Technical Report A

Number 680

Computer Laboratory

Haggle: Clean-slate networking
for mobile devices

Jing Su, James Scott, Pan Hui, Eben Upton,
Meng How Lim, Christophe Diot,
Jon Crowcroft, Ashvin Goel, Eyal de Lara

January 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/lwww.cl.cam.ac.uk/

© 2007 Jing Su, James Scott, Pan Hui, Eben Upton,
Meng How Lim, Christophe Diot, Jon Crowcroft,
Ashvin Goel, Eyal de Lara

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitp:/lwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Haggle: Clean-slate networking for mobile devices

Jing S4*, James ScdttPan Hui**, Eben Uptoih, Meng How Lim,
Christophe Diot, Jon Crowcroft, Ashvin Goef*, Eyal de Lar&

I Intel Research Cambridge®University of Toronto
t Cambridge University ~ * Thomson

Abstract

Haggle is a layerless networking architecture for mobile devices. It is ntetiviay
the infrastructure dependence of applications such as email and weBitgo even in
situations where infrastructure is not necessary to accomplish the englaagee.g. when
the destination is reachable by ad hoc neighbourhood communication. Inajhés we
present details of Haggle’s architecture, and of the prototype implementetich allows
existing email and web applications to become infrastructure-independewve, show with
an experimental evaluation.

1 Introduction

Miniaturization, Moore’s Law and convergence have had &pnmed impact on portable devices,
such as smart phones, notebooks, and PDAs. The result getbplie are able to carry their pre-
viously desktop-based computing environments with theith the aim of having ubiquitous
access to applications such as email and web browsing imnaysdon, always-available fash-
ion. However, the low speed, high price and constrainedaiéity of wireless Internet access
(through any means, e.g. 802.11, GPRS, etc) means that teeiseslare often disconnected
from the Internet, or have only a slow or expensive connactibhese devices use the same,
OSl-layered, IP based networking approach as desktop PGshwhsume a fixed network.
This fixed network design sometimes perform badly or notlandhe environment that mobile
devices find themselves in, which can bear more resemblarRedket Switched Networks [6]
or Delay Tolerant Networks [5].

Motivating Examples

For instance, let us consider two users, Alice and Bob, onmadang towards London. Alice
wishes to send Bob a document that she wants Bob to review folterder to accomplish
this, Alice might imagine that she can rely on what she wouwdwmally use, i.e. sending an
email with the attached document. However, in this situatising an email application might
(a) not work, failing “silently” as the message waits in thetkbx, or (b) work, but very slowly
and expensively, as GPRS is used to transfer data to Bob’s seraér, and Bob’s device has
to get it from the server in turn.

As trained experts, we can clearly see that the use of enfagistnucture is the wrong
way for the message to be sent in this example — it shouldlidgal directly from Alice’s
device to Bob’s device, using some mutually-supported nedivwwg technology such as 802.11.
Unfortunately, as untrained users, Alice and Bob may be venfused as to how they can
proceed, since they would have to know about their mutualoring technologies, how to
configure them, and which applications work over them. In,fagen trained professionals
in this situation would likely give up and use a USB memory keyphysically transfer the
data. (While USB keys may be an acceptable solution sometiim&g are by no means ideal,
requiring users to carry around another device, manageléseoh it, and they only help when
users can easily see/reach one another.)

A second motivating example is also set on a train to Londonarlgwants to find out
about restaurants in London using his laptop. He does na hay GPRS connection (and
may not be willing to pay for it if he did, or may be out of covgearange, or the train might
actually be a plane). Currently, Charlie would not bother evgimg to perform this task, as
he probably knows that his web browser (which is the obviguslieation to end users for
obtaining information) only works when he has a connectma wireless access point (AP).
In this case, the frustrating thing is that the data is hidikgly to be present on many other
devices within wireless range of Charlie, since others gtorigondon may well have looked up
restaurants before they departed, or on the train (if theyhdve GPRS access etc). However,
with the existing architecture, that information is notitafale to Charlie.

The Underlying Problem

The root cause of the deficiencies highlighted above liesiéncurrent network architecture
for mobile devices (the IP suite of protocols and the Berkalegkets API), which presents
applications with a synchronous, end-to-end connectivibdel using numeric addresses for
endpoints. In order to satisfy user-level tasks such asagesgand web-browsing, applications
are effectively forced by this model to act in ways that igigunherent reliance on networking
infrastructure, i.e. Internet connectivity.

Due to use of a synchronous model, applications are forcégt¢ome aware of the con-
nectivity state of the node and to handle changes in thig,stat(typically) simply assume
always-on connectivity and avoid solving the problem. By Eying end-to-end connections,
applications are prevented from making use (without exterend explicit support) of network
routes that may involve non-contemporaneous connectityrequiring numeric addresses,
user-memorable endpoint identifiers such as user@domgiara www.server.com must be
translated before the interface can be used, forcing ancdian the presence of DNS.

In reality, while our devices may often have cheap, fastriigeconnectivity for some peri-
ods (e.g. when we are at home or work), at other times theyiscerthected from the Internet,
or only connected through an expensive and/or slow netwaik (GPRS, pay-to-use 802.11
APs). However, while they are disconnected, devices mandfe connected to other devices
in the neighbourhood, and, as described in the motivatiaggses above, this limited connec-
tivity may often be enough to provide significant value toraskit could be put to work.

Paper Contributionsand Structure

In this paper, we present the Haggle architecture, a gropédesign of networking for mobile
devices, to support the mobile user scenario. Our protatpypéementation of Haggle allows

4

existing email clients and web browsers to seamlessly tpénainfrastructure-less network
conditions.

The contributions of this paper are as follows. After an view of the core concepts behind
Haggle, (Section 2), we present a detailed description @fthggle architecture (Section 3).
While many of the ideas that are integrated into Haggle ari bumiexisting research a key
contribution of this paper is their organization into a came architecture. Other contributions
include the open source prototype implementation (Se@)pthe description of how existing
email and web applications can be supported with Haggletig®e8) and an experimental
evaluation of the prototype and applications (Section 6).building Haggle, we identified
a number of research problems that it brings up, both in teriaptimizing the algorithms
used and in terms of new avenues of research that Haggleesnabmakes easier to pursue
(Section 7).

2 CoreConceptsof Haggle

In previous work [13] we explored the principles behind tlesign of Haggle (though we had
not built a working prototype at that time). In this section veiterate the key concepts before
diving in to the architectural description that follows.

The key idea behind Haggle is to have a data-centric ar¢hiee§2] where applications do
not have to concern themselves with the mechanisms of toainsgp data to the right place,
since that is what has made them infrastructure-depenBgritelegating to Haggle the task of
propagating data, applications can automatically takaigge of any connection opportunities
that arise, both local neighbourhoood opportunities ameheotivity with servers on the Internet
when available. We identify four design decisions for Hagblat follow on from this.

2.1 DataPersistsinside Haggle

The data on each node in Haggle must be visible to and sedectualby other nodes (with
appropriate security/access restrictions applied). Tdugitates operation of our motivating
web example, in that the public webpage needed by one pesohecfound despite it being
in another person’s device. In practice, this means thagléagust manage persistent data
storage for applications, instead of applications stodata in a separate file system.

2.2 Networking Protocolsinside Haggle

Any application-layer networking protocol includes ingadiassumptions about the type of net-
work available. For example, client-server protocols sastfSMTP, POP and HTTP assume
that the Internet-based servers are contact-able. Witlgldage place networking protocol
support inside Haggle itself, allowing us to present a datairic rather than connection-centric
abstraction to applications.

lwe provide references in the main body of the text rather thanseparate section

5

2.3 Name Graphs Supporting Late Binding

Since Haggle aims to be infrastructure-independent, it imeiable to use protocol-independent
names for delivery (since many protocols imply infrastanetof one sort or another). Since we
are in an environment where we cannot predict the best pathata a priori, we must perform
late binding from protocol-independent names such as apsersame to protocol-specific
names such as MAC addresses or email addresses. Hagglethenaintains its own naming
repository (it obviously cannot rely on remote look-up atttlata), with mappings from user-
level names to protocol-specific names specifying the uaneays to get to the user-level name.
Furthermore, the whole set of mappings (the “name graphtaismitted along with the data,
allowing even intermediate (i.e. non-source) nodes to trutotocol-specific names as late as
possible.

2.4 Centralized Resource M anagement

One role of the networking architecture on every device iddoide what to do with each of
its network interfacesow. In the current architecture, this decision does not tateaccount
resource management — the decision to spend resources ethsagis taken by applications
individually. This makes it very hard for applications to peactive, since they must make
sure themselves that only a suitable level of resourcesad.uslaggle therefore contains a
centralized resource management component, which demidesost/benefit comparison basis
what tasks it chooses to perform on each network interfaaggaten moment.

3 Haggle Architecture

The Haggle architecture is shown in Figure 1. Haggle is at eroascale comprised of six
Managers, the Data, Name, Forwarding, Protocol, Connectivity and ResoManagers. In
addition, many of the Managers themselves have well-defibsttactions for their contents, as
shown in italics/parentheses on the diagram - e.g. the &bkdanager encapsulates a number
of “Protocol” objects.

Haggle is a layerless architecture, in that we do not pass alad control signals up and
down between layers as for the current network architectimstead, all Managers provide
interfaces which other Managers can communicate with.rmgef the current model, Haggle
spans the link layer through to the application layer, issle. Link layer functionality in
Haggle includes, for example, the choice of whether the BDihterface is in infrastructure
mode or ad hoc mode, while Haggle’s Protocols include apgtio-layer protocols such as
SMTP and HTTP. Rather than present a “cross-layer designtevlagering is deliberately
broken, we instead acknowledge that this model is not apjatedor Haggle. The key value of
layering, in that between layers there are well-definedabiinterfaces facilitating modularity,
is kept: the six Managers provide abstract interfaces asmchadular in that they can be replaced
independently.

As there is no top layer, the API that Haggle provides to &aplons is composed of a
subset of the APIs that each Haggle manager provides to ¢heh on this paper we do not
list the APIs explicitly due to an excessive level of detailirterested readers are referred to
http://cvs.sourceforge.net/projects/haggle/ whereeheterfaces are available.

6

Messaging Information

Haggle Application Interface

<~ Name 7 .
2 \ Manager / e
@ \ (Name Graph) B
B oA = /fa \
& oo\ { Q. A
/ éb @g\' E -\\%%o %
[&8/ \o&
§ / \%,~
‘ — E AI‘ II|_:“P"_ —
__———’0_‘I‘II IIII'_;‘———_._Il
{;? - \'\\ /.f'f &y /
25,3\ /R&
\ %‘% %, 4 » Qg» &2
%GL) kS é Q /
_ Connectl\afltyr 5
N 7 / /,»-"' Manager “\ ‘-\ S
~ [/ (Connectivity) \
802.11 Bluetooth

Figure 1: Haggle overview

We now describe the design of each of the managers, incltlénkey data abstractions and
components, and how they communicate to perform netwotkisks. In this section we restrict
ourselves to describing architectural decisions, and tidisouss specific implementations (e.g.
the SMTP protocol, or the 802.11 connectivity) — this is keftlater in the paper where we
discuss the prototype that has been built and evaluatecheAénd of this section, we discuss
potential security and privacy issues that Haggle raises.

3.1 Data Manager

As stated previously, Haggle maintains users’ data pergigtrather than relying on a separate
file system. Haggle's data format is designed around the teekéstructured andsearchable.

In other words, relationships between application datésue.g. a webpage and its embed-
ded images) should be representable in Haggle, and apptisathould be able to search both
locally and remotely for data objects matching particukseful characteristics. We draw inspi-
ration from desktop search products (e.g. Google Desktdwhave changed the way that
many users file and access their data [4], allowing us to awaithg to methodically place data
in a file/directory structure. We propose that applicatioas use a combination of structured
data and search, with the former providing the kind of cafss expected of a traditional
file/directory system, and the latter allowing applicatido easily find and use data that they
themselves did not store.

Message

DO-Type Data

Content-Type | message/rfc822

From Bob

To Alice

Subject Check this photo out!

Body [text]

_l, Attachment

DO-Type Data
Content-Type |image/jpeg
Keywords Sunset, London
Creation time | 05/06/06 2015 GMT
Data [binary]

Figure 2: Example DOs: Message and Attachment

3.1.1 DataObjects

Our data format is simple. A Data Object (DO) comprises maitsibutes, each of which

is a pair consisting of &pe andvalue. Types and values are typically strings, though some
values may also be binary packed representations, e.g.athardan mp3 file. We encourage
and expect applications to expose as moetadata as possible about an item of application
data using attributes, including application data. Twonegi® DOs are shown in Figure 2,
representing a message from Bob to Alice, and a photo of suNs¢¢ that we do not require
users to enter more metadata about their objects than apptis would require themselves;
the value of exposing metadata is in searchability using R&didescribed later.

In order to facilitate multi-application environments aodavoid cache consistency issues,
DO attributes are immutable after creation. (Haggle itegdfy mutate attributes for internal
record-tracking, but applications may not). Applicatiomsst create a new DO instead of mod-
ifying a DO, and cause their existing links and claims to painthe new DO. This provides
useful guarantees for applications that their data will n@tmodified “under their feet”, al-
though the disadvantage is that if they wish to use the mogogate version of data, they
must be proactive, and use the search functionality desttiditer to get updates either proac-
tively or reactively. Another potential disadvantage gbyging DOs, that of the time and storage
costs of data replication, can be minimised by using stahdapy-on-write techniques present
in many filesystems.

3.1.2 Linksbetween DOs

DOs can be linked into a directed graph. Links can take twm$orThe first is to link data to
embedded or prerequisite data, e.g. a photo album’s matadatink to the set of photos in the

8

album, a webpage can link to its embedded objects, or (asrsimkigure 2) an email can link
to its attachments. This provides applications with a wasttocture data, akin to the way that
some applications use the placement of files in a commontdigebut more explicit. It allows
Haggle to keep track of the prerequisite objects that mushbhesd alongside a top-level object
in order to properly transmit a given application data ufite second purpose of linking is for
applications to themselves link to the DOs which they rezjr their operation, which can
be regarded as an “ownership claim.” In this way, many appbas can claim the same DO,
e.g. a photo gallery application can claim a photo that isdihto by a message (which brought
it into the node) which is in turn claimed by the messagingiappon. Linking and claiming
are accomplished using the same mechanism, we use the metedifferentiate between the
parent being another DO or a different entity.

Since Haggle allows many applications to claim DOs, it da#$ave a “delete” call, instead
just an “unlink”. When the last link is removed from a DO, it betes eligible for garbage
collection, though this is not necessarily performed imiatly since the node may have plenty
of persistent storage space. The data remains searcha&uleneNs unclaimed state, which is
an advantage since data is not lost unless space is acteqllyred for new data.

3.1.3 DO Filters

In addition to the ability to retrieve DOs via a unique ID pid®d at creation time, the Data
Manager also supports searching of DOs using a “DO filter'is Tomprises a set of regular-
expression-like queries about the attributes of an obgegt,”"mime-type” EQUALS "text/html”
AND "keywords” INCLUDES "news” AND "timestamp™ (now() - 1 hour) would return DOs
matching recent news webpages. A filter can be made peisiatehsince it is itself stored in a
DO, it can be sent remotely. This flexibility allows a singlechanism to be used for multiple
purposes: a non-persistent local filter is a search on loat, da persistent local filter is a
registration of interest in incoming data of a particulgseywhich functions analogously to a
TCP socket “listen”), a non-persistent remote filter is a esfjdior data which is sent across the
network as appropriate (depending on the Forwarding Allgors, Protocols and Neighbours
available), and a persistent remote filter allows “subsicms” to particular data to be registered
with other nodes (e.g. a home PC registers interest in neceall photos generated on a mobile
phone).

The Data Manager is responsible for matching DO filters to LaDd performs this when-
ever new data appears (which may match an existing persfgter) or whenever a new filter
appears (which may match existing DOs). If there are maidhes the source of the filter
(whether local or remote) is notified. The ability of Haggteunilaterally, without invoking
application processes, answer remote queries is a keyéealufacilitates sharing of infor-
mation between nodes beyond what we have today, since oageftiimation is provided to
Haggle, any and all connection opportunities that the neds san result in the sharing of that
information, given appropriate security concerns suchmasygtion and access control.

3.2 NameManager using Name Graphs

Endpoint descriptions for data transmissions in Hagglenatgoerformed in the usual method
of the nested headers found on the front of current phy$ag@lr packets (e.g. Ethernet address,
IP address, TCP port, and SMTP’s RCPT TO field describing thea@ntfor an email mes-
sage). This is because we aim to be able to make use of anglaleadld-hoc or infrastructure

9

John Doe

johndoe@freemail.org / GUIDb-123456
+1 416-555-9898 / l

(802.11bg) 00:12:34:56:78:90
(Bluetooth) OO:07:EO:O07:E9:80

Figure 3: Example of a name graph

connectivity opportunity. Since we cannot assume knowdexfghe best end-to-end path, either
when a communication is generated or even at an intermeaiate once the communication
IS in-transit, we cannot perform the ahead-of-time dirgctookups that are currently used to
map a user-level endpoint, e.g. “Bob Smith”, to the SMTP’s RCBIfi€ld (b@a.org) and so
on, in order to construct those addresses ahead of time. MNptit the case that some of
these lookups require infrastructure services such as DiSay not be available, but even
more importantly it is not possible to perform the initialnme-to-email-address mapping that
is implicit in the users’ choice of an email client rathernhan Instant Messaging or mobile
phone text message (SMS) client. The choice of client pradrg the user is currently equiv-
alent to making them choose a networking protocol (e.g. Emalies use of SMTP) and may
be equivalent to making them choose a device on which thevexosill receive the message
(e.g. text message implies use of a particular phone).

We require a more general form of naming notation that allates-binding of user-level
names, independent of the lower-level addressable nangrppssed in i3 [18]. We achieve
this by usingname graphs, inspired by INS [1], which are hierarchical descriptiofigibknown
mappings from a user-level endpoint to lower-level namdsd¢wmay imply particular proto-
cols/connectivity methods), and by using the whole namplgas the “recipient” for a message,
both on the source node and at intermediate nodes for theages$his is one of the “layer-
less” aspects of Haggle, and it contrasts with the existigrhet architecture where names are
only meaningful at particular layers of the protocol stack.

3.21 What'sin a Name?

An example name graph is shown in Figure 3. These graphs spartdp-level nodes such as
personal names through to leaves comprising persistehboatedf reaching them (e.g. an email
address), but not transient addressing data for those a&eflecy. an IP address for the email
server, or MAC address for the next-hop). Let us first disthisshoice of this partition [8]

In Haggle, we regard all of the nodes in a name graph as “naraadany of these names
can be an “address” if there exists a suitable protocol omdiske which understands that name.
For example, an SMS-capable device regards a phone numéee™ras an “address”, but a
non-SMS-capable device would not. This allows for the faat,tas a message moves between
nodes, different methods of mapping names to transmissethads become available. Thus a
layered model of name to address mapping is not always apatep

We note that while a given node may need to “resolve” a nam@duin order to effect
sending to that name, e.g. taking an email address, disogvére SMTP server suitable,
and using IP routing and a next-hop MAC address to send t@ahet SMTP server, it is not

10

sensible to regard these looked-up values as members oathe graph, since another node
with the same message would need completely different salurel would have to resolve them
independently.

While persistent information is stored in name graphs, tesmi$nformation is captured us-
ing the notion of a Neighbour, which identifies the next-hophe path for the data in order to
reach the name. Neighbours are discovered by Connectiftiisss discussed in the next sec-
tion), and their properties are used by Protocols to estalblhat names a given communication
can be forwarded to.

3.2.2 Name Objects

Haggle represents name graphs using DOs with a particuldyuae containing the name as
a string, which are known as Name Objects (NOs). These aedimising the normal DO
linking function to provide name graphs. The use of DOs fanimgy allows names to be easily
managed and made persistent.

Before Haggle can send data to a name graph, the NOs and lirdtdmaonstructed some-
how. There are many potential sources for NOs. Firstlypaigjin the name graph concept seems
at odd with existing user devices, actually much of what tgpsed is simply a consolidation
of naming information from disparate sources already prese a device. For instance, name
to email address mappings, name to instant messaging IDinggpgetc are already kept by
the respective applications. In addition, names can alsgabieered from Connectivities such
as Bluetooth or 802.11, as MAC addresses of nearby Haggkhbtapmodes are regarded as
Names. A third discovery method follows on from this, wherédie Name Manager can detect
nearby Haggle nodes (via the existence of the neighboutssand them directly a message
containing both the NO graph corresponding to the node, d»@ é<er requesting the recipi-
ent’s own NO graph (analogous to the the node saying “Hi gegri’'m Bob, who are you?”).
A fourth discovery method is in the receipt of messages wiieaode is acting as a courier,
or is the destination. These messages’ NO graphs can be fonetormation. A fifth method
may be for name graphs to be maintained and distributedglpenods of well-connectedness
with a trusted server on the Internet.

Finally, it is worth noting that a name graph used as an addi@sa message need not
remain static. Intermediate nodes could potentially adthi® graph, either adding hints for
forwarding algorithms to perform better routing, e.g. “$MMAC address was seen recently”,
or filling in missing sections of the graph. As an extreme gxiaya user might be told the name
of someone that they wish to send a message to, but not hawherynformation such as their
email address. By simply using the person’s name, a messageaeated which can only be
delivered by (controlled) broadcasting. However, one efribdes in the room might have the
name graph corresponding to that name, and could add thesayge\NOs as destinations for
the message so that it can be delivered properly.

3.3 Connectivity Manager and Connectivities

Haggle aims to support and embrace the use of many diffeegntonking technologies at the
same time. Networking technologies differ by their ranggeicy, bandwidth, infrastructure
available, cost of using the infrastructure, battery comstion, availability, and so on. It is

therefore appropriate for different Connectivities to bedigepending on the particular type

11

of communication being sent, e.g. a small but urgent messagje use (relatively) expensive
GPRS, while large, non-urgent data could wait until a freeneation opportunity arises (either
locally or via a “free” access point).

The job of the Connectivity Manager in Haggle is simply to grszdate a number of Con-
nectivity objects and to initialize the appropriate humhbestart-of-day. Each Connectivity
must support a well-defined interface including functigyalor neighbour discovery, open-
ing/using/closing communications channels, and estirgdtie costs (in terms of money, time
and energy) of performing network operations. The Conniégtimust interface with the un-
derlying hardware to provide this functionality.

There will be one Connectivity instance per instance of a agtwnterface on a node (so
there were two 802.11 interfaces there would be two Conrigeticreated during initializa-
tion). This is because a Connectivity is regarded by the ResoMianager as a schedulable
resource, so it must be clear exactly how many resources #rer Since the Resource Man-
ager expects to schedule the network interface, all opestihat result in network activity,
including operations initiated by the Connectivity’s cotielf, must be passed to the Resource
Manager as “Tasks” (to be discussed in Section 3.6).

Connectivities also interact with Protocols, providingrtheith Neighbour lists gained dur-
ing neighbour discovery. A Neighbour is a potential nexp-ty which particular Protocols
may know how to send data of particular types to particulaisN®@/e differentiate between
“non-Internet” Neighbours which are direct next hops rumgnHaggle, and “Internet” Neigh-
bours which are next hops supporting IP for accessing thegriat. Typically, each Protocol
will only be interested in one type of Neighbour.

Neighbour discovery can take various forms. In 802.11, amyenwith reception turned
on can see beacons from access points (APs) which annowsicexistence. For Bluetooth,
neighbour discovery is an active (and time-consuming) ggsc For GPRS, neighbour discov-
ery is implicit in that when base station coverage is presantnternet Neighbour is visible.

3.4 Protocol Manager and Protocols

The Protocol Manager is only responsible for encapsulatisgt of Protocols, and initializing
that set at start-of-day. A Protocol is a method by which D@s be forwarded to Names,
e.g. SMTP, HTTP, a direct peer-to-peer protocol etc. Thihlights an architectural differ-
ence between Haggle and traditional network stack, sinesetiprotocols are normally at the
application layer and forwarding decisions are normallgsidered to be taken at the IP layer
underneath.

Each Protocol monitors the Neighbours visible through ther@ativities, and using these
Neighbours it can determine which NOs it can deliver to. Tdegision can also take into
account the type of data being forwarded, e.g. an SMTP pobtan send a message to an
email NO, but it may refuse to accept non-message data (epdication signaling) since that
is not suitable to appear in an inbox.

For Protocols which must accept incoming connections,adijrect peer-to-peer protocol,
they must provide each Connectivity with enough informasorthat it can redirect incoming
data to that protocol. This is akin to listening sockets m éisting architecture. Some Proto-
cols do not accept incoming connections; typically, alenet-using Protocols (HTTP, SMTP,
POP) act as clients to existing servers and so must init@bt@ections themselves. While
seemingly simpler, this proves a source of additional war& tb polling requirements — for

12

example, the POP Protocol must use Resource Manager “Tasksder to request that email
accounts be checked (if Internet connectivity is availpble

3.5 Forwarding Manager and Algorithms

The Forwarding Manager provides an API to applications taseadata to be sent remotely,
encapsulates a number of Forwarding Algorithms, and sdmel$orwarding Tasks that are
produced by them to the Resource Manager.

Applications request data transfers by specifying a set®$ [the heads of a larger set of
linked DOs) and a set of NOs (the heads of name graphs). TheaFding Manager constructs
a Forwarding Object (FO) which is a DO with metadata aboutféinearding operation, and
which is linked to the destination NO graphs, to the DOs, andrt NO graph describing the
sender (useful for replies either from applications or fridaggle’s internal replies with DOs
matching DO filters). The metadata can include expiry tintas$ expiry hop counts, security
information and routing hints for forwarding algorithmsegtribed below), as well as a list of
NOs to which the data has already been sent. Other metadatstabe present — the DO
format allows for simple extensibility, and unknown fiel@dsde easily ignored across different
implementations/instantiations of Haggle.

3.5.1 Forwarding Algorithms

Once an FO is created, itis the job of one or more ForwardiggpAihms to determine suitable
next hops. In Haggle, we precisely define the role of a Forimgrdlgorithm as: for each
FO, propose a set dProtocol, NO, Neighboyrtuples which this FO could be sent to, and a
scalar “forwarding benefit” associated with each tuple,olhig an estimate of the probability
that sending it that way would result in successful endrd-gelivery. The tuples and benefit
levels change continuously, depending on the availabl@exdion opportunities, the known
information about the FO (e.qg. if it expires or has alreadgrbeelivered), etc.

Haggle has the useful feature of allowing many Forwardingofithms to be in usei-
multaneously. Note that we daot mean that traffic is generated according to the wishes of
all Forwarding Algorithms, since the Resource Manager wallrbsponsible for accepting or
denying the proposed actions of every algorithm. The sist@kgorithm is a direct forwarding
algorithm, which only proposes to send an FO if it can disectlach an NO which is present
in its graph of destinations (i.e. it does not make use of anltirhnop communication), with a
forwarding benefit of 100% by definition. Another algorithgtihe epidemic forwarding algo-
rithm [19], which sends the data to every Name that is redehae. it floods the data, but with a
correspondingly low forwarding benefit. Haggle can also enase of MANET algorithms such
as geographic [11] or distance-vector [12], as well as apinastic store-and-forward [16, 21]
such as mobility-based [6, 9, 10] algorithms. Haggle is ablase many of these algorithms
simultaneously, obtaining the “best of many worlds” in that each forwarding operation, a
different Forwarding Algorithm may prove best, due to aaaility or not of per-algorithm state
information. Such state information can be exchanged ingldagy Forwarding Algorithms
themselves creating Forwarding Tasks targeted at neaudgsno

For each FO, and each Protocol, Name, Neighbour that an FOpsged to be sent to (with
associated benefit), the Forwarding Manager creates a ‘ddimg Task”, to be executed when
the Resource Manager decides on doing so. When executed, tharéimg Task causes the
associated Protocol to send the FO to the NO, via the Neighbou

13

3.6 Resource Manager using Tasks

As referred to many times above, all outgoing or incomingvoek operations in Haggle are
proposed to the Resource Manager and executed only if/wleeRelource Manager chooses;
they are not necessarily executed in order or at all. A Taskprses a method of accomplish-
ing the work, the benefits of achieving the Task, and the aafsgerforming the Task. This
definition is deliberately abstract so that the Resource ganean compare between different
possible actions while knowing little about the actual meetbms or details of formulating or
carrying out Tasks.

Both the costs and benefits of Tasks are re-evaluated by the/iReddanager each time a
Task is considered for execution, using callback functigmosided by at Task creation time. A
Task’s cost describes measurable, true costs to the nogieessed in terms of energy, money
and time-on-network. Time-on-network refers to conneigtigpecific nature of the Tasks being
scheduled, and represents the opportunity cost of not dsmingething different with that time.
Task benefits describe the estimated utility to end usersenfiging a Task. This is not a simple
calculation to make. Components of this benefit include fotivey benefit which, as described
above, is the likelihood that this action will result in a saessful end-to-end transmission, but
also application benefit (how worth it to the applicationhatttransmission), and user benefit
(what priority is the action to the user). We would also likebie able to take into account
priorities specified by the owner of the devices, e.g. “I devant to spend money on others’
traffic, but | will allow Haggle to share a limited percentagfany battery”)

Tasks can be either asynchronous or immediate. Asynchsofesks are the norm, and (as
the name suggests) the Resource Manager is provided withbadako asynchronously call
when it wants the Task performed. Asynchronous Tasks capdsistent”, i.e. once they are
executed they persist to be executed again later — otheravigesk is only called at most once.
Immediate Tasks are used when a particular operation ntast &ie done now or not at all, and
they are used to deal with events such as incoming netwonkemtions which must either be
accepted or rejected.

Benefits and Costs for asynchronous Tasks are often variecebyothiner over time. For
persistent Tasks, the benefit of a Task that has just beemitexewill be low, e.g. checking
for new email on a server or checking for new Neighbours ighmatt beneficial if the operation
was last performed 1 second ago, and the benefit would rigetiove. On the other hand, an
FO with an imminent application-set expiry time becomes basd less beneficial to forward in
a multi-hop fashion, since the likelihood of reaching thetaw®tion in time for the application
purpose becomes low. Costs are calculated with the assesthitiee Connectivity that the Task
will be using — typically, the Task owner would provide aniesite of the number of bytes
to be sent/received via a particular Neighbour, and the Gzivity can translate that into the
expected money, energy, and time that this transmissidraki.

Once a Task is being executed, the Resource Manager can askdukfor a “continuation”,
l.e. if the scope of the work being done by the Task increases the initial cost/benefits
specified, then the Resource Manager can be synchronoukdy pai permission (with additive
cost/benefit over the existing Task) to authorize work onektended Task. This is useful for
circumstances such as email checking, which may discoga Email waiting for download.

The Task model is in marked contrast to the traditional ndtvatack, where networking
operations proposed by applications or operating systemwtifins are always attempted. The
centralization of decision-making about what Tasks arglhwadoing at all, and which are more
important at any time, allows Haggle to have a number of aidwgous features. First, Haggle

14

can execute periodic Tasks, such as email checking, on ardgrsghedule instead of at fixed
intervals. These periodic Tasks can be performed more oftesn bandwidth and energy are
abundant, and less often otherwise or when there are morertamp Tasks. Second, Haggle
can allow applications to request network operations oyiagr priorities, including specula-

tive Tasks which are often not possible or worthwhile, buichthvould be executed as and
when an opportunity arises. Third, Haggle can implementogewide policy about resource
conservation and consumption, and not rely on individugliagtions to do so (e.g. to throttle
low-priority Tasks at particular times).

The Resource Manager is a key illustration of how Haggle igettkess” since Tasks come
from many different managers. We have already describethgbes of Tasks generated by
the Name Manager (querying nearby Neighbours for namenwdton), Forwarding Manager
(exchanging state information), Protocols (email chegkiand Connectivities (Neighbour dis-
covery).

3.7 Security and Privacy

In the current version of Haggle, security and privacy havebeen addressed as key con-
cerns; we chose to narrow the scope of the problem to exchete,tso as to allow us to make
progress. We intend to introduce security primitives as r@ concern in future versions of
Haggle. However, we have made an initial analysis of themiatiesecurity threats that Haggle
raises, discussed below, though this has not been actedmupmnprototype implementation.

Many data security issues in Haggle can be handled usinglatérsecurity techniques
such as encryption, access control, and data signing. Eagetely makes it more likely that
there will be a man-in-the-middle attack. One proviso ig thany security techniques rely on
access to a trusted third party, e.g. a certificate signitigoaity. This access may be available
less often when using Haggle. One interesting approachdmoalto accept data which is
uncheckably signed, but somehow mark it (both internally @nthe user) as “untrusted” until
the signature can be checked through infrastructure access

There are particular security and privacy issues in the tisarae graphs. A name graph can
contain sensitive information, e.g. a user’s email addaesgor phone number, or the number
and type of a user’s devices (and hence how worthwhile it i®bothe user). Since Haggle
potentially exposes the full graph to everyone who can seeCnvith the graph, this could
prove to be a breach of privacy. One solution might be to igtust to particular groups of
users, e.g. the personnel of a company, and avoid sendingagessthrough untrusted nodes,
except when the name graph and data have been encryptedthedtaated to the extent that
those nodes could not obtain any useful information, anddconly help by passing the data
on to non-privacy-sensitive names (e.g. MAC addresses).

There are also privacy issues to do with neighbour discopastocols, since one’s devices
essentially beacon their identity. This could allow traxckiof the user. This problem is not
unique to Haggle, and many devices already essentially abeacons, e.g. laptops using
802.11 placing their MAC addresses on each frame.

Resource theft or resource denial-of-service is an integegsue for any system in which
user-owned nodes cooperate to achieve their goals, andreesoare limited. In Haggle, we
have a built-in mechanism to cope with this, namely the Resoianager, which already
makes judgments taking into account the utility of a givehaacto the user, and the device
owner’s preferences. On the other hand, this offers a sipglet of attack whereby a remote

15

exploit might allow an attacker to take full control of thevek®, so securing the Resource
Manager will be of particular concern.

Finally, we might ask the question of what motivates any rtodsgpend its resources assist-
ing any other node. An incentive to cooperate can be createthy ways — using reputation
systems, micro-payments, or social kudos/disapprovathBumore, in some possible deploy-
ments of Haggle, e.g. within an enterprise, there is a pigtiag incentive to cooperate so this
may not be a problem.

4 Prototyping Haggle

The Haggle prototype has been developed using Java, tdrgeti@lly at Windows XP (as
described in the experiments later), but also ported tox emd Windows Mobile platforms.
This development has been conducted using sourceforgamepen source development site,
under the GNU General Public License (GPL), and remains sparce and available to other
research groups.

We now describe some implementation details of the prottylfhis implementation was
demonstrated at UbiComp 2006 [14] and ACM MobiCom 2006, and &sl s conduct the
experiments detailed in the next section.

4.1 DataManager using SQL

We implemented Haggle’s Data Manager using Java’s stai@@tdnterface, backed by MySQL.
Although any SQL back-end will work, we chose MySQL becauss freely available. We
chose SQL as the storage mechanism for the Data Managerdesitgumovides an easy inter-
face for persistence and search. DOFilters are implemergedgular expression-like queries,
and for the most part these queries can be translated giiatl SQL “select” statements, to
take full advantage of SQL's optimized environment. In thieife, to support Haggle on mobile
phones and other low-powered devices, we are considerihg&gs a lightweight SQL server.
We use two SQL tables for Haggle, one “attributes” table \ighds {DOID (int), type
(String), value (String), and one “links” table with field$ head-DOID (int), tail-DOID (int}.
In the links table, the former DOID can be negative to indédhiat the linker is not a DO but is
an application or a Haggle manager.

4.2 Resource Manager

For the prototype, the Resource Manager does not considegyeoemoney costs, but only
time-on-network. This was because we used no charged retand our best estimate of
energy consumption currently is simply proportional totihee-on-network. Ideally, we would
receive energy consumption estimates from the networkfade card or driver, since they
have a greater knowledge of their radio characteristicsnamdium state. We used no external
policies restricting actions, so all nodes are cooperativel set the “user” component in the
benefits to be always 100%.

To compare cost and benefit and obtain a score, we simply phedtithe “forwarding”
and “application” components of the benefit (since both agressed as percentages), and
divided by the time-on-network cost. For asynchronous ask select the top scoring Task for
execution, however we applied a minimum score thresholdhabrepetitive Tasks (which are

16

implemented using rising-over-time benefits that reseixec&tion) do not continually execute.
We do not execute more than one asynchronous Task at a tineebi€Cennectivity in this initial
implementation.

Immediate Tasks are scored similarly, but if they pass tihestiold they are always ac-
cepted. This is because of the nature of immediate Tasky répeesent now-or-never network
connections. In the prototype, the only immediate Task ised when the P2P Protocol (de-
scribed below) receives an incoming network connectiomc&the presence of an incoming
connection implies a significant amount of synchronizabearhead already accomplished, it
makes sense to accept these whenever possible (denial/mfesattacks are not considered in
this iteration of Haggle). Note that accepting immediatskBacan result in more than one Task
executing simultaneously on a Connectivity; no new asynubuwe Task would be scheduled
until all the running Tasks complete.

4.3 Connectivity: 802.11

We chose to focus on 802.11 connectivity for our prototypdisTs because it is a widely
used wireless access network, and is available for a rangdewtes from laptops to mobile
phones. It also offers both neighbourhood and infrastreatannections (through ad hoc mode
and infrastructure mode respectively) which allow us tdesgthe range of Haggle capabilities
using a single connectivity type.

Implementing 802.11 support requires a native driver campowhich communicates with
the NDIS driver interface for Windows XP. We implementedstim C++ resulting in a dll file,
which provides our Java code with capabilities such asmputtie 802.11 interface in ad hoc
mode or AP mode.

The 802.11 driver provides neighbour discovery capagditallowing us to discover the
existence of a HaggleAdhoc network (name chosen by us) wither Haggle device’s 802.11
card is in ad hoc mode. We can also discover the existence efidkhis fashion. Since
discovery is passive (in that it occurs through simply hegaibeacon transmissions and does
not involve sending by the node), this can be done frequently

Unfortunately, for both the AP and ad hoc case the informmatexeived is not enough to
construct Neighbour objects that can be used by Protocalsthié AP case, we would claim
to be able to see an Internet-capable Neighbour when sesyngR and this is not true since
many APs may be “closed” (i.e. encrypted) or not connecteitieédnternet. For newly-seen
APs, we therefore first create a Task to check the AP for Ietezannectivity, whose Benefit
drops as the number of known usable nearby APs rises (i.& kihew we have two usable APs,
a third is less beneficial). We store the AP records as DOsagovindo not have to perform this
check in future, though the record is reset if the AP latewgsdo lack Internet connectivity.

When we see the “HaggleAdhoc” ad hoc network, we know thatetlaee one or more
other Haggle devices present, but we do not know their MAGesie®s. We therefore create a
persistent Task which uses UDP to broadcast the node’s MAIGzad on the ad hoc network.
Its benefit rises over time and resets on execution, makegitute periodically. We also listen
for the UDP broadcast packets and from these can obtain maighnformation to export to
the Protocol Manager.

For 802.11, the time-on-network cost calculation takes aticount the overhead of switch-
ing between AP and ad hoc modes, which can be a number of seadrh switching into AP
mode due in particular to the latency of DHCP to provide an lfresk. We used typical values

17

of the switching overhead based on our experience. We afdedga per-byte time-on-network
cost (i.e. taking into account the bandwidth and the size®ftiata being sent). We used a lower
bandwidth estimate for AP mode than ad hoc mode since we epeaccess link to be the
bottleneck in AP mode. This would ideally be dynamically sw@&d on a per-AP basis rather
than statically estimated. This cost structure causes ldaggavoid switching to AP mode,
but amortize the cost of the switch by performing high-stgiTasks which require AP access
before switching back to ad hoc mode.

4.4 Forwarding Algorithms: Direct and Epidemic

We implemented two Forwarding Algorithms so far, namelyrédt” and “epidemic”. The
direct algorithm only proposes to send an FO to a NO if that ¢Pears as a destination of
the FO, with a forwarding benefit of 100% since the destimaiscalways reached in this case.
The epidemic algorithm proposes to send every FO to every lH€eava Protocol says it can
support that transfer, but does so with a lower forwardinggfie since it has no idea whether
it will reach the destination this way. We do not need to splecase the epidemic algorithm
for the event that a neighbouring NO is the destination,esthe direct forwarding algorithm
handles this well.

4.5 P2P protocol

We implemented a simple P2P protocol so that neighbourirggléanodes can send FOs to one
another. This serializes and sends the FO and all DOs/NOsroeath it. The P2P protocol
currently makes uses of TCP/IP, since it allowed us to codeatpect more quickly, without
having to implement fragmentation/reassembly and errt@atien/correction. However, we do
not rely on TCP/IP — this functionality could be reimplemahteaw” over link layer frames

if that proved to be desirable.

Name Graph Construction

We now discuss how Haggle creates name graphs and sharesvitteneighbours. We first
deal with how Haggle nodes create their own name graphs. @mnsfartup, a Haggle node
creates an NO containing a GUID representing the node,itaadf finds out its MAC addresses
(from the connectivities) which it places as children NOthefnode NO. When the email proxy
in Haggle (to be explained in Section 5) sees an outgoingleimaaptures the sender email
address and personal name and turns both into NOs with the N&inking to the email NO,
and also adds a link from the name NO to the node NO. Many emdieases/names can exist
on the same Haggle node (and therefore point to the node N&Y), iithe node discovers that
other nodes claim that email address, then more than oneaawdlee a child NO of the name
NO. An illustration of a name graph created in this way is fimFigure 3.

When a Connectivity finds a Haggle Neighbour, a correspondi@gisNgenerated by the
Name Manager for that Neighbour's MAC address. If that NOaspart of an existing name
graph, itis referred to as a singleton NO. The Name Managexgtively creates FOs destined
for singleton NOs containing this node’s name graph, as aged DO essentially saying “who
are you?”. The Name Manager uses a persistent DO filter tstezgan interest in incoming
NOs, which it merges into its knowledge base. It also usegsigtent DO filter to register an

18

Email client

Web client Object request
on Haggle

email Haggle Internal Haggle
| - object C_4

cache

Haggle Data Object
encapsulated in email Internal

Standard object
email cache

email client

p2p

Haggle
DOs

Web server

. Internet
Email client

on Haggle
(a) Email Application (b) Web Application
Figure 4: Haggle Email and Web Applications

interest in incoming “who are you?” DOs, upon arrival of whict creates a replying FO with
the node’s name graph information. In this way, when two sagleich have never met before
meet, they are able to obtain each other’'s name graphsteléispiabsence of any other nodes
or infrastructure.

The method above does not aim to preserve privacy at all, ambéecure in many ways.
However, it suffices for now to demonstrate Haggle’s funaidy. See Section 3.7 for a dis-
cussion of security/privacy issues.

5 Support for Existing Applications

Based on our introductory motivating examples, we have chts¢arget email and web as
our prototype applications. To be clear, by “email” and “Wwele mean the messaging and
hyperlinked-information applications, rather than thetpcols that underly them.

Both of these applications enjoy huge support from the pistiag infrastructure deploy-
ment of servers and content. It is a crucial feature of Hatjul we can take advantage of
this infrastructure as well as providing new functionalipperation when infrastructure is not
available). This makes Haggle much more compelling to exjstisers of that infrastructure,
and the value added by Haggle provides motivation for itjslofament.

To provide legacy support for existing email and web appilices, we implement localhost
SMTP/POP and HTTP proxies alongside Haggle. This allowssusekeep using the same ap-
plications they habitually use (we have tested Outlook Egpr Thunderbird, Internet Explorer
and Firefox) with only minimal reconfiguration. The modescommunication and operation
of email and web applications using Haggle are highlighteBigure 4. We will first describe
how Haggle provides support for email, followed by the dgimm of web support.

51 Emall

Supporting email in Haggle consists of two components: af BMOP proxy for interfacing
with email clients, and SMTP and POP Protocols inside Hatiglecommunicate with email
servers. The SMTP proxy accepts emails provided by thesusexil client and translates them
into an FO with a DO for the email itself and a DO per attachntetihe email. For each of the
list of destination email addresses, a “top level NO” is folny seeing if that email address is in

19

one of the Name Manager’s name graphs, and following thengrppo its root, and these NOs
are added as destinations for the FO. If this step were nehtdken an outgoing email would
only ever be sent via its email address. As we have alreadyitied in the previous Section, the
SMTP proxy also creates NOs for the personal name and enthgsslof outgoing messages,
and lets the Name Manager know that these are names by wilaithdte is known, so that it

can share naming information with Neighbours appropiyatel

The POP proxy listens on port 110 for incoming connectionomfthe user’'s email client.
When the client checks for new mail, the POP proxy uses the Dlataager to search for
DOs which represent emails and are not yet provided to thel efiemt. From those objects
returned the POP proxy reconstructs the full email messagkifling attachments) to return
to the email client (marking the email as delivered). Becamsail servers require some form
of authentication for receiving emails (and some requirthentication for sending emails), it
IS necessary to pass authentication information from thailespplication to the SMTP/POP
Protocols. To achieve this, when the user’s mail client irstck mails from the POP proxy,
Haggle saves the authentication information the mail tkemds.

When an Internet neighbour is available, the SMTP Protocoltcanslate FO/DO/NO-
format emails to destinations that are RFC2822 formatted addlesses. When doing so,
the Protocol reconstructs the email format and adds additiblaggle metadata in a hidden
attachment named “haggle.data” (in addition to any othtecchtnents that might be present).

Similarly, the POP Protocol translates received email agess into FO/DO/NO graphs.
If the “haggle.data” attachment is present, it uses thiseldgom a lossless translation into
the original FO/DO/NOs, otherwise; if it is not present, #mail has not been sent from a
Haggle node and the FOs/DOs/NOs are created as describeel. abinen the POP Protocol
has the proper authentication information described gbdoweach Internet neighbour visible, it
creates a persistent Task to periodically check for emaihfthe server through that Neighbour.
In this way, the Resource Manager can choose the correct timec@annectivity by which
email is checked according to the current resource consdrand demands from other Tasks.
In the first instance, this Task’s costs/benefits just comexcking for new email and not the
downloading of emails — the POP protocol uses the Resourceadytais Task continuation
functionality to request permission to download each eihfiids.

Note that Haggle email users need to have an email accourdrasah A “free” emalil
account such as the service from Google (GMail) is perfeatigquate, and is what is used in
our experiments later.

52 Web

The Haggle web proxy operates as follows. When the user'sd@owakes an HTTP GET
request, the proxy first checks if the object requested ispresexisting DO, and if so returns
it. If it is not, and an Internet neighbour is available, thexy requests an immediate outgoing
connection using the Resource Manager’s Task interfacdelféquest is allowed, the proxy
creates a connection to the email server, and acts as a mé@teeen the proxied connection
and actual connection, with the proviso that it also stdnesicoming web data as DOs.

If there is no Internet neighbour visible, or the immediatsk is denied, the proxy cre-
ates a DO filter which matches a webpage with the appropriRte, @nd an FO encapsulating
that, without any destination NOs. It returns a messageddtbwser allowing the user to see
that Haggle is attempting to service the request, along avittsfresh command so that browser

20

checks again every few seconds for updates. The FO will eaéintbe “sent” either using the
P2P protocol (to share the request with a neighbouring Hagadle) or using the HTTP proto-
col. The latter offers service only to FOs with DO filters regting URLS, and it operates by
using an Internet neighbour to connect to the web server awdldad the webpages, inserting
them as DOs and marking the FO as handled. These DOs matcl@tfitdd, so the results are
provided to the requester. If the requester is not local {he DO filter came in using the P2P
protocol, the Data Manager will itself create a FO sendirggRi®s to the requesting node.

When the HTML Protocol receives an HTML DO, it must also redties embedded objects
for that page. We parse the HTML to find the linked objects, again use a DO filter to obtain
them as described already. The Protocol must maintain bekseen the DOs comprising an
HTML page and its embedded objects, so that when a DO filteegpanded to, the full set
of embedded objects is sent along with the HTML page itsetis parsing is not easy, and
our algorithm is quick rather than complete — to be complet®lves great lengths such as
parsing and executing javascript on the page (since sonmespesg javascript to load images).
However, if our parser misses a linked object, all is not &ssthe web client itself will request
it, albeit potentially incurring more delay.

6 Experimentsand Results

In this section we describe several experiments using thivating applications described
earlier. We provide qualitative results showing the newatsliies that Haggle enables, in
addition to quantitatively demonstrating that Haggle’piementation, although not optimized,
has acceptable overheads.

We conducted the experiments on two laptop computers, whietwill call nodel and
node2. Both are running Windows XP. Nodel is equipped with an Ine53mini-PCl 802.11
interface, and node2 is equipped with an Intel 2200 802.tetface.

Email

For the email experiments we created several accounts trengMaif service. GMail pro-
vides POP and SMTP services over an encrypted and authedti8&L link. This allows us
to have one configuration which works from within any netwdrkt allows Internet access.
However, there are limitations with using the GMail servid@dough there is no limit for the
size of email received, GMalil restricts the size of outboanwils to be 10 megabytes or less.

For the quantitative experiments, we send emails from nedebde2 one account to an-
other, of varying sizes, ranging from 10 bytes (no attachiingmto a 10 megabyte attachment.
Each size is sent seven times over a 3 Megabit download / 8labiKupload DSL link. An
automated script is used to send an email from nodel to nedéPnode2 configured to check
its inbox once every 5 seconds. The script ensures that ésy @mail that nodel sends, node2
must receive it first before nodel sends the next email. Timsrates any congestion effects
in the results.

Figure 4(a) shows the functionality of email applicatioingsHaggle, and Figure 5 shows
the latencies for end-to-end delivery of various-sizedienuader different network connectiv-
ity conditions, both with and without Haggle.

2http://mail.google.com

21

1000

10 bytes ——
100k v S0
IM 22
5M &
10M e
100
(o2}
i=)
£
2 a8
@ T\\\\\
[}
10 T\ 1
g T{TJ\\\\\\\\
o
> VTN
‘\\\1////;\\\\\
1 ‘\\\\ (/ . N 5
no haggle haggle infra haggle adhoc haggle both

Figure 5: Mean email end-to-end delivery times, with staddieviation. Individual bars in-
dicate attachment size. Lower values are better. Note ¢tlhahéno haggle andhaggle infra
cases, it was not possible to send 10M emails due to servieatiioms.

The no haggle cluster shows email clients not using Haggle, i.e. usingastfucture as
normal, and is our control case. Thaggle infra cluster shows the same thing (infrastructure-
based email) but using Haggle, and we can see that the odesldead by Haggle is low.

The most important result is shown in thaggle adhoc cluster, which shows Haggle send-
ing and receiving emails without infrastructure presefithe(equivalent graph for no-Haggle
would be infinitely high bars all the way acros$iaggle adhoc also shows the fastest transfer
for all email sizes, which is to be expected since this modepefration uses only the 802.11
network and only once, whilao haggle and haggle infra use the 802.11 link as well as the
bottleneck DSL access link and other Internet links to theeseand does this twice (once for
send and once for receive). Also, we notice that the 10Mlzlattent does not get transferred
in the infrastructure case (due to GMail's outgoing emaiédimit), while it does in the ad hoc
case.

Ideally, thehaggle both performance would be close to thaggle adhoc performance. This
is not so (though it is still comparable witho haggle) and there is a larger variance in the
numbers. This is due to interaction between the 802.11 Cemitgand the POP Protocol.
Because an Internet Neighbour is visible in this scenar®P@P protocol is requesting Tasks
to check the email account at GMail. This is additional wdrattHaggle is doing which it is
not doing in thenaggle adhoc case. Added to this is the fact that switching between ad hdc a
AP mode in 802.11 incurs a significant overhead, since loSCRPequest packets cause long
timeouts. This can be remedied by improving 802.11 perfoceaand also by making use of
multiple network interfaces if they are available; bothloéde are discussed later in the paper.

Web

In our web experiments we focus on the HTTP protocol and tireeval of static and dynamic
content from content providers. For the purposes of thigaerpent we do not consider other

22

non-HTTP web objects such as Flash. We chose four differehipages to cover a range of
complexities, sizes, and scenarios.

¢ http://www.sigmobile.org/mobisys/2006/program.html
The Mobisys 2006 technical program is relatively simplesisting mostly of text and no
dynamic content. The transfer size is 64Kb. Attendees atiSjabmight want this page
frequently to see what’s on next; however, at conferenca®tare frequently failures of
Internet connectivity [7].

¢ http://www.torontolife.com/restaurants
Toronto Life is a popular city life and culture site with madtely complex layout. The
transfer size is 500Kb, sent as 380K of gzip-enabled welidrathis page is one that
might be useful in our train-based motivating example.

¢ http://news.bbc.co.uk
The BBC news site is a relatively complex website with freglyempdated content. The
transfer size is 370Kb, sent as 100Kb of gzip-enabled wdfictra his page is very highly
viewed, so there is a reasonable likelihood of a copy beiegent in a group of users.

¢ http://www.rottentomatoes.com
Rotten Tomatoes is a movie review site which contains a demgmut with dynamic
content. The transfer size is 834Kb, sent as 230Kb of gzgiled web traffic. This might
be looked for at a cinema while deciding what to watch, witleasonable expectation
that others in the area already looked it up.

For each of the experiments we retrieve the contents senestieach time clearing all
caches. We measure the end-to-end time as starting fromdheent of request at the browser
until the browser finishes loading and rendering all contenthe page, using the FireFox web
browser with the FasterFox plugin since it contains a baijtage load timer (we turned off all
other functionality that FasterFox offers).

Figure 4(b) shows the operation of the web application owegdte, and Figure 6 shows the
performance results for retrieving the above describedoages with and without Haggle.

Betweenno haggle and haggle infra the comparison is less favorable than for the email
case. We attribute this to the overheads of (a) the time t&kgrarsing the HTML pages to
determine linked data objects, (b) the overhead in the pngxgpproach, since the web client
opens and closes multiple socket connections to inform tagfgdifferent objects it requires,
(c) inefficiencies in our Data Manager implementation int tthee webpages are stored data
persistently before they are transmitted to the web client.

All of these aspects can be improved with optimization weticularly the parser which
Is being compared with the extremely highly-optimized pasfound in web browsers (since
they have been designed and tweaked to reduce latency)efoheemwe do not consider this
result to be indication of any fundamental limit in Haggle.

For each web object retrieved from the Internet, the webypaitempts to reconstruct its
relation with other objects which it may have been linkedrfroBecause web browsers make
multiple simultaneous connections to the proxy and use pgehin parallel, we must examine
the headers of the objects returned in order to properlycésgoobjects to webpages. To do
this the web proxy examines the referrer tag of the HTTP nespanessage for the retrieved
object to determine from which other object the current veaigiested from. After finding the

23

time (s)
N
o

0 e //t

no haggle haggle infra haggle P2P

— www.sigmobile.org/mobisys/2006/program.html
© 7~ www.torontolife.com/restaurants

S news.bbc.co.uk

mDmmen WWW.rottentomatoes.com

Figure 6: Mean webpage retrieval times, with standard dievis. Lower values are better.

originating object as a DO, the web protocol creates a linkifit to the newly retrieved web
object. This search and link requires queries to the Datadganwhich adds an overhead time
to each web object retrieved. We can see this overhead inotih@arison betweeno haggle
andhaggleinfra.

For thehaggle P2P experiments, we have nodel configured to enable access &udhses
point as well as communicate in ad hoc mode. The four webpagssibed are then visited
using the web client on nodel so that it has an cache of DOggepting those pages (and
embedded objects). At this time, the access point is turffednodeling nodel being moved
to an infrastructure-free location. Node2 is only able tmmomunicate in ad hoc mode, and is
placed near nodel. We request a webpage on node?2 (cleagiogahe each time an experiment
is run); since node2 does not have Internet connectivitgeitds a DO filter requesting the
webpage to nodel, who returns the matching webpage, witle@ueol objects.

We observe that our Haggle implementation can retrieve agép even when there is no
Internet connectivity available, if another user in theiemmvment has previously retrieved the
webpage and has it cached. This is fundamentally new fumality; the equivalent bar graph
without Haggle would contain infinitely high bars. The penfance is comparable with the
no haggle case, there is more initial overhead, but the faster b&-fsihce transfers proceed at
the full 802.11 rate and not the bottleneck access link raggns that for the larger rottentoma-
toes.com page, the latency is matched.

7 Discussion and Future Work

In this section we discuss some of the next steps for Hagglehenfuture research that Haggle
enables. We also highlight Haggle’s shortcomings.

24

7.1 FutureWork and Improvements
Web Search

One problem with our web application is that users in an addoonectivity environment must
know the precise URLs of the webpages the other users havel@n tw obtain their cached
content, at least for the entry page into a site. In realisgrs seeking information often use
search functionality and are happy to receive it using amghber of different websites.

To address this, we are currently implementing speciat-¢endling for web searches,
allowing Haggle’s exposed metadata and searching furadttgrwith DO filters to be reused so
to obtain ad hoc search functionality. This involves:

e The web proxy handles requests for search websites localigtead of requesting the
URL remotely, it provides its own search webpage (redirgctire user's browser to a
new URL to avoid confusion by the user).

e When a search is specified, the web proxy generates a DO fikieiggder an HTML page
with “keywords =(the search string. It also generates a webpage containing the current
results — i.e. any existing cached pages which match this D& fi

e The HTML protocol makes sure to fill in keywords on receivepages. Simple meth-
ods to accomplish this are either to copy the keywords froenetkisting HTML META
tag of the same name, or to heuristically extract keywordsifthe page title, headings,
or common words/phrases. For more advanced indexing, weisanechniques from
existing desktop search products.

e We add a Web Search Protocol which can process FOs contdd@nfiiters which are
web searches, by going to a web search site and downloadirnigghN links, via any an
Internet Neighbours visible.

This illustrates how easy it is to add new functionality undaggle; to implement this as a
stand-alone application would be more complex than thesouaple steps above.

Optimizing the 802.11 Connectivity

As we saw during the email experiments, the 802.11 Conn#ectivHaggle carries significant
overhead due to the need to switch between AP and ad hoc npad@sularly when switching
to AP mode if the DHCP handshake incurs packet loss. A simplien@ation would be to
more aggressively retransmit DHCP packets. A more thoroalghisn might be based on the
use of techniques like Virtual WiFi aka MultiNet [3], so thi&e Connectivity could maintain
one or more AP associations while also being in ad hoc mode.

Multiple Connectivities

The experiments above have only used 802.11. Laptops and ghwaes typically have mul-
tiple interfaces: Bluetooth, GPRS/UMTS, SMS/MMS, infraradd in the future WiMax or
Wireless USB (Ultra-wideband connectivity). Many othesearch projects have explored the
problems of heterogeneous network interfaces [17], angygling with how this can be done
sensibly using IP routing.

25

Haggle is designed to be able to take advantage of multiple€uwivities, so adding support
for a new Connectivity should be easy. We are currently wgrkin support for SMS, GPRS
and Bluetooth. When combined with centralized resource mamagt and with late binding
using name graphs, Haggle should be able to allow the agptef@onnectivity to be used per-
Task, e.g. sending short emails over SMS, using GPRS for aigeoknew email existence but
waiting for an 802.11 AP (or other cheaper method) to dowshlagge emails. Haggle offers a
new approach to this problem, complementing existing I&edapproaches such as [20].

Resource M anager

Haggle’s centralized decision making in the Resource Maniagevery powerful feature; we
have not yet begun to explore the potential here. We highlighe a number of areas that need
additional research.

The current implementation performs only a single Task ata,twhereas many may be
parallelizable. 1t is not clear how to go about choosing theug of Tasks that (agan be
scheduled together (i.e. their demands on the underlyingn&agivity do not conflict), or (b)
should be scheduled together, i.e. it would be helpful rather tremmiful.

Another limitation of the current Resource Manager is tha reactive only, and does not
attempt to predict future connectivity options (e.g. as OCJB]). For example, currently
Haggle may epidemically send a message to a remote host whare minutes, the user will
arrive at their place of work and have free broadband coivitct

We do not use monetary costs or energy consumption in ouerudecision process, how-
ever these are key issues in device connectivity today,eysittpact battery life and the poten-
tially high cost of “always-on” connectivity. Particulgnvhen we have multiple connectivities,
we will likely be faced with situations where we have to ch@bgtween connectivity options
which trade off forwarding benefit against monetary costrargy consumption.

Native Email and Web Applications

The applications ported to Haggle so far use proxies sotleapplications themselves need no
modification. This is an important feature, providing baekels compatibility. However, there
are a number of advantages to having these applicationsdotartunning directly over Haggle,
over and above the removal of the overhead due to proxying.

First, the applications currently do not use the Data Man#agstore data persistently, in-
stead duplicating information in a local file system. Aldwe fapplications’ naming data, e.g.
the address book in the case of email, does not get sharedatitally with Haggle, and we are
forced to use heuristics to map outgoing emails onto theaguiate name graph destinations,
as well as obtain the authentication data for POP servesacce

Next, the user interface experience can be improved. At thmemt, the email application
shows that the email is sent as soon as the Haggle proxy escéinowever this is of course
untrue. While Haggle knows more information about the stafube message, this is not pre-
sented to applications. With the web application, when apagk is not immediately available
a status page is presented to the user giving them feedbaskyhbr this is only true if the user
does not navigate away from the page, so they must keep gepdges viewable in windows
or tabs and keep checking them. A proactive notification nmeagnbre suitable.

Third, Haggle’s additional API features over the Berkelegist interface are not utilized.
Web clients can use this API to ask Haggle for low-prioritggtictive downloading of webpages

26

that the user might need, e.g. because they are often-viewduskcause they are linked to

from the currently-being-viewed page. Such predictiveiess are easily expressed in Haggle,
using application benefit levels100%, and explicitly limited to within the user’s resource
constraints.

New Haggle Applications

Haggle can also support new applications, making use ofeitg fieatures. One interesting
application that we are targeting for future work is in theaof “resource-friendly media
sharing”. We observe that humans collect ever more mediatg¢sh music, videos, etc) and
wish to (a) share them easily with friends, and (b) have thamsferred seamlessly between
their devices, both mobile devices and those fixed at valmegions.

With the current architecture, it is not possible for an &ation to easily express “all photos
taken on my mobile phone should be sent to my home server &upd without being at risk
of consequences such as large GPRS bills when phone traritiitay snaps over a foreign
carrier, and the phone running out of batteries since itgper$ transfers even if there is scarce
power. With Haggle, these concerns can be easily expreaaddyersistent remote DO filters
provide a simple yet powerful pub/sub mechanism for thisllahapplication.

Forwarding Algorithms

As we described in Section 3.5, in Haggle the job of a Forwaydilgorithm is well-specified,
and we can support many running simultaneously. This makegld an ideal test-bed for the
development of new algorithms, and their comparison agaxisting algorithms in experimen-
tal situations.

User |ssues

We have already discussed security and privacy in Sectibnldis remains a key future work
area for Haggle. In addition, there is the issue of usahilitlaggle-based applications, which
we have already discussed briefly above in relation to theleme web applications.

More broadly, we observe that users currently have a simpletah model of mobile net-
working. When they have an IP connection, their apps workemilse they don’'t. Haggle
breaks this model for the good, as it provides more functityndlowever, how will users men-
tally model Haggle? How will they understand what works uridaggle and what fails? One
possible way in which users can be trained is to considegif ttan see what they need in the
environment. If a user can see the person that they are megsagthey can see others who
have data that they might want, then they should expect thggled might deliver that message
or find that data.

However, it may not be that simple. We have described how tls®tee Manager allows
users to set preferences to limit their consumption of nessusuch as money and energy, and
how applications use prioritized traffic. Providing a coafigtion interface for these preferences
IS no easy task. Furthermore, when something doesn’t goighrthat the user expects to go
through, assisting the user in troubleshooting (what peefee should be changed, and what
to?) is non-trivial. We expect that usability will be a keyncern if we ever reach a situation
where Haggle or Haggle-like functionality is common.

27

7.2 Limitations of Haggle

We now discuss some limitations of Haggle and give ideas bhewothey can be overcome.

I ntegrating Protocols

We propose to include application-layer protocols into ¢§lag This raises the issue of how
new or existing applications can be integrated into Hagglkile we have shown the feasibility
of doing this with two applications, this did involve the segtion of the networking protocols
from the applications and the manual integration of therm ieggle’s codebase.

So how does this work for new or not-yet-ported applicatiarsl does a new version of
Haggle have to be installed by a user each time they need a retocBl added? The answer
Is to define a plugin interface to Haggle to allow Protocolbéalynamically linked and imple-
mented separately. The plugin interface must be securegb{el®rotocols currently have noth-
ing stopping them from accessing all DOs with potentiallyqie data, or specifying arbitrarily
high numbers of maximum-value Tasks to the Resource Managgeal resources). While
a similar situation would exist for Connectivities, and pblsfor Forwarding Algorithms as
well, those are not expected to change on the frequent thedia tiser’s set of applications that
they use might change.

On the other hand, the ability of applications to be writtétihaut including any networking
protocols, but still using networking by simply sharing aaemotely, is a key advantage of
Haggle. Every messaging application can be a “universaBsaging application in that all
messaging protocols are supported, and the applicaticierarcan concentrate on the user
interface aspects.

Streaming Data and Resour ce Reservation

Haggle currently does not provide support for streaming,ddiie to its use of asynchronous
transfers of full data blocks (DOs). While streaming couldim@lemented by using many
small DOs, Haggle currently has no method of reserving baittvior this other than using
the Resource Manager as before. To implement streamingapphs, it is possible to consider
adding reservation capabilities to the Resource Manager.

Computational Overload

Haggle currently imposes significant computational ovadhen the devices it runs on. The
use of DO filters to search for data implies some overhead methods such as listening on
a socket, or accessing files from a well-known directory tioca(though DO filters also have
advantages as we have already seen). The use of a Resourcge¥armach evaluates the
cost/benefit of every possible network operation every tineenetwork becomes free imposes
significant overhead over simply picking the next packetludéf queue as with IP.

For both of these cases, we note that we have not yet done drof sptimization work on
Haggle, and that this is an interesting area for future rebea

28

8 Conclusions

Haggle is a new node architecture for mobile devices thatdeagyned with a clean-slate ap-
proach. Haggle allows applications to become infrastmectadependent, freeing them from
having to explicitly handle different and changing connetst environments. We demonstrate
Haggle using existing email and web applications, shovwcgtieir ability to operate in ad hoc

networking circumstances where they would previously Hailed. This allows people to use

the same application across different connectivity siesasomething they cannot do today
without manual configuration.

Haggle provides a uniform interface for exposing applaafiayer names and naming meta-
data to allow late-binding of data delivery. This allows Igbgto select the best protocols and
connectivities to use, under any given network constrafiotsreaching the destination. The
Resource Manager provides a single informed decision pomtnanaging the usage of net-
work resources, allowing the node to coordinate the needls afpplications with the user’s
preferences.

In this paper we have described Haggle’s architecture iaildéibw the prototype was im-
plemented, and quantitative experiments into Haggle'sopmance. We also describe a large
number of research questions that implementing Haggle dnased us to consider. Haggle has
been released as open source code at http://www.souregiet{projects/haggle/.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. Theida and implementation of
an intentional naming system. Rroceedings of SOSP 1999.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandatching events in a
content-based subscription systemPhaceedings of PODC ' 99.

[3] R. Chandra, P. Bahl, and P. Bahl. Multinet: Connecting to multiple ieeel@02=tworks using a
single wireless card. IRroceedings of |EEE Infocom 2004.

[4] E. Cutrell, S. T. Dumais, and J. Teevan. Searching to eliminate pdiisdmianation management.
Commun. ACM, 49(1), 2006.

[5] K. Fall. A delay-tolerant network architecture for challenged intesndn Proceedings of SG-
COMM 2003.

[6] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. DRuicket Switched Networks
and human mobility in conference environments. Phoceedings of WDTN-05: The 2005 ACM
S GCOMM workshop on Delay-Tolerant Networking.

[7] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. iBglRoyer. Understanding
congestion in ieee 802.11b wireless networksrevise®rdoeedings of IMC 2005.

[8] M. Karsten, S. Keshav, and S. Prasad. An axiomatic basis for comsation. InProceedings of
HotNets 2006.

[9] J. Leguay, T. Friedman, and V. Conan. Dtn routing in a mobility patteatsp InProceedings of
WDTN-05: The 2005 ACM S GCOMM workshop on Delay-Tolerant Networking.

29

[10] A.Lindgren, A. Doria, and O. Schelen. Probabilistic routing in intermitieconnected networks.
In Proc. SAPIR, 2004.

[11] M. Mauve, A. Widmer, and H. Hartenstein. A survey on positionegoaouting in mobile ad hoc
networks.Network, 15(6), Nov 2001.

[12] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demartdrdie vector (aodv) routing.
RFC3561, 2003.

[13] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: a networkinthiécture designed around
mobile users. IProceedings of |FIP WONS 2006.

[14] J. Scott, M. H. Lim, J. Su, E. Upton, and P. Hui. Infrastructuresppehdent applications using
haggle. InDemo Abstract in Supplementary Proceedings of UbiComp 2006, 2006.

[15] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav. loost communication for rural internet
kiosks using mechanical backhaul. Proceedings of MobiCom 2006.

[16] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Datamules: Modellingee tiered architecture for
sparse sensor networks. IIBEE SNPA 2003.

[17] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turdachierarchical power management
for mobile devices. IfProceedings of MobiSys 2005.

[18] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surartarriet indirection infrastructure. In
Proceedings of SGCOMM 2002.

[19] A. Vahdat and D. Becker. Epidemic routing for partially connectethac networks, 2000.

[20] H. J. Wang. Policy-enabled handoffs across heterogenewakess networks. Technical Report
CSD-98-1027, 23, 1998.

[21] W. Zhao, M. Ammar, and E. Zegura. A message ferrying apprdackata delivery in sparse
mobile ad hoc networks. IRroceedings of the Mobi Com 2004.

30

