
Technical Report
Number 602

Computer Laboratory

UCAM-CL-TR-602
ISSN 1476-2986

Model checking the AMBA protocol in
HOL

Hasan Amjad

September 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2004 Hasan Amjad

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Model checking the AMBA protocol in HOL

Hasan Amjad

Abstract

The Advanced Microcontroller Bus Architecture (AMBA) is an open System-
on-Chip bus protocol for high-performance buses on low-power devices. In this
report we implement a simple model of AMBA and use model checking and theorem
proving to verify latency, arbitration, coherence and deadlock freedom properties of
the implementation.

Typical microprocessor and memory verifications assume direct connections between
processors, peripherals and memory, and zero latency data transfers. They abstract away
the data transfer infrastructure as it is not relevant to the verification. However, this
infrastructure is in itself quite complex and worthy of formal verification.

The Advanced Microcontroller Bus Architecture1 (AMBA) is an open System-on-Chip
bus protocol for high-performance buses on low-power devices. In this report we imple-
ment a simple model of AMBA and verify latency, arbitration, coherence and deadlock
freedom properties of the implementation.

The verification is conducted using a model checker for the modal µ-calculus Lµ, that
has been embedded in the HOL theorem prover [3]. This allows results from the model
checker to be represented as HOL theorems for full compositionality with more abstract
theorems proved in HOL using a formal model theory of Lµ that we have also developed
[4]. This tight connection between model checking and theorem proving is exploited in
section 4 of this report.

1 AMBA Overview

The AMBA specification defines three buses:

• Advanced High-performance Bus (AHB): The AHB is a system bus used for com-
munication between high clock frequency system modules such as processors and
on-chip and off-chip memories. The AHB consists of bus masters, slaves, an arbiter,
a signal multiplexor and an address decoder. Typical bus masters are processors
and DMA devices.

• Advanced System Bus (ASB): The ASB is also a system bus that can be used as
an alternative to the AHB when the high-performance features of AHB are not
required.

1 c©1999 ARM Limited. All rights reserved. AMBA is a trademark of ARM Limited.

3



DMA Bus
Master

On−chip RAM

UART

Keypad

Timer

PIO

APB

B
R
I
D
G
E

Off−chip
RAM

AHB or ASB

Microprocessor

Figure 1: Typical AMBA-based Microcontroller

• Advanced Peripheral Bus (APB): The APB is a peripheral bus specialised for com-
munication with low-bandwidth low-power devices. It has a simpler interface and
lower power requirements.

Designers can use either the AHB or the ASB in conjunction with the APB. The
APB has a single bus master module that acts as a bridge between the AHB or ASB and
the APB. The AMBA specification is hardware and operating system independent and
requires very little infrastructure to implement. Figure 1 shows a typical AMBA-based
microcontroller. We follow revision 2.0 of the AMBA specification [5].

2 AMBA APB

The APB is optimized for low power consumption and low interface complexity. It is
used for connecting the high-bandwith system bus to low-bandwidth peripherals such as
input devices. There is a single bus master, a single global clock and all transfers take
two cycles. The bus master also acts as a bridge to the system bus, to which it can be
connected as a slave. The address and data buses can be up to 32 bits wide.

2.1 Specification

The operation of the APB consists of three stages, all of them are triggered on the rising
edge of the clock:

1. IDLE. This is the initial and the default state of the bus when no transfer is under-
way.

2. SETUP. The first stage of a transfer is a move to the SETUP state. The address,
data and control signals are asserted during this phase but may not be stable. This
stage always lasts for one clock cycle and then the operation moves to the ENABLE
stage.

3. ENABLE. The address, data and control signals are stable during this phase. This
phase also lasts one clock cycle and then moves to the SETUP or the IDLE stage
depending on whether or not another transfer is required.

4



Table 1: AMBA APB Signals
Signal Description

PCLK The bus clock. The rising edge is used to trigger all APB signals.
PRESET The reset signal. Resets the bus to the IDLE state. It is the only

signal that is active low.
PSELx This signal indicates that slave x is selected and a transfer is re-

quired, thus moving the bus from the IDLE to the SETUP stage.
There is a unique line for each slave on the bus.

PENABLE This signal triggers a move from the SETUP to the ENABLE stage,
when the data and address buses are actually sampled.

PWRITE When high this signal indicates a write access, when low a read
access.

PADDR[31:0] The address bus. Can be up to 32 bits wide and is driven by the
bus master.

PRDATA[31:0] The read data bus. It can be up to 32 bits wide and is driven by
the selected slave (see PSELx) during a read access.

PWDATA[31:0] The write data bus. It can be up to 32 bits wide and is driven by
the bus master during a write access.

Table 1 lists all APB signals and their function. Each signal name is prefixed with P
to denote that this is an APB signal.

2.1.1 Bus Master

There is a single bus master on the APB, thus there is no need for an arbiter. The
master drives the address and write buses and also performs a combinatorial decode of
the address to decide which PSELx signal to activate. It is also responsible for driving
the PENABLE signal to time the transfer. It drives APB data onto the system bus during
a read transfer.

2.1.2 Slave

An APB slave drives the bus during read accesses. This can be done when the appropriate
PSELx is high and PENABLE goes high. PADDR is used to determine the source
register.

In a write transfer, it can sample write data at either the edge of PCLK or PENABLE,
when its PSELx signal is high. Then PADDR can be used to determine the target
register.

2.2 Implementation

We implement the APB by following the specification in a straightforward manner without
any optimizations. We need to implement the model as a state machine MAPB. In this
case, a state is a tuple of all the signals considered as boolean variables. We use the
standard convention of using primes to denote components of the target (or next) state
in a transition.

5



Definition 1

s̄APB = (PCLK,PRESET, PSELx, PENABLE,PWRITE,

PADDR[31 : 0], PRDATA[31 : 0], PWDATA[31 : 0])

and s̄′APB represents s̄APB with all components primed.

Note that PSELx represents several variables, and PADDR[31 : 0], PRDATA[31 : 0]
and PWDATA[31 : 0] can each represent up to 32 variables. Henceforth, we will use this
notational convention to abbreviate parameterised signals and address and data buses.

2.2.1 Assumptions

Some simplifying assumptions:

1. All signals are valid throughout, i.e. there is no glitching.

2. Sub-cycle timing (i.e. timing delays between signals becoming stable after changing)
is ignored.

3. Since there is a single global clock triggering all signals, transitions of the state ma-
chine are synchronous. For the same reason, it suffices to model the clock implicitly
by equating one transition of the system to one clock cycle.

4. Endian-ness is not fixed, but is required to be consistent throughout.

5. We do not model reset as it is easy to do so but its presence trivially guarantees
absence of deadlock.

These assumptions preserve the properties of the model that we are interested in.

2.2.2 The Model

We first need to define our state machine as a Kripke structure MAPB. S and L are
defined in the obvious manner. MAPB is then described by an initial states predicate
S0APB on states, and a transition predicate RAPB which is a relation on states and is a
conjunction – since the state machine is synchronous – of the transition relations for the
components of the bus. As much as possible of the internal behaviour of the master and
slaves has been abstracted.

The initial states predicate says simply that we start in the IDLE stage.

Definition 2

S0APB(s̄APB) =
∧

x

¬PSELx ∧ ¬PENABLE

We need two transition relations, for the master and for slaves.

6



Definition 3

Rmaster
APB (s̄APB, s̄′APB) =

(PENABLE ′ ⇐⇒ PSELx ∧ ¬PENABLE) (1)

∧ (PWRITE ′ ⇐⇒ PSELx ⇒ PWRITE) (2)

∧ (PADDR′
b ⇐⇒ PSELx ⇒ PADDRb) (3)

∧ ((PSELx ⇐⇒ ¬PENABLE) ⇒ PSEL′
x) (4)

∧ (Mst′r,b ⇐⇒ if (¬PWRITE ∧ ((r, b) = DECODE(PADDR))

∧PSELx ∧ PENABLE)

then Slvx,r,b else Mstr,b) (5)

Note that some of the transition conditions represent schema. PADDRb represents
line b of the address bus, Mstr,b represents bit b of register r of the master, and Slvx,r,b

represents bit b of register r of slave x, where the x is the same as the x in PSELx. We
use Mst and Slv to model actual master and slave registers because it is easier to check
coherency properties this way rather than by modelling the data buses PRDATA and
PWDATA, specially since we are ignoring glitching and sub-cycle timing.

Line 1 of Definition 3 drives PENABLE to high immediately after the cycle in which
PSELx goes high. Line 2 latches the value of PWRITE once PSELx is high. Line 3 does
the same for PADDR. Line 4 ensures that PSELx stays high in the ENABLE stage.
Finally, line 5 ensures that the master regisers are updated correctly; the DECODE

function recovers which bit of which register of the master is to be updated.
Slaves have a very simple transition relation.

Definition 4

Rslave
APB(s̄APB, s̄′APB) =

Slv′
x,r,b ⇐⇒ if (PWRITE ∧ ((r, b) = DECODE(PADDR))

∧PSELx ∧ PENABLE)

then Mstr,b else Slvx,r,b

The definition ensures that slave registers are updated correctly.
The APB transition relation is just the conjunction of the transition relations for the

master and slave modules.

Definition 5

RAPB(s̄APB, s̄′APB) =

Rmaster
APB (s̄APB, s̄′APB) ∧ Rslave

APB(s̄APB, s̄′APB)

2.3 Verification

We verify three types of properties for our APB implementation. In all cases, a property
is considered verified if the set of satisfying states include the initial states. This condition
can be built into the properties but we do not do so to avoid computing the set of initial
states repeatedly.

7



2.3.1 Latency

Latency properties check that the bus becomes available within a given number of cy-
cles. We can use them to check that wait and/or transfer times do not exceed design
specifications. In our case, we want to confirm that all transactions take precisely two
cycles.

Unfortunately this property cannot be represented in CTL , since it needs to be of the
schematic form

AG(A(X(¬PENABLE ∧ PSELx) ⇒ XAXAX(PSELx ∧ PENABLE)))

which is a CTL * property.
We have not yet implemented a translation from CTL * to the propositional µ-calculus

Lµ, so we are unable to check this property since our model checker [3] works for Lµ

properties. The best we can do with CTL is the property schema

AG(¬PENABLE ∧ PSELx ⇒ AX(PSELx ∧ PENABLE))

which checks that once a transfer starts, it finishes in the next cycle. Running this through
the model checker returns the required theorem.

Theorem 6

⊢ ∀s̄APB.

s̄APB ²MAPB
AG(¬PENABLE ∧ PSELx

⇒ AX(PSELx ∧ PENABLE))

Theorem 6 is actually a family of theorems indexed by x, since the property was stated
as a schema. Each theorem in the family is model checked separately. This applies to
all theorems in this chapter that correspond to property schema, though we shall refer to
each family as a Theorem to preserve the correspondence with the the associated property.

We mention in passing that the model checker would actually have returned the the-
orem

⊢ ∀s̄APB.

s̄APB ²
⊥
T (MAPB) T (AG(¬PENABLE ∧ PSELx

⇒ AX(PSELx ∧ PENABLE)))

from which Theorem 6 is derived using our translation of CTL to Lµ [1]. This applies to
all other theorems returned by the model checker where we checked for CTLproperties.

We can express the CTL * property directly in Lµ but this approach is best avoided
as we currently lack the safety net of a formal translation from CTL * and Lµ is fairly
non-intuitive to work with. However, we are able to get around this problem in the next
section.

2.3.2 Coherence

Coherence properties check data coherency, i.e. registers are updated correctly at the end
of transfers. Since transfers are multi-cycle, target registers are not updated immediately.

8



Thus by checking that the update happens in precisely two cycles, we can also check the
transfer time. The required CTLproperty schema is

AG

((¬PENABLE ∧ PSELx ∧ PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ ((AXAXSlvx,r,b) ⇐⇒ Mstr,b))

∧ (¬PENABLE ∧ PSELx ∧ ¬PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ (Slvx,r,b ⇐⇒ (AXAXMstr,b))))

in which we can check coherency and a two-cycle transfer time simultaneously. The
two conjuncts check for coherency during write and read cycles respectively. The model
checker returns the required theorem.

Theorem 7

⊢ ∀s̄APB.

s̄APB ²MAPB

AG

((¬PENABLE ∧ PSELx ∧ PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ ((AXAXSlvx,r,b) ⇐⇒ Mstr,b))

∧ (¬PENABLE ∧ PSELx ∧ ¬PWRITE

∧ ((r, b) = DECODE(PADDR))

⇒ (Slvx,r,b ⇐⇒ (AXAXMstr,b))))

2.3.3 Deadlock Freedom

In concurrency theory, the term deadlock refers to an abnormal termination or freeze of
the system. In terms of automata such as Kripke structures, this may be represented by
a state with no outgoing transitions.

We can check that this undesirable situation does not occur. Since our transition
relation has been defined by assigning all next-state variables some value in each cycle,
the simple CTLproperty

AGEXTrue

(to check that there is no terminal state) is in a sense vacuously true and does not tell us
anything.

On account of this, we need to have some criterion for system deadlock. We know
that once a transfer is underway, it always completes, by Theorem 6. So it remains only
to check that a transfer can always be initiated. This can be checked by the following
property schema:

AG(AF(PSELx⊕̄PENABLE ⇒ EXPSELy))

9



where ⊕̄ is negated exclusive-OR. This property checks that PSEL (for any slave) can
go high if the APB is idle or has just finished a transfer. The model checker returns the
required theorems.

Theorem 8

⊢ ∀s̄APB.

s̄APB ²MAPB
AG(AF(PSELx⊕̄PENABLE ⇒ EXPSELy))

3 AMBA AHB

The AHB is a pipelined system backbone bus, designed for high-performance operation.
It can support up to 16 bus masters and slaves that can delay or retry on transfers. It
consists of masters, slaves, an arbiter and an address decoder. It supports burst and split
transfers. The address bus can be up to 32 bits wide, and the data buses can be up to
128 bits wide. As before, there is a single global clock.

We choose to model the AHB rather than the ASB because the AHB is a newer design
and also because it has been designed to integrate well with the verification and testing
workflow.

3.1 Specification

The operation of the AHB is too complex to be specified in terms of a few fixed stages. A
simple transfer might proceed as follows (the list numbering below is not cycle accurate):

1. The AHB is in the default or initial state. No transfer is taking place, all slaves are
ready and no master requires a transfer.

2. Several masters request the bus for a transfer.

3. The arbiter grants the bus according to some priority-scheduling algorithm.

4. The granted master puts the address and control information on the bus.

5. The decoder does a combinatorial decode of the address and the selected slave
samples the address.

6. The master or the slave put the data on the bus and it is sampled. The transfer
completes.

Items 4-5 above constitutes the address phase of a transfer, and 6 constitutes the
data phase. Since the address and data buses are separate, the address and control
information for a transfer are driven during the data phase of the previous transfer. This
is how transfers are pipelined. Several events can complicate the basic scenario above:

• The master or the slave may extend the transfer by inserting idle cycles or wait
states during the transfer.

• The master may indicate a burst in which case several transfers occur end-to-end.

10



Table 2: AMBA AHB Master Signals
Signal Driver Description

HADDR[31:0] Master The address bus. Up to 32 bits wide.
HTRANS[1:0] Master Indicates the type of the current transfer. These can

be idle (IDLE), busy (BUSY), non-sequential (NSQ)
or sequential (SEQ).

HWRITE Master When high this indicates a write transfer (master to
slave) and a read when low.

HBURST Master Indicates if the transfer forms part of a burst.
HWDATA[127-31:0] Master The write data bus. Can be up to 128 bits wide.
HBUSREQx Master When high indicates to the arbiter that master x is

requesting the bus. There is a separate bus request
line for each master.

Table 3: AMBA AHB Slave Signals
Signal Driver Description

HRDATA[127-31:0] Slave The read data bus. Can be up to 128 bits wide.
HSPLITx[15:0] Slave This is used by a slave x to tell the arbiter which masters

should be allowed to re-attempt a split transfer. Each
bit corresponds to a single master.

HREADY Slave When high indicates that a transfer is complete. Slaves
can drive this low to insert wait states.

HRESP[1:0] Slave Allows the slave to provide additional information about
a transfer. The reponses are okay (OK), error (ERR),
retry (RETRY) and split (SPLIT).

• The slave may report an error and abort the transfer.

• The slave may signal a split or a retry, indicating it cannot at the moment proceed
with the transfer. In this case the master may relinquish the bus and complete the
transfer later (split) or not leave the bus and complete the transfer once the slave
is ready (retry).

Tables 2, 3 and 4 list the AHB master, slave and other signals respectively and their
function. Each signal name is prefixed with H to denote that this is an AHB signal.

3.1.1 Masters

The AHB supports up to 16 bus masters. Each master wishing to initiate a transfer
competes for a bus grant from the arbiter and has its control and address signals driven
to the slave when it gets the bus.

If a master x does not wish to initiate a transfer it drives HBUSREQx to low and
if it owns the bus it also drives HTRANS to IDLE. To initiate a transfer, it drives
HBUSREQx high. Upon getting bus ownership (checked via HGRANTx, HMASTER

and HREADY ), the address and control signals are driven onto the bus for exactly one

11



Table 4: AMBA AHB System, Arbiter and Decoder Signals
Signal Driver Description

HCLK Clock The bus clock. The rising edge is used to trigger all
AHB signals.

HRESET System The reset signal. Resets the bus to the default state. It
is the only signal that is active low.

HGRANTx Arbiter When high indicates that master x currently has the
highest priority for getting the bus. Bus ownership does
not actually change till the current transfer ends.

HMASTER[3:0] Arbiter Indicates which master is currently performing a trans-
fer (and thus has the bus). Its timing is aligned with the
address phase of the transfer. Used by SPLIT-enabled
slaves.

HSELx Decoder This signal indicates that slave x is selected for the cur-
rent transfer. There is a unique line for each slave on
the bus. This signal is arrived at by decoding the higher
order bits of the address bus.

cycle. To initiate the transfer, the master drives HTRANS to NSQ (which abbreviates
“non-sequential”). It also drives HBURST to low indicating a single transfer, or to high
indicating a four-beat burst. All this happens during the one-cycle address phase.

In the next cycle, the master drives the data on to the data buses (or samples it in
case of a read). If this is a burst, then the master also continues to drive the control
signals and increment the address signals to prepare for the next beat of the burst. In
the middle of a burst HTRANS is driven to SEQ.

It should be noted that in the last beat of a burst (or the one-cycle data phase of a
single transfer) the information on the control and address buses is driven by the master
that next has control of the bus, or by a default master (usually the highest priority
master) if no master wishes to acquire the bus. In the latter case, the default master can
simply drive HTRANS to IDLE in which case the other signals are ignored. We will
assume that Master 1 is the default master. Master 0 is reserved as a dummy master
which guarantees to generate only IDLE transfers, and is granted the bus if all other
masters are waiting on SPLIT transactions.

Responses to Slave Signals Masters need to respond to the following slave signals:

• If the slave drives HREADY to low, then the master must continue the assert the
same control, address and data signals in the next cycle, and continue this until
HREADY is high again.

• If the slave drives HRESP to ERR, the master may abort the transfer or continue
with it.

• If the slave drives HRESP to SPLIT, the arbiter will grant the bus to another
master. In this case the first master waits until it is given the bus again. The bus
protocol only allows for masters to have one outstanding SPLIT transfer. Thus upon

12



regaining the bus the master can continue with the transfer as before. However, a
slave need not remember the control and address information and the master should
broadcast this information first before driving/sampling the data buses.

• If the slave drives HRESP to RETRY, the master simply retries the transfer until
it is completed, which is indicated by the slave signalling OK. To prevent deadlock,
only one master can access a slave that has issued the RETRY reponse.

3.1.2 Multiplexor

The bus uses a central multiplexor interconnect scheme. All masters drive their address
and control signals and the arbiter decides which master’s signals are routed on to the
slaves.

3.1.3 Arbiter

The arbiter uses an arbitration algorithm (e.g. round-robin scheduling; AMBA does not
specify or recommend any particular algorithm) to decide which master to grant the bus
to. Actual bus ownership is not handed over until the current transfer completes.

Additionally, the arbiter is responsible for keeping track of masters (by internally
masking their bus requests) that have SPLIT transfers outstanding and granting the bus
to the highest priority one when the corresponding slave signals (via HSPLITx) that is
it ready to continue the transfer.

3.1.4 Decoder

The decoder simply performs a direct decode of the address bus. The appropriate
higher order bits give the value of HSELx and the rest are used by slaves to determine
source/target registers.

3.1.5 Slaves

Once a transfer begins it is up to the slave to determine how it proceeds. The slave can
do one of the following:

• If all is well, the slave responds by driving HREADY to high and HRESP to OK,
and the transfer is straightforward.

• If the slave needs a little time during the data phase, it can extend the phase by
inserting wait states by driving HREADY to low and HRESP to OK. Note that
the address phase cannot be extended.

• If the slave cannot complete the transfer immediately it can issue a SPLIT response
if it is SPLIT-capable. SPLIT-capable slaves need to be able to record the numbers
of up to 16 masters to prevent deadlock. When ready, they activate the appropriate
bits on HSPLITx to indicate which master(s) the slave is ready to communicate
with and continue with the transfers.

13



• If a non-SPLIT-capable slave cannot complete a transfer immediately it drives
HRESP to RETRY. To prevent deadlock, it must record the number of the cur-
rent master and ensure that an ensuing transfer is with the same master, until the
RETRY’d transfer is complete. If the master is not the same, the slave has the
option of issuing an ERR, generating a system level interrupt or a complete reset.

• In case of a complete failure, the slave drives HRESP to ERR, and ignores the rest
of the transfer.

The RETRY, SPLIT and ERROR responses take two cycles (HREADY is low in the
first cycle, high in the second), to give the master time to re-drive the address and control
signals onto the bus.

3.2 Implementation

We implement the AHB by following the specification in a straightforward manner with-
out any optimizations. We need to implement the model as a state machine MAHB,
representing a state of MAHB by s̄AHB.

Definition 9

s̄AHB = (HTRANS[1 : 0], HREADY,HRESP [1 : 0], HSPLITx[15 : 0],

HGRANTx, HBUSREQx, HSELx, HADDR[31 : 0],

HMASTER[1 : 0], HBURST,HWSx, BBx, HMASKx,

HSLV SPLITx)

We write s̄′AHB to represent s̄AHB with all components primed.
The HWSx, BBx, HMASKx and HSLV SPLITx signals are not part of the speci-

fication but are required by the implementation to count elapsed wait states and burst
beats, and for the arbiter and slaves’ internal bookkeeping. We shall refer to HWSx and
BBx as counters.

3.2.1 Assumptions and Limitations

All assumptions made in §2.2 hold. We have made some additional assumptions to simplify
the implementation a little.

Most importantly, we have not implemented the datapath. Datapath implementation
and verification has already been demonstrated in §2 and verifying datapath properties
for AHB is presently beyond the capabilities of our under-development model checker.
The interesting aspects of the AHB all lie in the control circuitry. Other assumptions are:

• All bursts are four beats long. This encompasses all possible interactions that would
be added by considering longer bursts.

• All bursts align at word boundries. Having non-aligned data does not affect the
logical behaviour of the system but would increase the time to implement a working
model. In fact, we restrict transfer size to be of word length.

14



• Slaves can insert up to four wait states. The specification leaves the actual number
up to the implementer, but recommends no more than 16.

• We implement only three masters and two slaves. Again, this is the minimum
number that encompasses all possible interactions and was considered sufficient for
the purposes of this case study. With no datapath, the current system should scale
up to the maximum easily without increasing the difficulty of model checking.

We have also not implemented some aspects of the specification (these and any signals
they use have been left out of §3.1):

• Protection mechanisms are left out. These are given as optional in the specification.

• Locked bus access is left out.

3.2.2 The Model

As before, MAHB is then described by an initial states predicate S0AHB on states, and a
transition predicate RAHB. Due to the added complexity in the AHB, we define initial and
transition predicates for the arbiter, decoder, multiplexor, masters, slaves and counters
separately and take their conjunction to give the predicates for the system as a whole.

To improve readibility, we first define some predicates that abbreviate commonly used
signal combinations:

Definition 10 Abbreviations:

• Transfer types

1. Idle: IDLE(HTRANS[1 : 0]) = ¬HTRANS0 ∧ ¬HTRANS1

2. Busy: BUSY (HTRANS[1 : 0]) = HTRANS0 ∧ ¬HTRANS1

3. Non-seq: NSQ(HTRANS[1 : 0]) = ¬HTRANS0 ∧ HTRANS1

4. Sequential: SEQ(HTRANS[1 : 0]) = HTRANS0 ∧ HTRANS1

• Slave reponses

1. Okay: OK(HRESP [1 : 0]) = ¬HRESP0 ∧ ¬HRESP1

2. Error: ERR(HRESP [1 : 0]) = HRESP0 ∧ ¬HRESP1

3. Retry: RETRY (HRESP [1 : 0]) = ¬HRESP0 ∧ HRESP1

4. Split: SPLIT (HRESP [1 : 0]) = HRESP0 ∧ HRESP1

• Burst types

1. Single transfer: SINGLE(HBURST ) = ¬HBURST

2. 4-beat incrementing burst: INC4(HBURST ) = HBURST

15



To further avoid clutter, we will elide the arguments to the abbreviation predicates.
Thus IDLE stands for IDLE(HTRANS[1 : 0]). Of course this elision is not carried out
in the theorem prover itself since that would cause a typing error. Also, we will prime the
abbreviation name to denote the priming of the signals it is defined over.

We now define the initial state predicates:

Definition 11 Initial state predicates are defined as follows :

• Arbiter

S0
arbiter
AHB (s̄AHB) =

∧

x 6=1

¬HGRANTx ∧ HGRANT1 ∧ HMASTER = 1

• Decoder

S0
decoder
AHB (s̄AHB) =

∧

x

¬HSELx

• Counters

S0
counters
AHB (s̄AHB) =

∧

x

¬HWSx ∧
∧

x

¬BBx

• Masters

S0
master
AHB (s̄AHB) = IDLE ∧

∧

x 6=1

¬HBUSREQx ∧ HBUSREQ1

• Slaves

S0
slave
AHB(s̄AHB) = HREADY ∧ OKAY

These defaults are those recommended by the specification document [5]. The nota-
tional abuse HMASTER = 1 above simply means that the bits of HMASTER are set
to the binary representation of 1, under the given endianness.

The system initial state predicate is simply the conjunction.

Definition 12

S0AHB(s̄AHB) = S0
counters
AHB (s̄AHB) ∧ S0

arbiter
AHB (s̄AHB)

∧S0
decoder
AHB (s̄AHB) ∧ S0

master
AHB (s̄AHB)

∧S0
slave
AHB(s̄AHB)

The transition predicates are more complicated:

16



Definition 13 Arbiter transitions:

Rarbiter
AHB (s̄AHB, s̄′AHB) =

(HGRANT ′
0 ⇐⇒ (HMASK0 ∧ HMASK1)) ∧

(HGRANT ′
1 ⇐⇒ (if HMASK0 then F else HBUSREQ1) ∨

¬(if HMASK1 then F else HBUSREQ2)) ∧

(HGRANT ′
2 ⇐⇒ ¬(if HMASK0 then F else HBUSREQ1) ∧

(if HMASK1 then F else HBUSREQ2)) ∧

(HMASTER′ ⇐⇒ if¬HREADY then HMASTER else¬HGRANT1

(HMASK ′
x ⇐⇒ if SPLIT ∧ ¬HREADY ∧ (HMASTER = x) then T

else if HSPLITx then F else HMASKx)

Recall we are implementing three masters only. The dummy master 0 gets granted if
and only if both the other masters are waiting on split transfers. Master 1 which is
the default master gets priority over Master 2, but bus requests are masked for masters
waiting on split transfers. A grant by itself does not give bus ownership. This happens
when HREADY is high. HMASTER then indicates who has the bus, according to the
value of HGRANTx.

Definition 14 Decoder transitions:

Rdecoder
AHB (s̄AHB, s̄′AHB) =

(HSEL′
0 ⇐⇒ if HREADY then¬HADDR0 else HSEL0) ∧

(HSEL′
1 ⇐⇒ if HREADY then HADDR0 else HSEL1)

The decoder simply does a combinatorial decode of the higher order bits of the address
bus. Since we have only two slaves and no datapath, a single-bit address bus suffices.

Definition 15 Counter transitions:

Rcounter
AHB (s̄AHB, s̄′AHB) =

(HWS ′
0 ⇐⇒ ¬HREADY ) ∧

(HWS ′
1 ⇐⇒ ¬HREADY ∧ HWS0) ∧

(HWS ′
2 ⇐⇒ ¬HREADY ∧ HWS1) ∧

(bb0′ ⇐⇒ HREADY ∧ NSQ) ∧

(bb1′ ⇐⇒ ¬BB2 ∧ SEQ ∧ ifHREADY ∧ ¬BUSY then bb0 else bb1) ∧

(bb2′ ⇐⇒ ¬BB2 ∧ SEQ ∧ ifHREADY ∧ ¬BUSY then bb1 else bb2)

The wait state counter simply counts up to 3 if HREADY is low, resetting if HREADY

goes high. The burst counters count four beats when a burst starts (signalled by a NSQ
followed by a SEQ transfer type). This is used by the arbiter to determine when it is safe
to hand the bus over to another master (recall that in our implementation bursts may
not be interrupted).

17



Definition 16 Multiplexor transitions:

Rmux
AHB(s̄AHB, s̄′AHB) =

(HTRANS ′ ⇐⇒ if¬HREADY then HTRANS

else if HGRANT1 then HTRANSm1

else if HGRANT2 then HTRANSm2

else HTRANSm0
) ∧

(HBURST ′ ⇐⇒ if¬HREADY then HBURST

else if HGRANT1 then HBURSTm1

else if HGRANT2 then HBURSTm2

else HBURSTm0
)

Drives the selected master control signals (i.e. HTRANSmx
etc) to the bus.

Definition 17 Master transitions:

Rmasterx

AHB (s̄AHB, s̄′AHB) =

(¬(OK ∧ HREADY ) ∧ HGRANTx ⇒ HBUSREQ′
x) ∧

(HREADY ∧ IDLE ∧ OK ∧ HGRANTx ⇒ NSQ′) ∧

(NSQ ∧ OK ∧ INC4 ∧ HGRANTx ⇒ (BUSY ′ ∨ SEQ′) ∧ INC4′) ∧

(SEQ ∧ ¬BB2 ∧ OK ∧ HGRANTx ⇒ (BUSY ′ ∨ SEQ′) ∧ INC4′) ∧

(BUSY ∧ ¬BB2 ∧ OK ∧ HGRANTx ⇒ SEQ′ ∧ INC4′) ∧

(¬HREADY ∧ RETRY ∧ HGRANT1 ⇒ IDLE ′) ∧

(HREADY ∧ RETRY ∧ HGRANT1 ⇒ NSQ′) ∧

(ERROR ∧ HGRANT1 ⇒ IDLE ′)

A line-by-line explanation of this transition relation follows: if master has bus ownership
it will continue to request it until the transfer completes, otherwise the arbiter may think
the master no longer requires the bus in the middle of a transfer; starting a transfer by
asserting NSQ; switching to the SEQ transfer signal if transfer is a burst, i.e. INC4 is
being asserted; continuing to assert SEQ or BUSY as burst takes place; forcing a SEQ
assert if BUSY was asserted previously (the specification does not mention this but it is
clearly required to prevent an infinite sequence of BUSYs, i.e. a livelock); response to first
and second cycle of retry; response to first and second cycle of error. According to the
specification, the master can do whatever it likes if split, since it loses the bus.

The one exception to the above is Master 0, the dummy master. This simply generates
IDLE no matter what happens, and never requests the bus.

18



Definition 18 Slave transitions:

Rslavex

AHB (s̄AHB, s̄′AHB) =

(HSELx ∧ HWS2 ⇒ HREADY ′) ∧

(HSELx ∧ (NSQ ∨ SEQ) ∧ OK ⇒ OK ′ ∧ HREADY ′) ∧

(HSELx ∧ IDLE ⇒ HREADY ′ ∧ OK ′) ∧

(HSELx ∧ BUSY ⇒ OK ′

(HSELx ∧ ¬HREADY ∧ ¬(IDLE ∨ BUSY ) ∧ RETRY

⇒ HREADY ′ ∧ RETRY ′) ∧

(HSELx ∧ ¬HREADY ∧ ¬(IDLE ∨ BUSY ) ∧ ERROR

⇒ HREADY ′ ∧ ERROR′) ∧

(HSELx ⇒ ¬SPLIT ′)

A line-by-line explanation: this line together with the wait state counter ensures that
HREADY never stays low for more than four consecutive cycles, enforcing the rule that
slaves may not insert more than four wait states; signal end of transfer by asserting
HREADY and OK; reponse to IDLE signal is HREADY and OK; response to BUSY
signal is OK; drive second cycle of RETRY; drive second cycle of ERROR; do not ever
signal SPLIT.

A SPLIT-capable slave is slightly more complex. To add SPLIT ability, we conjoin
the above transition relation (excepting the last line) with the following.

(HSLV SPLIT ′
x ⇐⇒

if (HSELx ∧ ¬HREADY ∧ SPLIT ∧ (HMASTER = x))

then HMASTERx else HSLV SPLITx) ∧

(HSELx ∧ HGRANT0 ⇒ OK) ∧

(HSLV SPLITx ∧ (y 6= x) ⇒ ¬HSLV SPLITy)

The first conjunct is for recording the current bus master’s number so when the slave
is later ready it can assert the appropriate HSPLITx line. We abstract as much of the
behaviour as possible, but the next two conjuncts are required to prevent undesirable
behaviour. The first disables splits if the dummy master has the bus, and the last ensures
that the slave does not split if it has already done so. The specification recommends
that slaves should be able to split on as many masters as are present. However, this
simplification does not affect logical behaviour, only efficiency.

The conjunction gives the system transition relation:

Definition 19

RAHB(s̄AHB, s̄′AHB) = Rcounters
AHB (s̄AHB, s̄′AHB) ∧ Rarbiter

AHB (s̄AHB, s̄′AHB)

∧Rdecoder
AHB (s̄AHB, s̄′AHB) ∧ Rmasterx

AHB (s̄AHB, s̄′AHB)

∧Rslavex

AHB (s̄AHB, s̄′AHB)

19



3.3 Verification

We verify arbitration, latency and deadlock freedom properties for AHB. As there is no
datapath we do not verify coherence. The BDD variable ordering used was an inter-
leaving of the current and next-state variables, which was then reordered after a manual
dependency analysis.

3.3.1 Arbitration

The first properties we verify relate to arbitration. Typically such properties confirm that
the arbiter is fair in some sense. The first property we verify is mutual exclusion, i.e. two
masters never simultaneously get granted. The CTLproperty for this is

AG(HGRANTx ∧ (x 6= y) ⇒ ¬HGRANTy)

The required theorem is given by running the model checker.

Theorem 20

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HGRANTx ∧ (x 6= y) ⇒ ¬HGRANTy)

Our implementation is a simple priority based one and is obviously not meant to be
fair in the sense that all requests are ultimately granted. This should hold true for the
highest priority Master 1 however. This can be checked using the CTLproperty

AG(HBUSREQ1 ∧ ¬HMASK1 ⇒ AFHGRANT1)

Note that a grant is not the same as getting bus ownership (Master 1 may de-assert its
request while waiting for the bus). Thus this property holds and the model checker gives
the required theorem.

Theorem 21

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HBUSREQ1 ∧ ¬HMASK1 ⇒ AFHGRANT1)

For other masters, the best we can hope for is that the possibility of a grant exists, as
given by the CTLproperty schema

AG(HBUSREQx ∧ ¬HMASKx ⇒ EFHGRANTx)

and the model checker confirms that this is so.

Theorem 22

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(HBUSREQx ∧ ¬HMASKx ⇒ EFHGRANTx)

20



3.3.2 Latency

Latency checking for the AHB is more complicated than for the APB, as the presence of
bursts, busy signals and wait states means that the transfer times are variable.

First, we do a quick sanity check to confirm that all transfers do indeed end, as given
by this CTLproperty:

AG(NSQ ⇒ AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

and this is easily checked:

Theorem 23

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG(NSQ ⇒ AXA[¬NSQU(HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

Since we have limits on the length of bursts, the number of consecutive busy signals
and the number of consecutive wait states, we should be able to confirm that a transfer will
take at most a given number of cycles. This number is in fact ten cycles (1 address phase
cycle + 4 burst cycles + 4 wait states + 1 BUSY signal) in the case of our implementation
so far. The CTLproperty saying this is more neatly expressed if we first define a function
LAT :

LAT f 0 = f

LAT f (n + 1) = f ∨ AX(LATfn)

This expresses in CTL a latency of at most n cycles until the event described by f holds.
The required property is then given by the following CTLproperty:

AG ((NSQ ∧ SINGLE ⇒ LAT (HREADY ∧ OK) 2) ∧

(NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ]))

noting that a single transfer takes only two cycles and that a burst, if not interrupted,
must finish within ten cycles. An unfolding of LAT would reveal several relational product
computations, which are time and space consuming. We can make our task easier by using
the following lemma derived from the CTL semantics.

Lemma 24

⊢ ∀fgMs.s ²M AG(f ∧ g) ⇐⇒ s ²M AGf ∧ s ²M AGg

21



Proof Simple rewriting with our formal semantics of Lµ [3] and CTL [1]. ¤

We can thus split2 the latency property above into the two conjuncts

AG (NSQ ∧ SINGLE ⇒ LAT (HREADY ∧ OK) 2) (6)

and

AG (NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK) (7)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ])

We then observe that the propositional fragment of Lµ has all the properties of normal
propostional logic. In particular, we have

Lemma 25

∀M es f1 f2 f3 f4.

s ²
e
M f1 ∧ f2 ⇒ f3 ∧ f4 ⇐⇒ (f1 ∧ f2 ⇒ f3) ∧ (f1 ∧ f2 ⇒ f4)

and

Lemma 26

∀M es f1 f2 f3.s ²
e
M (f1 ⇒ f2) ⇒ f1 ∧ f3 ⇒ f2

proved easily by the hol simplifier using our formal semantics of Lµ [3].

Using Lemma 25 together with our formal CTL semantics we can further split conjunct
7 above into

AG (NSQ ∧ INC4 ⇒ LAT ((HREADY ∧ OK) (8)

∨RETRY ∨ ERROR ∨ SPLIT ) 10)

and

AG (NSQ ∧ INC4 ⇒ AXA[¬NSQU (HREADY ∧ OK) (9)

∨RETRY ∨ ERROR ∨ SPLIT ])

Now the satisfiability theorem for conjunct 9 follows from Theorem 23 using Lemma 26.
The satisfiability theorems for conjuncts 6 and 8 are derived by model checking. All three
resulting theorems can then be recombined in hol using lemmas 24 and 25 to give the
required theorem.

2Technically of course, we are not splitting the formula but the statement of its satisfiability. We elide
these details to avoid clutter.

22



Theorem 27

⊢ ∀s̄AHB.

s̄AHB ²MAHB
AG((NSQ ∧ SINGLE

⇒ LAT (HREADY ∧ OK) 2) ∧

(NSQ ∧ INC4

⇒ LAT ((HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ) 10 ∧

AXA[¬NSQU (HREADY ∧ OK)

∨RETRY ∨ ERROR ∨ SPLIT ]))

Lemma 24 could also have been used in the derivation of Theorem 7 but in that case
not much is gained by doing so as neither conjunct’s evaluation results in large BDDs.

3.3.3 Deadlock Freedom

The transition relation for the AHB is not obviously total, unlike that for the APB. Thus
the obvious way of checking for deadlock is the CTLproperty

AGEXTrue

Since CTLmodel checking requires the transition relation to be totalised, this property
check needs to be carried out before totalisation. But then we cannot check for the
CTLproperty.

Fortunately, due the fine-grained nature of our integration, we are not reliant on just
getting a true/false answer from the model checker. We can simply “check” the property

EXTrue

whose semantics are not affected by a non-totalised transition relation (only fix-point
computations are affected), and then separately check whether the set of states re-
turned by the model checker for the above property contains the set of reachable states
ReachableRAHB S0AHB of the system [4]. Thus we have the theorem

Theorem 28

⊢ ReachableRAHB S0AHB ⊆ {s|s ²MAHB
EXTrue}

which tells us that all reachable states have a next state and thus the system cannot
deadlock. Subset inclusion here is modelled by propositional implication between the
characteristic functions of the sets. The functions are boolean, so symbolic model checking
can be used.

This property does not uncover situations where even though the transition system
does not deadlock, it ends up in a useless loop doing nothing. To some extent, this is a
liveness property and beyond the expressive power of CTL . We are considering how to
best address this problem, either by writing Lµ properties or by finding a halfway solution
that can be expressed in CTL .

23



4 Verifying AMBA

So far, we have separately checked correctness properties for the AHB and APB com-
ponents of AMBA. Ideally, since the signals of the AHB and the APB do not overlap,
these properties hold in the combined system, in which the APB is connected via a bridge
to the AHB. However, conjoining RAHB and RAPB will result in a large system which
may be infeasible or time consuming to model check directly. We can instead construct a
compositional proof in the theorem prover.

The first task is to define the bridge. This is the APB master that acts as a slave to
the AHB. We first define the states over which the bridge would operate.

Definition 29

s̄bridge = s̄AHB × s̄APB

and as before we write s̄′bridge do denote the “next” state. The bridge transition relation
Rbridge follows from this.

Definition 30

Rbridge(s̄bridge, s̄
′
bridge) = Rslavex

AHB (s̄AHB, s̄′AHB) ∧ Rmaster
APB (s̄APB, s̄′APB)

Now we can define a new transition relation for the APB with Rbridge as the master.
We shall call this transition relation RAPB2.

Definition 31

RAPB2(s̄APB, s̄′APB) =

(∃s̄AHB s̄′AHB.Rbridge(s̄bridge, s̄
′
bridge)) ∧ Rslave

APB(s̄APB, s̄′APB)

As in our work on abstraction [2], we use existential abstraction to hide behaviours we
wish to ignore. This allows us to show that the new transition relation preserves all
behaviours.

Lemma 32

⊢ RAPB(s̄APB, s̄′APB) = RAPB2(s̄APB, s̄′APB)

Proof In the ⇒ direction we need to furnish the appropriate witnesses for the existentially
quantified variables. This is done by using the integrated SAT solver in hol to find a
satisfying assignment for Rslavex

AHB (s̄AHB, s̄′AHB). We know that such an assignment exists
from Theorem 28, since the only way there is no satisfying assignment is if there are
no transitions in the system. The rest follows by simplification. The ⇐ direction is
straightforward. ¤.

Using Lemma 32, it is trivial to show that the properties proved in the model MAPB

with transition relation RAPB also hold in the model MAPB2 with transition relation
RAPB2.

Theorem 33

⊢ ∀f.s̄APB ²MAPB
f ⇒ s̄APB ²MAPB2

f

24



We can similarly define RAHB2 in which we can replace one of the generic slaves with
Rbridge, this time hiding the APB signals, and conclude that all properties proved for the
AHB hold when one of the slaves is the APB master.

At a more general level, we can show, without any extra model checking, that proper-
ties proved for for AHB and APB hold in the combined system. First we need a technical
lemma.

Lemma 34 If any M1 and M2 are the same except that M1.AP ⊆ M2.AP , then

∀fs1s2.s1 ²M1
f ⇐⇒ s2 ²M2

f

This just states that adding extra unused propositions to a model does not change its
behaviour. Note that the underlying state type of the two models is different and thus
trivial amendments have to made to M2 to satisfy the type checker. The main result
then states that properties proved for a sub-system can be shown to be true of the entire
system, provided certain conditions hold.

Theorem 35 For any universal property f and models M1 and M2,

∀s.s ²M1
f ⇒ s ²M2

f

provided every behaviour of M1 is a behaviour in M2.

Note that Theorem 35 requires both models to have the same state type. This is where
Lemma 34 is used (to add the extra propostions of the system M2 to the sub-system M1).

We can now define the full AMBA model MAMBA by defining

RAMBA = RAHB2 ∧ RAPB2

and defining the rest of the MAMBA tuple in the usual manner. Then, for example, we can
take MAPB as M1 and MAMBA as M2, and use Theorem 33 and Theorem 35 to show that
all universal APB properties hold in the AMBA system. And similarly for the AHB. We
have thus proved, without using the model checker, that all universal properties proved for
AHB and APB separately also hold in the combined system. This result does not apply
to the non-universal deadlock freedom properties; deadlock freedom in a sub-system does
not imply deadlock freedom overall.

Though we used interactive theorem proving, the general technique can be applied in
any similar situation and it is possible to envision writing proof script generation functions
in ML that would automate much of the task.

5 Related Work

Two recent verifications targeting AMBA AHB were presented in 2003. The first work [12]
uses the acl2 theorem prover to prove arbitration and coherence properties for the bus.
Time is abstracted away and intra-transfer complications (such as bursts, wait states,
splits and retries) are ignored. This makes sense as theorem provers are better suited
for attacking datapath properties at a high level of abstraction, without the clutter of
cycle-level control signals.

25



The second work uses the smv model checker to fix bugs in an academic implemen-
tation of AMBA AHB [11]. They concentrate on a no-starvation violation (a master is
denied access to the bus forever) which however is caused by an error in the implemen-
tation of their arbiter rather than in the protocol itself. The error is very subtle however
and we concur with their conclusion that this particular case should be highlighted in the
FAQ if not in the specification.

More recently, work is in progress on porting a Z specification of AMBA AHB [10]
to hol. This work is still in the draft stage. A recent Ph.D. thesis [13] verifies roughly
the same set of AHB properties as ours (it also verifies the datapath) for a more complex
implementation using the cadence smv model checker and imports the results in hol

as trusted theorems. The emphasis here is on using specialist tools as oracles for hol

and the verification process itself is not discussed at length. The almost complete lack
of interaction between control and data in bus designs makes it relatively easy to do the
kind of abstractions that model checkers are good at. Bus architectures and the somewhat
related domain of cache coherence protocols have thus long been staples of model checking
case studies [6, 7, 8, 9].

6 Conclusion

The AMBA AHB and APB specification is a 110 page document, laying out the design
in the usual mix of english, timing diagrams and interface diagrams, supplemented by a
FAQ. We have developed a formal HOL version of the AHB and APB components at the
cycle-level and model-checked useful properties. We have then used hol to compose the
two verifications.

However, while the case study is a useful show-case for our framework, there is much
to be done for a complete verification. Priorities are verifying datapath properties for
the AHB, implementing locked access, having a more sophisticated arbitration policy and
non-word-aligned transfers.

During the case study it became clear that most of the time in a model checking
oriented verification is spent patching failed properties or flawed models. Thus, the devel-
opment of good failure analysis and debugging capabilites will go far in making the tool
usable in practice.

The model checking runs were not particularly time or space intensive and all went
through in a few minutes at most. We attribute this to our simplified model, the decom-
position and abstraction we did, and our focus on control properties.

The case study illustrates how we can seamlessly combine theorem proving, model
checking and SAT solvers to perform decomposition (e.g. Theorem 27 and Theorem 35)
and abstraction (e.g. Theorem 33) for model checking. All steps are backed up by fully-
expansive formal proof. We have thus enabled verifications that would be hard, if not
infeasible, using only one of these technologies.

References

[1] H. Amjad. Formalizing the translation of CTL into Lµ. In David A. Basin and
Burkhart Wolff, editors, Supplementary Proceedings of the 16th International Confer-
ence on Theorem Proving in Higher Order Logics, number 187 in Technical Reports,
pages 207–217. Institut für Informatik, Albert-Ludwigs-Universität, 2003.

26



[2] H. Amjad. Implementing abstraction refinement for model checking in HOL. In
David A. Basin and Burkhart Wolff, editors, Supplementary Proceedings of the
16th International Conference on Theorem Proving in Higher Order Logics, number
187 in Technical Reports, pages 219–228. Institut für Informatik, Albert-Ludwigs-
Universität, 2003.

[3] H. Amjad. Programming a symbolic model checker in a fully expansive theorem
prover. In David A. Basin and Burkhart Wolff, editors, Proceedings of the 16th
International Conference on Theorem Proving in Higher Order Logics, volume 2758
of Lecture Notes in Computer Science, pages 171–187. Springer-Verlag, 2003.

[4] H. Amjad. Combining model checking and theorem proving. Technical Report
UCAM-CL-TR-601, University of Cambridge Computer Laboratory, 2004. Ph. D.
Thesis.

[5] ARM Limited. AMBA Specification, 2.0 edition, 1999. c©ARM Limited. All rights
reserved.

[6] S. Campos, E.M. Clarke, W. Marrero, and M. Minea. Verifying the Performance
of the PCI Local Bus using Symbolic Techniques. In Andreas Kuehlmann, editor,
Proceedings of the IEEE International Conference on Computer Design (ICCD ’95),
Austin, Texas, October 1995.

[7] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the Futurebus+ cache coherence protocol. Technical
Report CMU-CS-92-206, Carnegie Mellon University, October 1992.

[8] Amit Goel and William R. Lee. Formal verification of an IBM CoreConnect processor
local bus arbiter core. In Giovanni De Micheli, editor, 37th Conference on Design
Automation (DAC 2000). ACM, June 2000.

[9] K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol
by compositional model checking. In Tiziana Margaria and Thomas F. Melham,
editors, Proceedings of the 11th International Conference on Correct Hardware Design
and Verification Methods, volume 2144 of LNCS, pages 179–195. Springer, 2001.

[10] Malcolm Newey. A Z specification of the AMBA high-performance bus. Draft,
January 2004.

[11] Abhik Roychoudhury, Tulika Mitra, and S. R. Karri. Using formal techniques to
debug the AMBA system-on-chip bus protocol. In Design, Automation and Test in
Europe, pages 10828–10833, Munich, Germany, March 2003. IEEE Computer Society.

[12] Julien Schmaltz and Dominique Borrione. Validation of a parameterized bus archi-
tecture using ACL2. In Warren Hunt Jr., Matt Kaufmann, and J. Moore, editors,
Fourth International Workshop on the ACL2 Theorem Prover and Its Applications,
Boulder CO, USA, July 2003.

[13] Kong Woei Susanto. A Verification Platform for System on Chip. PhD thesis,
Department of Computing Science, University of Glasgow, UK, 2004. Private copy.

27


