
Technical Report
Number 606

Computer Laboratory

UCAM-CL-TR-606
ISSN 1476-2986

Dynamic binary analysis and
instrumentation

Nicholas Nethercote

November 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Nicholas Nethercote

This technical report is based on a dissertation submitted
November 2004 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Dynamic binary analysis (DBA) tools such as profilers and checkers help programmers
create better software. Dynamic binary instrumentation (DBI) frameworks make it easy to
build new DBA tools. This dissertation advances the theory and practice of dynamic binary
analysis and instrumentation, with an emphasis on the importance of the use and support of
metadata.

The dissertation has three main parts.
The first part describes a DBI framework called Valgrind which provides novel features to

support heavyweight DBA tools that maintain rich metadata, especially location metadata—
the shadowing of every register and memory location with a metavalue. Location metadata
is used in shadow computation, a kind of DBA where every normal operation is shadowed by
an abstract operation.

The second part describes three powerful DBA tools. The first tool performs detailed
cache profiling. The second tool does an old kind of dynamic analysis—bounds-checking—in
a new way. The third tool produces dynamic data flow graphs, a novel visualisation that cuts
to the essence of a program’s execution. All three tools were built with Valgrind, and rely
on Valgrind’s support for heavyweight DBA and rich metadata, and the latter two perform
shadow computation.

The third part describes a novel system of semi-formal descriptions of DBA tools. It gives
many example descriptions, and also considers in detail exactly what dynamic analysis is.

The dissertation makes six main contributions.
First, the descriptions show that metadata is the key component of dynamic analysis; in

particular, whereas static analysis predicts approximations of a program’s future, dynamic
analysis remembers approximations of a program’s past, and these approximations are exactly
what metadata is.

Second, the example tools show that rich metadata and shadow computation make for
powerful and novel DBA tools that do more than the traditional tracing and profiling.

Third, Valgrind and the example tools show that a DBI framework can make it easy
to build heavyweight DBA tools, by providing good support for rich metadata and shadow
computation.

Fourth, the descriptions are a precise and concise way of characterising tools, provide a
directed way of thinking about tools that can lead to better implementations, and indicate
the theoretical upper limit of the power of DBA tools in general.

Fifth, the three example tools are interesting in their own right, and the latter two are
novel.

Finally, the entire dissertation provides many details, and represents a great deal of con-
densed experience, about implementing DBI frameworks and DBA tools.

4

Contents

1 Introduction 11

1.1 Background . 11

1.1.1 Static Analysis vs. Dynamic Analysis 11

1.1.2 Source Analysis vs. Binary Analysis 12

1.1.3 Four Kinds of Program Analysis . 13

1.1.4 Static Binary Instrumentation vs. Dynamic Binary Instrumentation . 13

1.2 This Dissertation . 14

1.2.1 Dissertation Structure . 14

1.2.2 Contributions . 14

1.2.3 A Note About Implementations . 15

2 A Framework for Building Tools 17

2.1 Introduction . 17

2.1.1 Dynamic Binary Instrumentation Frameworks 17

2.1.2 Overview of Valgrind . 17

2.1.3 Chapter Structure . 18

2.2 Using Valgrind . 18

2.3 How Valgrind Works: The Core . 19

2.3.1 Overview . 19

2.3.2 Definition of a Basic Block . 20

2.3.3 Resource Conflicts . 21

2.3.4 Starting Up . 22

2.3.5 Making Translations . 23

2.3.6 Executing Translations . 26

2.3.7 Floating Point, MMX and SSE Instructions 26

2.3.8 Segment Registers . 27

2.3.9 Pthreads . 27

2.3.10 System Calls . 28

2.3.11 Signals . 29

2.3.12 Client Requests . 30

2.3.13 Self-modifying Code . 30

2.3.14 Memory Management . 30

2.3.15 Ensuring Correctness . 30

2.3.16 Termination . 31

2.3.17 Self-hosting . 31

2.4 How Valgrind Works: Tool Plug-ins . 31

5

2.4.1 An Example Tool: Memcheck . 31

2.4.2 Execution Spaces . 32

2.4.3 Tool Structure . 33

2.4.4 Shadow Computation . 34

2.4.5 Crucial Features . 35

2.5 Size of Core and Tool Plug-ins . 39

2.6 Performance . 39

2.7 Related Work . 41

2.7.1 Not Quite Dynamic Binary Analysis 41

2.7.2 Not Quite Dynamic Binary Instrumentation 42

2.7.3 Dynamic Binary Instrumentation Frameworks 43

2.8 Conclusion . 53

3 A Profiling Tool 55

3.1 Introduction . 55

3.1.1 Profiling Tools . 55

3.1.2 Cache Effects . 55

3.1.3 Cache Profiling . 56

3.1.4 Overview of Cachegrind . 57

3.1.5 Chapter Structure . 57

3.2 Using Cachegrind . 57

3.3 How Cachegrind Works . 58

3.3.1 Metadata . 58

3.3.2 Instrumentation . 60

3.3.3 Code Unloading . 62

3.3.4 Output and Source Annotation . 62

3.3.5 Performance . 63

3.3.6 Useful Features . 64

3.3.7 Simulation Shortcomings . 64

3.3.8 Usability Shortcomings . 66

3.4 In Practice . 66

3.4.1 Language and Implementation . 66

3.4.2 Benchmark Suite . 67

3.4.3 Motivating Measurements . 67

3.4.4 Quantifying Cachegrind’s Accuracy . 68

3.4.5 Use of Cachegrind . 69

3.4.6 Avoiding Data Write Misses . 69

3.5 Related Work . 70

3.6 Conclusion . 71

4 A Checking Tool 77

4.1 Introduction . 77

4.1.1 Checking Tools . 77

4.1.2 Bounds Errors . 77

4.1.3 Bounds-Checking . 78

4.1.4 Overview of Annelid . 78

4.1.5 Chapter Structure . 79

6

4.2 Using Annelid . 79
4.3 How Annelid Works: Design . 79

4.3.1 Overview . 80
4.3.2 Metadata . 80
4.3.3 Checking Accesses . 81
4.3.4 Life-cycle of a Segment . 82
4.3.5 Heap Segments . 82
4.3.6 Static Segments . 83
4.3.7 Stack Segments . 84
4.3.8 Shadow Computation Operations . 85

4.4 How Annelid Works: Implementation . 88
4.4.1 Metadata Representation . 88
4.4.2 Segment Structure Management . 89
4.4.3 Static Segments . 90
4.4.4 Stack Segments . 90
4.4.5 Range Tests . 91
4.4.6 Pointer Differences . 91
4.4.7 System Calls . 92
4.4.8 Custom Allocators . 92
4.4.9 Leniency . 92
4.4.10 Performance . 92
4.4.11 Real World Results . 92
4.4.12 Crucial Features . 93

4.5 Shortcomings . 93
4.5.1 Optimal Case . 93
4.5.2 Implementation . 94
4.5.3 No Debug Information . 94
4.5.4 No Symbols . 94
4.5.5 Avoiding Shortcomings . 95

4.6 Related Work . 95
4.6.1 Red-zones . 95
4.6.2 Fat Pointers . 97
4.6.3 Mixed Static and Dynamic Analysis 98
4.6.4 Static Analysis . 98
4.6.5 Runtime Type Checking . 98

4.7 Conclusion . 99

5 A Visualisation Tool 101
5.1 Introduction . 101

5.1.1 Program Comprehension Tools . 101
5.1.2 Visualising Programs . 101
5.1.3 Overview of Redux . 101
5.1.4 Chapter Structure . 102

5.2 Using Redux . 102
5.2.1 Dynamic Data Flow Graphs . 102
5.2.2 Factorial . 102
5.2.3 Hello World . 103

7

5.3 How Redux Works . 104
5.3.1 Overview . 104
5.3.2 Metadata . 104
5.3.3 System Calls . 106
5.3.4 Sub-word Operations . 106
5.3.5 Memory Management . 106
5.3.6 Lazy Node Building . 107
5.3.7 Rewriting and Printing . 107
5.3.8 Crucial Features . 107

5.4 Essences . 108
5.4.1 Program Equivalence . 108
5.4.2 Factorial in C . 108
5.4.3 Factorial on a Stack Machine . 108
5.4.4 Factorial in Haskell . 109

5.5 Possible Uses . 109
5.5.1 Debugging . 109
5.5.2 Dynamic Program Slicing . 110
5.5.3 Other Uses . 110

5.6 Difficulties . 112
5.6.1 Normalisation . 112
5.6.2 Loop Rolling . 112
5.6.3 Conditional Branches . 112
5.6.4 Scaling . 113
5.6.5 Limitations of the Implementation . 113

5.7 Related Work . 114
5.8 Conclusion . 114

6 Describing Tools 123
6.1 Introduction . 123

6.1.1 Tool Differences and Similarities . 123
6.1.2 Tool Descriptions . 124
6.1.3 Chapter Structure . 124

6.2 The Big Picture . 125
6.2.1 Description Basics . 125
6.2.2 A First Example . 127

6.3 Preliminaries . 127
6.3.1 M-hooks and Built-in I-hooks . 128

6.4 Descriptions . 130
6.4.1 Basic Ideas . 130
6.4.2 Formal Description of Metadata . 131
6.4.3 Informal Description of Metadata . 131
6.4.4 Formal Description of Analysis Code 132
6.4.5 Informal Description of Analysis Code 133

6.5 Descriptions of Simple Tools . 133
6.5.1 Tools Using No Metadata . 133
6.5.2 Tools Using Global Metadata . 134
6.5.3 Tools Using Per-Location Metadata 136

8

6.5.4 Tools Using Per-Value Metadata . 137
6.6 Custom I-hooks . 137

6.6.1 A Simple Example . 137
6.6.2 System Calls . 138
6.6.3 Function Replacement . 140
6.6.4 Memory Operations . 140

6.7 Descriptions of Valgrind Tools . 143
6.7.1 Memcheck . 143
6.7.2 Addrcheck . 146
6.7.3 Cachegrind . 146
6.7.4 Annelid . 147
6.7.5 Redux . 148

6.8 Limits of Dynamic Binary Analysis . 149
6.9 What is Dynamic Analysis? . 150
6.10 Discussion . 152

6.10.1 Benefits . 152
6.10.2 Shortcomings . 154
6.10.3 Ideality vs. Reality . 154
6.10.4 Executable Descriptions? . 155

6.11 Related Work . 155
6.11.1 Classifications . 156
6.11.2 Specification Systems . 156

6.12 Conclusion . 158

7 Conclusion 161
7.1 What Just Happened . 161
7.2 Future Work . 161

7.2.1 New Architectures . 162
7.2.2 New Operating Systems . 163
7.2.3 New Tools . 163
7.2.4 Avoiding Code Blow-up . 163

7.3 Final Words . 164

A Glossary 165

Bibliography 169

9

10

Chapter 1

Introduction

This dissertation advances the theory and practice of dynamic binary analysis
and instrumentation, with an emphasis on the importance of the use and support
of metadata.

1.1 Background

Programming is difficult, especially in languages like C and C++ that are low-level and
provide little protection against common programming errors. As both software and hardware
systems grow increasingly complex, programmers need more help than ever. Tools that can be
used to improve program quality, particularly correctness and speed, are therefore invaluable.
Many such tools use some kind of program analysis to determine interesting information about
programs.

This dissertation is largely about two things: dynamic binary analysis (DBA), a particular
kind of program analysis; and dynamic binary instrumentation (DBI), a particular implemen-
tation technique for DBA. This section shows how these two things fit into the wide world
of program analysis.

1.1.1 Static Analysis vs. Dynamic Analysis

Program analyses can be categorised into two groups according to when the analysis occurs.

1. Static analysis involves analysing a program’s source code or machine code without run-
ning it. Many tools perform static analysis, in particular compilers; examples of static
analyses used by compilers include analyses for correctness, such as type checking, and
analyses for optimisation, which identify valid performance-improving transformations.
Also, some stand-alone static analysis tools can identify bugs or help visualise code.
Tools performing static analysis only need to read a program in order to analyse it.

2. Dynamic analysis involves analysing a client program as it executes. Many tools per-
form dynamic analysis, for example, profilers, checkers and execution visualisers. Tools
performing dynamic analysis must instrument1 the client program with analysis code.

1The verb “to instrument” is widely used to refer to the act of adding extra code to a program, and I will
use it in this way. The code added during instrumentation is often called “instrumentation code”; however,
this term is sometimes used to describe the code doing the instrumentation, or is used to refer only to specific

11

The analysis code may be inserted entirely inline; it may also include external routines
called from the inline analysis code. The analysis code runs as part of the program’s nor-
mal execution, not disturbing the execution (other than probably slowing it down), but
doing extra work “on the side”, such as measuring performance, or identifying bugs.2

The analysis code must maintain some kind of analysis state, which I call metadata (and
individual pieces of metadata are metavalues). Metadata is absolutely crucial, and at
the very heart of dynamic analysis, as this dissertation will show.

The two approaches are complementary. Static analysis can be sound, as it can consider all
execution paths in a program, whereas dynamic analysis is unsound in general, as it only
considers a single execution path [41]. However, dynamic analysis is typically more precise
than static analysis because it works with real values “in the perfect light of run-time” [38].
For the same reason, dynamic analyses are often much simpler than static analyses.

This dissertation focuses on dynamic analysis, and does not consider static analysis any
further.

1.1.2 Source Analysis vs. Binary Analysis

Program analyses can be categorised into another two groups, according to the type of code
being analysed.

1. Source analysis involves analysing programs at the level of source code. Many tools per-
form source analysis; compilers are again a good example. This category includes anal-
yses performed on program representations that are derived directly from source code,
such as control-flow graphs. Source analyses are generally done in terms of programming
language constructs, such as functions, statements, expressions, and variables.

2. Binary analysis involves analysing programs at the level of machine code, stored either
as object code (pre-linking) or executable code (post-linking). This category includes
analyses performed at the level of executable intermediate representations, such as byte-
codes, which run on a virtual machine. Binary analyses are generally done in terms of
machine entities, such as procedures, instructions, registers and memory locations.

As is the case with static analysis and dynamic analysis, the two approaches are comple-
mentary. Source analysis is platform- (architecture and operating system) independent, but
language-specific; binary analysis is language-independent but platform-specific. Source code
analysis has access to high-level information, which can make it more powerful; dually, binary
analysis has access to low-level information (such as the results of register allocation) that is
required for some tasks. One definite advantage of binary analysis is that the original source
code is not needed, which can be particularly important for dealing with library code, for
which the source code is often not available on systems.

This dissertation focuses on binary analysis of machine code, and does not consider source
analysis or byte-code binary analysis any further.

kinds of added code that measure the client’s performance in some way. I will use “analysis code” to refer to
any code added for the purpose of doing dynamic analysis, as its meaning is unambiguous.

2My definition of “dynamic analysis” excludes tools that actively modify a client’s semantics, e.g. by
preventing certain actions from occurring. Section 2.7.1 discusses this distinction further.

12

Static Dynamic

Source Static source analysis Dynamic source analysis
Binary Static binary analysis Dynamic binary analysis

Table 1.1: Four kinds of program analysis

1.1.3 Four Kinds of Program Analysis

The pair of two-way categorisations described in Sections 1.1.1 and 1.1.2 together divide
program analysis into four categories: static source analysis, dynamic source analysis, static
binary analysis, and dynamic binary analysis. Table 1.1 shows this categorisation.

The program analysis discussed in this dissertation is almost exclusively dynamic binary
analysis (DBA), i.e. analysis of machine code that occurs at run-time (although Chapter 6
partly discusses dynamic analysis in general).

1.1.4 Static Binary Instrumentation vs. Dynamic Binary Instrumentation

Section 1.1.1 explained that dynamic analysis requires programs to be instrumented with
analysis code. There are two main instrumentation techniques used for DBA, which are
distinguished by when they occur.

1. Static binary instrumentation occurs before the program is run, in a phase that rewrites
object code or executable code.

2. Dynamic binary instrumentation (DBI) occurs at run-time. The analysis code can be
injected by a program grafted onto the client process, or by an external process. If the
client uses dynamically-linked code the analysis code must be added after the dynamic
linker has done its job.

(This dissertation only considers instrumentation techniques implementable purely in soft-
ware; for example, it does not consider techniques that require custom hardware, or microcode
manipulation.)

Dynamic binary instrumentation has two distinct advantages. First, it usually does not
require the client program to be prepared in any way, which makes it very convenient for users.
Second, it naturally covers all client code; instrumenting all code statically can be difficult
if code and data are mixed or different modules are used, and is impossible if the client
uses dynamically generated code. This ability to instrument all code is crucial for correct
and complete handling of libraries. These advantages of DBI make it the best technique for
many dynamic analysis tools. However, DBI has two main disadvantages. First, the cost of
instrumentation is incurred at run-time. Second, it can be difficult to implement—rewriting
executable code at run-time is not easy. Nonetheless, in recent years these problems have
been largely overcome by the advent of several generic DBI frameworks, which are carefully
optimised to minimise run-time overheads, and with which new DBA tools can be built with
relative ease.

This dissertation focuses on dynamic binary instrumentation, and does not consider static
binary instrumentation any further.

13

1.2 This Dissertation

This dissertation is largely about two things: dynamic binary analysis, the analysis of pro-
grams at run-time, at the level of machine code; and dynamic binary instrumentation, the
technique of instrumenting a program with analysis code at run-time. This dissertation ad-
vances the theory and practice of dynamic binary analysis and instrumentation, with an
emphasis on the importance of the use and support of metadata.

1.2.1 Dissertation Structure

This dissertation has three main parts.

Chapter 2 makes up the first main part, which describes a DBI framework called Valgrind
which provides novel features to support heavyweight DBA tools that maintain rich metadata,
especially location metadata—the shadowing of every register and memory location with a
metavalue. Location metadata is used in shadow computation, a kind of DBA where every
normal operation is shadowed by an abstract operation.

Chapters 3, 4 and 5 make up the second main part, which describes three powerful DBA
tools. The first tool performs detailed cache profiling. The second tool does an old kind of
dynamic analysis—bounds-checking—in a new way. The third tool produces dynamic data
flow graphs, a novel visualisation that cuts to the essence of a program’s execution. All three
tools were built with Valgrind, and rely on Valgrind’s support for heavyweight DBA and rich
metadata, and the latter two perform shadow computation.

Chapter 6 makes up the third main part, which describes a novel system of semi-formal
descriptions of DBA tools. It gives many example descriptions, and also considers in detail
exactly what dynamic analysis is.

After the three main parts, Chapter 7 discusses future work and concludes, and Ap-
pendix A contains a glossary of important terms and acronyms used throughout the disser-
tation, some of which this dissertation introduces. Also, note that Section 1.1 gave only a
cursory overview of DBI and DBA, and related work for each of the topics covered in this
dissertation is presented in the relevant chapter, rather than in a single section.

1.2.2 Contributions

The dissertation makes six main contributions.

First, the descriptions show that metadata is the key component of dynamic analysis; in
particular, whereas static analysis predicts approximations of a program’s future, dynamic
analysis remembers approximations of a program’s past, and these approximations are exactly
what metadata is. The importance and nature of metadata in dynamic analysis has not been
previously recognised.

Second, the example tools show that rich metadata and shadow computation make for
powerful and novel DBA tools that do more than the traditional tracing and profiling. Tools
using such heavyweight techniques can perform much deeper analyses and tell us things about
programs that more lightweight DBA tools cannot.

Third, Valgrind and the example tools show that a DBI framework can make it easy
to build heavyweight DBA tools, by providing good support for rich metadata and shadow
computation. This makes it much easier to experiment with heavyweight DBA tools, and
create powerful new tools that perform novel analyses.

14

Fourth, the descriptions are a precise and concise way of characterising tools, provide a
directed way of thinking about tools that can lead to better implementations, and indicate
the theoretical upper limit of the power of DBA tools in general. This is the first time that
such a range of dynamic binary analysis tools have been comprehensively characterised in a
unified way.

Fifth, the three example tools are interesting in their own right, and the latter two are
novel. This is significant because new tools implementing novel dynamic analyses are rare.

Finally, the entire dissertation provides many details, and represents a great deal of con-
densed experience, about implementing DBI frameworks and DBA tools. This kind of infor-
mation is of great use to those implementing similar systems.

1.2.3 A Note About Implementations

Many computer science papers describing systems and tools have certain shortcomings. For
example, there is often a gap between a proposed design and what has been implemented.
This is unfortunate, because an implementation provides easily the best evidence that the
design of a complex tool or system is valid. Also, some papers do not even make clear what
has been proposed and what has been implemented. Finally, source code is rarely available
for studying.

In contrast, the system and tools described in this dissertation have all been implemented.
Experimental or prototype implementations are clearly distinguished from robust, well-tested
implementations. The few cases where an implementation falls short of a design are clearly
noted. All of the code is freely available under the GNU General Public License [45]. Valgrind
and the mature tools are publicly available for download [102]. The experimental tools are
available on request.

As is consistent with the Statement of Originality at the start of this dissertation, a
significant proportion, but not all, of the implementation work described in Chapter 2 was
done by me, and all of the implementation work described in Chapters 3–5 was done by me.

15

16

Chapter 2

A Framework for Building Tools

This chapter describes a dynamic binary instrumentation framework, named Val-
grind, which provides unique support for heavyweight dynamic binary analysis.

2.1 Introduction

This chapter describes Valgrind, a DBI framework for the x86/Linux platform. The descrip-
tion emphasises Valgrind’s support for heavyweight DBA.

2.1.1 Dynamic Binary Instrumentation Frameworks

Section 1.1.4 described the great advantages of DBI: programs need no preparation (e.g. re-
compilation or relinking) and all code is naturally covered. It also mentioned two disad-
vantages: DBI is difficult to implement, and the instrumentation overhead is incurred at
run-time.

Generic DBI frameworks mitigate both problems. First, the basic task of adding analysis
code is the same for all DBA tools. DBI frameworks mean that new DBA tools do not have
to be built from scratch, and the difficult code can be concentrated in the framework, and
reused by each new DBA tool. Second, several DBI framework implementations have shown
that with the right implementation techniques, the run-time cost can be minimal.

2.1.2 Overview of Valgrind

Valgrind is a DBI framework for the x86/Linux platform. It is designed for building heavy-
weight DBA tools that are reasonably efficient. The term “heavyweight” here refers to tools
that use analysis code that is pervasive (e.g. every instruction is instrumented) and intercon-
nected (state is passed between pieces of analysis code, particularly at a low, local level), and
for tools that track a lot of information, particularly location metadata—the shadowing of
every register and memory value with a metavalue. This is in contrast to lightweight DBA
which involves less complex analysis code, and less rich metadata.

DBA tools are created as plug-ins, written in C, to Valgrind’s core. The basic view is this:

Valgrind core + tool plug-in = Valgrind tool.1

1I will use these three terms in this fashion, and “tool” as shorthand for “Valgrind tool”, and “Valgrind” to
refer generally to the entire framework. In practice, the terms “Valgrind” and “core” are used interchangeably,

17

A tool’s main job is to instrument code fragments that the core passes to it. Writing a new
tool plug-in (and thus a new DBA tool) is relatively easy—certainly much easier than writing
a new DBA tool from scratch. Valgrind’s core does all the difficult work of executing the
client, and also provides many services to tools, to make common tasks such as recording
errors easier. Only one tool can be used at a time.

Valgrind was first described in [82]. Valgrind is a robust, mature system. It is used by
thousands of programmers on a wide range of software types, including the developers of
notable software projects such as OpenOffice, Mozilla, KDE, GNOME, MySQL, Perl, Samba,
Unreal Tournament, and for software for NASA’s Mars landers and rovers. I have received
feedback from two different users who have successfully used Valgrind tools on projects con-
taining 25 million lines of code. The Valgrind distribution contains the core, plus five tools:
two memory checkers (one of which is Memcheck, described in Section 2.4.1), a cache profiler
(Cachegrind, described in Chapter 3), a memory profiler, and a data race detector. The
source code is available [102] under the GNU General Public License (GPL) [45].

2.1.3 Chapter Structure

This chapter is structured as follows. Section 2.2 shows an example of Valgrind’s use. Sec-
tion 2.3 describes how Valgrind’s core works. Section 2.4 describes how tool plug-ins work
and interact with the core, using Memcheck as an example, and with an emphasis on Val-
grind’s support for heavyweight DBA. Section 2.5 presents the code sizes for the core and
various tool plug-ins. Section 2.6 discusses performance, Section 2.7 considers related work,
and Section 2.8 concludes.

Note that Valgrind did not have the modular architecture described in Section 2.1.2 in its
first incarnation. The original version was written by Julian Seward, and it was hard-wired
to do only memory checking. Shortly after Valgrind was first released, I rewrote large pieces
of it to create the modular core/plug-in architecture. I then wrote the tools described in
Chapters 3–5, and have done a great deal of general work on it. Others, particularly Jeremy
Fitzhardinge, have also made significant contributions to Valgrind’s code base since then.
Therefore, this chapter describes work that was done partly by myself, and partly by others.

2.2 Using Valgrind

Valgrind tools are very easy to use. They are usually invoked from the command line. To run
the program uptime under the Valgrind tool Memcheck (described in Section 2.4.1) which
does memory checking, one uses the following command:

valgrind --tool=memcheck uptime

The following start-up message is printed first.

==8040== Memcheck, a memory error detector for x86-linux.

==8040== Copyright (C) 2002-2004, and GNU GPL’d, by Julian Seward et al.

==8040== Using valgrind-2.1.2, a program supervision framework for x86-linux.

==8040== Copyright (C) 2000-2004, and GNU GPL’d, by Julian Seward et al.

==8040== For more details, rerun with: -v

==8040==

as are “tool plug-in” and “tool” as the distinction is often unimportant.

18

By default the output goes to standard error, although it can be redirected to a file, file
descriptor, or socket with a command line option. The first two lines are tool-specific, the
remainder are always printed. Each line is prefixed with uptime’s process ID, 8040 in this
case.

The program then runs under Memcheck’s control, typically about 25 times slower than
normal. Other tools cause different slow-downs. All code is covered; dynamically linked
libraries and the dynamic linker are run under Memcheck’s control just the same as the main
executable. Memcheck may issue messages about found errors as it proceeds. In this case,
Memcheck issues no error messages, uptime prints its output to standard output, as normal:

16:59:38 up 21 days, 3:49, 12 users, load average: 0.00, 0.02, 0.18

and then terminates. Memcheck terminates with the following summary message.

==8040==

==8040== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 17 from 1)

==8040== malloc/free: in use at exit: 0 bytes in 0 blocks.

==8040== malloc/free: 43 allocs, 43 frees, 6345 bytes allocated.

==8040== For a detailed leak analysis, rerun with: --leak-check=yes

==8040== For counts of detected errors, rerun with: -v

No error messages were issued, but the second line indicates that Memcheck detected one
error seventeen times, but suppressed (ignored) it. This is an error that occurs in a system
library that is out of the control of the typical user, and thus not of interest. Memcheck
suppresses a number of such errors. Section 2.4.5 discusses suppressions in more detail.

All Valgrind tools work in the same basic way, although the information they emit varies.
The information emitted can be used by the programmer to fix bugs, or improve performance,
or for whatever other purpose the tool was designed for.

2.3 How Valgrind Works: The Core

Valgrind’s core provides the base execution mechanism for running and controlling client
programs. This section describes all its main features except those involving tool plug-ins
and instrumentation, which are covered in Section 2.4. Valgrind is a complex system; I have
endeavoured to describe its various parts in an order that puts the more fundamental parts
first, but without using too many forward references to later sections.

2.3.1 Overview

Valgrind uses dynamic binary compilation and caching. A tool grafts itself into the client
process at start-up, and then (re)compiles the client’s code, one basic block at a time, in a
just-in-time, execution-driven fashion. The compilation process involves disassembling the
machine code into an intermediate representation (IR) which is instrumented by the tool
plug-in, and then converted back into x86 code. The result is called a translation2, and is
stored in a code cache to be rerun as necessary. The core spends most of its execution time
making, finding, and running translations. None of the client’s original code is run.

2A slightly misleading name, as the resulting code is x86 code, the same as the original code.

19

Client

OS
Machine

(user-level) Machine
(system-level)

(a) Normal execution

Client

Valgrind tool

OS
Machine

(user-level) Machine
(system-level)

(b) Execution under a Valgrind tool

Figure 2.1: Conceptual view of program execution

Because Valgrind is execution-driven, almost all code is handled naturally without dif-
ficulty; this includes normal executable code, dynamically linked libraries, and dynamically
generated code. The only code not under a tool’s control is system calls, but even they can
be indirectly observed. The only code that can cause problems is self-modifying code (which
is discussed in Section 2.3.13).

Dynamic compilation and caching can be viewed as an alternative to interpreted execution
with a different time/space trade-off; by taking the extra space to store the compiled code, one
avoids having to repeat operations such as instruction decoding. Also, by translating entire
basic blocks, performance can be further improved with intra-basic-block optimisations.

Figure 2.1(a) gives a conceptual view of normal program execution, from the point of view
of the client. The client can directly access the user-level parts of the machine (e.g. general-
purpose registers), but can only access the system-level parts of the machine through the
operating system (OS), using system calls. Figure 2.1(b) shows how this changes when a
program is run under the control of a Valgrind tool. The client and tool are part of the same
process, but the tool mediates everything the client does, giving it complete control over the
client.

There are many complications that arise from effectively squeezing two programs—the
client and the tool—into a single process. Many resources have to be shared, such as registers
and memory. Also, Valgrind must be careful not to relinquish its control over the client in
the presence of things like system calls, signals, and threads. The following sections describe
the basic operations and these complications in detail.

2.3.2 Definition of a Basic Block

Because Valgrind is execution-driven, the client’s code is compiled on demand, one basic block
at a time, just before the basic block is executed. The meaning of “basic block” here is a
straight-line sequence of x86 code, whose head is jumped to, and which ends in a control flow
transfer such as a jump, call, or return. I will refer to particular basic blocks as BB1, BB2,
etc., and the translations of these basic blocks as t(BB1), t(BB2), etc.

Note that this definition is different to the usual meaning of the term; in particular, a
jump can land in the middle of a basic block. If control transfers to the middle of a basic block
that has been previously translated, the second half of the basic block will be retranslated.

20

A similar thing happens if control transfers first to the middle of a basic block, and then
later to the start. In practice, measurements show that typically only about 2% of code is
re-translated because of this.

2.3.3 Resource Conflicts

Because the tool becomes part of the client’s process, resource conflicts are a big issue. All
the resources that a client has to itself when executing normally must be shared with the
tool. Valgrind handles each of the various resource conflicts in one of the following ways.

• Partitioning (or space-multiplexing) involves breaking up the resource-space into sep-
arate parts. Section 2.3.4 shows how this works for address space. Valgrind’s core
intercepts and manages all system calls that involve memory mapping—brk(), mmap(),
munmap(), mprotect(), shmat(), and shmdt()—to enforce the partitioning. It also
executes all (translated) client code within a segment (using the x86 segment registers)
to prevent the client wildly writing to the tool’s address space. (It is assumed Valgrind
and the tool do not do wild writes into the client’s address space.) The tool also uses a
separate stack from the client.

File descriptors are another partitioned resource; the core reserves a small number at
the top of the allowed range for itself and the tool plug-in, and prevents the client from
using them.

• Time-multiplexing involves sharing a resource by letting the client use it some of the
time, and the tool use it some of the time. The prime example is registers. First, the
client state is the client’s values for the general-purpose registers (including the stack
and frame pointers), the condition code register %eflags, the floating-point registers,
and the MMX and SSE registers. Second, the tool may track shadow values (also called
metavalues) for each register, and it may also need spare registers to hold temporary
values in analysis code. Finally, Valgrind’s core needs some registers for its own basic
operation.

All these values obviously cannot fit in the register file at once, so sometimes they must
be spilled to memory. In fact, between basic blocks, the core keeps all client state and
any shadow state in a block of memory called the baseBlock. All state gets loaded into
the real machine registers as needed, after the beginning of the translated basic block,
and if updated, gets written back to the baseBlock before the end of the basic block.3

This constant shifting of client state from memory to registers and back is a considerable
overhead, but is necessary to support shadow registers, which are very important for
heavyweight DBA.

• Virtualisation is another option, whereby a resource is completely emulated in software.
One example is the local descriptor table that is used in conjunction with the x86
segment registers (see Section 2.3.8 for details).

• Sharing can be used for resources that both the client and the tool can use without
clashing. A lot of process state is handled this way: the process ID and related IDs
(e.g. user and group IDs), current working directory, file creation mode mask, etc.

More is said about avoiding resource conflicts in the following sections.

3This means Valgrind tools cannot simulate precise exceptions. In practice, this is rarely a problem.

21

2.3.4 Starting Up

The following ingredients are used at start-up:

• Valgrind’s loader (a statically-linked ELF executable, called valgrind);

• Valgrind’s core (a dynamically-linked ELF executable, called stage2);

• the tool plug-in (a shared object);

• the client program (an ELF executable, or a script).

The first step is to get the last three parts loaded into a single process, sharing the same
address space; the loader is not present in the final layout.

The loader is loaded and executed normally by the operating system. The loader’s single
task is to load stage2 at a high address and execute it. Then stage2 does a preliminary
parse of the command line options to see which tool has been chosen with the --tool option.
It finds the shared object for the chosen tool and uses dlopen() to load the tool plug-in
and any dynamic libraries the tool plug-in uses. Then stage2 loads the client executable
(overwriting the no-longer-needed loader in the process). If the client program is a script, the
script’s interpreter is also loaded. Both the loader and stage2 judiciously use empty memory
mappings along the way to ensure the different pieces end up in the desired locations in the
address space. The typical resulting memory layout is as follows.

• 0xc0000000–0xffffffff. The top 1GB is reserved for the kernel on typical x86/Linux
systems.

• 0xb0000000–0xbfffffff. The next 256MB are used for stage2 and the tool plug-in,
any libraries (shared objects) and mappings used by them, and their stack. (They do
not need a heap, as all dynamic allocations are done using mappings.)

• 0x00000000–0xafffffff. The lower part of the bottom 2.75GB is used for the client it-
self. The remainder is used for shadow memory required by the tool; the amount needed,
if any, depends on the tool. (Shadow memory is discussed further in Section 2.4.5.)

The chosen boundaries can be adjusted to accommodate systems with less typical memory
layouts. Small (1MB) red-zones—areas that should not be touched—separate each section.

Once everything is in place, “normal” execution begins. The core (i.e. stage2) processes
any command line arguments intended for it. Tool-specific arguments are possible; the core
passes any arguments it does not recognise to the tool plug-in. The core initialises itself, and
tells the tool to perform any initialisation it needs. Once all this is complete, the Valgrind
tool is in complete control, and everything is in place to begin translating and executing the
client from its first instruction.

(In earlier versions of Valgrind, the core used the LD_PRELOAD environment variable to
graft itself and the tool plug-in to the client process, and then “hijacked” execution. This
approach was simpler but had four disadvantages. First, it did not work with statically
linked executables. Second, the core did not gain control over the executable until some of
the dynamic linker’s code had run. Third, the client and Valgrind tool were not well separated
in memory, so an erroneous client could wildly overwrite the tool’s code or data. Fourth, the
core and tool plug-ins could not use any libraries also used by the client, including glibc,
and so had to use a private implementation of common library functions.)

22

Step Done by Transformation

Disassembly Core x86 → UCode
Optimisation Core → UCode
Instrumentation Tool → Instrumented UCode
Register allocation Core → Instrumented, register-allocated UCode
Code generation Core → Instrumented x86

Table 2.1: Five steps to translate a basic block

pushl %eax 0: GETL %EAX, t0

1: GETL %ESP, t2

2: SUBL $0x4, t2

3: PUTL t2, %ESP

4: STL t0, (t2)

5: INCEIPo $1

andl %eax,%ebx 6: GETL %EBX, t4

7: GETL %EAX, t6

8: ANDL t6, t4 (-wOSZACP)

9: PUTL t4, %EBX

10: INCEIPo $2

addl $0x3, %ecx 11: GETL %ECX, t10

12: ADDL $0x3, t10 (-wOSZACP)

13: PUTL t10, %ECX

14: INCEIPo $3

jmp-8 0x8048307 15: JMPo $0x8048307

Figure 2.2: Disassembly: x86 code → UCode

2.3.5 Making Translations

The compilation of a basic blockBB results in the translation t(BB), and involves the following
steps, which are summarised in Table 2.1.

1. Disassembly. Valgrind represents code with a RISC-like two-address intermediate rep-
resentation called UCode which uses virtual registers. The hand-written disassembler
converts each x86 instruction independently into one or more UCode instructions; this
is straightforward but tedious due to the complexity of the x86 instruction set.

The UCode for each x86 instruction fully updates the affected client state in memory:
client state is pulled from the baseBlock into virtual registers, operated on, and then
pushed back. Most UCode instructions only operate on literal constants and virtual
registers. Figure 2.2 gives an example, using AT&T assembler syntax (where the desti-
nation operand is shown second). The client state registers held in memory are called
%EAX, %EBX, etc. Virtual registers are named t0, t2, etc. GET and PUT move client
state values from the baseBlock to the virtual registers and back. ADD, SUB and AND

work with virtual registers. Each UCode instruction that affects the %eflags register is
marked as such; the -wOSZACP suffix indicates that the AND and ADD instructions update
all six flags. ST does a store. INCEIP instructions mark where the UCode for each x86

23

<prologue>

0: GETL %EAX, %eax movl 0x0(%ebp), %eax

1: GETL %ESP, %ebx movl 0x10(%ebp), %ebx

2: SUBL $0x4, %ebx subl $0x4, %ebx

3: PUTL %ebx, %ESP movl %ebx, 0x10(%ebp)

4: STL %eax, (%ebx) movl %eax, (%ebx)

5: INCEIPo $1 movl $0x8048300, 0x24(%ebp)

6: GETL %EBX, %ecx movl 0xC(%ebp), %ecx

7: ANDL %eax, %ecx andl %eax, %ecx

8: PUTL %ecx, %EBX movl %ecx, 0xC(%ebp)

9: INCEIPo $2 movb $0x2, 0x24(%ebp)

10: GETL %ECX, %edx movl 0x4(%ebp), %edx

11: ADDL $0x3, %edx (-wOSZACP) addl $0x3, %edx

12: PUTL %edx, %ECX movl %edx, 0x4(%ebp)

13: INCEIPo $3 movb $0x5, 0x24(%ebp)

14: JMPo $0x8048307 pushfl ; popl 32(%ebp)

movl $0x8048307, %eax

movl %eax, 0x24(%ebp)

call VG_(patch_me)

Figure 2.3: Code generation: Register-allocated UCode → x86

instruction ends; the argument gives the length (in bytes) of the original x86 instruction.
The L suffix indicates the arguments are word-sized (4 bytes); the o suffix indicates the
argument size is irrelevant.

UCode’s RISC-ness has two big advantages. First, it is much simpler than x86, so there
are far fewer cases for tools to handle when adding instrumentation; also, its load/store
nature makes it easy for tools to identify memory accesses. Second, it breaks up many
complex x86 instructions, exposing implicit intermediate values. For example, the x86
instruction

addl 16(%eax,%ebx,4), %ecx

performs a complex address computation, creating an implicit intermediate value (16 +
%eax+%ebx×4). Many tools need to know about addresses, so making this value explicit
makes things easier for these tools. In Figure 2.2 the push is broken up, exposing the
intermediate value of %esp that is used for the store.

Also note that the UCode instructions representing arithmetic instructions in the x86
code (instructions #8 and #12) have flag annotations, whereas those introduced by
the translation (instruction #2) do not. This is because the subtraction implicitly
performed by the push does not affect the flags. Finally, although UCode is RISC-like,
it does have some x86-specific features.

2. Optimisation. Any redundancies introduced by the simplistic disassembler are then
removed. In particular, many GET and PUT instructions are redundant, as are many flag
annotations.

24

For the example in Figure 2.2, this phase deletes the GET at instruction #7 (which is
not necessary because of instruction #0), and renames t6 as t0 in instruction #8. Also,
the flags annotation on instruction #8 can be removed as its effects are clobbered by
instruction #12.

3. Instrumentation. The tool adds its desired analysis code. It can make as many passes
over the code as it likes, including optimisation passes. For clarity, the example adds
no analysis code. Instrumentation will be considered in detail in Section 2.4.

4. Register allocation. Each virtual register is assigned to one of the six real, freely usable
general-purpose registers: %eax, %ebx, %ecx, %edx, %esi, %edi. %ebp is reserved to point
always to the baseBlock, and %esp is reserved to point to Valgrind’s stack. Spill code
is generated as needed, along with any temporary register swaps required to account
for the fact that %esi and %edi cannot be used for 1-byte operations. The linear-scan
register allocator [110] does a fairly good job; importantly it passes over the basic block
only twice, minimising compilation times. The left side of Figure 2.3 shows the results
of allocation.

There is one complication caused by re-allocating registers. A number of x86 instruc-
tions use a fixed register(s). For example, some variations of the mul instruction multiply
%eax by another register, and put the 64-bit result in %edx:%eax. These are handled with
small assembly code helper routines which swap the operands into the fixed registers,
perform the operation, then swap the results out as necessary.

5. Code generation. Each translation starts with a short prologue which decrements a
global counter; every few thousand translations this reaches zero and Valgrind’s core
checks for certain unusual events like signals (see Section 2.3.6).

In the body of the translation, each UCode instruction is converted independently into
a small number of x86 instructions. Some call assembly code routines. The right side of
Figure 2.3 continues the example. The use of %ebp to point to the baseBlock is obvious
from the GET and PUT instructions.

Often the instruction generated for a UCode instruction is the same as the one that came
in from the original code, but with different registers. For example, an add becomes an
ADD in UCode (plus some other instructions such as GET, PUT), and then an add again
in the generated code.

INCEIP updates the client’s program counter, %EIP; if the update only modifies the
least-significant byte of the program counter, a movb is used instead of a full-word
write to update it, because it is a shorter instruction (arithmetic instructions are not
used for this so that the condition codes are not affected). The generated code for the
JMP stores the condition codes (written by the ADD at UCode instruction #11) in the
baseBlock, and updates %EIP. The condition codes are stored with the pushfl; popl

sequence because x86 does not have a movfl instruction for copying the flags register.
The translation ends by copying the new %EIP into %eax and calling VG_(patch_me)4,
Valgrind’s basic block chainer, which is discussed in Section 2.3.6.

4VG_() is a C macro; it expands VG_(patch_me) into vgPlain_patch_me. This macro is used for all names
that Valgrind exports, to minimise pollution of the global symbol namespace.

25

Translations are stored in the translation table, a fixed-size, linear-probe hash table. The
translation table is large (300,000 entries) so it rarely gets full. If the table gets more than
80% full, translations are evicted in chunks, 1/8th of the table at a time, using a FIFO (first-
in, first-out) policy—this was chosen over the more obvious LRU (least recently used) policy
because it is much simpler to implement and it still does a fairly good job. This is better than
the simplistic strategy of clearing the entire translation table used by many DBI frameworks.
Translations are also evicted when code in shared objects is unloaded (by munmap()).

2.3.6 Executing Translations

Once a translation is made it can be executed. Basic blocks are translated and executed
one-by-one, but what happens between them? Control flows from one translation to the next
in one of three ways, from fastest to slowest: via chaining, the dispatcher, or the scheduler.

When one basic block, BB1, directly jumps to another, BB2, their translations can be
chained. Translation t(BB1) is made to end with a call to VG_(patch_me), a hand-written
assembly code routine. If t(BB2) has been created, when VG_(patch_me) is called it will
replace the call to itself with a direct jump to t(BB2). Otherwise VG_(patch_me) invokes the
dispatcher to create t(BB2). The patching will then succeed the next time t(BB1) is executed.

When chaining is not appropriate, at the translation’s end control falls back to the dis-
patcher, a hand-crafted assembly code loop. At this point all client registers are in the
baseBlock. The only live registers are %eax, which holds the client’s program counter, and
%ebp, which is used only for unusual events, explained shortly, whereby control must fall back
into the scheduler. The dispatcher looks for the appropriate translation not in the full trans-
lation table, but in a small direct-mapped table. This table acts as a cache for recently-used
translations, and it has a hit rate of around 98%. If that look-up succeeds, the translation
is executed immediately (using a call instruction, so control will eventually return to the
dispatcher). This fast case takes only fourteen x86 instructions.

When the fast look-up fails, control falls back to the scheduler, which is written in C. It
searches the full translation table. If a translation is not found, a new translation is made. In
either case, the direct-mapped table is updated to contain the translation for the basic block.
The dispatcher is re-entered, and the fast direct-mapped look-up will this time definitely
succeed.

There are certain unusual events upon which control falls back to the scheduler. For
example, the core must periodically check whether a thread switch is due (see Section 2.3.9)
or whether there are any outstanding signals to be handled (see Section 2.3.11). To support
this, all translations begin with a prologue which checks a counter and causes control to
fall out to the scheduler every few thousand translation executions. Control also returns to
the scheduler (by the translation setting %ebp appropriately before returning control to the
dispatcher) when system calls (see Section 2.3.10) and client requests (see Section 2.3.12)
occur.

2.3.7 Floating Point, MMX and SSE Instructions

Everything said so far only applies to general-purpose registers and instructions. Floating
point (FP) and single-instruction multiple-data (SIMD) MMX/SSE/SSE2 instructions and
registers are handled much more crudely.

26

FP instructions are classified into one of three categories: those which update the FPU
state but do not read or write memory, those which also read memory, and those which also
write memory. Each one is represented with one of the FPU, FPU_R, or FPU_W UCode instruc-
tions. The raw bytes of the original instruction are held within the UCode instruction. The
translation for an FP instruction copies the client’s complete FPU state from the baseBlock

into the real CPU, executes the original FP instruction (known from the raw bytes), then
copies the updated FPU state back. Effort is made to avoid redundant FPU state copying.
FPU instructions that read or write memory or otherwise refer to the integer registers have
their addressing modes adjusted to match the real integer registers assigned by register allo-
cation, but are otherwise executed unmodified on the real CPU. A similar approach is used
for handling the SIMD instructions and registers. Valgrind does not support AMD’s 3dNow!
SIMD extensions for x86 [2] at all, as they are not widely used.

This approach keeps the handling of FP and SIMD instructions simple. However, it
prevents tools from instrumenting these instructions in very meaningful ways. Although the
client state swapping approach for FP instructions is essentially the same as for general-
purpose instructions, each FP instruction is encoded in a single UCode instruction that hides
the original operand and the FP register values. Tools can only see FP and SIMD load/store
addresses and data widths. Correspondingly, Valgrind currently provides no built-in support
for tools to shadow the FP and SIMD registers. So far, these restrictions have not been a
problem, as all the tools built have not needed to track FP and SIMD state in any detail. In
the long-term, some tools may require more on this front.

2.3.8 Segment Registers

One further difficulty comes from the x86 segment registers, which are used by a small number
of programs. (See the Intel x86 manual [57] for details of how segment registers are used.)
Tools are not interested in “far pointers” (consisting of a 16-bit segment selector and a 32-bit
offset); they only want to see flat 32-bit virtual addresses. Therefore, Valgrind’s core intercepts
all calls to the modify_ldt() system call and virtualises the program’s local descriptor table
(LDT) which contains the segment selectors. Any x86 instructions that use a segment-override
prefix have the USESEG UCode instruction in their translation, which performs a look-up of
the virtual LDT and returns the flat 32-bit address. This whole approach is distasteful, but
hard to avoid.

2.3.9 Pthreads

How should threads be handled in this framework? Instrumented code could be run in separate
kernel threads, one per child thread in the client program. This sounds simple, but it would
be complex and slow. The core’s internal data structures would need to be suitably threaded
and locked. This might be viable. However, tool plug-ins would also have to lock their own
data structures. For many tools, this would mean locking shadow memory (see Section 2.4.5)
for every load/store done by the client, which would be hopelessly slow. The reason is that
originally-atomic loads and stores can become non-atomic in instrumented code when shadow
memory is in use; each load or store translates into a the original load/store plus a load/store
of shadow memory. It is unclear how to guarantee, efficiently, that when multiple threads
access the same memory location, updates to shadow memory would complete in the same
order as the original updates.

27

To sidestep these problems, Valgrind only supports the POSIX pthreads model, and pro-
vides its own binary-compatible replacement for the standard libpthread pthread library.
This, combined with the core’s scheduler, provides a user-space threads package. All applica-
tion threads are run on a single kernel thread (modulo some complications; see Sections 2.3.10
and 2.3.11) and all thread switching and scheduling is entirely under the core’s control. The
standard abstractions are supported—mutexes, condition variables, etc.

This scheme works well enough to run almost all threaded programs. It also makes
important thread-related events, such as thread creation and termination, and mutex lock-
ing/unlocking, visible to the core, and hence indirectly to tools.5

Unfortunately, the reimplementation of libpthread greatly complicates Valgrind’s core.
In particular, the standard libpthread interacts closely with glibc (sometimes through
undocumented interfaces) and renders Valgrind’s version quite susceptible to breakage when
the C library changes. A possible compromise would be to use the system libpthread, but
have the core still schedule the resulting threads itself; if thread switches only occur between
basic blocks, there is no problem with shadow memory accesses. This might be feasible
because the core can easily intercept the clone() system call with which new kernel threads
are started. However, it is unclear whether this scheme will work, and whether it will simplify
matters.

2.3.10 System Calls

System calls must be performed normally, untranslated, as Valgrind cannot trace into the
kernel. For system calls to work correctly, the tool must make it look like the client is
running normally, but not lose control of program execution. When a system call happens,
control falls back into the scheduler, which takes the following steps.

1. Save the tool’s stack pointer;

2. copy the client state into the real registers, except the program counter;

3. do the system call;

4. copy the client state back out to memory, except the program counter;

5. restore the tool’s stack pointer.

Note that by copying the client’s stack pointer, the system call is run on the client’s stack, as
it should be (%esp normally points to the tool’s stack).

System calls involving partitioned resources such as memory (e.g. mmap(), mprotect(),
brk()) and file descriptors (e.g. open(), close()) are wrapped and checked to ensure they
do not cause conflicts with the core and the tool plug-in.

System calls involving processes are also noteworthy. The system call fork() creates a
child process that is also running under the tool’s control, as one would expect, but the two
processes are distinct and cannot communicate, unless the tool does something very clever,
e.g. with a pipe or file. Note that any output files produced by a tool should include the
process ID in the filename to avoid file-writing clashes between forked parents and children,
although this will only work if the file is not already open when the fork takes place. Any

5These are critical for the data race detection tool, Helgrind.

28

vfork() calls are replaced by fork(), as vfork()’s semantics are basically impossible to
enforce with Valgrind; this is not a problem in practice. The --trace-children option (off
by default) dictates whether processes started by execve() run under Valgrind’s control.

Blocking system calls are a further complication. Because the core schedules application
threads on a single kernel thread, if an application thread blocks, it is difficult to continue
executing the remaining application threads in the meantime, and then continue the blocked
thread once the system call unblocks. Valgrind’s core originally did this all itself, but it was
difficult to get right, and a constant source of subtle bugs. The improved approach involves
the use of extra kernel threads. Every application thread is shadowed with a proxy kernel
thread. When an application thread goes to execute a blocking system call, the core makes
the proxy thread execute it instead, and then reverts control to the application thread once
the system call completes. That way, if the system call blocks, the kernel handles it and the
remaining application threads can continue normally. Basically, the core makes the kernel do
the difficult actions for it.

2.3.11 Signals

Unix signal handling presents special problems for all DBI frameworks—when an application
sets a signal handler, it is giving the kernel a callback (code) address in the application’s space,
which should be used to deliver the signal. This cannot be allowed to happen, since the client’s
original handler code would be executed untranslated. Even worse, if the handler does not
return but instead does a longjmp, the tool would permanently lose control. Therefore, the
core intercepts the sigaction() and sigprocmask() system calls, which are used to register
signal handlers. The core notes the address of the signal handler specified, and instead asks
the kernel to deliver that signal to the core’s handler(s).

The core catches all synchronous signals, such as SIGSEGV. When one arrives the core
immediately redirects it specifically at the application thread which raised the signal. This
guarantees that the signal handler for that signal (if there is one) is invoked before the thread
makes any further progress, as required by POSIX. If the client catches the signal, signal
delivery frames are built on the client’s stack, and the (translated) handler code is run; if
a signal frame is observed to return, the core removes the frame from the client’s stack and
resumes executing the client wherever it was before the frame was pushed. If the client does
not catch the signal, the core will abort with an informative message indicating where in the
client the signal was raised.

Things are more complicated for asynchronous signals. Valgrind’s core blocks all asyn-
chronous signals. Instead, proxy kernel threads (described in Section 2.3.10) sit around wait-
ing for asynchronous signals. When an asynchronous signal arrives, a suitable proxy kernel
thread (as chosen by the kernel) will catch the signal, and move into a state that the sched-
uler can recognise. Every few thousand basic blocks, the scheduler checks if any proxy kernel
threads have caught an asynchronous signal. If so, it passes on the signal to the relevant ap-
plication thread in the same manner as for synchronous signals, and the proxy kernel thread
reverts back to its waiting-for-signals state. If any proxy kernel threads are blocked in system
calls, the system call will be interrupted in an appropriate manner. Again, Valgrind’s core
lets the kernel do the difficult parts for it, such as deciding which thread should receive any
signal, accounting for signal masks, and interrupting blocked system calls.

29

2.3.12 Client Requests

Valgrind’s core has a trapdoor mechanism that allows a client program to pass messages and
queries, called client requests, to the core or a tool plug-in. This is done by inserting into
the client a short sequence of instructions that are effectively a no-op (six highly improbable,
value-preserving rotations of register %eax). When the core spots this sequence of instructions
during disassembly, the resulting translation causes control to drop through the scheduler into
the core’s code for handling client requests. Arguments can be passed to client requests, and
they can return a value to the client. Each client request has a code that identifies whether
it should be delivered to the core or a particular tool. This allows client requests for different
tools to be embedded in a single program; tool-specific client requests that are not for the
tool in use are ignored. Sections 2.3.13 and 2.4.5 give examples of the use of client requests.

Client requests can be embedded in any program written in any language in which assem-
bly code can be embedded. A macro makes this easy for C and C++ programs; the client
needs to include a header file and be recompiled with the client requests inserted, but it does
not need to be linked with any extra libraries. And because the magic sequence is a no-op,
a client program can be run normally without any change to its behaviour, except perhaps a
marginal slow-down.

2.3.13 Self-modifying Code

As mentioned in Section 2.1.2, self-modifying code is the only kind of code Valgrind (and
dynamic binary compilation and caching in general) does not handle.

On some platforms, handling self-modifying code is easy because an explicit “flush” in-
struction must be used when code is modified, but the x86 does not have this feature. One
could write-protect pages containing code that has been compiled, and then flush them if that
page is written [69]; however, this approach is not practical if a program puts code on the
stack (as GCC does for C code that uses nested functions, for example), and can be slow if
code and data segments appear on the same page (as the x86/Linux ELF executable format
allows).

Since relatively few programs use self-modifying code, Valgrind only provides indirect
support for handling it, via the VALGRIND_DISCARD_TRANSLATIONS client request, which tells
it to discard any translations of x86 code in a certain address range. This operation is not very
fast, and so should not be performed very often. But, with minor source-code modifications
(usually not many), it does allow Valgrind tools to work with programs that use self-modifying
code.

2.3.14 Memory Management

Valgrind tools must manage their own memory rather than using the system malloc() to
avoid all re-entrancy issues and also to make sure all memory allocated by the tool ends up
in its part of the address space. The core provides an allocator which uses mmap() to allocate
superblocks, and then hands out smaller blocks from each superblock on request.

2.3.15 Ensuring Correctness

The correctness of the core and tool plug-ins is paramount. The code is littered with asser-
tions, each piece of UCode is sanity-checked several times during the translation process, and

30

the core periodically sanity-checks various critical data structures. These measures have found
many bugs during Valgrind’s development, and contributed immensely to its robustness.

2.3.16 Termination

Eventually the client program calls the exit() system call, indicating that it wishes to quit.
The core stops translating, performs its final actions, tells the tool to perform any necessary
finalisation, and calls exit() itself, passing to the kernel the exit code that the client gave it.

2.3.17 Self-hosting

Valgrind tools cannot run themselves. This is because the memory layout used (described in
Section 2.3.4) is fairly rigid, and relies on the core and tool being loaded at a high address,
and the client program at a low address. This could be worked around with some effort, but
it has not been done. This shortcoming is unfortunate, as it would be great to use Memcheck
and other tools on the core and the tool plug-ins themselves.

2.4 How Valgrind Works: Tool Plug-ins

Valgrind tools are implemented as plug-ins to Valgrind’s core. This section describes how
tool plug-ins work and interact with the core, using Memcheck as an example.

2.4.1 An Example Tool: Memcheck

Memcheck is a Purify-style [52] memory checker designed primarily for checking C and C++
programs. The original version was written by Julian Seward; a number of other people,
including myself, have made changes to it since then. It is a good example tool as it is
the most complicated Valgrind tool written and it utilises almost all of Valgrind’s tool-related
features. However, this section is not intended to be a comprehensive description of Memcheck
itself.

Memcheck tracks three kinds of metadata.

1. Each memory byte is shadowed by a single addressability (A) bit, which indicates
whether the program can safely access that byte. A bits are updated by all operations
that allocate or deallocate memory. They are used to detect, at a per-byte granularity,
if any memory accesses touch memory they should not.

2. Each register byte and memory byte is shadowed by eight validity (V) bits, which in-
dicate whether each bit has been initialised, according to an approximation of machine
semantics. The V bits are used to detect if any of the following are not fully initialised:
conditional test inputs; memory blocks read by system calls; or addresses used in mem-
ory accesses. The V bits are not checked simply when a value is read, because partially
defined words are often copied around without any problem, due to the common prac-
tice, used by both programmers and compilers, of padding structures to ensure fields
are word-aligned.

This per-bit validity checking is expensive in space and time, but it can detect the use
of single uninitialised bits, and does not report spurious errors on bit-field operations.
Because of the expense, the Valgrind distribution includes another memory checker

31

called Addrcheck. It is identical to Memcheck except that it does not track V bits. As
a result, it runs substantially faster, but identifies a smaller class of errors.

3. For each heap block allocated, Memcheck records its address and which allocation func-
tion (malloc()/calloc()/realloc(), new, new[]) it was allocated with. When a heap
block is freed, this information is used to detect if the pointer passed to the deallocation
function actually points to a heap block, and also if the correct deallocation function
(free(), delete, delete[], respectively) is used. This metadata is also used when
the program terminates, to detect memory leaks; any unfreed heap blocks that have no
pointers pointing to them have leaked. (The A bits are reused here, to determine which
parts of memory should be scanned for pointers).

As well as this metadata, Memcheck uses two further techniques to find more errors. First, it
replaces the client’s implementation of malloc() and friends with Valgrind’s, which allows it
to postpone the freeing of blocks; this delays the recycling of heap memory, which improves
the chances of catching any accesses to freed heap blocks. This also allows each heap block
to be padded with red-zones—unused areas at their edges—which are marked as inaccessible
and can help with detection of block overruns and underruns. Second, it replaces functions
like memcpy(), strcpy() and strcat() with its own versions that detect if the blocks passed
overlap; such overlapping violates the ISO C standard and can cause subtle bugs. It does not
do this check for memmove() for which the blocks may overlap.

Memcheck’s requirements place great demands on a DBI framework. Section 2.4.5 explains
how Valgrind satisfies those demands.

2.4.2 Execution Spaces

To understand tool plug-ins, one must understand the three spaces in which a client program’s
code executes, and the different levels of control that a tool plug-in has over these spaces.

1. User-space covers all code that is translated. The tool sees all such code and can
instrument it any way it likes, providing it with (more or less) total control. This
includes all the main program code, and almost all of the C library (including the
dynamic linker) and other libraries. This is the vast majority of code.

2. Core-space covers the small proportion of the program’s execution that takes place
entirely within Valgrind’s core, replacing original code in the client. It includes parts of
signal handling, pthread and scheduling operations. It does not include code that the
core and tool plug-ins are performing for themselves, however.

A tool plug-in never sees the code for these operations, and cannot instrument them.
However, a tool plug-in can register callbacks in order to be notified when certain
interesting events happen in core-space, such as when memory is allocated, a signal is
delivered, a thread switch occurs, a pthread mutex is locked, etc.

3. Kernel-space covers execution in the operating system kernel. System call internals
cannot be directly observed by Valgrind tools, but the core has built-in knowledge
about what each system call does with its arguments, and provides callbacks for events
like memory allocation by system calls. Tool plug-ins can also wrap system calls if they
want to treat them more specifically. All other kernel activity (e.g. process scheduling)
is opaque to tool plug-ins and irrelevant to their execution.

32

2.4.3 Tool Structure

At a minimum, a tool must define four functions, which the core calls at the appropriate
times.

• void SK_(pre_clo_init)(void)

void SK_(post_clo_init)(void)6

These two functions are invoked before and after command line processing occurs. Both
are needed; SK_(pre_clo_init)() so a tool plug-in can declare that it wants to process
command line options, and SK_(post_clo_init)() so it can do any initialisation that
relies on the command line options given. These functions let the tool plug-in do internal
initialisation. The tool plug-in also uses them to tell the core certain things. This
includes basic things like the tool’s name, copyright notice and version number; which
core services the tool plug-in wants to use, such as error recording or shadow registers;
which callbacks should be called when interesting events occur; and any assembly code
routines and C functions that the added analysis code will call.

• UCodeBlock* SK_(instrument)(UCodeBlock* cb, Addr orig_addr)

This function is called every time a basic block is translated. It is passed a basic block
of UCode, and the address of the x86 basic block that it represents. It must return a
basic block of UCode. The function can modify the basic block arbitrarily, but usually
the code is only augmented with analysis code.

Analysis code can be expressed in three ways. First, inline as normal UCode. Second,
as calls to assembly code routines defined by the tool plug-in, using UCode’s CALLM

instruction. Third, as calls to C functions defined by the tool plug-in, using UCode’s
CCALL7 instruction. Tools using CCALL need not worry about preserving the necessary
registers and flags across the call, or the details of argument and return value passing;
this is all handled by the core. This helps efficiency, too, because the core’s implementa-
tion of C calls is carefully optimised—the code generator preserves only live caller-save
registers across calls, and it allows called functions to utilise gcc’s regparms attribute
so that their arguments are passed in registers instead of on the stack. If one has luck
with liveness, and arguments are already in the right registers, a C call requires just a
single call instruction.

Because UCode is instrumented one basic block at a time, basic block-level instrumen-
tation is easy. Instrumentation at the level of x86 instructions is also possible, thanks
to the INCEIP instruction which groups together all UCode instructions from a single
x86 instruction. However, function-level instrumentation is surprisingly difficult. How
does one know if a basic block is the first in a function? On x86, there is no tell-
tale instruction sequence at a function’s start, and one cannot rely on spotting a call

instruction, because functions in dynamically linked shared objects are called using a
jmp, as are tail-called functions. Some compilers can produce “debugging grade” code
which includes hooks that tell tools when functions are entered and exited. This would
make things much simpler, but GCC does not provide this facility. Instead, one can use
symbol information. If a basic block shares an address with a function, it must be that

6SK_() is a macro like VG_() that adds a prefix to the name.
7The inconsistency between the names CALLM and CCALL is due to historical reasons.

33

function’s first basic block. This does not work for programs and libraries that have
had their symbols stripped, but there is no obviously better approach. Also, obtaining
the function arguments is not straightforward, as the function’s calling convention must
be known. A more reliable but more invasive alternative is function replacement, which
is described in Section 2.4.5.

• void SK_(fini)(Int exitcode)8

This function lets the tool plug-in do any final processing, such as printing the final
results, writing a log file, etc. It is passed the exit code returned by the client.

Memcheck’s versions of the four main functions behave in the following way.

• Memcheck’s initialisation functions are straightforward. They process any Memcheck-
specific command line arguments and do appropriate initialisation.

• Memcheck’s instrumentation function performs two passes over the code. The first pass
adds the necessary analysis code. Much of the added analysis code involves the shadow
computation of V bits, which is described more fully in Section 2.4.4. A and/or V bit
tests are also added before UCode instructions that require them; if these tests fail they
call a function which issues the error message, and then control returns and execution
continues. It is important that the checks take place before the operation, so that any
error messages are issued before a bad memory access that might crash the client.

The second pass optimises the added analysis code, by performing constant-propagation
and constant-folding of operations on V bits, to remove redundant analysis code.

• Memcheck’s finalisation function finishes by printing some basic memory statistics such
as the number of bytes allocated and freed, summarising any found errors, and running
its leak checker if the --leak-check=yes option was specified.

In addition to these four functions, tools must define extra functions if they use certain core
services, such as error recording, to help the core with tool-specific tasks.

2.4.4 Shadow Computation

An important class of DBA tools perform shadow computation. This is a particularly heavy-
weight form of DBA, and the term implies that a tool does two things.

1. Every value in registers and memory is shadowed with a shadow value, or metavalue.

2. Every value-writing operation is shadowed with a shadow operation that computes and
writes the corresponding metavalues. The shadow inputs are the metavalues of the
inputs to the original operation. Instructions that do not write values, such as jumps,
do not require instrumentation (unless the tool shadows the program counter).

Memcheck’s handling of V bits is an example. There are three ways metavalues are propagated
in shadow computation.

8The type Int is just a synonym for int used inside Valgrind.

34

1. Copying metavalues. Value-copying operations must be shadowed with metavalue-
copying operations.

For example, Memcheck instruments UCode instructions that copy values (e.g. GET,
PUT, LOAD, STORE, MOV) so that the corresponding shadow values are copied as well.

2. New dynamic metavalues. Value-producing operations—arithmetic operations, logic
operations, and address computations—must be shadowed with a shadow operation that
computes and writes the appropriate metavalue. The inputs for the shadow operation
are the metavalues of the inputs to the original operation. Values produced by system
calls—both the return value, and any values written to memory by the system call—
must also have their metavalues set appropriately.

For example, Memcheck’s shadow operations combine the V bits of operation inputs in
appropriate ways to produce the V bits for the produced values. For some operations,
the shadow operation is perfectly accurate. For example, the shadow operation for a
shift or rotate is exactly the same shift or rotate—the V bits should follow the motion
of the “real” bits. For others where doing a perfect job would be slow, such as addition,
Memcheck uses a reasonable approximation; this rarely causes problems in practice.
Finally, all values written by system calls have their V bits set as initialised.

3. New static metavalues. Instructions using constants effectively introduce new values.
Tools using shadow computation need a function to produce a metavalue from a given
constant value.

For example, for an N -bit value Memcheck produces a metavalue with the low N bits
set as initialised, and the rest set as uninitialised.

The granularity of the shadowing can vary. Memcheck shadows values at byte-granularity—
i.e. each real byte has a metavalue—but some tools use word-granularity.

Shadow computation has similarities with abstract interpretation [35], where the shadow
value is the abstract counterpart to the concrete value, except done at run-time. One interest-
ing instance of shadow computation is the concrete semantics, where the shadow operations
are the same as the real operations: metavalues become the same as values, and one ends up
shadowing the real execution with itself! The significance of this is that the program’s normal
data can be considered as just another kind of metadata, albeit the one actually computed
by the program and hardware by default.

It is worth noting that although Memcheck’s handling of V bits is an example of shadow
computation, its handling of A bits is not. This is because A bits are a property of memory
locations, rather than a property of the values within them, and a memory location’s A bits
do not change as the value within the memory location does. Chapter 6 discusses this matter
in more detail.

2.4.5 Crucial Features

Memcheck’s analysis, particularly its V bit tracking, is extremely heavyweight. First, the
analysis code is pervasive: every instruction that involves values must be instrumented with
analysis code that does shadow operations on the shadow V bits, and every load and store
must be instrumented with analysis code that checks the relevant A bits; the amount of
analysis code added to the translations is actually greater than the amount of original code.

35

Second, the analysis code is interconnected: the analysis code for each instruction is typically
two or three instructions, which are connected via intermediate values. Third, it tracks
location metadata: a metavalue (the V bits) for every value in the program. The following
list describes various crucial instrumentation features that Valgrind provides that make such
heavyweight DBA possible.

• State multiplexing. UCode’s use of virtual registers is a huge help. Memcheck does
not have to handle the difficulties of of multiplexing two sets of state (client state and
analysis state) onto the one set of machine registers. In particular, Memcheck can
manipulate shadow registers and the intermediate V bit computation values without
being constrained by the original code—Memcheck does not have to worry about about
finding or spilling registers for intermediate analysis values. It also means Memcheck
does not need to worry about the analysis code accidentally disturbing the client state;
Valgrind’s handling of condition codes is a particular help here.

• Code interleaving. Both client code and analysis code are expressed in UCode, and the
core handles the interleaving of the two code streams.

• Flexible instrumentation. Memcheck uses all three forms of analysis code. Analysis
code is performed entirely inline where possible; this is vital for efficiency of V bit
computations. For more complicated operations, Memcheck calls various assembly code
routines and C functions; UCode’s CALLM and CCALL instructions make these calls easy
and efficient.

• UCode’s RISC-ness. Memcheck instruments almost every UCode instruction differently,
and there are a substantial number of them. However, this number is far fewer than
the number of x86 instructions, which makes things a lot easier. Also, the breaking up
of complex instructions (e.g. push, which decrements %esp and then does a store) into
multiple explicit parts exposes implicit intermediate values that Memcheck needs to see,
such as addresses. Finally, the load/store nature of UCode makes memory accesses very
easy to identify.

• Shadow register support. Valgrind provides explicit support for shadow registers for
tools that need them. Shadow registers are treated just like normal client registers:
they are stored in the baseBlock; they can be pulled into virtual registers and operated
on with all UCode instructions; and they are preserved/restored when thread switches
occur and signal stack frames are pushed/popped.

• Shadow memory support. Valgrind provides explicit support for shadow memory, by
allocating the necessary address space when the client is loaded (as explained in Sec-
tion 2.3.4). Tools need to specify a ratio that indicates how much shadow memory they
need for each byte of client memory. In Memcheck’s case, the ratio is 9:8—every byte
of memory is shadowed with one A bit and eight V bits.

Memcheck instruments each load/store with a corresponding shadow memory load/store,
which is done with a call to a C function. Shadow memory is stored in a table, in chunks.
Each chunk holds the shadow values for a 64KB region of memory. Chunks are created
lazily; if a load/store touches a 64KB region that has not been touched before, Mem-
check allocates and initialises the chunk and inserts it in the table. The C function then
gets/sets the shadow value.

36

Equally important is the fact that Valgrind schedules multi-threaded programs itself;
without this feature shadow memory accesses would not be atomic (see Section 2.3.9),
and thus not reliable.

In short, all this support is really support for shadow computation. Without these features,
Memcheck could probably do all the necessary work itself, but it would make it much larger,
more complex and fragile. And the same is true for many heavyweight DBA tools, such as
those discussed in the following chapters.

The following list gives important features that Valgrind provides, not directly related to
instrumentation, that also make Memcheck’s life easy.

• Memory event callbacks. Memcheck needs to know about every memory event, partic-
ularly allocations and deallocations. This covers all areas of memory: static memory,
the heap, the stack, and other mapped segments. The events include stack growth
and shrinkage, and the system calls mmap(), brk(), mprotect(), mremap(), munmap(),
shmat(), shmdt(). It also needs to know about memory reads and writes done within
kernel-space so it can handle system calls appropriately. For example, A and V bits
are checked before all system calls that read memory (e.g. write()), and V bits are
updated after all those that write memory (e.g. read()).

The core provides callbacks for each of these events, even though tool plug-ins could,
with some effort, detect many for themselves (e.g. stack allocations/deallocations oc-
cur in user-space and could be detected at instrumentation-time by identifying stack
pointer manipulations in UCode). The core provides these because many tools need
to know about memory operations. It also helps efficiency; in particular, stack al-
location/deallocation callbacks must be well optimised because %esp is changed very
frequently. Common cases (when %esp is changed by 4, 8, 12, 16 or 32 bytes) are
optimised with unrolled loops.

• Function replacement. Valgrind provides support for tools to override library functions
with their own versions, which run in user-space. The replacement functions are put
into a shared object (not mentioned in Section 2.3.4) which is linked into the client’s
memory section, overriding the default versions. The replacements must replicate the
replaced function’s actions, as well as doing any extra work on behalf of the tool.

Memcheck replaces the standard C and C++ memory management functions (malloc()
and friends) with its own versions. These replacements run in user-space, but use a client
request to transfer control to core-space, so that the core’s memory management routines
(described in Section 2.3.14) can be used. There are three reasons to use replacements,
as Section 2.4.1 explained. First, it provides the necessary hook for the heap memory
event callbacks (and so all tools that need to know about heap allocations must replace
these functions; the core provides support for this). Second, the heap blocks can be
flanked with red-zones to improve the detection of block overruns and underruns. Third,
Memcheck’s versions of the deallocation functions postpone heap block deallocation for
a certain time to delay potential heap block recycling, which improves the likelihood of
use-after-free errors being detected.

Memcheck also replaces some C string functions: strlen(), strcpy(), memcpy(), etc.
This is because their x86 glibc implementations use highly optimised assembly code
which is not handled well by Memcheck—they rely on a certain behaviour of the x86

37

carry bit, which Memcheck’s shadow addition operation does not faithfully replicate—
causing Memcheck to issue many spurious error messages. Simpler versions do not
cause these problems. Also, these replacement versions can check that the source and
destination memory blocks passed to these functions do not overlap; if an error is found,
a client request is used to transfer control to core-space, so an error message can be
issued.

• Error recording and suppression. Valgrind provides built-in support for recording errors
that a tool detects. A tool can record an error by passing the necessary information
about the detected error to the core, which issues an error message containing the given
information, plus a detailed stack trace. The core reads any client symbol tables and
debug information present in order to make the stack traces as informative as possible;
when debug information is present, the exact line of source code that caused the error
is pin-pointed. If the tool detects a duplicate error—where the error type and code
location is the same as a previously detected error—the core will ignore it, and will
not issue any error message. This is important so that the user is not flooded with
duplicate error messages. Finally, the core supports error suppressions—a user can
write suppressions in a file, instructing the core to ignore particular errors detected by
the tool. This is extremely important for ignoring errors detected within libraries that
are beyond the control of the user.

A tool plug-in using the core’s error reporting features must provide definitions of several
callbacks for comparing and printing the tool-specific parts of errors, and reading the
tool-specific parts of suppressions from file. This is some work, but much easier than
doing error handling from scratch. A checking tool is only as good as its error messages,
and Memcheck relies heavily on the core’s error handling support.

• Client Requests. Tools can define their own client requests. If a request is not recognised
by the core, it can be passed to the tool which can interpret it as it likes. This opens
up the possibility of easily combining static and dynamic analysis—a compiler could
systematically embed client requests into a compiled program in order to pass statically-
obtained information to a DBA tool. When the program is run normally, the client
requests would have no effect, but when the program is run under the DBA tool’s
control, the tool would have access to more information than it otherwise would. This
could make the DBA more accurate or efficient. However, none of the tools described
in this dissertation do this in any way, so I will not consider it further.

Memcheck provides client requests that let a program declare an area of memory as
readable, writable, or not accessible. This is occasionally useful when a program does
something unusual that violates Memcheck’s assumptions. For example, OpenSSL de-
liberately reads uninitialised memory in some circumstances as an (additional) source
of randomness. Also, Memcheck can miss some errors in programs with custom memory
management that it would otherwise detect in programs that only use malloc(), new,
etc. So it provides a number of client requests that can be embedded in the custom
allocators, which tell Memcheck when a block has been allocated or freed; they can even
be used with pool-based allocators that can free a number of blocks at once.

38

Component C asm

Core 64,795 1,076
Memcheck 7,737 65
Addrcheck 1,345 0
Cachegrind 1,683 0
Annelid 3,727 0
Redux 5,503 0
Nulgrind 30 0

Table 2.2: Lines of code in core and tool plug-ins

2.5 Size of Core and Tool Plug-ins

Having considered which of Valgrind’s features made Memcheck easy to write, it is worth
quantifying in some way the amount of effort required to write a tool plug-in. Table 2.2
shows the code size of the core and various tool plug-ins. Column 1 gives the component
name, columns 2 and 3 give the number of lines of C and assembly code (including comments
and blank lines, and all the code is quite well commented) respectively. 10,723 lines of the
core’s C code are in the C++ name demangler, which was copied with little change from the
GNU binutils. Memcheck is clearly the most complicated tool; comparing it with Addrcheck,
one sees how much complexity is added by Memcheck’s V bit tracking (the only feature it has
that Addrcheck does not). Nulgrind is the “null” tool that adds no analysis code. Cachegrind,
Annelid and Redux are described in Chapters 3, 4 and 5 respectively.

The core is clearly much bigger than any of the tool plug-ins. So how much easier is it to
build a tool with Valgrind, rather than from scratch? As mentioned in Section 2.1.3, originally
Valgrind was not a generic tool-building framework, but had Memcheck’s functionality hard-
wired into it. The last non-generic version (1.0.4), which can be considered a reasonable
benchmark for the size of a well-implemented stand-alone DBA tool, had 42,955 lines of
C code and 1192 lines of assembly code. (At the time of writing, the size of the core plus
Memcheck is 73,673 lines of C and assembly code; this difference comes from the infrastructure
added for genericity, plus two years’ worth of additional maturity and features.) Memcheck’s
current code size as a plug-in is thus 5.7 times smaller than the earlier stand-alone version.
Even though lines of code is not a particularly good measure of coding effort, the benefit of
using Valgrind is clear, especially since DBI frameworks are hard to implement well, and so
Valgrind’s core contains a lot of difficult code. For the simpler tools, the ratio between plug-in
size and core size is even higher, so the benefit of using Valgrind rather than implementing
them as stand-alone tools is even greater.

2.6 Performance

This section discusses the performance of various Valgrind tools. All experiments were per-
formed on an 1400 MHz AMD Athlon with 1GB of RAM, running Red Hat Linux 9, kernel
version 2.4.20. Valgrind 2.1.2 was used for all tests, except for the tests run under Annelid,
which used Valgrind 2.0.0. The test programs are a subset of the SPEC CPU2000 suite [106].
All were tested with the “test” (smallest) inputs. The time measured was the “real” time,
as reported by /usr/bin/time. Each program was run once normally, and once under each

39

Program Time (s) Nulgrind Memcheck Addrcheck Cachegrind Annelid

bzip2 10.8 2.5 13.8 10.2 40.4 34.0
crafty 3.5 7.9 45.3 27.4 93.3 71.6
gap 1.0 5.6 26.5 19.2 46.0 39.5
gcc 1.5 9.2 35.5 23.7 67.7 50.1
gzip 1.8 4.7 22.7 17.7 64.0 45.8
mcf 0.4 2.6 14.0 7.1 20.5 20.4
parser 3.6 4.2 18.4 13.5 44.9 35.0
twolf 0.2 6.1 30.1 20.5 54.9 46.8
vortex 6.4 8.5 47.9 36.5 85.2 90.3

ammp 19.1 2.2 24.7 23.3 50.0 29.3
art 28.6 5.5 13.0 10.9 21.1 15.0
equake 2.1 5.8 31.1 28.8 54.8 38.1
mesa 2.3 5.6 43.1 35.9 87.4 59.9

median 5.6 26.5 20.5 54.8 38.1
geom. mean 4.9 25.7 19.0 51.1 39.2

Table 2.3: Slow-down factor of five tools

of the Valgrind tools; this is not a very rigorous approach but that does not matter, as the
figures here are only intended to give a broad idea of performance.

Table 2.3 shows the time performance of five tools. Column 1 gives the benchmark name,
column 2 gives its normal running time in seconds, and columns 3–7 give the slow-down
factor for each tool relative to column 2 (smaller is better). The first nine programs are
integer programs, the remaining four are floating point programs.

Table 2.4 shows the post-instrumentation code expansion for the five tools. Column 1
gives the benchmark name, column 2 gives the original x86 code size (excluding data) in
kilobytes, and columns 3–7 give the code expansion factor for each tool relative to column 2
(smaller is better).

In addition to the space used by instrumented code, the core uses some extra memory, and
each tool also introduces its own space overhead; for example, Memcheck uses an extra 9 bits
per byte of addressable memory. Note that the slow-down and code expansion factors for each
tool do not correlate, because analysis code speed varies greatly. In particular, Cachegrind’s
analysis code includes many calls to C functions that update the simulated cache state, so its
code expansion factor is relatively low, but its slow-down factor is high.

The time and space figures are quite high. This is because Valgrind is designed for building
heavyweight DBA tools. The slow-down figure for Nulgrind is a red herring; it would not
be difficult to improve it significantly, just by making the emitted code more similar to the
original code. But that is not the interesting case—no-one uses Nulgrind, other than the
developers for testing purposes. For lightweight DBA tools, one of the frameworks discussed
in the next section may be more appropriate. But for heavyweight DBA tools, the time spent
in analysis code time far outweighs the time spent in client code, and slow-down factors such
as 20, 30 or 50 times are basically unavoidable, and Valgrind tools actually perform quite
well. Without features such as support for pervasive, interconnected analysis code and fast
C calls, these tools would probably run much more slowly if they ran at all; for example,
if Memcheck could only use C calls, and no inline analysis code, it would run much more

40

Program Size (KB) Nulgrind Memcheck Addrcheck Cachegrind Annelid

bzip2 58 5.3 12.3 6.8 9.2 11.3
crafty 176 4.7 11.3 6.1 8.4 11.1
gap 161 5.8 13.1 7.5 9.7 13.1
gcc 553 6.3 13.7 8.0 10.2 13.4
gzip 53 5.5 12.7 7.1 9.4 12.2
mcf 54 5.6 13.0 7.2 9.6 12.2
parser 119 6.1 13.8 7.8 10.2 13.5
twolf 139 5.3 12.3 7.0 9.3 11.7
vortex 252 6.0 13.5 8.2 10.1 15.0

ammp 92 4.9 11.9 7.1 9.5 10.7
art 46 5.5 12.8 7.1 9.5 12.2
equake 68 5.1 12.3 6.9 9.2 11.3
mesa 93 4.9 11.5 6.8 9.0 10.5

median 5.5 12.7 7.1 9.5 12.2
geom. mean 5.4 12.6 7.2 9.5 12.1

Table 2.4: Code expansion factor of five tools

slowly than Cachegrind. Besides, judging from extensive user feedback, performance is less
important than robustness—most users are not too concerned if a tool runs, say, 30 times
slower rather than 20 times slower, but they do notice if the tool falls over on their program.
(The performance figures for Cachegrind and Annelid are discussed further in Sections 3.3.5
and 4.4.10.)

2.7 Related Work

This section starts with a brief overview of things that are similar to, but not the same as,
DBA and DBI. It then describes a number of DBI frameworks in detail.

2.7.1 Not Quite Dynamic Binary Analysis

Section 1.1.1 briefly covered the differences between static analysis vs. dynamic analysis, and
source analysis vs. binary analysis. Putting them together gives four categories of program
analysis. Static source analysis is a huge field, and accounts for the majority of static analysis.9

Entire books have been written about it (e.g. [83]), and almost all compilers use some kind of
static analysis. Static binary analysis is much less common. A good example is [10]. Probably
the main use is for decompilation (e.g. [27, 76]). Dynamic source analysis can be used for
dynamic checking such as bounds-checking (e.g. [60]). The analysis code can be inserted
statically by a compiler or a pre-processor, or dynamically by a just-in-time (JIT) compiler or
interpreter. Dynamic binary analysis is, of course, the fourth category. This section does not
consider related work for DBA at all, because the related work for DBA profilers, checkers
and visualisers is given in Sections 3.5, 4.6 and 5.7 respectively.

Section 1.1.1 defined dynamic analysis as not affecting the semantics of the client pro-
gram. Analysis code added for this purpose is sometimes described as passive or observing

9So much so that “static analysis” usually means “static source analysis”.

41

or monitoring, as opposed to active or manipulating or controlling code which does affect the
semantics.10 Passive analysis code may well only augment the original code, whereas active
analysis code requires the original code to be modified in some way. Active analysis code is
used by tools such as sandboxes [112] which prevent a program from doing things like making
certain system calls, or allocating too much memory. Some of the DBI frameworks mentioned
in Section 2.7.3 (including Valgrind) support active analysis code.

Aspect-oriented programming (AOP) [61] is a programming approach that modularises
“crosscutting concerns”, or aspects, that are spread across many parts of a program, e.g. error
checking and handling, synchronisation, or monitoring and logging. At an implementation
level, aspect-oriented programming involves the insertion of code fragments at certain points
in a program; this is sometimes called code weaving. These added fragments can perform
certain kinds of dynamic analysis. DBI works similarly in that it adds extra code to a
program, and DBI can be used to do certain kinds of code weaving. The main difference
between AOP and DBI is that AOP code weaving is usually done by a compiler at the level
of source code, and the instrumentation is typically less pervasive (e.g. analysis code is added
to the entry and exit of functions, rather than to every instruction).

2.7.2 Not Quite Dynamic Binary Instrumentation

Static binary instrumentation (mentioned in Section 1.1.4) is an alternative technique for
building DBA tools whereby binaries are instrumented before execution. The classic, most
widely-used static binary instrumentation tool was ATOM [105], which could insert calls to
arbitrary C functions before and after functions, basic blocks, and individual instructions.
It worked on Alphas, and thus is unfortunately now defunct. Etch [95] (also now defunct)
and EEL [65] are similar tools, but for the Win32/x86 and SPARC/Solaris platforms respec-
tively. Dixie [44] (also now defunct) was a static binary instrumentation framework that
supported multiple architectures by translating binaries to a machine-independent IR and
running the instrumented IR on a virtual machine. Static binary instrumentation has been
largely overtaken by DBI in recent years due to the reasons given in Section 1.1.4.

Emulators such as Embra [119] provide a detailed emulation of a particular architecture.
The line between such emulators and DBI frameworks such as Valgrind is not clear-cut11; both
kinds of systems can be used for building DBA tools. However, emulators typically model
low-level machine details such as memory management unit (MMU) address translations,
privileged instructions, and even pipelines, and the DBA tools built with them usually work at
this level; they are generally designed to analyse hardware. By comparison, DBI frameworks
usually do user-level DBA; they are generally designed to analyse software. The two kinds of
DBA sometimes overlap, particularly in the area of cache simulation, but I will not consider
emulators further.

DBA tools are sometimes implemented not purely in software. Custom hardware probes
and microcode modification are two hardware-dependent techniques that have been used
to implement DBA tools; Section 4 of [111] gives examples of several trace-driven memory
simulators using these techniques. Such techniques are rarely used these days, as they are
not suitable for use with recent machines.

10I will use the terms “passive” and “active”.
11Nor is the terminology; the terms “simulation” and “emulation” are used in several different, overlapping

ways.

42

All the discussion so far has been based around sequential programming. There are various
tools and tool-building frameworks designed for analysing distributed parallel programs. An
example framework is OCM [118], which implements the OMIS [67] tool/monitor interface,
and has been used to implement tools such as profilers, interactive debuggers, load balancers,
and visualisation tools. OMIS has impressive goals of interoperability and portability, but it
is designed for monitoring large parallel systems, and it is based around higher-level message
passing, and so is not directly comparable to sequential DBI frameworks.

Dynamic binary translation12 tools are designed to run programs compiled for one plat-
form (the guest) on another platform (the host).13 This can be very difficult, although the
difficulty depends very much on the choice of the guest and host architectures. Example
systems include bintrans [91], which translates x86 to PowerPC and PowerPC to Alpha (all
under Linux); QEMU [15] which translates four guest architectures (x86, ARM, PowerPC,
SPARC) to six host architectures (x86, PowerPC, Alpha, SPARC32, ARM, S390) under vari-
ous operating systems; and Transmeta’s Crusoe chips [64] which have a permanently running
software layer that translates x86 code to the VLIW (very long instruction word) architecture
of the underlying processor. Some of the DBI frameworks mentioned in Section 2.7.3 perform
dynamic binary translation as well as instrumenting code.

Dynamic binary optimisation tools are designed to speed up programs. They work in
almost exactly the same way as DBI frameworks, except they only add lightweight profiling
analysis code to determine hot traces. These systems can actually speed up programs, de-
spite the compilation overhead, by focusing on optimisation opportunities that only manifest
themselves at run-time. The gains come from optimisations such as: inlining small functions;
“straightening out” branches; cache locality improvements; and eliminating redundant loads.
Dynamo [9] was the first such system; it was implemented for the PA-RISC/HPUX platform,
and achieved speed-ups of 5–20% in some cases; it also reverted to native execution if it judged
itself to be performing badly. Dynamo was reimplemented for x86/Win32 [17], and Mojo [24]
was a similar system also for x86/Win32; both do not perform as well as Dynamo, and usu-
ally slow programs down slightly. Some of the DBI frameworks mentioned in Section 2.7.3
perform dynamic binary optimisation as well as instrumenting code.

2.7.3 Dynamic Binary Instrumentation Frameworks

This section describes eleven DBI frameworks, including Valgrind, in no particular order.
Valgrind is described in the same way as the other ten to ease direct comparisons. The
details were gleaned from a mixture of papers, websites, source code, manuals, and personal
communication with the authors. I tried to contact all framework authors so that they could
check draft versions of the descriptions for inaccuracies; those descriptions that have been so
checked are marked with a † symbol. Both checked and unchecked descriptions may contain
incorrect information, but the checked ones should be much more reliable.

Table 2.5 gives a high-level comparison of the eleven frameworks. Column 1 gives the
name of each framework. Column 2 gives the year each framework was first used or released,
if known, or the year of the earliest publication about the framework. Column 3 indicates the
host platform(s) that each framework runs on (not the guest platform(s), which in some cases
can be different). Columns 4 and 5 give characteristics of the execution and instrumentation

12This term is sometimes used to refer to dynamic binary compilation and caching in general, but it is more
commonly used in the sense I am using here.

13Some people confusingly use the terms “target” and “host”, or even “source” and “target” instead.

43

Framework Date Host Exec Instr Robust Slower Avail

Shade† 1993 SPARC/Solaris C,T c,b ≥med 3–6× B
DynamoRIO† 2002 x86/{Win32,Linux} C,O c,i,m high* 1–2× B
DynInst† 1996 Many* I* c,f,m* high 1×* S*
Pin† 2003 IA64/Linux, others* C c,i*,f,m high 1.4–2.4× S*,B
DIOTA† 2002 x86/Linux C,O* c*,f high 1.2–23×* S
Walkabout† 2002 SPARC/Solaris* M,O*,T c,f ≥med 0.7–175× S
Aprobe ? x86/{Win32,Unix*} I?* c,f ? ?* C
Vulcan† 1999 x86/Win32 C*,O?* c,i* high ? no*
Strata 2001 Several* C ?* ≥med 1–3× S?*
DELI 2002 Various?* C,O,T* i,m high ? no?*
Valgrind† 2002 x86/Linux C c,i,f,m* high 2–10× S

Execution:
C Dynamic binary compilation and caching
I Normal execution with inline trampolines
M Mixed compiled/interpreted execution
O Dynamic binary optimisation
T Dynamic binary translation

Instrumentation:
c C function/external routine calls possible
b Has a built-in instrumentation mode
i Inline analysis code possible
f Function entry/exit can be instrumented
m Active analysis code supported

Robustness:
≥med can run at least SPEC benchmarks
high can run large applications

Availability:
S Source code available free-of-charge
B Binary code available free-of-charge
C Commercial

Annotations for all columns:
† information checked by author(s)
* see the text below for the full story
? unknown or uncertain

Table 2.5: Eleven dynamic binary instrumentation frameworks

mechanisms. Column 6 indicates roughly how robust each framework is. Column 7 indicates
the reported slow-down factor for the framework when it runs programs without adding any
analysis code; this number can be misleading as it gives no idea how efficient added analysis
code can be, but no better comparison is possible. It gives at most a rough idea of speed, but at
least shows which frameworks cause drastic slow-downs. Column 8 indicates the framework’s
availability. The meanings of the used abbreviations are given in the table’s legend; note that
the ‘*’ annotation applies only to the closest item, rather than every item in the column.

In what follows, each framework is described in the following way. The introduction gives a
basic description of the framework, including its main aim. It also mentions if the framework
does dynamic binary optimisation, dynamic binary translation, whether it supports active
analysis code, and when the framework first appeared or was first described in a publication.
The following entries are then given.

Platform. Describes the host platform(s) the framework runs on. Also, if it supports
dynamic binary translation, the guest platform(s) of the binaries it can execute.

Execution. Gives basics of the execution mechanism, describing whether it uses dynamic
binary compilation and caching, mixed compiled/interpreted execution, or if the original code
is run and modified in-place with jumps to out-of-line analysis code. It also describes the IR
if the framework uses one. Except where mentioned, all frameworks only run user-level code.

Instrumentation. Describes what kinds of instrumentation the framework supports, in-

44

cluding support for inline instrumentation, calls to C functions/external routines, instrumen-
tation of function entry/exit, and whether active analysis code is possible.

Robustness. Indicates whether the framework can run large programs. This is a very
rough measure of robustness; it is meant to indicate which frameworks have been developed
past the point of proof-of-concept into practical, mature tools. This is important, as DBI is
difficult to do well, and there are lots of details to get right (as Section 2.3 demonstrated).

Performance. Gives the reported slow-down factor for the “no instrumentation” case, and
any other relevant performance figures, such as code-expansion factors, or slow-down when
instrumentation is included. Performance methodologies (e.g. number of runs, what exactly
was measured, what means are used) are not described, because many of the papers were
vague about this; SPEC benchmarks were used for most of the measurements. This entry
should be taken only as a basic indication of performance, as performance will of course vary
depending on the client program, host hardware configuration, and many other factors.

Tools Built. Lists any tools built with the framework.
Availability. Describes whether the framework can be obtained, and if so, where from and

under what licence.
Evaluation. Presents particular pros and cons of the framework, and circumstances under

which it might be appropriately used. These entries are as much opinion as fact, and reflect
my perceptions of the frameworks, many of which I have only read about. It also mostly
ignores the question of which platforms the tool supports. Nonetheless, it provides a useful
summary for each tool.

Shade† Shade [31, 30] was an early and seminal DBI framework designed for building simple
tracing and profiling tools. It pioneered many now-standard features: it was the first frame-
work to use dynamic binary compilation and caching, the first to give control over analysis
code, and the first to efficiently interleave analysis code with client code. It also supports
dynamic binary translation. It was first publicly released in 1991. The two papers cited are
remarkable for their clarity and level of detail.

Platform. Shade can run SPARC.V8/Solaris and SPARC.V9/Solaris and MIPS/UMIPS-V
binaries on SPARC.V8/Solaris. There was also a version of Shade that could run x86/Solaris
binaries on SPARC/Solaris, although it was missing some x86 features such as segmentation
and 80-bit floating point numbers.

Execution. Shade uses dynamic binary compilation and caching. Like Valgrind, Shade
stores the client state in memory and pulls it into the machine registers to operate on when
necessary.

Instrumentation. Shade can insert calls to C functions before and after any instruction.
It also has built-in support for simple analysis code that collects various pieces of client state,
such as register contents or instruction opcodes, into a trace buffer which can be processed at
regular intervals. Client instructions can be modified in simple ways, e.g. by changing their
opcodes.

Robustness. Shade can run large applications, including other dynamic translation tools,
and itself.

Performance. Without any instrumentation, Shade runs SPARC.V8 programs on SPARC.V8
2.8–6.1 times slower than native, with a code expansion factor of 4.1–4.7; these figures are
quite similar to Nulgrind (the “null” Valgrind tool) which makes sense since Shade and Val-
grind both store client state in memory by default.

45

Tools Built. Shade has been used to build many profiling/tracing tools, such as instruction
counters, cache simulators, branch analysers, etc.

Availability. Shade is available [107] free-of-charge with a non-transferable binary-only
licence.

Evaluation. Shade introduced many important DBI (and dynamic binary translation)
features and has been highly influential. However, it has now been eclipsed—the lightweight
DBA it supports can be done with better performance and greater flexibility by frameworks
such as DynamoRIO.

DynamoRIO† DynamoRIO [19], derived from Dynamo, is a dynamic binary optimisation
and instrumentation framework (“RIO” is short for “run-time introspection and optimisa-
tion”). It also supports active analysis code. It was first released in 2001, but instrumentation
support was not added until 2002.

Platform. x86/Win32 and x86/Linux.
Execution. DynamoRIO uses dynamic binary compilation and caching. It works almost

directly on the original x86 code—only control-flow instructions are modified; if no instru-
mentation is added and no modifications made, the produced code is almost identical to the
original code (except for the hot traces that get optimised).

Instrumentation. DynamoRIO provides a detailed and well-documented API (application
programming interface) for modifying code and adding analysis code. The representation of
the code has an adaptive level of detail to minimise decoding/encoding times. Analysis code
can be added inline, and support for calling C functions is also provided. There is also support
for spilling registers to thread-local storage and for saving/restoring the %eflags condition
code register, which makes it easier to avoid conflicts between client code and analysis code;
however, unlike Valgrind, the code using the API must decide itself when these operations
are necessary. The nature of the API ties it tightly to the x86 architecture.

Robustness. The Win32 implementation is highly robust and can run programs such as
Microsoft Office and Mozilla; the Linux implementation is apparently less robust, but can
run at least the SPEC CPU2000 benchmarks.

Performance. DynamoRIO has excellent performance; without any analysis code added
or special optimisations performed, the typical slow-down factor is around 1.0–1.5. With
some minor peephole optimisations it runs some programs faster than normal.

Tools Built. DynamoRIO has been used to build various dynamic optimisers, and also
lightweight DBA tools; one example is a tool that protects against some security attacks, by
checking that all jumps in a program look safe [62].

Availability. DynamoRIO is available [18] free-of-charge under a non-transferable, binary-
only licence.

Evaluation. DynamoRIO’s speed and exact representation of the original client code make
it ideal for building lightweight DBA tools, tools using active analysis code such as sandboxes,
and for experimenting with dynamic binary optimisation. To me, it looks to be the best of
the frameworks for doing lightweight DBI. Like several of the tools mentioned in this section,
although it is quite comparable to Valgrind, it is not suitable for more heavyweight analyses,
as it lacks the necessary support for things like shadow registers.

DynInst† DynInst [20] is a DBI framework with one significant difference—it uses a sepa-
rate “mutator” process which can insert and remove analysis code snippets into an already

46

running program. It is aimed particularly at profiling long-running scientific programs, for
which the ability to insert and remove analysis code at run-time is very useful, but can also
be used for general DBA. DynInst was first released in 1996, although the instrumentation
method dates from 1994.

Platform. DynInst is available on many major platforms: x86/Linux, x86/Win32, IA64/Linux,
SPARC/Solaris, PowerPC/AIX, Alpha/Tru64 and MIPS/IRIX. This support of many plat-
forms is due to a large coding effort, rather than any particular features it has.

Execution. The client program executes much as normal; the mutator instruments the
client by replacing each chosen instruction in-place with a jump to an analysis code snippet
(which contains a copy of the replaced instruction). If the chosen instruction is smaller than
the replacement jump, nearby instructions are relocated to make space if possible, otherwise
the entire function is rewritten in memory. External routines to be called by the snippets can
be put in a dynamically linked library which the mutator can graft onto the client.

Instrumentation. The analysis code snippets are specified in an architecture-independent
way as an abstract syntax tree built up from variables, expressions, if-then-else statements,
etc. The API can be used manually, although it is cumbersome to do so; it was intended that
analysis code specifications be machine-generated. No inline instrumentation is possible, as
code snippets are inserted using jumps [54]. Function entry/exit points can be instrumented.
Functions can be replaced with other functions.

Robustness. DynInst is highly robust, and can run programs such as Microsoft Office and
MySQL.

Performance. No performance figures are given in [20] but the slow-down is presumably
nil or almost nil without instrumentation, and then increases as more instrumentation is
added. The trampolining technique means that calling analysis code is not very efficient. On
the other hand, analysis code can be removed if it has served its purpose, which can speed
up some tools.

Tools Built. DynInst has been used to build many profiling tools, coverage tools, debug-
ging tools (by providing efficient breakpoints), “computational steering” tools, etc. It forms
the core of the Paradyn parallel profiling tool [75], and DPCL [37] is a layer on top of it with
some features to support large parallel programs.

Availability. DynInst’s source code is available [40] under a non-transferable licence, free-
of-charge for research purposes, and for a fee for commercial use.

Evaluation. DynInst’s main strength is that it can add/remove instrumentation to/from
an already-running program, which is very useful in certain circumstances, such as when
profiling long-running scientific applications. DynInst is also very applicable when very little
analysis code needs to be added (due to the overhead of jumps to analysis code, if more
analysis code is necessary, DynamoRIO or Valgrind might be more appropriate). DynInst
is also noteworthy because it works on by far the most platforms of any of the mentioned
frameworks.

Pin† Pin [32] is a DBI framework designed to provide similar instrumentation functionality
to ATOM. It also supports active analysis code. The cited reference is a tutorial; it and the
user manual give some information about Pin but not a huge amount, so some of what follows
is incomplete. The Pin website dates from 2003.

Platform. Pin has been released for IA64/Linux; x86, x86-64 and ARM versions (all for
Linux) are in development.

47

Execution. Pin uses dynamic binary compilation and caching. It uses the Ispike post-link
optimiser [68] to improve performance.

Instrumentation. Pin can add calls to analysis routines (written in C or assembly code)
before and after any instruction, and on the taken edge of branches. Simple analysis routines
(i.e. containing no control flow) are inlined by Pin. Function entry/exit points can also be
instrumented. Active analysis code can be used; Pin tools can modify register and memory
values at run-time, modify instructions, and replace procedure calls. Symbol information
can be accessed easily. An API is provided that allows architecture-independent tools to be
written; the API is similar to Valgrind’s interface for instrumenting UCode. Virtual registers
can be used to pass information between analysis routines.

Robustness. Pin is used to analyse large multi-threaded and multi-process commercial
applications.

Performance. According to the author, Pin’s slow-down factor with no instrumentation
for IA64 is 1.4–2.4, and for x86 it is around 2.0.

Tools Built. The Pin distribution includes several basic tracing and profiling tools: a cache
simulator, a branch prediction simulator, a load latency profiler, an edge counter, a stride
profiler, etc. The cited tutorial mentions a stack access checker.

Availability. Pin is available [33] free-of-charge. The instrumentation engine is available
only as a binary, but the instrumentation libraries and example tools are available under a
BSD-style licence.

Evaluation. Pin is a nice framework for doing ATOM-style instrumentation, although it
might not be suitable for very heavyweight DBA tools such as Memcheck.

DIOTA† DIOTA [70, 69] is another DBI framework, with some support for dynamic binary
optimisation. The earlier cited paper is from 2002.

Platform. x86/Linux.
Execution. DIOTA uses dynamic binary compilation and caching. It supports self-

modifying code by using write-protection of pages that have been translated.
Instrumentation. DIOTA provides basic instrumentation facilities. There are built-in

tracing modes for calling a routine on each memory access, and at the end of each basic
block. It can also intercept function calls when symbol table information is present. It
also has an optimisation mode that tries to speed up the client program. Users can write
“backends” which specify a combination of the built-in instrumentation modes to use. Inline
instrumentation does not seem possible.

Robustness. DIOTA is robust, and can run web browsers such as Mozilla and Konqueror.
Performance. DIOTA’s slow-down factor when no instrumentation is present is 1.2–5 [70],

and 2.4–22.6 when the self-modifying code support is used [69].
Tools Built. DIOTA has been used to build a range of tools, including a precise mem-

ory leak detector [71], basic data and code tracers, a simple memory sanity-checker, a
record/replay module for pthread operations, a data race detector and a coverage tool.

Availability. DIOTA’s source code is available [96] free-of-charge under the GNU GPL.
Evaluation. DIOTA runs on x86/Linux, like Valgrind, and the performance and robust-

ness of the two frameworks are similar. However, DIOTA’s instrumentation support is much
more limited, so Valgrind seems to be better for building DBA tools.

48

Walkabout† Walkabout [29] is a framework for experimenting with dynamic binary trans-
lation, designed from the ground up to be highly retargetable and machine-independent. The
cited paper is from 2002.

Platform. Walkabout runs x86/Linux and SPARC.V8/Solaris binaries on SPARC.V8/Solaris,
SPARC.V9/Solaris and x86/Linux, although the PathFinder component only runs SPARC.V8/Solaris
code on SPARC.V9/Solaris.

Execution. Walkabout has two main parts. The first part is an instrumented interpreter
generator. It takes three files as input: a machine syntax description, a machine semantics
description, and a file describing the analysis code in a format called INSTR. It generates an
interpreter (in C or Java) for SPARC.V8 or x86. The second part is called the PathFinder; it
uses dynamic compilation and caching and dynamic binary optimisation techniques to speed
up the generated interpreters.

Instrumentation. The analysis code is specified in INSTR as C/C++ code, and can be
attached to individual instructions; the specification is architecture-specific, so tools would
have to be re-written for each architecture. Function entry/exit instrumentation can be done
by instrumenting the appropriate instructions, which is much easier on SPARC than on x86.
It seems most suited for simple DBA tools such as basic block counters.

Robustness. Walkabout is at least robust enough to run SPEC CPU95 and CPU2000
benchmarks. The project has finished and no more work is planned.

Performance. The generated instrumented interpreters can be run as-is, although their
performance is poor, as would be expected for interpreters—interpreting SPARC.V8 code on
SPARC.V8 results in a slow-down factor of 139–261. However, the PathFinder (which runs
on SPARC.V9) can be used in conjunction with an interpreter to perform dynamic binary
compilation and optimisation of hot traces. PathFinder’s performance varies wildly; the slow-
down factor with it was 0.6–175.

Tools Built. Walkabout has been used to build basic proof-of-concept tracing tools that
do basic block tracing, memory access tracing, instruction tracing, etc.

Availability. Walkabout’s source code is available [28] free-of-charge under a BSD-style
licence.

Evaluation. Walkabout incorporates some very interesting ideas, however, its greatly vary-
ing performance and limited instrumentation support mean that other frameworks are more
suitable for building DBA tools.

Aprobe OCSystems’ Aprobe [84] is a commercial DBI framework. The cited white paper,
from OCSystems’ website, provides little detail about how Aprobe works. Therefore the fol-
lowing description is largely guesswork.

Platform. Aprobe is available for x86/Win32, and also for Solaris, AIX and Linux (also
presumably for x86).

Execution. There are few details available about how Aprobe works, although it sounds
like it works similarly to DynInst, using some kind of in-place instrumentation.

Instrumentation. Lightweight instrumentation “probes” can be written in a C-like lan-
guage. Probes can be attached to function entry/exit (and can gather function arguments)
and specified lines of source code. Each probe must be pre-compiled to work with a particular
program binary; when Aprobe loads the client the probes are inserted. It seems instrumen-
tation cannot be inserted inline. Aprobe apparently provides ring buffers for collecting trace
information.

49

Robustness. Being a commercial framework one would hope its robustness is high although
there is no evidence provided for this.

Performance. No data is available for performance. Presumably if no probes are added
there is little or no slow-down.

Tools Built. Aprobe comes with various pre-defined probes, for basic profiling and tracing
purposes, such as time profiling, heap profiling and test coverage.

Availability. Aprobe is sold under a commercial licence.
Evaluation. Aprobe seems to be most similar to DynInst, however there seem to be no

compelling reasons to use Aprobe in favour of DynInst. In particular, the need to recompile
probes for each program binary removes one of the key advantages of DBI.

Vulcan† Vulcan [104] is a framework that supports both static and dynamic binary instru-
mentation, and is designed to handle heterogeneous programs. It may also support dynamic
binary optimisation. The Vulcan project is run by Microsoft. The cited paper is from 2001,
but it superseded a technical report from 1999.

Platform. Vulcan runs on x86/Win32. It handles all supported Win32 binaries, namely
x86, x86-64, IA64 and MSIL (Microsoft Intermediate Language).

Execution. For static instrumentation, it seems that static binary rewriting is used, and
the program is then executed normally. For dynamic instrumentation, it seems Vulcan re-
places code in-place where possible, or jumps to out-of-line code if the replacement code is
larger than the original code.

Instrumentation. An architecture-independent intermediate code representation is used.
Instrumentation takes place at this level, although the original code can be referenced for
architecture-specific instrumentation. Analysis code can be generated from basic building
blocks such as memory addresses, branches and register contents; calls to C functions are also
possible. Inline analysis code is possible. For static instrumentation the binary file is rewrit-
ten. For dynamic instrumentation the analysis code is injected into the running process; the
injection is done by another process, which can even be running on a remote machine.

Robustness. Vulcan is robust, and can run large programs such as Microsoft Office appli-
cations. It is also being used to build post-link optimisers.

Performance. The cited paper gives no performance figures.
Tools Built. Vulcan has been used to build a variety of tools, including basic profiling

tools, binary matching and differencing tools, code coverage tools, and fault injection tools.
It has also been used to implement some dynamic optimisations, although the details of these
are not clear. It has apparently been used internally at Microsoft to improve the performance
of various Microsoft products.

Availability. Vulcan is not publicly available, but the website [74] of the developing re-
search group makes it clear that Vulcan is under active development.

Evaluation. Vulcan’s outstanding features are its support for both static and dynamic
binary instrumentation, and its support for heterogeneous programs. However, because it is
not publicly available it cannot be used by anyone outside Microsoft, which is a shame as it
sounds quite powerful.

Strata Strata [101, 100, 99] is a DBI framework that is designed to work on multiple plat-
forms (but it does not perform dynamic binary translation). The earliest cited paper is from
2001.

50

Platform. The architecture-dependent and architecture-independent parts are carefully
separated; Strata has been ported to SPARC/Solaris, MIPS/IRIX and x86 (presumably
Linux).

Execution. Strata uses standard dynamic binary compilation and caching. Like Dy-
namoRIO, Strata modifies the client’s code as little as possible before instrumentation.

Instrumentation. The cited papers contain little detail about how instrumentation is
added; it seems that inline code is not possible, and that tools would have to be re-written
for each platform, although this is not clear. The paper [99] states “We are currently devel-
oping a flexible interface and specification language that will allow a user to define their own
architectural simulators without having any knowledge of how... Strata works.”

Robustness. Strata can run at least the SPEC CPU2000 benchmarks.
Performance. Performance is good; uninstrumented code runs 1.0–1.8 times slower than

normal on SPARC and x86, and 1.1–3.0 times slower on MIPS.
Tools Built. Strata has been used to build several DBA tools, including a system call

monitor, a malicious code injection detector (which prevents the execution of code from the
stack or heap), and a cache simulator.

Availability. The paper [99] states “The source code is available for Strata” however I was
not able to find it on the web, and my efforts to contact the authors were unsuccessful.

Evaluation. Strata seems quite similar to DynamoRIO, but works on more platforms. If
it were publicly available, this property and its supposed open-source licence could make it a
DynamoRIO-beater.

DELI DELI [38], also derived from Dynamo, is intended to provide an infrastructure for
building tools that do dynamic code transformation. It provides compilation, caching and
optimisation services for dynamic code, and also a hardware abstraction layer. As a result, it
can be used both for DBI and also as a component in dynamic binary translators, although
it does not have the binary translation capabilities built-in. It also supports active analysis
code. The cited paper is from 2002.

Platform. The cited paper does not give much information about the implementation. A
related presentation [39] mentions that it was being ported to x86, ARM, ST200 and SuperH
architectures, for the PocketPC and Linux operating systems.

Execution. DELI uses dynamic binary compilation and caching, augmented with the hard-
ware abstraction layer. It can run above or below the operating system. It also features a
“transparent” mode in which it can run a normal program under its control, like Dynamo
and Valgrind do.

Instrumentation. DELI uses an intermediate representation that is basically at the assem-
bly code-level, plus it has virtual registers. It provides an API for tools to modify the code
and add analysis code, so inline code is possible. There does not seem to be built-in support
for calling C functions from instrumented code.

Robustness. The cited paper states that DELI is robust enough to run WinCE.
Performance. The cited paper has little in the way of performance figures.
Tools Built. The DELI paper suggests using DELI in a number of ways: for dynamically

patching code to remove instructions that a processor might not support; for decompressing
or decrypting code on the fly; for sandboxing; and for binary translation. None of these
seem to have been implemented, though, except for a binary translator for running Hitachi
SH3 code on an Lx/ST210 VLIW embedded processor, which allowed mixed emulated/native

51

execution and seemed to work well.
Availability. DELI does not seem to be publicly available. It is unclear whether DELI is

still being worked on actively.
Evaluation. DELI seems to provide good infrastructure for building emulators. For build-

ing lightweight DBA tools, it seems roughly comparable to DynamoRIO, although there is
less information available and it does not seem to be publicly available.

Valgrind† Valgrind is a DBI framework that is particularly suited for building heavyweight
DBA tools. It also supports active analysis code. Valgrind was first released in 2002.

Platform. x86/Linux.
Execution. Valgrind uses dynamic binary compilation and caching.
Instrumentation. Original x86 code is converted to a RISC-like IR called UCode. Instru-

mentation occurs at the UCode-level. Added analysis code can be inline, specified as UCode;
calls to external assembly code routines and C functions are also possible. Valgrind can also
intercept entry to chosen functions. Symbol information can be accessed easily. UCode’s
form makes it easy to write pervasive and interconnected analysis code; Valgrind also pro-
vides support for location metadata, the shadowing of every register and memory value with
a metavalue. Active analysis code is possible, although the use of UCode means that a tool
does not have total control over the end code; thus Valgrind could be used for sandboxing,
but would not suitable for low-level peephole optimisations.

Robustness. Extremely high; Valgrind can run programs with millions of lines of code.
Performance. Without instrumentation, its slow-down factor is about 2–10, typically 5,

and the code expansion is about 4.5–6.0. This slow-down is somewhat misleading, however,
as Valgrind provides the infrastructure necessary to support heavyweight DBA tools in which
the analysis code time greatly outweighs the client code’s time.

Tools Built. Valgrind has been used to build several heavyweight DBA tools, including
three memory checkers, a cache profiler, a dynamic data flow tracer, a heap profiler and a data
race detector. Several of these tools, particularly Memcheck, one of the memory checkers, are
in wide use in the open source world, with thousands of users.

Valgrind was modified and used for the RISE project [13] which protects against bi-
nary code injection attacks by using randomised instruction set emulation, an instruction set
obfuscation technique. Timothy Harris used Valgrind for a prototype implementation of a
“virtualized debugger” [50] designed for debugging threaded and distributed programs that
are difficult to debug using traditional techniques. A modified version of Valgrind was used
to create Kvasir, a front-end for the Daikon invariant detection system [42]; Stephen McCa-
mant said [73]: “Leveraging Valgrind’s infrastructure has been amazingly helpful in getting
this project together: after one undergraduate-semester’s worth of effort, we already have a
tool that works better than our old, source-based instrumenter does after years of effort.”
Christopher January created a Valgrind tool called Logrind [59] that captures complete pro-
gram traces in a relational database, which can be queried for interesting events. He also
augmented Valgrind so the database can be used for debugging within GDB; since the whole
program trace is in the database, this allows backward debugging.

Availability. Valgrind’s source is available [102] free-of-charge under the GNU GPL.
Evaluation. Valgrind’s main strength is its suitability for building heavyweight DBA tools.

Valgrind can be used for building lightweight DBA tools, although their performance will not
be as good as if they were built with a faster DBI framework such as DynamoRIO. Valgrind

52

is also very robust.

2.8 Conclusion

This chapter has described Valgrind, a DBI framework for the x86/Linux platform. It began
with an example of Valgrind’s use. It then described in great detail how Valgrind’s core
works, including many gory details. It then described how tool plug-ins work and interact
with the core, using Memcheck as an example. It finally considered code sizes, performance,
and related work.

Valgrind demonstrates how a DBI framework can support heavyweight DBA. Although
various DBI frameworks share some features with Valgrind, it is Valgrind’s combination of
features—support for pervasive, interconnected instrumentation, and support for location
metadata—that is unique. This makes Valgrind suitable for building heavyweight DBA tools,
such as the three described in the following chapters, that are of a substantially different nature
to those built with other DBI frameworks.

53

54

Chapter 3

A Profiling Tool

This chapter describes a useful profiling tool, built with Valgrind, which uses
moderately heavyweight dynamic binary analysis.

3.1 Introduction

This chapter describes Cachegrind, a cache profiling tool, which was built with Valgrind.

3.1.1 Profiling Tools

The first major group of DBA tools are profilers. Profilers collect information about a program
that a programmer (or another program) can use to rewrite the program so that it runs faster,
and/or uses less memory. Countless numbers of profilers have been written. Many attribute
time to sections of code, typically procedures. Others give other statistics about how the
hardware was used, such as cache miss ratios, or the number of times each line is executed.

Profilers are becoming more important as computers become more complex. A modern
CPU, such as a Pentium 4, features deeply pipelined, out-of-order, superscalar execution,
with multiple functional units; a core that breaks x86 instructions into lower-level, RISC-
like micro-ops; a complex memory hierarchy with multiple caches plus other components
such as translation look-aside buffers; and sophisticated branch prediction [58]. Programmers
have little chance of understanding how their programs interact with such complex hardware.
Tools are needed to help them with this. Tools dealing with the memory hierarchy and cache
utilisation are particularly important, since the memory system is often a critical performance
bottleneck.

3.1.2 Cache Effects

Cache misses are expensive. A main memory access on a modern personal computer can take
hundreds of CPU cycles. For example, Table 3.1 gives the characteristics of an AMD model 4
Athlon that was new in 2001. The information in the first part of the table was gathered from
AMD documentation [3] and the results of the cpuid instruction. The cache replace times in
the second part of the table were found using Calibrator v0.9e [72], a micro-benchmark which
performs multiple dependent array accesses with various stride lengths to estimate worst-case
D1 and L2 cache latencies.

55

Architecture AMD K7, model 4
Clock speed 1400 MHz
I1 cache 64KB, 64B lines, 2-way
D1 cache 64KB, 64B lines, 2-way, write-allocate, write-back, 2 64-

bit ports, LRU replacement
L2 unified cache 256KB, 64B lines, 8-way, on-die, exclusive (contains only

victim blocks)
System bus Pair of unidirectional 13-bit address and control chan-

nels; bidirectional, 64-bit, 200 MHz data bus
Write buffer 4-entry, 64-byte

D1 replace time 12 cycles
L2 replace time 206 cycles

Table 3.1: Model 4 Athlon characteristics

// fast.c // slow.c

int main(void) int main(void)

{ {

int h, i, j, a[1024][1024]; int h, i, j, a[1024][1024];

for (h = 0; h < 10; h++) for (h = 0; h < 10; h++)

for (i = 0; i < 1024; i++) for (i = 0; i < 1024; i++)

for (j = 0; j < 1024; j++) for (j = 0; j < 1024; j++)

a[i][j] = 0; // !! a[j][i] = 0; // !!

return 0; return 0;

} }

Figure 3.1: Fast and slow array traversal: fast.c and slow.c

The high cost of cache misses means that the cache utilisation of a program can have a
huge effect on its overall speed. For example, consider the two simple programs in Figure 3.1,
identical except for the line assigning zero to the array a[][]. Both programs were timed on
the mentioned AMD Athlon (running Red Hat Linux 9.0, kernel version 2.4.20).

The first program does a row-major traversal, and executes in 0.19s (“user time”, as
measured by /usr/bin/time). The second program does a column-major traversal, and
executes in 2.38s, i.e. 12.5 times slower. In both programs, the 4MB array is too big to fit
into the cache. In the first version, the traversal is done along cache lines, so only every 16th
array accesses causes a (D1 and L2) cache miss. In the second, the traversal is done across
cache lines, so every array access causes a cache miss. A 16-fold increase in L2 cache misses
causes a 12.5-fold increase in execution time.

3.1.3 Cache Profiling

Cache utilisation can clearly have a huge effect on program speed. While techniques for
optimising the cache utilisation of array-based programs are mature and well-known, the
situation is murkier for general purpose programs. Even though some work has been done on

56

predicting cache contents (e.g. [43]), reasoning about the cache utilisation of programs doing
anything more than simple array access is very difficult. Therefore, good profiling tools are
crucial for getting good cache performance.

The performance monitoring counters of modern machines provide one way of measuring
cache utilisation. However, they only give global statistics, such as the number of cache hits
and misses, which are not much help to programmers trying to improve the cache utilisation of
their programs. What is needed are tools that tie the cache utilisation statistics to particular
parts of a program, so the programmer has some hope of knowing what changes will improve
things.

DBI frameworks have the features necessary to build good profiling tools. In fact, profilers
generally do not stretch a framework much, as they involve pervasive but simple analysis code,
and fairly simple metadata—typically certain pieces of code are instrumented with calls to
functions that update some profiling state, such as counts. Any DBI framework should be
able to support the creation of profilers with ease. Cachegrind is a profiling DBA tool built
with Valgrind.

3.1.4 Overview of Cachegrind

Cachegrind is a robust tool that performs a trace-driven simulation of a machine’s cache as
a program executes. The simulation is of a machine with a split L1 (I1 and D1) cache and a
unified L2 cache. This configuration is typical in current x86-based machines.

Cachegrind tracks cache statistics (I1, D1 and L2 hits and misses) for every individual
line of source code executed by the program. At program termination, it prints a summary of
global statistics, and dumps the line-by-line information to a file. This information can then
be used by an accompanying script to annotate the original source code with per-line cache
statistics.

Cachegrind gains the benefits of DBI shared by all Valgrind tools: it is extremely easy
to run, requiring no recompilation; it naturally covers all code executed, including libraries;
and it works with programs written in any language. It is fairly fast for a tool of its kind.
It is also quite flexible, being able to simulate different cache configurations by varying the
size, line size and associativity of each cache; the configuration can be selected easily with a
command line option. The cache simulation is not perfect, due to various reasons described
later, but is good enough to provide useful results.

Cachegrind is extremely robust, and has been used by many programmers to profile large
programs. It is part of the Valgrind distribution.

3.1.5 Chapter Structure

This chapter is structured as follows. Section 3.2 shows an example of Cachegrind’s use.
Section 3.3 explains how Cachegrind works. Section 3.4 shows how Cachegrind can be useful
in practice, by showing how it was used to speed up Haskell programs compiled with the
Glasgow Haskell Compiler. Section 3.5 discusses related work, and Section 3.6 concludes.

3.2 Using Cachegrind

Cachegrind is invoked from the command line like any other Valgrind tool. To profile a
program foo with Cachegrind, one would use the following command:

57

valgrind --tool=cachegrind foo

The program then runs under Cachegrind’s control. Cachegrind instruments every instruction
(even instructions that do not perform data accesses, because the instruction cache is also
simulated) so that when the instruction executes, the simulated caches are updated, and the
hit and miss counts are also updated.

When the program terminates, Cachegrind emits two kinds of information. First, it
prints some global statistics about cache utilisation. Second, it dumps the per-line hit and
miss counts to a file.

Figure 3.2 shows the global summary statistics for the two programs from Figure 3.1
when run under Cachegrind. The information includes the total numbers of cache accesses
and misses for instruction fetches (I1 and L2), cache accesses and misses for data fetches (D1
and L2), and L2 cache accesses and misses. It also shows the relevant miss rates. The results
for the I1 cache for the two programs are, not surprisingly, identical; however, as expected,
slow.c has sixteen times as many data cache misses (in both the D1 and L2 caches).

Figure 3.3 shows the result of annotating the same two programs with the per-instruction
counts. Note that more than one instruction may map to each line of source code, in which
case the counts for all those instructions are combined to give the line’s counts. Each line’s
hit and miss counts are shown. The source lines are shown truncated here; in practice they
are not. The Ir, I1mr, I2mr columns show the number of cache accesses, L1 misses and L2
misses for instruction reads. The Dr, D1mr and D2mr columns show the same counts for data
reads, and the Dw, D1mw, D2mw columns show the same counts for data writes. The annotation
script’s output also shows the hit/miss counts for each function in the program, but that
information is omitted here.

From the annotated source, a programmer can easily determine that the array assignment
is causing a large number of cache misses, and rewrite the program to get better cache utili-
sation. As a secondary benefit, since one instruction cache read is performed per instruction
executed, one can find out how many instructions are executed per line (the Ir count), which
can be useful for instruction-count profiling and test coverage.

3.3 How Cachegrind Works

This section describes the details of how Cachegrind works. It begins with the main data
structures, then covers instrumentation and related details, post-mortem code annotation,
performance, Valgrind features that help Cachegrind, and finishes with Cachegrind’s short-
comings.

3.3.1 Metadata

Cachegrind’s metadata is stored in three main data structures, as the following paragraphs
explain.

Global Cache State The first data structure is the global cache state, a global structure
representing the state of the three (I1, D1, L2) simulated caches. It is updated on every
instruction execution. It does not track each cache’s contents since that is irrelevant for
determining hits and misses; it only tracks which memory blocks are in each cache. It is

58

updated with calls to the cache simulation functions, one per instruction executed. The
functions are passed the necessary information about access addresses and sizes.

The simulation has the following particular characteristics.

1. Write-allocate. When a write miss occurs, the block written to is brought into the D1
cache. Most modern caches have this property.

2. Modify instructions treated like reads. Instructions that modify a memory location
(e.g. inc and dec) are counted as doing just a read, i.e. a single data reference. This
may seem strange, but since the write can never cause a miss (the read guarantees the
block is in the cache) the write is not very interesting. Thus Cachegrind measures not
the number of times the data cache is accessed, but the number of times a data cache
miss could occur. This behaviour is the same as that used by the AMD Athlon hardware
counters. It also has the benefit of simplifying the implementation—instructions that
modify a memory word are treated like instructions that read memory.

3. Bit-selection hash function. The line(s) in the cache to which a memory block maps is
chosen by the bits [M, (M +N − 1)] of the address, where:

(a) line size = 2M bytes;

(b) (cache size / line size) = 2N bytes.

4. Inclusive L2 cache. The L2 cache replicates all the entries of the L1 cache. This is
standard on Pentium chips, but AMD Athlons use an exclusive L2 cache that only
holds blocks evicted from L1.

5. LRU replacement. The replacement algorithm is LRU (least recently used). When
choosing which block to evict from a set, it chooses the least recently used block.

6. Straddling accesses are merged. References that straddle two cache lines are treated as
follows:

(a) if both blocks hit, it is counted as one hit;

(b) if one block hits, and one misses, it is counted as one miss (and zero hits);

(c) if both blocks miss, it is counted as one miss (not two).

The parameters of the simulated caches—cache size, associativity and line size—are deter-
mined in one of two ways. The default way is with the cpuid instruction when Cachegrind
starts. For old x86 machines that do not have the cpuid instruction, or have the early in-
carnation that does not give any cache information, Cachegrind falls back to using a default
configuration. Alternatively, the user can manually specify the parameters of all three caches
from the command line.

If one wants to simulate a cache with properties different to those provided, it is easy to
write an alternative cache simulator, as the interface to the analysis code is very simple.

Cost Centre Table The second data structure is the cost centre table, which contains
the per-line cost centres (CCs). Every source line that gets instrumented and executed is
allocated its own cost centre in the table, which records the number of cache accesses and
misses caused by the instructions derived from that line.

59

The type of a cost centre is shown in Figure 3.4. ULong is an unsigned 64-bit integer;
64-bits are needed because the numbers involved can easily grow too big for 32 bits. UChar is
an unsigned char, and Addr is an integral type the same size as a pointer (a 32-bit unsigned
int for x86). In the CC structure, a, m1 and m2 represent the number of accesses, L1 misses and
L2 misses respectively. The lineCC struct contains three CC elements, one each for instruction
cache reads, data cache reads, and data cache writes. The next field is necessary because
the cost centre table is a separately-chained hash table. The line field holds the source line
number for this cost centre. A line number alone does not uniquely identify a source code line;
a filename is also necessary. In fact, the table has three levels; the cost centres are grouped
first by filename, then by function name, and only finally by line number. This is necessary
to minimise the size of the output file dumped at termination; otherwise every cost centre
would have to be annotated with its filename and function name. All instructions that do
not have debug information share a special cost centre which has “???” as the filename and
function name, and 0 as the line number.

Happily, no look-ups need to be performed in the cost centre table at run-time because
they can be performed at instrumentation-time, and their results effectively cached in the
instr-info table, as the next paragraph explains.

Instr-info Table The third data structure is the instr-info table. It is used to cache un-
changing information about each x86 instruction at instrumentation-time, which reduces the
size of the added analysis code and improves its speed, by reducing the number of arguments
that must be passed to the cache simulation functions.

Each x86 instruction instrumented is given a node in the table; each node has the type
instr_info shown in Figure 3.5. The instr_addr field records the instruction’s address,
instr_size records the instruction’s length in bytes, data_size records the size of the data
accessed (0 if the instruction does not access memory), and parent points to the cost centre
for the line of source code from which this instruction was derived, which is the cost centre
that will be updated each time the instruction is executed.

As for the higher-level structure of the instr-info table, it is arranged so that the instr_info
nodes for each basic block are stored together. This is necessary for the easy flushing of nodes
when code is unloaded, as Section 3.3.3 explains.

The instr-info table is not necessary; its presence is merely an optimisation. The elements
within an instr_info node could be passed to the cache simulation functions individually,
but by bundling together those known at instrumentation time, fewer arguments need to
be passed to the cache simulation functions, which reduces the size of the analysis code,
and makes it faster. Also, each instruction has a permanent pointer to the appropriate line
cost centre in the cost centre table, which means cost centres never need to be looked up at
run-time, saving more time.

3.3.2 Instrumentation

Having explained the three main data structures, one can now consider instrumentation works.
The first step is a quick pass over the basic block, which counts how many x86 instructions
it represents. With this number known, an array of instr_info nodes can be allocated and
inserted (as yet uninitialised) into the instr-info table.

Then the main instrumentation pass occurs. Cachegrind categorises each x86 instruction
into one of the following five categories.

60

1. None. Instructions that do not access memory, e.g. movl %eax, %ebx.

2. Read. Instructions that read a memory location, e.g. movl (%eax), %ebx.

3. Write. Instructions that write a memory location, e.g. movl %eax, (%ebx).

4. Modify. Instructions that read and write (modify) a memory location, e.g. incl (%ecx).

5. Read-write. Instructions that read one memory location, and write another, e.g. pushl
(%edx) (which reads (%edx), writes -4(%esp)), or movsw (which reads (%esi), writes
(%edi)).

Because each x86 instruction is represented by multiple UCode instructions, Cachegrind does
its categorisation by looking for UCode LOAD and STORE instructions within the INCEIP in-
structions that mark the boundary of each x86 instruction’s UCode.

As well as categorising the instruction, Cachegrind also looks up its debug information:
its line number, function name and filename. With this information, it finds the appropriate
lineCC node in the cost centre table (creating the node if necessary), as described in Sec-
tion 3.3.1. Recall that a special “???” cost centre is used if the debug information is missing.
Cachegrind then initialises the appropriate instr_info node in the array that was allocated
for the basic block (where the nth instr_info node in the array represents the nth x86
instruction in the basic block), as Section 3.3.1 described.

Once the lineCC and instr_info nodes are dealt with, the x86 instruction can be instru-
mented. Each x86 instruction is instrumented with a C call to one of the four cache simulation
functions; which one depends on its categorisation. There are only four simulation functions
for the five categories because the same function is shared by Read and Modify instructions
(as Section 3.3.1 explained). The arguments passed to the cache simulation function also de-
pend on the categorisation: None instructions need only a pointer to the instr_info node;
Read, Write and Modify instructions need an instr_info pointer plus the contents of the
data address register; Read-write instructions need an instr_info pointer plus the contents
of both data address registers.

Figure 3.6 shows the analysis code added to part of a basic block. The original x86 instruc-
tions are shown. The analysis code added by Cachegrind is marked with ‘*’. Cachegrind puts
the first x86 instruction in the None category, and just passes the address of the instruction’s
instr_info (0xB01E873C) to the C function (the C function is at address 0xB1019901). The
MOV is necessary because CCALL instructions cannot take literal operands. As mentioned in
Section 2.4.3, the code generated for the CCALL preserves and restores any caller-save registers
(including %eflags) as needed; the argument is passed in a register.

The second x86 instruction is a Read instruction and so the data address used in the LOAD

(held in t0 and copied into t14) needs to be passed as well. Note that UCode instruction
#7 is not necessary here—virtual register t0 could be passed directly to the C function, and
t14 never used—but copying it like this guards against the possibility of t0 being updated
between the LOAD and the CCALL. Currently no such updates ever happen, but it is best to
be cautious in the face of possible future changes in Valgrind which would break such an
assumption and affect Cachegrind’s correctness; such changes might be very difficult to spot.
The run-time cost of this extra copy is very small; it is outweighed by the other analysis code
such as the simulation.

61

At run-time, each cache simulation function uses the passed information to update the
global cache state as described in Section 3.3.1, and also the hit/miss counts for the instruc-
tion’s lineCC cost centre.

3.3.3 Code Unloading

There is one further complication. As Section 2.3.5 mentioned, when code is unloaded trans-
lations are flushed from the translation table. Valgrind provides a hook whereby tools can
be told when this happens, so that they can flush any state they are maintaining about the
unloaded code.

For each basic block that gets unloaded, Cachegrind removes from the instr-info table all
the instr_info nodes for all the instructions in that basic block, and frees the memory. This
is why the instr-info table is structured so that all the nodes for a basic block are together, as
Section 3.3.1 explained. Then, if new code is loaded into the memory region in which the old
code was unloaded from, it will be freshly instrumented when necessary, and new instr_info

nodes will be created.

The cost centre table does not need to be touched at all when code is unloaded, as its
information is purely in terms of source code locations, and the memory locations in which
instructions happen to be loaded are irrelevant.

3.3.4 Output and Source Annotation

When the client program terminates, Cachegrind dumps all the collected cost centres to a file
called cachegrind.out.pid ; the pid (process ID) suffix is used so that when Cachegrind
traces into child processes there is one output file per process (as Section 2.3.10 explained).
Cachegrind groups the cost centres by file and function, which is easy because the cost centre
table is indexed in that way. The grouping makes the output files smaller, and makes the
annotation easy. The global statistics (e.g. total cache accesses, total L1 misses) are calculated
when traversing the cost centre table rather than during execution, to save time—the cache
simulation functions are called so often that even one or two extra adds per call can cause a
noticeable slow-down.

The file format is designed to minimise file sizes, while still being simple. To give an idea
of typical sizes, on the machine described in Section 2.6 the file size for the utility “ls” is
9KB, and for the web browser Konqueror is 660KB. The format is also quite generic, and
independent of Cachegrind. The script can be reused for annotating source code with any
sets of counts; see Section 5.5.2 for an example of such reuse.

The very start of an output file is shown in Figure 3.7. The desc: lines are just comments
about the data in the file; for Cachegrind they describe the cache configuration. The manda-
tory cmd: line gives the command line with which the program was invoked. The mandatory
events: line names the counts within each cost centre. The fl= lines indicate the filename;
its scope lasts until the next fl= line. The fn= lines are similar, but for function names. The
remaining lines indicate the line number (in the first column) and the number of counts for
each of the events given in the events: line. The line numbers are not necessarily in order.

So, for example, the first line of numeric data in Figure 3.7 states that line 486—which is
in the function CFF_Driver_Init()—of the file cffobjs.c caused two Ir events (instruction
reads), one I1mr event (I1 miss caused by an instruction read), one I2mr event (L2 miss
caused by an instruction read), and one Dw event (data write).

62

Annotation is done by a Perl script. The script is fairly straightforward: it reads all the
cost centres from the file, and then runs through all the chosen source files, printing them
out with per-line counts attached. The user can choose to annotate the source with a subset
of the counts (e.g. only instruction cache statistics). The event names from the events:

line are used as column headings for the count columns in the annotated code. The script
minimises the size of the annotation output by excluding un-annotated parts of source files
and automatically minimising column widths. It also gives function-by-function statistics.
The source files can be specified manually, or found automatically by the script. The script
issues a warning if the source files have changed more recently than the profiling data file.
The script is quite fast and annotation times are typically very short. Figure 3.3 showed
examples of source annotations.

3.3.5 Performance

Performance figures for Cachegrind on the SPEC CPU2000 suite were given in Figure 2.3.
The slow-downs were in the range 20.5–93.3, with a median of 54.8. The slow-down is quite
large, but not so large as to be unusable, especially since Cachegrind is not likely to be
used terribly frequently with a program. Also, it compares quite well with the many cache
simulators mentioned in [111], especially since Cachegrind models the I1, D1 and L2 caches.
The code expansion factor (see Table 2.4) was 8.4–10.2, with a median of 9.5.

Quite a lot of effort went into making Cachegrind as fast as possible. To recap, the
following features are particularly important.

• Unchanging information about each instruction is stored in its instr_info node, min-
imising argument passing, which reduces code size and improves speed.

Also, the inclusion of cost centre addresses in the instr_info nodes at instrumentation-
time is extremely important, because it means that no cost centre look-ups need to be
performed at run-time.

• Only one C function call is made per instruction simulated (as opposed to having sepa-
rate calls for the instruction cache and data cache accesses, for example). Just the cost
of the C functions (e.g. preserving and restoring caller-save registers, plus the change
in control-flow) accounts for a large chunk of execution time.

In an attempt to reduce the C call overhead, I experimented with a trace buffer. The
analysis code for each instruction placed the relevant pieces of information (those things
normally passed as arguments to the C functions) in the buffer, and at the end of each
basic block, all the entries for the basic block were batch-processed. This reduced the
number of C calls made, but actually hurt performance. One reason was that the batch
processor had to do a case selection on the instruction type (e.g. None, Read) for each
instruction in order to decide how to update the simulated cache, and the jumps required
resulted in a lot of mispredicted branches. By comparison, when each instruction has
its own C call, the branch prediction is very straightforward as the same code always
calls the same C functions. Another reason was that more memory traffic was caused by
the constant reading and writing of the trace buffer, whereas the C function arguments
are passed in registers.

• Summary counts are calculated at the end, rather than during execution.

63

• The output files can contain huge amounts of information; the file format was carefully
chosen to minimise file sizes. This reduces I/O times for both Cachegrind and the
annotation script.

Despite these optimisations, there is no escaping the fact that one C function call is made
per x86 instruction, so a significant slow-down is unavoidable.

3.3.6 Useful Features

Cachegrind was very easy to implement as a Valgrind tool. As Figure 2.2 showed, Cachegrind
is implemented in 1,683 lines of C code, including blank lines and comments. The annotation
script is 891 lines of Perl, including blank lines and comments.

The following features of Valgrind helped simplify the implementation.

• It is quite easy to determine which instructions access memory from the UCode stream
due to its load/store nature; much easier than by looking at the original x86 instructions.

• It is very easy to call C functions from code, thanks to the CCALL UCode instruction.
The implementation of CCALL is very efficient too, minimising the registers that must
be saved, and passing arguments in registers where possible. And thanks to the use
of virtual registers in UCode, Cachegrind does not have to worry about putting the
arguments into the right registers, since Valgrind looks after those details in its register
re-allocation and code generation phases.

• Valgrind’s automatic reading of debug information made mapping of instructions to
lines of source code extremely easy.

• Valgrind’s hook for telling tools when code is unloaded is crucial, otherwise the caching
of information about each instruction in the instr-info table would not be possible.

If Cachegrind were a stand-alone tool, it would undoubtedly require at least ten times as
much code, if not more, so building it with Valgrind definitely saved a great deal of effort.
However, Cachegrind is only a moderately heavyweight DBA tool. The analysis code it uses
is pervasive (every instruction is instrumented) but not interconnected (each piece of analysis
code is independent). It maintains a lot of state, but no location metadata. Therefore using
Valgrind to build it was very helpful, but not crucial; it could have been implemented in
some other DBI frameworks with a similar amount of effort. Nonetheless, it does show that
Valgrind is suitable for building profiling DBA tools.

3.3.7 Simulation Shortcomings

Cachegrind is certainly not perfect. First, the trace of addresses passed to the simulation is
imperfect, due to the following reasons.

• Because Valgrind tools cannot instrument kernel code, code executed within system
calls is not considered, nor is the thread scheduling and signal handling performed by
the kernel.

• Because some client code is replaced with code in Valgrind’s core which is not instru-
mented (see the discussion of Core-space in Section 2.4.2), some client code is not
considered.

64

• Other processes running concurrently are not considered. When considering the pro-
gram by itself (the more likely option), this is a good thing; when considering the
machine in its entirety, this is bad.

• Valgrind’s conversion from x86 to UCode loses a small amount of the original informa-
tion. For example, the common idiom:

call x

x: pop %eax

puts the program counter in %eax. Valgrind’s core spots this idiom and translates it to
UCode as if the original instruction was:

movl &x, %eax

where &x represents the literal address of the second instruction. Valgrind can do this
because it knows at instrumentation-time what the address of that instruction is. The
resulting UCode is more efficient, albeit slightly misleading for Cachegrind.

The result is that this sequence of two instructions that does a store and a load is
treated by Cachegrind as if it is one instruction that does not access memory at all.

Second, those addresses passed to the simulation are not truly correct, for the following
reasons.

• Simulation is done entirely with virtual addresses; there is no consideration of the
virtual-to-physical address mappings. Thus, it is not a true representation of what is
happening in the cache.

• Cache misses not visible at the machine code level are not modelled, for example,
translation look-aside buffer (TLB) misses, and cache misses from speculative execution
that was annulled.

• Valgrind’s thread scheduling is different to that of the standard threads library, which
can change the execution order and thus the results.

• The memory layout of the client will be different under Cachegrind, which can also
affect the results. For example, when simulating caches that are not fully associative,
the conflict misses that occur will be different due to the different memory layout.

Third, the simulation itself has the following inaccuracies.

• Some approximations are made in the cache simulation. In particular, FPU instructions
with data sizes of 28 and 108 bytes (e.g. fsave) are treated as though they only access
16 bytes. These instructions are rare enough that this should have little effect.

• The simulated cache does not necessarily match the real machine’s behaviour. For
example, real caches may not use LRU replacement; indeed, it is very difficult to find
out what replacement algorithms are used in machines such as modern Pentiums. Also,
various real machines have certain quirks not modelled by the simulation. For example,
upon an instruction cache miss the model 4 Athlon loads the missed block and also
prefetches the following block.

65

• Prefetching instructions are ignored. (Prefetches are not represented at all in UCode,
and the code generated by Valgrind does not preserve them.)

This list is depressingly long. However, Cachegrind’s inaccuracy is not a big problem, so long
as one does not expect Cachegrind to give a picture-perfect simulation of what is happening
in the real cache. Instead, one should view Cachegrind as a way of gaining insight into the
locality of a program, and how it would behave on some kind of generic machine. Section 3.4
shows that this is enough for Cachegrind to be useful in practice.

3.3.8 Usability Shortcomings

The nature of the information Cachegrind produces is not ideal. With any profiling tool, one
wants a minimal “conceptual distance” between the information produced, and the action
required to act on that information. For example, with traditional time-based profilers that
say how much time each function takes, this conceptual distance is quite small—if a function
f() accounts for 80% of run-time, one knows immediately that speeding it up will have a
large effect. By contrast, Cachegrind’s conceptual distance is larger, for two reasons.

1. The number of cache misses occurring in a section of code does not necessarily relate
obviously to the execution time of that section. Ideally, Cachegrind would specify
how many cycles of machine time each instruction accounts for. However, given the
complexity of modern machines, this is not feasible. One could use crude cost models to
approximate cycle counts, but they are so likely to be misleading that this would be more
of a hindrance than a help. (However, Section 3.4.3 provides a rare counter-example.)

2. Even if you know a line of source code is causing a lot of cache misses, and you are
confident the misses are slowing down the program a lot, it is not always clear what
can be done to improve this. It can be strongly indicative that, for example, a data
structure could be redesigned. But the results rarely provide a “smoking gun”, and
some non-trivial insight about how the program interacts with the caches is required to
act upon them.

There is no silver bullet; optimising a program’s cache utilisation is hard, and often requires
trial and error. What Cachegrind does is turn an extremely difficult problem into a moderately
difficult one.

3.4 In Practice

This section shows how Cachegrind is useful. It describes an example of Cachegrind being used
“in anger”, to analyse the cache utilisation of Haskell programs compiled with the Glasgow
Haskell Compiler (GHC). The information found with Cachegrind was used to guide the
insertion of prefetching instructions into GHC code and GHC’s run-time system, which sped
up a set of benchmark programs by up to 22%. This section is a much-abbreviated version
of [80].

3.4.1 Language and Implementation

Haskell [88] is a polymorphically typed, lazy, purely functional programming language widely
used in the research community. The Glasgow Haskell Compiler (GHC) [47] is a highly

66

Program Description lines

anna Frontier-based strictness analyser 5740
cacheprof x86 assembly code annotator 1489
compress LZW text compression 403
compress2 Text compression 147
fulsom Solid modeller 857
gamteb Monte Carlo photon transport 510
hidden PostScript polygon renderer 362
hpg Random Haskell program generator 761
infer Hindley-Milner type inference 561
parser Partial Haskell parser 932
rsa RSA file encryptor 48
symalg Symbolic algebra program 831
ghc GHC, no optimisation 78950
ghc -O GHC, with -O optimisation 78950

Table 3.2: Haskell program descriptions

optimising “industrial-strength” compiler for Haskell. The compiler itself is written in Haskell;
its run-time system is written in C. Although its distribution contains an interpreter, GHC
is a true compiler designed primarily for creating stand-alone programs. The optimisations it
performs include full laziness, deforestation, let-floating, beta reduction, lambda lifting and
strictness optimisations; it also supports unboxed values [90]. It is widely considered to be
the fastest implementation of a lazy functional language [51]. Because it is highly optimising,
it is not a soft target. This is important, since optimising non-optimised systems is always
less of a challenge than optimising optimised systems.

GHC can compile via C, or use its x86 native code generator; the distinction is unimportant
here, as programs compiled by the two routes have extremely similar cache utilisations. All
measured programs were compiled with a development version of GHC (derived from v5.02.2),
via C using GCC 3.0.4, using GHC’s -O optimisation flag.

3.4.2 Benchmark Suite

Twelve of the benchmark programs tested come from the “real” part of the nofib suite [85]
of Haskell programs. These programs were all written to perform an actual task; most are a
reasonable size, and none have trivial input or behaviour. The other program tested was GHC
itself, compiling a large module with and without optimisation. The benchmark programs
are described in Table 3.2, and their sizes in lines of code (minus blank lines and comments)
are given. Inputs were chosen so each program ran for about 2–3 seconds, except for the
ghc benchmarks, which were substantially longer. This was long enough to realistically stress
the cache, but short enough that the programs ran for reasonable times when run under
Cachegrind.

3.4.3 Motivating Measurements

Before using Cachegrind, I made a series of measurements on the nofib programs, to deter-
mine whether cache stalls were accounting for a significant part of their execution times. The

67

Program Instr % Ref % D1 miss % D2 miss %

anna 99.4 71.6 92.7 80.2
cacheprof 99.5 82.6 92.5 69.5
compress 99.4 84.0 97.0 64.5
compress2 99.4 83.3 94.7 94.1
fulsom 99.5 78.3 89.8 72.8
gamteb 99.2 81.8 91.5 71.0
hidden 99.2 74.5 94.6 54.3
hpg 97.4 80.8 98.1 38.2
infer 99.0 76.3 96.0 90.6
parser 99.3 81.1 89.2 81.5
rsa 99.4 91.4 97.3 83.1
symalg 99.2 96.8 96.8 45.7
ghc 99.4 78.6 87.3 88.0
ghc -O 100.0 78.3 86.6 81.2

Table 3.3: Ratios between hardware counter and software simulation event counts

machine used for the experiments was the AMD Athlon described in Figure 3.1, running Red
Hat Linux 7.1, kernel version 2.4.7. The measurements were taken with Rabbit [53], which
provides control over the Athlon’s hardware performance counters [3].

The conclusion was that L2 cache data stalls accounted for 1–60% of execution times.
This was determined using a simple but surprisingly accurate execution cost model, which
took into account only the four largest components of execution time: instruction execution,
stalls due to L1 and L2 cache data misses, and stalls due to branch mispredictions. Using the
cost model, the proportion of execution time taken up by L2 miss and branch misprediction
stalls—the stalls that were found to be significant for Glasgow Haskell programs—could be
estimated confidently, just from the counts provided by the Athlon’s hardware counters.

In short, L2 cache misses were a big problem. The obvious next question was “how can
things be improved?” This is where Cachegrind was helpful.

3.4.4 Quantifying Cachegrind’s Accuracy

As discussed in Section 3.3.7, Cachegrind’s simulation is not perfect. Table 3.3 compares
its global statistics directly with the results from the hardware counters. Column 1 gives
the program name. Column 2 gives the ratio of instructions counted by Cachegrind to re-
tired instructions counted by Rabbit (event 0xc0). This is the best comparison of the two
techniques, as they are measuring exactly the same event. As expected, Cachegrind gave
marginally lower counts than Rabbit, because unlike Rabbit it does not measure other pro-
cesses and the kernel. Despite this, Cachegrind counted more than 99% of the events counted
by Rabbit for all programs except hpg, for which it counted 97.4%. Column 3 contains the
memory reference ratios, where Rabbit measures the number of data cache accesses (event
0x40). Cachegrind falls further short here, by 3–28%. As mentioned in Section 3.3.7, this is
because some cache accesses are occurring that are not visible at the program level, such as
those from TLB misses. Columns 4 and 5 give the D1 cache miss and L2 cache data miss
ratios, where Rabbit is measuring the number of data cache refills from L2 and data cache
refills from system (Athlon events 0x42, 0x43). Cachegrind underestimates these misses by

68

3–62%.

Cachegrind’s results gives a general picture of where cache misses occur for machines with
this kind of cache configuration, rather than matching exactly every miss that occurs for the
Athlon. Although this picture is not perfect, it gives a good indication of where cache misses
are occurring in these programs.

3.4.5 Use of Cachegrind

All benchmark programs were run under Cachegrind, and each line of code in the compiled
programs and the GHC run-time system was annotated—at the level of assembly code for
the compiled GHC code, and at the level of C for the run-time system—with its number of
read and write references and misses. I concentrated on L2 data misses because data misses
are much more frequent than instruction misses, and L2 misses are much more costly than L1
misses. L2 misses were concentrated around a small number of parts of the system, some of
which were in the programs’ compiled code, and some of which were in the garbage collector.

3.4.6 Avoiding Data Write Misses

Most write misses in Glasgow Haskell programs are unnecessary. Almost all heap writes made
by Glasgow Haskell programs are sequential, due to GHC’s execution mechanism [89] which
does many small allocations in a linear path through memory, and due to its copying garbage
collector.

Write misses occur only for the first word in a cache line. There is no need to read the
memory block into the D1 cache upon a write miss, as is done in a write-allocate cache; the
rest of the line will soon be overwritten. It would be better to write the word directly to the
D1 cache and invalidate the rest of the cache line. Unfortunately x86 machines have no such
write-invalidate instruction.

Prefetching mitigated this problem. Because writes are sequential it is simple to insert
prefetches to ensure memory blocks are in the cache by the time they are written to. I
performed some preliminary experiments with the Athlon’s prefetchw instruction, fetching
ahead 64 bytes each time a new heap data structure was allocated or copied by the garbage
collector. The changes required were simple, and increased code sizes by only 0.8–1.6%. Figure
3.4 shows the results: columns 2–4 give the speed improvements when the prefetching was
applied to just the garbage collector, just program allocations, and both. The improvements
are quite respectable: programs ran up to 22% faster, and almost none slowed down.

If a write-invalidate instruction existed that cost no more than a normal write, one can
estimate the potential speed-up it would provide by multiplying the proportion of write misses
by the proportion of execution time taken up by L2 data cache stalls, which gives the expected
speed-ups shown in column 5 of Table 3.4. ([80] explains the calculation in detail.) The
prefetching technique—which is applicable to any program using copying garbage collection,
not just Glasgow Haskell programs—obtained half or more of this theoretical figure for almost
all programs, as shown by column 6 which gives the ratio between theoretical and actual
speed-ups. This is pleasing since more prefetches are performed than necessary (one per
data structure allocated/copied, about six per cache line), and prefetching increases memory
bandwidth requirements.

69

Program GC Prog Both Theory Ratio

anna 3% 0% 4% 5% 0.8
cacheprof 3% 1% 5% 9% 0.6
compress 2% 2% 5% 7% 0.7
compress2 3% 9% 12% 25% 0.5
fulsom 1% 17% 17% 31% 0.6
gamteb 0% -0% 0% 6% 0.0
hidden 1% 3% 2% 3% 0.7
hpg 4% 1% 4% 3% 1.3
infer 3% 8% 9% 8% 1.1
parser 1% 19% 22% 28% 0.8
rsa 3% -1% 2% < 1%
symalg 1% 1% 1% < 1%
ghc 1% 17% 17% 27% 0.6
ghc -O 2% 12% 14% 24% 0.6

Table 3.4: Effect of prefetching

3.5 Related Work

A great many profiling tools have been built over the years. Many DBA profiling tools are
trace-driven, i.e. their input is a trace of information from an event of interest, and the output
is some kind of summary based on the input. For example, an address trace provides the
input for cache/memory simulators; a branch taken/not-taken trace provides the input for a
branch prediction simulator; a trace of heap allocations provides the input for a heap profiler.
Some DBA profiling tools use sampling to obtain interesting timings about programs.

Uhlig and Mudge wrote an extremely thorough survey of more than 50 trace-driven
cache/memory simulation tools [111]; it is so good that I will not attempt to mention any of
the tools it covers, but only give a brief summary of its three criteria for categorising these
tools. First, the trace collection method, one of: hardware probes, microcode modification,
instruction-set emulation, static code annotation, or single-step execution. Cachegrind uses
instruction-set emulation.1 Second, the trace reduction method, one of: compression, com-
paction, filtering, sampling, or none. Cachegrind uses none—trace reduction is only necessary
for tools that store address traces for processing off-line. Third, the trace processing method,
one of: basic, stack, and forest. Cachegrind uses basic processing, and so can only simulate
one cache configuration at a time. From this survey it is clear that trace-driven cache simu-
lators are not a new idea; indeed, several have been built with some of the DBI frameworks
described in Section 2.7.3. However, Cachegrind compares quite favourably with the tools
described in the survey, not requiring any special software or hardware, and being extremely
easy to use, relatively fast, fairly accurate, and giving line-by-line hit/miss information.

Cachegrind was based directly on Cacheprof, by Julian Seward. Cacheprof had the same
goal as Cachegrind: line-by-line source code annotation of cache hit and miss counts. However,
it used static assembly code-level instrumentation, being implemented as a GCC wrapper
which instrumented the assembly code emitted by GCC with calls to the cache simulation
functions. This was a major disadvantage, because all program code, including libraries, had

1Their terminology is different to mine.

70

to be recompiled to be included in the simulation. If library code was not instrumented, the
simulation would only be partial, and far less trustworthy. Cacheprof is now defunct, having
been superseded by Cachegrind, which is faster, easier to use, and has a more detailed cache
simulation.

Josef Weidendorfer’s Calltree [116] is a Valgrind tool that extends Cachegrind. As well as
simulating the caches, it collects call tree information, and can provide greater context for cost
centres, e.g. on a thread-by-thread basis. It comes with a graphical viewer called KCachegrind
which provides an impressive number of ways of viewing the collected information. It is
available [115] free-of-charge under the GNU GPL.

Several works have been published about the cache utilisation of declarative languages,
and ways to improve it; [80] mentions some of them.

3.6 Conclusion

This chapter described Cachegrind, a cache profiling tool, which was built with Valgrind.
Cachegrind represents a classic archetype of trace-driven profiling tools—all the standard
features of profiling tools are present, particularly analysis code attached to particular pieces
of code, and calls to C functions that update counters and simulation state. This chapter
showed how it was used to speed up Glasgow Haskell programs by up to 22%.

Cachegrind is not a particularly novel tool; many similar trace-driven cache profilers
have been built. Nonetheless, it is among the easiest to use since it does not require any
recompilation of source files, and it is fairly fast and accurate. Finally, it also shows the
importance of Valgrind’s support for heavyweight DBA.

71

Output for fast.c:

I refs: 94,566,217

I1 misses: 565

L2i misses: 560

I1 miss rate: 0.0%

L2i miss rate: 0.0%

D refs: 52,518,512 (42,009,281 rd + 10,509,231 wr)

D1 misses: 656,324 (801 rd + 655,523 wr)

L2d misses: 656,274 (752 rd + 655,522 wr)

D1 miss rate: 1.2% (0.0% + 6.2%)

L2d miss rate: 1.2% (0.0% + 6.2%)

L2 refs: 656,889 (1,366 rd + 655,523 wr)

L2 misses: 656,834 (1,312 rd + 655,522 wr)

L2 miss rate: 0.4% (0.0% + 6.2%)

Output for slow.c:

I refs: 94,566,217

I1 misses: 565

L2i misses: 560

I1 miss rate: 0.0%

L2i miss rate: 0.0%

D refs: 52,518,512 (42,009,281 rd + 10,509,231 wr)

D1 misses: 10,486,724 (801 rd + 10,485,923 wr)

L2d misses: 10,486,674 (752 rd + 10,485,922 wr)

D1 miss rate: 19.9% (0.0% + 99.7%)

L2d miss rate: 19.9% (0.0% + 99.7%)

L2 refs: 10,487,289 (1,366 rd + 10,485,923 wr)

L2 misses: 10,487,234 (1,312 rd + 10,485,922 wr)

L2 miss rate: 7.1% (0.0% + 99.7%)

Figure 3.2: Global cache statistics for fast.c and slow.c

72

Annotated fast.c:

Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw

. int main(void)

6 1 1 0 0 0 1 0 0 {

. int h, i, j, a[1...

.

54 0 0 21 0 0 1 0 0 for (h = 0; h < ...

51,240 0 0 20,490 0 0 10 0 0 for (i = 0; i...

52,469,760 0 0 20,981,760 0 0 10,240 0 0 for (j = 0...

41,943,040 0 0 20,971,520 0 0 10,485,760 655,360 655,360 a[i][j]...

.

1 0 0 0 0 0 0 0 0 return 0;

2 0 0 2 0 0 0 0 0 }

Annotated slow.c:

Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw

. int main(void)

6 1 1 0 0 0 1 0 0 {

. int h, i, ...

.

54 0 0 21 0 0 1 0 0 for (h = 0...

51,240 0 0 20,490 0 0 10 0 0 for (i ...

52,469,760 0 0 20,981,760 0 0 10,240 0 0 for ...

41,943,040 0 0 20,971,520 0 0 10,485,760 10,485,760 10,485,760 a...

.

1 0 0 0 0 0 0 0 0 return 0;

2 0 0 2 0 0 0 0 0 }

Figure 3.3: Line-by-line cache statistics for fast.c and slow.c

typedef struct {

ULong a; // number of accesses

ULong m1; // number of L1 misses

ULong m2; // number of L2 misses

} CC;

typedef struct _lineCC lineCC;

struct _lineCC {

Int line; // source code line number

CC Ir; // CC for I-cache reads

CC Dr; // CC for D-cache reads

CC Dw; // CC for D-cache writes

lineCC* next; // next lineCC node in hash table

};

Figure 3.4: Cost centre types

73

typedef struct _instr_info instr_info;

struct _instr_info {

Addr instr_addr; // instruction address

UChar instr_size; // instruction’s length in bytes

UChar data_size; // size of data accessed by instruction

lineCC* parent; // lineCC for this instruction

};

Figure 3.5: Instr-info nodes

0x3A965CEC: addl $0x8, %ecx

0: GETL %ECX, t0

1: ADDL $0x8, t0

2: PUTL t0, %ECX

* 3: MOVL $0xB01E873C, t12 # address of 1st instr_info node

* 4: CCALLo 0xB1019901(t12) # ‘None’ cache sim function

5: INCEIPo $3

0x3A965CEF: movl (%ecx),%eax

* 7: MOVL t0, t14 # remember data address

8: LDL (t0), t4

9: PUTL t4, %EAX

* 10: MOVL $0xB01E8748, t16 # address of 2nd instr_info node

* 11: CCALLo 0xB101992B(t16, t14) # ‘Read’ cache sim function

12: INCEIPo $2

Figure 3.6: Example basic block, instrumented

74

desc: I1 cache: 65536 B, 64 B, 2-way associative

desc: D1 cache: 65536 B, 64 B, 2-way associative

desc: L2 cache: 262144 B, 64 B, 8-way associative

cmd: konqueror

events: Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw

fl=/usr/groups/cprg/share/freetype-2.1.2/src/cff/cffobjs.c

fn=CFF_Driver_Init

486 2 1 1 0 0 0 1 0 0

489 1 0 0 0 0 0 0 0 0

490 2 0 0 2 0 0 0 0 0

fn=CFF_Face_Init

259 6 0 0 0 0 0 6 0 0

260 6 0 0 0 0 0 6 0 0

335 8 0 0 4 0 0 4 0 0

263 42 0 0 12 0 0 24 0 0

265 18 0 0 0 0 0 0 0 0

Figure 3.7: Cachegrind output file example

75

76

Chapter 4

A Checking Tool

This chapter describes a novel checking tool, built with Valgrind, which uses
location metadata and shadow computation.

4.1 Introduction

This chapter describes Annelid, a bounds-checking tool, which was built with Valgrind.

4.1.1 Checking Tools

The second major group of DBA tools, after profilers, are checkers. Checkers collect informa-
tion about a running program, and use that information to check certain actions performed
by the program. If any of these actions are erroneous (or even suspicious), a checker can issue
some kind of diagnostic error message. A programmer can act on these error messages and
rewrite the program so it does not exhibit the erroneous behaviour. These tools are basically
designed to find bugs. Many such tools have been written, most commonly to find memory
errors such as bad memory accesses and memory leaks.

Checking tools use passive analysis code (as described in Section 2.7.1). Some checkers
also use active analysis code, and can modify a program’s execution so certain objectionable
actions do not occur. This may be done in several ways, such as aborting the program
altogether, making the action fail, or replacing the action with a less objectionable one.
These tools are often designed to prevent security breaches, such as stack-smashing attacks
[62].

Many of the problems found by checkers can be prevented at the language level; for ex-
ample, memory leaks are rarely an issue for programs written in garbage-collected languages.
Nonetheless, many programs are still written in relatively unsafe languages such as C, C++,
and Fortran, and so checkers are very important tools. They can be particularly useful in
detecting hard-to-find bugs that might lurk undiscovered for a long time. Bounds errors are
one such class of bugs.

4.1.2 Bounds Errors

Low-level programming languages like C and C++ provide raw memory pointers, permit
pointer arithmetic, and do not check bounds when accessing arrays. This can result in very

77

efficient code, but the unfortunate side-effect is that accidentally accessing the wrong memory
is a very common programming error.

The most obvious example in this class of errors is exceeding the bounds of an array.
However the bounds of non-array data objects can also be violated, such as heap blocks, C
structs, and stack frames. I will describe as a bounds error any memory access which falls
outside the intended memory range. These errors are not difficult to introduce, and they can
cause a huge range of bugs, some of which can be extremely subtle and lurk undetected for
years. Because of this, tools for preventing and identifying them are extremely useful.

4.1.3 Bounds-Checking

Many bounds-checking tools are available, using a variety of analyses. Indeed, Memcheck,
described in Section 2.4.1, does certain kinds of bounds-checking. No single analysis is ideal,
and each one has a different set of characteristics, including:

• which regions of memory (heap, static, stack, mapped segments) it works with;

• the number of false positives it produces;

• which parts of a program it covers, in particular how it works with libraries;

• what level of compiler support it requires.

A particularly powerful bounds-checking approach is to use fat pointers, whereby a tool tracks,
for each pointer, metadata which describes the memory range the pointer can legitimately
access. Any accesses through a pointer that are outside its legitimate range are flagged as
errors. (Fat pointers are discussed in more detail in the related work of Section 4.6.2.)

4.1.4 Overview of Annelid

Annelid is a prototype tool implementing a novel form of fat pointer bounds-checking. The
novelty comes not from the use of fat pointers, but rather the fact that they are maintained
entirely dynamically; Annelid is the first tool that does fat pointer-based bounds-checking
using DBA. It gains the benefits of DBI shared by all Valgrind tools: it is extremely easy to
run, requiring no recompilation; it naturally covers all code executed, including libraries; and
it works with programs written in any language. Importantly, the pointer range metavalues
are maintained separately from the pointers themselves, so pointer sizes do not change. Also,
the coverage of libraries is particularly important, because inadequate handling of library
code is a major shortcoming of many previous bounds-checking analyses.

The downside is that Annelid’s analysis is neither sound nor complete. It spots many,
but not all, bounds errors in the heap, the stack, and in static memory; it gives few false
positives. The analysis performs best when debug information and symbol tables are present
in the compiled program, but degrades gracefully when this information is missing—fewer
errors are found, but false positives tend not to increase.

Annelid was conceived as an alternative to Memcheck. While Memcheck works very well,
it misses certain classes of errors, such as bounds errors on static memory and the stack (as
Section 4.6.1 discusses). The idea was that Annelid would use a stronger checking DBA to find
errors that Memcheck misses. As it turned out, Annelid has its advantages and disadvantages,
and is unlikely to be a world-beater in its own right. However, it does push the boundaries of

78

the design-space of bounds-checking tools, and might point the way to a future analysis that
is a world-beater.

Annelid was first described in [79]. Annelid is currently a prototype tool, providing a proof-
of-concept implementation of the bounds-checking DBA. It can run medium-size programs
such as the SPEC CPU2000 benchmarks and common Linux programs. It is not part of the
Valgrind distribution.

4.1.5 Chapter Structure

This chapter is structured as follows. Section 4.2 shows an example of Annelid’s use. Sec-
tion 4.3 describes the analysis at an idealised high level, and Section 4.4 describes what is
actually implemented within Annelid, discusses how that differs from the idealised design,
and gives more low-level details. Section 4.5 discusses the shortcomings of the analysis, and
ways in which a compiler might co-operate with Annelid so that it can give better results.
Section 4.6 describes related work, and discusses how Annelid’s analysis compares to others.
Section 4.7 discusses future work and concludes.

4.2 Using Annelid

Annelid is invoked from the command line like any other Valgrind tool. To check a program
foo with Annelid, one would use the following command:

valgrind --tool=annelid foo

The program then runs under Annelid’s control. Annelid instruments every instruction and
memory operation so that pointers are tracked, and their use is checked. When Annelid
detects a bounds error, it issues an error message indicating which line in the program caused
the error.

Figure 4.1 shows a short C program, bad.c. This contrived program shows three common
errors: two array overruns, and an access to a freed heap block. Figure 4.2 shows the output
produced by Annelid. Annelid uses Valgrind’s built-in support for error recording, and the
error messages are deliberately similar to Memcheck’s. Each line is prefixed with the running
program’s process ID. Each error message consists of a description of the error, the location of
the error, a description of the memory object(s) involved, and the location where the memory
object was allocated or freed (whichever happened most recently). The functions malloc()

and free() are identified as being in the file vg_replace_malloc.c because that is the file
that contains Annelid’s implementations of these functions, which override the standard ones.

The program was compiled with -g to include debug information. If it had not been,
the code locations would have been less precise, identifying only the code addresses and file
names, not actual line numbers. Also, the second error involving the static array would not
have been found, as Section 4.3.6 discusses.

4.3 How Annelid Works: Design

This section provides a high-level, idealised description of the bounds-checking analysis. Cer-
tain details are kept vague, and subsequently fleshed out in Section 4.4.

79

#include <stdlib.h>

int static_array[10];

int main(void)

{

int i;

int* heap_array = malloc(10 * sizeof(int));

for (i = 0; i <= 10; i++) {

heap_array [i] = 0; // overrun when i==10

static_array[i] = 0; // overrun when i==10

}

free(heap_array);

heap_array[0] = 0; // block has been freed

}

Figure 4.1: Program with bounds errors: bad.c

4.3.1 Overview

The basic idea is simple. Every pointer has a range of addresses it can legitimately access.
The range depends on where the pointer comes from. For example, the legitimate range of a
pointer returned by malloc() is that of the just-allocated heap block. That range is called the
pointer’s segment. All memory accesses are checked to make sure that the memory accessed
is within the accessing pointer’s segment, and any violations are reported.

Pointers are often used in operations other than memory accesses. The obvious example
is pointer arithmetic; for example, array elements are indexed using addition on the array’s
base pointer. However, if two pointers are added, the result should not be used to access
memory; nor should a non-pointer value be used to access memory. Thus the analysis also
needs to know which program values are non-pointers. The result is that every value has a
run-time type, and the analysis needs a simple type system to determine the type of all values
produced by the program. These types are location metadata, and they are propagated by
shadow computation.

4.3.2 Metadata

The analysis requires maintenance of two kinds of metadata. First is the record of the
segments in the program, each of which has the following form.

• X, a segment-type, describes a segment; this includes its base address, size, location
(heap, stack, or static), and status (in-use or freed).

Each segment is given a segment-type X.
Second is the location metadata shadowing each register and memory word, describing

the run-time type of the word. This metadata has one of the following three forms.

• n, a non-pointer-type, describes a value which is known to be a non-pointer.

80

==16884== Invalid write of size 4

==16884== at 0x8048398: main (bad.c:11)

==16884== Address 0x40D1C040 is 0 bytes after the expected range,

==16884== the 40-byte heap block allocated

==16884== at 0x400216E7: malloc (vg_replace_malloc.c:161)

==16884== by 0x8048375: main (bad.c:8)

==16884==

==16884== Invalid write of size 4

==16884== at 0x80483A2: main (bad.c:12)

==16884== Address 0x80495E8 is 0 bytes after the expected range,

==16884== a 40-byte static array in the main executable

==16884==

==16884== Invalid write of size 4

==16884== at 0x80483C5: main (bad.c:15)

==16884== Address 0x40D1C018 is 0 bytes inside the once-expected range,

==16884== the 40-byte heap block freed

==16884== at 0x40021CE9: free (vg_replace_malloc.c:187)

==16884== by 0x80483BE: main (bad.c:14)

Figure 4.2: Bounds errors detected for bad.c

• p(X), a pointer-type, describes a value which is known to be a pointer to a segment X.

• u, an unknown-type, describes a value for which the type is unknown.

Each word-sized value is shadowed by one of n, u or p(X). In principle, every value produced,
of any size, can be assigned a type. In practice, the shadow value tracking can be done at
word-sized granularity because all memory accesses are through word-sized pointers.

4.3.3 Checking Accesses

Every load and store is checked. When accessing a memory location m through a value x the
analysis looks at the type of x and behaves accordingly.

• n: Issue an error about accessing memory through a non-pointer.

• u: Do nothing.

• p(X): If m is outside the range of X, issue an error message about accessing memory
beyond the legitimate range of x; if X is a freed segment, issue an error message about
accessing memory through a dangling pointer.

Note that in all cases the memory access itself happens unimpeded, but only after the check
has been done. This is so an error message will be issued before any erroneous memory access
occurs which may crash the client program.

81

4.3.4 Life-cycle of a Segment

There are four steps in dealing with each segment.

1. Identify when the segment is allocated, in order to create a segment-type describing it.

2. Upon allocation, set the metavalue of each word within the segment appropriately.

3. Identify each pointer to the segment, and set the metavalues of these pointers to the
appropriate pointer-type.

4. Identify when the segment is freed, in order to change the status of its segment-type to
“freed”.

The first two steps occur when a segment is allocated. The third step can occur at various
times, depending on the what region of memory the segment belongs to. The fourth step
occurs when a segment is freed.

The way these aspects are handled differs between the heap, static and stack segments.
In addition, the exact meaning of the term “segment”, and thus the kinds of errors found,
differs between the three memory areas. The following sections discuss these differences.
Section 4.4.2 describes how Annelid deallocates segment-types.

4.3.5 Heap Segments

Heap segments are the easiest to deal with. For the heap, each heap segment represents one
heap block. The four steps for dealing with heap blocks are as follows.

1. By intercepting malloc(), calloc(), realloc(), new, and new[], the analysis knows
for every heap segment its address, size, and where it was allocated. It can thus easily
create the new segment-type and store it in a data structure.

2. All the words within a newly allocated heap block have their metavalues set to n, since
they should definitely not be used to access memory, being either zeroed (for calloc())
or uninitialised.

3. The pointer returned by the allocation function has its shadow set to p(X), where X
was the segment-type just created. At this point, this is the only pointer to the segment.

4. By intercepting free(), realloc(), delete, and delete[], the analysis knows when
heap segments are freed; it can look up the segment-type in the data structure by its
address (from the pointer argument) and change the segment-type’s status to “freed”.

Note that the analysis as described only detects overruns past the edges of heap blocks. If the
heap block contains a struct which contains two adjacent arrays, overruns of the first array
into the second will not be caught. This could be improved by using debug information to
identify pointer types. Then with some effort, field accesses could be identified by looking
at offsets from the block pointer. Section 4.3.6 discusses the difficulties in identifying array
overruns in these cases. Section 4.4.8 explains how to handle programs that use custom
allocators.

Finally variable-length arrays are an interesting case. Consider the following C code.

82

struct foo { int a; float b; int c[0]; };

struct foo f = malloc(sizeof(foo) + 10*sizeof(int));

f.c[1] = 0;

The analysis will handle this valid code without a problem, since the entire heap block is
considered a single segment, and f.c[1] is within that segment. In comparison, this is a
case that source analysis bounds-checking tools may get wrong, since they might think that
f.c[1] is out of bounds.

4.3.6 Static Segments

Identifying static segments is more difficult. First, identifying static segments by looking only
at machine code at run-time is close to impossible. So the analysis relies on debug information
to do this; if this information is not present, all pointers to static data objects will have the
type u, and no accesses to static memory will be checked.

The analysis can create segment-types for each static data object, e.g. arrays, structs,
integers; thus for static memory, each segment represents a single data object. The four steps
for dealing with static segments are as follows.

1. If debug information is present, the analysis identifies static data objects in the main
executable at start-up, and for shared objects when they are mapped into memory.

2. Newly loaded static memory can contain legitimate pointers. Those the analysis can
identify, from debug information, are shadowed to point to the appropriate static seg-
ments, as identified from their initial value. The remaining words have their segment-
type set according to their type as specified in the debug information. Or if that in-
formation is missing, according to their value; if a word is clearly a non-pointer—e.g. a
small integer—it is given the type n, otherwise it is given the type u.

3. Identifying pointers to static segments is harder than identifying pointers to heap seg-
ments. This is because compilers have a lot of control over where static data objects
are put, and so can hard-wire absolute addresses into the compiled program.

One possibility is to rely on a simple assumption: that any constant value that looks
like a pointer to an object, is a pointer to that object (even if it does not point to the
start of the object). Consider the x86 machine code snippets in Figure 4.3 used to load
elements of an integer array a[10], located at address 0x8049400, into register %edx.
The assumption works for the constants in all these cases except the last one; it is a
bounds error, because the pointer value used falls outside the range of a[]. However,
detecting this error is not possible in general, given that another array b[] might lie
directly after a[], in which case an access to a[10] is indistinguishable from an access
to b[0].

Unfortunately, this approach sometimes backfires. For example, the program gap in
the SPEC CPU2000 benchmarks initialises one static pointer to a static array with p =

&a[-1]; p is then incremented before being used to access memory. This is not legal ISO
C, but it works with most C compilers. When compiled with GCC, the address &a[-1]
falls within the segment of another array lying adjacent; thus the pointer is shadowed
with the wrong segment-type, and false positives occur when p is used to access a[].
A similar problem occurs with the benchmark gcc, in which an array access of the

83

load a[0] # load a[5]

movl $0x8049400, %eax movl $0x8049400, %eax

movl (%eax), %edx movl 20(%eax), %edx

load a[5] # load a[5]

movl $0x8049414, %eax movl $0x8049400, %eax

movl (%eax), %edx movl $5, %ebx

movl (%eax,%ebx,4), %edx

load a[5] # load a[10]

movl $5, %eax movl $0x8049428, %eax

movl 0x8049400(,%eax,4),%edx movl (%eax), %edx

Figure 4.3: Hard-wired static array accesses

form a[var - CONST] (which is legal ISO C) occurs, where var ≥ CONST at run-time;
the address a[-CONST] is resolved by the compiler, seemingly giving an address in an
adjacent array.

The alternative is to be more conservative in identifying static pointers, by only iden-
tifying those that point exactly to the beginning of static arrays. Unfortunately, this
means some static array accesses will be missed, such as in the second snippet on the
left-hand side of Figure 4.3, and so some errors will be missed. In particular, array ref-
erences like a[i-1] are quite common and will not be handled if the compiler computes
a[-1] at compile-time.

As well as appearing in the code, static pointers can also occur in static data. These
can be identified from the debug information, and their segment-type set appropriately.

4. When shared objects are unmapped from memory, all static arrays within the unmapped
range can be marked as freed. This is safe because static memory for a shared object
is always contiguous, and never overlaps with heap or stack memory.

As with heap segments, arrays within static structs could be identified with some effort.
However, as with top-level arrays, direct accesses that exceed array bounds—like the a[10]

case mentioned previously—cannot be detected.

One further complication is the use of C-style unions, whereby a data object’s segment can
change in size over time if its type changes. Since the analysis cannot in general determine
which type a union actually has at any point, it must be conservative and assume the largest
possible segment size. This can cause it to miss some bounds errors.

4.3.7 Stack Segments

The stack is the final area of memory to deal with. One could try to identify bounds errors on
individual arrays on the stack, but a simpler goal is to identify when a stack frame’s bounds
are overrun/underrun. In this case, each stack segment represents one stack frame. The four
steps in dealing with stack segments are as follows.

84

1. When a function is entered, function arguments are above the stack pointer (the x86
stack grows towards zero), the return address is at the stack word pointed to by the stack
pointer, and local variables used by the function will be placed below the stack pointer.
If the analysis knows the size and number of arguments, it can create a segment-type X
for the stack frame, which is bounded at the high end by the last function argument, and
is unbounded at the low end. This segment-type can be stored in a stack of segment-
types.

2. The values within the segment should be shadowed with n when the segment-type is
created, as they are uninitialised and should not be used as pointers. The exception is
the function arguments, whose shadow values have already been initialised and should
be left untouched.

3. The only pointer to a new stack segment is the stack pointer; its shadow is set to p(X),
where X is the segment-type just created.

4. When the function is exited, the segment-type can be removed from the segment-type
stack, and marked as deallocated.

These segments allow the analysis to detect two kinds of errors. First, any access using the
stack pointer (or a register assigned the stack pointer’s value, such as the frame pointer) that
exceeds the high end of the stack frame will be detected. Second, and more usefully, any
dangling pointers to old stack frames will be caught, even if new stack frames have been built
that cover the address range of the old stack frames; this is possible because the segment
associated with the dangling pointer will be marked as having been freed. (By comparison,
Memcheck and Addrcheck will only detect the use of such dangling pointers while the pointed-
to memory remains unaddressable, i.e. not if the stack grows past that point again.) Such
dangling pointers can occur if the address of a stack variable is saved in a global variable, or
returned from the function. Even better, it will detect any use of dangling pointers in multi-
threaded programs that have multiple threads sharing stacks. Such bugs can be extremely
difficult to track down.

Knowing the size and number of function arguments requires access to the debug informa-
tion. If the debug information is missing, an approximation can be used: instead of a segment
that is bounded at one end, use an unbounded segment. The first kind of error mentioned
above, violations of the stack’s edge, will not be detected. However, the second error type
mentioned, that of dangling pointer use, will be. This is because any access to a freed segment
triggers an error, regardless of whether that access is in range. This approximation could also
be used for stack frames of functions like printf() that have a variable number of arguments.

As with heap blocks and static memory, the analysis could track individual variables
within stack frames, but it would be very fiddly.

All this assumes function entries and exits are paired nicely, and can be identified. Sec-
tion 4.4.4 discusses what happens in practice.

4.3.8 Shadow Computation Operations

The analysis uses shadow computation, as described in Section 2.4.4. The following para-
graphs give the details of the three kinds of metavalue propagation.

85

+ n u p(Y)

n n u p(Y)
u u u u
p(X) p(X) u n*

(a) Add

× n u p(Y)

n n n n
u n n n
p(X) n n n*

(b) Multiply

& n u p(Y)

n n u p(Y)
u u u u
p(X) p(X) u n*

(c) Bitwise-and

^ n u p(Y)

n u u u
u u u u
p(X) u u u

(d) Bitwise-xor

− n u p(Y)

n n u n*
u u u u
p(X) p(X) u n/?

(e) Subtract

‘*’: An error message is issued when this happens.
All u results are range tested and possibly converted to n.

Table 4.1: Basic shadow operations

Copying Metavalues For machine instructions that merely copy existing values around,
the metadata is correspondingly copied. Note that p(X) metavalues must be copied by
reference rather than by value, so that if the segment pointed to, X, is freed, all p(X) types
that point to it see its change in status.

New Static Metavalues Machine instructions that mention constants effectively introduce
new values. The type of each static value is found in the same way that the types of values
in newly loaded static memory are given, as was described in Section 4.3.6; this will be n, u,
or the appropriate pointer-type.

New Dynamic Metavalues Figure 4.1 shows the shadow operations for several common
binary operations; the type of the first operand is shown in the leftmost column, and the type
of the second operand is shown in the top row.

The first operation is addition, shown in Table 4.1(a). Adding two non-pointers results in
a non-pointer. Adding a non-pointer to a pointer results in a pointer of the same segment; this
is crucial for handling pointer arithmetic and array indexing. Adding two pointers together
produces a non-pointer, and an error message is issued; while not actually incorrect, it is such
a dubious (poorly typed) operation that it is worth flagging. Finally, if either of the arguments
are unknown, the result is unknown. Thus unknown values tend to “taint” known values,
which could lead to a large loss of accuracy quite quickly. However, before the metadata
operation takes place, the analysis performs the real operation and checks its result. As it
does for static values, the analysis uses a range test, and if the result is clearly a non-pointer
the type given is n. This is very important to prevent unknown-ness from spreading too
much.

Multiplication, shown in Table 4.1(b), is simpler; the result is always a non-pointer, and
an error message is issued if two pointers are multiplied. The analysis could issue error
messages if a pointer was multiplied by a non-pointer (early versions of Annelid did this),

86

but in practice this occasionally happens legitimately; similarly, division sometimes occurs
on pointers, e.g. when putting pointers through a hash function. Several times I had to stop
issuing error messages on pointer arithmetic operations that seemed ridiculous, because real
programs occasionally do them. Generally, this should not be a problem because the result
is always marked as n, and any subsequent use of the result to access memory will be flagged
as an error.

Bitwise-and, shown in Table 4.1(c), is more subtle. If a non-pointer is bitwise-and’d with
a pointer, the result can be a non-pointer or a pointer, depending on the non-pointer value.
For example, if the non-pointer has value 0xfffffff0, the operation is probably finding some
kind of base value, and the result is a pointer. If the non-pointer has value 0x000000ff, the
operation is probably finding some kind of offset, and the result is a non-pointer. The analysis
deals with these possibilities by assuming the result is a pointer, but also doing the range test
on the result and converting it to n if necessary. The resulting shadow operation is thus the
same as that for addition.

For bitwise-xor, shown in Table 4.1(d), the analysis does not try anything tricky; it simply
uses a range test to choose either u or n. This is because there are not any sensible ways to
transform a pointer with bitwise-xor. However, there are two cases where bitwise-xor could
be used in a non-transformative way. First, the following C code swaps two pointers using
bitwise-xor.

p1 ^= p2;

p2 ^= p1;

p1 ^= p2;

Second, in some implementations of doubly-linked lists, the forward and backward pointers for
a node are bitwise-xor’d together, to save space.1 In both these cases, the pointer information
will be lost, and the recovered pointers will end up with the type u, and thus not be checked.

Most other operations are straightforward. Increment and decrement are treated like
addition of a non-pointer to a value, except no range test is performed. Address computations
(on x86, using the lea instruction) are treated like additions. Shift/rotate operations give a
n or u result, depending on the result value—the analysis does not simply set the result to n
just in case a pointer is rotated one way, and then back to the original value. Negation and
bitwise-not give an n result.

Subtraction The remaining operation is subtraction. It is somewhat similar to addition,
and is shown in Table 4.1(e). Subtracting two non-pointers gives a non-pointer; subtracting
a non-pointer from a pointer gives a pointer; subtracting a pointer from a non-pointer is
considered to be an error.

The big complication is that subtracting one pointer from another is legitimate, and the
result is a non-pointer. If the two pointers involved in the subtraction point to the same
segment, there is no problem. However consider the following C code.

char p1[10];

char p2[10];

int diff = p2 - p1;

1The pointers can be recovered by using the bitwise-xor’d values from the adjacent nodes; their pointers
can be recovered from their adjacent nodes, and so on, all the way back to the first or last node, which holds
one pointer bitwise-xor’d with NULL.

87

p1[diff] = 0;

This uses the pointer p1 to access the array pointed to by p2, which is a different segment.
ISO C forbids such inter-array pointer subtraction, but in practice it does occur in real C code
because it works on most machines. Also, it may be valid in other programming languages,
and if the analysis is to be language-independent, it must handle this case.

The problem is that the addition of a non-pointer with a pointer can result in a pointer to
a different segment, if the non-pointer is the result of a pointer difference. The most accurate
way to handle this is to generalise the type n to n(X,Y), which is like n for all operations
except addition and subtraction, in which case the analysis requires that p(X) + n(X,Y)
gives p(Y), p(X)− n(Y,X) gives p(Y), and so on. Also, pointer differences should be added
transitively, so that n(X,Y) + n(Y,Z) gives n(X,Z). However, this is a complex solution for
a problem that does not occur very often. Section 4.4.6 describes how Annelid handles this
case in practice.

Propagation of Unknown It is tempting to be less rigorous with preserving u types. For
example, one might try making the result of u + p(X) be p(X). After all, if the u operand
is really a non-pointer, the result is appropriate, and if the u operand is really a pointer, the
result will undoubtedly be well outside the range of p(X), so any memory accesses through
it will be erroneous, and should be caught. By comparison, strict u-preservation will cause
the analysis to miss this error.

At first, Annelid did this, being as aggressive as possible, and assuming unknowns are
pointers when possible. However, in practice it causes false positives, usually from obscure
sequences of instructions that would fool the shadow operations into assigning the wrong
segment-type to a pointer, e.g. assigning a heap segment-type to a stack pointer.

Each time such a false positive occurred, I reduced the aggressiveness; after it happened
several times, it became clear that trying to second-guess what was happening was not the
best way to proceed. Instead, I switched to being more conservative with u values, and using
range tests throughout.

There is no way of handling these shadow operations that is clearly the best. The required
approach is to try alternatives and find one that strikes a good balance between finding real
bounds-errors and avoiding false positives.

4.4 How Annelid Works: Implementation

This section describes how Annelid works, emphasising in particular how the implementation
differs from the idealised design presented in Section 4.3.

4.4.1 Metadata Representation

The four kinds of metadata are represented as follows.

• A segment-type X is represented by a dynamically allocated segment structure contain-
ing its base address, size, a pointer to an “execution context” (a stack-trace from the
time the segment is allocated, which is updated again when the segment is freed), and
a tag indicating which part of memory the segment is in (heap, stack, or static) and
its status (in-use or freed). Each structure is 16 bytes. Execution contexts are handled

88

by Valgrind’s core; they are stored separately, in such a way that no single context is
stored more than once, because repeated contexts are very common. Each execution
context holds a stack trace of depth four by default, although this can be changed via
a command line option.

• A non-pointer-type n is represented by a small constant NONPTR.

• An unknown-type u is represented by a small constant UNKNOWN.

• A pointer-type p(X) is represented by a pointer to the segment structure representing
the segment-type X. Pointer-types are easily distinguishable from non-pointer-types
and unknown-types because the segment structures never have addresses so small as
NONPTR and UNKNOWN.

Each register and word of memory is shadowed by a shadow word that holds NONPTR, UNKNOWN,
or a pointer to a segment structure. Just like Memcheck, shadow memory is set up up lazily,
in 64KB chunks.

Sub-word writes to registers and memory destroy any pointer information in those words;
the type for that word becomes either n or u, depending on a range test. Thus, any byte-by-
byte copying of pointers to or from memory will cause that information to be lost. Fortunately,
glibc’s implementation of memcpy() does word-by-word copying. If it did not, Annelid could
just use Valgrind’s support for function replacement to override memcpy() with its own version
that did not use byte-by-byte copying.

Similarly, metadata is not stored across word boundaries in memory. With respect to
metadata, an unaligned word-sized write is handled as two sub-word writes; therefore any
pointer information will be lost, and the two aligned memory words partially written to
will be set to NONPTR or UNKNOWN, depending on range tests. Fortunately, compilers avoid
unaligned writes as much as possible because they are usually slow on modern machines, so
this does not come up very often.

4.4.2 Segment Structure Management

Segment structure storage is straightforward. Segment structures are stored in a skip list
[92], which gives amortised log n insertion, look-up, and deletion, and is much simpler to
implement than a balanced binary tree.

The freeing of segment structures is much more complicated. When a memory block,
such as a heap block, is freed, the segment structure for that block is retained, but marked as
being freed. In this way, Annelid can detect any accesses to freed blocks via dangling pointers.
However, Annelid needs to eventually free segment structures representing freed segments,
otherwise it will have a space leak. There are two possible ways to do this.

The first way is to use garbage collection to determine which segment structures are still
live.2 Unfortunately, the root set is extremely large, consisting of all the shadow registers and
all of shadow memory. Therefore, collection pauses could be significant.

The second way is to use segment structure recycling. Annelid would start by allocating
each new segment structure as necessary, and then placing it in a queue when its segment is
freed. Once the queue reaches a certain size (e.g. 1,000 segments), Annelid can start recycling

2This is a simplified garbage collection, as the traversals will only be one level deep, since segment structures
cannot point to other segment structures.

89

the oldest structure segments. If the queue size drops to the threshold value, Annelid would
re-start allocating new segments structures until it grew bigger again.

Thus Annelid would maintain a window of tracked freed-segments. It is possible that a
segment structure could be recycled, and then memory could be accessed through a danging
pointer that points to the freed segment. In this case, the error message produced will mention
the wrong segment. Or, in very unlucky cases, the pointer will be within the range of the new
segment and the error will be missed. The chance of this last event happening can be reduced
by ensuring old freed segments are only recycled into new segments with non-overlapping
ranges.

In practice, since accesses through dangling pointers are not that common, with a suit-
ably large threshold on the freed-queue this should happen extremely rarely. Also, recycled
segments could be marked, and error messages arising from them could include a disclaimer
that there is a small chance that the range given is wrong.

Alternatively, since the p(X) representation is a pointer to a segment structure, which is
word-aligned, there are two bits available in the pointer which could be used to store a small
generation number. If the generation number in the pointer does not match the generation
number in the segment structure itself, an error message can be issued.

One other characteristic of recycling is worth mentioning. If the program being checked
contains memory leaks, the segments shadowing the leaked heap blocks will also be leaked
and lost by Annelid. This would not happen with garbage collection.

So the trade-off between the two approaches is basically that garbage collection could
introduce pauses, whereas recycling has a small chance of causing incorrect error messages.
Currently Annelid uses recycling, which was easier to implement.

4.4.3 Static Segments

Section 4.3.6 described how being too aggressive in identifying static array pointers can lead
to false positives, e.g. when dealing with array accesses like a[i-1]. By default Annelid uses
aggressive static pointer identification, but a command line option can be used to fall back
to conservative identification.

4.4.4 Stack Segments

Section 4.3.7 discussed how stack segments could be handled by the analysis. There would
be no problem if Annelid knew exactly when stack frames were built and torn down; more
precisely, if Annelid knew when functions were entered and exited. Unfortunately, in practice
this is quite difficult. This is because functions are not always entered using the call instruc-
tion, and they are not always exited using the ret instruction; some programs do unusual
things with jumps to achieve the same effects. However, unusually enough, tail recursion will
not really cause problems, as long as the function returns normally once it completes. The
recursive tail calls will not be identified, and it will be as if every recursive function invocation
is part of a single function invocation. In contrast, non-recursive tail calls may cause problems
because the size of the new stack frame may differ from the size of the old frame.

It might not be a problem if some entry/exit pairs were not detected; then multiple stack
frames could be treated by Annelid as a single frame. This could cause some errors to be
missed, but the basic analysis would still work. However, even detecting matching function
entries with exits is difficult. The main reason is the use of longjmp() and similar techniques

90

which allow a program to effectively exit any number of function calls with a single jump.
The obvious way to store stack segments is in a stack data structure. With longjmp(), it
becomes necessary to sometimes pop (and mark as freed) multiple segments from this segment
stack. If calls to longjmp() could be reliably spotted, this would not be a problem. However,
GCC has a built-in non-function version of longjmp() that cannot be reliably spotted. Since
Annelid cannot even tell when a longjmp() has occurred, it does not know when to pop
multiple frames. If Annelid misses the destruction of any stack frames, it will fail to mark
their segment-types as freed, and thus not spot any erroneous accesses to them via dangling
pointers.

Stack-switching also causes big problems. If a program being checked switches stacks
then Annelid should switch segment stacks accordingly. But detecting stack switches by only
looking at the dynamic instruction stream is difficult, since it is often hard to distinguish a
stack switch from a large stack allocation.

I experimented with various heuristics in an attempt to overcome these problems. For
example, after a longjmp() occurs, the stack pointer will have passed several old frames in a
single step. This evidence can be used to determine that these frames are now dead. However,
I have not managed to find any heuristics robust enough to deal with all the difficulties. As a
result, Annelid currently does not track stack segments at all. This is a shame, as detecting
stack errors was one of the motivations for building Annelid.

4.4.5 Range Tests

As mentioned in Section 4.3.8, the analysis can convert many u result types to n if they are
definitely not pointers. In Annelid this test succeeds if a result value is less than 0x01000000,
or greater than 0xff000000.

This is slightly risky, as a (strange) program could use mmap() to map a file or create
a memory segment below 0x01000000. Since Valgrind has complete control over memory
allocation, Annelid could ensure this never happens. Alternatively, Annelid could track the
lowest and highest addressable addresses, and declare any value outside this range as a non-
pointer (with a suitable safety margin).

4.4.6 Pointer Differences

Section 4.3.8 suggested handling pointer differences between different segments precisely by
generalising the n type to a n(X,Y) type. This approach turned out to be very painful.
It made the addition and subtraction operations more complex; also, pointer differences are
often scaled, so n(X,Y) types would have to be propagated on multiplication, division, and
shifting. Finally, having to free n(X,Y) structures complicated segment structure storage.

A much easier solution was to introduce a new run-time type b (short for “bottom”). Any
value of type b is not checked when used as a pointer for a load or store, and the result of any
type operations involving b as an operand is b. Values of type b are never changed to type n
via a range test.

This solution is simple but blunt. Fortunately it is not needed often; importantly, intra-
segment pointer differences (within a single array), which are more common, are handled
accurately.

91

4.4.7 System Calls

Valgrind does not trace into the OS kernel. Annelid uses the callbacks provided by the core
(Section 2.4.2) to do normal range checks on memory ranges that are read and/or written by
system calls, and so can find bounds errors in system call arguments.

Most system calls return an integer error code or zero; for these Annelid sets the return
type to n. Some system calls can produce pointers on success, notably mmap() and mremap().
Annelid’s current approach is to give these results the value u. I originally tried tracking
segments returned by mmap() like other segments, but abandoned this because they are diffi-
cult to deal with, since they are often resized, and can be truncated or split by other calls to
mmap() that overlap the range. This should be no great loss, as programs tend to use mmap()

in straightforward ways, and overruns of mapped segments should be rare.

4.4.8 Custom Allocators

Annelid handles the standard allocators called via malloc() and friends. Custom allocators
can be handled with a small amount of effort, by inserting client requests into the program
being checked. These are macros that pass information to Annelid about the size and lo-
cation of allocated and deallocated blocks. They are just like the ones Memcheck uses (see
Section 2.4.5).

4.4.9 Leniency

Some common programming practices cause bounds to be exceeded. Most notably, glibc
has heavily optimised versions of functions like memcpy(), which read arrays one aligned word
at a time. On 32-bit x86 machines, these functions can read up to three bytes past the end
of an array. In practice, this does not cause problems. Therefore, by default Annelid allows
aligned, word-sized reads to exceed bounds by up to three bytes, although there is a command
line option to turn on stricter checking that flags these as errors.

4.4.10 Performance

Performance figures for Annelid on the SPEC CPU2000 suite were given in Table 2.3. The
slow-downs were in the range 15.0–90.3, with 38.1 as the median. As mentioned, this analysis
is heavyweight. Therefore, the overhead is high and programs run much slower than normal.
However, the slow-down experienced is not dissimilar to that with many thorough memory
checking DBA tools. Also, Annelid’s analysis code has not been optimised very much, so
there is room for improvement. The code expansion factor (see Table 2.4) was 10.5–15.0,
with a median of 12.2.

4.4.11 Real World Results

So does Annelid actually find useful bugs in real programs? It is not easy to say. It finds all
the deliberate bugs seeded in test programs that I expect; and the test suite is quite thorough,
exercising all shadow arithmetic operations and all kinds of bounds errors. However, writing
one’s own test cases is not the best way to test a program, so this evidence is not hugely
convincing.

92

Working up to real programs is not easy. Analysing the SPEC CPU2000 benchmarks,
Annelid found some accesses to already-freed segments in vortex; these bugs are also found by
Memcheck. False positives occurred for gap and gcc when aggressive static pointer detection
was on, due to the use of negative array indices explained in Section 4.3.6. No other bugs
were found.

If a real program is run under Annelid, and Annelid reports no errors, it is often difficult
to know if Annelid has missed any. One can deliberately seed errors that it should find in
these larger programs, and see if Annelid finds them. I have done with with several of the
SPEC CPU2000 benchmarks, and Annelid detected the errors as expected. However, this is
also not particularly convincing evidence.

Looking at Annelid’s internals as it runs, although around 99% of the heap values are
UNKNOWN, typically more than half of non-stack accesses are checked, so there is some evidence
that unknowns are not tainting everything, which is encouraging.

4.4.12 Crucial Features

Annelid’s analysis is very heavyweight. It was very much designed to be implemented as
a Valgrind tool, and it was reasonably easy to do so. As Table 2.2 showed, Annelid is
implemented in 3,727 lines of C code, including blank lines and comments.

The most crucial Valgrind features that made Annelid easy to build were the same as
those that were crucial were for Memcheck (Section 2.4.5)—those supporting shadow compu-
tation, such as support for pervasive, interconnected analysis code, and support for location
metadata. Without this support, Annelid would have been much harder to write. Other
features useful for Memcheck were also useful for Annelid, particularly the ability to replace
functions (especially malloc() and friends), memory event callbacks, and error recording.

One area where Valgrind fell short was the reading of debug information. The core can read
filenames, function names and line numbers, but ignores other debug information. Annelid
needed extra type information in order to handle static arrays well (see Section 4.3.6), and
so Valgrind’s core required modification to read this extra debug information.

Another area where Valgrind fell short was with its system call wrappers. The wrappers
can tell a tool plug-in what pointer values were used to read or write memory blocks within
system calls, but they do not say what memory location or register those pointer values were
held in, which meant that the run-time type of the pointers was not available. Valgrind’s core
again required modification to provide this extra information.

4.5 Shortcomings

Like all error-checking analyses, Annelid’s is far from perfect. How well it does depends on
the circumstances. Happily, it exhibits “graceful degradation”; as the situation becomes less
favourable (e.g. debug information is not present), more and more p(X) metavalues will be
lost and seen instead as u. Thus it will detect fewer errors, but will not give more false
positives.

4.5.1 Optimal Case

In the best case, the program will have all debug information and symbol tables present. In
that case, even if the design was implemented optimally, the analysis would have problems in

93

the following cases.

• Certain operations, such as swapping pointers with the bitwise-xor trick, cause p(X)
metavalues to be downgraded to u; erroneous accesses using those pointers will then
not be caught. One could imagine beefing up the type system to handle such cases, but
the cost/benefit ratio would be very high.

• Directly out-of-bounds accesses to static and stack data objects (e.g. accessing a[10]

in an array of ten elements) cannot be detected if they happen to fall within a nearby
data object. Also, constant pointers that do not point to the start of arrays must either
be ignored (i.e. marked as unknown values), potentially missing errors, or handled,
potentially causing false positives by incorrectly identifying which array they point to.

• C-style unions must be handled conservatively, by using a segment of the largest possible
size. This can cause errors to be missed.

4.5.2 Implementation

Annelid suffers from a few more shortcomings, mostly because the design was too difficult to
implement fully.

• Pointer-types are lost if pointers are written unaligned to memory.

• Likewise, pointer-types are lost if pointers are copied byte-by-byte between registers
and/or memory words. (As Section 4.4.1 mentioned, glibc’s implementation of memcpy()
does word-by-word copying, so this shortcoming does not affect it.)

• The use of b for inter-segment pointer differences will cause some errors to be missed.

• Annelid uses debug information about types only in simple ways. For example, it does
not try to break up heap blocks into sub-segments. Also, the only static data objects
it constructs segment structures for are arrays (not for structs or basic data types).

• Stack segments are not handled at all.

4.5.3 No Debug Information

If debug information is not present, no static checking can be performed, as Annelid cannot
recognise pointers to static data objects (although it could check the bounds of entire static
data segments, since that information is known without debug information). Also, if Annelid
checked stack frames, it would have to fall back to using unlimited-size segments, as discussed
in Section 4.3.7.

4.5.4 No Symbols

If a program has had its symbol tables stripped, error checking might degrade further. This
is because, if Annelid did stack checking, it would rely on symbols being present for detecting
function entry and exit points, as Section 2.4.3 explained.

94

4.5.5 Avoiding Shortcomings

A lot of the shortcomings arise because the information available in a program binary at
run-time is less than that present in the original program. Debug information and symbol
tables retain some of this information, but there are still some things that Annelid would
like to know about. The obvious way to improve the situation is to involve the compiler
producing the programs; a lot of checking can be done purely dynamically, but some things
clearly require static help.

First, a compiler could promise, in certain circumstances, to avoid generating code that
causes problems for Annelid. For example, it could ensure that all pointer reads and writes
are aligned, and it could ensure where possible that array accesses are done via the array’s
base pointer, rather than pre-computing offsets.

Second, a compiler could use client requests (see Section 2.3.12) to embed extra infor-
mation into programs for Annelid to use. This information might indicate that a particular
memory access is intended to be to a particular segment, or might indicate when a longjmp()

occurs. Similarly, users could manually embed information via client requests, although this
option is only really practical for events that are rare in a program’s source code, such as
stack switches.

Finally, some bounds errors that Annelid cannot find should arguably be found by a com-
piler. In particular, directly out-of-bounds accesses to static and stack arrays (e.g. accessing
element a[10] of a ten-element array) could easily be found by the compiler.

Annelid’s analysis has some very nice characteristics, but it clearly also has some signif-
icant shortcomings. Getting cooperation from a compiler could help. However, if compiler
cooperation is being used, one might as well combine Annelid’s analysis with one of the source
analyses described in Section 4.6.3. Such a hybrid tool could do accurate source analysis on
the parts of the program instrumented appropriately, and fall back on a dynamic binary
analysis like Annelid’s for the rest of the program.

4.6 Related Work

This section describes several tools that find bounds errors for C and C++ programs, and
compares them to Annelid. No single checking analysis is best; each has its strengths and
weaknesses, and they complement each other. Each subsection describes tools that use a
particular analysis.

Note that many tools have been written that perform various kinds of memory checking,
particularly commercial ones. This section describes a representative sample, but by no means
lists all of them.

4.6.1 Red-zones

Many bounds-checking tools dynamically checks accesses to objects on the heap. The simplest
approach is to replace the standard versions of malloc(), new, and new[] with versions that
produce heap blocks with a few bytes of padding at their ends, called red-zones. These red-
zones are filled with a distinctive values, and should never be accessed by a program. When
the heap block is freed with free(), delete or delete[], the red-zones are checked, and
if they have been written to, an error message is issued. The documentation for mpatrol

95

[97] lists many tools that use this technique, which is very simple, but has the following
shortcomings.

1. It only detects small overruns/underruns, within the red-zones—larger overruns or com-
pletely wild accesses could access the middle of another heap block, or non-heap memory.

2. It only detect writes that exceed bounds, not reads.

3. It only reports errors when a heap block is freed, giving no information about where
the overrun/underrun occurred.

4. It does not detect accesses to freed heap blocks via dangling pointers, unless they
happen to hit another block’s red-zone (even then, identifying the problem from the
error message will be difficult).

5. It does not work with heap blocks allocated with custom allocators (although the tech-
nique can be built into custom allocators).

6. It only works with heap blocks—stack and static blocks are pre-allocated by the com-
piler, and so red-zones cannot (without great difficulty) be used for them.

This technique has too many problems to be really useful. All these problems are avoided by
analyses that track pointer bounds, such as Annelid’s.

Electric Fence [87] uses a slightly different malloc() replacement that uses entire virtual
pages as red-zones. These pages are marked as inaccessible, so that any overruns/underruns
cause the program to abort immediately, whereupon the offending instruction can be found
using a debugger. This avoids problems 2 and 3 above, and mitigates problem 1 (because
the red-zones are so big). However, it increases virtual memory usage massively, making it
impractical for use with large programs.

A better approach is used by Memcheck (Section 2.4.1) and Purify [52]. They too replace
malloc() et al with versions that produce red-zones, but they also maintain addressability
metadata about each byte of memory, and check this metadata before all loads and stores.
Because the red-zones are marked as inaccessible, all heap overruns/underruns within the
red-zones are spotted immediately, avoiding problems 2 and 3 above. If the freeing of heap
blocks is delayed, this can mitigate problem 4. These tools also provide hooks that a custom
allocator can use to tell them when new memory is allocated, alleviating problem 5.

Purify is also capable of inserting red-zones around static variables in a pre-link step, in
certain circumstances, as the Purify manual explains:

“Purify inserts guard zones into the data section only if all data references are
to known data variables. If Purify finds a data reference that is relative to the
start of the data section as opposed to a known data variable, Purify is unable
to determine which variable the reference involves. In this case, Purify inserts
guard zones at the beginning and end of the data section only, not between data
variables.”

Similarly, the Solaris implementation of Purify can also insert red-zones at the base of each
new stack frame, and so detect overruns into the parent frame. It is unclear exactly how
Purify does this, but it may be that the way the SPARC stack is handled makes it much
easier to do than on x86.

96

Red-zones and addressability tracking works very well, which accounts for the widespread
use of Memcheck and Purify. However, the remaining shortcomings—1 and particularly
6 (even with Purify’s partial solution)—are important enough that tools tracking pointer
bounds are worth having.

4.6.2 Fat Pointers

Another major group of bounds-checking analyses use fat pointers, where each normal pointer
is augmented with bounds metadata, typically the minimum and maximum address it can
be used to access. The standard approach is to use a dynamic source analysis implemented
using static source instrumentation, where the analysis code is added by a compiler or pre-
processor. All accesses through fat pointers are checked, which gives very thorough checking,
and avoids all the problems of red-zones described in Section 4.6.1. But there are other
significant disadvantages.

In earlier implementations (e.g. [8]), every pointer was replaced with a struct containing
the pointer, plus the bounds metadata. This change in pointer representation has two major
problems.

1. Changing the size of a fundamental data type will break any code that relies on the size
of pointers, for example, code that casts pointers to integers or vice versa, or C code
that does not have accurate function prototypes.

2. Support may be required in not only the compiler, but also the linker (some pointer
bounds cannot be known by the compiler), and possibly debuggers (if the fat pointers
are to be treated transparently).

Jones and Kelly describe a better implementation in [60]. It avoids both problems by storing
each pointer’s metadata separately from the pointer itself, and thus largely preserves backward
compatibility with existing programs. It cannot handle programs that move pointers outside
array bounds and then back in again, so small numbers of source code changes are often
needed in practice. It is available [108] as patches for GCC. CRED [98] is an extension of
these patches that can handle out-of-bounds pointers, and can be made to run faster by only
checking string operations. Patil and Fischer [86] also store metadata separately, in order to
perform the checking operations on a second processor.

The improved approach still has the following problems due to the instrumentation being
done statically and at source.

1. It requires compiler support, or a pre-compilation transformation step.

2. All code must be instrumented to use fat pointers, including libraries, which can be an
enormous hassle. Alternatively, parts of the program can be left uninstrumented, so
long as interface code is produced that converts fat pointers to normal pointers and vice
versa when moving between the two kinds of code. Producing this code requires a lot
of work, as there are many libraries used by normal programs. If this work is done, two
kinds of errors can still be missed. First, pointers produced by the library code may lack
the bounds metadata and thus not be checked when they are used in the “fat” code.
Second, library code will not check the bounds data of fat pointers when performing
accesses.

97

Annelid’s analysis uses the same basic idea of tracking a pointer’s bounds, but the implemen-
tation is entirely different—instead of a dynamic source analysis implemented via static source
instrumentation, Annelid uses DBA implemented via DBI. As Sections 1.1.2 and 1.1.4 noted,
this means it has various inherent pros and cons. The pros are: it is language-independent,
it does not require source code, the client does not require any special preparation, and it
covers all code in a program and so handles libraries without difficulty. Also, because An-
nelid tracks both pointers and pointees it can detect the use of dangling pointers, unlike the
Jones/Kelly approach. It can also detect some run-time type errors. The cons are: it is
platform-specific, and has lower-level information to work with than source-based methods,
which reduces accuracy. The overhead is also greater than that of the source-based analyses.

4.6.3 Mixed Static and Dynamic Analysis

CCured [78] is a tool for making C programs type-safe, implemented as a source code trans-
former. It does a sophisticated static analysis of C source code, then adds bounds metadata
and inserts dynamic bounds-checks for any pointers for which it cannot prove correctness
statically. It suffers from all the problems described in Section 4.6.2, because it involves
static analysis and changes the size of pointers. These additional checks slow performance;
published figures range from 10–150%. Also, on larger programs, one “has to hold CCured’s
hand a bit” for it to work; getting such programs to work can apparently take several days’
work [77]. Again, non-coverage of library code is a problem.

Compuware’s BoundsChecker Professional tool [34] inserts memory checks into source
code at compile-time. It seems to be similar to CCured, but without the clever static analysis
to avoid unnecessary checks, and so can suffer much larger slow-downs.

By comparison, the analysis described in this chapter is entirely dynamic, and does not
require any recompilation or source code modification. It does find fewer errors, though.

4.6.4 Static Analysis

Some tools detect bounds errors via static source analysis. Purely static tools are good because
they consider all paths, and can be sound, but many memory bugs cannot be detected by
static analysis because many memory bounds are not computable statically.

One example static analysis tool is ARCHER [120], which uses path-sensitive, interpro-
cedural, bottom-up symbolic analysis. It uses a constraint solver to check every array access,
pointer dereference, or call to a function expecting a size parameter. It is unsound but highly
practical, and has been used to find tens or hundreds of bugs in large software systems such
as the Linux and OpenBSD kernels. A similar tool is PREfix [22], which detects various kinds
of errors, including memory errors.

4.6.5 Runtime Type Checking

Some tools perform run-time type checking that is similar to Annelid’s analysis. Burrows et
al ’s tool Hobbes [21] performs a DBA that maintains a run-time type metavalue for every
value in a program. It warns about run-time type violations, e.g. if two pointers are added.
It can also detect bounds errors if they lead to run-time type errors. Implemented using DBI
via an x86 binary interpreter, its slow-down factor is in the range 50–175. RTC [66] does a
similar dynamic source analysis of C programs, using static source instrumentation to insert

98

the analysis code. Slow-downs when using it are in the range 6–130. As well as type checks,
both tools use heap block red-zones to find some overrun errors.

4.7 Conclusion

This chapter described Annelid, a bounds-checking tool, which was built with Valgrind. An-
nelid implements a classic checking analysis—bounds-checking—in a novel way, being the
first tool to do fat pointer bounds-checking entirely dynamically. It can find bounds errors
for heap and static memory reasonably well, although the implementation falls short of the
idealised design in various ways, particularly in the lack of stack checking.

Perhaps the most important lesson to learn from Annelid is that accurate bounds-checking
using fat pointers is a problem that is not really suited to a purely dynamic, binary-level
approach. It seems that some source-level information is required to do bounds-checking
well. Nonetheless, Annelid shows again the importance of Valgrind’s support for location
metadata and shadow computation, and the ideas involved in Annelid’s DBA could one day
form part of a better, future hybrid static/dynamic bounds-checking analysis.

99

100

Chapter 5

A Visualisation Tool

This chapter describes a novel visualisation tool, built with Valgrind, which uses
location metadata and shadow computation.

5.1 Introduction

This chapter describes Redux, a data flow visualisation tool, which was built with Valgrind.

5.1.1 Program Comprehension Tools

The third and final major group of DBA tools, after profilers and checkers, are program
comprehension tools. These tools collect information about how a program works that is not
obvious from its source code. This information may be used by a programmer to improve
performance or correctness of a program; or for other purposes such as decompiling a pro-
gram, or comparing it to another. Despite being a large class of tools, very few program
comprehension tools have been implemented using DBI frameworks.

5.1.2 Visualising Programs

One particular sub-class of comprehension tools are visualisation tools. That is, tools that
produce some kind of diagram to communicate something about how a program works. There
are a number of different ways to visualise a program, and a number of different levels at which
it can be done. One thing that can be useful to visualise is a program’s data flow.

5.1.3 Overview of Redux

Redux is a prototype tool that generates dynamic data flow graphs (DDFGs), which represent
the entire computational history of a program. Redux generates these graphs by tracing a
program’s execution and recording the inputs and outputs of every value-producing operation
(instructions and system calls) that takes place, building up a complete computational history
of the program. A program’s behaviour, as seen from the outside world, is entirely dictated by
the system calls it makes during execution (ignoring timing issues).1 Therefore, at program
termination, by printing the parts of the graph reachable from system call inputs, Redux
shows the computations that directly affect the program’s behaviour.

1I will use “behaviour” in this sense throughout this chapter.

101

Redux’s DBA is novel because DDFGs are novel. DDFGs cut through all uninteresting
book-keeping details, giving just the essence of a program’s computation. This is shown by
the fact that programs that compute the same thing in highly different ways have very similar
or identical DDFGs, as later sections show. DDFGs can be used for debugging and program
slicing, and have a range of other possible uses.

Redux gains the benefits of DBI shared by all Valgrind tools: it is extremely easy to run,
requiring no recompilation; it naturally covers all code executed, including libraries; and it
works with programs written in any language.

Redux was first described in [81]. Redux is currently a prototype tool, intended to provide
a way of experimenting with DDFGs, and has only been used with small programs. It is not
part of the Valgrind distribution.

5.1.4 Chapter Structure

This chapter is structured as follows. Section 5.2 shows an example of Redux’s use and in-
troduces DDFGs. Section 5.3 describes how Redux works. Section 5.4 shows how programs
computing the same thing in very different ways can have similar or identical DDFGs. Sec-
tion 5.5 discusses possible uses of Redux. Section 5.6 describes difficulties and problems with
Redux. Section 5.7 discusses related work, and Section 5.8 concludes.

5.2 Using Redux

Redux is invoked from the command line like any other Valgrind tool. To visualise the data
flow of a program foo with Redux, one would use the following command:

valgrind --tool=redux foo

The program then runs under Redux’s control. Redux instruments every value-producing
operation so that each time the operation is executed, a node recording the inputs and
outputs is added to the growing DDFG.

When the program terminates, Redux prints out a text description of the portion of the
constructed DDFG that is reachable from system call nodes. This output can then be passed
to a graph-drawing program for rendering.

5.2.1 Dynamic Data Flow Graphs

A dynamic data flow graph (DDFG) is a directed acyclic graph (N,E). N is a set of nodes
representing value-producing operations (with multiple executions of the same operation rep-
resented distinctly). E is the set of edges denoting dynamic data flow between nodes; it also
contains some edges denoting state dependencies that are required to accurately represent
the program’s behaviour.

5.2.2 Factorial

Figure 5.1 shows two C programs that compute the factorial of five—one iteratively, one
recursively—and the resultant DDFGs produced by Redux. There are three node types shown.
Those labelled “c.5L” and “c.1L” represent constants. The ‘c’ (short for “code”) indicates
that the constants appeared literally in the code; the letter “L” (short for “long”) indicates

102

that they have 32 bits. Operation nodes (e.g. “dec : 4L”; “dec” is short for “decrement”)
contain an operation name colon-separated from the operation’s result; the operands can be
seen from the input edges. The “ exit” node shows the program’s exit code, as returned by
the _exit() system call; system call nodes are shown with darker borders.

All value-producing operations—mostly arithmetic/logic operations and system calls—are
represented with nodes. Other computations that do not produce values are not shown, such
as loads from and stores to memory, register-to-register moves, and jumps and function calls
(direct and indirect). Only inputs and outputs of nodes are shown; the locations of the inputs
and outputs are not shown, nor are the address of the instructions that produced them. Also,
no control flow is shown in the DDFG (it will be considered further in Section 5.6.3). Module
boundaries are also irrelevant.

Importantly, the printed graphs shown in Figure 5.1 only show the nodes that were reach-
able from system call nodes. Although these programs performed many more value-producing
operations than those shown, only those shown had a direct data flow effect on the program’s
behaviour; the rest were mere book-keeping.

Even from these two small examples, the informative nature of DDFGs is clear, as the
differences in the data flow of the two programs is immediately evident. They would be
extremely useful in explaining to someone the difference between iteration and recursion, for
example.

5.2.3 Hello World

Figure 5.2 shows the Hello World C program and two versions of its DDFG. Consider first the
larger DDFG on the left-hand side. This section will first explain the DDFG’s components,
and then analyse it, to see what it tells us about the program’s execution. It will then consider
the smaller DDFG.

Static constants are written with an “s.” prefix. Dotted state dependency edges show the
system call temporal order, which is preserved in the DDFG since many system calls have
side-effects that affect the program’s behaviour, and so they cannot be shown out of order.
In contrast, the sequencing of the other operation nodes in the DDFG is unimportant, except
that the obvious data flow constraints must be observed.

System call arguments are shown in the same way as the operands of arithmetic opera-
tions. However, many system calls also have indirect arguments, accessed via direct pointer
arguments; these memory inputs are important too. In this example, the "Hello, world!\n"

memory input is shown as an extra argument to the write() system call. Its address is given
in parentheses to show that it is paired with the direct pointer argument. System calls can also
produce memory outputs via pointers. They are shown with dashed edges to dashed nodes,
which contain the offset of the word within the memory block. The fstat64() call has a
memory output; this is the .st_blocksize field 52 bytes into the output struct stat64

buffer. Redux clearly has to know about system calls and their arguments. Redux knows
itself the names of system calls and arguments; but the knowledge that some of these are
memory input arguments comes from Valgrind, via callbacks that indicate when memory
inputs are read (as Section 2.4.5 discussed).

The top node contains an inlined argument “%e[sb]p”. By default, the Redux does not
track the computational histories of the stack pointer (%esp) and frame pointer (%ebp). This
is because the computations producing these pointers are usually long, uninteresting chains
of small constant additions and subtractions. The “l+” nodes represent lea x86 instructions,

103

which programs often use for integer addition.
Even for this tiny program, several measures have been taken to make the DDFG as com-

pact and readable as possible: non-shared constants are inlined into their descendent nodes;
a chain of fourteen increment (“inc”) nodes is abbreviated, with a dashed edge indicating the
number of elided nodes; and the string argument to write() is pretty-printed in a compact
way.

Now for the analysis. One can interpret the program’s operation quite precisely from the
DDFG. The function printf() checks that standard output (file descriptor 1) is writable
with the fstat64() system call. It then allocates a buffer with mmap() (at 0x4016E000).
The string "Hello, world!\n" is copied into the buffer, which is passed to write(). The
other arguments to write() are 1 (standard output again) and the string length (14) which
is the difference between the string’s start and end addresses; the end address was found by
incrementing a variable for each character copied into the buffer (shown by the abbreviated
chain of “inc” nodes). Finally, the buffer is freed with munmap(), and _exit() terminates the
program.

Finally, Redux can also create more abstract DDFGs, by using its --fold option to specify
functions whose nodes and edges should be conflated. The right-hand side of Figure 5.2
shows Hello World’s DDFG after _IO_printf() and _IO_cleanup() have been folded.2 The
function _IO_cleanup() is invoked by the C library after main() exits; the name of this
function was found by looking through the glibc source code. Function output (“f-out”)
nodes are similar to system call memory output nodes—they show values produced by the
function (unlike system call nodes, this includes its return value) that are subsequently used
in a computation reachable from a system call argument.

5.3 How Redux Works

This section describes how Redux builds and prints DDFGs.

5.3.1 Overview

The basic idea is simple. As the program progresses, one node is added to the DDFG for
each value-producing instruction executed. In addition, each register and memory word is
shadowed by a pointer into the DDFG, which shows how it was computed. These pointers
are location metadata, and they are propagated by shadow computation.

At termination, Redux draws only system call nodes, and those nodes in the DDFG that
directly affected the system call arguments. These are all the nodes that directly affected the
program’s behaviour.

5.3.2 Metadata

Redux’s main data structure is the DDFG itself, which grows as the client performs value-
producing operations. Graphs are built data dependence-wise, i.e. each node points to its
inputs. This is the natural way to do things, since an operation’s operands are created before
the operation takes place, and each operation has a fixed number of operands (except for
system calls with memory inputs) whereas an operation result can be used any number of

2_IO_printf() is the name that appears in glibc’s symbol table, which Redux relies on to detect entry to
the function; printf() is just an alias.

104

times. However, the graphs are drawn data flow-wise, i.e. each node points to the nodes that
use its value. This is more intuitive to read.

Initially, the graph is empty, register shadows are initialised to point to a special “un-
known register value” node, and each word of static memory has its shadow initialised (see
Section 5.3.6 for details).

DDFG nodes hold a tag indicating their type (e.g. “+”, “inc”) and pointers to their
operands. During execution, a new node is built for every value-producing operation executed.
Using sh(%reg) to denote the shadow pointer for register %reg, the instruction:

addl %eax, %ebx

will be instrumented to update the shadow registers as follows:

sh(%ebx) := +(sh(%ebx), sh(%eax))

where +(a,b) represents a pointer to a “+” node with operands a and b. Instructions that
only move existing values, such as moves, loads, and stores, are instrumented so that the
shadows are copied appropriately. For example:

movl %ebx, %ecx

is instrumented to update the shadow registers as follows:

sh(%ecx) := sh(%ebx)

Consider the following instructions.

1: movl $3, %eax

2: movl $5, %ebx

3: addl %eax, %ebx

4: incl %ebx

For instructions 1 and 2, two constant (‘c’) nodes are built; sh(%eax) and sh(%ebx) are set to
point to them, as shown in Figure 5.3(a); the left-hand side shows the values of the registers
and shadow registers, the right-hand side shows the created nodes. For instruction 3, a “+”
node is built, with the two constant nodes as its operands, and sh(%ebx) is updated to point
to it (Figure 5.3(b)). Each node stores the result of its operation, and the “+” node’s result
(8) is equal to the value in %ebx. This is an invariant: the result in a node pointed to directly
by a register or memory word’s shadow is always equal to the value of the register or memory
word. For instruction 4, an “inc” node is built, its operand being the “+” node, and sh(%ebx)
is updated again (Figure 5.3(c)). Again the invariant holds—%ebx’s value (9) matches the
“inc” node’s value, but no longer matches the “+” node’s value, which sh(%ebx) now only
indirectly points to.3

The shadows of deallocated memory words are set to point to a special “unknown memory”
node. If these nodes appear in a program’s graph, it very probably indicates a bug in the
program.

3The shadow computation is actually done at the level of UCode, rather than the level of the original x86
code, so this example is not quite representative. However, the ideas and results are the same.

105

5.3.3 System Calls

System calls are not handled very differently to arithmetic operations. When one takes place,
the arguments (and their shadows) can be found from the registers (and shadow registers)
easily.

Memory inputs are trickier, but not too difficult. Redux uses callbacks from the Valgrind
core to find out when a system call reads memory. When this happens, Redux gathers the
shadow words for the memory input block into an aggregate “chunk” node which is made
an additional input to the system call node. Memory outputs are handled similarly—when
the core tells Redux that a system call has written memory, Redux builds new system call
memory output nodes for each word written by the call.

System call nodes in the DDFG are also recorded in a separate global data structure, so
that they can be traversed at the end to dump the interesting parts of the DDFG to file. The
exception is that system calls taking place before main() is entered are not included. This is
because they are typically the same or very similar for every program, to do with setting up
a program’s environment, and are usually not interesting. This exception could be removed
if necessary, though.

5.3.4 Sub-word Operations

Register and memory shadowing is done at per-word (32-bit) granularity. However, some
instructions use one- or two-byte operands. This requires special “read byte” and “read
word” nodes for extracting sub-words, and “split” nodes for combining them. Consider the
instruction that moves the least-significant byte of register %eax into %ebx:

movb %al, %bl

It is instrumented to update the shadow registers as follows:

sh(%eax) := split4B(B0(sh(%eax)), B1(sh(%eax)), B2(sh(%eax)), B3(sh(%eax)))
sh(%ebx) := split4B(B0(sh(%eax)), B1(sh(%ebx)), B2(sh(%ebx)), B3(sh(%ebx)))

where a Bn(x) node represents the extraction of the nth byte of node x. In other words, the
shadows of both %eax and %ebx are split, and byte zero of the split %ebx shadow is updated
to be equal to byte zero of the split %eax shadow.

Note that Redux updates sh(%eax) for this operation by splitting it in-place. This is not
essential, but if part of %eax is used in a subsequent 1-byte operation, having done this Redux
avoids having to split it again. This reduces the number of nodes built by around 15%–25%.
Unfortunately, %eax may then be used in a 4-byte operation, the node for which will now
have an unnecessarily split operand, which makes the DDFG larger and uglier. But Redux
can remove these unnecessary splits in the rewrite stage (see Section 5.3.7).

Split nodes are fiddly and complicate the implementation significantly, but they are hard
to avoid. The other possibility would be to shadow every byte of memory separately, and use
“merge” nodes for word-sized operations. This would bloat memory use even more, and most
operations are done at the word level, so the current approach seems the best.

5.3.5 Memory Management

Just like Memcheck and Annelid, Redux sets up shadow memory lazily, in 64KB chunks. As
for node allocations, Redux manages its own memory pool. Nodes are allocated sequentially

106

from 1MB superblocks, which is very simple and fast. No garbage collection is done; there
has been no need yet, since the programs looked at so far have been small and required only
a few megabytes of nodes (Section 5.6.4 discusses the use of Redux with bigger programs).

If garbage collection of nodes were implemented, reference counting would probably be
most suitable, rather than mark-sweep or copy collection. This is because the root set during
execution is huge—every shadow register, and every shadow memory word—so tracing would
be prohibitively slow. Also, there are no cycles to cause problems. Redux could allocate
perhaps three bits in each node to track how many references it has, and the count could
saturate at eight; if a node was referenced more than eight times it would never be deallocated.
In practice, only a tiny fraction of nodes have this many references.

5.3.6 Lazy Node Building

One important optimisation reduces the number of nodes built. For each word of static
memory initialised at start-up, Redux does not build a node, but instead tags the lowest bit
of its shadow. Because Redux’s allocator ensures nodes are word-aligned, the bottom two bits
of real node pointers are always zero, so this tagging distinguishes these pointers from ordinary
pointers. When reading a node from a shadow word, Redux first checks if the bottom bit is
marked, and if so, unmarks the bit and builds a constant node for that word. Thus, nodes are
built for static words only when they are used. For Hello World, this avoids building almost
700,000 unnecessary nodes, because a lot of static memory—particularly code—is never used
as data.

5.3.7 Rewriting and Printing

Once the program terminates, Redux performs three passes over the parts of the DDFG
reachable from the root set of system call nodes. The first pass counts how many times
each node is used as an input to another node; those used only once can be rewritten more
aggressively. The second pass performs rewriting, mostly making peephole simplifications of
the graph that make it more compact and prettier. The third pass prints the graphs.

For the factorial examples in Figure 5.1, 80 nodes were built for the operations within
main(), but only nine are shown (the “ exit” node is built outside of main()). By comparison,
for the empty C program that just returns zero, Redux builds eight nodes within main(),
one for the constant zero, and seven book-keeping nodes for building up and tearing down
the stack frame, which do not appear in the drawn DDFG. Outside main(), 21,391 nodes
were built; Valgrind traces pretty much everything, including the dynamic linker (which links
functions from shared objects on demand), which accounts for most of these.

Redux supports two graph formats. The first is that of dot, a directed graph drawer that
produces PostScript graphs, which is part of AT&T’s Graphviz package [7]. The second is that
of aiSee, an interactive graph viewer [1]. Dot’s graphs are prettier, but aiSee’s interactivity
gives more flexibility; for example, the node layout algorithm can be changed. The two
programs have very similar input languages, so supporting both is not difficult. All the
examples in this dissertation were drawn by dot.

5.3.8 Crucial Features

Redux’s analysis is very heavyweight. Nonetheless, it was reasonably easy to implement within
Valgrind. As Table 2.2 showed, Redux is implemented in 5,503 lines of C code, including blank

107

lines and comments.

As was the case for Memcheck and Annelid, the most crucial features Valgrind provided
was support for location metadata and shadow computation.

5.4 Essences

This section considers possible ways of comparing programs, and shows how programs that
perform the same computation in very different ways can have similar or identical DDFGs.

5.4.1 Program Equivalence

There are various ways to think about whether two programs are “equivalent”. At one
extreme, if one considers only their visible behaviour, the only important thing is which
system calls are made, their order, and what their inputs were. For a given input I, if two
programs executed the same system calls in the same order with the same inputs, they are
equivalent with respect to that input I (ignoring timing issues, which may or may not be
important).

The other extreme is to consider two programs equivalent with respect to input I if they
execute the same instruction sequence when given that input I. This idea of equivalence is
so rigid it is almost useless; two programs would probably have to be identical to fit this
definition.

Using DDFGs to compare programs gives us a definition of equivalence, based on data
flow, that is somewhere in between these two extremes. I call this level of detail shown in
DDFGs the essence of a program. The reason for choosing this word should hopefully be
clear after the following three examples.

5.4.2 Factorial in C

Figure 5.1 showed the DDFGs for computing the factorial of five in C, using iteration and
naive recursion. The graphs have the same nodes, because they perform the same operations,
but different shapes, because their data flow is different. However, one can define the factorial
function tail-recursively so that it is equivalent—i.e. it has the same data flow—to the iterative
version, as in the program in Figure 5.4. The DDFG for this program is identical to that of
the iterative factorial program on the left-hand side of Figure 5.1.

5.4.3 Factorial on a Stack Machine

Encouraged by this result, I rewrote the iterative factorial program in a small stack machine
language, and ran it on an interpreter (written by Harald Søndergaard and Peter Stuckey).
The program, and the resulting DDFG, are shown in Figure 5.5. The function read_file()

was folded; it reads the stack machine program from file, and produces the outputs seen in
the “f-out” nodes—the integers 5, 1 and 1 which were converted from the ASCII characters
‘5’, ‘1’ and ‘1’ read from the program file (underlined in Figure 5.5).

It is immediately obvious that the part of the graph computing the factorial is almost
identical to those seen previously. The only difference is that instead of using a decl x86
instruction to decrement the loop counter, the stack machine program uses a subl x86 in-
struction with 1 as the argument.

108

Redux sees only pure data flow; the workings of the interpreter such as the pushes and
pops, and loads and stores to memory of intermediate results, are completely transparent.
The DDFG shows the essence of the computation which is (almost) identical to that of the
C version.

5.4.4 Factorial in Haskell

Finally, I tried the same experiment in the lazy, purely functional language Haskell [88],
using the Glasgow Haskell Compiler [47]. The program and graph are shown in Figure 5.6.
Unlike the previous programs, this one does not compute the factorial of five and return
the value. Instead it computes the factorial of five using naive recursion and accumulator
recursion, adds the two results, and prints the sum. This is because Haskell programs always
return zero to the operating system unless they halt with an exception. I also chose to
fold the functions startupHaskell() and shutdownHaskellAndExit(), which initialise and
terminate the Haskell run-time system, and are not of interest here.

The two factorial computations are in the graph’s top right-hand corner. They are almost
identical to those in Figure 5.1; again only small differences exist, such as the use a subtraction
instruction instead of a decrement instruction. Most of the rest of the graph shows the
conversion of the answer 240 into the characters ’2’, ’4’ and ’0’ that are written with write().
Once again, despite the program using a very different execution method, the essence of the
computation is the same.

5.5 Possible Uses

DDFGs are intriguing, but it is not immediately obvious how they should be used—they are
a solution looking for a problem. This section describes two specific uses that have been
implemented, and several other possible uses.

5.5.1 Debugging

Standard debuggers do not allow backwards execution. This is a shame, because the usual
debugging approach is to find a breakpoint after a bug has manifested (e.g. when a variable
has an incorrect value), and then repeatedly set breakpoints earlier in the execution, restarting
the program each time, until the erroneous line is identified.

Redux cannot be used for backwards execution, but it does provide a history of all previous
computations, and can present that information in a highly readable way. Instead of a
invoking a “print” command on an incorrect variable (in memory or a register) at a breakpoint,
a user could invoke a “why?” command that prints out the sub-graph reachable from the
specified variable. This graph would show the entire computational history of the variable,
which would hopefully make it simple to identify the bug.

As an example of this, when I first implemented the Haskell factorial program in Figure 5.6,
faca was defined wrongly. I generated the graph without running the program normally first,
and the result for the final “*” node for faca was zero instead of 120. My immediate reaction
was to look back at the code to see what the problem was, but I instead looked more carefully
at the graph. Tracing back from the erroneous “*” node with value zero, I could see the
shape of the computation was identical to that in Figure 5.1, but that the result of every
node was zero. It was instantly obvious that the problem was that I had used zero as the

109

initial accumulator value instead of one. It was also clear that the problem was not, for
example, caused by an incorrect number of recursive calls to faca5. This example is also
notable because laziness means that Haskell programs are notoriously difficult to debug.

Implementing simple support for sub-graph inspection within Redux was quite straightforward—
printing a sub-graph for a specific variable part-way through execution is barely different to
printing the graph at the program’s end. All it required was a way to specify breakpoints.
They were added using client requests (see Section 2.3.12). In this case, the client request
indicated the address of the variable of interest. This technique requires recompiling the client
program to specify a new variable to inspect, which is unfortunate. A better way would be
to specify breakpoints via command line arguments, or interactively. This is quite possible
within Valgrind by better utilising the debug information, but it has not been implemented.

5.5.2 Dynamic Program Slicing

From debugging via sub-graph inspection, it is a short step to dynamic program slicing [6].
The sub-graph reachable from a variable represents all the operations that contributed to its
current value. If Redux annotates every node with the address of its originating instruction,
the addresses of the nodes in that sub-graph form a (non-executable) dynamic data slice [5]
for that variable, with respect to the program input. The slice is the “projection” of the
sub-graph onto the code.

I did this. Adding instruction addresses to nodes was simple. I modified Redux to produce
the slice information in a format readable by Cachegrind’s source annotation script (see
Section 3.3.4). Figure 5.7 shows two program slices. The first is for the exit code of the
iterative factorial C program from Figure 5.1. The two numbers on each line indicate how
many constant and non-constant nodes originated from it. A ‘.’ represents zero.

Compare that to the second slice, which is for the return value of the stack machine
implementation of fac(5) from Figure 5.5. Most of the nodes arose from the conversion of
digit characters to integers, which were hidden in Figure 5.5 by the folding of read_file().
The rest of the nodes come from the actions dealing with the stack machine’s sub and mul

instructions. This comparison emphasises just how well Redux can see through a program’s
book-keeping.

One disadvantage of this approach compared to the sub-graph printing is that not all
relevant source code may be available. In the stack machine example, some nodes were not
represented because they came from glibc, for which the source code was not present.

The most obvious use of this is again for debugging. Sometimes the sub-graph alone might
be difficult to interpret, and having a direct connection to the program source might make a
variable’s computational history much easier to understand. It could also be used in any other
way program slicing can be used [109], such as program differencing, software maintenance,
or regression testing, but other slicing techniques that have lower overheads might be more
appropriate.

5.5.3 Other Uses

These examples are just a starting point. The following list has several suggestions. Some
could not be achieved with Redux in its current form, or might not be feasible in practice,
but they give an idea of the range of uses DDFGs might have.

110

• Program comprehension. As a generalisation of debugging, DDFGs could be used not to
find bugs, but to generally improve understanding of exactly what a program is doing,
and where its data flows.

• De-obfuscation. Redux can see through some simple kinds of obfuscation. For example,
running a program through some kind of interpreter to hide what it is doing will not
be of any use against Redux, as the stack machine interpreter example in Section 5.4.3
showed. For more highly obfuscated programs, the DDFG could provide a good starting
point for understanding what the program is doing. A DDFG might even be useful
for analysing cryptographic code, e.g. by finding tell-tale patterns of computation and
extracting a key somehow.

• Value seepage. Debugging with sub-graphs considers the past history of a value. The
dual to this is to consider a value’s future: how is it used in the rest of the program?
Where does it reach? Such information could be useful for understanding programs
better, especially security aspects. This is the same idea used in forward slicing [55]. It
also has a similar feel to Perl’s taintedness tracking [114], whereby values from untrusted
sources (e.g. user input) cannot be used as is, but must be “laundered” in some way,
otherwise a run-time error occurs. Redux would have to be changed to support this,
because of the way the graphs are built—each node points back to nodes built in the
past, and does not record how its value is used in the future.

• Program comparison. Since Redux sees the essence of a program’s computation, it could
be used to provide a semi-rigorous comparison of programs. This might be useful for
determining whether two programs share part of their code, or use the same algorithm
to compute something. The comparisons described in Section 5.4 are preliminary, but
quite promising; this looks like an area worthy of more study.

• Decompilation. The standard approaches to decompilation (e.g. [27, 76]) are purely
static. When a decompiler cannot decompile part of a program in this way, dynamic
information such as that in a DDFG might be helpful.

• Limits of parallelism. Since the DDFG represents the bare bones of a computation, it
gives some idea of the level of parallelism in a program’s computation, independent of
exactly how that computation is programmed. This parallelism is at a somewhat higher
level than instruction-level parallelism [113]. Speaking very generally, a wider DDFG
implies more inherent parallelism in a program.

• Test suite generation. If Redux tracked conditional branches, for each branch that is
always or never taken, it might be possible to work back through the DDFG from the
conditional test’s inputs, and determine how the program’s input should be changed so
that the branch goes the other way. This could be useful for automatically extending
test suites to increase their coverage. While this is a nice idea, in practice it would be
very difficult, not least because of the problems Redux has with tracking conditional
branches, described in Section 5.6.3.

Even if these suggestions turn out not to be practical, Redux is useful just for having shown
how program essences represent the very heart of a program’s computation. Redux also
provides an excellent demonstration of the power of Valgrind, and the use of location metadata
and shadow computation in general.

111

5.6 Difficulties

What Redux does—tracking the entire computational history of a program—is quite ambi-
tious. There are multiple practical difficulties involved. This section describes some of them,
and how they have been tackled, with varying levels of success.

5.6.1 Normalisation

Since I claim that the DDFG represents the essence of a program’s computation, some kind of
normalisation should take place, so that small unimportant differences can be ignored. One
example from Section 5.4 was the difference between a +(x,1) node and an inc(x) node. An
x86-specific example is the lea instruction, which is often used not for calculating addresses,
but as a quasi-three-address alternative to the two-address add instruction. Also, the instruc-
tion xorl %reg,%reg (or subl %reg,%reg) is often used to zero a register %reg, because it
is a shorter instruction than movl 0x0,%reg.

Currently, a few transformations are hard-wired into the graph rewriting and printing
passes. For example, an xorl %reg,%reg node is transformed into a constant node “z.0L” (the
‘z’ indicates the value comes from a special instruction that always produces zero). A more
general approach would be to have some kind of mini-language for specifying transformations
of sub-graphs.

5.6.2 Loop Rolling

Redux already does some very basic loop rolling for one case—long chains of repeated “inc”
or “dec” nodes. It is important to avoid bloating the drawn graphs with boring chains. This
loop rolling is hard-wired into the graph printing phase; no nodes are actually removed from
the graph. A small step further is to do the same for chains of nodes that add or subtract
the same constant; this case occurs in the graphs of some programs.

A bigger challenge is to find a more general method for rolling up loops. It is not clear
how to do this; loops with very simple data flow dependencies and few operations are not
hard, but the difficulty jumps greatly as the loops grow and/or their data flow becomes more
tangled. Representation of rolled loops is another issue; a good representation is not obvious
even for the simple factorial loops in Figure 5.1.

5.6.3 Conditional Branches

So far, I have not considered conditional branches at all. Often this is the best thing to
do; ignoring them helps cut the DDFG back to a program’s essence. However, sometimes
the conditions are critical. Consider the C program in Figure 5.8. Redux would ignore the
condition, the most interesting part of the program, and produce a useless graph with a single
node, “ exit(c.0L)” or “ exit(c.1L)”.

Unfortunately, only a tiny fraction of conditionals are interesting, and choosing which
ones to show is difficult. One way to show them would be to annotate edges with a node
representing the branch (or branches) that had to be taken for that edge to be created. Each
branch node would have as inputs the values used in the conditional test. In the small example
above, the edge between the “c.0L” or “c.1L” node and the “ exit” node would be annotated
by a branch node that represents the complex condition. Thus the interesting part of the
computation would be included.

112

To do this properly one must know the “scope” of a conditional, i.e. know which conditional
branches each instruction is dominated by. Unfortunately, it is not clear how to determine
this from the dynamic instruction stream that Redux sees. One possibility would be to modify
a C compiler to insert client requests that tell Redux the start and end of conditional scopes.
But even if this was done, it is likely that the graphs would be bloated terribly by many
uninteresting conditions.

5.6.4 Scaling

The most obvious and pressing problem with Redux is that of scaling. It works well for very
small programs, but it is unclear how useful it could be on larger programs. There are two
main aspects to this problem.

First, the bigger difficulty is drawing and presenting the graphs. Figure 5.9 shows two
DDFGs for the compression program bzip2 (a 26KB executable when stripped of all symbol
information); the left graph is for compressing a two-byte file, the right graph is for com-
pressing a ten-byte file. On a 1400MHz Athlon with 256MB of RAM, running bzip2 under
Redux took about 0.8 seconds for both cases, but the graph drawer dot took 8 seconds to
draw the first graph, and over two minutes to draw the second graph. The interactive graph
viewer aiSee has similar difficulties. The problem is that the graphs are highly connected;
long edges between distant nodes slow things down particularly. Presenting the graphs in
an intelligible way is also important. The graphs in Figure 5.9 are already unwieldy. Much
effort has already been put into making the graphs more compact. The --fold option, used
for Figures 5.2, 5.5 and 5.6, is a good start for mitigating these problems—Figure 5.6 is four
times larger without folding.

Second, recording all this information is costly. This is unavoidable to some extent, but
there is a lot of room in the current implementation to reduce overhead, by being cleverer
with analysis code to build fewer nodes, adding garbage collection, and so on. The memory
space required for nodes, which can be proportional to the running time of the program, could
be removed by streaming them to disk. This could be done linearly because all nodes are
constant and always refer to previously created nodes. I have not concentrated on this issue
yet because the scaling problems of drawing the graphs are more limiting at the moment.

One likely way to deal with both problems is to be more selective. Currently, all reachable
nodes are shown by default, and functions can be folded if the user specifies. Perhaps this
should be inverted so that the default is to show a small amount of information, and the user
can then specify the interesting parts of the program. Being able to interactively zoom in on
parts of the graph would be very useful. Support for outputting graphs in aiSee format was
added for this reason, because it allows groups of nodes to be folded up. However I have not
yet had much chance to experiment with this facility. Alternatively, automatic factoring or
compacting of similar sub-graphs would be very useful, if done well; it is hard to say yet how
well this could be done.

5.6.5 Limitations of the Implementation

Because Redux is a prototype, it has not been tried on a great range of programs. It cannot
yet handle programs that use floating point arithmetic, nor multi-threaded programs. There
are no fundamental reasons for this, it is mostly a matter of implementation effort. It also
has not been tried on many programs larger than those mentioned, such as bzip2.

113

5.7 Related Work

Static data flow graphs (SDFGs) are commonly used in static analysis of programs. A DDFG
is a partial unfolding of a SDFG, but with non-value producing operations (such as assign-
ments) removed, and with control flow “instantiated” in a way that omits all control flow
decisions. These differences are crucial; a DDFG omits a lot of information and thus is less
precise than an SDFG, which means that its potential uses are very different. For example,
the SDFGs for the factorial programs examined in Section 5.4 would be much more varied
than their DDFGs, making them less useful for finding the essence of a program. If Redux
could perform loop rolling as described in Section 5.6.2, the rolled DDFGs would be more
similar to SDFGs, but still fundamentally different. SDFGs are also typically done at the
level of source code, rather machine code.

The dynamic dependence graph [6, 4] is quite similar to the DDFG, but with additional
control nodes and edges, and expressed at the level of source code rather than machine code.
The additional control representation makes the graph a much less abstract representation
of a program. Agrawal et al used dynamic slicing (but not using the dynamic dependence
graph, as far as I can tell) in their Spyder debugger, which annotated code in a way similar
to that described in Section 5.5.1; unlike Redux, Spyder’s slices included control statements.
Choi et al used a similar dynamic graph in their Parallel Program Debugger (PPD) [26].

Other similar visualisation tools to Redux are for tracing, visualising and debugging ex-
ecution of Haskell programs. Hat [25] transforms Haskell programs in order to trace their
execution. Three text-based tools can be used to view the traces; one of them, Hat-Trail,
allows backwards exploration of a trace. The Haskell Object Observation Debugger (HOOD)
[46] is a library containing a combinator observe that can be inserted into programs to trace
intermediate values, particularly data structures. It also presents the trace information in a
text-based way. Both these tools have been inspired by the fact that more conventional de-
bugging techniques are more or less impossible in Haskell because it is lazy. They all present
information at the level of source code.

5.8 Conclusion

This chapter described Redux, a visualisation tool, which was built with Valgrind. Redux
implements a novel DBA to create dynamic data flow graphs of programs, and it is the only
visualisation tool created with a DBI framework that I am aware of. These graphs show the
computational history of the program, and reduce programs to a minimal essence; programs
that compute the same thing in multiple ways have identical or very similar graphs.

Redux does not represent a solved problem—the uses of DDFGs are not completely clear,
and the implementation has significant practical shortcomings. Nonetheless, Redux shows
again the importance of Valgrind’s support for location metadata and shadow computa-
tion, and the DDFGs it produces—even if none of the proposed uses for them end up being
practical—are useful just for having shown how program essences represent the very heart of
what programs are computing.

114

int faci(int n) {

int i, ans = 1;

for (i = n; i > 1; i--)

ans = ans * i;

return ans;

}

int main(void) {

return faci(5);

}

_exit : 120L

* : 120L

dec : 2L

dec : 3L

* : 60L

dec : 4L

* : 20L

c.5L

* : 5L

c.1L

int facr(int n) {

if (n <= 1)

return 1;

else

return n * facr(n-1);

}

int main(void) {

return facr(5);

}

_exit : 120L

* : 120L

c.5L

dec : 4L

* : 24L

dec : 3L

* : 6L

dec : 2L

* : 2L

c.1L

Figure 5.1: DDFGs for iterative and recursive fac(5) in C

115

fstat64(s.1L, _)
0L

mmap(c.0L, _, c.3L, c.34L, c.0xFFFFFFFFL, c.0L)
0x4016E000L

(+52) : 1024L

l+(%e[sb]p, c.0xFFFFFF88L)
0xBFFFEA70L

write(s.1L, _, _, _)
14L

- : 14L

inc : 0x4016E001L

munmap : 0L

- : 1024L

lea2(_, _, c.1L, c.0L)
0x4016E400L

&(_, c.0xFFFFF000L)
4096L

l+(_, c.4095L)
5119L

inc : 0x4016E00EL

[12]

(0x4016E000)
s."Hello, world!\n"

_exit(c.0L)
0L

&(_, c.0xFFFFF000L)
4096L

+(_, c.4095L)
5119L

#include <stdlib.h>

int main(void) {

printf("Hello, world!\n");

}

_IO_printf(s.1L, %e[sb]p, _)

_IO_cleanup

f-out : 0x4016E400L

(0x4016E000)
s."Hello, world!\n"

_exit(c.0L)
0L

Figure 5.2: DDFGs for Hello World

116

sh(%ebx)
%ebx : 5L

c 5L

sh(%eax)
%eax : 3L

c 3L

(a) After instruction 2

sh(%ebx)
%ebx : 8L

+ 8L c 5L

sh(%eax)
%eax : 3L

c 3L

(b) After instruction 3

sh(%ebx)
%ebx : 9L

inc 9L + 8L c 5L

sh(%eax)
%eax : 3L

c 3L

(c) After instruction 4

Figure 5.3: Building a DDFG

int faca(int n, int acc) {

if (n <= 1)

return acc;

else

return faca(n-1, acc*n);

}

int main(void)

{

return faca(5, 1);

}

Figure 5.4: Accumulator recursive fac(5) in C

117

push 5 load 0

store 2 mul

push 1 store 1

store 1 load 0

load 2 push 1

store 0 sub

labl 100 store 0

load 0 goto 100

push 1 labl 101

psub load 1

bz 101 halt

load 1

read_file(s.0L, %e[sb]p)

_exit : 120L

f-out : 5L f-out : 1L f-out : 1L

* : 120L

- : 2L

- : 3L

* : 60L

- : 4L

* : 20L

* : 5L

Figure 5.5: DDFG for iterative fac(5) on an interpreted stack machine

118

main = putStrLn (show (facr 5 + faca 5 1))

facr 0 = 1

facr n = n * facr (n-1)

faca 0 acc = acc

faca n acc = faca (n-1) (acc*n)

startupHaskell(%e[sb]p)

ioctl(c.1L, c.21505L, _)
0L f-out : 0x411BD000L

write(s.1L, _, _, _)
4L

l+(%e[sb]p, c.0xFFFFFFB8L)
0xBFFFD130L

shutdownHaskellAndExit

lea2(c.0L, _, c.1L, c.8L)
0x411BD008L -(_, c.0L) : 4L

inc : 4L

+(_, c.0L) : 3L

inc : 3L

inc(c.0L) : 1L

[1]

(0x411BD008)
chunk

B0 : ’2’

+(_, c.48L)
50L

div(_, s.10L)
2L

div(_, s.10L)
24L

mod(_, s.10L)
4L

+ : 240L

mod(_, s.10L)
0L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(c.5L, c.1L)
4L

* : 20L

*(c.5L, c.1L)
5L

*(_, c.5L) : 120L

* : 24L

* : 6L

* : 2L

*(c.1L, _) : 1L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

-(_, c.1L) : 3L

-(c.5L, c.1L)
4L

B0 : ’4’

+(_, c.48L)
52L

B0 : 0

+(_, c.48L)
48L

(0x411BD00B)
c."\n"

Figure 5.6: DDFGs for iterative and recursive fac(5) in Haskell

119

Slice of C version:

. . int fac(int n) {

1 . int i, ans = 1;

. 3 for (i = n; i > 1; i--)

. 4 ans = ans * i;

. . return ans;

. . }

. .

. . int main(void) {

1 . return fac(5);

. . }

Slice of stack machine version:

-- line 171 --

. . if (neg) ++s;

13 18 for(n = 0; isdigit(*s); n = n*10 + *s++ - ’0’)

. . ;

-- line 242 --

. . case add: stk[sp+1] = stk[sp] + stk[sp+1]; ++sp; break;

. 3 case sub: stk[sp+1] = stk[sp+1] - stk[sp]; ++sp; break;

. . case psub: r = stk[sp+1] - stk[sp];

-- line 247 --

. . ++sp;break;

. 4 case mul: stk[sp+1] = stk[sp+1] * stk[sp]; ++sp; break;

. . case div: r = (int)stk[sp+1] / stk[sp]; stk[sp+1] = r;

Figure 5.7: Slices for the return value of factorial programs

int main(int argc, char* argv[]) {

if (<complex condition using argc, argv[]>)

return 1; // DDFG: _exit(c.1L)

else

return 0; // DDFG: _exit(c.0L)

}

Figure 5.8: A program with a complex condition

120

sigaction(c.11L, _, _, _)
0L

sigaction(c.7L, _, _, _)
0L

& : 0xBFFFF0A0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF0A0L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1F0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF1F0L

& : 0xBFFFF010L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF010L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF160L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF160L

(0xBFFFF0A0)
chunk(c.0x8049FB0L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
1024L

|(c.0L, _) : 1024L

B0 : ’\n’

&(_, c.31L)
10L

l+(c.11L, c.0xFFFFFFFFL)
10L

l+(_, c.0xFFEFE108L)
0x401B38B8L

+(c.0x401B3701L, c.1056943L)
0x402B57B0L

sigaction(c.2L, _, _, _)
0L

& : 0xBFFFF0A0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF0A0L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1F0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF1F0L

& : 0xBFFFF010L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF010L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF160L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF160L

(0xBFFFF0A0)
chunk(c.0x8049FB0L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
64L

|(c.0L, _) : 64L

B0 : 0x06

&(_, c.31L)
6L

l+(c.7L, c.0xFFFFFFFFL)
6L

l+(_, c.0xFFEFE108L)
0x401B38B8L

+(c.0x401B3701L, c.1056943L)
0x402B57B0L

sigaction(c.15L, _, _, _)
0L

& : 0xBFFFF0A0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF0A0L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1F0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF1F0L

& : 0xBFFFF010L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF010L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF160L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF160L

(0xBFFFF0A0)
chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
2L

|(c.0L, _) : 2L

B0 : 0x01

&(_, c.31L)
1L

l+(c.2L, c.0xFFFFFFFFL)
1L

l+(_, c.0xFFEFE108L)
0x401B38B8L

+(c.0x401B3701L, c.1056943L)
0x402B57B0L

sigaction(c.1L, _, _, _)
0L

& : 0xBFFFF0A0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF0A0L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1F0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF1F0L

& : 0xBFFFF010L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF010L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF160L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF160L

(0xBFFFF0A0)
chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
16384L

|(c.0L, _) : 16384L

B0 : 0x0E

&(_, c.31L)
14L

l+(c.15L, c.0xFFFFFFFFL)
14L

l+(_, c.0xFFEFE108L)
0x401B38B8L

+(c.0x401B3701L, c.1056943L)
0x402B57B0L

open(c.0x804FB40L, _, _)
3L

& : 0xBFFFF0A0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF0A0L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1F0L

l+(%e[sb]p, c.0xFFFFFF58L)
0xBFFFF1F0L

& : 0xBFFFF010L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF010L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF160L

l+(%e[sb]p, c.0xFFFFFEC8L)
0xBFFFF160L

(0xBFFFF0A0)
chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
1L

|(c.0L, _) : 1L

B0 : 0x00

&(_, c.31L)
0L

l+(c.1L, c.0xFFFFFFFFL)
0L

l+(_, c.0xFFEFE108L)
0x401B38B8L

+(c.0x401B3701L, c.1056943L)
0x402B57B0L

close : 0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

lstat64(c.0x804FB40L, _, _)
0L

open(c.0x804F700L, _, _)
0xFFFFFFFEL

l+(%e[sb]p, c.0xFFFFFF98L)
0xBFFFF210L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

lstat64(c.0x804FB40L, _, _)
0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

open(c.0x804FB40L, _, _)
3L

l+(%e[sb]p, c.0xFFFFFF98L)
0xBFFFF210L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

open(c.0x804F700L, _, _)
4L

fstat64 : 0L

read : 2L

read : 0L

read : 0L

close : 0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

chmod(c.0x804F700L, c.384L, _)
0L

fstat64 : 0L

write : 39L

close : 0L

|(_, c.32768L)
33345L

|(c.1L, c.576L)
577L

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

mmap(c.0L, _, c.3L, c.34L, c.0xFFFFFFFFL, c.0L)
0x4017E000L

(+52) : 8192L

l+(%e[sb]p, c.0xFFFFFF88L)
0xBFFFDC90L

- : 8192L

lea2(_, _, c.1L, c.0L)
0x40180000L

- : 8192L - : 8192L

munmap : 0L

- : 8192L

&(_, c.0xFFFFF000L)
8192L

l+(_, c.4095L)
12287L

mmap(c.0L, _, c.3L, c.34L, c.0xFFFFFFFFL, c.0L)
0x40180000L

(+52) : 8192L

l+(%e[sb]p, c.0xFFFFFF88L)
0xBFFFDC60L

-(REP, _) : 39L

munmap : 0L

- : 8192L

lea2(_, _, c.1L, c.0L)
0x40182000L

&(_, c.0xFFFFF000L)
8192L

l+(_, c.4095L)
12287L

(0x40180000)
chunk

B3 : ’B’

|(z.0L, _) : 0x42000000L

shl(_, c.’\b’)
0L

shl(c.’B’, _)
0x42000000L

B0 : 0x18

l+(_, c.24L)
24L

neg(z.0L) : 0L

B3 : ’Z’

| : 0x5A000000L

shl(_, c.’\b’)
0L

shl : 0x5A000000L

l+(c.’Z’, c.0L)
90L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

l+(z.0L, c.8L)
8L

B3 : ’h’

| : 0x68000000L

shl(_, c.’\b’)
0L

shl : 0x68000000L

l+(c.’h’, c.0L)
104L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’9’

| : 0x39000000L

shl(_, c.’\b’)
0L

shl : 0x39000000L

l+(_, c.0L)
57L

+(c.’\t’, c.0)
’9’

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’1’

| : 0x31000000L

shl(_, c.’\b’)
0L

shl : 0x31000000L

l+(c.’1’, c.0L)
49L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’A’

| : 0x41000000L

shl(_, c.’\b’)
0L

shl : 0x41000000L

l+(c.’A’, c.0L)
65L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’Y’

| : 0x59000000L

shl(_, c.’\b’)
0L

shl : 0x59000000L

l+(c.’Y’, c.0L)
89L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’&’

| : 0x26000000L

shl(_, c.’\b’)
0L

shl : 0x26000000L

l+(c.’&’, c.0L)
38L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’S’

| : 0x53000000L

shl(_, c.’\b’)
0L

shl : 0x53000000L

l+(c.’S’, c.0L)
83L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’Y’

| : 0x59000000L

shl(_, c.’\b’)
0L

shl : 0x59000000L

l+(c.’Y’, c.0L)
89L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’+’

| : 0x2B000000L

shl(_, c.’\b’)
0L

shl : 0x2B000000L

shr(_, c.0x18)
43L

~ : 0x2B3ECF7FL

shr(_, c.0x10)
11070L B1 : 0xCF B0 : ’�’

^ : 0x2B3ECF7FL

^(s.0x608EDB80L, _)
0xD4C13080L

shl(_, c.’\b’)
0xB44FEB00L

^(s.0x774BB0EBL, _)
0x88B44FEBL

shl(c.0xFFFFFFFFL, c.’\b’)
0xFFFFFF00L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : ’>’

| : 0x3E000000L

shl(_, c.’\b’)
0L

shl : 0x3E000000L

l+(_, c.0L)
62L

B0 : ’>’

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0xCF

| : 0xCF000000L

shl(_, c.’\b’)
0L

shl : 0xCF000000L

l+(_, c.0L)
207L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : ’�’

| : 0x7F000000L

shl(_, c.’\b’)
0L

shl : 0x7F000000L

l+(_, c.0L)
127L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0x00

| : 128L

shl(_, c.’\b’)
32768L

shl : 128L

inc(z.0L) : 1L B0 : ’\a’

l+(_, c.8L)
7L

neg : 0xFFFFFFFFL

l+(_, c.1L)
1L

+(_, c.24L)
25L

-(_, c.8L) : 0L

B3 : 0x00

shl(_, c.’\b’)
8388608L

B3 : 0x00

shl(_, c.’\b’)
0x80000000L

B3 : 0xC0

| : 0xC0000000L

shl(_, c.’\b’)
0L

shl(c.1L, _)
0x40000000L

B0 : 0x1E

l+(_, c.31L)
30L

neg : 0xFFFFFFFFL

-(_, c.8L) : 1L

l+(_, c.1L)
2L

-(_, c.8L) : 9L

-(_, c.8L) : 17L

B3 : 0x80

| : 0x80000000L

shl(_, c.’\b’)
0L

shl(c.1L, _)
0x80000000L

B0 : 0x1F

l+(_, c.31L)
31L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.1L)
1L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

B3 : 0x00

shl(_, c.’\b’)
0L

B3 : 0x10

| : 0x10000000L

shl(_, c.’\b’)
0L

shl(c.1L, _)
0x10000000L

B0 : 0x1C

l+(_, c.31L)
28L

neg : 0xFFFFFFFDL

l+(_, c.1L)
3L

l+(_, c.1L)
4L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

B3 : 0x00

shl(_, c.’\b’)
0L

B3 : ’@’

| : 0x40000000L

shl(_, c.’\b’)
0L

shl(c.1L, _)
0x40000000L

B0 : 0x1E

l+(_, c.31L)
30L

neg : 0xFFFFFFFFL

l+(_, c.1L)
1L

l+(_, c.1L)
2L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

B3 : ’ ’

| : 0x20002000L

shl(_, c.’\b’)
2097152L

| : 0x20000000L

shl(c.2L, _)
0x20000000L

B0 : 0x1C

l+(_, c.29L)
28L

neg : 0xFFFFFFFFL

l+(_, c.1L)
1L

l+(_, c.3L)
4L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

shl : 8192L

inc(z.0L) : 1L

B0 : ’\r’

l+(_, c.17L)
13L

neg : 0xFFFFFFFCL +(_, c.15L)
19L

B3 : 0x00

shl(_, c.’\b’)
0x20000000L

B3 : ’!’

| : 0x21000000L

shl(_, c.’\b’)
0L

shl : 16777216L

B0 : 0x02

inc : 2L

inc(z.0L) : 1L

B0 : 0x17

l+(_, c.27L)
23L

neg : 0xFFFFFFFCL

l+(_, c.1L)
4L

l+(_, c.5L)
9L

-(_, c.8L) : 3L

-(_, c.8L) : 11L

B3 : 0x00

| : 8388608L

shl(_, c.’\b’)
0x80000000L

shl : 8388608L

B0 : 0x02

inc : 2L

inc(z.0L) : 1L

B0 : 0x16

l+(_, c.27L)
22L

neg : 0xFFFFFFFBL

l+(_, c.1L)
5L

l+(_, c.5L)
10L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

-(_, c.8L) : 1L

B3 : 0x82

| : 0x82000000L

shl(_, c.’\b’)
0L

shl : 33554432L

inc : 2L

shl : 0x80000000L inc : 3L

inc : 1L

l+(_, c.0L)
0L

l+(z.0L, c.0L)
0L

B0 : 0x18

l+(_, c.32L)
24L

- : 0xFFFFFFF8L

neg : 0xFFFFFFFAL

l+(_, c.1L)
6L

lea2(_, _, c.1L, c.0L)
8L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

-(_, c.8L) : 2L

B0 : 0x02

- : 0xFFFFFFFEL

lea2(_, _, c.1L, c.0L)
2L

inc : 2L

inc(z.0L) : 1L

B3 : 0xB1

| : 0xB1700000L

shl(_, c.’\b’)
0x70000000L

| : 0xB0000000L

| : 0x80000000L

B0 : 0x1E

l+(_, c.32L)
30L

neg : 0L

-(_, c.8L) : 0L

shl : 0x30000000L

B0 : 0x1C

l+(_, c.32L)
28L

- : 0xFFFFFFFCL

neg : 0xFFFFFFFEL

lea2(_, _, c.1L, c.0L)
4L

B0 : 0x02

inc : 2L

inc(z.0L) : 1L

shl(c.0x17, _)
24117248L

B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL l+(_, c.8L)
12L

B3 : ’w’

| : 0x77200000L

shl(_, c.’\b’)
0x20000000L

shl : 119537664L

l+(c.’r’, c.0L)
114L B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

l+(_, c.8L)
12L

B3 : ’$’

| : 0x24500000L

shl(_, c.’\b’)
0x50000000L

shl : 72351744L

l+(c.’E’, c.0L)
69L B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

l+(_, c.8L)
12L

B3 : ’S’

| : 0x53800000L

shl(_, c.’\b’)
0x80000000L

shl : 58720256L

l+(c.’8’, c.0L)
56L B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

l+(_, c.8L)
12L

B3 : 0x85

| : 0x85000000L

shl(_, c.’\b’)
0L

shl : 83886080L

l+(c.’P’, c.0L)
80L B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

l+(_, c.8L)
12L

B3 : ’\t’

| : 0x9000000L

shl(_, c.’\b’)
0L

shl : 0x9000000L

l+(c.0x90, c.0L)
144L B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

l+(_, c.8L)
12L

B3 : 0x02

| : 45088768L

shl(_, c.’\b’)
0xB0000000L

shl : 45088768L

shr(_, c.0x18)
43L

shr(_, c.0x10)
11070L

B1 : 0xCFB0 : ’�’

rol(z.0L, c.0x01)
0L

B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

+(_, c.8L) : 12L

B3 : 0xB3

| : 0xB3E00000L

shl(_, c.’\b’)
0xE0000000L

shl : 65011712L

l+(_, c.0L)
62L

B0 : ’>’

B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

+(_, c.8L) : 12L

B3 : 0xEC

| : 0xECF00000L

shl(_, c.’\b’)
0xF0000000L

shl : 0xCF00000L

l+(_, c.0L)
207L

B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

+(_, c.8L) : 12L

B3 : 0xF7

| : 0xF7F00000L

shl(_, c.’\b’)
0xF0000000L

shl : 133169152L

l+(_, c.0L)
127L

B0 : 0x14

l+(_, c.24L)
20L

neg : 0xFFFFFFFCL

-(_, c.8L) : 4L

B3 : 0xF0

&(_, c.0xFFFFF000L)
8192L

+(_, c.4095L)
12287L

lstat64(c.0x804FB40L, _, _)
0L

&(_, c.0xFFFFF000L)
8192L

+(_, c.4095L)
12287L

chmod(c.0x804F700L, _, _)
0L

(+16) : 33152L (+64) : 0x3EB8E465L (+72) : 0x3EA57977L

(+24) : 1789L (+28) : 1789L

l+(%e[sb]p, c.0xFFFFFF98L)
0xBFFFF210L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

utime(c.0x804F700L, _, _, _)
0L

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

chown32(c.0x804F700L, _, _, _)
0L

l+(%e[sb]p, c.0xFFFFFF90L)
0xBFFFF208L

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

(0xBFFFF208)
chunk

rmdir(c.0x804FB40L, _)
0xFFFFFFECL

(0x804F700)
s."/homes/njn25/grind/head/two-byte-file.bz2"

unlink(c.0x804FB40L, _)
0L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

_exit(z.0L)
0L

(0x804FB40)
s."/homes/njn25/grind/head/two-byte-file"

sigaction(c.11L, _, _, _)
0L

sigaction(c.7L, _, _, _)
0L

& : 0xBFFFF110L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF110L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF260L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF260L

& : 0xBFFFF080L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF080L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1D0L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF1D0L

chunk(c.0x8049FB0L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
1024L

|(c.0L, _) : 1024L

B0 : ’\n’

&(_, c.31L)
10L

l+(c.11L, c.0xFFFFFFFFL)
10L

l+(_, c.0xFFEFE108L)
0x401AC8B8L

+(c.0x401AC701L, c.1056943L)
0x402AE7B0L

sigaction(c.2L, _, _, _)
0L

& : 0xBFFFF110L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF110L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF260L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF260L

& : 0xBFFFF080L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF080L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1D0L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF1D0L

chunk(c.0x8049FB0L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
64L

|(c.0L, _) : 64L

B0 : 0x06

&(_, c.31L)
6L

l+(c.7L, c.0xFFFFFFFFL)
6L

l+(_, c.0xFFEFE108L)
0x401AC8B8L

+(c.0x401AC701L, c.1056943L)
0x402AE7B0L

sigaction(c.15L, _, _, _)
0L

& : 0xBFFFF110L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF110L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF260L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF260L

& : 0xBFFFF080L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF080L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1D0L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF1D0L

chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
2L

|(c.0L, _) : 2L

B0 : 0x01

&(_, c.31L)
1L

l+(c.2L, c.0xFFFFFFFFL)
1L

l+(_, c.0xFFEFE108L)
0x401AC8B8L

+(c.0x401AC701L, c.1056943L)
0x402AE7B0L

sigaction(c.1L, _, _, _)
0L

& : 0xBFFFF110L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF110L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF260L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF260L

& : 0xBFFFF080L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF080L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1D0L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF1D0L

chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
16384L

|(c.0L, _) : 16384L

B0 : 0x0E

&(_, c.31L)
14L

l+(c.15L, c.0xFFFFFFFFL)
14L

l+(_, c.0xFFEFE108L)
0x401AC8B8L

+(c.0x401AC701L, c.1056943L)
0x402AE7B0L

open(c.0x804FB40L, _, _)
3L

& : 0xBFFFF110L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF110L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF260L

l+(%esp/%ebp, c.0xFFFFFF58L)
0xBFFFF260L

& : 0xBFFFF080L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF080L dec : 0xFFFFFFFFL

cc2valz : 0x00

& : 0xBFFFF1D0L

l+(%esp/%ebp, c.0xFFFFFEC8L)
0xBFFFF1D0L

chunk(c.0x8049F80L, _, _, _, c.0L)

|(_, c.67108864L)
0x14000000L

+(_, c.0x10000000L)
0x10000000L

&(_, c.0xF0000000L)
0L

dec : 0L

cc2valz : 0x01

&(s.0L, _) : 0L

shl(c.1L, _)
1L

|(c.0L, _) : 1L

B0 : 0x00

&(_, c.31L)
0L

l+(c.1L, c.0xFFFFFFFFL)
0L

l+(_, c.0xFFEFE108L)
0x401AC8B8L

+(c.0x401AC701L, c.1056943L)
0x402AE7B0L

close : 0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

s."/homes/njn25/grind/head/ten-byte-file"

lstat64(c.0x804FB40L, _, _)
0L

open(c.0x804F700L, _, _)
0xFFFFFFFEL

l+(%esp/%ebp, c.0xFFFFFF98L)
0xBFFFF280L s."/homes/njn25/grind/head/ten-byte-file"

lstat64(c.0x804FB40L, _, _)
0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

s."/homes/njn25/grind/head/ten-byte-file.bz2"

open(c.0x804FB40L, _, _)
3L

l+(%esp/%ebp, c.0xFFFFFF98L)
0xBFFFF280L s."/homes/njn25/grind/head/ten-byte-file"

open(c.0x804F700L, _, _)
4L

fstat64 : 0L

read : 10L

read : 0L

read : 0L

close : 0L

|(_, c.32768L)
32768L

|(c.0L, z.0L)
0L

s."/homes/njn25/grind/head/ten-byte-file"

chmod(c.0x804F700L, c.384L, _)
0L

fstat64 : 0L

write : 44L

close : 0L

|(_, c.32768L)
33345L

|(c.1L, c.576L)
577L

s."/homes/njn25/grind/head/ten-byte-file.bz2"

s."/homes/njn25/grind/head/ten-byte-file.bz2"

mmap(c.0L, _, c.3L, c.34L, c.0xFFFFFFFFL, c.0L)
0x40177000L

(+52) : 8192L

l+(%esp/%ebp, c.0xFFFFFF88L)
0xBFFFDD00L

- : 8192L

lea2(_, _, c.1L, c.0L)
0x40179000L

- : 8192L - : 8192L

munmap : 0L

- : 8192L

&(_, c.0xFFFFF000L)
8192L

l+(_, c.4095L)
12287L

mmap(c.0L, _, c.3L, c.34L, c.0xFFFFFFFFL, c.0L)
0x40179000L

(+52) : 8192L

l+(%esp/%ebp, c.0xFFFFFF88L)
0xBFFFDCD0L

-(REP, _) : 44L

munmap : 0L

- : 8192L

lea2(_, _, c.1L, c.0L)
0x4017B000L

&(_, c.0xFFFFF000L)
8192L

l+(_, c.4095L)
12287L

chunk

B3 : ’B’

|(z.0L, _) : 0x42000000L

shl(_, c.’\b’)
0L

shl(c.’B’, _)
0x42000000L

B0 : 0x18

l+(_, c.24L)
24L

neg(z.0L) : 0L

B3 : ’Z’

| : 0x5A000000L

shl(_, c.’\b’)
0L

shl : 0x5A000000L

l+(c.’Z’, c.0L)
90L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

l+(z.0L, c.8L)
8L

B3 : ’h’

| : 0x68000000L

shl(_, c.’\b’)
0L

shl : 0x68000000L

l+(c.’h’, c.0L)
104L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’9’

| : 0x39000000L

shl(_, c.’\b’)
0L

shl : 0x39000000L

l+(_, c.0L)
57L

+(c.’\t’, c.0)
’9’

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’1’

| : 0x31000000L

shl(_, c.’\b’)
0L

shl : 0x31000000L

l+(c.’1’, c.0L)
49L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’A’

| : 0x41000000L

shl(_, c.’\b’)
0L

shl : 0x41000000L

l+(c.’A’, c.0L)
65L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’Y’

| : 0x59000000L

shl(_, c.’\b’)
0L

shl : 0x59000000L

l+(c.’Y’, c.0L)
89L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’&’

| : 0x26000000L

shl(_, c.’\b’)
0L

shl : 0x26000000L

l+(c.’&’, c.0L)
38L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’S’

| : 0x53000000L

shl(_, c.’\b’)
0L

shl : 0x53000000L

l+(c.’S’, c.0L)
83L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : ’Y’

| : 0x59000000L

shl(_, c.’\b’)
0L

shl : 0x59000000L

l+(c.’Y’, c.0L)
89L B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.8L)
8L

B3 : 0x0E

| : 0xE000000L

shl(_, c.’\b’)
0L

shl : 0xE000000L

shr(_, c.0x18)
14L

~ : 0xE9A0181L

shr(_, c.0x10)
3738L B1 : 0x01 B0 : 0x81

^ : 0xE9A0181L

^(s.0xBD3E8D7EL, _)
0xF165FE7EL

shl(_, c.’\b’)
0x4C5B7300L

^(s.0xF9278673L, _)
0xBA4C5B73L

shl(_, c.’\b’)
0x436BDD00L

^(s.0xC0E2D0DDL, _)
0xDC436BDDL

shl(_, c.’\b’)
0x1CA1BB00L

^(s.0x933EB0BBL, _)
0x9E1CA1BBL

shl(_, c.’\b’)
0xD221100L

^(s.0x675A1011L, _)
0xC00D2211L

shl(_, c.’\b’)
0xA7573200L

^(s.0x7A089632L, _)
0x2AA75732L

shl(_, c.’\b’)
0x50AFC100L

^(s.0xE3A1CBC1L, _)
0xB150AFC1L

shl(_, c.’\b’)
0x52F16400L

^(s.0x350C9B64L, _)
0xD952F164L

shl(_, c.’\b’)
0xEC5E6A00L

^(s.0xC423CD6AL, _)
0x3FEC5E6AL

shl(_, c.’\b’)
0xFBCF9300L

^(s.0x61043093L, _)
0x9EFBCF93L

shl(c.0xFFFFFFFFL, c.’\b’)
0xFFFFFF00L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0x9A

| : 0x9A000000L

shl(_, c.’\b’)
0L

shl : 0x9A000000L

l+(_, c.0L)
154L

B0 : 0x9A

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0x01

| : 16777216L

shl(_, c.’\b’)
0L

shl : 16777216L

l+(_, c.0L)
1L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0x81

| : 0x81000000L

shl(_, c.’\b’)
0L

shl : 0x81000000L

l+(_, c.0L)
129L

B0 : 0x18

l+(_, c.24L)
24L

neg : 0L

-(_, c.8L) : 0L

+(_, c.8L) : 8L

B3 : 0x00

| : 128L

shl(_, c.’\b’)
32768L

shl : 128L

inc(z.0L) : 1L B0 : ’\a’

l+(_, c.8L)
7L

neg : 0xFFFFFFFFL

l+(_, c.1L)
1L

+(_, c.24L)
25L

-(_, c.8L) : 0L

B3 : 0x00

shl(_, c.’\b’)
8388608L

B3 : 0x00

shl(_, c.’\b’)
0x80000000L

B3 : 0xC8

| : 0xC8000000L

shl(_, c.’\b’)
0L

| : 0xC0000000L

shl(c.1L, _)
0x40000000L

B0 : 0x1E

l+(_, c.31L)
30L

neg : 0xFFFFFFFFL

-(_, c.8L) : 1L

l+(_, c.1L)
2L

-(_, c.8L) : 9L

-(_, c.8L) : 17L

shl(c.1L, _)
134217728L

B0 : 0x1B

l+(_, c.31L)
27L

neg : 0xFFFFFFFCL

l+(_, c.1L)
4L

l+(_, c.1L)
5L

l+(_, c.1L)
3L

B3 : 0x00

shl(_, c.’\b’)
0L

B3 : 0x00

shl(_, c.’\b’)
0L

B3 : 0x10

| : 0x10000000L

shl(_, c.’\b’)
0L

shl(c.1L, _)
0x10000000L

B0 : 0x1C

l+(_, c.31L)
28L

neg : 0xFFFFFFFDL

l+(_, c.1L)
3L

l+(_, c.1L)
4L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

B3 : ’;’

| : 0x3B000000L

shl(_, c.’\b’)
0L

| : 0x3A000000L

| : 0x38000000L

| : 0x30000000L

| : 0x20000000L

shl(c.1L, _)
0x20000000L

B0 : 0x1D

l+(_, c.31L)
29L

neg : 0xFFFFFFFEL

l+(_, c.1L)
2L

l+(_, c.1L)
3L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

shl(c.1L, _)
0x10000000L

B0 : 0x1C

l+(_, c.31L)
28L

neg : 0xFFFFFFFDL l+(_, c.1L)
4L

shl(c.1L, _)
134217728L

B0 : 0x1B

l+(_, c.31L)
27L

neg : 0xFFFFFFFCL

l+(_, c.1L)
5L

shl(c.1L, _)
33554432L

B0 : 0x19

l+(_, c.31L)
25L

neg : 0xFFFFFFFAL

l+(_, c.1L)
6L

l+(_, c.1L)
7L

shl(c.1L, _)
16777216L

B0 : 0x18

l+(_, c.31L)
24L

neg : 0xFFFFFFF9L

l+(_, c.1L)
8L

B3 : 0x00

shl(_, c.’\b’)
0L

B3 : ’ ’

| : 0x20002000L

shl(_, c.’\b’)
2097152L

| : 0x20000000L

shl(c.2L, _)
0x20000000L

B0 : 0x1C

l+(_, c.29L)
28L

neg : 0xFFFFFFFFL

l+(_, c.1L)
1L

l+(_, c.3L)
4L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

l+(_, c.1L)
4L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

shl : 8192L

inc(z.0L) : 1L

B0 : ’\r’

l+(_, c.17L)
13L

neg : 0xFFFFFFFCL

+(_, c.15L)
19L

B3 : 0x00

shl(_, c.’\b’)
0x20000000L

B3 : ’"’

| : 0x22000000L

shl(_, c.’\b’)
0L

shl : 33554432L

B0 : 0x04

- : 0xFFFFFFF8L

lea2(_, _, c.1L, c.0L)
8L

inc : 4L

inc(z.0L) : 1L

[2]

B0 : 0x17

l+(_, c.27L)
23L

neg : 0xFFFFFFFCL

l+(_, c.1L)
4L

l+(_, c.5L)
9L

-(_, c.8L) : 3L

-(_, c.8L) : 11L

B3 : 0x18

| : 0x18000000L

shl(_, c.’\b’)
0L

shl(c.3L, _)
0x18000000L

B0 : 0x1B

l+(_, c.30L)
27L

neg : 0xFFFFFFFDL

l+(_, c.1L)
3L

l+(_, c.2L)
5L

l+(_, c.1L)
2L

-(_, c.8L) : 1L

B3 : 0xD0

| : 0xD0300000L

shl(_, c.’\b’)
0x30000000L

| : 0xD0000000L

| : 0xC0000000L

shl(c.3L, _)
0xC0000000L

B0 : 0x1E

l+(_, c.30L)
30L

neg : 0L

-(_, c.8L) : 0L

l+(_, c.2L)
2L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

shl(c.2L, _)
0x10000000L

B0 : 0x1B

l+(_, c.30L)
27L

neg : 0xFFFFFFFDL

l+(_, c.1L)
3L

l+(_, c.2L)
5L

shl : 3145728L

B0 : 0x03

inc : 3L

inc(z.0L) : 1L

[1]

B0 : 0x14

l+(_, c.27L)
20L

neg : 0xFFFFFFF9L

l+(_, c.1L)
7L

l+(_, c.5L)
12L

l+(_, c.1L)
6L

B3 : 0

shl(_, c.’\b’)
0L

B3 : 0x06

| : 109051904L

shl(_, c.’\b’)
0x80000000L

| : 100663296L

shl : 100663296L

inc : 3L

inc : 4L

shl : 0x30000000L

l+(_, c.0L)
2L

shl : 8388608L

shl : 8388608L

+ : 2L

inc : 1L

l+(_, c.0L)
0L

shl : 0L

shl : 0L

shl : 0L

l+(z.0L, c.0L)
0L

B0 : 0x19

l+(_, c.32L)
25L

- : 0xFFFFFFF9L

neg : 0xFFFFFFFCL

l+(_, c.1L)
4L

lea2(_, _, c.1L, c.0L)
7L

l+(_, c.1L)
3L

l+(_, c.1L)
2L

l+(_, c.1L)
1L

-(_, c.8L) : 0L

l+(_, c.1L)
8L

l+(_, c.1L)
7L

l+(_, c.1L)
6L

l+(_, c.1L)
5L

-(_, c.8L) : 4L

B0 : 0x03

- : 0xFFFFFFFCL

lea2(_, _, c.1L, c.0L)
4L

inc : 3L

inc(z.0L) : 1L

[1]

B0 : 0x16

l+(_, c.32L)
22L

- : 0xFFFFFFF6L

neg : 0xFFFFFFF9L lea2(_, _, c.1L, c.0L)
10L

B0 : 0x03

- : 0xFFFFFFF6L

lea2(_, _, c.1L, c.0L)
10L

inc : 3L

inc(z.0L) : 1L

[1]

B3 : 0xA0

| : 0xA0800000L

shl(_, c.’\b’)
0x80000000L

| : 0xA0000000L

| : 0xA0000000L

shl : 0x20000000L

inc : 5L

B0 : 0x1B

l+(_, c.32L)
27L

- : 0xFFFFFFFBL

neg : 0xFFFFFFFEL

-(_, c.8L) : 2L

lea2(_, _, c.1L, c.0L)
5L

B0 : 0x03

inc : 3L

inc(z.0L) : 1L

[1]

B0 : 0x19

l+(_, c.32L)
25L

- : 0xFFFFFFF9L

neg : 0xFFFFFFFBL lea2(_, _, c.1L, c.0L)
7L

B0 : 0x02

- : 0xFFFFFFFCL

- : 0xFFFFFFFAL

lea2(_, _, c.1L, c.0L)
4L

lea2(_, _, c.1L, c.0L)
6L

inc : 2L

inc(z.0L) : 1L

B0 : 0x16

l+(_, c.32L)
22L

neg : 0xFFFFFFF9L

B3 : 0x82

| : 0x82800000L

shl(_, c.’\b’)
0x80000000L

| : 0x80000000L

| : 0x80000000L

B0 : 0x1C

l+(_, c.32L)
28L

neg : 0xFFFFFFFEL

-(_, c.8L) : 2L

B0 : 0x1A

l+(_, c.32L)
26L

neg : 0xFFFFFFFCL

shl : 41943040L

inc : 6L B0 : 0x17

l+(_, c.32L)
23L

- : 0xFFFFFFF7L

neg : 0xFFFFFFFAL lea2(_, _, c.1L, c.0L)
9L

B0 : 0x03

inc : 3L

inc(z.0L) : 1L

[1]

B3 : 0xBE

| : 0xBE000000L

shl(_, c.’\b’)
0L

| : 0xB0000000L

B0 : 0x1C

l+(_, c.32L)
28L

neg : 0xFFFFFFFFL

-(_, c.8L) : 1L

shl : 0xE000000L

l+(_, c.0L)
14L

+ : 14L

inc : 7L

shl : 0xC0000000L

B0 : 0x18

l+(_, c.32L)
24L

neg : 0xFFFFFFFCL

B3 : 0xC2

| : 0xC2E00000L

shl(_, c.’\b’)
0xE0000000L

| : 0xC0000000L

B0 : 0x1D

l+(_, c.32L)
29L

- : 0xFFFFFFFDL

neg : 0L

-(_, c.8L) : 0L

lea2(_, _, c.1L, c.0L)
3L

B0 : 0x03

inc : 3L

inc(z.0L) : 1L

[1]

shl(c.0x17, _)
48234496L

B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL l+(_, c.8L)
11L

B3 : 0xEE

| : 0xEE400000L

shl(_, c.’\b’)
0x40000000L

shl : 0xE400000L

l+(c.’r’, c.0L)
114L B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

l+(_, c.8L)
11L

B3 : ’H’

| : 0x48A00000L

shl(_, c.’\b’)
0xA0000000L

shl : 0x8A00000L

l+(c.’E’, c.0L)
69L B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

l+(_, c.8L)
11L

B3 : 0xA7

| : 0xA7000000L

shl(_, c.’\b’)
0L

shl : 117440512L

l+(c.’8’, c.0L)
56L B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

l+(_, c.8L)
11L

B3 : ’\n’

| : 0xA000000L

shl(_, c.’\b’)
0L

shl : 0xA000000L

l+(c.’P’, c.0L)
80L B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

l+(_, c.8L)
11L

B3 : 0x12

| : 0x12000000L

shl(_, c.’\b’)
0L

shl : 0x12000000L

l+(c.0x90, c.0L)
144L B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

l+(_, c.8L)
11L

B3 : 0x01

| : 29360128L

shl(_, c.’\b’)
0xC0000000L

shl : 29360128L

shr(_, c.0x18)
14L

shr(_, c.0x10)
3738L

B1 : 0x01B0 : 0x81

rol(z.0L, c.0x01)
0L

B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

+(_, c.8L) : 11L

B3 : 0xD3

| : 0xD3400000L

shl(_, c.’\b’)
0x40000000L

shl : 0x13400000L

l+(_, c.0L)
154L

B0 : 0x9A

B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

+(_, c.8L) : 11L

B3 : ’@’

| : 0x40200000L

shl(_, c.’\b’)
0x20000000L

shl : 2097152L

l+(_, c.0L)
1L

B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

+(_, c.8L) : 11L

B3 : 0

| : 0x30200000L

shl(_, c.’\b’)
0x20000000L

shl : 0x10200000L

l+(_, c.0L)
129L

B0 : 0x15

l+(_, c.24L)
21L

neg : 0xFFFFFFFDL

-(_, c.8L) : 3L

B3 : ’ ’

&(_, c.0xFFFFF000L)
8192L

+(_, c.4095L)
12287L

lstat64(c.0x804FB40L, _, _)
0L

&(_, c.0xFFFFF000L)
8192L

+(_, c.4095L)
12287L

chmod(c.0x804F700L, _, _)
0L

(+16) : 33152L (+64) : 0x3EB0F361L (+72) : 0x3EB0F333L

(+24) : 1789L

(+28) : 1789L

l+(%esp/%ebp, c.0xFFFFFF98L)
0xBFFFF280L s."/homes/njn25/grind/head/ten-byte-file"

utime(c.0x804F700L, _, _, _)
0L

s."/homes/njn25/grind/head/ten-byte-file.bz2"

chown32(c.0x804F700L, _, _, _)
0L

l+(%esp/%ebp, c.0xFFFFFF90L)
0xBFFFF278L s."/homes/njn25/grind/head/ten-byte-file.bz2" chunk

rmdir(c.0x804FB40L, _)
0xFFFFFFECL

s."/homes/njn25/grind/head/ten-byte-file.bz2"

unlink(c.0x804FB40L, _)
0L

s."/homes/njn25/grind/head/ten-byte-file"

_exit(z.0L)
0L

s."/homes/njn25/grind/head/ten-byte-file"

Figure 5.9: DDFGs for bzip2 when compressing a two-byte file and a ten-byte file

121

122

Chapter 6

Describing Tools

This chapter describes a novel and useful system of semi-formal descriptions
of dynamic binary analysis tools, and strongly emphasises the importance of
metadata in dynamic analysis.

6.1 Introduction

The previous chapters described a DBI framework for building DBA tools, and three very
different DBA tools built with the framework. This chapter steps back and considers what
can be said about all DBA tools. The details are largely independent of whether the DBA is
implemented using DBI or static binary instrumentation.

6.1.1 Tool Differences and Similarities

All DBA tools have a small number of possible aims; most often it is to obtain information
in order to improve program performance or correctness. These goals are very broad, and
each DBA tool can target only a small number of aspects, such as cache performance, or
bounds-checking. The information they record varies widely, and so do the ways in which
they use that information. The end result is that there are a wide variety of DBA tools, using
many different techniques to achieve their goals.

However, despite the obvious differences between different tools, all these tools work in
the same basic way. Basically, all tools instrument interesting parts of the client program
with analysis code. This analysis code takes raw inputs, possibly produces metadata about
the running program by analysing the inputs, and performs I/O actions to present useful
information to the user (be it a human or another program). Roughly speaking, metadata is
information that is not available from the normal program state; for example, the contents of
a register is not metadata, but a count of how many times the register has been accessed is.
That definition of metadata is enough for now, but one of the things this chapter explores is
the question of what exactly metadata is.

It makes sense to view DBA tools in terms of analysis code and metadata, since code and
data are the common characteristics of all programs. Niklaus Wirth expressed this simply in
the title of his 1975 book [117]:

Algorithms + Data Structures = Programs.

123

Paraphrasing this for dynamic binary analysis gives:

Analysis Code + Metadata = Dynamic Binary Analysis Tools.

And of these two concepts, metadata is the more important. After all, analysis code is just a
means to an end; metadata (and its use) is the end.

6.1.2 Tool Descriptions

This observation leads to a question: if tools all work in the same basic way, can one pre-
cisely characterise these similarities, so their workings can be more easily understood, and
comparisons between tools can be made? The answer is yes.

This chapter describes a system of semi-formal DBA tool descriptions. Each description
has two halves. One half describes the metadata, the other half describes the analysis code
that is required to create and maintain the metadata. Each of the two halves has a formal
component, and an informal, plain language component. This formal/informal split is crucial,
and is similar to an interface/implementation split for a program. The descriptions primarily
describe DBA tools that use passive analysis code that does not change a program’s seman-
tics; most kinds of active analysis are outside its scope, except for one exception (function
replacement) that is important for describing the Valgrind tools in the previous chapters.

The descriptions are most useful for understanding tools, both before and after they
are written. This is because they encourage a directed way of thinking about tools that
emphasises their most important aspects, and draws out subtleties that may not be otherwise
clear. They can also be used for comparing tools, and identifying what features a framework
such as Valgrind should provide to make tool-writing easier. Also, they show that analysis
code and metadata are the fundamental concepts underlying DBA, and provide a way of
characterising the limit of what can be achieved with DBA tools. Finally, they lead to a
precise definition of dynamic analysis, and a better understanding of dynamic analysis in
general, based around the idea that metadata is the approximation of a program’s past.

However, they are not a formal system, they involve an element of subjectivity, and they
cannot be used for any kind of automated reasoning. They represent a good first attempt
at identifying a unifying principle underlying all tools, but there may be room for future
improvement, such as a greater level of formality. Nonetheless, they are still very useful in
their current form, as this chapter shows.

6.1.3 Chapter Structure

This chapter is structured as follows. Section 6.2 gives a quick overview of the descriptions.
Section 6.3 introduces preliminary definitions used in the descriptions. Section 6.4 presents
the descriptions more formally. Section 6.5 gives descriptions of some simple DBA tools.
Section 6.6 shows how more complex descriptions can be constructed. Section 6.7 gives full
descriptions for the Valgrind tools described in the previous chapters. Section 6.8 discusses
the limits of DBA tools. Section 6.9 considers what dynamic analysis really is, and gives a
precise definition. Section 6.10 considers the benefits and shortcomings of the descriptions.
Section 6.11 discusses related work, and Section 6.12 concludes.

124

6.2 The Big Picture

DBA tools can be very complex, as Chapters 2–5 have shown. And yet, all tools can be
described simply by their analysis code and metadata. Section 6.1.1 claimed that metadata
is the more important of the two concepts. Correspondingly, when describing a tool, the
metadata is the more instructive of the two. Consider Raymond’s [93] rephrasing of Brooks’
[16] quote:

Show me your code and conceal your data structures, and I shall continue to be
mystified. Show me your data structures, and I won’t usually need your code; it’ll
be obvious.

This idea certainly applies when describing tools. For this reason, the semi-formal descriptions
in this chapter are metadata-centric, i.e. structured around metadata. This makes the tools
they are describing much easier to understand. For the same reason, the descriptions of the
Valgrind tools given in Chapters 2–5 were deliberately based around the metadata those tools
maintain.

This section provides a broad overview of the descriptions, and gives a simple example,
which should make the detailed explanations in Sections 6.3 and 6.4 more comprehensible,
before more examples are given in Section 6.5.

6.2.1 Description Basics

Each description has four parts. The following list gives a high-level introduction to them; it
uses Memcheck and Cachegrind as examples, because together they track the most common
kinds of metadata.

1. Formal description of metadata (M-part). This part describes what program/machine
entities the tool “attaches” metadata to. Only three of these attachment points, called
M-hooks, are distinguished.

(a) Global metadata, e.g. Memcheck’s record of the heap, or Cachegrind’s simulated
cache state.

(b) Per-location (register or memory) metadata, e.g. Memcheck’s A (addressability)
bits.

(c) Per-value metadata, e.g. Memcheck’s V (validity) bits.

The M-hooks involved are formally described in the M-part, but the form of the meta-
data is not.

A tool can attach metavalues to more than one kind of M-hook. If per-location or
per-value metadata is used, a metavalue is typically attached to every location or value
in the program.

Note that per-location and per-value metadata could actually be done using global
metadata—consider a global table holding one metavalue per register, compared with
per-register metadata. Nonetheless, they are treated separately because they are very
common, and distinguishing them in this way makes many descriptions more concise
and easier to understand.

125

2. Informal description of metadata (M′-part). This part describes the form of each kind
of metadata that was specified in the M-part. This is an informal, plain language
description, because metadata can take almost any form. For example, Memcheck’s
per-memory-byte A bits are mere booleans, whereas Cachegrind’s global cache state is
a complex data structure.

3. Formal description of analysis code (I-part). This part describes exactly which parts of
the client’s code are instrumented with analysis code. The instrumentation points are
called I-hooks. There are three built-in I-hooks:

(a) program start;

(b) instructions;

(c) program end.

For example, Cachegrind instruments every instruction, and instructions that access
memory are instrumented differently from those that do not. At a program’s end, it
dumps the gathered per-source line counts to file. In comparison, Memcheck instruments
many, but not all, instructions, and the instrumentation for each instruction depends
on its opcode. Memcheck also instruments functions (such as malloc()) and system
calls (such as mmap()) that affect the addressability of memory.

Custom I-hooks can be constructed from the built-in I-hooks, e.g. for functions, system
calls and memory operations.

As well as describing which I-hooks are instrumented, this part also describes exactly
what are the raw inputs to the analysis code, and whether the analysis code updates
metavalues or does I/O. However, the exact form of the analysis code is not specified;
roughly speaking, it describes the analysis code’s interface.

For example, the inputs to Cachegrind’s analysis code functions include the instruction’s
address, and its data address and size (for those instructions accessing memory); and
Cachegrind only performs I/O at the program’s end. Memcheck’s shadow computation
updates V bits by taking the V bits of the values used by each instruction as inputs.
Also Memcheck can perform I/O as the program proceeds, when issuing error messages.

Finally, this part also makes clear which decisions are made statically, at instrumentation-
time, and which decisions are made dynamically, at run-time.

4. Informal description of analysis code (I′-part). This part describes what the analysis
code does with the inputs specified in the I-part; roughly speaking, it describes the anal-
ysis code’s implementation. Again, this description is informal, using plain language,
because the analysis code can do almost anything.

For example, the informal description of Cachegrind’s analysis code would include a
description of how the simulated cache is updated, and how the per-source line hit/miss
counts are updated. For Memcheck, the description could describe how the V bit
computations work.

The formal M-part and I-part are the parts of a description that do not vary much between
different tools. The informal M′-part and I′-part are the parts of a description that do vary
greatly between different tools. This split captures the differences and similarities between
tools outlined in Section 6.1.1.

126

6.2.2 A First Example

The following example describes a simple tool that counts the number of jump instructions
executed by a program, and prints the total out when the program terminates.

M g .mv

M′ g .mv is an integer, initialised to zero.

I instr(i) : is jmp(i .opcode) ⇒ inc(!g .mv)
end() ⇒ io(g .mv)

I′ is jmp succeeds if the opcode is that of a jump instruction.

inc increments its argument.

io prints the final count.

Full details of the syntax are given in Sections 6.3 and 6.4, but the following text should be
enough to give a basic understanding.

The M-part is the formal description of metadata. The g .mv indicates that the tool
maintains a global metavalue. The M′-part is the informal description of metadata. It
indicates that the global metavalue is an integer, initialised to zero.

The I-part is the formal description of analysis code. The left-hand side of the first rule,
before the ⇒ symbol, states that every instruction that satisfies the predicate is jmp—which
succeeds or fails depending on the instruction’s opcode—is instrumented. The right-hand side
of the first rule states that the analysis code updates the global metavalue with the function
inc. The ! symbol indicates that the metavalue g .mv is updated by inc. The second rule
states that the program’s termination is instrumented to call a function io, which is passed
the global metavalue; the name io indicates that it performs some I/O. The I′-part is the
informal description of analysis code. It describes exactly what is jmp, inc and io do.

This is all fairly straightforward. One non-obvious thing worth mentioning is that in the I-
part, everything on the left-hand side of each rule represents what happens at instrumentation-
time, and everything on the right-hand side represents what happens at run-time. In partic-
ular, in the first rule, the is jmp predicate is evaluated at instrumentation-time. It could be
done instead at run-time, as the following rule describes.

I instr(i) ⇒ if is jmp(i .opcode) { inc(!g .mv) }

This is inefficient, as the test is done—always giving the same result for each distinct instruction—
every time the instruction executes, rather than just once at instrumentation-time. This issue
of instrumentation-time vs. run-time evaluation is important, and recurs several times in the
rest of this chapter.

6.3 Preliminaries

This section introduces basic concepts and notation used in the descriptions.

127

6.3.1 M-hooks and Built-in I-hooks

As Section 6.2 said, metadata can be attached to M-hooks, and analysis code can be attached
to I-hooks. Each hook has built-in attributes; if a hook is thought of as a kind of structure,
attributes are the hook’s fields. Attributes serve as inputs to analysis code. The descriptions
are expressed in terms of M-hooks and I-hooks, and their attributes.

Table 6.1 gives the types for all hooks and their attributes. Column 1 gives the name of
the hook; column 2 gives what kind of hook it is (M or I). Column 3 gives the names of each
hook’s attributes, and columns 4–6 give each attribute’s type, binding time (static, dynamic,
or mixed; explained below), and a brief description. The following list describes the table’s
entries in detail.

• Global. This M-hook represents global attributes of the program and the machine. It is
always referred to as g . The attribute rs〈n〉 represents the machine’s register file and
ms〈n〉 represents every memory location in the machine’s address space. The parameter
n indicates the granularity; for example rs〈1〉 is the list of every register byte, whereas
rs〈4〉 is the list of every register (assuming 32-bit registers). All attributes that are lists
have a name that ends in ‘s’ to indicate plural. The binding time of rs〈n〉 and ms〈n〉 is
static—known at instrumentation-time—as they do not change during execution (note
that the contents of these register and memory locations do change, but the identities
of the locations themselves do not).

The attribute debug represents debug and symbol information, which can be looked at
for file, function, line information, etc. The attribute t , the current time, is dynamic—
only known at run-time, and ever-changing. The attribute mv , the global metavalue,
is also dynamic. It is optional, since a tool does not have to track global metadata. Its
type (if present) depends on the tool.

• RegLoc〈n〉. This M-hook represents a register location, identified by name, which holds
a Value〈n〉, contents, that is n bytes wide. RegLocs can have a metavalue, mv ; this
metavalue describes the location itself, rather than the value stored in the location.

• MemLoc〈n〉. This M-hook represents a memory location, at address addr , which holds a
Value〈n〉, contents, that is n bytes wide, and n-aligned. MemLocs can have a metavalue,
mv ; as with RegLocs, this metavalue is about the location itself, rather than the value
stored in the location.

• Value〈n〉. This M-hook represents actual n-byte values that are stored in locations, and
that appear as literal constants in code. The actual bits of the value are in v . Values
can have a metavalue, mv . Values can be copied, and are destroyed if overwritten.

If Values are shadowed with metavalues, every single Value in the program should be
shadowed. For stored Values, if the Value is copied from one location to another, the
metavalue should also be copied. If a Value is overwritten, its metavalue should also be
overwritten. These conditions are all met by shadow computation. If these conditions
do not hold, then the metavalue probably really belongs to the RegLoc or MemLoc.

From a particular implementation viewpoint, such as that of Valgrind, there is no in-
trinsic difference between attaching metadata to Values and attaching metadata to all

128

RegLocs and MemLocs.1 This is why Chapters 1, 2, 4 and 5 speak about location
metadata in relation to shadow computation. However, there is a significant conceptual
difference when it comes to describing tools, and so this chapter distinguishes between
location metadata and value metadata.

For each literal Value in the code, its metavalue must also be constant, and any de-
scription of a tool that shadows Values with metavalues must provide a function name
const value mv for computing these metavalues.

• Instr. This I-hook represents an instruction executed by the program (not, by contrast,
an instruction in the instruction set). It includes the instructions in the program’s
code, and also the instructions in the operating system kernel executed on behalf of the
program, for example system call instructions. Each instruction can be instrumented.

The attributes opcode, isize and dsize are all static and straightforward. The attribute
addr is tricky because of its binding time. From the point of view of static binary
instrumentation it is a static attribute for instructions within the main executable
(which must be loaded at a fixed address), but a dynamic attribute for instructions
within shared objects (which can be loaded at any address). For DBI addr is known
at instrumentation-time; however, an instruction’s address can change if it is part of a
shared object that gets unloaded and then reloaded into a different location (as part
of the client’s normal execution, i.e. independent of any instrumentation system). The
attribute loc identifies an instruction’s location, which is mostly useful for looking up
debug and symbol information. Its form is deliberately vague in Table 6.1 because it
can vary; for DBI, it may be the same as addr , for static binary instrumentation it may
be a location in an object file.

The attributes rs〈n〉 and ms〈n〉 represent the register and memory locations accessed
by an instruction; us〈n〉 represents the Values used in direct computation by the in-
struction, as〈n〉 represents the auxiliary Values used by the instruction (e.g. for address
computations), and ds〈n〉 represents Values written by the instruction. The subscript
specifies, in bytes, the location sizes. Again, the ‘s’ in the attribute names indicates
that they are lists.

An example will make things clearer. Consider the following instruction.

addl %eax, (%ebx)

Recall that the second operand is the destination. The location and value attributes
(using word-granularity) are as follows, where %reg denotes a RegLoc〈4〉, *%reg the
Value〈4〉 within the RegLoc〈4〉, (%reg) the MemLoc〈4〉 pointed to by %reg, and *(%reg)
the Value〈4〉 in that MemLoc〈4〉.

rs〈4〉 = [%eax, %ebx]
ms〈4〉 = [(%ebx)]

1This assumes that every value computed by a program is stored in a location, at least temporarily, so that
any metavalue can be correspondingly stored in the shadow location. This requires that all implicit intermediate
values computed by the original machine code, such as addresses computed by complex addressing modes, are
made explicit. This property is satisfied by Valgrind’s UCode—all implicit values are made explicit and stored
in shadow virtual registers.

129

us〈4〉 = [*%eax, *(%ebx)]
as〈4〉 = [*%ebx]
ds〈4〉 = [*(%ebx), *%eflags]

The attributes would change with the granularity; for example, with per-byte granular-
ity rs〈1〉 would contain eight sub-register bytes: %eax[31..24], %eax[23..16], %eax[15..8],
%eax[7..0], %ebx[31..24], %ebx[23..16], %ebx[15..8], and %ebx[7..0].

The binding time of rs〈n〉 is static, since the variables accessed by instructions are
known at instrumentation-time. However the remainder have a mixed binding time.
They are partially static, because it is known at instrumentation-time if each element
is an empty list or not. However, the number of elements, and what those elements
are, changes every time the instruction executes, and so the attributes are also partially
dynamic.

Instructions are the most important of the three built-in I-hooks. They can be used
to build custom I-hooks that can be used for instrumenting functions, system calls,
memory operations, etc., as Section 6.6 explains.

• Start and End. These I-hooks represent the operations of starting and ending the
program. They have no attributes, but they are useful to instrument.

Note that mv is the only attribute that tools can write to, due to the assumption of passive
analysis code mentioned in Section 6.1.2.

A ‘.’ denotes field access. For example, i .opcode is the opcode of the instruction repre-
sented by i . The ‘.’ symbol is overloaded so that it can also be applied to a list, giving a list
of attributes. For example, g .rs〈4〉.contents.v is the list of all the actual bit values in all the
registers.

6.4 Descriptions

Now that the basic elements of the descriptions—metadata, M-hooks and I-hooks, and attributes—
have been covered, this section presents the exact form of the descriptions. It begins by
reviewing their four-part structure, then describes each of the four parts in more detail.

6.4.1 Basic Ideas

As Section 6.2 said, the tool descriptions have four parts. They answer the following four
questions.

M Which M-hooks have metavalues, if any?

M′ What is the form of the metavalues?

I Which I-hooks are instrumented with metadata updates and I/O actions, and what
are their input attributes?

I′ What is the form of the predicates, functions and I/O action(s)?

130

Parts M and I can be expressed concisely, precisely, and formally. This is because there are
only a limited number of M-hooks to attach metavalues to, a limited number of I-hooks to
instrument, and a limited number of raw attribute inputs to analysis code.

In comparison, parts M′ and I′ cannot, in general, be expressed both concisely and pre-
cisely. This is because there are an unlimited number of metadata and analysis code forms.
Therefore, concise, informal, plain language descriptions are used to answer questions M′ and
I′. This might sound like it would give vague results, however, it will soon be clear that parts
M and I typically specify a tool to such a degree that the plain language descriptions just
“fill in the gaps”. Any concise description of a complex tool has to leave out some details,
and it turns out that this is the right place to do so.

As mentioned in Section 6.1.2, this formal/informal separation is crucial. It is much more
obvious to do things without this separation, but any resulting descriptions lack a unifying
consistency that makes it clear how different tools relate. (My first attempts at coming up
with meaningful tool descriptions suffered from exactly this problem.) Clearly separating the
formally describable parts from the rest results in descriptions that are much more concise,
precise, and useful. It also helps when considering the limits of DBA tools, as Section 6.8 will
show.

As a preliminary, intuitive analogy, consider the separation of a function’s type signature
from its body. The function map (using Haskell syntax):

map :: (a -> b) -> [a] -> [b]

is a good example. The type signature restricts the function so much that one barely needs to
see the function body to know what it does. One often sees a similar effect with the separation
of the formal and informal parts of the descriptions.

The following sections describe the four parts of each description in more detail.

6.4.2 Formal Description of Metadata

The formal description of metadata (M-part) is a single line which states which M-hooks
have metadata attached. It can be omitted if the tool tracks no metadata. The terms g .mv ,
r〈n〉.mv , m〈n〉.mv , v〈n〉.mv are used to represent metadata attached to Global, RegLoc〈n〉,
MemLoc〈n〉 and Value〈n〉 M-hooks respectively. Where present, the subscripts indicate the
metavalue granularity, i.e. how many bytes each metavalue represents. Consider the following
two examples.

M r〈4〉.mv
M g .mv , v〈1〉.mv

Example one states that every (word-sized) register has a metavalue. Example two states that
there is a global metavalue, and also that every byte value (in both registers and memory) has
a metavalue. Sometimes it is useful to break a metavalue into parts, e.g. g .mva and g .mvb.

6.4.3 Informal Description of Metadata

The informal description of metadata (M′-part) is written in plain language. It should de-
scribe the form of all metavalues, including their initial values, and the const value mv func-
tion (which computes metavalues for constant code Values) if needed. It can be omitted if
the tool tracks no metadata. The following is a very simple example.

131

M′ g .mv is an integer, initialised to zero.

The level of detail is arbitrary, but usually depends on the purpose of writing the description.
For example, to broadly explain how a tool works, a short description will probably suffice.
To explain in enough detail for someone else to reimplement a tool, more detail might be
necessary.

6.4.4 Formal Description of Analysis Code

The formal description of analysis code (I-part) consists of one or more formal rules that
specify an instrumentation schema. Each rule has the following two-part form.

i hook(x) : static ops ⇒ dynamic ops

This means all I-hooks matching the left-hand side should be instrumented with the analysis
code on the right-hand side. A key point is that the left-hand side (i.e. the text before the
⇒ symbol) represents what happens at instrumentation-time, the right-hand side represents
what happens at run-time.

On the left-hand side, i hook must be one of the built-in I-hooks—instr, start or end—or
a custom I-hook (custom I-hooks are discussed in Section 6.6). The variable x is bound to the
I-hook, and can be used to access the I-hook’s attributes in the rest of the rule. The static ops
part can be empty, or contain predicates which select a subset of all matching I-hooks for
instrumentation. It can also assign the special tmp variable, which represents the hard-wiring
of statically known values into analysis code, which is a mild form of (non-automatic) partial
evaluation. Because the left-hand side describes what is happening at instrumentation-time,
all attributes mentioned on the left-hand side must be static attributes of x .

The right-hand side can contain assignments, functions, I/O actions, and if-statements.
Because the right-hand side describes what is happening at run-time, the inputs can be any
mixture of static and dynamic attributes of the I-hook variable bound on the left-hand side,
and of the global g variable.

For example, consider the following three rules.

end() ⇒ io(g .mv)
instr(i) : is jmp(i .opcode) ⇒ f (!g .mv , i .rs〈1〉)
instr(i) : tmp := g(i .opcode) ⇒ if is ok(i .as〈4〉) { g .mv := h(tmp) }

The first rule specifies that the program’s end should be instrumented with the I/O action
io, which takes the global metavalue g .mv as input. Because no I-hook attributes are used,
no I-hook variable needs to be bound on the left-hand side, hence the ‘ ’.

The second rule specifies that all instructions executed that satisfy the predicate is jmp
should be instrumented to call f, which updates the global metavalue using the register bytes
involved in the instruction; the ! symbol indicates that a variable is modified by a function.

The third rule specifies that all instructions should be instrumented with analysis code
that performs a run-time check before overwriting the global metavalue with the result of h;
tmp is used to cache something computed, once per instruction, at instrumentation-time, so
it does not have to be recomputed every time each instruction is executed.

These examples only show assignments to mv variables; assignments to non-mv variables
are also possible for custom I-hooks, as Section 6.6 shows. To distinguish between functions,
predicates and I/O actions, predicates will be prefixed with “is ” (although they are always

132

obvious from context) and I/O actions will always be prefixed with io. The rules do not
say how f, g, h, io, is jmp or is ok are implemented, or what they do; that is covered in the
informal description of analysis code. However, well-chosen names can make their actions
obvious.

6.4.5 Informal Description of Analysis Code

The informal description of analysis code (I′-part) is written in plain language. It should
describe the form of all predicates, functions and I/O actions named in the rules. This covers
what they do, and possibly how they are implemented (e.g. as a C function, or as inline
machine code), if that is notable. As was the case for the informal description of metadata,
the level of detail required is arbitrary.

6.5 Descriptions of Simple Tools

This section gives multiple example descriptions. It starts with example tools that use no
metadata, and then moves onto examples using global, per-location and per-value metadata.

6.5.1 Tools Using No Metadata

Many tools do not record any metadata, but merely react to particular events. It is ques-
tionable if they should be described as DBA tools, as they do not do any “analysis” as such.
Section 6.9 will return to this point, but for the moment they are a good place to start.

One of the simplest possible tools just prints a string every time an instruction is executed.

I instr() ⇒ io()

I′ io prints “instruction executed!”

The M-part and M′-part are omitted because the tool maintains no metadata. Every in-
struction is instrumented with the same analysis code, which is an I/O action that takes no
inputs. In this case, the analysis code would probably be a call to a C function; this could
have been mentioned in the informal description of analysis code.

A slightly more elaborate tool prints the opcode of every instruction executed. This can
be implemented in several ways, with small but important differences. The first way is as
follows.

I instr(i) ⇒ io(i .opcode)

I′ io prints a string representing the passed opcode.

Note that io presumably contains a case statement which switches on the value of i .opcode;
the decision about what to print for each instruction is repeatedly made at run-time, even
though the result for each instruction is always the same. This could be implemented in the
following, more efficient manner.

I instr(i) : tmp := f (i .opcode) ⇒ tmp()

I′ f returns one of a family of functions that print opcodes.

133

The idea here is to have a family of opcode-printing functions, and instrument each instruc-
tion with the appropriate function; the decision about what to print for each instruction is
made (once) at instrumentation-time. This partial evaluation is possible because opcode is a
static attribute. The special tmp variable, local to the rule, is used to communicate a value
computed statically (on the left-hand side) for an instruction to its analysis code (on the
right-hand side). Note that this rule is higher-order, because tmp is a function.

A third, fairly efficient way of implementing this tool is possible.

I instr(i) : tmp := opcode2str(i .opcode) ⇒ io(tmp)

I′ opcode2str converts an opcode to a string pointer.

io prints a given string.

Here the tmp variable communicates a string pointer obtained at instrumentation-time to io.
This version is more efficient than the version that chooses the string to print at run-time, but
will be slightly less efficient than the version that has a separate I/O action for each opcode,
because of the overhead of passing the argument to io.

These examples show how decisions can be made at instrumentation-time or at run-time.
It is important to distinguish the two cases; generally, static evaluation is preferred, where
possible, for efficiency reasons.

As another example, consider the tool that prints “instruction executed!” for every in-
struction executed within the first five seconds of a program starting.

I instr(i) ⇒ if is lt5 (g .t) { io() }

I′ is lt5 succeeds if the time argument is less than 5 seconds.

io prints “instruction executed!”

This example shows a conditional test that must be performed at run-time—and thus appears
on the right-hand side—as it involves a non-static input, g .t .

From these examples, three things are already clear. First, the descriptions are concise.
Second, often the rules are so suggestive that the informal description of analysis code is
barely necessary. Third, the distinction between instrumentation-time actions and run-time
actions is important for efficiency.

6.5.2 Tools Using Global Metadata

Consider a simple tool that counts the number of instructions executed by a program.

M g .mv

M′ g .mv is an integer, initialised to zero.

I instr() ⇒ inc(!g .mv)
end() ⇒ io(g .mv)

I′ inc increments its argument.

io prints the final count.

134

The first rule is extremely suggestive; without any other inputs, the only sensible action for
inc is to increment g .mv .

Many tools have more complex global metadata. One example is a tool that records the
number of times each opcode is executed. This information could be used to categorise code
types, e.g. as integer-dominated, or floating-point dominated.

M g .mv

M′ g .mv is a table containing one integer per opcode, each one initialised to zero.

I instr(i) ⇒ inc opcode(!g .mv , i .opcode)
end() ⇒ io(g .mv)

I′ inc opcode increments the appropriate entry in the table.

io prints the final per-opcode counts.

The inputs to inc opcode specify that g .mv is a function of the global trace of executed
opcodes. As written, the rule uses a single function inc opcode, but it could be changed to be
a family of functions, one per opcode and selected at instrumentation-time, like the opcode
printer in Section 6.5.1.

A more interesting tool is one that gathers the dynamic instruction counts for each line
of source code, and produces information from which the source code can be annotated with
the counts. This tool gives useful profiling information, and also gives execution coverage.

M g .mv

M′ g .mv is a table holding one integer per line of source code, initially empty.

I instr(i) : tmp := lookup(!g .mv , get src line(g .debug , i .loc)) ⇒ inc line(!g .mv ,
tmp)
end() ⇒ io lines(g .mv)

I′ get src line finds the source line in the debug and symbol information for the given
instruction.

lookup finds the entry in g .mv that represents the given source line, creating and
adding it if it is not already present, and returns a pointer to it.

inc line increments the counter for the entry in g .mv pointed to by tmp.

io lines prints the final per-line counts to file, augmenting any previous coverage infor-
mation already present from previous runs. This information can be used to annotate
source code.

The debug information look-up done by get src line is not fast, which is why it pays to do it
at instrumentation-time, once per instruction, rather than at run-time.

If only pure coverage was needed, g .mv could be changed to hold a boolean per source
line, and inc line changed to set the appropriate boolean when i is executed.

The metadata could be tracked at the level of instructions, rather than the level of source
code lines. However, since the metadata is to be used to annotate source code, there is no
point tracking it at instruction level, which would only increase the number of entries in

135

g .mv and require multiple instruction counts to be collapsed into multiple line counts during
annotation.

A similar tool is a dynamic invariant detector, such as Daikon [42] or DIDUCE [49]. The
following description is of a generic invariant detector.

M g .mv

M′ g .mv is a table holding invariant information for all the “interesting” source code lines.

I instr(i) : is interesting(i), tmp := lookup†(!g .mv , get src line†(g .debug , i .loc)) ⇒
invar(!g .mv , tmp, i .us〈n〉.v)

end() ⇒ io invars(g .mv)

I′ is interesting succeeds if the instruction should have its invariants tracked.

invar updates the invariant information for the node in g .mv pointed to by tmp, using
the values used by the instruction.

io invars prints out all the gathered invariants.

Note that lookup and get src line are not described in the I′-part; this is because they appeared
identically in an earlier description. Predicates, functions and I/O actions repeatedly used
like this will be marked with a † symbol. This is not a feature of the descriptions, but is purely
to avoid repetition in this text. Also note that i .us〈n〉.v here is a list of values, not just a
single value; and that the comma on the left-hand side of the first rule is just a separator that
indicates sequencing.

This description is very vague; for example, there is no detail about the form of the
invariants. It would be much more precise if it were describing a specific invariant detector.
It is interesting to note that the vagueness is all in the informal M′- and I′-parts, which
demonstrates their flexibility.

6.5.3 Tools Using Per-Location Metadata

Consider the following tool which counts how many times each register is accessed.

M r〈4〉.mv

M′ r〈4〉.mv is an integer, initialised to zero.

I instr(i) : is not empty(i .rs〈4〉) ⇒ incs(!i .rs〈4〉.mv)

I′ is not empty succeeds if the list is not empty.

incs increments the counter(s).

A similar tool counts how many times each page of memory (assumed to be 4KB) is accessed.

M m〈4096〉.mv

M′ m〈4096〉.mv is an integer, initialised to zero.

I instr(i) : is not empty†(i .ms〈4096〉) ⇒ incs†(!i .ms〈4096〉.mv)

136

Recall that n-byte MemLocs are n-aligned, so each m〈4096〉.mv corresponds exactly to a
page of memory, and i .ms〈4096〉 names the exact memory pages touched by i . Unaligned
accesses are possible on the x86, so a single memory access can touch two pages; in that case
both pages will be included in i .ms〈4096〉.

Note also that i .ms〈4096〉 has a mixed static/dynamic binding time. For each instruction,
it is known at instrumentation-time whether it accesses any memory pages, and thus the
predicate is not empty can be decided then. But the actual number of pages accessed, and
their identities, are not known until run-time.

6.5.4 Tools Using Per-Value Metadata

Section 2.4.4 introduced the idea of shadow computation, whereby every value is shadowed
with a metavalue, and shadow operations are used to propagate the metavalues. The following
rule describes the generic approach.

M v〈n〉.mv

M′ v〈n〉.mv says something about the value. Initialised to an “uninitialised” value.

const value mv returns an appropriate metavalue for code constants.

I instr(i) : is not empty†(i .ds〈n〉), tmp := f (i .opcode) ⇒ i .ds〈n〉.mv := tmp(i .us〈n〉.mv)

I′ f returns one of a family of functions that compute metavalues outputs from metavalue
inputs.

This description is vague because it is describing shadow computation in general. Section 6.7
has more examples of descriptions using shadow computation.

6.6 Custom I-hooks

All the examples so far have been dominated by instr I-hooks. All passive instrumentation
can be described using the built-in I-hooks, but for more complex tools it is very useful to
hide certain messy details in the descriptions by raising the level of abstraction. This is
done by introducing custom I-hooks for describing specific kinds of instructions and common
aggregates such as system calls and memory operations. Custom I-hooks are also the means
for describing function replacement, a form of semantics-changing, active analysis code that
most Valgrind tools use.

6.6.1 A Simple Example

Custom I-hooks look like normal tool descriptions, except that they are augmented by a
C-part and possibly a C′-part. Section 6.3 explained that the instr I-hook includes all in-
structions within the operating system executed on behalf of a client program. The following
custom I-hook is a modified version of instr that describes the instrumentation of only the
instructions outside the operating system kernel.

C user instr() : X ⇒ Y

I instr(i) : is user instr(i), X ⇒ Y

137

I′ is user instr succeeds for user-level (non-kernel) instructions.

A custom I-hook is a bit like a macro in C. The C-part names the custom I-hook. X
is a parameter that represents the left-hand side’s predicates and assignments, and Y is a
parameter that represents the right-hand side’s analysis code. X and Y are replaced when
the custom I-hook is used, like in macro-expansion; their actual names are not important.

With this custom I-hook definition in place, the following description:

I user instr(i) : true ⇒ io()

I′ io prints a message.

expands out to this:

I instr(i) : is user instr(i), true ⇒ io()

I′ is user instr succeeds for user-level (non-kernel) instructions.

io prints a message.

Here the X has been replaced by true, the Y has been replaced by io(), and the I′-parts
have been combined.

This I-hook can be composed with any other. Custom I-hooks differ from built-in I-hooks
in that they can have M-, M′- and I′-parts associated with them.

This is an interesting I-hook, because of its relevance to Valgrind. Valgrind cannot instru-
ment any kernel code, and so any instr rule used in an accurate description of a Valgrind tool
must account for this. Thus, all descriptions that follow will use user instr rather than instr .
Thus the predicates on the left-hand side (e.g. is user instr) describe what gets instrumented,
but do not necessarily represent actual code that is run at instrumentation-time.

6.6.2 System Calls

More complicated custom I-hooks have their own attributes, as the following example shows.
It describes the instrumentation of system call entry, as supported by Valgrind.

C syscall entry(s) : X ⇒ Y

C′ s.name::String, s.args::List(Value〈4〉)

I user instr(i) : is wrapping syscalls(), is syscall entry(i .opcode, i .us〈4〉) ⇒
(s.name, s.args) := sys details(i .rs〈4〉.contents), Y

I′ is wrapping syscalls succeeds if the Valgrind tool has declared that it requires system
calls to be wrapped (i.e. that system calls are instrumentable). Tools that do not need
to instrument system calls will not make this declaration, in order to avoid the (small)
associated run-time overhead.

is syscall entry succeeds if the instruction does a system call; on x86/Linux this is
done with the instruction int $0x80.

sys details converts the system call number in %eax to the system call name, and gets
the appropriate number of arguments from the other registers.

138

New attributes are declared in the C′-part, and assigned in the rules. The symbol :: indicates
an attribute’s type. This example shows that custom attributes are the third thing that can
be assigned to within rules; the first two things were metavalues and the special tmp variable.
Static attributes can be assigned on the left-hand side, dynamic attributes on the right-hand
side. Note that the comma is just a separator indicating sequencing, so the right-hand side of
the rule states that sys details is called, and then Y takes place (whatever action Y represents
when the custom I-hook is actually used). It is important that Y is the right-most element
of the right-hand side, so the assignments of s.name and s.args come before it and can be
used within Y . The I-hook used is user instr rather than instr so that this custom I-hook
can be reused later to describe Valgrind tools, which only instrument user-level code.

This rule nicely captures the role of the Valgrind core in instrumenting system calls with
wrappers; the Y part here corresponds to the calling of the tool-registered callback function,
and the name and args attributes correspond to the arguments collected by the core and
passed to the callback. Since Valgrind’s approach does not allow tools to statically ignore
particular system calls—any filtering can only be done at run-time—X does not appear in
the I-part.

Valgrind also allows system call exits to be instrumented, and in such a way that the
arguments from the entry are still visible. The following rule expresses this.

C syscall exit(s) : X ⇒ Y

C′ s.name::String, s.args::List(Value〈4〉), s.ret ::Value〈4〉

I syscall entry() ⇒
user instr(i) : is wrapping syscalls(), is syscall exit(i) ⇒ s.ret := eax (i .rs〈4〉.contents), Y

I′ is syscall exit succeeds conceptually if the instruction is located immediately after a
system call. In Valgrind, the instrumentation is actually done as part of the system
call wrapper (described in Section 2.3.10).

eax returns the contents of %eax, which holds the return value.

The ‘ ’ on the right-hand side of the first rule indicates that nothing is done beyond the
implicit gathering of s.name and s.args. In the second rule, the X is again not present,
again because Valgrind can only do run-time filtering on system calls.

As an example of this I-hook in action, consider the following description of the Unix
utility strace which prints out the name and arguments of every system call performed by a
program.

I syscall entry(s) ⇒ io entry(s.name, s.args.v)

syscall exit(s) ⇒ io exit(s.ret .v)

I′ io entry prints the system call name and arguments.

io exit prints the system call return value.

Note that merging the two rules into a single syscall exit rule would not be accurate, as no
output would be produced for the final _exit() or exit_group() system calls which never
return.

139

6.6.3 Function Replacement

As Section 2.4.5 explained, Valgrind tools can replace functions in the client with their own
custom versions. This is heavy-handed, but is necessary for two reasons. First, it is the best
way within Valgrind to instrument specific functions in a way that is reliable and also allows
the function arguments to be obtained (as Section 2.4.3 described). Second, sometimes it is
necessary to change the behaviour of a function slightly, as in the case of Memcheck which
replaces malloc() and friends so that it can pad heap blocks with red-zones and postpone
the recycling of deallocated memory. Function replacement cannot be described completely
by the descriptions, but the following is a good-enough approximation of how it is used by
Valgrind tools to instrument function entry.

C fn entry(f) : X ⇒ Y

C′ f .name::String, f .args::List(Value〈n〉)

I′ All functions matching the predicates in X are replaced; the custom versions set
f .name and f .args appropriately, and execute Y on function entry.

No I-part is given, because it cannot be expressed in the standard form. To make up for this,
in addition to its normal contents the I′-part should also explain if the replacement function
is meant to be instrumented by other rules or not (for Memcheck, some are and some are
not), and also if the replacement version differs in any significant way from the original.

Function exits are described similarly, as the following shows.

C fn exit(f) : X ⇒ Y

C′ f .name::String, f .args::List(Value〈n〉), f .ret ::Maybe(Value〈n〉)

I′ All functions matching the predicates in X are replaced; the custom versions set
f .name, f .args and f .ret appropriately, and execute Y on function exit.

Note that the size of arguments and the return value is n; this will usually be word-sized.
This treatment of function replacement is somewhat awkward. Why not just make re-

placement functions a proper part of the description system? Basically, because they are a
fairly Valgrind-specific feature. Besides, the ugliness here is only local, since the fn entry and
fn exit I-hooks can be used in other descriptions in a similar way to other custom I-hooks—
i.e. the intent and result is the same as that of the syscall entry and syscall exit I-hooks.

6.6.4 Memory Operations

Many tools need to know about memory operations—allocations, deallocations, and other
operations, for heap, stack and mapped (including static) memory. The following definition
defines an I-hook representing all these operations in a useful way. This description will be
used in the descriptions for the Valgrind tools in Section 6.7. The description has several
parts, and is broken up with explanatory text; it also omits, for brevity, some parts that are
repetitive and very similar to other parts.

This definition introduces four attributes. The attribute opname usefully classifies the
operations, e.g. “new mem stack” (for stack allocation) or “die mem heap” (for heap deal-
location). The attributes addr and size indicate the location and size of the memory block

140

affected by the operation. The attribute ms〈n〉 expresses this in a different way, i.e. the list
of memory locations within the affected block; it is redundant with respect to addr and size,
but is useful for some descriptions.

C memop(m) : X ⇒ Y

C′ m .opname::String, m .addr ::Addr, m .size::Int, m .ms〈n〉::List(MemLoc〈n〉)

The first rule relates to the stack. The I-hook user instr is used to avoid considering kernel
code. The rule for stack growth is given, but that for stack shrinkage is omitted; it is extremely
similar, the only notable difference is that the opname is “die mem stack”. Recall that on
x86 the stack grows towards zero.

I user instr(i) : is stack growth(i), m .opname := “new mem stack”, X ⇒
m .addr := new stack top(i .rs〈n〉),
m .size := growth size(i .opcode, i .rs〈n〉),
m .ms〈n〉 := mem locs(m .addr , m .size, g .ms〈n〉),
Y

I′ is stack growth succeeds if the instruction grows the stack.

new stack top returns the top of the newly grown stack.

growth size returns the number of bytes the stack grew by.

mem locs selects the memory byte locations within the given range.

The next part relates to the heap. It involves conditionally defined attributes and conditional
use of the Y part.

M g .mv

M′ g .mv records the location and size of all blocks in the heap. It is initially empty.

I fn exit(f) : is heap alloc(f .name), m .opname := “new mem heap”, X ⇒
if is non zero(f .ret .v) {

m .addr := get val(f .ret .v),
m .size := get arg(1, f .args.v),
m .ms〈n〉 := mem locs(m .addr , m .size, g .ms〈n〉),
add block(!g .mv , m .addr , m .size),
Y }

I′ is heap alloc succeeds for malloc(), new, new[].

is non zero succeeds if its argument is non-zero.

get val extracts the return value from the Maybe type.

get arg extracts the nth argument of the list.

add block records the details of the allocated block in the heap state.

The replacement allocation functions are not themselves instrumented. This is so
that that any memory-allocating system calls (usually mmap() or brk()) used within
malloc() are ignored; this is to avoid considering any memory allocated within malloc()

141

by the allocator itself until it has been returned to the client by malloc(). The re-
placement allocation functions differ from the originals in that they pad the ends of
heap blocks with red-zones.

I fn exit(f) : is heap dealloc(f .name), m .opname := “die mem heap”, X ⇒
m .addr := get arg(1, f .args.v),
if is known block(g .mv , m .addr) {

m .size := get size(g .mv),
m .ms〈n〉 := mem locs(m .addr , m .size, g .ms〈n〉),
remove block(!g .mv , m .addr),
Y }

I′ is heap dealloc succeeds for free(), delete, delete[].

is known block succeeds if the pointer given points to an existing heap block.

get size obtains the block size from the global heap state.

remove block removes the details of the freed block from the heap state.

The replacement deallocation functions are not themselves instrumented, for the same
reasons that the allocation functions are not.

This is an example of a custom I-hook that introduces some metadata. This metadata is not
shown when the I-hook is used within another rule, however, as as an example will soon show.

The rules for realloc() are omitted, but they are similar to those shown for heap allo-
cations and deallocations.

The last rules are for mapped memory segments. As before, the rules for munmap(),
mremap(), mprotect() and brk() are omitted, but similar.

I syscall exit(s) ⇒
if is equal(s.name, “mmap”) {

m .opname := “new mem mmap”,
if (X ∧ is non error(f .ret .v)) {

m .addr := get val(s.ret),
m .size := get arg(2, s.args.v),
m .ms〈n〉 := mem locs(m .addr , m .size, g .ms〈n〉),
Y } }

I′ is non error succeeds if the return value is not -1, which indicates that the call failed.

Note that the X , which is normally on the left-hand side of custom I-hooks, is on the right-
hand side. This is again because no static predicates can be used when instrumenting system
calls.

That ends the definition of the custom I-hook memop. As an example of the use of memop
under Valgrind, consider a heap profiler that produces a graph plotting heap size against time
for a program’s entire execution. It would have the following description.

M g .mvh, g .mvs

M′ g .mvh is an integer, initially zero.

g .mvs is a sequence of (time, heap-size) integer pairs, initially empty.

142

I memop(m) : is heap op(m .opname) ⇒ heap census(!g .mvh, !g .mvs, m .opname,
m .size, g .t)
end() ⇒ io(g .mvs)

I′ is heap op succeeds for any heap allocation or deallocation.

heap census updates the current heap size (growing or shrinking depending on m .opname)
and records the current (time, heap-size) pair.

io prints a graph of the time-varying heap profile.

These custom I-hooks are quite ugly. The good news is that they encapsulate and hide the
ugliness in such a way that the Valgrind tool descriptions in the next section are quite clean.

6.7 Descriptions of Valgrind Tools

This section gives full descriptions for the Valgrind tools described in Chapters 2–5. It shows
how the descriptions can be used to describe real, complex DBA tools.

6.7.1 Memcheck

Memcheck is a comprehensive memory checker. It was briefly described in Section 2.4.1. It
tracks multiple kinds of metadata, does multiple kinds of checking, and is arguably the most
complex tool implemented with Valgrind. So it is a good test for the description system. To
make the description easier to read, it is broken into four parts.

Addressability Checker This part uses A (addressability) bits to detect accesses of un-
addressable memory, which may be done by normal memory accesses, when jumping to new
locations, and in memory blocks read by system calls.

M m〈1〉.mv

M′ m〈1〉.mv is a boolean; the initial value is false (“unaddressable”).

I memop(m) ⇒ m .ms〈1〉.mv := update A bits(m .opname)
user instr(i) : is not empty†(i .ms〈1〉) ⇒

if is unaddr(i .ms〈1〉.mv) { io warn1(g .debug , i .loc, i .ms〈1〉.addr) }
user instr(i) : is jmp†(i .opcode) ⇒

if is unaddr(jmp target memloc(i .us〈4〉).mv) { io warn2(g .debug , i .loc) }
syscall entry(s) ⇒

if is mem touching syscall(s.name) {
if is unaddr(sys touched memlocs(s.name, s.args.v , g .ms〈1〉)) {

io warn3(g .debug , i .loc, s.name, s.args.v) } }

I′ update A bits returns true if the operation makes the memory addressable, or false
otherwise.

is unaddr succeeds if any of its arguments are false (i.e. unaddressable).

io warn1, io warn2 and io warn3 print warnings about accesses to unaddressable mem-
ory; they use the code location and debug information to print the message in terms
of source code locations.

143

jmp target memloc returns the memory location being jumped to.

is mem touching syscall succeeds if the system call touches any memory blocks through
pointers, e.g. read() or write().

sys touched memlocs returns the byte-sized memory locations touched by the system
call, as determined from the arguments.

The replacement allocation and deallocation functions are not instrumented.

The replacement deallocation functions add red-zones to heap blocks, and postpone
memory recycling to improve the chances of catching use-after-free errors.

Validity Checker This part uses V (validity) bits to detect dangerous uses of uninitialised
values—in the target addresses of jumps, in the conditions of conditional jumps, in the ad-
dresses of loads and stores, and in memory blocks touched by system calls. V bits are set by
shadow computation, and by system calls that write blocks of memory.

M v〈1〉.mv

M′ v〈1〉.mv is a byte, where each bit indicates whether the corresponding bit in the value
is valid (i.e. has been initialised), and is initialised to “invalid”.

const value mv returns a value indicating all the bits of a constant are valid.

I user instr : is not empty†(i .ds〈1〉), tmp := f (i .opcode) ⇒ i .ds〈1〉.mv := tmp(i .us〈1〉.mv)
user instr(i) : is jmp†(i .opcode) ⇒

if is uninit(jmp target reg(i .rs〈1〉).contents.mv) { io warn1(g .debug , i .loc) }
user instr(i) : is cond jmp(i .opcode) ⇒

if is uninit(eflags(i .rs〈1〉).contents.mv) { io warn2(g .debug , i .loc) }
user instr(i) : is not empty(i .ms〈1〉) ⇒

if is uninit(addrs(i .as〈1〉).mv) { io warn3(g .debug , i .loc, i .dsize) }
syscall entry(s) ⇒

if is mem reading syscall(s.opname) {
if is uninit(sys read memlocs(s.name, s.args.v , g .ms〈1〉)) {

io warn4(g .debug , i .loc, s.name, s.args.v) } }
syscall entry(s) ⇒

if is mem writing syscall(s.opname) {
sys written memlocs(s.name, s.args.v , g .ms〈1〉).contents.mv := valid() }

I′ f returns one of the family of shadow computation update functions. They are mostly
implemented as inline code for efficiency. They propagate appropriate validity metaval-
ues; the exact of these updates details are beyond the scope of this description.

jmp target reg returns the location bytes of the register specifying the jump target
address.

is uninit succeeds if any arguments are invalid.

io warn1–io warn4 print appropriate warnings about invalid bits being used.

is cond jmp succeeds if the instruction is a conditional jump or conditional move.

eflags returns the location bytes of %eflags.

addrs selects the bytes holding the address(es) of the accessed memory location(s).

144

is mem reading syscall succeeds if the system call reads any memory blocks through
pointers, e.g. write().

is mem writing syscall succeeds if the system call writes any memory blocks through
pointers, e.g. read().

sys read memlocs returns the memory location bytes read by the system call, as de-
termined from the arguments.

sys written memlocs returns the memory location bytes written by the system call, as
determined from the arguments.

valid returns a fully valid byte metavalue.

The shadow computation updates could certainly be described in more detail. However,
omitting the details in this case is no problem, as their workings are a detail that is not
needed to understand the basics of how the tool works.

Note that Valgrind’s use of UCode is not important here; that is a detail below the
descriptions’ level of abstraction. This is a good thing, as it shows the descriptions’ generality.

Deallocation and Leak Checker This part uses the tracked heap state to detect bad
deallocations and search for leaked heap blocks.

M g .mv

M′ g .mv augments the information about each heap block maintained for the memop
custom I-hook with the name of the allocating function (e.g. malloc(), new, new[]).

I memop(m) : is heap op†(m .opname) ⇒ heap block(!g .mv , m .opname, m .addr , m .size)
memop(m) : is free op(m .opname) ⇒

if is no such block(g .mv , m .addr) { io bad free(g .debug , i .loc, m .opname, m .addr) },
if is mismatched(g .mv , m .opname, m .addr) {

io mismatched(g .debug , i .loc, m .opname, m .addr , g .mv) }
end() ⇒ io leaks(g .mv , g .ms〈1〉.mv , g .ms〈4〉.contents.v)

I′ heap block updates the record of the current heap state; it is effectively an augmented
version of the add block and remove block functions used in the definition of the memop
I-hook in Section 6.6.4.

is free op succeeds for any heap deallocation.

is no such block succeeds if the given address does not match an existing heap block.

io bad free prints a warning about the bad deallocation, including the passed address.

is mismatched succeeds if the deallocation function is not appropriate for the block.

io mismatched prints a warning about the mismatched deallocation, including the
address and size of the block, and what the used allocation/deallocation functions
were.

io leaks prints the memory leak summary. It detects and reports any heap blocks that
have not been freed yet, and for which no pointers remain in memory (heap blocks
that could have been freed but were not are considered acceptable). It does this by
finding still-addressable locations that point to unfreed heap blocks; blocks that have
no pointers to them have definitely leaked. Note that there is some interaction here

145

with the addressability checking part: the A bits are used here to determine which parts
of memory should be scanned for pointers. If no leak occurred, a message explaining
this is printed.

Overlap Checker This part checks functions like memcpy() and strcpy() for overlaps
between the source and destination. It does not use any metadata.

I fn entry(f) : is strmem fn(f .name) ⇒
if is overlap(f .name, f .args.v , g .ms〈1〉) { io overlap(f .name, f .args.v) }

I′ is strmem fn succeeds if the function needs overlap checking.

is overlap determines if there is an overlap. For memcpy(), this can be determined just
by looking at the arguments. For the rest (e.g. strcpy()), it requires looking at the
contents of the two blocks.

io overlap prints a warning about an overlap, including the function name and the
memory block addresses.

The replacement functions are instrumented as normal. Apart from the overlap check-
ing, their function is identical to that of the functions they replace.

6.7.2 Addrcheck

Addrcheck is a cut-down version of Memcheck that does not perform validity checking. It was
briefly described along with Memcheck in Section 2.4.1. Its description is exactly the same
as Memcheck’s, from Section 6.7.1, minus the second validity checker part.

In general, the descriptions make it easy to compare tools, and to tell if a tool is subsumed
by another. As another example, one could create a cut-down version of Addrcheck that does
not do deallocation and leak checking, and the relationship of this new version with Memcheck
and Addrcheck would be immediately obvious from the description.

6.7.3 Cachegrind

Cachegrind performs detailed cache profiling. It was described in Chapter 3.

M g .mvs, g .mvc, g .mvi

M′ g .mvs is the simulation of the state of the I1, D1 and L2 caches, initially empty. The
cache configuration is found using the cpuid instruction, unless a different configura-
tion is specified from the command line.

g .mvc is the cost centre table, a table holding one cost centre (CC) per source code
line. Each line CC holds various integer counters, all initialised to zero: accesses,
instruction read misses, data read misses, and data write misses, for each of the I1, D1
and L2 caches. The table is structured by file, function and line. It has an “unknown”
CC for lines that do not have any source code information. It is initially empty.

g .mvi is the instr-info table, a table caching the statically known information about
each instrumented instruction. It is initially empty.

I user instr(i) : is empty(i .ms〈1〉),
tmp := setup instr(!g .mvc, !g .mvi, i .addr , i .isize, 0, get src line†(g .debug , i .loc)) ⇒

146

non mem instr(!g .mvs, !g .mvc, tmp)
user instr(i) : is not empty†(i .ms〈1〉),

tmp := setup instr(!g .mvc, !g .mvi, i .addr , i .isize, i .dsize, get src line†(g .debug , i .loc)) ⇒
mem instr(!g .mvs, !g .mvc, tmp, i .ms〈1〉)

end() ⇒ io(g .mvc)

I′ is empty succeeds if the list is empty.

setup instr finds the CC node in g .mvc that represents the source location of the
instruction, and adds the CC if it does not already exist. It then caches the statically
known information about the instruction—the instruction size, instruction address,
data size, and a pointer to the found CC—in the instr-info table, and returns a pointer
to this node of cached information, which is assigned to tmp.

non mem instr is used for instructions not accessing memory: it updates the global
I-cache state and L2 state, determines if the access hit or missed, and updates the I1
and L2 hit/miss counters in g .mvc for the instruction’s line. The relevant instruction
information is passed via tmp, which represents the pointer to the instruction’s node
in the instr-info table.

mem instr does the same for memory-accessing instructions, and it also does the ap-
propriate updates for the D1 and L2 data accesses.

io prints out the summary hit/miss statistics (found by summing the hit/miss counts
of every cost centre), and also does a per-source-line dump of hit/miss counts, which
can be used to annotate the original source code.

This is an example where breaking the global metavalue into parts makes a description clearer.

6.7.4 Annelid

Annelid performs bounds-checking. It was described in Chapter 4.

M g .mv , v〈4〉.mv

M′ g .mv is the table of segment structures. It is initially empty.

v〈4〉.mv is the run-time type, initially set to UNKNOWN.

const value mv returns NONPTR for small constants, and UNKNOWN for constants that
could be pointers, unless the value points to within a known segment, in which case it
will return a pointer to that segment’s structure.

I memop(m) : is heap op†(m .opname) ⇒
(m .ms〈4〉.contents.mv , m .ret .mv) := heap op(!g .mv , m .opname, m .addr , m .size)

memop(m) : is non heap op(m .opname) ⇒
m .ms〈4〉.contents.mv := non heap op(!g .mv , m .opname, m .ms〈4〉.contents.v)

user instr(i) : is not empty†(i .ds〈4〉), tmp := f (i .opcode) ⇒ i .ds〈4〉.mv := tmp(i .us〈4〉.mv)
user instr(i) : is not empty†(i .ms〈4〉) ⇒

if is out of bounds(i .as〈4〉.mv , i .ms〈4〉.addr) {
io warn(g .debug , i .loc, i .dsize, i .ms〈4〉.addr) }

I′ heap op does three metadata updates. First, in the global segment table it creates a
new segment or marks an old one as free. Second, it sets the shadow type for each word

147

within the newly allocated/deallocated segment (to NONPTR). Third, if the operation
is an allocation, the metavalue of the register holding the return value is set to point
to the just-created segment structure.

is non heap op succeeds for memory operations that do not involve the heap.

non heap op sets the shadow type for each word in the newly allocated/deallocated
segment to NONPTR or UNKNOWN (depending on the range). If the operation is an mmap()

of a code segment with debug information, segment structures for any arrays mentioned
are added to the global table; if it was an munmap(), any such segment structures are
marked as freed.

f returns one of the family of shadow computation update functions that propagate
the run-time type metavalues.

is out of bounds fails if the shadow run-time type of a pointer used to access memory
shows the access is out-of-bounds.

io warn prints an out-of-bounds error message.

6.7.5 Redux

Redux records dynamic data flow graphs (DDFGs). It was described in Chapter 5.

M g .mvt, g .mvs, v〈4〉.mv

M′ g .mvt is the full DDFG, initially empty except for the special nodes such as the
“undefined” node.

g .mvs is the table of pointers to DDFG nodes, one for each system call executed. It is
initially empty.

v〈4〉.mv is a pointer into the DDFG, initially pointing to the “undefined” node.

const value mv returns a DDFG node representing the constant; each code constant’s
node is created once at instrumentation-time.

I user instr(i) : is not empty†(i .ds〈4〉), tmp := f (i .opcode) ⇒
i .ds〈4〉.mv := tmp(!g .mvt, i .us〈4〉.mv , i .us〈4〉.v)

syscall exit(s) ⇒
(sys written memlocs†(s.name, s.args.v , g .ms〈4〉).contents.mv , s.ret .mv) :=

syscall node(!g .mvt, !g .mvs, s.name, s.args.mv , s.args.v)
memop(m) ⇒ m .ms〈4〉.contents.mv := mem node(m .name, g .mvt, m .ms〈4〉.v)
end() ⇒ io(g .mvt, g .mvs)

I′ f returns one of the family of shadow computation update functions. Each function
creates a new node from the inputs and inserts it in the DDFG.

syscall node is similar, but builds nodes for system calls, including the indirect memory
inputs. It inserts a pointer into the syscall DDFG node table, and sets the metavalues
of the indirect memory outputs and the return value.

mem node updates the metavalues of locations affecting by memory operations.

io prints the portions of the DDFG that are reachable from the system call nodes
recorded in g .mvs.

148

6.8 Limits of Dynamic Binary Analysis

Different DBA tools record different amounts and kinds of metadata. One pertinent question:
is there a maximum amount of (non-redundant) metadata that can be recorded? The answer
is yes. Imagine the ultimate DBA tool, where “ultimate” is in terms of the information it
gathers at run-time (rather than what it does with it). I will call it Omniscion, a suitably
super name for a super tool.

Assume that Omniscion has the same access to run-time information that any real tool
does. This implies that Omniscion has access to exactly the attributes introduced in Sec-
tion 6.3, which have been used throughout the examples. Assume also that Omniscion can
adjust its speed up or down, to match that of any tool; this nullifies any potential timing
issues caused by the fact that most tools slow a program down.

So what information will Omniscion collect? In other words, what does Omniscion’s de-
scription look like? It is very simple.

M g .mv

I start() ⇒ f 1(!g .mv , g .t)
instr(i) ⇒ f 2(!g .mv , g .t , i .*)
end() ⇒ f 3(!g .mv , g .t)

The rules are straightforward; for each operation Omniscion adds analysis code that augments
the global metadata with all the attributes involved in the operation (i .* represents every
attribute of i). Recording anything else would be redundant, as all metadata can be deter-
mined from these attributes. Omniscion only needs global metadata, since all other kinds can
be replaced with global metadata, as Section 6.2 explained.

Omniscion’s description is missing the M′- and I′-parts which would describe the form of
g .mv and the functions f 1, f 2 and f 3. This is because Omniscion is a thought experiment and
the important thing is what it could do with the information it collects. Ultimately, every
DBA tool is limited by two things:

1. the amount of information it can record;

2. what it can do with that information.

With respect to item 2, all tools are equally limited by the laws of computation and what
can be done on a machine. Therefore item 1 is the deciding factor. Since Omniscion takes
as input the maximum possible amount of (non-redundant) information, it represents the
limit of what DBA tools can achieve. In other words, anything that cannot be determined by
Omniscion cannot be determined by any DBA tool.

The basic assumption underlying this is that tracking a program’s start, end, every input
to every instruction, plus g .t for all of these, provides Omniscion with all the information it
needs. This is perfectly reasonable—after all, a program’s execution is nothing more than
the sum of every instruction executed by it and by the operating system kernel on its behalf,
and all these instructions are instrumented by Omniscion.

This is a nice result to come out of such a simple line of reasoning. It was enabled by the
separation between the formal and informal parts of the descriptions.

149

6.9 What is Dynamic Analysis?

Now is a good time to consider a fundamental question: what is dynamic analysis? “Dynamic
analysis” is a term that is widely used, but does not have a clear definition. Consider the
following descriptions of dynamic analysis from Ball [11] and Ernst [41].

“Dynamic analysis is the analysis of the properties of a running program... [it]
derives properties that hold for one or more executions by examination of the
running program (usually through program instrumentation).”

“Dynamic analysis operates by executing a program and observing the executions.
Testing and profiling are standard dynamic analyses.”

Without unduly picking on Ernst and Ball—they were not attempting to rigorously define
dynamic analysis—these descriptions are typically vague. Contrast them with the following,
much more precise definition of “static analysis”, from Nielson, Nielson and Hankin [83].

“[Static] Program analysis offers static compile-time techniques for predicting safe
and computable approximations to the set of values or behaviours arising dynam-
ically at run-time when executing a program on a computer.”2

(Note that this definition is aimed at static analyses used to enable program transformations,
which must be safe. Some static analyses that detect bugs, such as those used by the Stanford
checker [48], do not need to be safe. Therefore the words ”safe and” can be removed from
the above definition to give a more general definition of static analysis.)

Because static analysis and dynamic analysis are duals [41], often ideas from one can be
applied to the other with only a small twist. But the twist required here is not obvious—there
seems to be no need for prediction and approximation of values and behaviours with dynamic
analysis; at run-time the values and behaviours are simply there, ripe for the picking. So
where is the duality?

In comparison to static analysis, which requires a modicum of theory to achieve interesting
and reliable results, things are, in one sense, so easy at run-time that some dynamic tools
barely do anything worth describing as “analysis”. Consider a tool like strace, mentioned in
Section 6.6.2, which pretty-prints system call arguments and return values. Although strace

is extremely useful, “dynamic observation” would be a more suitable description of what
it does. But in comparison, the A and V bits of Memcheck, for example, are sufficiently
complex to deserve the epithet “analysis”. Where does the analysis/not analysis dividing line
lie between these two? The answer comes from metadata.

Dynamic analysis requires the maintenance of metadata. strace maintains no metadata,
and lives forever in the present. In contrast, the Valgrind tools described in this dissertation,
and many other run-time tools, maintain metadata and thus have a “memory” of a program’s

2Other, less precise definitions of static analysis are in use. Consider the definition from the Free On-Line
Dictionary of Computing (FOLDOC) [56]: “A family of techniques of program analysis where the program is
not actually executed (as opposed to dynamic analysis), but is analysed by tools to produce useful information.
Static analysis techniques range from the most mundane (statistics on the density of comments, for instance)
to the more complex, semantics-based techniques.” I will use Nielson, Nielson and Hankin’s definition—which
excludes the suggested comment density statistics, for example, because they do not involve run-time values
and behaviours—because it is precise, authoritative, and it can be interestingly contrasted with dynamic
analysis.

150

execution (although the overlap checking part of Memcheck, described in Section 6.7.1, does
not require metadata, and is thus an example of dynamic checking that does not involve
true dynamic analysis). And crucially, maintained state is not truly metadata unless it is
potentially reused again later by analysis code to compute more metadata, or in a conditional
operation (e.g. Memcheck’s checking of A bits on a memory access). For example, if strace
was implemented so that its output was collected into a buffer, and then printed out in one
fell swoop at the program’s end, would that qualify as dynamic analysis? No; this state is
not true metadata, as it is never used in either of the required ways.

So, the first part of the twist is that whereas static analysis involves prediction, dynamic
analysis involves remembrance. The second part is the observation that dynamic analysis
does, like static analysis, involve approximations (alternatively called abstractions), despite
the perfect light of run-time. However, unlike static analysis where approximations are a
necessary shortcoming, for dynamic analysis approximations are involved simply because
there is no point in recording more information than necessary.

In fact, this is exactly what all metadata is—not just a remembrance of things past, but
an approximate one. Consider the following examples.

• A global instruction count is an approximation of the trace of all executed instructions.

• Under Memcheck, a memory byte’s A bit is an approximation of all the memory opera-
tions that have affected it, and a value’s V bits are an approximation of all the constant
values and operations on which it has a data dependency.

• A global cache state is an approximation of all the memory accesses that have occurred.

• Dynamic invariants are approximations of the values that have been seen at particular
program points.

• A representation of the heap state is an approximation of all the heap allocations and
deallocations that have occurred.

Even normal data values stored in registers and memory locations are approximations of the
past operations on which they have a data dependency.

With these two ideas of remembrance and approximation in mind, the required twist is
clear; mirroring the above definition of static analysis:

Dynamic analysis offers run-time techniques for remembering approximations to
the set of values or behaviours seen so far when executing a program on a com-
puter.

Since metadata is exactly “approximations to the set of values or behaviours seen so far”, the
definition can be expressed more succinctly:

Dynamic analysis is the gathering and use of metadata.

Or, to summarise in another way: static analysis predicts approximations of a program’s
future; dynamic analysis remembers approximations of a program’s past.

151

6.10 Discussion

This chapter has given descriptions for a number of tools, including several Valgrind tools.
From this a number of benefits and shortcomings are clear, as the following sections describe.

6.10.1 Benefits

The descriptions provide numerous benefits. First, they demonstrate some high-level things
about DBA tools and dynamic analysis in general.

• They show that: all tools can be described in a unified way, in terms of their analysis
code and metadata; that metadata is the key component, and is particularly important
in making the description clear; what kinds of metadata are common; and how metadata
is threaded through analysis code.

• Through the emphasis on metadata, they lead to a precise definition of dynamic anal-
ysis, based on the observation that static analysis predicts a program’s future, whereas
dynamic analysis remembers a program’s past, and metadata is exactly what is remem-
bered.

• They emphasise the importance of Valgrind’s support for location metadata (shadow
registers and shadow memory), which other DBI frameworks do not provide.

They also show what other facilities a DBI framework such as Valgrind should have. For
example, Valgrind currently allows function entry/exit to be instrumented, but function
arguments cannot be easily obtained (except for those of system calls) without using
function replacement, which is a shortcoming.

Following on from this, identifying how the framework features map onto concepts in
the descriptions can also make easier to write tools, if this mapping is well documented.

• Omniscion demonstrates the theoretical limits of DBA tools, in terms of the information
they can gather.

• They emphasise the importance of computing things statically where possible, which is
a key implementation detail for making tools efficient.

• A similar description system may well be useful for characterising dynamic analysis
done at the level of source code or byte-code. The basic concepts should be the same,
although the details would differ—for example, program variables might serve as M-
hooks instead of machine registers and memory locations, and program statements or
expressions might serve as I-hooks rather than instructions.

Second, they help us write and understand tools.

• They provide a precise way to describe tools. The descriptions describe the tools in great
detail, giving an excellent understanding of how they work. By forcing one to specify
many things, they are much more precise and directed than plain language descriptions
would be. One would be hard-pressed to find a properly written description of a tool
that leaves the reader unsure what it does.

152

• They provide a concise way to describe tools. Compare a few thousand lines of code
with a few lines of description. Plain language descriptions would be much longer.

• They provide a foundation for comparing tools. In particular, it shows how some tools
subsume others (e.g. Memcheck subsumes Addrcheck), or are composed of multiple
parts.

• Perhaps most importantly, writing a tool description forces one to think extremely
carefully about the tool. In my experience, writing accurate descriptions is surprisingly
difficult and time-consuming. However, thinking about a tool so carefully is extremely
useful, particularly when the thinking is directed in a way that draws out the important
characteristics of the tool. If done before a tool is written, it can make it much clearer
how the tool should be implemented. If done for an existing tool, it can identify how
the tool could be improved.

For example, I once tried implementing an invariant tracker and checker similar to
DIDUCE [49] as a Valgrind tool. After some experimentation, I abandoned the effort
due to unsatisfactory results. Several months later, when first thinking about the de-
scription system, I realised that I had mis-implemented the tool, associating invariant
data with memory locations rather than code (i.e. instructions or source code locations).
This confusion probably arose because the existing tools such as Memcheck used loca-
tion metadata, and I unwittingly based the invariant detector on it. Such a confusion
would not have occurred if I had written a description before beginning coding, or had
even been thinking in the way that the descriptions encourage.

As an even better example, writing the description for Cachegrind led to it being greatly
improved. Before I wrote its correct description, Cachegrind had been in existence
for two years, and widely used, including for the Glasgow Haskell experimentation
described in Section 3.4. I had even drafted Chapter 3 of this dissertation describing
Cachegrind. Upon realising the first description I had written was wrong, I realised that
Cachegrind had a single data structure that awkwardly served two distinct purposes:
first, to store cost centres; second, to cache the static instruction attributes to save
passing them as arguments to the simulation functions. After realising this, I was able
to split this single, complicated data structure into two much simpler data structures—
the cost centre table and the instr-info table, both of which Section 3.3.1 described. A
particular improvement was the association of cost centres to source line codes, rather
than individual instructions, as had been the case.

These changes resulted in the following improvements to Cachegrind: source code was
reduced in size by 29%, and made substantially simpler in many places; memory con-
sumption was reduced by 10–20%, due to fewer cost centres being required; the size of
the output files was reduced by over 90%, and so annotation speed was hugely improved;
and the run-time speed was unchanged. Also, the functionality was improved—with the
old approach, the hit/miss counts for instructions that were unloaded at run-time had to
be merged into a single “discard” cost centre; with the new approach they are preserved
accurately. These impressive improvements were a direct result of using the description
system.

153

6.10.2 Shortcomings

Despite their benefits, the descriptions have the following shortcomings.

• They can be messy, particularly for the more complicated DBA tools. However, this
reflects the tools themselves, and is hard to avoid.

• They do not provide any way of formally reasoning about tools to the extent of e.g. prov-
ing or verifying any aspects of them. Again, this is difficult in general because many
interesting tools are complicated in practice, and do things that are very hard to reason
about formally.

• There is some subjectivity in the formal parts of the descriptions. For example, the
choice of M-hooks and attributes was chosen according to what seemed to fit well.
Also, there is no single correct description for any tool, due to the informal parts.

• They may be incomplete, in that there may be some tools that cannot be adequately
described with it. The form of the descriptions was decided upon by looking at many
example tools, and coming up with a system that fit everything that they needed. This
took many revisions and reworkings. If the system is inadequate, it is possible that
minor changes would render it adequate. However, even if not, that does not detract
from its usefulness for the tools it can describe.

• The system cannot describe some things very well, such as function replacement.

• The level of abstraction in the descriptions means that they cannot exactly portray all
the low-level details of a tool. This is hard to avoid given their high level. However, the
informal description parts can describe low-level details.

• Writing them is entirely manual. There is no way to automatically check a description
to determine if it is accurate.

None of these shortcomings really detract from the benefits, however. The descriptions are a
means, rather than an end in themselves, so even though they have flaws they are still useful.

6.10.3 Ideality vs. Reality

In many fields of computer science, there are two basic approaches to a problem, which differ
in the chosen starting point. As an example, consider the goal of ensuring programs are
correct.

The first approach is to begin with a perfect ideal—for example, a program with no bugs—
and to work towards the real world. That is, to find ways to make that ideal practical, and
usable in real programs. For example, one can invent a new programming language with a
type system or other facilities that make certain kinds of errors impossible. Such approaches
usually involve rigorous theoretical backing. When it works, this approach is best, as it usually
leads to desirable properties such as soundness. However, the history of computer science is
littered with research that begins in ideality, but does not progress far enough towards the real
world to result in any tangible benefit. This approach is also often not useful for improving
existing programs.

154

The second approach is to begin with the imperfect real world—for example, real programs
already written in languages like C, C++ and Fortran—and find ways to make those programs
less imperfect. DBA tools such as Memcheck and Annelid are prime examples of this approach.
This more pragmatic approach rarely reaches the ideal, but an improvement on an existing
situation is better than no improvement at all.

Some of the systems described in the related work of Section 6.11.2, e.g. Kishon, Hudak
and Consel’s monitoring semantics, take the former approach. This chapter’s description
system is very much an example of the latter approach—it takes existing, real-world DBA
tools, warts and all, and describes them as best it can. In fact, the entire field of dynamic
binary analysis and instrumentation, and all the work presented in this thesis, also take this
latter approach. The results may not always be pretty, and they may have flaws, but they
are still worthwhile.

6.10.4 Executable Descriptions?

A final note: one possible use for this sort of description system would be to automatically
generate some of the tool code for a framework such as Valgrind, similar to the way parser
generators like YACC generate parsers from a high-level grammar description. The formal
parts of the tool descriptions would be written in a special language that looks a lot like how
those parts have been written in this chapter. The informal parts would be written not in
plain language, but instead in a programming language such as C; they would correspond to
YACC’s “user actions”. The user actions would be able to refer to attributes like i .opcode in
some convenient way, just like YACC uses $$, $1, etc., to refer to elements in a parse tree.

However, the amount of code saved would probably not be substantial, as much of the
complexity in tools is typically in the parts that correspond to the informal descriptions of
metadata and analysis code, i.e. those parts which would have to be programmed as user
actions anyway. Also, tools need to be programmed carefully to minimise their overhead,
and it would be difficult for automatic code generation to satisfy this requirement. Valgrind’s
built-in support for things like shadow registers and shadow memory is a good compromise
between making tools easy to write, and giving tools enough control.

6.11 Related Work

There is a great deal of theory behind static analysis. There are whole conferences and books
(e.g. [83]) about it. In comparison, there is far less theory behind dynamic analysis. This is
partly because dynamic analysis tends to be easier from a theory point of view; working with
the actual run-time values and behaviours makes many things simple. Also, because dynamic
analysis is not sound in general, one does not have to worry about using theory to ensure this
property.

There are two main areas of work related to this chapter’s descriptions. The first is in the
general description and classification of dynamic analysis and dynamic analysis tools. The
second is in actual systems, theoretical and implemented, that involve high-level specifications
of dynamic analysis tools.

155

6.11.1 Classifications

Ernst [41] nicely describes the complementary characteristics of static analysis and dynamic
analysis, as covered in Section 1.1.1. Ernst also identifies that both kinds of analysis have
in common the characteristic that they both consider only a subset of executions: “those
that induce executions of a certain variety” for static analysis, and those observed during
execution for dynamic analysis. However, Ernst does not consider the novel future/past
duality described in Section 6.9, nor the role of metadata in dynamic analysis.

Ball, in an unpublished summer school presentation [12], hints at the importance of meta-
data and approximation in dynamic analysis, with the following two bullet points: “Dynamic
analysis: abstraction used in parallel with, not in place of, concrete values”, and “Dynamic
analysis is a problem of data aggregation and compression, as well as abstraction”. However,
he does not make the connection nearly as strongly as Section 6.9 does.

Zeller [121] gives a nice, brief four-level categorisation of tools based on how many runs
of a program they observe. The tools that this chapter has considered fit mostly in the
“observation” (1 run observed) category, although they could be in the “Induction” (n runs)
category. They are not in “Static” (0 runs) or “Experimentation” (n runs, where later runs
are guided by results from earlier runs) categories. Zeller’s simple categorisation is useful at
a high-level—in a similar way that it is useful to know which M-hooks metadata is attached
to—but since it only describes a single characteristic it is does not give (nor is it intended to
give) very much information about a tool.

Reiss [94] describes the features that an ideal dynamic instrumentation framework would
provide, such as low usage overhead, low execution overhead, and adequate handling of real
programs including multi-threaded programs and libraries. This provides a useful view of
dynamic analysis and instrumentation in general, but does not describe individual tools at
all.

Delgado [36] gives an ad-hoc taxonomy that categorises run-time monitoring tools that
detect, diagnose, and recover from software faults. The taxonomy has three main parts, for the
“Specification Language”, “Monitor” and “Event-handler” parts of a tool. The classification
of each part is done with a multi-level tree-shaped classification scheme. Classifying a tool
requires some human judgement. Delgado’s scheme covers more types of tools than this
chapter’s descriptions do; for example, it includes tools that instrument source code. However,
it only gives a very high-level overview with little detail about how each tool actually works.

6.11.2 Specification Systems

Sloane’s little-known but far-sighted system Wyong [103] generates tools for ATOM [105]
from high-level, concise, declarative specifications based on attribute grammars—i.e. exactly
the YACC-style tool generation mentioned in Section 6.10.4. Wyong has an impressive set of
features, particularly for a tool from 1997. It has a program grammar that describes the static
and dynamic structure of a program in terms of function calls, basic blocks, and instructions.
The requested raw inputs are gathered automatically. Metadata can be specified at different
levels, e.g. global and per-instruction, and metadata storage is handled automatically. Anal-
ysis steps are automatically sequenced in the correct order according to data dependencies.
The specifications are quite architecture-independent and suitable for retargetting to different
systems. They are also highly composable. On the downside, it is unclear but seems unlikely
that Wyong would be suitable for building heavyweight tools such as Memcheck; the exam-

156

syscall::mmap:entry // I-hook specification

/execname == "Xsun"/ // run-time predicate

{

@[pid, arg4] = count(); // global metadata update

}

END // I-hook specification

{

printf("%9s %13s %16s\n", "PID", "FD", "COUNT");

printa("%9d %13d %16@d\n", @); // I/O actions

}

Figure 6.1: Example DTrace probes

ple in the cited paper is for a lightweight branch counting tool that tracks taken/not taken
counts for each instruction. It is also unclear how good the performance of tools built with
it is. Finally, Wyong was implemented to use ATOM on Alphas and so is now unfortunately
defunct.

DTrace [23] is a powerful instrumentation facility built into the Solaris 10 kernel that
is designed for profiling systems. Instrumentation probes are specified in a high-level pat-
tern/action language similar to C and awk. Each probe’s definition looks quite similar to the
rules in this chapter. For example, the pair of simple probes in Figure 6.1 (from the cited pa-
per, with my annotations) measure the number of mmap() calls performed by all the X server
processes on a machine, and what file descriptors are mapped. The first probe specifies the
I-hook of interest—entry to the mmap() system call—and uses a run-time predicate to decide
whether to run the analysis code (by checking if the process name is Xsun, the name of the X
server). The instrumentation increments an element (via a built-in function count()) in an
associative array (a built-in data type for storing global metadata) indexed by the process ID
and the mapped file descriptor (arg4). The second probe specifies an I/O action performed
when the monitoring is ended, which dumps the collected metadata. The exact details of
this example are not so important; more notable are the concepts shared with this chapter’s
descriptions.

So with its concise specification of I-hooks, support for different kinds of metadata (it also
supports thread-local metadata), and use of predicates, update functions, and I/O actions,
DTrace probes look a lot like the descriptions presented in this chapter. The main difference,
apart from DTrace being an actual implemented system, is that DTrace analysis code is
less fined-grained than that described here, typically at the level of function or system call
entries, not at the level of individual instructions, and it does not support location metadata.
Nonetheless, it is interesting and encouraging to see an independently created system overlap
this chapter’s descriptions, as it provides further evidence that they are a natural and effective
way to describe DBA tools.

Kishon, Hudak and Consel [63] define a monitoring semantics, a non-standard model of
program execution that captures monitoring activity performed by many dynamic analysis
tools. The monitoring semantics is a conservative extension of a programming language’s
normal denotational semantics, and can be derived automatically for any language which has
a continuation semantics specification. Individual program monitor specifications have three

157

parts—the monitor syntax, the monitor algebra (which includes the monitor state, i.e. the
metadata), and the monitoring functions—and are analogous to this chapter’s descriptions.
The cited paper gives four example monitor specifications: a tracer, a profiler, a demon and a
collecting monitor; it also discusses an interpreter-based implementation. The examples are
based around a small language based on the lambda calculus. Their system is quite neat, and
compared to this chapter’s descriptions, it has a much stronger theoretical basis. However,
their system is language-specific and highly idealised, so it cannot be applied to real-life DBA
tools.

Polymer [14] is a language for formally specifying program monitors for enforcing security
policies. A policy can force a client program to abort execution, prevent certain operations
(e.g. function calls) from occurring, or do an alternative computation for the client. Policies
can be composed. Polymer has a formal semantics, and a type and effect system which ensures
non-interference between policies that are composed together. The policies look somewhat
like this chapter’s descriptions, although the examples given are all expressed at the level of
function calls in source code, rather than at a binary level, and they have little in the way
of metadata, as they are basically designed to check certain operations, and either allow or
prevent them.

6.12 Conclusion

This chapter has presented a system of detailed descriptions of DBA tools. The descriptions
have four parts: formal and informal descriptions of the metadata, and formal and informal
descriptions of the analysis code. The separation into formal and informal parts is crucial for
making the descriptions useful. Multiple examples were given, including descriptions of all
the Valgrind tools described in this dissertation.

The descriptions, despite some shortcomings, provide multiple benefits. First, they show
that metadata and analysis code are the key concepts underlying DBA. They demonstrate
simply and intuitively—through Omniscion—the limits of DBA. They make it clear what
features a DBI framework like Valgrind should provide. They are precise and concise—
Valgrind tools containing several thousand lines of C code were meaningfully described in as
little as ten or twenty lines. They also lead to a precise definition of dynamic analysis, and
a better understanding of dynamic analysis in general, based around the idea that metadata
is the approximation of a program’s past. Finally, the descriptions provide a directed way of
thinking about tools which improves one’s understanding how a tool works and what it does.
This can (and already has, in the case of Cachegrind) lead to improved tool implementations.

158

Element Hook Attribute Type Binding Description

Global M rs〈n〉 List(RegLoc〈n〉) s all register locations
ms〈n〉 List(MemLoc〈n〉) s all memory locations
debug DebugInfo s debug and symbol information
t Time d current time
mv ? d global metavalue (optional)

RegLoc〈n〉 M name String s register location name
contents Value〈n〉 d contents of location
mv ? d metavalue (optional)

MemLoc〈n〉 M addr Addr s address
contents Value〈n〉 d contents of location
mv ? d metavalue (optional)

Value〈n〉 M v Bits〈n〉 d the actual bits
mv ? d metavalue (optional)

Instr I opcode Opcode s opcode
isize Int s instruction size
dsize Int s data (operand) size
addr Addr s/d instruction address
loc CodeLoc s/d code location
rs〈n〉 List(RegLoc〈n〉) s RegLocs accessed
ms〈n〉 List(MemLoc〈n〉) sd MemLocs accessed
us〈n〉 List(Value〈n〉) sd Values used in computation
as〈n〉 List(Value〈n〉) sd Values used as auxiliaries
ds〈n〉 List(Value〈n〉) sd Values defined

Start I –

End I –

Hook:
M M-hook (can have a metavalue)
I I-hook (instrumentable code)

Binding:
s static (known at instrumentation-time)
d dynamic (known at run-time)
s/d either (see text for explanation)
sd mixed (see text for explanation)

Table 6.1: M-hooks, I-hooks, and their attributes

159

160

Chapter 7

Conclusion

This dissertation has advanced the theory and practice of dynamic binary analysis
and instrumentation, with an emphasis on the importance of the use and support
of metadata.

7.1 What Just Happened

Chapter 2 described Valgrind, a DBI framework. The chapter emphasised Valgrind’s support
for heavyweight DBA via a description of Memcheck, a checking DBA tool. In particular,
the discussion of heavyweight DBA introduced the concepts of location metadata and shadow
computation.

Chapter 3 described Cachegrind, a useful profiling tool. Chapter 4 described Annelid, a
novel checking tool. Chapter 5 described Redux, a novel visualisation tool. All these tools
were built with Valgrind, and all perform heavyweight DBA, the latter two using location
metadata and shadow computation.

Chapter 6 described a system of semi-formal descriptions of DBA tools. The descriptions
are useful for improving the understanding of individual tools, which can lead to improved
implementations. They are also useful for understanding DBA tools in general. In particular,
they emphasise that analysis code and metadata are the primary concepts underlying all DBA
tools. The discussion of the imaginary tool Omniscion showed the limits of DBA. The chapter
also identified a key feature of dynamic analysis in general, that it considers approximations of
a program’s past, as opposed to static analysis which considers approximations of a program’s
future; and that metadata is exactly what these approximations are.

If a single idea is to be taken away from this dissertation, it is that metadata—the ap-
proximations of a program’s past values and behaviours—is crucial. Metadata is at the very
heart of dynamic binary analysis, rich metadata leads to powerful DBA tools, and efficient
heavyweight DBA tools can be well supported by DBI frameworks.

7.2 Future Work

Valgrind is a system with great potential for further research and development. There are
three main areas for improvement: support for new architectures, support for multiple op-
erating systems, and new kinds of tools. Work on these areas will help bring Valgrind to a
wider audience, and also teach us more about dynamic binary analysis and instrumentation.

161

7.2.1 New Architectures

Valgrind currently only works on x86 machines, which is a big limitation. Many users want it
for other architectures, most notably x86-64; PowerPC and SPARC are also requested fairly
frequently.

Porting Valgrind to new architectures in a clean way will not be an easy task. Some kind
of architecture abstraction layer will be required. This layer will need to factor out at least
the three following architecture differences.

• All the pieces of code within Valgrind’s core that deal directly with machine registers
will have to be factored out, as they will be different for each architecture. This should
be fairly straightforward.

• Valgrind’s code currently assumes 32-bit words throughout. Making the code 64-bit
clean is not particularly difficult, but will require quite some effort. An x86-64 port will
be perfect for this.

• By far the hardest part—requiring genuine research rather than just coding effort—is
choosing an intermediate representation (IR). UCode was designed for x86, and has a
number of x86-specific features. It also has very poor support for instrumenting floating
point and SIMD registers.

A more general-purpose IR is necessary that will be able to express the features of
multiple architectures. A key requirement of the IR is that it should be possible to
write tools in an architecture-neutral fashion. Complete architecture-neutrality will be
hard to achieve; for example, Memcheck currently exploits some of the behaviours of
the x86 condition codes to efficiently do its V bit shadow computation. However, as
much of each tool plug-in as possible should be architecture-neutral.

To prevent the IR effectively becoming the union of all the supported instruction sets,
some kind of line will have to be drawn; the more unusual instructions will probably be
represented with some kind of “opaque” instruction in the IR. The code generator will
just copy the original instruction bytes through, but the details will not be expressed
directly as opcodes in the IR. These opaque instructions could have a string attached
which gives the original instruction form, so that a tool that really did need to know
about unusual instructions could find out about them if absolutely necessary.

One consequence of this “opaque” approach would be that dynamic binary translation—
hosting binaries for one architecture on another—would not be possible. Dynamic
binary translation is extremely difficult in general, and would be even harder to do in
a way that supports heavyweight DBA within Valgrind, and so is not a current design
goal for Valgrind.

Paul Mackerras has already completed an experimental port of Valgrind to the PowerPC/Linux
platform. He augmented UCode with eight new opcodes to handle PowerPC instructions that
could not be expressed in the current UCode. The challenge now is to come up with an im-
proved IR that has the right abstractions for expressing these extra opcodes in a cleaner
way.

162

7.2.2 New Operating Systems

Valgrind currently only works on Linux, which is another big limitation. Many users want it
for other Unix-style operating systems, most notably the BSDs and MacOS X.

Just like architecture ports, operating system (OS) ports will be best achieved by intro-
ducing an OS abstraction layer that factors out the OS-specific parts, such as those involving
threads, signals and system calls. Unlike the architecture abstraction layer, which will affect
both the core and tools significantly, the OS abstraction layer will mostly affect the core, and
tool plug-ins should not be affected much. The kinds of details that will need to be factored
out include interactions with system calls, signals and threads. This work will be fiddly—
currently, these parts are the generally the most intrusive and most likely to be broken by
changes—but should be possible. Doug Rabson has already completed an experimental port
of Valgrind to x86/FreeBSD.

A Windows port would also be extremely popular. However, because Windows has a
completely different architecture to the aforementioned Unix-style operating systems, porting
Valgrind to Windows would require extremely large changes. It is hard to see this happening
any time soon.

7.2.3 New Tools

Many new tools could be built using Valgrind. For example, memory use is often a huge factor
in the speed of a program. Imagine a tool that could identify which parts of a program that
are responsible for generating large amounts of memory traffic. The metadata tracked here
might be the number of bytes of memory copies performed by each line of source code. Or,
it might be useful to record for each memory location which line of source code last touched
it. Or a combination of such information might be useful.

Whether this tool would be useful remains to be seen. However, one thing is certain—
there is a strong trend towards more powerful tools using richer forms of metadata, due to the
increasing complexity of both software and hardware; the shadow computation performed by
Memcheck, Annelid and Redux are excellent examples. Valgrind’s support for heavyweight
dynamic analysis makes it an ideal platform for developing the next generation of DBA tools.

Another possibility, as Section 2.4.5 briefly mentioned, is in the area of combined static
and dynamic analysis. The idea of combining static and dynamic analysis is one that has
been talked about frequently by researchers, but not a great deal of progress has been made.
Valgrind could, in conjunction with a compiler that inserts client requests into compiled
programs, provide a good platform for real experimentation and progress on this front.

7.2.4 Avoiding Code Blow-up

If the architecture and OS abstraction layers are completed, Valgrind will have three dimen-
sions of genericity, supporting M architectures, N operating systems, and P tools. For this to
be remain viable, it is imperative that an M×N×P code blow-up is avoided. An M+N+P
code increase would be ideal. This will not be possible in practice, but it will be important
to do the abstraction layers well enough to keep code expansion as close as possible to this
ideal, otherwise code maintenance will overwhelm efforts to further extend Valgrind.

163

7.3 Final Words

Ever since programming began, programming tools have slowly improved, making the difficult
job of writing good programs easier. Dynamic binary analysis tools such as Memcheck,
Cachegrind, Annelid and Redux, built with dynamic binary instrumentation frameworks such
as Valgrind, are just another step in this progression. I hope that they will help many
programmers improve their programs. But I look forward more to the day when the art of
programming has progressed such that they are no longer necessary, having been eclipsed by
something even better.

164

Appendix A

Glossary

This glossary provides a quick reference for important terms used in this dissertation. Terms
appearing in bold within definitions have their own entries. Terms introduced or defined by
this dissertation (or by the author publications mentioned at the start of this dissertation)
are marked with a † symbol. Valgrind-specific terms used by this dissertation are marked
with a \ symbol. Among the unmarked terms, note that some are used by others in multiple
ways, but are used in only one way in this dissertation.

Active Used to describe analysis code that affects the semantics of the instrumented
program. Contrast with passive.

†Analysis code Any code added to a program for the purpose of doing dynamic analysis.

†Attribute A characteristic of an M-hook or I-hook, such as a memory location’s address.

\Basic block A straight-line sequence of machine code, whose head is jumped to, and which
ends in a control flow transfer such as a jump, call, or return. Note that this definition
is different to some uses of the term; in particular, a jump can land in the middle of a
previously seen basic block.

†Binary analysis The analysis of programs at the level of machine code. Contrast with
source analysis.

\Client A program running under the control of a Valgrind tool.

\Client request A small piece of code, embedded in a client, that is a no-op when the client
is run normally, but is interpreted specially as a message or query by Valgrind’s core
and/or tool plug-ins. Client requests can take multiple arguments, and even return
values to the client.

\Core The main part of Valgrind and the major component in every Valgrind tool, doing
most of the work except for instrumentation, which is done by a tool plug-in.

†DBA Short for dynamic binary analysis.

DBI Short for dynamic binary instrumentation.

†DDFG Short for dynamic data flow graph.

165

†Dynamic analysis Run-time techniques for remembering approximations to the set of val-
ues or behaviours seen so far when executing a program. Or, less formally, the analysis
of programs at run-time. Involves the use of analysis code and metadata. Contrast
with static analysis.

†Dynamic binary analysis The intersection of dynamic analysis and binary analysis.

Dynamic binary compilation and caching An implementation technique used in dy-
namic binary instrumentation, dynamic binary optimisation, and dynamic
binary translation, whereby a program’s original code is instrumented and stored
in a cache, and only code in the code cache is run. Used by Valgrind.

Dynamic binary instrumentation The instrumentation of a program at the level of
machine code, at run-time, with analysis code, for the purpose of doing dynamic
binary analysis. Used by Valgrind. Contrast with static binary instrumentation.

Dynamic binary optimisation The use of dynamic binary analysis and dynamic bi-
nary instrumentation specifically to improve a program’s speed by utilising optimi-
sations that can not be performed statically by a compiler.

Dynamic binary translation The running of a program compiled for one platform (the
guest) on another (the host), typically through a translation tool.

†Dynamic data flow graph A directed acyclic graph that represents all value-producing
operations executed by a program at run-time, as produced by the Valgrind tool
Redux.

†Dynamic source analysis The intersection of dynamic analysis and source analysis.

†Essence The parts of a dynamic data flow graph that are reachable from the inputs of
any system calls executed by a program, and thus have a data flow connection to the
program’s observable behaviour.

†Global metadata Metadata that pertains to an entire program or the whole machine.

†Heavyweight Used to describe dynamic binary analysis tools that involve rich meta-
data (particularly location metadata) and analysis code that is highly pervasive
and interconnected. Particularly used for shadow computation. Contrast with
lightweight.

†I-hook A piece of code, such as an instruction, which a dynamic analysis tool can in-
strument with analysis code.

Instrumentation The act of adding analysis code to a program. Note that in this disser-
tation, this term is not used for the added code itself.

Intermediate representation A representation of code used internally by a program such
as a compiler. Valgrind uses an intermediate representation called UCode.

IR Short for intermediate representation.

†Lightweight Used to describe dynamic binary analysis tools that do not involve rich
metadata or complex analysis code. Contrast with heavyweight.

166

†Location metadata Metadata describing registers or memory locations.

†Metadata Approximations to the set of values or behaviours seen so far when executing
a program. Metadata is attached to M-hooks. The key component of dynamic
analysis.

†Metavalue A single piece of metadata.

†M-hook A program or machine entity, such as a register or value, to which metadata can
be attached.

Passive Used to describe analysis code that does not affect the semantics of the instru-
mented program. This includes any dynamic binary optimisation performed by a
tool. Contrast with active.

Red-zone A small area at the edge of a region of memory, such as a heap block, that should
not be accessed. Any accesses to the red-zone indicate a bug in a program.

†Rich metadata Particularly complex forms of metadata, such as location metadata.

RISC Short for reduced instruction set computing. Used to describe an instruction set that
is particularly simple, and in which memory accesses are typically only done through
dedicated load and store instructions.

†Shadow computation A particular kind of dynamic binary analysis in which every
value in registers and memory is shadowed with a metavalue (also known as a shadow
value) that describes the value, and every value-writing operation is shadowed with a
shadow operation that computes and writes the corresponding shadow value.

\Shadow memory Valgrind’s support for the use of a shadow value for every value in
memory.

\Shadow registers Valgrind’s support for the use of a shadow value for every value in a
register.

†Shadow value Synonym for a metavalue, typically used in the context of shadow com-
putation.

†Source analysis The analysis of programs at the level of source code. Contrast with bi-
nary analysis.

Static analysis Compile-time techniques for predicting computable approximations to the
set of values or behaviours arising at run-time when executing a program.1 Or, less
formally, the analysis of programs prior to run-time. Contrast with dynamic analysis.

†Static binary analysis The intersection of static analysis and binary analysis.

Static binary instrumentation The instrumentation of a program at the level of ma-
chine code, prior to run-time, with analysis code, for the purpose of doing dynamic
binary analysis. Contrast with dynamic binary instrumentation.

1This is a paraphrasing of Nielson, Nielson and Hankin’s definition [83].

167

†Static source analysis The intersection of static analysis and source analysis.

\Tool plug-in A component of a Valgrind tool which defines an instrumentation pass
over UCode, and plugs into Valgrind’s core.

\Translation What a Valgrind tool produces when it has finished transforming and in-
strumenting a basic block of code.

\UCode The intermediate representation used by Valgrind. Tool plug-ins perform
instrumentation of UCode. Valgrind’s core performs several passes over UCode,
including optimisation, register allocation and code generation.

\Valgrind tool A tool built by combining a tool plug-in with Valgrind’s core.

†Value metadata Metadata describing values. When using a system like Valgrind that
makes explicit every computed intermediate value, it is no different to location meta-
data from an implementation point of view, but conceptually it is substantially different.

168

Bibliography

[1] AbsInt Angewandte Informatik. aiSee – graph visualisation.
http://www.absint.com/aisee/.

[2] Advanced Micro Devices. 3DNow! technology manual, 2000. http://www.amd.com.

[3] Advanced Micro Devices. AMD Athlon processor x86 code optimization guide, July
2001.
http://www.amd.com.

[4] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. Dynamic slicing in the
presence of unconstrained pointers. In Proceedings of the ACM SIGSOFT’91 Symposium
on Software Testing, Analysis, and Verification (TAV4), pages 60–73, Victoria, Canada,
October 1991.

[5] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. Debugging with dynamic
slicing and backtracking. Software—Practice and Experience, 23(6):589–616, June 1993.

[6] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’90), pages 246–256, White Plains, New York, USA, June 1990.

[7] AT&T Labs-Research. Graphviz.
http://www.research.att.com/sw/tools/graphviz/.

[8] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’94), pages 290–301,
Orlando, Florida, USA, June 1994.

[9] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2000), pages 1–12, Vancou-
ver, Canada, June 2000.

[10] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the 13th International Conference on Compiler Construction (CC
2004), pages 5–23, Barcelona, Spain, March 2004.

[11] Thomas Ball. The concept of dynamic analysis. In Proceedings of the 7th European Soft-
ware Engineering Conference and the 7th ACM SIGSOFT Symposium on Foundations

169

of Software Engineering (ESEC/FSE’99), pages 216–234, Toulouse, France, September
1999.

[12] Thomas Ball. The essence of dynamic analysis. Talk presented at The University of
Washington/Microsoft Research Summer Institute on Technologies to Improve Software
Development, 1999. http://research.microsoft.com/tisd/Slides/TomBall.ppt.

[13] Elena Gabriel Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer, Darko
Stefanović, and Dino Dai Zovi. Randomized instruction set emulation to disrupt binary
code injection attacks. In Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003), pages 281–289, Washington, DC, USA, October
2003.

[14] Lujo Bauer, Jarred Ligatti, and David Walker. Types and effects for non-interfering
program monitors. In Proceedings of the International Symposium on Software Security
(ISSS 2002), pages 154–171, Tokyo, Japan, November 2002.

[15] Fabrice Bellard. QEMU CPU emulator. http://fabrice.bellard.free.fr/qemu/.

[16] Frederick P. Brooks. The Mythical Man-Month. Addison-Wesley, 1975.

[17] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design and implemen-
tation of a dynamic optimization framework for Windows. In Proceedings of the 4th
ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-4), Austin,
Texas, USA, December 2001.

[18] Derek Bruening et al. DynamoRIO. http://www.cag.lcs.mit.edu/dynamorio/.

[19] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO’03), pages 265–276, San Francisco, California,
USA, March 2003.

[20] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching. Journal
of High Performance Computing Applications, 14(4):317–329, Winter 2000.

[21] Michael Burrows, Stephen N. Freund, and Janet L. Wiener. Run-time type checking
for binary programs. In Proceedings of the 12th International Conference on Compiler
Construction (CC 2003), pages 90–105, Warsaw, Poland, April 2003.

[22] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding
dynamic programming errors. Software—Practice and Experience, 30(7):775–802, 2000.

[23] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instru-
mentation of production systems. In Proceedings of the USENIX Annual Technical
Conference, pages 15–28, Boston, Massachusetts, USA, June 2004.

[24] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David M. Gillies. Mojo: A dynamic
optimization system. In Proceedings of the 3rd ACM Workshop on Feedback-Directed
and Dynamic Optimization (FDDO-3), Monterey, California, USA, December 2000.

170

[25] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming Haskell for tracing.
In Proceedings of the 2002 International Workshop on the Implementation of Functional
Languages, pages 165–181, Madrid, Spain, September 2002.

[26] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. Techniques for debug-
ging parallel programs with flowback analysis. ACM Transactions on Programming
Languages and Systems, 13(4):491–530, October 1991.

[27] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, Faculty of Information
Technology, Queensland University of Technology, Australia, July 1994.

[28] Cristina Cifuentes, Brian Lewis, et al. Walkabout.
http://research.sun.com/walkabout/.

[29] Cristina Cifuentes, Brian T. Lewis, and David Ung. Walkabout – A retargetable dy-
namic binary translation framework. Technical Report TR-2002-106, Sun Microsystems
Laboratories, Palo Alto, California, USA, January 2002.

[30] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execu-
tion profiling. In Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 128–137, Nashville, Tennessee,
USA, May 1994.

[31] Robert F. Cmelik and David Keppel. Shade: A fast instruction-set simulator for exe-
cution profiling. Technical Report UWCSE 93-06-06, Department of Computer Science
and Engineering, University of Washington, Seattle, Washington, USA, 1993.

[32] Robert Cohn. Instrumentation of Intel Itanium Linux programs with Pin. Tutorial at
International Symposium on Code Generation and Optimization (CGO’04), San Jose,
California, USA, March 2004.

[33] Robert S. Cohn, Daniel A. Connors, and Dirk Grunwald. Pin.
http://systems.cs.colorado.edu/Pin/.

[34] Compuware Corporation. Boundschecker.
http://www.compuware.com/products/devpartner/bounds.htm.

[35] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Fourth ACM Symposium on Principles of Programming Languages (POPL 1977),
pages 238–252, Los Angeles, California, USA, January 1977.

[36] Nelly M. Delgado. A taxonomy of dynamic software-fault monitoring tools. Master’s
thesis, Computer Science Department, University of Texas at El Paso, El Paso, Texas,
USA, 2001.

[37] Luiz DeRose, Ted Hoover Jr., and Jeffrey K. Hollingsworth. The Dynamic Probe Class
Library – an infrastructure for developing instrumentation for performance tools. In
Proceedings of the 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), San Francisco, California, USA, April 2001.

171

[38] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and Joseph A.
Fisher. Deli: A new run-time control point. In Proceedings of the 35th Annual Sym-
posium on Microarchitecture (MICRO35), pages 257–270, Istanbul, Turkey, November
2002.

[39] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, and Josh
Fisher. A new facility for dynamic control of program execution: DELI. Talk presented
at the Second International Workshop on Embedded Software (EMSOFT’02), October
2002.

[40] DynInst. http://www.dyninst.org/.

[41] Michael D. Ernst. Static and dynamic analysis: synergy and duality. In Proceedings of
the ICSE Workshop on Dynamic Analysis (WODA 2003), pages 6–9, Portland, Oregon,
May 2003.

[42] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):99–123, February 2001.

[43] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt. Cache behav-
ior prediction by abstract interpretation. Science of Computer Programming, 35(2):163–
189, 1999.

[44] Manel Fernández and Roger Espasa. Dixie: A retargetable binary instrumentation tool.
In Proceedings of the Workshop on Binary Translation, Newport Beach, California,
USA, October 1999.

[45] Free Software Foundation. GNU General Public License.
http://www.gnu.org/licenses/gpl.txt.

[46] Andy Gill. Debugging Haskell by observing intermediate data structures. In Proceedings
of the 2000 Haskell Workshop, Montreal, Canada, September 2000.

[47] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/.

[48] Seth Hallem, Benjamin Chen, Yichen Xie, and Dawson Engler. A system and language
for building system-specific, static analyses. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI 2002), Berlin,
Germany, June 2002.

[49] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using auto-
matic anomaly detection. In Proceedings of the International Conference on Software
Engineering (ICSE 2002), pages 291–301, Orlando, Florida, USA, May 2002.

[50] Timothy L. Harris. Dependable software needs pervasive debugging. In Proceedings of
the ACM SIGOPS European Workshop, Saint-Emilion, France, September 2002.

[51] Pieter H. Hartel et al. Benchmarking implementations of functional languages with
“Pseudoknot” a float-intensive benchmark. Journal of Functional Programming,
6(4):621–655, 1996.

172

[52] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the Winter USENIX Conference, pages 125–136, San Francisco,
California, USA, January 1992.

[53] Don Heller. Rabbit: A performance counters library for Intel/AMD processors and
Linux.
http://www.scl.ameslab.gov/Projects/Rabbit/.

[54] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic program in-
strumentation for scalable performance tools. In Proceedings of the 1994 Scalable High
Performance Computing Conference, pages 841–850, Knoxville, Tennessee, USA, May
1994.

[55] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using depen-
dence graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60,
January 1990.

[56] Imperial College Department of Computing. Free on-line dictionary of computing
(FOLDOC).
http://wombat.doc.ic.ac.uk/foldoc/.

[57] Intel. IA-32 Intel architecture software developer’s manual. http://www.intel.com/.

[58] Intel. Intel Pentium 4 and Intel Xeon processor optimization: Reference manual.
http://www.intel.com/.

[59] Christopher January. Logrind 2: A program trace framework. MEng Computing final
year individual project report, Department of Computing, Imperial College, London,
United Kingdom, 2004.

[60] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. In Proceedings of the Third International Workshop
on Automated Debugging (AADEBUG’97), pages 13–26, Linköping, Sweden, May 1997.

[61] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Pro-
ceedings of the European Conference on Object-Oriented Programming (ECOOP ’97),
volume 1241 of LNCS, pages 220–242, Jyväskylä, June 1997. Springer-Verlag.

[62] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security Symposium, pages
191–206, San Francisco, California, USA, August 2002.

[63] Amir Kishon, Paul Hudak, and Charles Consel. Monitoring semantics: A formal frame-
work for specifying, implementing, and reasoning about execution monitors. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’91), pages 338–352, Toronto, Canada, June 1991.

[64] Alexander Klaiber. The technology behind Crusoe processors. Transmeta Corporation
White Paper, January 2000. http://www.transmeta.com.

173

[65] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’95), pages 291–300, La Jolla, California, USA, June 1995.

[66] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Debugging via run-
time type checking. In Proceedings of Fundamental Approaches to Software Engineering
(FASE 2001), Genoa, Italy, April 2001.

[67] Thomas Ludwig and Roland Wismüller. OMIS 2.0 — a universal interface for moni-
toring systems. In Recent Advances in Parallel Virtual Machine and Message Passing
Interface: Proceedings of the 4th European PVM/MPI Users’ Group Meeting, volume
1332 of LNCS, pages 267–276, Kraków, Poland, November 1997. Springer-Verlag.

[68] Chi-Keung Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff Lowney. Ispike: A
post-link optimizer for the Intel Itanium architecture. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO 2004), pages 15–26, Palo Alto,
California, USA, March 2004.

[69] Jonas Maebe and Koen De Bosschere. Instrumenting self-modifying code. In Pro-
ceedings of the Fifth International Workshop on Automated and Algorithmic Debugging
(AADEBUG2003), Ghent, Belgium, September 2003.

[70] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. DIOTA: Dynamic instrumen-
tation, optimization and transformation of applications. In Compendium of Workshops
and Tutorials held in conjunction with PACT’02: International Conference on Parallel
Architectures and Compilation Techniques, Charlottesville, Virginia, USA, September
2002.

[71] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. Precise detection of mem-
ory leaks. In Proceedings of the Second International Workshop on Dynamic Analysis
(WODA 2004), Edinburgh, Scotland, May 2004.

[72] Stefan Manegold and Peter Boncz. Cache-memory and TLB calibration tool.
http://www.cwi.nl/~manegold/Calibrator/.

[73] Stephen McCamant. Kvasir: a Valgrind tool for program tracing. Message to the
valgrind-developers mailing list, June 2004.

[74] Microsoft Research. Binary technologies group.
http://research.microsoft.com/bit/.

[75] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall.
The Paradyn parallel performance measurement tools. IEEE Computer, 28(11):37–46,
November 1995.

[76] Alan Mycroft. Type-based decompilation. In Proceedings of the 1999 European Sympo-
sium on Programming, volume 1576 of LNCS, pages 208–223, Amsterdam, The Nether-
lands, March 1999. Springer-Verlag.

[77] George Necula et al. CCured Documentation, September 2003.
http://manju.cs.berkeley.edu/ccured/.

174

[78] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe retrofitting
of legacy code. In Proceedings of the 29th ACM Symposium on Principles of Pro-
gramming Languages (POPL 2002), pages 128–139, London, United Kingdom, January
2002.

[79] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire programs with-
out recompiling. In Informal Proceedings of the Second Workshop on Semantics, Pro-
gram Analysis, and Computing Environments for Memory Management (SPACE 2004),
Venice, Italy, January 2004.

[80] Nicholas Nethercote and Alan Mycroft. The cache behaviour of large lazy functional
programs on stock hardware. In Proceedings of the ACM SIGPLAN Workshop on
Memory System Performance (MSP 2002), pages 44–55, Berlin, Germany, July 2002.

[81] Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow tracer. In Pro-
ceedings of the Third Workshop on Runtime Verification (RV’03), Boulder, Colorado,
USA, July 2003.

[82] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework.
In Proceedings of the Third Workshop on Runtime Verification (RV’03), Boulder, Col-
orado, USA, July 2003.

[83] Flemming Nielson, Hanne Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

[84] OC Systems. Aprobe. http://www.ocsystems.com/.

[85] Will Partain. The nofib benchmark suite of Haskell programs. In Proceedings of the
Glasgow Workshop on Functional Programming, pages 195–202, Ayr, Scotland, July
1992.

[86] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and array
accesses in C programs. Software—Practice and Experience, 27(1):87–110, January
1997.

[87] Bruce Perens. Electric Fence. ftp://ftp.perens.com/pub/ElectricFence/.

[88] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press,
2003.

[89] Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
spineless tagless G-machine. Journal of Functional Programming, 2(2):127–202, April
1992.

[90] Simon L. Peyton Jones and André L. M. Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1–3):3–47, September 1998.

[91] Mark Probst. Dynamic binary translation. In Proceedings of the UKUUG Linux Devel-
opers’ Conference, Bristol, United Kingdom, July 2002.

[92] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM, 33(6):668–676, June 1990.

175

[93] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly, 1999.

[94] Steven P. Reiss and Manos Renieris. Languages for dynamic instrumentation. In Pro-
ceedings of the ICSE Workshop on Dynamic Analysis (WODA 2003), pages 6–9, Port-
land, Oregon, May 2003.

[95] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian
Bershad, and Brad Chen. Instrumentation and optimization of Win32/Intel executables
using Etch. In Proceedings of the USENIX Windows NT Workshop, pages 1–7, Seattle,
Washington, USA, August 1997.

[96] Michiel Ronsse, Jonas Maebe, Bastiaan Stougie, et al. DIOTA.
http://www.elis.ugent.be/diota/.

[97] Graeme S. Roy. mpatrol: A Library for controlling and tracing dynamic memory allo-
cations, January 2002. http://www.cbmamiga.demon.co.uk/mpatrol/.

[98] Olatunji Ruwase and Monica Lam. A practical dynamic buffer overflow detector. In
Proceedings of the 11th Annual Network and Distributed System Security Symposium
(NDSS04), San Diego, California, USA, February 2004.

[99] K. Scott, N. Kumar, S. Velusamy, B. Childers, J.W. Davidson, and M.L. Soffa. Re-
targetable and reconfigurable software dynamic translation. In Proceedings of the First
Annual IEEE/ACM International Symposium on Code Generation and Optimization
(CGO 2003), pages 36–47, San Francisco, California, USA, March 2003.

[100] Kevin Scott and Jack Davidson. Strata: A software dynamic translation infrastructure.
In Proceedings of the Workshop on Binary Translation (WBT ’01), Barcelona, Spain,
September 2001.

[101] Kevin Scott, Jack W. Davidson, and Kevin Skadron. Low-overhead software dynamic
translation. Technical Report CS-2001-18, Department of Computer Science, University
of Virginia, Charlottesville, Virginia, USA, 2001.

[102] Julian Seward, Nicholas Nethercote, Jeremy Fitzhardinge, et al. Valgrind.
http://valgrind.kde.org/.

[103] Anthony M. Sloane. Generating dynamic program analysis tools. In Proceedings of
the Australian Software Engineering Conference (ASWEC’97), pages 166–173, Sydney,
Australia, September 1997.

[104] Amitabh Srivastava, Andre Edwards, and Hoi Vo. Vulcan: Binary transformation in
a distributed environment. Technical Report MSR-TR-2001-50, Microsoft Research,
Redmond, Washington, USA, April 2001.

[105] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized pro-
gram analysis tools. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’94), pages 196–205, Orlando, Florida,
USA, June 1994.

[106] Standard Performance Evaluation Corporation. SPEC CPU2000 benchmarks.
http://www.spec.org/.

176

[107] Sun Microsystems. Shade 1.7.3 beta.
http://wwws.sun.com/software/download/products/3ff9c026.html.

[108] Herman ten Brugge. Boundschecking project.
http://sourceforge.net/projects/boundschecking/.

[109] Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, September 1995.

[110] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in linear-scan
register allocation. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’98), pages 142–151, Montreal, Canada,
June 1998.

[111] Richard A. Uhlig and Trevor N. Mudge. Trace-driven memory simulation: A survey.
ACM Computing Surveys, 29(2):128–170, September 1997.

[112] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the Fourteenth ACM Symposium on Op-
erating System Principles (SOSP-14), pages 203–216, Asheville, North Carolina, USA,
December 1993.

[113] David W. Wall. Limits of instruction-level parallelism. Research Report 93/6, Digital
Western Research Laboratory, Palo Alto, California, USA, November 1993.

[114] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O’Reilly, 3rd
edition, 2000.

[115] Josef Weidendorfer. KCachegrind. http://kcachegrind.sourceforge.net/.

[116] Josef Weidendorfer. Performance analysis of GUI applications on Linux. In Proceedings
of the KDE Developers’ Conference (Kastle 2003), Nové Hrady, Czech Republic, August
2003.

[117] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1975.

[118] Roland Wismüller, Jörg Trinitis, and Thomas Ludwig. OCM — a monitoring system for
interoperable tools. In Proceedings of the Second SIGMETRICS Symposium on Parallel
and Distributed Tools (SPDT’98), pages 1–9, Welches, Oregon, USA, August 1998.

[119] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simulation.
In Proceedings of the 1996 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, pages 68–79, Philadelphia, Pennsylvania,
USA, May 1996.

[120] Yichen Xie, Andy Chou, and Dawson Engler. Archer: Using symbolic, path-sensitive
analysis to detect memory access errors. In Proceedings of the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (FSE 2003), pages 327–336, Helsinki,
Finland, September 2003.

[121] Andreas Zeller. Program analysis: A hierarchy. In Proceedings of the ICSE Workshop
on Dynamic Analysis (WODA 2003), pages 6–9, Portland, Oregon, May 2003.

177

