
Technical Report
Number 659

Computer Laboratory

UCAM-CL-TR-659
ISSN 1476-2986

A safety proof of a lazy concurrent
list-based set implementation

Viktor Vafeiadis, Maurice Herlihy,
Tony Hoare, Marc Shapiro

January 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Viktor Vafeiadis, Maurice Herlihy, Tony Hoare,
Marc Shapiro

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

A safety proof of a lazy concurrent

list-based set implementation

Viktor Vafeiadis
Computer Laboratory, University of Cambridge

Maurice Herlihy
Computer Science Dept., Brown University

Tony Hoare
Microsoft Research Cambridge

Marc Shapiro
INRIA Rocquencourt & LIP6

Abstract

We prove the safety of a practical concurrent list-based implementation due to
Heller et al. It exposes an interface of an integer set with methods contains, add, and
remove. The implementation uses a combination of fine-grain locking, optimistic
and lazy synchronisation. Our proofs are hand-crafted. They use rely-guarantee
reasoning and thereby illustrate its power and applicability, as well as some of its
limitations. For each method, we identify the linearisation point, and establish its
validity. Hence we show that the methods are safe, linearisable and implement a
high-level specification. This report is a companion document to our PPoPP 2006
paper entitled “Proving correctness of highly-concurrent linearisable objects”.

1 Introduction

This report is a companion to our extended abstract [4] published in PPoPP’06. There,
we introduced a particular form of rely-guarantee reasoning and showed how it can be
applied to prove the safety of a number of list-based concurrent algorithms. Our examples
demonstrated a variety of common design patterns such as lock coupling, optimistic, and
lazy synchronisation.

Here, we focus on the safety proof of one particular algorithm described in Section
7 of our extended abstract, which due to Heller et al [2]. The algorithm implements
an abstract type of a set with operations add , remove, and contains. Our main proof
approach is to identify the linearisation point within the code of each method and to inline
the abstract operation at that position. Then, by means of rely-guarantee reasoning, we
establish a linking invariant (also known as an abstraction map) between the concrete
and the abstract state. Thus, we prove that each concrete method, should it return, has
the same externally visible effect as its abstract counterpart. The proof (Section 7) is
hand-written and demonstrates some of the benefits and the limitations of our approach.

3

Furthermore, we discuss linearisability in greater depth (Section 4) and we present all
the axioms of our R-G formalism, including those omitted for brevity from the extended
abstract (Section 5).

2 Predicates and relations

As we will make heavy use of predicates of a single state σ and predicates of two states,
we first describe our notation. The former describe a set of system states, whereas the
latter describe a set of actions (i.e. transitions) of the system. These two-state predicates
relate the state σ immediately after the action to the state immediately before the action,
which we shall denote as↼−σ . Similarly, we shall write↼−x and x for the value of the variable
x before and after the action respectively.

Given a single-state predicate p, we can straightforwardly define a corresponding two-
state predicate, which requires p to hold in the new state σ, but places no constraint on
the old state↼−σ . We denote this relation by simply overloading p. Similarly, we shall write
↼−p for the two-state predicate that is formed by requiring p to hold in the old state↼−σ and
which places no requirement on the new state σ.

p(↼−σ, σ)
def
= p(σ)

↼−p (↼−σ, σ)
def
= p(↼−σ)

We shall say that a single-state predicate p is preserved by a two-state predicate R, if and
only if, (↼−p ∧ R) ⇒ p, namely iff for all↼−σ and σ, p(↼−σ) ∧ R(↼−σ, σ) ⇒ p(σ).

We shall use relational notation to abbreviate operations on predicates of two states.
Relational composition of predicates describes exactly the intended behaviour of the se-
quential composition of sequential programs.

(P ; Q)(↼−σ, σ)
def
= ∃τ. P (↼−σ, τ) ∧ Q(τ, σ)

The program that makes no change to the state is described exactly by

ID(↼−σ, σ)
def
= (↼−σ = σ).

The familiar notation R∗ (reflexive and transitive closure) describes any finite number of
iterations of the program described by R. It is defined

R∗ def
= ID ∨ R ∨ (R; R) ∨ (R; R; R) ∨ · · ·

3 Rely-guarantee specifications

In rely-guarantee (R-G) reasoning, each thread is assigned a rely condition that charac-
terises the interference that thread can tolerate from the other threads. In return, the
thread is assigned a guarantee condition that characterises how that thread can interfere
with the others. Proving the safety of a program requires proving that (1) if each thread’s
rely condition is satisfied, then that thread satisfies its guarantee condition, and (2) each
thread’s guarantee condition implies the others’ rely conditions.

The specification of a fine-grain concurrent program requires four predicates:
(p, R, G, q).

4

• The predicates p and q are the pre-condition and post-condition. They describe the
behaviour of the thread as a whole, from the time it starts to the time it terminates
(if it does). The pre-condition p, a single-state predicate, describes an assumption
about the initial state that must hold for the program to make sense. The post-
condition q is a two-state predicate relating the initial state (just before the program
starts execution) to the final state (immediately after the program terminates). The
post-condition describes the overall action of the program, and is meant to be atomic
with respect to the rest of the system.

• R and G summarise the properties of the individual atomic actions invoked by the
environment (in the case of R) and the thread itself (in the case of G). They are

two-state predicates, relating the state↼−σ before each individual atomic action to σ,
the one immediately after that action. The rely condition R bounds the interference
the thread can tolerate from the environment, whereas the guarantee condition G
bounds the interference that it can impose on the other threads.

We require that the pre-condition is always preserved by the rely condition, but we do
not impose a similar requirement for post-condition.

In the rely condition, we often want to specify that there are certain variables the
environment does not update, or that if some condition is satisfied, the environment
actions preserve it [1]. We introduce the following notation for these specifications.

ID(x)
def
= (↼−x = x)

ID(P)
def
= (

↼−
P = P)

Preserve(P)
def
= (

↼−
P ⇒ P)

We extend these notations to multiple variables/conditions. For convenience in the post-
condition and guarantee condition, we define Mod(X) to mean that only variables in the
set X are modified by the action.

4 Linearisability

A program is said to be linearisable [3], if and only if, all its externally visible effects
appear to take place atomically at some instant between the program’s invocation and its
termination. This instant when all the externally visible effects of the program appear to
take place is known as the linearisation point.

This definition only makes sense in a context where the terms “externally visible” and
“atomic” are meaningful. We take this to be some simple module, where each module
owns some private memory, which is disjoint and unaliased with the rest of the memory.
(This disjointness and lack of aliasing could be enforced by an ownership type system
or, to some extent, with private objects.) An externally visible effect is an update to the
global memory and the result of a call to a public method of the module. Similarly, atomic

will be with respect to all public methods on the module and with any code outside the
module. When a module implements a data structure and provides update and access
methods, it is often useful to define an abstract version of the data structure and assume

5

that it is globally visible. Even though it may not directly be visible, all its data would
be available through the module’s access methods.

At the very least we require a sequentially consistent memory model. Strictly speaking,
we also require the order of method calls and returns to be preserved: this amounts to
saying that method calls and returns happen through memory. It is, however, safe to
have the order of method calls and returns not globally consistent, because the only way
to detect a sequential inconsistency would be through shared memory, by this is already
required to be sequentially consistent. In our proof below, non-sequential consistency, is
not really an issue, because Java guarantees sequential consistency, as long as we declare
all fields with race conditions as volatile.

For us the linearisation point is a ‘mythical point’ whose existence we have proved.
There need not be a unique linearisation point; if there are several valid linearisation
points, we allowed to chose any one of them. In our R-G specifications, the post-condition
q will stand for the total (abstract) action of the thread that to an external observer
appears to happen atomically at the linearisation point.

If in our R-G specifications (p, R, G, q), we restrict q in a certain way, then we get the
more standard presentation of R-G where both the pre-condition and the post-condition
are single-state predicates and are preserved by the rely condition R. By treating, however,
q as a two-state predicate, which is not necessarily preserved by R, we gain much in
expressiveness which is crucial for the specifications we are aiming at. The special case
is achieved by taking q to be ↼−p ∧ q′, where p is the precondition and q′ is a predicate
restricting the new state which is also preserved by the rely condition R.

It should be noted that whereas the general form is appears important for specifica-
tions, the special form described above is more useful for doing proofs, as the proof rules
are simplified.

5 Axioms

We shall write C |= (p, R, G, q) for the judgement saying that the program C meets
the specification (p, R, G, q). We shall give the associated proof rules below.

As it is customary, we will write {p} C {q} for the judgement stating that if the
sequential program C is executed in an initial state satisfying the precondition p (and if
it terminates), then the final state shall be related to the initial state by q. This partial
correctness correctness judgement is well known from Hoare logic; the precise definition
of its rules lies outside the scope of this paper.

6 Atomic actions

Atomic actions are denoted by enclosing a program in diamond brackets 〈C〉. As a
sequential program, C can be modelled as a predicate pair (p, q). As an atomic action,
it becomes:

{p} C {q}

〈C〉 |= (p, Preserve(p), q ∨ ID, q)
(ATOMIC)

6

The pre-condition and post-condition are unchanged. The guarantee condition is just
the post-condition, and the rely condition must at least preserve the precondition. The
implementation of atomicity must ensure that this interference cannot take place within
the diamond brackets, so the proof of correctness of the atomic region are unaffected by
interference. We will show later how the programmer is responsible for ensuring that
interference is harmless in-between the atomic actions.

Conditional critical regions can be handled in a similar way:

{b ∧ p} C {q}

〈b → C〉 |= (p, Preserve(p), q ∨ ID, q)
(CRITICAL)

6.1 Sequential composition

For simplicity, we define sequential composition for programs with identical rely and
guarantee conditions. (These conditions can always be weakened or strengthened as
discussed in Section 6.4.)

C1 |= (p1, R, G, q1)
C2 |= (p2, R, G, q2) q1 ⇒ p2

C1; C2 |= (p1, R, G, (q1; R
∗; q2))

(SEQ)

A sequential composition has the same pre-condition p1 as its first operand, and the same
rely and guarantee conditions as both its operands. For the sequential composition to
execute properly, the pre-condition of the second operand must be satisfied when the first
operand terminates; hence the proof requirement. Since the entire program will tolerate
the same interference R as both its operands except at the very transition between the two
operands, the total action of the program will be given by the composition of the actions
of its components accounting for environment interference R∗ that may occur between
them.

6.2 Parallel composition

When threads run concurrently, each thread must ensure that its atomic actions do not
interfere with the other threads except as expected. It is therefore essential to prove
that the guarantee condition of each thread implies the rely condition of the others. The
total action of the program is given by the composition of the actions of the two threads
in either order, allowing for environment interference (R1 ∧ R2)

∗ in between. All pre-
conditions and rely conditions must hold, but concurrent combination can guarantee only
the disjunction of the separate guarantee conditions.

C1 |= (p1, R1, G1, q1) G1 ⇒ R2

C2 |= (p2, R2, G2, q2) G2 ⇒ R1

C1 ‖C2 |= (p1∧p2, R1∧R2, G1∨G2, q)
(PAR)

where

q = (q1; (R1 ∧ R2)
∗; q2) ∨ (q2; (R1 ∧ R2)

∗; q1)

7

In plain English, and generalising to any number of threads, it means that proving
the safety of a parallel program reduces to: (i) a sequential proof of the post-condition
and guarantee condition of each individual thread, assuming its rely condition is true,
combined with (ii) a pairwise proof that every other thread’s guarantee condition implies
this thread’s rely condition.

6.3 Conditionals and loops

The axiom for conditionals allows for environment interference to occur between the test
and the branches of the conditional. This interference need not preserve the whole test b,
but perhaps only a part of it b1. Similarly in the else branch for ¬b and b2.

C1 |= (p ∧ b1, R, G, q)
↼−
b ∧ R∗ ⇒ b1

C2 |= (p ∧ b2, R, G, q) ¬
↼−
b ∧ R∗ ⇒ b2

if 〈b〉 then C1 else C2 |= (p, R, G, q)
(IF)

While loops are treated similarly; interference can occur between the test and the
loop body, and between the loop body and the test. Thus the loop invariant J must
be preserved by interference, and only the part of the test condition that preserved by
interference (i.e., b1) may be used as a pre-condition for the loop body. There is no need
to consider interference after the test failure, as this will be considered in the appropriate
composition rule.

C |= (b1 ∧ J, R, G, J) R ⇒ Preserve(J) (
↼−
b ∧ R∗) ⇒ b1

while (〈b〉) {C} |= (J, R, G, ¬b ∧ J)
(WHILE)

6.4 Refinement

Programs and specifications can be compared with each other by the standard refinement
ordering. A stronger specification is possibly more desirable but more difficult to meet.
When developing a program from its specification, it is always valid to replace the spec-
ification by a stronger one. A specification is weakened by weakening its post-condition
or its guarantee condition. Conversely, it is strengthened by weakening its assumptions.

p′ ⇒ p R′ ⇒ R
G ⇒ G′ q ⇒ q′

C |= (p, R, G, q)

C |= (p′, R′, G′, q′)
(REFINE)

6.5 Lifting of linearisation point

Since the post-condition q describes the total action of the linearisation point, we require
a rule that, when given a proof that a linearisation point exists, ‘lifts’ the action of that
linearisation point to the linearisable action q of the whole program.

The following rule does this. Assuming that there exists a linearisation point (indicated
by the unique moment where the condition b changes value and becomes true), and at

8

that point the new abstract state A is a (computable) function f of the old abstract state
↼−
A, then the action A = f(

↼−
A) can become the post-condition, namely the total action of

the program.

C |= (p ∧ ¬b, R, G, b)

G ⇒ ((¬
↼−
b ∧ b ∧ A = f(

↼−
A)) ∨ (Preserve(b) ∧ ID(A)))

R ⇒ ((¬
↼−
b ∧ b ∧ A = f(

↼−
A)) ∨ (Preserve(b) ∧ ID(A)))

C |= (p, R, G, A = f(
↼−
A))

(LIFT)

Note that the rule allows either the current thread or some other thread from the
environment to set b to true and, thus, provide a witness of the linearisation point. For it
can be the case (e.g. contains method in Section 7) that the linearisation point is between
actions of other threads. The premises of this rule are trivially fulfilled when we inline
the (atomic) abstract operation at a unique place within the concrete code.1

7 Proof of the lazy concurrenct list algorithm

We present a hand-crafted proof of the algorithm, due to Heller et al [2], a sketch of
which appeared in our extended abstract [4]. It consists of a linearisable sorted linked list
implementation of a set abstract data type. It contains three public methods contains,
add , and remove with the (abstract) specifications given below; internally, there exists a
private locate method, which is used by add and remove. For simplicity, we shall assume
that only one such list exists.

AbsContains(e) : < AbsResult := e ∈ Abs >
AbsAdd(e) : < AbsResult := e /∈ Abs ;

Abs := Abs ∪ {e} >
AbsRemove(e) : < AbsResult := e ∈ Abs ;

Abs := Abs \ {e} >

List nodes have the fields .val of type integer, .next of type pointer, and .marked of
type boolean (a single bit used to mark deleted nodes). When a node is first allocated,
only the allocating thread can access that its fields; we say that the node is private. Once
the reference is placed in a shared location, it becomes public. We write Node(n) for
the assertion that n is a valid public node, and PrivateNode(n) for the assertion that n
is owned by the current thread. We write ∀Node n. P to quantify over all public nodes.
Furthermore, we write n → m for Node(n.next) ∧ n.next = m, and →∗ for the reflexive
and transitive closure of →.

1Some care is required is required when applying the lifting rule, as it cannot be combined with other
seemingly harmless rules such as:

C |= (p, R, G, q1) C |= (p, R, G, q2)

C |= (p, R, G, q1 ∧ q2)

The problem is that q1 and q2 might be linearised with respect to different abstract states (i.e. different
‘types’).

9

We shall now give the definitions of the list invariant and the common rely and guar-
antee conditions; then we will prove the methods obey their specifications.

7.1 Definitions

The list invariant (representation invariant and abstraction map):

ListInv
def
=

Node(Head) ∧ Head.val = −∞ ∧ ¬Head.marked
∧ Node(Tail) ∧ Tail.val = +∞ ∧ ¬Tail.marked
∧ ∀Node n. n.val < +∞ ⇒ Node(n.next)
∧ ∀Node n m. n → m ⇒ n.val < m.val
∧ ∀Node n. Head →∗ n ∨ n.marked
∧ Abs = {n.val | Node(n) ∧ ¬n.marked ∧ n.val 6= ±∞}

The additional predicate required for the linearisability of contains:

N
def
= ∀Node n. (¬n

↼−−−−−
.marked ∧ n.marked) ⇒ n.val /∈ Abs

locate.Post
def
= ListInv ∧ Head →∗ pred → curr
∧ pred.val < e ≤ curr.val
∧ pred.owner = curr.owner = self

∧ ¬pred.marked ∧ ¬curr.marked

The rely condition is:

R
def
= ∀Node n. Preserve(ListInv) ∧ n.LockRely

∧ n↼−−−−.owner = self ⇒ ID(n.next, n.marked)

∧ n↼−−−−.owner = self ⇒ Preserve(Head →∗ n)
∧ Preserve(n.marked) ∧ ID(n.val) ∧ N

The guarantee condition is:

G
def
= ∀Node n. Preserve(ListInv) ∧ n.LockGuar

∧ n↼−−−−.owner 6= self ⇒ ID(n.next, n.marked)

∧ n↼−−−−.owner 6= self ⇒ Preserve(Head →∗ n)
∧ Preserve(n.marked) ∧ ID(n.val) ∧ N

7.2 Proof of G ⇒ R

First, we shall prove that the guarantee condition of each thread implies the rely conditions
of all other threads; namely, for all x and y such that x 6= y, we shall show that Gself := x ⇒
Rself := y.

Proof. We do a case split on the definition of Rself := y.

1. Gself := x ⇒ Preserve(ListInv)

10

2. Gself := x ⇒ n.LockRely, because n.LockGuar ⇒ n.LockRely

3. Gself := x ⇒ (n↼−−−−.owner = y ⇒ ID(n.next, n.marked)),

(a) Gself := x ⇒ n↼−−−−.owner 6= x ⇒ ID(n.next, n.marked)

(b) x 6= y (assumption)

4. Gself := x ⇒ (n↼−−−−.owner = self ⇒ Preserve(Head →∗ n))

(a) Gself := x ⇒ n↼−−−−.owner 6= x ⇒ Preserve(Head →∗ n)

(b) x 6= y (assumption)

5. Gself := x ⇒ (Preserve(n.marked) ∧ ID(n.val) ∧ N)

7.3 Proof of locate(e) returns (pred,curr)

• Precondition: ListInv ∧ −∞ < e < +∞

• Postcondition: ListInv ∧ Head →∗ pred → curr ∧ pred.val < e ≤ curr.val
∧ pred.owner = curr.owner = self ∧ ¬pred.marked ∧ ¬curr.marked

• Rely: R

• Guarantee: G

The algorithm (desugared, and annotated with atomicity assumptions):2

locate(e) :
while (true) {
〈pred := Head〉 ;
〈curr := pred.next〉 ;
while (〈curr.val < e〉) {
〈pred := curr〉 ;
〈curr := curr.next〉

} ;
pred.lock() ;
curr.lock() ;
if 〈¬pred.marked〉

and 〈¬curr.marked〉
and 〈pred.next = curr〉 then
return pred, curr

else
pred.unlock() ;
curr.unlock()

}

2Normally, the short-circuit and should have been expanded into nested if statements, but for
brevity we chose not to do so.

11

Proof. The outer loop’s invariant is just the pre-condition

I ≡ (ListInv ∧ −∞ < e < +∞)

which is preserved by interference.
{ I }

pred := Head
{ I ∧ pred.val < e ∧ Node(pred) }
from the ListInv

{ I ∧ pred.val < e ∧ Node(pred, pred.next) }
curr := pred.next

{ I ∧ pred.val < e ∧ Node(pred, curr) }

The loop invariant is:
{ I ∧ pred.val < e ∧ Node(pred, curr) }

while (curr.val < e) {
{ I ∧ curr.val < e ∧ Node(pred, curr) }

pred := curr
{ I ∧ pred.val < e ∧ curr.val < e ∧ Node(pred, curr) }
from the ListInv

{ I ∧ pred.val < e ∧ Node(pred, curr.next) }
curr := curr.next

{ I ∧ pred.val < e ∧ Node(pred, curr) }
}

From here onwards, we will implicitly always assume Node(pred, curr).
{ I ∧ pred.val < e ≤ curr.val }

pred.lock()
{ I ∧ pred.val < e ≤ curr.val ∧ pred.owner = self }

curr.lock()
{ I ∧ pred.val < e ≤ curr.val ∧ pred.owner = curr.owner = self }

if ¬pred.marked
{ I ∧ pred.val < e ≤ curr.val ∧ pred.owner = curr.owner = self

∧ ¬pred.marked }
and ¬curr.marked

{ I ∧ pred.val < e ≤ curr.val ∧ pred.owner = curr.owner = self

∧ ¬pred.marked ∧ ¬curr.marked }
and pred.next = curr then

{ I ∧ pred.val < e ≤ curr.val ∧ pred.owner = curr.owner = self

∧ ¬pred.marked ∧ ¬curr.marked ∧ pred → curr }
⇒
{ ListInv ∧ Head →∗ pred → curr ∧ pred.val < e ≤ curr.val

∧ pred.owner = curr.owner = self ∧ ¬pred.marked ∧ ¬curr.marked }
which is the required post-condition.

else

12

weakening
{ I ∧ pred.owner = curr.owner = self }

pred.unlock()
{ I ∧ curr.owner = self }

curr.unlock()
{ I }
which is the loop invariant.

All conditions are preserved by interference, as
(i) R ⇒ Preserve(n.marked, n.owner = self)
(ii) R ⇒ ID(n.val)

(iii) R ∧ n↼−−−−.owner = self ⇒ ID(n.marked, n.next)

(iv) R ∧ n↼−−−−.owner = self ⇒ Preserve(Head →∗ n)
(v) R ⇒ Preserve(I)

7.4 Add

The method call Result := add(e) has the specification:

• Precondition: ListInv ∧ −∞ < e < +∞

• Postcondition: ListInv ∧ Result = AbsResult

• Rely: R

• Guarantee: G

The algorithm with atomicity assumptions, and annotated with the abstract opera-
tions at the linearisation point.

add(e) :
n1, n3 := locate(e) ;
if 〈n3.val 6= e〉 then
〈n2 := new Node(e)〉 ;
〈n2.next := n3〉 ;
〈makePublic(n2) ;
n1.next := n2 ;
AbsResult := e /∈ Abs ;
Abs := Abs ∪ {e}〉 ;
Result := true

else
〈Result := false ;
AbsResult := e /∈ Abs ;
Abs := Abs ∪ {e}〉 ;

endif ;
n1.unlock() ;
n3.unlock() ;
return Result

13

Proof. Let I
def
= ListInv ∧ −∞ < e < +∞.

{ I }
n1, n3 := locate(e)

{ I ∧ Head →∗ n1 → n3 ∧ n1.val < e ≤ n3.val
∧ n1.owner = n3.owner = self ∧ ¬n1.marked ∧ ¬n3.marked }

if n3.val 6= e then
{ I ∧ Head →∗ n1 → n3 ∧ n1.val < e < n3.val

∧ n1.owner = n3.owner = self ∧ ¬n1.marked ∧ ¬n3.marked }
n2 := new Node(e)

{ . . . ∧ PrivateNode(n2) ∧ n2.val = e ∧ ¬n2.marked }
n2.next := n3

{ . . . ∧ PrivateNode(n2) ∧ n2.val = e ∧ n2.next = n3 ∧ ¬n2.marked }
=⇒
{ I ∧ e /∈ Abs ∧ Head →∗ n1 → n3 ∧ n1.val < n2.val < n3.val

∧ n1.owner = n3.owner = self ∧ ¬n1.marked ∧ ¬n3.marked
∧ PrivateNode(n2) ∧ n2.val = e ∧ n2.next = n3 ∧ ¬n2.marked }

makePublic(n2)
n1.next := n2
AbsResult := e /∈ Abs

Abs := Abs ∪ {e}
{ I ∧ AbsResult ∧ n1.owner = n3.owner = self }

Result := true

{ I ∧ Result = AbsResult ∧ n1.owner = n3.owner = self }
else

{ I ∧ Head →∗ n1 → n3 ∧ e = n3.val
∧ n1.owner = n3.owner = self ∧ ¬n1.marked ∧ ¬n3.marked }

=⇒
{ I ∧ e ∈ Abs ∧ n1.owner = n3.owner = self }

AbsResult := e /∈ Abs

Abs := Abs ∪ {e}
Result := false

{ I ∧ Result = AbsResult ∧ n1.owner = n3.owner = self }

{ I ∧ Result = AbsResult ∧ n1.owner = n3.owner = self }
n1.unlock()

{ I ∧ Result = AbsResult ∧ n3.owner = self }
n3.unlock()

{ I ∧ Result = AbsResult }
return Result

{ I ∧ Result = AbsResult }

All intermediate conditions are preserved, because:

• n1, n2, n3, e, Result , AbsResult are local variables

• R ⇒ Preserve(I)

• R ⇒ ID(n1.owner = self, n3.owner = self)

14

• R ∧ n1↼−−−−.owner = self ⇒ ID(n1.next, n1.marked)

• R ∧ n3↼−−−−.owner = self ⇒ ID(n3.marked)

• R ∧ ¬Initialised(n2) ⇒ ID(n2.val, n2.next, n2.marked)

The guarantee condition is valid, because:

• Preserve(ListInv) – ListInv holds at all steps

• ID(n.val, n.marked) ∧ n.LockGuar – by code inspection, no assignments to these for
public nodes

• n.owner 6= self ⇒ ID(n.next) – the only updates to .next are the assignment to
n2.next and n1.next; but at those points n1 is locked and n2 is owned.

7.5 Remove

• Precondition: ListInv ∧ −∞ < e < +∞

• Postcondition: ListInv ∧ Result = AbsResult

• Rely: R

• Guarantee: G

The annotated algorithm:

remove(e) :
n1, n2 := locate(e) ;
if 〈n2.val = e〉 then
〈n2.marked := true ;
AbsResult := e ∈ Abs ;
Abs := Abs \ {e}〉
〈n3 := n2.next〉 ;
〈n1.next := n3〉 ;
〈Result := true〉

else
〈Result := false ;
AbsResult := e ∈ Abs ;
Abs := Abs \ {e}〉

endif ;
n1.unlock() ;
n2.unlock() ;
return Result

15

Proof. First we do a sequential proof; we consider R-G conditions later.

{ ListInv ∧ −∞ < e < +∞ }
n1, n2 := locate(e)

{ ListInv ∧ Head →∗ n1 → n2 ∧ n1.val < e ≤ n2.val ∧ e < +∞
∧ n1.owner = n2.owner = self ∧ ¬n1.marked ∧ ¬n2.marked }

if n2.val = e then
{ ListInv ∧ Head →∗ n1 → n2 ∧ n1.val < e = n2.val < +∞

∧ n1.owner = n2.owner = self ∧ ¬n1.marked ∧ ¬n2.marked }
n2.marked := true
AbsResult := e ∈ Abs

Abs := Abs \ {e}
{ ListInv ∧ Head →∗ n1 → n2 ∧ n1.val < e = n2.val < +∞

∧ n1.owner = n2.owner = self ∧ ¬n1.marked ∧ n2.marked }
by ListInv

{ ListInv ∧ Head →∗ n1 → n2 ∧ n2 → n2.next
∧ n1.owner = n2.owner = self ∧ ¬n1.marked ∧ n2.marked }

n3 := n2.next
{ ListInv ∧ Head →∗ n1 → n2 → n3

∧ n1.owner = n2.owner = self ∧ ¬n1.marked ∧ n2.marked }
n1.next := n3

{ ListInv ∧ n1.owner = n2.owner = self }
Result := true

{ ListInv ∧ n1.owner = n2.owner = self }

else
{ ListInv ∧ Head →∗ n1 → n2 ∧ n1.val < e < n2.val

∧ n1.owner = n2.owner = self ∧ e < +∞ }
weakening. . .

{ ListInv ∧ n1.owner = n2.owner = self }
Result := false

{ ListInv ∧ n1.owner = n2.owner = self }
endif

{ ListInv ∧ n1.owner = n2.owner = self }
n1.unlock()

{ ListInv ∧ n2.owner = self }
n2.unlock()

{ ListInv }
return Result

{ ListInv }

All intermediate conditions are preserved, because:
(i) R ⇒ locate.rely,
(ii) R ⇒ Preserve(ListInv),
(iii) R ⇒ Preserve(n.owner = self),

16

(iv) R ∧ n↼−−−−.owner = self ⇒ ID(n.next, n.marked), and

(v) R ∧ n↼−−−−.owner = self ∧ ListInv ⇒ Preserve(Head →∗ n).
The guarantee condition is valid, because:

• Preserve(ListInv), as ListInv holds throughout the sequential proof.

• Preserve(n.marked); the only assignment to n.marked makes it true.

• Mod(n.next, n.owner, n.marked) – by code inspection.

• n.LockGuar – by code inspection.

• n.owner 6= self ⇒ ID(n.next, n.marked) – by inspecting the sequential proof; the
only such updates are to n1.next and n2.marked, but n1 and n2 are locked at these
points.

7.6 Contains

The method Result := contains(e) has the specification:

• Precondition: ListInv ∧ −∞ < e < +∞

• Postcondition: ListInv ∧ (Result = AbsResult)

• Rely: R

• Guarantee: G

As we explained in Section 7.5 of the extended abstract [4], this cannot be proved with
the formal rules we have discussed so far without introducing a lot of abstract state. While
there exists a proof making use of additional book-keeping state, we confined ourselves
to an informal argument in the extended abstract. Here we present a proof of a much
weaker property. We prove the post-condition:

ListInv ∧ (Result ⇒ (AbsResult1 ∧ AbsResult2))

If the function returns true, then e was in the list at the two semi-linearisation points:
(i) the last loop iteration, and (ii) the test of curr.marked. In fact, it must also be in the
list during the whole time period between the two points.

The algorithm, desugared and annotated:
contains(e) :
〈curr := Head〉 ;
while (〈curr.val < e〉)
〈curr := curr.next ; AbsResult1 := e ∈ Abs〉 ;

if curr.val = e then
〈b := curr.marked ; AbsResult2 := e ∈ Abs〉
return ¬b

else
return false

17

Proof. First, note that the guarantee condition holds, as the code only modifies the local
variables curr, Result and AbsResult . In particular, this implies Preserve(ListInv).

Let

I
def
= ListInv ∧ −∞ < e < +∞

which is preserved by interference.
In order to show that the correct result is returned, we establish the invariant:

J
def
= (e 6= curr.val ∨ curr.marked ∨ AbsResult1)

which is preserved by interference.
J becomes true after assignments to curr, because:

{ I ∧ n.val < e }
⇐⇒
{ I ∧ n.val < e ∧ Node(n.next) }

curr := n.next
AbsResult1 := e ∈ Abs

{ I ∧ n.val < e ∧ n → curr ∧ Node(curr) ∧ AbsResult1 = (e ∈ Abs) }

From ListInv ,
e ∈ Abs ⇒ AbsResult1

=⇒ (∃ n. Node(n) ∧ ¬n.marked ∧ e = n.val) ⇒ AbsResult1

=⇒ (Node(curr) ∧ ¬curr.marked ∧ e = curr.val) ⇒ AbsResult1

=⇒ ¬Node(curr) ∨ curr.marked ∨ e 6= curr.val ∨ AbsResult1

=⇒ e 6= curr.val ∨ curr.marked ∨ AbsResult1

as Node(curr).
Thus by weakening, we get:
{ I ∧ J ∧ Node(curr) }

{ I }
curr := Head.next
AbsResult := e ∈ Abs

{ I ∧ J ∧ Node(curr) }
while (curr.val < e)

{ I ∧ J ∧ Node(curr) ∧ curr.val < e }
=⇒
{ I ∧ J ∧ Node(curr.next) }

curr := curr.next
AbsResult1 := e ∈ Abs

{ I ∧ J ∧ Node(curr) }

Therefore, after the loop:
{ I ∧ J ∧ Node(curr) ∧ e ≤ curr.val }

if curr.val = e then
{ I ∧ Node(curr) ∧ (curr.marked ∨ AbsResult1) }

b := curr.marked
AbsResult2 := e ∈ Abs

18

{ I ∧ (b ∨ (AbsResult1 ∧ AbsResult2)) }
return ¬b

{ I ∧ Result ⇒ (AbsResult1 ∧ AbsResult2) }
else

{ I ∧ J ∧ Node(curr) ∧ e < curr.val }
return false

{ I ∧ Result ⇒ (AbsResult1 ∧ AbsResult2) }

And, as usual, all the intermediate conditions are preserved by the rely condition.

7.7 Final step

Now we can apply the lifting rule for the methods add , remove and get the required
specifications. We can do the same for contains , modulo that we have not proved the
post-condition AbsResult = Result formally. Hence, we get the specifications:

• Precondition: ListInv ∧ −∞ < e < +∞

• Postcondition: AbsAdd(e) (resp. AbsRemove(e), AbsContains(e))

• Rely condition R; guarantee G

8 Conclusion

We have proved the safety of a practical list-based set implementation due to Heller et
al [2] using rely-guarantee reasoning. Our proof demonstrates the power and applicability
of R-G reasoning to fine-grain concurrency, as well as its limitations when a linearisation
point cannot be precisely located. As future work, we would like to automate this proof,
preferably by constructing a tool which would use R-G reasoning to prove the safety of an
annotated program. Finally, we have only considered safety properties of the algorithm;
reasoning about its liveness properties remains an open problem.

References

[1] J. Dingel. Computer-assisted assume/guarantee reasoning with VeriSoft. In Proc. Int. Con-
ference on Software Engineering (ICSE-25), pages 138–148, Portland, Oregon, USA, May
2003. IEEE Computer.

[2] S. Heller, M. Herlihy, V. Luchangco, M. Moir, B. Scherer, and N. Shavit. A lazy concurrent
list-based set algorithm. In 9th International Conference on Principles of Distributed Systems
(OPODIS), Dec. 2005.

[3] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Prog. Lang. Syst., 12(3):463–492, July 1990.

[4] V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-concurrent
linearisable objects. In Proc. Symp. on Principles and Practice of Parallel Programming.
ACM Press, 2006.

19

