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Bubble Rap: Forwarding in small world DTNs
In ever decreasing circles

Pan Hui Jon Crowcroft

Abstract

In this paper we seek to improve understanding of the structure of humaititynob
and to use this in the design of forwarding algorithms for Delay Tolerant bléswfor the
dissemination of data amongst mobile users.

Cooperation binds but also divides human society into communities. Memb#re of
same community interact with each other preferentially. There is structuramarnsoci-
ety. Within society and its communities, individuals have varying popularity. Sueogle
are more popular and interact with more people than others; we may call thtgsn Rop-
ularity ranking is one facet of the population. In many physical netw@@s)e nodes are
more highly connected to each other than to the rest of the network. Théseth nodes
are usually called clusters, communities, cohesive groups or modulege iBh&tructure
to social networking. Different metrics can be used such as informatian Fieeman be-
tweenness, closeness and inference power, but for all of thempeedetin the network can
be assigned a global centrality value.

What can be inferred about individual popularity, and the structuteuofan society
from measurements within a network? How can the local and global chaséicte of
the network be used practically for information dissemination? We presdraévatuate a
sequence of designs for forwarding algorithms for Pocket Switchéaddtks, culminating
in Bubble, which exploit increasing levels of information about mobility and adton.

1 Introduction

The first generation of human network models were probalelftiobs-Renyi random graphs [2].
More recently, heterogeneity has been introduced into tsddeough the use of power-law and
small-world graphs, especially in analysis of the AS-lefdhe Internet, for example in [4] [5].
This is the second generation of modeling. It is well knowat tbome nodes may be more
highly connected to each other than to the rest of the netwbhke set of such nodes are usu-
ally called clusters, communities, cohesive groups or rresduMany different approaches to
community detection in complex networks have been propesel as:-clique [28], between-
ness [26], modularity [25] and more recently informatioedly [32]. Other kind of methods
can be found in the survey paper [24]. Community detectionhedp us understand the local
structure in mobility traces, and therefore help us desigodgstrategies for information dis-
semination. It may be that communities detected from migtadiata do not actually match well
to real social communities, but still help with improvedv@rding.!

Iwe will find out later that they actually match quite well.
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The first goal of this research is to move to a third generattbimuman mobility models,
understanding heterogeneity at multiple levels of detalil.

Wireless networking has moved from a first generation of keg® access provided by
802.11 LANSs and cellular services, through a second geoaraf Mobile Ad Hoc Network-
ing, now on to a third generation: Pocket Switched Netwd?kd{) [13] are a category of Delay
Tolerant Network [8] aimed at supporting applications fanfan-to-human communications,
through the so-called ferrying paradigm. Previous workg&ablished the inter-contact inter-
vals, and contact durations for a wide range of typical humabhility patterns and for a variety
of today’s radio devices. Critically, it was shown that dseds forwarding schemes would not
provide a bounded expected mean delivery latency acrosssistems. On the other hand,
flooding packets has a very high cost, not just in link-dtiien, but for other resources such as
node storage and battery life, which are likely to be higtdiued by users.

The second goal of this research is to devise efficient formvgralgorithms for PSNs which
take advantage of both priori and learned knowledge of the structure of human mobility, to
provide improved performance trade-off between deliveopability, latency and cost.

Society naturally divides into communities according tee®for cooperation or selection.
In sociology, the idea of “correlated interaction” is that@ganism of a given type is be more
likely to interact with another organism of a same type thath & randomly chosen member
of the population [27]. If the correlated interaction copicapplies, then our intuition is that
using this community information to influence forwardinghmamay be advantageous. To date,
though, there have been few results to support this congthat we are aware of, except a
very preliminary analysis by Hui et al. [14] on the use of asrgsaffiliation.

Searching using node degree rank was first introduced fortpgeeer networks. Adamic et
al. [1] describe a method for searching in networks, whezentitde degrees follow a power-law
distribution, when the power law coefficient is sufficientlpse to 2. Their strategy is to choose
a node at each step with highest degree among all neighbtirs ofirrent node, quickly finding
the highest degree node. Once the highest degree node magisits, it will be avoided, and
a node of approximately second highest degree will be chds#éectively, after a short initial
climb, the search descends the degree sequence. The cthia iBis is the most efficient way
to do this kind of sequential search. This is a good inceritiveis to look at this approach in
PSNs as well. However, as we know, a PSN is very different fiflegrinternet, which is largely
fixed in structure. A PSN is a dynamic temporally varying rat{17]; nodes move, connect
and depart from time to time; the concept of degree is not lgingpdefine. Is the degree of a
node in a PSN the number of other nodes it has met in one seaoadinute, one hour or one
day? Why not 6 hours?

Freeman [10] defined several centrality metrics to measwwénportance of a node to the
network. “Betweenness” centrality measures the numbemnadgia node falls on the shortest
path between two other nodes. This concept is also validemporal network. In a PSN, it can
represent the importance of a node for relaying traffic fbeat in the system. Hence, we will
look at whether the hierarchical search works with this ity metric, and how to acquire the
metric in a practical, decentralised way.

There are six specific contributions in this paper that pegrtowards our two top-level
goals. First, we use the correlation of contact durationramdber of contacts to classify human
relationships in a PSN into four categories. Second, wekdskque community detection
algorithms on several real traces, to explore the naturemiam community in different mobile
environments. Third, we show empirically that identifyimgdes according to their centrality or
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ranking can improve delivery cost-effectiveness over @dyeapproach. Fourth, we reconfirm
the result of Hui et al. [14] that labelling increases theivdel cost-effectiveness, by using
more reliable node selection. Fifth, we combine community eanking together, making use
of both local and global structures. This reduces the deadeéfiect caused by global ranking,
by forming a hybrid forwarding strategy, which improves ptee delivery performance of
naive multiple-copy-multiple-hop flooding schemes, buthwnuch lower cost. Sixth, we use
average unit-time degree to approximate centrality, andghat this achieves nearly the same
performance as greedy ranking.

The rest of this paper is structured as follows. We brieflyodtice the data-centric archi-
tecture and forwarding in Section 2, followed by a summarthefexperimental data sets in in
Section 3. Then in Section 4, we analysis contact graphildlisions and use the correlation
of contact duration and number of contacts to classify huretionships in a PSN into four
categories. In Section 5, we shows the human heterogemeitydll the data sets. Next we use
k-cliqgue community detection algorithms on several real@sato explore the nature of human
community in different mobile environments. Subsequemtly show empirically that identify-
ing nodes according to their centrality or ranking can invprdelivery cost-effectiveness over a
greedy approach in Section 8. We shows the result of dirab€ling” in Section 9 and the Bub-
ble algorithm in Section 10. After that we present some eadylts of human predictability in
Section 11. Finally we conclude the paper with a brief disturs

2 Data-centric architecture and forwarding

Before moving into the main contributions of this paper, watta first give a brief introduction
about the data-centric architecture and forwarding pgradifor Pocket Switched Networks,
which are related to this work.

Haggle architecture [36] is a data-centric clean slategthesi for Pocket Switched Net-
works, where applications do not have to concern themseltbsthe mechanisms of trans-
porting data to the right place, since that is what has maei@ thfrastructure-dependent. By
delegating to Haggle the task of propagating data, apmitaican automatically take advan-
tage of any connection opportunities that arise, both loeghbourhoood opportunities and
connectivity with servers on the Internet when availablaggle is at a macro-scale comprised
of six Managersthe Data, Name, Forwarding, Protocol, Connectivity and ResoManagers.

The data-centric principle of Haggle is that the data on e&cle in Haggle must be visible
to and searchable for by other nodes (with appropriate gg@acess restrictions applied). In
other words, relationships between application data (eits a webpage and its embedded im-
ages) should be representable in Haggle, and applicatimnsdsbe able to search both locally
and remotely for data objects matching particular usefakatteristics. Haggle uses message
switching, instead of package switching, in term of appiaralevel data unit called Data Ob-
ject (DO). A Data Object (DO) comprises maaitributes each of which is a pair consisting
of atypeandvalue DOs can be linked into a directed graph to provides appiinatwith a
way to structure data, akin to the way that some applicatimesthe placement of files in a
common directory but more explicit and also for applicasi@a link to the DOs which they
require for their operation, which can be regarded as an éoship claim.” In the second way,
many applications can claim the same DO, e.g. a photo galgpjication can claim a photo
that is linked to by a message (which brought it into the nadagh is in turn claimed by the
messaging application. Linking and claiming are accorhplisusing the same mechanism, we
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use the two terms to differentiate between the parent beinothar DO or a different entity.

Considering forwarding in Pocket Switched Networks, whiifedent applications have
different network demands, we can summerize them into twegcaies: (aknown-sender
where one node needs to transfer data to a userdefined destindhe destination may be
another user (who may own many nodes), all users in a cer@be pusers with a certain role
(e.g. police), etc. (bknown-recipienin which a device requires data of some sort, e.g. the
current news. The source for this data can be any node whiehdhable using any of the three
connectivity types, including via infrastructure (e.g.eaus webpage), neighbours (e.g. a recent
cache of a news webpage) or mobility (e.g. the arrival of aifastmde carrying suitable data).
We can see now that the communication paradigm is not onlyt@o@e( point-to-point), but
also one-to-many, many-to-one, and many-to-many. Thdi@cdoesn’t matter but the name
matters. In this sense, PSN is more than one kind of DTN toesioitermittently connection
problem. It also represents a fundamental shift in the pgnadf networking, as fundamental
as that was from telephony to IP. It tells us two points heje&oinmunication is about data, not
connection, not endpoints, and not path, 2) the killer &jagilon is multiple communication and
sharing data, not one-to-one talk. This is similar to Varobgaon’s content-centric networking
concept in his Google Tech talk 2006 [15].

We can see that we need a completely new paradigm to consideartling in this new
communication model. In this paper, we look at two humana@tructures, community and
centrality, which are very important for the data-centaosarding. For example, the commu-
nity concept would cover all the both communication paradigfrom one community member
to another community member is one-to-one, from one menab@mthole community is one-
to-many, from one whole community to one member is manyre-and from a community to
another community is many-to-many. And because we donwkihe location of the recipient
or even we don’t know who is the recipient, then we need soimeratays, instead of measur-
ing topological distance, to help us to move the data outwartds or high centrality nodes are
good choices. But for better focus, we will not mention abataecentric concepts in further
texts and will only focus on one-to-one communication irstpaper as a starting point and
foundation for more advanced data sharing.

3 Experimental data sets

We use 4 experimental data sets gathered by the Haggle pimjeqeriod of 2 years referred to
asHong Kong Cambridge Infocom05 Infocom06 and one other dataset from the MIT Reality
Mining Project [7], referred to aReality. Previously the characteristics of these datasets such
as inter-contact and contact distribution, have been egglm several studies [3] [13] [19],

to which we refer the reader for further background inforiorat

¢ In Hong Kong the people carrying the wireless devices were chosen amtmtly in a
Hong Kong bar, to avoid any particular social relationshepaeen them. These people
have been invited to come back to the same bar after a weely areeunlikely to see
each other during the experiment.

e In Cambridge the iMotes were distributed mainly to two groups of studdmm Uni-
versity of Cambridge Computer Laboratory, specifically ugdsiuate yearl and year2
students, and also some PhD and Masters students. In adittbis, a number of sta-
tionary nodes were deployed in various locations that isetqal many people to visit,
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such as grocery stores, pubs, market places, and shoppitegsen and around the city
of Cambridge, UK. However, the data of these stationary ietd not be used in this
paper. This dataset covers 11 days.

In InfocomO5 the devices were distributed to approximately fifty studettending the
Infocom student workshop. Participants belong to diffesmtial communities (depend-
ing on their country of origin, research topic, etc.). Hoeevhey all attended the same
event for 4 consecutive days and most of them stayed in the katel and attended the
same sections (note, though, that Infocom is a multi-trackerence).

¢ In InfocomO06 the scenario was very similar tofocomO5except that the scale is larger,
with 80 participants. Participants were selected so that@4f 80 form 4 subgroups by
academic affiliations. In addition, 20 more long range iMoteere deployed at several
places in the conference site to act as access points. Hogwlegalata from these fixed
nodes is also not used in this paper.

¢ In Reality, 100 smart phones were deployed to students and staff at MdT aperiod
of 9 months. These phones were running software that loggethcts with other Blue-
tooth enabled devices by doing Bluetooth device discoveeyyefive minutes, as well as
logging information about the cellular tower they are agsed with (a total of 31545
different towers were logged).

The five experiments are summarised in Table 1.

Experimental data set Infocom05 | Hong Kong | Cambridge| Infocom06 | RealityMining
Device iMote iMote iMote iMote Phone
Network type Bluetooth | Bluetooth | Bluetooth| Bluetooth Bluetooth
Duration (days) 3 5 11 3 246
Granularity (seconds) 120 120 600 120 300
Number of Experimental Device 41 37 54 98 97
Number of internal contacts 22,459 560 10,873 191,336 54,667
Average # Contacts/pair/day 4.6 0.084 0.345 6.7 0.024
Number of External Devices 264 868 11,357 14,036 NA
Number of external contacts 1,173 2,507 30,714 63,244 NA

Table 1: Characteristics of the five experimental data sets

4 Contact graphs

Our first contribution is to introduce the notion of “contarhph” as a way to help represent
the mobility traces, and to choose a threshold for commuetyection. The way we convert

human mobility traces into weighted contact graphs is baseitie number of contacts and the
contact duration, although we could use other metrics. Dues of the graphs are the physical
nodes from the traces, and the edges are the contacts. Tgbktwéithe edges are the values

based on the metrics specified such as the number of contaatg the experiment.

We measure the relationship between two people by how mamgstthey meet each other
and also how long they stay with each. We naturally think th&to people spend more time
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together or see each other more often, they are in closaroredip. In this work we are not
going to provide a specific threshold to infer actual soadatext: we just use these two metrics
to produce some maps which may prove useful to guide forwgrdi

Here we explore further properties of the experimental @ges, and present statistics con-
cerning the contact graphs for each dataset.

4.1 Weight distribution of contact graphs

First we would show that the statistical properties for the tonference scenario are quite sim-
ilar. Figure 1(a) and 1(b) show the contact duration distrdn for Infocom06 and Infocom05
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Figure 1: Contact duration distribution for Infocom06 antbbom05

respectively. We can see that their distributions are cpiitglar, with a mean different as small
as 0.0003(0, 0.0633). More similarities will be seen in tlegtrsection as well. Because of
space limitation, and these similarities, the later sestive only selectively show one as ex-
ample, in most cases InfocomO06, since it contains moreqiaatits, \We show more results in a
separate technical report.

Figure 2 and Figure 3 show the contact duration and numbendécts distribution for each
pair in four experiments. For the HongKong experiment wdide the external devices, but
for other three experiments we use only the internal devid#sshow later that for HongKong
experiments we need to use the external devices to helpwafdithe data because of network
sparseness.

4.2 Correlation between regularity and familiarity

We assume contact duration indicates familiarity. Two pegharing the same office might
hate each other, and not talk, but we will ignore this kindxdfeme situation here. The number
of times two people meet each other implicitly reveals thiggpa with which they meet. In this
work, we infer regularity of meetings from the number of @ts. Two people might meet a
lot of times in a short period (e.g. a day), and then not at&lwever, short periods with many
contacts are less likely to contribute to the upper quadgtke distribution, and here we will
ignore these too as outliers.
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Figure 4 shows the correlation between regularity and fanty in the Cambridge data set.
Here the regularity is positively correlated to the fanmitiawith a correlation coefficient of
0.9026. We define four kinds of relationships between a gamodes: Community, Familiar
Strangers, Strangers, and Friends. A pair of nodes whictohgsontact duration (high famil-
larity) and large number of contacts (high regularity) kgly to belong to the same community.
A pair of nodes which meet regularly but don’t spend time vattth other, could be familiar
strangers [29] meeting everyday. People who don’t meetladguand don’t spend time with
each other would be in the category of strangers. Finaltypéale pairs which don’t meet very
frequently but spend quite a lot of time together for eachtingewe count as friends. It is not
necessary that the division of the four quarters are exattlige middle. It is here acting as a
reference or example. A clear cut division may need more ecapexperimental results. But
here we provide the methodology to classify these four kingkationship based on pure con-
tact duration and frequency. Additional difficulties fad®dempirical social network research
are well described in work by Watts [39].

Figure 5 shows the correlation between the number of cantaud contact durations for
the other four experiments. We can see that conferenceoaménts are quite similar, both
with a narrow stripe in the left bottom quarter. This strip@ws that people in the conference
tend to meet each other more often than spend long time t@getihat is typical conference
scenario, since people may meet each other many times mecoféaks, corridors, registration
desk etc. They may stand together and chat for a while, amdsthi& to chat with others instead
of spending all the times togethdnfocomO6contains double the number of participants, and
hence more data points. TRealityset is similar to th&€€ambridgeone, with most of the points
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lying on or above the diagonal line. However, it also seemas$ pleople have more contacts
instead of spending times together. In thengKongfigure, we can find two pairs of friends,
two pairs of close community members, and two pairs of fangirangers. All the other pairs
lie in the strangers quarter. This is in line with our expgotes for an experiment designed to
contain little social correlation.
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Figure 5: Number of contacts against contact durationslfgraars in the four datasets, with
correlation coefficient.

5 On human heterogeneity

In many mobility models such as the random way-point, nodesaasumed, explicitly or im-
plicitly, to have homogeneous speed distributions, ingrozé and popularity. Our intuition is
that the last two assumptions, at least, are not true. Pdaple different levels of popular-
ity: salesmen and politicians meet customers frequentigreas computer scientists may only
meet a few of their colleagues once a year. Homogeneity nfisggfour different forwarding
strategies for PSNs. In contrast, we want to employ heteremes popularity to help design
more efficient forwarding strategies: we prefer to choogaupar hubs as relays rather than un-
popular ones. To date we are not aware of any empirical eg@ér using human popularity
or node centrality for information dissemination in moiletworks.

A temporal network is a kind of weighted network. The ceriyaheasure in the traditional
weighted network may not work here since the edges are nessary concurrent. Hence we
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need a different way to calculate the centrality of each nodke system. Our approach is as
follows: First we carried out a large number of emulationsiiimited flooding with different
uniformly distributed traffic patterns created using HeggleSimemulator.

Then we count the number of times a node acts as a relay farmldes on all the shortest
delay deliveries. Here the shortest delay delivery referhé case when a same message is
delivered to the destination through different paths, whee only count the delivery with the
shortest delay. We call this number the “betweenness dyitraf this node in this temporal
graplt. Of course, we can normalize it to the highest value foundreHee use unlimited
flooding since it can explore the largest range of delivetgrahtives with the shortest delay.
We believe that this definition is similar in spirit to the dahfion of the Freeman centrality [10].

Initially, we only consider a homogeneous communicaticaisgon, in the sense that every
destination is equality likely, and we do not weight the ficamatrix by locality. We then
calculate the global centrality value for the whole homagmrs system. Later, we will analyze
the heterogeneous system, once we have understood the cdmsitucture.
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Figure 6: Number of times a node as relays for others on folasess.

Figure 6 shows the number of times a node fall on the shorggbspetween all other node
pairs. We can simply treat this as the centrality of a nod&éngystem. We observed a very
wide heterogeneity in each experiment. This clearly shdvas there is a small number of
nodes which have extremely high relaying ability , and adargmber of nodes have moderate

2We have calculated the weighted node centrality for eackenoat found out that the weighted centrality is
not well correlated to the centrality on the temporal graplodes have very high weighted centrality may have
very low temporal centrality.
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or low centrality values, across all experiments. One ed#ng point from the HK data is
that the node showing highest delivery power in the figurectaaly an external node. This
node could be some very popular hub for the whole city, i.estrpan or a newspaper man in
a popular underground station, which relayed a certain atnaficross city traffic. The 30, 70
percentiles and the means of normalized individual nod&aky are shown in Table 2 and the

distributions are show in Figure 7.

Experimental data set 30 percentile] Mean | 70 percentile
Cambridge 0.052 0.220 0.194
Reality 0.005 0.070 0.050
Infocom06 0.121 0.188 0.221
Hong Kong 0 0.017 0

Table 2: Statics about normalized node centrality in 4 expants
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Figure 7: Distribution of normalized node centrality on falatasets.

6 Finding k-clique communities

Our second contribution is the identification of communtitystures using-cliques. We have
calculated all the results by using both contact duratioth mmmber of contacts on all five
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experiments but because of space limitations we just shawcages of contact duration and
two cases of number of contacts.

6.1 k-clique community detection

We use thek-cligue community algorithm proposed by Palla et al. [28}heir work, since
overlapping of communities are allowed, and we believeithatiman society one person may
belong to multiple communities. They definé-alique community as a union of atkcliques
(complete subgraphs of size k) that can be reached from g¢hehtbrough a series of adjacent
k-cliques, where twd-cliques are said to be adjacent if they share k-1 nodes.r @kénition

is based on their observation that an essential feature ofrenuinity is that its members can
be reached through well-connected subsets of nodes, anithéna could be other parts of the
whole network that are not reachable from a particétlatique, but they potentially contain
further k-clique communities.

To illustrate this further, thé-clique-communities of a network &t = 2 are equivalent
to the connected components, since a 2-clique is simply ga add a 2-clique-community is
the union of those edges that can be reached from each otbegtha series of shared nodes.
Similarly, a 3-clique-community is given by the union ofnigles that can be reached from one
another through a series of shared edges. As k is incredsekkcligue-communities shrink,
but on the other hand become more cohesive since their memoldess have to be part of at
least oné:-clique. The method is used for a binary network, and a wejhetwork is turned
into binary network by setting a threshold.

6.2 k-clique university communities

In the visualization, an edge is added between two node®yf éine direct neighbors to each
other in the community. The length of the edges is not prapaat to any property of either the
communities or the nodes. However the width of the edgesopgutional to the link-weight
that is the number of shared nodes between the two commainitie

Figure 8 shows thé-cliqgue communities detected from the Cambridge studerat dsing
number of contacts.

The duration of the experiment is 11 days. For the number tfaas, we used a threshold
of 29 contacts, which represents an average of 3 contactiagéin this case, around 8.5% of
all the edges are taken into account. We observe that thesmodialy split into two communi-
ties of size 11 respectively withas high as 10. Next we examine lower values.diVe can see
also from Figure 8, wheh = 3 there is a big community of 31 nodes, and wites 4 the big
community splits into two overlapping communities of sizdsand 17 with overlapping size =
1, and wherk = 5 the two overlapping communities split into two disjoint conmnities of size
14 and 16 respectively. The two disjoint community struesustay visible untik = 11, with
a gradual decrease in the community size. For the contaatidnrmetric, we set the contact
duration threshold to be 10 hours for the whole 11 days of exat. We also observe mainly
two communities when using this metric. The membership e$¢htwo communities is more
or less the same as that when using the number of contacte mBEtis agrees with Figure 4
that the contact duration and number of contacts for Cameritddga is highly correlated.

3Considering some students may be taking the same coursiestisesame supervision group, and live in the
same College, and hence using same dining hall, this vaheasonable.
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Figure 8: Communities based on number of contacts with weflgkshold =29, k=3,4,5, and
10 (Cambridge).

Figure 9: Communities based on contact durations with welgleshold = 10 hours, k=3,5,7,
and 11 (Cambridge).
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The output from the algorithm clearly illustrates that tretipants can be seen as two
communities in this case. When we look at the experimental, dia¢ two communities classi-
fied by this algorithm match well with the two groups of Yearidarear2 students selected for
the experiment. Of course, in each group of students tenddw leach other and meet each
other, and hence the clique size can be as large as 10.

6.3 k-clique communitiesin Reality Mining

This is another campus environment but the environment i®rdiverse than the Cambridge
one. Out of 100 participants, 75 are either students or tiaculthe MIT Media Laboratory,
while the remaining 25 are incoming students at the adjddénSloan business school. Of the
75 users at the Media lab, 20 are incoming masters studeths are incoming MIT freshmen.
So we can see unlike the Cambridge data consisting mainly @fctasses of students, this
dataset consists of more groups.
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Figure 10: Communities based on contact durations with weigkshold = 388800 seconds,
k=3,4,5, and 7 (Reality).

First we look at communities detected by using threshold8&8B0 seconds or 108 hours
on the 9 months Reality Mining dataset. Here we assume 3 &xcpper week and 4 weeks
per month and for a total of 9 months, we get this thresholdev§2% of the total links are
taken into consideration). Research students in the sanoe offay stay together all the time
a day so their contact duration threshold could be very laFge students attending lectures,
this estimation can be reasonable. A looser thresholddgti#écts the links with much stronger
fit. We observe 8 communities of size (6,3,7,7,16,5,4,7)rwhe-= 3 in this case. The 4-size
one overlap at one node with the 16-size which also overldp aviother 7-size community at
another nodes. Two other 7-size nodes overlap each otheowrlapping size 1. The other
three communities are disjoint. Whén= 4, the 3-cliqgue community is eliminated and other
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communities shrink or are eliminated, and only 5 commusitiesize (4,13,5,5,7) left. All of
these 5 communities are disjoint. Whies= 5, 3 communities of size (9,6,5) remains, the 9-size
one and the 5-size one are split from the 13-size one in tHgjdeccase. Moving t& = 6 and

k = 7, there are 2 communities and 1 communitv resnectivelv.
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Figure 11: Communities based on contact durations with welglkshold = 648000 seconds,
k=3,4 (Reality).

We are also interested in knowing about small groups whiehightly knit. We set a strict
threshold of 648000 seconds, that is on average 1 hour pd&daget weeks per month, and for
a total of 9 months. Around 1% of the links are taken into aotdor the community detection.
Whenk = 3, there are three disjoint communities of size (12,7,3). When4, there are only
two communities left of size (8,6). Figure 11 shows the 8tadis and 4-clique communities of
648000 seconds threshold with its counter parts of 38886@nsks. A single 7-size community
remains ink = 5 andk = 6 cases, this 7-cligue community is the same as in the 388&@Mhde
case. These 7 people could be people from a same researgh tivey know each other and
have long contact with each.

6.4 k-clique conference communities

In this section, we will show the community structures in afeoence environment. Here we
take InfocomO06 as an example since it contains more paatitgthan Infocom05 and we have
more participants information. Infocom is a multiple-tkazonference with several programs
running at the same time. We don't expect all our 80 expertaigrarticipants to attend the
same sessions, so will not expect the clique size to be assbijeaCambridge data. The
total dataset only covers 3 days, hence we will not expecthtteshold to be very big. People
usually socialise during conferences in a small groups sexpect clique sizes of 3, 4 or 5 to
be reasonable. And for InfocomO6, the participants wereiafig selected so that 34 out of 80
form four subgroups according to academic affiliations. @fuhese four groups, there were
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two groups from institutes in Paris with size of four and tespectively(named Paris Group
A and Paris Group B), and there is one group from Lausanne &udtel of five people, and
another, larger group of 15 people from the local orgarzaitn Barcelona. But for this local
organization group, the volunteers are from different lonatitutions and also responsible
for different sessions in the conference so we will not expleem to be all together. After
collecting the data, for privacy purpose, all the personfdrimation about the participants are
deleted except the Node ID, the affiliation and the natidypali

Figure 12 shows the 3-clique communities with threshold0B0feconds, that is approxi-
mately 1.85 hours per day. 1.68% of all edges are taken imiousnt for the community calcula-
tion. We observe 6 communities of size (25,11,6,6,5,3) imthse. The 25-size one overlap at
one node with a 6-size one which also overlap with the 11&nemunity at another node and
the 3-size one at another node. The 2nd 6-size communityoakstap the 3-size and 11-size
at another two nodes. The 5-size community stands alondwoédth we know that during a
conference where the people from different sub-communtgad to mix together and hence
the boundary of affiliation communities would become legscl We still find the hints of the
original affiliation communities from the figure. The algbm correctly classified the nodes
belonging to the local organizers into a community, see thedana Group at the right hand
side of the figure, and also the members of the Lausanne Gnbwpmother community. There
are several nodes which not belonging to these affiliatioaskso “false positively” classified
into the same communities, but this also truly reflects therneaof a conference, to socialize
with people in other institutions. The two Paris groups dse alearly identified, they tend to
socialize with each other. Nodes 47 is belonging to both ggpfrom the same figure, it is
important to link this two groups together. There are manynipers in the 25-size group not
belonging to a common institution but they are here linkegktber by different small groups
of mixing together in conference.
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Figure 12: 3-clique communities based on contact duratiotiisweight threshold equals 20000
seconds (Infocom06).

When we increase k from 3 to 4, it splits into 8 communities v€<8,6,6,5,5,4,4,4). The
number of nodes decrease a lot, but we can also see thatlheftifpe affiliation communities
are quite strong. The Barcelona Group and the Lausanne grewgtikathere, just the number
change from 7 to 5 and 5 to 4 respectively. The links from noddiking two detected
communities containing Paris Groups members disappeiawéatill observe a mixing of five
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Paris Group A and Group B nodes together to form a commurritigisire.

ParisG A (French
@ Italian - aris Group A (French) O Barcelona Group (Spanish)

A ParisGroup B (French)

Figure 13: 5-clique communities based on contact duratietisweight threshold equals 20000
seconds (InfocomO06).

Figure 13 shows the communities when k is equal to 5. Thera@teonly 3 communities
of size (5,5,5). All small communities size less than 5 in k cage are eliminated. We can
observe that the Barcelona Group and a Paris Group are sik.thAnother group mainly
consists of Italian speaking people overlaps with the Fregroup. We do not want to claim
that the division by thé-clique community algorithm matches perfectly to real abgroups,
but at least it gives us rich information about the undedymuman interaction. A preliminary
conclusion here is that, affiliation or even nationality @dawery strong tie to human contacts,
even in the conference, a highly mixed environment.

6.5 k-clique metropolitan communities

As we can see from Figure 5, most pairs have low number of ctshnd contact duration.
We didn’t expect to discover a rich social structure fronsttiata. However in this case, we
can see how some internal nodes without much social caoelate nevertheless connected
together by external Bluetooth devices, by consideringfath® 869 nodes detected, including
37 iMotes and 832 external devices.

The experiment lasted 6 days. First we set the threshold Bdreounters which is equal
to an average of one encounter per 2 days, around 8% of thdin&tawill are taken into con-
sideration. In this case we observed 10 communities sizdd3&8,3,10,6,5,6,3) respectively
whenk = 3, which is shown on the Figure 14.

From the same figure we also see that the internal nodes aadlyugined together by
external nodes. They themselves may not have social cborelat all, but are connected to-
gether by these unknown external devices which may belooglkeagues or friends or familiar
strangers of the iMote owners. This gives us optimism aboaipbssibility of city-wide PSN
data communication.

Whenk = 4 communities shrink to only two small communities of size 4 &mespectively.

It seems thak = 4 is too strong in this case. We tried to increase the numbeomtcts to be
6, on average one contact per day; in this case on 2.4% oftkedire taken into consideration.
There are only 6 small communities of size (4,3,3,3,6,4)&esvely, with only two overlapping
with each other at a single node. This again confirms the vesyse social cohesion in the
experiment.

19



242

Figure 14. Communities based on number of contacts with wéigbshold = 3 and k=3 (HK).

7 Interaction and Forwarding

In the first half of this paper we have shown the existence w@frbgeneity at the level of individ-
uals and groups, in all the mobility traces. This motivatesaiconsider a new heterogeneous
model of human interaction and mobility.

Categories of human contact patterns Human relationships can be modelled by using cor-
relation of contact duration and number of contacts. We ddfiiour types of human
relationship based on the correlation of contact duratrahraumber of contact.

Cligues and Community We explored the community structures inside different aloenvi-
ronments, and found these community structures match geileto the real underlying
social structures.

Popularity Ranking We shall see that popular hubs are as useful in the PSN caddkiey
are in the wireline Internet and in the Web.

We also provide details of the statistics of interactionghim experiments so that they can
be used by other researchers in future modeling, or to baptirger experiments consisting
of composites of these.

In the second half of this paper we look at how can we use thi@nmation to make
smart forwarding decisions. The following three pre-argischemes provide lower and upper
bounds in terms of cost and delivery success. All of thesersels are inefficient because they
assume a homogeneous environment. If the environment i9dgemeous then every node is
statistically equivalentand every node has the same likelihood of delivering thesages to
the destination. As we showed in the first half of this pages, énvironments and nodes are
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diverse, and hence all these naive schemes are doomed tpdt@mvperformance. We need to
design algorithms which make use of this rich heterogeneity

WAIT Hold on to a message until the sender encounters the recigiectly. Cheap, but
unbounded expected mean delay.

FLOOD Messages are flooded throughout the entire system.

MCP Multiple-Copy-Multiple-Hop.Multiple Copies are sent sutij¢o a time-to-live hop count
limit on the propagation of messages. By exhausted emuggtibitopy-4-hopMCP
scheme is found to be most cost effective scheme in term nedlglratio and cost for all
naive schemes among all the datasets except the HK datae Harfair comparison, we
would like to evaluate our algorithms against the 4-copgye-MCP scheme in most of
the cases.

The Mobile network has a dual nature: it is both a physical nekvemd at the same time it
is also a social network. A node in the network is a mobile dewand also associated with a
mobile human.

Figure 15 shows the design space for the forwarding alguostim this paper. The vertical
axis represents the explicit social structure, that isttasenodes that can specifically identified
such as affiliation, organization or other social contextisTs the social or human dimension.
The two horizontal axes represent the network structusdgl which can be inferred purely
from observed contact patterns. The Structure-in-Cohe&Siip axis indicates the use of
localized cohesive structure, and the Structure-in-Degres indicates the use of hub structure.
These are observable physical characteristics. In ougdésamework, is not necessary that
physical dimensions are orthogonal to the social dimendiahsince they are represent two
different design parameters, we would like to separate tHeme design philosophy here is to
include both the social and physical aspects of mobilitg cunsiderations.

LABEL Explicit labels are used to identify forwarding nodes thelolng to the same organi-
zation. Optimizations are examined by comparing label efgbtential relay nodes and
the label of the destination node.This is in the human dino@nslthough an analogous
version can be done by labellingtecligue community in the physical domain.

RANK This is analogous to the degree of a node in a fixed network;se#eaumodified ranking
scheme, namely the node centrality in a temporal netwoik.dased on observations in
the network plane, although it also reflects the hub popylarithe human dimension.

DEGREE A heuristic based on the observed average of the degree afeaaver some longer
interval. Either the last interval window (S-Window), or@nb term accumulative esti-
mate, (A-Window)) is used to provide a fully decentralizeg@ximation for each node’s
centrality, and then that is used to select forwarding nodes

BUBBLE The Bubble family of protocols combines the observed hiénamf centrality of
nodes with explicit labels, to decide on the best forwardindes. Bubble is an example
algorithm which uses information from both the human aspeod also the physically
observable aspects of mobility.
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Figure 15: Design space for forwarding algorithms.

In the following sections, we will show how can we make usehefse different metrics to
improve forwarding performance in a heterogeneous systefralso when they will fail. We
focus on empirical analysis; that is what our mobile netwasgearch communities most lack;
we do not consider abstracting a mathematical model in tbikwout evaluate the forwarding
schemes directly on the mobility traces.

8 Greedy ranking algorithm

The third contribution of this paper is to modify the greednking search scheme over power
law networks to apply to our temporal graphs, and evaluaedbulting algorithm.

8.1 ThePower of Greedy Ranking

Here we use a similar greedy strategy to the one Adamic en#&loduced in [1]. A PSN is
not like Internet: we do not know when a global or local maximis reached since the next
encounter is unexpected. We cannot employ precisely the samategy as they propose, of
traversing up the hierarchy until reaching the maximum, #ueesh down a step. Here we also
assume each node knows only its own ranking and the rankirtgsse it encounters, but does
not know the ranking of other nodes it does not encounterdaed not even know which node
has the highest rank in the system. Our strategy, which weRealK, is very simple: we keep
pushing traffic on all paths to nodes which have a higher rapkian the current node, until
either the destinations are reached, or the messages.expire

If a system is small enough, the global ranking of each nodetisally the local ranking.
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If we consider only the Rummidge Computer Laboratory Systene&ehk group, this is the
the ranking of each node inside the group. If we consider thelevComputer Laboratory,
we are considering a larger system of many groups, but thestithluse the same building.
A homogeneous ranking can also work. But when we consider tfwencity of Rummidge,
a homogeneous ranking would exclude many small scale stasct In this section we show
that in relative small and homogeneous systems, a simpéelgranking algorithm can achieve
good performance.
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Figure 16: Comparison of delivery ratio (left) and cost(t)jghf MCP and greedyRANK on 4
copies and 4 hops case (Reality).
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Figure 16(a) shows that the simple greedy ranking performoat as well as/CP for de-
livery. Figure 16(b) also shows that the cost is only aroudéh4hat ofMCP, which represents
a marked improvement.

Hierarchical organization is a common feature of many cemglystems. The defining
feature of a hierarchical organization is the existenceloéearchical path connecting any two
of its nodes. Trusina et al. [37] address how to detect andsuneahe extent of the hierarchy
manifested in the topology of a given complex network. Thefireed the hierarchical path
based on node degrees, a path between two nodes in a netwalledhierarchical if it consists
of an “up path” where one is allowed to step from nade nodej only if their degrees;, k;
satisfyk;u < k;, followed by a “down path” where only steps to nodes of lowmeequal degree
are allowed. Either the up or down path is allowed to have argth. Because of the good
achievement from the greedy ranking algorithm, we are gaingnalyse the percentage of
hierarchical paths inside all the shortest paths. Tablengsarises the results.

Experimental data set % hierarchical paths
Rummidge 87.2 (-2.4,+4.3)
Reality 81.9 (-3.1,+3.3)
Infocom05 62.3 (-2.5,+2.5)
Infocom06 69.5 (-4.1,+2.4)
Hong Kong 33.5(-4.0,+4.0)

Table 3: Hierarchical Paths analysis of all shortest paths

The percentage of hierarchical paths is calculated as th#eauof hierarchical paths di-
vided by the number of non-direct transfer deliveries. We s2e that for Rummidge data and
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Reality Mining, the percentage of hierarchical paths is yegy, so our strategy of pushing the
messages up the ranking tree can probably find a lot of theke, @and the performance of the
ranking strategy here is not much different from MeP. For Infocom06 and Infocom05, the
percentages of hierarchical paths is also high, so the grie@dNK strategy can also discover
many of the shortest paths. However, for Hong Kong experintkee network is too sparse and
a lot of shortest paths are hidden, because we could not kmoaevices detected by the exter-
nal devices, and most of the resulting paths used for dglaer actually not the shortest . We
can see that percentage of hierarchical paths controlseineer success that is achieved by
the greedyRANK algorithm. We conclude from this that a very high percentaigée shortest
paths are actually hierarchical paths.

8.2 Wherethe Greedy Ranking Fails

For the Hong Kong dataset, the 37 participants are intealipiselected without any social
correlation. They live and work distributively throughaire whole city. Relying on direct
contact, less than 4% of the messages can be delivered.elitlithe previous datasets, here all
the external Bluetooth devices detected need to be usedristroating the paths. But because
we don’t know the devices detected by all these externakdewso a lot of potential paths not
found.
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Figure 17: Comparison of delivery ratio and cosMEP and GreedyRANK on no constraints
case (HK)

Figure 17(a) and Figure 17(b) show the delivery ratio andvépit cost using flooding, and
using unlimited greedy ranking. We can see that using flapdive can deliver more than
40% of the total traffic across the whole city by using only 8¥%iMotes and the external
devices detected by these iMotes without knowing the devdegtected by the external devices,
that will be a huge number of paths out of these 869 devicesveMer the cost is also very
high: to deliver one message, we need to make around 180scoBigt in this case, greedy
ranking can only deliver 10% of the messages, although teisanuch lower as well. In
terms of delivery and cost, greedy ranking is still more @d&tctive than flooding, but clearly
the delivery success rate is still too low. One explanataorttiis low performance is that since
the participants have no social correlation, and belongifterdnt social communities, high
global ranking of a node may not represent a good choice ay fekr some local communities.
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Messages keep being pushed up to some globally higher gankides, and getting stuck at
some maxima, rather than then trickling down to some locairoanity. Figure 18(a) shows

that the maximum number of hops for greedy Rank is 4 hops aed thfat the messages get
stuck. Figure 18(b) shows the rank distribution of the seudestination and dead-end of all
the undelivered messages, we can see that these “dead-@e=f have relatively high ranking,

and this supports our hypothesis concerning messagesagtatkxima.
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Figure 18: The hop distribution of the delivered(left) ame trank distribution of undeliv-
ered(right) on HK data.

9 Direct Labelling Strategy

In the “labelling strategy” [14], each node is assumed toehavabel that tells others its af-
filiation, just like a name badge in a conference. The “ditabelling strategy” refers to the

exclusive of labels to forward messages to destinationst-m@p nodes are selected if they
belong to the same group (same label) as the destinationfoOniih contribution is to evaluate

the improvements to forwarding possible using #njsriori affiliation label data.

9.1 ThePower of Labelling

The direct labelling strategy is evaluated on the Infocord@é. Since this is a conference
scenario, where people meet frequently, direct labelltrafesgy works quite well as we might
expect. In Figure 19(a) we see that, as expedt@BEL has a delivery ratio betweenCP and
WAIT, and the trend is for it to approach closer to the performafid¢CP, as we increase the
lifetime (TTL) of message. In terms of cost, in Figure 19(18 van see tha?lCP costs much
more thanLABEL, especially when TTL is increased to 1 day, whil@P has less than a 10%
Improvement ovet ABEL , but has around 6 times the cost. Of cou8aI|T has the lowest cost:
since we are in a conference scenario, we do not expect tdamgtto meet the destination,
hence the delivery ratio is not too low.

9.2 TheProblem with Direct L abeling

A human community represents one type of long term, statdéioaship. An outside observer
of human society would not know at first to which group eaclspeibelongs. As time goes by,
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Figure 19: Comparison of delivery ratio and costM€P andLABEL on 4 copies and 4 hops
case (InfocomO06)

we gain higher confidence concerning who usually socialisgswhom. In this part of analy-
sis, we use the communities detected from the 9 month Realitynyltraces. Nine months is
a long enough period for us to have high confidence to belieaethe communities extracted
from the dataset truly reflect the social communities exgsbietween the participants. We think
it is accurate, then, to evaluate the labelling strategyhendataset.
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Figure 20: Comparison of delivery ratio(left) and cost(tjghf MCP and LABEL on 4 copies
and 4 hops case (Reality).

We can see from Figure 20 that “labelling strategy” only aebs around 55% of the deliv-
ery ratio of theMCP strategy and only 45% of the flooding delivery although thst e also
much lower. However it is not an ideal scenario f&BEL . In this environment, people do not
mix as well as in a conference. A person in one group may not members in another group
so often, so waiting until the member of the another groupeapo do the transmission is not
effective here.

Figure 21 shows the correlation of the nth-hop relay nodebeosource and destination
groups for the messages on all the shortest paths, that jgetitentage of the nth-hop relay
nodes that are still in the same group as the source or alieatlg same group as the desti-
nation. We can see that more than 50% of the nodes on the fst(fom the S-Group plot)
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are still in the same group as the source group of the messagendy around 5% of the first
hop nodes (from the D-Group plot) are in the same group asdsendtion. This explains why
direct labelling is not effective, since it is far from dis@wing the shortest path. We can also
see that on going to the 2nd hop, S-Group correlation droplsgiotly less than 30%, and when
going to 4th-hops, almost all (90%) messages have escapedHis source group. To calculate
the percentage for each hop we just divide the count of messabich belong to that group
by the total count of messages destined beyond that nodeobtite total messages created.
In the 4-hop case, there are perhaps only 100 messages tardofuvther, and only 10 out of
these 100 relay nodes belong to the source group.
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Figure 21: Correlation of nth-hop nodes with the source giemgbdestination group (Reality).

10 Centrality Meets Community

The fifth contribution in this paper is to combine the knovgeaf both the centrality of nodes
and the community structure, to achieve further perforreamprovements in forwarding. We
show that this avoid the occurrence of the dead-ends ere@ahtvith pure global ranking
schemes. We call the protocols h8t@BBLE, to capture our intuition about the social structure.
Messages bubble up and down the social hierarchy, base@ atb$erved community structure
and node centrality, together with explicit label data. Beblyepresent a hybrid of social and
physically observable heterogeneity of mobility over tiave over community, and contrast
with the notion of a pocket, which is a DTN area of current Vess reachability.

10.1 Two-community Case

In order to make the study more systematic, we start withweedommunity case. We use
the Cambridgedataset for this study. By experimental design, and confiras#oly our com-
munity detection algorithm, we can clearly divide tGambridgedata into two communities:
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the undergraduate yearl and year2 group. In order to makexgiegiment more fair, we limit
ourselves to just the two 10-clique groups found with a nurdbeontact threshold 29; that is
where each node at least meet another 9 nodes frequentlg Sadents may skip lectures and
cause variations in the results, so this limitation makesaoalysis yet more plausible.

First we look at the simplest case, for the centrality of reog#hin each group. In this case,
the traffic is created only for members within the same comitywand only members in the
same community are chosen as relays for messages. We cdeadefcom Figure 22(a) and
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Figure 22: Node centrality in 2 groups in Cambridge data

22(b) that inside a community, the centrality of each noddifferent. In Group B, there are
two nodes which are very popular, and relayed most of thédrall the other nodes have very
low centrality value. Forwarding messages to the populdesavould make delivery more cost
effective for messages within the same community.

Then we consider traffic which is created within each group@my destined for members
in another group. To eliminate other outside factors, we ardg members from these two
groups as relays. Figure 23(a) shows the individual nodealég when traffic is created from
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Figure 23: Inter-group centrality and correlation betwrra- and inter-group centrality (Cam-
bridge)

one group to another. Figure 23(b) shows the correlatiomdércentrality within an individual
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group and inter-group centrality. We can see that pointsnliee or less around the diagonal
line. This means that the inter- and intra- group centesitire quite well correlated. Active
nodes in a group are also active nodes for inter-group contation. There are some points
on the left hand side of the graph which have very low intraugr centrality but moderate
inter-group centrality. These are nodes which move acromgg. They are not important for
intra-group communication but can perform certainly wellem we need to move traffic from
one group to another.
We can show now why homogeneous global ranking in sectione8 dot work perfectly.

Figure 24 shows the correlation of the local centralitv ob@r A and the alobal centrality of the
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Figure 24: Correlation of local centrality of group A and tHelzal centrality (Cambridge).

whole population. We can see that quite a number of nodes®wup A lie along the diagonal
line. In this case the global ranking can help to push théid¢redward Group A. However the
problem is that some nodes which have very high global rayskare actually not members of
Group A, for example node D. Just as in real society, a p@iticould be very popular in the
city of Cambridge, but not a member of the Computer Laborasaryyould not be a very good
relay to deliver message to the member in the Computer Ladrgrdiow we assume there is a
message at node A to deliver to another member of Group A. laug to global ranking, we
would tend to push the traffic toward B, C, D, and E in the graplwdfpushed the traffic to
node C, it would be fine, to node B would be perfect. But if it pusé traffic to node D and
E, the traffic could get stuck there and not route back to Gsulp it reaches node B, that is
the best relay for traffic within the group, but node D has déigglobal ranking than B, and
would tend to forward the traffic to node D, where it would pably get stuck again.

Hence we now propose the following forwarding algorithm hvoid these dead-ends:

If a node has a message destined for another node, this nade fivet bubble this message
up the hierarchical ranking tree using the global rankingl itreaches a node which has the
same label(community) as the destination of this messalgen The local ranking system will
be used instead of the global ranking and continue to buljbthel message through the local
ranking tree until the destination is reached or the messageged. This method does not
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Algorithm 1. BUBBLE RAP

begin
var useGlobal Ranking < true
if (Label(currentNode) == Label(destination)) then
| useGlobalRanking «— false

foreach EncounterNodé do
if RankQode;) > Rank¢urrentNode) or Label(rode;) == Label(destination) then
| Buffer(node) < Buffer(node) J{message}

end

require every node to know the ranking of all other nodes endystem, but just to be able to
compare ranking with the node encountered, and to push theage using a greedy approach.
We call this algorithm Bubble-A, since each world/commungyike a bubble. Figure 25
illustrates the algorithm. A global bubble is always refatio local bubble. This global bubble
maybe a sub-bubble of another larger bubble.

Sub community

Sub community

Global Community

Figure 25: lllustration of the bubble forwarding algorithm

This fits our intuition in terms of real life. First you try t@fward the data via people
more popular than you around you, and then bubble it up to-kvedivn popular people in the
society, such as a postman. When the postman meets a memberdastination community,
the message will be passed to that community. This commumémnber will try to identify
the more popular members within the community and bubblertegsage up again within the
local hierarchy until the message reach a very popular merabéhe destination itself, or the
message expires.

A modified version of this strategy is that whenever a messag@ivered to the community,
the original carrier can delete this message from its budf@revent it from further dissemina-
tion. This assumes that the community member would be aldelteer this message. We call
this protocol with deletion, strategy Bubble-B.
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Figure 26: Comparisons of several algorithms on Cambridgasdst delivery(left) and
cost(right).

We can see from Figure 26(a) that both Bubble-A and Bubble-Begehalmost the same
delivery success rate as the 4-copy-4-iMapP. Although Bubble-B has the messages deletion
mechanism, it achieves exactly the same delivery as Bubbke-gi Figure 26(b), we can see
that Bubble-A only has 60% the cost GCP and Bubble-B is even better, with only 45% the
cost ofMCP. Both have almost the same delivery succes94@B.

10.2 Multiple-community Cases

To study the multiple-community cases, we use the RealityilMdinataset as in section 9.2.

To evaluate the forwarding algorithm, we extract a 3 weekisesluring term time from the
whole 9 month data set. Emulations are run over this datagetuwiformly generated traffic.

There is a total 8 groups within the whole dataset. Figureh@®vs the node centrality in 4
groups, from very small size to medium size and large sizegriVe can see that within each
group, almost every node has different centrality.

In order to make our study easier, we first isolate just onagrthe largest one in Figure 27,
consisting of 16 nodes. In this case, all the nodes in theesysteate traffic for members of
this group. We can see from Figure 28(a) that Bubble-A and BuBlberform very similarly
to MCP most of the time in the single group case, and even outperfé@h when the time
TTL is set to be larger than 1 week. From Figure 28(b), we cantisat Bubble-A only has
70% and Bubble-B only 55% of the cost BICP. We can say that the Bubble algorithms are
much more cost effective thaviCP, with high delivery ratio and low delivery cost. After the
single group case, we start looking at the case of every groegting traffic for other groups,
but not for its own members. We want to find the upper cost bdanthe Bubble algorithm,
so we do not consider local ranking; messages can now becatitrhembers in the group.
This is exactly a combination of direcABEL and greedyRANK, using greedyRANK to move
the messages away from the source group. We do not implehentéchanism to remove the
original message after it has been delivered to the groupbaerso the cost here will represent
an upper bound for Bubble type algorithms.

From Figure 28(c) and Figure 28(d), we can see that of counseifig achieves the best
performance for delivery ratio, but the cost is 2.5 timeg tfaMCP, and 5 times that Bubble.
Bubble is very close in performance MCP in multiple groups case as well, and even outper-
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Figure 27: Node centrality in several individual groups iraig Mining.

forms it when the time TTL of the messages is allowed to beelattgan 2 weeks. However, the
cost is only 50% that of1CP.

11 Making centrality practical

Although the greedy RANK algorithm fail sometimes in verydregenous system to deliver
messages to a member in a small group, it reduce a lot of theattise same time. And we
would think it to be a good bootstrap step for other forwagdatgorithms to push traffics away
from the source node. If we want to deliver a message to sodyehist try to give it to someone
who you know to be popular. So we would not doubt that ceryradian important metrics for
a PSN. Then we would ask these questions: How can each nogeitenown centrality in a
decentralised way? How well does past centrality predefditure.
The final contribution of this paper is to provide early anssite these two questions.

11.1 Approximating centrality

We found that the total degree (unique nodes) seen by a noalgtiout the experiment period
IS not a good approximation for the node centrality. Instdes degrees per unit time (for
example the number of unique nodes seen per 6 hours) and tleecemtrality has a high
correlation value. We can see from Figure 29 that some nodé&sawery high total degree
are still not good carriers. It also shows that the per 6 hagrek is quite well correlated to
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the centrality value, with correlation coefficient as high(a9511. The means that how many
people you know doesn’t matter too much, but how frequenbly yteract with these people
matters.

In order to verify that the average unit-time degree is agigmor close tRANK, we run
another sets of emulations using greedy average unit-tegeeé(or we simply call DEGREB
instead of the pre-calculated centrality. Figure 30(a) Bigaire 30(b) compare the delivery
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Figure 30: Comparisons of delivery(left) and cost(right)RENK and DEGREE on Reality
Mining dataset, all groups.

ratio and delivery cost of using greeBANK and greedyYDEGREE We can see th&ANK and
DEGREEperform almost the same with the delivery and cost lineslapping each other. They
not only have similar delivery but also similar cost.

However, the average unit-time degree calculated throutghe whole experimental period
is still difficult for each node to calculate individually.&¥hen consider the degree for previous
unit-time slot( we call this the slot window) such that wha&mtnodes meet each other, they
compare how many unique nodes they have met in the previatisrae slot (e.g. 6 hours). We
call this approach the single window (S-Window). Anothepigach is to calculate the average
value on all previous windows, such as from yesterday to ttwev) calculate the average degree
for every 6 hours. We call this approach the accumulativelain(A-Window). This technique
is similar to a statistics technique called exponential atimiog [40] and we would like to do
further theoretical investigation.

The S-Window approach reflects more recent context and \ahimaximum of 4% im-
provement in delivery ratio thaDEGREE but at double the cost. The A-Window approach
measures more of the accumulative effect, and gives mobéesséatistics about the average
activeness of a node. However, its accumulative measuttasieot as good an estimate BE-
GREE, which averages throughout the whole experimental petiodbes not achieve as good
delivery asDEGREE(not more than 10% less in term of delivery), but it also haglocost.

All these approachesDEGREE S-Window and A-Window) can provide us with a decen-
tralised way to approximate the centrality of nodes in tr&tesy, and hence help us to design
appropriate forwarding algorithms.

11.2 Human predictability

The second question above can be generalized to: how mud¢tuozan interaction be predicted
from the past contact history? In this section, we use vesiexlarity, which has been well
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studied in citation networks, to study the predictabiliyhaman interaction from the contact
graph. Additionally, we run some emulations on traces tche®emuch the past centrality can
predict the future centrality.

11.21 Vertex smilarity

There are several ways to compare structural vertex sityilarthe previous works. Two ver-
tices are considerestructural equivalencd they share many of the same network neighbors,

S INIRLY]
accara—
T U T

O cosine = —|Fi ﬂ Fj|
VI
.|Fi ﬂ F]| (3)
min (|I[|T';])
wherel’; is the neighborhood of vertaxin a network, which is the set of vertices connected
to vertexi via an edge.|I';| is the cardinality of the sdf;, that is equal to the degree of the
vertexi. The Jaccard index [30] above was proposed by Jaccard owerdadiyears ago, and
the cosine similarity has a long history of study on citati@iworks [33]. Here we use the
vertex similarity to measure the predictability of humatenaction: we can compare the vertex
similarity of the contact graphs over two days and tell homiksir human interaction is on
these two days. Averaging over all the vertexes, we get amasbn for the whole population.
We call this simplygraph similarity We have studied all the three metrics, but the trends are
similar, and so we just present the results of the classitaldeneasurement here.

We look at the dataset of the Reality Mining data from 1st Fatydo 30th April 2005.
The reason for choosing this period is that it is far from tkee/racademic year so the human
relationship are already relatively stable and also itrisittme so the participants will be more
active in the campus. We study the vertex similarity and thoke graph similarity for every
two consecutive days and also for every pair of days agamestlate of the 1st of February
for these three months. We consider it as a binary graph; weotlconsider the weight for
the edges, but just consider the existence of an edge. Tée thetrics proposed above do not
apply to a weighted graph.

(1)

(2)

Omin =

1
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Figure 31: Vertex similarity of every consecutive day paifa single node

Figure 31 shows the Jaccard vertex similarity of an activdena.e. a node with high
centrality value, for the 88 consecutive day pairs. Thezuomtal line at the middle shows the

35



average value. In our calculation, when two comparing xegéave both cardinalities equal
to 0, we count their similarity to be 1, the maximum Jaccardilgrity. We can see that the
trough(minimum) points are corresponding to a change froeekday to weekend and also
weekend to weekday; and the peak(maximum) points are amegng to a transition from
Saturday to Sunday, so there is always a peak surroundeddyrawwghs. We see that the
nodes met by this node during the week days are very difféhenthose nodes met during the
weekend. For the weekend, the nodes meet have a very highlplipbto meet them during
the second weekend day. But even during week day, there ina&f96 of the nodes meet one
day will meet again the second day. This is the case for theeambdes, but for the less active
node, i.e. the nodes with low centrality value, we find out thay have the highest vertex
similarity value 1 almost everyday. These nodes usuallyegeetly the same nodes everyday,
this also explain why they have low centrality values.

Figure 32 shows the simple graph similarity for the contaapys of every consecutive day.
We can see that the average value is as high as 0.7, that leefarttole population studied the
human interaction pattern of whom with whom is quite preahé for every two consecutive
days. The peaks here are also corresponding to the trangitim a Saturday to a Sunday.
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Figure 32: Simple graph similarity of every consecutive gays

In order to see more the phase transition from weekday to evekknore clearly, and also
to look at whether there is any long term attenuation for tinea&n interaction in this system,
we compare every day with the first day of the period we stydiduch is 1st February and is
a weekday. Figure 33 shows the vertex similarity of every paly corresponding to the first
day of the study period. We can see that the vertex simildritys to zero from a weekday to
a weekend transition and stay zero for the whole weekend. wendidn’t see the long term
attenuation effect from the graphs we produced. Similardref changes are also observed in
the graph similarity graph.

But if we want to further look at whether the same node pair staylar time together for
a day pair and also whether they meet similar number of timesyday, we need to consider a
weighted version of measurement for this kind of similar&ince we cannot find useful metrics
from the literature, we need to devise our own:

> o min(wy)

Oweight = m

(4)

wheren = |I'; |JT;|, min(w;) is the minimum of the weight for an edge connecting nioaed
one of its neighbor in the two graphs, amdx(w;) is the maximum of the weight for an edge
connecting nodé and one of its neighbor in the two graphs. If there is no edglengraph,
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we count its weight to be 0. Here we count number of contacthesveight and calculate
the vertex similarity for all nodes and also the graph sintila Figure 34 shows the weighted
vertex similarity for every consecutive day pair for the samode as show in the previous. We
still observe the transition from weekday to weekend ane viersa. The horizontal lines in
the middle show the average. It is around 0.3, that is not kigfly but the reason is because of
the transition from weekday to weekend and weekend to weekdald produce two 0 values.
But if we look at the whole population in Figure 35, we can se¢ &ven the contact frequency
of two consecutive days are quite predictable, with an @yeedd close to 0.7.
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Figure 34: Weighted vertex similarity for every conseceatiay pair of a single node

We will look at the similarity of different time durationshé impact of different period
of the day, i.e. the nodes see during the day time should feretit than the nodes during
night time, and different data analysis technics such aeelation and matrix analysis will
be used. This result may only limited to a academic campusveutvill also look at more
complex environments in the future. An early conclusion &e make here is that daily human
interaction is quite predictable in the unit of per day, reodeeet on one day have quite high
probability to meet again in the next day. This provide anrgxt answer to the predictability
of centrality as well.

11.2.2 Predictability of centrality

In order to further verify whether the centrality measuredhe past is useful as a predictor
for the future. We extracted three temporally consecutimee®k sessions from the Reality
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dataset and then run a set of gre@&BNK emulations on the last two data sessions, but using
the centrality values from first session.
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Figure 36: Delivery ratio(left) and cost(right) BANK algorithm on 2nd data session, all groups
(Reality)

Figure 36(a),(b) show the delivery ratio and costR#NK on the 2nd data session using
the centrality values from the 1st data session. It seentghbgerformance oRANK is not
far from MCP but with much lower cost. The performance is as good as intiiggnal dataset.
Similar performance is also observed in the 3rd data ses$lwese results imply some level of
human mobility predictability, and show empirically thatgh contact information can be used
in the future.

12 Related work

Community structures in complex networks have attracted aflattention in recent years.
There is still no universally accepted definition of comntynibut in most versions, commu-
nity is a subgraph of a network whose nodes are more tightipeoted with each other than
with nodes outside the subgraph. Detecting community isvabpnt to investigating statistical
properties of a graph, disregarding the roles played byipascbgraphs, and hence identify
substructures/subgraph which could correspond to impoidactions. In the case of the World
Wide Web, examples of communities are sets of Web pagesndealth the same topic [9].
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In biological networks, it is widely believed that the moaustructure results from evolution-
ary constraints and plays a crucial role in biological fumas [12] [31]. In social networks,
community structures correspond to human social comnasi#i4] [22]. Finally on the Inter-
net, community structures correspond to the autonomousersgs[22], which are a connected
segment of a network consisting of a collection of a coltatf subnetworks interconnected
by a set of routers. In the PSN we studied, community strectvould correspond to human
communities or some structures which are beneficial for &mdmg efficiency.

Newman et al. used betweenness [26] and modularity [25] tecteommunity structure
in complex networks. The betweenness of an edge is defindteasuimber of shortest paths
between vertex pairs that run along it, summed over all xgoters. They calculate the be-
tweenness of all edges in the network, remove the one witelsidoetweenness, and repeat the
process until no edge remain. They also introduce a meaalieel modularityto evaluate how
good a particular division is. For a division withgroups, they define grg matrix e whose
component;; is the fraction of edges in the original network that conmvectices in group to
those in groug. Modularity is defined as:

Q = ZBZ’Z’ — Zeijeki =Tre— H€2H (5)

ijk

where||e?|| indicates the sum of all element ef.

This measures the fraction of edges that are within the samentinity, less the expected
value of the same quantity in a network with the same commudiitision but random con-
nection between the vertices. The difference between thaithm andk-clique is that the
k-clique approach allows overlapping community to existi the Newman method divides
nodes into completely disjoint communities. This is thesmrathat we chooske-clique in our
work. We have also implemented the Newman algorithm for gylated network but for space
reasons this is left to be reported in other work. For othéea®n methods, the recent reviews
[24] and [6] may serve as introductory reading, which alsdude methodological overviews
and comparative studies of the performance of differerdralgns.

For distributed search for nodes and content in power lawaondss, Sarshar et al. [34]
proposed using a probabilistic broadcast approach: sgdina query message to an edge with
probability just above the bond percolation threshold ef tietwork. They show that if each
node caches its directory via a short random walk, then tita¢ nomber of accessible contents
exhibits a first-order phase transition, ensuring very Higlrates just above the percolation
threshold.

For routing and forwarding in DTN and mobile ad hoc networtk&re is much existing
literature. Vahdaget al proposed the epidemic routing [38] which is similar to thélfaous”
flooding scheme we evaluated in this paper. Spray and Wdiig3thother “oblivious” flood-
ing scheme but with a self-limited number of copies. Gramsggret al proposed the two-hop
relay schemes [11] to improve the capacity of dense ad howonks. Lindgreret al proposed
PROPHET [21], which is a probability routing scheme basethervery early belief that com-
munity will help with routing decisions. There are also mantiier varied schemes such as
the adaptive routing [23] by Musolest al, the practical routing scheme by Joretsal and
Mobyspace by Leguagt al, these are all examples of how to use system and mobilitynmde
tion to improve the efficiency of routing and forwarding frdoblivious” flooding. So far, there
are few empirical evaluations of the impact of communityimfation on forwarding efficiency
except a very early study by Het al[14] based on griori affiliation information.
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Figure 37: The degree distribution for four experiments.
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13 Conclusion and futurework

Networks exhibit power law node degree distributions, aralesfree networks appear to be
an important model for graphs which evolve through prefeaéattachment and re-wiring. In
this paper, we extend this modelling to mobile ad hoc andydidkerant networks through
experimental study of PSNs. We use this work to confirm thgimai conjecture that the use of
social preferential attachment is a good heuristic for foing algorithms for temporal graphs
in a number of ways, whether kg priori labels or through use of social structures inferred
through observation.

A k-clique community can be built up by distributed gossipdibg]. For a complete anal-
ysis of gossipping in PSN, we model a PSN as a temporal graghheaiges between two nodes
that come and go following a power law distribution with eantcoefficient. The power law
model for edges is based on prior measurement work repor{@liand [13]. We would like to
consider several network topologies for degree attachinehtding simple plane lattice [16],
Erdés-Renyi random graph, scale-free network and also the molbiliges we have.

Other forwarding algorithms [21] [20] have and will be deadsfor DTNs, and should be
evaluated in the context of the mobility and social modelshaee described here. Use of
additional resources such as geographic location datagfaindrastructural nodes to assist in
forwarding must be invstigated.

In section 11.1 we chose 6 hours from the intuition that defiéyis divided into 4 main
periods, morning, afternoon, evening and night, each dlfdwours. This appears to work,
however, future work will look at how sensitive the systertoishe choice of this period.

Currentk-clique algorithm only support binary graphs, a weightetsia should be tar-
geted to eliminate the manual involvement of choosing thigiehresholds.

Further experimental work involving larger scale expenises required to confirm our
results with more confidence in a wider variety of settingsirttiermore, we believe that it
should be possible to abstract mathematical models of mpothiht match our empirical results
that can be used to generate further data sets with whichalaae our and other forwarding
systems.

We believe that this paper represents a first step in contbmch multi-level information
about social structures and interactions to drive novel effettive means for disseminating
data in DTNs. A great deal of future research can follow.
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