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Abstract

This work investigates a computational model of first largruacquisition; the Categorial
Grammar Learner or CGL. The model builds on the work of Vilk&nio, who created a para-
metric Categorial Grammar learner that organises its pasammto an inheritance hierarchy,
and also on the work of Buszkowski and Kanazawa, who demdedtthe learnability of a
k-valued Classic Categorial Grammar (which uses only the aflésnction application) from
strings. The CGL is able to learnfavalued General Categorial Grammar (which uses the
rules of function application, function composition andn@ealised Weak Permutation). The
novel concept of Sentence Objects (simple strings, augdesttings, unlabelled structures
and functor-argument structures) are presented as palt@oints from which learning may
commence. Augmented strings (which are strings augmenitedsame basic syntactic infor-
mation) are suggested as a sensible input to the CGL as thepanéively plausible objects
and have greater information content than strings aloneldiBgi on the work of Siskind, a
method for constructing augmented strings from unordergit forms is detailed and it is sug-
gested that augmented strings are simply a representdtiba constraints placed on the space
of possible parses due to a string’s associated semanterdoithe CGL makes crucial use of a
statistical Memory Module (constructed from a Type Memary &/ord Order Memory) that is
used to both constrain hypotheses and handle data whiclsis argparametrically ambiguous.
A consequence of the Memory Module is that the CGL learns imaremental fashion. This
echoes real child learning as documented in Brown’s Stagesrgfuage Development and also
as alluded to by an included corpus study of child speechthEBumore, the CGL learns faster
when initially presented with simpler linguistic data; ather corpus study of child-directed
speech suggests that this echos the input provided to ehildfhe CGL is demonstrated to
learn from real data. It is evaluated against previous patacriearners (the Triggering Learn-
ing Algorithm of Gibson and Wexler and the Structural Triggeearner of Fodor and Sakas)
and is found to be more efficient.
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Chapter 1

Introduction

For a normal child, acquiring language is a natural phen@ntigst requires no conscious effort.
After only 12 months, and with no formal teaching, a normaldcts making verbal reference
to objects, people and actions. These first words occur iatisa and might not sound like
any recognisable adult words but within the subsequent I#tmsa child starts forming under-
standable declarative sentences such asnt cookie” (Naomi at 1;11—the Sachs corpus [87],
CHILDES [63]). Over the next few years a child’s linguistidlék rapidly develops. A child is
able to form questions, use inflections, produce clausesssd whole range of other linguistic
construction.

Eventually a child’s linguistic growth settles down. At thge of seven she is speaking with
the full fluency of an adult; by which time she has the abildyptocess the infinite number of
sentences belonging to her language and she is capabledofgong an infinite number of sen-
tences herself. This would be remarkable even if the praesidu producing (and understand-
ing) sentences could be described by a well defined set of: rat®vever, human languages are
so complicated that we have not yet managed to settle up@oaytthat describes all linguistic
phenomena satisfactorily.

Despite huge advances in cognitive science over the lase&fsylittle is understood of how
the human brain accomplishes the task of storing, proogssid acquiring language. As native
speakers, we are not conscious of how we put together sesteinow we access our mental
lexicon or how this lexicon is stored; any rules that we thivikknow about our language are
prescriptive rules fotr'standard” usage that have been repeated to us at school.

A key issue that remains to be resolved is thavbychild language differs from adult language.
We know that ability to speak a specific language is not geakyibestowed: a child growing
up in a French speaking environment will become a Francaghbe same child growing up
in a English speaking environment would speak English. Gjlearchild learnstheir native
language on exposure to it. However, the exact descripfiarhat is beingearntis an issue of
much controversy.

The Continuity Hypothesig[73], [62]) says that, given there is no evidence to the i@yt a
child’s cognitive system is to be assumed identical to thaoadult’'s (i.e. the mechanics of
brain operation are the same in both an adult and child).idfightrue, then we can explain the
differences between child and adult language from two ptesstandpoints:

1. At one extreme we can assume a child to be born with a coefgieguage faculty: the
grammar for every possible language is innately availabkfé child (often referred to
asnativisn). For such a bestowed child, language acquisition is tHedhselecting one
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grammar from all those available to it. This can be achieyeslibconsciously “noticing”
the linguistic properties of the environmental language.

The mechanism for selecting the correct grammar is somstttescribed as a process of
setting language parameters (e.g. [39], [90]). For exanagb@ssible language parameter
may relate to subject drop (to be clear, Italian is an exaroptelanguage which allows
subject drop—in lItalian it is possible to sayedo nel desting“[I] believe in destiny”)
without explicitly specifying the subject of the sentenck)a child is exposed to a lan-
guage where subjects can be dropped she will hopefully sstifvgect drop parameteo
true; thus excluding all grammars that don’t allow subjecipdand reducing the number
of possible grammars left to choose from. At any given timeechild selects one of the
remaining possible grammars in order to produce and uratet$anguage; the idea being
that once all parameters are set, one grammar is uniqueiyifidd from all possibilities.

An alternative method is to associate each possible gramiitiara score indicating its
likelihood of describing the target (parental) languaghle probability of a grammar is
incremented (or decremented) in response to evidence gififitic features in the lan-
guage environment. As such, grammars are “competing” fiecten by the child (e.g.
[109] or [12]); the child’s current grammar being the mogHhiy ranked (or perhaps se-
lected according to the probability distribution over tlrargmars). By using a scoring
mechanism the child never has to rule out any grammar coetpléds may occur with
the parameter setting model). Instead, the probabilitylditing grammars becomes
incrementally smaller so that the probability of them besetpcted by the child becomes
very small.

Under both these models, differences between child and shgluage are explained by
the child’s current grammar being different to that of thel&lin their environment.

Nativist theories come under criticism for relying too hiagn the requirement of innate
knowledge. In particular, the question of how an innate leg faculty might develop
is much debated (see [77] for a review).

. At the other extreme we assume a child is a “blank-slatethirch linguistic skills de-
velop in response to language stimulus. This viewpointfisrred to aempiricismsince
language is being acquired purely from observation.

Empiricist theories come under fire from Arguments from tlogd?ty of Stimulus [23].
One such argument states tigaten the limited evidence in the language examples that
children are exposed to, it is impossible to extrapolate dbmplicated generalizations
required to acquire a languageThe problem here is that, given unconstrained scope,
there are an enormous number of ways to describe the exaprpkEnted and not enough
evidence is provided to refute all false grammatical hypsés.

Since empiricist theories rely on the child’s ability to ®dt linguistic patterns from
examples of the parental language, they are often invéstgaith connectionist models
(computational models based on the architecture of the lbwhich are useful for pattern
recognition from raw data).

Unfortunately, connectionist models tend to require eyp®$o hundreds (or even thou-
sands) of iterations of a training set before they can riliaécognise patterns. Here
again the empiricist models come under scrutiny regardatg dparsity; the argument
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being that a connectionist model can not be a viable modeataiaition because of the
amount of data it requires to learn and the comparativelytddnnumber of language
examples that children are exposed to.

The real explanation of acquisition may exist on some midptund where there is some
innate linguistic information (albeit as simple as a desir&communicate and build mental
compositional structures) but there is also much inferrethfthe empirical evidence in the
language environment.

Either way, any model of acquisition is going to have to be ablearn despite the varying qual-
ity of data presented to a language learner. Frequenthatigulage examples that a child hears
contain mistakes: “umms” and “ahs”; slips of the tongue; wreincomplete sentences due
to distraction or interruption. A child must be able to le#ine correct grammar despite these
errors or be able to identify sentences that contain ermuis'‘@hoose” not to learn from them.
A possible solution here is to consider the statistical progs of the language; hopefully gram-
matical sentences will greatly outweigh the error prondesgres and consequently linguistic
rules or patterns can be extracted with an associated canédeeasure from evidence that is
greatly skewed towards the grammatical.

There are further difficulties regarding the design andwat&dn ofrealisticacquisition models;

it is one matter to design a model that can acquire a targetrgea, but it is another to design
a model that does so in the same way as a child. If the goal afigitign is to acquire a target
grammar, then the success of a model may easily be measucediparing the finally acquired
grammar with the grammar of the target language. Howeves fealistic model, it is required
that the model’s internal grammar is similar to that of ad’bikt all stages of the acquisition.
Unfortunately, a child’s internal grammar is difficult tocastain because articulatory skills are
not fully developed at birth. Linguistic performance is d¢émed throughout acquisition due
to linguistic competence. This brings the challenge of sp®y these issues to the study of
acquisition and creates problems for design since it isaam@xactly what to model.

It should be noted here that it is NOT possible to investidat® language acquisition post
development of articulatory skills by studying the acdiosi of second languages later in life.
First language and second language acquisition are twoditfeyent processes. The acquisi-
tion of a second language is a labour of much hard work and meeffort whereas acquiring
your native language requires no conscious effort at akk §thdy of second language acquisi-
tion can perhaps tell us as much about our memory as our lgedaaulty.

The study of first language acquisition can be approached frany directions. The oldest
method is that of corpus analysis. Several types of corpava been complieddiary studies
are the traditional method for tracking child language ttgsment and usually involve a single
child who's caretaker keeps a diary of when new construsteme first producedarge sam-
ple studiesnvolve a large number of children and generally record grearnent looking for

a specific language phenomeftagitudinal language samplinigvolves regularly recording/-
transcribing a single child’s language (for instance, &amiay be recorded for a few hours once
a week over a period of several months or years). Linguisaf/aa such studies to collate data
and speculate on how acquisition may proceed given the megdeAn example that is relevant
to this thesis is Snow’s small scale corpus analysis of $pdeected towards children [94]. In
this study Snow recorded conversational speech betweedmensatnd children. She analysed
the mothers’ speech and concluded that adults talk amoagbktaher in a way different from
that in which they talk to their children.
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Psycho-linguists study language acquisition by carefafiglysing the way we respond to dif-
fering linguistic stimuli; this will often involve measumy tiny differences in response times
that we can not ourselves perceive. An example is Jean Glsasonouswug test[40] that
was designed to investigate the acquisition of the inflactithe experiment proceeded by pre-
senting a child with a picture of a fictional creature andistgtThis is a wug”. The child was
then shown a picture of two of these creatures and invitednaptete the sentencaow there
are two ...?". A child that learnt to generalise the inflection rule fornalls was able to answer
two wugs Younger children were just confused and at best answeredvug Furthermore, it
was demonstrated that the three plural allophoyieg, @s in dogsys/, as in cats; andez/, as

in horses) are acquired separately. The experiment shawshhdren can generalise rules (or
patterns) from the language that they have been exposeditapgly these generalisations to
novel terms. The wug test has since been used to investlygasctjuisition of other inflection
rules (such as the past tense and possessives).

Computational linguistics can contribute to the study oflaage acquisition formally by in-
vestigating the mathematical constraints of linguisteaty. The most well-known example of
such work must be Gold’s theory [42] which showed that an iigilanguage (i.e. one that has a
hierarchical structure capable of recursion) is unledmftbm examples of the language alone
(see Chapter 3 for a more precise description). Computatimgalists can also contribute to
the study of acquisition experimentally by producing l@éagrsimulations: two examples rele-
vant to this work include Gibson and Wexler’s [39] simulatimf acquisition in a parametrically
defined grammar-space; and also Rumelhart and McClellandiseotionist model for acquir-
ing past tenses [86]. Simulations can provide useful insigb the problems of time and space
complexity for acquisition algorithms.

This work investigates a computational model of first largguacquisition. The model can nei-
ther be classed as a pure nativist or a pure empiricist meatt@kr it lies on the middle ground
between the two extremes. As with a nativist model, it assuseene innate linguistic func-
tionality; in particular the ability to associate a meanwith a sentence, to recognise objects,
segment words and combine constituents. The possibil#ydhich functionality can be pro-
vided by some previous empirical processing will not be ussed in this thesis. As with an
empirical model, this model infers linguistic patternsnrdanguage examples. Furthermore,
it makes crucial use of a linguistic memory and is able to deti mistakes in the input by
employing statistical techniques to filter noise. The mauires language from real data.
The functionality of the model is described algorithmigdiowever its statistical nature leads
one to believe that it could possibly lend itself to a conimetst model if one had the time and
resources.

In order to aid the design and evaluation of the model, cogtudies have been conducted on
the model’s input (child-directed speech) and output chpeech). Its mathematical rigidity
has also been explored and a comparison is made betweemthisr@vious computational
models.

The outline of this thesis is as follows: Chapter 2 invesggaterbal constructions in a child’s
input stimulus and output productions. Two corpora areaettd from parts of the CHILDES
database [63]; one containing child speech and anotheaioamg child-directed speech. For
comparison a corpus of adult speech has also been constrinota the spoken section of
the British National Corpus [56]. Corpora are compared for ¥ezuency and verb subcat-
egorization frames. We discuss the possible role of chilgeted speech as an aid to learn-
ing and notice that, in concurrence with Brown'’s stagesdcéil might acquire verbal frames
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incrementally—using more complex constructions onlyradiepler constructions have been
learnt. We use this idea of incremental learning as a bastiéamodel presented in this thesis.
Chapter 3 investigates the problems of modelling languageisition in general and discusses
the pros and cons of methods that have previously been atlogidapter 4 looks at pre-
vious categorial grammar learners—categorial grammargottie chosen formalism for this
work. The Learning System of Waldron/Villavicencio ([10$)104]) and the algorithms of
Buszkowski/Kanazawa ([17], [49]) are summarised in detaites they form the basis of the
learner presented here. This investigation of previoun&ra leads us to explore the different
types of input that a categorial grammar learner could begmted with in order to learn from.
The concept of gentence objeds introduced to refer to any input structure that carrideadt

as much information as a string. The complexity of learniroyT different types of sentence
objects is discussed as well as the cognitive plausibifisuch objects. We select one particular
type of sentence object (the augmented string) as suitaplg for models learning from real
data. We finish the chapter by outlining how augmented sroauld be created and suggest
that they are simply representations of the constraintseplan the search space of possible
parses by the semantics associated with a string.

Chapter 5 presents the Categorial Grammar Learner. Thiserhaytds on the work of Wal-
dron/Villavicencio and Buszkowski/Kanazawa. It detailsarher that uses the categorial gram-
mar rules of function application, function compositionrda@eneralised Weak Permutation.
The learner makes use of a memory module which is used toreombiypothesised grammars
and also makes the learner robust to noise. An example ofoi@bon of the learner is given.
In Chapter 6 the Categorial Grammar Learner is evaluated. Tiogercy of the model is
investigated in comparison with two previous models (thgdering Learning Algorithm [39]
and the Structural Triggers Learner [38]). Further experita demonstrate the learner to be
robust to noise caused by indeterminacy of meaning andenuétacy in parameter setting.
This chapter concludes with a discussion of the developaheompatibility of the model in
relation to Brown'’s stages of acquisition.
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Chapter 2
Analysis of Child 1/0O

In order to design and evaluate a model of language acauisttis necessary to have a good
understanding of the properties of the input and output.n\Wits mind, the following chap-
ter details a corpus study on some of the lexical propertiehitd-directed speech and child
speech.

2.1 Linguistic Input

A child’s environment is rich with stimulus but the degreenthich this stimulus contributes
to learning is much debated. With respect to language atiQuisstimulus is provided in
the form of language examples rather than direct teachingisuprimarily provided by the
child’s caretaker. The importance of the linguistic intgi@n between caretaker and child is
still unclear; acquisition theories vary considerablyhirit input requirements. However, there
is one requirement beyond dispute; that of some sort of igtiguinteraction. A child growing
up in a French speaking environment acquires French, the shitd growing up in an English
speaking environment would acquire English; thus, a aedagantity of linguistic interaction
Is needed to determine which language is to be acquiredhémunbre, linguistically isolated
children are known not to develop language spontaneoustyn(ost well documented example
being Genie [30]).

The exact quantity and quality of linguistic input requifedsuccessful acquisition is unknown.
Linguistic interaction with children is very much cultusatefined ([92], [91]), consequently
broad statements regarding the nature of the input are véigutt to make. However, there
is evidence to suggest that there is a minimum threshakhtity for successful acquisition;
a study by Sachs and Johnson [88] reported that a hearirdy @hieaf parents did not learn
spoken English despite having been exposed to televisidher@esearch has suggested that
the quality of language can be fairly poor and acquisition still be sasfid; hearing children
of deaf parents do not just imitate the limited spoken lagguaf their parents [6] but add to it.
The linguistic input to a child arrives from a number of sascnot all of which are specifically
directed at the child. Furthermore, it is apparent that &akill not attend to all the linguistic
input she is exposed to. Input can thus be divided into selgoaies as shown in Figure 2.1: the
outer circle shows all the linguistic input available to aldlfincluding television, overheard
conversations etc.); the circle labelled Child-Directe@&h (CDS) indicates the input which
is spoken directly to the child; the remaining circle indesathe input which the child actually
attends to.
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Figure 2.1: Linguistic input to a child

2.1.1 Child-Directed Speech

Understanding the role of child-directed speech (CDS) isuatiamental importance to lan-
guage acquisition. Several manual small scale studiesSsew [94] for an overview) have
suggested that CDS is very different from speech betweensadaotonation is often exagger-
ated, a specific vocabulary can be used, and sometimes ex@ficpyntactic structures that are
not found in adult speech appear. Perhaps contrastingiye itk considerable evidence that ac-
curate and complex syntactic structures are informativerguanguage acquisition (e.g. [58],
[67] and [36]). Consequently, the role of CDS is by no meanscRiae [72], amongst others,
speculates that the purpose of CDS is to merely engage theeiolobnversation. Snow [94],
on the other hand, suggests that CDS is actually teachinghittelanguage. Clearly, larger-
scale studies into the nature of CDS are required before wédegim to establish its role in
acquisition. In this work we will look in particular at theleoof subcategorization frames in
CDsS.

2.1.2 Subcategorization Frames

Verbs may be categorised according to the typesaiplementhey take; the partially ordered
list of complements being referred to as the verb’s subcaiteation frame (SCF). The term
complemenincludes obligatory and optional arguments but N&jjuncts complements are
understood to be selected by the verb and complete its nggaamljuncts extend the meaning
of the central predication.

Examples 1a, 1b and 1c below demonstrate how verbs varyimiim@ber of obligatory argu-
ments; i.e arguments which amequiredin order to complete the meaning of the sentence. In
la,surfdoes not require any arguments; we can assighto the SCF categoriULL. In 1b,
boughtselects the noun phrasguicer to complete its meaning; we can asshgryto the SCF
categoryNP. In 1c putrequires both the noun phraBkarvey and the prepositional phrasa
the floor to be selected in order to complete its meaning; we shalyassio SCF category
NP- PP.
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1. (a) Stephen surfs
(b) Andrew bougha juicer
(c) Lindsay putHarvey on the floor
Obligatory arguments may be identified by thdimination” test (e.g. [95]), which involves
eliminating an element from a sentence and observing whétkeremaining sentence is still
grammatical; sentences that do not contain all their otwiyaarguments are not grammatical
(see 2a, 2b and 2¢).
2. (a) * Andrew bought
(b) * Lindsay puton the floor
(c) * Lindsay putHarvey
Now consider the sentences 3a, 3b and 3c. We have already #tat SCFs are classified by
complements—which includes both obligatory and optiongiimnents but not adjuncts. Oblig-
atory arguments may be identified by elimination but how doidentify optional arguments
from adjuncts? For instance, the sentence in example 3bmiute®quire the prepositional
phrasen the gardento be grammatical. So is the garden an optional argument tavork or
an adjunct?
3. (a) William dranklager
(b) Vic workedin the garden
(c) Harvey satlicking his paws
Unfortunately, there is disagreement in the literaturer dkie classification of optional argu-

ments versus adjuncts. Some linguists address this prdifggmoposing an argument-adjunct
scale ( [64], [95]). Somers distinguishes a six-point scale

i integral complement&s inJon doesn’t hava hops@);
il obligatory complement&s in 1c);
il optional complement&s in 3a);
iv_middlesas (in 3b);
v adjuncts(as in 3c);

vi extra-peripheralgas inBobby can eatas you know).

The COMLEX lexicographers [66] distinguish adjuncts fromguanents using a set of criteria
and heuristics. For instance, they state that PPs headeddryd to be arguments, whereas PPs
expressing time, manner, or place are mostly adjuncts. &lseystate that adjuncts occur with
a large variety of verbs at a similar frequency whereas aegusnoccur with a high frequency
with specific verbs.
In general SCFs can be made more specific (i.e. we can increaseumber of possible
frames) by parameterising the frames for lexically-goeerparticles and prepositions. 4a il-
lustrates a SCF containing the particie (NP- up- NP) and 4b a SCF with the prepositido
(NP- t 0- NP).

Lt should be noted that we are referring to syntactic grariwalitty: Somers [95] points out that the elimination
test is not foolproof in that it may be complicated by theididion between syntactic and semantic obligatoriness.
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4. (a) Cheryl took Ewarup a pint.
(b) Tom tookthe light sabre to Dave.

Semantic constraints might also be usefully captured wishibcategorization frames. Such
constraints are usually referred to as selectional réistn. For instance, the verbooprefers a
cow as its subject arnehtprefers an edible things as its object. Sentences thateisédectional
restrictions sound jarring.

5. (a) The cat was mooing because she was hungry.
(b) Stephen ate geography for breakfast.

Henceforth, the set of SCFs referred to in this chapter wilthee union of the SCFs found
in the ANLT [7] and COMLEX [43] dictionaries. These SCFs abstraver specific lexically
governed particles, prepositions and specific predicdetsenal preferences but include some
derived semi-predictable bounded dependency constns;tsnich as particle and dative move-
ment (see Appendix A for a complete listing).

2.1.3 Subcategorization Frames in Acquisition

Landau and Gleitman [54] suggest that children use verbataborization frames (SCFs) to
identify novel word meanings; arguing that in many casefaserstructure/situation pairs are
insufficient or even misleading about a verb’s interpretatiConsider the sentende&l you eat
your cookie?andDo you want me to take that awayxtccording to Landau and Gleitman the
SCFs ofeatandwant cue their interpretations, i.evantoccurs with sentential complements,
suggesting a mental component to its interpretation. Euambre, they suggest that SCFs pro-
vide convergent evidence on the meaning of a verb. For instaidohn zirks bill the bookhe
learner assumeark to be an active verb of transfer (suchtasg, throw, explaif, whereas if
John is zirking that the book is duhe learner interpretark to be a mental verb.

Such a syntactically intensive theory of acquisition caly be supported if the input to children
is sufficiently complex and diverse in its SCFs. In general, GPthought to be syntactically
simpler than adult speech [94]. If the role of CDS is to teacigimge, as Snow suggests, then
we may have a conflict with acquisition theories that regsyrgtactic complexity and diversity.

2.1.4 Automatic Extraction of Subcategorization Frames

Manual analysis of SCFs is very costly and therefore not iftedarge scale studies in specific
domains, such as CDS. Automatic acquisition of SCFs from e¢arpow produces fairly accu-
rate lexical data useful for (psycho)linguistic reseamely(Roland et al. [85]). However, these
methods are yet to be applied to CDS.

In the following, the most comprehensive English subcaiegbon system available is used to
automatically acquire large scale empirical data relatecetb SCFs from CDS. Both qualita-
tive and quantitative methods are used to compare the irggdiita against that obtained from
a corpus of adult speech. Section 2.1.4 describes the mithsdbcategorization frame acqui-
sition and section 2.1.4 introduces the corpora used. Thaasévolved in the analysis are
explained in section 2.1.5. Sections 2.1.6 and 2.1.7 lodgkeatifference in verb frequencies
and SCF distribution between the two corpora respectiveycénclude with a discussion and
summary of the observations. This work was carried out ifuwmartion with Anna Korhonen
and is originally published in [21].
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Methodology

For subcategorization acquisition, Korhonen'’s versidl] (§ Briscoe and Carroll’s system [10]
was used. This system incorporates 163 SCF distinctionsuniien of those found in the
ANLT [7] and COMLEX [43] dictionaries (see Appendix A).

The system first extracts sentences containing specificgated from a corpus. The resulting
data is tagged, lemmatised and parsed using the RASP systdmstRéccurate Statistical
Parser; [11]). Local syntactic frames including the sytntacategories and head lemmas of
constituents are then extracted from parses. The resylétigrns are classified to SCFs on the
basis of the feature values of syntactic categories andghd lemmas in each pattern. Finally
a lexical entry is constructed for each verb and SCF comloinati

Corpora

In order to make valid comparisons between SCF frequenci€Dif against those in adult
speech itis necessary to first ensure that the corpora at®Utted for all other variables. Roland
and Jurafsky [84] have shown that there are subcateganizdifferences between written and
spoken corpora and, furthermore, that subcategorizatiafiected by genre and discourse type.
Hence, we use only spoken data for both corpora and res#iattd face-to-face conversation
between family members and friends.

To ensure sufficient data for subcategorization acquisitwee have had to use an American
English source for the CDS corpus although we had a Britishigimgburce for the adult speech
corpus. However, we do not expect this to be a problem: Roddrad [85] have shown that
subcategorization probabilities are fairly stable acis®erican vs. British English corpora;
finding any exceptions to be the result of subtle shifts ilbs&mse due to genre rather than the
dialect. The two corpora that were investigated are desdridelow:

Child-Directed Speech—CHILDES1 Corpus The CHILDES database [63] contains transcripts
(and also media data) collected from conversations witmgochildren. Most of the
transcripts record spontaneous conversational interscti The speakers involved are
mostly young, monolingual, normally developing childretking with their parents or
siblings. There are also transcripts frénilingual children, older school-aged children,
adult second-language learners, children with various $ypElanguage disabilities, and
aphasics who are trying to recover from language lof83]. The transcripts cover 26
different languages.

The CDS (or CHILDES1) corpus has been created from severaysedf the CHILDES
database: Demetrasl [32]; Demetras2 [31]; Higginson [B6kt [81]; Sachs [87]; Sup-
pes [99]; Warren-Leubecker [106]. These sections of thalete contain natural inter-
actions between a child and caretaker (average child agjeShéakers are both male and
female, from a variety of backgrounds and from several looataround the USA. Child
speech has been removed from the corpus and there is nogeddia corpus contains
534,782 words and has an average utterance length of 4.&word

Adult Speech—BNC Corpus The British National Corpus (BNC) [56] & 100 million word
collection of samples of written and spoken language from & wagige of sources, de-
signed to represent a wide cross-section of current BritisgliEh, both spoken and writ-
ten
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Our adult speech corpus has been manually selected fronethegtaphic part of the spo-
ken BNC such that it contains friend/family interactions wéheo children were present.
The speakers were recruited by the British Market ResearchaBuaad come from a
variety of social backgrounds. Speakers are both male analé from several locations
around the UK and all have an age of at least 15. Conversatierss igcorded unobtru-
sively over two or three days, and details of each convensatere logged. The corpus
contains 835,461 words and has an average utterance leingwords.

2.1.5 Methods of SCF Analysis

For each corpus, verbs with more than 50 occurrences wenéifidd. Subsequently, a set of
up to 5000 verb-occurrence-utterances was extracted ¢brefahese verbs. In practice the set
size was often much smaller than the maximum 5000. This wasaliine highly Zipfian nature
of verb distributions in corpora; most verb types occuraxiely infrequently in language (see
e.g. Korhonen [51] for a discussion). Verb sets containgsg than 50 utterances were not used
since experience has shown that SCF acquisition from such seta is unreliable. To make
the results comparable, an equal number of utterances sereper verb per corpus. Hence,
set size was often constrained by CHILDES1, which was thelenwdithe two corpora.

Both qualitative and quantitative methods were used to coengb@ data in two SCF lexicons.
Korhonen and Krymolowski [52] found that, when comparinpcategorization frame distri-
butions, similarity measures vary in their robustness ddpg on the noise in the original data.
Consequently, similarity between SCF distributions in theclens has been examined using
several measures of distributional similarity (describetbw). In the followingp = (p;) and

q = (¢;) wherep; andg; are the probabilities associated wild'F; in the two distributions.

Intersection: the intersection of non-zero probability SCFgiandq [61].

2 x com(p, q)
supp(p) + supp(q)

IS(p,q) =

wheresupp(p) = the number of SCFs with non-zeppandsupp(q) similarly. com(p, q)
is the number of SCFs with both non-zercand non-zerg;.

Rank correlation: calculated by first ranking the SCFs in each distribution mbpbility and
then finding the Pearson correlatianyr(), between ranks [96]. More specifically,zif
is thekth smallest of the’s then define? to be equal td:, (similarly for g).

RC(p,q) = corr(rP, r?)

Rank correlation lies in the rande-1; 1], with values near O denoting a low degree of
association and values near -1 and 1 denoting strong ageacia

Cross entropy: a measure of the information needed to describe a trueldistbn p using a
model distribution;. Cross entropy is minimal whemnandg are identical.

CE(p.q) = —pilog(a)

)
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Kullback-Leibler distance: a measure of the additional information needed to desgrile
ing ¢. KLD is always> 0 and= 0 only whenp = q.

)
KLD(pllg) = CE(p,q) szlog

whereH (p) is the Shannon entropy of

Jenson-Shannon divergencea measure which relies on the assumption that and ¢ are
similar, they are close to their average [61].

P+q

78(.0) = SIKEDGIP D) + KD 20

Skew divergence:smootheg by mixing with p [55].
SD(p.q) = KLD(p|loox g + (1 — a) *p)

SD(p,q) approximates KLD as — 1. In this worka: = 0.99).

2.1.6 Differences in Verb Types

Before conducting the SCF comparisons, the 100 most freqeelns in the BNC corpus versus
the CHILDESL1 corpus are examined in order to obtain a more tsimpicture of the differ-
ences between the two data. It was discovered that some terdso be frequent in both
corpora, e.g.go, get, think, like, make, come, takdowever, closer analysis of the data re-
vealed large differences. In general, simple action veels put, look, let, sit, eat, plgyare
more frequent in CHILDES1, while mental state verbs (&rgpw, mean, suppose, feel, s¢em
which tend to have richer argument structure—are more &egin BNC. The 40 most frequent
verbs in the two corpora are listed in Figure 2.2 in the ordeheir frequency, starting from
the highest ranked. Mental state verbs have been roughlypgtband highlighted in bold. For
a list of the top 100 verbs see Appendix B.

Notice that in general the mental state verb counts are migitehin the BNC corpus; the
exceptions are the verbgant, try andneed These verbs appear to be intrinsically tied with
the demands of the child (in the casenaint, need or with gaining the corporation of the child
(in the case ofry). This could be seen to back the claims of Pine [72] who cldimasthe main
purpose of CDS is to simply engage the child in conversation.

2.1.7 SCF Comparison

A subset of the constructed lexicons were compared for $se@pcezation similarities between
the BNC corpus and CHILDES1 corpus. To obtain reliable resulésrestricted our scope to
104 verbs; those for which the total number of sentenceys@aifor SCFs was greater than 50
in both corpora, and which were thus less likely to be afi@tigdata sparsity problems during
SCF acquisition.

The average number of SCFs taken by studied verbs in the typo@proved quite similar,
although verbs in BNC took on average a larger number of SCHst{ai those in CHILDES1
(13). However, we found that most verbs (regardless of freguency in the corpora) showed
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Rank | BNC n CHILDES1 n
1 get 5000+ | go 5000+
2 go 5000+ | be 5000+
3 say 5000+ | do 5000+
4 be 5000+ | see 4200
5 know 5000+ | put 4037
6 do 5000+ | get 4018
7 think 4074 | want 3411
8 see 2852 | can 3409
9 like 2827 | let 2771
10 can 2710 | look 2585
11 come 2602 | think 2280
12 want 2148 | like 2038
13 mean 2078 | know 1768
14 look 1930 | say 1755
15 put 1776 | come 1693
16 take 1443 | make 1692
17 tell 1122 | okay 1593
18 make 1092 | take 1356
19 use 1016 | eat 1172
20 will 1007 | give 990
21 give 920 | play 944
22 buy 590 | tell 860
23 leave 548 | find 661
24 keep 545 | happen 581
25 pay 543 | sit 580
26 let 536 | read 571
27 remember 517 | remember 563
28 work 495 | try 556
29 suppose 489 | fall 546
30 play 477 | will 537
31 talk 475 | need 531
32 ask 469 | hold 527
33 find 464 | turn 492
34 start 445 | call 439
35 need 443 | talk 426
36 call 431 | thank 408
37 try 430 | show 404
38 eat 394 | wait 395
39 hear 370 | bring 389
40 stop 345 | mean 379

Figure 2.2: 40 most frequent verbs in adult speech (BNC) covguschild-directed speech
(CHILDESL1) corpus
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CHILDES1 vs. BNC

intersection 0.608
rank correlation 0.463
KL distance 1.022
Cross entropy 2.698
JS divergence 0.083
skew divergence 0.533

Figure 2.3: Average similarity values: BNC vs. CHILDES1

substantially richer subcategorization behaviour in theCBfRan in CHILDES1. A total of
78 frame types were hypothesised for the 104 studied verbiseiBBNC, while 69 were hy-
pothesised in CHILDES1. The intersection between the fraistelalitions in the corpora was
not large (0.61). The maximum possible intersection in daise is 0.92 (when the SCFs in
CHILDES1 are always a proper subset of those in the BNC); thedigtif.61 indicates that
CHILDESL1 is actually substantially different to the BNC.

The distributions of SCFs in the two corpora are fairly défiet. In order to compare distribu-
tions we have included only a verb’s SCFs whose relative rqu is higher than a defined
threshold (in this case 0.015); this should remove someerfoisn the data. We looked at
several measures when comparing subcategorization frestréodtions since similarity mea-
sures vary in their robustness depending on the noise inrigmal data [52]. However, in
this case, all the measures show the same lack of similady Figure 2.3). For instance, a
rank correlation measure lies in the range of -1 to 1 with @aloear 0 denoting the lowest
degree of association; here there is only a weak rank ctioelaetween the frames in the dis-
tributions (0.46). The Kullback-Leibler distance is O wher distributions are identical; the
value 1.02 denotes a low degree of correlation. The cross@ntvould have a value of 1.68
if the distributions were identical; the value of 2.70 agsiows low correlation. Neither JS
distance nor skew divergence have any significance as shamel\zalues but are included here
for comparison with a second SCF study of child speech lat#isnchapter.

Thorough qualitative analysis of SCF differences in the twrpora reveals reasons for these
differences. The most basic SCFs (e.g. intransitive andlsifNp and PP frames; which
describehe slepthe ate an applandhe put the book on the tal)lappear equally frequently in
both corpora. The same is true for prepositional and nonaioaiplementsghe asked him his
name he put the toy in the bgx However, a large number of more complex frames are either
very low in frequency or altogether absent in CHILDES1. Faraple, the verlnearappears
only in the following kind of constructions in CHILDES1:

1. I heard you( 24 NP)
2. I heard( 22 | NTRANS)

3. I heard that you camé106 S- SUBJUNCT)
while in BNC it also appears in the following kind of constriocis:

1. I heard it from him( 49 NP- PP)
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2. Canyou hear this out? 76 NP- PART)
3. I heard about it( 87 PP)

4. | heard him singind 35 NP-1 NG OC)

Several types of SCFs are poorly covered or largely absent Ih@ES1. Many of these were
frames involving sentential, adjectival and predicatieenplementation (e.gthey admit that
they did it( 97 PP- THAT-S) , he painted the car black25 NP- ADJP) , | considered him
foolish (26 NP- ADJP- PRED) ). However, particle constructions (e.d.picked up the ball
(76 PART- NP)) are well covered. The total number of subjunctive consioas (e.g.l want
that you stop now 106 S- SUBJUNCT) was much higher in CHILDESL1 than in BNC; as was
the number of infinitival constructions (eygu wantedto g¢ 112 TO- | NF- SC) ). For a full
listing of all acquired frames per verb see Appendix C anéfoomparison of the total number
of acquired SCFs see Appendix D.

While the SCF differences seem fairly big, they are perhapaltagether arbitrary. Rather, they
seem to be correlated with different verb senses and SCFsatlyppermitted by the senses.
To gain a better understanding of this, we looked into Leviaxonomy [59] which divides
English verbs into different classes on the basis of the@rethmeaning components and similar
syntactic (mostly subcategorization) behaviour. For gXamn Levin’s resource, verbs such
asfly, move, walk, rurandtravel belong to the same class since they not only share a similar
meaning but also take similar SCFs.

By grouping verbs together into their Levin’s classes, it waticed that the SCFs within a Levin
class in CHILDES1 were a subset of those in the BNC for the samim lotass. For example,
Levin classes that take multiple sentential and predieatmplements took a small range of
those SCFs in CHILDES1 and a greater number in the BNC. In the difjtitis small scale
investigation with Levin classes, it seems that to gain ebeiderstanding of SCF differences
in adult and CDS speech and the role of SCFs in language adgujsitwould be useful, in the
future, to investigate to what extent SCF learning is mediaiethe sense of the predicate and
its membership in classes such as Levin’s.

Observations

A great number of subjunctive and infinitival constructiamsre present in CHILDES1. This
can be explained by the fact that the semantic content of CD$o#&ly concerned with the
child’s desires and wishes or with giving commands to thédclor instance, the phraseant

to counts for almost half of the infinitival constructions. Tevailance of these structures is
therefore a consequence of the subject matter.

In general, the empirical results shown here, obtained 8@k analysis of large-scale data,
suggested that CDS is not only significantly simpler but alsdegctically very different than
speech between adults.

Some prevailing theories of language acquisition (e.d.dheandau & Gleitman [54]) suggest
that verb SCFs provide convergent evidence on the meaning@tfa These theories rely on
the assumption that the frames provided in a child’s inpatatequately diverse to support
learning. Meanwhile, Snow [94] suggests that CDS plays amrtapt role in the facilitation of
acquisition. If Snow and Landau & Gleitman are both correentwe would perhaps expect to
find that CDS is diverse in terms of its SCFs. However, previooalisscale empirical studies
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(e.g. [94]) suggest that, while CDS is quite complex (disjplgyfor example, the full range of
conventional indirectness), it is syntactically much dienhan speech between adults. Perhaps
then, the role of CDS is to encourage the acquisition of sirfralmes, providing a basis from
which more complex frames may be developed.

The fact that there is not significant correlation between SICFs in two corpora is a little
surprising; one might expect CDS to contain a subset of agakkah’s SCFs. However, as the
small scale experiment with Levin classes suggests, the S€&¥s nevertheless correlated via
related verb meanings. While this issue requires furthezgtigation, it is important to also
note that some CHILDES1 SCFs absent in BNC may not be altogdisentin adult speech.
Due to the Zipf-like nature of the SCF data, they may just oatadult speech with a very low
frequency and may have been cut off by our relative frequém@shold on frames. If this turns
out to be the case after further larger scale experimenigutd indicate that most CDS SCFs
are indeed a subset of those in adult speech but the fregasenicihe SCF in the two corpora
differ substantially’.

The results may also support Valian’s [102] findings that 40fparental replies to children
are ungrammatical, and 16% grammatical but not fully aaidpt(examples from our CDS
corpus includéplay this together?”, “another one missing). Such utterances explain at least
partly why there are SCFs present in the CHILDES1 lexicon trenassing from the BNGC.
Valian also found that adults tend to reply to children usaangutterance which is lexically and
structurally similar to the child’s sentence (5% verbatd®% structurally similar). Since child
speech at 2;7yrs (the average age of child subject in our CO&uspis usually simpler than
adult speech ([69] and [13]) such repetition could help todtdhe relative frequency of simpler
frames in the CHILDESL1 lexicon.

2.2 Linguistic Output

Language development and production in children has beea widely studied than the input
they learn from. Data has been collected in a variety of forms

Diary Studies: the traditional method for tracking child language devetept. The studies
usually involve a single child whos caretaker keeps a didnylten new constructions
etc. are first produced. The diary is generally kept over g lpariod of time (several
years).

Large Sample Studies:involve a large number of children and generally record gedrment
looking for a specific language phenomena.

Longitudinal Language Sampling: generally involves regularly recording/transcribing of a
single child’s language; for instance, a child may be reedrtbr a few hours once a
week. Longitudinal studies are generally continued oveergop of several months or
years.

2|t should also be noted that, despite painstaking attero@ssure transcriptions were standard across corpora,
any inconsistencies may cause systematic erroneous SOEsatmuired.
3Future work will check the precision of the CDS corpus agaansuitable gold standard.
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2.2.1 Stages of Language Acquisition

The most generally cited stages of language acquisitiofBaosvn’s Stages” [13]. These stages
provide a framework within which to discuss and predict taghpghat normal language devel-
opment usually takes. Brown'’s stage boundaries are definéaellgarner’s average utterance
length. Utterance length, in this case, is calculated aswbeage number of morphemes per sen-
tence. It is this particular measurement of average utteréength that differentiates Brown’s
Stages from other stage definitions. The alternative measauld be the average number of
words per utterance but this measure is less sensitive toyelan the acquired grammar; in-
flectional morphology, for instance, is bound to words. Ttierance “Ducks eating bread” has
5 morphemes whereas “Duck eat bread” has only 3 but both @hi@mtain exactly the same
number of words. Brown refers to his measure as the Mean Legfdtiterance or MLU and
to make it reliable he defined a set of criteria to specify jgedg what constitutes a morpheme.
There are five Brown Stages specified by ranges of MLU’s:

Stage 1 (1.0-2.0 MLU): At around 12 months old children start to make reference jeatd,
people and actions that are important to them. The childsfiords do not necessarily
sound much like adult words and are usually produced intisolaAt this part of Stage
1 the child will generally use a raised intonation to indéectitat they are asking a yes/no
type of question.

At around 18 months vocabulary starts to increase rapidiythha child starts to produce
two-word utterances. Words which express negativity sscina’, “gone” and “allgone”
are generally the first to be used in two-word combinatiortsest are followed by two-
word combinations of the typ@gent+actionandaction+objecti.e. “I sit” or “See baby”.
Children’s two-word combinations are similar across ce@si77]:

Children tend to announce when objects appear, disappeamane about,
point out their properties and owners, comment on peoplegdtsiings and
seeing things, reject and request objects and activitied,ask about who,
what, and where.

During late Stage 1 (at the time when about half of the childtsrances are two words
long) three and four word utterances begin to be introdudddw children begin to
form declarative statements of the fosubject+verb+objectind start to introduce the
prepositions “in” and “on” as well as the conjunction “and”.

Stage 2 (2.0-2.5 MLU): During Stage 2 grammatical morphemes appear such as “edj’, “i
and “s”. The child overextends their use during most of thags; possibly using words
like “go-ed”. Possessive pronouns start to be used as weltedsninary auxiliary verb
forms (such as “wanna” and “gonna”). Question forms als@bezmore complex during
this stage. The child begins to use “what”, “where” and “wlayid also uses a rising
intonation at the end of a phrase to indicate a yes/no questio

The child is now more aware of the interactive nature of laggu She will attempt to
repair utterances that were not understood and is able taiswstopic for one or two
turns.

Stage 3 (2.5-3.0 MLU): Possessive pronouns and the modal verbs “can”, “will” anal’ fae-
gin to be used consistently and the copular and auxilianp$oof “to be” are introduced.
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The child also starts using a few quantifiers such as “two”‘@odhe”. The question set
now expands to incorporate “who” and “how”.

The child is still only capable of holding a topic for one omtwurns. Its primary method
for doing this is to repeat part or all of the utterance of aewersation partner. Conversa-
tional repairs now involve trying to use another word forttwhaich has been misunder-
stood, even if sometimes it is an inappropriate word.

Stage 4 (3.0-3.75 MLU):The child starts to use past tenses of the common modal vechs s
as “could”, “would” and “should”. Contractions like “didri‘become common in nega-
tive sentences. “When” questions begin to be asked.

The child has now learnt that short pauses indicate thatezeation exchange will con-
tinue whereas long pauses indicate that responses willenfirthcoming. Conversation
can be sustained for for more than two turns by the end of thgesand has become more
interactive. The child has become aware of what informatt@nlistener will need and
tries to provide it.

Stage 5 (3.75-4.5 MLU):More than half of the grammatical morphemes have been negister
by Stage 5. The remaining morphemes (such as the irreguirtgrase, regular and
irregular third person) are mastered just after the chikiftmished Stage 5 and has MLU
of greater than 4.5. The child now understands superlativeaot comparatives. She is
also using negative past tense forms like “weren’t”.

Question forms tend to now have properly inverted words élg.he playing?”. The
child is also starting to use indirect requests althoughhpority of utterances still refer
to direct requests.

Sources of Variation Amongst Children

One child’s language development may vary from anotherséveral reasons. For instance,
variation may be due to biologically determined individaapacities or abilities of the child
that lead to preferences for (or better skill at) particdiaguistic subsystems [46]. Further
variation may be caused by environmental effects. Thesger&aom obvious differences such
as the need to hear a language to speak it, to more subtleedifies such as the effect of the
frequency of specific language forms [46] in the input.

2.2.2 Internal vs. External Language

Data-collection for the study of language development mhbeiious but straightforward task;
the interpretation of the data, however, is not so straoghthrd. First, children are not born
with a fully developed articulatory system and consequethiir productions, particularly in
the early years, are likely to be hindered by their lingaigtrformance. Furthermore, children
(as well as adults) understand a great many lexemes andwctssthat they do not ever use
themselves. These points would suggest that we are likelyntler-estimate a child’s com-
petence. However, it is also easily possible to over-eséimaachild’s linguistic competence
by generalising from a few isolated productions; a child tines produced the wormdogshas
not necessarily learnt how to form plural inflections. P®#ihguistic experiments (such as
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Gleason’s previously mentioned wug test [40]) can help twigle evidence for linguistic com-
petence that could not easily be recognised from child prtiolu transcripts alone, but since
these experiments are difficult to design and time consunainmgerform, we cannot expect to
discover a child’s entire internal grammar from experinagion. By using the following guide-
lines we can reduce the risk of over- or under-estimate a'sHihguistic competence:

The Competence Assumptionassumes that a child’s linguistic performance is relafietdse
to their linguistic competence. We can never presume aitigiconstruct is known by
the child until there is evidence for it in the child’s penimaince [46].

The Productive Performance Criteria states that a child’s linguistic production can only be
said to have been produced by a rule when there is evidentththaule is productive,
i.e. when the child creates new instances of the structutenuatiscussion [46].

2.2.3 Child Production and Computational Modelling

From a computational linguistic viewpoint an interestingesgtion is can a computer model
stages of language acquisition echoing those of a child® dne matter to design a model
that acquires a language but another to design one that daegte same way as a child. A
realistic model of acquisition (i.e. one that learns froml iata and is attempting to learn a real
grammar) could hopefully exhibit similar learning stageshat of a child. However, we can
not expect too much of a model in this respect since therethes tactors to take into account.
A child’s cognitive functionality is developing in parali@ith language ability. It is therefore
possible that some aspects of language are completelydbtrra learner until a particular
milestone in cognitive development has been reached. gg@aased such a milestone a learner
would be capable of processing language units in such a veaydw grammatical information
can be acquired. A computer model does not develop in thisieraitts ability to manipulate
symbols remains constant throughout the learning process.

At the very least a computational model of language acdgomsghould be generally supportive
of the observed stages of child language acquisition.  tefénis property as théevelopmental
compatibilityof the model. In Chapter 6 | shall evaluate the developmeptalpatibility of the
learning model presented in this thesis with reference tavBi®stages and the evidence of
produced subcategorization frames from a child speeclocafpresented below).

2.2.4 Subcategorization Frames in Child Speech

In the following section the subcategorization frames tbumchild speech are compared with
the frames found in linguistic input. In particular the CDSpmas (CHILDES1 corpus) and the
adult speech corpus (BNC corpus) are contrasted to a chikchpsorpus. The child speech
corpus is constructed from all of the child utterances thatewremoved from the CHILDES
database to construct CHILDES1. The child speech corpudesred to as CHILDES2. It
contains 273831 words and 81086 utterances; the MLU ovewltiade corpus is 3.4 and the
children’s average age is 247.

“Note that future work will investigate the interaction ariggtions in SCF distribution within CDS and child
speech at different child ages; the sizes of the currentylale corpora are not sufficient for such a task.
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Rank | BNC n CHILDES1 n CHILDES2 n
1 get 5000+ | go 5000+ | go 3018
2 go 5000+ | be 5000+ | get 2361
3 say 5000+ | do 5000+ | want 2069
4 be 5000+ | see 4200 | put 1682
5 know 5000+ | put 4037 | see 1188
6 do 5000+ | get 4018 | let 971
7 think 4074 | want 3411 | make 849
8 see 2852 | can 3409 | eat 781
9 like 2827 | let 2771 | look 765
10 can 2710 | look 2585 | take 699
11 come 2602 | think 2280 | okay 623
12 want 2148 | like 2038 | know 563
13 mean 2078 | know 1768 | come 496
14 look 1930 | say 1755 | need 467
15 put 1776 | come 1693 | give 442
16 take 1443 | make 1692 | play 427
17 tell 1122 | okay 1593 | like 391
18 make 1092 | take 1356 | do 335
19 use 1016 | eat 1172 | fall 329
20 will 1007 | give 990 | read 315
21 give 920 | play 944 | say 287
22 buy 590 | tell 860 | sit 272
23 leave 548 | find 661 | thank 254
24 keep 545 | happen 581 | hold 253
25 pay 543 | sit 580 | sleep 224
26 let 536 | read 571 | cause 207
27 remember 517 | remember 563 | open 199
28 work 495 | try 556 | watch 194
29 suppose 489 | fall 546 | be 182
30 play 477 | will 537 | find 169

Figure 2.4: 30 most frequent verbs in adult speech (BNC) covguschild-directed speech
(CHILDESL) corpus vs. child speech (CHILDES?2) corpus.

2.2.5 Differences in Verb Types

Figure 2.4 shows the 30 most frequent verbs in all three cargbe child speech corpus is
shown in the third column. Notice that, as predicted by Brotle, most frequent verbs tend
to describe the properties of objects and their owners (alg, give, fall, hold, opgnor the
actions of people (e.gget, put, make, say, wafghor relate to the child’s desiresvant, eat,
need, sleep

2.2.6 SCF Comparison

The distribution of subcategorization frames found in thédcspeech corpus (CHILDES?2)
was compared to both the child-directed speech corpus (CH&I) and adult speech corpus
(BNC). As in the previous experiment the verbs selected for S@rparison were chosen
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BNC CHILDES1 CHILDES2
Average No. of Frames 15 11 10
Total No. of Frames 73 67 58

Figure 2.5: Frame comparison: BNC, CHILDES1, CHILDES2.

CHILDES1 vs. BNC CHILDES1 vs. CHILDES2

intersection 0.608 0.621
rank correlation 0.463 0.492
KL distance 1.022 0.682
Cross entropy 2.698 1.986
JS divergence 0.083 0.074
skew divergence 0.533 0.404

Figure 2.6: Average similarity values: BNC vs. CHILDES1, CHIEB1 vs. CHILDES2

because of their quantity of occurrence in the corpora; eachus had to contain at least 50
utterances for a verb if it was to be analysed.

The average number of SCFs taken by the verbs studied in tldespleiech (CHILDESZ2) corpus
was 10; this compared to an average of 15 SCFs for the sameindhesadult speech (BNC)
corpus and an average of 11 SCFs for the child-directed sg€#¢h.DES1) corpus. In the
child speech corpus a total of 58 frames were acquired for7éheerbs studied, while the
CHILDES1 and BNC hypothesised 67 and 73 respectively. Thet agakch corpus is clearly
the most syntacticly rich of the three and, as one might expee child speech corpus is the
least so. It is interesting, however, to notice that thedzHitected speech corpus sits right
between the two (see Figure 2.5).

The average similarity values, shown in Figure 2.6, cleidycate that the distribution of SCFs
in the child speech corpus is much closer to that of the diiildeted speech corpus than the
adult speech corpus. To remind the reader, rank correlatitues closer to 1 denote a stronger
similarity; KL distances closer to 0 indicate the same. H thistributions were identical the
cross entropy would have a value of 1.68 for CHILDES1 vs. BNC &a3@ for CHILDES1
vs. CHILDES2. Both JS divergence and skew divergence are aatngameasures; the fact
that JS divergence and skew divergence are lower for CHILDESCHILDES? indicates that
they are more closely correlated than CHILDES1 vs. BNC.

The average intersection between SCFs was higher for thé shdech and child-directed
speech corpora (0.621) than for the child speech and adedicbpcorpora (0.590). This differ-
ence might suggest that children more readily pick up theé&soccurring in speech directed
to them than from the speech between adults around them. \¢owege can not be sure of
this since we are unable to tell how greatly the similarityween CHILDES1 and CHILDES?2
is due to the utterances being two halves of the same comwersa This shall have to be
investigated further.

For some verbdjow-toconstructions (such de explained how to do(t17 HOW TO- | NF))
and verb particle plus infinitive constructions (suchhesset out to win 139 SC- | NF,
PRT, SUBTYPE EQUI )) are found both in CHILDES1 and CHILDES2 but are entirely
missing from the adult speech corpus. It is possible thaetimmes, missing from the adult
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speech, might have been acquired by the SCF system in erraodhbe issue, as reported by
Valian [102], that adults often (30% of the time) reply to al@lin a manner that structurally
echoes the child’s last utterance, even if that utteranaagsammatical.

The total set of acquired SCFs for the child speech corpusdgsroper subset of those acquired
for the child-directed speech corpus; largely this is alsplias on a per verb basis. However,
we can not infer from this that children never generalis®iirectly from one verb to another
since the phenomena might be both too rare and subtle to kedpup in this data.

Figure 2.7 shows the SCFs acquired from the three corpordéoverbshit andpull. Notice
that, for the verhhit, the two SCFs that are common to child speech and child-eudespeech
but not to adult speechd hit pleases yoandhit it that it break9 are most likely an illustration
of parental imitation. Also notice that, for the vephll, the SCFs common to child speech
and adult speech but not child-directed speéwhHit her the balndhe pulled it to hinp are
answers to questions (e.gvhat is he doing}}, this suggests that the child-directed speech is
also being used to engage children in conversation as sieggeg Pine [72].

The corpora studies presented here show that child-ddepteech is syntactically less diverse
than speech between adults and that it contains a similaitdison of SCFs to child speech.
Why parents alter their language in this way is a still a matifedtebate; are they attempting
to match the child’s linguistic competence or trying to aatjaisition by providing simpler
constructions to learn from? Either way, it is clear that adydeal of the language that children
are exposed to contains a reduced set of less complex SCHRheffoore, children produce
language using a small and less complex set of SCFs than.aféldhsring to the Competence
Assumption these observations lead towards the concltisadimuman learners acquire and use
complex syntactic constructions only after simpler cangions have been learnt (concurring
with Brown’s stages); the acquisition model presented vp#rate in a similar manner.
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16
19
22
24
25
26
37
52
76
87
104
106
117
123
129

HIT
8

106

N

Child Directed Speech

Child Speech

SCF

ADJP
S-SUBJ-NP-OBJ
TO-INF-SUBJ-NP-OBJ
HOW-S
ING-NP-OMIT
INTRANS

NP

NP-ADJP
NP-ADJP-PRED
NP-NP

NP-S

PART-NP

PP

S

S-SUBJUNCT
NP-NP-up

MP

SFIN, AGR S[FIN +], SUBTYPE EXTRAP

Adult Speech

Child Speech

PULL

7N

24 22 76

Adult Speech

106

N

Child Directed Speech

Example
his ball hit high
that she hit amazed them
to hit pleases him
he hit where she told him to
her hair needs pulling
you hit
he hit her
he hit the ball hard
it pulled her hard
he hit her the ball
he pulled it so it would go higher
he pulled his socks up
he pulled it to him
it hits that it knocks it off
pulls it that it breaks
he pulled him up a chair
he hit 5
that it hits counts

Figure 2.7: SCFs acquired for the vetbsandpull
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Chapter 3

Learnability and Learning Models

A normal child will learn the language of their environmemdais theoretically capable of
learning any language; a child living in an English speal@ngironment learns English but the
same child brought up in a Chinese speaking environment weatd Chinese. Assuming that
low level brain functionality is standard in normal humaitgpllows that it must be possible
to learn any member of the class of natural languages usinga $et of mental mechanisms.
Formally, a class of languageslearnableif there exists a learning function that can success-
fully learn the grammar of any language in the class. The iieimnof successful learningill
depend on the learning model.

Gold’s Model: Gold [42] modelled language learning as an infinite procesghich a learner
Is presented with an infinite stream of sentences of thettéagguage. Every time the
learner encounters a new sentence a guess is made as tortiraagraf the target lan-
guage on the basis of all the sentences encountered so far.

Gold made two assumptions about the input stream: first, gnalgnmatical sentences of
the target language appear in the stream; secondly, evetgree of the target language
eventually appears in the infinite stream.

Formally, we have:

1. Q—an hypothesis-space of grammars (or grammar-space);
2. d—a sample set of grammatical sentences;
3. F—alearning function that maps finite subsetsbaflanguages) to elements Of

G; = F({50,$1,827---,8z})
whereG; € Q2 andsg, s1,...,5; € ®

Gold’s criterion for success was if the learner reached atpdter which its guess no
longer changed; i.e. if the learner converged on a grammaicaied thigdentification
in the limit Formally, letS; be the set of sentencgsy, si, s2...s;} then F' converges to
G € Q if there exists am € IN such that for ali > n, F' is defined onS; and is equal to
G.

Unfortunately, using this criterion, it is impossible teeewdistinguish if learning has been
successful, since the learner may always guess a new grawimearpresented with the
next sentence.
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Statistical Models: Other work has shown that learning can be modelled as atstatisom-
petition between all the grammars within the hypotheseesp(see [12] and [109] for
natural language examples). Using a statistical moHeteturns a probability distri-
bution over the grammar-space. The distribution represeath grammar’s fitness to
describe the sentences encountered so far. The currentngmaé;, (after encountering
S;) is selected according to the distribution. Under this nhodiéearning, we can give a
similar criterion for successt’ converges td@- € € if there exists andh € IN such that
for all ¢ > n, F'is defined onS; and returns a distribution ovét such that’y is most
likely.t

For learning in general, Gold provides us with a model fromochtspecific details must be
fleshed out; in particular the definition of the hypothegiae® and the learning function.
Linguistically, the spectrum of learning models is markéd e end by nativism and by em-
piricism at the other. The pure nativist viewpoint assdntg the input stimulus presented to
children is too impoverished for successful acquisitionnssmuently nativists assume the ex-
istence of some innate linguistic knowledge or languagelfa¢referred to by Chomsky as the
Universal Grammar). Models derived from this viewpointhgignerally have a comparatively
small grammar hypothesis-space since it is constrainechéynnate knowledge. Learning
functions for nativist models tend to be algorithmic in matd-analysing an input string and
then moving systematically from one grammar to the nextiwithe small hypothesis-space.
The pure empiricist, on the other hand, believes that lagguzay be acquired without the aid of
any innate language faculty. For empiricist models, theokiygsis-space is unconstrained and
consequently very large. Learning functions for empitioidels tend to be highly statistical
and consequently data demanding—identifying the targaingrar only after a great deal of
data has been observed.

3.1 Principles and Parameters

Chomsky is a particular advocate of nativism. He claims [B2} tgiven the “relatively slight
exposure” to examples and “remarkable complexity” of laaggy it would be “an extraordinary
intellectual achievement” for a child to acquire a langudg®t specifically designed to do
so. HisArgument from the Poverty of the Stimulsisggests that if we knowX, and X is
undetermined by learning experience, tiémust be innate. For an example consider structure
dependency in language syntax:

A guestion in English can be formed by inverting the auxyligerb and subject noun-phrase:
(1a) “Dinahwasdrinking a saucer of milk”; (1b)wasDinah drinking a saucer of milk?”

Upon exposure to this example, a child could hypothesisaiialy many question-formation
rules, such as: (i3wap the first and second words in the sentefigefront the first auxiliary
verl; (iii) front words beginning with w

The first two of these rules are refuted if the child encountie following: (2a) the cat
who was grinning at Alicevas disappearing”; (2b) Wwas the cat who was grinning at Alice
disappearing?”

If a child is to converge upon the correct hypothesis unagidéeé must be exposed to suffi-
cient examples so that all false hypotheses are refutedortumiately such examples are not

Note that the statistical nature of competitive models raakem robust to noise and amenable to language
change. These properties will be discussed later in thigteha

38



readily available in child-directed speech; even the aorcsibns in example¢2a) and (2b)
are rare [57]. To compensate for this lack of data, Chomskgestg that some principles
of language are already available in the child’s mind. Fanegle, if the child had innately
“known” that all grammar rules are structurally-dependgmbn syntax, she would never have
hypothesised ruleg) and(ii)). Thus, Chomsky theorises that a human mind contains a Uni-
versal Grammar which defines a hypothesis-space of “legathghars’ This hypothesis-space
must be both large enough to contain grammars for all of thediopossible languages and
small enough to ensure successful acquisition given thesispaf data. Language acquisition
Is the process of searching the hypothesis-space for tmengaa that most closely describes
the language of the environment. With estimates of the nummblé/ing languages are around
6800 [35] (and this being only a sample of all possible laggs, it is not sensible to model the
hypothesis-space of grammars explicitly, rather it shgldnodelled parametrically. Language
acquisition is then the process of setting these parameters

A grammar can be located in the hypothesis-space by its grepeif setA contains all the
grammars that producesabject-verb-objedtSVO) ordering and seB contains all grammars
that producesubject-dropthen the grammar of Italian, for example, lies in the irgeton of A
and B. Once enough properties are specified then a grammar caridpeelynidentified in the
intersection of all the sets it belongs to. The hypothegaes itself is defined by all the possible
combinations of properties. The properties are defininggthenmar-space parametrically; and
the innate knowledge of the existence of these propertes éxample of Chomsky’s Universal
Grammar (UG). To be clear, Chomsky speculated that the UGngpoeed ofprinciples (the
aspects of language that are common to all languagespanaaneterglanguage variables to
be observed during the process of acquisition). Here, thiendg is provided with the innate
knowledge that all grammars are definable by the presendesenae of particular properties,
and also the knowledge of what those properties are; thesgraymsky’s language principles.
The grammar search is refined by observing properties iratiguiage environment; observing
a property is analogous to setting one of Chomsky'’s paraseter

The properties of a grammar may be represented as an artaptitains as many elements as
there are property sets; the value in each element indgcainether or not the grammar in ques-
tion belongs to the property set associated with that elénisch grammar will have a unique
configuration of the array. Language acquisition is the @ss®f finding the right configuration
from all the possibilities; a search on a search-space eRSizvhereN is the number of prop-
erty sets (henceforth referred to a parameters). Acquisiiould be most efficient when the
number of parameters needed to distinguish between allrgeamis small; i.e. when each set
Is maximally discriminatory. With 6800 world languages/esdst 13 parameters are required
for a realistic model of language acquisitiady = 8192). However, it is unlikely that children
are predisposed to maximally discriminate between all tbddis languages. Chomsky [24]
suggested that parameters should represent points ofioartzetween languages; following
this idea it has suggested that perhaps parameters are required. If this is the case then the
UG is describing a hypothesis-space of over a billion gramsma

2Discussion of structural dependence as evidence of thendegtifrom the Poverty of Stimulus is illustrative,
the significance being that innate knowledge in any form pldice constraints on the hypothesis-space.
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Figure 3.1: A property array; identifying the location obgmmarG in the intersection of sets
A andB (where set4, for example, contains all those grammars exhibiting priypé).

Figure 3.2: The hypothesis-space; the shaded area beihactten of the same grammadr,

3.1.1 Triggers

To converge upon the grammar of the environment languagedineer needs to set the values
of all N parameters. The learner can set an element when evidende&agprovided from
language examples to show that a property is (or is not) @elipthese language examples
are referred to as triggers. In the best case a learner néeti@exposed taV triggers before
acquisition is complete.

But what exactly constitutes a trigger? And how does a ledanew whether an utterance con-
tains a trigger. Clark [28] suggests that every parametesss@ated with a trigger that causes
the learner to set the parameter’s value immediately upposexe to it. Fodor’s Structural
Trigger Learner (STL) [38] adopts this definition of a trigge

Triggers are easily found if the properties the learner akilog for are independent of each
other. However, there is a conflict between using indepengi@perties and using sufficient
properties to uniquely identify all grammars; Clark [27] afayne [50] estimate that between
30 and 40 properties are needed (which is significantly mae the minimal 13). This has the
conseqguence that in practice, triggers are difficult to ctwyievery often language examples
contain ambiguous evidence for the properties that thadgas looking for [27]. For instance,
sentences of English (subject-verb-object ordering) mighmisclassified as a subject-object-
verb ordering with an activé’2 (verb movement), as in German. When faced with an ambigu-
ous trigger the learner has two choices:

(a) choose one of the possible interpretations and set the péeawvalues according to that
interpretation;

(b) ignore the trigger entirely and wait for an unambiguous one.

The first approach is adopted in Gibson and Wexler’s Trigggeliearning Algorithm (TLA) [39].
This learner analyses incoming triggers using the curresperty settings and modifies their
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values if they conflict with the properties of the incomingger. Unfortunately, this method of
dealing with an ambiguous trigger has been found to put tuaér at risk of never converging
on the correct grammar.

Fodor’s original Structural Triggers Learner (STL) [38tognises ambiguous triggers by car-
rying out some structural analysis and then ignores themregntinstead waiting for unambigu-
ous triggers. This method avoids converging on the wrongnhgrar but relies on the learner
encountering unambiguous triggers for every property. &sitoned above, the existence of
such triggers is questionable [27]. Also, the STL learnerasteful of the language examples it
is provided with; exerting a lot of effort in the structuradadysis of triggers only to throw most
of them away — so, neither approa@) or (b) are without problem.

Dresher and Kaye [33] suggest that the problem of ambigu@gets can be avoided if there is
a constraint placed on the order in which the learner lookprfoperties; so the learner ignores
triggers demonstrating property until a trigger demonstrating propertyy has been observed.
Dresher and Kaye’s model was designed to learn metricalgdbgy but we can extend the
general idea; the hope being that by placing a careful argevn the properties, the decision
of which interpretation to use for an ambiguous trigger canriade for free. For example,
consider a trigger that may be interpreted as either exigofiropertiesB andC' or properties
A andD. If the ordering on properties id before B beforeC before D, then a learner will
choose the second interpretation (propertlesnd D) and set the element relating to property
A. Note, that the learner can not set propdntglement because propertiBsandC' have not
yet been observed. Having seen propetfythe learner can now wait for a trigger exhibiting
property B. Using this type of model increases the size of the learmemste knowledge since
now it not only knows what properties to look for but also wharder to look for them in.

3.1.2 The Triggering Learning Algorithm

Gibson and Wexler [39] designed the Triggering Learningohitnm (TLA) to investigate learn-
ing over a grammar-space defined by binary valued param@&teesoriginal work investigated
learning in a grammar-space defined by three binary parasaajgecifier, complement an
(see Figure 3.3). The specifier and complement parametéredeavord order. The specifier
parameter is concerned with the location of the specifiete(dgner etc.) with regard to its
head (in this case the main verb). Setting the specifier pateanto1 for example, indicates
that the language is specifier-final (i.e. specifiers occiar dfie head-word); setting the same
parameter t@ would then indicate a specifier-initial language. Thisdals similarly for the
complement (or object) parameter. THe parameter (when set) indicates that verb movement
is allowed from its base position as defined by the word-opdeameters to second position. In
other words, if thé/2 parameter is set then the surface order of the words maydredleven
though the base order is unchanged. This phenomena is sden@ermanic languages. Us-
ing these parameters an English type subject-verb-olgagulage and Germanic type language
would be represented as in Figure 3.4.

This setting of the parameters allows for the base word dalbe complement-initial but for
the verb to take 2nd position in root declarative clauses.

e ... dass Christopher der Ball kauft.
e Christopher kauft der Ball.
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PARAMETER NAME \ VALUEO VALUE1

Specifier initial final
Complement initial final
V2 on off

Figure 3.3: The 3-parameters of the Triggering LearningoAtgm.

LANGUAGE SPECIFIER COMPLEMENT V2
English 0 (nitial) 1 (final) 0 (off)
German Oigitial) 0 (initial) 1 (on)

Figure 3.4: English and German type languages in Gibson andenrs parameter-space.

The TLA is error driven; put simply, its function is to randbynmodify a parameter value every
time the learner cannot parse the current input. The alguris bound by two constraints: the
first is the Single Value Constraint [26], which ensures thatTLA only ever considers gram-
mars that differ from the current hypothesis by one paramatel the second is the Greediness
Constraint [26], which ensures that the current hypothesisly changed if there is something
to gain in doing so. For an-parameter-space a single iteration of the algorithm pdses
follows:

1. Attempt to parse the current input utterange,

(a) if S can be parsethen leave the parameters unchanged;

(b) elserandomly select and toggle one parameter (with probability of selecting
each parameter).
i. if S; can be parsed with the new settirtgen adopt the new settings;
ii. elserevert to the original parameter settings.

The TLA has the following problems (which will be discussedfer in Chapter 6):

local maxima: the phenomena where a non-target grammar is reached frooh Wia learner
can never reach the target grammar;

ambiguous triggers: some input examples can be parsed by more than one gramnia in t
hypothesis-space (i.e. there is more than one way to coefitng parameter settings
to achieve a successful parse). By choosing grammars bl{naihdomly choosing a
parameter to toggle) an “unwise” grammar could be adopiat iththe worst case, might
lead to a local maxima;

noise: the algorithm is deterministic and will modify parameteverwhen the input example
IS erroneous.
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3.1.3 The Structural Trigger Learner

The Structural Triggers Learner (STL) [90] addresses sdrtieeqproblems with ambiguity that
are faced by the TLA. The model provides a set of schematatett® as part of its Universal
Grammar. A treelet can be thought of as a subtree that is ngbeé iderivation of a full parse.
The STL associates a treelet with each feature of the lamgaad consequently they may be
thought of as parameters. A language is identified by theetudidreelets that are required to
parse the language.

During learning, all Universal Grammar treelets are awddao the algorithm. If an unam-
biguous parse is found that requires a treelet that has readyt been collected into the subset
required for the language, then that treelet is adoptedreTaee several versions of the STL
which differ in how to handle ambiguous parses. The algorithith the least processing is
called thewWeak STLit proceeds as below:

1. Attempt to parse the current input utterangg,with current subset of treelets:

(a) if S; can be parsethen the subset of treelets remains unchanged;
(b) elseattempt to parsé; with all treelets in the Universal Grammar.

i. if at some point during the parse there is a choice of treeletsdisregard;
for all learning.

ii. elseadopt all novel treelets that have been used in the pars¢hatsubset of
treelets.

The STL allows several treelets (parameters) to be leammgla single parse. This is useful
for speedy learning. However, the wait for an unambiguousepto learn from might be very
long; especially at the early stages of acquisition whethalltreelets are “in play”.

Although able to deal with ambiguity, the STL (like the TLAare not handle noisy input.
The following section discusses the problem of noisy inpatiacand explains an important
requirement—that models should be robust to noise.

3.2 Noise and Learning Models

A child is exposed to evidence of her target language that exatusively belong to one of three
possible classes: positive evidence is information thatidees which utterances are allowed
in the target language; negative evidence is informati@ tlescribes which utterances are
not allowed in the target language; errors are pieces of infoandhat have been mistakenly
classified as either positive or negative evidehce.

Positive Evidence: Positive evidence can be presented to a child in the form aingke utter-
ances spoken by proficient members of her language commuxigrge proportion of
the language a child is exposed to will be positive evidehtéact Pinker [77] goes as far
as saying that “effectively the input to the learoey includes grammatical sentences”.
Following Gold’s paradigm [42], a child hypothesises heglaage based on accumulated
positive evidence; all previously heard utterances forralesst of the current hypothe-
sised language. Learning is completed once the hypotlielsisguage no longer needs
to be updated.

3This discussion is previously published as [20].
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Negative Evidence:Negative evidence might be provided by correcting a childmviiey pro-
duce an ungrammatical sentence. Evidence of this sort teulded to constrain the child
from hypothesising a grammar that describes a superseedétbet language. A child
that is only ever exposed to positive evidence can not bectad if she hypothesises a
grammar that is too unspecific. However, in general childtemot learn from correc-
tion [14]. This indicates that there must be some other mashafor constraining the
hypothesised language: a possible solution is Minimum Bygsen Length learning [83]
(where the child only ever hypothesises the simplest laggtizat describes the evidence
seen so far).

Errors and Noise: Lacking any discerning information, a child is likely to asse that all the
utterances she hears are grammatical and therefore coagiitsitive evidence. However,
spoken language can contain ungrammatical utterancdsggem the form of interrup-
tions, lapses of concentration or slips-of-the-tongue. kWaechild misclassifies such
utterances as positive evidence, an error has occurred.

Situations also arise where entirely grammatical senteoar produce an error because
of misclassification due to indeterminacy. For instancdetarminacy of the input may
lead to noise within the parameter settings of the Unive@&ammar [27]: sentences
of English (subject-verb-object ordering) can be misdfeesk as a subject-object-verb
ordering with an activé’ 2 (verb movement) parameter, as in German.

In general, any environment that contains ambiguity camochice errors. Often a child

Is exposed to input from more than one target language anthgatges to learn one
(or more) consistent grammar(s), rather than a grammaatoats all possible combina-

tions of the sampled input. Specific examples of this incldigéossia [53] and language

change [60]. In such situations, misclassification of onthefinput languages is an ex-
ample of an error. Furthermore, there are documented isiisatvhere a conflicting and

inconsistent input is “regularised” and fashioned intoregk# consistent generative gram-
mar; as in the cases of rapid creolization [5] and the adipsof sign language from a

source of non-expert signers (the case of Simon [68]).

Errors of these sorts are always accidental and lead tolgeedasignment of an utterance
to the class of positive evidence. A child is somehow ableojpecwith such erroneous
assignments.

A malicious error would occur if a deliberate attempt was entmlconfound the child’s
acquisition of language. An example might be if the childasrected on her grammat-
ically correct utterances or if she is deliberately expasedtterances that are ungram-
matical. Malicious errors are unlikely in spoken languagedeliberate errors do occur
in some very early child-directed speech in the form of naseevords, and also in later
child-directed speech due to parental imitation of chikB@ingrammatical utterances.

To summarise: in an ideal learning situation a learner wbalek access to an oracle [103] that
can correctly identify every utterance heard as either &ipegvidence, negative evidence or
noise. However, a child learning its first language can nigt@a receivingany negative evi-
dence; at best she can hope to receive positive evidenceog,nealistically, positive evidence
that is also noisy. Without an oracle a child is, of coursegware of when an erroneous utter-
ance has been encountered. She is also unaware of when aguanutterance has caused an
error to occur. Any simulation or explanation of languageuasition should therefore attempt
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to learn from every utterance it encounters and should bestdb errors whether caused by
erroneous utterances or general ambiguity.

3.2.1 How do Errors Affect Learning?

Consider a simplified learning problem, a game for two play#rs first player, the exampler,
thinks of a set of numbers that can be defined by a rule, suclhultiples of two{z|x/2 € Z};
the second player, the guesser, attempts to reproduce tthwy skscovering the rule which
defines it. The only information available to the guesser ¢®@tinuous stream of examples
provided by the exampler.

A possible scenario might be that the first two examples plexviare 4 and 8. At this point
the guesser may well hypothesise that the set containedpieslof four{z|z/4 € Z}. The
guesser doesn't need to revise this hypothesis until sheuaters an example that breaks the
rule. If the guesser ever arrives at the hypothesis thateahemtains multiples of two she’ll
never have to revise her hypothesis adain.

Now if the same game was played in a noisy room or with a disgtchexampler the guesser
might receive erroneous examples. For instance, in attegip guess the sdte|z/2 € 7},
the guesser may have heard the examples 2, 4, 7, 8,... If #esguclassifies all the examples
as positive evidence then there are two possible outconitasr ¢he guesser fails to find a rule
or she hypothesises the wrong rule.

The guesser could only arrive at the correct hypothesisdfistaware that some of the exam-
ples may be erroneous. The guesser’s best chance of wirsiadigure out which hypothesis
is most likelyto be correct. Before the game begins the guesser will canalbbypotheses
equally likely. As the game proceeds the working hypothissselected if it is the most likely
given the accumulated evidence. In other words the guessstradopt a statistical methodol-
ogy to cope with the erroneous examples.

3.2.2 Introducing a Hypothesis Bias

Now, the interesting problem is: how many erroneous exasnpdelld the guesser encounter
before she is completely unable to guess the rule. The arnigsén the type and the frequency
of the errors encountered as well as any bias the guesseramaydwards certain hypotheses.
For example, consider the sgt|z/5 € Z}. With no examples the guesser considers all hy-
potheses equally likely. After being exposed to the examfple 30, 45 the guesser has to
consider the hypothesds|z/5 € Z} and{x|z/3 € Z} to be equally likely. Too many er-
roneous examples that happen to be multiples of three bunntiiples of five may lead the
guesser to eventually choose the later and incorrect hgpistiz|x/3 € Z}. However, if the
guesser had been initially biased towards {lér/5 € Z} hypothesis, perhaps because her
favourite number is five, then she may have continued to s#iechypothesis despite the ac-
cumulated evidence. In terms of language acquisition, thgsis biases would need to be part
of the innate principles of the Universal Grammar.

4The situation where the guesser hypothesises a rule thatiges a superset of the original set is not discussed
here. This situation would be avoided by allowing the exanfb provide negative evidence (i.e. examples of
numbers not in the set) or by constraining the hypothesisep
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3.3 Statistical Models of Language Acquisition

The Triggering Learning Algorithm and the Structural Tregg Learner are deterministic mod-
els. The next parameter to be set is ascertained from therdurigger and the current parame-
ter settings only; the models have no memory of the uttesatice have been previously seen.
Since parameters can be set on the basis of evidence frongla sigger, the models rely on
the input to the learning system being free from error. Caergig the evidence above, these
models can not be considered realistic.

A statistical model can “consider” the distribution of esitte before committing to a course of
action. In terms of the principles and parameters paradigmayameter is only set when enough
evidence is accumulated; when there is not enough evideegearameter remains unchanged.
This might be achieved by setting a lower bound on the numbériggers that need to be
encountered in support of a parameter before that paransetet. As long as the target pa-
rameter values are the most statistically likely in the dla¢a the learner will eventually obtain
enough evidence to set the parameters correctly despiterestyeous utterances. Furthermore,
a statistical parametric learner has some ability to dethl thie problem of ambiguous triggers.
For a simple illustration consider a language which exkipitopertyA and not propertyB
and a trigger from that language that may be interpreteeiedh exhibiting propertyl or as
exhibiting propertyB. If the learner has been keeping track of the distributioprojperties
over all triggers then it will have hopefully seen evidencethe propertyA many more times
than evidence for propert§g. The learner can choose the correct interpretation on this ba
of the accumulated evidence and update the parameter&svahd distribution of properties
accordingly.

For a more complicated but realistic example, considema@#ison and Wexler's parameter-
space and the confusable SYQ-(English-like) and SOW 2+ (German-like) languages. The
3 stringssubj-verh subj-verb-obpndsubj-aux-vertoccur in both languages and may be parsed
with parameter setting810] or [001] (see Figure 3.3 for a reminder of the parameter meanings).
However, for the English-like language the 5 strirgybj-aux-verb-ohjadv-subj-verb adv-
subj-verb-obj adv-subj-aux-verb-obgnd subj-aux-verb-obalso occur. These strings can not
parse if thel’2 parameter is set to 1. If all strings are equally likely thea will get more
parses with/2 set to O than set to 1. Eventually there will be enough accatedlevidence to
confidently set thé’ 2 parameter to O.

Unfortunately, this method will not work as efficiently in @alistic model because there is not
a uniform distribution over sentence constructions in dah. The constructiorsabj-verband
subj-verb-objare the most common in both English and German. Consequelgight be

a long time waiting for enough evidence to set ih2 parameter. If the learner has a method
for detecting ambiguity (such as the STL), then the paransetting rate could be increased by
adding greater weighting to evidence acquired from unaodaig triggers.

In general, if we assume that the majority of language pexitb a learner is grammatical,
then linguistic evidence from erroneous utterances witldnee statistically insignificant and
will be ignored. Furthermore, a statistical model has sdope&ealing with errors caused by
ambiguity; the only downfall being the need for a larger antaf input data.

By using a statistical model we are required to endow the &anith an innate ability for
statistical retention of data. How this is achieved and #xachat is retained is a matter of
debate. Should the learner analyse the triggers and relerdistribution of all possible in-
terpretations (a possible statistical extension to FGdBTL) or perhaps, attempt to parse the
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if G; parsess then P =pi + (1 —p)
Py = (1—7)p; if j #i

if G; does not parsethen p. = (1 —7)p;
Py=x5+0—)p ifj#i

Figure 3.5: Bush and Mosteller’s Linear Reward-Penalty s&éhajiven an input sentenceand
total number of grammard’, the learner selects a gramn@@rwith probability p;.

trigger with the current settings, rewarding parametersafsuccessful parse and penalising
them when unsuccessful? In the second case, how does therle#écover which parameters
contributed to a failed parse and subsequently decide wiadimeters to punish and which to
reward? Briscoe [12] has implemented a Bayesian Incremeatahieter Setting (BIPS) algo-
rithm which addresses this issue. In this model a partaltiered hierarchy of parameters are
each associated with a probability. During learning, thebpbility associated with a “success-
ful” parameter is increased while the probabilities of “uosessful’ parameters are reduced. A
parameter is considered successful if it is involved in &vadrse of a trigger. Probabilities are
evaluated using Bayes theorem,

_ p(bla)p(a)

which has the added benefit of allowing priors to be assigmpditameters before learning com-
mences. By assigning priors the hypothesis-space can bedasdescribed in section 3.2.2.
Another reward-penalty learner, implemented by Yang [18S4liscussed below.

3.3.1 The Variational Learner

Yang's Variational Model involves associating each partameith a weight representing the
prominence of that parameter in the learner’s hypothgmse consequently this associates a
probability to every grammar in the hypothesis-space. Granselection for parsing (and also
production) is a function on the probability distributiomen the grammars. The parameters
in the selected grammar are either rewarded or penaliseehdey on whether or not it is
able to parse the incoming utterance. Rewards and penakieskulated in accordance with
the Linear Reward-Penalty Scheme [15] (see Figure 3.5 fomargéLinear Reward-Penalty
Scheme for competing grammars): a successful grammar lnafstalparameters probabilities
increased; an unsuccessful grammar has all its parametdyalplities decreased. Acquisition
is complete when the grammar weights become approximabeistant. The method is passive
and requires the learner to do nothing other than selectargea from the distribution and then
reward or punish the parameters as appropriate.

Even in a noiseless environment, this method of settingnpater weights will never allow
them to become constant; they will tend towards a limit. klitg, due to the noise inherent in
speech, the parameter weights are likely to fluctuate wahislerance threshold.

A problem with the Variational Model is that it does not rediar penalise parameters indi-
vidually. When a grammar parses, all parameter’s probegsilére increased; so every time
the successful grammar is not actually the target gramnear $ome parameters have been
rewarded unjustifiably. Contrastingly for unsuccessfuhgrears, unless the grammar’s param-
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Figure 3.6: A schematic diagram of a typical neuron.

eters are the inverse of the target grammar then some pananaee being penalised unjustly.
Yang admits that this approach is naive but hopes that “idhg run, the correct parameter
values will prevail”. Experimentation backs this claim.

Another problem with this learner is that the problem of labaxima is not definitely solved.
Yang’s model selects a grammar for parsing according touhee ot probability distribution: if
that particular grammar is successful its parameters ar@ded while all others are penalised.
The learner has no method of knowing if the input utterance amabiguous (being parsable by
another grammar), unlike in the STL for example. So what kapjf a grammar that describes
a superset of the actual target takes an early lead in thapila distribution? This grammar
will be selected more often than any other grammar as a phligsiior parsing and it will
always have its parameters rewarded since it is capablersihgaall sentences that the actual
target could. The more it is rewarded, the more often it iecel, until finally the learner
converges on the wrong target. During the entire learniruggss the learner was unaware
that the utterances it received were ambiguous; and simceuperset grammar can never be
penalised, it could never realise its mistake.

These problems aside, Yang’'s model has been shown to be alfpspecified model capable
of making quantitative predictions over developmentablaage patterns, as well as giving
an explanation for continuity between adult and child laaggi Furthermore, he is able to
“formalise historical linguists’ intuition that grammaommpetition is a mechanism for change”.
It is also possible to envisage Yang’s model extending temphoblems in acquisition. In fact,
the model could be used in any situation where learning caexpeessed as a competition
between forms. For an example, consider the acquisitiorpbioeme set: adults identify and
use only the phonemes of their own language despite beimgaide to recognise the phonemes
of all languages; such a learning process is easily modelittda distribution on a phoneme-
space.

3.4 Connectionist Modelling

The models discussed so far have all fallen within the ppllesi and parameters paradigm.
However, a study of language models is not complete withaliseussion of connectionism.
Connectionist models are often closely associated with ecigim since they begin as a “blank
state”. There is no concept of an innate Universal GrammaaryiEhing is learnt from linguistic
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= 1.25

Figure 3.7: The operation of a unit in a neural network.

input.

The models are based upon the architecture of neural negqworthe brain. Each network
consists of units (which are analogous to neurons) that aneected together by weighted
links (modelling synapses). Each unit is assigned an didivéevel which determines whether
the unit will produce data at its output: much like the adima energy required by a neuron
in order to fire. Thus neural networks consist of four partst@ activations, connections, and
connection weights) each of which corresponds to a paati@iiucture or process in biological
neural networks (Figure 3.6).

Figure 3.7 shows the operation of a typical unit. To deteentire net input to the unit, all the
input values are scaled by the weight of their connectionthed summed. In Figure 3.7 both
units.J and K have a simple activation thresholdob: if the net input is> 1.5 the output will
bel; and if> 1.5, the output will be). The net input to unit/ exceeds the activation threshold
so the unit responds with output The input to unitX” does not exceed the activation threshold;
the unit responds with output 0.

More generally, connection weights are found to be expebsth positively and negatively; a
negative weight being taken to represent inhibitance ofé¢leiving unit due to the activity of
a sending unit. The function for calculating activation nb@yany function that is dependent on
all the weighted input. Furthermore, the unit output neetsimaply toggle at a threshold value
but may fall within the rangé0, 1] as determined by a function on the weighted input (e.g. a
simple scaling on the activation function). Whatever thevatibn method, it is assumed that
all units in a particular network operate in the same way.

Units in a neural net are usually arranged in several lagas Figure 3.8): the input layer, the
output layer and one or more hidden layers. The units in tphetilayer receive input stimulus
in the form of an encoded pattern. The activated output cfehanits is transferred to units in
the hidden layer. Finally the signal propagates to the dugwel where the response signal is
recorded.

Training a neural network involves finding the right set ohection weights to prompt the
correct response for a given input. The simplest methodagiitrg is calledback-propagation
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HIDDEN LAYER

Figure 3.8: The architecture of a neural network.

Initially the weights of the net are set randomly. Next, agratfrom the training set is placed at
the input units. This pattern is allowed to propagate thhahg hidden layer to the output units
where the resulting pattern is compared to the desired auijwen all the weights in the net are
adjusted slightly in the direction that brings the outptitgra closer to the desired output. This
process is continued with the rest of the training set. Irotd achieve the required connection
weights the network will often have to undergo hundreds oulands of iterations of training.

3.4.1 Connectionism as a Model of Language Acquisition

The first connectionist models used to model language wereectned with verb morphology.
Rumelhart and McClelland [86] trained a neural network to joteithe past tense of English
verbs. The network performed well, trained on a set of mastggular verbs. It was even
shown to have generalised for patterns within the irregudaibs that were not in the training
set. The network was then trained on an additional set osvarhtaining mostly regular forms
(420 verbs in total). During training, the network was shdaiave over-generalised regular
forms or even combine regular and irregular forms: prodytireakedor brokedinstead of
broke A similar phenomena is seen in children learning Engligtyeen the ages of 2 and 5
children appear to over-regularize often producing suobrgr

“It breaked”—Naomi, age 2, The Sachs Corpus, CHILDES.

Over-generalisation in the network was corrected with cigffit training; after 200 iterations
all verbs had been correctly learnt. The similarity betweesr-generalisation in children and
Rumelhart and McClelland’s neural network has prompted tiygestion that this network is a
good model of acquisition. However, this claim is fiercelyoped by classical computational
linguists and by those who tend towards algorithmic modé&gker and Prince [79] argue
that the network has a problem generalising rules and tietgta failing of neural networks
in principle. Thewords and rulesalgorithm provided by Pinker [78] assigns regular verbs to
the default -ed rule. Meanwhile, irregular verbs pre-erhptdefault rule; their past tenses are
memorised by rote. Hence, Pinker’s model will never giveramoirect past tense for a regular
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verb. This is not the case for the Rumelhart and McClelland'sleharhich might very well
predict the past tense diink to bethunkby “generalising” from the pattern of the irregular
verbsink/sunkwhether or not this is a useful trait is still up for discussi

Indeed, the apparent inability of neural networks to magéereral rules is a major criticism of
connectionist modelling. However, Elman’s work using aureent network [34] has demon-
strated that it is possible for a neural network to exhibihdgour similar to that of a very
simple ruled-based context-free grammar (albeit on a vaalls/ocabulary of only 23 words).
It should be noted that the success of this model relies lyeamithe manner in which it is
trained (much like the model presented in Chapter 5).

Another problem that need to be tackled within connectiotiisories is that of “one-time”
learning. Humans display an ability to learn from singlerégsgsuch as touching a hot object).
Since connectionist training techniques require mangiiens they are as yet unable to explain
this phenomena. However, it should be remembered that aruaineural network is only a
crude model of the neuron. It is easy to forget that there aeyntypes of neuron in the brain
whereas a neural network will generally only use one typentf rurthermore, the effects of
neurotransmitters are not modelled.

Neural networks are robust to noisy data in a similar marméhe statistical models; they can
exhibit robustness because they are both recording infaymabout the previously seen data.
For a neural network, the values of its connection weightsaaconsequence of every input
that has been observed. Training requires an enormous ambdata, the majority of which
will be grammatically accurate. The networks “work” by geadesing from patterns and are
consequently reasonably unaffected by the occasionatewrs input during training. Neural
networks do not have to be robust to ambiguous triggers @pdhametric learners do) since
there are no parameters to be set. Moreover, connectioidels)are robust to “physical”
destruction of the model. If units are destroyed the gradegraduation of functionality is
observed; responses are still appropriate, though sontégdssaccurate.

It is perhaps unfortunate that research in language atiguiias often vehemently adhered to
either connectionism or the principles and parameterdggra There is often an analogy that
can be found between the two. For instance, the introducti@enhypothesis bias in a nativist
model might also be modelled by initialising connectionglgs in a neural net (although the
latter is certainly more difficult to get right). All said,ehmain reason for rejecting connection-
ism to model language acquisition is that the training i$ fos expensive (with regard to both
data and computation).

3.5 Learning from Semantics

Thus far our discussion of learning and learnabilty has $eduon learning from strings (or
surface-strings in the case of the TLA—see 3.1.2). This segtion will investigate learning
from the semantic representations associated with strihgarning from semantic represen-
tations is of particular interest when modelling languaggussition; we might assume that if
a child has attended to an utterance then she will have assd@ome semantic content to it.
However, most of the work in this area has not been carrieavidhitchild language acquisition
in mind; rather it has focused on the automated construdtioratural language interfaces for
data-base queries—and as such, has been generally cahoeatiméairly limited domains.
Some of the earliest work in this area attempted to learn-galeeassignments (e.g. agent,
patient) and was carried out using connectionist modets (65]). Subsequently, Mooney
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and colleagues improved on these connectionist modelg tis@ir semantic acquisition sys-
tem called GiLL ([110], [111]) and its successordCKTAIL [100] both of which employ
Inductive Logic Programming techniques. These systemdreamon a corpus of sentences
paired with their corresponding semantic representataons induce a grammar (actually a
shift reduce parser) that can subsequently be used todramsentences directly into semantic
representations. Very recently further work has been phbl that automatically induces a
categorial grammar to map natural language sentences tallgalculus encodings of their
meanings [112]. The major difference between this work dvad of Mooney is that GILL
and OCKTAIL require lexical semantics to be known before the commenotwfelearn-
ing (although Thompson and Mooney demonstrate how a le@mo@HILL may be acquired
in [101]).

All of the above work has been carried out on database quskg:ta.e inducing grammars to
map sentences to database queries. This is a neat semamitdeproblem since a) system
evaluation for the task is straightforward—simply chedcitttihhe system returns the correct an-
swer to the natural language query; and b) the training dataasonably easy to come by—it
can be generated from users of the database in questionitttghektra effort. However, by
the nature of database queries, this work has focused ore{soes fairly artificial) language
within a limited domain. As such, these methods are noteasilended to the task of real
language learning. For instance, Zettlemoyer and Collissypate trigger rules which generate
only 8 categorial grammar categories for their induced categreanmar. Real non-domain-
specific language requires many more categories availabietiexicon: a categorial grammar
manually constructed by Villavicencio [104] requirg@ categories to describe juzi00 utter-
ances of child directed speech (which, as shown in Chaptesyhisctically less complicated
than speech between adults). Furthermore, for real largaeguisition, all trigger rules must
be considered to be part of the principles of a Universal Gnam—thus imposing innate bur-
dens on the learner.

The basic principle of these semantic learners is very aimolthe work presented in this thesis;
they are all attempting to induce a grammar from a stringgoiavith a semantic representation.
The difference is in the application and implementatioe: giistems described above are trying
to solve a functional problem (that of mapping natural laagpiinterfaces to database queries)
whereas the work in this thesis attempts to be cognitivedyigible and developmentally com-
patible with human learning.

3.6 Summary

In this chapter we have seen that for a language acquisitameihto handle real data, it must
have a method of dealing with noise. Both connectionist aatisstal models are robust to
noise because they record information about the languagebdition as a whole; any model
that determines its next state based only on its currerg stad the current input can not be
robust to erroneous data.

A connectionist model, although most robust to noisy daguires an enormous amount of
data and computation for learning. Models that follow a meagvist theme (the principles
and parameters learners) potentially require much lessgliate the hypothesis-space is con-
strained. However, to eliminate the possibility of reachanlocal maxima these parametric
models must also have some mechanism for recognising aitybigu
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The acquisition model presented in this thesis, will leaomT input utterances paired with se-
mantic representations and will induce a grammar for pgrdirwill make some use of a Uni-
versal Grammar. However, the model will not employ paranmsetethe traditional sense, but
instead make use of a memory module that keeps a statigtmaid of the syntactic constructs
that have been learnt so far. As alluded to by the analysiitd speech and child-directed
speech (see Chapter 2) the model learns incrementally. Aibehthis incremental learning is
that it avoids many of the issues of ambiguous input (sintdathe ordered parameter learner
of Dresher and Kay).
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Chapter 4

Categorial Grammar Learners and the
Input they Recelive

This chapter discusses the mechanisms of categorial gratearaers as well as the input they
receive. First, Section 4.1 presents an overview of cat@ggnammars; including a description
of common rules and the association between semantics aegocial grammar categories.
Section 4.2 then discusses previous categorial grammanelesa We notice that the input pro-
vided to categorial grammar learners is not standard. Fsiamte, the categorial grammar
learner of Buszkowski ([16], [17]) learns from structuresiere as the learning system of Wal-
dron/Villavicencio ([105], [104]) learns from string/samtic-form pairs. In order to determine
the complexity and cognitive plausibility of various typeioputs, Section 4.3 introduces the
concept ofsentence objecighe term | use for conceptual elements that carry at leastuah
information as a string). Sentence objects are simply ptesstarting points from which learn-
ing can commence. A discussion is presented on the comptExearning from different types
of sentence objects and on their cognitive plausibilityviHg selected the type of sentence ob-
jects we will use as a input for our categorial grammar lear&ection 4.4 presents a learning
system that provides a cognitive model for creating suchabjfrom semantic representations.

4.1 Categorial Grammars

4.1.1 Classic Categorial Grammars

In a classiccategorial grammar all constituents and lexical items aswaated with a finite
number of types. Types are formed frgmmitive typesusing two operators, and/. If Pr is
the set of primitive types then the set of all typ@9p, satisfies:

PrcCTp
if Ae TpandB € Tp, thenA\B € Tp
if Ac TpandB € Tp,thenA/B € Tp

One member ofPr is thesentence types. All other members ofPr are referred to as the
variables Var, such that:

Pr={s}UVar.
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Members ofl’p may be combined by considering them as arguments and fen@&dype that
is acting as a functor encodes the following information:

1. the type of the argument(s) the function takes;

2. the directionality of the argument(s) (i.e. the whether &rgument can be found to the
left or right of the function);

3. the type of the result.

Arguments are shown to the right of the operators and thdtrestine left. The forward slash
operator () indicates that the argument must appear to the right ofitthetion and a backward
slash {) indicates that it must appear on the left.

Function Application

For a classic categorial grammar, types may be combined tisgrules of function application:

Forward Applicatiofi>) : A/B B — A 4.1)
Backward Applicatiofi<) : B A\B — A (4.2)

whereA and B range over types.

A sentence has a valid parse if the lexical types (the typsigmed to the words in the sen-
tence) may be combined to produce a derivation tree withgdtte primitive sentence type).
Consider a grammar using varialife:r = {np}, (thus primitive types’r = {s, np}, allowed
typesTp = {s,np, s\np, s/np, s\s...}) and lexicon,L;, which associates words with types—a
grammar that associates at most one type to each memberlekiten is called aigid gram-
mar whereas a grammar that assigns at niogtpes to a member of the lexicon istavalued
grammar

L; ={ smudge — np,
chases — (s\np)/np,

mice —np }

Given L1, the sentenc€mudge chases miteparsed as follows:

chases mice

Smudge (s\np)/np  np
>
np s\np

<

The types of the constituents in this parse are combined taygaas either functors or argu-
ments. The type afhasedor instance(s\np)/np, is acting as a functor; taking amp argument
from the right to give the return typ@\np). For the purpose of this work, and for categorial
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grammars in general, the primitive categories must be degkiio include minor syntactic infor-
mation such as gender and number agreement. If inflectinfahnation is explicitly required

it may be provide via agreement features (usually repregeas subscripts to the syntactic
category) [98].

Note that classic categorial grammars have a simple camnelgmce with context-free gram-
mars. Given a classic categorial gramn@ywith lexicon:, then therangeof G is the set of
types thats assigns to words i, soTp(G) = {A | A € range(G)V A is a subtype ofange(G)}.
The set of context-free grammar rules to descéib@ay now be defined as:

CF(G) = {B— A B\A| B\AeTp(G)}
U {B— B/A A|B/AeTpG)}
U {A—lex|lex € X}

4.1.2 Combinatory Categorial Grammars

Real natural language can not be modelled using the rulesofifun application alone. Several
other rules have been posited to provide more extensivaslynidescriptions. A selection are
illustrated in Figure 4.1 wherd, B,C,T € Tp and| is a variable ovek and/ (see [98] for
an overview and also [12] for the rule of Generalised Weakrgation). A grammar which
employs any of these rules in addition to those of the clasaiegorial grammar, is called a
combinatorycategorial grammar.

Function Composition

The rules of composition (4.3 and 4.4) allow non-constite¢a be created. A constituent is
considered to be a sequence of text that can be assigned asiygeonly the rules of function
application. Consider the senteri@mebody might eat you”

somebody might eat you

np s\np/s\np  s\np/np  np

The sequenceat youfor example is a constituent whereasgght eatis not. The composition
rules can be used to assign a typentight eatby allowing the argument of a function to be a
function itself:

maght eat
(s\np)/(s\np)  (s\np)/np you
>B —
Somebody (s\np)/np np N
np s\np
<
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Forward Composition (
Backward Composition (
Forward Type Raising (
Backward Type Raising (
Forward Substitution (
Backward Substitution (

Forward Crossed Substitutior{> S.,) :
Backward Crossed Substitutiori< S,) :

Generalised Weak Permutation (P) :

> B)
< B)
>T):
<T)
> 9)
< 9)

A/B B/C — A/C

B\C A\B — A\C

A= T/(T\A)

A= T\(T/A)

(A/B)/C B/C — A/C

B\C (A\B)\C — A\C

(A/B)\C B\C — A\C

B/C (A\B)/C — A/C

(A] B | Ba) — ((A] Ba)...| B)

Figure 4.1: A selection of the rules used in Combinatory CataGrammars.

(4.3)
(4.4)
(4.5)
(4.6)
4.7)
(4.8)
(4.9)
(4.10)
(4.11)
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Type Raising

The type raising rules (4.5 and 4.6) allow arguments to bectumctions (or more precisely,
allow arguments to become functions over functions oveurments). The utility of this is
in capturing co-ordinate structures. For instance, camnside sentenc&ndrew throws and
Smudge chases the bédee Figure 4.2); the forward type raising rule can be us#édtsform
the np-subjects Andrewand Smudgginto s/(s\np)’s, which may then be composed with the
verbs (hrowsandchase}to allow co-ordination with the direct objecthé bal):

The unary type raising rules may be applied to any type at amt gduring the parse—providing
the undesirable possibility of an infinite parse tree. Tadtlus pitfall the use of the type raising
rules is generally constrained. For instance, type raisargbe restricted to only produce types
that already exist in the lexicon; or restricted to act omtloe lexicon; or restricted to use only
as a back-off parsing option when all other rules fail (alitjo this can be dangerous if there
are ungrammatical strings).

Function Substitution

The substitution rules (4.7, 4.8, 4.9 and 4.10) are useddmagitic gap constructions; allowing
a single argument to used by two functors. Consider the semt@mristopher watched with-
out enjoying the match between Manchester United and \@&tt Here Christopheris the
argument of bothwvatchedandwithout enjoying

watched — without enjoying

(s\np)/np ((s\np)\(s\np))/np the match
<SS, —m

xT

Christopher (s\np)/np np

>
np s\np
<

Generalised Weak Permutation

The Generalised Weak Permutation (GWP) rule is a unary ratesifows arguments in a func-
tional category to be reordered. After reordering, the peechcategory may be able to combine
with adjacent categories that were previously not comfeatilith the rules. The allowed per-
mutations of arguments is limited to rotations of the oraiordering; for a functional category
of n arguments there will be only permutations.

The GWP rule allows a flexible ordering on the constituentshdigoe transitive verbs like
donatewhose original category is\np)/np/pp. The allowed argument rotations would parse
both sentencekkim donated the money to char@yndKim donated to charity the money

The GWP rule can also be used to parse sentences containingndgesl dependencies (rela-
tionships between non-adjacent constituents), whichuded many wh-questions and relative
clauses. Figure 4.3 shows the sente@Gbéckens make the eggs that we aatl uses the GWP
rule to parse the relative claud®at we eat
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Smudge

Andrew np chases
- N
np throws and s/(s\np) (s\np)/np
B S > B
s/(s\np) (s\np)/np ((s\np)\(s\np))/(s\np) s/np
> B > the ball
s/np (s/np)\(s/np) - ;
s/np np
>

Figure 4.2: An example of Type Raising in CCG
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eat

we  (s\np)/np

that np  (s/np)\np
<
eggs  (n\n)/(s/np) s/
the n n\n
<
make np/n n
; >
Chickens (s\np) fnp "W
np s\np
<

Figure 4.3: An example of Generalised Weak Permutation in CCG.

4.1.3 Generalised Weak Permutation vs. Type Raising

Note that GWP and the type raising rules can be used to captailarsiinguistic constructs.

A Combinatory Categorial Grammar will tend to use either tygasing or GWP but not both.
Since they are unary rules, both type raising and GWP can Hed@dmost anywhere in the
parse tree; consequently, their use is normally constlaithés usually asserted that these rules
should only be used on items in the lexicon. The reasons foptaty one of these rules in a
CCG rather than the other will depend on the application. Tgpeng rules are more linguis-
tically pleasing since they functionally capture the nataf the phenomena being expressed.
However, for work on grammar inference (such as the work)higree raising increases the
search space over GWP.

If we restrict use of the rules to the lexicon, GWP may be appdi® many times as there are
arguments in the lexical items of the sentence. Type raisiogever, is bounded by the size
of T'p (i.e. the number of lexical types in the grammar—which isuafgy infinite but at least
undefined in a learning situation). For an example consldeséntencd#hilip amuses Carol’

Philip amuses Carol

np  s\np/np  np

Now, imagine we are trying to derive a parse tree for thisessrd from the syntactic categories
by exhaustive application of the rules of a CCG. For this setd¢he GWP rule can only be
used on the verbmusesand it can only be applied once (applying it twice yields thigioal
category). The type raising rule may be applied to every vilote sentence in7T’p | possible
ways; since any word can be raised by any categofypnThis in itself is a problem because
while we are still learnindgl'p is undefined: unless we make some very strong assumptions
about what is known by the learner before learning comme(ufeshe predefined categories

of Villavicencio’s categorial grammar learner describe®ection 4.2.1).

In general, the number of arguments in a sentence is propattio the number of words, So,

for the GWP rule we add complexity(n) but for type raising we add complexi§y(n1'p). For
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the example abovéChickens make the eggs that we eatie can mak@& possible applications
of GWP whereas for type raising we have at leéast’ = 63 (sinceT’p must contain at least as
many types as occur in this derivation and we can raise evergl i the sentence by each of
these types). Although most of these applications of the tgsing rule would lead to parses
that fail, it would have been preferable to not have considénem at all. It has been noted that
in English, type raising need only be used on primitive tyfh&e np andpp) [97]. This would
reduce the number of possible application®Towhich is still 9 times more than for GWP.
Furthermore, if use of type raising is restricted to priagttypes then there is a requirement
for the learner to be aware of this. In a real language legrsituation this equates to either
a) having innate knowledge of which categories type raisiag apply to or b) having some
method of learning which categories type raising can apply t

4.1.4 Semantics and Categorial Grammars

A close relationship can be found between a categorial gi@antype and semantic type. To
explain how we can represent and exploit this relationghip first necessary to know a little

about lambda calculus. All lambda calculus expressioean be expressed using the following
context free grammar, whetreis a variable:

EF — =z
E — \z.FE
E — (EFE)

Consider the functiog(z) = 2z. In lambda calculus we may represent this functionagzx.
The x in this expression is bound by the Lambda expressions may be applied to arguments
using function application. For examplg;3) would be written(Az.2x)3. Function application

is left associative; we can express and evaluate the addifioumbers: andb as follows:

(AxAy.x + y)ab
= (Az(Ay.z+y))ab
— (Ay.a +y)b
— (a+0b)

Instead of mathematical functions let us now consider sémpredicates. Let the expression
(LOVE'’ bob’ helen’) be the semantic representation“bielen loves Bob” Here the predi-
cateLOVE’ has two argumentdyelen’ is the actor andbob’ the undergoer. Using function
application we could represent the same semantic expressiambda calculus as:

(AzAy.LOVE'zy)bob’helen’

The expressionz\y. LOVE'zy tells us how the wordlove” behaves semantically and can be
recorded in the lexicon along with its syntactic category.
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love : (s\np)/np: AxAy.LOVE'zy

Notice the relationship between the syntactic categorylamibda expression; they both ex-
press a functor that takes an argument and becomes anaticeorfthat takes another argument
in order to be evaluated. The only difference is that theasstit category expresses the direc-
tionality of the arguments.

Indeed, thePrinciple of Categorial Type Transparen{38] states that:

For a given language, the semantic type of the interpretédigether with a number
of language-specific directional parameter settings waljgdetermines the syntac-
tic category of a word.

A consequence of this principle is that if the semantic typa ¢exical item is known then
a certain amount about its syntactic category is also kndvar.example, from the semantic
expressionl(OVE’ bob’ helen’ ) we know thatLOVE’ is a two argument predicate. Hence,
the syntactic category of “love” will also take two argumefibut we don’t know their direc-
tionality). This knowledge can be represented in a skelsyoactic category ag|B|C' where
A,B,C € Tp and| is a variable ovel and /. Furthermore, we know that if the argument
is a semantic entity (such &®len’ or bob’) then the associated syntactic argument will be a
primitive syntactic category. This could be representediasb wherea,b € Pr. The abil-
ity to extract syntactic information from semantic repras#ions is fundamental to the learner
presented here.

All of the rules of the categorial grammar can be represeintémbda calculus; this allows us
to combine semantic constituents to evaluate the semamtieist of a sentence. Some CCG
rules and their semantic lambda expression are shown bgloanversioh has been used to
simplify the reading:

Forward Applicatiofi>) : A/B:f B:a— A: fa

Backward Applicatiofi<) : B:a A\B:f— A: fa
Forward Compositiop> B):  A/B:f B/C:g9— A/C: \x.f(gx)
Backward Compositiox B) :  B\C:g A\B: f — A\C : \z.f(gx)

Forward Type Raising> 7T') : A:x—=T/(T\A) : \f.fz

Backward Type Raising< 7) : A:x—T\(T/A) : M .fx
Generalised Weak Permutatidn) : ((A | By)... | Bn) : AYn-- Ay1-fy1...yn —
((A]| Bp).oo | B1) : A Myneee- fY1---Un

The following shows an example of how these rules can be eghpdi the sentencé&mudge
chases miceto derive the semantic predicai#+HASE’ mice’ smudge’.

I\z.fz = f whenz is not free inf
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chases mice
Smudge (s\np)/np : \eA\y.CHASE'zy np : mice’
np : smudge’ s\np : \y.CHASE'mice'y
s : CHASE'mice’'smudge’

>

<

4.2 Previous Categorial Grammar Learners

The purpose of this work is to create a categorial grammanégahat can learn from real
data and echos real learning. Several previous attempts heen made to learn categorial
grammars computationally. However, many of these atteimpise produced learners that are
unable to acquire language from real data. These systenesdenerally involved learning
categorial grammars that use only the rules of functionpliegtion (e.g. Osborne and Briscoe
[70], Buszkowski [16] and Kanazawa [49]); as explained aboeal natural language can not
be modelled using the rules of function application alondte®learning has been from an
artificially generated corpus (e.g.Watkinson and Mananflt/]) and even negative feedback
has been allowed (e.g. Adriaans [1]), which does not reflegtlearning (see Chapter 3 for a
discussion).

Below two previous categorial grammar learners are discuissgetail. First, the learning sys-
tem of Waldron/Villavicencio ([105], [104]) is presentedhis system learns from real data
using a parametric model that has greatly influenced thetibreof my own work. Secondly,
the formal categorial grammar learners of Buszkowski ([15]]) and its extensions [49] are
discussed. Both of these learning systems have influencezhtbgorial grammar learner pre-
sented in Chapter 5.

4.2.1 The Waldron/Villavicencio Learning System
Waldron's Semantic Learner

Waldron [105] has implemented a system that learns caegaosing the rule of Generalised
Weak Permutation as well as those of function applicatiors. with this learner, Waldron’s
system does not use negative evidence and will learn cadsgoom real data.

The learner assumes that the mapping from words to pringjméactic types (such ag or n)

is known. The input to the learner is an utterance paired avgat of associated semantic predi-
cates or primitive syntactic types. First, the algorithmamerates all possible ways of combin-
ing the members of this set using function application. €rae recorded as a list of equations.
For example if we receive the utteran@omi likes georgwith the sef{ np, LIKE' np} then the
algorithm would build the following equations (whereand< represent forward and backward
application respectively):

(np > LIKE') > np
(np > LIKE') < np
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(np < LIKE') > np
(np < LIKE') < np
np > (LIKE' > np)
(LIKE' < np)
(LIKE' > np)
np < (LIKE' < np)

np >
np <

Next, equations which will definitely result in failure aemoved from the list. These equations
are identified by means of a setexfuation validity rulesuch as: a primitive syntactic type must
act as the argument in function application. This would cedilne example list of equations to:

(np < LIKE') > np
np < (LIKE' > np)

The remaining equations are associated with a weightins Wéighting isl /n wheren is the
number of equations left. The predicate names are then doogen a lexicon of predicate-
category mappings and substitutions are made for as madicptes as possible. If after sub-
stitutions, the equations still have more than one unknawtheém then nothing can be learnt
so the equations are stored along with their weightingfdivever, there is only one unknown
then its category is inferred using th#erence rulesThese rules are shown below wheré,

¢, d are syntactic categories, ? is the unknown predicate>gnd are forward and backward
application:

(a<?)=b — 7=0b\a
(?>a)=b — ?=0b/a
(c/d>N)=c — ?7=d
(7<c\d)=d — 7=d

If the syntactic category associated with a predicate isessgfully inferred it is recorded in
the lexicon together with a weighting derived from the weighthe equation it was inferred
from. Armed with this new predicate-category mapping &l pineviously stored equations are
re-examined. If they contain the predicate it is substdute its (now known) category and
further inferences are attempted.

Waldron’s algorithm makes large demands on memory sinceriecessary to remember all
past equations as well as the lexicon. This is possibly narg kealistic model of learning.
It is unlikely that children store all utterances they'veah# for batch processing. Using an
unrestricted search-space the system was found to overagerconsiderably; producing the
following category fored in the phraseed ball rather tham /n:

red — (((((s\np)\(np\n))\((s/np)/np))/n)/np)

Performance was improved by using Villavicencio’s UniaGrammar and Parameter Learner
to restrict the search-space to only categories known &i gxthe target language.
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Villavicencio’s Universal Grammar and Parameter Learner

Villavicencio’s Universal Grammar is represented by anarrgpecified unification-based cat-
egorial grammar. The Principles of her Universal Grammacgp a subset (cardinality9) of

all the possible categorial grammar categories that take fiye arguments. The grammar uses
the primitive typess, n, np, pp andprt. Syntactic categories are defined usaiggibute-value
specificationsBoth syntactic and semantic properties are specified alsuaérvalue pairs; for
instance, the specification for an intransitive verb (whiets categorial grammar typ&np)
might include the attribute paisubject:— np andsubject-dir:— backward Syntactic cate-
gories are arranged in a hierarchy so that child types inaimttribute-value pairs from their
parents; this encodes the Universal Grammar more effigi¢hdn specifying each category
separately.

The parameters of this Universal Grammar are embeddedntii attribute-value specifica-
tions. Each category has an attribute (eigtransitive-parametgrthat will take a Boolean
value. If the category is part of the current grammar thes dfiiribute is set ttrue; otherwise

it is false The learner is further endowed with the ability to groupsthearameters according
to the type of the category they are associated with. Thesggrare arranged into hierarchies
according to the similarity of attribute-value pairs withthe categories they are associated
with; the hierarchies follow Pollard and Sag [80]. Villagitcio also defines a hierarchy on the
direction-attributes (such asibject-dip; this hierarchy is very flat being only 3 levels deep. Ad-
ditionally, each direction-attribute is associated witbcare that is used to determine whether
the value for that attribute should b&rward or backward

The input to Villavicencio’s grammar is a set of possibletagtic assignments (as hypothesised
by Waldron’s syntactic learner) and a semantic repregentat the utterance. On receiving this
input the set of assignments is filtered by Wadid Category Assignment Detection Madell-
tering is achieved by removing all assignments that haaishgyntactic categories; a syntactic
category is deemed valid if it both adheres toRmmciple of Categorial Type Transparen(see
Section 4.1.4) and is type compatible with its semanticipegibn. For an example of the latter,
the worddo hypothesised with the syntactic categany/np is invalid because the veudo is
not compatible with a nominal predication. Note here th& tegree of semantic validation
places large innate requirements on the learner; for instan the example above, the learner
is required to ‘know” which predicatiordo is compatible with. This is not information that can
be directly extracted from the semantics unless the vesbaach predicate on semantic entities
(which have a direct mapping to primitive types in the catedgrammar). Also, the need to
check at this stage for adherence to Brenciple of Categorial Type Transparentyghlights

an inefficiency of this learning system: the syntactic catieg were inferred from the semantic
representations in the first instance and should inheredthgre to the principle.

After the filtering process, surviving assignments areys®l for triggers. Following Dresher
and Kaye [33], Villavicencio models a learner that knows howetect triggers in the input, and
also knows which parameters are being expressed. This lenmepted by means of Erigger
Detection Moduleusing the properties of the syntactic categories in the &sal Grammar.
Once detected, triggers are used to set parameters.

First, category parameters (such asititeansitive-parametedescribed above) are updated. A
categorial parameter can be setriee if its associated trigger has been detected and if its direct
parent in its group hierarchy is also true. Next, if the teageelating to a direction-attribute has
been seen, then the score associated with that attribgeakulated; the Bayesian Incremental
Parameter Setting algorithm is used for this purpose (se@t€ha for a description). Since
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the Universal Grammar is defined hierarchically the dimcttof the direction-attributes are
inherited in all allowed categories.

Together, Waldron and Villavicencio present a system farrigng to set the parameters of a
Universal Grammar. The acquired grammar can then be useal$e pnd produce language.
However, in order to acquire the parameter settings, thradednas to first use Waldron’s syn-
tactic learner to hypothesis categories for the utteraeeech The mechanisms for acquisition
are distinct to those for utilising the grammar being aceplir

4.2.2 Formal Categorial Grammar Learners

Buszkowski ([16], [17], [18]) developed an algorithm forteeng rigid grammars from functor-
argument structures. A functor-argument structure is argibranching derivation tree whose
leaf nodes are labelled with the words of the input sentendevehose internal nodes are la-
belled with either> or <; indicating whether forward or backward application isdis¢ that
node. The functor-argument structure for the sent&@madge chases mie®uld be as follows:

<

/\

smudge >

N

chases mice

Buszkowski’s algorithm proceeds by inferring types from #élvailable data and then unifying
variables across all encountered structures.

Inferring types: if the functor-argument structure shows an instance of é&dwapplication>
then there must be an argument on the rightand a functor on the lefB/A (where
A, B € Tp).

1. Forward Application:
— B (4.12)
/N RN

N
N
S
~Z
I
s

2. Backward Application:
< — B (4.13)

/NN
2 2 A B\A

Unifying variables: a substitutiorr (or unifier) unifies a set of typeA if for all types A;, A, €
A, 0(A;) = o(Ay). Furthermoreg unifies a set of sets of typeg if o unifies all sets
of typesA, B € /. o, is amore general unifiethano, if there is a substitutioa; such
thatO'Q(A) = 0'3(0'1(A)).

Baader and Siekman [2] summarise algorithms for decidinghgnea unifier exists for
</ and, if so, discovering the most general unifier. The mostiefit algorithms are linear
in time complexity.

The algorithm, which will be referred to as the Bus-CGL (Buszg&kwng categorial grammar
learner), is illustrated below:
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Recall thatS; = {so, s1, $2...s;} IS the set of the first sentence objects in the input stream.
Consider:

St :{ < , < }
christopher play<hristopher <
plays quietly
Step 1: Assign types to the structures.

(a) Assign the sentence type primitivéo each root node.
(b) Assign distinct variables to the argument nodes:

s [<] s [<]

T plays $‘3 (<]

christopher christopher x;  quietly

|
plays

(c) Compute types for functor nodes using equations 4.12 d&1 4
s [<] s [<]

x‘l s\rq 3:‘3 s\z3 [<]

christopher plays christopher z,  (s\z3)\z4

| |
plays quietly

Step 2: Collect the types assigned to the leaf nodes:

christopher — 1z, 23
plays — s\zy, 24

quietly — (s\z3)\z4
so/ = {{x1, z3}, {s\w1, 24}, {(s\ws)\ws}}
Step 3: Unify o7 (the sets of types). If unification fails then fail:
o= {x3— 71,74 — s\71} (4.14)

where{a; — by, ..., a, — b,} denotes the unifier such that(a;) = by, ...,0(a,) = b,
ando(y) = y for all other variables y.

Step 4: Output the grammar (a lexicon with associated types):

(1 : christopher — 2
plays — s\z;
quietly —  (s\z1)\(s\z1)
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Buszkowski's algorithm was designed to learn a rigid gramfmam a finite setof functor-
argument structures. Kanazawa [49] constructed a prodfde shat the algorithm could learn
the class of rigid grammars from anfinite streanof functor-argument structures—as required
to satisfy Gold’s learning model. The following is a sugg@stfor modification to Bus-CGL
so that it may learn from streamof structures rather thanset The algorithm will be referred
to as Bus-stream-CGL. The main difference between Bus-CGL angtBesm-CGL is that in
Bus-CGL unification occurs over all structures in the languag®e go whereas in Bus-stream-
CGL unification occurs repeatedly (every time the next stmgcin the stream is presented).
Let GG; be the current grammar (or guess) of Gold’s learning modet &fving seenstructures
from the stream:

G : christopher — 3

plays — s\z;

and let the next encountered structure in the stream be:

<

/\

christopher <
plays quietly

Step 1: Assign types to the new functor-argument structure as in®d&-
s [<]

$‘2 s\ [<]

christopher z3  (s\z2)\z3

|
plays quietly

Step 2: Look up words at the leaf nodes of the new structuré&’jn If the word exists inG;,
add types assigned to current leaf nodes to the existingf $gp@s for that word; else
create new word entry.

christopher — x1, 29
plays — s\z1,x3

quietly —  (s\z2)\z3

o = {{x1, ma}, {s\x1, 25}, {(s\w2)\23}}

Step 3: Unify the set of types. If unification fails then fail.

o ={xy— x1,23 — s\z1} (4.15)
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Step 4: Output the lexicon

Giy1 : christopher — x4
plays — s\z;
quietly —  (s\z1)\(s\z1)

Presented with structures fromkavalued grammar, Bus-CGL (and Bus-stream-CGL) will ei-
ther over-generalise (arriving at a grammar that geneeapgsper superset of the language) or
fail on unification. Natural language is better describedwalued grammars so Kanazawa [49]
has modified Buszkowski’s algorithm to learn frénvalued structures. The modification relies
on the notion of-partial unification i.e. unification that will construct at mokttypes for each
member of the lexicon. Note that a 1-partial unifier is simalynifier as in 4.14. A case of
2-partial unification is illustrated below.

Consider that aftebtep 2of the Bus-CGL algorithm we have collected the following wayge
associations from the leaf nodes:

word; —  xy,22\s, s/ (4.16)
wordy — X9, x3,S/x3 (4.17)

s0o/ = {{x1,x2\s, s/x2}, {x9, x3,5/x3}}
Theno, is an example of a 2-partial unifier:

o1 = {1 — (x1/8)\s, 22 — x1/8, 23 — x1/5} (4.18)

giving us:

word; —  (x1/s)\s,s/(x1/s)
worde — (x1/s),s/(x1/s)

Kanazawa showed that the complete séi-phrtial unifiers forez may be found in exponential
time—by running the linear unification algorithm over pdlrtitionsof .« (where a partition of
o/, A, is defined to be:

%=\ J{#|1 <i<n} (4.19)

where%; = {B1), ..., Bin)} is a partition ofA;, for 1 <i < n.)
Continuing with examples 4.16 and 4.17 , Steps 3 and 4 of Bussk®nalgorithm are now
adjusted as follows to give the Kan-CGL (Kanazawa'’s categrammar learner):

Step 3: Unify o7. If unification fails then allowk-partial unification. Ifk-partial unification
fails then fail:

o = {x1— (x1/9)\s, 22 — 21/, 23 — x1/5}
oy = {x1+— 12\, 13— 12}
o3 = {x1— (s/x3)\s, 12 — s/x3}
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oy, = {x1 > s/x, 53— 29}

Step 4: Output all possible grammars.

Applying o; to .«
Gy :word; —  (x1/s)\s,s/(x1/s)
wordy — x1/s,8/(x1/5s)
Applying o5 or o, t0 &7
Go :word; —  x5\s, /19
wordy —  Zo, /19
Applying o3 to <7
Gs:word; — (s/x3)\x3,s/(s/x3)

wordy — s/x3, 13

Step 5: Select one grammar from the output set by placing an ordernipe languages they
produce and then choosing the minimal element.

Kanazawa showed th&tep 50f Kan-CGL is exponential in time in the size of the grammars.
As with Bus-CGL, Kan-CGL learns fromsetof structures rather thanstream Kan-CGL may

be modified to learn from atreamin exactly the same manner that Bus-CGL was modified to
give Bus-stream-CGL. The stream accepting version of Kan-C@iLbe referred to a Kan-
stream-CGL.

Learning from Strings

Kanazawa shows thdt-valued classic categorial grammars are also learnabfe &tings.
The algorithm (String-CGL) is very expensive; applying thenKCGL to all possible functor-
argument structures of the input strings. String-CGL is dbed below:

Step a: Form a set¥ containing all the possible functor-argument structunaloimations for
the input strings irf;.

Step b: For each element of, carry outstep 1to step 4of Kan-CGL.

Step c: Select one grammar usirsgep 5of Kan-CGL.

Consider example input s8t = {sg, s1 } with:

so = christopher plays
s1 = christopher plays quietly
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There are two functor-argument structures that could yigld
sol = > 502 = <
christopher plays christopher plays

And there are eight functor-argument structures that cyield s :

511 = > 812 = >
/\ /\
christopher > christopher <
plays quietly plays quietly
513 = < 514 = <
/\ /\
christopher > christopher <
plays quietly plays quietly
519 = > 516 = >
/\ /\
> quietly < quietly
christopher plays christopher plays
$17 = < 518 = <
/\ /\
> quietly < quietly
christopher plays christopher plays

Giving the sixteen element set’ = {{sol,s11}, {sol,s12},..., {502, 518}}. Kan-CGL will
succeed on six elements from this set.
For example{sy2, s14} yields:

GG : christopher — =z
plays — s\z
quietly —  (s\z)\(s\z)

and{s(2, s,8} yields:

G : christopher — «x
plays — s\z
quietly — s\s

For learning from atreamof strings rather than setthe algorithm would be:
Step a: Form a set¥ containing all the possible functor-argument structuoegtie new input
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string.
Step b: For each element of/, carry outstep 1to step 4of Kan-stream-CGL.

Step c: Select one grammar usirsgep 50f Kan-stream-CGL.

Basic Categorial Grammar Learner Summary

Buszkowski created an algorithm to learn rigid classicgaitiel grammars from a set of functor-
argument structures. Kanazawa modified this algorithmamle-valued categorial grammars
by introducing partial unification. Further, he showed thatalued categorial grammars may
also be learnt from a set of strings. Simple modification &séhalgorithms allow the input to

be a stream rather than a set (in line with Gold’s learningefjod

There are three main sections to a general algorithm fonilegua%-valued classic-categorial

grammar from a stream of strings:

Step a—Form Search-Spaceform a set¥ of all possible functor-argument structures to
describe the strings.

Step b—Hypothesise Grammars:lterate through?”’ assigning types to each functor-argument
structure. Unify (using partial unification) the assignggets with the current grammar.
If unification fails, then fail, else add possible grammagtammar set(s.

Step c—Select Grammar: Choose one grammar from 9@t

4.3 Sentence Objects

In our discussion of previous categorial grammar learnersioted that the form of input pro-
vided to learners is not standard: for instance, the Waltlitbavicencio system ([105], [104])
takes strings with an accompanying semantic representatial more recently Clark and Cur-
ran [29] developed a method for learning parameters of a CCéndwlly annotated parse
trees.

Traditionally, studies in CCG learnability (and learnalgilih general) have concentrated on
models that take streams of strings (literally the orderect& of a sentence) as input. However,
Buszkowski ([16] and [17]), developed an algorithm for leaghcategorial grammars from a
stream ofstructures which carry more information than strings.

We would like to know what is the most sensible form of inpattérms of efficiency and cogni-
tive plausibility) to a categorial grammar learner thatttempting to learn from real language.
This section discusses methods of learning categorial masfrom streams afentence ob-
jects which is the collective term for elements that carry at iess much information as a
string.

Gold’s general learning model (see Chapter 3) is updatedlas/fo

1. O—a hypothesis-space of grammars;
2. d—a sample set of grammatical sentence objects;

3. F—alearning function that maps finite subsetsbaflanguages) to elements Qf
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Gi = F({So, S1, SQ...SZ'})
whereG; € Q2 andsg, s1,s; € @

The cognitive plausibility o4 different types of sentence object (simple strings, audgaten
strings, unlabelled structures and functor-argumentsiras) is considered below followed by
methods for learning from them:

4.3.1 Simple Strings

A simple string is simply the words of the input sentencesprnged in the correct order. The
string for the sentencBmudge chases mitesimply:

smudge chases mice

Cognitively this is equivalent to a real learner being ablegoognise word boundaries and
creating word token for each word. This is clearly plausiloterwise we would not be able
to use language at all) but it seems likely real learner valldhaccess to more information than
just word tokeng.

4.3.2 Augmented Strings

In additional to simple word order an augmented string hasesword type information. The
type of words which are associated with primitive typesdhging toPr) are declared. Words
with complex types are not fully declared but some generfarmation about their structure
is displayed. For example, the information declared forwoed chaseamight be that it is of
the form (A|B)|C where A, B,C € Tp and| is a variable ovek and/. The extra syntactic
information here may be extracted from the semantics fafigwthe Principle of Categorial
Type Transparency as explained in Section 4.1.4. This alseoequires that the semantic type
of each word is known. For a real learner to form augmentedgstifrom an utterance they
would have to:

a) segment the utterance on word boundaries;
b) hypothesise a semantic expression for the utterance;

c) map parts of the semantic expression to word tokens.

smudge chases mice

| |
np (Al B)IC  np

Augmented strings appear to be fairly cognitively plausiblt is extremely likely that when
a child attends to an utterance they hypothesise some semagdning to associate with it.
Pinker [76] and Siskind [93] among others have offered megHor mapping parts of semantic
expressions to individual words. This will be discussed orerdetail in Section 4.4 where we
will explain how an augmented string is simply a means ofesenting the constraints placed
on a space of possible parses due to the string’s assoceteahic form.

2There is no particular reason why we talk about word toketreradhan morpheme tokens.
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4.3.3 Unlabelled Structures

An unlabelled structure is a binary branching derivati@®twhose leaf nodes are labelled with
the words of the input sentence. The unlabelled structur8raudge chases miesuld be:

/\
smudge
/\

chases mice

Cognitively it is difficult to imagine how a learner would corte associate such a structure
with an input utterance prior to learning a grammar. Soméeinformation is derivable from
the Principle of Categorial Type Transparency but not withgrior analysis.

4.3.4 Functor-Argument Structures

A functor-argument structure is much like a unlabelledctite except that the internal nodes
are labelled with either or <; indicating whether forward or backward application isdia¢
that node. The functor-argument structure for the sent@msedge chases migeuld be as
follows:

<

/\

smudge >
chases mice

Again some of the information is derivable from the semanti®@. which word is the functor)
but, as for unlabelled structures, it is difficult to imagimew the learner could associate this
structure with their input utterance.

4.3.5 Information Content of Sentence Objects

This section discusses the information content of sentebfrts. Each sentence object will
be compared to the functor-argument structure (since shike object that carries the most
content); every other type of sentence object may be thooigds an under-specified functor-
argument structure. In each case the number of functomaggustructures that could yield the
sentence object will be counted.

Simple Strings: To find the number of functor-argument structures that @existring of length
n it is necessary to find all of binary trees witHeaves and then enumerate all the ways
of labelling the nodes of those trees with forward or backinagplication ¢ or <). For
example, a two word stringuord; word,) may be derived from two functor-argument
structures; there is one binary tree with two leaves and taysvo label it with> or <.

> <

word; wordy word; words
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A three word string may be derived from eight functor-argatrstructures; there a two
binary trees with three leaves and four ways to label eaeh tre

> > <
word; > word; < word; >
words  words woﬁrdg 'LUOdeg
< > >
wordy < > words < words
wordy words word; word, word, words
< <
/\ /\
> words < words
word, words word, words

In general the iterative rule for finding the number of binttees withn leaves is:

n—1
Xo=> XX (4.20)
r=1

The rule uses the fact that a tree witleaves is equivalent to a tree witHeaf joined to
a tree withn — 1 leaves, and also equivalent to a tree vtleaves joined to a tree with
n — 2 leaves etc; so, the rule sums the number of ways each conunraittrees may
be drawn. From this iterative rule, the general rule for themher of binary trees with
leaves may be derived:

(2n —2)!

number of binary trees with leaves= —
nl(n —1)!

(4.21)

To find the number of functor-argument structures for a gtahlengthn, it is necessary

to multiply the number of binary trees withleaves by the number of ways of labelling
the tree nodes witkc or >. A tree withn leaves is always made up from— 1 binary
branch nodes of the fornf\. Each node may be labelled one of two waysof >) so for

a tree withn leaves there arg"~! labellings. Hence the general formula for the number
of functor-argument structures that derive a string of tangis:

(2n —2)!

number of functor-argument structures2” ! -~———"_
nl(n —1)!

(4.22)

Augmented Strings: The information content of augmented strings is not simplyehdent on
the length of the string but also on the the types associaitadeach word. At worst, the
information content of an augmented string is the same a& $anple string of the same
length. The occurrence of primitive types within an augredrdtring reduces the number
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of possible functor-argument structures. Primitive typébalways be the argument of
a function (they can not be a function themselves). Thusptésence of primitive types
can provide us with information regarding allowed functdrectionality and also viable
tree structures.

1. Function direction:
Consider the following augmented string wheris a primitive type angh € T'p:

word, words

Zz p
Sincex is a primitive type it must be acting as a argument and thezefaust be a
function. Thus, there is only one possible functor-argunsémicture:

<

word, words

T plg

Whenever a primitive type occurs, the function directiaiyadi the associated node
will be known, as illustrated in the partial tree below.

For every primitive type in the augmented string we can redhe number of pos-
sible functor-argument structures by a factor of 2.

2. Tree Structure:

The location of primitive types within an augmented stringces constraints on
the deriving tree structures. Consider the following augieestring, where: is a
primitive type andp € T'p:

word, wordy words

x x P

The tree structure for this string has to be of the form:

N
/\
T p

The other possible tree structure would leave two primityyges together on one
branch node with no means of being combined.
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N
p
/N
r X
Whenever primitive types occur adjacently in an augmentgdgstall trees that
would place them on the same branch node can be ruled out.| Retahe number
of binary trees withn leaves isX,,. Two adjacent primitive types in an n-length
augmented string will reduce the number of possible binagsbyX,, ;.

Unlabelled Structures: An unlabelled structure with leaves is made up from — 1 binary
branch nodes of the fornf\. Each node may be labelled one of two waysof >) so for
a tree withn leaves there arg" ! labellings.

The following table shows a comparison of information cohtfer sentence objects. refers

to the number of words in a sentence. The column figures itelittee number of functor-
argument structures that can derive the given sentencetobjehe case of augmented strings
(whose information content is word-type dependent as veedlemtence-length dependent), two
illustrative columns are included; one to indicate a stwvith two adjacent primitive types
(Augmented String (a)), and another to indicate a stringp wito non-adjacent primitive types
(Augmented String (b)).

n | Functor-Argument Unlabelled Augmented Augmented Simple
Structure Structure  String (@)  String (b)  String

2 1 2 - - 2

3 1 4 1 2 8

4 1 8 6 10 40

5 1 16 36 56 224

6 1 32 168 280 1120

For unlabelled structures there are always' functor-argument structures that can be derived.
It can be shown mathematically that, (the number of binary trees with leaves) can be
bounded byt" . Hence, for the number of derivable functor-argument stmes for the simple
strings is bounded by* . An augmented string of type (b) will have exactly a quartemany
structures. Augmented strings of type (a) will have rou@wtyf those for type (b).

The type of sentence object that carries the most cognjtreslistic data is the augmented
string since the extra information it carries can be leairgatly from semantics. Learning
from augmented strings also reduces the search space bgtawbiactor, whose size is shown
above to be dependent on the content of the string. In ordereate augmented strings a
mapping is required from the words in the string to their seticaepresentation. Section 4.4
below describes a mechanism by which free order semantieseptations may be mapped to
their associated words.

4.4 Mapping Words to their Semantic Representation

In order to create augmented strings from real world dagneicessary to provide a mapping
between words and their semantic representations. Piikérhd Siskind [93] have offered
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methods for how children map parts of semantic expressmmsdividual words. Following
these methods, Buttery [19] implemented a semantic leahagrcan be used to provide the
word-meaning mapping required to form augmented strindgp ifputs to this learner are ut-
terances annotated with semantic representations andtjingt @ a lexicon of word-to-meaning
mappings.

For this work Siskind’s cognitive model [93] is assumed. sTisi a simple model representing
the interaction between a speech perception system andcamoal system. On hearing an
utterance, the purpose of the speech perception systerrnsak up the acoustic signal and pass
a series of word symbols to its output. At the same time, thneeptual system is responsible
for producing semantic hypotheses for the utterance.

augmented strings
SEMANTIC MODULE —

Tword symbols

————————————————————————————————————————

observations audio signal

<>

= I

The word symbols (produced by the speech perception systawe) thus far been written in
italics; the semantic symbols (produced by the concepitstem and forming the constituent
parts of the semantic hypotheses of an utterance) have betenwn bold. So, a child hear-
ing the utterance “Kitty eats biscuits” would theoretigafiroduce the word symbolKitty,
eatsand biscuitsfrom their speech perception system. If the child was siamadously ob-
serving the cat eating something they would hopefully alsmpce the semantic expression
EAT biscuit’kitty’ from their conceptual systefn.

A possible problem with the conceptual system is that itd@ubduce an infinite number of se-
mantic hypotheses for a given utterance. Siskind avoidsaitiblem by stating that the learner
will only entertain likely semantic hypotheses. However, does not specify the distinction
between likely and unlikely. Pinker [76], on the other hasulgests that semantic hypotheses
are constrained for two reasons: first, they are constrdige¢tle semantic structures that con-
stitute mental representations of a word’s meaning (thisfisrred to as the Universal Lexical

3Note that the conceptual system need not only rely on visbsgvation to produce semantic hypotheses.
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Semantics [48] and is somewhat analogous to Chomsky’s Wsav&rammar for syntax); sec-
ondly, hypotheses may be constrained by the way the chaégisdn is constructed—it seems
that children are fairly unwilling to admit true synonymstteir lexicon and consequently a
child would rather not hypothesise an existing word’s megiior a new word [25]. Even when
these constraints are taken into account there may stit\mral plausible semantic hypotheses
for a given utterance. The conceptual system is therefqreat®d to produce a set of semantic
hypotheses.

The output of the the speech perception system and the cotegystem are simulated as
follows:

Simulation of word symbols: Segmenting an audio signal to produce word symbols is not a
straight-forward task [9]; speech doesn’t contain anyal#é markers analogous to the
blank spaces between words in English text. For adults seggtien is an easier (al-
though not fool-proof) task. For this task we will assume lyfdeveloped speech per-
ception system; i.e. we will not deal with a child’'s segméntaproblem. The output of
the system will be very simply simulated by using a writtenpes; the symbols required
can be simply created from the textual representation df atierance.

Simulation of the semantic hypothesesSimulating the output of the conceptual system is
more difficult. The approach used here was to parse uttesargirg an existing gram-
mar and then extract the semantic representations prodluetdhe set of all semantic
representations be callédm. The set of semantic expressions hypothesised for an input
utterance is then simulated by selecting a subsStef. This method gives control over
how much noise the learner is exposed to; at one extreme tloé sSemantic hypotheses
could contain the one single correct hypothesis and at ther @xtreme many incorrect
hypotheses.

4.4.1 Mechanics of the Semantic Learner

The mapping mechanisms of the semantic learner are basadlkond% investigation of Cross
Situational Techniques [93] and include the following: s3@ituational learning; covering con-
straints; constraining hypotheses with partial knowledge using the principle of exclusivity.

Cross Situational Learning: cross situational learning has been suggested as a method of
learning for hundreds of years but more recently by Pink&i} Bfnongst others. The
theory speculates that lexical acquisition may be achibydthding the common factors
across all observed uses of a word. Hearing a word in enougiexts should therefore
allow the learner to rule out all incorrect hypotheses antveme on a unique meaning.

For a trivial example consider the utterances “Naomi lalighsl “Naomi eats cookies”.
They would have word symbol sets and semantic expressidiof@ss:

{naomij laughg +~ LAUGH’naomi’
{naomj eats cookie§ +— EAT’cookie’naomi’

From these two utterances it is possible to ascertain tlean#aning associated with the
word symbolnaomimust benaomi’ since it is the only semantic element that is common
to both utterances.
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Covering Constraints: the idea of covering constraints is essentially the revefseross-
situational learning. The idea requires that the semampeession representing a com-
plete utterance is built up only from the semantic expressi@lating to words within
that utterance, i.e. it doesn’t contain any external semmarformation.

Consider the situation where the semantic mapping for albbetof the word symbols
is known. The semantic expression associated with the fioed wymbol is necessarily
what is left over when all the known semantic expressionsar®ved from the expres-
sion representing the entire utterance.

Consider the example “Grinch hates Xmas”. If the followinglieady known:

{grinch, hates Xmag +— HATExmas’grinch’
grinch — grinch’
hate — HATExy

Then the necessary conclusion is:
Xmas +— xmas’

Principle of Exclusivity: the principle of exclusivity becomes useful when word-megmap-
pings have already been acquired. The principle is basetdewobrk of Berwick [3],
requiring that each word in an utterance contributes a nemlapping portion of the
meaning.

For instance, given the utterandi@ah likes milkwith the hypothesised meanib¢)KE'milk’dinah’
and the previous knowledge that the word symiliolah maps todinah’ and thatmilk

maps tamilk’ . Thenlike must map ta.IKE’xy rather tharIKE'milk’y , orLIKE’xdinah’ ,

or evenLIKE’'milk’dinah’ because these latter semantic constituents would oveithp w

the constituents associated witimahandmilk.

Constraining Hypotheses with Partial Knowledge: cross situational learning and covering
constraints are most useful if the correct semantic exfmess known. In the situa-
tion where there are several semantic hypotheses, the sereamner first attempts to
reduce the number before applying these techniques.

Hypotheses can be constrained by removing all those thatngassible given what has
already been learnt. To show how this works, imagine thenkrdnras heard the utterance
“Mice like cheese” and hypothesised the following semaatigressions:

LIKE'cheese'mice’ (4.23)
MADEOF'cheese'moon’ (4.24)
MADEOF'cake'moon’ (4.25)

If it has already been established tltdieesemaps tocheese’then 4.25 can be ruled
out as a possible meaning since it doesn’t contain the nagesemantic expression.
Hypothesis 4.24, however, can not be ruled out. The leamliggyithm attempts to learn
from all remaining hypotheses. If all semantic hypothesesaled out then the learner
assumes that one of the words in the utterance has multiptese
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In an ideal situation a child will hypothesise the correctamag for every utterance heard.
However, assigning a meaning is not straight-forward;aheunlikely to be only one obvious
candidate. When the correct meaning is not hypothesiseut, legis been introduced. An error
of this type introduces a false association between worchamhing. To combat this problem
a statistical error handler can be adopted: a confidence seorbe assigned to word meanings
according to their frequency and consistency. Word meanimgose confidence scores fell
below a threshold value can be systematically pruned.

4.4.2 Forming Augmented Strings

To recap, for each utterance heard the learner receiveanstream of word tokens paired
with possible semantic hypotheses. For example, on hetirengtterance “Dinah drinks milk”
the learner may receive the pairingd{nah drinks milk}, DRINK’'milk’'dinah’ ). The seman-
tic learner attempts to learn the mapping between word ®ked semantic symbols, building
a lexicon containing the meaning associated with each wendes this is achieved by using
cross-situational techniques. The learning system tharcesate augmented strings by using
the Principle of Categorial Type Transparency; allowingibagntactic information to be in-
ferred from the semantic type and thus producing augmemtegs. Remember that, from the
semantic expressioRINK’ milk’ dinah’ ) we know thatDRINK’ is a two argument pred-
icate. Hence, the syntactic category of “drink” will als&eawo arguments. This knowledge
can be represented in a skeleton syntactic categod{ B where A, B,C' € Tp and| is a
variable ovel\ and/. An innate mapping is assumed from semantic entities toifivertypes.

In terms of a real learner this primitive-type-mapping isigglent to having an innate ability to
recognize groups of entities linked by some common theme tlzen labelling all the entities
in that group with the same mental tag. This can’t be too fewbht children must actually do.
For instance, it seems probable that children are innatedyeof the concept of an object [71]
and might therefore label books, tables and chairs with dineesobject tag.

In summary, to form augmented strings from the pairifdjrifah drinks milk}, DRINK’'milk’'dinah’ )
a learner has to:

1. segment the utterance on word boundaries using the speemdption system;
dinah, drinks milk
2. hypothesise a semantic expression for the utterancg tr@rconceptual system;
DRINK’'milk’dinah’
3. map parts of the semantic expression to word tokens usengegmantic learner;

DRINK'milk’dinah’

{dinah drinks milk}
dinah — dinah’
drinks — DRINK'xy
milk +— milk’

4. use the Principle of Categorial Type Transparency and lednye of primitive types to
assign skeleton categories to words; thus forming an autpuestring.
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dinah — np
drinks — (A|B)|C
milk — np

where A, B,C' € Tp (the set of all categorial grammar types—primitive or otiee)
and| is a variable ovek and/.

dinah drinks milk

| | |
np (A|B)[C np

Note in this case we could have directly inferred the mappingks— (A | np) | np
since the arguments ORINK’ were semantic entities which map directly to primitive
types. We use the mappimlginks— (A | B) | C here (and in the following chapters) to
illustrate the more general cases where the type of the angtsnare unknown.

Augmented strings are simply a method of representing hevedarch space of parses is con-
strained by the unordered semantic representation. Thehagter will describe how concepts
from the previous categorial grammar learners of BuszkoastiWaldron/Villavicencio may
be updated and combined to form a new categorial grammardeénat can learn from real
data; using augmented strings to constrain the search sp@ossible parses by representing
the information provided in the associated semantic form.
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Chapter 5

The Categorial Grammar Learner

Section 4.2.2 of Chapter 4 detailed Buszkowski’s algorithij f& learn rigid classic-categorial
grammars from a set of functor-argument structures. Kamaf49] modified this algorithm to
learnk-valued categorial grammars by introducing partial untfaza Further, he showed that
k-valued categorial grammars may also be learnt from a sdtinfjs. Simple modification to
these algorithms allowed the input to be a stream ratherdtsat (in line with Gold’s learning
model). In this Chapter (Section 5.1) we will adapt this allfpon to learn from augmented
strings, which (as discussed in Section 4.3) are structhegd®mbody the constraints placed on
possible parses by the semantic representation of a s8awion 5.2 details further alterations
that must be made to the learner in order for it to learn froal data. These improvements
to Buszkowski's learner are inspired by the work of Villavice’s parameter learner [104]
(see 4.2.1 for a summary). Section 5.3 provides a stepdyyestample of the operation of the
Categorial Grammar Learner.

5.1 Learning from Augmented Strings

As described in Section 4.2.2, there are three main sediioagieneral algorithm for learning
a k-valued classic-categorial grammar from a stream of sirspirgs:

Step a—Form Search-Spaceform a set¥ of all possible functor-argument structures to
describe the new string.

Step b—Hypothesise Grammars:lterate through?”’ assigning types to each functor-argument
structure. Unify (using partial unification) the assignggets with the current grammar.
If unification fails, then fail, else add possible grammagtammar set(x.

Step c—Select Grammar: Choose one grammar from 9@t

The complexity of the algorithm is critically dependent ¢ Size of.” since we must iter-
ate over this set istep b. When learning from a stream of functor-argument struct(ass
Buszkowski originally suggested)y had a cardinality ofl; when learning from strings of
lengthn it will have a cardinality o™ 1.

To understand this let’s considetep bin more detail. To learn from a stream of simple strings,
types must be assigned to every possible functor-argunrerttsre of the current string. As
explained in Section 4.3.5 a string of lengthwill produce a number of functor-argument
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structures bounded 87 ~!. Therefore, for strings of length, the learner has to make around
8»~! jterations ofstep h

Section 4.3.5 showed that simple strings carry minimumrmttion content and therefore pro-
duce the maximum possible number of functor-argument &ires as possible parses. Using
other types of sentence objects as input to the categoaaimar learner would reduce the size
of . and thus reduce the complexity of the algorithm. For gersasé we can rewritstep a

of the algorithm as:

Step a—Form Search-Spaceform a set¥ of all possible functor-argument structures to
describe the new sentence object.

In general, note that by expressing the input to a learnerig of sentence objects it is possible
to contextualise the complexity of the problem the learaeoiving.

Section 4.3 postulated that augmented strings carry a nogeitosely realistic data content
than simple strings. Augmented strings were word tokangmented”by some extra syntactic
content which could be derived from semantics. By learniogifaugmented strings the search-
space is reduced by a constant factor, whose size is defdentire extra syntactic information
provided with the string (see Section 4.3 for a discussion).

The basic algorithm for learning from a stream of augmentiedgs is similar to that for learn-
ing from a stream of simple strings; the difference beingti@asearch-space (the size of s€t

is smaller. As mentioned in the previous Section 4.2.2, Kana proved thak-valued clas-
sic categorial grammars may be learnt from strings. Singenamted strings carry the same
(and more) information it is also possible to ledrvalued classic categorial grammars from
augmented strings.

5.2 Improving the Categorial Grammar Learner

Natural language can not be modelled using the rule of fan&pplication alone (as discussed
in Section 4.1.2). This section discusses improvementsgacategorial grammar learners that
make it possible to learn from real language examples. Afdgieater range to the describable
language will obviously increase the hypothesis-spac#af/ad grammars (referred to &sin
Gold’s language Model—Chapter 3). Steps are taken to reduoglexity; for instance, rule
selection is guided by a set of heuristics. In addition, sdongicated effort in the unification
step is removed by looking up word types in the lexicon befggigning types. A memory
module is introduced to help in the procedure of selecting grammar from the many pro-
duced. Kanawaza's method of selecting a grammar is expahémthe size of the grammars;
the method suggested here is linear—involving a serieslmfateons based on the current state
of the memory. Additionally, the statistical methods usednaintain integrity of the Memory
Module ensure that the learner is robust to noise in the idptd. The improvements to the
categorial grammar learner are discussed with relevanaegmented strings, as this the most
appropriate type of sentence object for learning problewslving real data.

5.2.1 Introducing a Memory Module

The Memory Module is used as an aid to the learner in selectgggrammar from the many
produced. The categorial grammar learner can be entiraltitnal without its memory; gram-
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S

/\

s/s s\np

/\
(s\np)/np  (s\np)/{s\np)

Figure 5.1: A fragment of a categorial type hierarchy

mars could be selected by the same method as Kanazawa. Hptheuwese of a memory signif-
icantly speeds the process of selecting one grammar fromémg hypothesised. The method
Kanazawa uses to select a grammar is exponential to the sibe grammars (see Section
4.2.2). The method used here is linear: every item in eacmma’s lexicon is checked for
validity with respect to the current state of the memory.

Inspired by Villavicencio’s categorial and word-order gianeters (see Section 4.2.1), the Mem-
ory Module records details of two distinct features; thera itype memory and a word-order
memory. There is no interaction between the two parts of temary.

Type Memory

The lexicon for a language contains a finite subset of alliptest/pes (a subset afp), the size

of which depends on the language—Pullum [82] suggestsan&rfglish the lexical functional
categories never need more than five arguments and that dhreseeeded only in a limited
number of cases (such as for the vediin the sentencébet you five pounds for England to
win).

Unlike Villavicencio’s parameter learner (which is rested to 89 categories) the Categorial
Grammar Learner is completely unrestricted in the categatiis allowed to hypothesise for a
word. The type memory is used to keep track of which types baea inferred from the stream
of language examples thus far. The memory then facilitatesmar selection by placing con-
straints on the hypothesised set of gramme@rshased on its current content.

Following the principles of Villavicencio’s UG, the type mery is structured as a hierarchy.
Recall that complex types of a categorial grammar are a catibmof simpler types: thus,
types may be arranged in a hierarchy with more complex typlesriting from simpler ones.
Consider a categorial grammar with primitive tyges = {s, np}. Figure 5.1 shows a fragment
of a possible hierarchy.

A type is set to ACTIVE within the Type Memory if it has been sessfully inferred by the
categorial grammar learner: [8Lcr;vr = {all ACTIVE type$ and let all primitive types be
ACTIVE by default Pr C Tscrve. A type j is considered to be the direct descendant of
another typek, if 7 has one extra argument tharmand that argument is already ACTIVE in the
hierarchy (i.eargument € Tacrrve). Originally only the primitive types are ACTIVE. Types
are deemed POSSIBLE if they are the direct descendant of an\AECType. All other types
are INACTIVE (see Figure 5.2).

The grammar set returned by the leari€ey,can be reduced in size by excluding grammars that
contain INACTIVE types. Let the hierarchy abové,, be the current state of the Type Memory
and assume that the learner has returned gramme&¥ se{ G, G, }.
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np - ACTIVE s - ACTIVE

s/s - POSSIBLE s\np - ACTIVE

(s/s)/np - INACTIVE (s\np)/np - POSSIBLE (s\np)/(s\np) - POSSIBLE

Figure 5.2: An example state of the Type Memory

Gy wordl

word2

l

np
s\np
(s\np)/np

l

l

word3

G4 : wordl

word2

l

np
s\np
(s/np)\np

l

|

word3

We can exclude gramma#, because the type/np)\np is inactive.

Word Order Memory

The Word Order Memory keeps track of the underlying order imclw constituents appear.
The information it stores is extracted directly from senm@mobntent associated with the input
stream. We assume that a child associates a role (or arguyppentwith each argument of a
predication. For instance, let input string “Dinah likego&!’ be associated with the semantic
representationL{KES’alice’dinah’ ); in this case we assume that the child knows thaah’

Is the actor andlice’ is the undergoer. The Word Order Memory wotildmember” that the
actor was found on the left of the word associated with theipation and the undergoer was
found on the right.

This might be represented in the Word Order Memory as:

W;: UNDERGOER-DIRECTION: /
ACTOR-DIRECTION: \
ARG1-DIRECTION: |

GENERAL-DIRECTION |

where/ indicates that the argument is generally found on the rigimdicates that the argument
is generally found on the left arjJdndicates that a directional tendency is yet to be found. The
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directions of arguments within the memory are maintainegistically. The mechanism for
this is explained in Section 5.2.2 below. GENERAL-DIRECTIONefs track of the overall
directional tendency.

Now, let W, be the current state of the Word Order Memory. Assume thadetdraer has been
exposed to a sentence containingrdl word2 with a semantic representation that indicates
thatwordlis the actor ofvord2 The learner has returned the grammarGet {G,, G»}

G1:wordl — np

word2 — s\np

Gy :wordl — np
word2 — (s\np)/np

GrammarG, is chosen oveérs because the type\np takes arguments from the left, which is
the general preference for the locatioraatorsin this language.

5.2.2 Setting the Memory and Memory Integrity

In order to combat noisy data a statistical method is useddiatain confidence in the settings
of the Memory Module. For every POSSIBLE and ACTIVE categ6rga count is keptp(C),
which is the number of times that category has been hypaesince it became POSSIBLE.
Now let N = > n(C) andN; be the sum of alh(C') for C' that occur at level in the hier-
archy; lete be a threshold value between 0 and 1. If at the end of the dutezation any of
the POSSIBLE categories occurring in Iev’ejatisfy%ci) > ¢ then they become ACTIVE. If

any of the ACTIVE categories at Ievebatisfy%f) < e then they revert to POSSIBLE and all
of their children become INACTIVE. Hence ACTIVE tags are onssigned when sufficient
evidence has been accumulated, i.e. once the associatebpity reaches a threshold value.
By employing this method, it becomes unlikely for memoryisgt to fluctuate as the conse-
guence of an erroneous utterance. The Word Order Memonatgsesimilarly but with both a
low and high threshold to determine when to switch betwesrd\ or | and/.

Type Memory: an ACTIVE tag will only become set once enough evidence has desumu-
lated; i.e. once a threshold value is reached.

Word Order Memory: each direction tag is associated with a value between 0 athek 1ag
will remain as| unless it exceeds or subceeds a threshold.

5.2.3 Reducing Duplicated Effort

Consider the stringmice scare elephantdcats scare miceSince the use afcareis identical
in each string, it is a wasted effort for the categorial graantearner to infer the type afcare
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from both. If the learner is accurate, the typesoérewill be inferred correctly the first time it
IS encountered.

In order to reduce duplicated effort in type assignment anification, the words of the current
string may be looked up in the current gramm@r)(and assigned directly if appropriate:

Let the current grammar be:

G;:you — np

eat — s\np

Consider the input strinjons eatwith semantic representatidéAT’lion’ . This gives the
following augmented string:

Lions eat

| |
np Al|B

Looking upeatin the lexicon will return the type\np. Theskeleton typed | B unifies with
s\np so itis directly assigned.

Lions eat

np s\np

If the skeleton type does not unify with any lexical entryrilr® assignment is made; the type
must be inferred. If there is more than one lexical entry Whidl unify with the skeleton type
then the most likely (according to the Type Memory) is chosen parse failure, the next most
likely type is selected—if no more types are available thendriginal skeleton type is used.
The benefit of this methodology is to build on previous knalgle; as alluded to in the study
of subcategorization frames in child speech and discusdiBnown'’s stages (see Section 2.2.1
of Chapter 2). Assigning types can greatly reduce the sespabe (the number of possible
functor-argument structures) and also place constrapda tiow the rules might be used.

5.2.4 Using Additional Rules

Another improvement to the basic categorial grammar leas® add the rules of function
composition and Generlised Weak Permutation (GWP); whiehrequired to capture non-
constituent co-ordination and relative clauses etc. Thavatmn for selecting these particular
rules is primarily based on the corpus we use for testingldamer. Villavicencio [104] built
a grammar to describe a section of the Sachs corpus of CHILBERSUEing the rules of ap-
plication, composition and GWP; we shall evaluate perforreaof our learner against this
grammar. Furthermore, use of function composition is saashdor capturing non-constituent
co-ordination. In general, we have no particular prefeegioc using GWP over type raising in
order to capture co-ordinate structures and unboundechdepeies. However, see Chapter 4
in Section 4.1.3 for a discussion of why GWP is preferablelics learning problem. Note that
use of GWP is restricted to use at the leaves of a derivation.

The algorithm is updated by selecting rules at each binaaypdir node according to a set of
heuristics. The following table lists the heuristicsrepresents a primitive type: (¢ Pr), A
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represents a non-primitive typd (€ TpAA ¢ Pr), K represents a fully specified non-primitive
type at a leaf node.

Scenario: Action:
Q) ? Fail.
/\
r X
(2) ? ? Apply function application. On failure, con-
/\ /\ sider heuristic 4. If heuristic 4 is not applicable,
v A A w then fail.
3 ? Apply function composition. On failure, apply
AN function application. If application fails, then
A A consider heuristic 4.
(4) ? ? If K is a fully specified non-primitive type and
is situated at a leaf node then allow Generalised
A K K A Weak Permutation. If permutation fails then
fail.

wordl word2 wordl word2

Since we always know something about the type of each lead,iliristics are always applied
from the leaves upwards. A failure percolates down the piaeseto the nearest node where a
next choiceoption still exists. When there are no next choice optiortstleé whole parse fails.
Heuristic (3) allows function composition to proceed infgrence to function application. This
heuristic is necessary for the scenario when both compasaind application will lead to valid
parses but the parse using application produces an overagem.

s [<] s [<]
np s\np_[>] np s\np [>]
(s\np)/np [> B np (s\np) /np [>] np
(s\np)/(s\np) (s\np)/np ({s\np) /np) J{(s\np) /np)  (s\np) /np

Heuristic (4) stops the blow up in complexity that would natly accompany the addition of
the rule for Generalised Weak Permutation. The rule is usgdas a last resort and may only
be applied at the leaf nodes.

The basic algorithm has now been updated as follows:

Step a—Form Search-Spacel ook up the string’s words in the current grammét;X. Make
assignments if appropriate (see Section 5.2.3). Form a%gof all functor-argument
structures to describe the new augmented string.

Step b—Hypothesise Grammars:For eachs, € .

Step 1: Assign types to the structure:

(A) Assign sentence type to root node.

(B) (a) Infer types for remaining nodes using rules of functapplication, func-
tion composition and Generalised Weak Permutation in a@esore with
the heuristics.
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(b) If (a) fails then, if there are more possible type assignts (including the
skeleton type), repeat fro@tep ausing the next most likely assignments,
else exit.

Step 2: Create new grammafy; ), by adding types at leaf nodes to the sets of types in
the current lexicon or by adding a new entry where necessary.

Step 3: Unify the sets of types in lexical entries 6f ..

Step 4: If Gy is unique (i.e. not a duplicate of another possible gramntiagn add it
to the selG.

Step c—Select Grammar: Select one grammar frofd using the Type Memory and the Word
Order Memory (as explained in Section 5.2.1). Update the btgriviodule settings.

5.3 Categorial Grammar Learner—Worked Example

This Chapter is best illustrated by example. For the purpbdlestration a non-noisy context is
assumed (no thresholds); consequently Memory Modulagstthay be altered on the evidence
from a single input. The improved categorial grammar leawik be tracked as it learns from
three stringslions eat you eat biscuitsandlions might eat you

Let the current grammak;, current Type Memoryd; and current Word Order Memo#y’; be

as follows:

Gi:
eat — s\np
you — nmp
H;:
top
np-ACTIVE  s-ACTIVE
|
s\np - ACTIVE
Wi

ACTOR-DIRECTION: \
GENERAL-DIRECTION: /

The learner now encountess= lions eat with associated semantic cont&AT'lion’ , where
lion’ is the actor oEAT’ . The augmented string will be:

Lions eat

np Al|B
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Step a—Form Search-SpaceThe wordeatis in the lexicon and its type;\np, unifies with
A | B giving:

Lions eat

np s\np

The presence of the primitive typep, forces backward application; consequently there
is only one possible functor-argument structurg€ .&):

7 <

np s\np

Step b—Hypothesise GrammarsUsing heuristic (2) we arrive at the following valid parse
tree and grammar:

s [<]

np s\np

Gia) 1 eat — s\np
lions — np

you — mnp

There are no unknowns in the grammar so there is no need tp unif

Step c—Select Grammar G, is the only grammar it. G, is selected to become the new
current grammai;, 1; none of its types are INACTIVE in the Type Memory. The Mem-
ory Module settings are recalculated as described. Thetsdanthe ACTIVE tags\np is
incremented, as is the “leftwardness” of the ACTOR-DIRECTION #re GENERAL-
DIRECTION. The “rightwardness” of the GENERAL-DIRECTION is coadicted but
for this example we shall say it is not enough to switch theéirggt this would mean
that the current utterance has not provided enough evidenoetweigh the previously
accumulated evidence for this setting.

Gii:

eat — s\np
lions — np

you — np
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Hiyq:
top

np - ACTIVE s - ACTIVE

|
s\np - ACTIVE

Witr:

ACTOR-DIRECTION: \
GENERAL-DIRECTION: /

The next string to be encountered@u eat biscuitswith associated semantic cont&#T biscuit'you’ ,
whereyou’ is the actor oEAT’ andbiscuit’ is the undergoer. The augmented string will be:

you eat biscuits

np A|B|C np
Step a—Form Search-SpaceThe wordeatis in the lexicon,G,,4, but its type,s\np, does
not unify with (A | B) | C.

Due to the presence of two primitive types there are only tassble functor-argument
structuress,, s, € .7

y_{ > : < }
/\ /\
< np np >

np A|B|C A|B|C np

Step b—Hypothesise GrammarsUsing heuristic (2) we arrive at the following valid parse

trees and grammars:
sl sld

s/np [<] np np s\np [>]
/\ /\
np (s/np)\np (s\np)/np np

Git1(a) : biscuits — np
eat — s\np, (s/np)\np
lions — np
you — mnp



Giy1p) : biscuits — np
eat — s\np, (s\np)/np
lions — np
you — np

There are no unknowns in the grammars so there is no needfyo uni

Step c—Select Grammar G, 1 is selected as the new current gramngat,,; the type(s/np)\np
in grammarG; () is INACTIVE in the Type Memory where as tyge\np)/np (from
Gi+1»)) is POSSIBLE. The memory module settings are recalculakedag for(s\np) /np
is set to ACTIVE; the UNDERGOER-DIRECTION is activated; the “feftrdness” of
the ACTOR-DIRECTION is reinforced; and the “rightwardness” bé tGENERAL-
DIRECTION is both contradicted and reinforced, thus remamionstant.

Giyo:
biscuits — np
eat — s\np, (s\np)/np
lions — np
you — mp
Hipo:
top
np - ACTIVE s - ACTIVE
|
s\np - ACTIVE
|
(s\np)/np - ACTIVE
Wiya:
ACTOR-DIRECTION: \

UNDERGOER-DIRECTION: /
GENERAL-DIRECTION: /

The final string to be encountered lisns might eat youwith associated semantic content
MIGHT'(EAT'you’lion’) , whereEAT’ is the argument oMIGHT’ . The augmented string
will be:

lions might eat you

np A|B A|B|C np
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Step a—Form Search-SpaceThe wordeat is in the lexicon (+;,,.2) and one of its types,
(s\np)/np, unifies with(A | B) | C.

There are 10 possible functor-argument structure®’inThe ? symbol is being used as
shorthand for> or <:

Say Sb - 7 S, Sq >
/\ /\
< > { n
A5 (e -y p
np s\np)/np np < s\np)/np
RN
np A|B
Se, Sf - < Sg,Sh : <
/\ /\
np ? np >
/\ /\
A|B > ? np
TN
(s\np)/np np A[B (s\np)/np
Siy Sy - >
/\
< np
/\?
np /
/\
A|B  (s\np)/np

Step b—Hypothesise Grammarss,, s;, s.,, s¢ ands; fail to parse.s., sy, s,, ands;, succeed,
making use of both heuristics (2) and (3) succeeds using only heuristic (2).

Sy S ¢ s [<]
np s\np [< B]
np\np W
(s\np)/np  np
Sy Sh s [<]
np s\np_[>]
(s\np)/np [> B] np
(s\np)/(s\np) ~ (s\np)/np
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s/np [<]

np

((s/np)\np)/{(s\np)/np)

Giving three unique grammars:

Giito(e) © biscuits
eat

lions

might

you

Gita(g) : biscuits
eat

lions

might

you

Gliyo@s) © biscuits
eat

lions

might

you

L L

L

s [>]
np
(s/np)\np [>]

(s\np)/np

np
s\np, (s/np)\np
np

np\np

np

np
s\np, (s\np)/np
np
(s\np)/(s\np)

np

np
s\np, (s\np)/np

np
((s/np)\np)/((s\np)/np)

np

Step c—Select Grammar G, o, is selected as the new current gramngay, ;. This is be-
cause i) the typé(s/np)\np)/((s\np)/np) from grammarG, ., is INACTIVE in the
Type Memory; ii) without any memory data relating specifigab the type of argument
thatmighttakes, grammag;, ;) is chosen ovety;, ) since the types\np)/(s\np)
takes arguments from the right, which is the general prat&ef the language. The
Memory Module settings are recalculated: the tag(#dmp)/(s\np) is set to ACTIVE;
the ARG1-DIRECTION is activated (since ARG1 is the type of argutteken byMIGHT’ );
and the “rightwardness” of the GENERAL-DIRECTION is reinfodce
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Giys:

biscuits — np
cat — s\np, (s\np)/np
lions — np
might —  (s\np)/(s\np)
you — np
His:
top
np - ACTIVE s-ACTIVE
|
s\np - ACTIVE
(s\np)/np - ACTIVE  (s\np)/(s\np)
Wiis:
ACTOR-DIRECTION: \
UNDERGOER-DIRECTION: /
ARG1-DIRECTION: /

GENERAL-DIRECTION: /

5.4 Categorial Grammar Learner Summary

This chapter has described a Categorial Grammar Learnesdhdearn from streams. In order
that it may describe real languages, the learner opera®gactic categories using the rules of
function application, function composition and Generdi¥Veak Permutation. This introduces
complexity over a learner that just uses the rules of funcéipplication. In order to reduce
complexity, heuristics are employed to guide rule selectidhe introduction of a Memory
Module serves two major functions: the first is to aid in thkesgon of one grammar from
the many hypothesised; the second is to make the learnestrathe noise that is present
in real linguistic input (see Chapter 6). The Memory Modulenpoises of two sections; the
Type Memory, which records the syntactic categories thee ln@en learnt and how often they
have been seen; and the Word Order Memory, which recordsitetidnal tendencies of the
language. By expressing the Type Memory as a hierarchiaadtate, constraints are placed
on the syntactic types that the learner is allowed to hymiglkee a type may only be learnt if its
direct parent has been learnt. Thus, the learner builds leam& incrementally (as alluded to
in Chapter 2).
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Chapter 6

Evaluation of Model

In this chapter the Categorial Grammar Learner (CGL) will fimetevaluated with respect to
other parameter based learners. In Section 6.1 we compaoh#nacteristics of the CGL with
general parametric learners. In particular the influen@ndfdifferences to the Waldron/Villav-
icencio Learning System are discussed. Section 6.2 th&s ktdhe efficiency of the CGL when
learning within an ideal (noiseless) environment. Its perfance is evaluated and compared
to the Triggering Learning Algorithm and the Structuralgyers Learner within Gibson and
Wexler’'s 3-parameter grammar-space. In Section 6.3 tHewadd validity of the model will
be demonstrated with experimentation to show that the CGUezmm from real (noisy) data.
Finally in Section 6.4 the model’s developmental comphtybwill be discussed with reference
to Brown’s stages and the subcategorization frame acauisexperiments that were detailed
in Chapter 2.

6.1 Comparison to Previous Parameter Based Learners

The properties of the parameters used by the CGL are as folljparameters are lexical; pa-
rameters are organised hierarchically; parameter saeftisigtistical.

Lexical Parameters: The CGL employs parameter setting as a means to acquire arexic
differing from other parametric learners (such as the Tergyg Learning Algorithm
(TLA) [39] and the Structural Triggers Learner (STL) [38B0]), which acquire gen-
eral syntactic information rather than the syntactic propg associated with individual
words?

The categorial grammar parameters of the CGL are concernbddefining the set of
syntactic categories present in the language of the enmieah Converging on the correct
set aids acquisition by constraining the learner’s hypmiieel syntactic categories for an
unknown word. A parameter (with value of either ACTIVE, INAG/E or POSSIBLE) is
associated with every possible syntactic category to atdizvhether the learner considers
the category to be part of the target grammar.

Some previous parametric learners (TLA and STL) have beiemapity concerned with
overall syntactic phenomena rather than the syntacticgutigs of individual words.
Movement parameters (such as ie¢ parameter of the TLA) may be captured by the

1The concept of lexical parameters and the lexical-linkihgarameters is to be attributed to Borer [8].
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who grinned

cat  (n\n)/(s/np) ~ s\np
>

the n n\n was disappearing
— . S /() s\
np s\np
<

the cat who grinned
was .

s/(s\np)/np np disappearing?

>
s/(s\np) s\np

>

Figure 6.1: Illustration of the interrogative “was the cdtwmgrinned disappearing?”.

CGL using multiple lexical entries. For instance, Dutch aretr@an word order is cap-
tured by assuming that verbs in these languages have twgocegg, one determining
main-clause order and the other subordinate-clause orBgysre 6.1 illustrates how an
interrogative may be derived by using multiple lexical exgr The word “was” has two
entries in the lexicon; one determining auxiliary form ahd bther interrogative form.

Hierarchical Parameters: The complex syntactic categories of a categorial grammaraar
subcategorization of simpler categories; consequentlygcaies may be arranged in a
hierarchy with more complex categories inheriting from glien ones. Figure 6.2 shows
a fragment of a possible hierarchy. This hierarchical omgion of parameters provides
the learner with several benefits. The hierarchy can enfancerder on learning; for
instance in the CGL presented here, a constraint is imposgdtkat a parent parameter
must be acquired before a child parameter (for example,dgaorgi6.2, the learner must
acquire intransitive verbs before transitive verbs may yjgothesised). Another possi-
ble function of hierarchical parameters is that values maynberited as a method of
acquisition. Such a CGL was implemented by Villavicencio]JLO

S

/\

s/s s\np

/\
(s\np)/np  (s\np)/{s\np)

Figure 6.2: Partial hierarchy of syntactic categories

Statistical Parameter Setting: The CGL uses a statistical method to track the relative freque
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cies of parameter-setting-utterances in the input. Sudpanoach sets parameters only
if there is enough accumulated evidence. This representsrngpromise between two
extremes: implementations of the TLA are memoryless aligwarameter values to os-
cillate; while some implementations of the STL set a paramence, for all time. The
CGL uses a threshold value to indicate when enough evidersded®n accumulated. An
alternative method would be to maintain a probability distiion over parameters as in
Yang’s Variational Learner [109]. However, this method slo®t seem appropriate in
this case since parameters (possible type categoriespapedefined before learning
commences.

A further difference between the CGL and most parametriciearis that it induces its gram-
mar from string/semantic representation pairs (by mearsaugmented string) rather than
from a simple string alone. However, this has similaritigwhe very recent work of Zettle-
moyer and Collins [112] in that both systems infer a combinatmategorial grammar from
string/semantic representation pairs; although Zettienand Collins’ CCG uses type-raising
instead of permutation. The basic principles of the tworlees are very similar; the difference
is in the application and implementation. For instancehaathan use a memory module to
select between hypothesised grammars, Zettlemoyer ansh€o#e dynamic programming to
create a probability distribution over parses. Furtheemdettiemoyer and Collins use prede-
fined trigger rules to hypothesideof 8 possible syntactic categories. The CGL, on the other
hand, is not constrained by a set of possible categorieg;iohe order that it acquires them.
All said, the systems are trying to solve two different pesbs. Zettlemmoyer and Collins
are mapping natural language interfaces to database guetiereas the CGL attempts to be
cognitively plausible and developmentally compatiblewitiman learning.

6.1.1 Influence of and Differences to Waldron/Villavicencio Learniig Sys-
tem

The Waldron/Villavicencio Learning System (see Sectigh}.provides the inspiration for the
Memory Module of the CGL. Villavicencio defined the Principlef a Universal Grammar to
be a subset (cardinaligp) of all the possible categorial grammar categories that tgkto five
arguments. These syntactic categories are arranged inaadhig so that child types can inherit
syntactic/semantic information from their parents. Theap@eters of this Universal Grammar
are embedded within the hierarchy. For instance, eachaatégs a categorial-parameter (e.g.
intransitive-paramet@rthat will take a Boolean value. If the category is active ia turrent
grammar then this attribute is setttoe; otherwise it idalse A categorial parameter can be set
to true if its associated trigger has been detected and if its dpacgnt in its group hierarchy
is also true. The CGL adopts this type of category hierarcliyadso the criteria for category
activation. However, the major difference between Vilkarncio’s Universal Grammar param-
eters and the CGL Memory Module is that Villavicencio predediparameters (and syntactic
categories) before learning commences; this approachresgan increase of innate knowl-
edge. The CGL Memory Module requires no predefinition; it igtlwuring acquisition as a
consequence of the categories acquired and of the arguoiesess/ed in semantic expressions.
Furthermore, in Waldron/Villavicencio’s system, the @mtr grammar plays no part in con-
straining hypothesised syntactic categories; the Memooglile of the CGL, however, con-

2Although there is one version of the STL (the Guessing STa) tloes employ a statistical method [37]
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strains hypotheses to aid the speed of acquisition. In fattkdh/Villavicencio are solving a
slightly different problem. They present a system for l@agrihe settings of the parameters of
a Universal Grammar. The acquired grammar can then be ugedde and produce language.
In order to acquire the parameter settings, the learneofastuse Waldron’s syntactic learner
to hypothesise categories for the utterance heard. Theaneths for acquisition are distinct
to those for utilising the grammar being acquired. Contvaltj in the CGL, a single set of
rules are required for acquisition, parsing and productidoquisition occurs “naturally” as a
consequence of trying to parse the sentence as an adukteeonld do. As a consequence the
CGL has no requirement for Villavicencio®igger Identification Model However, note here
another similarity; the incremental learning nature ohbottthe systems reduces the notion of
a trigger to “a string that contains only a small amount ofnown grammatical information”.
Computationally, the Waldron/Villavicencio’s learner plisys inefficiencies over the CGL.
Waldron’s syntactic learner is burdened with the complerit learning from simple strings.
All possible syntactic categories are discovered by himkainvalid categories are only later
excluded by thé/alid Category Assignment Detection Module the case of the CGL (which
learns from augmented strings created from the associatedric representations), categories
that are not compatible with a word’s associated semantro fre never hypothesised in the
first place.

6.1.2 Possible Problems with the Principle of Categorial Type Transparency

Both the Waldron/Villavicencio System and the CGL make crugs& of thePrinciple of Cat-
egorial Type Transparencyillavicencio uses this principle to filter invalid categes in the
Valid Category Assignment Detection Modulee CGL uses the principle to create augmented
strings. Itis commonly argued that the use of this princigleld potentially cause problems for
the CGL. The line of thought here is that it is not always theedhat the number of syntactic
arguments for a word is the same as the semantic arity. Far@gaconsider the following sen-
tence“lan seems to be happy”’The wordseemsn this sentence has two syntactic arguments
lan andto be happybut its semantic arity is one; having a semantic representabmething
like SEEM'(HAPPY’ian’) .

However, these constructions are not a problem for the CGlfandhe Principle itself since it
only states a functional relationship between semantie sypd syntactic category. Figure 6.3
shows how the CGL learns the syntactic categorysEemsin Step 1, the skeleton category is
formed from the semanticSEEM’x — A | B whereA and B are allowed to be any ACTIVE
syntactic categories. In Step 2, function application exii® infer the type oB; also the parent
node (the result of the function application) is labellédAt Step 3, the CGL utilises function
application again to infer that the type dfmust bes\np. This type percolates down the tree
in Step 4 giving the syntactic type séemss(s\np)/(s\np) or simply s\np/(s\np) since the
categories are left associative. Thus the CGL is able to dehltthie problem elegantly since
the only constraints placed on the categoreand B were that they were ACTIVE; the CGL
insists on an argument being a primitive type only if its satitatype is an entity likean’.

In general, this mode of operation of a learning system, eleit uses the semantic properties
of words as a cue to their syntactic category, is referred 82mantic bootstrappiny4]. The
theory requires that semantic information is availablerareo for the syntactic learning process
to begin. Currently, the CGL can not learn anything about a wsagntax until it knows
about its semantics. However, this doesn’t imply that inpossible to learn syntax before
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Stepl : S Step2 : s

/\ /\
np ? np A
an A[D an AT ()
lan s\np 1an s\np s\np
— |
seems to be happy seems to be happy
Step3 : 5 Step4 : 5
/\ /\
np s\np np s\np
an AT () an () (o
lan s\np s\np lan  (s\np)/(s\np s\np
seems to be happy seems to be happy

Figure 6.3: Derivation ofan seems to be happy

semantics. Consider the case where the syntactic categ@ayeof word but one is already
known; the category of the new word could often be inferredrispection of the parse tree
without reference to any semantic information. This wowddalsimple extension to the CGL.

6.2 Learningin an Ideal Environment

The CGL isformally sufficient(can be formally demonstrated to acquire language) for lan-
guages defined by a classic categorial grammar. Kanazawadtbatk-valued classic cate-
gorial grammars may be learnt from strings. The augment@wystwhich this learner learns
from carry the same (and more) information; hence it is atsssible to learrk-valued classic
categorial grammars from augmented strings.

In order to learn &-valued classic categorial grammar from a stream of simipiegs, is it
necessary to investigate every possible functor-argusteitture derivable from every string.
For a string of lengtl: the number of functor-argument structures is bounded™y. For
augmented strings there will be somewhat less functorraegu structures; for instance, the
introduction ofm primitive types will reduce the number of trees by a factoaokast™. The
number of functor-argument structures is further reducethb employment of the Memory
Module that filters functor-argument structures based @vipus evidence. However, at the
same time the complexity is increased by the introductiothefrules of function composition
and Generalised Weak Permutation. The following investgéhe efficiency of this learner in
comparison to the TLA and STL on Gibson and Wexler’s threaipater grammar-space.

The English-like language of the three-parameter systewhest by Gibson and Wexler has
the parameter settings and associated unembedded ssiffisggs-as shown in Figure 6.4. For
this task we assume that the surface-strings of the EntjkisHanguage are independent and
identically distributed in the input to the learner.
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SPECIFIER COMPLEMENT V2
0 (Lef) 1 (Righ 0 (off)

Subj Verb

Subj Verb Obj

Subj Verb Obj Obj
Subj Aux Verb

Subj Aux Verb Obj
Subj Aux Verb Obj Obj
Adv Subj Verb

Adv Subj Verb Obj
Adv Subj Verb Obj Obj
10. Adv Subj Aux Verb

11. Adv Subj Aux Verb Obj
12. Adv Subj Aux Verb Obj Obj

©COoNoOr~WDNE

Figure 6.4: Parameter settings and surface-strings ofd@ilasd Wexler's English-like lan-
guage.

Efficiency of Triggering Learning Algorithm

For the TLA to be successful it must converge to the correrpater settings of the English-
like language (see Figure 6.4). Berwick and Niyogi [4] moeleéllhe TLA as a Markov process
(see Figure 6.5). Circles represent possible grammars fegacation of parameter settings).
The target grammar lies at the centre of the structure. Asrmpresent the possible transi-
tions between grammars. Note that the TLA is constrainechtp allow movement between
grammars that differ by one parameter value. The probglofimoving between Grammar;
and Grammax; is a measure of the number of target surface-strings thanatg but not
G,, normalised by the total number of target surface-strirgaell as the number of alternate
grammars the learner can move to. For example the prolabilinoving from Grammas to
Grammar7 is2/121/3 = 1/18 since there are target surface-strings allowed by Gramriar
that are not allowed by Grammarut of a possible of2 and three grammars that differ from
Grammar3 by one parameter value.

Using this model it is possible to calculate the probabiitgonverging to the target from each
starting grammar and the expected number of steps befovergence. Consider starting from
Grammar3, after the process finishes looping it ha3/a probability of moving to Grammar
4 (from which it will never converge) and 2/5 probability of moving to Grammar (from
which it will definitely converge), therefore there is48% probability of converging to the
target grammar when starting at Gramrar

Let S,, be the expected number of steps from state the target state. For starting grammars
6, 7 and8, which definitely converge, we know:

Se = 1+gs6 (6.1)
S, = 1+2S +is (6.2)
T 377187 '
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31/36

1/18
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[100]

8/9 11/12

Figure 6.5: Gibson and Wexler's TLA as a Markov structure.

1 1 8
Sy = 14135+ 557+ o5 (6.3)

and for the times when we do converge from gramm3aaad1 we can expect:
3
S; = 1+ 581 (6.4)
31 2
Sy = 1+ ﬁSg + §S7 (6.5)

Figure 6.6 shows the probability of convergence and expautenber of steps to convergence
for each of the starting grammars.

Initial Language Initial Grammar Prob. of Converging Ex@echo. of Steps

VOS V2 110 0.66 2.50
VOS +/2 111 0.00 n/a
OVS V2 100 0.40 21.98
OVS +V2 101 0.00 n/a
SVO V2 010 1.00 0.00
SVO +V2 011 1.00 6.00
SOV V2 000 1.00 5.47
SOV +H/2 001 1.00 14.87

Figure 6.6: Probability and expected number of steps toe@ance from each starting gram-
mar to an English-like grammar (SV®2) when using the TLA.

The expected number of steps to convergence ranges frontyirffor starting grammarg and
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4) down to2.5 for Grammatrl. If the distribution over the starting grammars is unifoimr the
overall probability of converging is the sum of the probaieis of converging from each state
divided by the total number of states:

1.00 + 1.00 + 1.00 + 1.00 + 0.40 + 0.66
8

= 0.63 (6.6)
and the expected number of steps given that you converge vedighted average of the number
of steps from each possibly converging state:

547+ 14.87+6+21.98 x 0.4+ 2.5 x 0.66 796 6.7)
1.00 +1.00 + 1.00 4+ 1.00 + 0.40 + 0.66 '

Efficiency of Structural Triggers Learner

The STL does not define parameters in the same manner as thdRHti#er, each parameter is a
schematic treelet that can be used within a parse tree teedeesuccessful parse. The Universal
Grammar consists of all the treelets that are required teepall languages. For the STL to

converge on the correct grammar it must acquire the subdet¢a@ets needed for parsing the
target language; in this case the English-like languageel&ts may only be acquired if they

are found to contribute to an unambiguous parse and onad leam not be removed from the

subset. On receiving new input, the STL first attempts togasing the current set of treelets.
If this parse succeeds then the subset remains unchangte parse is unsuccessful then a
parse is attempted using all the treelets in the Universa@rar. If a choice pointis discovered

during parsing then no treelets are acquired. Otherwiss tinambiguous parse is found, the
treelets involved in that parse are added to the subset.

A set of Universal Treelets that can describe languages lisd@di and Wexler's 3-parameter-

space are outlined below. We consider the treelets reqtoregpress each parameter:

SPECIFIER: this parameter determines whether specifiers occur imimitifinal position. In
terms of Gibson and Wexler’s surface-strings, this is egamt to whethesubjoccurs
before or afteverh. Expressed as treelets in X-bar theory [47], this parandittates
the position of a specifier in ahP (Inflectional Phrase). This parameter might also have
determined the position of specifiersdhPs (Complementizer Phrases), however, in the
language descriptions provided by Gibson and Wexler theifspreof theC'P is fixed in
the initial position; this is the reason wiaglv always occurs in the leftmost position of
their surface-strings. The treelets required to exprasgptrameter are as follows:

subj-initial: ~ subj-final
IP IP
SN N
subj VP VP subj
COMPLEMENT: this parameter determines whether complements occur tialior final
position. In terms of Gibson and Wexler’s surface stringsethierobj andauxoccur on
the left ofverbor to the right. This single parameter defines the behaviblioth objects

and auxiliaries (i.e. you can not hasaxoccurring on the right of the verb but tiodj on
the left. The treelets required to express this parameter ar
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obj-initial:  obj-final: aux-initial:  aux-final
VP VP VP VP
PN N RN N
obj VP VP obj aur VP VP auzx
V2: this parameter determines whether the finite verb in thagshould be moved to the
second position. In Gibson and Wexler’s surface-stringsfithite verb is expressed as
eitherverbor aux If anauxis present it is this that is moved to the second positidrif
is activated, otherwise theerbis moved. Accompanying the verb movement eithigoj
obj or advis moved to the first position in the string. In terms of X-bagdry the finite
verb is moved to become the head of €& and eithersubj obj or advis moved to the
specifier. To describe this parameter we require the foligwieelets:

spec-empty-CP head-empty-C Vy0v:  SpeGov:

CcP C’ C SPEC
PN N | |
spPec (' C IP Viiov SPEGyov

HereV,, 01 andsSPEG, oy indicate the position of the finite verb and specifier afteveio
ment.

In addition to the treelets required to express the paramete will need the following treelets
to express the full range of surface-string in Gibson andlgviesdanguages:

adv-lex verb-lex
SPEC VP

adv verb

Figure 6.7 shows two possible derivations for the surfadagssubj verb obj The first deriva-
tion could occur in an language that is specifier initial, ptement final and has Ng2 move-
ment. The second derivation could occur in a language tlspisifier final, complement initial
and had’2. In the second derivatioverbis moved toV,,;oy andsubjto speg,oy to give the
surface-string.

In order to parse the English-like language the STL must iaedbe subset of treeletsubj-
initial, obj-final, aux-initial, adv-lex verb-lex spec-empty-CFhead-empty-G. The Markov
model in Figure 6.8 illustrates the operation of the STL whi@n 12 input sentences are uni-
formly distributed. The states represent the subset detietihat have been learnt; in the starting
states this subset is empty. From this model the expected numbeeps$ $or convergence can
be calculated. Le$, be the expected number of steps to converge from the stat¢he final
stated. We know thatS; = 0. From Figure 6.8 we see that the following equations alsd:hol

9
— 14 =
S + 125{,

8
S. = 14+ —85,
+-12
7 2 1
a — 1 TaPa = TAPc
S + 125 + 125b+ 125
6 1 2 1
= 1 — I i _
S, + 1253+ 12Sa—|— 125b+ 1256
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IP cpP

/\ /\
subj VP SPEC C’
VP Ob] SPEG,ov C 1P
| | N
verb Vvov VP subj
obj VP
|
verb

Figure 6.7: Alternative derivations for the surface-graubj verb ohj

These equations can be simply solved in sequence togive4, S. = 3, S, = % and lastly,
Ss = % = 4.6 which is the expected number of steps from the initial statethe final statel.

Efficiency of Categorial Grammar Learner

The input data to the CGL system would normally be simpleigtsemantic representation
pairs from which augmented strings would be derived. Howewe only data available for
learning from in this experiment are Gibson and Wexler'sase-strings, which consist of the
word typessubj obj, verb, auxandadj (Figure 6.4). Since we have neither simple strings nor an
associated semantic representation available to us waebagsume a mapping from semantic
categories to word types in order to create the augmentedsive require. For example, given
surface-string 1ubj Verb the mappingd/erb— VERB’ x and Subj+— subj are assumed.
By the Principle of Categorial Type Transparency, these seémBorms provideVerb with a
skeleton syntactic category of the fouB (whereA and B are unknown syntactic categories
and| is an operator over and /) and Subjwith the primitive syntactic category that is called
np.

The criteria for success for the CGL when acquiring Gibsonwegler’s English-like language
is a lexicon containing the following (wherg np are primitive categories which are innate to
the learner}

Adv  s/s
Aux  (s\np)/(s\np)
Obj np
Subj np
Aux  (s\np)/(s\np)
Verb  s\np
(s\np) /rp
((s\np)/np)/np

During the learning process the CGL will have constructegba tyierarchy in the Type Memory
by setting appropriate categorial parameters to ACTIVE Bgere 6.9). The learner will have

3Note that the lexicon would usually contain orthographitries for the words in the language rather than
word type entries.
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3

state af{spec-empty-CP, head-empty-&dv-lex, verb-lex, subj-initial

state b{spec-empty-CP, head-empty-&€dv-lex, verb-lex, subj-initial, obj-final

state c{spec-empty-CP, head-empt{-&€dv-lex, verb-lex, subj-initial, aux-initil

state d{spec-empty-CP, head-empty-&€dv-lex, verb-lex, subj-initial, obj-final, aux-initial

Note that all transition probabilities have an understoedaminator of 12.

Figure 6.8: The STL as a Markov structure.
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s/s s\np

/\
(s\mp)/np ~ (s\np)/(s\np)
((s\np) /np)/np

Figure 6.9: Category hierarchy required to parse Gibson asdais English-like language.

also updated the Word Order Memory, setting parameterstg. The Memory Module is used
during the learning process to constrain hypothesisedstiotcategories. For this task setting
the Word Order Memory becomes trivial and its role in consing hypotheses is negligible;
consequently, the rest of our argument will relate to caiagparameters only. Parameters are
all originally set INACTIVE. Since the input is noiseless gwitching threshold is set such that
parameters may be set ACTIVE upon the evidence from one sustaing.

It is a requirement of the CGL that the parent-types of hypsitieel syntax categories are AC-
TIVE before those categories themselves can become ACTIW&s,Tthe learner is not allowed
to hypothesise the syntactic category for a transitive vésbnp) /np) before it has learnt the
category for an intransitive vefs\ np); additionally, it is usually not possible to derive a word’s
full syntactic category (i.e. without any remaining unkms) unless it is the only new word in
the clause.

As a consequence of these issues, the order in which thecewsfangs appear to the learner
affects the speed of acquisition. For instance, the legreders to see the surface-striSgbj
Verb before Subj Verb Objso that it can acquire the maximum information without wagti
any strings. For the English-type language described bgdsiland Wexler the learner can
optimally acquire the whole lexicon after seeing oalgurface-strings (one string needed for
each new complex syntactic category to be learnt). Howévestrings appear to the learner in
a random order so it is necessary to calculate the expectatienof strings (or steps) before
convergence.

The learner must necessarily see the st8ag)j Verbbefore it can learn any other information.
With 12 surface-strings the probability of seeiBgbj Verbis 1/12 and the expected number of
strings before it is seen iL. The learner can now learn froBsurface-stringsSubj Verb Ohj
Subj Aux VerlandAdv Subj VerbFigure 6.10 shows a Markov structure of the process. From
the model we can calculate the expected number of steps veigmto be24.53.

Comparison of Efficiency

To summarise, the TLA, STL and CGL were compared for efficidegpected number of steps
to convergence) when acquiring the English-type grammtreofthree-parameter space studied
by Gibson and Wexler. The TLA only convergéd’% of the time but on the occasions that it
did converge, the expected number of steps was givén2oy In a noiseless environment both
the STL and CGL are guaranteed to converge; the expected mwhbeps for the STL and
CGL were4.6 and24.53 respectively.

In terms of the number of steps, the STL appears to greatlpedorm the CGL. However,
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state S{}

state a{s\np}

state b{s\np, s/s}

state c{s\np, (s\np)/np}

state d{s\np, (s\np)/(s\np)}

state e{s\np, s/s, (s\np)/np}

state f {s\np, (s\np)/np, ((s\np)/np)/np}

state g{s\np, (s\np)/(s\np), s/s}

state h{s\np, (s\np)/(s\np), (s\np)/np}

state i {s\np, s/s, (s\np)/np, (s\np)/(s\np)}

state j {s\np, s/s, (s\np)/np, ((s\np) /np)/np}

state k{s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np)}
state | {s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np), s/s}

Figure 6.10: The CGL as a Markov structure.
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analysis of the complexity of each step shows that the CGLaaitliverge faster than the STL
on average. For a sentence of lengtthe CGL examines at mo8t—'X,, parse trees; where
X, is the number of binary branching trees witHeaves (see Chapter 4). The STL can only
learn from a unambiguous parses. To be certain there is n@aityopresent all combinations
of treelets must be checked for a given input. With a UnideBsammar containing’ treelets
the STL must checf™ X, parse tree$.So, even if the STL reaches the target state within a
single step, it must have checkét X, ., parse trees. As long &s > 2, for a given grammar-
space, the CGL out performs the STLraBicreases.

The CGL learns incrementally; the hypothesis-space fronchvitican select possible syntactic
categories expands dynamically as a consequence of thardheral structure of parameters.
The further a category is located down the hierarchy thedorigvill take to be learnt; the CGL
needs to see at least as many sentences as the categoryumasrasy Fortunately, since real
language is hypothesised to never contain constituents wire than 5 arguments [82], we
expect the hierarchical structure to be quite bushy; sadibés not constitute a great problem.
As a further consequence of incremental learning, the speedhich the CGL acquires cate-
gories increases over time. For instance, in the startatg #tere is only a/12 probability of
learning from surface-strings, whereas in staferhen all but one category has been acquired)
there is al /2 probability. It is likely that with a more complex learningsk the benefits of this
incremental approach will outweigh the slow starting coAtselated work on the effects of in-
cremental learning on STL performance [89] draws similarabasions. Furthermore it should
be noted, that in real world examples the start-up cost ®QGL (i.e. only being able to learn
from one string at first) is likely to be less burdening. ThlEsecause in real language there
IS not a uniform distribution over sentence types; the sex@dormSubj Verh for example,

is very common. Furthermore, the STL can learn nothing frbesé very common sentence
forms since they have more than one possible derivation fhentreelets.

As a final point, the CGL can be made robust to noise by incrgabmprobability threshold at
which a parameter may be set to ACTIVE; neither the TLA or th& 8ave a mechanism for
coping with noisy data.

6.3 Learning from Real Data

A learning system has been implemented to learn from real délte system is composed of
three modules: a semantics learning module (which creatgsented string from free-form
semantic representation), a syntax learning module (the)@&dl a memory module (see Fig-
ure 6.11). For each utterance heard the learner receivegpangtream of word tokens paired
with possible semantic hypotheses. For example, on hetirengtterance “Dinah drinks milk”
the learner may receive the pairingd{nah drinks milk}, DRINK'milk'dinah’ ). The seman-
tic module attempts to learn the mapping between word tokadsemantic symbols, building
a lexicon containing the meaning associated with each wemndes this is achieved by using
cross-situational techniques (see Section 4.4 of Chaptérh® learning system then links the
semantic module and syntactic module by using the Prinoipl&ategorial Type Transparency;
allowing basic syntactic information to be inferred frone teemantic type and representing
this as augmented strings (Section 4.4.2). The syntactidufecattempts to learn syntactic
categories from augmented strings (as described in Chapt&éhd Memory Module (also de-

4The STL needs to check all treesiof+ 1 leaves because of the addition of #ié-movement treelets rule.
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scribed in Chapter 5 in Section 5.2.1) records the curreiw sfathe hypothesis-space. The
syntactic module refers to this information to place caists upon which syntactic categories
may be learnt and also as a means of being robust to noise.

6.3.1 Evaluation of the Learning System

The Sachs Corpus of the CHILDES database [63] was used as mplu {earning system.
This corpus contains a selection of interactions betwednld and her parents from the age of
one year one month to five years one month. The corpus wasogexsed so that the child’s
sentences were excluded; only the parents’ sentencesvareag input to the system. Also, all
phonological annotations and hesitations have been raamdVe corpus is annotated such that
all utterances are associated with their semantic repiasems).

A Unification-Based Generalised Categorial Grammar has besatexl by Villavicencio [104]
to describe 2000 utterances of this corpus. The grammathsesles of application, composi-
tion and Generalised Weak Permutation (described in Sedtib. Evaluation was carried out
with respect to this grammar which provides both a semamiicsyntactic category for every
item in its lexicon?

A problem with using Villavicencio’s grammar for evaluatics that it uses lexical rules to deal
with some linguistic phenomena. The CGL, however, has nosabgirit of lexical rules, produc-
ing instead multiple lexical entries to describe the samenpmena. For an example, refer back
to Section 6.1 which gives a discussion of dealing With movement using multiple entries.
Also, Figure 6.12 illustrates how the interrogatives maydsmed using the unary rule INV (as
in Villavicencio’s grammar) or multiple lexical entriesg@& the CGL). For evaluation, a map-
ping had to be produced from the categories within lexicélies of Villavicencio’s grammar
to equivalent categories within this Learning System. Fahetem in Villavicencio’s lexicon
we enumerated all the lexical rules that could apply to tteahi Possible categories for the
item were then generated by applying each of the lexicasrufdy applying a lexical rule, we
yielded a result that itself could be the argument of a ldxiale, we applied that rule and gen-
erated yet another category. This process was continudceithér a closed set of categories
was generated or (rarely) a limit on categories was reached @0 syntactic categories per
item).

A point to note in this section is that evaluation againsttheogrammar has its problems;
for instance, Villavicencio’s grammar does not descridg&k or interjections which have
been included in the input. An alternative evaluation miggato demonstrate that the acquired
grammar is capable of producing the utterances produceldebgttild of this corpora. In fact,
we might hope to demonstrate that the grammar describeseassif the productions; with
linguistic competence exceeding linguistic performane@wever, such an evaluation is im-
practical since we do not have access to all the spoken ottesghat the child has ever heard.

6.3.2 Noise Introduced by Indeterminacy of Meaning

If a child is to ever use language in a purposeful manner she& mat only determine which
utterances belong to the language but also determine whgtrttean. Ideally a child will
hypothesise the correct meaning for every utterance itsheldowever, assigning a meaning
is not straight-forward; there is unlikely to be only one mms candidate. When the correct

SNote that the following evaluation experiments have beenipusly published as [20].
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Figure 6.12: Illustration of the use of unary rules versustiple lexical entries.
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meaning is not hypothesised, error has been introducedrr@nd this type introduces a false
association between word and meaning within the semantictula of out learning system.
To combat this problem within our learning system a sta@gterror handling methods were
adopted (see Sections 4.4.1 and 5.2.2).

We investigated the robustness of our learning system undeyasing levels of indeterminacy
of meaning. This was achieved by associating utterancasthe corpus with a set of possible
semantic meanings (rather than just their single corre@ning). Indeterminacy could be

increased by increasing the size of this associated meaeingnd also by not including the
actual meaning within the set.

Experiment 1a: The learner was run with increasing numbers of semanticthgses per ut-
terance. The extra hypotheses were chosen randomly andrtleetcsemantic expression
was always present in the set. Hypotheses sets of sizes 21@ahd 20 were used.

Experiment 1b: The learner was run with some utterances being completelsnatched with
semantic hypotheses (i.e. the correct hypothesis was aséptr amongst the set).

Experiment 1a.

Input utterances were associated with semantic hypotrsestssrather than just the correct
meaning. The extra hypotheses were chosen randomly andthecicsemantic expression
was always present in the set. Hypotheses sets of sizes,2lBahd 20 were used. The learner
was run several times for each size of set. Recall remaindg tainstant regardless of the

number of hypotheses. The precision also remained veryrhighng only as low as 93% for
one of the runs with a hypothesis set of size 20.

82

80 |

F1

79

78 | .

77 L

10 15 20
Number of Hypotheses per Set

Figure 6.13: Experiment 1a: graph of size of semantic hygmthset vsF;

From Figure 6.13: as the number of hypotheses increasds thiethe learner decreases, tend-
ing towards a steady state. The results can be interpreted@ss:
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The confidence values associated with the word-meaning pa@xtremely common words in
the corpus (such as “kitty”) become very high, very quickhis means that many incorrect
hypotheses in the hypothesis set can be ruled out (usingéttgoohof constraining hypotheses
explained above). Once this starts to happen the problemlyapduces to that of one with a
smaller starting hypothesis set. This accounts for thdllegeoff in F7. The precision remains
high for all hypothesis set sizes due to the statisticalneadfithe confidence factor; since the
surplus hypotheses (those extra to the correct hypothesi® always chosen at random, the
real meaning of the word eventually emerges as the mosylikel

Experiment 1b.

The learner was run with some utterances being completalynatched with semantic hypothe-
ses (i.e. the correct hypothesis was not present amongsetheThis is analogous to the case
where the child was not able to understand the meaning ofttaemuace from its observations.
This experiment was investigated in a more qualitativeitaskince the results were found to
be highly dependent on the utterances that were chosen tasbeatched. If many utterances
were chosen that contained infrequently occurring words the recall would suffer a severe
drop. There is a clear reason for this result. The distrutif words in the corpus is Zipfian.
Most words appear very infrequently (over 250 words appestrgnce and more than 125 ap-
pear twice). In the original experiment (where only the eothypothesis was paired with the
meaning) 36% of words could be learnt with only one exposti@s capability is useless if
a word that appears only once in the corpus is paired with eoriact hypothesis. In such a
situation the word will never be learnt. This highlights thgue that statistical learning methods
are largely ineffective when data is extremely sparse.

6.3.3 Noise Introduce by Indeterminacy in Parameter Setting

It is claimed that children rarely mis-set syntactic parteree[108]. However, proposed meth-
ods of parameter setting, such as the Trigger Learning Algar(TLA) [39] or the Structural
Trigger Learner (STL) [38], allow a parameter to be updatethe basis of evidence from one
utterance. This type of approach can only work if a child egislely receives positive evidence;
otherwise it is possible that an error may cause a parantebsr $et incorrectly and there may
never be a chance to reset it (with the consequence that trectgrammar cannot be learnt).
The problem is even worse for this learning system, whichne@crementally, since an in-
correct setting in the Memory Module can lead to an entirelsamch of the defining category
tree being incorrect also.

A solution is to use a statistical method that tracks redatrequencies (as described in Sec-
tion 5.2.2). Such an approach sets the Memory Module to theesdhat are most likely given
all the accumulated evidence. For this learning systensyhtactic categories within the Type
Module can be considered ternary valued (ACTIVE, INACTIVE,$SIBLE). To start with,
all categories may be labelled INACTIVE, although an inib&s can be set by assigning some
categories to be ACTIVE or POSSIBLE before learning commenEgglence from input ut-
terances will either enforce the current parameter settonghegate them. Categories become
ACTIVE in the hierarchy as soon sufficient evidence has beenmaalated, i.e. once their
relative frequency reaches a threshold value. By employigyrhethod, it becomes unlikely
for categories to become ACTIVE as the consequence of anemusnutterance (unlike for
parameters in the deterministic methods mentioned above).
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For this experiment, however, the Word Order Memory is itigesed; in particular errors due
to misclassification of thematic role. For illustration safer the following example utterance
from the Sachs corpus: “he likes fish”. A child listening tésthtterance may be unsure who
Is doing the liking and who is being liked. Semantically, sloelld consider there to be two
possibilitiesLIKE'fish’he’ or LIKE’he’fish’ . In the first case we have the actor on the left of
the verb and the undergoer on the right. In the second casaweetlhe reverse. An error occurs
when an English speaking child hypothesises the latterpre&ation of the utterance.

In order to investigate this phenomenon, the learner wasse@to increasing amounts of
misinterpreted thematic roles (from 0% up to 50% of all ocences). This was achieved
by randomly selecting the appropriate number of utteramacesreversing the roles in their
semantic representation. Again, the Sachs’ corpus wasassibut. The order of constituents
was recorded in the Word Order Memory; the actor directioA@TOR-DIRECTION and
the undergoer direction in UNDERGOER-DIRECTION. Originallyttbavere set tg. The
thresholds for setting direction parameters in the memasevget ab.25 and0.75: i.e. if the
relative frequency of the forward directiop)(reached).75 then the parameter was set/taand

if the relative frequency dropped €025 the parameter was set o The criteria for success is
for the learner to set ACTOR-DIRECTION tpand UNDERGOER-DIRECTION tg despite
the noise due to misinterpreted thematic role.

Figure 6.14 shows the relative frequency/dfor ACTOR-DIRECTION and UNDERGOER-
DIRECTION in the Word Order Memory at the end of learning. Witlsimerpretation of
thematic roles a®% both parameters easily obtain their target value whilg%a the relative
frequency for neither parameter is great enough to be seticéNthat the line representing
ACTOR-DIRECTION does not deviate far outside the targed.25 zone. This is because of
the presence of intransitive verbs; with no undergoer tdusmwith the actor, every time an
intransitive verb is seen thefrequency is increased—this counteracts the effect of sufittee
thematic role errors.

With thematic role error &0% we might expect the relative frequency of the UNDERGOER-
DIRECTION to be0.5. However, this is not the case. There are two reasons farfifsg the
categorys/np\np can not be learnt (and hence thigzequency incremented) unless the category
s/np has been learnt. This category is not learnt as readily astitansitive categorys(\np);

it is mainly associated with imperatives or noisy incomgletterances. The second reason is
that once the ACTOR-DIRECTION is set, grammars which agree withdetting (i.e. with
undergoer directiort) are selected in preference.

These results show that by using statistical error handhirsjearning system can not only learn
from real data but is also robust to errors introduced bytereinacy in parameter settings.

6.4 Developmental Compatibility

So far it has been demonstrated that the CGL is efficient comdparother parametric learners
and that it may learn from real data. The following sectioh eiscuss the developmental com-
patibility of the CGL; i.e can the model give an explanationdbildren’s language production?
The CGL learns incrementally: interaction with the Memoryddte ensures that simple syn-
tactic categories are acquired before more complex cagsgaio investigate the compatibility
of such a model with a real learner, the acquired subcategjn frames in CHILDES2 have
been examined to see if they show evidence of incrementaditep(where CHILDES? is the
child speech corpus investigated in Chapter 2). Figure thd®s all the SCFs that appear at
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least 100 times in CHILDES2. All of the SCFs directly inheririn each other. This does not
prove that children learn incremently but it does suppaetittea; we would run into problems
if children were producing syntactic categories that caowdtibe attached to the hierarchy.
Referring back to Brown'’s Stages we see that in Stage 1 thefaisiighroduces two-word utter-
ances of the fornagentractionor actiont+object This is followed by production of declarative
statements of the forsubjectverb+objectand then by the introduction of preposition phrases.
In terms of our hierarchy this may be represented as showiguré6.16. It is important to
notice that all of the verb types acquired in Stage 1 can berdes a continuous hierarchy;
there are no detached categories. Furthermore childremt ldee categories further down the
hierarchy after acquiring those simpler categories ndaheeroot. Thus, from Brown’s Stage 1
we see encouraging evidence that the CGL is adequately nmgpitremental learning.

In Brown’s Stage 2 (Figure 6.17) children start using prefiany auxiliary categories like
“wanna”, possessives and simpidat whereandwhy questions. Note that the two new ver-
bal categories can directly inherit from categories in tiedrchy representing Stage 1 (Fig-
ure 6.16) and that the category for the possessive inhargstly from np which is another
assumed primitive like.

By Stage 3 the child is using modal verbs np)/(s\np), quantifiers(s\np)\(s\np) and has
started to askvho and how questions(np/np)/(s\np). Again these categories are directly
inherited from the current hierarchy. Stages 4 and 5 mamiglve acquisition of inflections
and an understanding of turn taking, which are not modeletthé CGL.

In general, evidence from both Brown’s Stages and the CHILD&a-speech corpus suggest
that the incremental learning method of the CGL is not at odtis neal child development.

6.5 Summary

In the first section of this chapter we demonstrated that the S@ore efficient than previous
parametric learners (the TLA and the STL) when learning agilm-like language under ideal
conditions in Gibson and Wexler's 3-parameter-space. & @dikcussed differences and sim-
ilarities of the CGL to Waldron/Villavicencio Learning Sgsh, which is a parametric system
that also learns a categorial grammar and has inspired tmeokjeModule of the CGL. We
found that the CGL requires less innate knowledge than tlasigus system since it learns
from augmented strings (rather than strings) and uses a Mehadule to constrain hypothe-
ses. Section 6.3 of this chapter demonstrated that the CGleaamfrom real (noisy) data and
is also robust to ambiguity of parameter setting. The finatise has discussed the validity
of the incremental learning method adopted by the CGL witevaaice to a child-speech cor-
pus and Brown’s Stages; it was found that the incremental odeith at least consistent with
observed productions.
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Figure 6.17: The syntactic constructions that have beemergsby Brown Stage 2.
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Chapter 7

Conclusions

This work investigates a computational model of first largguacquisition; the Categorial
Grammar Learner or CGL. The CGL is neither pure nativist or pmgiricist in its ideol-
ogy; rather it lies on the middle ground between the two exé® The model assumes some
innate knowledge but also relies on language examples tiedbe learning process. In partic-
ular, the model assumes knowledge of the rules of a Genedaliategorial Grammar; those of
function application, function composition and Generli$Veak Permutation. Other concepts
assumed by the CGL are not specific to syntactic acquisitioninstance, the awareness of the
primitive type that has been calleg could stem from the ability to recognise objectg;being
merely a label for a class of such objects. Whether these ptseee innate or developed is
not argued here; although for this particular example,&vi@ leans towards development [71].
Either way, any linguistic universals that are present teefanguage learning commences can
be considered to be the Principles of a Chomskian Universain@rar.

In general, a premise for using a Principles and Parametereach to modelling is that, with-
out constraining the hypothesis-space, learning is toogpbexn The CGL does not strictly ad-
here to the Principles and Parameters ideology in that peteasare not rigidly defined before
learning commences; rather it makes use of a Memory Modaleigtbuilt dynamically and is
used to constrain hypothesised syntactic categories. Howia terms of efficiency, we have
seen that the CGL out performs both the TLA and the STL on a sifgalrning task in Gib-
son and Wexler’s three parameter domain. Furthermore,tiligation of the Memory Model
ensures that the CGL is both more efficient and requires lesgarknowledge than a previous
categorial grammar learner implemented by Waldron ané@Wiencio.

In fact, the design of this Memory Module is key in the CGL; esally the Type Memory
hierarchy. The CGL does not learn a syntactic category ustdirect parent in the type hier-
archy has been learnt. Thus the CGL learns incrementallyghwisicompatible with the child
development studies of Brown and also those of this work. Asegoence of this incremental
learning is that the operation of the CGL relies on initialgeiving short and simple sentences.
Corpora studies presented here have shown that child-eltfegteech is syntactically simpler
and less diverse than speech between adults; containimglarsdistribution of SCFs to child
speech. Thus, child-directed speech facilitates the tiparaf the CGL.

The Word Order Memory also plays a key role in constrainingdtlgeses; if an argument di-
rection has been set to eitheor \ then syntactic categories that are compatible over argtsmen
of the same type are selected in preference. A consequertkis as that directionality in the
language as a whole is governed by the directionality ptaseof the very frequent categories.
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For instance, a language that is VSO will have its GENERAL-DIREON set to/ in the Word
Order Memory; consequently the CGL preféri@rguments on the right) to(arguments on the
left) and is therefore likely to exhibit prepositions in faeence to postpositions. This agrees
with work by Hawkins on Implicational Universals [44].

As discussed in Chapter 3, a learner can deal with errorsibitowed to choose the most likely
hypothesis in preference to one that incorporates evecgméevidence seen so far. This sug-
gests that some statistical retention of the data is negegsalearner is going to cope with
errors. This is not to suggest that a child should consgpobslcounting events, but perhaps
rather that the brain has some capacity to store this infoomavithout any effort on behalf of
the learner. A possible method for doing this is to use a caor@st model; however, such
an approach is infeasible since it requires an enormous @intdldata and computation for
learning. Models that follow a more nativist theme (the Bipites and Parameters learners)
potentially require much less data since the hypothesisesis constrained. However, to elim-
inate the possibility of reaching a local maxima these patammodels must also have some
mechanism for recognising parametric ambiguity. Henoe Memory Module of the CGL is
statistical in its nature of operation; it relies on the meence of a linguistic phenomenon in or-
der to “keep it in memory”. The ability of the CGL to learn fromal (noisy) data (and to learn
from some parametrically ambiguous data) demonstratest#tistical utility of the Memory
Module.

For input the CGL receives augmented strings. The informatimntent of sentence objects
(simple strings, augmented strings, unlabelled strustarel functor-argument structures) has
been discussed. The concept of an augmented string (a stngigented with some basic
syntactic information) has been proposed as a sensiblengtqmoint for learning, since it is
a cognitively plausible object that also benefits from dagymore information than a simple
string. To form an augmented string from a simple string,tagtic information is extracted
from the semantic types of the words using tenciple of Categorial Type Transparency
An augmented string is thus a representation of the consdrplaced on the search-space of
possible parses due to the semantics associated with thg. s&k possible extension would
be to also included prosodic information in the augmentadgd. Such an extension would
allow for clause structure and question types to be idedtifieEnglish; which could help in
constraining hypothesised categories, especially faydoimput strings.

Currently, the CGL can not learn anything about a word’s syanta# it knows about its seman-
tics. However, this doesn’t imply that it is impossible tarde syntax before semantics. Consider
the case where the syntactic category of every word but oakkaady known; the category of
the new word could often be inferred by inspection of the @&ese without reference to any se-
mantic information. This would be a simple extension to thd_.CGleitman asserts that there
are some verbs for which the semantics can not possibly lbet leéthout resorting to their
subcategorization frame. This is what she cajylstactic bootstrappinf41] and [36]). Pinker
on the other hand says this information is interesting “bBkpuzzle” and therefore potentially
useful to clever children/adults but is not essential. Ei@han is correct and it is impossible to
ascertain the meaning of some words without first resolMieg syntactic category, then it will
be essential to provide feedback within the learning system the CGL back to the semantic
module.

The crucial and interesting elements of the CGL are the caaadmugmented strings and a
Memory Module (the Type Memory and Word Order Memory): augted strings have been
shown to be cognitively plausible sentence objects thatanesensibly learn from; and regard-
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ing the Memory Module, it seems that the incremental legyeinforced by the Type Memory
together with the directional tendencies enforced by thed/@rder Memory will be able to
explain somdmplicational Universalgi.e the idea that if a language has a propértthen it
also exhibits property)). By making types ACTIVE in the Type Memory or by setting direc-
tion preferences in the Word Order Memory, the languagerbesaonstrained in certain ways.
Properties set in the Memory Module early on in learningciffiee properties that are available
to a language later on; thus we have anPithen() effect”. This matter will be investigated as

future work
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Appendix A

SCF Classification

The following is a list of all163 verb subcategorization frames employed by Briscoe and Car-
roll's SCF acquisition system (RASP). The SCFs were merged tl@mSCFs found in the
COMLEX and ANLT syntax dictionaries and about 30 more SCFs vagided by examining
unclassifiable patterns of corpus examples.

Most of the following records contai lines of information. The first is the COMLEX SCF
name together with the frequency with which that SCF appesre&NLT. The second line
gives the frame specification using ANLT notation. The tlgiees a tagged example sentence
from corpus data where the SCF occurs. The final line gives@tespecification according to
the grammar employed by RASP.

For entries after thé17" there are only three entries per record — these are SCFs whicbtd
appear in COMLEX, thus the first line is in fact the frame speatfon in ANLT.

1. ADJP /93
(SUBCAT SCAP, SUBTYPE EQUI) / XTAG: Tnx0Val
his AT reputationNN1 sankVVD low _JJ
(VSUBCAT AP)

2. ADJP-PRED-RS /15
(SUBCAT SCAP, SUBTYPE RAIS) / XTAG:Tnx0Ax1
he NP1 appear®/VZ crazy JJ / distresse¥VN
(VSUBCAT AP) / (VSUBCAT VPPRT)

3. ADVP /64
(SUBCAT ADVP)
he NP1 meanivVD well _RP
(VSUBCAT NONE, PRT +) well

4, ADVP-PRED-RS /0 (in vppp)
(SUBCAT ADVP, SUBTYPE RAIS)
He NP1 seems&/VZ well _RP
(VSUBCAT NONE, PRT +) well

5. AS-NP /0 (in vppp with PRT 1 = end)

(SUBCAT SCNP, SUBTYPE EQUI, PREP as)
i_NP1 workedVVZ as CSA anAT1 apprenticeNN1 cook NN1
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10.

11.

12.

13.

14.

15.

(VSUBCAT PP) as

EXTRAP-NP-S /58

(SUBCAT NP.SFIN, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it_PPH1 annoyd/VZ them PPHO2 thatCST shePPHS1 leftvVVD
it (VSUBCAT NP_SCOMP) * * VWZ/DI/G

S-SUBJ-NP-OBJ /58

(SUBCAT NP-SFIN, SUBTYPE EXTRAP, AGR S[FIN +]) / XTAG:TsOVnx1
that CST shePPHS1 leftVVD annoysVVZ them PPHO2

*_VVD/Z/G (VSUBCAT NP)

TO-INF-SUBJ-NP-OBJ / 56

(SUBCAT OCINF, SUBTYPE EQUEXTRAP, AGR VP[FIN -])
to_TO readVVO pleasesvVZ them PPHO2

*_VVO (VSUBCAT NP)

EXTRAP-TO-INF / 4

(SUBCAT VPINF, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it_PPH1 remaind/VZ to_TO find.-VVO0 a_AT1 cureNN1

IT (VSUBCAT VPINF)

EXTRAP-FOR-TO-INF /0 (not in vppp)

(SUBCAT SINF, SUBTYPE EXTRAP, AGR N2[NFORM IT])

it_PPH1 remaind/VZ for _IF us PPHO2 taTO find_.VV0 a_AT1 cure NN1
IT (VSUBCAT PP.VPINF) for (PSUBCAT NP)

EXTRAP-NP-TO-INF / 56

(SUBCAT OCINF, SUBTYPE EQUEXTRAP, AGR N2[NFORM IT])
it_PPH1 please¥VZ them_PPHO2 taTO find VV0 a_AT1 cure NN1
IT (VSUBCAT SINF)

EXTRAP-TO-NP-S /5 (4 without EXTRAP)

(SUBCAT PPSFIN, SUBTYPE EXTRAP, PFORM to, AGR N2[NFORM
IT])

it_PPH1 matters/VZ to_ll them_PPHO2 thaiCST shePPHS1 leftvVVD

IT (VSUBCAT PP.SCOMP) to (PSUBCAT NP) &/VZ/DI/G

EXTRAP-TO-NP-TO-INF/ 1

(SUBCAT PRVPINF, SUBTYPE EXTRAP, PFORM to)
it_PPH1 occurred/VD to_ll them_PPHO2 taTO watchVVO0
IT (VSUBCAT PP.VPINF) to (PSUBCAT NP)

S-SUBJ-TO-NP-OBJ /5

(SUBCAT PPSFIN, SUBTYPE EXTRAP, AGR S[FIN +])
that CST shePPHSL1 leftvVD mattersVVZ to_ll them.PPHO2
*_VVD/G/Z (VSUBCAT PP) to (PSUBCAT NP)

FOR-TO-INF /17
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(SUBCAT SINF)
iPPHS1 prefenVO for_IF her PPHO1 taTO do.VVO it_PPH1
(VSUBCAT PPVPINF) FOR (PSUBCAT NP)

HOW-S / 155 (combined with other wh comps)

(SUBCAT WHS)

he PPHS1 asked/VD how_RGQ shePPHS1 didvDD it_PPH1
(VSUBCAT PP) HOW/WHY/WHERE/WHEN (PSUBCAT SFIN)

HOW-TO-INF / 100 (combined with other wh comps)
(SUBCAT WHVP)

he PPHS1 explaine®/VD how_RGQ taTO do VVO0 it_PPH1
(VSUBCAT PP) HOW/WHERE/WHEN (PSUBCAT VPINF)

18.

19.

20.

21.

22.

23.

24,

INF-AC / ??

ANLT gap (SUBCAT VCBSE)

he PPHS1 helped/VD bake VVO0 the AT cake NN1
(VSUBCAT VPBSE)

ING-NP-OMIT / 242

(SUBCAT SCING, SUBTYPE EQUI)

his_ AT hair_NN1 needsvVZ combing VVG
(VSUBCAT VPING)

ING-SC/BE-ING-SC / 21

(SUBCAT SCING, SUBTYPE RAIS)
shePPHS1 stoppe®'VD smoking VVG
(VSUBCAT VPING)

ING-AC / ??

ANLT gap (SUBCAT VCING)

shePPHS1 discussedVD writing 'VVG novels NN2
(VSUBCAT VPING)

INTRANS / 2985
(SUBCAT NULL)
he PPHS1 wen\VD
(VSUBCAT NONE)

INTRANS-RECIP(SUBJ-PL/COORD) / ??
(SUBCAT NULL)

They PPHS2 melvVD

*_PP/NN*2 (VSUBCAT NONE)

JohnNP1 andCC herAT brotherNN1 metVVD
*_CC (VSUBCAT NONE) ***

NP /5281

(SUBCAT NP) / XTAG:Tnx0Vnx1
he PPHS1 lovedvVD her_.PPHO1
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

(VSUBCAT NP)

NP-ADJP /113

(SUBCAT OCAP, SUBTYPE EQUI)

he PPHS1 painted/VD the_AT car.NN1 blackJJ
(VSUBCAT NP.AP)

NP-ADJP-PRED / 46

(SUBCAT OCAP, SUBTYPE RAIS) / XTAG:Tnx0Vsl
shePPHS1 consideredVD him_PPHO1 foolishdJ
(VSUBCAT NP.AP)

NP-ADVP /9

(SUBCAT NPADVP)

he PPHS1 putvVD it _PPH1 thereRL
(VSUBCAT NP, PRT +) * there

NP-ADVP-PRED / 281 (with PPs)

(SUBCAT NPLOC) / XTAG:Tnx0Vs1

they PPHS2 mistakenlRA thoughtVVD him_PPHO1 hereRL
(VSUBCAT NP, PRT +) here

NP-AS-NP /3

(SUBCAT SCNP_NP, SUBTYPE RAIS, PREP as)

iPPHS1 senvVD him _PPHO1 asCSA aAT1 messengeNN1
(VSUBCAT NP-PP) (PFORM AS)

NP-AS-NP-SC /3

(SUBCAT SCNP_NP, SUBTYPE RAIS, PREP as)

shePPHS1 serve®/VD the_AT firm_NN1 asCSA aAT1 researcheNN1
(VSUBCAT NP_PP) (PFORM AS)

NP-FOR-NP /90

(SUBCAT NP.PP, SUBTYPE DMOVT, PFORM for)
shePPHS1 bough¥VD a_AT1 book NN1 for_IF him_PPHO1
(VSUBCAT NP_PP) (PFORM FOR)

NP-INF/ 11

(SUBCAT OCBSE, SUBTYPE RAIS) / XTAG:Tnx0Vs1
he PPHS1 madé/VD her_.PPHO1 singvV0

(VSUBCAT SCOMP) *VV0

NP-INF-OC /17

(SUBCAT OCBSE, SUBTYPE EQUI)

he PPHS1 helped/VD her_PP$ bakevV0 the AT cake NN1
(VSUBCAT SCOMP) *VVO0

NP-ING /28
(SUBCAT OCING, SUBTYPE RAIS) / XTAG:Tnx0Vsl1
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35.

36.

37.

38.

39.

40.

41.

42.

iPPHS1 keptvVD them PPHO2 laughing/VG
(VSUBCAT SING)

NP-ING-OC / 45

(SUBCAT OCING, SUBTYPE EQUI)
iPPHS1 caughvVvD him _PPHOL1 stealing/VG
(VSUBCAT SING)

NP-ING-SC/??

ANLT gap: real complement?

he PPHS1 combed/'VD the AT woodsNN2 lookingVVG for_IF
her PPHO1

(VSUBCAT SING)

NP-NP /231

(SUBCAT NP.NP) / XTAG: Tnx0Vnx1nx2
shePPHS1 aske®/VD him_PPHO1 hisAT nameNN1
(VSUBCAT NP.NP)

NP-NP-PRED / 38
(SUBCAT OCNP, SUBTYPE EQUI) / XTAG:Tnx0Vs1
they PPHS2 appointeVVD him_PPHO1 professolNN1
(VSUBCAT NP.NP)

NP-P-ING / 2

(SUBCAT OCPPING, PFORM from, SUBTYPE PVEREDR, ORDER
POSTNP)

iPPHS1 prevente®/VVD her_.PPHOL fromll leaving VVG

(VSUBCAT NP_PP) from (PSUBCAT VPING)

NP-P-ING-OC /31

(SUBCAT OCPPING, PFORM, SUBTYPE PVERBOE, ORDER
POSTNP)

iPPHS1 accusedVD her PPHO1 oflO murderingVVG her AT hus-
bandNN1

(VSUBCAT SING, PRT +) of

(VSUBCAT NP_PP) * (PSUBCAT VPING)

NP-P-ING-SC / ??

Gap in ANLT scheme, shid be: (SUBCAT SEPING, PRT, ORDER
POSTNP)

he PPHS1 waste®/VD time_NNT1 onll fussingVVG with_IW his AT
hairrNN1

(VSUBCAT NP_PP) on (PSUBCAT VPING)

NP-P-ING-AC / ??

Gap in ANLT scheme (SUBCAT VAPP.ING)

he PPHS1 toldvVD her PPHOL1 aboutl climbing VVG the AT moun-
tain.NN1
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43.

44,

45,

46.

47.

48.

49.

50.

(VSUBCAT NP_PP) about (PSUBCAT VPING)

NP-P-NP-ING / ??

ANLT gap (SUBCAT NPPP.SING)

he PPHS1 attributed/VD his_AT failure_NN1 to_ll noone NP1 buyingVVG
his_ AT books NN2

(VSUBCAT NP_PP) to (PSUBCAT SING)

NP-P-POSSING / ??

ANLT gap (SUBCAT NPPP.SING)

They PPHS2 aske&/VD him_PPHO1 aboutl his.PPHO1 participat-
ing_VVG in_ll the_AT conferenceNN1

(VSUBCAT NP_PP) about (PSUBCAT SING)

NP-P-WH-S / 0 (not in vppp, and below)

(SUBCAT NPWHS, PREP)

they PPHS2 mad&/VD a_AT1 greatJJ fussNN1 aboutll whether CSW
they PPHS2 should/M participate VVO

(VSUBCAT NP_PP) about (PSUBCAT PP) whether (PSUBCAT SFIN)

NP-P-WHAT-S /0

(SUBCAT NPWHS, PREP)

they PPHS2 madé&/VD a ATl greatJJ fussNN1 aboutll what DDQ
they PPHS2 should/M do_VVO

(VSUBCAT NP.WHPP) about (PSUBCAT WHS)

NP-P-WHAT-TO-INF / 0

(SUBCAT NPWHVP, PREP)

they PPHS2 madé&/VD a_AT1 greatJJ fussNN1 aboutll what DDQ to.TO
do_VV0

(VSUBCAT NP.WHPP) about (PSUBCAT NP)

NP-P-WH-TO-INF / 0

(SUBCAT NPWHS, PREP)

they PPHS2 mad&/VD a_AT1 greatJJ fussNN1 aboutll whether CSW
to_TO go.VVO0

(VSUBCAT NP_PP) about (PSUBCAT PP) whether (PSUBCAT VPINF)

NP-PP /2010

(SUBCAT  NPPP, PFORM, SUBTYPE NONE/PVERB?)
XTAG:Tnx0Vnx1pnx2

shePPHS1 adde®/VD the AT flowers NN2 to_ll the_AT bouquetNN1
(VSUBCAT NP_PP) to

NP-PP-PRED / 2010/50??

(SUBCAT NP.PP, PFORM of, SUBTYPE NONE, PRD +)

iPPHS1 consideredVD that AT problemNN1 of_IO little_JJ concerrtNN1
(VSUBCAT NP-PPOF)
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51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

NP-PRED-RS /12

(SUBCAT SCNP, SUBTYPE RAIS)
he PPHS1 seemeWVD a_AT1 fool_NN
(VSUBCAT NP)

NP-S /33

(SUBCAT NP.SFIN, SUBTYPE NONE) / XTAG:Tnx0Vnx1s2

he PPHS1 toldvVD the AT audienceNN1 thatCST hePPHS1 wasvBZ
leaving VVG

(VSUBCAT NP_SCOMP) * * VVZ/D/G

NP-TO-INF-OC /189

(SUBCAT OCINF, SUBTYPE EQUI)

iPPHS1 advised/VD Mary NP1 taTO go VV0
(VSUBCAT SINF)

NP-TO-INF-SC /1

(SUBCAT SCNP_INF, SUBTYPE EQUI)

JohnNP1 promisedvVD Mary NP1 taTO resignVVO0
(VSUBCAT SINF)

NP-TO-INF-VC/??

ANLT gap

they PPHS2 badgeredVD him_PPHO1 taTO go.VV0
(VSUBCAT SINF)

NP-TO-NP /105

(SUBCAT NP.PP, PFORM to, SUBTYPE DMOVT) / XTAG:Tnx0Vnx1Pnx2

he PPHS1 gave/VD a_AT1 big_JJ kissNN1 to_ll his_AT motherNN1
(VSUBCAT NP_PP) to

NP-TOBE / 88

(SUBCAT OCINF, SUBTYPE RAIS)

iPPHS1 foundvVD him_PPHO1 taTO be VB0 a AT1 goodJJ doctorNN1
(VSUBCAT SINF) BE

NP-VEN-NP-OMIT / 3

(SUBCAT OCPASS, SUBTYPE EQUI/RAISING)

he PPHS1 wanted/VD the_AT children.NN2 found VVN
(VSUBCAT SCOMP) *VVN

NP-WH-S /12

(SUBCAT NPWHS)

they PPHS2 asked/VD him _PPHO1 whetheCSW hePPHS1 was/BZ go-
ing_VVG

(VSUBCAT NP-PP) WHETHER/IF (PSUBCAT SFIN)

NP-WHAT-S / 12
(SUBCAT NPWHS)
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61.

62.

63.

64.

65.

66.

67.

68.

they PPHS2 asked/VD him_PPHO1 whaDDQ heP PPHS1 was/BZ do-
ing_VVG
(VSUBCAT NP_.SCOMP) S(WH +)

NP-WH-TO-INF / 12

(SUBCAT NPWHVP)

he PPHS1 asked/VD him_PPHO1 whetheCSW taTO cleanVV0 the AT
houseNN1

(VSUBCAT NP.PP) WHETHER (PSUBCAT VPINF)

NP-WHAT-TO-INF / 12

(SUBCAT NP.WHVP)

he PPHS1 aske®/VD him_PPHO1 whatDDQ to_.TO do.VVO
(VSUBCAT NP.NP) * WHAT/WHO/WHICH

P-ING-SC /100

(SUBCAT SCING, SUBTYPE EQUI, PREP)

they PPHS2 failedvVD in _Il attemptingVVG the AT climb_NN1
(VSUBCAT PP) in (PSUBCAT VPING)

P-ING-AC / ??

ANLT gap (SUBCAT VCING, PRT)

they PPHS2 disapprovedVD of _|O attemptingVVG the AT climb_NN1
(VSUBCAT VPING, PRT +) of

they PPHS2 argued&/VD about |l attemptingVVG the AT climb_NN1
(VSUBCAT PP) about (PSUBCAT VPING)

P-NP-ING /8

(SUBCAT OCPPING, PFORM @p, SUBTYPE PVERB®R/OE, ORDER
PRENP)

they PPHS2 worriedvVD about Il him_PPHO1 drinkingvVVG

(VSUBCAT PP) about (PSUBCAT SING)

P-NP-TO-INF(-SC) / 6

(SUBCAT SCPP.INF, PFORM @p, SUBTYPE EQUI)

he PPHS1 conspireVD with _IW them PPHO2 taTO do VVO0 it_PPH1
(VSUBCAT PPVPINF) with (PSUBCAT NP)

P-NP-TO-INF-OC / 29

(SUBCAT OCPP.INF, PFORM @p, SUBTYPE PVERBE/OR/EQUI)
he PPHS1 beckonetVD to_Il him_PPHO1 taTO comeVVO0
(VSUBCAT PPVPINF) to (PSUBCAT NP)

P-NP-TO-INF-VC / ??

ANLT gap

shePPHS1 appeale®tVvD to_ll him_PPHO1 taTO go.VVO
shePPHS1 appeale®VD to_Il him_PPHO1 taTO be VBO freed JJ
(VSUBCAT PPVPINF) to (PSUBCAT NP)
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69.

70.

71.

72.

73.

74.

75.

76.

77.

P-POSSING / 10

(SUBCAT OCPPING, PFORM @p, SUBTYPE PVERB®R, ORDER

PRENP)
they PPHS2 argued&VD about Il his_.PP$ comingvVG
(VSUBCAT PP) about (PSUBCAT SING)

P-WH-S /37
(SUBCAT WHS, PRT/PREP @p)

he PPHS1 though¥VD aboutll whetherCSW hePPHS1 wanted/VD

to_TO go.VVO0

(VSUBCAT PP) about (PSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)

P-WHAT-S / 37

(SUBCAT WHS, PRT/PREP @p)

he PPHS1 thoughvVD aboutll what DDQ he PPHS1 wanted/VD
(VSUBCAT WHPP) about (PSUBCAT WHS)

P-WH-TO-INF / 27

(SUBCAT WHVP, PREP @p)

he PPHS1 thoughvVD aboutll whether CSW taTO gao VV0
(VSUBCAT PP) about (PSUBCAT PP) whether (PSUBCAT VPINF)

P-WHAT-TO-INF / 27

(SUBCAT WHVP, PREP @p)

he PPHS1 thoughvVD aboutll what DDQ to_TO do VVO0
(VSUBCAT WHPP) about

PART /3219

(SUBCAT NULL, PRT) / XTAG:Tnx0Vpl
shePPHS1 gave/VD up_RL
(VSUBCAT NONE, PRT +) up
shePPHS1 gave/VD up_ll

(VSUBCAT PP) up (PSUBCAT NONE)

PART-ING-SC /7

(SUBCAT SCING, SUBTYPE EQUI, PRT/PREP)

he PPHS1 ruledvVD out_ll paying VVG her AT debtsNN2
(VSUBCAT PP) out (PSUBCAT VPING)

he PPHS1 ruledvVD out_RP payingVVG her AT debtsNN2
(VSUBCAT VPING, PRT +) out

PART-NP/NP-PART / 2134

(SUBCAT NP, PRT) (ORDER FREE) / XTAG:Tnx0Vplnx1
iPPHS1 lookedvVD up_RL the AT entry NN1

(VSUBCAT NP, PRT +) up *

iPPHS1 lookedvVD the AT entry NN1 up.RL

(VSUBCAT NP, PRT +) *up

PART-NP-PP /312
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78.

79.

80.

81.

82.

83.

(SUBCAT NP.PP, PFORM, PRT, SUBTYPE NONE/PVERB?) (ORDER

FREE)

iPPHS1 separatedVD out Il the AT threeJJ boysNN2 from.ll the AT
crowd NN1

(VSUBCAT PPPP) out (PSUBCAT NP) from (PSUBCAT NP)

iPPHS1 separatedVD out_RL the AT threeJJ boysNN2 from.ll the AT
crowd NN1

(VSUBCAT NP_PP, PRT +) out from (PSUBCAT NP)

PART-PP /234

(SUBCAT PP, PFORM, PRT, SUBTYPE PVERB)
shePPHS1 lookedvVD in_ll on_ll her AT friend_NN1
(VSUBCAT PP) in (PSUBCAT PP) on (PSUBCAT NP)
shePPHS1 lookedvVD in _RL on_ll her_AT friend_NN1
(VSUBCAT PP, PRT +) in on (PSUBCAT NP)

PART-WH-S / 20

(SUBCAT WHS, PRT, SUBTYPE NONE)

they PPHS2 figuredvVD out_ll whether CSW shePPHS1 hadvHD n't _XX
doneVVD her AT job_NN1

(VSUBCAT PP) out (PSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)
they PPHS2 figuredVVD out RP whethelCSW shePPHS1 had/HD
n't_XX done VVD her_AT job_NN1

(VSUBCAT PP, PRT +) out WHETHER/IF (PSUBCAT SFIN)

PART-WHAT-S / 20

(SUBCAT WHS, PRT, SUBTYPE NONE)

they PPHS2 figuredvVD out_Il what DDQ shePPHS1 hadVHD n't _XX
doneVVD

(VSUBCAT WHPP) out (PSUBCAT WHS)

they PPHS2 figuredvVD out_RP whatDDQ shePPHS1 had/HD n't_XX
doneVVD

(VSUBCAT SCOMP, PRT +) out S(WH +)

PART-WH-TO-INF / 22

(SUBCAT WHVP, PRT, SUBTYPE NONE)

they PPHS2 figuredvVD out_ll whether CSW taTO go V0
(VSUBCAT PP) out (PSUBCAT PP) whether (PSUBCAT VPINF)
they PPHS2 figured/VD out_RP whetherCSW ta TO go VVO
(VSUBCAT PP, PRT +) out whether (PSUBCAT VPINF)

PART-WHAT-TO-INF / 22

(SUBCAT WHVP, PRT, SUBTYPE NONE)

they PPHS2 figuredvVD out_ll what DDQ to_.TO do.VV0
(VSUBCAT WHPP) out (PSUBCAT NP)

they PPHS2 figuredvVD out_RP whatDDQ to_.TO da VV0
(VSUBCAT NP, PRT +) WHAT/WHICH/WHO

PART-THAT-S / 48
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84.

85.

86.

87.

88.

89.

90.

(SUBCAT SFIN, PRT, SUBTYPE NONE)

they PPHS2 figured/VD out.ll that CST shePPHS1 had/HD n't XX

doneVVD her AT job_NN1

(VSUBCAT PPSCOMP) out (PSUBCAT NONE) ¥VG/Z/D

they PPHS2 figured/VD out_RP thatCST shePPHS1 had/HD n't_XX

doneVVD her AT job_NN1

(VSUBCAT SCOMP, PRT +) out VVG/Z/D

POSSING / 27

(SUBCAT OCING, SUBTYPE RAIS)

he PPHS1 dismissedVD their_PP$ writingVVG novels NN2

(VSUBCAT SING)

POSSING-PP / ??

ANLT gap (SUBCAT OCING_PP)

shePPHS1 attributed/VD his_PP$ drinkingVVG too_.RA muchRA to.ll

his AT anxiety NN1

(VSUBCAT SING.PP) to (PSUBCAT NP)

ING-PP / 22
ANLT gap

they PPHS2 limitedvVVD smokingVVG a AT pipe NN1 to.ll the AT

loungeNN1

(VSUBCAT VPING_PP) to (PSUBCAT NP)

PP / 2465 (366 LOC)

(SUBCAT PP/LOC, PFORM,

XTAG:Tnx0Vpnx1

SUBTYPE

they PPHS2 apologize®¥'VD to_Il him_PPHO1

(VSUBCAT PP) to (PSUBCAT

PP-FOR-TO-INF /1
(SUBCAT PRSINF, PFORM)

they PPHS2 contracte®fVD with _IW him_PPHOL1 forlF the AT manNN1

to_.TO go.VVO

NP)

NONE/PVERB)

(VSUBCAT PPPP) with (PSUBCAT NP) for (PSUBCAT SINF)

PP-HOW-S / 7
(SUBCAT PPWHS, PFORM)

he PPHS1 explaine?VVD to_Il her. PPHO1 howRGQ shePPHS1 didvDD

it PPH1

(VSUBCAT PPPP) to (PSUBCAT NP) HOW/WHY/WHERE/WHEN

(PSUBCAT SFIN)

PP-HOW-TO-INF /3
(SUBCAT PRWHVP, PFORM)

he PPHS1 explained/VD to_ll them.PPHO2 howRGQ toaTO doVVO0

it_PPH1
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91.

92.

93.

94.

95.

96.

97.

98.

(VSUBCAT PPPP) to (PSUBCAT NP) HOW/WHERE/WHEN (PSUBCAT
VPINF)

PP-P-WH-S/??

Gap in ANLT scheme: (SUBCAT P®WHS, PFORM, PRT)

iPPHS1 agree&/VD with _IW him_PPHO1 aboutl whether CSW hePPHS1
shouldVM kill "VVO the AT peasantd\NN2

(VSUBCAT PPPP) with (PSUBCAT NP) about (PSUBCAT PP) WHETHER
(PSUBCAT SFIN)

PP-P-WHAT-S / ??

Gap in ANLT scheme

iPPHS1 agree®/VD with IW him_PPHO1 aboutl what DDQ he PPHS1
shouldVM do_VVO0

(VSUBCAT PPWHPP) with (PSUBCAT NP) about (PSUBCAT WHS)

PP-P-WHAT-TO-INF / ??

Gap in ANLT scheme

iPPHS1 agree®/VD with IW him_PPHO1 aboutl what DDQ to.TO
do_-VVO

(VSUBCAT PPWHPP) with (PSUBCAT NP) about (PSUBCAT NP)

PP-P-WH-TO-INF / ??

Gap in ANLT scheme

iPPHS1 agree®/VD with_IW him_PPHO1 aboutl whetherCSW taTO
go.VVO0

(VSUBCAT PPPP) with (PSUBCAT NP) about (PSUBCAT PP) whether
(PSUBCAT VPINF)

PP-PP /64 (22 PVERB)

(SUBCAT PPPP)

they PPHS2 flew\VD from_Il London.NP1 tall Rome NP1
(VSUBCAT PPPP) from (PSUBCAT NP) to (PSUBCAT NP)

PP-PRED-RS /0 (not in vppp)

(SUBCAT PP, SUBTYPE RAIS)

the AT matterNN1 seemsvVZ in _lI dispute NN1
(VSUBCAT PP) in (PSUBCAT NP)

PP-THAT-S / 22

(SUBCAT PPSFIN, SUBTYPE NONE, PFORM)

they PPHS2 admitted/VD to_ll the AT authoritiesNN2 thatCST
they PPHS2 had/HD enteredVVD illegally _RA

(VSUBCAT PPSCOMP) to (PSUBCAT NP) A/VD/ZIG

PP-THAT-S-SUBJUNCT / 2

(SUBCAT PPSBSE, PFORM, S[BSE, that])

they PPHS2 suggestedVD to_ll him _PPHOL thalCST hePPHS1 govV0
(VSUBCAT PPSCOMP) to (PSUBCAT NP) A/VO
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99. PP-TO-INF-RS/1
(SUBCAT SCPPINF, SUBTYPE RAIS, PFORM, VP][to])
he PPHS1 appearedVD to_Il her.PPHO1 taTO beVBO ill _.JJ
(VSUBCAT PPVPINF) to (PSUBCAT NP) BE

100. PP-WH-S/7
(SUBCAT PPWHS, PFORM)
they PPHS2 aske/VD about Il everybodyNP1 whetherCSW theyPPHS2
hadVHD enrolledVVN
(VSUBCAT PPPP) about (PSUBCAT NP) WHETHER/IF (PSUBCAT SFIN)

101. PP-WHAT-S/7
(SUBCAT PPWHS, PFORM)
they PPHS2 asked/VD aboutll everybodyNP1 whatDDQ theyPPHS2
hadVHD done VVN
(VSUBCAT PPWHS) about (PSUBCAT NP)

102. PP-WH-TQINF/3
(SUBCAT PRWHVP)
they PPHS2 deducelVD from_Il kim NP1 whethetCSW ta TO go.VVO
(VSUBCAT PPPP) from (PSUBCAT NP) whether (PSUBCAT VPINF)

103. PP-WHAT-TO-INF /3
(SUBCAT PPWHVP)
they PPHS2 deducedVD from_ll kim NP1 whatDDQ to_.TO do.VVO0
(VSUBCAT PPWHVP) from (PSUBCAT NP) WHAT/WHO/WHICH

104. S/296
(SUBCAT SFIN, SUBTYPE NONE) / XTAG:Tnx0Vs1l
they PPHS2 thoughvVD that CST hePPHS1 was/BZ always RA late JJ
(VSUBCAT SCOMP) *VVD/ZIG

105. S-SUBJ-S-OBJ/9
(SUBCAT SFIN, SUBTYPE EXTRAP, AGR S[FIN -])
for_IF him_.PPHO1 taTO reportVVO the AT theft NN1 indicatesVVD
that CST hePPHS1 was/BZ n't XX guilty _JJ
*_ VVO (VSUBCAT SCOMP) *VVD/ZIG

106. S-SUBJUNCT /27
(SUBCAT SBSE)
ShePPHS1 demandedVD thatCST hePPHS1 leave/VO immedi-
ately RA
(VSUBCAT SCOMP) *VV0

107. SEEM-S/9
(SUBCAT SFIN, SUBTYPE EXTRAP, AGR N2[NFORM IT])
it_PPH1 seem¥VZ that CST theyPPHS2 leftVVD
IT (VSUBCAT SCOMP) *VVD/Z/G
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108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

SEEM-TO-NP-S/1

(SUBCAT PRPSFIN, SUBTYPE EXTRAP, PFORM, AGR N2[NFORM IT])
it PPH1 seem¥&VZ to_ll her. PPHO1 thaiCST theyPPHS2 were/BDR
wrong.JJ

IT (VSUBCAT PP.SCOMP) to (PSUBCAT NP) &/VD/Z/G

THAT-S / 296 (with 104)

(SUBCAT SFIN, SUBTYPE NONE) / XTAG:Tnx0Vs1

he PPHS1 complaineyVD thatCST theyPPHS2 were/BDR com-
ing_VVG

(VSUBCAT SCOMP) *VVD/ZIG

TO-INF-AC / ??

ANLT gap (SUBCAT VCINF)

He_ PPHS1 helped/VD to_TO saveVVO0 the AT child_NN1
(VSUBCAT VPINF)

TO-INF-RS /27

(SUBCAT SCINF, SUBTYPE RAIS)

he PPHS1 seemeWVD to_TO comeVVO0
(VSUBCAT VPINF) be

TO-INF-SC /179

(SUBCAT SCINF, SUBTYPE EQUI)
iPPHS1 wanted/VD to_TO comeVVO0
(VSUBCAT VPINF)

WH-S /133

(SUBCAT WHS) / XTAG:Tnx0Vsl

he PPHS1 aske&/VD whether CSW hePPHS1 should/M come VV0
(VSUBCAT PP) WHETHER/IF (PSUBCAT SFIN)

WHAT-S /133

(SUBCAT WHS) / XTAG:Tnx0Vs1

he PPHS1 asked/VD what DDQ he PPHS1 should/M do_VV0
(VSUBCAT SCOMP) S(WH +)

WH-TO-INF /78

(SUBCAT WHVP) / XTAG:Tnx0Vs1l

he PPHS1 aske&/VD whether CSW taTO cleanVVO0 the_ AT houseNN1
(VSUBCAT PP) whether (PSUBCAT VPINF)

WHAT-TO-INF / 78

(SUBCAT WHVP) / XTAG:Thx0Vs1

he PPHS1 aske&/VD what_ DDQ to_.TO da.VVO0
(VSUBCAT NP) WHAT/WHO/WHICH

NP-NP-up / 45
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118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

(SUBCAT NP.NP, PRT)

i_.PPHS1 opene®¥VD him_PPHO1l upRP aAT new.JJ bankNN1 ac-
countNN1

(VSUBCAT NP-NP, PRT +) up

XTAG:Light-verbs (various classes) / ??
he PPHS1 mad&/VVD commentsNN2 on |l the_AT paperNN1
(VSUBCAT NP_PP) (make comments) on (PSUBCAT NP)

(SUBCAT PP/LOC / PFORM, PRT, SUBTYPE NONE) / 881 (LOC 45)
he PPHS1 break¥VZ away_RP fromll the_AT abbeyNN1
(VSUBCAT PP, PRT +) away from (PSUBCAT NP)

(SUBCAT NPPP / PFORM, PRT, SUBTYPE DMOVT) /25
he PPHS1 broughvVD a_AT book NN1 backRP forlF me PPHO1
(VSUBCAT NP.PP, PRT +) back for (PSUBCAT NP)

(SUBCAT PPPP / PFORM, PRT) /3

he PPHS1 camé&/VD down_RP onll him_PPHOL1 forlF his AT bad.JJ be-
haviourNN1

(VSUBCAT PPPP, PRT +) down on (PSUBCAT NP) for (PSUBCAT NP)

(SUBCAT NPPP.PP, PFORM)/ 16

he PPHS1 turned/VD it _PPHO1 fromll a_AT disasterNN1 into_ll a_AT
victory_NN1

(VSUBCAT NP_PP.PP) from (PSUBCAT NP) into (PSUBCAT NP)

(SUBCAT MP) / 29

it PPHS1 cosivVD ten_.MC poundsNNU2
(VSUBCAT NP) _NNU/(NTYPE MEAS)
v_np_nontransle (but cf v.expLit_subjnp_np_cp.inf_le)

(SUBCAT NPMP) / 6
it_ PPHS1 coswvVD him_PPHO1 tentMC poundsNNU2
(VSUBCAT NP.NP) _NNU/(NTYPE MEAS)

(SUBCAT NPMP-back) / 1
it_ PPHS1 se/VD him_PPHO1 baclkRP tenMC poundsNNU2
(VSUBCAT NP.NP, PRT +) backNNU/(NTYPE MEAS)

(SUBCAT ADL) /13

he PPHS1 camé&/VD off _RP badlyRP
(VSUBCAT NONE, PRT +) off (...PRT +) badly
(SUBCAT ADV.PP / PFORM) /2

thingsNN2 augurVVv0 well _RP forIF him_PPHO1
(VSUBCAT PP, PRT +) well for (PSUBCAT NP)

(SUBCAT SFIN, AGR N2[NFORM IT], PRT) / 3
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129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

it PPHS1 turns/VZ out_RP thatCST hePPHS1 didvVvD it PPHO1
IT (VSUBCAT SCOMP, PRT +) out vVD/Z/G

(SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP) /9
that CST hePPHS1 cam&/VD mattersVVvZ
*_VVD/G/Z (VSUBCAT NONE)

(SUBCAT NRPSFIN, SUBTYPE NONE, PRT) /4
he PPHS1 had/VD her.PPHO1 onRP thatCST hePPHO1 attende¥VD
(VSUBCAT NP_.SCOMP, PRT +) on /VD/Z/G

(SUBCAT PPSFIN, SUBTYPE NONE, PRT) /4

shePPHS1 getd/VZ throughRP tall him_PPHO1 thaiCST hePPHS1
cameVVD

(VSUBCAT PPSCOMP, PRT +) through to (PSUBCAT NP)\*VD/Z/G

(SUBCAT NPNP_SFIN) /4

he PPHS1 beVD her_.PPHO1 tenMC poundsNNU2 thatCST hePPHS1
cameVVD

(VSUBCAT NP.NP_.SCOMP)_NNU*/(NTYPE MEAS) *_VVD/Z/G

(SUBCAT NPSBSE) / 1

he PPHS1 petitioned/VD them PPHO2 thatCST hePPHS1 bevBO
freedVVN

(VSUBCAT NP_SCOMP) * * VB0

(SUBCAT ITWHS, SUBTYPE IF, AGR N2[NFORM IT]) / 1
i_PPHS1 wouldvM appreciateVV0 it PPHO1 if CF hePPHS1 cam&/VD
(VSUBCAT NP_PP) if (PSUBCAT SFIN)

(SUBCAT PPWHS, PFORM, AGR N2[NFORM IT]) / 1

it_ PPHS1 dawned/VVD on_II him_PPHO1 whatDDQ he PPHS1 should/M
do V0

IT (VSUBCAT PPWHS) on (PSUBCAT NP)

(SUBCAT SCNP, PRT, SUBTYPE RAIS/EQUI, PRD +) /2
he. PPHS1 turned/VD out_RP aAT fool NN1
(VSUBCAT NP, PRT +) out

(SUBCAT SCAP, PRT, SUBTYPE EQUI/RAIS) / 22 (RAIS 3)
he PPHS1 startet/VD out_RP poorJJ

(VSUBCAT AP, PRT +) out

he PPHS1 startetVD out_ll poor_JJ

(VSUBCAT PPAP) out (PSUBCAT NONE)

(SUBCAT SCINF, PRT, SUBTYPE RAIS) / 6

he PPHS1 turned/VD out_RP taTO be VB0 a AT crook NN1
(VSUBCAT VPINF, PRT +) out BE

he PPHS1 turned/VD out_ll to_TO be VB0 a AT crook NN1
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(VSUBCAT PPVPINF) out (PSUBCAT NONE) BE

139. (SUBCAT SCINF, PRT, SUBTYPE EQUI) /12
he PPHS1 sevVD out_RP taTO win_VV0
(VSUBCAT VPINF, PRT +) out
he PPHS1 sevVD out_ll to_TO win_VVO
(VSUBCAT PPVPINF) out (PSUBCAT NONE)

140. (SUBCAT SCING, PREP, PRT, SUBTYPE EQUI) / 32
he PPHS1 gatvVD aroundRP tall leaving VVG
(VSUBCAT PP, PRT +) around to (PSUBCAT VPING)

141. (SUBCAT SCPASS, SUBTYPE RAIS) / 4
he PPHS1 gotvVD given_VVN a_AT book NN1
(VSUBCAT VPPRT)

142. (SUBCAT SCBSE, SUBTYPE EQUI) /3
he PPHS1 dared/VVD danceVVO0
(VSUBCAT VPBSE)

143. (SUBCAT SCNP_AP, SUBTYPE RAIS, PREP as) /3
he PPHSL1 strikes/VZ me_PPHO1 asCSA foolish.JJ
(VSUBCAT NP_PP) AS (PSUBCAT AP)

144. (SUBCAT OCNP, SUBTYPE RAIS) /35
he PPHS1 consider¥VZ Fido_NP1 aAT fool _NN1
(VSUBCAT NP.NP)

145. (SUBCAT OCAP, SUBTYPE RAIS, PRT) /3
he PPHS1 make®VD him_PPHO1 outRP crazyJJ
(VSUBCAT NP.AP, PRT +) out

146. (SUBCAT OCAP, SUBTYPE EQUI, PRT)/4
he PPHS1 sand¥VZ it _PPHO1 downRP smooth]J
(VSUBCAT NPAP, PRT +) down

147. (SUBCAT OCAP, SUBTYPE EQUI, PREP as) /5
he PPHS1 condemnedVD him _PPHO1 asCSA stupidJJ
(VSUBCAT NP_PP) AS (PSUBCAT AP)

148. (SUBCAT OCAP, SUBTYPE EQUI, PREP as, PRT) /6
he PPHS1 putvVD him_PPHO1 downRP asCSA stupidJJ
(VSUBCAT NP_PP, PRT +) down AS (PSUBCAT AP)

149. (SUBCAT OCINF, SUBTYPE RAIS, PRT) /3
he PPHS1 madé/VD him_PPHO1 outRP ta TO beVVO0 crazy.JJ
(VSUBCAT SINF, PRT +) out BE

150. (SUBCAT OCINF, SUBTYPE EQUI, PRT) /19
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151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

he PPHS1 spurre®/VVD him_PPHO1 onRP taTO try_VVO
(VSUBCAT SINF, PRT +) on

(SUBCAT OCPP.INF, SUBTYPE PVERBOE, PFORM, PRT) /6
he PPHS1 kep/VD on_RP atll him_PPHO1 taTO join_VV0
(VSUBCAT PPVPINF, PRT +) on at (PSUBCAT NP)

(SUBCAT OCPP.ING, SUBTYPE PVERBOE, PFORM, PRT) /4
he PPHS1 talked/VD him _PPHO1 aroundRP intall leaving VVG
(VSUBCAT NP_PP, PRT +) around into (PSUBCAT VPING)

(SUBCAT OCPPBSE, PFORM, SUBTYPE PVERB®E) / 1
he PPHS1 lookedvVD at_ll him_PPHO1 leave/VO0
(VSUBCAT PPSCOMP) at (PSUBCAT NONE) V0

(SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-]) / 4
to_TO seeVV0 them.PPHO2 hurtsvVvVZ
_VVO (VSUBCAT NONE)

(SUBCAT NPADL) / 39
he PPHS1 stood/VD it _PPHO1 aloneRL
(VSUBCAT NP, PRT +) **RL/A/P

NP-HOW-S / ?
he PPHS1 asked/VD him_PPHO1 howRGQ hePPHS1 camé&/VD
(VSUBCAT NP_PP) HOW/WHY/WHERE/WHEN (PSUBCAT SFIN)

NP-FOR-TO-INF / ?
he PPHS1 gave/VD money.NN2 for_IF him_PPHO1 taTO go.VV0
(VSUBCAT NP_PP FOR (PSUBCAT SINF)

IT-PASS-SFIN / ?
it_PPHS1 isVBZ believedVVN that CST hePPHS1 cam&/VD
IT PASS (VSUBCAT SCOMP)

AS-IF-SFIN / ?
he PPHS1 seem¥VZ as.CS if_.CS hePPHS1 isVBZ clever.JJ
(VSUBCAT PP) AS (PSUBCAT PP) IF (PSUBCAT SFIN)

ADL)
it PPHS1 carve¥VZ easily. RP
(VSUBCAT NONE) *.RP/A

SCNP SUBTYPE EQUI)
he PPHSI1 feltVVD a_AT fool _NN1
(VSUBCAT NP)

AS-VPPRT
he PPHS1 acceptedVD him_PPHO1 adl/CSA associated/VN
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(VSUBCAT NP_PP) AS (PSUBCAT VPPRT)
163. AS-VPING

he PPHS1 acceptedtVD him_PPHO1 adl/CSA being VBG normalJJ
(VSUBCAT NP_PP) AS (PSUBCAT VPING)
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Appendix B

Verb Distributions in Adult Speech vs.
Child Directed Speech

The following is a table of the topd0 most frequent verbs found in the BNC and the CHILDES1
corpora.

Rank | BNC n CHILDES1 n

1 get 5000+ | go 5000+
2 go 5000+ | be 5000+
3 say 5000+ | do 5000+
4 be 5000+ | see 4200
5 know 5000+ | put 4037
6 do 5000+ | get 4018
7 think 4074 | want 3411
8 see 2852 | can 3409
9 like 2827 | let 2771
10 can 2710 | look 2585
11 come 2602 | think 2280
12 want 2148 | like 2038
13 mean 2078 | know 1768
14 look 1930 | say 1755
15 put 1776 | come 1693
16 take 1443 | make 1692
17 tell 1122 | okay 1593
18 make 1092 | take 1356
19 use 1016 | eat 1172
20 will 1007 | give 990
21 give 920 | play 944
22 buy 590 | tell 860
23 leave 548 | find 661
24 keep 545 | happen 581
25 pay 543 | sit 580
26 let 536 | read 571
27 remember 517 | remember 563
28 work 495 | try 556
29 suppose 489 | fall 546
30 play 477 | will 537
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

talk
ask
find
start
need
call
try
eat
hear
stop
sit
turn
feel
wait
bring
run
live
walk
watch
seem
pick
love
happen
mind
send
move
write
finish
show
ring
wonder
forget
sell
bother
okay
speak
stick
cut
stand
change
read
stay
lose
thank
listen
win
help
drive
open

475
469
464
445
443
431
430
394
370
345
342
301
299
297
286
274
271
263
260
254
248
247
246
244
241
238
236
232
226
226
224
224
209
200
198
191
188
187
182
182
182
178
174
172
160
157
149
148
146

148

need
hold
turn
call
talk
thank
show
wait
bring
mean
sleep
build
wear
watch
help
fit
use
drink
throw
pull
fix
ride
leave
break
pick
keep
open
stay
draw
hurt
stand
stick
push
hear
feed
finish
move
pretend
work
close
buy
catch
run
hum
cry
hit
ask
walk
wash

531
527
492
439
426
408
404
395
389
379
369
367
363
308
289
288
286
284
268
266
260
255
254
253
248
244
243
243
242
235
231
225
221
212
195
182
177
175
170
170
169
168
166
159
159
158
158
152
151




80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

throw
draw
reckon
break
fuck
round
hope
bet
wear
believe
pull
drop
hate
fall
matter
expect
meet
sort
spend
hold

145
142
140
140
139
138
136
135
132
132
121
120
119
118
116
115
114
114
113
112

149

hang
sing
bite
bet
jump
feel
blow
listen
fly
guess
cut
live
start
stop
knock
drive
brush
roll
cook
touch

148
143
143
140
139
137
134
132
130
127
126
124
121
121
121
120
119
114
112
112
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Appendix C

Full SCF Data in Adult Speech vs. Child
Directed Speech

For each of the following 04 verbs, the following table gives pairs of numbers for the BMG a
the CHILDESL1 corpora. The pairs of numbers represent thetiatt particular verb occurred
with a particular SCF a given number of times. For examplefiteepair, 24 84, listed in the
table represents the fact that the verb “ask” occurred with Bumber4 a total 0f84 times in
the BNC.

ask
BNC: 2484,2227,3710,535,264,1044,1064,523,592,133221156 2,
471,491,621,741,761,1131,147 1,154 1
CHILDES1: 2486,2228,3719,876,1065,1044,522,592,7 1,281,491, 531,
621,1121,1291
bet
BNC: 104 44,22 28,24 25,10624,269,375,251,351,521
CHILDES1: 106 66,104 43,2217,248,1332,11,521
break
BNC: 2449,2233,766,373,232,492,1542,11,521,781,80411106 1,
1131,1331
CHILDES1: 2472,2238,1065,373,1423,82,762,1232,11,521,871, 104 1,
1331
bring
BNC: 24108,7653,2226,3726,10611,496,21,251,531,621,871,104
1,1291,1421
CHILDES1: 24112,7690,3729,2213,1068,13,1042,1122,8361,1231
build
BNC: 2431,2217,377,493,873,762,231,261,521,741,1294]1
CHILDES1: 2464,2217,873,1063,372,251,491,1041
buy
BNC: 2463,2231,3728,499,1069,1045,523,873,72,12322]1251, 35
1,501,531,741,751,1161,1171,1331,1421,1561
CHILDES1: 2452,2233,3728,8719,4916,1064,1042,71, 591,521,621, 77
1,891,1161,1221,1331
call
BNC: 24171,2263,3750,1069,1048,15,875,763,72,522,1822,21,

151,231,251,261,1131,1171,1241,1321,1421,158 1
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CHILDES1:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:
CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:

CHILDES1.:

BNC:
CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1.:

BNC:

CHILDES1I:

24 146, 37 109, 2289, 106 6,104 3,7 2,622,762, 51,351,521, 116
1,158 1

can

2243,2413,10611,372,191,261,521,871,1121,1331

24 23,22 20,106 17,1045,374,524,161,1171, 1331

carry

24 25,2210,378,763,1062,71,81,154 1

24 40,2227,762,371,1291

catch

24 41,22 14,497,375,104 4,353,522,532,762,872,B1,251,
156 1

24 48,22 17,377,1047,1234,83,1063,11,491,8¥1,1291,1341
change

2432,2227,372,1042,71,751,1071,1331,1421
2457,374,223,763,1063,531,1541

check

24 15,22 11,374,104 3,106 3,1333,872,261,761,83211156 1
2432,765,223,501,571,1331

clean

2222,2416,765,1065,374,492,1042,261,521,87 1110321, 133
1,142 1

2418,228,767,374,492,522,1332,251,871

close

2419,228,372,492,522,1062,261,761,871,1041,1561

24 26,22 16,106 8,104 1

come

22 535, 87 66, 24 62, 106 25, 112 18, 104 17, 74 13, 1 10, 2239, 142 9,
378,1296,164,194,524,1334,492,782,1172,1372,71,81,25
1,261,501,761,771,971,1131

22590, 106 110, 24 60, 87 54, 142 22,112 21,74 12,198, 23 8, 52 8,
377,1237,1337,24,764,122,832,261,491,971,1161,1321
cook

2217,2417,376,1046,875,494,502,11,521,781,831

24 20,22 13,497,874,1423,1042,1062,1332, 71,3291

cover

2419,2213,767,876,495,231,371,1061
2433,769,227,372,71,491,1061

cut

24 30,22 14,76 14,496, 375,106 5, 254, 23 3,117 3,524£2]10 1, 26
1,531,741,1071,1161,1321,1331,1461
2450,2217,7613,498,375,874,1064,72,120221342 2,154 2,19
1,471,521,591,1171,1581

do

22 149, 24 93, 106 47, 37 17,87 16, 142 14, 49 11, 104 1010293 4, 116
4,73,503,523,763,1333,1543,12,1072,21,14 1,261, 747111
156 1

22 131, 24 102, 106 93, 87 22, 142 13,1299, 104 4,482 3, 1 2, 23 2,
1112,1132,1542,141,191,741,1231,1331

draw
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BNC:
CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDESI:

BNC:

CHILDES1.:

BNC:

CHILDES1:

2456,2247,376,875,1064,762,1042,1292,11,81,2331
2461,2244,876,374,524,1063,71,491,761,10431, 1331, 142
1

drink

24 38,22 23,379,1065,1334,1322,261,471,501,521,%81,871
24 53,22 16,37 10,26 3,523,1062,231,87 1, 133211

drive

22 47,24 28,87 7,372,1042,1062,1542,11,141,191,251, 113
1,1291

2449,2239,874,373,11,141,231,251,761,836,11

drop

2420,2212,767,372,522,11,771,871,1041,1421
2434,227,764,1063,1042,81,251,621,871,116831

eat

24 151, 22 114, 37 46, 106 24,104 11,1 6,505, 76 4, 133421229 2,
1322,1422,21,81,231,251,351,521,971,1221,134 1, 15341],
156 1

24 175, 22 105, 37 40,87 17,104 16, 106 11,49 106139 5, 76 5,253, 7
2,772,1162,1422,11,751,1321,1331

fall

2228,111,8711,243,1293,742,1062,91,1041
2232,876,1066,22,241,1041

feed

2414,223,12,372,492,71,81,521,871,1041,1321
2438,228,372,491,104 1, 1171

feel

139,2239,2421,10618,1047,264,253,22,872,751
153,2247,24 18,106 14,116 2,137 2,261,37 1,104 1

find

24 195, 22 70, 104 26, 106 24, 37 21,25 14,26 8,15, 76 4, 323112 2,
1332,161,231,521,1171,1231,1291,1341,1421,1561

24 303, 22 63, 106 30, 37 28,104 18,1 2,502,622, 762,133 2,16 1,
1171

finish

2256,24 46,37 12,10611,196,875,764,493,1042,1%82,74 1, 98
1,1331,1581

2458, 19 33, 22 26,37 10,87 9,496,104 5,25 2,222,906 2,1332,1
1,142 1

fit

2223,2416,764,373,1292,21,741,871,1061,12311132
2221,248,873,762,1062,1232,1071,1131,154 1

forget

22 28,24 23,104 11,875,1125,523,232,372,832,1062,261, 35
1,491,501,761,1051,1331,1541

24 32,2224,112 17,104 5,1065,52 3,372,492, 812251

get
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BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

24 1322, 22 903, 37 308, 1 141, 76 136, 2 131, 106 88, 104933, 25 41,
50 32,53 27,117 27,87 25,112 24, 26 21,52 16, 123 16, 132 15,3613,
13312,2310,197,777,1427,1296,85,74 4,124 4,154 4, 52 3, 86
3,983,122 3,147 3,116 2,146 2,158 2,14 1,161,401, 431,83 1,
1071,1111,1201,1481,1501, 156 1

24 1703, 22587,1 283,76 157, 106 147, 2 122, 11210272, 25 19, 7 18,
123 17,142 17,50 14, 133 13,52 10,26 9, 116 9, 117 8, 23 6, 1841562
3,743,1293,1323,92,192,532,1072,1112,1532,751, 83311
give

37 440, 24 283, 76 29, 106 25,7 4,117 4,132 4,8 3,19 3, 12022, 133
2,251,531,621,1071

37 450, 24 355,76 27,106 21,1 11,76,1175,352,82Q@2, 116 1, 132
1,1331,1421

go

22 2181, 24 353, 112 329, 87 221, 1 130, 106 74, 74 37, 238521, 9 18,
1918, 111 16,129 13,259, 269,1239, 76 7,132 6, 154 6, 75 441033
4,23,673,973,1133,162,532,862,431,461,831, 1241, 185011
22 2265, 112 991, 106 211, 142 87,9 34,74 28, 1 2¥,211 19 20, 104 19,
12919,2318,210,767,1237,1166,145,154 4,62 3,107 3,61, 86
1,1051,1131,1531,1581

hang

2218,249,375,875,764,106 3,104 2,751,133 1
2223,2421,8710,766,1065,26 4,74 4,37 3,104221129 1

happen

22 142,24 24,87 13, 106 10, 104 8,496, 74 4,1124,1 1,32 1, 59 1,
1071,1111,1131,1291,1531

22 195,87 10,745,1044,492,91,231,241,76 1,11063 1

hear

24 73,22 48,104 23, 106 16,37 7,87 4,493,352,762,71181,231,
261,521,971,1131,1161,1171,1221,1331

24 117,106 33,22 24,104 13,37 4,522,117 2,156122B 1,62 1, 105 1,
1231

help

24 59,22 37,106 18,377,765,104 3,1122,191,491,501,531, 129
1,1331

24 81,106 34,2222,261,371,491,761

hit

24 36,224,1043,762,71,161,251,371,1171,1291

24 34,22 10,1064,11,81,761,104 1

hold

24 50,22 10,769,378,873,1062,1232,71,81,251,5P72111331,
1421

2472,227,767,1065, 123 4,872,104 2,1332,14872,1321

keep

24 80, 19 48,22 34,76 16,104 15,106 12,259,17,493,81,351, 112
1

24 85,1972,7619, 106 17,104 16,259,225,13,B2,862,81,37 1,
401,501,751,1231

knock
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BNC:
CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDESI:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1.:

BNC:
CHILDES1:

BNC:
CHILDES1I:

24 20,2212,7612,879,493,1063,372,261,741, 1324115

76 37,24 23,22 12,1066,875,251

know

221044, 24 204, 104 197, 106 142, 26 44, 37 30, 116 14, 138 9, 113 7,
1296,165,14,1333,1533,1422,71,351,491,1031, 105111239
1,1591

22 647,104 499, 106 167, 24 159, 116 107, 26 40, 31P212,1398, 17 7,
1335,1545,504,873,12,232,1292,71,81,351,491,621, I87
1,1421,1471,1531

laugh
2242,876,245,1063,262,1042,1132,231,371,741,8811, 133
1

2253,246,872,1042,11,371,1421,1531

leave

24119, 22 52,37 14,106 11,49 10,76 6,14, 253,104 3, 138 3, 52 2,
852,872,1502,161,231,351,501,981,1291,1331

24 141,22 38,76 22,106 17,499, 375,104 5,82, 222,2,87 1, 107 1,
1291

let

106 388, 24 86,22 25,76 16,522,1422,71,1171

106 501, 24 13,37 13,22 11

like

24 792,22 733,106 99, 112 74,104 69, 19 25, 23 19, 1 186786114, 129
12,711,89,1548,1337,1427,255,835,1235,2 3, 353, 10021
1112,1162,1242,821,981,1131

24994, 112 404, 22 382, 106 55, 104 28,19 18, 111 8352 6, 154 6, 8 5,
74,254,504,116 4,1334,233,1233,352,107 2,142 2, 156 2, 629
1

listen

2252,87 38,74 3,97 3,104 3,106 3,112 3,242,522,16 1,38 1, 83
1,981,1131

87 45,22 37,106 13,24 4,74 4,104 4,67 2,77 2,982,837 1,521, 89
1,1121,1131,1331,1421

live

2232,8728,247,1043,742,1062,1332,161,981

22 48,87 25,245,1332,106 1

look

22 670, 87 386, 1 232, 24 105, 106 101, 104 67, 26 17, 7471633159 13,
16 10,2510, 76 10,238,757,142 7,116 5, 1295, 154 5, 107 4,49 3,
1333,692,1232,21,71,81,591,821,1371

87 612, 22 437,104 157, 106 147, 1 85, 24 64,52 226264 16, 16 9, 142
9,378,695,1335,1545,144,234,1164,1293,251,351,761,77
1,781,981,1011,1071

lose

24 28,2217,376,502,872,1062,21,251,261,521,1171
2438,2212,1044,502,1422,11,81,371,11311123

love

2244,24 43,524,104 4,1124,193,373,1062,231,251,71671
2478,2211,1126,374,1044,1064,11,21,1323 113

155



BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDESI:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1I:

make

24 476, 22 138, 106 132, 37 84, 25 35, 1 33, 104 32, 76 231176, 23 4,
1234,1324,263,82,532,772,1332,351,401,521,621, 108711,
1121,1131,1291,1421,1471,1501, 154 1,156 1

24 550, 106 214, 22 151, 37 34,25 30,76 12,104 10,15, 8 3, 49 3, 62
3,116 3,872,1052,1232,1322,261,351,521,1071,117 11133
mean

22 175,24 48,104 47,106 42,26 14,87 5,1125,113 4,49 3,57 3, 142
2,191,591,751,831,1331,1531

22 158, 24 67,104 39, 106 30,87 16,112 9,142 7, 95,835, 52 3, 26 2,
1072,1132,161,231,351,571,751,971, 1331, 147 1, 15461115
miss

2454,2212,377,1043,81,761,1231

24 49,2221,372,1042,1062,491,1071,1231

move

24 50, 22 48,87 8,76 6,375,117 3,1062,7 1,231,491, 1041, 120
1,1231,1291,1331,1421

24 61,2251,76 25,1066,37 3,872,104 2,117 2, 1,621,741, 116
1,1291,1331,1531

need

22 109, 24 108, 112 90, 37 31, 106 17, 19 11, 49 10, 104 16, 333 6, 35
3,503,533,82,92,762,1322,1472,11,71,161,231,251,671,
751,861,971,1111,1171,1231,1241,1541,1561

24 153,112 109, 22 60, 37 44,49 19,539,106 7, 764651 111 4, 19 3, 23
2,252,502,1332,591,1161,1231,1291, 1541

okay

22 139,24 21,10610,1045,11,71,91,231,261,871,10331, 129
1,1421,1541,1561

22188,1062,1422,241,771

open

24 66,22 42,375,1045,764,1063,81,251,491,831, 11231, 129
1,1421,1541
2473,2242,377,1063,1333,762,1232,501,594,11116 1,142 1
pick

76 62, 24 56, 22 23,37 17,106 8,496,104 6,117 5, 87 4, 5262,1 1, 40
1,771,1071,1321,1331

76 60, 24 28, 106 24,22 14,37 6,496,526, 776, 1B7 48,7 2,50 2, 133
2,21,1041,1131,1241,1291,1321

play

22 194,24 132,87 28,76 7,1047,1176,1065, 7 3,23 3, 122326 2, 50
2,191,251,521,621,741,751,981,1071,1231,1331,1421

22 159,87 100,24 70,106 11,1 6,23 4,762,104 221132 2,26 1,62 1,
741,831,1331

please

22 36,24 10,1065,1423,521,751,104 1, 1131
2233,10617,243,351,491,871,1041,1421

pull

24 45,76 24,2211,1174,373,872,71,81,191,261,1061

24 55,76 30, 106 12,1175,84,224,371,871,108211
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BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:
CHILDES1:

BNC:
CHILDES1:

push
2421,7612,228,377,495,1065,873,1172,11,71,291,4121,
1231,1321,1331,1421,1501

24 27,76 14,229,1069,37 3,117 3,1333,12,87221@51,491

put

24 702, 76 376, 22 214, 49 88, 37 75, 106 47, 104 24, 87 ZB161123 12,
710,5010,257,776,524,744,1334,83,233,263,402, 120221
1322,1422,1472,161,351,531,591,751,831,891,113 111184
1,1291,1481,1561

24 749, 76 541, 106 72, 117 27, 104 15, 77 12, 156 B),182 5, 87 3, 123
3,1293,12,502,522,1422,21,81,741,1241,1331

read

24 80,2259, 106 6, 76 4,104 4,123 3,372,872,1292,71,23 1,52
1,1031,1161,1171

24 89, 22 37, 37 35,106 4, 104 3,87 2,116 2,23 1, 31,83 1, 117 1,
1291

remember

22 156, 24 115, 104 67, 37 23, 19 20,83 19, 106 19,52 16,36 8, 112 5,
234,1334,1563,532,1132,1162,1532,11,21,71,81,161, 28
1,751,981,1071,1291,1471

22 190, 104 87, 24 85, 83 24, 106 22,52 16, 16 13, 34900, 112 7, 87 6,
194,234,1294,503,1333,1533,1543,532,1422,11,351, 95611
roll
2421,2211,1065,532,762,872,1422,191,261,491,991,1041
2429,224,493,873,762,1062,1172,1462,251,%2 1,831, 122
1,1331

run

2241,2429,8714,767,373,1063,11,491,1531
2267,8712,247,13,741,761,1041,1061,1291

say

22 680, 24 323, 104 255, 106 254, 26 56, 52 24, 23 14, 13316113, 1 12,
1296,1425,73,1073,81,1031,1131,1231,1241

24 643, 22 617, 106 211, 104 133, 1 38, 23 11, 116 38,1D, 19 8, 107 7,
266,1296,1425,23,72,1232,621,1131,1531,1541

see

221018, 24 909, 104 259, 106 225, 37 112, 26 54, 49 33, T1611B 16, 16
15,2313,359,258,1298,1338,16,1235,74,1424,154 4,83, 98
3,192,472,1122,1562,21,621,831,1051,1241,1471,1531
221123, 24 929, 104 308, 106 247, 113 24, 76 20, 264712, 52 8, 116 7,
16,1336,625,1545,234,354,744,253,1233,1293,72,82210
137 2,142 2,153 2

send

24 48,22 15,3713,7611,1322,81,251,491,771,1171

24 44,37 27,2224,492,502,1042,11,761,77 11123

set

2414,229,496,374,762,872,71,521,771
2413,7612,222,492,1062,251,871

show
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BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:
CHILDES1:

BNC:

CHILDES1.:

BNC:

CHILDES1:

BNC:

CHILDESI:

BNC:

CHILDES1.:

BNC:

CHILDES1I:

24 108, 37 36, 22 26, 104 10, 106 5,49 4, 76 4, 87 4, 132 3812262 2, 52
1,107 1,156 1

24 143,37 40,62 7,226,524,106 4,104 3,49 1, 5%6.11

sing

24 25,2222,373,873,1063,762,1042,231,261,491]1142
2219,2418,879,374,494,104 3,112 2,133 2, 74€3,11 106 1, 137 1,
142 1

sit

22 141,87 27,24 10,1045,744,193,1063,762,11,231,801,691
22122,8737,1064,193,1422,231,741,1041,12%4 1

sleep
2251,8730,245,1064,1042,1422,141,231,251,501,7291
2261,2420,8716,1063,12,1042,521,771,836,111

sound
114,2213,1068,874,72,242,372,121,491,971,10421]1154 1,
1591

116,106 10,229,1427,872,231,491,751,1031

stand

22 60,24 29,8715,493,1063,72,192,37 2,522,104 2211114 1, 23
1,741,861

22 34,76 19,87 12,249,106 6,104 4,123 1,133 11142

start

24 36,22 35,1919,1126,12,372,1042,91,531,761, 8041
2243,2421,1912,1128,1065,522,872,1042,%1,72111,1421
stay

22 96, 87 23,24 8,1066,1045,13,231,371,741,761,9131, 123
1,154 1
2291,111,1069,877,246,262,352,522,12921B1,371,621
stick

2240,24 39,87 18,3711,4911,1065,52 3,76 3,2 2,14221056 2, 19
1,351,621,741,1041,1121,1221,1291,1531,154 1,158 1

24 45,22 43,49 22,87 22,37 6,525,745, 158 3, 208,21 132 2, 133 2,
104 1,107 1,1291

stop

22 48,24 31,1910,356,375,1063,12,1042,871,1163]11233 1,
142 1

2248,2446,1913,1067,6 3,142 3,104 1

suppose

22 28,24 16,104 13,53 12,106 11,1127,263,522,57 22137 1,491,
1331,1421

112 35,53 27,22 13,249,94,574,1064,742,1182,261

take

24 662,76 174, 22 168, 37 71, 106 39, 104 23,87 17,49 1615119, 7 6,
775,1324,93,533,1123,62,112,232,262,592,1162,81,291,
671,831,981,1131,1201,1231,1241,1291,1331,1421,1561
24 694, 76 312, 22 85, 106 40, 37 25,104 20,7 14, P14910,87 8,14, 8
4,774,116 3,133 3,1422,231,531,591,1071,1291, 154 11156
talk
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BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:
CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1:

BNC:

22 164,87 102,2425,112,747,233,1233,162,752,1282,251,76
1,971,1011,1061,1541

22 156,87 137,74 25,18,1068,752,1042,141, 14531

tell

24511, 37 85,52 48,104 29, 62 26,106 17, 133 14, 132 849 8,53 6, 76
6,83,263,1163,62,592,1172,1422,11,231,501,741,831,8
1071,1121,1241,1291,1561

24 585, 37 122, 104 23, 62 21, 106 21,52 17,1336,/1248 1,251, 351,
401,501,761,831,1291,1391,1531,1561

thank

24 123,2217,378,73,523,1063,492,1042,251,7511133
24149,229,72,1062,231,491

think

22651, 104 611, 106 356, 24 350, 26 113, 13313, 23 8, 1641154 4, 113
3,192,1052,1232,71,351,621,671,1071,1111,1291,1421
104 870, 22 547, 106 543, 26 70, 35 5, 23 4, 129 3, 14223 25 2, 116 2,
1332,1542,11,81,621

throw

2447,7637,2219,377,496,1062,1322,261,871,1031

2459, 22 33,3710,769,88,1068,496,62 2,154 21831

touch

2434,227,374,1043,82,761,1231,1331

24 29,106 10,224,82,1052,1332,1422,351,3p4.11

try

112 142,22 109,24 62,106 13,767,15,195,1045,111 39711351, 50
1,831,1171,1321,1331

24 103,112 78,22 75, 37 49, 106 25,1920,76 7,968,211 1,491,501,
521,1041,1171,1321,1331

turn

24 57,76 56,22 33,110,106 10,377,1175,24,87 3,104 23,7202, 8
1,231,261,491,621,751,1231,1331,1421,1501

24 118, 22 48, 37 31, 106 27, 76 26, 117 6,104 5,1 2,6/7128 1,49 1, 52
1,1321

understand

2224,2424,1066,372,11,231,261
2236,2423,1293,1062,71,116 1

use

24 77,22 74,112 56,1068, 1118,377,744,754,9 3,87 2,28 2, 53
2,1042,981,1161,1171,1331

24 139, 22 68,112 28,87 6,1065,111 3,104 2,12312281,53 1,831,
147 1

wait

22 103,87 56, 24 43,106 14, 112 12,142 7,23 5,52 4,15 3,3% 2,9 1,
741,781,831,981,1031,1071,1321,1331,1541

24 92,106 74,22 52,87 17,104 10, 142 6,112 5,558,833, 133 3, 129
2,71,231,1171

walk

2260,24 18,87 12,493,1063,12,232,372,742,1422,381, 78 1,
1041,1291
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CHILDES1:

BNC:

CHILDES1.:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

BNC:

CHILDES1I:

2269,8725,2411,11,231,761,1041,1061

want

24 860, 112 519, 22 508, 106 53, 37 52, 104 41, 76 24, 111987, 53 14,
87 10,142 10,18,527,496,1336,85,265,354,1544,73,93,28
3,116 3,1233,1323,1052,1172,591,751,1071,1131

24 848, 112 797, 22 237, 106 141, 76 22,53 21, 111115, 116 8, 142 8
507,76,96,355,1334,572,81,111,141,771

wash

24 35,22 15,376,763,1063,1333,1042,21,261,491,871, 153
1,156 1

2464,225,375,493,72,762,1062,521,871,1332,1

watch

24 143,2258,10619,3711,1049,73,82,352,231,261,TI66 1, 123
1,1291

22 98,24 84,106 26,104 16,12,7 2,76 2,116 2, 2%1,,207 1, 133 1,
142 1

wear

24 43,22 24,3718,497,1067,15,1334,873,71,231,%521,761,
771,831,1041,1471

24 49,22 40,879,377,1046,494,1064,61,231,%31, 1171, 132
1,1331

will

2239,2417,1068,1043,372,21,191,261,781,871, 11421

22 34,24 15,106 11,1162,161,371,1131,1331,1153

wonder

22 17,104 16,106 8,1138,876,165,116 3,171,231, 31811

104 38,11310,227,1067,244,162,371

work
2293,2418,8714,1067,374,764,11,71,161,231,281,4041,
1131,1421,1541
22114,8710,16,246,1296,233,1063,371,1421
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Appendix D

SCF Distributions in Adult Speech vs.
Child Directed Speech

The following table gives the total frequencies of the SCF ticcured for the 104 selected
verbs in the BNC and the CHILDESL1 corpora. The first column isSS8& number, the second
is the SCF name, the third is the frequency in the BNC and thetaarthe frequency in
CHILDES1.

NO. Type (example) BNC CHILDES1

1 ADJP 774 660
(his reputation sank low)
2 ADJP-PRED-RS 158 147
(he appears crazy / distressed)
6 EXTRAP-NP-S 4 6
(it annoys them that she left)
7 S-SUBJ-NP-OBJ 114 97
(that she left annoys them)
8 TO-INF-SUBJ-NP-OBJ 57 52
(to read pleases them)
9 EXTRAP-TO-INF 34 51
(it remains to find a cure)
11 EXTRAP-NP-TO-INF 2 1
(it pleases them to find a cure)
12 EXTRAP-TO-NP-S 2 2
(it matters to them that she left)
14 S-SUBJ-TO-NP-OBJ 12 13
(that she left matters to them)
15 FOR-TO-INF 4 0
(i prefer for her to do it)
16 HOW-S 54 42
(he asked how she did it)
17 HOW-TO-INF 1 7
(he explained how to do it)
19 ING-NP-OMIT 218 220
(his hair needs combing)
22 INTRANS 13677 11599
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23

24

25

26

35

37

40

43

46

47

49

50

52

53

57

59

62

67

69

74

75

76

77

78

(he went)
INTRANS-RECIP(SUBJ-PL/COORD)
(they met)

NP

(he loved her)

NP-ADJP

(he painted the car black)
NP-ADJP-PRED

(she considered him foolish)

NP-ING-OC

(i caught him stealing)

NP-NP

(she asked him his name)

NP-P-ING-OC

(i accused her of murdering her husband)
NP-P-NP-ING

(he attributed his failure to noone buying his books)
NP-P-WHAT-S

(they made a great fuss about what they should do)
NP-P-WHAT-TO-INF

(they made a great fuss about what to do)
NP-PP

(she added the flowers to the bouquet)
NP-PP-PRED

(i considered that problem of little concern)
NP-S

(he told the audience that he was leaving)
NP-TO-INF-OC

(i advised ary to go)

NP-TOBE

(i found him to be a good doctor)
NP-WH-S

(they asked him whether he was going)
NP-WHAT-TO-INF

(he asked him what to do)
P-NP-TO-INF-OC

(he beckoned to him to come)
P-POSSING

(they argued about his coming)

PART

(she gave up)

PART-ING-SC

(he ruled out paying her debts)
PART-NP/NP-PART

(i looked up the entry)

PART-NP-PP

(i separated out the three boys from the crowd)
PART-PP

(she looked in on her friend)

162

194

12050

176

429

68

1895

396

71

201

90

20

40

124

34

1272

27

93

13042

93

186

35

1323

180

56

157

66

122

11

1568

32



82

83

85

86

87

89

97

98

101

103

104

105

106

107

111

112

113

115

116

117

120

122

123

124

129

PART-WHAT-TO-INF

(they figured out what to do)

PART-THAT-S

(they figured out that she hadn’t done her job)
POSSING-PP

(she attributed his drinking too much to his anxiety)
ING-PP

(they limited smoking a pipe to the lounge)
PP

(they apologized to him)

PP-HOW-S

(he explained to her how she did it)
PP-THAT-S

40

1358

1

15

(they admitted to the authorities that they had entered illegally)

PP-THAT-S-SUBJUNCT

(they suggested to him that he go)

PP-WHAT-S

(they asked about everybody what they had done)
PP-WHAT-TO-INF

(they deduced from kim what to do )

S

(they thought that he was always late)
S-SUBJ-S-OBJ

(for me to report the theft shows that i am guilty)
S-SUBJUNCT

(he demanded that he leave immediately)
SEEM-S

(it seems that they left)

TO-INF-RS

(he seemed to come)

TO-INF-SC

(i wanted to come)

WH-S

(he asked whether he should come)
WH-TO-INF

(he asked whether to clean the house)
WHAT-TO-INF

(he asked what to do)

NP-NP-up

(i opened him up a new bank account)
(SUBCAT NP-PP / PFORM, PRT, SUBTYPE DMOVT)
(he bought a book back for me

(SUBCAT NP-PP-PP, PFORM)

(he turned it from a disaster into a victory)
(SUBCAT MP)

(it cost ten pounds)

(SUBCAT NP-MP)

(it cost him ten pounds)

(SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP)

163

16

2

6

2183

10

2689

36

54

1319

63

82

115

96

16

112

43

2595

3729

28

65

2623

59

192

85

72

90



132

133

134

137

139

142

146

147

148

150

153

154

156

158

159

(that he came matters)

(SUBCAT NP-NP-SFIN)

(he bet her ten pounds that he came)

(SUBCAT NP-SBSE)

(he petitioned them that he be freed)

(SUBCAT IT-WHS, SUBTYPE IF, AGR N2[NFORM IT])
(i would appreciate it if he came)

(SUBCAT SC-AP, PRT, SUBTYPE EQUI/RAIS)

(he started out poor)

(SUBCAT SC-INF, PRT, SUBTYPE EQUI)

(he set out to win)

(SUBCAT SC-BSE, SUBTYPE EQUI)

(he dared dance)

(SUBCAT OC-AP, SUBTYPE EQUI, PRT)

(he sands it down smooth)

(SUBCAT OC-AP, SUBTYPE EQUI, PREP) as

(he condemned him as stupid)

(SUBCAT OC-AP, SUBTYPE EQUI, PREP as, PRT)
(he put him down as stupid)

(SUBCAT OC-INF, SUBTYPE EQUI, PRT)

(he spurred him on to try)

(SUBCAT OC-PP-BSE, PFORM, SUBTYPE PVERB-OE)
(he looked at him leave)

(SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-])
(to see them hurts)

NP-HOW-S

(he asked him how he came)

IT-PASS-SFIN

(it is believed that he came)

AS-IF-SFIN

(he seems as if he is clever)

164

75

163

138

15

12

68

28

15

22

128

16

49

19



Appendix E

SCF Distribution in Child Speech

The following table gives the total frequencies of SCFs aogun studied verbs in the CHILDES2
corpus. They are ranked according to frequency. The firsingolis the SCF number, the sec-
ond is the SCF name and the third is the frequency with whicbdticed in CHILDES?2.

NO.

24

22

106

76

37

87

112

104

49

142

123

133

Type (exmaple)

NP

(he loved her)
INTRANS

(he went)
S-SUBJUNCT

(he demanded that he leave immediately)

PART-NP/NP-PART

(i looked up the entry)

NP-NP

(she asked him his name)

PP

(they apologized to him)

TO-INF-SC

(i wanted to come)

S

(they thought that he was always late)
ADJP

(his reputation sank low)

NP-PP

(she added the flowers to the bouquet)
S-SUBJ-NP-OBJ

(that she left annoys them)

(SUBCAT SC-BSE, SUBTYPE EQUI)
(he dared dance)

(SUBCAT MP)

(it cost ten pounds)

(SUBCAT NP-SBSE)

(he petitioned them that he be freed)
ADJP-PRED-RS

(he appears crazy / distressed)

165

CHILDES2

7904

5547

1980

801

740

736

646

430

231

121

112

111

81

64

58



19

25

129

116

52

53

74

23

117

26

132

50

111

35

130

154

16

14

77

69

17

156

83

ING-NP-OMIT

(his hair needs combing)

NP-ADJP

(he painted the car black)

(SUBCAT SFIN, AGR S[FIN +], SUBTYPE EXTRAP)
(that he came matters)

WHAT-TO-INF

(he asked what to do)

NP-S

(he told the audience that he was leaving)
NP-TO-INF-OC

(i advised ary to go)

PART

(she gave up)
INTRANS-RECIP(SUBJ-PL/COORD)
(hey met)

NP-NP-up

(i opened him up a new bank account)
NP-ADJP-PRED

(she considered him foolish)

(SUBCAT NP-NP-SFIN)

(he bet her ten pounds that he came)
TO-INF-SUBJ-NP-OBJ

(to read pleases them)

NP-PP-PRED

(i considered that problem of little concern)
TO-INF-RS

(he seemed to come)

NP-ING-OC

(i caught him stealing)

(SUBCAT NP-SFIN, SUBTYPE NONE, PRT)
(he had her on that he attended)

(SUBCAT VPINF, SUBTYPE EXTRAP, AGR VP[FIN-])

(to see them hurts)

HOW-S

(he asked how she did it)
S-SUBJ-TO-NP-OBJ

(that she left matters to them)
EXTRAP-TO-INF

(it remains to find a cure)
PART-NP-PP

(i separated out the three boys from the crowd)
P-POSSING

(they argued about his coming)
HOW-TO-INF

(he explained how to do it)
NP-HOW-S

(he asked him how he came)
PART-THAT-S
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56

55

54

40

40

39

37

33

32

26

21

17

16

14

12



(they figured out that she had n’t done her job)
113 WH-S
(he asked whether he should come)
97 PP-THAT-S
(they admitted to the authorities that they had entered illegally)
153 (SUBCAT OC-PP-BSE, PFORM, SUBTYPE PVERB-OE)
(he looked at him leave)
62 NP-WHAT-TO-INF
(he asked him what to do)
139 (SUBCAT SC-INF, PRT, SUBTYPE EQUI)
(he set out to win)
120 (SUBCAT NP-PP/PFORM, PRT, SUBTYPE DMOVT)
(he brought a book back for me)
57 NP-TOBE
(i found him to be a good doctor)
124 (SUBCAT NP-MP)
(it cost him ten pounds)
40 NP-P-ING-OC
(i accused her of murdering her husband)
75 PART-ING-SC
(he ruled out paying her debts)
59 NP-WH-S
(they asked him whether he was going)
150 (SUBCAT OC-INF, SUBTYPE EQUI, PRT)
(he spurred him on to try)
107 SEEM-S
(it seems that they left)
158 IT-PASS-SFIN
(it is believed that he came)
105 S-SUBJ-S-OBJ
(for him to report the theft indicates that he was n’t guilty)
6 EXTRAP-NP-S
(it annoys them that she left)
15 FOR-TO-INF
(i prefer for her to do it)
47 NP-P-WHAT-TO-INF
(they made a great fuss about what to do)
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