle obvious or
tedious steps in the proof. Theorem provers can be classified roughly by their underlying
logic.

Classical theorem provers are based on some variant of classical higher order logic.
This allows for a powerful treatment of functions and functional programs in particular
are easy to verify. On the other hand, the high expressiveness of the logic restricts the
level of automation. Well known systems of this type include hol [89], pvs [149] and
isabelle/hol [151].

Constructive theorem provers are based on constructive logics. The advantage here
is that the derivation of a proof simultaneously provides an executable version of the
algorithm being verified, by leveraging the Curry-Howard isomorphism. The disadvantage
is that constructive proofs are generally harder than classical ones. The coq system [91],
based on a calculus of constructions [49], and the nuprl system [46], based on Martin-Löf
type theory [123], are examples of constructive provers.

Set-theoretic provers use some axiomatisation of set theory as their basis. This provides
for the best expressiveness and allows for proofs of a very foundational nature. However,
the proofs are somewhat cumbersome because automated support for doing proofs in set
theory is not as mature as that for higher order logic. isabelle/zf [151], z/eves [160],
proofpower/z [10] and larch [67] are examples of this type of theorem prover.

First-order logic provers use first-order logic, typically augmented with some support
for recursive data-types. These systems are expressive enough for most verification pur-
poses. At the same time they support better automation both in terms of coverage and
speed. Tools falling in this category include nqthm [21], acl2 [101] and isabelle/fol
[151].

Rewriting-systems are specialised theorem provers engineered for high-performance
equational reasoning. maude [43] is an example of such a tool.
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Interactive theorem provers can also be distinguished by the style of proof that they
support. The majority of interactive theorem provers support an imperative style of proof
in which the user issues low-level commands for performing rewrites or calling decision
procedures, and the eventual proof is just a list of these commands. In the declarative
style, such as in the mizar system [139], proof is done more in a textbook mathematical
style. Imperative proofs are easier to work with and favoured for verification. Declarative
proofs are far more readable and better suited to formalising mathematics. Some tools
support both styles.

As with model checkers, certain generic techniques are used by most, if not all, theorem
provers. These include non-complete decision procedures for first-order logic such as model
elimination [118] and resolution [156], and for Presburger arithmetic (linear arithmetic
with comparators) [48, 153, 171]. Virtually all theorem provers implement some form of
rewriting system to support equational reasoning.

There are several (optionally) non-interactive automatic tools that use highly engi-
neered combinations of these decision procedures on fragments of first-order logic. These
include otter [99, 125], vampire [155], gandalf [182], spass [190], uclid [27], sim-
plify [56] and cvc [180].

Work has also been done on allowing these techniques to cooperate with each other to
attack larger problems [142, 172], as exemplified by the simplify, pvs and cvc provers.

The advantage of the proof-based approach is that it can handle very complex systems
because it does not have to directly check each and every state and because the logics are
typically more expressive. The drawback is that it requires human insight and creativity to
complete the proofs, which requires time-consuming manual labour. Another shortcoming
is the inability to produce counterexamples in the event of a failed proof, because one
does not know whether the required property is not derivable or whether the person
conducting the derivation is not ingenious enough. Several successful verifications using
theorem provers have been achieved [64, 83, 92, 131, 159].

1.5 A Hybrid Approach

Model checking is automatic; theorem proving is not. Theorem proving can handle com-
plex formalisms; model checking can not. The strengths and weaknesses of model checking
and theorem proving are clearly complementary. Over the past decade much research in
formal verification has tried to combine the two approaches in synergistic ways, with vary-
ing degrees of success. Our focus is on ways of integrating model checkers and theorem
provers, rather than on developing techniques that exploit such an integration.

Model checking is fully automated because propositional logic (or checking contain-
ment in automata) is decidable. Any formula of a logic (or fragment of a logic) with only
finite types can be unfolded into propositional logic, but the succinctness gap between
this and propositional logic causes an explosion in the size of the unfolded formula. Often
this increase in size is big enough that propositional decision procedures take an infeasi-
ble amount of time or space if given such a formula as input. So more often than not a
naive unfolding of an expressive logic into propositional logic will not work. Using model
checkers as decision procedures for more than a temporal logic has not seen much research
because of this reason. An exception to this is weak monadic second order logic. Though
the worst-case complexity is high, there are niche cases where the extra succinctness has
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proved useful [86, 103].
Instead, researchers have used theorem provers to split up a problem into model check-

able pieces the correctness results of which are then recombined in the prover. Or, they
have used the decision procedures in theorem provers to help abstract models to a check-
able size. Recent research has focused on doing the core proofs in model checkers because
most formal verification research is driven by industrial demand, which places the quick
finding of bugs above proofs of overall correctness. Indeed, the automation and coun-
terexample capabilities of model checkers are ideally suited for verification-as-debugging.
Successful combinations of this kind have been achieved [14, 19, 57, 127, 154, 148].

However, for a powerful enough theorem prover, model checking is just a special case.
Ideally, we would like a situation where a model checkable subset of a theorem proving
problem can be passed to a model checker directly, and its results manipulated in the
theorem prover. This way we could exploit the full power of model checking without
sacrificing the expressive power of theorem provers.

The problem lies in achieving a smooth translation from the theorem prover logic to a
formalism the model checker can understand and a smooth translation of the results (be
it a success or a counterexample) into the logic of the theorem prover. By “smooth” we
mean several things:

• The translation should be correct by construction,

• It should be two-way and allow working at multiple levels of abstraction.

• It must be efficient.

• The general framework should be powerful enough to integrate most model checking
technologies.

If these criteria are not met, there is no point in using the resulting tool since the available
tools already do a better job.

We believe that using a scriptable theorem prover as a programming platform for
model checking techniques is one solution to this problem. Theorem provers are certainly
powerful enough to be able to express any model checking formalism, and they have
become efficient enough that most of the model checking work can be done by proof in
the theorem prover without a great loss of efficiency. Thus the criteria of correctness by
construction, efficiency, flexibility and expressiveness can be met.

1.6 Our Contribution

In this work we have taken first steps towards justifying the claim made at the end of
§1.5. This dissertation uses the approach of constructing a model checking system within
a theorem proving environment.

More precisely, we program global symbolic model checking techniques within the hol
theorem proving environment.4 This way we retain full automation and the ability to pro-
duce counterexamples without sacrificing the ability to manipulate the system description

4We chose hol because it is mature, powerful, programmable and well-documented.
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in the theorem proving environment. Thus we are able to exploit the full power of model
checking in the relatively more expressive environment of the theorem prover.

The hol theorem prover is architected to minimise the amount of trusted code. Except
for a small kernel implementing the inference rules of the deductive system, all other
theories and algorithms are correct by construction because all proofs and procedures can
be unrolled into applications of the inference rules. This approach – often called LCF-style
or fully expansive – provides hol developers with a high assurance of security, i.e. the
development is sound.

However, this is not well-suited for implementing high-performance algorithms such as
BDDs and SAT. This is because completely embedding a model checking system within a
theorem prover would involve full formalisation of BDD and SAT tools within hol. This
has already been tried and the performance penalty was found to be unacceptable [81, 82]
due to the fully-expansive nature of hol.

We reduce the expected performance penalty to acceptable levels by leaving some core
symbolic model checking primitives outside the theorem prover. More precisely, we use a
calculus of BDDs [72, 74] to interface hol to buddy, a mature, high-performance BDD
engine written in the C programming language. As long as the primitive BDD operations
in buddy are sound, we do not compromise soundness.

We also use external high-performance SAT solvers but check their results within hol.
Since proof search in this case is far harder than checking the proof, the performance
penalty is acceptable.

Our contribution to formalised mathematics is a formal theory of the modal µ-calculus
Lµ [104] embedded in higher order logic, up to proofs of the existence of greatest and
least fixed-points under the assumption that the underlying state set is finite (it may be
infinite before abstraction is applied). Thus we have formally proved a special case of the
Knaster-Tarski theorem [183].

The mathematical argument is straightforward, but the formal proof is technically
challenging primarily because hol lacks native support for variable binding in higher order
abstract syntax5 and also because the choice of representation of the model and logical
context significantly affects the efficiency with which we can execute the formalised logic.
In fact, previous work attempting to do so [5] claimed that the monotonicity lemma
required for the fixed-point theorems could not be formalised in a completely general
fashion as we have done (see Lemma 2.15): it had to be derived on the fly during each
model checking run.

In summary, we have created a new formal theory for an expressive temporal logic
and used it to develope concrete technology to demonstrate that using a theorem prover
as a tool programming platform provides us with several theoretical advantages without
too high a performance penalty. We thus hope that this work will be of interest to the
research community and also be of use to industrial practitioners.

5Providing automatic α-conversion is an active research area. Work done on this includes [61, 66, 70].
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1.7 The Thesis

1.7.1 Prerequisites

We expect the reader to be familiar with the notion of functional programming. We note
that the implementation is entirely in the Moscow ML [167] dialect of the SML [133]
functional programming language.

A passing familiarity with higher order logic and the hol theorem prover would be
helpful. A brief overview of higher order logic and hol can be found in Appendix A.

Similarly, some familiarity with symbolic model checking would aid in reading the
text. A well-known textbook [36] is a good starting point.

We do not provide more than a superficial description of binary decision diagrams.
More than this is not required to understand our work. There are, however, good tutorials
[6] and surveys [26] available for the interested reader.

1.7.2 Structure

The thesis is divided into two parts. The first part addresses the foundational aspects of
the work. Chapter 2 describes a calculus for interfacing a BDD engine with hol. It then
covers a formalisation of the modal µ-calculus in higher order logic. The chapter continues
with the construction of a model checker based on this formalisation. Chapter 3 covers
the formalisation of a simple caching algorithm, and an advanced caching technique that
exploits nested non-alternating fixed-points in µ-calculus formulas.

The second part explores the practical uses for this work. Chapter 4 describes adding
support for CTL , a well known and widely used temporal logic. Chapter 5 leverages
the work in Chapter 4 to construct a formalised framework for counterexample-guided
abstraction refinement. This demonstrates how the basic model checker integrates seam-
lessly with the latest research in formal verification. Chapter 6 puts the system through
its paces by verifying an implementation of the Advanced Microcontroller Bus Architec-
ture (AMBA) specification from ARM Limited. Chapter 7 concentrates on performance
issues using a well-known pedagogical three-stage pipelined arithmetic and logic circuit.
The empirical results show that the performance penalty caused by the theorem proving
overhead is within acceptable bounds.

Chapter 8 discusses related work and in Chapter 9 we conclude with a summary of
the work and directions for the future.

1.8 Terminology and Notation

Thus far we have used several terms quite loosely. We now make precise the meanings of
some words that will occur frequently in this work.

Proofs A proof is a convincing mathematical justification for a claim. An informal
proof is one that relies on intuitive arguments and leaves the audience to fill in the details.
Such proofs are often known as “hand-waving” proofs in mathematical literature and are
most often employed in lectures and conversation. A non-formal proof is one that has
been achieved using rigorous mathematics but expressed in an informal meta-language
such as English combined with mathematical notation to help with conciseness, accuracy



20 CHAPTER 1. INTRODUCTION

and standardisation. This style of proof is found in mathematical literature such as
journals, conference proceedings and books. A formal proof of a claim is a derivation tree
where the leaves of the tree are axioms or ground rules of some logic and each interior
node represents the application of a rule of inference of that logic. The root of the tree
is the claim that has been proved. Mechanical theorem provers use this form of proof
exclusively. When we use the word “proof” we refer to formal proofs, or sketches thereof,
unless explicitly stated otherwise.

Tools The hol-4 theorem prover [89] has been used to formalise all the arguments
and results presented in this work. With the exception of Chapter 8, a reference to “the
theorem prover” or hol is to be construed as a reference to hol-4.

Terms A term is a well-typed formula or sentence in hol’s higher order logic (HOL).
We denote syntactic equality of terms using the relation ≡. This may or may not coincide
with semantic equality, because of our explicit handling of variable binding in higher order
abstract syntax.

Definitions, theorems etc. A definition, theorem or lemma will always refer to
one that has been stated or derived formally by us in the theorem prover, unless explic-
itly stated otherwise. A proposition is not formally proved but provided as an aid to
understanding the context. These words are initial-capitalised when referring to a spe-
cific instance. All such instances are uniquely numbered. The turnstile symbol ⊢ often
precedes their formal statement.

Fonts We use smallcaps font to refer to software tools. Important words are ital-
icised the first time they occur. In addition, the statements of definitions and theorems
are italicised. Textual input or output from a computer is indicated by typewriter font,
as are references to terms and types as implemented in tools, e.g. bool refers to the type
of booleans as implemented in hol. References to well known theorems or logics use sans

serif font.
Notation We use standard notation wherever possible. Where we introduce our own

notation we make this explicit. A full index of such notation is provided at the end. Any
notation not in the index should be read in the standard way.



Chapter 2

An embedded model checker

Model checking and theorem proving are two complementary approaches to formal verifi-
cation. An increasing amount of attention has thus been focused on combining these two
approaches. In this chapter we demonstrate an approach to embedding a model checker
in the hol theorem prover. The expectation is that this will ease the combination of
state-based and definitional verification workflows.

Model checkers are typically written with an emphasis on performance. Theorem
provers typically are not. However, preliminary benchmarking (see Chapter 7) shows
that the loss in performance using our approach is within acceptable bounds.

2.1 Introduction

Symbolic model checking (§1.3) is a popular verification technique. A state of a system is
represented by the set of the values of the variables of the system at some point in time.
Sets of states are then represented by the BDDs of their characteristic functions. This
representation is compact and provides an efficient1 way to test set equality and do image
computations. This is useful because evaluating temporal logic formulae almost always
requires a fixed point computation that relies on image computations to compute the next
approximation to the fixed point and a set equality test to determine termination. Most
of the work is done by the underlying BDD engine.

Recent work by Gordon [74] represents primitive BDD operations as inference rules
added to the core of the theorem prover. We use this work to model the execution of
a model checker for a given property as a formal derivation tree rooted at the required
property. These inference rules are hooked to buddy, a high-performance BDD engine
[144] external to the theorem prover. Thus the loss of performance – due to the theorem
proving overhead caused by the LCF-style implementation of hol – is low.

The security of the theorem prover is compromised only to the extent that the BDD
engine or the BDD inference rules may be unsound. Since we do almost everything within
hol and use only the most primitive BDD operations of a mature tool, we expect a higher
assurance of security than from an implementation that is written from scratch in, say,
C.

Our aim is not to re-implement a model checking algorithm for which several excellent

1The problem is NP-complete. So this efficiency is of heuristic value only.

21
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Formalised model checking algorithm for µ-calculus

Formal theory of µ-calculus

Moscow ML

HOL

BDD engine coded in C

Moscow ML to C interface

BDD operations as HOL proof rules coded in ML

Figure 2.1: High-level Architecture

implementations are already available, but to establish a platform for securely program-
ming new verification algorithms. The fine-grained integration given by our interface
makes this possible.

Figure 2.1 gives a bird’s eye view of the scheme. In the next section we describe the
hol to buddy interface.

2.2 Representing BDDs in a Theorem Prover

In order to provide a platform for programming model checking procedures from within
hol, buddy has been interfaced to ML so that BDDs can be manipulated as ML values
of type bdd [74]. To represent BDD operations as inference rules, we use judgements of
ML type term bdd of the form

ρ t 7→ b

where t is a HOL term (which we shall call the term part of the judgement) and b is a
BDD (called the BDD part of the judgement). The only free variables of t are the boolean
variables used in b (also called the support of b). Intuitively, if we collect these boolean
variables together in a tuple s, the judgement is saying that for all assignments to the
variables in s, an assignment will satisfy t if and only if it is also a satisfying assignment
for b. We will often refer to instances of such judgements as term-BDDs .

The variable map ρ (of ML type vm) maps HOL variables to numbers. The map
is required because buddy uses numbers to represent variables and for the moment its
presence is only a technical requirement. In future work we may use BDD operations
like restriction and composition that change the support of a BDD and hence require
extending or contracting the associated variable map; thus we let each judgement carry
its own variable map rather than having a global map.

Our approach to ‘proving’ such a judgement is implemented analogously to the man-
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Table 2.1: Primitive Operations for Representation Judgements

(BddT : vm → term bdd) ρ T 7→ TRUE

(BddF : vm → term bdd) ρ F 7→ FALSE

(BddVar : vm → term → term bdd)
ρ(v) = n

ρv 7→ ithvarn

(BddNot : term bdd → term bdd)
ρt 7→ b

ρ¬t 7→ NOT b

(BddAnd : term bdd ∗ term bdd → term bdd)
ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 ∧ t2 7→ b1 AND b2

(BddOr : term bdd ∗ term bdd → term bdd)
ρ t1 7→ b1 ρ t2 7→ b2

ρ t1 ∨ t2 7→ b1 OR b2

(BddAppEx : termlist → term bdd ∗ term bdd → term bdd)

ρ(v1) = n1 . . . ρ(vp) = np ρ t1 7→ b1 ρ t2 7→ b2

ρ∃v1 . . . vp.t1 op t2 7→ appex b1 b2 (n1, . . . , np)

ner in which we prove theorems, i.e. BDD representation judgements cannot be freely
constructed but may be derived using primitive inference steps.

Table 2.1 presents a subset (that is relevant to our work) of the rules that form
the primitive operations for BDD judgements, along with the names of ML functions
implementing them (in brackets). The buddy function ithvarn (as interfaced to ML)
simply returns the BDD of the boolean variable v where ρ(v) = n. TRUE and FALSE denote
the corresponding BDDs, T and F are HOL terms for truth and falsity, and NOT, AND and
OR denote the eponymous BDD operations [74].

In practice, existential quantification of conjunction (often called the relational product
or image computation) occurs frequently and is an expensive operation. buddy provides
a special operation appex for performing quantification over a boolean operation in one
pass, and we have a BDD inference rule BddAppEx corresponding to it.

Theorem proving support is provided by two rules. The first expresses the fact that
logically equivalent terms should have the same BDD (up to variable orderings).

ρ t1 7→ b ⊢ t1 ⇔ t2
ρ t2 7→ b

BddEqMp (2.1)

This rule enables us to use higher-order predicates in the term part of judgements to
succinctly express the propositional content of the BDD part of the judgement.

The second rule is the only way to make theorems. It simply checks to see if the BDD
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part of the judgement is TRUE and if so, returns the term part as a theorem.

ρ t 7→ TRUE

⊢ t
BddOracleThm (2.2)

This theorem is only as good as the BDD that was produced: the soundness of it de-
pends on the soundness of the BDD engine and of our representation judgement inference
rules. This fact is reflected within hol by giving the theorem a tag to distinguish it from
theorems proved completely within hol.

Nonetheless, by treating BDD operations as inference applications, we restrict the
scope of soundness bugs to single operations which are easy to get right. This is why this
approach was chosen in favour of a single powerful rule which, given a term, would return
its term-BDD.

2.3 Model Checking

Our general approach is independent of the choice of temporal logic. We shall apply it to
the model checking procedure for the propositional µ-calculus Lµ from [104]. Lµ is very
expressive and a model checker for it gives us model checkers for the popular temporal
logics CTL and LTL.2

Formulae of Lµ describe properties of a system that can be represented as a state
machine. In particular, the semantics of a formula is the set of states of the system
satisfying the formula. The model checking algorithm computes this set given a formula
and a system.

We need to make the notion of “system” precise. For our purposes, the system or
model is represented by a Kripke structure [36, 105].

Definition 2.1 A Kripke structure M is a tuple (AP, S, S0, T, L) where

• AP is the finite set of atomic propositions of the system.

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• T is the set of actions (or transitions or program letters) such that for any action
a ∈ T , a ⊆ S × S.

• L : S → 2AP labels each state with the set of atomic propositions true in that state.

Each p ∈ AP is a proposition constructed from the variables v of some finite domain
Dv and the constants and operators over that domain. Let V =

⋃

p∈AP freevars(p) and

n = |V |. Thus the set S = Dv0
× Dv1

× . . . Dvn−1
. A state s ∈ S in M is thus a tuple3

2Though from a practical viewpoint, model checkers for Lµ are not as efficient as say SMV [126] or
SPIN [90]. Note also that for logics that do not admit a direct syntactic embedding into Lµ, e.g. LTL, the
translation into Lµ is non-trivial [53, 165] and a fully-expansive translation would provide much needed
assurance of soundness.

3Mathematically of course, we can regard a state as a set rather than as a tuple. The tuple represen-
tation smoothes the implementation somewhat.
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over V . We write s ² p if p is true when the variables of p are assigned the corresponding
values from the state s. The value of a variable v in the next state of a transition is
denoted by v′. We write s ²M f if the state s of M satisfies the temporal property f
constructed over the p ∈ AP and M ² f if f holds in all states of M .

We now present the syntax of Lµ, essentially as given in [36].

Definition 2.2 Let VAR be the set of relational variables, p ∈ AP be an atomic propo-
sition and a ∈ T be an action. Then if f and g are Lµ formulas, so are: True, False, p,
¬f , f∧g, f∨g (the propositional fragment); [a]f and 〈a〉f (the modal fragment); P , µQ.f
and νQ.f (the relational or recursive fragment where {P,Q} ⊆ VAR and all occurrences
of Q in the negation normal form4 NNF of f are not negated).

We shall use f and g, often primed or subscripted, to refer to Lµ formulas. We
often use the term “variable” instead of “relational variable” or “propositional variable”;
the meaning should be clear from the context. We use p, p0, . . . to denote propositional
atoms and Q,Q0, Q1, . . . for relational variables. In the formulas µQ.f and νQ.f , µ and
ν are considered binders on Q, and thus we have the standard notion of bound and free
variables. We use f(Q1, Q2, . . .) to denote that Q1, Q2, . . . occur free in f .

Intuitively, the propositional fragment behaves as expected. In the modal fragment
[a]f holds of a state if f holds in all states reachable from that state by doing an a action,
and 〈a〉f holds of a state if it is possible to make an a action to a state in which f holds.
We abbreviate (s, s′) ∈ a by s

a
→ s′. It is often convenient to use a dot (e.g. [.]f) to denote

an arbitrary action. In the recursive fragment, µQ.f and νQ.f represent the least and
greatest fix-points of the predicate transformer function on the state-set semantics of f .

The semantics of a formula f is written [[f ]]Me, where M is a Kripke structure and
the environment e : V AR → 2S holds the state sets corresponding to the free relational
variables of f . By e[Q ← W ] we mean the environment that has e[Q ← W ]Q = W but
is the same as e otherwise. We denote the empty environment by ⊥. We use τ : 2S → 2S

to refer to the predicate transformer on state sets given by τ(W ) = [[f ]]Me[Q ← W ]. We
now define [[f ]]Me.

Definition 2.3 The semantics of Lµ are defined recursively as follows

• [[True]]Me = S and [[False]]Me = ∅

• [[p]]Me = {s|p ∈ L(s)}

• [[Q]]Me = e(Q)

• [[¬f ]]Me = S\[[f ]]Me

• [[f ∧ g]]Me = [[f ]]Me ∩ [[g]]Me

• [[f ∨ g]]Me = [[f ]]Me ∪ [[g]]Me

• [[〈a〉f ]]Me = {s|∃t.s
a
→ t ∧ t ∈ [[f ]]Me}

4This is a syntactic transformation that pushes all negations inwards to the atoms using the De
Morgan style dualities ¬(f ∧ g) = ¬f ∨ ¬g, ¬(f ∨ g) = ¬f ∧ ¬g, ¬[a]f = 〈a〉¬f , ¬〈a〉f = [a]¬f ,
¬µQ.f(Q) = νQ.¬f(¬Q) and ¬νQ.f(Q) = µQ.¬f(¬Q), and the equation ¬¬f = f .
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• [[[a]f ]]Me = {s|∀t.s
a
→ t ⇒ t ∈ [[f ]]Me}

• [[µQ.f ]]Me is the least fix-point of τ

• [[νQ.f ]]Me is the greatest fix-point of τ

Note that it is never the case that a relational variable Q is not in the domain of the
enviroment, because the environment contains mappings for all free variables (as stated
above), and bound variables are added to the environment whenever the semantics of the
subformulas within the variables’ scope are being evaluated.

Environments can be given a partial ordering ⊆ under component-wise subset inclu-
sion. Now the semantics evaluate monotonically over environments [104],

Proposition 2.4 For any Kripke structure M , environments e and e′, relational variable
Q and well-formed Lµ formula f , and W ⊆ S and W ′ ⊆ S, we have

e ⊆ e′ ∧ W ⊆ W ′ ⇒ [[f(Q)]]Me[Q ← W ] ⊆ [[f(Q)]]Me′[Q ← W ′]

so by Tarski’s fix-point theorem in [183], the existence of fix-points is guaranteed. In fact,
since S is finite, monotonicity implies continuity [183], which gives

Proposition 2.5

[[µQ.f ]]Me =
⋃

i

τ i(∅) and [[νQ.f ]]Me =
⋂

i

τ i(S)

where τ i(Q) is defined by τ 0(Q) = Q and τ i+1 = τ(τ i(Q)). So we can compute the
fix-points by repeatedly applying τ to the result of the previous iteration, starting with
[[False]]Me for least fix-points and [[True]]Me for greatest fix-points. Since S is finite, the
computation stops at some k ≤ |S|, so that the least fix-point is given by τ k([[False]]Me)
and the greatest fix-point by τ k([[True]]Me). We then have that

Proposition 2.6 If τ i(Q) = τ i+1(Q) then k = i.

Essentially, the semantics describe the model checking algorithm itself. An executable
version of Proposition 2.6 would rely on being able to efficiently test state sets for equal-
ity. Since states are boolean tuples, we can represent state sets by the BDDs of their
characteristic functions. Since the semantics are constructed using set operations, every
step of the algorithm can be represented by an operation on BDDs. Hence every step can
be represented by the application of a BDD representation judgement inference rule.

From Table 2.1, we can give a more concrete semantics for µ-formulae, this time using
representation judgements.

Definition 2.7 The Lµ model checking procedure T [[−]]ρMe is defined recursively over the
structure of µ-formulae as follows

• T [[True]]ρMe = BddT ρ and T [[False]]ρMe = BddF ρ

• T [[p]]ρMe = BddVar(ρ p)

• T [[¬f ]]ρMe = BddNot(T [[f ]]ρMe)
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• T [[f ∧ g]]ρMe = BddAnd(T [[f ]]ρMe, T [[g]]ρMe)

• T [[f ∨ g]]ρMe = BddOr(T [[f ]]ρMe, T [[g]]ρMe)

• T [[〈a〉f ]]ρMe = BddAppEx(∧, [[T (a)]], T [[f ]]ρMe)
where [[T (a)]] is the term-BDD for the action a

• T [[[a]f ]]ρMe = T [[¬〈a〉¬f ]]ρMe

• T [[µQ.f ]]ρMe =
⋃k

i=0 τ i(∅)
where τ = λW.T [[f ]]ρMe[Q ← W ] and τ k(∅) = τ k+1(∅)

• T [[νQ.f ]]ρMe =
⋂k

i=0 τ i(S)
where τ = λW.T [[f ]]ρMe[Q ← W ] and τ k(S) = τ k+1(S)

Executing the procedure in Definition 2.7 for some Lµ formula f with respect to a
Kripke structure M and environment e will yield a judgement ρ f ′ 7→ b where ρ is the
variable map, f ′ is the boolean semantic equivalent of f and b is the BDD of f ′. So f ′

is a propositional logic formula that is likely to be large, unreadable and unsuitable for
further manipulation by the theorem prover. We give a simple example to illustrate this
problem.

Example 2.8 Suppose f is the simple Lµ formula

µQ. 〈.〉Q

which gives all states that start an infinite sequence of transitions in the model. The
corresponding f ′ would look something like

∃s0.s
.
→ s0 ∧ ∃s1.s0

.
→ s1 ∧ . . . ∧ ∃snsn−1

.
→ sn

where
.
→ abbreviates the entire transition relation and n is bounded above by |S|. For

any interesting model, |S| would at least be in the thousands and often in the googols5.
¤

This staggering blow-up in the size of the term part of the term-BDD would severely hand-
icap the embedded model checker. Instead, we would like f ′ to be some term expressing
satisfiability of f in M and e, i.e. we would like to obtain a judgement

ρ (s |=e
M f) 7→ b ,

where the state s is a tuple of free boolean variables corresponding to the support of b.
Deriving a judgement in the form above is what we shall now attempt. To do this, we
must provide a definition of the semantics of Lµ to the theorem prover.

2.4 Model Checking Formalised

This section presents a mechanical formalisation of the theory and algorithms described
above. To save space, the lengthy and theorem prover specific formal proofs are not given.
Proof sketches are provided where they aid intuition.

5One googol = 1.0 × 10100
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2.4.1 Formalising the Theory

The formalisation goes along the lines of §2.3. The atoms corresponding to the p ∈ AP
have type β. We use α to denote the type of a state. During a model checking run α would
be specialised to (β×β× . . .×β) where the size of the product would be |AP |. Currently
the only type of Dv we support is the boolean lattice B, so β is always specialised to
the hol boolean type bool. Kripke structures are represented by a simple record type
KS, with fields AP : string set, S : α set, S0 : α set, T : string → (α × α) → bool

and L : α → string → bool representing components so named in Definition 2.1.
Environments have type string → α → bool.

Note that atomic proposition and action names are modelled as strings. In the former
case, this will need to change once we extend Dv support to other domains such as N and
Z, since arithmetic propositions are better represented using hol’s native term represen-
tation. The type of environments indicates that relational variables are represented by
strings in the syntax. This is because hol does not support automatic α-conversion for
higher-order abstract syntax.

At the time of writing hol did not support predicate subtypes, so a well-formedness
predicate on Kripke structures had to be defined separately.

Definition 2.9 A Kripke structure M is well-formed if S = U : (α set) where U is the
universal set of all things of type α.

The identification of S with all states is not a strict requirement. It is a technical conve-
nience6 and does not result in loss of generality in the current context.

Formulas of Lµ are represented by a simple recursive data-type. The syntactic con-
straint on bound variables (see Definition 2.2) is enforced by a well-formedness predicate
on µ-formulas. To define this predicate, we first need to formalise our notion of negation
normal form and sub-formulas.

The sub-formula relation ⊑ is defined as expected. Since hol has no native support
for variable binding in higher order abstract syntax, the definition of negation normal
form has to explicitly avoid free variable capture.

Definition 2.10 Negated relational variable substitution of a variable Q in an Lµ for-
mula f is written f [¬Q/Q] to denote the negation of all free occurrences of Q in f and
is defined recursively over the structure of Lµ formulas (parameterised by Q):

True[¬Q/Q] = True

False[¬Q/Q] = False

6It makes the oft-used technical lemma ⊢ ∀fMe.[[f ]]Me ⊆ S easy to prove offline. The inefficient
alternative is to compute the set of reachable states of the model at runtime and then prove all theorems
dependent on the lemma at runtime as well. As we shall see in Chapters 6 and 7, a large class of properties
can be checked without carrying out the expensive computation of reachable states beforehand and thus
we would like to avoid it whenever possible.
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(f ∧ g)[¬Q/Q] = f [¬Q/Q] ∧ g[¬Q/Q]

(f ∨ g)[¬Q/Q] = f [¬Q/Q] ∨ g[¬Q/Q]

(¬f)[¬Q/Q] = ¬f [¬Q/Q]

p[¬Q/Q] = p

Q′[¬Q/Q] = if (Q ≡ Q′) then (¬Q) else Q′

(〈a〉f)[¬Q/Q] = 〈a〉f [¬Q/Q]

([a]f)f [¬Q/Q] = [a]f [¬Q/Q]

(µQ′.f)[¬Q/Q] = if (Q ≡ Q′) then µQ′.f else µQ′.f [¬Q/Q]

(νQ′.f)[¬Q/Q] = if (Q ≡ Q′) then µQ′.f else νQ′.f [¬Q/Q]

Negated relational variable substitution can be thought of as a restricted form of substi-
tution. Henceforth, the notation f(¬Q) abbreviates f [¬Q/Q].

Definition 2.11 The negation normal form of an Lµ formula f , NNF f is defined re-
cursively over the structure of Lµ formulas:

• If f is a not a top-level negation, the NNF predicate is applied recursively to each
sub-formula of f .

• Otherwise NNF f is defined as follows:

NNF ¬True = False

NNF ¬False = True

NNF ¬(f ∧ g) = NNF ¬f ∨ NNF ¬g

NNF ¬(f ∨ g) = NNF ¬f ∧ NNF ¬g

NNF ¬p = ¬p

NNF ¬Q = ¬Q

NNF ¬(〈a〉f) = [a]NNF ¬f

NNF ¬([a]f) = 〈a〉NNF ¬f

NNF ¬¬f = NNF f

NNF ¬(µQ.f) = νQ.NNF (¬f)[¬Q/Q]

NNF ¬(νQ.f) = µQ.NNF (¬f)[¬Q/Q]

We are now in a position to define well-formedness.

Definition 2.12 The Lµ formulas True, False, p and Q are well-formed. Otherwise, a
well-typed Lµ formula f is well-formed if and only if all sub-formulas of f are well-formed.
However, if f ≡ µQ.g or f ≡ νQ.g then we additionally require that ¬Q ⊑/NNF g.

We shall assume that all formulas are well-formed and elide the well-formedness con-
dition from theorem statements to avoid clutter.

The heart of the formalisation is the formal semantics, which follows Definition 2.3.
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Definition 2.13 The formal semantics FS[[−]]eM of Lµ for a Kripke structure M and
environment e are defined by the mutual recursion

FS[[True]]eM = S ∧

FS[[False]]eM = ∅ ∧

FS[[p]]eM = {s|s ∈ S ∧ p ∈ AP ∧ p ∈ Ls} ∧

FS[[Q]]eM = {s|s ∈ S ∧ eQ s} ∧

FS[[¬f ]]eM = S\FS[[f ]]eM ∧

FS[[f ∨ g]]eM = FS[[f ]]eM ∪ FS[[g]]eM ∧

FS[[f ∧ g]]eM = FS[[f ]]eM ∩ FS[[g]]eM ∧

FS[[〈a〉f ]]eM = {s|∃q.q ∈ S ∧ s
a
→ q ∧ q ∈ FS[[f ]]eM} ∧

FS[[[a]f ]]eM = {s|∀q.q ∈ S ∧ s
a
→ q ⇒ q ∈ FS[[f ]]eM} ∧

FS[[νQ.f ]]eM = {s|∀n.s ∈ FP f QM e[Q ← S] n} ∧

FS[[µQ.f ]]eM = {s|∃n.s ∈ FP f QM e[Q ← ∅] n} ∧

FP f QM e 0 = eQ ∧

FP f QM e (n + 1) = FS[[f ]]
e[Q←FP f Q M e n]
M

The form of the definition for the fix-point operators is equivalent to that in Proposition
2.5, but is more convenient for theorem proving purposes. FP here stands for fixed-point
iterator and performs the function of τ in Definition 2.3 and in fact in notation, we will
often use τn to stand in for FP f QM en to avoid clutter.

Since we need to test semantics for boolean satisfiability (Proposition 2.6 requires
this), we need to define satisfaction of a formula in a state.

Definition 2.14 A µ-calculus formula f is satisfied by a state s of a Kripke structure M
under an environment e if and only if s ∈ FS[[f ]]eM . We denote this by

s |=e
M f

For efficiency, theorems expressing satisfiability of all Lµ operators (see Table 2.2) are
proved in terms of |= using Definition 2.13, assuming the Kripke structure is well-formed.7

This is trivial due to the simple connection between |= and FS[[−]].

For fixed point computations, we require theorems that tell us when a fixed point has
been reached. The first step is to prove monotonicity of the semantics of a formula with
respect to the free variables, i.e. the environment. We show the results for the least fixed
point operator only (greatest fixed points follow by duality).

7The missing modal and fix-point operator theorems follow by duality. Fix point computations require
several other satisfiability theorems discussed later.
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Table 2.2: Satisfiability theorems for model checking based on Defn 2.13

∀ s M e. s |=e
M True ⇔ T (2.3)

∀ s M e. s |=e
M False ⇔ F (2.4)

∀ s M e. s |=e
M p ⇔ p ∈ Ls (2.5)

∀ s M e f. s |=e
M ¬f ⇔ ¬(s ²

e
M f) (2.6)

∀ s M e f g. s |=e
M f ∧ g ⇔ s |=e

M f ∧ s |=e
M g (2.7)

∀ s M e f g. s |=e
M f ∨ g ⇔ s |=e

M f ∨ s |=e
M g (2.8)

∀ s M eQ. s |=e
M Q ⇔ eQ s (2.9)

∀ s M e a f. s |=e
M 〈a〉f ⇔ ∃q.(T a)(s, q) ∧ q |=e

M f (2.10)

∀ f M eQs X n. s |=
e[Q←FP f Q M e[Q←X]n]
M f

⇔ s ∈ FP f QM e[Q ← X] (n + 1) (2.11)

Lemma 2.15 Monotonicity For a well-formed Kripke structure M and well-formed µ-
calculus formula µQ.f , we have that

∀ e e′ X Y.

X ⊆ Y

∧ ∀Q′. if (¬Q′ ⊑ NNF f) then eQ′ = e′ Q′ else eQ′ ⊆ e′ Q′

⇒ FS[[f ]]
e[Q←X]
M ⊆ FS[[f ]]

e′[Q←Y ]
M

Proof By the remarks preceding Proposition 2.5. Monotonicity can be shown by the
observations that

1. Each of the operators except negation is monotonic.

2. Only relational variables occur negated in the NNF of a formula.

3. Bound variables occur non-negated in the NNF of a formula.

4. The negation normal form of f has the same semantics as f .

So we can effectively remove all negations from a formula without affecting the semantics.
Monotonicity follows immediately. The second hypothesis in the antecedent enforces the
point-wise subset ordering on environments and also ensures that free-variables do not
change values during a fixed-point computation. In the case of e = e′, this antecedent is
trivially true. ¤

Using monotonicity, we are able to formally derive the equivalent of Proposition 2.6.
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Theorem 2.16 For a well-formed Kripke structure M and well-formed µ-calculus for-
mula µQ.f , we have that

∀ e n.

FP f QM e[Q ← ∅]n = FP f QM e[Q ← ∅](n + 1)

⇒ FS[[µQ.f ]]eM = FP f QM e[Q ← ∅] n

Proof It follows from Lemma 2.15 and [183] that FP f QM e[Q ← ∅] n is the least
upper bound (under subset inclusion) of all FP f QM e[Q ← ∅] m for m ≤ n, and that
FP f QM e[Q ← ∅] n = FP f QM e[Q ← ∅] m for m ≥ n. Then

FP f QM e[Q ← ∅] n

=
⋃

i∈N

FP f QM e[Q ← ∅] i

= FS[[µQ.f ]]eM

using Definition 2.13. ¤

We stress once more that all definitions and proofs have been formalised in the theorem
prover.

2.4.2 Formalising the Model Checker

We wish to be able to pass a well-formed Kripke structure M , a well-formed formula f ,
an environment e and a variable map ρ to the model checking procedure T [[−]]ρMe which
returns a judgement of the form

ρ (s |=e
M f) 7→ b (2.12)

where the state s is a boolean tuple comprising the atomic propositions M is defined over.

Preliminaries

The first step in implementing the model checker is to prove that M and f are well-formed.
This is trivial but does require that both be hol terms. Representing M as a hol term
throughout the model checking would be inefficient as the T component can be quite large.
So we simply use the zero arity predicate M as an abbreviation for the entire structure. This
can easily be expanded back into the definition if required. However, this never happens
as all the required theorems (Table 2.2) are cached separately. Additionally, evaluation
of T (a) directly from the term representation is O(|T |). So we construct an ML binary
search tree (BST) Tm which maps each action a ∈ T to its transition relation. With Tm

we can evaluate T (a) in time O(log2 |T |). Since M does not change during the model
checking, we do not require write access to it. Once we have proved well-formedness, the
theorems of Table 2.2 are specialised to f , M and s.

The environment occurs in the term part of the result and therefore also needs to
be represented as a hol term. However, environments change during every iteration of
a fixed point computation. Thus they cannot be abbreviated as for M above without
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creating hol definitions on the fly, which is messy and slow. Fortunately the term repre-
sentation of environments is not large so they can be represented directly. The changing
environments mean that all the satisfiability theorems we proved in Table 2.2 change with
each iteration. The solution is to specialise them with the updated environment for each
iteration. Finally, we construct an ML BST em which is an efficient version of e, analogous
to Tm.

The kernel

The core algorithm is based on Definition 2.7, i.e. by recursion over the Lµ formula. Each
step in the recursion consists of a one application of a BDD inference rule from Table 2.1
followed by an application of BddEqMp (from §2.2) together with the appropriate theorem
(now specialised) from Table 2.2. Thus each step results in a judgement of the form of
2.12. In the end we use BddOracleThm to derive the final theorem. We illustrate this with
a small example:

Example 2.17 Suppose we have a Kripke structure M over {p0} and an environment
e that maps Q to the set [[¬p0]]

e
M . Then p0 ∨Q should hold in all states. This theorem is

derived (with mild notational abuse: the theorems for BddEqMp are derived from Table
2.2 and Defn. 2.3 rather than via the term-BDD inference rules as appears to be the case
below) by the following derivation tree:

ρ(p0) = 0

ρ p0 7→ ithvar 0 ⊢p0⇔s|=e
Mp0

BddVar

ρ s |= p0 7→ ithvar 0
BddEqMp

ρ(p0) = 0

ρ p0 7→ ithvar 0
BddVar

ρ¬p0 7→ [[¬p0]]Me ⊢¬p0⇔s|=e
MQ

BddNot

ρ s |=e
M Q 7→ [[¬p0]]Me

BddEqMp

ρ s |= p0 ∨ s |=e
M Q 7→ TRUE ⊢s|=e

Mp0∨s|=e
MQ⇔s|=e

Mp0∨Q
BddOr

ρ s |= p0 ∨ Q 7→ TRUE
BddEqMp

⊢ s |=e
M p0 ∨ Q

BddOracleThm

¤

In the case of propositional atoms, relational variables and the modal operators, we do
not have one theorem but sets of theorems APt, VARt and Tt indexed by the name of
the atom, relational variable or action respectively; the appropriate theorem is picked out
for passing to BddEqMp. The theorems in APt, VARt and Tt are obtained by specialising
the theorems 2.5, 2.9 and 2.10 of Table 2.2. The hol terms for the maps L and T are
constructed so that a “lookup”, i.e. a rewrite evaluating the application of an atom or
action name to L or T respectively, has the same asymptotic cost as a lookup in a Patricia
trie (see Appendix C page 112 for details). All theorem sets are cached in ML BSTs for
efficiency. The case for fixed point operators is more involved and is discussed in the next
section.

It should be noted that the model checker derives every step from theorems proved in
hol and thus the result is correct by construction (this does not apply to the BDD engine,
but so far we have not used the BDD part of the representation judgements though of
course it is updated by the inference rules). As we shall show, the performance penalty
for this proof has been acceptable in regression tests. This is the justification for using
representation judgements.
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Computing fixed points

We limit our discussion to computing least fixed points and elide predicates (for the
Kripke structure and formula) for well-formedness. If in a recursive descent T encounters
a sub-formula µQ.f , we would like to derive the judgement

ρ (s |=e
M µQ.f) 7→ b

where, if we consider the BDD b as a set, we would like b =
⋃k

i=0 τ i(∅) where τ =
λW.T [[f ]]ρMe[Q ← W ] and τ k(∅) = τ k+1(∅) (see Definitions 2.3 and 2.7).

Thus, by Lemma 2.16, if we can show that in the (i + 1)th iteration

FP f QM e[Q ← ∅] i = FP f QM e[Q ← ∅] (i + 1) (2.13)

we have the required result (using Theorem 2.16 and Definition 2.14).
To start, we require a “bootstrap” theorem.

Theorem 2.18

∀ f M eQs.FP f QM e[Q ← ∅] 0 s = F

Proof Immediate from Definition 2.13 and the HOL definition of ∅ (i.e. λ(x : α).F ). ¤

Now we update the environment e with the mapping

[Q ← ρ (FP f QM e[Q ← ∅] 0) 7→ FALSE]

justified by Theorem 2.18 and the BddF rule from Table 2.1. Intuitively we can say that
ρ (FP f QM e[Q ← ∅] 0) 7→ FALSE is the mechanised version of τ 0(∅).

For the iteration, we require a “substitution” theorem.

Theorem 2.19

∀ f QM en s.s |=
e[Q←FP f Q M e (n+1)]
M Q ⇔ s |=

e[Q←FP f Q M e n]
M f

Proof Simplification with Definitions 2.13 and 2.14. ¤

This just says that the semantics of f in the nth iteration are the semantics of Q in the
n+1th iteration. Then, for the ith iteration, a single call to the model checker returns the
judgement8

ρ (s |=
e[Q←FP f Q M e[Q←∅] i]
M f [f/Q]) 7→ b

We use this and BddEqMp together with equation 2.11 of Table 2.2 and Theorem 2.19 to
derive

ρ (FP f QM e[Q ← ∅] (i + 1)) 7→ b

which is the mechanised version of τ i+1(∅). This is then made the new value of Q in e
before calling the model checker again. At each iteration, all satisfiability theorems are
recreated by specialising the theorems (or theorem sets) from Table 2.2 with the updated
environment e. However, the theorem in VARt corresponding to Q has to be proved from
scratch each time since the value of Q changes with every iteration.

8The substitution notation denotes that syntactic recursion occurs in the term part.
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After each call to the model checker, we check if the BDD parts of the two most recent
iterations are equal. If so, we are able to derive the condition in equation 2.13 using
BddOracleThm and stop. This is the only point where BDDs are actually used. Thus the
result is guaranteed to be correct assuming the BDD representation judgement inference
rules are sound (modulo the soundness of the BDD engine and hol itself). We have
already commented on the relatively high likelihood of this.

2.5 Related Work

The work closest in spirit to our own is the hol-voss system [166]. voss has a lazy
functional language fl with BDDs as a built-in data-type. In [98] voss was interfaced to
hol and verification using a combination of deduction and symbolic trajectory evaluation
(STE) was demonstrated. This system and subsequent developments are discussed in some
detail in §8.2.

Global model checking has also been formalised in the acl2 theorem prover [121]. As
with our work, the syntax and semantics of Lµ up to the fixed point proofs are formalised.
Since the acl2 logic is executable, the development stops there and does not extend the
formalisation to use BDDs for more efficient execution.

Local model checkers have been implemented in a purely deductive fashion. This is
possible because local model checking [44, 179, 191] does not require external oracles like
BDD engines for efficiency. Thus it is difficult to directly compare this work with our own
global model checker. In [5] a local model checking algorithm is given for Lµ. However
monotonicity conditions for assertions are proved at runtime rather than as a general
theorem (e.g. Lemma 2.15) that can later be specialised. A deeper treatment for the
less expressive logic CTL* can be found in [178]. This work also proves the proof system
sound and complete using game-theoretic analysis.

There are earlier examples of combinations of theorem provers and model checkers
[57, 107]. Typically, the theorem prover is used to split the proof into various sub-goals
which are small enough to be verified by a separate model checker. There is no actual
integration so the translation between the languages of the theorem prover and the model
checker is done manually.

Improved integrations of theorem provers with global model checkers typically enable
the theorem prover to call upon the model checker as a black-box decision procedure given
as an atomic proof rule [148, 154]. The prover translates expressions involving values over
finite domains into purely propositional expressions that can be represented by BDDs.
This allows use of the result as a theorem (as in our framework) but this method does
not extend readily to the fully expansive approach. It thus achieves better efficiency at
the expense of coarser integration and lower assurance of soundness. In §8.3 we give more
detail about this and later work.

Theorem provers have also been used to help with abstraction [39, 77, 161] for model
checking. Decision procedures in the theorem prover are used to discharge assumptions
added to refine an abstraction that turns out to be too coarse and adds too much non-
determinism to the system resulting in spurious counter-examples. Decision procedures
for some subsets of first order logic have been used in automatic discovery of abstraction
predicates [54] and invariant generation [18]. There is no technical obstacle to implement-
ing these frameworks in our setting.
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There are several tools that implement some of the research sketched here [14, 19, 89,
149].

2.6 Concluding Remarks

The implementation presented here does not contain non-trivial pieces of code whose
soundness might be suspect: the core model checker is straight-forward. Rather, this
approach pays off when we add optimisations (Chapter 3) and enhancements (Chapter
5), and combine deductive and algorithmic verification (Chapter 6).

The implementation itself is about 2000 lines of definitions and theorems, and about
500 lines of executable ML code. The proof of Lemma 2.15 is technically difficult, on
account of having to do explicit α-conversion for the higher order binders. The executable
part is much easier to code, mainly because no soundness checks of the code are required:
if the procedure terminates, the result is correct by construction.

Benchmarking for the core model checker showed a performance penalty of about
30% as compared to the system with all proof machinery turned off. This and other
performance issues are discussed in Chapter 7, which conducts a case study focusing on
performance.



Chapter 3

Optimisations

We now demonstrate that the theory developed so far is sufficient to integrate optimisa-
tions that exploit the semantics of Lµ. In this chapter we formalise two improvements to
the simple model checker formalised in Chapter 2. The first is a naive caching scheme
for the evaluation of common sub-formulas and the second is a more advanced caching
algorithm for partially evaluated nested non-alternating fixed-points.

3.1 Introduction

There are several ways in which the basic model checking algorithm can be made more
time and/or space efficient. These can be roughly classed as follows:

1. Model reduction techniques attempt to reduce the size of the model to be checked.
This can be done by compositional reasoning [65, 116, 134], abstraction [39, 52, 77,
111, 161], partial order reduction [100, 188] and symmetry reduction [60] among
others.

2. Property reduction techniques target the property being checked instead and use
knowledge of the logic the property is expressed in to simplify the property or the
computation of its semantics [59, 150].

3. BDD and SAT techniques are lower-level techniques that seek to improve the exe-
cution of the underlying BDD engine or SAT solver by exploiting the structure of
the model and/or the property [28, 129].

4. Hybrid techniques combine one or more of the above to guide optimisations.

It is beyond the scope of this work to formalise all these techniques. BDD and SAT
level techniques typically do not make for interesting formalisations, and most model
reduction and hybrid techniques would take us too far afield. We have therefore chosen
to concentrate on property reduction techniques.

Our choice of optimizations is motivated by the fact that they are deep optimizations
in the sense that they do not treat the model checker as a black box but are tightly
coupled with its execution at a low level. This implementation thus demonstrates that
our approach admits deep optimizations that are nonetheless underpinned by formal proof.

37
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Our first optimisation exploits the fact that for a given model and environment the
semantics of an Lµ formula are the same for identical sub-formulas, modulo free variable
valuations. Thus when checking a property represented by Lµ formula f , the BDDs
computed for each sub-formula can be cached and reused for other occurrences of that
sub-formula. This is a standard optimization implemented in all such tools.

The second optimisation uses a result from partial order theory that a least (greatest)
fixed-point computation by iteration will terminate correctly as long as the iteration is
begun below (above) the fixed-point [59]. Thus, subject to certain constraints, we need
not start the iteration with ∅ (or S).

This will allow us to build upon our formal theory of Lµ developed in Chapter 2
and show that the development has covered enough ground to enable both simple and
advanced optimisations. Both techniques make a dramatic difference in the efficiency of
the model checking so this will also enable us to check just how badly the additional
theorem proving overhead for the optimisations affects the performance boost. The work
in Chapter 7 vindicates our belief that for complex enough models, the performance
penalty is within acceptable bounds.

3.2 Naive Caching

It is clear from Definition 2.3 that closed formulas will have the same semantics for a
given model. We make this idea precise.

Definition 3.1 The set of free variables of an Lµ formula f, FV (f) is computed recur-
sively over the structure of Lµ formulas as follows:

FV (False) = ∅

FV (True) = ∅

FV (p) = ∅

FV (Q) = {Q}

FV (¬f) = FV f

FV (f ∧ g) = FV f ∪ FV g

FV (f ∨ g) = FV f ∪ FV g

FV (〈a〉f) = FV f

FV ([a]f) = FV f

FV (µQ.f) = FV f \{Q}

FV (νQ.f) = FV f \{Q}

Definition 3.2 An Lµ formula f is closed, if FV f = ∅.

Lemma 3.3 If f and g are closed formulas, then for any model M and environments e
and e′,

f ≡ g ⇒ [[f ]]eM = [[g]]e
′

M
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Proof By induction on the structure of f . The only falsifying case is when f ≡ Q, but
this is ruled out because f is closed. ¤

So identical closed sub-formulas can be cached. Precomputing semantic equivalence
theorems for all closed subformulae requires evaluating FV over all such formulae, which
is computationally expensive. Since it is relatively painless to decide syntactic equality
in hol, we can instead use the fact that any two syntactically equal formulas have the
same semantics if the relevant parts of the environment have not changed since the first
formula was evaluated.

Lemma 3.4 For any model M and environments e and e′,

∀fg.(∀Q.Q ⊑ f ⇒ e(Q) = e′(Q)) ∧ f ≡ g ⇒ [[f ]]eM = [[g]]e
′

M

Proof Similar to Lemma 3.3 except the falsifying case is no longer so because of the
additional assumption. ¤

3.2.1 Implementation Issues

The main idea behind the implementation is simple: we cache the term-BDD for some
sub-formula f and whenever we come across a formula g such that f and g satisfy the
requirements of Lemma 3.4, we use the BddEqMp inference rule together with the Lemma
3.4 to derive the term-BDD for g rather than computing it from scratch.

Lemma 3.4 enables us to use caching proving only syntactic equality and unchanged
environments. The former is fast, and for the latter we can pre-prove general theorems
showing that except for the f ≡ Q case, changed environments do not affect semantics.

This means we have to prove theorems that the environment is unchanged only for
sub-formulas that are relational variables and simply ripple these theorems as assumptions
up the super-formulas during model checking.

Example 3.5 Suppose we have a formula g such that its semantics are invariant with
respect to the environment, i.e. it is closed. Consider a formula such that its subformula
g ∧ Q occurs twice and let us prime g and Q in the second occurrence of g ∧ Q for ease
of reference.

Suppose the first occurrence is evaluated first, and the term-BDD for g∧Q is cached.
In addition, when evaluating g we cache the theorem that

⊢ ∀e e′.[[g]]eM = [[g]]e
′

M

and for Q we cache the theorem

⊢ ∀e e′.e(Q) = e′(Q) ⇒ [[Q]]eM = [[Q]]e
′

M

Then when evaluating g ∧ Q we derive and cache the theorem

⊢ ∀e e′.e(Q) = e′(Q) ⇒ [[g ∧ Q]]eM = [[g ∧ Q]]e
′

M

using a preproved theorem that gives invariance with respect to environments for conjunc-
tion in Lµ. Here the assumption e(Q) = e′(Q) has been rippled up from the invariance
theorem for Q to the invariance theorem for g ∧ Q.
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Finally, when we see g′ ∧ Q′, we find the corresponding term-BDD for g ∧ Q in the
cache. If the value of Q has not changed, we can instantiate e and e′, discharge the
assumption and use the BddEqMp rule to derive the term-BDD for g′ ∧ Q′.

We now see the motivation for rippling up the assumption e(Q) = e′(Q): if the
environment had changed the valuation of Q since the first occurrence had been evaluated,
i.e. e(Q) 6= e′(Q), then the semantics of the first and second occurrence would have been
different and blindly picking up the term-BDD for the first occurrence would have caused
unsoundness. Reliance on formal proof avoids this scenario by insisting that we discharge
the assumption first. ¤

Fortunately, in practice, the environment usually contains no more than two mappings,
because most well known temporal logics can be embedded into Lµ without using free
variables and with at most a single nesting of fixed-point operators [59] and Lµ itself is
rarely used to write properties due to its non-intuitive semantics. Thus we do not expect,
in practice, to have more than two assumptions to ripple around. Thus in practice the
proof overhead for caching should be low.

This scheme will not cache α-equivalent subformulas,1 which also have equivalent
semantics modulo free variable valuations. For this we would have to precompute α-
equivalence of all qualifying subformulas and then preprove theorems attesting to that
fact. This would be impose a large computational overhead. Further, it would require a
formal definition of α-equivalence and such definitions are notoriously error-prone.

For the moment, we have a partial solution to this shortcoming. We rename all binders
to unique names except that we attempt (non-formally) to ensure that bound names in
α-equivalent subformulas are named so as to give syntactic equality. The caching scheme
above can then be applied as usual. Note that making a mistake in this non-formal
approach does not compromise soundness since the caching scheme we use relies on formal
proof. However, it may cause an abnormal termination if it considers non-α-equivalent
formulas to be α-equivalent, or lose efficiency if it fails to recognize α-equivalent formulas
and hence does not cache them.

3.3 The Alternation Depth Optimization

Unless explicitly stated otherwise, we consider only least fixed points in this section. The
corresponding results for greatest fixed points follow by duality.

At the moment, computation of least fixed-points proceeds by initialising the bound
variable with ∅ and iteratively computing approximations until the fixed-point is reached.
Due to Lemma 2.15 and Theorem 2.16, the number of these iterations is bound above by
|S|.

Let us refer to formulas of the form µQ.f as σ-formulas.2 If k fixed-point operators
are nested, sub-formulas of the σ-formula will be evaluated up to O(|S|k) times. In cases
where a fixed-point operator is nested immediately within another of the same type, we
can exploit monotonicity (Lemma 2.15) to reduce this number. We need the concept of
alternation depth [36] to continue.

1Subformulas that are syntactically identical upto renaming of bound variables.
2To avoid confusion between µ-formulas and formulas of Lµ.
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Intuitively, the alternation depth of a formula is the number of alternations between
nested least and greatest fixed point operators in the negation normal form of that formula.

Definition 3.6 The alternation depth of a formula is defined as follows:

1. The alternation depth of constants, atomic propositions and relational variables is
0.

2. The alternation depth of propositional and modal formulas is the maximum of the
alternation depths of their sub-formulas.

3. The alternation depth of a µ-formula is the maximum of: 1; the alternation depth
of the body; 1 + the alternation depth of any top level ν-sub-formulas of the body.
And similarly for a ν-formula.

Emerson et al [59] show that we need only evaluate the bodies of σ-sub-formulas
O(|S|d) times, where d is the alternation depth of the top-level formula.

We first need a proof that a fixed-point computation begun below the fixed-point will
terminate.

Lemma 3.7 For any model M where S is finite,

∀W.∃k.τ k(W ) = τ k+1(W )

Proof We can show ∀n.τn(W ) ⊆ τn+1(W ) using monotonicity. Then since S is finite,
there exists some k such that

τ k(W ) = τ k+1(W )

¤

Corollary 3.8 For any model M where S is finite,

∀W.∃k.τ k(W ) =
⋃

i

τ i(W )

Proof By monotonicity,

∀k.τ k(W ) =
⋃

i≤k

τ i(W )

By Lemma 3.7 and monotonicity,

∃k.τ k(W ) =
⋃

i≥k

τ i(W )

So

∃k.τ k(W ) =
⋃

i≤k

τ i(W ) ∪
⋃

i≥k

τ i(W )

=
⋃

i

τ i(W )

¤
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We can now show that starting anywhere below the fixed-point is enough.

Lemma 3.9 For any model M where S is finite,

∀M f.W ⊆
⋃

i

τ i(∅) ⇒
⋃

i

τ i(W ) =
⋃

i

τ i(∅)

Proof

• ⊆ direction. By monotonicity, we have for all k,

τ k(W ) ⊆ τ k(
⋃

i

τ i(∅))

⊆
⋃

i

τ i(∅) since
⋃

i

τ i(∅) is a fixed-point

But

∃k.τ k(W ) =
⋃

i

τ i(W )

by Corollary 3.8, so
⋃

i

τ i(W ) ⊆
⋃

i

τ i(∅)

with the existential quantification on k being eliminated since it becomes vacuous.

• ⊇ direction. By monotonicity, for all k

τ k(∅) ⊆ τ k(W )

⇒
⋃

i

τ i(∅) ⊆
⋃

i

τ i(W )

¤

Intuitively, because of monotonicity, beginning the iteration anywhere below the least-
fixed point is sufficient. Thus when computing the inner fixed-point for the ith iteration
of the computation of the outer fixed-point, we can set the initial value of the iteration
to the value computed for the inner-fixed point during the outer fixed-point’s (i − 1)th

iteration. And similarly for deeper levels of same-type fixed-point operator nesting.

This means that the number of evaluations required in the computation of any sequence
of same-type nested fixed-points is now bounded above by |S|, and hence the total number
of evaluations is O(|S|d).

3.3.1 Implementation Issues

Theorem 2.16 is no longer sufficient for our purposes because it assumes that all iterations
are initialised with ∅.
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Theorem 3.10 For a well-formed Kripke structure M where S is finite, and well-formed
µ-calculus formula µQ.f , we have that

∀ e e′ n k W.

W ⊆
⋃

i

τ i(∅)

∧ τn(W ) = τn+1(W )

∧ ∀Q′. if (¬Q′ ⊑ NNF f) then eQ′ = e′ Q′ else eQ′ ⊆ e′ Q′

⇒ FS[[µQ.f ]]eM =
⋃

i

τ i(W )

Proof We show

FS[[µQ.f ]]eM =
⋃

i

τ i(W )

using techniques similar to those in the proof for Theorem 2.16. The required result
follows by Lemma 3.9. ¤

Unfortunately, the term τn(W ) formally expands out to

FP f QM e[Q ← FP f QM e′[Q ← ∅] m] n

for some m, since W is the final value of the previous computation of µQ.f which is nested
inside another least fixed-point. Since the value of the outer fixed-point has changed from
when the previous computation was carried out, the environment for W is different from
the environment for τn(W ). So the third assumption

∀Q′. if (¬Q′ ⊑ NNF f) then eQ′ = e′ Q′ else eQ′ ⊆ e′ Q′

can no longer be trivially disposed of as was the case earlier (see comments in the proof
of Lemma 2.15).

In fact, the third assumption can only be proved at runtime during model checking,
because the value of the condition depends on the actual formula being evaluated. For-
tunately, this condition in the assumption can be evaluated by rippling up the truth or
falsehood of the corresponding conditions for all sub-formulas of f . This mitigates the
penalty imposed by the extra runtime proof obligation.

The need to annotate every node in the abstract syntax tree of the formula being
evaluated with a specialised version of the third assumption slows down performance.
The third assumption asserts just that the values of free variables do not change during
evaluation. Currently we detect free variables by finding if a variable is negated in the
negation normal form of a well-formed formula. An alternative would be to have a more
explicit treatment for free variables, by carrying along a list of free variables occuring in
the subformula currently being evaluated. It is not immediately obvious whether this will
help or hit performance as there are technical issues involved (see comments after Lemma
2.15), but it is certainly worth investigating in the near future.

3.4 Concluding Remarks

Naive caching is so called because a completely general scheme would be able to equate all
terms that have identical semantics whenever possible. In our case, we do not account for
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associativity and commutativity in the propositional fragment, De Morgan-style equali-
ties and several other algebraic laws for Lµ. There is no technical barrier to including
these; in fact, a theorem prover is ideally suited for this sort of equational simplification.
Their implementation has been delayed simply because they do not add any research or
pedagogical value to the work.

Our formalisation and implementation of the alternation depth optimisation has sim-
ilarly stopped short of implementing all possible refinements to the scheme. For instance,
formulas with strict alternation of fixed-point operators have been considered and it has
been shown that the number of evaluations can be further reduced to O(|S|⌊d/2⌋+1) [23].

The well-developed formal theories for sets and natural numbers in hol saved us
considerable time. We have nonetheless demonstrated the power of our formal theory in
easily integrating new results about the logic without the need to rework definitions or
central lemmas such as Lemma 2.15 and without requiring a lot in the way of additional
formal infrastructure.



Chapter 4

Extension I: A temporal logic

Virtually all combinations of model checking and theorem proving rely at some point on
translating formalisms (e.g. input languages) in a semantics-preserving manner. In this
chapter we show how such a translation would be done in our formalised environment.
This translation will be used in chapters 5, 6 and 7.

4.1 Introduction

In Chapter 2 we demonstrated the embedding of a symbolic model checker for Lµ in hol.
This approach allows results returned from the model checker to be treated as theorems
in hol while retaining the advantages of the fully-expansive nature of hol, without an
unacceptable performance penalty.

One use of this approach would be to do property checking using logics that can be
embedded into Lµ. Since Lµ is very expressive, most popular temporal logics can be
embedded in it without loss of efficiency [36, 59]. A theorem returned by the model
checker for an Lµ property can be translated into the corresponding theorem for whatever
logic we are interested in, as long as the translation is correct.

If the translation is done via a semantics-based embedding in hol, we can use the
theorem prover to ensure correctness. Thus we can achieve a tight integration with
established technology with little loss of efficiency, without having to write a verification
tool for our new logic from scratch and with a high assurance of the correctness of our
implementation. This chapter provides proof-of-concept of this approach using as an
example the standard embedding of the popular temporal logic CTL [13] into Lµ. All
definitions, propositions, lemmas and theorems presented here have been mechanised in
hol.

4.2 CTL

The temporal logic CTL is widely used to specify properties of a system in terms of the
finite set AP of atomic propositions relevant to the system. The system is modelled by a
Kripke structure as before, but we need a slightly different formal definition because in
the case of CTL there are no actions and the transition relation is total, so all paths are
infinite.

45
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Definition 4.1 The tuple (AP, S, S0, R, L) represents a Kripke structure M where

• AP is the set of relevant atomic propositions.

• S is a finite set of states. A state is a vector enumerating the variables of AP.

• S0 ⊆ S is the set of initial states.

• R is a binary transition relation on states such that R(s, s′) iff there is transition in
M from s to s′. R is total, i.e. ∀s ∈ S.∃s′ ∈ S.R(s, s′).

• L : S → 2AP labels each state with the set of atomic propositions true in that state.

CTL allows us to describe properties of the states and paths of a computation tree. A
computation tree is formed by unwinding (infinitely) the transitions of M , starting with
the initial states. Intuitively, a computation tree path starting with the state s is an
infinite sequence of states s0, s1, s2, . . . in M such that s0 = s and ∀i.si ∈ S. For a path
π, we use πi to denote the ith state along the path, and iπ to denote the prefix of π up to
but not including the state πi, and πi to denote the suffix of π starting from the state πi.

Definition 4.2 A computation path π starting at some state s in a Kripke structure M
is well formed, PATH Mπs, if and only if π0 = s, ∀n.πn ∈ S and ∀n.R(πn, πn+1).

Paths are forced to be infinite by the totality of R. Though not a strict requirement,
the totality of R simplifies the theoretical treatment of the semantics of CTL and is a
standard assumption.

CTL consists of propositional logic augmented with path quantifiers and temporal op-
erators. The two path quantifiers are A (“for all computation paths”) and E (“for some
computation path”). The five basic temporal operators are:

• X (unary,“next state”) is satisfied by a path if the second state on the path satisfies
the required property.

• F (unary,“future state”) is satisfied by a path if some state on the path satisfies the
required property.

• G (unary,“globally”) is satisfied by a path if all states along the path satisfy the
property.

• U (binary,“until”) is satisfied by a path if the first property holds along the path
until a state where the second property holds. The second property must hold
eventually.

• R (binary,“release”) is satisfied by a path if the second property holds up to and
including the first state where the first property holds. However, the first property
need not ever hold. Thus this is the logical dual of U.

The syntax of CTL is made out of state formulas which are true of states, and path
formulas which are true of paths. A well-formed CTL formula is always a state formula.
However, we need path formulas because the temporal operators talk about a state with
respect to the path of the computation tree the state is on. Formally, formulas of CTL are
constructed as follows:
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Definition 4.3 Let P be the set of atomic boolean propositions. Then CTL is the smallest
set of all state formulas such that

• True is a state formula.

• p ∈ P is a state formula.

• If f and g are state formulas then ¬f and f ∧ g are state formulas.

• If f and g are state formulas, then Xf , Ff , Gf , fUg and fRg are path formulas.

• If f is a path formula, then Af and Ef are state formulas.

As only state formulas are allowed, we get ten compound operators, e.g. EX, AX, EF,
AF and so on. Usually, during model checking P and AP are identified.

Formally, the semantics [[f ]]M of a CTL formula f are defined with respect to the
states of the Kripke structure M . They represent the set of states of M that satisfy f .
Satisfaction of f by a state s of M is denoted by s |=M f . So s |=M f ⇐⇒ s ∈ [[f ]]M .
Note that in the case of CTL , no environment is needed for evaluating the semantics.

Definition 4.4 Given the CTL formulas f and g, atomic proposition p, a Kripke structure
M and a state s of M ,

• s |=M True

• s |=M p ⇐⇒ p ∈ L(s)

• s |=M ¬f ⇐⇒ ¬(s ²M f)

• s |=M f ∧ g ⇐⇒ s |=M f ∧ s |=M g

• s |=M EXf ⇐⇒ ∃π.PATH Mπs ∧ π1 |=M f

• s |=M EGf ⇐⇒ ∃π.PATH Mπs ∧ ∀j.πj |=M f

• s |=M E[fUg] ⇐⇒∃π.PATH Mπs ∧ ∃k.πk |=M g ∧ ∀j.j < k ⇒ πj |=M f

This definition is sufficient since the ten compound operators can all be expressed in
terms of the three operators EX, EG and EU [36]. We state the following without proof:

Proposition 4.5

• AXf = ¬EX(¬f)

• EFf = E[TrueUf ]

• AGf = ¬EF(¬f)

• AFf = ¬EG(¬f)

• A[fUg] = ¬E[¬gU(¬f ∧ ¬g)] ∧ ¬EG(¬g)

• A[fRg] = ¬E[¬fU¬g]
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• E[fRg] = ¬A[¬fU¬g]

The following standard lemmas will be useful later. We present the proofs in some
detail as we were unable to find a formal treatment in the literature.

Lemma 4.6 For any Kripke structure M and CTL formula f ,

[[EGf ]]M = [[f ∧ EX(EGf)]]M

Proof

• ⊆ direction. For any s ∈ S,

s |=M EGf

⇐⇒ ∃π.π0 = s ∧ ∀j.πj |=M f by D4.4

⇒ s |=M f ∧ π1 |=M EGf

⇐⇒ s |=M f ∧ s |=M EX(EGf) by D4.4

⇐⇒ s |=M f ∧ EX(EGf) by D4.4

and we are done by extensionality.

• ⊇ direction. For any s ∈ S,

s |=M f ∧ EX(EGf)

⇐⇒ s |=M f ∧ ∃π.π0 = s ∧ π1 |=M (EGf) by D4.4

⇒ ∃π.π0 = s ∧ ∀j.πj |=M f by D4.4

⇐⇒ s |=M EGf by D4.4

and we are done by extensionality. ¤

Effectively this is saying that EGf is a fixed point of the function τ(W ) = f∧EX(W ).
We have a similar result for E[fUg].

Lemma 4.7 For any Kripke structure M and CTL formulas f and g,

[[E[fUg]]]M = [[g ∨ (f ∧ EX(E[fUg])]]M

Proof For any s ∈ S,

s |=M E[fUg]

⇐⇒ ∃π.π0 = s ∧ ∃k.πk |=M g ∧ ∀j.j < k ⇒ πj |=M f by D4.4

Now consider the cases k = 0 and k 6= 0. In the first case, we have s |=M g. In the second
case, we have ∀j.j < k ⇒ πj |=M f . But k 6= 0 so certainly π0 |=M f , i.e. s |=M f .
Further, π1 |=M E[fUg], i.e. s |=M EX(E[fUg]), by Definition 4.4. Since one of the two
cases on k must hold, we have s |=M g ∨ (s |=M f ∧ s |=M EX(E[fUg]) and we have the
required result by Definition 4.4. ¤
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4.3 The Translation

Formulas of Lµ also describe properties of a system that can be represented as a state
machine. As with CTL , the semantics of a formula is the set of states of the system for
which the formula holds true.

The greater expressive power of Lµ requires a slightly modified version of the Kripke
structure presented for CTL . For Lµ we define a Kripke structure as in Definition 2.1.
Recall that instead of a single transition relation, we now have a set of transition relations
called actions. Note that the transition relations for Lµ need not be total and therefore
paths need not be infinite. The syntax and semantics of Lµ that we follow are those in
Definition 2.2 and Definition 2.3 respectively.

The semantics for both CTL and Lµ are in terms of sets of states. This allows a purely
syntactic translation scheme [36].

Definition 4.8 The translation T from CTL to Lµ is defined by primitive recursion over
CTL formulas as follows

• T (True) = True

• T (p ∈ AP ) = p

• T (¬f) = ¬T (f)

• T (f ∧ g) = T (f) ∧ T (g)

• T (EXf) = 〈.〉T (f)

• T (EGf) = νQ.T (f) ∧ 〈.〉Q

• T (E[fUg]) = µQ.T (g) ∨ (T (f) ∧ 〈.〉Q)

We need to prove this translation correct with respect to the semantics. Since the
underlying models for CTL and Lµ are slightly different, we need to be able to translate a
CTLmodel into an Lµ model. We overload T for this purpose.

Definition 4.9 If M is a Kripke structure as given in Definition 4.1, T M is the Kripke
structure

(AP, S, S0, λa.R, L)

satisfying the construction in Definition 2.1.

We now show that the translation preserves semantics.

Theorem 4.10

∀Mf.[[f ]]M = [[T (f)]]T M⊥

Proof By induction on the definition of f . The propositional fragment is trivial. For
EX, we observe from Definition 4.4 that π1 is a state to which the current state has a
transition. The cases for EG and EU follow from Lemmas 4.6 and 4.7 respectively. In the
backwards direction of the translation for the fixpoints, we need to use Hilbert’s selection
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operator ε to extend the possibly finite paths of the Lµ model to the infinite paths of the
CTLmodel. Details of the proof are given in Appendix B. ¤

The use of ε to extend finite paths to infinite ones is an interesting feature of this
proof and we are considering whether the proof can be done without it. This is not
idle speculation: one of the approaches to providing automatic α-conversion for theorem
provers is based on FM set theory [66]. In FM set theory the axiom of choice does not
hold. This is the only time we use choice in our proofs and removing its use makes a port
to the FM-set-based system possible.

4.4 CTL Model Checking

The CTL symbolic model checking algorithm is simply a procedure that, given M and
a CTL formula f , will return the set (as a BDD) of those states of M that satisfy f .
The notation R(v̄, v̄′) denotes the transition relation for M , where v̄ is shorthand for the
vector (v1, . . . , vn) and v̄′ denotes the next state vector. R(v̄, v̄′) can easily be expressed
as a boolean term (and hence a BDD). Due to Proposition 4.5 it suffices to consider only
EX, EG and EU from the set of operators.

Recall from Lemmas 4.6 and 4.7 that EGf is the greatest fix-point (under subset
inclusion over state sets) of the function τ(Z) = f ∧ EXZ and E[fUg] is the least fix-
point (under subset inclusion over state sets) of the function τ(Z) = f∨(g∧EXZ). These
fix-points are computed by iteratively computing approximations, each step involving a
computation of all states that still satisfy the required property that are reachable in one
more step (also called the relational product computation). Since the system is finite state
and the approximations are increasing sets, we are guaranteed termination. The model
checking algorithm follows.

Definition 4.11 The CTL model checking procedure [[−]]ρM is defined recursively over the
structure of CTL formulae as follows

• [[p ∈ AP ]]ρM = the BDD of the set of states of M in which p is true.

• [[¬f ]]ρM = NOT [[f ]]ρM and [[f ∧ g]]ρM = [[f ]]ρM AND [[g]]ρM

• [[EXf(v̄)]]ρM = [[∃v̄[f(v̄′) ∧ R(v̄, v̄′)]]]ρM , i.e. the relational product.

• [[E[fUg]]]ρM = [[µZ.g ∨ (f ∧ EXZ)]]ρM by Lemma 4.7.

• [[EGf ]]ρM = [[νZ.f ∧ EXZ]]ρM by Lemma 4.6.

From Table 2.1 and Theorem 4.10 we can derive a modified version of the model
checker in Definition 4.11, this time using representation judgements:

Definition 4.12 The CTL model checking procedure using representation judgements,
T [[−]]ρM , is defined recursively over the structure of CTL formulae as follows

• T [[p ∈ AP ]]ρM = T [[T (p)]]ρT M ⊥

• T [[¬f ]]ρM = T [[T (¬f)]]ρT M ⊥ and T [[f ∧ g]]ρM = T [[T (f ∧ g)]]ρT M ⊥



4.4. CTL MODEL CHECKING 51

• T [[EXf ]]ρM = T [[T (EXf)]]ρT M ⊥

• T [[E[fUg]]]ρM = T [[T (E[fUg])]]ρT M ⊥

• T [[EGf ]]ρM = T [[T (EGf)]]ρT M ⊥

By leveraging Theorem 4.10 and using our Lµ model checker, we have avoided the
effort of coding this algorithm from scratch in a fully expansive manner within hol.
Thus adding support for a new temporal logic is as simple as formalising that logic in
hol and proving the correctness of its translation to Lµ (assuming such a translation is
possible; this is true of most widely used temporal logics).

4.4.1 Totalising the Transition Relation

According to Definition 4.1, the transition relation R used in CTLmodel checking must
be total, i.e. every state must have an outgoing transition. This need not be the case
automatically and terminal states with no outgoing transitions may be present. If so, we
need a way to totalise R. The least disruptive way of doing this is to add self-loops to all
terminal states.

We first need to compute the set of reachable states of the system. A state is considered
reachable if it lies on a path from the initial set of states. The formalisation is a simpler
version of the fixed-point formalisation in §2.4.

Definition 4.13 Let ReachableR X =
⋃

n ReachableRecR X n where

ReachableRec R X 0 = X

ReachableRec R X (n + 1) = {s |s ∈ ReachableRecR X n

∨∃s′.R(s′, s) ∧ s′ ∈ ReachableRecR X n}

We then have,

Theorem 4.14

⊢ ∀R X n.

ReachableRecR X n = ReachableRecR X (n + 1)

⇒ ReachableR X = ReachableRecR X n

Proof ReachableRec is monotone. Thus we have that

∀i.ReachableRecR X i =
⋃

j≤i

ReachableRecR X j

and since we have ReachableRecR X n = ReachableRecR X (n + 1), we get

∀i ≥ n.ReachableRecRXn = ReachableRecRXi

by monotonicity. Then we are done by the definition of Reachable. ¤

The set of reachable states is then computed analogously to the way fixed points are
computed in §2.4.2, setting the initial value of X to S0. Having a way of computing the
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set of reachable states is useful in other ways as well. For instance, we use it for deadlock
analysis in §6.3.3. However, our computation is primitive in execution and could take
advantage of optimisations such as frontier set simplification [50].

We can now proceed with the totalisation. The approach is to redefine the transition
relation by setting

Rtotal(s, s′) = R(s, s′) ∨ (Reachable(s) ∧ TS(s) ∧ s = s′)

where Reachable is true of a reachable state and TS is true of a terminal state. Then
Rtotal(s, s′) behaves like R(s, s′) except that additionally, Rtotal(ts, ts) holds for any reach-
able terminal state ts. We overload R and TS to represent the term-BDD as well as the
term representation. The totalisation is then done as follows:

1. Compute a term-BDD for the set of terminal states using the model checker

TS ≡ T [[AXFalse]]ρM

noting that the semantics of AX are not affected by a non-total R.

2. Construct a term-BDD for all states having self-loops

Loops ≡ ρ
∧

i

v′
i = vi 7→ bloops

3. The term-BDD for the totalised R is then given by

BddOr(R, BddAnd(ReachableR S0 v̄, BddAnd(TS, Loops)))

where we overload ReachableR S0 v̄ to represent the term-BDD of the set of reach-
able states.

Henceforth, in the context of CTLmodel checking, we will assume that R is total.

4.5 Concluding Remarks

Formalised translations in the context of formal verification are not new. For instance, a
translation of LTL to ω-automata has been formalised in hol [165]. However, they are
not common, because even simple semantics-based translations require some amount of
manual effort. We have added a new translation that will be useful to us later on, and
perhaps to others on account of the popularity of CTL.

As this result has been mechanised in hol, we can convert a CTLproperty to Lµ, use
the Lµ property checker, and convert the resulting theorem back to a CTLproperty. In
general, we can leverage our existing property checker to verify specifications expressed
in a new logic (embeddable in Lµ) without risking unsoundness caused by an incorrect
translation.

This may seem trivial for CTLbut the translations of other popular logics such as
LTL or CTL* into Lµ are considerably more involved [34, 53] and the chance of an in-
correct implementation correspondingly higher. Our fully-expansive approach towards
integrating model-checking and theorem-proving removes this possibility assuming only
the soundness of the hol kernel and the operating environment.



Chapter 5

Extension II: An abstraction

framework

This chapter demonstrates an integration with hol of a fully automatic counterexample-
guided model reduction technique that draws upon both BDD- and SAT-based technolo-
gies [37, 38, 39].

5.1 Introduction

Unaided model checking techniques are typically unable to verify real-world examples
due to the large number of states involved. Abstraction [52] is considered a promising
approach to handling this problem. The idea is to reduce the number of states of a
model by abstracting away behaviours not essential to the verification. This usually over-
approximates the state space (i.e. some states not reachable in the concrete system may
become reachable in the abstract system) and results in a reduction in the size of the
BDDs generated during model checking. Other techniques use abstraction dynamically
to under-approximate the state space to more directly reduce the size of BDDs [150].

Abstractions can be constructed manually to exploit the structure of the model under
consideration. There are also automatic abstraction techniques which exploit symmetries
and redundancies in the underlying state space [38, 77, 111, 161].

We now build upon our embedded model checker by adding an automatic abstraction
framework. The generic technique is known as counterexample-guided abstraction refine-
ment. We formalise and implement a variant that combines several techniques [37], with
some modifications.

The idea is to perform an initial over-approximating abstraction of the model and
then check for the required property. A positive result in the abstracted system holds in
the concrete system as well (Theorem 5.3). A negative result may be spurious (caused by
extra states added during the over-approximation). In this case we iteratively partially
concretize (or refine) the abstracted state space, until a positive or true negative result is
obtained.

As before, the fully-expansive approach is used and all steps in the computation are
justified by hol proofs. This retains the high assurance of soundness, and also allows us
to use the decision procedures and simplifiers of hol without loss of compositionality.

53
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5.2 Abstraction Refinement in HOL

Automatic abstraction techniques reduce (without manual guidance) the number of states
of a system, so that it is more amenable to model checking. This is typically done
using functional abstraction [38] or Galois connections [77]. Here we use the functional
abstraction approach of Clarke et al [37] that also describes a refinement framework.
A functional abstraction computes an abstraction function h from the concrete to the
abstract state space that is then used to construct the initial abstract model.

As always, our system is represented by a Kripke structure (see Definition 2.1). The
only difference is that each transition relation in T is either of the form

∧n−1
i=0 v′

i = φi(s)
for synchronous or

∨n−1
i=0 v′

i = φi(s) for asynchronous systems,1 where the φi are next-state
formulas over the variables vi of s that determine what the value of each vi should be in the
next state. Each φi is of the form caseψ0(s) → χ0(s)| . . . |ψm(s) → χm(s)|T → χm+1(s)
so that v′

i gets the value of χj(s) where j ≤ m + 1 is the smallest number for which ψj(s)
in φi(s) holds true, ψm+1 being always true. The method we use [37] requires that state
transitions be described in this manner.

One modification we have made to this scheme is to consider the ψj in their entirety
rather than breaking them up into atomic propositions [37]. This is because at the moment
our atomic propositions are boolean atoms only and, as we shall see in §5.2.1, if all the
ψj are boolean atoms than no abstraction takes place.

The abstraction function h : S → Ŝ is a surjection to the set Ŝ of abstract states ŝ
(the construction of h is covered in §5.2.1). We use h to compute the abstract model:

Definition 5.1 Given a model M and an abstraction function h : S → Ŝ, the abstract
model M̂ = (Ŝ, Ŝ0, T̂ , L̂) is generated as follows:

1. Ŝ(ŝ) = ∃s.(h(s) = ŝ) ∧ s ∈ S

2. Ŝ0(ŝ) = ∃s.(h(s) = ŝ) ∧ s ∈ S0

3. T̂ = {
â
→ |∀a ∈ T.ŝ1

â
→ ŝ2 ⇐⇒ ∃s1s2.h(s1) = ŝ1 ∧ h(s2) = ŝ2 ∧ s1

a
→ s2}

4. L̂(ŝ) =
⋃

h(s)=ŝ L(s)

ÂP is simply the smallest set of boolean variables required to enumerate Ŝ.

This is called existential abstraction since we use existential quantification to hide the
variables of the concrete states whose behaviour we wish to ignore.

Definition 5.2 A universal property is a formula f of Lµ such that

∀ a g. 〈a〉g ⊑/NNF f

The abstraction is conserved for universal properties only. We can now give the main
result.

1In synchronous systems, all transition happen simultaneously, thus the system transition relation is
the conjunction of the individual transition betweens states. For asynchronous systems, transitions may
interleave, so the system transition relation is a disjunction.
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Figure 5.1: Overview of Abstraction Refinement Framework

Theorem 5.3 For any universal property f , M̂ ² f ⇒ M ² f

Proof Sketch By induction on f . The abstraction adds extra behaviours to M̂ that were
not present in M . However it does not take away any behaviour, i.e. it computes an
over-approximation. Thus if a property holds in the abstract state space it will hold in
the concrete state space. If a property fails in the abstract it may be because of the
spurious behaviour. Note that this does not hold for a non-universal property such as 〈.〉g
because it might hold true in the abstract system on account of transitions not present in
the concrete system. A universal property never asserts the presence of a transition and
avoids this problem. ¤

This proof is done partially at runtime because at the moment it relies on the actual
abstraction function in use, which only becomes available during execution. Ideally, the
entire proof should be offline.

Figure 5.1 shows the overall framework. If we limit ourselves to universal properties,
then if a property fails in the abstract system we can generate a counterexample trace
in the abstract system and attempt to find a corresponding concrete trace. If one exists
then the property is false in the concrete system and the verification fails. Otherwise
the abstract counterexample was spurious and abstraction is too coarse so we refine it
by splitting some abstract state (found by analysing the counterexample) into smaller
sets of concrete states. We then recheck the property. This is continued until either the
property is verified or a concrete counterexample found. We are guaranteed termination
because each refinement is strict (i.e. all the sets resulting from splitting an abstract state
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are non-empty) and eventually we will end up with the concrete system that cannot be
further refined.

5.2.1 Generating the Initial Abstraction

The first step is to generate the initial abstraction. The idea is to compute an abstraction
function h that can then be used to generate the abstract model M̂ as in Definition
5.1. Intuitively, this function groups together into one abstract state all concrete states
that cannot be distinguished by the atomic propositions in AP . For example, if AP =
{x < y, x > y} then a state set {(1, 2), (3, 4), (6, 5), (9, 8)} would be partitioned into
{(1, 2), (3, 4)} and {(6, 5), (9, 8)}. One additional improvement is to first partition AP so
that no partition has a free variable in common.

More precisely,

1. Let (v0, v1, . . . , vn) be any state si.

2. Let the transition relation → be given by
∧

i v
′
i = φi(s) (or

∨

i v
′
i = φi(s) for asyn-

chronous systems). Let F be the set of all ψj occuring in the next-state formulae
φi.

3. Let ψi ≡ψ ψj ⇐⇒ vars(ψi) ∩ vars(ψj) 6= ∅.

4. Let FCi be the m partitions of F induced by ≡ψ.

5. Let V Ci =
⋃

ψ∈FCi
vars(ψ). Let DV Ci

=
∏

vj∈V Ci
Dvj

.

6. Let hi : DV Ci
→ D̂i (where D̂i is a component of the abstract domain) be defined

by hi(sj) = hi(sk) ⇐⇒ ∀ψ ∈ FCi.sj ² ψ ⇐⇒ sk ² ψ

7. Then h :
∏

i DV Ci
→

∏

i D̂i = (h0, . . . , hm−1).

Note that
∏

i DV Ci
= S up to reordering of the positions of the vi ∈ V in the state tuple.

Since the actual computation for application of h to concrete states occurs in the BDD
operations where this order is irrelevant, an explicit reordering is not required. Thus we
can consider the domain of h to be S without any problems.

The manner in which h is computed in step 6 above is the reason why we do not break
the ψ-formulas down to boolean atoms (we remarked on this on page 54 in §5.2). Clearly,
no two states will agree on the value of all boolean atoms unless they are the same state
and so each abstract state would contain only one concrete state, defeating the purpose
of the whole exercise.

We can now construct M̂ . Once we have M̂ , we have no further use for h. Technical
details about the construction of h are covered in §5.3.1.

5.2.2 Counterexample Generation

A counterexample is a sequence of states starting with an initial state and following
transitions to a state violating the property being verified.
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Computing a path to a given set of states using representation judgements in hol has
already been done [74]. Given a model M and a target set X, the method returns a list
of theorems of the form

[s0
a0→ s1, s1

a1→ s2, . . . , sn−1
an−1

→ sn]

tracing out a path in M such that s0 ∈ S0 and sn ∈ X.
This is easily adapted to generate counterexamples. We set X to the set of states

satisfying the property being checked (this set already having been computed by a model
checking run that ended in failure) and retrieve the desired list of theorems. It is then
a simple matter of using Lµ semantics together with the structure of M to represent the
counterexample by the judgement

ρ s ²
⊥
M 〈a0〉〈a1〉 . . . 〈an−1〉¬X 7→ b

where each ai ∈ T .
Depending on circumstances, either this or the earlier form of the counterexample can

be used for further analysis.

5.2.3 Concrete Counterexample Detection

If the verification fails, the model checker can generate a counterexample trace. Our
technique for detecting whether a concrete counterexample exists uses SAT solvers [39]
and is best illustrated by an example.

Figure 5.2 shows a system with S = {0, 1, 2, 3, 4, 5}. The abstract states are {a, b, c}
and the dashed circles indicate the concrete states they contain. Solid arrows represent
transitions in the concrete system and dashed arrows represent transitions in the abstract
system. The initial states are 0 and 1 and concentric-circles represent states reachable
from the initial states. Note that the abstraction introduces extra behaviour by making
states 4 and 5 reachable in the abstract system by making c reachable.

Suppose we check for a property f that holds in {0, 1, 2, 3} but not in {4, 5}. We will
get an abstract counterexample trace2 〈a, b, c〉.

In general, given an abstract counterexample 〈ŝ0, ŝ1, . . . , ŝk〉, we attempt to find a
corresponding concrete counterexample 〈s0, s1, . . . , sk〉. To determine whether such a
concrete trace exists, we try to find a satisfying assignment for the formula

S0(s0) ∧
k−1
∧

i=0

si
.
→ si+1 ∧

k
∧

i=0

h(si) = ŝi

2We overload the 〈−〉 notation to represent a sequence of states.
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using a SAT solver.

If a concrete trace is found, the verification has failed and we are done. Otherwise
we set k = 0 and attempt to find the longest prefix of 〈ŝ0, . . . , ŝk〉 for which there is a
concrete trace by running the SAT tool on the formula above for increasing values of k.

In our example, there is no concrete counterexample and the longest prefix is 〈a, b〉.
This information is then used to refine the offending (because it is at the end of the prefix)
state b into smaller abstract states.

5.2.4 Refining the Abstraction

We would like to find the coarsest possible refinement, i.e. the fewest possible splits of the
abstract state. Our technique for refinement employs BDDs to get good results. We de-
veloped this technique ourselves since the work we are using [37, 39] provides incompatible
refinement methods.

Consider Fig. 5.3 representing the same system as Fig. 5.2. We know that we need to
refine abstract state b. Since the spurious behaviour is created by an unreachable state 3
in b having a transition to 4, we need to split all such states from the reachable states (in
this case just {2}).

To do this, we compute the state sets

bad = EXc = {3}

and

dead = b\bad = {2}

where EXf computes all states such that there is a transition to a set in which the
property represented by f is satisfied. In our case the property c yields precisely the set
{4, 5}. This computation is done using standard BDD methods.

Intuitively the dead states are reachable “dead-ends” and the bad states are the ones
causing the trouble by contributing to the creation of spurious behaviour.

We can now replace the abstract state b in the abstraction by the abstract states dead
and bad and repeat the procedure until the property is verified or a counterexample is
found. In this case the abstract state c is no longer reachable and thus f is verified.

In a more complex system, several such refinements may be required before the either
the property is verified or a concrete counterexample is found.
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5.3 Implementation Issues

Figure 5.4 gives an overview of the implementation. It should be noted that the system
is fully automatic and relies on fully-expansive proof at every step of the way.

The only exception to this are the dotted lines indicating the use of an external BDD
engine. However, we use an LCF-style interface [74] to this engine which gives higher
assurance of soundness than integrating it as a one-shot proof rule as has been done in
[14, 154].

The SAT engine we used is also external to hol [73, 94]. However, checking the
satisfiability of an assignment is in general much easier than finding such an assignment.
Thus we use the SAT engine to obtain an assignment but check its validity by proof
in hol. Thus the use of the SAT engine does not risk introducing unsoundness in the
system.

The ACTL to Lµ translation is not a requirement. However, recall that only universal
properties can be used in this framework. Lµ is a fairly non-intuitive logic and it is hard
to manually check that an Lµ property is indeed universal. Thus we also accept properties
in the more intuitive logic ACTL, which is the universal fragment of CTL . That a formula
is in ACTL can easily be checked by a predicate on CTL formulas. Thus universality is
enforced automatically because the HOL translation from CTL to Lµ in Chapter 4 is done
by proof based on the semantics of the two logics.

5.3.1 Constructing Equivalence Classes

Note that step 6 of initial abstraction generation is in effect inducing equivalence classes of
concrete states over each component DV Ci

of S. When constructing a BDD representation
of h to assist with the construction of M̂ it is easier to compute these equivalence classes
directly.

However, the standard BDD methods for finding equivalence classes work by detecting
strongly connected components (SCCs) in the graph representation of the model. SCC
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detection requires a total transition relation which is usual when verifying properties in
CTL . This is not guaranteed in our more general case with Lµ. We have devised the
following algorithm for partitioning a given DV Ci

with respect to satisfiability of the
ψ ∈ FCi.

The term hi(sj) = hi(sk) can be considered as a relation R′(sj, sk) on states. This
relation induces the partitions we wish to compute. However R′ can also be considered
a transition relation on DV Ci

, with there being a transition between two states precisely
when hi agrees on them as defined by step 6 of §5.2.1.

Define the modality EP as the temporal inverse of EX, i.e. EPf computes states such
that there is a transition from states satisfying f to these states.

Now we compute as follows:

1. Let X = DV Ci
. Let P = [].

2. If X = ∅ we are done.

3. Let s be an arbitrary “seed” state in X (found using the BDD engine’s satisfying
assignment finder).

4. Set S = X,T = R′ and use the model checker to compute3

Y = T [[(µQ.s ∨ EXQ) ∨ (µQ.s ∨ EPQ)]]ρM ⊥

Then Y is the set of all states from which s is reachable together with the set of all
states reachable from s.

5. Let P = Y :: P

6. Let X = X\Y and repeat from step 2.

At the end of this the list P will contain the required partitions. Now each abstract
state in D̂i corresponds to one of these partitions. Thus we need n̂ = ⌈log2|P |⌉ abstract
state variables v̂0, . . . , v̂n̂. Our formalisation equates each element Y in P with the pred-
icate SCC M si where si was the particular seed state used to generate that Y . More
precisely,

SCC M si = ReachFrom M si ∪ ReachToM si

where

ReachFrom M si = [[µQ.si ∨ EXQ]]M ⊥

and

ReachToM si = [[µQ.si ∨ EPQ]]M ⊥

The required fixed-point theorems for ReachFrom and ReachTo are formalised in a
manner similar to the predicate Reachable in §4.4.1. In fact, ReachTo and Reachable are
exactly the same.

3We abuse notation here by mixing Lµ and CTL operators. This is not a problem as Lµ admits a
syntactic embedding of CTL . We also need to add the ability to compute EP to the model checker. This
is easy.
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Then the judgement representing the component hi of the abstraction function looks
like

ρ

|P |
∧

i

SCC M si = t(i) 7→ b

where the function t simply generates a binary representation of i in terms of the abstract
state variables, e.g. t(0) = ¬v̂0 ∧ . . .∧¬v̂n̂ and so on. |P | can be quite large, but since we
have no use for the term representation of hi, we once again use the trick of abbreviating
the term part of the judgement above using a predicate specially defined for the purpose.
Nevertheless, simply having to generate such a large term is less than ideal and we are
looking at ways of abbreviating the term on the fly.

5.4 Related Work

Abstraction refinement for model checking in the context of theorem proving has also
been done before [14, 161].

The first work [161] presents an abstraction framework based on Galois connections in
which refinement is done by adding the failed predicates from the previous proof attempt
to get a richer abstract domain. Since the system is implemented as an atomic proof
rule, access to the procedures and simplifiers in pvs itself for the purposes of the system
cannot be done within the encompassing derivation tree. This inhibits a fully-expansive
implementation of the system. It also restricts compositionality because, for instance, the
system is unable to return a counterexample trace upon failure thus any counterexample
guided predicate discovery system [54] cannot be used.

This work as well as the method we have used were both influenced by earlier work on
refinement [57], in which both the abstraction and refinement processes are manual but
the general approach is the same.

The second work [14] has a proof system for Lµ that relies on proof rules being executed
by various decision procedures than can be plugged in according to need. This gives the
framework great versatility in the choice of tools to be used to attack a given problem.
More details on this work are given in §8.4.

5.5 Conclusion

Our approach is flexible in that any proof rule of hol at any level of abstraction can
be called upon at any time during the execution of the procedure. This enables us to
provide an entire run of the procedure as a derivation tree that can be plugged into any
other proof. This high level of integration guarantees compositionality and makes the
framework extendible. Thus we are able to use a BDD engine, a SAT engine and various
hol procedures in the same framework.

At the same time, the execution is fully expansive. All steps are accompanied by the
application of a hol proof rule. Thus we have a high assurance of soundness.

However, having to do fully expansive proof for the equivalent of fast BDD operations
necessarily involves a performance penalty. We can ameliorate this by manipulating the
higher order equivalents of the propositional terms being manipulated by the BDD and
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SAT engines. Performance optimizations are often non-trivial and not just a question
of better engineering (see end remarks in §5.3.1 for example). The performance is being
improved continually, but it may be some time before we can compete with state-of-the-art
non-proof-driven systems.

In the current system the p ∈ AP are restricted to propositional expressions. We hope
to extend this to include Presburger formulae and – trading off some automation – full
arithmetic and real numbers, leveraging the facilities in hol for deciding these.

For concreteness, Appendix C demonstrates this system for a trivial example.



Chapter 6

Case study I: A bus architecture

We have seen how our platform can be seamlessly and securely extended to support new
model checking techniques. However, we have yet to exhibit any synergy (other than
increased confidence in the soundness of the tool) from the combination thus achieved. In
this chapter we use a case study to demonstrate how the theorem proving component can
help with the verification in various ways, and also that the model checking component,
though in its infancy, can handle more than just toy examples.

Typical microprocessor and memory verifications assume direct connections between
processors, peripherals and memory, and zero latency data transfers. They abstract away
the data transfer infrastructure as it is not relevant to the verification. However, this
infrastructure is in itself quite complex and worthy of formal verification.

The Advanced Microcontroller Bus Architecture1 (AMBA) is an open System-on-
Chip bus protocol for high-performance buses on low-power devices. In this chapter we
implement a simple model of AMBA and use the tools developed so far to check latency,
arbitration, coherence and deadlock freedom properties of the implementation.

6.1 AMBA Overview

The AMBA specification defines three buses:

• Advanced High-performance Bus (AHB): The AHB is a system bus used for com-
munication between high clock frequency system modules such as processors and
on-chip and off-chip memories. The AHB consists of bus masters, slaves, an arbiter,
a signal multiplexor and an address decoder. Typical bus masters are processors
and DMA devices.

• Advanced System Bus (ASB): The ASB is also a system bus that can be used as
an alternative to the AHB when the high-performance features of AHB are not
required.

• Advanced Peripheral Bus (APB): The APB is a peripheral bus specialised for com-
munication with low-bandwidth low-power devices. It has a simpler interface and
lower power requirements.

1 c©1999 ARM Limited. All rights reserved. AMBA is a trademark of ARM Limited.
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Figure 6.1: Typical AMBA-based Microcontroller

Designers can use either the AHB or the ASB in conjunction with the APB. The
APB has a single bus master module that acts as a bridge between the AHB or ASB and
the APB. The AMBA specification is hardware and operating system independent and
requires very little infrastructure to implement. Figure 6.1 shows a typical AMBA-based
microcontroller. We follow revision 2.0 of the AMBA specification [8].

6.2 AMBA APB

The APB is optimized for low power consumption and low interface complexity. It is
used for connecting the high-bandwith system bus to low-bandwidth peripherals such as
input devices. There is a single bus master, a single global clock and all transfers take
two cycles. The bus master also acts as a bridge to the system bus, to which it can be
connected as a slave. The address and data buses can be up to 32 bits wide.

6.2.1 Specification

The operation of the APB consists of three stages, all of them are triggered on the rising
edge of the clock:

1. IDLE. This is the initial and the default state of the bus when no transfer is under-
way.

2. SETUP. The first stage of a transfer is a move to the SETUP state. The address,
data and control signals are asserted during this phase but may not be stable. This
stage always lasts for one clock cycle and then the operation moves to the ENABLE
stage.

3. ENABLE. The address, data and control signals are stable during this phase. This
phase also lasts one clock cycle and then moves to the SETUP or the IDLE stage
depending on whether or not another transfer is required.



6.2. AMBA APB 65

Table 6.1: AMBA APB Signals
Signal Description

PCLK The bus clock. The rising edge is used to trigger all APB signals.
PRESET The reset signal. Resets the bus to the IDLE state. It is the only

signal that is active low.
PSELx This signal indicates that slave x is selected and a transfer is re-

quired, thus moving the bus from the IDLE to the SETUP stage.
There is a unique line for each slave on the bus.

PENABLE This signal triggers a move from the SETUP to the ENABLE stage,
when the data and address buses are actually sampled.

PWRITE When high this signal indicates a write access, when low a read
access.

PADDR[31:0] The address bus. Can be up to 32 bits wide and is driven by the
bus master.

PRDATA[31:0] The read data bus. It can be up to 32 bits wide and is driven by
the selected slave (see PSELx) during a read access.

PWDATA[31:0] The write data bus. It can be up to 32 bits wide and is driven by
the bus master during a write access.

Table 6.1 lists all APB signals and their function. Each signal name is prefixed with
P to denote that this is an APB signal.

Bus Master

There is a single bus master on the APB, thus there is no need for an arbiter. The
master drives the address and write buses and also performs a combinatorial decode of
the address to decide which PSELx signal to activate. It is also responsible for driving
the PENABLE signal to time the transfer. It drives APB data onto the system bus
during a read transfer.

Slave

An APB slave drives the bus during read accesses. This can be done when the appropriate
PSELx is high and PENABLE goes high. PADDR is used to determine the source
register.

In a write transfer, it can sample write data at the edge of PCLK or PENABLE,
when its PSELx signal is high. Then PADDR can be used to determine the target
register.

6.2.2 Implementation

We implement the APB by following the specification in a straightforward manner without
any optimizations. We need to implement the model as a state machine MAPB. In this
case, a state is a tuple of all the signals considered as boolean variables. We use the
standard convention of using primes to denote components of the target (or next) state
in a transition.
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Definition 6.1

s̄APB = (PCLK,PRESET, PSELx, PENABLE,PWRITE,

PADDR[31 : 0], PRDATA[31 : 0], PWDATA[31 : 0])

and s̄′APB represents s̄APB with all components primed.

Note that PSELx represents several variables, and PADDR[31 : 0], PRDATA[31 : 0]
and PWDATA[31 : 0] can each represent up to 32 variables. Henceforth, we will use this
notational convention to abbreviate parameterised signals and address and data buses.

Assumptions

Some simplifying assumptions:

1. All signals are valid throughout, i.e. there is no glitching.

2. Sub-cycle timing (i.e. timing delays between signals becoming stable after changing)
is ignored.

3. Since there is a single global clock triggering all signals, transitions of the state ma-
chine are synchronous. For the same reason, it suffices to model the clock implicitly
by equating one transition of the system to one clock cycle.

4. Endian-ness is not fixed, but is required to be consistent throughout.

5. We do not model reset as it is easy to do so but its presence trivially guarantees
absence of deadlock.

These assumptions preserve the properties of the model that we are interested in.

The Model

We first need to define our state machine as a Kripke structure following Definition 4.1.
S and L are defined in the obvious manner. MAPB is then described by an initial states
predicate S0APB on states, and a transition predicate RAPB which is a relation on states
and is a conjunction – since the state machine is synchronous – of the transition relations
for the components of the bus. As much as possible of the internal behaviour of the
master and slaves has been abstracted.

The initial states predicate says simply that we start in the IDLE stage.

Definition 6.2

S0APB(s̄APB) =
∧

x

¬PSELx ∧ ¬PENABLE

We need two transition relations, for the master and for slaves.
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Definition 6.3

Rmaster
APB (s̄APB, s̄′APB) =

(PENABLE ′ ⇐⇒ PSELx ∧ ¬PENABLE) (6.1)

∧ (PWRITE ′ ⇐⇒ PSELx ⇒ PWRITE) (6.2)

∧ (PADDR′
b ⇐⇒ PSELx ⇒ PADDRb) (6.3)

∧ ((PSELx ⇐⇒ ¬PENABLE) ⇒ PSEL′
x) (6.4)

∧ (Mst′r,b ⇐⇒ if (¬PWRITE ∧ ((r, b) = DECODE(PADDR))

∧PSELx ∧ PENABLE)

then Slvx,r,b else Mstr,b) (6.5)

Note that some of the transition conditions represent schema. PADDRb represents
line b of the address bus, Mstr,b represents bit b of register r of the master, and Slvx,r,b

represents bit b of register r of slave x, where the x is the same as the x in PSELx. We
use Mst and Slv to model actual master and slave registers because it is easier to check
coherency properties this way rather than by modelling the data buses PRDATA and
PWDATA, specially since we are ignoring glitching and sub-cycle timing.

Line 6.1 of Definition 6.3 drives PENABLE to high immediately after the cycle in
which PSELx goes high. Line 6.2 latches the value of PWRITE once PSELx is high.
Line 6.3 does the same for PADDR. Line 6.4 ensures that PSELx stays high in the
ENABLE stage. Finally, line 6.5 ensures that the master regisers are updated correctly;
the DECODE function recovers which bit of which register of the master is to be updated.

Slaves have a very simple transition relation.

Definition 6.4

Rslave
APB(s̄APB, s̄′APB) =

Slv′
x,r,b ⇐⇒ if (PWRITE ∧ ((r, b) = DECODE(PADDR))

∧PSELx ∧ PENABLE)

then Mstr,b else Slvx,r,b

The definition ensures that slave registers are updated correctly.
The APB transition relation is just the conjunction of the transition relations for the

master and slave modules.

Definition 6.5

RAPB(s̄APB, s̄′APB) =

Rmaster
APB (s̄APB, s̄′APB) ∧ Rslave

APB(s̄APB, s̄′APB)

6.2.3 Verification

We verify three types of properties for our APB implementation. In all cases, a property
is considered verified if the set of satisfying states include the initial states. This condition
can be built into the properties but we do not do so to avoid computing the set of initial
states repeatedly.
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Latency

Latency properties check that the bus becomes available within a given number of cy-
cles. We can use them to check that wait and/or transfer times do not exceed design
specifications. In our case, we want to confirm that all transactions take precisely two
cycles.

Unfortunately this property cannot be represented in CTL , since it needs to be of the
schematic form

AG(A(X(¬PENABLE ∧ PSELx) ⇒ XAXAX(PSELx ∧ PENABLE)))

which is a CTL * property.
We have not yet implemented a translation from CTL * to Lµ, so we are unable to

check this property. The best we can do with CTL is the property schema

AG(¬PENABLE ∧ PSELx ⇒ AX(PSELx ∧ PENABLE))

which checks that once a transfer starts, it finishes in the next cycle. Running this through
the model checker returns the required theorem.

Theorem 6.6

⊢ ∀s̄APB.

s̄APB ²MAPB
AG(¬PENABLE ∧ PSELx

⇒ AX(PSELx ∧ PENABLE))

Theorem 6.6 is actually a family of theorems indexed by x, since the property was stated
as a schema. Each theorem in the family is model checked separately. This applies to
all theorems in this chapter that correspond to property schema, though we shall refer to
each family as a Theorem to preserve the correspondence with the the associated property.

We mention in passing that the model checker would actually have returned the the-
orem

⊢ ∀s̄APB.

s̄APB ²
⊥
T (MAPB) T (AG(¬PENABLE ∧ PSELx

⇒ AX(PSELx ∧ PENABLE)))

from which Theorem 6.6 is derived using Theorem 4.10. This applies to all other theorems
returned by the model checker where we checked for CTLproperties.

We can express the CTL * property directly in Lµ but this approach is best avoided
as we currently lack the safety net of a formal translation from CTL * and Lµ is fairly
non-intuitive to work with. However, we are able to get around this problem in the next
section.

Coherence

Coherence properties check data coherency, i.e. registers are updated correctly at the end
of transfers. Since transfers are multi-cycle, target registers are not updated immediately.
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Thus by checking that the update happens in precisely two cycles, we can also check the
transfer time. The required CTLproperty schema is

AG

((¬PENABLE ∧ PSELx ∧ PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ ((AXAXSlvx,r,b) ⇐⇒ Mstr,b))

∧ (¬PENABLE ∧ PSELx ∧ ¬PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ (Slvx,r,b ⇐⇒ (AXAXMstr,b))))

in which we can check coherency and a two-cycle transfer time simultaneously. The
two conjuncts check for coherency during write and read cycles respectively. The model
checker returns the required theorem.

Theorem 6.7

⊢ ∀s̄APB.

s̄APB ²MAPB

AG

((¬PENABLE ∧ PSELx ∧ PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ ((AXAXSlvx,r,b) ⇐⇒ Mstr,b))

∧ (¬PENABLE ∧ PSELx ∧ ¬PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ (Slvx,r,b ⇐⇒ (AXAXMstr,b))))

Deadlock Freedom

In concurrency theory, the term deadlock refers to an abnormal termination or freeze of
the system. In terms of automata such as Kripke structures, this may be represented by
a state with no outgoing transitions.

We can check that this undesirable situation does not occur. Since our transition
relation has been defined by assigning all next-state variables some value in each cycle,
the simple CTLproperty

AGEXTrue

(to check that there is no terminal state) is in a sense vacuously true and does not tell us
anything.

On account of this, we need to have some criterion for system deadlock. We know
that once a transfer is underway, it always completes, by Theorem 6.6. So it remains only
to check that a transfer can always be initiated. This can be checked by the following
property schema:

AG(AF(PSELx⊕̄PENABLE ⇒ EXPSELy))
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where ⊕̄ is negated exclusive-OR. This property checks that PSEL (for any slave) can
go high if the APB is idle or has just finished a transfer. The model checker returns the
required theorems.

Theorem 6.8

⊢ ∀s̄APB.

s̄APB ²MAPB
AG(AF(PSELx⊕̄PENABLE ⇒ EXPSELy))

6.3 AMBA AHB

The AHB is a pipelined system backbone bus, designed for high-performance operation.
It can support up to 16 bus masters and slaves that can delay or retry on transfers. It
consists of masters, slaves, an arbiter and an address decoder. It supports burst and split
transfers. The address bus can be up to 32 bits wide, and the data buses can be up to
128 bits wide. As before, there is a single global clock.

We choose to model the AHB rather than the ASB because the AHB is a newer design
and also because it has been designed to integrate well with the verification and testing
workflow.

6.3.1 Specification

The operation of the AHB is too complex to be specified in terms of a few fixed stages. A
simple transfer might proceed as follows (the list numbering below is not cycle accurate):

1. The AHB is in the default or initial state. No transfer is taking place, all slaves are
ready and no master requires a transfer.

2. Several masters request the bus for a transfer.

3. The arbiter grants the bus according to some priority-scheduling algorithm.

4. The granted master puts the address and control information on the bus.

5. The decoder does a combinatorial decode of the address and the selected slave
samples the address.

6. The master or the slave put the data on the bus and it is sampled. The transfer
completes.

Items 4-5 above constitutes the address phase of a transfer, and 6 constitutes the
data phase. Since the address and data buses are separate, the address and control
information for a transfer are driven during the data phase of the previous transfer. This
is how transfers are pipelined. Several events can complicate the basic scenario above:

• The master or the slave may extend the transfer by inserting idle cycles or wait
states during the transfer.

• The master may indicate a burst in which case several transfers occur end-to-end.
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Table 6.2: AMBA AHB Master Signals
Signal Driver Description

HADDR[31:0] Master The address bus. Up to 32 bits wide.
HTRANS[1:0] Master Indicates the type of the current trans-

fer. These can be idle (IDLE), busy
(BUSY), non-sequential (NSQ) or se-
quential (SEQ).

HWRITE Master When high this indicates a write trans-
fer (master to slave) and a read when
low.

HBURST Master Indicates if the transfer forms part of a
burst.

HWDATA[127-31:0] Master The write data bus. Can be up to 128
bits wide.

HBUSREQx Master When high indicates to the arbiter that
master x is requesting the bus. There
is a separate bus request line for each
master.

• The slave may report an error and abort the transfer.

• The slave may signal a split or a retry, indicating it cannot at the moment proceed
with the transfer. In this case the master may relinquish the bus and complete the
transfer later (split) or not leave the bus and complete the transfer once the slave
is ready (retry).

Tables 6.2, 6.3 and 6.4 list the AHB master, slave and other signals respectively and
their function. Each signal name is prefixed with H to denote that this is an AHB signal.

Masters

The AHB supports up to 16 bus masters. Each master wishing to initiate a transfer
competes for a bus grant from the arbiter and has its control and address signals driven
to the slave when it gets the bus.

If a master x does not wish to initiate a transfer it drives HBUSREQx to low and
if it owns the bus it also drives HTRANS to IDLE. To initiate a transfer, it drives
HBUSREQx high. Upon getting bus ownership (checked via HGRANTx, HMASTER
and HREADY ), the address and control signals are driven onto the bus for exactly one
cycle. To initiate the transfer, the master drives HTRANS to NSQ (which abbreviates
“non-sequential”). It also drives HBURST to low indicating a single transfer, or to high
indicating a four-beat burst. All this happens during the one-cycle address phase.

In the next cycle, the master drives the data on to the data buses (or samples it in
case of a read). If this is a burst, then the master also continues to drive the control
signals and increment the address signals to prepare for the next beat of the burst. In
the middle of a burst HTRANS is driven to SEQ.
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Table 6.3: AMBA AHB Slave Signals
Signal Driver Description

HRDATA[127-31:0] Slave The read data bus. Can be up to 128
bits wide.

HSPLITx[15:0] Slave This is used by a slave x to tell the ar-
biter which masters should be allowed
to re-attempt a split transfer. Each bit
corresponds to a single master.

HREADY Slave When high indicates that a transfer is
complete. Slaves can drive this low to
insert wait states.

HRESP[1:0] Slave Allows the slave to provide additional
information about a transfer. The re-
ponses are okay (OK), error (ERR),
retry (RETRY) and split (SPLIT).

Table 6.4: AMBA AHB System, Arbiter and Decoder Signals
Signal Driver Description

HCLK Clock The bus clock. The rising edge is used
to trigger all AHB signals.

HRESET System The reset signal. Resets the bus to the
default state. It is the only signal that
is active low.

HGRANTx Arbiter When high indicates that master x cur-
rently has the highest priority for get-
ting the bus. Bus ownership does not
actually change till the current transfer
ends.

HMASTER[3:0] Arbiter Indicates which master is currently per-
forming a transfer (and thus has the
bus). Its timing is aligned with the ad-
dress phase of the transfer. Used by
SPLIT-enabled slaves.

HSELx Decoder This signal indicates that slave x is se-
lected for the current transfer. There
is a unique line for each slave on the
bus. This signal is arrived at by decod-
ing the higher order bits of the address
bus.
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It should be noted that in the last beat of a burst (or the one-cycle data phase of a
single transfer) the information on the control and address buses is driven by the master
that next has control of the bus, or by a default master (usually the highest priority
master) if no master wishes to acquire the bus. In the latter case, the default master can
simply drive HTRANS to IDLE in which case the other signals are ignored. We will
assume that Master 1 is the default master. Master 0 is reserved as a dummy master
which guarantees to generate only IDLE transfers, and is granted the bus if all other
masters are waiting on SPLIT transactions.

Responses to Slave Signals Masters need to respond to the following slave signals:

• If the slave drives HREADY to low, then the master must continue the assert the
same control, address and data signals in the next cycle, and continue this until
HREADY is high again.

• If the slave drives HRESP to ERR, the master may abort the transfer or continue
with it.

• If the slave drives HRESP to SPLIT, the arbiter will grant the bus to another
master. In this case the first master waits until it is given the bus again. The bus
protocol only allows for masters to have one outstanding SPLIT transfer. Thus upon
regaining the bus the master can continue with the transfer as before. However, a
slave need not remember the control and address information and the master should
broadcast this information first before driving/sampling the data buses.

• If the slave drives HRESP to RETRY, the master simply retries the transfer until
it is completed, which is indicated by the slave signalling OK. To prevent deadlock,
only one master can access a slave that has issued the RETRY reponse.

Multiplexor

The bus uses a central multiplexor interconnect scheme. All masters drive their address
and control signals and the arbiter decides which master’s signals are routed on to the
slaves.

Arbiter

The arbiter uses some arbitration algorithm (e.g. round-robin scheduling; AMBA does
not specify or recommend any particular algorithm) to decide which master to grant the
bus to. Actual bus ownership is not handed over until the current transfer completes.

Additionally, the arbiter is responsible for keeping track of masters (by internally
masking their bus requests) that have SPLIT transfers outstanding and granting the bus
to the highest priority one when the corresponding slave signals (via HSPLITx) that is
it ready to continue the transfer.
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Decoder

The decoder simply performs a direct decode of the address bus. The appropriate
higher order bits give the value of HSELx and the rest are used by slaves to determine
source/target registers.

Slaves

Once a transfer begins it is up to the slave to determine how it proceeds. The slave can
do one of the following:

• If all is well, the slave responds by driving HREADY to high and HRESP to OK,
and the transfer is straightforward.

• If the slave needs a little time during the data phase, it can extend the phase by
inserting wait states by driving HREADY to low and HRESP to OK. Note that
the address phase cannot be extended.

• If the slave cannot complete the transfer immediately it can issue a SPLIT response
if it is SPLIT-capable. SPLIT-capable slaves need to be able to record the numbers
of up to 16 masters to prevent deadlock. When ready, they activate the appropriate
bits on HSPLITx to indicate which master(s) the slave is ready to communicate
with and continue with the transfers.

• If a non-SPLIT-capable slave cannot complete a transfer immediately it drives
HRESP to RETRY. To prevent deadlock, it must record the number of the cur-
rent master and ensure that an ensuing transfer is with the same master, until the
RETRY’d transfer is complete. If the master is not the same, the slave has the
option of issuing an ERR, generating a system level interrupt or a complete reset.

• In case of a complete failure, the slave drives HRESP to ERR, and ignores the rest
of the transfer.

The RETRY, SPLIT and ERROR responses take two cycles (HREADY is low in the
first cycle, high in the second), to give the master time to re-drive the address and control
signals onto the bus.

6.3.2 Implementation

We implement the AHB by following the specification in a straightforward manner with-
out any optimizations. We need to implement the model as a state machine MAHB,
representing a state of MAHB by s̄AHB.

Definition 6.9

s̄AHB = (HTRANS[1 : 0], HREADY,HRESP [1 : 0], HSPLITx[15 : 0],

HGRANTx, HBUSREQx, HSELx, HADDR[31 : 0],

HMASTER[1 : 0], HBURST,HWSx, BBx, HMASKx,

HSLV SPLITx)
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We write s̄′AHB to represent s̄AHB with all components primed.
The HWSx, BBx, HMASKx and HSLV SPLITx signals are not part of the speci-

fication but are required by the implementation to count elapsed wait states and burst
beats, and for the arbiter and slaves’ internal bookkeeping. We shall refer to HWSx and
BBx as counters.

Assumptions and Limitations

All assumptions made in §6.2.2 hold. We have made some additional assumptions to
simplify the implementation a little.

Most importantly, we have not implemented the datapath. Datapath implementation
and verification has already been demonstrated in §6.2 and verifying datapath properties
for AHB is presently beyond the capabilities of our under-development model checker.
The interesting aspects of the AHB all lie in the control circuitry. Other assumptions are:

• All bursts are four beats long. This encompasses all possible interactions that would
be added by considering longer bursts.

• All bursts align at word boundries. Having non-aligned data does not affect the
logical behaviour of the system but would increase the time to implement a working
model. In fact, we restrict transfer size to be of word length.

• Slaves can insert up to four wait states. The specification leaves the actual number
up to the implementer, but recommends no more than 16.

• We implement only three masters and two slaves. Again, this is the minimum
number that encompasses all possible interactions and was considered sufficient for
the purposes of this case study. With no datapath, the current system should scale
up to the maximum easily without increasing the difficulty of model checking.

We have also not implemented some aspects of the specification (these and any signals
they use have been left out of §6.3.1):

• Protection mechanisms are left out. These are given as optional in the specification.

• Locked bus access is left out.

The Model

As before, MAHB is then described by an initial states predicate S0AHB on states, and a
transition predicate RAHB. Due to the added complexity in the AHB, we define initial and
transition predicates for the arbiter, decoder, multiplexor, masters, slaves and counters
separately and take their conjunction to give the predicates for the system as a whole.

To improve readibility, we first define some predicates that abbreviate commonly used
signal combinations:

Definition 6.10 Abbreviations:

• Transfer types
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1. Idle: IDLE(HTRANS[1 : 0]) = ¬HTRANS0 ∧ ¬HTRANS1

2. Busy: BUSY (HTRANS[1 : 0]) = HTRANS0 ∧ ¬HTRANS1

3. Non-seq: NSQ(HTRANS[1 : 0]) = ¬HTRANS0 ∧ HTRANS1

4. Sequential: SEQ(HTRANS[1 : 0]) = HTRANS0 ∧ HTRANS1

• Slave reponses

1. Okay: OK(HRESP [1 : 0]) = ¬HRESP0 ∧ ¬HRESP1

2. Error: ERR(HRESP [1 : 0]) = HRESP0 ∧ ¬HRESP1

3. Retry: RETRY (HRESP [1 : 0]) = ¬HRESP0 ∧ HRESP1

4. Split: SPLIT (HRESP [1 : 0]) = HRESP0 ∧ HRESP1

• Burst types

1. Single transfer: SINGLE(HBURST ) = ¬HBURST

2. 4-beat incrementing burst: INC4(HBURST ) = HBURST

To further avoid clutter, we will elide the arguments to the abbreviation predicates.
Thus IDLE stands for IDLE(HTRANS[1 : 0]). Of course this elision is not carried out
in the theorem prover itself since that would cause a typing error. Also, we will prime the
abbreviation name to denote the priming of the signals it is defined over.

We now define the initial state predicates:

Definition 6.11 Initial state predicates are defined as follows :

• Arbiter

S0
arbiter
AHB (s̄AHB) =

∧

x 6=1

¬HGRANTx ∧ HGRANT1 ∧ HMASTER = 1

• Decoder
S0

decoder
AHB (s̄AHB) =

∧

x

¬HSELx

• Counters
S0

counters
AHB (s̄AHB) =

∧

x

¬HWSx ∧
∧

x

¬BBx

• Masters

S0
master
AHB (s̄AHB) = IDLE ∧

∧

x 6=1

¬HBUSREQx ∧ HBUSREQ1

• Slaves
S0

slave
AHB(s̄AHB) = HREADY ∧ OKAY

These defaults are those recommended by the specification document [8]. The nota-
tional abuse HMASTER = 1 above simply means that the bits of HMASTER are set
to the binary representation of 1, under the given endianness.

The system initial state predicate is simply the conjunction.
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Definition 6.12

S0AHB(s̄AHB) = S0
counters
AHB (s̄AHB) ∧ S0

arbiter
AHB (s̄AHB)

∧S0
decoder
AHB (s̄AHB) ∧ S0

master
AHB (s̄AHB)

∧S0
slave
AHB(s̄AHB)

The transition predicates are more complicated:

Definition 6.13 Arbiter transitions:

Rarbiter
AHB (s̄AHB, s̄′AHB) =

(HGRANT ′
0 ⇐⇒ (HMASK0 ∧ HMASK1)) ∧

(HGRANT ′
1 ⇐⇒ (if HMASK0 then F else HBUSREQ1) ∨

¬(if HMASK1 then F else HBUSREQ2)) ∧

(HGRANT ′
2 ⇐⇒ ¬(if HMASK0 then F else HBUSREQ1) ∧

(if HMASK1 then F else HBUSREQ2)) ∧

(HMASTER′ ⇐⇒ if¬HREADY then HMASTER else¬HGRANT1

(HMASK ′
x ⇐⇒ if SPLIT ∧ ¬HREADY ∧ (HMASTER = x) then T

else if HSPLITx then F else HMASKx)

Recall we are implementing three masters only. The dummy master 0 gets granted if
and only if both the other masters are waiting on split transfers. Master 1 which is
the default master gets priority over Master 2, but bus requests are masked for masters
waiting on split transfers. A grant by itself does not give bus ownership. This happens
when HREADY is high. HMASTER then indicates who has the bus, according to the
value of HGRANTx.

Definition 6.14 Decoder transitions:

Rdecoder
AHB (s̄AHB, s̄′AHB) =

(HSEL′
0 ⇐⇒ if HREADY then¬HADDR0 else HSEL0) ∧

(HSEL′
1 ⇐⇒ if HREADY then HADDR0 else HSEL1)

The decoder simply does a combinatorial decode of the higher order bits of the address
bus. Since we have only two slaves and no datapath, a single-bit address bus suffices.

Definition 6.15 Counter transitions:

Rcounter
AHB (s̄AHB, s̄′AHB) =

(HWS ′
0 ⇐⇒ ¬HREADY ) ∧

(HWS ′
1 ⇐⇒ ¬HREADY ∧ HWS0) ∧

(HWS ′
2 ⇐⇒ ¬HREADY ∧ HWS1) ∧

(bb0′ ⇐⇒ HREADY ∧ NSQ) ∧

(bb1′ ⇐⇒ ¬BB2 ∧ SEQ ∧ ifHREADY ∧ ¬BUSY then bb0 else bb1) ∧

(bb2′ ⇐⇒ ¬BB2 ∧ SEQ ∧ ifHREADY ∧ ¬BUSY then bb1 else bb2)
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The wait state counter simply counts up to 3 if HREADY is low, resetting if HREADY
goes high. The burst counters count four beats when a burst starts (signalled by a NSQ
followed by a SEQ transfer type). This is used by the arbiter to determine when it is safe
to hand the bus over to another master (recall that in our implementation bursts may
not be interrupted).

Definition 6.16 Multiplexor transitions:

Rmux
AHB(s̄AHB, s̄′AHB) =

(HTRANS ′ ⇐⇒ if¬HREADY then HTRANS

else if HGRANT1 then HTRANSm1

else if HGRANT2 then HTRANSm2

else HTRANSm0
) ∧

(HBURST ′ ⇐⇒ if¬HREADY then HBURST

else if HGRANT1 then HBURSTm1

else if HGRANT2 then HBURSTm2

else HBURSTm0
)

Drives the selected master control signals (i.e. HTRANSmx
etc) to the bus.

Definition 6.17 Master transitions:

Rmasterx

AHB (s̄AHB, s̄′AHB) =

(¬(OK ∧ HREADY ) ∧ HGRANTx ⇒ HBUSREQ′
x) ∧

(HREADY ∧ IDLE ∧ OK ∧ HGRANTx ⇒ NSQ′) ∧

(NSQ ∧ OK ∧ INC4 ∧ HGRANTx ⇒ (BUSY ′ ∨ SEQ′) ∧ INC4′) ∧

(SEQ ∧ ¬BB2 ∧ OK ∧ HGRANTx ⇒ (BUSY ′ ∨ SEQ′) ∧ INC4′) ∧

(BUSY ∧ ¬BB2 ∧ OK ∧ HGRANTx ⇒ SEQ′ ∧ INC4′) ∧

(¬HREADY ∧ RETRY ∧ HGRANT1 ⇒ IDLE ′) ∧

(HREADY ∧ RETRY ∧ HGRANT1 ⇒ NSQ′) ∧

(ERROR ∧ HGRANT1 ⇒ IDLE ′)

A line-by-line explanation of this transition relation follows: if master has bus ownership
it will continue to request it until the transfer completes, otherwise the arbiter may think
the master no longer requires the bus in the middle of a transfer; starting a transfer by
asserting NSQ; switching to the SEQ transfer signal if transfer is a burst, i.e. INC4 is
being asserted; continuing to assert SEQ or BUSY as burst takes place; forcing a SEQ
assert if BUSY was asserted previously (the specification does not mention this but it is
clearly required to prevent an infinite sequence of BUSYs, i.e. a livelock); response to first
and second cycle of retry; response to first and second cycle of error. According to the
specification, the master can do whatever it likes if split, since it loses the bus.

The one exception to the above is Master 0, the dummy master. This simply generates
IDLE no matter what happens, and never requests the bus.
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Definition 6.18 Slave transitions:

Rslavex

AHB (s̄AHB, s̄′AHB) =

(HSELx ∧ HWS2 ⇒ HREADY ′) ∧

(HSELx ∧ (NSQ ∨ SEQ) ∧ OK ⇒ OK ′ ∧ HREADY ′) ∧

(HSELx ∧ IDLE ⇒ HREADY ′ ∧ OK ′) ∧

(HSELx ∧ BUSY ⇒ OK ′

(HSELx ∧ ¬HREADY ∧ ¬(IDLE ∨ BUSY ) ∧ RETRY

⇒ HREADY ′ ∧ RETRY ′) ∧

(HSELx ∧ ¬HREADY ∧ ¬(IDLE ∨ BUSY ) ∧ ERROR

⇒ HREADY ′ ∧ ERROR′) ∧

(HSELx ⇒ ¬SPLIT ′)

A line-by-line explanation: this line together with the wait state counter ensures that
HREADY never stays low for more than four consecutive cycles, enforcing the rule that
slaves may not insert more than four wait states; signal end of transfer by asserting
HREADY and OK; reponse to IDLE signal is HREADY and OK; response to BUSY
signal is OK; drive second cycle of RETRY; drive second cycle of ERROR; do not ever
signal SPLIT.

A SPLIT-capable slave is slightly more complex. To add SPLIT ability, we conjoin
the above transition relation (excepting the last line) with the following.

(HSLV SPLIT ′
x ⇐⇒

if (HSELx ∧ ¬HREADY ∧ SPLIT ∧ (HMASTER = x))

then HMASTERx else HSLV SPLITx) ∧

(HSELx ∧ HGRANT0 ⇒ OK) ∧

(HSLV SPLITx ∧ (y 6= x) ⇒ ¬HSLV SPLITy)

The first conjunct is for recording the current bus master’s number so when the slave
is later ready it can assert the appropriate HSPLITx line. We abstract as much of the
behaviour as possible, but the next two conjuncts are required to prevent undesirable
behaviour. The first disables splits if the dummy master has the bus, and the last ensures
that the slave does not split if it has already done so. The specification recommends
that slaves should be able to split on as many masters as are present. However, this
simplification does not affect logical behaviour, only efficiency.

The conjunction gives the system transition relation:

Definition 6.19

RAHB(s̄AHB, s̄′AHB) = Rcounters
AHB (s̄AHB, s̄′AHB) ∧ Rarbiter

AHB (s̄AHB, s̄′AHB)

∧Rdecoder
AHB (s̄AHB, s̄′AHB) ∧ Rmasterx

AHB (s̄AHB, s̄′AHB)

∧Rslavex

AHB (s̄AHB, s̄′AHB)
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6.3.3 Verification

We verify arbitration, latency and deadlock freedom properties for AHB. As there is no
datapath we do not verify coherence. The BDD variable ordering used was an inter-
leaving of the current and next-state variables, which was then reordered after a manual
dependency analysis.

Arbitration

The first properties we verify relate to arbitration. Typically such properties confirm that
the arbiter is fair in some sense. The first property we verify is mutual exclusion, i.e. two
masters never simultaneously get granted. The CTLproperty for this is

AG(HGRANTx ∧ (x 6= y) ⇒ ¬HGRANTy)

The required theorem is given by running the model checker.

Theorem 6.20

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HGRANTx ∧ (x 6= y) ⇒ ¬HGRANTy)

Our implementation is a simple priority based one and is obviously not meant to be
fair in the sense that all requests are ultimately granted. This should hold true for the
highest priority Master 1 however. This can be checked using the CTLproperty

AG(HBUSREQ1 ∧ ¬HMASK1 ⇒ AFHGRANT1)

Note that a grant is not the same as getting bus ownership (Master 1 may de-assert its
request while waiting for the bus). Thus this property holds and the model checker gives
the required theorem.

Theorem 6.21

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HBUSREQ1 ∧ ¬HMASK1 ⇒ AFHGRANT1)

For other masters, the best we can hope for is that the possibility of a grant exists, as
given by the CTLproperty schema

AG(HBUSREQx ∧ ¬HMASKx ⇒ EFHGRANTx)

and the model checker confirms that this is so.

Theorem 6.22

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HBUSREQx ∧ ¬HMASKx ⇒ EFHGRANTx)
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Latency

Latency checking for the AHB is more complicated than for the APB, as the presence of
bursts, busy signals and wait states means that the transfer times are variable.

First, we do a quick sanity check to confirm that all transfers do indeed end, as given
by this CTLproperty:

AG(NSQ ⇒ AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

and this is easily checked:

Theorem 6.23

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(NSQ ⇒ AXA[¬NSQU(HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

Since we have limits on the length of bursts, the number of consecutive busy signals
and the number of consecutive wait states, we should be able to confirm that a transfer will
take at most a given number of cycles. This number is in fact ten cycles (1 address phase
cycle + 4 burst cycles + 4 wait states + 1 BUSY signal) in the case of our implementation
so far. The CTLproperty saying this is more neatly expressed if we first define a function
LAT :

LAT f 0 = f

LAT f (n + 1) = f ∨ AX(LATfn)

This expresses in CTL a latency of at most n cycles until the event described by f holds.
The required property is then given by the following CTLproperty:

AG ((NSQ ∧ SINGLE ⇒ LAT (HREADY ∧ OK) 2) ∧

(NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ]))

noting that a single transfer takes only two cycles and that a burst, if not interrupted,
must finish within ten cycles. An unfolding of LAT would reveal several relational product
computations, which are time and space consuming. We can make our task easier by using
the following lemma derived from the CTL semantics.

Lemma 6.24

⊢ ∀fgMs.s ²M AG(f ∧ g) ⇐⇒ s ²M AGf ∧ s ²M AGg
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Proof Simple rewriting with Definition 4.4 and Proposition 4.5. ¤

We can thus split2 the latency property above into the two conjuncts

AG (NSQ ∧ SINGLE ⇒ LAT (HREADY ∧ OK) 2) (6.6)

and

AG (NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK) (6.7)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

We then observe that the propositional fragment of Lµ has all the properties of normal
propostional logic. In particular, we have

Lemma 6.25

∀M es f1 f2 f3 f4.

s ²
e
M f1 ∧ f2 ⇒ f3 ∧ f4 ⇐⇒ (f1 ∧ f2 ⇒ f3) ∧ (f1 ∧ f2 ⇒ f4)

and

Lemma 6.26

∀M es f1 f2 f3.s ²
e
M (f1 ⇒ f2) ⇒ f1 ∧ f3 ⇒ f2

proved easily by the hol simplifier given the satisfiability theorems from Table 2.2.

Using Lemma 6.25 together with Theorem 4.10 we can further split conjunct 6.7 above
into

AG (NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK) (6.8)

∨RETRY ∨ ERROR ∨ SPLIT ) 10)

and

AG (NSQ ∧ INC4 ⇒ AXA[¬NSQU (HREADY ∧ OK) (6.9)

∨RETRY ∨ ERROR ∨ SPLIT ])

Now the satisfiability theorem for conjunct 6.9 follows from Theorem 6.23 using Lemma
6.26 and Theorem 4.10. The satisfiability theorems for conjuncts 6.6 and 6.8 are derived
by model checking. All three resulting theorems can then be recombined in hol using
lemmas 6.24 and 6.25 to give the required theorem.

2Technically of course, we are not splitting the formula but the statement of its satisfiability. We elide
these details to avoid clutter.
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Theorem 6.27

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG((NSQ ∧ SINGLE

⇒ LAT (HREADY ∧ OK) 2) ∧

(NSQ ∧ INC4

⇒ LAT ((HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ]))

Lemma 6.24 could also have been used in the derivation of Theorem 6.7 but in that
case not much is gained by doing so as neither conjunct’s evaluation results in large BDDs.

Deadlock Freedom

The transition relation for the AHB is not obviously total, unlike that for the APB. Thus
the obvious way of checking for deadlock is the CTLproperty

AGEXTrue

Since CTLmodel checking requires the transition relation to be totalised (see Definition
4.1), this property check needs to be carried out before totalisation. But then we cannot
check for the CTLproperty.

Fortunately, due the fine-grained nature of our integration, we are not reliant on just
getting a true/false answer from the model checker. We can simply “check” the property

EXTrue

whose semantics are not affected by a non-totalised transition relation (only fix-point
computations are affected), and then separately check whether the set of states re-
turned by the model checker for the above property contains the set of reachable states
ReachableRAHB S0AHB of the system (§4.4.1). Thus we have the theorem

Theorem 6.28

⊢ ReachableRAHB S0AHB ⊆ {s|s ²MAHB
EXTrue}

which tells us that all reachable states have a next state and thus the system cannot
deadlock. Subset inclusion here is modelled by propositional implication between the
characteristic functions of the sets. The functions are boolean, so symbolic model checking
can be used.

This property does not uncover situations where even though the transition system
does not deadlock, it ends up in a useless loop doing nothing. To some extent, this is a
liveness property and beyond the expressive power of CTL . We are considering how to
best address this problem, either by writing Lµ properties or by finding a halfway solution
that can be expressed in CTL .
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6.4 Verifying AMBA

So far, we have separately checked correctness properties for the AHB and APB com-
ponents of AMBA. Ideally, since the signals of the AHB and the APB do not overlap,
these properties hold in the combined system, in which the APB is connected via a bridge
to the AHB. However, conjoining RAHB and RAPB will result in a large system which
may be infeasible or time consuming to model check directly. We can instead construct a
compositional proof in the theorem prover.

The first task is to define the bridge. This is the APB master that acts as a slave to
the AHB. We first define the states over which the bridge would operate.

Definition 6.29

s̄bridge = s̄AHB × s̄APB

and as before we write s̄′bridge do denote the “next” state. The bridge transition relation
Rbridge follows from this.

Definition 6.30

Rbridge(s̄bridge, s̄
′
bridge) = Rslavex

AHB (s̄AHB, s̄′AHB) ∧ Rmaster
APB (s̄APB, s̄′APB)

Now we can define a new transition relation for the APB with Rbridge as the master.
We shall call this transition relation RAPB2.

Definition 6.31

RAPB2(s̄APB, s̄′APB) =

(∃s̄AHB s̄′AHB.Rbridge(s̄bridge, s̄
′
bridge)) ∧ Rslave

APB(s̄APB, s̄′APB)

As in §5.2, we use existential abstraction to hide behaviours we wish to ignore. This
allows us to show that the new transition relation preserves all behaviours.

Lemma 6.32

⊢ RAPB(s̄APB, s̄′APB) = RAPB2(s̄APB, s̄′APB)

Proof In the ⇒ direction we need to furnish the appropriate witnesses for the existentially
quantified variables. This is done by using the integrated SAT solver in hol to find a
satisfying assignment for Rslavex

AHB (s̄AHB, s̄′AHB). We know that such an assignment exists
from Theorem 6.28, since the only way there is no satisfying assignment is if there are
no transitions in the system. The rest follows by simplification. The ⇐ direction is
straightforward. ¤.

Using Lemma 6.32, it is trivial to show that the properties proved in the model MAPB

with transition relation RAPB also hold in the model MAPB2 with transition relation
RAPB2.

Theorem 6.33

⊢ ∀f.s̄APB ²MAPB
f ⇒ s̄APB ²MAPB2

f
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We can similarly define RAHB2 in which we can replace one of the generic slaves with
Rbridge, this time hiding the APB signals, and conclude that all properties proved for the
AHB hold when one of the slaves is the APB master.

At a more general level, we can show, without any extra model checking, that proper-
ties proved for for AHB and APB hold in the combined system. First we need a technical
lemma.

Lemma 6.34 If any M1 and M2 are the same except that M1.AP ⊆ M2.AP , then

∀fs1s2.s1 ²M1
f ⇐⇒ s2 ²M2

f

This just states that adding extra unused propositions to a model does not change its
behaviour. Note that the underlying state type of the two models is different and thus
trivial amendments have to made to M2 to satisfy the type checker. The main result
then states that properties proved for a sub-system can be shown to be true of the entire
system, provided certain conditions hold.

Theorem 6.35 For any universal property f and models M1 and M2,

∀s.s ²M1
f ⇒ s ²M2

f

provided every behaviour of M1 is a behaviour in M2.

Note that Theorem 6.35 requires both models to have the same state type. This is
where Lemma 6.34 is used (to add the extra propostions of the system M2 to the sub-
system M1).

We can now define the full AMBA model MAMBA by defining

RAMBA = RAHB2 ∧ RAPB2

and defining the rest of the MAMBA tuple in the usual manner. Then, for example, we
can take MAPB as M1 and MAMBA as M2, and use Theorem 6.33 and Theorem 6.35
to show that all universal APB properties hold in the AMBA system. And similarly
for the AHB. We have thus proved, without using the model checker, that all universal
properties proved for AHB and APB separately also hold in the combined system. This
result does not apply to the non-universal deadlock freedom properties; deadlock freedom
in a sub-system does not imply deadlock freedom overall.

Though we used interactive theorem proving, the general technique can be applied in
any similar situation and it is possible to envision writing proof script generation functions
in ML that would automate much of the task.

6.5 Related Work

Two recent verifications targeting AMBA AHB were presented in 2003. The first work
[164] uses the acl2 theorem prover to prove arbitration and coherence properties for
the bus. Time is abstracted away and intra-transfer complications (such as bursts, wait
states, splits and retries) are ignored. This makes sense as theorem provers are better
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suited for attacking datapath properties at a high level of abstraction, without the clutter
of cycle-level control signals.

The second work uses the smv model checker to fix bugs in an academic implemen-
tation of AMBA AHB [158]. They concentrate on a no-starvation violation (a master is
denied access to the bus forever) which however is caused by an error in the implemen-
tation of their arbiter rather than in the protocol itself. The error is very subtle however
and we concur with their conclusion that this particular case should be highlighted in the
FAQ if not in the specification.

More recently, work is in progress on porting a Z specification of AMBA AHB [143]
to hol. This work is still in the draft stage. A recent Ph.D. thesis [181] verifies roughly
the same set of AHB properties as ours (it also verifies the datapath) for a more complex
implementation using the cadence smv model checker and imports the results in hol
as trusted theorems. The emphasis here is on using specialist tools as oracles for hol
and the verification process itself is not discussed at length. The almost complete lack
of interaction between control and data in bus designs makes it relatively easy to do the
kind of abstractions that model checkers are good at. Bus architectures and the somewhat
related domain of cache coherence protocols have thus long been staples of model checking
case studies [30, 35, 68, 128].

6.6 Conclusion

The AMBA AHB and APB specification is a 110 page document, laying out the design
in the usual mix of english, timing diagrams and interface diagrams, supplemented by a
FAQ. We have developed a formal HOL version of the AHB and APB components at the
cycle-level and model-checked useful properties. We have then used hol to compose the
two verifications.

However, while the case study is a useful show-case for our framework, there is much
to be done for a complete verification. Priorities are verifying datapath properties for
the AHB, implementing locked access, having a more sophisticated arbitration policy and
non-word-aligned transfers.

During the case study it became clear that most of the time in a model checking
oriented verification is spent patching failed properties or flawed models. Thus, the devel-
opment of good failure analysis and debugging capabilites will go far in making the tool
usable in practice.

The model checking runs were not particularly time or space intensive and all went
through in a few minutes at most. We attribute this to our simplified model, the decom-
position and abstraction we did, and our focus on control properties.

The case study illustrates how we can seamlessly combine theorem proving, model
checking and SAT solvers to perform decomposition (e.g. Theorem 6.27 and Theorem
6.35) and abstraction (e.g. Theorem 6.33) for model checking. All steps are backed up by
fully-expansive formal proof. We have thus enabled verifications that would be hard, if
not infeasible, using only one of these technologies.



Chapter 7

Case study II: An ALU

A central concern of our work is to ensure that our approach does not create an unac-
ceptable penalty in terms of the performance of the model checker, due to the additional
theorem proving overhead. This case study complements the previous one in which the
focus was on demonstrating the capabilities of the work, whereas this one focuses on
performance.

This chapter describes results in evaluating the performance of the model checking
algorithm for Lµ formalised in Chapter 2. We use the formalisation in Chapter 4 to use
this model checker to check CTLproperties for a three-stage pipelined arithmetic and logic
unit (ALU) [29].

We chose a well-known but rather old (c.1990) model to check performance primarly
because as far as the implementation of a user interface and standard optimisations is
concerned, our symbolic model checker is for the moment about as powerful as state-of-
the-art tools were around 1990, and is at present unable to attack systems with large
state spaces. Pedagogical accessibility and the availability of a ready-made BDD variable
ordering were also influencing factors.

The BDD method for testing boolean satisfiability is only of heuristic value: the
problem is NP-complete. Using BDDs to represent state sets is similarly claimed to be
efficient only in a practical sense. Thus a performance evaluation needs to demonstrate
empirical results.

We compare the performance of our proof-driven model checker with a version of itself
in which all the proof machinery is turned off. This gives us an idea of the performance
penalty caused by the extra theorem proving overhead. We note that the hol to buddy
interface itself does not contribute significantly to this overhead [110].

We analyse only the execution times. Memory consumption is also an important
performance measure for symbolic model checking. However this is not a factor in our
case study because the memory requirement of BDDs created while verifying this model
is already well understood and the additional hol overhead is not an inhibiting factor
given the relatively large amounts of RAM available on current systems.

7.1 The Test System

Our test circuit (Fig. 7.1) performs three-address logical operations on a register file
(whose registers are denoted by reg0, reg1, . . .). The pipeline has three stages:
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Figure 7.1: Simple Pipelined ALU

1. Fetch: The operands are read from the register file (the source registers being
pointed to by the addresses src0 and src1 ) into the operand registers op0 and op1.

2. Execute: The ALU computes the result and writes it into the pipe register res.

3. Write back : The result is written back into the register file, at the location pointed
to by dest.

There is a register bypass path, required for data forwarding. The circuit thus contains
both data-path and control circuitry. Addition of extra pipe registers would result in as
many new stages, each propagating the result down the pipeline. The number of registers,
the number of instructions and the width of the data-path are variable. For simplicity, we
fix the number of instructions to two (logical OR and NOR). For the timing measurements,
we work with increasing values for the width of the data-path and the number of registers
in the register file.

With these parameters, an instruction to the circuit has five components that form
the inputs:

• A one-bit opcode, ctrl.

• n-bit addresses for the two source and one destination registers (src0, src1 and dest
respectively), giving 2n addressable registers.

• A one-bit stall input. If this is true, signalling for example a cache miss, then a
no-op is propagated down the pipeline.

In this simple circuit, we are concerned with verifying two properties at the RTL level.
The first property is expressed by the CTL formula

AG(¬stall ⇒ ((aluop(src op0i, src op1i) = dest resi)) (7.1)
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where aluop abbreviates a simple propositional formula to ensure that the correct oper-
ation is applied given the value of ctrl. The place holders src op0, src op1 and dest res
abbreviate the source registers for the operands and for the destination register respec-
tively, with the subscript encoding the bit. Thus, this specifies that the destination
register is always updated correctly.

To express src op0,src op1 and dest res in CTL, we must factor in the latency of the
pipeline. For example, for a given operation, the values in the source registers at the
time the operation begins are not the values that are input to the operation. The values
that are required are from the state of the register file after the previous instruction has
finished, i.e. two clock cycles in the future. Similarly, the value required for the destination
register is the value three cycles in the future.

The assumption here is that an instruction begun at time t will not affect the register
file until time t + 3, i.e. three clock cycles in the future. To check that this assumption
holds, we check that,

EXkregj,i ⇔ AXkregj,i 1 ≤ k ≤ 3 (7.2)

where EXk abbreviates k applications of EX, and regj,i is bit i of register j. This can
also be done in the model checker.

After accounting for the latency in the pipeline, these abbreviations expand out as
follows (for simplicity, we assume there are only two file registers):

src op0i = (¬src1 ∧ AX(AX(reg0,i))) ∨ (src1 ∧ AX(AX(reg1,i))) (7.3)

and similarly for src op1. Similarly, dest res expands to

dest resi = (¬dest ∧ AX(AX(AX(reg0,i))))

∨ (dest ∧ AX(AX(AX(reg1,i)))). (7.4)

The second property of interest is that for each instruction, the register not being written
to (which is all registers if the pipeline stalls) is not changed. So for example for register
1:

AG((stall ∨ ¬dest) ⇒ (AX(AX(reg1,i)) = AX(AX(AX(reg1,i)))). (7.5)

7.2 Benchmarks

We now compare the execution time of our model checker with one we wrote in plain ML
that bypasses hol and works directly with the BDD engine.

The same variable ordering was used for all BDDs. It is essentially the ordering given
in [28] which generally yields good results: the source address registers are closest to the
root, with their bits interleaved. Next we interleave the stall and destination address
registers, for all three pipeline stages, starting with the fetch stage. These are followed
by the opcode, followed by the interleaved bits of the operand, general and pipe registers
(this time in big-Endian order).

Our proof-driven model checker’s CPU time can be split into two phases: setting up
the model (overhead time) and checking it. The overhead work needs to be done only once
per model. When timing the fully-expansive model checker we calculate the amortised
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Figure 7.2: Relative benchmarks

checking time by spreading overhead time over the various properties checked for the same
model.

The graph in Fig. 7.2 shows the performance penalty for using the proof-driven versus
the plain model checker (the latter of course being faster due to the absence of theorem
proving overhead).

Both programs were run for data-paths of one to eight bits, and address spaces of one
to three bits (i.e. two to eight registers), giving over 1030 reachable states in the most
complex case. An increase in either increases the branching complexity of the model,
with increases in address space having a stronger effect. Although several properties can
be checked for this ALU, the results shown are for the one which represents the worst
(greatest) performance difference. Overhead costs can still be amortised over this because
it is a template that needs to be separately checked for each bit on the data-path.

Due to the absence of standard optimisations, the system began to thrash with an ad-
dress space of four bits. Nevertheless, the graph shows that the difference in performance
closes as the branching complexity of the system increases: as the number of registers
increase, the performance penalty begins to drop with increasing datapath width and
becomes acceptably small for the larger examples. With two registers, the BDD opera-
tions are fast and the penalty is large (1800% in the worst case). With four registers, the
penalty is still large but does not increase as the datapath width increases. With eight
registers, the BDD operations are consuming a significant amount of resources and the
penalty drops as datapath width increases.

This is because the most expensive BDD operation, the relational product, is hit
particularly hard by any increase in branching complexity, whereas the corresponding
operation on the term part of the term-BDD is trivial. This allows the theorem proving
component of the program to “catch up” with the BDD component. In the most complex
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situation, with an eight bit datapath and three bit address space, the performance penalty
is about 30%.

7.3 Concluding Remarks

We have as yet not implemented any of the standard optimisations such as partitioning
the transition relation, iterative squaring and others mentioned in Chapter 3. All these
would speed up the BDD component and increase the performance difference. On the
other hand, our test bed is a toy example and the expectation is that even with all these
optimisations, the theorem proving component, which does not scale as badly as BDDs
for larger examples, will catch up when the program is run for harder examples.

When is 30% an acceptable performance penalty? The question is subjective and
there is no quantitative answer. In conversations with senior formal verification engineers
at Intel Corporation and what used to be Compaq Corporation’s Alpha division (now
with Intel), we have received the general impression that industrial practitioners would
not consider the advantages of a proof-driven implementation worthwhile if the system
caused more than a 100% performance penalty compared to alternative solutions, under
any circumstances. In many situations, particularly in model checking runs expected
to terminate within twelve hours (so they could be run overnight), even a below 100%
penalty may not be acceptable.

Getting encouraging results with a single class of example does not provide conclusive
evidence about the performance penalty for proof-driven model checking. Further bench-
marking is required, with other kinds of examples such as asynchronous circuits and with
improved implementations of the model checker which use state space reductions and
lower-level optimisations.



Chapter 8

Related work

At the end of each chapter we have briefly discussed research in technologies closely related
to the work presented. The main contribution of this work is not a model checking or
theorem proving technology however, but rather an approach to how the two might be
integrated. In this chapter we discuss other approaches to combining model checking and
theorem proving, this time emphasising the integration aspects. We give an overview,
followed by a more detailed look at three systems that are closely related to our approach.

8.1 Overview

The work closest to ours in spirit is the voss system [166], in which a data-type of BDDs
was added to a lazy functional language, to enable easy functional programming of BDD
based algorithms. This system was later interfaced to hol [98] to enable results from
voss to be imported into hol. This work is discussed in detail in §8.2.

8.1.1 Model Checkers as Oracles

There have been several somewhat similar attempts to use model checkers as oracles for
theorem provers, with varying degrees of integration:

• In Kurshan et al [107], compositional reasoning is supported by splitting proofs
into model checkable pieces (checked in cospan [106] and recombined in the tlp
theorem prover (a proof environment for the Temporal Logic of Actions [109])).
Integration is via input and output files.

• The first significant non-file-based integration of symbolic model checking with the-
orem proving is achieved in 1995 in Dingle et al [57] and pvs [154]. The latter
is particularly relevant as it involves a formalisation of temporal logic inside the
theorem prover to facilitate importing the result of model checking back into the
theorem prover. The model checker itself is implemented as an atomic proof rule
in the proof system of the theorem prover. This approach has been extended to
include abstraction and abstraction refinement for model checking [77, 148, 161].

• At about the same time another project formalised a theory of I/O automata [119]
in isabelle and constructed an environment for model checking specifications mod-
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elled as I/O automata using the step system [19] and a model checker for Lµ [80]
as external oracles. A comprehensive account can be found in Müller et al [137].

• In Schneider et al [165], theories of LTL and ω-automata (automata over infinite
words) are formalised in hol together with theorems to enable formal translation
of LTL specifications to ω-automata. Infrastructure was provided to enable the use
of the smv model checker as an external oracle.

• A recent Ph.D. thesis by Susanto [181] uses cadence smv and acl2 for verifying
components using model checking and symbolic execution respectively, and imports
the results into hol where they may be used as lemmas for more abstract theorems.

In the work described so far, the central theme has been to exploit the automation
of model checking technology by constructing the main proof in a theorem prover and
using model checkers as oracles (the model checker may use the theorem prover’s decision
procedures to construct its abstractions).

Our work differs from these in three aspects. First, they formalise only the theory
(and sometimes not even that), whereas we formalise the executable algorithm as well.
Second, because of the above, whereas they must trust the result of the oracle, we have
a high assurance of soundness because more of the work is backed up by mechanised
fully-expansive proof. Third, we have a fine-grained integration in the sense that the user
has full access to both the theorem proving and model checking tools.

The price we pay for the extra proof and flexibility is in reduced performance and
increased development effort. The former appears to be acceptable so far (see Chapter
7). The latter is hard to quantify but we feel that having to prove each step is offset by
the relatively little time spent debugging the tool (thanks to the LCF-style architecture
of hol).

8.1.2 Theorem Provers as Organizers

Other systems take a more model checking oriented approach in which the primary task
of the theorem prover is to decompose the properties being checked, and also do case-
splitting and model transformation.

cadence smv (or just smv) [126, 127] implements lightweight theorem proving on
top of a model checker, primarily to aid in abstraction and compositional reasoning.
Recent work has focused more on instrumenting SAT solvers to help with symbolic model
checking [129].

In cvc [180] and its successor cvc lite [12], the focus is on a complete decision
procedure for quantifier-free first order formulas in which atomic propositions range over
decidable fragments of more expressive logics such as Presburger arithmetic, with decision
procedures (including an integrated SAT solver) for decidable logics cooperating in a
variant of the Nelson-Oppen style [142]. Although there is no direct connection with our
work, we feel that our approach of instrumenting decision procedures with proof could be
fruitfully extended to this kind of system.

A more diverse approach is taken in the step system [19]. Models can be input in an
expressive language. The user can then hierarchically decompose the proof into subgoals
that can be discharged using integrated symbolic and explicit-state model checkers or de-
cision procedures. Alternatively, a subgoal can be considered in an integrated interactive
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prover that supports most standard theorem proving machinery. This system is oriented
towards verification of reactive systems rather than general purpose mechanised proof,
and it is not fully expansive. Though it would be possible to replicate its abilities in our
framework, it would involve considerable effort.

On a more general level, Berezin [14] describes a Gentzen-style calculus in which judge-
ments carry the model as well as hypothesis and entailments. Unlike our similar but more
specific calculus, the elements of the judgements can be instantiated with the user’s choice
of logic and models. The calculus is sound, so that as long as the user’s implementations
of the rules of inference of the calculus are sound, the result is guaranteed correct. Of
course, this leaves soundness entirely up to the implementer. But the generality of the
idea is appealing and we hope at some point to create a similar framework for our own
work.

8.1.3 Verifying the Model Checker

Our model checker’s results are correct by construction, since both the theory and the
implementation are proved correct in hol. The only danger is that of a bug in hol, but
the probability of this is very low, as explained in Appendix A.

Other efforts have also been made to verify model checkers. The first approach is to
formalise and verify the theoretical justification for some model checking algorithm. This
has been done for partial order reductions using hol [31]. The authors cite the “not
uncommon” occurrence of incorrect proofs in model checking literature and the relatively
better soundness of hol as motivating factors. They do not, however, present any way
of checking the correctness of their implementation of the theory.

Using proof to check the correctness of the implementation of a model checker has
also been addressed previously [140]. The authors use the correspondence of Lµ model
checking with infinite parity games [58] to generate a proof of the property being checked.
This proof is generated during the model checking run.

This approach is more efficient than our fully-expansive one. However, the validity of
the generated proof needs to be checked separately. The authors mention the possibility
of using a SAT solver to perform this check efficiently. This shifts the burden of tool
correctness to the SAT solver,1 and leaves it at that.

An alternative is to prove the model checking theory in a constructive logic and extract
a model checker from the proof. This has been done for CTL * [178]. This is for an explicit
state model checker however, so a direct comparison with out symbolic model checker is
not possible. Whereas the approach is elegant, executable algorithms extracted from
constructive proofs have had a history of efficiency issues [145, 163].

8.1.4 High-level Integration

Our work achieves a tight integration of model checking and theorem proving, but the
technology available for use is limited to what we have implemented. Other technologies

1A SAT solver is used to check the validity of a formula f by attempting to find a satisfying assignment
for the negation of f . A negative result then means success. However, a negative result cannot be verified
efficiently with a theorem prover or any other technique. Thus, we must rely on the SAT solver being
sound.
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cannot be added without re-implementing them fully-expansively in our framework, other
than as oracles, which goes against our general approach.

Projects like the Prosper toolkit [130] and the MathWeb Software Bus [194] address
this problem by describing plug-in APIs that allow results to be exchanged between live
sessions of different tools, on the same machine or over a network connection. This gives
the flexibility of being able to use the right tool for the job (e.g. [181]).

Since the focus is on integrating existing technology, it is difficult to directly compare
this approach to integration with ours, which also keeps the development of new technol-
ogy in mind. The one obvious trade-off is between coarse and fine integration (discussed
further in the next section).

For the interested reader, a fairly comprehensive survey of techniques combining model
checking and theorem proving (as opposed to the work mentioned here that focuses on
techniques for combining model checking and theorem proving) is available [186].

8.2 HOL-Voss, VossProver and ThmTac

Checking circuits using switch-level simulation has been around since the early 1980s
[24]. In normal simulation, every node in the circuit was assigned a true/false boolean
value and node values were checked against given input and output values by directly
simulating the operation of the circuit. In symbolic simulation, node values could instead
be considered boolean variables, which gave more expressivity to the kind of assertion
that could be checked. For instance, instead of checking for two nodes A and B that
A = 0 ⇐⇒ B = 1 ∧ A = 1 ⇐⇒ B = 0, one could simply check that A ⇐⇒ ¬B.

Expressive power was further increased by symbolic trajectory evaluation (STE) in
which the symbolic values of nodes at different points in time can be compared. Thus, for
an inverter, one could check that the output at time t + 1 was the inverse of the input at
time t, and so on. Another innovation in STE is the use of “don’t care” values to reduce
the search space. In effect, STE is a special case of temporal model checking [192].

The voss system [166] is an implementation of STE, done in 1990-91. It was im-
plemented in a lazy functional language fl, which borrowed heavily from Edinburgh ML.
One distinguishing feature was that booleans were represented internally by BDDs. This
allowed native implementation of BDD based algorithms such as STE.

In hol-voss [98], voss was interfaced to the hol theorem prover. The assertion
language of voss was formalised in hol and a proved assertion returned as a hol theorem.
The actual checking was done external to hol and was wrapped up in a hol derived
inference rule that relied on an oracle (i.e. voss). This allowed positive results from voss
to be manipulated within hol. The authors cited mathematical rigour and access to
hol’s powerful logic as the driving factors.

However, they discovered that in the hol-voss approach the access to the model
checker was too coarse [3]. In case of a failure, the user could not access the model
checker’s debugging and analysis facilities. This was unacceptable since model checking
rarely returns a positive result the very first time and a considerable amount of manual
interaction with the model checker is required in the debugging phase before running the
checker again. What was required was a seamless interface that allowed the user to move
to the model checker from the theorem prover and back again as required.
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This requirement led to the implementation of the vossprover tool [3, 85]. This was
a lightweight theorem prover built on top of voss, again implemented in fl. The system
was architected in a manner similar to hol: it was LCF-style, with a higher order logic
as the object language. The system had core and derived rules of inference in the style of
hol. Standard rules of inference were supplemented by special rules of inference for STE
calls.

Though vossprover was an improvement on hol-voss, the translation of specifi-
cations between vossprover’s logic and fl was awkward and often led to duplication
of effort. Also, the logic was not expressive enough to be really useful. This led to the
development of thmtac, a system similar to vossprover but implemented in Lifted fl,
a language in which fl was embedded into itself. Thus Lifted fl programs could evaluate
fl expressions directly instead of having to translate back and forth, achieving the goal of
efficiently unifying the model checker and theorem prover’s specification languages.

A major difference between this setup and our system is that it implements the STE-
related rules of inference in the core as trusted code, whereas we implement our rules for
Lµ model checking as untrusted derived rules in hol.

The advantage we gain is a finer-grained integration which is thus more flexible and
in keeping with our overall aim of developing a platform for rigorously programming
algorithmic verification techniques. We lose in the area of performance. It is not possible
to meaningfully quantify the tradeoff, but we feel that recent advances in model checking
and theorem proving technology, and indeed in the speed of computation, should offset
our loss somewhat.

thmtac and further improvements were made after the primary authors joined the
industry. The forte system which was developed at Intel and which is based on Lifted fl

has recently been made available to the public. Preliminary investigation of the code and
documentation shows that it supports significantly improved infrastructure for construct-
ing and manipulating models and for debugging, in keeping with the pragmatic approach
of the authors.

The Intel implementation of forte has recently been moved from Lifted fl to the
reFLect language [79] which provides strongly-typed reflection capabilities. Another group
at Intel is developing a set of verification tools based around the forspec specification
language [9]. This work is not public domain.

Systems verified using the tools above include the IA-32 instruction length decoder
[3], and two floating-point adder/substractor circuits from Intel processors [2].

8.3 Model Checking in PVS

The pvs theorem prover [149] was interfaced to a model checker for Lµ [154] in 1995.
Since then, several improvements such as automatic abstraction [161] have been made.

This work is significant because it is the first high-profile integration of an existing
and widely used theorem prover with model checking technology. Unlike the authors of
vossprover, the architects of this work did not have the luxury of building a theorem
proving environment tailor-made to support their model checker. However the object
language of pvs is a classical higher order logic (in fact the type system is more powerful
than hol’s, with native support for dependant and predicate subtypes). The power of
this logic makes the integration task easier.
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The design philosophy of pvs is to support mechanical reasoning using very efficient
decision procedures. The architecture is not LCF-style though it has the concept of using
high-level inferences to build proof strategies. Work proceeds by applying a relatively
small number of powerful rules of inference to transform the goal.

This leads to a high level of automation and ease of use, which is no mean achievement
for an industrial strength theorem prover. The tradeoff is a relatively higher incidence
of soundness issues [78] and lack of programmability by the user. pvs does have a user
accessible API, but it is poorly documented and infrequently used [102].

The integration formalises Lµ in pvs, and interfaces this formalisation to a model
checker for Lµ [97]. The temporal logics CTL and fairCTL are also formalised, along with
their translations into Lµ. This allows users to specify assertions in any of these logics.
The goal is then automatically translated into a form the model checker can use.

The model itself is defined by an initial state and a next state predicate in the pvs logic.
The call to the model checker is wrapped within an atomic proof rule called model-check

that returns either the proved goal as a theorem, or unproved goals corresponding to
non-satisfying initial states of the model, or it may just simplify the boolean fragments
of the goal.

Much like our work, the authors readily admit [154] that this is not an advance in
model checking technology. Rather, the power comes from being able to combine model
checked goals in a rigorous manner within the theorem prover, and access to an expressive
language with a solid proof system.

The expectation is that certain goals are better suited to model checking (thus sav-
ing the human prover time) and that goals too big to model check can conceivably be
decomposed in the theorem prover, model checked separately and recombined in a math-
ematically sound manner.

Later improvements [161] added an automatic abstraction framework that allows the
model checker to attack larger state spaces. This improvement was an influential develop-
ment in abstraction for model checking. However, the integration uses the same approach
of using an atomic proof rule (called abstract-and-mc) and the following remarks apply
to it as well.

The approach is similar to ours in that the assertion language is Lµ, other temporal
logics are supported and a positive result from the model checker can be seamlessly
incoporated in the theorem prover logic. It is different in that it is not LCF-style. This
provides the advantage of speed and the flexibility of replacing the underlying model
checker without too much effort.

It has the disadvantage that, due to the one-shot nature of the integration, the user
is stuck in the theorem proving world with no access to the model checker’s debugging
facilities; the very disadvantage which led the creators of hol-voss to abandon it in
favour of vossprover.

Recent infrastructural improvements have resulted in the Symbolic Analysis Labo-
ratory (SAL), which combines model checking, abstraction, deduction and automatic
invariant generation with pvs using an intermediate modelling language [168].

Verifications that used the pvs model checker interface include a data-link protocol
used by Philips Corporation [161] and a cache coherence protocol [162].
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8.4 The Symbolic Model Prover

The vossprover and pvs experiments suggest a list of desirables in a good integration
of model checking and theorem proving, roughly in decending order of importance:

1. Speed.

2. Fine-grained integration.

3. Mathematically rigorous interface.

4. Modular architecture.

These issues are addressed in the Symbolic Model Prover (symp) framework developed
by Berezin [14] in his PhD thesis in 2002. The core of the work is a Gentzen-style sequent
calculus in which each judgement

M ; Γ ⇒ ∆

carries a model M in addition to the usual antecedents Γ and consequents ∆. The proof
system contains the usual inference rules for classical higher order logic and additional
rules that transform the model part of the judgement.

This is further generalised by implementing a system which takes a data structure
(representing a sequent) and an associated proof system as parameters and generates
an Emacs environment for proof management. This allows users to work with custom
sequents and proof systems adapted to their particular problem domain. Since the basic
Gentzen calculus is sound, as long as the additional rules of inference are sound the entire
system is sound. This system is called a theorem prover generator. This usage is somewhat
misleading since the greatest effort in developing a theorem prover goes into developing
the proof system, a task that symp leaves to the user. Nevertheless, this scheme gives
the user a very modular and flexible working environment.

Berezin implemented in SML several of the more useful proof rules for the domain
of integrating classical higher order logic with model checking as an example of this
modularity. For example, integration with a model checker can be represented by the rule

MC(M,
∧

Γ →
∨

∆) = true

M ; Γ ⇒ ∆
MC

where MC(M,φ) is a function that checks whether M satisfies φ.
It should be noted that unlike pvs, there is no need to wrap the entire model check-

ing call in one rule. For instance, abstraction and decomposition can be represented by
separate rules that transform the model part of the judgement only. Since the model is
part of the judgement, it can be represented efficiently. Thus there is no loss of compo-
sitionality and no efficiency issues, whereas with pvs a rule that transformed only the
formulas representing the model could well cause an exponential blowup in the size of the
formulas.

At the same time, the system retains vossprover’s advantage of representing decision
procedure calls by rules of inference, resulting in a mathematically rigorous interface.

The only drawback of this system is that it is perhaps too general and a considerable
amount of effort is required to achieve a fine-grained integration. Of course, it is always
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Figure 8.1: Approaches to Integration

possible to simply wrap existing tools in inference rules, but then we run across the
integration problems encountered by hol-voss and pvs, which interfere with the usual
model checking work flow. This could be the reason why development on symp has been
more or less dormant since the completion of Berezin’s thesis: the last public release of
symp was in June 2001, and though Berezin’s thesis notes a future project to port the
Analytica [42] system to symp, the latest paper on Analytica [40] has no mention of this.

Our system can be considered as a special case of symp in which the proof system
is classical higher order logic and the domain is model checking. Our implementation is
much more fine grained than the one implemented as a case study in Berezin [14] and we
also have access to a powerful theorem proving environment. We conjecture that were
the case study integration as fine grained as ours, it would have similar performance.

symp was used for security protocol analysis using the Athena approach [177] and
verification of C programs in the Reedpipe/CProver proof system [14].

8.5 Conclusion

Approaches to integrating model checking and theorem proving could be thought of as
falling along a two dimensional graph as in Fig. 8.1. Along the horizontal axis we have
granularity of integration, i.e. we move from coarse to fine integration. Along the vertical
axis we show whether the proof system or the decision procedures guide the overall effort.
The dotted circle shows where we believe our system to lie. This is of course no more
than a very rough guide.

Here by coarse integration we mean that the two techniques interact only at a very
high level of abstraction, e.g. by passing parameters and results via files or by wrapping
the model checker in an atomic proof rule. In fine-grained integration the two domains
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can interact with each other at the desirable level of abstraction at any stage of execution.
As we move from coarse to fine integration, the system becomes more flexible and easier
to instrument and manipulate, but the development effort required also increases.

Proof system driven systems typically give priority to rigour, at some cost to au-
tomation and performance. Decision procedure driven systems tend to make the reverse
tradeoff. Development effort is high in both extremes, in the former case because of
the amount of formal proof involved, in the latter because the tight integration between
procedures often requires users to hack the code itself.

We see that chronologically, integrations have become more fine grained. This is
partly because of better development infrastructures and partly because of the demand
for flexible and adaptable systems. The performance penalty is offset by new technology,
both in algorithms and in hardware.

There is no such trend to be seen in whether the proof system or the decision proce-
dures drive the tool. This is because the tradeoffs involved (e.g. expressivity vs speed)
are more theoretical and cannot be resolved simply through better engineering. There is
as such no happy middle, as different tasks require different strategies. Our own system
focuses on providing hol users with a sound programming platform for symbolic model
checking and related techniques. We believe it achieves our goal of close integration
without unacceptable performance deterioration.



Chapter 9

Summary

In this chapter we summarise the work done. We also discuss its limitations and directions
for the future.

9.1 Work Done

We have developed a formal theory of the modal µ-calculus Lµ in the hol theorem prover
and used it to write a model checker that justifies every step of the execution by proof in
hol.

To reduce the theorem proving overhead, the primitive steps of the model checking
are carried out outside hol in a high-performance BDD engine. In this sense, we extend
the fully expansive approach to symbolic model checking: as long as the primitive BDD
operations are sound, the whole system is sound (subject to the usual qualifications about
the underlying operating environment and hardware).

We have demonstrated that the resulting performance penalty is within acceptable
bounds. Additionally, we have formalised and implemented basic and advanced model
checking techniques to exercise the theory. Thus we have have shown the feasibility
of using a fully-expansive theorem prover as a platform for securely programming new
theories and tools for verification.

The code for our work consists of just over 7000 lines of Moscow ML, of which just
under half are hol proof scripts for 265 theorems. These are the offline theorems. Most
of the rest of the code is devoted to runtime proof.

Formalised Theories We have formalised the following mathematical theories in
hol:

• The syntax and semantics of Lµ, up to the existence of fixed-points assuming the
(abstracted) model is finite (§2.4.1). We note that the lack of support for variable
binding in higher order abstract syntax in hol made this task difficult. Also, much
of the formalisation had to be done in non-obvious ways so that the subsequent
formalisation of model checking algorithms could be executed efficiently.

• The syntax and semantics of CTL and a characterisation of the fixed-point operators
(§4.2).

• An embedding of CTL into Lµ (§4.3). An unexpected occurrence in this embedding
is the use of Hilbert’s selection operator to extend possibly finite computation paths
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to infinite ones. This is needed because the standard semantics of CTL assume
infinite paths but there is no such constraint in the standard semantics for Lµ.

Formalised Algorithms The following algorithms have been formalised with some
effort towards minimising runtime theorem proving overhead:

• A symbolic model checking algorithm for Lµ (§2.4.2).

• Caching (§3.2) and alternation depth optimisations (§3.3).

• Counterexample generation lifted to Lµ (§5.2.2).

• Functional abstraction by constructing equivalence classes over logical relations be-
tween atomic propositions (§5.2.1 and §5.3.1).

• Counterexample detection using a SAT solver (§5.2.3; the SAT solver was integrated
elsewhere [73]).

• Counterexample-guided abstraction refinement (§5.2.4).

Formalised Systems The following systems were formalised for the case studies:

• The specification and an implementation of the Advanced Microcontroller Bus Ar-
chitecture from ARM Limited was formalised for the primary case study (Chapter
6). The implementation was done by us.

• A model of a well-known pedagogical three-stage pipelined arithmetic and logic unit
was formalised for the performance study (Chapter 7).

9.2 Limitations

9.2.1 Theoretical Issues

The following theoretical aspects of the work deserve further consideration:

• The formalisation has been carried out in classical higher order logic (HOL). Though
we gain much in the way of a considerable amount of existing formal theory and
theorem proving support, there are trade-offs:

– Though HOL is sufficient to express most formalisms, it lacks a satisfactory
treatment of foundational aspects of set theory.

In Lazic et al [113] for instance, a non-standard model of set theory is used to
give a direct construction of operational models of concurrency in the presence
of unbounded nondeterminism. This may prove troublesome to formalise in
the current context. Admittedly, such occurrences are rare in the literature.

– The non-constructive nature of HOL means that we cannot extract executable
programs from the proofs without considerable effort; effectively, not without
contructivising the theory.
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• Our formalisation of the theory keeps explicit track of α-equivalence using a rudi-
mentary form of substitution (see Definitions 2.10 and 2.11 in Chapter 2). This was
because of the lack of native support for variable binding in higher order abstract
syntax in hol. A recent formalisation in hol [146] of some axioms for α-conversion
[70] may provide a cleaner solution to this problem. However, we cannot at the
moment conjecture whether this will increase or decrease performance.

• A more powerful type system, and pvs-like predicate subtypes in particular, would
be very helpful in reducing clutter and complexity in the formal proofs. First steps
towards this have been taken [93].

9.2.2 Practical Shortcomings

Several standard model checking optimisations have not yet been implemented. Without
these, it is not possible to meaningfully compare the performance of our system against
more mature ones. For the moment we can only compare the system against a non-
formal version of itself. This type of relative comparison is unlikely to convince industrial
practitioners who are usually interested in absolute performance figures.

As is evident from Chapter 8, much of current research is focused on enabling coopera-
tion between various techniques. Though in theory we can implement any such technique
in hol, the absence of a general framework gives any implementation an ad hoc nature.

All we have is a philosophy: do everything fully-expansively for better assurance of
soundness, closer integration, and scriptability, and exploit the asymmetric cost of proof
checking vs. proof search whenever possible for efficiency. Though we have taken first
steps, a symp-style framework [14] that embodies this philosophy with an emphasis on
combining technologies would be desirable. Whether or not this would be over-engineering
depends on the eventual domain of use.

The approach of embedding model checking algorithms in a theorem prover carries a
clear performance penalty. There are benchmarking issues about what kind of problems
this approach is best suited to. There are also engineering issues about how to improve
the performance without abandoning the fully-expansive approach. And finally there are
usage issues about just what is considered an acceptable penalty in a given situation. All
these will need to be addressed at some point.

9.3 Future Directions

Immediate goals include:

• Improving the performance of the model checking component of the work by im-
proving the existing code and adding standard optimisations.

• Improving the usability of the system by adding to the debugging and failure-
analysis capabilities, and adding support for assume-guarantee style reasoning.

• Formally proving the soundness of the BDD calculus. We believe the calculus to be
sound. However, a formal proof is desirable.
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• Implementing abstraction over models where atomic propositions can be over any
logic that is decidable by the theorem prover. There are at least two candidate
techniques for this [108, 161]. This would enable model checking of infinite state
systems.

• Adding support for other assertion languages such as CTL * [53] and PSL/Sugar
[75].

In the long term, there are several ideas worth considering:

• Efficiency.

– A scheme for speeding up proofs in a fully-expansive theorem prover has been
described [20]. The idea is to delay the logical justification of a theorem but
provide the structure immediately. This could be extended to our system
where proofs could be separated into operations on BDDs and the theorem
proving overhead. These could be handed out to separate processors and the
theorem proving part “lazyfied”. Theoretically, this would all but eliminate
the performance penalty at the cost of an additional processor. In practical
terms, this seems a sensible trade-off.

– The approach so far has been to formalise logics in strictly textbook fashion.
Often a non-formal implementation (conducted for learning purposes) has been
retrofitted with formal theory. This has left room for several local optimisa-
tions.

– The caching algorithm can easily be extended to use algebraic simplification
of Lµ formulas. It would be interesting to see if such aggressive caching at the
term level improves performance beyond what we get by caching BDDs only.

– The optimisations mentioned in §3.1 can be implemented.

• Expressiveness.

– Data independence techniques developed in [111] provide a powerful abstrac-
tion ability assuming a small set of network invariants hold. Originally devel-
oped for CSP [88], the theory has recently been given a semantics-independent
treatment [112] and could prove a useful addition to the system.

– Game-semantic models of functional languages with control operators and
higher order references can be model checked [147]. Since hol has built-in
support for functional programming [138, 174], integrating this ability would
achieve a far deeper integration of model checking and theorem proving than
what we have achieved so far.

• Infrastructure. We need a framework in which model checking oriented technologies
can be added in a clean modular fashion. Possible approaches to follow include
[14, 180].



Appendix A

The HOL theorem prover

This appendix provides a quick overview of higher order logic (HOL) and the hol theorem
prover. For a more detailed and formal treatment, see the hol System Description [175].

In the late 19th century, dissatisfaction with the foundations of mathematics led to
the treatment of logic as a formal mathematical discipline [189]. Higher order logic in the
context of our work refers to Church’s simple theory of types [32] together with Robin
Milner’s type polymorphism [132].

Types are interpreted as standard sets. This was considered sufficient for the purposes
of hardware verification [71], which was the first use of the logic. Types can be type
variables α, β, . . . (occuring (unlike Church) in the object language as single polymorphic
terms), compound types (e.g. pairs, lists and records), and function types. Atomic types
can be considered as the zero-arity case of compound types.

Terms denote elements of the sets denoted by the term’s type. The term structure is
that of the typed λ-calculus with distinguished constants. The formula syntax is that of
predicate calculus with equality.

The deductive system is based on natural deduction, consisting of eight rules of in-
ference (reflexivity, β-conversion, modus ponens etc.) and five axioms (Hilbert’s choice,
exluded middle etc.). Judgements forming the root of derivation trees in this system are
called theorems. Definitions are created by adding new constants in a manner that cannot
introduce inconsistency.

The hol-4 (or just hol) theorem prover is a Moscow ML [167] implementation of
this deductive system (the original version was implemented by M. J. C. Gordon and
T. F. Melham in an old version of ML [76]). Theorem proving in hol is usually done in
an interactive session, by setting up a goal and then issuing commands that apply the
rules of inference to the goal. A goal that can be reduced to the axioms or ground rules
is a theorem.

Using only the core inference rules would be tedious. hol provides procedures called
tactics that sequentially apply several rules of inference to a goal to transform it in some
desired manner (e.g. case splits, resolution etc.). Tacticals are higher level procedures
that allow the user to combine tactics to further aid in automation. hol tactics include
decision procedures, simplifiers and rewrite systems.

hol also provides facilities for writing complicated definitions without resorting to the
primitive rules [174].

Informally, a theory is a collection of definitions and theorems. hol has theories for
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higher order logic, natural numbers, records, pairs, integer and real arithmetic, sets,1

probability, temporal logics and automata, bit-vectors, strings and algebra among oth-
ers. Related theories together with any appropriate decision procedures are packaged in
libraries.

An important aspect of the hol architecture is that whereas terms in the logic can
be freely constructed, theorems can be constructed using the core axioms and inference
rules only, i.e. by proof.2. Thus all tactics and tacticals can ultimately be unfolded into
applications of the core rules. This reduces the size of trusted code to the small kernel
of core rules. If the core rules are sound,3 then all of hol is sound. This is called the
LCF-style or fully-expansive approach to implementing a deduction system.

Certain decision procedures are inefficient to implement in this way. hol allows the
user to import the result of tools external to the logic as theorems. However, these
theorems are tagged to indicate that they were not derived fully-expansively.

A very useful side-effect of the LCF-style approach is that developers can be granted
full access to hol (except the kernel) without any soundness worries. Since the meta-
language Moscow ML is a full-blown functional programming language, this gives hol
virtually unlimited and easy scriptability. This is ideal for users wishing to program
procedures which require access to a powerful proof system. Correctness by construction
comes as an extra bonus.

hol has been used in several verifications. Recent examples include microprocessors
[64] and number theoretic algorithms [95].

1It shold be noted that hol sets are not ZF sets [173]. A set in hol is simply a predicate P : α → bool

and x ∈ P is equivalent to P (x).
2hol does provide a function mk thm for converting arbitrary terms to theorems, but none of our

proofs or the hol theories they rely on use this. We know this because theorems constructed via mk thm

are tagged as such.
3hol’s core rules of inference have been proved sound on paper ([76], Chapter 16).



Appendix B

Formalised version of theorem 4.10

This appendix contains the complete proof that the standard syntactic embedding of
CTL into Lµ preserves semantics. We include it because we were unable to find a for-
mal treatment in the literature of this commonly cited result. The account given here
closely follows the formal hol proof. We will use subscripts to distinguish between the
components of M and T M .

Theorem B.1

∀Mf.[[f ]]M = [[T (f)]]T M⊥

Proof By induction on the definition of f .

• f ≡ True. Trivial by D4.4,D4.8, D4.9.

• f ≡ p.

[[p]]M

= {s|p ∈ LM(s)} by D4.4

= {s|T (p) ∈ LT M(s)} by D4.8, D4.9

= [[T (p)]]T M⊥ by D2.3

• f ≡ ¬f ′.

[[¬f ′]]M

= S\[[f ′]]M by D4.4 and set theory

= S\[[T (f ′)]]T M⊥ by the IH

= [[T (¬f ′)]]T M⊥ by D2.3, D4.8

• f ≡ f ′ ∧ f ′′.

[[f ′ ∧ f ′′]]M

= [[f ′]]M ∩ [[f ′′]]M by D4.4 and set theory

= [[T (f ′)]]T M⊥ ∩[[T (f ′)]]T M⊥ by the IH

= [[T (f ′ ∧ f ′′)]]T M⊥ by D2.3, D4.8
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• f ≡ EXf ′. For any state s ∈ SM ,

s ∈ [[EXf ′]]M

⇐⇒ s |=M EXf ′ by definition of[[−]]M

⇐⇒ ∃π.PATH Mπs ∧ π1 |=M f ′ by D4.4

⇐⇒ ∃π.PATH Mπs ∧ π1 ∈ [[f ′]]M by definition of[[−]]M

⇐⇒ ∃π.PATH Mπs ∧ π1 ∈ [[T (f ′)]]T M⊥ by the IH

⇐⇒ ∃π.RM(s, π1) ∧ π1 ∈ [[T (f ′)]]T M⊥ by D4.2

⇐⇒ ∃π.s
.
→ π1 ∧ π1 ∈ [[T (f ′)]]T M⊥ by definition of →

Now define our existential witness π by

π0 = s

π(n + 1) = if (n = 0) then π1 else εr.RM(πn, r)

where ε is Hilbert’s selection operator. Then simplifying and continuing,

⇐⇒ ∃s′.s
.
→ s′ ∧ s′ ∈ [[T (f ′)]]T M⊥ by definition ofπ

⇐⇒ s ∈ {s|∃s′.s
.
→ s′ ∧ s′ ∈ [[T (f ′)]]T M⊥} by defn of ∈

⇐⇒ s ∈ [[〈.〉T (f ′)]]T M⊥ by D2.3

⇐⇒ s ∈ [[T (EXf ′)]]T M⊥ by D4.8

and we have the required result by extensionality.

• f ≡ EGf ′. Define

τ(W ) = [[T (f) ∧ 〈.〉Q]]T M ⊥ [Q ← W ]

and we have

– ⊆ direction.

[[EGf ]]M ⊆ [[T (EGf)]]T M⊥

⇐⇒ [[EGf ]]M ⊆
⋂

n

τnST M by P2.5,D4.8,D2.3,D4.9

⇐⇒ ∀n.[[EGf ]]M ⊆ τnST M by set theory

Then induction on n gives

∗ n ≡ 0. Immediate by D2.3,D4.9,P2.5.

∗ n ≡ n′ + 1. Consider the “outer” IH,

[[EGf ]]M ⊆ τn′

ST M

⇒ τ([[EGf ]]M) ⊆ τ(τn′

ST M) by P2.4

⇐⇒ [[EGf ]]M ⊆ τn′+1ST M by L4.6,D4.8,D2.3

which is the required result.
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– ⊇ direction.

[[EGf ]]M ⊇ [[T (EGf)]]T M⊥

⇐⇒ [[EGf ]]M ⊇
⋂

n

τnST M by P2.5,D4.8,D2.3,D4.9

Now consider some s ∈
⋂

n τnST M . By Proposition 2.5,

s ∈ τ
(

⋂

n

τnST M

)

Suppose π is a path starting at s. Then by the definition of τ , π1 ∈
⋂

n τnST M .
We use the ε operator to pick π1 for us (this is needed because totality of R.M
only tells us that π1 exists). By repeatedly using ε to pick the appropriate
next state on the path, we can construct π such that ∀i.πi ∈

⋂

n τnST M . But
for any s′, s′ ∈

⋂

n τnST M ⇒ s′ |=M f by the definition of τ and the outer IH.
Thus we have that ∀i.πi |=M f , and we have the required result by Definition
4.4.

• f ≡ E[f ′Uf ′′]. Define

τ(W ) = [[T (f ′′) ∨ (T (f ′) ∧ 〈.〉Q)]]T M ⊥ [Q ← W ]

and we have

– ⊆ direction.

[[E[f ′Uf ′′]]]M ⊆ [[T (E[f ′Uf ′′])]]T M⊥

⇐⇒ [[E[f ′Uf ′′]]]M ⊆
⋃

n

τn∅ by P2.5,D4.8,D2.3,D4.9

Now consider some s ∈ [[E[f ′Uf ′′]]]M . Then by Definition 4.4 we have,

∃π.PATH Mπs ∧ ∃k.πk |=M f ′′ ∧ ∀j.j < k ⇒ πj |=M f ′

We proceed by induction on the length |kπ| of kπ.

∗ |kπ| = 0. Note that since π is infinite, |kπ| = k by the definition of kπ. So
k = 0. This implies s |=M f ′′ by Definition 4.2, i.e. s ∈ [[f ′′]]M and we are
done by the definition of τ and the outer IH.

∗ |kπ| = k′ + 1. We note again that k = k′ + 1. Consider the path π1. Then,

πk |=M f ′′

⇐⇒ π1
k′ |=M f ′′

and

∀j.j < k ⇒ πj |=M f ′

⇐⇒ ∀j.j + 1 < k ⇒ πj+1 |=M f ′

⇐⇒ ∀j.j < k′ ⇒ π1
j |=M f ′
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So by the IH,

π1
0 ∈

⋃

n

τn∅

⇐⇒ π1 ∈
⋃

n

τn∅

⇐⇒ s ∈ τ
(

⋃

n

τn∅
)

∵ s |=M f ′ and defn of τ

and we are done by the outer IH.

– ⊇ direction.

[[E[f ′Uf ′′]]]M ⊇ [[T (E[f ′Uf ′′])]]T M⊥

⇐⇒ [[E[f ′Uf ′′]]]M ⊇
⋃

n

τn∅by P2.5,D4.8,D2.3,D4.9

⇐⇒ ∀n.[[E[f ′Uf ′′]]]M ⊇ τnST Mby set theory

Then induction on n gives

∗ n ≡ 0. Immediate by D2.3,D4.9,P2.5.

∗ n ≡ n′ + 1. Consider the outer IH,

[[E[f ′Uf ′′]]]M ⊇ τn′

∅

⇒ τ([[E[f ′Uf ′′]]]M) ⊇ τ(τn′

∅) by P2.4

⇐⇒ [[E[f ′Uf ′′]]]M ⊇ τn′+1∅ by L4.7,D4.8,D2.3

which is the required result.

¤



Appendix C

Usage example

In this appendix we demonstrate counter-example guided abstraction refinement for a
small hand-crafted example, to lend some concreteness to the material in Chapters 2, 3,
4 and 5. The output from hol has been modified to aid in readability.

We consider a system having a state space over two boolean variables v0 and v1, with
an initial state predicate

INIT (v0, v1) = ¬v0 ∧ ¬v1

and transition relation predicate

TRANS((v0, v1), (v
′
0, v

′
1)) = v′

0 =
case v1 ∧ v0 → T

| v1 ⊕ v0 → v0

| T → F

∧

v′
1 = case T → T

We will let v̄ and v̄′ abbreviate (v0, v1) and (v′
0, v

′
1) respectively. Note that there are

four concrete states. To avoid clutter we label them as follows 0 = (F, F ), 1 = (T, F ),
2 = (F, T ) and 3 = (T, T ). Note that 0 is the only initial state.

The first step is to compute the abstraction function. The appropriate function call
with INIT and TRANS as arguments returns a term-BDD h whose term part looks like

SCC TRANS (¬v0,¬v1) v̄ = ¬v̂0 ∧ ¬v̂1

∧ SCC TRANS (v0,¬v1) v̄ = v̂0 ∧ ¬v̂1

∧ SCC TRANS (v0, v1) v̄ = ¬v̂0 ∧ v̂1

indicating that we have three abstract states from the four concrete ones. The third
argument to SCC is present because we are considering the set of states SCC as a
predicate here.1 We can break down this computation along the lines of §5.2.1 :

1. F = {v1 ∧ v0, v1 ⊕ v0} = FC0

2. V C0 = {v0, v1}

1See remarks in footnote 1 of Appendix A.
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0
2

1

3

1̂ 2̂0̂

Figure C.1: Concrete and abstracted model

3. It can be shown that

∀ψ ∈ FC0. 1 |= ψ ⇐⇒ 2 |= ψ

whereas

¬∃ψ ∈ FC0.∃s 6= 3. 3 |= ψ ⇐⇒ s |= ψ

and ditto for the concrete state 0. Then h can computed as in §5.3.1.

To avoid clutter we will label the abstract states 0̂ = ¬v̂0 ∧ ¬v̂1, 1̂ = v̂0 ∧ ¬v̂1 and
2̂ = ¬v̂0 ∧ v̂1 and extend the v̄ notation to ¯̂v. Figure C.1 shows how the concrete states
(solid circles) are grouped into abstract ones (dashed-circles).

The next step is to build the abstract model. We supply INIT , TRANS and h to
our system, which returns the abstract model M̂ :

(ÂP = {v̂0, v̂1},

Ŝ = U : (bool× bool),

Ŝ0 = λ¯̂v.∃v̄.h(v̄, ¯̂v) ∧ INIT (v̄),

T̂ = λa.λ(¯̂v, ¯̂v′).∃(v̄, v̄′).h(v̄, ¯̂v) ∧ h(v̄′, ¯̂v′) ∧ TRANS((v0, v1), (v
′
0, v

′
1)),

L̂ = λ¯̂v p (λt. if t = ′′v0
′′ then ∃v1.(λv̄.h(v̄, ¯̂v))(T, v1)

else ∃v0.(λv̄.h(v̄, ¯̂v))(v0, T) p)

This looks similar to Definition 5.1 but several details need explanation:

• S is set to U . See the remarks after Definition 2.9.

• Relational notation is used for the function h. This is because h is not defined
directly but rather in terms of the equivalence classes it indirectly induces on the
concrete state space. It is thus more natural to treat h as a relation.

• There is an extra λa in front of the definition of T̂ . Recall that T (or T̂ ) is a set
of transition relations indexed by action names. Thus we implement T (or T̂ ) as a
function on action names: what follows the λa is indeed a transition relation in the
abstract state space. The reason that a is not actually used is because there is only
one transition relation in this model, thus action names are not required to pick out
which transition relation we want and the default action name “.” is always used.
In this case, the λa is simply there to preserve type correctness.
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• The definition of L̂ appears to be completely different from that in Definition 5.1.
Intuitively, given an abstract state ŝ, L̂ returns the set of propositions true in the
concrete states comprising ŝ. Note from Definition 2.3 that L (or L̂) is eventually
used to compute the set {s|p ∈ L(s)} where p is the name (as opposed to the
symbolic value) of a proposition.

Since hol sets are just predicates, we would like to be able to compute L(s)(p) (or
L̂(ŝ)(p)) quickly. We construct the term for L̂ in such a way that evaluating L̂(ŝ)(p)
uses the string p to efficiently look up the term representing the set of concrete
states in which the value of p is T. The term for L̂ actually looks like

L̂ = λ¯̂v p (λt. let x = explode (strcat t ”!!”) in

if ord ((hd o tl)x) < 49 then ∃v1.(λv̄.h(v̄, ¯̂v))(T, v1)

else ∃v0.(λv̄.h(v̄, ¯̂v))(v0, T)) p)

The term is in fact a Patricia trie, keyed on proposition names, which are strings.
Each name is represented as a list of the ASCII values of the characters forming
the string. This enables fast searching by comparing natural number values. The
“!!” pads the shorter names to the same length as the longest one, noting that the
“!” character has a lower ASCII value than any alphanumeric character allowed in
a proposition name. This eases the ordering of names.

This representation was judged (after some benchmarking) to be faster than binary
trees. Balanced trees were not considered because the term is constructed only
once and never modified, so we can ensure optimal balance at construction time.
Splay-trees were not considered because modifying the term after every look-up was
too expensive and the system can be architected to reduce the number of look-ups
considerably (no more than one in most cases). The extra λt is required to prevent
hol’s call-by-value evaluator from descending unnecessary branches.

The term for T̂ would have been similar had there been more than one action. This
representation was chosen because it is quicker to evaluate than the obvious one but
retains the standard semantics.

Now that we have our model, we are ready to check properties. For our example, we
will attempt to verify the CTLproperty f given by

AX¬v0

which holds in the concrete system. For this we use the model checking procedure from
Definition 4.12 that internally translates the CTL to Lµ and calls the Lµ decision procedure
from Definition 2.7.

Passing f and M to the system, we get the term-BDD

ρ s |=⊥
M̂

T (AX¬v0) 7→ b

Internally, the first attempt at verification fails with an abstract counterexample trace
〈0̂, 1̂, 2̂〉 (see §5.2.2) because f does not hold in concrete state 3. However, 3 is not actually
a reachable state and attempting to compute a corresponding concrete counterexample
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(as in §5.2.3) fails. The longest concrete counterexample trace we can manage is 〈0, 2〉
indicating that 1̂ needs to be refined. This is done as in §5.2.4 and now the property can
be verified.

Now we can use theorems 4.10 and 5.3 together with the BddEqMp rule from §2.2 to
derive the term-BDD

ρ s |=M AX¬v0 7→ b

Note that we cannot use BddOracleThm to extract the term part as a theorem because
the property does not hold in all states but only the reachable ones, so that b 6= TRUE.
Depending on the kind of property, we are usually interested in knowing either that the
property is satisfied by all reachable states, or just by the initial states. In this example,
we want the former. So we compute the term-BDD Reachable for the set of reachable
states as in §4.4.1 and use the BddImp rule to get the term-BDD

ρ s ∈ Reachable(T (.))S0 ⇒ s |=M AX¬v0 7→ TRUE

and finally use BddOracleThm to derive the theorem

⊢ s ∈ Reachable(T (.))S0 ⇒ s |=M AX¬v0

as required.
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