
Technical Report
Number 666

Computer Laboratory

UCAM-CL-TR-666
ISSN 1476-2986

A pact with the Devil

Mike Bond, George Danezis

June 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Mike Bond, George Danezis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

A pact with the Devil

Mike Bond and George Danezis

University of Cambridge, Computer Laboratory

15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

{Mike.Bond, George.Danezis}@cl.cam.ac.uk

6th June 2006

Abstract

We study malware propagation strategies which exploit not the incompetence
or naivety of users, but instead their own greed, malice and short-sightedness. We
demonstrate that interactive propagation strategies, for example bribery and black-
mail of computer users, are effective mechanisms for malware to survive and en-
trench, and present an example employing these techniques. We argue that in
terms of propagation, there exists a continuum between legitimate applications and
pure malware, rather than a quantised scale.

1 Introduction

“The stars move still, time runs, the clock will strike,

The devil will come, and Faustus must be damned.”

The Tragicall History of D. Faustus — Christopher Marlowe

Computer viruses and their payloads have developed through an interesting historical
chain. Morris Jr.’s early example of a self-replicating program was caused significant
damage to the early Internet through poor calibration of its propagation strategy [5].
In the age of floppy disks, memory persistence across warm reboots, and multiple disk
drives were the vectors of the highly destructive viruses that evolved as weapons in a war
of kudos between hackers. In the age of Internet worms, exploits are a dime a dozen,
and the most successful viruses use multiple infection vectors in parallel. Meanwhile,
the payloads (temporarily impotent during the exploratory “development” phase) now
perform targeted acts of malice against one site on the net or another, or are simply
about money making. Modern worms are more concerned with creating and controlling
botnets and sending spam than they are with deliberately upsetting users.

The countermeasures used against the above schemes have also followed a similar evo-
lution. They range from simple ‘computer hygiene’ (cold boot your computer), through
user education, to sophisticated anti-virus software, which today include full virtual ma-
chines [6], thousands of virus detection templates, and constant patching to online sys-
tems. It is unlikely that in the near future any of these techniques will bring an end to
malware propagation, and it is far more likely that the arms race between propagation
and defence will continue ad infinitum. A key point is that, through all this evolution, it
has been assumed that users are the enemies of the malware which (nearly by definition)
acts against their interests.

3

But in the study of all the selfish schemes that use replicating code to achieve petty
human end, have we in fact under-estimated the enemy? To better understand the spec-
trum of propagation techniques, we introduce the concept of the Satan Virus (named
following the tradition from [7]). This virus propagates and survives not only using the
conventional arsenal of exploits and deception, but also employs interaction with the user.
We present a concrete example which employs bribery and blackmail to acquire and retain
hosts.

Our key contribution, following recent work on the economics of information secu-
rity [1], is to demonstrate that malware can provide enough incentives to users for them
to willingly maintain it on their systems, and can again provide in the medium-term
enough disincentives to them removing it. Users can therefore enter in “a pact with the
devil” that confers on them some powers, that the virus shares with them, but as they
soon realise, some heavy responsibilities too. Not surprisingly, it is the darker human
traits that such malware seeks to foster and exploit – greed, curiosity, need for power,
fear, shame, lust, to name but a few.

In section 2 we present and analyse an example design, and in section 3 we explore
the full range of threats and rewards that viruses can use to influence user behaviour. In
section 5 we consider countermeasures, and explore a disturbing truth: otherwise useful
software containing malware or ad-ware, the free clients for peer-to-peer networks, and
the numerous mainstream applications that bundle together desirable and undesirable
features all come together to form a continuum from ‘legitimate software’ to the ‘Satan
Virus’.

2 The Satan Virus

The term ‘Satan Virus’ is somewhat symbolic – it is a conceptual super-virus that carries
the malice of the devil, and will employ the most ruthless techniques to achieve its ends.
While we hope that this ideal is beyond conception, many cruder images of it could be
just around the corner. We can thus speak of a family of Satan Viruses, each credible
and implementable. In this section, we explore one instantiation: a simple but concrete
design for a virus that propagates and entrenches using bribery and blackmail; we then
analyse its properties.

2.1 Design principles

Satan Viruses are based on two fundamental design principles:

1. The carrot principle. First, the virus convinces the user to execute it by confer-
ring him or her with a certain advantage. This advantage is true and tangible, it
is backed up by evidence that clearly demonstrates it can be provided, and should
ultimately satisfy the user. There is no deception involved at this stage – and the
user knowingly “sells his soul to the devil” to acquire this advantage. As long as
he honours his side of the “pact” the advantage is provided. This first principle
provides incentives for the user to execute and maintain the virus alive.

2. The stick principle. Second, the virus, in its co-existence with the user, gathers
information about the user’s activities, lifestyle and habits. It then tells the user

4

that if an attempt is made to remove the virus, the gathered information will be
used to hurt the user. This provides further disincentives for the user to remove the
virus.

In its purest form this Satan Virus does not deceive: it provides the advantages it
claims, and does not gratuitously hurt the user – it fulfils its side of the contract. The
main catch lies in the contract terms, which can be ever expanding: to maintain the virus
alive on the “possessed” computer, to assist the virus in spreading, whatever lies within
the imagination of the virus author.

Naturally there is no reason to expect such pure (and in some twisted way, honest)
strategies to be employed in isolation, when mixing them with deception and other more
automated ways of executing malware would provide the virus designer with better prop-
agation characteristics. We again stress that the strategies presented here may appear a
poor substitute for traditional mechanisms: it is because they are not intended to be a
total replacement.

2.2 The instantiation

For the threat to be tangible, the virus must implement the carrot and stick principles
in a robust way: the principles must respectively seduce the user compellingly, and resist
trivial bypass. For this instantiation, we will use access to another user’s files as the
carrot, and revelation of this access to the party spied upon as the stick. Assume there
are three parties: Alice, Bob and Charlie. Alice is already infected with the virus, and
Bob and Charlie are related to her (employees, colleagues, friends or family). The virus
propagates in the following manner:

1. Temptation. The virus sends an email from Alice to Bob, offering access to all of
Alice’s emails and documents. To make the offer more enticing, extracts from these
documents containing Bob’s name, or other interesting keywords can be included.
Bob can chose to accept this offer, by downloading the virus (that can be hosted on
Alice’s computer or bundled in the email) and executing it. As a result he should
have full access to Alice’s documents, with a search interface to help locate files of
interest.

2. Monitoring. As soon as the virus has installed itself, it starts recording everything
that Bob does, and in particular the accesses to Alice’s information. Crucially, this
includes the search queries performed as well as logs of the documents retrieved.
This information is sent back to Alice or another infected third party (that can be
known through Alice) for safekeeping, but it is not revealed. The key intuition is
that the virus avoids the hard problem of automatic detection of ‘blackmail’ material
on Bob’s computer, by collecting evidence on the unsavoury act of spying that it
has tempted Bob to commit. The unauthorised access to Alice’s computer, both in
the files Bob views, and the search terms he uses (revealing his suspicions of Alice)
should in most cases be incriminating material.

3. Blackmail. When a critical mass of incriminating evidence of unauthorised accesses
from Bob to Alice’s machine has been gathered, the virus emails Bob with a warning.

5

The warning specifies that if an attempt is made to remove the virus the information
gathered will be revealed. A snippet of the information can also be provided to
substantiate the threat. To safeguard the virus against retaliation, it sets up a
life-line between Bob and Alice’s machine (or a compromised third party holding
the incriminating evidence), to monitor Bob’s computer, and ensure that it remains
infected. If Bob’s computer does not appropriately respond, the evidence is released.

4. Voluntary Propagation. Bob is asked by the virus to provide a target to which
it might spread. Bob selects Charlie. Bob is told that Charlie would have the
ability to read Alice’s documents (not Bob’s) and that he would have the ability to
read Charlie’s documents. The ‘invitation’ will appear to be coming from the virus
residing on Alice, in the form of an email tempting Charlie to read her documents.
Thus the incentives are aligned for Bob to assist, and the virus propagates.

5. Involuntary Propagation. In case the virus has not propagated enough through
the addresses provided by Bob, it considers that Bob has breached his side of the
“pact”, and sends itself to Bob’s contacts, as harvested through emails, contact
lists, documents, etc. The virus now encourages recipients to install it, using the
incentive of access to Bob’s files.

As a side effect of the propagation method described above, the virus nodes can
construct a peer-to-peer network, that can be used to propagate payloads or commands
from their “master”. The lifelines between them can also be used to manage the network,
and make sure that it stays connected. While such peer-to-peer design problems must be
tackled by the virus writer, we shall not discuss them further as they apply equally well to
traditional non-interactive malware, which has already demonstrated some capability in
this area. Some further implementation issues and open research problems are presented
in section 4.

2.3 Analysis

We will spend some time considering the incentives of Alice, Bob and Charlie, in each
case where action is solicited.

The temptation step of the propagation is by far the most uncertain and risky from the
point of view of the virus. At this stage, a tempted Charlie can just say ‘No’ – without
any repercussions. The challenge here is incentive design: the author of a virus exploiting
interactive propagation must design lures which appeal to Charlie, and a framework for
soliciting assistance from Bob. This might require Bob to aid in customising an email
to tempt Charlie with Alice’s files, or require him to surreptitiously visit Charlie’s PC
and click to open the attachment. Strategies commencing with a threat of harm on an
identified ‘significant other’ of Charlie lie beyond the scope of this example.

Just as important as design of the lures, the virus author must calibrate the strategy
to spread with the correct amplifying effect. Studying the influence of simple local tactics
for involuntary propagation in existing virus code already creates a headache for analysts;
the same challenge will meet the designer of interactive propagation routines. A partial
solution could be to design lures which are good for propagation in particular directions
through the social network; it will need lures to spread both up and down hierarchies in
corporations, and from friend to friend across ‘gossip bridges’ between corporate networks.

6

Alice

Bob

Charlie

1.

2.

Figure 1: Bob is tempted by Alice’s files (1) and then uses Alice’s files to tempt Charlie
(2). As a result Bob can access Alice and Charlie’s files.

The generic lure of spying in this virus instantiation will likely have immediate appeal
to Charlie if there is an asymmetric power relation between them (whether known to Bob,
or data-mined [8]), so it will certainly travel effectively down hierarchies, and plausibly
up as well. With the minor addition of a hint of what salacious material might be found
(substantiated or unsubstantiated) people in peer groups can also be encouraged to spy.
In essence, human curiosity is at the heart of this lure. We believe the algorithm proposed
above is sufficiently simple to correctly calibrate for an amplifying effect.

During the monitoring phase Bob is probably aware that the virus might be giving
other people access to his files (it is not yet apparent that the incriminating information to
be actually used will be the browsing patterns on Alice’s files). This might lead the user
to moderate his activities, and delete incriminating information from his computer. If
this is done after the virus has been installed it might be used to discern what material is
interesting to use for blackmail purposes (deleted material is bound to be more interesting
than random files). The material could have been deleted before the virus has been
installed (as a precaution). This illustrates quite vividly the “virtuous sinner” paradox: if
Bob does not perceive that he has something to hide, genuinely or because he has deleted
the information, he will be more tempted to spy on Alice, since he is less worried about
it happening to him.

When the user is notified of the blackmail material stored on third party computers he
is pretty much stuck. Often the effectiveness of blackmail is severely limited by funnelling
the profit to the blackmailer, but as we have blackmail from an automated system there is
no exit from the user’s dilemma1. Bob may well realize that all his activities are recorded
and stop using the advantages provided by the virus. He might even chose to stop using
the infected machine altogether. Yet in order not to face the repercussions he has no
choice but to leave the machine connected to the network, and in contact with the other
viruses. Survival is therefore achieved for the virus.

The propagation phase sees the virus exploit its edge on Bob to have him assist prop-
agation, and of course is the mirror image of the temptation phase. Humans are much
better at social engineering than any automated tool: the key aspect of our design is that
Bob has a positive incentive to assist in infecting Charlie, through access to Charlie’s files,
as well as keeping his own virus satisfied, and placating his fears that it will take unilateral
action. If Bob’s support does not materialize, either because he does not want to assist,

1There are several examples of viruses which attempt to blackmail a user, for instance by encrypting
their files, then demanding payment for the key; however virus authors plans for remuneration have not
been coherent[14].

7

or because he does not understand, propagation happens automatically, and Bob is used
as a bait to entice other users. Note that the failure of Bob to propagate the virus should
not lead to the release of the blackmail material – this may threaten the survival of the
virus on Bob’s machine. The combination of a tangible reward for success and threats
upon withdrawal is the same as that which sucks individuals into organised crime.

One way or another propagation onwards from Bob will happen – and it is not the case,
as it may appear, that the number of parties under observation, like Alice, remains small.
Bob identifies targets such as Charlie, that are especially interested in observing Alice,
in order to prevent the virus from using him as a bait to entice other users. As we have
seen, Bob gains the ability to spy on Charlie in addition to Alice, and he can now entice
further targets by offering access to Charlie’s files. Meanwhile, the new infectee, Charlie,
has a smaller pool of candidates to voluntarily install the virus, since people especially
interested in Alice’s files are bound to be limited – and there is one less candidate (Bob
has nothing to gain from accepting an offer from Charlie). Therefore Charlie will have to
start propagating the virus in different circles, or admit defeat and not propagate it at all.
In these cases the virus on Charlie’s machine will detect that it has not been propagated
and will initiate the involuntary propagation phase. In this respect the virus works like
a pyramid scheme, by providing early adopters the most benefits as they rise high up in
the hierarchy, while leaving those at the lower levels exposed to a greater probability of
failure.

Bootstrapping the spread of the virus is not difficult: manual hacking or botnet distri-
bution techniques could be used to install the first few instances. More interestingly, the
virus could be offered on the internet as a trojan that purports to simply allow remote
monitoring of other users’ computers. Here, Bob would surreptitiously install the trojan
server on Alice’s machine, and the client on his own. BackOrifice [9] is an example of such
software that has made quite a few waves in the popular press [10]. At a later date, the
trojan enters its monitoring, blackmail and propagation phases, and spreads from there.

3 Interactive propagation strategies

We now explore the spectrum of interactive propagation strategies – which is ever expand-
ing as more of human activity moves into the networked world. The carrot principle and
stick principle generalise into an array of possible threats and rewards, in the same way
as the tactics of a negotiator or politician might be classified. Also, the fuller spectrum
plays across the full lifecycle of a virus. Threats and rewards may be execution phase

actions, which can be carried out in a short space of time as soon as a host is infected,
or survival phase actions, which take some time to carry out successfully, and require the
host to remain online. Finally, lifecycle phase actions are only meaningful in the context
of the wider purpose of the virus, and success may not be guaranteed by persistence of
infection on a particular host.

The table in figure 2 gives a few examples of the rewards the Satan Virus could
provide to incentivize the user in order to keep it alive. Note that as the virus spreads,
it can exploit the resources of others, so there are positive network externalities for its
propagation. Consider a Satan Virus that shares MP3 music files amongst all infected
users. As the number of users increases, the number of available files grows, and users get
even more value by joining the network [11]. The cynical reader might already believe

8

Reward Examples

Threat Enactment* “I’ll carry out threat X on Y, and you can watch!”
Privacy Invasion* “You can browse X’s hard drive”

“You can read X’s email archive”
“You can watch X’s webcam/mic”

Revelation* “I’ll tell you what X said to Y”
“I’ll tell you what I found on X’s hard drive”

Fabrication* “You can forge emails from X”
Mischief* “You can seize control of X’s PC”
Virtual goods “You’ll get tons of free porn”

“You’ll get free software”
Real-world goods* “You’ll get free goods to your door”
Innovation “You can use this really cool feature”
Unsubstantiated “You’ll get seven years good luck”

“Your true love will return to you”

Figure 2: Taxonomy of rewards (* marks cross-party rewards)

that this mechanism is the key to the success of peer-to-peer networks (we discuss the
continuum between malware and other software in section 5). Figure 3 shows the broad
categories of threats conceivable, giving one or two examples of each. Threats marked
with a ‘*’ are cross-party in that the enactment of the threat might be considered a reward
to another, or that another party is explicitly involved in the process.

4 Implementation challenges and open questions

Whilst incentive design is indeed subtle and hard, the virus instantiation of section 2 is not
much more difficult to implement than a conventional virus: it requires a state machine on
each node, some basic communications protocols, and a dozen or so pre-prepared message
boxes for communication with the user. It is not immediately obvious however that the
more sophisticated propagation strategies of section 3 are credible; we briefly consider the
challenges of architectural design.

Assume the virus is adequately seeded, bootstrapped from an existing botnet or
through manual infection. It may then organise itself into a communicating network
in a peer-to-peer fashion. Once it has an adequate grasp on the host computers of a user
base, it begins harvesting information about the users. It performs traditional activities
such as logging keystrokes, but also analyses email archives and instant chat client config-
urations. It performs social network analysis to automatically determine significant links
from person to person.

Once it has an awareness of the social structure of the human network above its
hosts [13], it can start to approach humans for assistance in furthering its spread, and
entrenching itself deeper into existing hosts. To do this, the virus spawns “demons”
– communicating conversational clients which interact with a specific user via email or
instant messaging, with the goal of obtaining their assistance, and additionally enacting
whatever overall payload the virus may carry.

The demons manipulate the users through a system of rewards and threats, harvested

9

Threat Examples

Data Destruction “I’ll delete all your files”
Privacy Invasion* “I’ll forward emails from your archive daily to X”
Revelation* “I’ll tell X that you said Y to Z”

“I’ll tell X about the porn I found in your web cache”
“I’ll put all your data on the net, searchable from Google”

Fabrication “I’ll make up an email telling X you slept with Y”
Desecration “I’ll distort all your digital camera photos and

reduce them to 1/4 size”
Framing “I’ll plant illegal images on your computer”
Hardware Damage “I’ll blow-up your monitor”

“I’ll re-flash your BIOS and kill your PC”
Security Exposure “I’ll sabotage your security” (Kleptographic attacks [12])

“I’ll harvest all your keystrokes and passwords”
“I’ll get your credit card number and abuse it”

Real-world* “I’ll order something using your credit card for my friend”
Unsubstantiated “I’ll get your sister beaten up”

“I’ll give you seven years of bad luck”
Nuisance “I’ll phone your mobile at all times of day and night”
Unwanted goods* “I’ll send unwanted goods to your door”
Reporting “I’ll report your illegal downloads to the RIAA”
Access Denial “I’ll prevent you from using Word or Excel”
Composite “I’ll bug you with a threat or reward every 15 mins”

“Now we’re going to play truth or dare”

Figure 3: Taxonomy of threats (* marks cross-party threats)

from the compromised nodes it controls. If a user does not react to rewards, maybe she
will react to threats. When a computer is compromised, the virus scans its content and
produces “threat modules” and “reward modules” based on the content and resources
found. These broadcast out their existence via the peer-to-peer system, and the demons
barter for them. The specific task of each node are as follows:

• Nodes host demons that engage in conversation with others. Each demon binds
to one person, is instantiated once the system determines a good chance of success
in manipulating that person, and is then responsible for controlling that person’s
fortunes.

• Nodes accept incoming reward and threat modules, which may be time locked, or
locked with some cryptographic key. When a reward package is unlocked it may
confer a simple benefit, for instance releasing an MP3 or pornographic image to
the owner of the host, or it might release some more sophisticated reward, such as
access to the email archives of another user close by in the social network.

• Nodes scan themselves continuously, looking for new potential outgoing reward and

threat modules to construct. Nodes then broadcasts the availability of these over
the peer-to-peer network to demons who might wish to make use of them in manip-
ulating users.

10

• Nodes measure parameters of their host, such as resources available (e.g. bandwidth)
and also the number and vigour of attempts to remove the infection. These are
called triggers and are broadcast back to demons in the same way as threats and
rewards. Demons can use triggers as an extra channel of observation of the user,
in addition to direct communication. Demons can thus detect attempts to damage
the peer-to-peer system, and threaten the user appropriately, in order to make her
desist.

4.1 Human interaction

Human perception of computer viruses is subjective. Infectees consider a virus as an entity
that resides on their machine; anti-virus people consider strains of viruses or consider the
author of the virus directly. However, once viruses engage in non-trivial communication
with humans, perception of the virus becomes more important. In the majority of cases
(but not all) the virus will have compromised the user’s PC, yet the demon corresponding
to a user will likely not entirely reside on it, lest it be vulnerable to deletion attempts.
The virus may chose to be honest about internal social structure, for instance if it resides
on a single different machine (for instance claiming “I am your Boss’s virus”), or it could
claim to reside ephemerally on the network. This captures the fact that demons have some
shared state, but in other ways are quite separate. Most importantly, the virus should
engineer the user’s perception to gain an advantage, and have maximum psychological
impact.

Meanwhile, particular demons must perceive humans, and the manner of perception
hinges on both psychological and technical issues. One possibility is to define a person
as an active email address that is used for at least some personal mail. However such a
perception ignores the benefits of interaction through instant messaging clients, and direct
interference with the runtime of a users computer. Various Japanese dating simulators
exist [4] which operate through email communication, and this indicates that if people are
willing to converse with email bots for enjoyment (and indeed for social training), that
it is a sufficiently rich form of communication to deal with emotional issues, but also not
too rich for the bot to expose itself.

Finally, a base communication link can be augmented with more intrusive channels,
for instance using SMS gateways to interact with mobile phones, or using Voice-over-IP
gateways to send pre-recorded instructions by telephone, or simply to make nuisance calls.

5 Defence and conclusions

Are we already adequately equipped to deal with an outbreak of the Satan Virus? What
existing countermeasures would be effective, and what new countermeasures complement
the new propagation strategies?

Clearly such viruses can be fought to some extent using conventional anti-virus soft-
ware. The virus may try to use its edge on the user to have her disable anti-virus measures,
but in a corporate environment the user may not have total control over her PC, thus
the virus is threatening the wrong person. If the signature of the virus code becomes
known, anti-virus software will warn the user when they give in to temptation. The virus
might thus switch to granting spying capabilities up front, for instance through the user’s

11

web browser, then monitor and perform blackmail in order that the user disables counter-
measures before virus installation. Either way, conventional anti-virus software remains a
significant threat, but a known threat, and one largely beyond the scope of this discussion.

Communication will be the key new battleground – this distinguishes Satan Viruses
from existing strains. Gaining access to, and then the attention of the real user is the new
challenge. Anti-virus or OS software may try to mask the attacks of the virus from the
user by filtering out tempting messages. The name of the game is then spam detection,
but can the virus stay ahead for long if it is cut off from a human creator, given the
rapidity of spam filter evolution?

Often in tandem with a primitive virus outbreak comes a ‘good virus’ propagating
through human incentive alignment, warning of the bad virus on the way, for example “If
you see email with subject X, don’t read it, delete it straight away”. We call these viral

prophets, which (generally considered a nuisance fighting current viruses) may be effective
at fighting Satan Viruses, by spreading a naive but effective ‘morality’.

The peer-to-peer architecture creates a new set of weak spots. Damaging the virus’
perception of the outside world could cause it to push its energy into infecting imaginary
new hosts. Limiting communications to other nodes (through temporary or permanently
blocking), might imbalance the system with limited collateral damage through threat
enactment. A final category is infiltration attacks – fighting the virus on its own com-
munications infrastructure using sabotaged nodes and links. In our example architecture,
offering of dummy rewards and threats could make a whole pool of demons impotent.
However, if viruses embrace instant messaging before spam prevention techniques in these
area are fully developed, they may be able to do more damage than they would via email.

Maybe the only long term solution is to give users the proper tools to compartmentalise
their PCs, and maintain their privacy. Initiatives such as trusted computing may both
help and hinder – they could provide hard boundaries to keep a virus from illicit access
to address books and privately marked files, however they could also protect the virus,
rendering it invulnerable to reverse engineering, and entrenching it more deeply.

Finally it is worth noting that a practical way to develop defensive measures is through
experiencing weakened attack (indeed this is how much human virus immunisation is per-
formed). The technical sophistication required to craft the ideal Satan Virus is quite a
hurdle, thus potential deployers of the ideas in this paper will likely teach the community
more about defence than scar it with the damage they would initially do. Aside from
traditional skills, such as systems and network programming, a virus writer is required to
conceive a data mining engine capable of constructing effective reward and threat pack-
ages. This would require implementing cutting edge tools from the fields of information
retrieval, natural language processing, social network analysis, epidemiology, etc: a set of
skills that are not widely available in the computer underground.

5.1 The propagation continuum

Our explorations through this paper have given us a glimpse of the full attack surface
for propagating software, and our example Satan Virus of section 2 shows these avenues
are not flights of fancy but could quickly become quite real. But more important than
acknowledging the variety of techniques, in studying how virus propagation interacts
with user incentives, we discover the propagation continuum. Viruses, botnets, peer-to-

12

peer systems and conventional applications are not dichotomous, they are data points on
a scale of malice. They all attempt to survive on end user systems, by providing both
positive functionalities, penalties for being removed and often some negative side effects.
Do the benefits of a peer-to-peer client such as the ad-ware ridden KaZaA [3] outweigh the
problems? Will a user coexist in relative harmony with a search-hijacking, click-counting
tool because of the risk of damage to their OS during a fudged uninstallation? When
someone sends you a word document that you cannot read with your viewer, is Microsoft
Word propagating itself in the same way?

Accepting this continuum, may lead us to do away with the already unwieldy raft of
terminology for propagating software. The term virus, originally a medical one, is now
irrevocably stigmatised with bad and undesirable effects, meanwhile modern computer
viruses are better described as worms. However the worm definition falls short when
considering the symbiosis of propagating software with its users. Meanwhile classification
based on harm to the user will become more difficult (is a particular piece of malware

truly bad?); as the aggression ever mounts in the media player wars, and the bundling
ramps up, how will bundle-ware side-effects be classified?

So we could now argue that there are devils everywhere, spreading software that
we might not approve of: they are bribing with great new features, legal or otherwise,
and blackmailing with threats of revelation, or just with high switching costs [2]. In
this paper, we have explored the farthest and most malicious end of the propagation
continuum, and we stress that the ideal Satan Virus concept we find is no cause for panic
– real-world implementations will inevitably fall far short of the mark. Once research
into phishing, anti-spam and anti-spyware technology integrates more fully with virus
defence, we may enter a new realm of content approval and adjudication. Therein lie
fascinating new avenues for research that could help users properly gain control of their
PCs, and understand what they are letting themselves in for when they click ‘yes’ – be
it on temptation from the Satan Virus, or on a twenty page licence agreement. One
thing remains certain: until this day comes, running other peoples software will remain
an activity to be undertaken with caution.

References

[1] Camp, L. Jean; Lewis, Stephen (Eds.). “Economics of Information Security”, Series:
Advances in Information Security, Vol. 12, 2004.

[2] Carl Shapiro, Hal R. Varian. “Information Rules”, Harvard Business School Press
(November 1, 1998).

[3] NS Good, A Krekelberg. “Usability and privacy: a study of Kazaa P2P file-sharing”
In Proc. CHI 2002, CHI Letters, 2003.

[4] “Japanese Men Date Hot, Sexy Bots”, Wired, available at http://www.wired.com/
news/culture/0,1284,40369,00.html

[5] Eugene H. Spafford. “The Internet Worm Program: An Analysis”, Purdue Technical
Report CSD-TR-823, 1989.

13

[6] Peter Szor. “The Art of Computer Virus Research and Defence”, Addison-Wesley,
2005.

[7] RJ Anderson, RM Needham. “Programming Satan’s Computer”, in Computer Sci-
ence Today, 1995.

[8] David Lyon. “Surveillance Society: Monitoring Everyday Life”, Open University
Press, 2001.

[9] “Back Orifice 2000”, available from http://www.bo2k.com/

[10] James Glave. “Back Orifice a Pain in the ...?”, Wired, July 1998.

[11] Andrew Odlyzko and Benjamin Tilly. “A refutation of Metcalfe’s Law and a better
estimate for the value of networks and network interconnections”, Manuscript, March
2, 2005.

[12] A. Young, M. Yung, “Kleptography: Using Cryptography Against Cryptography”,
Eurocrypt ’97, page 62-74, Springer-Verlag, LNCS #1233, ISBN 3-540-62975-0

[13] N. Eagle (2005), “Machine Perception and Learning of Complex Social Systems”,
Ph.D. Thesis, Program in Media Arts and Sciences, Massachusetts Institute of Tech-
nology.

[14] “Virus Hold Computer Files ‘Hostage’ for $200”, Fox News, 24th May 2005, available
at http://www.foxnews.com/story/0,2933,157469,00.html

14

