Technical Report s

Number 644

Computer Laboratory

Robbing the bank
with a theorem prover

Paul Youn, Ben Adida, Mike Bond,
Jolyon Clulow, Jonathan Herzog,
Amerson Lin, Ronald L. Rivest, Ross Anderson

August 2005

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2005 Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow,
Jonathan Herzog, Amerson Lin, Ronald L. Rivest,
Ross Anderson

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitp:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Robbing the Bank with a Theorem Prover

Paul Youn Ben Adida Mike Bond Jolyon Clulow Jonathan Herzog
Amerson Lin Ronald L. Rivest Ross Anderson
Abstract

We present the first methodology for analysis and automattsttion of attacks on security applica-
tion programming interfaces (security APIs) — the integfato hardware cryptographic services used by
developers of critical security systems, such as bankipijcgtions. Taking a cue from previous work
on the formal analysis of security protocols, we model ARIsefy according to specifications, under
the assumption of ideal encryption primitives. We use ardwoprover tool and adapt it to the security
API context. We develop specific formalization and autooratechniques that allow us to fully harness
the power of a theorem prover. We show how, using these tgobsj we were able to automatically
re-discover all of the pure API attacks originally docungshby Bond and Anderson against banking
payment networks, since their discovery of this type ofchkttim 2000. We conclude with a note of
encouragement: the complexity and unintuiveness of theeftemtiattacks make a very strong case for
continued focus on automated formal analysis of cryptdgmfPls.

1 Introduction

1.1 Security APIs and Attacks

A security APlis an Application Programming Interface (API) that uses cryptographydeige specific
security functionality and implements a policy that limits the interactions a user méyrperA conven-
tional API exposes a set of calls to a hardware or software module to packagechality, and enable a
form of abstraction: changes to the implementation remain localized if they dalteothe specified API
behavior. This opaqueness encourages programmers to write modigar co

Just as conventional APIs give services, but abstract away théel@hvimplementation, security APIs
give as much as they take away: certain features are offered, whiles @teepurposely missing in order to
guarantee well-defined security goals. For example, an SSL accelesatiomight have an API that offers
key-pair generation, fast encryption and decryption, and public kegetion; but it will never allow private
key extraction.

Conventional APIs are ubiquitous: they include the Microsoft Win32 AH]] [for Windows client
programming and the Posix Interface [26] for Unix programming. Popwdeursty APIs include RSA's
PKCS#11 and Microsoft Cryptographic API (CAPI).

A security API attacks a breach of a target API's stated security goals that respects theoMRdlary.
Itis thus alegal sequence of calls, but which are chained in an unexpected way. Témipbattack pathsin
an average APl are numerous: usually, most API calls are availablevfmrdtion at each step in an attack
search.

Our goal is the formal analysis of these security APIs and the detectidtacka against them. In this
paper, we describe a new methodology for the specification of securityiABhe language of first-order
logic, the input language of many theorem provers. This new methodollmyysahe application of many
powerful search strategies. We developed our methodology duringhéthesés of APIs for financial ATM
network processing, and we will use a particular API (the IBM 4758 C&#a running example. We first
briefly describe the CCA API, and then summarize our modeling techniques.

3

1.2 Target APIs and their Vulnerabilities

The Common Cryptographic Architecture (CCA) is the security API for thid W858, a hardware-based
tamper-resistant device that enables secure banking operationsrygtsgcaphic module is used Auto-
matic Teller Machine (ATMhetworks for two important tasks: securing communications links in the inter-
national ATM network, and for the generation and verification of cusoRgesonal Identification Numbers
(PINSs).

The architecture of the CCA achieves these tasks through applying conmymingraphic primitives
and API concepts, which we describe briefly here:

e Fundamental commands are provided to generate, process and vieisfyTley work with clear user
inputs, such as the customer account number, encrypted inputs, stinghteal PIN, and long-term
secret keys.

¢ A unique master keig held in a special secure register in the device, and used as the rdoeadizhy
for storage of keys.

e Key wrappingis used to increase available storage, and for secure communication betevweees.
For instance, a key can be “wrapped” by encryption under anttdwesport keystoring all the meta-
data associated with the key alongside the value. When the CCA needs twitloekkeyk, the user
must providek wrapped under the master key (i.e., encryptefkgs;,,), from some external storage,
assumed to be insecure. The CCA implements policy on key usage: it will noysimprap the key
and reveal it in the clear. Instead, it acts as a gate-keeper to the wriagyeall operations with that
key are performed by API requests, and all underlying computation ferpeed securely inside the
hardware security module.

e SimpleSecret Sharind4] is used to bootstrap transmission of sensitive data from one CCA module
to another. A top-level key-encrypting-kel(,E K, is split into multiple shares (calldeey part3 and
each share is transmitted independently. The parts are recombined wsiiaj §CA API calls. Both
modules need to share at least one top-level transport key. Ondeedsceach end storeEEK
locally in external memory, wrapped under that device’s master key. dimplete KEK is never
available in the clear outside the CCA's secure boundary: as soon gsesaatar imports the first
KEK share, the resulting partial key is wrapped under the CCAs master kesuas. The second
and third shares are added in similar ways, with the prior wrapped paryiasmput and the newly
recombined and wrapped key as output.

e Key typingprovides a mechanism for specifying a key’s precise usage domai/M key, for
example, can be used within a transaction to verify a customer PIN for aattéors. However, a
key designed for this purpose should not be usable for generic @imryand decryption of data,
otherwise the attacker could generate or verify PINs at will by issuing a sidegugypt call. The
CCA APl is designed to prevent this (among other things). Keys with distindfigrent types can
be used for other purpose€? AT A for communications, and@nporter and exporterkeys for the
wrapping of other keys.

1.3 Our Contribution

Our main contribution to the analysis of security APIs is three-fold:

1. We provide what we believe to be the first application of formal automa&iasbning techniques to
the problem of API security.

2. We define a modeling methodology which greatly speeds the analysis ef &gk making such
analysis practical.

3. We reproduce, using our automated methods, all previously-knoysmi@agement attacks on the
4758, demonstrating the ability of the tool to reason at least as well as a $killedn (assuming the
human can provide a correct API specification).

Modeling & Special Techniques Our methodology models security APIs with a theorem prover. Specif-
ically, we use QTER [17], an automated reasoning tool based on first-order logic. At the Ibasst level,
the model proceeds as follows:

e User knowledge of a message or value is represented via a predicateigvkige only for known
values. That is, user knowledge of a values represented via the truth of predicéiex) .

e Compound terms are represented by functions. For example, the enorgptiavith keyy is repre-
sented bye(x, y) , while the XOR of these two values is representeg@s(X, y) .

e Initial user knowledge is represented as axioms stating this predicate toebf®tmgiven messages.
For example, the user may know themary account numbefPAN) of a given customer. Thus, the
model includedJ(PAN) as an axiom.

e The user may be able to make basic deductions without the use of the ARIx&oiple, the user
can XOR together two known values. Therefore, the model includes tiessgble deductions as
inference rules.

e The user can also make function calls to the API, therefore the functioracaltaodeled as inference
rules that map the input to the output.

¢ Properties of the underlying cryptographic primitives can be reprederdesquations. For example
one of the properties of the XOR operation can be representedrgsx, y) = xor (y, X).

e Lastly, we ask the tool to find attacks by asking it to violate the security goaledkPI. That is, we
ask it to prove that the security goals are false. If we wish to find an attatkebovers a user’s PIN,
we might provide as a goalJ(PI N) . *

This approach is not especially novel. Unfortunately, it is not especiadly either. Analysis of this
simple specification will prove to be intractable, for two basic reasons: Fitisyinference rules will allow
the user to deduce an infinite number of terms, most of which are ill-formeat i3hthe deduction system
allows the user to apply the XOR and encryption operators in meaningless &egondly, certain necessary
optimizations may causeT@ER to miss certain attacks. Specifically, an optimization catlechodulation
that collapses all “equivalent” forms of a predicate to one canonical.fddsing demodulation alone may
cause the tool to miss attacks that use non-canonical forms; whilst enedgslivigting usingparamodulation
fixes this, it also returns us to the state-space explosion we are tryingitb &lawvever, demodulation is a
powerful tool, and it seems infeasible to analyze the API without it.

Our contributions provide a way of modeling an API that avoids both of tpeselems. We impose
typing on the deduction systérwhich restricts the possible deductions to meaningful, well-formed forms.
We also propose a way of representing inference rules that simultapedas/s demodulation but captures
otherwise-overlooked attacks. Indeed, this technigue can be tholigbtheaking demodulation work “for
us” instead of “against us.”

Verification of Known Attacks With these two techniques, it was possible to re-discover in an automated
way all previously-known attacks [3, 6, 12], all of which were origindtiynd “by hand.” These attacks are
similar in that they exploit the CCAs weakness of using the XOR function botlmabine type information

with keys, and to build the keys themselves frkay parts This weakness allows the type of a key to be
changed by using a cleverly chosen value for the key part. The tygieeckeys can then be used to either
recover an unknown key or establish a known key in the system in one &bltbwing ways:

o theexport-and-decrypattack to recover a key (of typdaXPand DATA),

The actual form of this goal is slightly more complex, for reasons exgthin Section 2.1. However, the basic intuition is the
same.
2Not to be confused with the typing system of the API, which is being model#eideduction system.

¢ theencrypt-and-imporattack to import a known value as a key (of type TA), and

¢ the export-import loopfollowed by one of the previous two methods to recover an unknown key or
establish a known key (of any type).

The implications of either recovering an unknown key or establishing a kikey depend on the asso-
ciated type of the key and the permissible API calls. For example, a knowatovered exporter key can
be used to export and recover other keys from the system.

We note that our model was developed without knowledge of some of titasksa However, all these
documented attacks were found in a few minutes of computation.

1.4 Previous & Related Work

Security protocols, a close friend of security APls, have been thecudfjormal analysis since 1989, when
the seminal paper by Burrows, Abadi and Needham introduced BAN[@hidutomated verification began
soon thereafter with Meadows’s work on the NRL protocol analyze}: [18

In 1995, Lowe used the CSP/FDR model checker to find and provabl§4ixi[5] a serious flaw in the
Needham-Schroeder mutual authentication public-key protocol [21].eérém prover tool was first used
for protocol verification by Paulson [22]. The field has since expdrd®], including complete formal
modeling efforts such as Strand Spaces [25].

In 2000, Anderson introduced the first security API attack, againsVige Security Module (VSM).
This attack was extended by [3] into a suite of attacks against the key nmeagef IBM’s CCA [2].
[6, 10, 12, 5, 7] extended this work with additional attacks and addiasseissue of secure API design.
The scope of API attacks was further expanded to include PIN priogefss financial and banking systems
in [12, 5, 8] and popular standards such as PKCS#11 [1] in [11].

1.5 Motivation

Security APls are inherently similar to security protocols, and much workéas done on security protocol
analysis since the introduction of BAN logic in 1989. However, there are iitapbdifferences between
APIs and protocols that make Security AP| analysis more interesting atidrafiag, for example:

e Attacker Ability: The current approach in modeling security protocols use some varitg Dolev-
Yao model, where the underlying cryptographic primitives and algorithmgiges ideal properties
and the adversary is limited to read, modify and delete traffic. Specificallylili¢y to modify is
limited to actions like encryption, decryption, concatenation and xor [19].

In a security API, the same assumption model is used except the attadlilyta modify messages
is augmented to also include making any API call using the contents of the reeg&fitimately, this
exposes a much larger attack surface.

e Shared State: We can also view a security APl as a large set of short-chain protocbkrewnost
chains are a single exchange of messages. However, the executimngifat protocol may result in
a change in the state of the system. Since the state of the system is shasschagrother API call,
it represents a different mode of attackter-chainstate attacks. In security protocol analysis, the
interest is only inntra-chain state attacks.

Therefore, it seems that security APls have a much more complex avénsaat model and therefore
require different formal analysis techniques.

1.6 This Paper

We first present an overview of the IBM Common Cryptographic Architec{®ection 2). We use this
API as an example with which to discuss the theorem-prover based modetiramalytical techniques we
developed and used (Section 3 and 4). We conclude with a number ofadé¢asire work in turning these
initial results into a full-blown, generic toolkit for discovering security Althaks (Section 6).

2 Targets

2.1 Overview of the 4758

The IBM 4758 is a hardware cryptographic co-processor [2], usedl M networks and bank computer
systems, which implements IBM’s Common Cryptographic Architecture (CCApteal Its purpose is
two-fold:

1. To enable the ATM network to cryptographically authenticate the cust@mer,
2. To prevent anyone — including bank insiders — from gaining accessstomers’ accounts.

The bank issues customers with Personal Identification Numbers (Pifsywich to authenticate them-
selves to ATMs. Each PIN isryptographicallyderived from the customer’s Primary Account Number
(PAN)® That is, when the bank first starts issuing PINs, the 4758 randomly afeseaPIN-derivation key
P, which will be used to generate all PINs for all customers. An individuat@mer’s PIN is generated by
encrypting that customer’s PAN with this Keywe denote the encryption operation as:

PIN := {PAN}, 1)

Thus, to verify a PIN, the 4758 module must compute the true PIN by encgygiim PAN of the
cusotmer’s card under the PIN-derivation key, and then compare thi®tNiwith the number punched in
by the customer himself.

If these two values match, the 4758 will allow the transaction to proceed. Tegbtbe customer and
to limit fraud, the 4758 must prevent the customer’s true PIN and the PiiMatien key from ever leaving
the device. Note that loss of the first endangers the assets of one cysttnifeloss of the second puts at
risk the accounts ddll customers.

In addition to PIN processing functionality, the 4758 CCA needs a securhansm to exchange PIN-
derivation keys, and to set up keys to protect transactions in transitAidv to bank. For these purposes,
the CCA API defines functionality that allows one 4758 (e.g. in the ATM ndtjvtar establish and use a
secure channel with another 4758 (e.g., at the bank headquarters)

To establish the first connection between two 4758 modules, one modutesceefresh random key
KEK (akey-encrypting ky KEK is not directly exported from the module . Instead, an elementary
secret sharing algorithm is employed to produce three shares, &aleparts Each key part is sent by
individual courier and fed into the other 4758. The parts are then X@&tgther in the module, angdFEK
is recovered.

It is unwieldy to send three couriers for every key to be shared betiveeAd758 modules. Therefore,
once KEK is shared between two 4758 modules, other keys (including the PINatlerikey P) can be
encrypted with it and sent from one to the other. This process of etiegypne key with another is called
key wrapping These new keys (andEK itself) can then be used for:

e deriving PINs (i.e., acting as a PIN-derivation key),

e encrypting arbitrary data, such as customer transactions,

3There are other PIN generation/verification techniques such as the RISA/erification Value (PVV) method, but we will
not go into them here.
“Technically, the PIN is only the first few digits of this encryption, but this witlke no difference to our model.

——

i {KEK } kpr wmxp CCA1L i P i CCA2 ~— {KEK}jp,0mp i
! ! KEK®PIN ! |
AP nepy T : l PIN |
: PIN KM, | ! KM, {P}rar,epiv |

__

Figure 1: Transfer oP from CCA-1to CCA-2 viaK EK

e acting as anmporterkey, and

e acting as amxporterkey.

The last two require a brief explanatioimporter keys are those keys trusted to secure other keys
arriving from some external sourc&xporterkeys are trusted to secure keys being sent to some external
destination. In both cases, the importer and exporter keys wrap the keystechred. For exampl& £ K
will be generated by one 4758 and split into three parts. The generati@ydésignate& K an exporter
key. After this key is reconstructed from the three parts, the receivibg Will designateK EK an importer
key. Thus, the first 4758 can generate a new kelyand export it by wrapping it with the exporter key
KEK. Likewise, the second 4758 can import it by decrypting (unwrappingksthgenerated ciphertext
with the importer keyK EK. Once again, once both modules have a shared key (this Krhgethey may
use it for a joint cryptographic operation.

A simple observation exposes the need for strict control over wrap@est kf a keyK'1 can be used
both to import a wrapped key 42} k1 — and to decrypt sensitive data, then it is trivial for an attacker to
simply decrypt the wrapped key and obtdir2 in the clear. The CCA provides a mechanismKey typing
which is meant to ensure that certain keys can only be used for certainsactio

Because much of the 4758 CCA transaction set concerns this dedicakieysdb their appropriate uses,
we describe it in further detail. Each individual 4758 card contaimasater keyK M. The on-board storage
of a 4758 card is limited; with this master key, protected storage can be implenusitigdkey wrapping and
normal external memory. Instead of storing the pin-derivationRéythe 4758, for example, the ciphertext
{P} x,, is stored externally. Of course, this ciphertext must be fed to the 475&Imptrating system when
the PIN-derivation key is required. In order to denote key type informatie CCA specification fixes a set
of control vectors binary strings that are public and unique for a given type across all mgsi&ations of
the CCA. The CCA control vector system has many thousands of variaes,tput we need only consider
the major distinctions:

PIN: used for PIN-derivation keys
IMP: used for importer keys,
EXP: used for exporting keys, and
DATA: used DATA keys.

To dedicate a key to a particular purpose, itvsapped and typedio that control vector. That is, it
is encrypted not with the master keyM, but with the XOR of KM and the relevant type. Hence, the
PIN-derivation key will actually be stored d9°} ;.. p;n- FOr the rest of this paper, we will speak of a
key asbeingthe type used in the wrap-and-type operation. That is, when we say kkgtfa is a “DATA
key,” we mean that the cipherte{i } ., 74 IS Stored externally to the 4758. Similarly, if the ciphertext
{K'} kare rp 1S Stored, therk can be used as an importer key. Note that it is possible (and sometimes also
correct) to obtain a given key wrapped and typed under more than otwlceector.

Note that the method for recombining key parts also uses the XOR operatimmddal use of XOR is
the basis of the attacks modeled in the next section.

3 Modeling Security APIs

A properly-defined security API provides:

1. A set of function calls Generally, there is no required order as to which function call is paedr
when, though there can be constraints on the formats of inputs to these calls.

2. A security policy. This policy comprises security invariants meant to be guaranteed by the API
An API without a security policy cannot be studied, as there would be curisg policy to attempt
breaking.

A security API vulnerability consists of a sequence of legal function caltel (potentially, offline
computation) which leads to the violation of the security policy. In this sectionshvesv how to model
simple attacks where the number of functions is small and the vulnerability segjiseshort.

3.1 A Large Search Tree Problem

Consider a typical API which may contain fifty function calls, and an attatkatr can perform offline
generic cryptographic functions — e.g. encryption and XOR. As ancappation, say each function ex-
pects two input terms and returns a single output term. We define the depihattbak as the number of
consecutive API and offline function calls required. Thus, searcthiraugh all attacks up to a depth of
takes time and space slightly worse than exponential. it level & < n of an arbitrary search, any of
the previous terms from the search can be used as input to any of thebbvaifanctions. As an upper
bound, there are at mostb function calls available. The search has a totab ddvels, each of which has
an upper bound af?b possible function calls available. Thus, a complete search up to a depthitbtake
O(c*1oe() time.

Though this simplified model ignores possible constraints on function dats, typlistrates the combi-
natorial explosion at the heart of verifying security APIs. Our modelishriegques must provide significant
optimization techniques to make finding attacks possible.

3.2 Choice of Tool: the Theorem Prover QTER

A notable property of many security APIs is theifective statelessnes&ny knowledge gained by the
adversary can be forever retained for use at a later time, and all ARlata accessible at all times —
provided the operator can supply correctly-formed inputs. This statelssss particularly true for systems
like the Visa Security Module [4] and the 4758 (described in section 2)revxeernal storage of wrapped
keys is a prominent mechanism. The adversary becomes the externgestoaaager for these wrapped
keys, and we assume the adversary has unlimited storage capacity.

Thus, in a series of interactions between an adversary and a secukjthéRnowledge of the adversary
increases monotonically. Any knowledge gained and any goal achiétietea remain known and achieved
for all time aftert.

These observations point naturally to theorem provers as a modeling tah Sfatements expressed
in first-order logic can represent knowledge and security invariaots, &f which, once deduced, remain
forever true. Logical inferences represent API calls and offlimamaation, with new, deduced statements
representing acquired knowledge.

The theorem prover ©ER takes input written in first-order logic. T¥ER was written by William
McCune [17] and implements many of the innovative ideas of Larry Wos3Q928, 16]. QTER is ex-
tremely well documented by McCune, Wos [27], and others. This papenees the reader is familiar with
the common first-order logic termgredicate literal, clause completenessaandresolution[23]. Informal
definitions will be given as needed. For more detailed definitions, see [27]

Though there exist newer and potentially more advanced theorem prio&eed on First-Order Logic
and beyond, we choseT®ER for its rich documentation and maturity. We suspect that our methods can be
adapted to other first-order logic tools, and we intend to explore thesettoefwork.

10

3.3 Target Simplification

A number of security API attack approaches exploit inherent cryppdgcamistakes: a weak key, a bad
cipher, a poor cipher chaining mode (e.g. ECB mode for a block ciphter), e These attacks are valid,
but they do not fall within the specific goal of our study: pure API attabks result from a logical flaw in
the conception of the API.

In order to focus on these pure API attacks, we simplify the target modej sencepts of the Dolev-
Yao model [13] and a few bits of common sense:

1. Perfect cryptographic primitives. Ciphertexts can only be decrypted with knowledge of the key,
and no information whatsoever about the plaintext or the key is leaked lryphertext itself.

2. Atomic operations. Encryptions of long plaintexts are considered atomic. Block chaining maotes
the vulnerabilities they engender are ignored.

3. Long, strong keys No key can be found by brute force search.

4. Full Capability APIs. While some security APIs restrict access to certain calls using role-based
policies, we ignore these constraints. There may be false positives irecunity analysis, but the
simplicity gained is well worth it.

3.4 Basic Techniques

Security API modeling begins with the definition of the parties involved and theaictiens between them.
Specifically, the APl user is, in effect, the adversary. He attempts to ugdthte extract information which
the API’s security policy ostensibly disallows. In order to properly modslskistem, we need to consider:

1. User/adversary knowledge representation
2. The effect of API calls and offline computation on user/adversapwlatge
3. Security invariants

4. Computational properties of certain primitives IXeR

User Knowledge The fundamental unit of the model is thser knowledge predicate. That is, user
knowledge of a valuX would be represented by setting to true the predicate
U(X) .

Merely placing the above string in the model will suffice to specify thaX) is true®
User knowledge includes initial knowledge atoms, new deductions over timdgy@ential breaches of
security policy. Thus, a secrecy goal is easily represented by negsg¢eénowledge:

- U(MASTER KEY) .

API Calls and Offline Computation The inferences of this deduction system will be of two types: those
deductions which the user can make offline, and API function calls. dnéers of the first type are simple.
For example, the adversary can always XOR two known values:

-U(x) | -Uy) | U(xor(x,y)).
The above statement reads:

e User does not know, OR

®Note that all O TER statements must be terminated with a period.

11

e User does not know, OR
e User knows the XOR af andy.

Thus, if the user knows AND the user knowgy, the first two statements are false and the last one must
be true. For technical reasonsTtER prefers this disjunctive form to the equivaldsitx) && U(y) =>
Ue(x,y)).

In accordance with the previously mentioned Dolev-Yao concepts, watelarciphertext as a function
of a plaintext and key. We express the user’s ability to perform offliraygrion and decryption using
inferences similar to the above:

-Ux) | -Wy) | Ue(x,y)) .
-Ule(x,y)) | -Wy) | U(x).

Because we state no further properties on ciphertextsg®will be unable to reason out any relation-
ship between ciphertexts using different plaintexts or keys. This is ptgdiseideal encryptiorsetting we
outlined.

The API functions can be also simply represented as inferences: if éhd&msws some given input to
a function call, he can learn the output. For example, the “Encrypt with Dega fikinction call of the 4758
can be represented as:

-U(x) | -Ule(K, xor(KMDATA))) | Ue(x,K)).

Because the user does not knkvin the clear, the above rule is the only inference path by which the
user can obtain the ciphertext wfunderK. Thus, this inference correctly represents ¢apability offered
by the security API: if the user knowsand the keyK wrapped as &»ATA key under the master kely M,
the user can obtain the ciphertext of any plaintext it knows under thigkey

Security Invariants When O'TER is run, it attempts to prove an inconsistency in its input. As such,
theorems to be proven are entered in a negated form: if an inconsistensyaseted, the original theorem

is true. In the case of Cryptographic APIs, we add the security goals tmpl because “proofs” are
actually attacks on an API: steps that derive a clause that contradictsidgysgoal. For example, if one
security goal was that the master k€\lis never learned by the user, one would include in the specification
the statement:

“U(KM .

If OTTER derives the clausg(KM , then its proof will show how that security goal has been violated.

Modeling Computational Properties Because encryption is considered ideal, we provide&®& with
inference rules limited to opaque encryption and decryption operationsnasy proper user knowledge.
Certain other operations, however, do have important computationagmiespthat @TER needs to know
about for the model to make any sense at all.

Specifically, in a number of the security APIs we have studiedXttie operator plays a major role in
numerous API calls. This operator has important computational propertieigicto the successful function
of the security API. As it turns out, these same properties are crucial aitdeks, too.

We represent these properties usingrer’s ability to operate over equalities:

xor(x,y) = xor(y,Xx).
xor (x,x) = ID.
xor(x,ID = x.
xor (xor(x,y),z) = xor(x,xor(y,z)).

12

The stringsx, y andz are automatically assumed to be variablé® is a literal, and @TeR will not
automatically assume thaD represents the identity element for tker operator. Thus, the behavior of
| Dneeds to axiomatized.

One should note how the simple property of commutativitKGR needs to be axiomatized inTOER.
This should help clarify how we model ideal operation of other primitives likerygption: where we do not
specify a property, ©TER simply will not assume it. @TER reasons only on inferences that are explicitly
stated.

4 Finding Complex Attacks

4.1 Complications

A model of the 4758 created using the methods in section 3 will be perfectly. wdbdrever, it will also
take far too long for @TER to reason about it, and it may even fail altogether. In this section, weidescr
how to achieve two major goals:

1. Optimize a model using various theorem prover tricks.

2. Ensure that such optimization does not impede completeness of the. search

4.2 Partitioning Adversary Knowledge

The above naive specification of the user’s offline encryption capabititiews for terms to be derived that
are unlikely to be of use to an attacker. For example, given that the attadtkaity knows two control
vectorsU(DATA) andU(| MP) , he could derive:

U(e(DATA, | MP) .
U(e(DATA, e(DATA, | MP))).
U(e(DATA, e(DATA, e(DATA, I MP)))).
U(xor (e(DATA, | MP), DATA)) .

To limit an attacker’s ability to perform encryption, we only allow the attackerricrypt a message
that is not the result of a previous encryption. Though this approachfailaip model certain classes
of attacks, we believe these attacks are unlikely to succeed under thepaissuof ideal cryptographic
primitives. Likewise, the key used for encryption cannot be the resatprevious encryption. To enforce
this standard, we must introduce types. Data that is the result of an @oarygll be of one type, while
data that is not the result of an encryption will be another type. We usedidicpteUE(X) to represent
that the attacker knows, andz is the result of an encryptionJN(x) is the predicate that represents an
attacker knows: and thate is notthe result of a previous encryption. Together, these two predicatieseep
the previous “attacker knowledge predicat#”x) . Now, the attacker ability to encrypt a messagender
a keyk can be represented by the clause:

SUNCX) | -UNCK) | UE(e(x, k).

In addition, we decided that it is unlikely that an attack would require calcgl#tie XOR of any known
constant with a result of a previous encryption. We model the attackiitg 8alXOR two known messages
x andy as:

-UN(x) | -UNCy) | UN(xor(x,y)).

These simplifications greatly reduce the size of our search space. &uégift can be easily shown
that the number of literals that the attacker can learn is finite under this modeDBf ahd encryption.
Theoretical work is currently underway to exactly specify what attack$ntig missed by using this data
typing simplification. The above simplifications were necessary befomE@was able to successfully able
to recreate known attacks originally found by Mike Bond and Ross Aondg@ on the 4758.

13

4.3 Intermediate Steps

The search optimization techniques built into1@R can be counter-productive under certain circumstances.
Demodulatiorj30] is a rewrite rule that acts to simplify clauses. When a clause is demodutasa@placed
with the simplest form of the clause. TOER defines the simplest form to be the form with the fewest
symbols, and, if the number of symbols is equal, the simpler clause has a loweegiaphical ordering.
OTTER's default lexicographical ordering of symbols is an alphabetical argerBecause the weighting
and lexicographical ordering of terms is a total ordering on equivalanses, if claus€'l is equivalent
to clauseC?2, they will both demodulate to the same clads& Demodulation is initially applied to every
input clause, and also applied to every clause that is derived.

We use demodulation mainly to deal with the function XOR. Because XOR isiaise@nd commuta-
tive, there can be many equivalent ways to rewrite a given term. For égawithout demodulation ©OTER
may derive all of the following clauses:

UN(xor (B, xor(C, D))).
UN(xor (xor (B, C),D)).
UN(xor (D, xor (B, Q))).
UN(xor (xor (C, B),D)).

although they are all equivalent. However, if we declare the followinglktigs asdemodulators

xor(x,y) = xor(y,Xx).
xor (x,x) = ID.
xor(x,ID = x.
xor (xor(x,y),z) = xor(x,xor(y,z)).

OTTER Will only retain the first claus&J(xor (B, xor (C, D))) . However, using demodulation has its
costs. In particular, when TFER uses existing knowledge to perform one of the transactions it onifst
variables to knowledge we already know. In some cases, it magnpessibleto unify the variables in
the transaction to knowledge we already knewen if we know equivalent information. For example, the
clauses:

- UN(X) | - UNCy) | - UN(xor (x,y)) | GOAL(X) .
UN(xor (B, Q).
UN(xor (D, E)).
UN(xor (B, xor (C,xor (D, E)))).
- GOAL(xor (B, Q).

will not unify and the initial transaction will not be able to proceed. To resthese clauses,T@ER may
attempt to unify the variablg with xor (B, C) , andy with xor (D, E) , but then the ternxor (x, y)
will need to unify with a term of the formor (xor (B, C), xor (D, E)) . Because the form required for
unification is not the same as the simplest fo®@AL(xor (B, C)) cannot be derived.

We introduce anntermediate clauséo solve this problem, a method developed by author Youn [31].
We do not know if this approach has been used before. We split the implicalase into two separate
clauses:

-A(X) | -A(y)| | NTERMVEDI ATE(xor (X, ¥Y), X) .
- | NTERVEDI ATE(z, x) | A(z) | GOAL(X).

In this case, we can take advantage of demodulation. Once
| NTERMEDI ATE(xor (xor (B, C), xor (D, E)), xor (B, Q)).

is derived, @ TER will demodulate it into the simplest form:

14

| NTERMEDI ATE(xor (B, xor (C, xor (D, E))), xor (B, Q).

Then, in the second clause, the variablean be unified with the termor (A, xor (B, xor(C, D))),

x can be unified withxor (B, C) , andGOAL(xor (B, C)) can be derived. Notice that the intermediate
clause contains the variabteby itself, which is necessary to eventually dens@AL(x) because is not
recoverable fronxor (X, y) .

Unfortunately, by using intermediate steps, we may derive extra clauseseextra clauses are un-
desirable, but because the use of intermediate clauses can be limited tovhasesve know unification
will be difficult, it is much preferable to running TER without demodulation which will blindly retain
numerous equivalent versions of arbitrary clauses.

Other simple barriers to unification involve term cancellation and pattern maicnigigare solved by
keeping several versions of implication clauses that explicitly deal with thes@ers. For example, the
clause

- A(xor (x, B)) | GOAL(x)
would be expanded into:

- A(xor (x, B)) | GOAL(x)
- A(xor (B, x)) | GOAL(x)
- A(x) | GOAL(xor (x, B))

4.4 Forwards/Backwards Search

Our approach to finding an API-level attack on an API specification istakéxploring a search graph until
the goal is found: the start node represents the initial knowledge of tlegsady and edges represent legal
API calls resulting in more adversary knowledge.

In the process, however, many clauses were derived that did ntiibede in finding the goal. We
call thesechaff clausesince they distract the reasoning tool from finding the goal. While derigiragf
clausess unavoidable in general, we can avoid deriving too many by having thegimeprover work more
efficiently. One way is to have the theorem prover reason from bothtitinsc

e reasoning forwards from the adversary’s initial set of knowledgéerinining additional knowledge
with each step

e reasoning backwards from the adversary’s goals, determining wénatrersary has to know in order
to reach his goal

OTTER provides a variant of hyper-resolution — negative hyper resolutiomtwk use to accomplish
backwards search. This can be turned on by setting thentaghyper _r es in OTTER. Negative hyper-
resolution works in exactly the same way as positive hyper-resolutiorpexaat unification is done on
negative literals: each positive literal in the nucleus has to be unified withatiae literal in the satellites.

Nucleus : -A(X) | -B(x) | C(x)
Satellite : - C(GOAL)
Negative Hyperresolvent : -A(GOAL) | - B(GOAL)

Now, instead of provingC(GOAL)to derive a contradiction, ©@ER can now prove botiA(GOAL)and
B(GOAL)

However, this approach does not always speed Upe@'s search. When a reasoning tool is given more
deductive power, it also ends up producing mohaff clauses Thesechaff clausesre eitherunits (e.g.
- A(X)) ornon-units(e.g.- A(x) | -B(x) | -C(x)).Non-unitstend to cause clause explosion when
used with negative hyper-resolution since they resolve to form largeund clauses with more variables.
Ultimately, it is the production ratio othaff clausesrersus useful clauses that will determine whether

15

negative hyper-resolution is useful. This ratio can be tuned by setting Gthe=R parameters such as
pi ck_gi ven_r at i o, which picks clauses with lower weight first (thereby delaying reasoalrogit huge
clauses) andax_di st i nct _var s, which discards clauses if they contain more than a certain number of
variables.

In section 5, we show results demonstrating how turning on negative-ngpelution may improve or
deprove QTER's search speed.

5 Recreation of Attacks & Results

5.1 VSM Attacks

The two following attacks on the Visa Security Module were modeled andaextefficiently with @QTER's
first-order logic language.

XOR to null key attack To distribute key shares and combine them successfully at the destinatidn AT
to form theterminal master keythe VSM security API provides 2 commands:

1. “Generate Key Share”: returns a key share wrapped under arrkagte
U(e(Share, KM)

2. "Combine Key Share”: takes in two key shares and returns the XOReafttares wrapped under the
same master key.

-U(e(Sharel, KM) | -U(e(Share2,KM) | U(e(xor(Sharel, Share2), KM)

It can be seen that providing the same key share twice will result in a NUinhinal master key.

Key type attack The VSM security system uses a key typing system, where key types tmedifated
by encryption under separate master keys. However, the VSM allows-theerof key types, enabling an
attacker to calculate any user’s PIN number. The following API calls cotestite attack:

1. “InsertTerminal Communications K&yThis allows a clear key to be entered as a TCK.
-U(x) | Ule(x, TCK))

2. “Rewrap withTerminal Master Ke This allows a TCK to be rewrapped under a TMK such that the
TCK can be transferred to an ATM.

-U(e(x, TCK)) | -Ule(y, TMK)) | U(e(x,y))

The attack involves passing in@imary account numbeas a TCK and rewrapping that using the PIN
derivation key. This represents the simplest attack that requires mora giagle API call. The attack was
found by OrTERin a fraction of a section, with only 215 generated clauses.

5.2 IBM 4758 Attacks

The attacks on the IBM 4758 are considerably more complex than thosed8kheNe briefly describe two
attacks with the required API calls and demonstrate how our modeling teckriglmed in the recreation
of these attacks usingi@ER.

16

PIN derivation attack This attack allows the attacker to obtain the PIN of aniynary account number
First, key-type confusion is introduced with ‘Key Part Import’, yieldingagbs importer key. Next, the PIN
derivation key is imported and typed as a ‘DATA key. Finally, the PIN d&ibn key is used as RATA
key to encrypt anyprimary account numberThe following API calls represent thekeletalmodel for the
attack:

e Encrypt with DATA key takes an arbitrary message and aDATA key and produces the corre-
sponding ciphertext:

m, K} g vrgpara — {mlx 2)
-U(x) | -UE(e(y, xor (KM DATA))) | UE(e(x,Yy)).

e Key Import takes a specified typex) and the target keyy() encrypted under an importer key)(
as well as the importer key blob and ‘imports’ the target key into the systeravimapping the key
under the 4758’s master key, typed with

T, {Kl}KM@IMP) {K2}K1€BT - {K2}KM@T 3)

-UN(x) | -UE(e(z,xor(IMP,KM)) | -UE(e(y,xor(z,x))) |
UE(e(y, xor(x,KM)).

We modeled this command using imermediate claust speed up OTER’S reasoning.

-UN(X) | -UE(e(z,xor(IMP,KM)) | INT(e(y,xor(z,x)),xor(x, KP)).
-INT(e(y,x),xor(w,KP)) | -UE(e(y,Xx)) | UE(e(y, xor(w,KM)).

e Key Part Import is used to merge key shares in a destination 4758. We modeled only the feat of
command that imports the third key share.

KS,T,{Kl@KQ}KM@kp(T)H{Kl@K2@K3}KM@T (4)

-UN(xor(x, KP)) | -UN(y) | -UE(e(z, xor(x,xor(KP,KM))) |
UE(e(xor(z,y), xor(x,KM)).

Discover PIN derivation key attack In modeling the previous attack, we added related API calls to make
the model more complete and realistic - if an API call was present in the modebudd any of its logical
counterparts. This model would be closest to one that would be creatednfdteller was trying to search
for a vulnerability and not attempting to recreate a known attack. Theref@eadded the following 3
commands to create what we term timmpletenodel.

17

e Decrypt with DATA Key takes an arbitrary ciphertext and’® TA key and returns the decryption:

{m} g AK Y kpopara — m (5)
-UE(e(x,y)) | -UE(e(y,xor (KM DATA))) | U(x)

e Key Export is simply the conceptual inverse of Key Import.

T, {Kl}KM@EXP) {K2}KM€BT - {K2}K1®T (6)

-UN(x) | -UE(e(y,xor(x,KM)) | -UE(e(z, xor(EXP,KM)) |
UE(e(y, xor(x,z)))

This encrypted blob is intended for another CCA which has an importer key.

e Key Generate This command generates a key randomly and returns it as two keys (a mateling
of import and export keys). This command was not modelled as an implicaticasbnitial attacker
knowledge.

K := RandomKey(),TY PE := IMP, EXP, DATA...
O = {K}kmervrE (7)

UE(e(K, xor (KM TYPE)))

The aim was to determine if @ ER was able to find the same PIN derivation attack despite these additional
unimportant API calls. In the process, we made two exciting discoveries:

e OTTER was able to find the same attack albeit using more time and space (more implications an
more generated clauses). Furthermore, our modeling techniques dispiieysame effectiveness in
cutting down the search space (refer to section 5.3 for actual numbers).

e OTTER was able to find a different attack in our model - one that we had not intletodignd. This
additional attack allows the attacker to discover the PIN derivation key inlé@e. cAlthough this
attack had been found before bl Bond et a) these findings attest to the usefulness of our techniques
in modeling the 4758.

5.3 Attack Statistics

The tables below describes howr €ER performed in recreating the manually found PIN derivation attack
[3, 6, 12] under various modeling techniques. Table 1 gives statistica fatm running Q TER on the
skeletal API model (the minimum commands required to demonstrate the typegcassiok) while Table
2 gives statistics taken from runningr©R on the complete model.

The numbers in Table 1 demonstrate that a naive approach (1) did naryndttacks (@TER fails
to terminate as far as we can tell). By partitioning adversary knowledgeXi2)er was able to find the
attack but only after a very substantial amount of time. Turning on demodulét)ogave Q TER the
ability to canonicalise XORs and reduce the numbectaff clausedut in the process missing the attack.
Subsequently, the addition aftermediate clauseg3) enabled @TER to unify with demodulated terms,
allowing OTTER to find the attack once again. Finally, we gaveT@Rr the backwards searching capability
and it continued to find the attack but using significantly less time and space.

18

Table 1: Skeletal Model (3 API calls) - otter 3.3f running on a 3.2 Ghz P4 2B RAM

No. | Strategies Attack Clauses | Clauses | System
Found? | Gener- Kept CPU
ated Time
(sec)
1 | Vanilla No n/a n/a n/a
2 | Partitioned Knowledge Yes TBC TBC TBC
3 | Partitioned Knowledge, Demod-No 33,154 16,652 0.09
ulation
4 | Partitioned Knowledge, Demod-Yes 49,666 33,165 0.12
ulation, Intermediate Steps
5 | Partitioned Knowledge, De- Yes 27,832 15,860 0.01
modulation, Intermediate Steps,
Backwards Searching
Table 2: Complete Model (6 API calls): otter 3.3f running on a 3.2 Ghz P4 viB RAM
No. | Strategies Attack Clauses | Clauses | System
Found? | Gener- Kept CPU
ated Time
(sec)
1 | Vanilla No n/a n/a n/a
2 | Partitioned Knowledge Yes 5,458,647| 8,31 28
3 | Partitioned Knowledge, Demod-No 892,019 | 265,805 | 5.93
ulation
4 | Partitioned Knowledge, Demod-Yes 1,663,954| 389,424 | 3.46
ulation, Intermediate Steps
5 | Partitioned Knowledge, De- Yes 301,986 | 103,739 | 0.2
modulation, Intermediate Steps,
Backwards Searching

19

The numbers in Table 2 reflect howr@eR performed in trying to recreate the same PIN derivation
attack but with three additional unrelated API calls. The addition of thesereglitesent a more complete
and realistic model — one that a security APl modeller would have made withioutkmowledge of an
attack.

OTTER continued to find the attack when it should have but the search spacendastandably larger
in all corresponding experiments. MoreoverT1@R demonstrated the same trends with regards to the
various modeling techniques used, suggesting that if an attack does exiseirof API callsS, the same
attack can still be deduced in a superset of API calland any modeling improvements used fowill
yield the same effects when usedsh

6 Conclusion & Future Work

With this work, we have shown the first successful application of formabktto the analysis of security
APIs. Using these tools, we have re-discovered an entire family of atéayeiast a widespread hardware
security module — the IBM 4758 CCA. We also found a novel variant ofafribese attacks.

We accomplished these results through a series of techniques to optimize tkesatach process
while simultaneously ensuring that attacks would not be missed by these optimizaiie believe these
techniques will prove quite useful in analyzing a range of security AR suspect these techniques will
soon help discover new attacks that might be too ununtuitive to find by hand.

In addition, our results emphasize the usefulness of theorem proveStiker in the verification of
security APIs. Theorem provers have become very efficient (notepibed of attack discovery) and appear
particularly talented at discovering non-intuitive attacks.

We expect this research to continue in at least four interesting directions:

1. further optimization : we are currently working to ensure that our use of thi@€R Theorem Prover
provides a more focused search of thal attack tree even with optimizations. The real attack tree
is a pruned version of the naive attack tree: we believe theoretical reanltsile out entire subtrees
and help fight the computational explosion problem inherent to API vetitita

2. improved modeling tools even if we had a perfect theorem proving approach, modeling remains a
very human — and thus very fallible — process. One likely research direidtithe construction of
pre-processing tools that might greatly simplify the modeling task in order to minimizen error.
Another direction is the exploration of newer theorem provers and atitegrtaols that straddle the
model-checker/theorem-prover divide.

3. modeling information leakage it will be useful to move away from the ideal encryption assump-
tion and find ways of reducing the computational requirements for brute-tey-breaking efforts.
Modeling such information leakage attacks is a fascinating and challengiexgidir for this type of
research.

4. new attack discoveries our methodology is ready to take on new, more complex APIs. We fully
expect the techniques presented here to be used in discovering ngyowedul attacks against a
number of API targets.

We hope these techniques and future improvements will help bridge the gapepethe high-level
security policies and low-level specifications of security APIs.

References

[1] : 2001, ‘RSA Security Inc. Public-Key Cryptography Standar@KCS)'. RSA Laboratories.
Available at:ft p: // ftp. rsasecurity. conf pub/ pkcs/pkcs-11/v211/ pkcs-11v2-
11r 1. pdf.

20

[2] : 2003, ‘IBM PCI Cryptographic Coprocessor: CCA Basic SeegidReference and Guide Release
2.41, Revised September 2003 for IBM 4758 Models 002 and 023'.natienal Business Machines
Corporation.

[3] Bond, M.: 2001a, ‘Attacks on Cryptoprocessor Transaction S&ts'CHES Berlin, pp. 220-234.

[4] Bond, M.: 2001b, ‘Attacks on Cryptoprocessor Transaction S&esented at the CHES 2001 Work-
shop in Paris.

[5] Bond, M.: 2004, ‘Understanding Security APIs’. Ph.D. thesis,vérsity of Cambridge.

[6] Bond, M. and R. Anderson: 2001, ‘API-Level Attacks on Embeddystems’. IEEE Computer
Magazine34(10), 67—75.

[7] Bond, M. and R. Anderson: 2003, ‘Protocol Analysis, Compd#&gstand Computation’. Computer
Systems: Theory, Technology and Applications

[8] Bond, M. and P. Zielinkski: 2003, ‘Decimalisation Table Attacks for RINcking’. Technical Report
TR-560, University of Cambridge, Cambridge.

[9] Burrows, M., M. Abadi, and R. Needham: 1990, ‘A Logic of Autheation’. ACM Transactions in
Computer Systengf1), 18—36.

[10] Clayton, R. and M. Bond: 2003, ‘Experience Using a Low-Cd3GA Design to Crack DES Keys'.
In: Cryptographic Hardware and Embedded System - CHES ,2@6122523. pp. 579-592.

[11] Clulow, J.: 2003a, ‘On the Security of PKCS #11'. ®BHES Berlin, pp. 411-425.

[12] Clulow, J. S.: 2003b, ‘The Design and Analysis of Cryptographpplication Programming Interfaces
for Devices'. Master’s thesis, University of Natal, Durban.

[13] Dolev, D. and A. Yao: 1983, ‘On the Security of Public-Key Pratist. IEEE Transactions on Infor-
mation Theon?29, 198-208.

[14] Lowe, G.: 1995, ‘An Attack on the Needham-Schroeder Public KathAntication Protocol’ Infor-
mation Processing Lettefs5(3), 131-136.

[15] Lowe, G.: 1996, ‘Breaking and Fixing the Needham-Schroedéli®&ey Protocol using FDR'. In:
Proceeedings ofAcAsS, Vol. 1055 ofLecture Notes in Computer Scienpg. 147-166.

[16] McCharen, J., R. Overbeek, and L. Wos: 1976, ‘Complexity asldf®d Enhancements for Automated
Theorem- Proving ProgramsComputers and Mathematics with Applicatid)<—16.

[17] McCune, W.: 2003, ‘Otter 3.3 Reference Manual’. Aragonne Ntidaboratory, Argonne, lllinois.

[18] Meadows, C.: 1994, ‘A Model of Computation for the NRL Protocalalyzer’. In: Proceedings of
the Computer Security Foundations Workshop piil. 84—89.

[19] Meadows, C.: 2003, ‘Formal Methods for Cryptographic Protdamalysis: Emerging Issues and
Trends'.IEEE Journal on Selected Areas in Communica®dfil), 44-54.

[20] Miles, B., ‘Win32 API Tutorial’. ht t p: / / ww. wi nprog. org/tutorial /.

[21] Needham, R. and M. Schroeder: 1978, ‘Using Encryption foth&ntication in Large Networks of
Computers’.Communications of the ACRIL(12).

[22] Paulson, L. C.: 1997, ‘Proving Properties of Security Protocplsiduction’. In: 10th IEEE Computer
Security Foundations Workshopp. 70-83.

21

[23] Robinson, J. A.: 1965, ‘A Machine-Oriented Logic Based on thedr#ion Principle’.Journal of the
Association for Computing Machinefy?(1), 23—-41.

[24] Shamir, A.: 1979, ‘How to Share a SecreEommunications of the ACRR, 612—613.

[25] THAYER Fabrega, F. J., J. C. Herzog, and J. D. Guttman: 1999, ‘Strand SpRo@&ng Security
Protocols Correct’Journal of Computer Securif§(2/3), 191-230.

[26] Walli, S. R.: 1995, ‘The POSIX family of standard$StandardViewd(1), 11-17.

[27] Wos, L. and G. Pieper: 1999, Fascinating Country in the World of Computing, Your Guide to Auto-
mated ReasoningNew Jersey: World Scientific Publishing.

[28] Wos, L. and G. Robinson: 1968, ‘Paramodulation and Set of @tippn: IRIA Symposium on Auto-
matic DemonstrationVersailles.

[29] Wos, L., G. Robinson, and D. Carson: 1965, ‘Efficiency anan@leteness of the Set of Support
Strategy in Theorem Provingdournal of the Association for Computing Machiné3(4), 536-541.

[30] Wos, L., G. Robinson, D. Carson, and L. Shalla: 1967, ‘Thed@phof Demodulation in Theorem
Proving’. Journal of the Association for Computing Machind#(4), 698—709.

[31] Youn, P.: 2004, ‘The Analysis of Cryptographic APIs Using ForiMathods’. Master’s thesis, Mas-
sachusetts Institute of Technology.

22

A

Complete Model

% Descri ption:

% Shows how adversary can derive user’s pin froma crypto box.

% Notation:
e(x, k) denote encryption of x with key k.
UE(x) neans "User knows encryption x".

%
%
%
%
%
%
%
%
%
%
%
%

UN(x) neans "User knows non-encrypti

KMis the naster key for the 4758.

KEK represents a key-encrypting key.

EXP1 represents an exporter key.

K3 represents the final part of KEK
the attacker.

P is the Pin Derivation key.

DATA is a control vector designating a key as a data key.
a key as an inporter.

IMP is a control vector designating
EXP is a control vector designating
PINis a control vector designating
KP represents the key part bit in a

speci fication, we do not use kp(x) to designate a control
is a key part, but rather use x $oplus$ KP.

Key Inport, and Key Export functions to accurately nodel

% OTTER | NPUT FLAGS
set (process_i nput).

% out put i nformation
clear(print_kept).

cl ear (print_new denod).
cl ear (print_back_denod).
cl ear (print_back_sub).
cl ear(control _menory).

% untine constraints, menory usage
assi gn(max_nem 500000) .
assign(stats_| evel,1).

%vraxi mum al | owed running tine.

assi gn(max_seconds, 1000000) .

%vraxi mum nunber of proofs produced.
assi gn(max_proofs, 10).

%raxi mum dept h of attack

assi gn(nmax_| evel s, 100).

%li sabl e paranodul ation
clear(para_from.
clear(para_into).
clear(para_fromright).
clear(para_into_right).
clear(para_fromvars).
set (eq_uni ts_bot h_ways) .

%Jse | exi cographical ordering
set (I rpo).

%erforma breadth first search
set (sos_queue) .

%use hyperresol ution
set (hyper_res).
set (order_hyper).

% he | exi cographi cal

Yas

%ften appears in clauses XORed with variabl es.
not know what constant will unify with that variable,

%o

on x".

that is known to

a key as an exporter key.
a key as an pin derivation key.
vector. In this

control

vector x

In particular, this
requires careful representation of the Key Part I|nport,

ordering of terns. The termKMis listed

havi ng the highest |exicographical ordering because it

%raki ng KM have the hi ghest | exicographi

%ensure that all

possi bl e unifications wll
lex([1D Acc, DATA, IMP, K3, KEK, PIN, EXPl, EXP, KP,KM).

cal order,
occur.

Because we

%This list represents all actions an attacker can take.
l'ist(usable).

%X fline things Adversary can do:

%encrypt sonet hing
SUNCx) | -UNCy) | UE(e(x,y)).

%lecrypt if knows stuff.
-UE(e(x,y)) | -UN(y) | UN(x).

% ability to xor
-UNCX) | -UNCy) | UNCxor(x,y)) .

% Command : Encrypt using data key
- UN(x) | - UE(e(y, xor (DATA, KM))

by
we can still

the 4758.

| UE(e(x,y)).

%Conmand: Cl ear _Key_I nport
-UN(x) | UE(e(x, xor (DATA KM)).

% Command : Key | nport

% Note that the predicate | NTUE keeps the term xor(x, KP) and not
% just the termx. By doing this, if the clainmed type x were a
% key part (included XORwith KP), the two KP terns will cancel
% when | NTUE i s denodul ated, and the predicate will not unify
%w th the second cl ause.

% NTERVEDI ATE STYLE:

-UN(x) | -UE(e(z,xor(IMP,KM)) | INTUE(e(y, xor(z,x)),xor(x, KP)).

-1 NTUE(e(y, x), xor(w, KP)) | -UE(e(y,x))
| UE(e(y, xor (w, KM)).

% Command : Key Part |nport

% Here, the clained type is required to involve the XOR wi th KP

%to enforce that the clainmed type nust be a key part.

% The first transaction represents calling Key Part Inport and

% conpl eting the key. The second transaction represents calling

% the function and not conpleting the key.

-UN(xor(x, KP)) | -UN(y) | - UE(e(z, xor(x,xor(KP, KM)))
| UE(e(xor(z,y), xor(x, KM)).

%on’t conplete
-UN(xor (x, KP)) | -UN(y) | -UE(e(z, xor(x,xor(KP, KM)))
| UE(e(xor(z,y), xor(x, xor(KP, KM))).

% Command : Key Export

% Thi s command does the opposite of key inport.
%1t takes an exporter key (a key with type EXP,
% rather than IMP) and uses it to export any key
% encrypted under the |ocal master key KM and
%encrypts it (with it's type) under the exporter.
%iere dealing with cancellation explicitly will save tine.
%o cancel lation with KM

- UN(x)

- UE(e(y, xor (x, KM)) |

- UE(e(z, xor (EXP, KM)) |

UE(e(y, xor(z,x))).

Y%ancel lation with KM
-UN(xor (x, KM) |

- UE(e(y, x)) |

- UE(e(z, xor (EXP, KM)) |
UE(e(y, xor(z,xor(x,KM))).

% Command : Decrypt using data key

% Thi s does the opposite of the encrypt with
% data key command.

- UE(e(x,y)) |

- UE(e(y, xor (DATA KM)) |

UN(X) .

end_of _list.

% his |ist contains the security goals of the system as well as
%ll initial know edge.

list(sos).

%Security goals of the 4758

- UE(e(Acc, P)).

- UN(KEK) .

- UN(KM .

-UN(P).

% Initial Know edge

UN(DATA) .
UN(PIN) .
UN(1 D).
UN(I MP) .
UN(K3) .
UN(Acc) .
UN(KP) .
UN(EXP) .

UE(e(P, xor (KEK, PIN))).

UE(e(xor (K3, KEK) , xor (1 MP, xor (KM KP)))).
% he result of calling key generate
UE(e(KEK2, xor (I MP, xor (KM KP)))).

UE(e(KEK2, xor (EXP, xor (KM KP)))).

UE(e(EXP1, xor (KM EXP))) .

end_of _list.

YXOR denodul ators
|'i st (denodul ators).

23

24

xor (x,y) = xor(y,X).
xor (x, xor(y,z))= xor(y,xor(x,z)).
xor(x,x) = ID.

xor (1D, x) = x.

% The rest of these denodul ators have proved to be useful in
% allowing Otter to reason quickly, but are not strictly

% necessary.

xor (xor(x,y),z) = xor(x,xor(y,z)).

xor (x, xor(y, xor(z, xor(x,w)))) = xor(y, xor(z,w).
xor (x, xor(y, xor(z, xor(w,x)))) = xor(y, xor(z,w).
xor (x, xor(y, xor(x, z))) = xor(y,z).

xor (x, xor(y, xor(z, x))) = xor(y,z).

xor(x, xor(x,y))=y.

end_of _list.

