
Technical Report
Number 644

Computer Laboratory

UCAM-CL-TR-644
ISSN 1476-2986

Robbing the bank
with a theorem prover

Paul Youn, Ben Adida, Mike Bond,
Jolyon Clulow, Jonathan Herzog,

Amerson Lin, Ronald L. Rivest, Ross Anderson

August 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2005 Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow,
Jonathan Herzog, Amerson Lin, Ronald L. Rivest,
Ross Anderson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Robbing the Bank with a Theorem Prover

Paul Youn Ben Adida Mike Bond Jolyon Clulow Jonathan Herzog
Amerson Lin Ronald L. Rivest Ross Anderson

Abstract

We present the first methodology for analysis and automated detection of attacks on security applica-
tion programming interfaces (security APIs) – the interfaces to hardware cryptographic services used by
developers of critical security systems, such as banking applications. Taking a cue from previous work
on the formal analysis of security protocols, we model APIs purely according to specifications, under
the assumption of ideal encryption primitives. We use a theorem prover tool and adapt it to the security
API context. We develop specific formalization and automation techniques that allow us to fully harness
the power of a theorem prover. We show how, using these techniques, we were able to automatically
re-discover all of the pure API attacks originally documented by Bond and Anderson against banking
payment networks, since their discovery of this type of attack in 2000. We conclude with a note of
encouragement: the complexity and unintuiveness of the modelled attacks make a very strong case for
continued focus on automated formal analysis of cryptographic APIs.

1 Introduction

1.1 Security APIs and Attacks

A security APIis an Application Programming Interface (API) that uses cryptography to provide specific
security functionality and implements a policy that limits the interactions a user may perform. A conven-
tional API exposes a set of calls to a hardware or software module to package functionality, and enable a
form of abstraction: changes to the implementation remain localized if they do notalter the specified API
behavior. This opaqueness encourages programmers to write modular code.

Just as conventional APIs give services, but abstract away the low-level implementation, security APIs
give as much as they take away: certain features are offered, while others are purposely missing in order to
guarantee well-defined security goals. For example, an SSL acceleratorcard might have an API that offers
key-pair generation, fast encryption and decryption, and public key extraction; but it will never allow private
key extraction.

Conventional APIs are ubiquitous: they include the Microsoft Win32 API [20] for Windows client
programming and the Posix Interface [26] for Unix programming. Popular security APIs include RSA’s
PKCS#11 and Microsoft Cryptographic API (CAPI).

A security API attackis a breach of a target API’s stated security goals that respects the API boundary.
It is thus alegalsequence of calls, but which are chained in an unexpected way. The potential attack paths in
an average API are numerous: usually, most API calls are available for invocation at each step in an attack
search.

Our goal is the formal analysis of these security APIs and the detection of attacks against them. In this
paper, we describe a new methodology for the specification of security APIs in the language of first-order
logic, the input language of many theorem provers. This new methodology allows the application of many
powerful search strategies. We developed our methodology during the analysis of APIs for financial ATM
network processing, and we will use a particular API (the IBM 4758 CCA)as a running example. We first
briefly describe the CCA API, and then summarize our modeling techniques.

3



4

1.2 Target APIs and their Vulnerabilities

The Common Cryptographic Architecture (CCA) is the security API for the IBM 4758, a hardware-based
tamper-resistant device that enables secure banking operations. This cryptographic module is used inAuto-
matic Teller Machine (ATM)networks for two important tasks: securing communications links in the inter-
national ATM network, and for the generation and verification of cusomterPersonal Identification Numbers
(PINs).

The architecture of the CCA achieves these tasks through applying common cryptographic primitives
and API concepts, which we describe briefly here:

• Fundamental commands are provided to generate, process and verify PINs. They work with clear user
inputs, such as the customer account number, encrypted inputs, such asthe trial PIN, and long-term
secret keys.

• A unique master keyis held in a special secure register in the device, and used as the root of ahierarchy
for storage of keys.

• Key wrappingis used to increase available storage, and for secure communication between devices.
For instance, a key can be “wrapped” by encryption under anothertransport key, storing all the meta-
data associated with the key alongside the value. When the CCA needs to workwith a keyk, the user
must providek wrapped under the master key (i.e., encrypted as{k}KM ), from some external storage,
assumed to be insecure. The CCA implements policy on key usage: it will not simply unwrap the key
and reveal it in the clear. Instead, it acts as a gate-keeper to the wrapped key: all operations with that
key are performed by API requests, and all underlying computation is performed securely inside the
hardware security module.

• SimpleSecret Sharing[24] is used to bootstrap transmission of sensitive data from one CCA module
to another. A top-level key-encrypting-key,KEK , is split into multiple shares (calledkey parts) and
each share is transmitted independently. The parts are recombined using special CCA API calls. Both
modules need to share at least one top-level transport key. Once received, each end storesKEK

locally in external memory, wrapped under that device’s master key. The completeKEK is never
available in the clear outside the CCA’s secure boundary: as soon as an operator imports the first
KEK share, the resulting partial key is wrapped under the CCA’s master key asusual. The second
and third shares are added in similar ways, with the prior wrapped partial key as input and the newly
recombined and wrapped key as output.

• Key typingprovides a mechanism for specifying a key’s precise usage domain. APIN key, for
example, can be used within a transaction to verify a customer PIN for a transaction. However, a
key designed for this purpose should not be usable for generic encryption and decryption of data,
otherwise the attacker could generate or verify PINs at will by issuing a simpledecrypt call. The
CCA API is designed to prevent this (among other things). Keys with distinctly different types can
be used for other purposes:DATA for communications, andimporter and exporterkeys for the
wrapping of other keys.

1.3 Our Contribution

Our main contribution to the analysis of security APIs is three-fold:

1. We provide what we believe to be the first application of formal automated reasoning techniques to
the problem of API security.

2. We define a modeling methodology which greatly speeds the analysis of APIs, thus making such
analysis practical.

3. We reproduce, using our automated methods, all previously-known key-management attacks on the
4758, demonstrating the ability of the tool to reason at least as well as a skilledhuman (assuming the
human can provide a correct API specification).



5

Modeling & Special Techniques Our methodology models security APIs with a theorem prover. Specif-
ically, we use OTTER [17], an automated reasoning tool based on first-order logic. At the mostbasic level,
the model proceeds as follows:

• User knowledge of a message or value is represented via a predicate which is true only for known
values. That is, user knowledge of a valuex is represented via the truth of predicateU(x).

• Compound terms are represented by functions. For example, the encryption of x with keyy is repre-
sented bye(x,y), while the XOR of these two values is represented asxor(x,y).

• Initial user knowledge is represented as axioms stating this predicate to be true for given messages.
For example, the user may know theprimary account number(PAN) of a given customer. Thus, the
model includesU(PAN) as an axiom.

• The user may be able to make basic deductions without the use of the API. Forexample, the user
can XOR together two known values. Therefore, the model includes thesepossible deductions as
inference rules.

• The user can also make function calls to the API, therefore the function callsare modeled as inference
rules that map the input to the output.

• Properties of the underlying cryptographic primitives can be represented via equations. For example
one of the properties of the XOR operation can be represented asxor(x,y) = xor(y,x).

• Lastly, we ask the tool to find attacks by asking it to violate the security goals ofthe API. That is, we
ask it to prove that the security goals are false. If we wish to find an attack that recovers a user’s PIN,
we might provide as a goal-U(PIN). 1

This approach is not especially novel. Unfortunately, it is not especially fast, either. Analysis of this
simple specification will prove to be intractable, for two basic reasons: Firstly, the inference rules will allow
the user to deduce an infinite number of terms, most of which are ill-formed. That is, the deduction system
allows the user to apply the XOR and encryption operators in meaningless ways. Secondly, certain necessary
optimizations may cause OTTER to miss certain attacks. Specifically, an optimization calleddemodulation
that collapses all “equivalent” forms of a predicate to one canonical form. Using demodulation alone may
cause the tool to miss attacks that use non-canonical forms; whilst enablingre-writing usingparamodulation
fixes this, it also returns us to the state-space explosion we are trying to avoid. However, demodulation is a
powerful tool, and it seems infeasible to analyze the API without it.

Our contributions provide a way of modeling an API that avoids both of theseproblems. We impose
typing on the deduction system2 which restricts the possible deductions to meaningful, well-formed forms.
We also propose a way of representing inference rules that simultaneously allows demodulation but captures
otherwise-overlooked attacks. Indeed, this technique can be thought of as making demodulation work “for
us” instead of “against us.”

Verification of Known Attacks With these two techniques, it was possible to re-discover in an automated
way all previously-known attacks [3, 6, 12], all of which were originallyfound “by hand.” These attacks are
similar in that they exploit the CCA’s weakness of using the XOR function both tocombine type information
with keys, and to build the keys themselves fromkey parts. This weakness allows the type of a key to be
changed by using a cleverly chosen value for the key part. The type-casted keys can then be used to either
recover an unknown key or establish a known key in the system in one of the following ways:

• theexport-and-decryptattack to recover a key (of typesEXPandDATA),

1The actual form of this goal is slightly more complex, for reasons explained in Section 2.1. However, the basic intuition is the
same.

2Not to be confused with the typing system of the API, which is being modeled inthe deduction system.



6

• theencrypt-and-importattack to import a known value as a key (of typeDATA), and

• theexport-import loopfollowed by one of the previous two methods to recover an unknown key or
establish a known key (of any type).

The implications of either recovering an unknown key or establishing a known key depend on the asso-
ciated type of the key and the permissible API calls. For example, a known or recovered exporter key can
be used to export and recover other keys from the system.

We note that our model was developed without knowledge of some of these attacks. However, all these
documented attacks were found in a few minutes of computation.

1.4 Previous & Related Work

Security protocols, a close friend of security APIs, have been the subject of formal analysis since 1989, when
the seminal paper by Burrows, Abadi and Needham introduced BAN logic[9]. Automated verification began
soon thereafter with Meadows’s work on the NRL protocol analyzer [18].

In 1995, Lowe used the CSP/FDR model checker to find and provably fix [14, 15] a serious flaw in the
Needham-Schroeder mutual authentication public-key protocol [21]. A theorem prover tool was first used
for protocol verification by Paulson [22]. The field has since expanded [19], including complete formal
modeling efforts such as Strand Spaces [25].

In 2000, Anderson introduced the first security API attack, against theVisa Security Module (VSM).
This attack was extended by [3] into a suite of attacks against the key management of IBM’s CCA [2].
[6, 10, 12, 5, 7] extended this work with additional attacks and addressed the issue of secure API design.
The scope of API attacks was further expanded to include PIN processing for financial and banking systems
in [12, 5, 8] and popular standards such as PKCS#11 [1] in [11].

1.5 Motivation

Security APIs are inherently similar to security protocols, and much work hasbeen done on security protocol
analysis since the introduction of BAN logic in 1989. However, there are important differences between
APIs and protocols that make Security API analysis more interesting and challenging, for example:

• Attacker Ability: The current approach in modeling security protocols use some variant ofthe Dolev-
Yao model, where the underlying cryptographic primitives and algorithms aregiven ideal properties
and the adversary is limited to read, modify and delete traffic. Specifically, theability to modify is
limited to actions like encryption, decryption, concatenation and xor [19].

In a security API, the same assumption model is used except the attacker’s ability to modify messages
is augmented to also include making any API call using the contents of the message. Ultimately, this
exposes a much larger attack surface.

• Shared State: We can also view a security API as a large set of short-chain protocols, where most
chains are a single exchange of messages. However, the execution of one short protocol may result in
a change in the state of the system. Since the state of the system is shared across any other API call,
it represents a different mode of attack -inter-chainstate attacks. In security protocol analysis, the
interest is only inintra-chainstate attacks.

Therefore, it seems that security APIs have a much more complex adversary threat model and therefore
require different formal analysis techniques.



7

1.6 This Paper

We first present an overview of the IBM Common Cryptographic Architecture (Section 2). We use this
API as an example with which to discuss the theorem-prover based modeling and analytical techniques we
developed and used (Section 3 and 4). We conclude with a number of ideasfor future work in turning these
initial results into a full-blown, generic toolkit for discovering security API attacks (Section 6).

2 Targets

2.1 Overview of the 4758

The IBM 4758 is a hardware cryptographic co-processor [2], usedin ATM networks and bank computer
systems, which implements IBM’s Common Cryptographic Architecture (CCA) to do so. Its purpose is
two-fold:

1. To enable the ATM network to cryptographically authenticate the customer,and

2. To prevent anyone – including bank insiders – from gaining access tocustomers’ accounts.

The bank issues customers with Personal Identification Numbers (PINs) with which to authenticate them-
selves to ATMs. Each PIN iscryptographicallyderived from the customer’s Primary Account Number
(PAN)3 That is, when the bank first starts issuing PINs, the 4758 randomly generates aPIN-derivation key
P , which will be used to generate all PINs for all customers. An individual customer’s PIN is generated by
encrypting that customer’s PAN with this key4. We denote the encryption operation as:

PIN := {PAN }P (1)

Thus, to verify a PIN, the 4758 module must compute the true PIN by encrypting the PAN of the
cusotmer’s card under the PIN-derivation key, and then compare this true PIN with the number punched in
by the customer himself.

If these two values match, the 4758 will allow the transaction to proceed. To protect the customer and
to limit fraud, the 4758 must prevent the customer’s true PIN and the PIN-derivation key from ever leaving
the device. Note that loss of the first endangers the assets of one customer, while loss of the second puts at
risk the accounts ofall customers.

In addition to PIN processing functionality, the 4758 CCA needs a secure mechanism to exchange PIN-
derivation keys, and to set up keys to protect transactions in transit from ATM to bank. For these purposes,
the CCA API defines functionality that allows one 4758 (e.g. in the ATM network) to establish and use a
secure channel with another 4758 (e.g., at the bank headquarters)

To establish the first connection between two 4758 modules, one module creates a fresh random key
KEK (a key-encrypting key). KEK is not directly exported from the module . Instead, an elementary
secret sharing algorithm is employed to produce three shares, calledkey parts. Each key part is sent by
individual courier and fed into the other 4758. The parts are then XORedtogether in the module, andKEK

is recovered.
It is unwieldy to send three couriers for every key to be shared betweentwo 4758 modules. Therefore,

onceKEK is shared between two 4758 modules, other keys (including the PIN-derivation keyP ) can be
encrypted with it and sent from one to the other. This process of encrypting one key with another is called
key wrapping. These new keys (andKEK itself) can then be used for:

• deriving PINs (i.e., acting as a PIN-derivation key),

• encrypting arbitrary data, such as customer transactions,

3There are other PIN generation/verification techniques such as the VISAPIN Verification Value (PVV) method, but we will
not go into them here.

4Technically, the PIN is only the first few digits of this encryption, but this will make no difference to our model.



8

PIN

CCA1

KM 1

-

-

-

-

�

�

-

PIN

{KEK}KM 1⊕EXP

{P}KM 1⊕PIN

{P}KEK⊕PIN

CCA2

KM 2

{KEK}KM 2⊕IMP

{P}KM 2⊕PIN

Figure 1: Transfer ofP from CCA-1 to CCA-2 viaKEK

• acting as animporterkey, and

• acting as anexporterkey.

The last two require a brief explanation.Importer keys are those keys trusted to secure other keys
arriving from some external source.Exporterkeys are trusted to secure keys being sent to some external
destination. In both cases, the importer and exporter keys wrap the key to be secured. For example,KEK

will be generated by one 4758 and split into three parts. The generating 4758 designatesKEK an exporter
key. After this key is reconstructed from the three parts, the receiving 4758 will designateKEK an importer
key. Thus, the first 4758 can generate a new keyK1 and export it by wrapping it with the exporter key
KEK . Likewise, the second 4758 can import it by decrypting (unwrapping) theso-generated ciphertext
with the importer keyKEK . Once again, once both modules have a shared key (this time,K1) they may
use it for a joint cryptographic operation.

A simple observation exposes the need for strict control over wrapped keys: if a keyK1 can be used
both to import a wrapped key –{K2}K1 – and to decrypt sensitive data, then it is trivial for an attacker to
simply decrypt the wrapped key and obtainK2 in the clear. The CCA provides a mechanism forkey typing
which is meant to ensure that certain keys can only be used for certain actions.

Because much of the 4758 CCA transaction set concerns this dedication ofkeys to their appropriate uses,
we describe it in further detail. Each individual 4758 card contains amaster keyKM . The on-board storage
of a 4758 card is limited; with this master key, protected storage can be implementedusing key wrapping and
normal external memory. Instead of storing the pin-derivation keyP in the 4758, for example, the ciphertext
{P}KM is stored externally. Of course, this ciphertext must be fed to the 4758 by the operating system when
the PIN-derivation key is required. In order to denote key type information, the CCA specification fixes a set
of control vectors: binary strings that are public and unique for a given type across all implementations of
the CCA. The CCA control vector system has many thousands of variant types, but we need only consider
the major distinctions:

• PIN : used for PIN-derivation keys
• IMP : used for importer keys,
• EXP : used for exporting keys, and
• DATA: used DATA keys.

To dedicate a key to a particular purpose, it iswrapped and typedto that control vector. That is, it
is encrypted not with the master keyKM , but with the XOR ofKM and the relevant type. Hence, the
PIN-derivation key will actually be stored as{P}KM⊕PIN . For the rest of this paper, we will speak of a
key asbeingthe type used in the wrap-and-type operation. That is, when we say that akey K is a “DATA

key,” we mean that the ciphertext{K}KM⊕DATA is stored externally to the 4758. Similarly, if the ciphertext
{K}KM⊕IMP is stored, thenK can be used as an importer key. Note that it is possible (and sometimes also
correct) to obtain a given key wrapped and typed under more than one control vector.

Note that the method for recombining key parts also uses the XOR operation. This dual use of XOR is
the basis of the attacks modeled in the next section.



9

3 Modeling Security APIs

A properly-defined security API provides:

1. A set of function calls. Generally, there is no required order as to which function call is performed
when, though there can be constraints on the formats of inputs to these calls.

2. A security policy. This policy comprises security invariants meant to be guaranteed by the API.
An API without a security policy cannot be studied, as there would be no security policy to attempt
breaking.

A security API vulnerability consists of a sequence of legal function calls (and, potentially, offline
computation) which leads to the violation of the security policy. In this section, weshow how to model
simple attacks where the number of functions is small and the vulnerability sequence is short.

3.1 A Large Search Tree Problem

Consider a typical API which may contain fifty function calls, and an attackerthat can perform offline
generic cryptographic functions – e.g. encryption and XOR. As an approximation, say each function ex-
pects two input terms and returns a single output term. We define the depth of an attack as the number of
consecutive API and offline function calls required. Thus, searchingthrough all attacks up to a depth ofn

takes time and space slightly worse than exponential inn. At level k < n of an arbitrary search, any of
the previous terms from the search can be used as input to any of the available b functions. As an upper
bound, there are at mostn2b function calls available. The search has a total ofn levels, each of which has
an upper bound ofn2b possible function calls available. Thus, a complete search up to a depth ofn will take
O(c2n log(n)) time.

Though this simplified model ignores possible constraints on function data types, it illustrates the combi-
natorial explosion at the heart of verifying security APIs. Our modeling techniques must provide significant
optimization techniques to make finding attacks possible.

3.2 Choice of Tool: the Theorem Prover OTTER

A notable property of many security APIs is theireffective statelessness. Any knowledge gained by the
adversary can be forever retained for use at a later time, and all API calls are accessible at all times –
provided the operator can supply correctly-formed inputs. This statelessness is particularly true for systems
like the Visa Security Module [4] and the 4758 (described in section 2), where external storage of wrapped
keys is a prominent mechanism. The adversary becomes the external storage manager for these wrapped
keys, and we assume the adversary has unlimited storage capacity.

Thus, in a series of interactions between an adversary and a security API, the knowledge of the adversary
increases monotonically. Any knowledge gained and any goal achieved at timet remain known and achieved
for all time aftert.

These observations point naturally to theorem provers as a modeling tool. Truth statements expressed
in first-order logic can represent knowledge and security invariants, both of which, once deduced, remain
forever true. Logical inferences represent API calls and offline computation, with new, deduced statements
representing acquired knowledge.

The theorem prover OTTER takes input written in first-order logic. OTTER was written by William
McCune [17] and implements many of the innovative ideas of Larry Wos [29,30, 28, 16]. OTTER is ex-
tremely well documented by McCune, Wos [27], and others. This paper assumes the reader is familiar with
the common first-order logic terms:predicate, literal, clause, completeness, andresolution[23]. Informal
definitions will be given as needed. For more detailed definitions, see [27].

Though there exist newer and potentially more advanced theorem provers based on First-Order Logic
and beyond, we chose OTTER for its rich documentation and maturity. We suspect that our methods can be
adapted to other first-order logic tools, and we intend to explore these for future work.



10

3.3 Target Simplification

A number of security API attack approaches exploit inherent cryptographic mistakes: a weak key, a bad
cipher, a poor cipher chaining mode (e.g. ECB mode for a block cipher), etc . . . . These attacks are valid,
but they do not fall within the specific goal of our study: pure API attacksthat result from a logical flaw in
the conception of the API.

In order to focus on these pure API attacks, we simplify the target model using concepts of the Dolev-
Yao model [13] and a few bits of common sense:

1. Perfect cryptographic primitives. Ciphertexts can only be decrypted with knowledge of the key,
and no information whatsoever about the plaintext or the key is leaked by theciphertext itself.

2. Atomic operations. Encryptions of long plaintexts are considered atomic. Block chaining modesand
the vulnerabilities they engender are ignored.

3. Long, strong keys. No key can be found by brute force search.

4. Full Capability APIs . While some security APIs restrict access to certain calls using role-based
policies, we ignore these constraints. There may be false positives in our security analysis, but the
simplicity gained is well worth it.

3.4 Basic Techniques

Security API modeling begins with the definition of the parties involved and the interactions between them.
Specifically, the API user is, in effect, the adversary. He attempts to use theAPI to extract information which
the API’s security policy ostensibly disallows. In order to properly model this system, we need to consider:

1. User/adversary knowledge representation

2. The effect of API calls and offline computation on user/adversary knowledge

3. Security invariants

4. Computational properties of certain primitives likeXOR

User Knowledge The fundamental unit of the model is theuser knowledge predicateU. That is, user
knowledge of a valueX would be represented by setting to true the predicate

U(X).

Merely placing the above string in the model will suffice to specify thatU(X) is true.5

User knowledge includes initial knowledge atoms, new deductions over time, and potential breaches of
security policy. Thus, a secrecy goal is easily represented by negateduser knowledge:

-U(MASTER KEY).

API Calls and Offline Computation The inferences of this deduction system will be of two types: those
deductions which the user can make offline, and API function calls. Inferences of the first type are simple.
For example, the adversary can always XOR two known values:

-U(x) | -U(y) | U(xor(x,y)).

The above statement reads:

• User does not knowx, OR

5Note that all OTTER statements must be terminated with a period.



11

• User does not knowy, OR

• User knows the XOR ofx andy.

Thus, if the user knowsx AND the user knowsy, the first two statements are false and the last one must
be true. For technical reasons, OTTER prefers this disjunctive form to the equivalentU(x) && U(y) =>
U(e(x,y)).

In accordance with the previously mentioned Dolev-Yao concepts, we denote a ciphertext as a function
of a plaintext and key. We express the user’s ability to perform offline encryption and decryption using
inferences similar to the above:

-U(x) | -U(y) | U(e(x,y)).
-U(e(x,y)) | -U(y) | U(x).

Because we state no further properties on ciphertexts, OTTER will be unable to reason out any relation-
ship between ciphertexts using different plaintexts or keys. This is precisely theideal encryptionsetting we
outlined.

The API functions can be also simply represented as inferences: if the user knows some given input to
a function call, he can learn the output. For example, the “Encrypt with Data Key” function call of the 4758
can be represented as:

-U(x) | -U(e(K, xor(KM,DATA))) | U(e(x,K)).

Because the user does not knowK in the clear, the above rule is the only inference path by which the
user can obtain the ciphertext ofx underK. Thus, this inference correctly represents thecapabilityoffered
by the security API: if the user knowsx and the keyK wrapped as aDATA key under the master keyKM ,
the user can obtain the ciphertext of any plaintext it knows under this keyK.

Security Invariants When OTTER is run, it attempts to prove an inconsistency in its input. As such,
theorems to be proven are entered in a negated form: if an inconsistency is discovered, the original theorem
is true. In the case of Cryptographic APIs, we add the security goals to theinput because “proofs” are
actually attacks on an API: steps that derive a clause that contradicts a security goal. For example, if one
security goal was that the master keyKM is never learned by the user, one would include in the specification
the statement:

-U(KM).

If OTTER derives the clauseU(KM), then its proof will show how that security goal has been violated.

Modeling Computational Properties Because encryption is considered ideal, we provide OTTER with
inference rules limited to opaque encryption and decryption operations, assuming proper user knowledge.
Certain other operations, however, do have important computational properties that OTTER needs to know
about for the model to make any sense at all.

Specifically, in a number of the security APIs we have studied, theXOR operator plays a major role in
numerous API calls. This operator has important computational properties crucial to the successful function
of the security API. As it turns out, these same properties are crucial to theattacks, too.

We represent these properties using OTTER’s ability to operate over equalities:

xor(x,y) = xor(y,x).
xor(x,x) = ID.
xor(x,ID) = x.

xor(xor(x,y),z) = xor(x,xor(y,z)).



12

The stringsx, y andz are automatically assumed to be variables.ID is a literal, and OTTER will not
automatically assume thatID represents the identity element for thexor operator. Thus, the behavior of
ID needs to axiomatized.

One should note how the simple property of commutativity ofXOR needs to be axiomatized in OTTER.
This should help clarify how we model ideal operation of other primitives like encryption: where we do not
specify a property, OTTER simply will not assume it. OTTER reasons only on inferences that are explicitly
stated.

4 Finding Complex Attacks

4.1 Complications

A model of the 4758 created using the methods in section 3 will be perfectly valid. However, it will also
take far too long for OTTER to reason about it, and it may even fail altogether. In this section, we describe
how to achieve two major goals:

1. Optimize a model using various theorem prover tricks.

2. Ensure that such optimization does not impede completeness of the search.

4.2 Partitioning Adversary Knowledge

The above naive specification of the user’s offline encryption capabilities allows for terms to be derived that
are unlikely to be of use to an attacker. For example, given that the attackerinitially knows two control
vectorsU(DATA) andU(IMP), he could derive:

U(e(DATA,IMP).
U(e(DATA,e(DATA,IMP))).

U(e(DATA,e(DATA,e(DATA,IMP)))).
U(xor(e(DATA,IMP),DATA)).

...

To limit an attacker’s ability to perform encryption, we only allow the attacker to encrypt a message
that is not the result of a previous encryption. Though this approach mayfail to model certain classes
of attacks, we believe these attacks are unlikely to succeed under the assumption of ideal cryptographic
primitives. Likewise, the key used for encryption cannot be the result ofa previous encryption. To enforce
this standard, we must introduce types. Data that is the result of an encryption will be of one type, while
data that is not the result of an encryption will be another type. We use the predicateUE(x) to represent
that the attacker knowsx, andx is the result of an encryption.UN(x) is the predicate that represents an
attacker knowsx and thatx is not the result of a previous encryption. Together, these two predicates replace
the previous “attacker knowledge predicate”U(x). Now, the attacker ability to encrypt a messagex under
a keyk can be represented by the clause:

-UN(x) | -UN(k) | UE(e(x,k)).

In addition, we decided that it is unlikely that an attack would require calculating the XOR of any known
constant with a result of a previous encryption. We model the attackers ability to XOR two known messages
x andy as:

-UN(x) | -UN(y) | UN(xor(x,y)).

These simplifications greatly reduce the size of our search space. Specifically, it can be easily shown
that the number of literals that the attacker can learn is finite under this model of XOR and encryption.
Theoretical work is currently underway to exactly specify what attacks might be missed by using this data
typing simplification. The above simplifications were necessary before OTTER was able to successfully able
to recreate known attacks originally found by Mike Bond and Ross Anderson [6] on the 4758.



13

4.3 Intermediate Steps

The search optimization techniques built into OTTER can be counter-productive under certain circumstances.
Demodulation[30] is a rewrite rule that acts to simplify clauses. When a clause is demodulated, it is replaced
with the simplest form of the clause. OTTER defines the simplest form to be the form with the fewest
symbols, and, if the number of symbols is equal, the simpler clause has a lower lexicographical ordering.
OTTER’s default lexicographical ordering of symbols is an alphabetical ordering. Because the weighting
and lexicographical ordering of terms is a total ordering on equivalent clauses, if clauseC1 is equivalent
to clauseC2, they will both demodulate to the same clauseC3. Demodulation is initially applied to every
input clause, and also applied to every clause that is derived.

We use demodulation mainly to deal with the function XOR. Because XOR is associative and commuta-
tive, there can be many equivalent ways to rewrite a given term. For example, without demodulation OTTER

may derive all of the following clauses:

UN(xor(B,xor(C,D))).
UN(xor(xor(B,C),D)).
UN(xor(D,xor(B,C))).
UN(xor(xor(C,B),D)).

...

although they are all equivalent. However, if we declare the following equalities asdemodulators:

xor(x,y) = xor(y,x).
xor(x,x) = ID.
xor(x,ID) = x.

xor(xor(x,y),z) = xor(x,xor(y,z)).

OTTER will only retain the first clauseU(xor(B,xor(C,D))). However, using demodulation has its
costs. In particular, when OTTER uses existing knowledge to perform one of the transactions it mustunify
variables to knowledge we already know. In some cases, it may beimpossibleto unify the variables in
the transaction to knowledge we already knoweven if we know equivalent information. For example, the
clauses:

-UN(x)|-UN(y)|-UN(xor(x,y))|GOAL(x).
UN(xor(B,C)).
UN(xor(D,E)).

UN(xor(B,xor(C,xor(D,E)))).
-GOAL(xor(B,C)).

will not unify and the initial transaction will not be able to proceed. To resolve these clauses, OTTER may
attempt to unify the variablex with xor(B,C), andy with xor(D,E), but then the termxor(x,y)
will need to unify with a term of the formxor(xor(B,C),xor(D,E)). Because the form required for
unification is not the same as the simplest form,GOAL(xor(B,C)) cannot be derived.

We introduce anintermediate clauseto solve this problem, a method developed by author Youn [31].
We do not know if this approach has been used before. We split the implication clause into two separate
clauses:

-A(x)|-A(y)|INTERMEDIATE(xor(x,y),x).
-INTERMEDIATE(z,x) | A(z) | GOAL(x).

In this case, we can take advantage of demodulation. Once

INTERMEDIATE(xor(xor(B,C),xor(D,E)),xor(B,C)).

is derived, OTTER will demodulate it into the simplest form:



14

INTERMEDIATE(xor(B,xor(C,xor(D,E))),xor(B,C)).

Then, in the second clause, the variablez can be unified with the termxor(A,xor(B,xor(C,D))),
x can be unified withxor(B,C), andGOAL(xor(B,C)) can be derived. Notice that the intermediate
clause contains the variablex by itself, which is necessary to eventually deriveGOAL(x) becausex is not
recoverable fromxor(x,y).

Unfortunately, by using intermediate steps, we may derive extra clauses. These extra clauses are un-
desirable, but because the use of intermediate clauses can be limited to caseswhere we know unification
will be difficult, it is much preferable to running OTTER without demodulation which will blindly retain
numerous equivalent versions of arbitrary clauses.

Other simple barriers to unification involve term cancellation and pattern matching, and are solved by
keeping several versions of implication clauses that explicitly deal with thesebarriers. For example, the
clause

-A(xor(x,B))|GOAL(x)

would be expanded into:

-A(xor(x,B))|GOAL(x)
-A(xor(B,x))|GOAL(x)
-A(x)|GOAL(xor(x,B))

4.4 Forwards/Backwards Search

Our approach to finding an API-level attack on an API specification is akinto exploring a search graph until
the goal is found: the start node represents the initial knowledge of the adversary and edges represent legal
API calls resulting in more adversary knowledge.

In the process, however, many clauses were derived that did not contribute in finding the goal. We
call thesechaff clausessince they distract the reasoning tool from finding the goal. While derivingchaff
clausesis unavoidable in general, we can avoid deriving too many by having the theorem-prover work more
efficiently. One way is to have the theorem prover reason from both directions:

• reasoning forwards from the adversary’s initial set of knowledge, determining additional knowledge
with each step

• reasoning backwards from the adversary’s goals, determining what the adversary has to know in order
to reach his goal

OTTER provides a variant of hyper-resolution – negative hyper resolution – that we use to accomplish
backwards search. This can be turned on by setting the flagneg hyper res in OTTER. Negative hyper-
resolution works in exactly the same way as positive hyper-resolution except that unification is done on
negative literals: each positive literal in the nucleus has to be unified with a negative literal in the satellites.

Nucleus : -A(x) | -B(x) | C(x)

Satellite : -C(GOAL)

Negative Hyperresolvent : -A(GOAL) | -B(GOAL)

Now, instead of provingC(GOAL) to derive a contradiction, OTTER can now prove bothA(GOAL) and
B(GOAL).

However, this approach does not always speed up OTTER’s search. When a reasoning tool is given more
deductive power, it also ends up producing morechaff clauses. Thesechaff clausesare eitherunits (e.g.
-A(x)) or non-units(e.g.-A(x) | -B(x) | -C(x)). Non-unitstend to cause clause explosion when
used with negative hyper-resolution since they resolve to form larger non-unit clauses with more variables.
Ultimately, it is the production ratio ofchaff clausesversus useful clauses that will determine whether



15

negative hyper-resolution is useful. This ratio can be tuned by setting other OTTER parameters such as
pick given ratio, which picks clauses with lower weight first (thereby delaying reasoningabout huge
clauses) andmax distinct vars, which discards clauses if they contain more than a certain number of
variables.

In section 5, we show results demonstrating how turning on negative hyper-resolution may improve or
deprove OTTER’s search speed.

5 Recreation of Attacks & Results

5.1 VSM Attacks

The two following attacks on the Visa Security Module were modeled and recreated efficiently with OTTER’s
first-order logic language.

XOR to null key attack To distribute key shares and combine them successfully at the destination ATM
to form theterminal master key, the VSM security API provides 2 commands:

1. “Generate Key Share”: returns a key share wrapped under a master key.

U(e(Share,KM))

2. “Combine Key Share”: takes in two key shares and returns the XOR of the shares wrapped under the
same master key.

-U(e(Share1,KM)) | -U(e(Share2,KM)) | U(e(xor(Share1,Share2),KM))

It can be seen that providing the same key share twice will result in a NULL terminal master key.

Key type attack The VSM security system uses a key typing system, where key types are differentiated
by encryption under separate master keys. However, the VSM allows the re-use of key types, enabling an
attacker to calculate any user’s PIN number. The following API calls constitute the attack:

1. “InsertTerminal Communications Key”: This allows a clear key to be entered as a TCK.

-U(x) | U(e(x,TCK))

2. “Rewrap withTerminal Master Key”: This allows a TCK to be rewrapped under a TMK such that the
TCK can be transferred to an ATM.

-U(e(x,TCK)) | -U(e(y,TMK)) | U(e(x,y))

The attack involves passing in aprimary account numberas a TCK and rewrapping that using the PIN
derivation key. This represents the simplest attack that requires more thana single API call. The attack was
found by OTTER in a fraction of a section, with only 215 generated clauses.

5.2 IBM 4758 Attacks

The attacks on the IBM 4758 are considerably more complex than those on theVSM. We briefly describe two
attacks with the required API calls and demonstrate how our modeling techniques helped in the recreation
of these attacks using OTTER.



16

PIN derivation attack This attack allows the attacker to obtain the PIN of anyprimary account number.
First, key-type confusion is introduced with ‘Key Part Import’, yielding a bogus importer key. Next, the PIN
derivation key is imported and typed as a ‘DATA’ key. Finally, the PIN derivation key is used as aDATA

key to encrypt anyprimary account number. The following API calls represent theskeletalmodel for the
attack:

• Encrypt with DATA key takes an arbitrary messagem and aDATA key and produces the corre-
sponding ciphertext:

m, {K}
KM⊕DATA → {m}

K
(2)

-U(x) | -UE(e(y,xor(KM,DATA))) | UE(e(x,y)).

• Key Import takes a specified type (x) and the target key (y) encrypted under an importer key (z),
as well as the importer key blob and ‘imports’ the target key into the system by rewrapping the key
under the 4758’s master key, typed withx:

T, {K1}KM⊕IMP , {K2}
K1⊕T

→ {K2}KM⊕T
(3)

-UN(x) | -UE(e(z,xor(IMP,KM))) | -UE(e(y,xor(z,x))) |
UE(e(y,xor(x,KM))).

We modeled this command using anintermediate clauseto speed up OTTER’s reasoning.

-UN(x) | -UE(e(z,xor(IMP,KM))) | INT(e(y,xor(z,x)),xor(x,KP)).
-INT(e(y,x),xor(w,KP)) | -UE(e(y,x)) | UE(e(y,xor(w,KM))).

• Key Part Import is used to merge key shares in a destination 4758. We modeled only the part ofthe
command that imports the third key share.

K3, T, {K1 ⊕ K2}KM⊕kp(T ) → {K1 ⊕ K2 ⊕ K3}KM⊕T (4)

-UN(xor(x, KP)) | -UN(y) | -UE(e(z,xor(x,xor(KP,KM)))) |
UE(e(xor(z,y), xor(x,KM))).

Discover PIN derivation key attack In modeling the previous attack, we added related API calls to make
the model more complete and realistic - if an API call was present in the model, so would any of its logical
counterparts. This model would be closest to one that would be created if the modeller was trying to search
for a vulnerability and not attempting to recreate a known attack. Therefore, we added the following 3
commands to create what we term thecompletemodel.



17

• Decrypt with DATA Key takes an arbitrary ciphertext and aDATA key and returns the decryption:

{m}
K

, {K}KM⊕DATA → m (5)

-UE(e(x,y)) | -UE(e(y,xor(KM,DATA))) | U(x)

• Key Export is simply the conceptual inverse of Key Import.

T, {K1}KM⊕EXP , {K2}KM⊕T
→ {K2}

K1⊕T
(6)

-UN(x) | -UE(e(y,xor(x,KM))) | -UE(e(z,xor(EXP,KM))) |
UE(e(y, xor(x,z)))

This encrypted blob is intended for another CCA which hasz as an importer key.

• Key GenerateThis command generates a key randomly and returns it as two keys (a matchingpair
of import and export keys). This command was not modelled as an implication butas initial attacker
knowledge.

K := RandomKey(), TY PE := IMP, EXP, DATA...

() → {K}KM⊕TYPE (7)

UE(e(K,xor(KM,TYPE)))

The aim was to determine if OTTER was able to find the same PIN derivation attack despite these additional
unimportant API calls. In the process, we made two exciting discoveries:

• OTTER was able to find the same attack albeit using more time and space (more implications and
more generated clauses). Furthermore, our modeling techniques displayed the same effectiveness in
cutting down the search space (refer to section 5.3 for actual numbers).

• OTTER was able to find a different attack in our model - one that we had not intended to find. This
additional attack allows the attacker to discover the PIN derivation key in the clear. Although this
attack had been found before byM. Bond et al, these findings attest to the usefulness of our techniques
in modeling the 4758.

5.3 Attack Statistics

The tables below describes how OTTER performed in recreating the manually found PIN derivation attack
[3, 6, 12] under various modeling techniques. Table 1 gives statistics taken from running OTTER on the
skeletal API model (the minimum commands required to demonstrate the type-casting attack) while Table
2 gives statistics taken from running OTTER on the complete model.

The numbers in Table 1 demonstrate that a naive approach (1) did not findany attacks (OTTER fails
to terminate as far as we can tell). By partitioning adversary knowledge (2),OTTER was able to find the
attack but only after a very substantial amount of time. Turning on demodulation(2) gave OTTER the
ability to canonicalise XORs and reduce the number ofchaff clausesbut in the process missing the attack.
Subsequently, the addition ofintermediate clauses(3) enabled OTTER to unify with demodulated terms,
allowing OTTER to find the attack once again. Finally, we gave OTTER the backwards searching capability
and it continued to find the attack but using significantly less time and space.



18

Table 1: Skeletal Model (3 API calls) - otter 3.3f running on a 3.2 Ghz P4 with2GB RAM
No. Strategies Attack

Found?
Clauses
Gener-
ated

Clauses
Kept

System
CPU
Time
(sec)

1 Vanilla No n/a n/a n/a
2 Partitioned Knowledge Yes TBC TBC TBC
3 Partitioned Knowledge, Demod-

ulation
No 33,154 16,652 0.09

4 Partitioned Knowledge, Demod-
ulation, Intermediate Steps

Yes 49,666 33,165 0.12

5 Partitioned Knowledge, De-
modulation, Intermediate Steps,
Backwards Searching

Yes 27,832 15,860 0.01

Table 2: Complete Model (6 API calls): otter 3.3f running on a 3.2 Ghz P4 with 2GB RAM
No. Strategies Attack

Found?
Clauses
Gener-
ated

Clauses
Kept

System
CPU
Time
(sec)

1 Vanilla No n/a n/a n/a
2 Partitioned Knowledge Yes 5,458,647 8,31 28
3 Partitioned Knowledge, Demod-

ulation
No 892,019 265,805 5.93

4 Partitioned Knowledge, Demod-
ulation, Intermediate Steps

Yes 1,663,954 389,424 3.46

5 Partitioned Knowledge, De-
modulation, Intermediate Steps,
Backwards Searching

Yes 301,986 103,739 0.2



19

The numbers in Table 2 reflect how OTTER performed in trying to recreate the same PIN derivation
attack but with three additional unrelated API calls. The addition of these callsrepresent a more complete
and realistic model – one that a security API modeller would have made without prior knowledge of an
attack.

OTTER continued to find the attack when it should have but the search space was understandably larger
in all corresponding experiments. Moreover, OTTER demonstrated the same trends with regards to the
various modeling techniques used, suggesting that if an attack does exist ina set of API callsS, the same
attack can still be deduced in a superset of API callsS′ and any modeling improvements used forS will
yield the same effects when used inS′.

6 Conclusion & Future Work

With this work, we have shown the first successful application of formal tools to the analysis of security
APIs. Using these tools, we have re-discovered an entire family of attacksagainst a widespread hardware
security module – the IBM 4758 CCA. We also found a novel variant of oneof these attacks.

We accomplished these results through a series of techniques to optimize the attack search process
while simultaneously ensuring that attacks would not be missed by these optimizations. We believe these
techniques will prove quite useful in analyzing a range of security APIs.We suspect these techniques will
soon help discover new attacks that might be too ununtuitive to find by hand.

In addition, our results emphasize the usefulness of theorem provers likeOTTER in the verification of
security APIs. Theorem provers have become very efficient (note thespeed of attack discovery) and appear
particularly talented at discovering non-intuitive attacks.

We expect this research to continue in at least four interesting directions:

1. further optimization : we are currently working to ensure that our use of the OTTER Theorem Prover
provides a more focused search of thereal attack tree, even with optimizations. The real attack tree
is a pruned version of the naive attack tree: we believe theoretical resultscan rule out entire subtrees
and help fight the computational explosion problem inherent to API verification.

2. improved modeling tools: even if we had a perfect theorem proving approach, modeling remains a
very human — and thus very fallible — process. One likely research direction is the construction of
pre-processing tools that might greatly simplify the modeling task in order to minimizehuman error.
Another direction is the exploration of newer theorem provers and alternative tools that straddle the
model-checker/theorem-prover divide.

3. modeling information leakage: it will be useful to move away from the ideal encryption assump-
tion and find ways of reducing the computational requirements for brute-force key-breaking efforts.
Modeling such information leakage attacks is a fascinating and challenging direction for this type of
research.

4. new attack discoveries: our methodology is ready to take on new, more complex APIs. We fully
expect the techniques presented here to be used in discovering new andpowerful attacks against a
number of API targets.

We hope these techniques and future improvements will help bridge the gap between the high-level
security policies and low-level specifications of security APIs.

References

[1] : 2001, ‘RSA Security Inc. Public-Key Cryptography Standards (PKCS)’. RSA Laboratories.
Available at:ftp://ftp.rsasecurity.com/pub/ pkcs/pkcs-11/v211/pkcs-11v2-
11r1.pdf.



20

[2] : 2003, ‘IBM PCI Cryptographic Coprocessor: CCA Basic Services Reference and Guide Release
2.41, Revised September 2003 for IBM 4758 Models 002 and 023’. International Business Machines
Corporation.

[3] Bond, M.: 2001a, ‘Attacks on Cryptoprocessor Transaction Sets’. In: CHES. Berlin, pp. 220–234.

[4] Bond, M.: 2001b, ‘Attacks on Cryptoprocessor Transaction Sets’. Presented at the CHES 2001 Work-
shop in Paris.

[5] Bond, M.: 2004, ‘Understanding Security APIs’. Ph.D. thesis, University of Cambridge.

[6] Bond, M. and R. Anderson: 2001, ‘API-Level Attacks on Embedded Systems’. IEEE Computer
Magazine34(10), 67–75.

[7] Bond, M. and R. Anderson: 2003, ‘Protocol Analysis, Composability and Computation’.Computer
Systems: Theory, Technology and Applications.

[8] Bond, M. and P. Zielinkski: 2003, ‘Decimalisation Table Attacks for PINCracking’. Technical Report
TR-560, University of Cambridge, Cambridge.

[9] Burrows, M., M. Abadi, and R. Needham: 1990, ‘A Logic of Authentication’. ACM Transactions in
Computer Systems8(1), 18–36.

[10] Clayton, R. and M. Bond: 2003, ‘Experience Using a Low-Cost FPGA Design to Crack DES Keys’.
In: Cryptographic Hardware and Embedded System - CHES 2002, Vol. 2523. pp. 579–592.

[11] Clulow, J.: 2003a, ‘On the Security of PKCS #11’. In:CHES. Berlin, pp. 411–425.

[12] Clulow, J. S.: 2003b, ‘The Design and Analysis of Cryptographic Application Programming Interfaces
for Devices’. Master’s thesis, University of Natal, Durban.

[13] Dolev, D. and A. Yao: 1983, ‘On the Security of Public-Key Protocols’. IEEE Transactions on Infor-
mation Theory29, 198–208.

[14] Lowe, G.: 1995, ‘An Attack on the Needham-Schroeder Public Key Authentication Protocol’.Infor-
mation Processing Letters56(3), 131–136.

[15] Lowe, G.: 1996, ‘Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR’. In:
Proceeedings ofTACAS, Vol. 1055 ofLecture Notes in Computer Science. pp. 147–166.

[16] McCharen, J., R. Overbeek, and L. Wos: 1976, ‘Complexity and Related Enhancements for Automated
Theorem- Proving Programs’.Computers and Mathematics with Applications2, 1–16.

[17] McCune, W.: 2003, ‘Otter 3.3 Reference Manual’. Aragonne National Laboratory, Argonne, Illinois.

[18] Meadows, C.: 1994, ‘A Model of Computation for the NRL Protocol Analyzer’. In: Proceedings of
the Computer Security Foundations Workshop VII. pp. 84–89.

[19] Meadows, C.: 2003, ‘Formal Methods for Cryptographic Protocol Analysis: Emerging Issues and
Trends’. IEEE Journal on Selected Areas in Communication21(1), 44–54.

[20] Miles, B., ‘Win32 API Tutorial’. http://www.winprog.org/tutorial/.

[21] Needham, R. and M. Schroeder: 1978, ‘Using Encryption for Authentication in Large Networks of
Computers’.Communications of the ACM21(12).

[22] Paulson, L. C.: 1997, ‘Proving Properties of Security Protocols by Induction’. In: 10th IEEE Computer
Security Foundations Workshop. pp. 70–83.



21

[23] Robinson, J. A.: 1965, ‘A Machine-Oriented Logic Based on the Resoultion Principle’.Journal of the
Association for Computing Machinery12(1), 23–41.

[24] Shamir, A.: 1979, ‘How to Share a Secret’.Communications of the ACM22, 612–613.

[25] THAYER Fábrega, F. J., J. C. Herzog, and J. D. Guttman: 1999, ‘Strand Spaces: Proving Security
Protocols Correct’.Journal of Computer Security7(2/3), 191–230.

[26] Walli, S. R.: 1995, ‘The POSIX family of standards’.StandardView3(1), 11–17.

[27] Wos, L. and G. Pieper: 1999,A Fascinating Country in the World of Computing, Your Guide to Auto-
mated Reasoning. New Jersey: World Scientific Publishing.

[28] Wos, L. and G. Robinson: 1968, ‘Paramodulation and Set of Support’. In: IRIA Symposium on Auto-
matic Demonstration. Versailles.

[29] Wos, L., G. Robinson, and D. Carson: 1965, ‘Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving’.Journal of the Association for Computing Machinery12(4), 536–541.

[30] Wos, L., G. Robinson, D. Carson, and L. Shalla: 1967, ‘The Concept of Demodulation in Theorem
Proving’. Journal of the Association for Computing Machinery14(4), 698–709.

[31] Youn, P.: 2004, ‘The Analysis of Cryptographic APIs Using Formal Methods’. Master’s thesis, Mas-
sachusetts Institute of Technology.



22

A Complete Model

% Description:
% Shows how adversary can derive user’s pin from a crypto box.
% Notation:
% e(x,k) denote encryption of x with key k.
% UE(x) means "User knows encryption x".
% UN(x) means "User knows non-encryption x".
% KM is the master key for the 4758.
% KEK represents a key-encrypting key.
% EXP1 represents an exporter key.
% K3 represents the final part of KEK that is known to
% the attacker.
% P is the Pin Derivation key.
% DATA is a control vector designating a key as a data key.
% IMP is a control vector designating a key as an importer.
% EXP is a control vector designating a key as an exporter key.
% PIN is a control vector designating a key as an pin derivation key.
% KP represents the key part bit in a control vector. In this
% specification, we do not use kp(x) to designate a control vector x
% is a key part, but rather use x $oplus$ KP. In particular, this
% requires careful representation of the Key Part Import,
% Key Import, and Key Export functions to accurately model the 4758.

% OTTER INPUT FLAGS
set(process_input).

% output information
clear(print_kept).
clear(print_new_demod).
clear(print_back_demod).
clear(print_back_sub).
clear(control_memory).

%runtime constraints, memory usage
assign(max_mem, 500000).
assign(stats_level,1).
%maximum allowed running time.
assign(max_seconds,1000000).
%maximum number of proofs produced.
assign(max_proofs, 10).
%maximum depth of attack
assign(max_levels, 100).

%disable paramodulation
clear(para_from).
clear(para_into).
clear(para_from_right).
clear(para_into_right).
clear(para_from_vars).
set(eq_units_both_ways).

%Use lexicographical ordering
set(lrpo).

%Perform a breadth first search
set(sos_queue).

%use hyperresolution
set(hyper_res).
set(order_hyper).

%The lexicographical ordering of terms. The term KM is listed
%as having the highest lexicographical ordering because it
%often appears in clauses XORed with variables. Because we
%do not know what constant will unify with that variable, by
%making KM have the highest lexicographical order, we can still
%ensure that all possible unifications will occur.
lex( [ ID, Acc, DATA, IMP, K3, KEK, PIN, EXP1, EXP, KP,KM] ).

%This list represents all actions an attacker can take.
list(usable).

%-----------------------------------------------
% Attacker Abilities
%-----------------------------------------------

%Offline things Adversary can do:

%encrypt something
-UN(x) | -UN(y) | UE(e(x,y)).

%decrypt if knows stuff.
-UE(e(x,y)) | -UN(y) | UN(x).

% ability to xor
-UN(x) | -UN(y) | UN(xor(x,y)).

%-----------------------------------------------
% Transaction Set
%-----------------------------------------------

% Command : Encrypt using data key
-UN(x) | -UE(e(y,xor(DATA,KM)))



23

| UE(e(x,y)).

%Command: Clear_Key_Import
-UN(x) | UE(e(x,xor(DATA,KM))).

% Command : Key Import
% Note that the predicate INTUE keeps the term xor(x,KP) and not
% just the term x. By doing this, if the claimed type x were a
% key part (included XOR with KP), the two KP terms will cancel
% when INTUE is demodulated, and the predicate will not unify
% with the second clause.
%INTERMEDIATE STYLE:
-UN(x) | -UE(e(z,xor(IMP,KM))) | INTUE(e(y,xor(z,x)),xor(x,KP)).

-INTUE(e(y,x),xor(w,KP)) | -UE(e(y,x))
| UE(e(y,xor(w,KM))).

% Command : Key Part Import
% Here, the claimed type is required to involve the XOR with KP
% to enforce that the claimed type must be a key part.
% The first transaction represents calling Key Part Import and
% completing the key. The second transaction represents calling
% the function and not completing the key.
-UN(xor(x, KP)) | -UN(y) | -UE(e(z,xor(x,xor(KP, KM))))

| UE(e(xor(z,y), xor(x, KM))).

%Don’t complete
-UN(xor(x, KP)) | -UN(y) | -UE(e(z,xor(x,xor(KP, KM))))

| UE(e(xor(z,y), xor(x, xor(KP, KM)))).

% Command : Key Export

% This command does the opposite of key import.
% It takes an exporter key (a key with type EXP,
% rather than IMP) and uses it to export any key
% encrypted under the local master key KM and
% encrypts it (with it’s type) under the exporter.
%Here dealing with cancellation explicitly will save time.
%no cancellation with KM
-UN(x) |
-UE(e(y,xor(x,KM))) |
-UE(e(z,xor(EXP,KM))) |
UE(e(y,xor(z,x))).

%cancellation with KM
-UN(xor(x, KM)) |
-UE(e(y,x)) |
-UE(e(z,xor(EXP,KM))) |
UE(e(y,xor(z,xor(x,KM)))).

% Command : Decrypt using data key

% This does the opposite of the encrypt with
% data key command.
-UE(e(x,y)) |
-UE(e(y,xor(DATA,KM))) |
UN(x).

end_of_list.

%This list contains the security goals of the system, as well as
%all initial knowledge.
list(sos).
%Security goals of the 4758
-UE(e(Acc, P)).
-UN(KEK).
-UN(KM).
-UN(P).

%---------------------------------------------
% Initial Knowledge
%---------------------------------------------

UN(DATA).
UN(PIN).
UN(ID).
UN(IMP).
UN(K3).
UN(Acc).
UN(KP).
UN(EXP).

UE(e(P,xor(KEK,PIN))).

UE(e(xor(K3,KEK),xor(IMP,xor(KM, KP)))).

%The result of calling key generate
UE(e(KEK2,xor(IMP,xor(KM, KP)))).
UE(e(KEK2,xor(EXP,xor(KM, KP)))).

UE(e(EXP1,xor(KM,EXP))).

end_of_list.

%XOR demodulators
list(demodulators).



24

xor(x,y) = xor(y,x).
xor(x, xor(y,z))= xor(y,xor(x,z)).
xor(x,x) = ID.

xor(ID,x) = x.

% The rest of these demodulators have proved to be useful in
% allowing Otter to reason quickly, but are not strictly
% necessary.
xor(xor(x,y),z) = xor(x,xor(y,z)).

xor(x, xor(y, xor(z, xor(x,w)))) = xor(y, xor(z,w)).
xor(x, xor(y, xor(z, xor(w,x)))) = xor(y, xor(z,w)).
xor(x, xor(y, xor(x, z))) = xor(y,z).
xor(x, xor(y, xor(z, x))) = xor(y,z).
xor(x, xor(x,y))= y.
end_of_list.


