
Technical Report
Number 688

Computer Laboratory

UCAM-CL-TR-688
ISSN 1476-2986

Name-passing process calculi:
operational models and

structural operational semantics

Sam Staton

June 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Sam Staton

This technical report is based on a dissertation submitted
December 2006 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Girton College.

This version of the report incorporates minor changes to the
June 2007 original, which were released March 2008.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Summary

This thesis is about the formal semantics of name-passing process calculi. We study operational

models by relating various different notions of model, and we analyse structural operational se-

mantics by extracting a congruence rule format from a model theory. All aspects of structural

operational semantics are addressed: behaviour, syntax, and rule-based inductive definitions.

A variety of models for name-passing behaviour are considered and developed. We relate classes

of indexed labelled transition systems, proposed by Cattani and Sewell, with coalgebraic models

proposed by Fiore and Turi. A general notion of structured coalgebra is introduced and developed,

and a natural notion of structured bisimulation is related to Sangiorgi’s open bisimulation for the

π-calculus. At first the state spaces are organised as presheaves, but it is reasonable to constrain

the models to sheaves in a category known as the Schanuel topos. This topos is exhibited as

equivalent to a category of named-sets proposed by Montanari and Pistore for efficient verification

of name-passing systems.

Syntax for name-passing calculi involves variable binding and substitution. Gabbay and Pitts

proposed nominal sets as an elegant model for syntax with binding, and we develop a framework

for substitution in this context. The category of nominal sets is equivalent to the Schanuel topos,

and so syntax and behaviour can be studied within one universe.

An abstract account of structural operational semantics was developed by Turi and Plotkin.

They explained the inductive specification of a system by rules in the GSOS format of Bloom et al.,

in terms of initial algebra recursion for lifting a monad of syntax to a category of behaviour. The

congruence properties of bisimilarity can be observed at this level of generality. We study this

theory in the general setting of structured coalgebras, and then for the specific case of name-passing

systems, based on categories of nominal sets.

At the abstract level of category theory, classes of rules are understood as natural transforma-

tions. In the concrete domain, though, rules for name-passing systems are formulae in a suitable

logical framework. By imposing a format on rules in Pitts’s nominal logic, we characterise a sub-

class of rules in the abstract domain. Translating the abstract results, we conclude that, for a

name-passing process calculus defined by rules in this format, a variant of open bisimilarity is a

congruence.

3

Acknowledgements

This thesis would not have been possible without the guidance of Marcelo Fiore, my Ph.D. super-

visor. Much of this research develops material in an article that he wrote with Daniele Turi [Fiore

and Turi, 2001].

I am very grateful to Gordon Plotkin and Andrew Pitts for examining my thesis. Specifically,

Andy suggested that I include a proof of Prop. 7.3.1, which is less straightforward than I had first

thought.

I have enjoyed discussing the material presented here with many people at a variety of occa-

sions. Some of the anonymous referees of our articles gave good advice. There are a few people

I will mention explicitly: Chung-Kil Hur, with whom I enjoyed talking about the more category-

theoretic aspects of this research; Bartek Klin, who made insightful suggestions about the presen-

tation of this material; Dale Miller and Catuscia Palamidessi, who explained some aspects of their

work to me (mentioned briefly in Section 9.2); John Power, who pointed me towards Max Kelly’s

work for Props. 2.3.1 and 6.1.4; Peter Sewell, with whom I have extensively discussed the material

of Chapter 3; and Kidane Yemane, with whom I discussed the ideas of Section 5.2 when they were

at a very early stage, as well as the problems mentioned in Section 9.3.5. Glynn Winskel, who has

been a second supervisor, deserves a special mention, for his ongoing encouragement and support.

I must express my gratitude to my family and friends: to Meinou, for her continued patience

and kindness; to my parents, for encouraging me to study at Cambridge in the first place; to all

the people I have lived with over the past four years; to the Simmons family, for their hospitality,

and for the memory of Colin, an academic of the highest order; and to my many friends at the

laboratory in Cambridge with whom I have enjoyed eating and drinking. I am grateful to David

Richerby for first interesting me in theoretical computer science, and Alan Blackwell for supervising

my first research project.

I am grateful to Julian Owens of Qubix International for financial help and work experience.

This research in this thesis was funded by a Research Studentship from the Engineering and Physi-

cal Science Research Council (EPSRC), and for the final part by the EPSRC Project GR/T22049/01,

Domain Theory for Concurrency, for which the principle investigators are Glynn Winskel and

Marcelo Fiore.

5

Sometimes he [Pierre] remembered how he had heard

that soldiers in war when entrenched under the en-

emy’s fire, if they have nothing to do, try hard to find

some occupation the more easily to bear the danger.

To Pierre all men seemed like those soldiers, seeking

refuge from life: some in ambition, some in cards,

some in framing laws, some in women, some in toys,

some in horses, some in politics, some in sport, some

in wine, and some in governmental affairs. “Nothing

is trivial, and nothing is important, it’s all the same —

only to save oneself from it as best one can,” thought

Pierre. “Only not to see it, that dreadful it!”

Leo Tolstoy

War and Peace, Book Eight, Chapter I

Translated by Louise and Aylmer Maude

7

Contents

Summary and Acknowledgements 3

1 Introduction 11

1.1 Background . 11

1.2 Contributions . 18

1.3 Synopsis . 23

I Operational Models 27

2 Transition Systems, Coalgebras, and Bisimulation 29

2.1 Transition systems and coalgebras for evolving systems 29

2.2 Transition systems and coalgebras for value-passing systems 31

2.3 Morphisms between endofunctors . 33

2.4 Structured coalgebras . 34

2.5 Notions of bisimulation . 37

3 Transition Systems and Coalgebras for Name-Passing 45

3.1 A name-passing process calculus: the π-calculus . 46

3.2 Coalgebras for name-passing . 53

3.3 Transition systems for name-passing . 60

3.4 Arbitrary substitutions and uniform input . 72

3.A Appendix to Chapter 3: Proofs of results in Section 3.3 83

4 Models for Name-Passing, Refined 89

4.1 Preliminaries: Coverages on categories . 89

4.2 Models of name-passing in the Schanuel topos . 92

4.3 Sheaves and all substitutions . 98

4.4 Transition systems simplified . 101

4.A Appendix to Chapter 4: Proof of Theorem 4.2.5 . 105

4.B Appendix to Chapter 4: Proof of Theorem 4.4.9 . 108

5 Practicality 111

5.1 Presentations of sheaves . 111

5.2 Final bisimulations . 124

II Structural Operational Semantics 131

6 Rule Induction and Mathematical Operational Semantics 133

6.1 Rudiments of abstract syntax . 133

6.2 Mathematical operational semantics . 138

8

Contents 9

6.3 The Positive GSOS rule format . 151

6.A Appendix to Chapter 6: Proof of Theorem 6.1.5 . 159

7 Nominal Sets for Syntax and Behaviour 167

7.1 Nominal sets . 168

7.2 Nominal logic . 174

7.3 Nominal substitutions . 175

7.4 Nominal algebraic signatures . 180

7.5 Nominal transition systems . 183

7.A Appendix to Chapter 7: Proof of Prop. 7.3.1 . 188

7.B Appendix to Chapter 7: Proof of Theorem 7.3.2 . 188

7.C Appendix to Chapter 7: Proof of Theorem 7.5.3 . 193

8 Operational Semantics for Name-Passing 197

8.1 Rules for name-passing . 197

8.2 Rules that induce well-behaved semantics . 203

8.3 The conditions are necessary: Examples and counter-examples 206

8.4 Inducing abstract rules from rule structures . 210

8.A Appendix to Chapter 8: Proof of Prop. 8.4.3 . 219

8.B Appendix to Chapter 8: Proof of Lemma 8.4.7 . 221

9 Concluding Discussion 227

9.1 Contributions . 227

9.2 Other rule formats for name-passing calculi . 228

9.3 Research directions . 229

Bibliography 237

Chapter 1

Introduction

We survey the background for this thesis, and outline the main contributions.

1.1 Background

We set the background for this thesis by summarising the key developments in theoretical computer

science that form its basis. Relevant aspects of name-passing process calculi, and the π-calculus

in particular, are considered. We then introduce some models for name-passing calculi, with an

emphasis on operational models for bisimulation. This background section concludes with a survey

of relevant aspects of the structural approach to operational semantics, with particular attention

paid to category-theoretic analysis, and issues of variable binding.

Note. The research projects mentioned here all have a direct impact on the present work. The

reader should turn to the concluding chapter of this thesis to find a discussion of more orthogonal

problems that go beyond the scope of this thesis.

1.1.1 Rudiments of name-passing process calculi

Name-passing process calculi are calculi that involve the communication of names along named

channels. Channels for communication have been named for as long as communication channels

have been considered, but the novelty of name-passing is that these names can also be communi-

cated along those channels. As Needham [1989] explains, the concept of pure name is fundamental

to computer science.

Milner’s Calculus of Communicating Systems [CCS: 1980; 1989] supports the communication

of values along channels, and even in his first introduction Milner mentioned his interest in the

idea of name-passing [Milner, 1980, 11.5(i)]. A first serious attempt at a name-passing calculus

was made by Engberg and Nielsen [see 2000], but there can be no doubt that the most notable and

pervasive calculus with this facility is the π-calculus as introduced by Milner, Parrow, and Walker

[1992]. Full details of the π-calculus are provided in the article of Milner et al., and in Section 3.1

of this thesis, and also in the comprehensive book by Sangiorgi and Walker [2001]. The reader will

also find insight in Parrow’s introduction [2001] and in Milner’s book [1999]. For now, we take

a cursory glance at some of the important aspects of this calculus. These aspects may indeed be

considered as important characteristics of any reasonable name-passing calculus.

Restriction and scope extrusion. The syntax of the π-calculus includes a restriction operator, ν .

When names are considered as channels, this serves to hide a name within a process. For instance,

the π-calculus term P = (c̄d. 0 | c(d). 0) can perform an output action, of name d on channel c, to

become the process (0 | c(d). 0); alternatively, the process P can perform a silent action τ during

which the two parallel processes communicate to become (0 |0). If the name c is restricted, as in

11

12 Introduction

the process νc. (c̄d. 0 | c(d). 0), then the latter transition remains possible, while the former does

not, because the channel c is hidden.

The ν operator acts to hide names when they are used as channels, and this is in common

with the restriction operator of CCS. But when names are considered as data, the operator ν has a

different behaviour. The process νd. c̄d. 0 can perform an output action; here it is helpful to think of

the operator ν as describing the generation of a new name d. The output of newly generated names

is described as bound output. This behaviour gives rise to the phenomenon of scope extrusion. For

instance, in the π-calculus, we have a silent transition

(νd. c̄d.Q) | c(d).Q′
τ
−→ νd. (Q |Q′)

during which the scope of d extrudes to include Q′. (Here Q and Q′ are arbitrary π-calculus terms.)

This phenomenon has been used to describe mobility of communication links.

Equivalences for name-passing systems. No study of a process calculus is complete without a

discussion of appropriate notions of behavioural equivalence. Sangiorgi and Walker [2001, Chap-

ters 2 and 4] provide a thorough discussion of behavioural equivalences for the π-calculus.

In this thesis we focus on (strong) bisimulation equivalences. This is primarily because they are

elegant from a mathematical perspective, though there are also practical reasons for this approach.

Indeed, no matter what equivalence happens to be relevant from the pragmatic viewpoint, one

cannot dispute the power of proof techniques based on bisimulation. There are automatic and

efficient ‘partition refinement’ techniques for finite state systems [see e.g. Paige and Tarjan, 1987],

and, even when these are not relevant, ‘bisimulation up-to’ techniques are powerful [an account

is given by Sangiorgi, 1998]. From this point of view, bisimilarity need not be the most relevant

equivalence, for it is sufficient that it is contained in a relevant equivalence, i.e. that the bisimulation

proof techniques be sound. In most situations this is the case, for bisimilarity is the most refined

equivalence that it is ever reasonable to consider. Ideally, though, a proof technique is complete,

and there has been a significant amount of interest in characterising important equivalences in

terms of bisimulations. For instance, notions of contextual equivalence [e.g. Gordon, 1999; Jeffrey

and Rathke, 2005] and observational equivalence [e.g. Sewell, 2002; Leifer and Milner, 2000] have

been characterised in terms of bisimulation.

When defining bisimulation for the π-calculus, some care must be taken over free and bound

variables. For instance, the process P1 = νd. c̄d. 0 can perform a bound output of name e on

channel c, whereas the process P2 = νd. c̄d. [e = e]0 cannot, because the name e happens to appear

free in that term. The processes P1 and P2 should not be distinguished for this reason, and so any

notion of bisimulation should only consider bound labels where the binder is sufficiently fresh.

A second complication for bisimilarity in the π-calculus is that none of the most natural notions

of bisimilarity are congruences; that is, they are not respected by the syntax. To see this, notice

that the process P1 = [c = d]c̄d. 0 is certainly bisimilar with P2 = 0, because the name c is different

from the name d and so neither process can reduce. The context (c̄d. 0 | c(c). [−]) can distinguish

these two processes: we have the sequence of transitions

c̄d. 0 | c(c). P1 = c̄d. 0 | c(c). [c = d]c̄d. 0
τ
−→ 0 | [d = d]d̄d. 0

d̄d
−→ 0 | 0

which cannot be matched by (c̄d. 0 | c(c). P2).

Congruence of bisimilarity is important for a variety of reasons, depending on the one’s moti-

vation for working with bisimilarity. If bisimilarity is a relevant equivalence in its own right, then it

must be a congruence if one is to have a compositional understanding of systems. If bisimilarity is

used as a characterisation of another specified process equivalence, then the property of bisimilarity

being a congruence is often crucial in the characterisation proof. Even if we are only interested in

a sound bisimulation proof technique, congruence of bisimilarity permits compositional reasoning

within that proof technique.

1.1. Background 13

The above example illustrates that the failure of congruence of bisimilarity for the π-calculus

arises because bisimilarity is not closed under arbitrary substitutions, while input contexts are able

to force these substitutions. The solution that we take in this thesis is to consider only those

bisimulations that are closed under arbitrary substitutions. We say that these bisimulations are

wide open, and the greatest such bisimulation we call wide open bisimilarity. This equivalence is a

congruence for the π-calculus.

Wide open bisimilarity has been studied by various authors, although under different names. It

is the equivalence used in the models of Cattani and Sewell [2004] (there called open bisimilarity),

and in the models of Fiore and Turi [2001] (called early/late congruence). Sangiorgi [1996] studies

wide open bisimilarity for a fragment of the π-calculus, and Sangiorgi and Walker [2001, Sec. 4.6]

briefly record some properties. Wide open bisimilarity is related to the notion of hyperbisimilarity

considered for the update calculus of Parrow and Victor [1997]. It is a mathematically natural

notion: firstly, wide-open bisimilarity is (strong) dynamic congruence [in the sense of Montanari

and Sassone, 1992]; secondly, the coalgebraic models of wide open bisimilarity of Section 3.4 (of

this thesis) arise in a rather elegant way.

It has been argued, however, that wide open bisimilarity is too fine, in that it distinguishes pro-

cesses that could perhaps never be told apart. Some more elaborate notions have been suggested

to deal with some anomalies. These include open bisimulation [Sangiorgi, 1996, and Section 9.3.5

of this thesis] and symbolic bisimulation [see e.g. Hennessy and Lin, 1995; Boreale and Nicola,

1996; Lin, 2003], but will not concern us here.

1.1.2 Models of name-passing

The presentation of the π-calculus semantics of Milner et al. [1992] is in the structural operational

semantics style of Plotkin [1981]. This style of semantics is concerned with those transitions that

are provable, and as such the theory can be developed to a very large extent without paying much

attention to notions of model. This proof-theoretic attitude is further developed by Miller [e.g.

2006] and others.

In spite of this, model theories play an important role in theoretical computer science. For one

thing, they distinguish aspects of behaviour from the syntax of languages, and as such provide an

important abstraction mechanism. By studying notions of model, important properties of behaviour

can be isolated.

The first explicit work on models for the π-calculus appeared in 1996, with the domain-theoretic

models of Fiore, Moggi, and Sangiorgi [2002] and Stark [1996]. A central concern in giving de-

notational semantics for name-passing systems is that the free names of a term must be captured

abstractly in the model: firstly, this is convenient when specifying a denotational semantics; sec-

ondly, the notions of bisimulation for name-passing explicitly involve the free names of terms. The

two domain-theoretic models both address this concern in the same way, by indexing their cate-

gory of domains by the category I of finite sets of names and injective functions between them, or

equivalently the skeletal category I of natural numbers (considered as sets) and injective functions

between them. Thus one seeks a solution P of a domain equation in a functor category DomI

(here Dom is an appropriate category of domains). For each set of names C ∈ I there is thus

a domain P(C) of denotations of name-passing processes with free names C , and for each injec-

tion ı : C ֌ D in I there is a continuous map P(C) → P(D) converting denotations of processes

involving names C into denotations of processes involving names D; after all, behaviour should be

stable under injective substitution.

It seems that fully abstract models could still have been found if the indexing category I was

replaced with the lattice of finite sets of names — that is, if the non-identity bijection maps were

stripped from I. The bijective morphisms in I are not redundant, though; they imbue a certain

uniformity into the model. One might argue that the best model is the one that fits tightest around

14 Introduction

the intended semantics while remaining independent from syntax. This will be a guiding principle

in the development of models for name-passing in this thesis.

Operational models of name-passing. We mention here three different approaches to modelling

name-passing calculi. The first approach has its roots in the denotational semantics of CCS origi-

nally offered by Milner [1980]. There, the models are somewhat ‘operational’: synchronisation trees

explictly describe the stepwise evolution of processes, and are not derived from abstract mathemat-

ical constructions. However, as Aczel [1988, Chapter 8] observed, quotiented synchronisation trees

can be equivalently seen as elements of the final coalgebra for the endofunctor P (Lab×(−)) on the

category of classes. (Here, P is a covariant powerset functor, and Lab is a suitable set of labels.)

Indeed, Abramsky [1991, Sec. 7] has noted that an operational semantics, i.e. a labelled transition

system, can be understood as a coalgebra for the above-mentioned endofunctor, explictly by giv-

ing a set X of states together with a ‘next-step’ function X → P (Lab× X); on the other hand, as

Abramsky notes, a denotational semantics for such a system can be given in a solution for a domain

equation of the form D ∼= P (Lab× D), where P is now considered as a powerdomain construc-

tion. Thus coalgebraic principles became recognised from the domain-theoretic perspective. These

principles are made explicit in the abstract development of Freyd [1991] and in the techniques of

Pitts [1994], and in other related work.

In this way, using notions of algebraic compactness [Freyd, 1991, 1992], the solutions of do-

main equations for name-passing systems proposed by Fiore et al. [2002] and Stark [1996] are

not only initial solutions but also final solutions. The resulting coinductive reasoning technique

is essential, and allows the domains to be considered from an operational stance. Thus the or-

der structures are not necessary: one can provide fully abstract semantics in the final coalgebra

of a certain endofunctor on SetI. This idea is made explicit in the work of Fiore and Turi [2001,

Sec. 2.2].

From the operational perspective, finality is not especially important. All the coalgebras provide

a general notion of transition system, and notions of bisimulation can be studied there. This

viewpoint was developed in the work of Rutten [e.g. 2000] and others throughout the 1990s.

Thus ideas from operational semantics become relevant at the level of model theory.

A rather different approach to operational models of name-passing calculi is provided by Cattani

and Sewell [2004] in their provision of a denotational semantics of the π-calculus. Their models

are based on a kind of labelled transition system. Let F be the full subcategory of Set whose objects

are finite sets of names, and, instead of a set of states, a functor P : F→ Set (a ‘presheaf’) is given.

The intention is that, for any set C of names, there is a set P(C) of states that use some of the

names in C , and that the functorial action of P describes a substitution of names in states. The

labelled transition systems that they consider are over the sets of elements of the presheaf of states;

an element (C , p), with p ∈ P(C), represents the state p in name-context C .

The structuring of the states in this way allows, firstly, for appropriate notions of bisimulation

to be defined at the level of the model theory. Secondly, it allows the class of models to be restricted

by imposing conditions on how the transition system interacts with the indexing by name contexts.

A most basic example is that if there is an output transition

(C , p)
c!d
−→ (D,q)

then the channel c on which the output occurs must be known by the process — so c must be in the

set C . (The idea of presenting the semantics of the π-calculus with explicit name contexts appears

elsewhere in less model-theoretic presentations: see e.g. Sewell [2001], Bruni et al. [2004].)

The final operational model that we mention here is the model of history dependent automata

due to Montanari and Pistore [1997]. The main idea in this work is to regard models of the

π-calculus as automata with extra structure. This approach is especially amenable to efficient

verification techniques. A problem with model-checking for the π-calculus is that an infinity of

1.1. Background 15

names must be considered when checking input transitions, and to solve this problem one must

recognise that all these names are treated uniformly. History dependent automata deliver this

solution in a particularly efficient way: the states of history dependent automata provide canonical

representations of π-calculus terms up-to renaming of free variables, and so the state space can be

significantly reduced.

1.1.3 Structural operational semantics

Rule formats. The Aarhus notes of Plotkin [1981] introduced the structural approach to opera-

tional semantics (SOS). Soon after, the work of de Simone [1985] demonstrated that whole classes

of systems can be simultaneously studied in a formal way. The idea of de Simone was that instead

of studying the particular semantics of a particular system, one could consider an arbitrary SOS

specification, and that by imposing constraints on the kinds of rules under consideration, results

could be established for arbitrary systems in general. An overview of such rule formats is provided

by Aceto et al. [2001, Sec. 5]. The rule format with which we are most interested is a positive

version of the GSOS format of Bloom, Istrail, and Meyer [1995]. To paraphrase Bloom et al.: a rule

for defining a labelled transition system is in the positive GSOS format if it has the form

⋃l

i=1

§
X i

ai j

−→ Yi j

�� 1≤ j ≤ mi

ª

op(X1, . . . , X l)
c
−→ C

�
~X , ~Y

�

where all variables are distinct, l ≥ 0 is the arity of op, mi ≥ 0, and C
�
~X , ~Y

�
is a context with free

variables including at most the X ’s and Y ’s. Bloom et al. [1995, Sec. 5] establish a variety of results

about systems defined by such rules. Importantly, bisimilarity is a congruence for such systems.

Mathematical Structural Operational Semantics. The rule formats of Bloom et al. [1995] are

general and profound. To understand what is going on at an abstract level, though, one can study

the structures and procedures in terms of category theory. Structural operational semantics is

concerned with the interplay between behaviour and syntax, by means of recursion on the structure

of the syntax. In this Introduction, we have already discussed how operational models can be

considered in a general category-theoretic way using coalgebras and bisimulation. For a long time,

the concepts of syntax, recursion and induction have been understood in terms of the category-

theoretic machinery of initial algebras and free monads; an early introduction for computer science

is provided by Goguen, Thatcher, and Wagner [1978]. Thus structural operational semantics can

be studied in the setting of category theory.

The concepts of structural operational semantics were first understood at this more abstract

level by Turi and Plotkin [1997]. (The ideas that we now overview are made precise in that paper

and also in Chapter 6 of this thesis.) It is helpful to think of two universes. The first is a category S

which is a domain for syntax, and as such is equipped with a monad T whose algebras are models of

that syntax. The second universe is a categoryB of behaviour, whose objects represent denotations

of systems. These categories are typically related by a forgetful functorB →S , mapping a system

to its set of states. For an example, we consider the case where S = Set; the monad T is the monad

of terms of Milner’s CCS [1980];B is the category of coalgebras for the endofunctor P (Lab×(−)),

or equivalently, B is a category of labelled transition systems with functional simulations between

them. An important guiding principle that holds at the abstract level is that

a lifting of a monad T on S along the forgetful functor B → S is a specification of

well-behaved semantics.

16 Introduction

For the situation of CCS, just described, this means that the initial algebra for a lifting of the

monad T (of CCS terms) to the category of P (Lab× (−))-coalgebras provides a labelled transition

system semantics over CCS terms, for which bisimilarity is a congruence.

Under certain conditions, rule-based inductive definitions for operational semantics can be seen

as the definition of a monad lifting by initial algebra recursion. For a specific example, consider

one of the CCS rules for synchronisation

P
a
−→Q P ′

ā
−→Q′

P | P ′
τ
−→Q |Q′

which, informally, says that if P and P ′ can perform complementary actions then they will syn-

chronise in parallel and only a silent (τ) action will occur. As Plotkin [2004] observes, the rules

will typically be read only in a clockwise manner, so that the following alternative presentation is

sensible.

P
n

a
−→Q

o �� P ′
§

ā
−→Q′

ª
τ
−→ Q

�� Q′

This latter presentation is to be thought of as saying that if P, which can perform an action a to

become Q, is in parallel with P ′, which can perform action ā to become Q′, then P and P ′ will

synchronise to become Q in parallel with Q′. Here, the source (left-hand side) of this generic

transition is a basic expression of the language that additionally involves behaviours. Thus the

source is an element of the set Σ(X × BX), where: X is a set of process variables, including P, P ′,

Q and Q′; the endofunctor Σ on Set defines the signature of CCS syntax, and is a sum including a

term ((−)× (−)) for the operator of parallel composition; and B is the endofunctor P (Lab× (−))

on Set whose coalgebras are labelled transition systems. On the other hand, the transition label

and the target (right-hand side) together comprise a behaviour involving a term of the language;

that is, an element of the set BT X . In this way we can see GSOS rules as functions from Σ(X × BX)

to BT X . Natural families of such functions, i.e. natural transformations

Σ((−)× B(−))→ BT (−) (1.1.1)

between endofunctors on Set, provide the data for using initial algebra recursion to lift the monad T

to the category of T -coalgebras. Thus the congruence of bisimilarity for GSOS systems can be

understood at an abstract level.

Syntax with variable binding. An inadequacy of traditional rule formats, such as the GSOS

format, with respect to modern semantics research, is that they are not relevant when syntax

involves variable binding. Variable binding is an essential part of the syntax for value-input in

any value-passing process calculus, and in name-passing calculi in particular. Moreover, in the

π-calculus, the binding behaviour of the restriction operator plays an essential role.

Variable binding can be a tricky issue in operational semantics. For a simple example, suppose

that an early semantics for input in the π-calculus was specified by the following axiom.

c(c). P
cd
−→ [d/c]P ′

(1.1.2)

One might argue informally that c is binding in P, and so the axiom can be equivalently written as

follows.

c(z). P
cd
−→ [d/z]P ′

However, let us take the axiom (1.1.2) literally for a moment. Then the process P1 = c(z). 0

is α-equivalent to c(c). 0, and from this we can use the axiom (1.1.2) to derive a transition

c(c). 0
cd
−→ 0. On the other hand, though, the process P2 = c(z). [c = c]0 cannot be α-converted

1.1. Background 17

into a form relevant to the axiom (1.1.2), for certainly P2 is not α-equivalent to c(c). [c = c]0. So

we cannot derive any input transitions for P2. This is obscure: the test [c = c] in process P2 is

surely redundant and in any sensible semantics, P1 and P2 should have the same behaviour.

Fokkink and Verhoef [1998], Middelburg [2001] and others have studied properties and mean-

ings of transition system specifications over syntax with variable binding. Their work provides

guidance for any subsequent study of operational semantics over syntax with binding. But these

developments cannot be immediately studied in a mathematical way, at the level of category the-

ory, because the model of syntax developed by Goguen et al. [1978] is not immediately relevant in

the variable-binding setting.

Variable binding became something of a ‘hot-topic’ in the late 1990s and the early 2000s, when a

myriad of formal frameworks, both model-theoretic and proof-theoretic, were suggested. A suitable

framework should be rigorous, and yet relevant to the informal intuitions one has when reasoning

about binding. For instance, the convention of Barendregt [1981, 2.1.13] is too informal for some

purposes, while the notation of de Bruijn [1972] is rigorous and efficient, yet difficult to read.

In this thesis, we focus on the models of Fiore, Plotkin, and Turi [1999] and of Gabbay and

Pitts [e.g. 2001]. The approach of Fiore et al. is as follows. Instead of working with sets of terms,

one works with variable sets, i.e. functors X : F→ Set; here F is the category of natural numbers

(considered as sets) and functions between them, so it is a skeleton of the category F mentioned

above. The intention is that, for any number n, a set X (n) of terms with at most n free variables is

given, and for each function f : n→ m between numbers, a renaming function X (f) : X (n)→ X (m)

is specified. The ‘set’ of all variables can be seen as the inclusion V of F in Set. The presheaf

category SetF is Cartesian closed, as usual, and exponentiation by V is an abstract form of variable

binding, as can be seen by the equation X V (n) = X (n+ 1).

Substitution can be formulated within this framework. There is a monoidal structure on SetF,

for which the tensor defines a variable set of substitutable pairs. A substitution structure can then

be defined as a monoid over this monoidal structure.

This framework provides an abstract account of the principles of variable binding and substi-

tution. One can use this framework to study principles of recursion and induction for syntax with

variable binding, in terms of initial algebras and free monads.

These techniques and constructions, however elegant, remain somewhat removed from the in-

formal pen-on-paper arguments that mathematicians and computer scientists use every day. It is in

this aspect that the framework of nominal sets, developed by Gabbay and Pitts [2001], excels. The

basic idea of nominal sets is to consider sets that are equipped with actions of the symmetric group

on names. In other words, we consider sets X that are equipped with an assignment from per-

mutations of variables to functions X → X describing how the permutations ‘rename’ the elements

of X (all subject to the requirement that the identity permutation and composition of permutations

are suitably respected). Notions of ‘free variable’ can be considered at this abstract level using the

concept of support. Notions of α-equivalence can be defined in terms of the permutation action

structure.

An important attraction of nominal sets, in contrast with the functor category approach, is that

one can work with a set of terms, as in traditional studies of syntax, and consider the permutation

action as an additional structure. Construction and manipulation of nominal sets can then be seen

in terms of the traditional construction and manipulation of sets, provided that the additional group

action structure is respected.

Abstract notions of substitution have not been extensively studied in the setting of nominal sets

[although first steps are made by Gabbay and Mathijssen, 2006]. It is well-known, however, that

the category of nominal sets is equivalent to a sheaf topos, and in this way the theory of nominal

sets can be connected with the framework of Fiore et al..

18 Introduction

1.2 Contributions

The pinnacle of this thesis is the rule format for name-passing that is presented in Chapter 8: the

important result is that for any system defined using rules in this format, wide open bisimilarity is

a congruence. This format is derived from a model based on mathematical structural operational

semantics, and the development and analysis of this model forms the body of this thesis.

We now collect and summarise the contributions of this thesis. The contributions are split into

strands that span the length of the thesis. A chapter-by-chapter synopsis is provided in Section 1.3.

Indexed labelled transition systems and coalgebras. The coalgebraic model for the early se-

mantics of name-passing proposed by Fiore and Turi [2001] involves an endofunctor on the pre-

sheaf category SetI. (Here, as earlier, I is the category of natural numbers and injections between

them.) Here, instead of I, we work here with the equivalent category I of sets of names and injec-

tions between them. An additional novelty of our presentation is that we consider both an early

semantics and a ground semantics. (The ground semantics is concerned only with input of fresh

names, and it is not interesting in itself, but in the context of wide open bisimulation.)

The notion of behaviour suggested by the coalgebraic model of Fiore and Turi incorporates the

complex constructions involved in the behaviour endofunctor. Moreover, morphisms in SetI are

families of functions subject to a naturality requirement, and this requirement plays a central role.

In this thesis we explore this notion of behaviour by making all the constructions and requirements

explicit. To do this we require a more bland, permissive notion of model for name-passing.

The more permissive models that we study are indexed labelled transition systems, loosely fol-

lowing the analysis of Cattani and Sewell [2004]. An indexed labelled transition system over a

presheaf P ∈ SetI is a labelled transition system in which the states are pairs (C , p) with C an ob-

ject of I, and p ∈ P(C). Our intuitions about the coalgebraic model of Fiore and Turi suggest a

straightforward translation from coalgebras to indexed labelled transition systems.

Indexed labelled transition systems thus provide a foundation within which the requirements of

the coalgebraic notion of model can be studied explicitly. For instance, the naturality requirements

on the coalgebra structures ensure that transitions are invariant under bijective renamings. We can

write this as a property of indexed labelled transition systems: for any bijection β : C
∼
→ D in I,

If (C , p)
l
−→ (C , p′) then (D, [β]p)

[β]l
−→ (D, [β]p′) .

By axiomatising exactly those indexed labelled transition systems that are induced by coalgebras,

we arrive at a characterisation of the coalgebraic model in which the requirements on behaviour

are made explicit.

From another point of view, indexed labelled transition systems provide a basic model theory

within which many lemmas about the transition systems of the π-calculus can be phrased with-

out reference to syntax. The axiom about bijective renaming, mentioned above, is an important

example of an abstract form of such a lemma. A notion of model of name-passing can thus be

found by treating lemmas of the π-calculus as axioms on indexed labelled transition systems. As

mentioned in the background discussion, this is the approach taken by Cattani and Sewell [2004].

A contribution of this thesis, then, is that this approach is related with the coalgebraic approach of

Fiore and Turi.

Sheaf conditions on state spaces. The axioms imposed on indexed labelled transition systems

help to characterise notions of behaviour for name-passing systems. However, no requirements

are imposed on the presheaves of states, other than functoriality. In this thesis we assert that it is

appropriate to impose a sheaf condition on the presheaves of states, and demonstrate that all the

constructions and developments can be carried out for this restricted notion of state space. (This is

an idea that was first considered in this context by Pitts and Stark [1993, Example 4.3(i),(iii)].)

1.2. Contributions 19

The first step in this direction is to recognise that the presheaves that arise in models of the

π-calculus have the property that the actions of the injections in I are themselves injective. This

property of presheaves is not imposed by functoriality, but corresponds to separatedness for a

certain topology on I. A further, more sophisticated observation is that for a presheaf P ∈ SetI,

if p ∈ P(C) and p ∈ P(D), we should imagine that the ‘free names’ of p are included both in C

and in D, and so we can expect that p ∈ P(C ∩ D). This informal description, when formalised,

constitutes the sheaf condition for that topology on I.

One can write down these requirements on presheaves with no knowledge of sheaf theory, but

the sheaf-theoretic characterisations connect the work with a well-developed mathematical theory.

Thus some basic constructions, such as limits and function spaces, can be immediately understood,

and adjoint connections between models can be observed by using results of a general kind.

Indeed, the sheaf category that arises in this way, which has been called the Schanuel topos, is

well known to be equivalent to the category of nominal sets of Gabbay and Pitts [e.g. 2001]. Thus

the model using coalgebras over sheaves can be seen as a model of name-passing in nominal sets.

Nominal sets have been championed as an elegant domain for models of syntax, and we are now

able to assess their elegance in the context of behaviour. When developing a theory of semantics

for name-passing, it is helpful to have syntax and semantics considered within the same universe.

The restriction to the sheaf subcategory permits a simpler characterisation of behaviour. Fiore

[2001] has observed that sheaves in the Schanuel topos are freely determined by their action

on bijections. Using this idea, we consider indexed labelled transition systems over presheaves

in SetB: here, B is the category (actually, groupoid) of sets of names and bijections between them.

We use the constructions of Fiore [2001] to relate indexed labelled transition systems over SetB

with those over sheaves in the Schanuel topos. The resulting axiomatisation of indexed labelled

transition systems over SetB is simpler than that over SetI, and thus a new model of name-passing

is designed.

Another important property of the Schanuel topos is that it is equivalent to a category of named-

sets used by Ferrari, Montanari, and Pistore [2002] in their article about model-checking with

history dependent automata. This correspondence is seen to arise from a categorical version of the

orbit-stabiliser theorem. Thus, by requiring extra properties of the state spaces, the models become

amenable to efficient verification.

Name-for-name substitution. Arbitrary name-for-name substitutions play an important role in

theory of name-passing. Consider the axiom for input in the early treatment, and one of the rules

for communication in the late treatment. Both involve potentially non-injective substitutions in the

right-hand-side of the conclusion.

c(z). P
cd
−→ [d/z]P

(input-early)
P

c(z)
−→ P ′ Q

c̄d
−→Q′

P |Q
τ
−→ [d/z]P ′ |Q′

(com-l-late)

Here we have a problem: the presheaves and sheaves over I that we have used for the models

so far only support injective substitutions. To consider arbitrary substitutions within the abstract

framework, we must move to presheaves over F, the category of finite sets of names and functions

between them.

It is straightforward to compare the presheaf categories SetI and SetF. However, if we are to

restrict to a sheaf subcategory of SetI, it makes sense to also restrict to a sheaf subcategory of SetF.

In this thesis we introduce an appropriate topology on F, and observe that the sheaf condition for

this topology has a very simple meaning.

The sheaf subcategory of SetI is equivalent to the category of nominal sets, and this is an

important equivalence to exploit. Thus we are led to develop a ‘nominal’ view of the sheaf subcat-

egory of SetF. We do this by defining a ‘nominal algebraic theory’ of nominal substitutions, whose

20 Introduction

models in the category of nominal sets correspond to sheaves over F, and whose model homo-

morphisms correspond to natural transformations between sheaves. Axioms of the theory provide

an abstract axiomatisation of the concept of substitution: we enforce the identity law of substitu-

tion, [a/a]x = x; we require that if a is fresh for x , then [b/a]x = x; and we also enforce a kind of

substitution lemma stating when the order of substitutions is irrelevant.

Structured coalgebras and wide open bisimulation. It is common in operational semantics for

the states of a system to have structure, some of which is not respected by the behaviour. The

central example of this phenomenon for this thesis involves the arbitrary name-for-name substitu-

tions that play an important role in name-passing calculi. The behaviour is not respected by such

substitutions: one does not expect a theorem stating that for any substitution f ,

x
l
−→ y if and only if [f]x

[f]l
−→ [f]y .

(The left-to-right implication is an important property of some fragments of the π-calculus, but the

right-to-left implication is certainly obscure.)

To cope with situations such as this we introduce a new and general concept of structured

coalgebra. Consider a functor U : D →C together with an endofunctor B on C . Then a U-structured

B-coalgebra is an object X of D together with a morphism UX → BUX in C — i.e. a B-coalgebra

structure for UX .

For modelling the π-calculus, the forgetful functor U : D → C is the obvious forgetful functor

SetF → SetI (or a version thereof restricted to sheaf subcategories): “if you know what to do

with all functions, you know what to do with injections”. There is a natural notion of structured

bisimulation, which, for the π-calculus, coincides with wide open bisimulation.

The correspondence between coalgebras and indexed labelled transition systems is important.

To handle arbitrary substitutions in indexed labelled transition systems one can require that pre-

sheaves of states are over F rather than I, and the axioms on transition systems developed before

still make sense. However, when arbitrary substitutions are in the model, it is possible to consider

an extra axiom, about uniformity of input: informally,

if P
cz
−→ Q then P

cd
−→ [d/z]Q .

(Notice that the substitution in the consequent need not be injective.) Indexed labelled transition

systems that satisfy this additional axiom are shown to correspond to indexed labelled transition

systems with ground labels (with only fresh input data). Thus the ground semantics is relevant

from the perspective of wide open bisimulation.

A rule format for name-passing calculi. The abstract developments of Turi and Plotkin [1997]

can be reworked in the setting of structured coalgebras. We have models of both syntax and

semantics in nominal sets and nominal substitutions, and thus an abstract GSOS-like rule format

arises for name-passing calculi. Structured coalgebras defined using this format have the property

that wide open bisimulation is a congruence.

A problem with this result is that rules in this format are not logical statements, but rather natu-

ral transformations between functors. So, while this development is illuminating at the conceptual

level, the result is not much use to the working operational semanticist. The final contribution

of this thesis is the extraction of a concrete rule format from this abstract result. This concrete

rule format provides a notation, at a logical level, for a class of natural transformations from the

abstract domain.

A first challenge is in identifying a logical formalism that is sufficiently expressive so as to

support appropriate notions of rule. The format that we extract must be generous enough to

1.2. Contributions 21

support the specification of the π-calculus. For an example of the kinds of feature that are required,

consider the π-calculus rule for scope opening, as presented by Milner et al. [1992, II, Table 2].

P
x̄ y
−→ P ′

ν y. P
x̄(w)
−→ [w/y]P ′

y 6= x
w 6∈ fn(ν y. P)

This exhibits several aspects of rules for name-passing that are not catered for in the GSOS for-

mat of Bloom et al. [1995]: (i) there is universal quantification over both processes (P,P ′) and

names (w, x , y); (ii) there are binding operators, such as ν; (iii) there are explicit substitutions in

the conclusion target; (iv) there are side conditions about the freshness and distinctness of name

variables.

Given the role of nominal sets in our model theory, a suitable candidate for a logical framework

is Pitts’s nominal logic [2003]. We identify the following GSOS-like template for rules in nominal

logic that we will focus on.

P1

l1
−→ P ′1 P2

l2
−→ P ′2 . . .

op(. . .)
l
−→ t

(1.2.1)

Here, op is an operator from a special kind of binding signature: the parameters of this operator can

be name or process variables, and may include binders. The target t of the conclusion is a complex

expression built from name and process variables using the binding signature, augmented with the

additional operator sub for substitution. We refer to structures of this shape as ‘rule structures’.

Note that nominal logic is merely a first order theory, and therefore α-equivalence is not in-

cluded in syntactic equality. Thus, when reasoning about rule structures at this metalogical level,

we are concerned with terms of raw syntax, without α-equivalence. It is only possible to reason

up-to α-equivalence once one is reasoning within nominal logic, or working in a suitable model.

The astute reader will have noticed that the rules used to define the π-calculus include side

conditions about freshness and distinctness of certain variables, and yet there is no provision for

such side conditions in the shape of rule structures in (1.2.1). It is a little messy to reason about

these side conditions in a general way, and so here we adopt a convention that makes these side

conditions implicit: whenever two different name variables are written in the rule, there is an

implicit side condition requiring that the name variables are distinct; there is also an implicit side

condition requiring that the bound names of the conclusion label are fresh for the conclusion

source. While these conventions are technically convenient, they make presentations of calculi

slightly clumsy — for instance, the π-calculus rule for output must be rewritten as the following

two rules.

c̄d. P
c̄d
−→ P c̄c. P

c̄c
−→ P

(The first rule here has an implicit side condition: c 6= d.) In general, though, this rewriting is

rather mechanical.

Presupposing some GSOS-like conditions on a rule structure of the form (1.2.1) we can de-

rive a family of functions of the form (roughly) {Σ(X × BX)→ BT X }; here X ranges over nominal

substitutions. (Since our model of behaviour involves structured coalgebras, some additional struc-

ture operators are required in the type of these functions, which, for brevity, are omitted in this

overview.) This family of functions is almost of the form (1.1.1) required to recursively define

a lifting of the monad of syntax to the category of behaviour. In general, though, the functions

in this family are not equivariant — they do not preserve the renaming structure of nominal sets.

Moreover, the family need not be natural. Thus an important question is:

What conditions must be placed on a rule structure to guarantee equivariance and natu-

rality?

22 Introduction

Viewing the rule structures of the form (1.2.1) as nominal logic formulas, we can consider

the least labelled transition system over process terms that satisfies the rule. We would like the

induced transition system to reside in the model theory developed for name-passing behaviour, and

moreover we are interested in the congruence of wide open bisimilarity. None of these properties

hold for systems defined by rule structures in general. From this perspective, the above question

can be reformulated as:

What conditions must be placed on a rule structure to guarantee a well-behaved transition

system and congruence of wide open bisimilarity?

To answer these questions we suggest conditions for well-behaved rule structures. These condi-

tions include GSOS-like conditions about the appearance of process variables, as well as conditions

about name variables. For instance, it is necessary to forbid the anomalous semantics for input

described by the axiom

c(c). P
cd
−→ [d/c]P

discussed earlier. We forbid this axiom by requiring that, in the conclusion source, names that

appear bound cannot also appear free.

To prove that the two questions are answered, we prove that the induced family of maps is

equivariant and natural.

Final coalgebraic bisimulations. To conclude this discussion, we mention an attitude to the

theory of coalgebras which pervades this thesis. Researchers in the theory of coalgebras often make

use of final coalgebras. For an endofunctor B on a category C , the carrier of the final B-coalgebra

is a kind of universal domain of the behaviour described by B. Often, however, the final coalgebra

for an endofunctor does not exist. As a basic cardinality argument will show, this problem arises

even for the basic endofunctor P (Lab× (−)) on Set, whose coalgebras are Lab-labelled transition

systems. In other words: there is no universal labelled transition system. When the final coalgebra

does not exist, I identify three possible ways to progress.

1. One can usually find a restricted form of the endofunctor for which the final coalgebra does

exist. For the case of labelled transition systems, non-determinism can be bounded. Many

authors (including Rutten [2000]) have considered the endofunctor Pf(Lab × (−)) on Set;

here Pf is the covariant finite powerset endofunctor. Coalgebras for this endofunctor are

finitely branching Lab-labelled transition systems, and the final coalgebra is the set of finitely

branching synchronisation trees, quotiented by bisimilarity.

Although such restrictions are often computationally natural, this approach might be consid-

ered distasteful because the notion of behaviour is restricted, not primarily to arrive at an

improved notion of behaviour, but to activate some mathematical machinery.

2. One can add enough objects to the category so that the final coalgebra exists. For the case

of labelled transition systems, one can work in the category of classes, instead of in the

category of sets: the final coalgebra can then be found, and its carrier is a proper class. This

is the approach taken in the non-well-founded set theory of Aczel [1988], and is advocated

for more general categories by Adámek, Milius, and Velebil [2005]. This approach is an

interesting one, and warrants further investigation for base categories other than Set.

3. One can reason about behaviour without mentioning final coalgebras. One can instead work

with the universal properties of final bisimulations. For the case of labelled transition systems,

this amounts to reasoning about bisimulations and bisimilarity, rather than about synchroni-

sation trees.

1.3. Synopsis 23

The last approach is the one taken in this thesis. By working with bisimulations rather than final

coalgebras, one is freer to work with more general notions of equivalence, such as final structured

bisimulations, and, most generally, what we call final lifting spans.

In our development we establish basic results in this direction: final bisimulations are typically

relations; right adjoints between categories of coalgebras preserve final bisimulations; final bisim-

ulations exist in a very wide variety of situations. Final bisimulations can often be constructed

in a manner related to the terminal sequence [studied by e.g. Worrell, 2005]; this construction is

related to partition refinement techniques [of e.g. Paige and Tarjan, 1987]. We provide a termina-

tion proof for this construction, at an abstract level, using properties of finite presentability. Most

importantly, the results of the GSOS format can be understood without requiring any conditions of

the categories or constructions concerned: a lifting of a monad of syntax to a category of coalgebras

defines a semantics for which the final bisimulation, if it exists, is a congruence.

1.3 Synopsis

This thesis is split into two parts. In the first part, we relate and develop notions of model for

name-passing. In the second part, we analyse structural operational semantics for name-passing

caluli.

Each part begins with a chapter dedicated to recalling and developing some abstract notions,

and illustrating these notions with basic examples from CCS-like systems.

Part I. Operational models.

Chapter 2: Transition systems, coalgebras, and bisimulation. This chapter is concerned with

miscellaneous general notions from the theory of coalgebras that will be useful throughout

the thesis. We introduce coalgebras as an abstract form of transition system, and, through ex-

amples from CCS with value-passing, we explain how restrictions to the model of behaviour

can be described by modifying the behaviour endofunctor. We introduce the general notions

of structured coalgebra and structured bisimulation.

We introduce a convenient way of comparing categories of coalgebras, by working with mor-

phisms between endofunctors, and we establish basic results about bisimulations.

Chapter 3: Transition systems and coalgebras for name-passing. In this chapter we compare

and develop models for name-passing, where state spaces are considered as presheaves on the

categories I and F. We begin this chapter by recalling definitions and properties for the π-cal-

culus. We then survey coalgebraic models and transition system models for name-passing.

An explicit characterisation of the coalgebraic models is established by axiomatising a class

of transition systems.

Chapter 4: Models for name-passing, refined. In this chapter we consider the implications of

imposing a sheaf condition on the state spaces of the models of name-passing. We redevelop

the theory of Chapter 3 in this context. Inspired by a result of Fiore [2001], we study a class

of transition systems over presheaves on the category B.

Chapter 5: Practicality. The final chapter of this part is concerned with model checking problems

for the models introduced in Chapter 4. In the first half of this chapter, we establish a corre-

spondence between the Schanuel topos and a category of named sets. In the second half, we

investigate conditions implying the existence of final bisimulations, and study a procedure

for constructing these final bisimulations.

24 Introduction

Part II. Operational semantics.

Chapter 6: Rule induction and mathematical operational semantics. The first chapter in this

second part recalls and introduces some developments in abstract syntax and the analysis

of rule induction, providing a thorough account of the analysis of Turi and Plotkin [1997],

taylored to our needs. We recall basic notions for the categorical treatment of abstract syn-

tax, considering fundamental notions of monad morphism and free monad. A mathematical

theory of structural operational semantics is introduced and made relevant to the case of

structured coalgebras. We illustrate this theory by explaining the positive GSOS rule format.

Chapter 7: Nominal sets for syntax and behaviour. In this chapter we recall some aspects of the

framework of nominal sets of Gabbay and Pitts [2001], and develop some notions for this

thesis. Basic definitions and properties for nominal sets and nominal logic are summarised. A

theory of nominal substitutions is introduced, and an equivalence is established between the

category of nominal substitutions and the category of sheaves on F used in Chapter 4.

A notion of nominal algebraic signature is proposed, as a generalisation of the notion of

algebraic signature to handle syntax with binding. We explain how functors between different

models of syntax arise as morphisms between models of such signatures. Finally, we develop a

nominal logic theory of nominal transition systems. A correspondence is established between

nominal transition systems and a model of Chapter 4.

Chapter 8: Operational semantics for name-passing. In the final chapter of this part we intro-

duce the rule format for name-passing. We introduce a notion of rule structure, and consider

conditions on rule structures that guarantee good behaviour. We then explain how rule struc-

tures satisfying these conditions give rise to natural transformations, supplying recursion data

for lifting a monad to the category of structured coalgebras. Thus the main theorem is es-

tablished: for a name-passing system defined by a set of rules in our rule format, wide open

bisimilarity is a congruence.

The thesis concludes, in Chapter 9, with a brief summary and a discussion of related ideas and

developments.

1.3.1 Relation with previously published work of the author

To a large extent, the substance of this thesis derives from and builds on work presented in two

articles written by the author with M. Fiore. We tend not to refer to these articles in the body of

the thesis, because the connections are so pervasive and because the most developed form of the

material is here, in this thesis. We now briefly summarise the connections between these articles

and the work presented here.

Comparing operational models of name-passing process calculi [Fiore and Staton, 2006a].

This article forms the basis for Part I of this thesis. Sections 2 and 3 of that article correspond to

Chapter 3 here, and Section 4 of that article corresponds to Chapter 4 here. The internal transition

systems presented in Section 5 of that article are similar in spirit to the nominal transition systems

of Section 7.5 here. In Section 5.1 of that article, we explored the relationships between categories

of named-sets and the Schanuel topos, which is also done in Section 5.1 here.

A congruence rule format for name-passing process calculi from mathematical structural

operational semantics [Fiore and Staton, 2006b]. This article forms the basis for Part II of

this thesis. In Section 1 of that article we develop a general theory of mathematical operational

semantics for structured coalgebras; this theory is developed in Chapters 2 and 6 of this thesis.

Section 2 of that article is concerned with nominal sets for modelling abstract syntax with variable

1.3. Synopsis 25

binding and substitution, and thus involves the concepts covered here in Chapter 7. Section 3

of that article introduces models for name-passing behaviour in the setting of nominal sets. As

such, that section summarises the developments of Chapters 3 and 4 of this thesis, following the

discussion in Section 7.1.5 here. Section 4 of that article introduces the notion of rule structure.

That section corresponds to Chapter 8 of this thesis.

Part I

Operational Models

27

Chapter 2

Transition Systems, Coalgebras, and

Bisimulation

Labelled transition systems provide a model of the stepwise evolution of systems, from which bisim-

ulation arises as a natural notion of behavioural equivalence. The theory of coalgebras provides a

more abstract approach to modelling such systems, and bisimulation is a natural notion to study in

this general context, too. The first purpose of this section is to recall and motivate these ideas. A

second purpose, which is equally important, is to introduce some novel concepts and observations

that will be important in this thesis.

We begin in Section 2.1 by recalling basic notions of coalgebras, with the specific example of

the coalgebraic representation of labelled transition systems.

In Section 2.2, we consider the particular case of value-passing. Labelled transition systems

provide a suitable model of this paradigm, but we argue that this model is too generous. We

assert that the possibility of input should be independent of the value being input. To resolve this

problem, we axiomatise those labelled transition systems that respect this property. A theme of the

subsequent chapters will be the capturing of such properties within behaviour endofunctors. By

way of introduction, then, we provide an endofunctor for value-passing behaviour.

Having motivated the importance of considering different behaviour endofunctors, we consider,

in Section 2.3, morphisms between endofunctors. In this way we are able to compare behaviour

endofunctors. Indeed, we consider a 2-category of morphisms between behaviour endofunctors.

By using this 2-category it is straightforward to induce functors and also adjunctions between

categories of coalgebras.

Following this abstract development, we take a different tack, and consider a more general

notion of coalgebra. When working with models of systems, the state space often has structure

that is important for defining the model and for reasoning about it, but this structure need not

be respected by the evolving behaviour of the system. To describe such systems we introduce the

notion of structured coalgebra, in Section 2.4.

We conclude this chapter in Section 2.5 with two fundamental theorems about bisimulation.

The first result gives conditions under which bisimulation spans (i.e. intensional bisimulations)

factor through bisimulation relations (that is, extensional relations). The second result explains

when two different behaviour endofunctors give rise to the same notion of final bisimulation. Using

this result, the techniques for comparing behaviour endofunctors introduced in Section 2.3 can be

used to relate notions of bisimulation.

2.1 Transition systems and coalgebras for evolving systems

Transition systems provide a formal description of the stepwise atomic evolution of a system. It is

often helpful to label the evolution steps by the actions that are observed. Let Lab be a set of labels,

29

30 Transition Systems, Coalgebras, and Bisimulation

and recall that a labelled transition system is a set X , thought of as a set of states, together with a

ternary relation

−→ ⊆ X × Lab× X

thought of as describing the transitions that are permitted. As usual, we will use infix notation for

the transition relation. So x
l
−→ y indicates that from state x the system can evolve to state y, in a

manner described by the label l.

To give such a transition relation on the set X is to give a “next step” function

h : X →P (Lab× X) , (2.1.1)

writing P for powerset operator. For each state x ∈ X , we have a set h(x) of label-result pairs to

which a system in state x is capable of evolving.

We will use the symbol Blts for the operator P (Lab× (−)), which takes sets to sets. Structures

of the form (2.1.1) can then be called coalgebras for the operator Blts: they are maps X → BltsX . In-

deed, the operator Blts can be given an action on functions between sets, by considering a canonical

covariant action of P and the universal characterisation of products. Thus Blts is an endofunctor

on the category of sets.

It is convenient to allow the state space and the behaviour endofunctor to take a general form,

and we are led to consider coalgebras for arbitrary endofunctors on arbitrary categories.

Definition 2.1.2. Consider an endofunctor B on a category C . A B-coalgebra is an object X ∈ C

equipped with a morphism X → BX .

A B-coalgebra homomorphism between B-coalgebras, (X ,h) and (Y, k), is a morphism f : X → Y

in C that makes the following diagram commute.

X
f

//

h

��

Y

k

��

BX
B f

// BY

B-coalgebra homomorphisms are composed according to the composition of the underlying

morphisms in C . Thus we have a category, B-Coalg, of B-coalgebras and homomorphisms between

them. We will often use the forgetful functor B-Coalg→C that maps a B-coalgebra, (X ,h), to its

underlying ‘carrier’ object, X .

Bisimulation. Central to the theory of coalgebras is the notion of behaviour-respecting relation,

or bisimulation. At times, it will be helpful to view bisimulations as instances of the following

general notion.

Definition 2.1.3. Consider a functor V : B → C between categories. A V -lifting span between

objects X and Y of B is a span (V X
r1
←− R

r2
−→ V Y) in C for which there exists a span in B ,

(X
s1
←− S

s2
−→ Y), such that (VS, Vs1, Vs2) = (R, r1, r2).

Now bisimulation can be defined as follows.

Definition 2.1.4. Consider an endofunctor B on a category C , and consider the forgetful func-

tor V : B-Coalg→C . Let (X ,h) and (Y, k) be B-coalgebras. A B-bisimulation between (X ,h) and

(Y, k) is a V -lifting span between (X ,h) and (Y, k).

Thus a B-bisimulation between B-coalgebras (X ,h) and (Y, k) is a span (X
r1
←− R

r2
−→ Y) in C for

which there exists a coalgebra structure r : R→ BR making a span

(X ,h)
r1
←− (R, r)

r2
−→ (Y, k)

2.2. Transition systems and coalgebras for value-passing systems 31

in the category of B-coalgebras. To say that [(X ,h)
r1
←− (R, r)

r2
−→ (Y, k)] is a span of coalgebras is

to say that the following diagram commutes.

R

��

r1

}}zz
zz

zz
zz

z
r2

!!
DD

DD
DD

DD
D

X

h

��

BR

Br1}}zz
zz

zz
zz

Br2 !!
DD

DD
DD

DD
Y

k

��

BX BY

Consider objects X and Y of a category C . We say that a span between these objects,

(X
r1
←− R

r2
−→ Y), is a relation if it is jointly monic — that is, if, for any object A∈ C and any

morphisms f , g : A→ R such that r1 f = r1 g and r2 f = r2 g, we have f = g. When C has products,

this amounts to requiring that the universal morphism (r1, r2) : R→ X × Y is monic.

In the process algebra literature, it is conventional to focus on bisimulations that are rela-

tions. Importantly we have a correspondence between Blts-bisimulation relations and the tradi-

tional bisimulations of labelled transition systems.

By working without this restriction, though, we are working with intensional bisimulations:

bisimulations in which the relationship may be witnessed — and indeed where there may be several

witnesses for each related pair. Extensional bisimulations, by contrast, which are jointly monic,

record only the existence of a relationship.

In this thesis, it will be convenient to work with intensional bisimulations in our analysis at the

abstract level, since many of the bisimulations that will arise from categorical constructions are, by

nature, intensional. We return to this issue in Theorem 2.5.5, where we prove that, under certain

basic assumptions, every intensional bisimulation factors through a extensional one.

Further reading. Rutten [2000] provides a detailed exposition of the theory of coalgebras over

Set. Sections I.3 and III.12 of Turi’s thesis [1996] deal with some of the basics of the theory of

coalgebras. For category theory, the standard text is that by Mac Lane [1998].

2.2 Transition systems and coalgebras for value-passing systems

In this section we shall be concerned with systems where the observable actions correspond to the

communication of values along named channels. We fix a set C of channels, and a set V of values.

The values in V are to be thought of as basic data, and we will not expect these values to have any

particular structure. A simple class of models for value-passing involves taking labelled transition

relations or coalgebras as above, with label set

LabV = C×V + C×V + 1.

Here, the ‘+’ operator denotes the coproduct of sets, taken to be disjoint union. We write ‘1’ to

denote a chosen initial set, that is, a set with one element. We consider the components of this

sum as labels describing input actions (written c?v), output actions (written c!v) and silent actions

(written τ).

Of course, it remains the case that to give a transition system over these labels is to give a

coalgebra as in (2.1.1), of the form

X →P (LabV × X) .

32 Transition Systems, Coalgebras, and Bisimulation

V-1 If one value can be input then so can any other:

x
c?v
−→ x ′ =⇒ ∀w ∈ V. ∃x ′′ ∈ X . x

c?w
−→ x ′′

Figure 2.1: Axiom V-1 on a value passing transition relation

The situation is made clearer, though, by pushing the structure from the labels into the behaviour

endofunctor. Using the isomorphisms

P (A+ B)∼=P (A)×P (B) (2.2.1a)

P (A× B)∼= [A⇒P B] (2.2.1b)

(writing [A ⇒ P B] is the set of functions A → P B) we can consider coalgebras as in (2.1.1),

assuming labels LabV, as coalgebras

X → [C⇒ [V⇒P (X)]]

× [C×V⇒P (X)]

× [1⇒P (X)].

(2.2.2)

Such a coalgebra can be read as follows. The behaviour of each state x ∈ X is described by a triple

of functions

(i : C→ [V⇒P (X)], o : C×V→P (X), t : 1→P (X)) . (2.2.3)

The function i assigns to each channel c ∈ C a function, which in turn assigns to each value v ∈ V

the set of possible result states following the input of v on c; the function o assigns to each channel-

value pair (c, v) the set of all possible result states following the output of v on channel c; the

function t returns the set of possible result states following the silent action.

This notion of model for value-passing is perhaps too liberal, as the following example illus-

trates. Pick a channel c ∈ C, and two distinct values, v, w ∈ V. We consider a singleton state

space, {∗}, together with the transition relation

−→ = {(∗, c?v,∗)} .

In state ∗, the system can perform action c?v but cannot perform c?w. This is unnatural: the system

is choosing which values can be input before the input event has taken place. In other words, the

state is able to selectively refuse values without knowing what they are. Thus we are led to impose

the uniformity Axiom V-1 on transition relations, shown in Figure 2.2.

It is clear that we could impose a similar condition on the coalgebras that we consider. This,

however, would not be in the spirit of the theory of coalgebras! Instead, we will refine our be-

haviour endofunctor to more accurately describe the nature of value-passing.

Recall from (2.2.3) that the behaviour of a state is described by a triple of functions (i, o, t).

Axiom V-1 can be thought of as having the following effect on component i: if, for any c ∈ C, the

function i(c) : V→P (X) ever returns the empty set then it always returns the empty set. This can

be enforced in the behaviour functor as follows.

Let Pne be the covariant non-empty powerset operator on Set; so P ∼= 1+Pne. Thus each i(c) is

equivalent to a function of type V→ (1+Pne(X)). We will refine this to the type 1+(V→Pne(X)),

indicating that the decision about whether or not to input is made before the value is seen. So:

let BV : Set→ Set be the following endofunctor

BV = [C⇒ (1+ [V⇒Pne(−)])]

× [C×V⇒ (1+Pne(−))]

× [1⇒ (1+ (Pne(−)))] .

(2.2.4)

2.3. Morphisms between endofunctors 33

This endofunctor for value-passing was proposed by Fiore and Turi [2001, eqn. 23]. We have the

following theorem.

Theorem 2.2.5. There is a bijective correspondence between labelled transition systems with labels in

LabV that satisfy Axiom V-1, and BV-coalgebras.

Importantly, coalgebraic BV-bisimulation corresponds to bisimulation for these labelled transition

systems.

2.3 Morphisms between endofunctors

It is often useful to relate different notions of behaviour. To this end, we describe how the con-

struction of coalgebras for an endofunctor can be given a functorial action.

We will consider the following 2-category coEndo of endofunctors. The name coEndo is used

because this category is suited to working with coalgebras. In Section 6.1.1 we will introduce an

analogous category for working with algebras.

• Objects of coEndo are pairs (C , B) of a category C and an endofunctor B on C .

• A morphism from (C , B) to (C ′, B′) is given by a functor F : C → C ′ together with a natural

transformation α : FB→ B′F .

• The identity morphism is given by the identity functor together with the identity natural

transformation. Composition of two morphisms

(C , B)
(F,α)
−−→ (C ′, B′)

(F ′,α′)
−−−→ (C ′′, B′′)

is given by the composite functor (F ′ ◦ F) together with the natural transformation

F ′FB
F ′α
−→ F ′B′F

α′F
−→ B′′F ′F .

• Let (F,α) and (G,β) be two morphisms from (C , B) to (C ′, B′). A 2-cell from (F,α) to (G,β)

is given by a natural transformation γ : F → G such that the following diagram commutes.

FB
α

//

γB

��

B′F

B′γ
��

GB
β

// B′G

Composition and identities of 2-cells are as in the category CAT of categories.

2.3.1 From endofunctors to coalgebras

There is a forgetful 2-functor coEndo → CAT, sending an endofunctor (C , B) to the underlying

category C . Another 2-functor coEndo→ CAT sends an endofunctor (C , B) to the category B-Coalg

of B-coalgebras. A morphism of endofunctors (F,α) : (C , B)→ (C ′, B′) induces a functor

(F,α)-Coalg : B-Coalg→ B′-Coalg

sending a B-coalgebra (X ,h : X → BX) to the B′-coalgebra

�
FX , FX

Fh
−→ F(BX)

αX
−→ B′(FX)

�
.

34 Transition Systems, Coalgebras, and Bisimulation

A 2-cell γ : (F,α) → (G,β) between morphisms of endofunctors induces a natural transforma-

tion γ-Coalg : (F,α)-Coalg→ (G,β)-Coalg given as follows. For any B-coalgebra (X ,h), the mor-

phism γX : FX → GX describes a B-coalgebra homomorphism

(γ-Coalg)(X ,h) :
�
(F,α)-Coalg

�
(X ,h) −→

�
(G,β)-Coalg

�
(X ,h)

since the following diagram commutes.

FX

γX

��

Fh
//

(1)

FBX

γBX

��

αX
//

(2)

BFX

BγX

��

GX
Gh

// GBX
βX

// BGX

Using: 1: nat. of γ; 2: since γ is a 2-cell in coEndo.

This construction has been described by Lenisa, Power, and Watanabe [2000, Sec. 2.3], who

write Endo∗(CAT) for coEndo. Like them, our 2-category coEndo is inspired by the 2-category

of comonads Mnd(CAT∗)∗ introduced by Street [1972].

The reader may be interested to note that the 2-functor (−)-Coalg : coEndo → CAT is repre-

sentable as the hom-functor coEndo((1, id1),−); here (1, id1) denotes the identity endofunctor on a

terminal category.

2.3.2 Adjunctions in coEndo

As coEndo is a 2-category, one can consider adjunctions in it. By making use of the 2-functor

(−)-Coalg : coEndo→ CAT introduced in the previous section, we see that adjunctions between

endofunctors in coEndo induce adjunctions between the corresponding categories of coalgebras.

Such adjunctions will be studied closely in Theorem 2.5.7.

The following characterisation result is fundamental. It follows immediately from a basic result

of 2-dimensional monad theory [see e.g. Kelly, 1972, Sec. 1.3], since coEndo is the category of

algebras and oplax morphisms for the identity 2-monad on CAT.

Proposition 2.3.1. A morphism of endofunctors (G,β) : (C ′, B′)→ (C , B) has a left adjoint in coEndo

if and only if the underlying functor G has a left adjoint in CAT and β is an isomorphism.

2.4 Structured coalgebras

A recurring theme in this thesis is that of coalgebras whose carriers are equipped with extra struc-

ture. Examples abound throughout operational semantics, as the following examples illustrate.

Examples 2.4.1. 1. When an operational semantics for a language is given in terms of the lan-

guage structure, it is important that the states of the resulting transition system are terms

built out of the operators of the language. The transition system need not respect the opera-

tors precisely, though. For example, if the language has a unary operator op, then one would

not necessarily expect a theorem

x −→ y if and only if op(x)−→ op(y) .

2. In value-passing calculi, such as value-passing CCS [Milner, 1980], the transition system

is typically defined over ground terms, i.e. terms with no free variables. But to make the

definition, and for reasoning about the system, it is crucial to consider open terms.

2.4. Structured coalgebras 35

3. The transition system for the π-calculus is defined over open terms, and that transition re-

lation respects injective substitution of names. Arbitrary substitution of names need not be

respected, though: one does not expect a theorem stating that for any substitution f ,

x
l
−→ y if and only if [f]x

[f]l
−→ [f]y .

It does make sense, though, to perform arbitrary substitution of names on the terms of the

π-calculus, and indeed this is important when giving semantics.

Only this last example, of the π-calculus, will be studied in detail in this thesis. All the examples

are catered for by the following general notion.

Definition 2.4.2. Consider a functor U : D →C , and let B be an endofunctor on C .

A U-structured B-coalgebra is an object X of D together with a morphism UX → BUX in C —

i.e. a B-coalgebra structure for UX .

A U-structured B-coalgebra homomorphism between U-structured B-coalgebras, (X ,h : UX → BUX)

and (Y, k : UY → BUY), is a morphism f : X → Y in D making the following commute.

UX
U f

//

h

��

UY

k

��

BUX
BU f

// BUY

Identity and composite homomorphisms are the identities and composites of the underlying

morphisms in D. U-structured B-coalgebras and homomorphisms between them form a cate-

gory (U , B)-Coalg.

For such U : D →C and B :C →C , we always have the following commuting diagram

(U , B)-Coalg //

��

B-Coalg

��

D
U

// C

where the unlabelled arrows denote the forgetful functors.

Structured coalgebras include coalgebras in the conventional sense: for any endofunctor B on

a category C , an B-coalgebra is the same thing as an idC -structured B-coalgebra, writing idC for

the identity functor on C . Indeed, the categories (idC , B)-Coalg and B-Coalg are isomorphic.

We illustrate Definition 2.4.2 by considering the scenarios from Example 2.4.1 above.

Examples 2.4.3. 1. To treat Example 2.4.1(1), we let T be a monad on a category C , and B

an endofunctor on C . We let U : T -Alg → C be the forgetful functor from the category of

T -algebras. A U-structured B-coalgebra is a B-coalgebra whose carrier is equipped with a

T -algebra structure. This might be called a bialgebra, following Turi and Plotkin [1997],

although their notion is more symmetric, and involves a distributive law.

2. For the case of value-passing CCS we suppose that D is a category whose objects denote sets

of open terms that are equipped with a notion of substitution. An suitable choice would

be the category of monoid actions proposed by Fiore and Turi [2001, Sec. 4]. There is a

functor |_|0 : D → Set mapping a set including open terms to the set of only ground terms.

A |_|0-structured BV-coalgebra is a transition system over ground terms, in which the sets of

states also include the open terms, and descriptions of substitution.

36 Transition Systems, Coalgebras, and Bisimulation

3. To model the π-calculus, we suppose that D is a category whose objects denote sets of states

that are equipped with a notion of arbitrary substitution, and that C is a category whose

objects denote sets of states that are equipped only with a notion of injective substitution. Ar-

bitrary substitution subsumes injective substitution, so there is a forgetful functor U : D →C .

Choosing a suitable behaviour endofunctor B on C , we have that a U-structured B-coalgebra

is a transition system, where transitions are invariant under injective substitution, but where

the sets of states also admit arbitrary substitution.

It is also interesting to consider some more general situations.

4. Suppose that a functor U : D →C has a right adjoint, say G : C →D. For any endofunctor B

on C , to give a morphism UX → BUX is to give a morphism X → GBUX . In this way, the

category of U-structured B-coalgebras is isomorphic to the category of (GBU)-coalgebras.

5. Consider a full and faithful functor i : C ′ → C together with endofunctors B, B′ on C , C ′

respectively, and together with a natural isomorphism β : iB′
∼
→ B′i. (Such a situation arises,

for instance, from a full reflection in coEndo.)

The category (i, B)-Coalg is isomorphic to the category B′-Coalg. To see this, consider the

following chain of natural correspondences.

iX→BiX

iX→ iB′X
(using β)

X→B′X
(i is f&f)

Structured bisimulation. Since every U-structured B-coalgebra is also a B-coalgebra, the usual

notion of coalgebraic bisimulation remains relevant here. It is also interesting, though, to consider

the following notion of bisimulation, that involves the additional structure.

Definition 2.4.4. Consider a functor U : D → C , and let B be an endofunctor on C . Let V

be the forgetful functor (U , B)-Coalg → D. A U-structured B-bisimulation between U-structured

B-coalgebras, (X ,h) and (Y, k), is a V -lifting span between (X ,h) and (Y, k).

Thus a U-structured B-bisimulation between U-structured B-coalgebras (X ,h) and (Y, k) is a

span (X
r1
←− R

r2
−→ Y) in D for which there exists a coalgebra structure r : UR → BUR (i.e. a

morphism in C) making a span [(X ,h)
r1
←− (R, r)

r2
−→ (Y, k)] in the category of U-structured B-coal-

gebras.

In other words, a U-structured B-bisimulation is a B-bisimulation that is in the image of the

functor U : D →C . Indeed, ifC = D and U is the identity functor, then U-structured B-bisimulation

is the same thing as B-bisimulation.

We illustrate this notion of bisimulation in terms of the previous examples.

Examples 2.4.5. 1. First, we return to the case when we have a monad T on a category C ,

and also an endofunctor B on C . Again, we let U : T -Alg→ C be the forgetful functor from

the category of T -algebras. Now, a U-structured B-coalgebra homomorphism is a morphism

in C that is both a B-coalgebra homomorphism and a T -algebra homomorphism. Thus a

U-structured B-bisimulation is a T -congruence that underlies a B-bisimulation. This kind of

span might be called a bicongruence, following Turi and Plotkin [1997].

2. For the case of value-passing CCS, we return to the situation involving |_|0-structured BV-coal-

gebras. The relation involved in a |_|0-structured BV-bisimulation relation is defined over all

(potentially open) terms. Thus this structured notion provides a way of reasoning about the

‘open extension’ of bisimilarity, as considered by Milner [1980, Sec. 5.8].

2.5. Notions of bisimulation 37

3. For the proposed model of the π-calculus, a U-structured B-bisimulation is a B-bisimulation

that is closed under arbitrary substitution. Thus U-structured B-bisimulations are a kind of

open bisimulation, in the sense of Sangiorgi [1996].

4. Consider the case of a functor U : D →C that has a right adjoint, say G :C →D, and let B be

an endofunctor on C . A U-structured B-bisimulation between two U-structured B-coalgebras

is a (GBU)-bisimulation between the corresponding (GBU)-coalgebras.

5. We will return to the case of Example 2.4.3(5) following Theorem 2.5.7.

2.5 Notions of bisimulation

We now develop the theory of bisimulations by providing two fundamental results. The first result

provides conditions under which bisimulation spans factor through bisimulation relations. For the

second result, we introduce final bisimulations as an abstract formulation of the notion of bisimi-

larity. The result is concerned with how functors between categories of coalgebras preserve final

bisimulations. We illustrate this by showing that certain kinds of morphism between endofunctors

exhibit the endofunctors as describing the same notion of bisimulation.

In most of the work in the literature, it is assumed that, for the endofunctors under considera-

tion, a final coalgebra exists. The unique final morphisms provide a kind of denotational semantics,

which is necessarily ‘fully abstract’ with respect to bisimulation. The reader should note that nei-

ther of the endofunctors considered in this chapter have final coalgebras, essentially because they

involve the unbounded powerset functor. Indeed, throughout this thesis, we take a purely oper-

ational approach: we will never assume the existence of final coalgebras. With this attitude, the

notion of bisimulation, as opposed to the notion of denotational coincidence, takes a prominent

role.

2.5.1 Bisimulation relations

In Section 2.1 we defined relations as jointly-monic spans. The aim of this subsection is to provide

(in Theorem 2.5.5) conditions under which all bisimulations factor through bisimulation relations.

Regular relations. Note that any span that arises as a pullback, as in the following diagram, is

jointly monic.

R
s1

����
��

��
�

s2

AA

AA
AA

AA

X

z1
��

??
??

??
? Y .

z2
~~}}

}}
}}

}

Z

(2.5.1)

This can be seen by modifying the familiar argument that equalisers are monic.

We now introduce a technical lemma, which establishes a result at the generality of lifting

spans.

Lemma 2.5.2. Consider a functor V : B → C between categories B and C . Suppose that every

span inB completes to a square, and that for every cospan inB , the pullback of the image under V

exists in C , and lies in the image of V .

Then every V -lifting span factors through a V -lifting relation.

38 Transition Systems, Coalgebras, and Bisimulation

Proof. Consider objects X and Y of B , and a V -lifting span (R, r1, r2) between them. By definition,

we have a span (X
r̄1
←− R̄

r̄2
−→ Y) in B such that (R, r1, r2) = (V R̄, V r̄1, V r̄2). We complete this span

to a square in B ,

R̄
r̄1

����
��

��
�� r̄2

��
??

??
??

??

X

z1
��

??
??

??
? Y

z2
����

��
��

�

Z

(2.5.3)

and then form the pullback in C of the image of the resulting cospan:

S
s1

||yy
yy

yy
yy

y
s2

""
FF

FF
FF

FF
F

V X

Vz1 ""
EE

EE
EE

EE
V Y .

Vz2||xxxxxxxx

V Z

(2.5.4)

Since diagram 2.5.4 is a pullback, we know that S is jointly monic, and that R factors uniquely

through S.

Moreover, by assumption, the relation (S, s1, s2) is in the image of V — that is, it is a V -lifting

span.

We now use this lemma with respect to structured bisimulations. Recall that a weak pullback

(resp. pushout) is a pullback (resp. pushout), but for which the mediating maps need not be unique.

Theorem 2.5.5. Let U : D → C be a functor, and let B be an endofunctor on C . If D has pullbacks

and weak pushouts, U preserves weak pullbacks and weak pushouts, and B preserves weak pullbacks,

then every U-structured B-bisimulation factors through a U-structured B-bisimulation relation.

Proof. We show that the forgetful functor V : (U , B)-Coalg → D satisfies the conditions of

Lemma 2.5.2.

We first show that every span in (U , B)-Coalg completes to a square, as follows. Consider a span

[(X ,h)
r1
←− (R, r)

r2
−→ (Y, k)] in (U , B)-Coalg. We take a weak pushout in D of the underlying span

in D.

R
r1

����
��

��
�

r2

��
??

??
??

??

X

z1
��

??
??

??
? Y

z2
����

��
��

�

Z

(2.5.6)

Observe that the following diagram commutes in C .

UR
U r1

uukkkkkkkkkkkkkkkkkk
U r2

))SSSSSSSSSSSSSSSSSS

r

��

UX

h
##

GGGGGGGG BUR

BU r1zzvv
vv

vv
vv

v

BU r2 $$H
HH

HH
HH

HH
UY

k
{{wwwwwwww

BUX

BUz1 $$H
HH

HH
HH

HH
BUY

BUz2zzvv
vv

vv
vv

v

BUZ

2.5. Notions of bisimulation 39

Thus we have a cocone over the span (UR, U r1, U r2). Now diagram 2.5.6 is a weak pushout in D,

so the image under U is a weak pushout in C , because U preserves weak pushouts. Thus we have

a morphism z : UZ → BUZ in C making the following diagram commute.

UX

h

��

Uz1

$$H
HH

HH
HH

HH
UY

k

��

Uz2

zzvv
vv

vv
vv

v

BUX

BUz1 $$H
HH

HH
HH

HH
UZ

z

��

BUX

BUz2zzvv
vv

vv
vv

v

BUZ

So we have the following commuting square in (U , B)-Coalg, as required.

(R, r)
r1

{{vv
vv

vv
vv

v
r2

##H
HH

HH
HH

HH

(X ,h)

z1
##H

HH
HH

HH
HH

(Y, k)

z2
{{vv

vv
vv

vv
v

(Z , z)

To show that the second condition of Lemma 2.5.2 is satisfied, we consider an arbitrary

cospan [(X ,h)
w1
−→ (W, w)

w2
←− (Y, k)] in (U , B)-Coalg. We construct the following pullback in D.

S
s1

~~}}
}}

}}
}} s2

AA

AA
AA

AA

X

w1

AA
AA

AA
A Y

w2
~~}}

}}
}}

}

W

We must show that the span (S, s1, s2) lifts to a span of U-structured B-coalgebras. Since B and U

preserve weak pullbacks, we have the following weak pullback in C .

BUS
BUs1

zzuuuuuuuuu
BUs2

$$I
IIIIIIII

BUX

BUw1 $$I
IIIIIIII BUY

BUw2zzuuuuuuuuu

BUW

There is another cone for this cospan, since the following diagram commutes.

US
Us1

{{vv
vv

vv
vv

v
Us2

##H
HH

HH
HH

HH

UX
h

{{wwwwwwww
Uw1

##H
HH

HH
HH

HH
UY

k

##
GGGGGGGG

Uw2

{{vv
vv

vv
vv

v

BUX

BUw1))SSSSSSSSSSSSSSS UW

w

��

BUY

BUw2uukkkkkkkkkkkkkkk

BUW

40 Transition Systems, Coalgebras, and Bisimulation

Thus we have a mediating morphism s : US→ BUS making the following diagram commute in C .

US

s

��

Us1

zzvv
vv

vv
vv

v
Us2

$$H
HH

HH
HH

HH

UX

h

��

BUS

BUs1zzvv
vv

vv
vv

v

BUs2 $$H
HH

HH
HH

HH
UY

k

��

BUX BUY

Thus we see that the pullback span in D lifts to (U , B)-Coalg.

So the conditions of Lemma 2.5.2 are satisfied, and so every U-structured B-bisimulation factors

through a U-structured B-bisimulation relation.

2.5.2 Relating notions of bisimulation

The purpose of this section is to investigate conditions under which functors between categories

of coalgebras preserve final bisimulations. We begin with Theorem 2.5.7, which works at the

generality of lifting spans. The conditions for this theorem are a little obscure and technical.

Following the proof we illustrate the theorem with some important examples. In Section 2.3 we

introduced morphisms between behaviour endofunctors, that induce functors between categories

of coalgebras. The two example scenarios that we consider involve a full reflection in the category

coEndo, and the case where a behaviour endofunctor is a split subfunctor of another endofunctor

on the same category. In both cases, we are able to say that the two endofunctors that are involved

‘describe the same notion of bisimulation’.

Final lifting spans and final bisimulations. The greatest bisimulation plays an important role

in operational semantics. Greatest bisimulations can be expressed in a universal way, as follows.

We have defined bisimulations and structured bisimulations in terms of the general notion of

lifting span. We now introduce a notion of universal span.

Consider a functor V :B →C . We say that a V -lifting span (R, r1, r2) between objects X and Y

inB is a final V -lifting span if every other V -lifting span (S, s1, s2) between X and Y factors uniquely

through it, that is, if there is a unique map r : S→ R in C making the following diagram commute

in C .

S

r
��r1

		

r2

��

R

r1zzvv
vv

vv
vv

r2 $$H
HH

HH
HH

H

V X V Y

Note that, under the conditions of Theorem 2.5.5, every final U-structured B-bisimulation is a

relation. Indeed, for the situation introduced in Section 2.1 involving the endofunctor Blts on Set,

the final Blts-bisimulation is the usual bisimilarity relation on the corresponding transition systems.

We address the issue of existence of final bisimulations later, in Section 5.2. Now, we establish

a theorem that compares final lifting spans over different categories.

Theorem 2.5.7. Consider the following situation between functors and categories.

B

V

��

F ′
// B ′

V ′

��

G′
// B

V

��

D
F

// D ′
G

// D

2.5. Notions of bisimulation 41

Suppose that there are natural transformations ǫ : F ′G′ → 1B ′ , η : 1D → GF , such that the following

diagram of natural transformations (a ‘triangle identity’) commutes.

V G′
ηV G′

//

id
**UUUUUUUUUUUUUUUUUUUUU GFV G′

=
// V G′F ′G′

V G′ǫ
��

V G′

(2.5.8)

Let X and Y be objects of B ′. If (R, r1, r2) is a final V ′-lifting span between X and Y

then (GR, Gr1, Gr2) is a final V -lifting span between G′X and G′Y .

Proof. [Warning: throughout this proof we elide the equalities FV = V ′F ′ and GV ′ = V G′ —

hopefully the proof remains readable.]

Suppose that (R, r1, r2) is a final V ′-lifting span between objects X and Y of B ′. It is immediate

that (GR, Gr1, Gr2) is a V -lifting span between G′X and G′Y ; it remains for us to show that it is

final.

Consider another V -lifting span (S, s1, s2) between G′X and G′Y . We must have a span

(G′X
s̄1
← S̄

s̄2
→ G′Y) in B such that (V S̄, V s̄1, V s̄2) = (S, s1, s2). From this, we derive the following

span in B ′.

X
ǫX
←− F ′G′X

F ′ s̄1
←−− F ′S̄

F ′ s̄2
−−→ F ′G′Y

ǫY
−→ Y

Applying V ′, we see that the following span in D ′ is a V ′-lifting span.

V ′X
V ′ǫX
←−− FV G′X

Fs1
←− FS

Fs2
−→ FV G′Y

V ′ǫY
−−→ V ′Y

Thus, since (R, r1, r2) is a final V ′-lifting span, we have a unique map m : FS→ R in D ′, making the

following diagram commute.

V ′X FV G′X
V ′ǫX

oo FS
Fs1

oo
Fs2

//

m

��

FV G′Y
V ′ǫY

// V ′Y

R

r1

jjUUUUUUUUUUUUUUUUUUUUUU
r2

44iiiiiiiiiiiiiiiiiiiiii

(2.5.9)

Observe that the following diagram commutes in D.

V G′X

ηV G′X

��

(1)

S

ηS

��

s1
oo

s2
//

(2)

V G′Y

ηV G′Y

��

GFV G′X

GV ′ǫX
��

(3)

GFS
GFs1
oo

GFs2
//

Gm

��

(4)

GFV G′Y

GV ′ǫY
��

GV ′X GR
Gr1

oo

Gr2

// GV ′Y

Using: 1,2: nat. of η; 3,4: dgm. 2.5.9.

It follows, from diagram 2.5.8, that (S, s1, s2) factors, via (Gm ◦ηS), through (GR, Gr1, Gr2).

It remains for us to show that this factorisation is unique. Suppose that there is a mor-

phism m′ : S→ GR such that the following diagram commutes.

S
s1

{{wwwwwwwww
s2

##
GGGGGGGGG

m′

��

V G′X GR
Gr1

oo

Gr2

// V G′Y

42 Transition Systems, Coalgebras, and Bisimulation

We must show that m′ = Gm ◦ηS.

First, note that since R is a V ′-lifting span between X and Y , the span (R, r1, r2) in D ′ lifts to

a span (X
r̄1
←− R̄

r̄2
−→ Y) in B ′ with (V ′R̄, V ′ r̄1, V ′ r̄2) = (R, r1, r2). Next, observe that the following

diagram commutes, in D ′.

FS

Fs1

xxpppppppppppppp
Fs2

&&N
NNNNNNNNNNNNN

Fm′

��

FV G′X

=

��

FGR
FGr1

oo
FGr2

//

=

��

FV G′Y

=

��

V ′F ′G′X

V ′ǫX

��

V ′F ′G′R̄
V ′F ′G′ r̄1
oo

V ′F ′G′ r̄2
//

V ′ǫR̄

��

V ′F ′G′Y

V ′ǫY

��

V ′X Rr1

oo
r2

// V ′Y

But m : FS → R was introduced as the unique mediator, in diagram 2.5.9. Thus we know that the

following triangle commutes in D ′.

FGR
V ′ǫR̄

!!
DD

DD
DD

DD

FS m
//

Fm′
<<xxxxxxxx

R

(2.5.10)

We conclude by putting all this together, to see that the following diagram commutes in D.

(1)

GFS

GFm′

��

Gm

!!

(2)

S
m′

//

ηS
11

m′

<<
GS

ηGR
// GFGR

GV ′ǫR̄
//

(3)

GR

Using: 1: nat. of η; 2: dgm. 2.5.10; 3: dgm. 2.5.8.

Thus m′ = Gm ◦ ηS; one might say that m′ : S → GR is a right adjunct of m : FS → R. So the

factorisation is unique.

The situation considered in Theorem 2.5.7 is curious. The functors F ′, G′ are almost required

to be adjoint, but not quite: firstly, the ‘unit’ is associated with the underlying functors F, G, and

secondly, only one of the triangle identities is considered.

Adjunctions. The case when F ′, G′ and F, G are adjoint is particularly interesting. Specifically, we

consider the situation induced by a full reflection

(C ′, B′)
�#

⊤

(G,β)
--
(C , B)

(F,α)

mm

in coEndo, as in Example 2.4.3(5). In this circumstance, Theorem 2.5.7 says that, for B′-coalgebras

(that is, G-structured B-coalgebras), final B′-bisimulation (i.e. final G-structured B-bisimulation) is

the same thing as final B-bisimulation.

2.5. Notions of bisimulation 43

Note that G′ preserves limits, since it has a left adjoint. Thus if the final B′-coalgebra ex-

ists, and C ,C ′ have pullbacks, and B, B′ preserve weak pullbacks, then the result in the previous

paragraph is obvious — G′ must send the final B′-coalgebra to the final B-coalgebra, and final

bisimulations are determined by the final coalgebras. In this thesis, though, we will often work

with endofunctors that do not have final coalgebras.

Split subfunctors. Because we only require one of the two triangle identities, Theorem 2.5.7 is

also relevant in other situations. For instance, given two endofunctors B, B′ on a category C , if B′

is a split subfunctor of B then Theorem 2.5.7 says that, for B′-coalgebras, final B′-bisimulation is

the same thing as final B-bisimulation.

For a first example of this scenario, we return to the case of value-passing systems. The end-

ofunctor BV of (2.2.4) is a split subfunctor of Blts. Hence we see that BV-bisimulation is the same

thing as bisimulation for the induced labelled transition systems.

Chapter 3

Transition Systems and Coalgebras for

Name-Passing

This chapter is concerned with models of name-passing process calculi. We study models involving

labelled transition systems, and models involving coalgebras.

In the theory of name-passing calculi, notions of ‘free names’ and of substitution play a cen-

tral role. In this chapter, we treat these aspects from a model theoretic perspective by consider-

ing the ‘state spaces’ of the models as presheaves. Thus a state space is given by specifying, for

each set C of names, a set P(C) of states with free names contained in C . Moreover, for every

appropriate function f : C → D between sets of names, a substitution function between sets of

states P f : P(C)→ P(D) must be specified. Thus all states are associated with a name context, and

substitution in states is described by presheaf action.

We begin the chapter, in Section 3.1, with an overview of the π-calculus, which is our principle

example of a name-passing calculus. We emphasise some results for the π-calculus that will be

considered in the abstract setting as axioms for transition systems for name-passing.

In Section 3.2, we consider coalgebraic models for name-passing, based on the models intro-

duced by Fiore and Turi [2001]. To do this, it is important to consider some of the sophisticated

type constructions that arise from working in a presheaf category. For instance, the function space

of the presheaf category is convenient for describing input behaviour. The actions of the presheaves

of states account for injective substitution, and the coalgebra structures are natural transformations

between presheaves. As a result, the invariance of transitions under injective substitution is built

into the model.

We consider labelled transition system models of name-passing in Section 3.3. The approach

we take is loosely related to one of Cattani and Sewell [2004]. As with the coalgebraic model,

the state spaces are specified by presheaves. The transition systems are built over elements of the

presheaves. Thus we are concerned with transitions of the form

C ⊢ p
l
−→ C ′ ⊢ p′

to be read as “process p, in name context C , can perform the transition labelled by l to become

process p′ in name context C ′”. The name contexts grow during evolution to record that new names

are learnt through communication.

To achieve a bijective correspondence between the coalgebraic model and the labelled transition

system model, we axiomatise a class of labelled transition systems. The axioms that arise are

abstract forms of properties of the π-calculus. For instance, we enforce that transitions must be

invariant under injective substitution.

The models considered in Sections 3.2 and 3.3 only allow for injective substitution, and so the

notions of early and ground bisimulation can be defined for the models. In Section 3.4 we consider

models that incorporate arbitrary substitution. We endow the states with this additional structure.

45

46 Transition Systems and Coalgebras for Name-Passing

Symbol Meaning Example of

usage

−→π Early labelled transition system for the π-calculus. Fig. 3.2

−+π Ground labelled transition system for the π-calculus. Fig. 3.3

−→ Arbitrary labelled transition system. (3.1.5),

(3.1.6).

−→ Arbitrary indexed early labelled transition system. Defn. 3.3.2,

defn. 3.4.4

−+ Arbitrary indexed ground labelled transition system. Defn. 3.3.2,

defn. 3.4.4

g−→ I-indexed ground labelled transition system derived from the

I-indexed early labelled transition system, −→.

(3.3.21)

−→
P

Indexed early labelled transition system over presheaf P. pp. 61–62

−+
P

Indexed ground labelled transition system over presheaf P. pp. 71–62

−→h I-indexed early labelled transition system derived from a

Be-coalgebra with structure h.

p. 62

−+h I-indexed ground labelled transition system derived from a

Bg-coalgebra with structure h.

p. 71

e−+ F-indexed early labelled transition system derived from the

F-indexed ground labelled transition system, −+.

(3.4.10)

eg−→ F-indexed early labelled transition system −+ is first converted

to an F-indexed ground labelled transition system, and then

back to a F-indexed early labelled transition system.

Thm. 3.4.12

Figure 3.1: Some symbols for relations that are used in this chapter.

From the coalgebraic perspective this amounts to working with structured coalgebras. The natural

notion of bisimulation that arises is a form of open bisimulation.

Once all substitutions are considered, it is possible to impose an additional axiom on transition

systems, asserting that input behaviour is suitably uniform. Thus we arrive at the labelled transition

system model proposed by Cattani and Sewell [2004]. In this way the transition systems of Cattani

and Sewell are given a coalgebraic foundation.

A variety of symbols are used for transition relations in this chapter. A summary is provided in

Figure 3.1.

3.1 A name-passing process calculus: the π-calculus

We begin this chapter with an overview of the π-calculus of Milner et al. [1992]. We introduce some

basic notions such as the early and ground labelled transition systems (Sections 3.1.1 and 3.1.2

respectively), and some forms of bisimulation (Section 3.1.3).

3.1. A name-passing process calculus: the π-calculus 47

Further discussion, and proofs, of the results mentioned in this section can be found in the book

by Sangiorgi and Walker [2001], hereafter referred to as SW01.

Syntax. We will assume a class N of names, ranged over by c, d, . . . and z. The syntax of the

π-calculus is given by the following grammar.

p ::= 0 deadlock

| p | p parallel composition

| p+ p non-deterministic sum

| c(z).p input prefix

| c̄d.p output prefix

| τ.p silent prefix

| [c = d]p match prefix

| [c 6= d]p mismatch prefix

| νννz.p restriction

(3.1.1)

Syntax up-to-α-equivalence. In the expressions νννz.p and c(z).p the name z is binding in p. Thus

we have a notion of α-equivalence, that is, equality up-to renaming of binders. Here, we will

consider α-equivalent terms as equal.

In their discussion, Milner et al. [1992, Part II, Sec. 3.1] seem not to equate α-equivalent terms.

This is a little confusing since it follows from their Defn. 6 that a variant of α-equivalence is con-

tained in syntactic identity.

Other presentations [e.g. Milner et al., 1993] work with more sophisticated equivalence classes

of terms, involving structural congruences. Although the models that we consider in the first part

of this thesis appear to support the equating of structurally congruent terms, we will not explicitly

consider notions of structural congruence in this thesis.

Substitution. We write [c/z]p for the term p with the name c substituted for z. We assume

that the substitution operation respects the binders, and hence respects the α-equivalence classes

of terms. Notions of α-equivalence and substitution will be treated formally within an abstract

framework in Chapter 7. Alternatively, the reader will find an account in SW01 (Defns. 1.1.5

and 1.1.8). Our conventions differ from those of SW01 only in that we write substitution as a

prefix (rather than postfix) operator.

Notation. For any π-calculus term p, we write fn(p) for the set of variables that occur free (i.e.

not bound) in p. A precise explanation of the fn function is found in Defn. 1.1.2 of SW01, or

alternatively in the supp function of Section 7.1.

Remark: finiteness. Many presentations of the π-calculus provide language features such as

recursive definitions or replication, for describing processes with infinitary behaviour. No such

constructs have been included in the grammar presented here (3.1.1), but we remark the models

introduced in this thesis do work very well with infinitary behaviour.

3.1.1 Early semantics

We recall the early operational semantics of the π-calculus.

Labels. For the early semantics we consider four sorts of labels: input labels (written cd for

any c, d ∈ N); output labels (c̄d for any c, d ∈ N); bound output labels (c̄(z) for any c, z ∈ N); and

silent labels (τ).

48 Transition Systems and Coalgebras for Name-Passing

Silent
—

τ.p
τ
−→π p

Input
—

c(z).p
cd
−→π [d/z]p

Output
—

c̄d.p
c̄d
−→π p

Match

p
ℓ
−→π q

[c = c]p
ℓ
−→π q

(c 6∈ bn(ℓ))

Mismatch

p
ℓ
−→π q

[c 6= d]p
ℓ
−→π q

(c 6= d,

c 6∈ bn(ℓ) 6∋ d)

Sum left choice

p
ℓ
−→π q

p+ p′
ℓ
−→π q

(bn(ℓ)∩ fn(p′) = ;)

Parallel on right

p′
ℓ
−→π q′

p | p′
ℓ
−→π p |q′

(bn(ℓ)∩ fn(p) = ;)

Communication output on left

p
c̄d
−→π q p′

cd
−→π q′

p | p′
τ
−→π q |q′

Restriction

p
ℓ
−→π q

νννz.p
ℓ
−→π νννz.q

(z 6∈ n(ℓ))

Scope closure output on left

p
c̄(z)
−→π q p′

cz
−→π q′

p | p′
τ
−→π νννz.

�
q |q′

� (z 6∈ fn(p′))

Scope opening

p
c̄z
−→π q

νννz.p
c̄(z)
−→π q

(z 6= c)

Figure 3.2: The early semantics of the π-calculus. Symmetric versions of the rules for sum, parallel

transitions, communication, and scope closure, are elided. [C.f. SW01, Table 1.5.]

Notation. For any label ℓ, we write n(ℓ) for the set of all names that appear in the label. We

write bn(ℓ) for the names in the label that appear in binding position — so

bn(ℓ) =

(
{z} if ∃c ∈ N . ℓ= c̄(z)

; otherwise .

The early semantics of the π-calculus is the least labelled transition relation −→π over the set of

terms that satisfies the rules in Figure 3.2. The presentation in Figure 3.2 is not quite standard; we

return to this point in the discussion preceeding Prop. 3.1.7.

We now collect some results about the early semantics. These results are important in our

axiomatisation of transition systems for name-passing in Section 3.3.

Proposition 3.1.2 (c.f. SW01, Lemma 1.4.1).

1. If p
cd
−→π p′ then c ∈ fn(p) and fn(p′)⊆ fn(p)∪ {d}.

2. If p
c̄d
−→π p′ then c, d ∈ fn(p) and fn(p′)⊆ fn(p).

3. If p
c̄(z)
−→π p′ then c ∈ fn(p) and fn(p′)⊆ fn(p)∪ {z}.

4. If p
τ
−→π p′ then and fn(p′)⊆ fn(p).

3.1. A name-passing process calculus: the π-calculus 49

Regarding input behaviour:

Proposition 3.1.3 (c.f. SW01, Lemma 1.4.4(i,ii)).

1. If p
cz
−→π p′ and z 6∈ fn(p) then for any d ∈ N , p

cd
−→π [d/z]p

′.

2. If p
cd
−→π p′ and z 6∈ fn(p) then there is p′′ such that p

cz
−→π p′′ and [d/z]p′′ = p′.

The following weaker property of input behaviour will be relevant in Sections 3.2 and 3.3. Unlike

Prop. 3.1.3, this property does not make use of non-injective substitutions in π-calculus terms.

Corollary 3.1.4.

1. If p
cd
−→π p′ then for all d ′ there is p′′ such that p

cd ′

−→π p′′.

2. If p
cz
−→π p′ and z 6∈ fn(p) then for any other z′ 6∈ fn(p) we have p

cz′

−→π [z
′/z]p′.

Fresh versus bound outputs. In the π-calculus semantics suggested by Milner et al. [1992, Part

II], care is taken to ensure that the following statement holds of an induced transition system:

If p
c̄(z)
−→ p′ and z′ 6∈ fn(p′) then p

c̄(z′)
−→ [z′/z]p′. (3.1.5)

Thus the ‘binding’ name on the label appears to be binding in the right hand side of a transition.

For example, the following transition is allowed in the system of Milner et al. [1992, Part II].

νννz.c̄z.0
c̄(c)
−→ 0 (3.1.6)

In subsequent work, authors have been less careful with regard to property 3.1.5, instead focusing

attention on bound output transitions where the data is fresh, i.e. transitions of the form

p
c̄(z)
−→ p′ with z 6∈ fn(p) .

After all, it is clear that (i) no reasonable properties or constructions make specific use of non-fresh

bound outputs, and (ii) name generation is an important and natural notion.

Here, we take this one step further, by modifying the usual semantics so that all bound output

data is fresh. This is sensible because (i) non-fresh bound output data is not relevant for any

reasonable properties or constructions, and (ii) it is conceptually natural to think of bound output

transitions as transitions describing the output of fresh names. Thus the following statement holds

of the semantics presented in Figure 3.2. (We obtain this result by adding side conditions to the

usual presentations of rules for sum, match and mismatch.)

Proposition 3.1.7 (c.f. SW01, Exercise 1.4.2). If p
c̄(z)
−→π p′ then z 6∈ fn(p).

Hence, in particular, the transition in (3.1.6) is not allowed in the semantics presented here.

In view of Prop. 3.1.2(2), we could omit the parentheses on bound output labels; instead, an

output can be considered to be bound if it is not in the free names of the transition source. Thus

the early semantics of the π-calculus can be described more simply in terms of input, output and

silent labels. This approach will be taken in the labelled transition system models that we consider

later in this chapter. For the remainder of Section 3.1, though, we will continue to mark bound

outputs explicitly so that connections with the more common presentation can be seen.

It remains for us to record a weaker form of property 3.1.5 that applies to our transition system.

A version of Corollary 3.1.4(2) holds for bound output transitions:

Proposition 3.1.8 (c.f. SW01, Lemma 1.4.9). If p
c̄(z)
−→π p′ then for any z′ 6∈ fn(p) we have that

p
c̄(z′)
−→π [z

′/z]p′.

50 Transition Systems and Coalgebras for Name-Passing

3.1.2 Ground semantics

The ground semantics of the π-calculus is an alternative semantics in which the data of input labels

is considered to be binding.

Labels for ground transitions. The ground semantics uses the same output, bound output and

silent labels as the early semantics. In place of input labels we have bound input labels, written

c(z), for any names c, z. For any ground label we let

bn(ℓ) =

(
{z} if ∃c ∈ N . ℓ= c(z) or ℓ= c̄(z)

; otherwise .

The intention is that a bound input label c(z) describes the action of input on channel c, and the

name z is a placeholder for the name that is actually received.

In Figure 3.3 we present rules defining the ground transition relation −+π . (The ground tran-

sition relation is distinguished from the early one by the use of a ‘harpoon’ arrow.) Because the

bound input data is only a placeholder, the substitution of the input data does not appear in the

axiom for input transitions, as it did in the early semantics. Instead, this substitution is described

in the rules for communication and scope closure.

Many authors, including Milner et al. [1992, Part II], refer to the semantics that we have intro-

duced in Figure 3.3 as late semantics. As will be seen in Definition 3.1.10, the ground semantics as

presented here is more closely related to ground bisimulation than to late bisimulation. The phrase

‘late semantics’ is perhaps best reserved for abstraction/concretion presentations of the π-calculus

[see e.g. SW01, Sec. 4.3.1].

By contrast with most presentations of the ground semantics, we have designed the operational

semantics so that all bound inputs have fresh data. This matches the behaviour of bound outputs,

as discussed in the previous subsection. It is sensible modification because, as for bound outputs,

no reasonable property or construction will make use of non-fresh bound input parameters.

The following proposition makes precise the connection between the early and ground seman-

tics. It exhibits the ground semantics as a variation of the early semantics where only fresh input

data is allowed.

Proposition 3.1.9 (c.f. SW01, Lemma 4.3.2).

1. If p
cz
−→π q and z 6∈ fn(p) then p

c(z)
−+π q.

2. If p
c(z)
−+π q then for all d, p

cd
−→π [d/z]q.

3. p
c̄d
−→π q if and only if p

c̄d
−+π q.

4. p
c̄(d)
−→π q if and only if p

c̄(d)
−+π q.

5. p
τ
−→π q if and only if p

τ
−+π q.

3.1.3 Bisimulations: early, ground, late, and wide open

We introduce four kinds of bisimulation. We begin with early, ground, and late bisimulation. The

first of these, early bisimulation, is arguably the most elegant notion. Ground bisimulation on its

own is a rather useless notion, since, for instance, it is not a congruence for the parallel composition

operator. A definition of late bisimulation is included here only for quick comparison with the other

notions. Late bisimulation will not be studied in this thesis. Following these three basic kinds of

bisimulation, we introduce wide open bisimulation, which is a more refined kind of bisimulation

that gives rise to a congruence.

3.1. A name-passing process calculus: the π-calculus 51

Silent
—

τ.p
τ
−+π p

Input (∗)
—

c(z).p
c(z)
−+π p

(c 6= z)

Output
—

c̄d.p
c̄d
−+π p

Match

p
ℓ
−+π q

[c = c]p
ℓ
−+π q

(c 6∈ bn(ℓ))

Mismatch

p
ℓ
−+π q

[c 6= d]p
ℓ
−+π q

(c 6= d,

c 6∈ bn(ℓ) 6∋ d)

Sum left choice

p
ℓ
−+π q

p+ p′
ℓ
−+π q

(bn(ℓ)∩ fn(p′) = ;)

Parallel on right

p′
ℓ
−+π q′

p | p′
ℓ
−+π p |q′

(bn(ℓ)∩ fn(p) = ;)

Communication output on left (∗)

p
c̄d
−+π q p′

c(z)
−+π q′

p | p′
τ
−+π q | [d/z]q′

Restriction

p
ℓ
−+π q

νννz.p
ℓ
−+π νννz.q

(z 6∈ n(ℓ))

Scope closure output on left (∗)

p
c̄(z)
−+π q p′

c(z)
−+π q′

p | p′
τ
−+π νννz.

�
q |q′

�

Scope opening

p
c̄z
−+π q

νννz.p
c̄(z)
−+π q

(z 6= c)

Figure 3.3: The ground semantics of the π-calculus. Symmetric versions of the rules for sum,

parallel transitions, communication, and scope closure, are elided. The rules marked with (∗) are

the only rules that are different from the presentation in Figure 3.2. [C.f. SW01, Table 4.1.]

Definition 3.1.10 (c.f. SW01, Defns. 2.2.1, 4.4.1, 4.5.2). Let R be a binary relation on π-calculus

terms. Let p, p′, q be arbitrary π-calculus terms, and let ℓ be an arbitrary early label, and ℓ′ an

arbitrary ground label.

• R is an early simulation if whenever p R q and p
ℓ
−→π p′ with bn(ℓ) ∩ fn(p,q) = ; we have q′

with q
ℓ
−→π q′ and p′ R q′.

• R is a ground simulation if whenever p R q and p
ℓ′

−+π p′ with bn(ℓ) ∩ fn(p,q) = ; we have q′

with q
ℓ′

−+π q′ and p′ R q′.

• R is a late simulation if whenever p R q and p
ℓ′

−+π p′ with bn(ℓ)∩ fn(p,q) = ;, then

1. if ℓ′ = c(z) then there exists q′ such that q
ℓ′

−+π q′ and for all names d we have

[d/z]p′ R [d/z]q′, and

2. if ℓ is not an input label then we have q′ with q
ℓ′

−+π q′ and p′ R q′.

A binary relation R on π-calculus terms is an (early/ground/late) bisimulation if both R and its

inverse are (early/ground/late) simulations.

52 Transition Systems and Coalgebras for Name-Passing

Two π-calculus terms p, p′ are (early/ground/late) bisimilar (written p ∼e/g/l p′) if they are

related by some (early/ground/late) bisimulation.

The three notions of bisimilarity are all bisimulations:

Proposition 3.1.11 (c.f. SW01, Convention 2.1.6). The relations (∼e), (∼g), and (∼l) are respectively

early, ground, and late bisimulations.

Invariance under injective substitutions. Since injective substitutions do not join names they

do not affect transitions.

Notation. For a function f : A→ B and a subset A′ ⊆ A, we let f |A′ : A′ ։ f (A′) be the surjection

found by restricting the domain of f to the subset A′ and restricting the codomain of f to its image

on A′.

Proposition 3.1.12 (c.f. SW01, Lems. 1.4.8, 2.2.3; Ex. 4.4.2). For any endofunction f on names,

any π-calculus terms p, p′,q and any π-calculus early label ℓ and ground label ℓ′:

1. If p
ℓ
−→π p′ and f |fn(p)∪fn(p′)∪fn(ℓ) is bijective then [f]p

[f]ℓ
−→π [f]q.

2. If p ∼e q and f |fn(p)∪fn(q) is bijective then [f]p ∼e [f]q.

3. If p
ℓ′

−+π p′ and f |fn(p)∪fn(p′)∪fn(ℓ′) is bijective then [f]p
[f]ℓ′

−+π [f]q.

4. If p ∼g q and f |fn(p)∪fn(q) is bijective then [f]p ∼g [f]q.

(Similar results hold for late bisimilarity but do not concern us here.)

Invariance under all substitutions. Neither early, ground nor late bisimilarity is invariant under

all substitutions. For an example, consider the π-calculus terms

p1 = [c = d]c̄c.0 p2 = 0 .

Now p1 and p2 are related by all three forms of bisimilarity, while all three forms distinguish [c/d]p1

from [c/d]p2.

For a similar reason, neither early, ground nor late bisimilarity is a congruence for the

π-calculus. To see this, consider the bisimilar terms p1, p2 as before, but now in the con-

text ((c(d).[−]) | (c̄c.0)). The following transitions are derivable in both the early and ground

semantics. �
c(d).p1

�
| (c̄c.0)

τ
−→ [c/d]p1

�
c(d).p2

�
| (c̄c.0)

τ
−→ [c/d]p2

So the context ((c(d).[−]) | (c̄c.0)) distinguishes bisimilar terms.

Wide open bisimulation. In the introduction to this thesis we argued that a process equivalence

that is not a congruence is of little practical use. For instance, if a process equivalence is not a

congruence then one cannot reason in an equational way. We now introduce a notion of bisimilarity

that is a congruence.

Definition 3.1.13 (c.f. Sangiorgi [1996, Defn. 3.6, Prop. 3.9]). A binary relation R on π-calculus

terms is wide open if for all endofunctions f on names and all π-calculus terms p, p′,

p R p′ =⇒ [f]p R [f]p′ .

3.2. Coalgebras for name-passing 53

We introduce the term ‘wide open’ (suggested by Peter Sewell) because the term ‘open bisimu-

lation’ is perhaps best saved for the less discerning notion proposed by Sangiorgi [1996], which is

studied briefly in Section 9.3.5 of this thesis.

If only wide open relations are considered, the early, ground and late bisimilarities are identi-

fied. This result follows straightforwardly from Prop. 3.1.9.

Proposition 3.1.14. Let R be a binary relation on π-calculus terms. If R is wide open then the

following are equivalent.

1. R is an early bisimulation.

2. R is a ground bisimulation.

3. R is a late bisimulation.

(A related result will be established at the model theoretic level, in Theorem 3.4.9.)

We will say that a relation satisfying these three equivalent conditions is a wide open bisimula-

tion. Two π-calculus terms p, p′ are wide open bisimilar (written p ∼wo p′) if they are are related by

some wide open bisimulation. Following Prop. 3.1.11, wide open bisimilarity is itself a wide open

bisimulation. Indeed, wide open bisimilarity is the greatest wide open bisimulation. Note that it

is not the substitution closure of early, ground or late bisimilarity. These latter relations have been

called strong equivalences [Milner et al., 1992, Defn. II.10], strong congruences [Parrow, 2001,

Defn. 6.2], and full bisimilarities [Sangiorgi and Walker, 2001, Defn. 2.2.2], but will not concern

us here.

The following important result will be seen to arise from the abstract framework presented in

Chapter 8.

Proposition 3.1.15 (c.f. SW01, Exercise 4.6.1(2)). Wide open bisimilarity is a congruence.

Comparing bisimilarities. The different forms of bisimilarity introduced so far are related as

follows.

Proposition 3.1.16 (c.f. SW01, Lems. 4.4.4, 4.5.3). (∼wo) ((∼l) ((∼e) ((∼g).

3.2 Coalgebras for name-passing

We now present the theory of name-passing from a coalgebraic point of view. An aim of this section

is to introduce behaviour endofunctors for coalgebras for name-passing. The endofunctor that we

use for early behaviour is essentially the one introduced by Fiore and Turi [2001, eq. (26)].

The definitions of bisimulations for the π-calculus (Definition 3.1.10) are coinductive, but are

different from the usual notions of bisimulation on transition systems because of the requirement

that binding names in the transition labels be fresh for the transition sources. To cast such bisimu-

lations in an abstract light, we need the states of the system to be tagged with the names that they

may use. The solution that we consider here is to work with coalgebras in presheaf categories; the

indexing of the presheaf serves to tag the states with the names that are available.

We begin this section with a discussion of the presheaf category that is under consideration. In

Section 3.2.1, we formulate some constructions in this presheaf category, and in Section 3.2.2 we

use these constructions to specify endofunctors for both early and ground behaviour.

54 Transition Systems and Coalgebras for Name-Passing

Presheaves. According to Prop. 3.1.12, both transtions and bisimilarity are stable under injective

renaming. This will be taken as an important abstract characteristic of the systems that we consider.

For this reason, notions of free names of a state and injective substitution are crucial. One way to

embed these notions into a model is to index the states by the names that they may use. To this

end we let I be the category with objects given by finite subsets of N , the class of all names, and

with morphisms injective functions between them. A covariant presheaf P : I→ Set can be thought

of as associating to each finite set of names C , a set P(C) of states that may use these names; to

each injection ı : C ֌ D is associated a function Pı : P(C)→ P(D) intended to model substitution

in the states in P(C) according to ı.

Notation. We write [ı]p for Pı(p), when the presheaf P is clear from the context. Whenever C is a

subset of D, we have the inclusion morphism C → D in I, which we denote (C ,→ D).

Throughout this thesis, we write “X ⊆f Y ” to mean that X is a subset of Y , and moreover that X

is finite.

For any C ⊆f N , and any z, z′ 6∈ C , we have an injection [z′/z] : C ∪ {z} ֌ C ∪
�
z′
	

acting as

identity on C , and mapping z to z′.

More generally, given an injection ı : C ֌ D in I, and z′ ∈ (D − im(ı)), and z 6∈ C , we let

[ı, z′/z] : C ∪ {z} → D be the injection given as follows.

[ı, z′/z](c) =

(
ı(c) if c ∈ C

z′ if c = z

A trivial but important fact is that for any finite set of names C , we can always find a name z ∈ N

that is not in C .

Natural transformations between presheaves. A natural transformation α between presheaves

P,Q : I→ Set is a family of functions between sets of states

�
αC : P(C)→Q(C)

	
C∈I

that respects injective substitutions in the sense that for any injection ı : C ֌ D in I the following

square commutes.

P(C)
αC

//

Pı

��

Q(C)

Qı

��

P(D) αD

// Q(D)

Example: presheaf for the π-calculus. The state space of the π-calculus is represented by a

presheaf Pπ ∈ SetI defined as follows. For C ∈ I,

Pπ(C) =
¦

p
�� p is a π-calculus term and fn(p)⊆ C

©
(3.2.1a)

while for any C , D ∈ I and injection ı : C ֌ D, and any term p ∈ Pπ(C):

Pπı(p) = [ı]p — i.e. the substitution ı applied to p. (3.2.1b)

Sets of elements of presheaves. It will be useful to consider the states at all the stages of

a presheaf, to yield a set of all the states. For any small category C we have a faithful func-

tor
∫

: SetC→ Set mapping a presheaf P ∈ SetC to its set of elements, viz.

∫
P =

∑

C∈C

P(C) . (3.2.2a)

3.2. Coalgebras for name-passing 55

We write (C ⊢ p) for an element p ∈ P(C) injected into
∫

P. In case C = I, the element (C ⊢ p)

denotes a state p in the context of names C . To each natural transformation α : P →Q we associate

a function of sets (
∫
α) :

∫
P →

∫
Q, given as follows.

(
∫
α)(C ⊢ p) = C ⊢ (αC(p)) (3.2.2b)

A category with a faithful functor to Set has been called concrete. From the point of view of

presheaves as structured state spaces, the concretion functor
∫

serves to ‘forget’ the substitution

structure and to give a ‘global’ view of the state space.

For the presheaf of π-calculus terms, Pπ ∈ SetI as defined above in (3.2.1), we have

∫
Pπ =

¦
(C ⊢ p)

�� p is a π-calculus term and fn(p)⊆ C
©

.

So
∫

Pπ is the set of π-calculus terms in name contexts.

3.2.1 Constructions in SetI

By considering presheaves in SetI we have at our disposal a rich collection of types and type con-

structions. We now recall the constructions that Fiore and Turi [2001] found useful in their models

of name-passing. (Fiore and Turi work with a skeleton I of I, by representing names by numbers.

Here, by working with I, we treat names as names, but a disadvantage is that the ‘plus’ tensor prod-

uct of I is unnatural in I, and so the descriptions of some of the constructions are more involved

here.)

It is perhaps worth remarking that the main motivation behind all these constructions is their

utility in modelling name-passing systems. Many of the constructions that we introduce here could

be defined by universal properties, but instead we take a concrete approach because this will be

more useful in the remainder of this chapter. A disadvantage of this pragmatism is that, when

we move to categories other SetI in Chapter 4 there is some extra work involved in lifting the

constructions to the different categories.

A different approach to take when modelling name-passing would be to simply reinterpret the

constructions of Section 2.2 internally within the presheaf topos SetI. We return to this idea in

Section 9.3.2. At this stage, though, it is hard to motivate this approach from a pragmatic point of

view. For now, then, the structure of SetI is used simply to capture the essence of invariance under

injective substitutions. The constructions that we consider in this subsection are suggested more

by the nature of name-passing than by mathematical elegance.

Products, coproducts. Products and coproducts are computed ‘pointwise’ in SetI (as are all limits

and colimits in any functor category). That is, for any presheaves P,Q ∈ SetI, and C ∈ I,

(P ×Q)(C) = P(C)×Q(C) and (P +Q)(C) = P(C) +Q(C) .

The pointwise projections/injections and mediating morphisms are natural.

Type of names. Let the presheaf of names N ∈ SetI be given as follows. For any name context

C ⊆f N ,

N(C) = C

while for any injection ı : C ֌ D in I, and any c ∈ C ,

Nı(c) = ı(c)

(This presheaf will play a role analogous to that played by the set V of values in Section 2.2.)

56 Transition Systems and Coalgebras for Name-Passing

Function space. For each state space P ∈ SetI, we have a space [N ⇒ P] of ‘functions’ from N to

P. For any C ⊆f N ,

[N ⇒ P](C) =

(
φ ∈

∏

d∈N

P(C ∪ {d})

����� ∀z, z′ 6∈ C . P[z′/z](φ(z)) = φ(z′)

)

.

(3.2.3a)

Thus an element φ of the function space [N ⇒ P] at name-context C is an assignment from each

name c ∈ C in the name-context to an element φ(c) ∈ P(C), together with a uniform assignment of

each name z ∈ (N −C) not in the name-context to an element φ(z) ∈ P(C∪{z}). This captures some

of the nature of the input behaviour described in Corollary 3.1.4, as will be seen in Section 3.3.

The functorial action of [N ⇒ P] is given as follows. For any D ⊆f N , ı : C → D in I, and

φ ∈ [N ⇒ P](C), and z, z′ ∈ N , we let

�
[N ⇒ P]ı(φ)

�
(z) =

(
Pı(φ(ı−1(z))) if z ∈ im(ı)

P[ı, z/z′](φ(z′)) if z 6∈ im(ı) and z′ 6∈ C
(3.2.3b)

The definition in equation 3.2.3b is unambiguous because if z 6∈ im(ı) and z′, z′′ 6∈ C then

P[ı, z/z′′](φ(z′′)) = P[ı, z/z′](φ(z′)).

If we consider inclusion maps and bijections seperately, we have the following identities. For

any C , D ⊆f N with C ⊆ D, and any φ ∈ [N ⇒ P](C) and z ∈ N , we have

�
[N ⇒ P][C ,→ D](φ)

�
(z) = P[C ∪ {z} ,→ D ∪ {z}](φ(z)) . (3.2.3c)

For any C , C ′ ⊆f N and any z ∈ N , we have that for any bijection β : C ∪ {z}
∼
→ C ′ and

any φ ∈ [N ⇒ P](C), �
[N ⇒ P](β |C)(φ)

�
(β(z)) = P(β)(φ(z)) . (3.2.3d)

For any other presheaf Q, and any natural transformation α : P → Q in SetI, we let [N ⇒ α] be

the natural transformation α : [N ⇒ P]→ [N ⇒Q] in SetI given as follows. For each C ⊆f N and

φ ∈ [N ⇒ P], and each z ∈ N , let

[N ⇒ α]C(φ)(z) = αC(φ(z)) . (3.2.3e)

Name generation/abstraction. The operator δ of name generation in SetI is defined on a pre-

sheaf P ∈ SetI as follows. For C ∈ I, we let

δP(C) =



φ ∈

∏

z∈(N −C)

P(C ∪ {z})

������
∀z, z′ ∈ (N − C).

φ(z′) = P[z′/z](φ(z))





.

(3.2.4a)

Thus an element φ of the presheaf δP at name-context C describes a uniform treatment of fresh

names, i.e. names not in C . This captures some of the nature of the bound output behaviour

described in Prop. 3.1.8, and also of the bound input behaviour used in the ground semantics.

The name generation operator can also be seen as a name abstraction operator, by considering

its ‘colimit’ form. We have the following isomorphism, natural in C ∈ I:

δP(C) ∼=
∑

z∈(N −C)

P(C ∪ {z})�
∼PC

where injz(p) ∼PC injz′(P[z
′/z]p). Thus an element [injz(p)]∼PC provides an equivalence class of

treatments of fresh names. This interpretation will be important in Chapter 7.

3.2. Coalgebras for name-passing 57

The functorial action of δP is as follows. For any name sets C , D ⊆f N , any injection ı : C ֌ D,

and any function φ ∈ δP(C), and names z ∈ (N − D), z′ ∈ (N − C), we let

�
δPı(φ)

�
(z) = P[ı, z/z′](φ(z′)) . (3.2.4b)

To each natural transformation α : P → Q between presheaves in SetI, we associate a natural

transformation δα : δP → δQ as follows. For each name set C ⊆f N , and each function φ ∈ δP(C)

and name z ∈ (N − C), let �
(δα)C(φ)

�
(z) = αC∪{z}(φ(z)) . (3.2.4c)

Notice the similarity between the definition of [N ⇒ (−)] in equations 3.2.3 and the definition

of δ in equations 3.2.4. Indeed we have a natural transformation

r : [N ⇒ (−)]→ δ(−) (3.2.5)

that acts by restricting the domains of functions.

Pointwise powerset. Fiore and Turi [2001] introduce non-determinism in SetI using variations

of a ‘pointwise powerset’ functor P on SetI, given as follows. For any name context C ⊆f N , we let

(P P)(C) =P (P(C)) . (3.2.6a)

Thus an element of the powerset of P at a name context C is a set of elements of P at the same

name context C .

The functorial action of P P is given by direct image. So for any injection ı : C ֌ D in I, and

any subset S ⊆ P(C),

(P P)ı(S) =
¦

q ∈ P(D)
�� ∃p ∈ S. Pı(p) = q

©
. (3.2.6b)

For any natural transformation α : P → Q between presheaves in SetI, we have a natural trans-

formation P α : P → Q given by pointwise direct image. So, for any name context C and any

subset S ⊆ P(C) we have

(P α)C(S) =
¦

q ∈Q(C)
�� ∃p ∈ S. αC(p) = q

©
. (3.2.6c)

The isomorphism (2.2.1a) is natural and so we have a natural isomorphism

P (P)×P (Q)∼=P (P +Q) (3.2.7)

between presheaves in SetI. We also have a natural isomorphism

i :P (δ(−))
∼
→ δ(P (−)) (3.2.8)

given as follows, for any presheaf P ∈ SetI, any name context C ⊆f N and any set S ∈ (P (δP))(C):

iP,C(S) = λλλz ∈ (N − C).
¦

p ∈ P(C ∪ {z})
�� ∃φ ∈ S. φ(z) = p

©
.

It is straightforward to verify that such iP,C(S) satisfies the uniformity conditions imposed in the

definition of (δ(P P))(C), and that the resulting family
¦

iP,C

©
P∈SetI, C∈I

is natural in C and P.

The pointwise non-empty powerset functor Pne is also of interest. It is the subfunctor P given by

PneP(C) = {S ∈ P P(C) | S 6= ;} .

58 Transition Systems and Coalgebras for Name-Passing

Pointwise partial functions. Sets of partial functions play an important role in describing input

behaviour in Section 2.2. We now recall the related notions suggested by Fiore and Turi for the

context of name-passing.

Consider a presheaf Q ∈ SetI that has injective action, i.e. such that for every injection ı : C ֌ D

in I, the function Qı : QC →QD is injective. We define an operator [Q++(−)] on SetI.

For any presheaf P ∈ SetI, let [Q++P] be given as follows, for any C ⊆f N :

[Q++P](C) =
�
φ : Q(C)+ P(C)

	
. (3.2.9a)

(Here, we write (Q(C)+ P(C)) for the type of partial functions between sets Q(C) and P(C).) For

any other name context D ⊆f N , any injection ı : C ֌ D, and any partial function φ : Q(C)+ P(C),

we let

[Q++P]ı(φ) =

�
Q(D)

(Qı)−1

−−+ Q(C)
φ
−+ P(C)

Pı
−→ P(D)

�
(3.2.9b)

where (Qı)−1 : D+ C is the partial injective function given by, for any q ∈Q(D):

(Qı)−1(q) =

(
q′ if Qı(q′) = q

undefined if q 6∈ im(Qı) .

For any natural transformation α : P → P ′ between presheaves in SetI, we define a natural trans-

formation [N++α] : [Q++P]→ [Q++P ′] as follows. For any name context C ⊆f N , and any partial

function φ : Q(C)+ P(C), we let

[Q++α]C(φ) =

�
Q(C)

φ
−+ P(C)

αC
−→ P ′(C)

�
.

A class of presheaves that have injective actions will play an important role in the next chapter.

For now it is sufficient to note that the presheaves 1, N and indeed (N × N) all have injective

actions. Indeed, to give an element of [N++P] is to give an element of the full function space

[N ⇒ (P + {undefined})], as specified in (3.2.3), that is always undefined on fresh names.

One explanation as to why the [Q++(−)] construction is appropriate is that we have the follow-

ing natural isomorphism (c.f. (2.2.1b)).

[Q++Pne(−)]
∼=P (Q× (−)) (3.2.10)

Notation. For any partial function f : A+ B between sets A and B, if a is an element of A then we

write (f ↓ a) to mean that f is defined at a.

3.2.2 Behaviour endofunctors for early and ground bisimulation

We now describe two endofunctors on SetI, using the constructions that we introduced in the

previous section. In Section 3.3 we will see that coalgebraic bisimulation for these endofunctors

respectively corresponds to the early and ground bisimulations introduced for the π-calculus in

Section 3.1.

Fiore and Turi [2001, eqn. (24)] have also introduced an endofunctor that captures late bisim-

ulation, but this will not be considered here.

Early behaviour endofunctor. Fiore and Turi [2001, eqn. (26)] have suggested the following

behaviour endofunctor Be on SetI for capturing the early semantics of name-passing systems. The

endofunctor takes a similar shape to that for value-passing introduced in equation 2.2.4. We now

3.2. Coalgebras for name-passing 59

have two forms of output, though, and we use the restricted partial exponential and powerset

functors. In the definition here we explicitly name the components of the product.

Be(−) = inp : [N++[N ⇒Pne(−)]] Input

× out : [(N × N)++Pne(−)] Free output

× bout : [N++δ(Pne(−))] Bound output

× tau : [1++Pne(−)] Silent.

(3.2.11)

As indicated, we will write πinp, πout, πbout, πtau for the projection functions.

A Be-coalgebra is given by a presheaf P ∈ SetI together with a natural family of functions

n
hC : P(C)→ [C++

�
[N ⇒PneP](C)

�
]

× [(C × C)++
�
(PneP)(C)

�
]

× [C++
�
δ(PneP)(C)

�
]

× [1++
�
(PneP)(C)

�
]
o

C∈I
.

(3.2.12)

For each p ∈ P(C) (thought of as a state p whose free names are included in C), the 4-

tuple hC(p) is to be thought of as follows. Each component is a partial function. If the first

component, πinp(hC(p)), is defined at some c ∈ C , then we understand that the state p is ca-

pable of input on channel c; in this case the value of πinp(hC(p))(c) is a function associating to

each input value d ∈ N a non-empty set S of states with free names included in C ∪ {d}; the in-

tended interpretation is that the state p might input d on channel c to become any state in S. The

second component πout(hC(p)) is defined at (c, d) ∈ C × C if p can output data d on channel c;

in this case the value of πout(hC(p))(c, d) is to be thought of as a set of resumptions. The third

component πbout(hC(p)) is defined at c ∈ C if p can perform a bound output on channel c; then

we have p′ ∈
�
πbout(hC(p))(c)

�
(z) if p can output the fresh name z on channel c to become p′.

Finally, the fourth component πtau(hC(p)) is defined if p can perform a silent action, in which

case πtau(hC(p))(∗) is to be thought of as the set of states that can be reached from p following a

silent action.

Following the above discussion, the interested reader can perhaps imagine how to define a

Be-coalgebra that models the π-calculus. We will introduce a Be-coalgebra for the π-calculus in

(3.3.10), by developing a formal correspondence with a class of labelled transition systems.

Ground behaviour endofunctor. We now introduce an endofunctor Bg on SetI for which coalge-

bras are related to the presentation of ground transition systems introduced in Figure 3.3. In that

presentation bound input and bound output are treated the same. Thus we define Bg as follows.

Bg(−) = binp : [N++δ(Pne(−))] Bound input

× out : [(N × N)++Pne(−)] Free output

× bout : [N++δ(Pne(−))] Bound output

× tau : [1++Pne(−)] Silent.

(3.2.13)

A Bg-coalgebra for the π-calculus is given below, in (3.3.11), by taking advantage of a corre-

spondence with a class of labelled transition systems.

The only difference between the endofunctors Be and Bg is in their description of input. In

(3.2.5) we introduced a natural transformation

r : [N ⇒ (−)]→ δ(−)

60 Transition Systems and Coalgebras for Name-Passing

and this induces a morphism of endofunctors (SetI, Be)→ (SetI, Bg), in the sense of Section 2.3, and

hence a functor

Be-Coalg→ Bg-Coalg . (3.2.14)

This provides an abstract account of the derivation of a ground transition system from an early one

(i.e. Prop. 3.1.9(1,3,4,5)).

Another description of Bg will be more useful in Chapters 7 and 8. First, we define an endo-

functor Lg on SetI for deterministic name-passing systems.

Lg(−) = binp : N ×δ(−) Bound input

+ out : N × N × (−) Free output

+ bout : N ×δ(−) Bound output

+ tau : (−) Silent.

(3.2.15)

Via the isomorphisms (3.2.7) and (3.2.10) we have the following isomorphism, which exhibits Bg

in a simpler form.

Bg(−)
∼= P (Lg(−)) (3.2.16)

Several authors, including Power and Turi [1999] and Hasuo, Jacobs, and Sokolova [2006],

have found that endofunctors of the form (3.2.16) are particularly amenable to the study of linear

time (trace) semantics. This decomposition will prove useful in Chapter 8, for essentially the same

reason.

3.3 Transition systems for name-passing

We now turn from the coalgebraic models of the previous section to transition system models of

name-passing. We begin this section with a notion of I-indexed labelled transition system, which

is a labelled transition system whose states are elements of presheaves. This notion of model

is inspired by the models of Cattani and Sewell [2004]. We are able to consider the transition

systems of the π-calculus in this framework, and we can frame the kinds of bisimulation that arise

in the π-calculus within the model.

We begin, in Section 3.3.1, by developing a theory of I-indexed early labelled transition systems

(I-ILeTSs) which are intended to model the early semantics of input. We define a notion of bisimula-

tion for these transition systems. In Section 3.3.2, we investigate the connections between I-ILeTSs

and the classes of coalgebras considered in the previous section. Every Be-coalgebra gives rise to an

I-ILeTS, and we axiomatise those I-ILeTSs that are induced by coalgebras in this way, with a result

analogous to Theorem 2.2.5.

Given the tight correspondence that is achieved between the transition system and coalgebra

models of name-passing, one might expect a tight correspondence between the notions of bisimu-

lation arising in the transition system and coalgebra models. We investigate this in Section 3.3.3.

Section 3.3.4 is concerned with reformulating the basic definitions of Section 3.3.1 for ground

transition systems. We explain that every I-ILeTS gives rise to an I-indexed ground labelled transi-

tion system.

3.3.1 Indexed early labelled transition systems

Labels. We define a set of labels for early transitions by

Labe =N ×N + N ×N + 1 (3.3.1)

writing c?d, c!d, τ for elements of the first (input), second (output) and third (silent) summands

respectively.

3.3. Transition systems for name-passing 61

As discussed in Section 3.1, we do not include a distinguished bound output label for the early

transition systems. Bound outputs can be identified as outputs where the data is not in the context

of the source state.

We define functions ch,dat : Labe → P (N) that assign to each label the set of names involved

respectively in the channel and data.

ℓ ∈ Labe ch(ℓ) dat(ℓ)

c?d {c} {d}

c!d {c} {d}

τ ; ;

Transition systems. We define I-indexed early labelled transition systems as labelled transition

relations, with labels from Labe, and with state sets being sets of elements of presheaves.

Definition 3.3.2. An I-indexed early labelled transition system (I-ILeTS) is a presheaf P ∈ SetI to-

gether with a transition relation −→ ⊆
∫

P × Labe×
∫

P.

(Here,
∫

P is the set of elements of P, introduced at the beginning of Section 3.2.)

Example: the π-calculus. The π-calculus can be given an early semantics in terms of an I-ILeTS.

The carrier presheaf is Pπ, introduced in equation 3.2.1, while the transition relation is defined

using the relation −→π on π-calculus terms introduced in Figure 3.2, as follows. We let −→
Pπ

be the

least relation

−→
Pπ
⊆
∫

Pπ × Labe×
∫

Pπ

satisfying the following implications. We make use of Prop. 3.1.2 in determining name contexts for

right-hand sides of the transitions. The definition is essentially the body of Lemma 2.3 of Cattani

and Sewell [2004].

If p
cd
−→π p′ and fn(p)⊆ C then C ⊢ p

c?d
−→

Pπ
C ∪ {d} ⊢ p′;

If p
c̄d
−→π p′ and fn(p)⊆ C then C ⊢ p

c!d
−→

Pπ
C ⊢ p′;

If p
c̄(z)
−→π p′ and fn(p)⊆ C 6∋ z then C ⊢ p

c!z
−→

Pπ
C ∪ {z} ⊢ p′;

If p
τ
−→π p′ and fn(p)⊆ C then C ⊢ p

τ
−→

Pπ
C ⊢ p′.

(3.3.3)

Indexed bisimulations. We now introduce notions of bisimulation for these indexed labelled

transition systems.

Definition 3.3.4.

1. Consider presheaves P,Q ∈ SetI. An I-indexed binary relation R between P and Q is a presheaf

R ∈ SetI that is a subobject of P ×Q. Concretely, for each name context C ⊆f N a relation

R(C) ⊆ P(C)×Q(C) must be given, subject to the constraint that for any injection ı : C ֌ D,

and any (p,q) ∈ R(C), we have ([ı]p, [ı]q) ∈ R(D).

2. Consider two I-ILeTSs with carriers P, Q ∈ SetI and relations

−→
P
⊆
∫

P × Labe×
∫

P −→
Q
⊆
∫

Q× Labe×
∫

Q .

An I-indexed early simulation between (P,−→
P
) and (Q,−→

Q
) is an I-indexed binary relation

R⊆ P ×Q such that

∀C ⊆f N , (p,q) ∈ R(C), ℓ ∈ Labe, (C ′ ⊢ p′) ∈
∫

P.

C ⊢ p
ℓ
−→

P
C ′ ⊢ p′ =⇒ ∃q′ ∈Q(C ′). C ⊢ q

ℓ
−→

Q
C ′ ⊢ q′and (p′,q′) ∈ R(C ′) .

62 Transition Systems and Coalgebras for Name-Passing

3. An I-indexed early bisimulation between I-ILeTSs (P,−→
P
) and (Q,−→

Q
) is an I-indexed binary

relation R between P and Q such that R is an I-indexed early simulation between (P,−→
P
) and

(Q,−→
Q
) and also Rop is an I-indexed early simulation between (Q,−→

Q
) and (P,−→

P
).

(Here, Rop is the I-indexed binary relation between Q and P given by, for each C ∈ I,

Rop(C) = (R(C))op.)

In this chapter and the next, when we speak of relations between presheaves we will mean spans

that are not only jointly monic, but which are also componentwise subsets, as in Definition 3.3.4(1).

The notion of bisimulation is justified by the following result.

Proposition 3.3.5 (c.f. Cattani and Sewell 2004, Thm. 2.4). Consider two π-calculus terms, p, q,

with fn(p)∪ fn(q)⊆ C . The term p is early bisimilar with q (according to Definition 3.1.10(1)) if and

only if there is an I-indexed early bisimulation R on (Pπ,−→
Pπ
) such that (p,q) ∈ R(C).

Remark. It is clear that, using the terminology of Section 2.4, an I-indexed early labelled tran-

sition system is the same thing as a
∫

-structured P (Labe ×−)-coalgebra, and an I-indexed early

bisimulation is the same thing as a
∫

-structured P (Labe ×−)-bisimulation. We will not, however,

make use of these descriptions in this thesis.

3.3.2 Relating I-indexed early labelled transition systems with coalgebras

We now relate the I-ILeTSs introduced in this section with the coalgebraic models introduced in the

previous one. We begin by explaining how every Be-coalgebra gives rise to an I-ILeTS.

We axiomatise those I-ILeTSs that are induced by Be-coalgebras in Figure 3.4. This provides a

complete concrete characterisation of the Be-coalgebras.

I-indexed early labelled transition systems from Be-coalgebras. The discussion after equa-

tion 3.2.12 has informally described how a Be-coalgebra can be thought of as a transition

function. We now make this connection precise. Given a Be-coalgebra (P,h : P → BeP) we let

−→h ⊆
∫

P × Labe×
∫

P be the least relation satisfying the following statements
�
Be→I

�
-1 – 4.

�
Be→I

�
-1. For any C ⊆f N , p ∈ P(C), c ∈ C , d ∈ N , and p′ ∈ P(C ∪ {d}):

if πinp(hC(p)) ↓ c and p′ ∈
�
πinp(hC(p))(c)

�
(d)

then C ⊢ p
c?d
−→h C ∪ {d} ⊢ p′.

�
Be→I

�
-2. For any C ⊆f N , p ∈ P(C), c, d ∈ C , and p′ ∈ P(C):

if πout(hC(p)) ↓ (c, d) and p′ ∈ πout(hC(p))(c, d)

then C ⊢ p
c!d
−→h C ⊢ p′.

�
Be→I

�
-3. For any C ⊆f N , p ∈ P(C), c ∈ C , z ∈ (N − C), and p′ ∈ P(C ∪ {z}):

if πbout(hC(p)) ↓ c and p′ ∈
�
πbout(hC(p))(c)

�
(z)

then C ⊢ p
c!z
−→h C ∪ {z} ⊢ p.

�
Be→I

�
-4. For any C ⊆f N , p ∈ P(C), and p′ ∈ P(C):

if πtau(hC(p)) ↓ ∗ and p′ ∈ πtau(hC(p))(∗)

then C ⊢ p
τ
−→h C ⊢ p′.

I-ILeTSs that are induced by Be-coalgebras. Not every I-indexed early labelled transition system

is induced by a Be-coalgebra according to
�
Be→I

�
-1–4. We can, however, axiomatise those that are.

Axioms I1–I6 in Figure 3.4 are intended to capture those I-indexed early labelled transition systems

that are induced by coalgebras; this is a result that will be shown in Theorem 3.3.8.

3.3. Transition systems for name-passing 63

I1. Channel is known and at most transmitted data is learnt:

C ⊢ p
ℓ
−→ C ′ ⊢ p′ =⇒ ch(ℓ)⊆ C ∧ C ′ = C ∪ dat(ℓ)

I2. If one name can be input, then so can any other: for all d ′ ∈ N :

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′

=⇒ ∃p′′ ∈ P(C ∪ {d ′}). C ⊢ p
c?d ′

−→ C ∪
�

d ′
	
⊢ p′′

I3. Bijective maps preserve transitions: for all D ∈ I, with C ∪ dat(ℓ)
β
∼= D:

C ⊢ p
ℓ
−→ C ∪ dat(ℓ) ⊢ p′ ∧ ch(ℓ)⊆ C

=⇒ β(C) ⊢ [β |C]p
[β]ℓ
−→ D ⊢ [β]p′

I4a. Knowing/forgetting input data preserves transitions:

C ⊢ p
c?z
−→ C ∪ {z} ⊢ p′

⇐⇒ C ∪ {z} ⊢ [C ,→C ∪ {z}]p
c?z
−→ C ∪ {z} ⊢ p′

I4b. Known output data must really be known:

C ∪ {d} ⊢ [C ,→C ∪ {d}]p
c!d
−→ C ∪ {d} ⊢ p′ =⇒ d ∈ C

I5. Inclusion maps preserve transitions:

C ⊢ p
ℓ
−→ C ∪ dat(ℓ) ⊢ p′ ∧ (D \ C)∩ dat(ℓ) = ;

=⇒ D ⊢ [C ,→D]p
ℓ
−→ D ∪ dat(ℓ) ⊢ [C ∪ dat(ℓ) ,→D ∪ dat(ℓ)]p′

I6. Inclusion maps reflect transitions:

D ⊢ [C ,→D]p
ℓ
−→ D ∪ dat(ℓ) ⊢ p′ ∧ (D \ C)∩ dat(ℓ) = ;

=⇒ ∃p′′ ∈ P(C ∪ dat(ℓ)).

[C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)]p′′ = p′ ∧ C ⊢ p
ℓ
−→ C ∪ dat(ℓ) ⊢ p′′

Figure 3.4: Requirements on an I-indexed labelled transition system over P ∈ SetI.

Axiom I1 is an abstract form of to Prop. 3.1.2. Axiom I2 mirrors Axiom V-1 of Figure 2.2:

this axiom, building on Corollary 3.1.4, requires that the eligibility of an input transition is not

dependent on the data involved. Axiom I3 is related to Prop. 3.1.12(1), but it also gives rise to

analogues of Corollary 3.1.4(2) and Prop. 3.1.8. For if fresh data z (i.e. with z 6∈ C) can be input

(or output), we have that any other fresh name z′ could just have well been input (output), by

considering the bijection [z′/z] : C ∪ {z}
∼
→ C ∪

�
z′
	
.

Axioms I4–I6 relate to changes in size of name-context. Axiom I4a describes a dichotomy

for input transitions: the eligibility of an input transition is not dependent on the size of the

context of names. Axiom I4b enforces a separation between output of known names and output

of fresh names, allowing us to code bound outputs as outputs of fresh data. Finally, Axioms I5

and I6 capture a dichotomy for transitions — in general, transitions cannot depend on learning or

forgetting names, as long as the data is kept well out of the way.

The I-indexed early labelled transition system −→
Pπ

for the π-calculus, as introduced in (3.3.3),

satisfies Axioms I1–I6. Indeed, Axioms I1–I3 appeared as propositions in Section 3.1, while Ax-

ioms I4–I6 arise from the definition (3.3.3).

We now continue to explain the correspondence between Be-coalgebras and I-ILTSs.

64 Transition Systems and Coalgebras for Name-Passing

Theorem 3.3.6. For every Be-coalgebra (P,h), the induced I-ILeTS (P,−→h) satisfies Axioms I1–I6.

Our proof of this theorem is rather laborious and is postponed to Appendix 3.A.

Be-coalgebras from I-indexed early labelled transition systems. To each I-ILeTS (P,−→) that

satisfies Axioms I2 and I3 is assigned the family of functions
¦
−→
h C : P(C)→ BeP(C)

©
C∈I

defined as follows.
�
I→Be

�
-1. For any C ⊆f N , p ∈ P(C), c ∈ C:

πinp(
−→
h C (p)) ↓ c if and only if

there exist d ∈ N and p′ ∈ P(C ∪ {d})

such that C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′;

In this case, for every d ∈ N�
πinp(

−→
h C (p))(c)

�
(d) =

§
p′
��� C ⊢ p

c?d
−→ C ∪ {d} ⊢ p′

ª
.

�
I→Be

�
-2. For any C ⊆f N , p ∈ P(C), c, d ∈ C:

πout(
−→
h C (p)) ↓ (c, d) if and only if

there is p′ ∈ P(C) such that C ⊢ p
c!d
−→ C ⊢ p′;

In this case,

πout(
−→
h C (p))(c, d) =

§
p′
��� C ⊢ p

c!d
−→ C ⊢ p′

ª
.

�
I→Be

�
-3. For any C ⊆f N , p ∈ P(C), c ∈ C:

πbout(
−→
h C (p)) ↓ c if and only if

there exist d ∈ (N − C) and p′ ∈ P(C ∪ {d})

such that C ⊢ p
c!d
−→ C ∪ {d} ⊢ p′;

In this case, for every d ∈ (N − C),�
πbout(

−→
h C (p))(c)

�
(d) =

§
p′
��� C ⊢ p

c!d
−→ C ∪ {d} ⊢ p′

ª
.

�
I→Be

�
-4. For any C ⊆f N , p ∈ P(C):

πtau(
−→
h C (p)) ↓ ∗ if and only if

there is p′ ∈ P(C) such that C ⊢ p
τ
−→ C ⊢ p′

In this case,

πtau(
−→
h C (p))(∗) =

§
p′
��� C ⊢ p

τ
−→ C ⊢ p′

ª
.

We must show that the sets constructed by comprehension in the definition are not empty, and

also that
�
I→Be

�
-1 and

�
I→Be

�
-3 respect the uniformity conditions imposed in the definitions of

[N ⇒−] (3.2.3a) and of δ (3.2.4).

When πout(
−→
h C (p)) is defined at (c, d), it follows from the definition (

�
I→Be

�
-2) that

πout(
−→
h C (p))(c, d) is inhabited. Similarly, πtau(

−→
h C (p))(∗) is always inhabited whenever it is

defined. The set constructed in
�
I→Be

�
-1 is never empty as a result of Axiom I2. As for the set

involved in
�
I→Be

�
-3, notice that if πbout(

−→
h C (p)) ↓ c then there must be d ∈ (N − C) such that

C ⊢ p
c!d
−→ C ∪ {d} ⊢ p′. Consider another fresh name d ′ ∈ (N − C). Axiom I3 together with the

substitution [d ′/d] : C ∪ {d}
∼
→ C ∪

�
d ′
	

gives a transition C ⊢ p
c!d ′

−→ C ∪
�

d ′
	
⊢ [d ′/d]p′. So we

have [d ′/d]p′ ∈
�
πbout(

−→
h C (p))(c)

�
(d ′), i.e.,

�
πbout(

−→
h C (p))(c)

�
(d ′) is inhabited.

We now explain why the uniformity constraints hold of the constructions introduced in�
I→Be

�
-1 and

�
I→Be

�
-3. As regards

�
I→Be

�
-1, we must show that for any d, d ′ ∈ (N − C),

�
πinp(

−→
h C (p))(c)

�
(d ′) = (PneP)[d ′/d]

�
πinp(

−→
h C (p))(c)

�
(d) .

3.3. Transition systems for name-passing 65

This amounts to showing that for every p′ ∈ P(C ∪ {d}) such that

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′

we have C ⊢ p
c?d ′

−→ C ∪
�

d ′
	
⊢ [d ′/d]p′. Since d, d ′ 6∈ C , this arises immediately from Axiom I3.

Validity of
�
I→Be

�
-3 is derived from Axiom I3 in a similar manner. Thus for each I-ILeTS −→

that satisfies Axioms I2 and I3, we have a family of maps

¦
−→
h C : P(C)→ (BeP)(C)

©
C∈I

.

Theorem 3.3.7. For any I-ILeTS−→ that satisfies Axioms I1–I6, the induced family
¦
−→
h C

©
C

is natural

in C .

The proof of this theorem is postponed to Appendix 3.A.

Thus we have a procedure for extracting a Be-coalgebra from an I-ILeTS that satisfies Axioms I1–

I6. In fact, the class of Be-coalgebras is in bijection with the class of I-ILeTSs satisfying Axioms I1–I6.

Theorem 3.3.8. The procedure of
�
I→Be

�
-1–4 is left and right inverse to

�
Be→I

�
-1–4.

Proof. We must show that for any presheaf P ∈ SetI, and any Be-coalgebra h : P → BeP, we have

h =
�
−→h

�
h (3.3.9a)

and that for any I-ILeTS −→⊆
∫

P × Labe×
∫

P satisfying Axioms I1–I6, we have

−→ = −→(−→h) . (3.3.9b)

(Here (3.3.9a) is equality of natural transformations and (3.3.9b) is equality of labelled transition

relations.)

Equation 3.3.9a follows straightforwardly from the definitions of
�
I→Be

�
-1–4 and

�
Be→I

�
-1–4.

As regards equation 3.3.9b, the inclusion

−→⊇−→(−→h)

is equally straightforward. To show the inclusion

−→⊆−→(−→h)

we make use of Axiom I1 on −→. For instance, suppose that we have C , C ′ ⊆f N and p ∈ P(C)

and p′ ∈ P(C ′) together with c, d ∈ N such that

C ⊢ p
c?d
−→ C ′ ⊢ p′ .

Axiom I1 ensures that c ∈ C and that C ′ = C ∪ {d}. So, by
�
I→Be

�
-1, we have that πinp(

−→
h C (p)) ↓ c

and

p′ ∈
�
πinp(

−→
h C (p))

�
(c)
�
(d) .

So, by
�
Be→I

�
-1, we have

C ⊢ p
c?d
−→(−→h) C ′ ⊢ p′ .

The other modes of communication are treated similarly.

66 Transition Systems and Coalgebras for Name-Passing

Coalgebras for the π-calculus. Theorem 3.3.8 allows us to give coalgebraic interpretations of

the π-calculus. The I-ILeTS (Pπ,−→
Pπ
) defined in (3.3.3) induces a Be-coalgebra structure

Pπ→ BePπ . (3.3.10)

Using the mapping described in (3.2.14), we also have a Bg-coalgebra structure

Pπ→ BgPπ . (3.3.11)

3.3.3 Relating notions of bisimulation

The induction of transition systems from coalgebras is most credible if the bisimulation on the in-

duced transition systems corresponds to coalgebraic bisimulation. For the name-passing case, the

reader may have anticipated that Be-bisimulation between Be-coalgebras coincided with I-indexed

early bisimulation for the corresponding I-indexed early labelled transition systems (induced ac-

cording to
�
Be→I

�
-1 – 4). Unfortunately, and contrary to the claims of Fiore and Turi [2001, Prop.

2.4], this is not quite the case.

This disparity is only a minor anomaly. The equivalence relation with which we are ultimately

concerned is bisimilarity, the greatest bisimulation. As will be shown, the greatest coalgebraic

bisimulation does coincide with the greatest transition system bisimulation.

We begin this subsection by noting that every coalgebraic bisimulation is a bisimulation for the

labelled transition system; it is the converse that is the problem. An illustration of this problem is

provided, and we then provide a weaker form for the converse of the result, by imposing a closure

condition on the relations under consideration. Thus we can conclude that a final Be-bisimulation

is a final I-indexed early bisimulation.

In the next chapter, in Theorem 4.2.5, we show that, for Be-coalgebras whose carriers satisfy

a sheaf condition, there is no problem and the Be-bisimulations are exactly the I-indexed early

bisimulations.

Coalgebraic bisimulations are labelled transition system bisimulations. We first establish a

general lemma, and then note that every coalgebraic bisimulation is a bisimulation for the labelled

transition system.

Lemma 3.3.12. Consider Be-coalgebras (P,h) and (Q, k) and an I-indexed binary relation R between

P and Q. Suppose we have a Be-coalgebra structure r : R→ BeR on R.

The structure r lifts R to a span of coalgebras if and only if the following three properties hold

of the induced I-ILeTSs.

1. If C ⊢ (p,q)
ℓ
−→r C ′ ⊢ (p′,q′) then C ⊢ p

ℓ
−→h C ′ ⊢ p′ and C ⊢ q

ℓ
−→k C ′ ⊢ q′.

2. If (p,q) ∈ R(C) and C ⊢ p
ℓ
−→h C ′ ⊢ p′ then there is q′ ∈ Q(C ′) such that (p′,q′) ∈ R(C ′) and

C ⊢ (p,q)
ℓ
−→r C ′ ⊢ (p′,q′).

3. If (p,q) ∈ R(C) and C ⊢ q
ℓ
−→k C ′ ⊢ q′ then there is p′ ∈ P(C ′) such that (p′,q′) ∈ R(C ′) and

C ⊢ (p,q)
ℓ
−→r C ′ ⊢ (p′,q′).

Proof notes. This lemma follows straightforwardly from the definitions. For instance, suppose

that R is a Be-bisimulation. We will show item (2) for the case of bound output labels ℓ= c!(z).

If (p,q) ∈ R(C) and C ⊢ p
ℓ
−→h C ′ ⊢ p′, then we know, from

�
Be→I

�
-3, that C ′ = C ∪ {z}, and

that πbout(hC(p)) is defined at c, and that the set (πbout(hC(p))(c))(z) contains p′. Since the left

projection r1 : R → P is a coalgebra homomorphism, we know that (Ber1)C(rC(p,q)) = hC(p),

and so, from the action of Be, we know that πbout(rC(p,q)) is defined at c, and that there is

3.3. Transition systems for name-passing 67

an element q′ ∈Q(C ∪ {z}) such that the pair (p′,q′) is in R(C ∪ {z}), and moreover that the

pair (p′,q′) is in the set (πbout(rC(p,q))(c))(z). Thus, by
�
Be→I

�
-3, we know that the transition

C ⊢ (p,q)
ℓ
−→r C ′ ⊢ (p′,q′) is induced.

Proposition 3.3.13. Every Be-bisimulation relation R between Be-coalgebras (P,h) and (Q, k) is also

an I-indexed early bisimulation between the induced I-ILeTSs −→h and −→k.

Proof. We consider Be-coalgebras (P,h) and (Q, k), and a Be-bisimulation relation R between them.

We write the projections of the relation as r1 : R→ P and r2 : R→Q, and we have a natural transfor-

mation r : R→ BeR lifting R to a span of coalgebra homomorphisms. It follows that properties 1–3

of Lemma 3.3.12 are satisfied, and from these conditions it follows immediately that R is an I-in-

dexed early bisimulation between (P,−→h) and (Q,−→k).

Anomaly. We now explain why the converse of Prop. 3.3.13 does not hold. We invent three

distinct states, p, p1, p2, and consider the presheaf P ∈ SetI given by

P(;) =
�
p,p1, p2

	
+
�
p,p1, p2

	

P(C) =
�
p,p1, p2

	
for C 6= ; .

The action of P on injections C ֌ D is identity, except when C = ;, in which case the action is the

codiagonal.

We define an I-ILeTS structure −→ on P to be the least admitting the following transitions.

; ⊢ inlp
τ
−→ ; ⊢ inlp1 ; ⊢ inlp

τ
−→ ; ⊢ inlp2

; ⊢ inrp
τ
−→ ; ⊢ inrp1 ; ⊢ inrp

τ
−→ ; ⊢ inrp2

C ⊢ p
τ
−→ C ⊢ p1 C ⊢ p

τ
−→ C ⊢ p2 for C 6= ;

It is clear that this I-ILeTS satsifies Axioms I1–I6, and so, by Theorem 3.3.7, we have a Be-coalgebra

structure P → BeP.

We define an I-indexed binary relation R⊆ P × P as follows.

R(;) =

¨
(inlp, inlp), (inlp1, inlp1), (inlp2, inlp2),

(inrp, inrp), (inrp1, inrp2), (inrp2, inrp1)

«

R(C) =
�
(p,p), (p1, p1), (p1, p2), (p2, p1), (p2, p2)

	
for C 6= ;

It is straightforward to check that this is a I-indexed early bisimulation on (P,−→). This relation,

however, is not a Be-bisimulation on the induced Be-coalgebra, since there is no appropriate natural

transformation r : R→ BeR. To show this, we suppose that there is such a natural transformation,

and derive a contradiction. The natural transformation r : R→ BeR gives rise to an I-ILeTS (R,−→r)

satisfying Axioms I1–I6, and also satisfying properties 1–3 of Lemma 3.3.12. Property 2 ensures

that

; ⊢ (inlp, inlp)
τ
−→r ; ⊢ (inlp1, inlp1) .

By Axiom I5, we must have

C ⊢ (p,p)
τ
−→r C ⊢ (p1, p1)

for any non-empty set C , and by Axiom I6, we must have z ∈ R(;) such that

[; ,→ C]z = (p1, p1) and ; ⊢ (inrp, inrp)
τ
−→r ; ⊢ z .

From the definition of R, we we can only have z = (inlp1, inlp1), and so

; ⊢ (inrp, inrp)
τ
−→r ; ⊢ (inlp1, inlp1) .

68 Transition Systems and Coalgebras for Name-Passing

But this violates property 1 of Lemma 3.3.12 — a contradiction.

The counterexample that we have presented here is a little artificial. Central to the example is

the property that, in the presheaf of states that is considered, the action of injections is not always

injective. We will argue in the next chapter that this is an unnatural property of a state space.

A closure operator. A peculiar aspect in the above example is that the relation R contains the

pair (p1, p1) at all non-empty contexts, but does not contain (inrp1, inrp1) at the empty context. We

now consider the implications of closing the relation in this way.

Given any presheaves P, Q ∈ SetI, such that Q ⊆ P, we let Q̄ ∈ SetI be the subpresheaf of P that

is given on objects C ∈ I by

Q̄(C) =
¦

p ∈ P(C)
�� ∃D ⊇ C in I. P[C ,→ D](p) ∈Q(D)

©
. (3.3.14)

To see that Q̄ is indeed a subfunctor of P, notice that for every span in I of the form (C ′
ı
֋ C ,→ D)

there is a superset D′ of C ′ and an injection  : D֌ D′ such that the following diagram commutes

in I.

C
� � //

ı

��

D



��

C ′
� � // D′

Note that the I-indexed binary relation for early bisimilarity for the π-calculus, considered in

Prop. 3.3.5, is closed in this way.

For the I-indexed binary relation R considered in the example above, we have

R̄(;) =





(inlp, inlp), (inlp1, inlp1), (inlp1, inlp2), (inlp2, inlp1), (inlp2, inlp2),

(inlp, inrp), (inlp1, inrp1), (inlp1, inrp2), (inlp2, inrp1), (inlp2, inrp2)

(inrp, inlp), (inrp1, inlp1), (inrp1, inlp2), (inrp2, inlp1), (inrp2, inlp2),

(inrp, inrp), (inrp1, inrp1), (inrp1, inrp2), (inrp2, inrp1), (inrp2, inrp2)





R̄(C) = R(C) =
�
(p,p), (p1, p1), (p1, p2), (p2, p1), (p2, p2)

	
for C 6= ;.

Applying the closure operator to an I-indexed early bisimulation results in a new I-indexed early

bisimulation, as we now show.

Proposition 3.3.15. Consider two I-ILeTSs, (P,−→
P
) and (Q,−→

Q
), that both satisfy Axioms I1–I6.

Let R be an I-indexed binary relation between P and Q. (So R ⊆ P ×Q.) If R is an I-indexed early

bisimulation between (P,−→
P
) and (Q,−→

Q
), then so is R̄.

Proof. We assume that R is an I-indexed early bisimulation between induced I-ILeTSs −→
P

and −→
Q

that satisfy Axioms I1–I6. We will show that R̄ is also an I-indexed early bisimulation. For brevity,

we will show that R̄ is an I-indexed early simulation; the opposite direction is symmetric.

Suppose that (p,q) ∈ R̄(C) and that we have a transition

C ⊢ p
ℓ
−→

P
C ′ ⊢ p′ .

We must show that there is a transition C ⊢ q
ℓ
−→

Q
C ′ ⊢ q′ such that (p′,q′) ∈ R̄(C ′).

For the case when ℓ= c!z, with z 6∈ C , we proceed as follows. Axiom I1 ensures that C ′ = C ∪ {z}.

The closure operator ensures that there is D ∈ I such that the pair (P ×Q)[C ,→ D](p,q) is in R(D).

We let p0 = P[C ,→ D](p) and let q0 = Q[C ,→ D](q). We pick a fresh name z′ ∈ (N − D), and, by

Axiom I3, we know that

C ⊢ p
c!z′

−→
P

C ∪
�
z′
	
⊢ [z′/z]p′ .

3.3. Transition systems for name-passing 69

By Axiom I5 we have

D ⊢ p0
c!z′

−→
P

D ∪
�
z′
	
⊢ [C ∪

�
z′
	
,→ D ∪

�
z′
	
][z′/z]p′ .

Since R is an I-indexed early bisimulation, we have an element q′0 ∈Q(D∪
�
z′
	
) such that ([C ∪

�
z′
	
,→ D ∪

�
z′
	
][z

is in R(D ∪
�
z′
	
) and

D ⊢ q0
c!z′

−→
Q

D ∪
�
z′
	
⊢ q′0 .

Axiom I6 provides q′ ∈Q(C ∪
�
z′
	
) such that [C ∪

�
z′
	
,→ D ∪

�
z′
	
]q′ = q′0 and such that

C ⊢ q
c!z′

−→
Q

C ∪
�
z′
	
⊢ q′ .

By definition of R̄, we have that ([z′/z]p′,q′) ∈ R̄(C ∪
�
z′
	
). Functoriality of R̄ ensures that

(p′, [z/z′]q′) ∈ R̄(C ∪ {z}), and Axiom I3 gives

C ⊢ q
c!z
−→

Q
C ∪ {z} ⊢ [z/z′]q′

as required.

The cases for known output, input, and silent labels are similar. For known output, Axiom I4b

is required, and for the input labels, Axiom I4a is required. Thus we can conclude that R̄ is an

I-indexed early simulation, and through a symmetric argument, an I-indexed early bisimulation.

We now show that, if we restrict attention to those I-indexed binary relations that are closed,

then the Be-bisimulations are exactly the I-indexed early bisimulations. The reader should note

that we do not assert that every Be-bisimulation is closed, and so the problem of characterising

coalgebraic bisimulations remains open.

Theorem 3.3.16. Let (P,h) and (Q, k) be Be-coalgebras, and consider an I-indexed binary relation

R between P and Q. If the closed relation R̄ is an I-indexed early bisimulation between the induced

I-ILeTSs (P,−→h) and (Q,−→k), then it is a Be-bisimulation between Be-coalgebras (P,h) and (Q, k).

Proof. We suppose that R̄ is an I-indexed early bisimulation between (P,−→h) and (Q,−→k), and

show that it is a Be-bisimulation between Be-coalgebras (P,h) and (Q, k). To do this, we define an

I-ILeTS with carrier R̄. The transition relation −→⊆
∫

R̄× Labe ×
∫

R̄ is the least such that for any

C , C ′ ∈ I, and any label ℓ ∈ Labe, and any (p,q) ∈ R̄(C) and (p′,q′) ∈ R̄(C ′): if

C ⊢ p
ℓ
−→h C ′ ⊢ p′ and C ⊢ q

ℓ
−→k C ′ ⊢ q′

then

C ⊢ (p,q)
ℓ
−→ C ′ ⊢ (p′,q′) .

We now show that this I-ILeTS (R̄,−→) satisfies Axioms I1–I6. Axiom I1 holds of (R̄,−→) because

it holds of (P,−→h). Axiom I2 holds because it holds of (P,−→h) and because R̄ is an I-indexed early

bisimulation.

Axioms I3 and I5 hold of (R̄,−→) because R is functorial, and because Axioms I3 and I5 hold

of (P,−→h) and (Q,−→k). Axioms I4a and I4b hold of (R̄,−→) because they hold of (P,−→h)

and (Q,−→k).

To see that Axiom I6 holds of (R̄,−→): note that I6 holds of (P,−→h) and (Q,−→k), and I6

for (R̄,−→) follows from the closure properties of R̄. For instance, if we have a transition

D ⊢ [C ,→ D](p,q)
τ
−→ D ⊢ (p′,q′)

70 Transition Systems and Coalgebras for Name-Passing

then we must have

D ⊢ [C ,→ D]p
τ
−→h D ⊢ p′ and D ⊢ [C ,→ D]q

τ
−→k D ⊢ q′ .

Axiom I6 for (P,−→h) and (Q,−→k) supplies elements p′′ ∈ P(C) and q′′ ∈ Q(C) such that

P[C ,→ D](p′′) = p′ and Q[C ,→ D](q′′) = q′, and

C ⊢ p
τ
−→h D ⊢ p′′ and C ⊢ q

τ
−→k D ⊢ q′′ .

By definition of the closure construction, (p′′,q′′) ∈ R̄(C), and so

C ⊢ (p,q)
τ
−→ C ⊢ (p′′,q′′) .

Thus the I-ILeTS (R̄,−→) satisfies Axioms I1–I6. By Theorem 3.3.7, we have a coalgebra struc-

ture r̄ : R̄→ BeR̄ that induces the I-ILeTS (R̄,−→). In other words, −→ = −→r̄ .

To conclude that R̄ is a Be-bisimulation we appeal to Lemma 3.3.12. Property 1 of that lemma

holds by definition, while Properties 2 and 3 hold since R̄ is an I-indexed early bisimulation.

The closure operation (R 7→ R̄) is inflationary, and so, by considering Theorem 3.3.16 together

with Props. 3.3.13 and 3.3.15, we obtain the following result.

Corollary 3.3.17. The final Be-bisimulation between Be-coalgebras (P,h) and (Q, k) is the greatest

I-indexed early bisimulation between the I-ILeTSs (P,−→h) and (Q,−→k).

3.3.4 Indexed ground labelled transition systems

Having developed a theory of indexed early labelled transition systems over the past three subsec-

tions, we now consider models of ground behaviour. For ground transition systems we will use the

set of labels given by

Labg =N ×N + N ×N + N ×N + 1 (3.3.18)

writing c?(d), c!d, c!(d), τ for elements of the first (bound input), second (output), third (bound

output) and fourth (silent) summands respectively.

Notice that we distinguish bound and free outputs in ground labels. In this way our approach

to ground labels differs from the approach to early labels (equation 3.3.1). One reason for this is

that, with the ground systems, bound input and bound output are treated in the same way, and the

distinction in the labels may help to clarify this.

We define channel and data functions ch,dat : Labg→P (N) in much the same way as for early

labels.
ℓ ∈ Labg ch(ℓ) dat(ℓ)

c?(d) {c} {d}

c!d {c} {d}

c!(d) {c} {d}

τ ; ;

Transition systems. I-indexed ground labelled transition systems differ from I-ILeTSs (Defini-

tion 3.3.2) only in that they use ground labels rather than early ones.

Definition 3.3.19. An I-indexed ground labelled transition system (I-ILgTS) is a presheaf P ∈ SetI

together with a transition relation −+ ⊆
∫

P × Labg×
∫

P.

3.3. Transition systems for name-passing 71

As in Section 3.1, we distinguish ground transitions from early transitions by using ‘harpoon’ ar-

rows.

In (3.3.3) we described how a semantics for the π-calculus can be given in terms of an I-ILeTS.

A ground semantics for the π-calculus is provided by an I-ILgTS in a similar manner, but this time

using the ground transition relation −+π on π-calculus terms that was introduced in Figure 3.3.

Again, the carrier is Pπ, while the transition relation is the least relation

−+
Pπ
⊆
∫

Pπ× Labg×
∫

Pπ

satisfying the following implications.

If p
c(z)
−+π p′ and fn(p)⊆ C 6∋ z then C ⊢ p

c?(z)
−+

Pπ
C ∪ {z} ⊢ p′;

If p
c̄d
−+π p′ and fn(p)⊆ C then C ⊢ p

c!d
−+

Pπ
C ⊢ p′;

If p
c̄(z)
−+π p′ and fn(p)⊆ C 6∋ z then C ⊢ p

c!(z)
−+

Pπ
C ∪ {z} ⊢ p′;

If p
τ
−+π p′ and fn(p)⊆ C then C ⊢ p

τ
−+

Pπ
C ⊢ p′.

(3.3.20)

Ground bisimulation. I-indexed ground bisimulation between I-ILgTSs is defined in much the

same way as I-indexed early bisimulation was defined between I-ILeTSs in Definition 3.3.4; the

only difference is that labels come from Labg instead of from Labe.

It is straightforward to prove a version of Prop. 3.3.5 for the ground case: a π-calculus term p

is ground bisimilar with a term q (according to Definition 3.1.10(2)) if and only if there is an

I-indexed ground bisimulation R on (Pπ,−+
Pπ
) such that (p,q) ∈ R(C).

From early to ground labelled transition systems. An abstract form of part of Prop. 3.1.9 is

useful. For every I-ILeTS (P,−→)We let g−→ ⊆
∫

P×Labg×
∫

P be the least I-ILgTS over P satisfying

the following predicates.

If C ⊢ p
c?z
−→ C ′ ⊢ p′ and z 6∈ C then C ⊢ p

c?(z)
g−→ C ′ ⊢ p′

If C ⊢ p
c!d
−→ C ′ ⊢ p′ and d ∈ C then C ⊢ p

c!d
g−→ C ′ ⊢ p′

If C ⊢ p
c!z
−→ C ′ ⊢ p′ and z 6∈ C then C ⊢ p

c!(z)
g−→ C ′ ⊢ p′

If C ⊢ p
τ
−→ C ′ ⊢ p′ then C ⊢ p

τ
g−→ C ′ ⊢ p′

(3.3.21)

The I-ILgTS model of the π-calculus (Pπ,−+
Pπ
), defined in (3.3.20), is precisely the I-ILgTS in-

duced via (3.3.21) from the I-ILeTS model (Pπ,−→
Pπ
), of (3.3.10).

I-indexed ground labelled transition systems from Bg-coalgebras. An I-ILgTS is induced by a

Bg-coalgebra in a similar way to the induction of an I-ILeTS from a Bg-coalgebra (see
�
Be→I

�
-1 – 4

on page 62). Given a Bg-coalgebra (P,h : P → BgP) we define −+h ⊆
∫

P× Labg×
∫

P to be the least

relation satisfying the following statements
�
Bg→I

�
-1 – 4.

�
Bg→I

�
-1. For any C ⊆f N , p ∈ P(C), c ∈ C , z ∈ (N − C), and p′ ∈ P(C ∪ {z}):

if πbinp(hC(p)) ↓ c and p′ ∈
�
πbinp(hC(p))(c)

�
(z)

then C ⊢ p
c?(z)
−+h C ∪ {z} ⊢ p′.

�
Bg→I

�
-2. For any C ⊆f N , p ∈ P(C), c, d ∈ C , and p′ ∈ P(C):

if πout(hC(p)) ↓ (c, d) and p′ ∈ πout(hC(p))(c, d)

then C ⊢ p
c!d
−+h C ⊢ p′.

72 Transition Systems and Coalgebras for Name-Passing

�
Bg→I

�
-3. For any C ⊆f N , p ∈ P(C), c ∈ C , z ∈ (N − C), and p′ ∈ P(C ∪ {z}):

if πbout(hC(p)) ↓ c and p′ ∈
�
πbout(hC(p))(c)

�
(z)

then C ⊢ p
c!(z)
−+h C ∪ {z} ⊢ p.

�
Bg→I

�
-4. For any C ⊆f N , p ∈ P(C), and p′ ∈ P(C):

if πtau(hC(p)) ↓ ∗ and p′ ∈ πtau(hC(p))(∗)

then C ⊢ p
τ
−+h C ⊢ p′.

In summary, we have the following situation. (Arrows are labelled with references to where the

maps are defined.)

Be-coalgebras
(3.2.14)

//

�
Be→I

�
-1–4

��

Bg-coalgebras

�
Bg→I

�
-1–4

��

I-ILeTSs
(3.3.21)

// I-ILgTSs

(3.3.22)

It is straightforward to verify that the diagram commutes.

Coalgebraic bisimulation versus transition system bisimulation. It appears that the anomaly

that was discussed in Section 3.3.3 (with reference to early bisimulation) will also arise in the

context of ground bisimulation. It seems that the treatment presented there, involving the closure

operator, will be appropriate in the ground setting too.

3.4 Arbitrary substitutions and uniform input

For certain aspects of the theory of name-passing it is essential to consider arbitrary substitutions,

and not just the injective ones. To this end it is necessary to require more structure in our state

spaces than was allowed in the previous section. Indeed, this is always reasonable if the states are

associated with some syntax, as we will see in (3.4.1) and in Section 7.4.

We begin, in Section 3.4.1, by revisiting the labelled transition system and coalgebraic models

for name-passing, in the context of all substitutions. The early (resp. ground) labelled transition

systems in this context we call F-ILeTSs (resp. F-ILgTSs). For the coalgebraic models, the notion of

structured coalgebra, introduced in Section 2.4, comes into play.

In Section 3.4.2, we investigate the notions of bisimulation that arise in these classes of model.

For the model of the π-calculus, these notions are the wide open bisimulations considered in Def-

inition 3.1.13. In Prop. 3.1.14 we asserted that, for wide open relations, the notions of early

and ground bisimulation all coincide; we conclude Section 3.4.2 by rephrasing this result in the

coalgebraic setting.

Inspired by this result, we proceed in Section 3.4.3 to derive F-ILeTSs from F-ILgTSs. The F-ILeTSs

that are so derivable are precisely those that satisfy a uniformity condition on input behaviour. We

conclude this section by showing that the F-ILeTSs that satisfy this uniformity condition are precisely

the N -LTSs introduced by Cattani and Sewell [2004]. Thus the N -LTSs of Cattani and Sewell are

given a coalgebraic foundation.

3.4.1 Coalgebras and indexed labelled transition systems

Presheaves. Let F be the category with objects given by finite subsets of N , and morphisms by

all functions between them. A covariant presheaf X : F→ Set can be thought of as associating to

each set of names C , a set X (C) of states that may use these names. To each function f : C → D

between name contexts is associated a function X f : X (C)→ X (D) intended to model substitution

in states according to the function f .

3.4. Arbitrary substitutions and uniform input 73

Notation. The following notation generalises the notation for injections introduced in Section 3.2.

For every set C ⊆f N , and all names c, d ∈ N , the surjection [d/c] : (C ∪ {c})→ ((C − {c})∪ {d})

acts as identity on (C − {c}) and maps c to d.

Example: presheaf over F for the π-calculus. The state space of the π-calculus was introduced

in equation 3.2.1 as a presheaf over I. It makes sense to substitute in π-calculus terms using non-

injective functions, so we are led to consider the following presheaf Xπ over F. For C ⊆f N , let

Xπ(C) =
¦

p
�� p is a π-calculus term and fn(p)⊆ C

©
(3.4.1a)

while for any C , D ⊆f N , any function f : C → D, and any term p ∈ Xπ(C):

Xπ f (p) = [f]p — i.e. the substitution f applied to p. (3.4.1b)

[The presheaf Xπ is precisely the functor π introduced by Cattani and Sewell, 2004, Defn. 3.10,

and is the initial algebra T0 of Fiore and Turi, 2001, eqn. 16.]

Relating presheaves over F with presheaves over I. Any presheaf on F can be considered as a

presheaf on I: the obvious faithful identity-on-objects functor jIF : I→ F induces by precomposition

a faithful functor

U I
F
= (jIF)

∗ : SetF→ SetI

given by forgetting non-injective actions. For instance, the presheaf Pπ on I for the π-calculus

(3.2.1) is related with the presheaf Xπ on F (3.4.1) by the identity

Pπ = U I
F
Xπ .

Via this equation, we can consider the early and ground coalgebras for the π-calculus (as introduced

in (3.3.2)) as natural transformations

hπe : U I
F
Xπ→ BeU I

F
Xπ (3.4.2a)

hπg : U I
F
Xπ→ BgU I

F
Xπ . (3.4.2b)

Thus we are led to consider U I
F
-structured Be/g-coalgebras.

An adjunction. The forgetful functor U I
F

: SetF → SetI is the inverse image of a geometric mor-

phism SetI → SetF, induced by the inclusion jIF : I → F. So the direct image of this geometric

morphism, (jIF)∗ : SetI→ SetF provides U I
F

with a right adjoint. We do not need an explicit descrip-

tion here. [A more detailed discussion is provided by Fiore and Turi, 2001, Sec. 1.3. They denote

the direct image by 〈N ,−〉.]

Notice that we have the situation described in Example 2.4.3(2), and as such there is an iso-

morphism of categories,

(U I
F
, Be)-Coalg∼= ((jIF)∗BeU I

F
)-Coalg . (3.4.3)

So our study of U I
F
-structured Be/g-coalgebras can equivalently be seen as a study of the kinds of

coalgebras considered by Fiore and Turi [2001, Sec. 3].

Indexed labelled transition systems. We now introduce notions of labelled transition system

over elements of presheaves over F. The notions are very closely related to the I-indexed labelled

transition systems of Definition 3.3.2.

74 Transition Systems and Coalgebras for Name-Passing

Definition 3.4.4. An F-indexed early labelled transition system (F-ILeTS) is a presheaf X ∈ SetF to-

gether with a transition relation −→⊆
∫

X × Labe×
∫

X .

An F-indexed ground labelled transition system (F-ILgTS) is a presheaf X ∈ SetF together with a

transition relation −+⊆
∫

X × Labg×
∫

X .

For any presheaf X ∈ SetF we have
∫

X =
∫

U I
F
X . So an F-ILeTS (resp. F-ILgTS) with carrier X is

the same thing as an I-ILeTS (resp. I-ILgTS) with carrier U I
F
X . For instance, the I-ILeTS introduced for

the π-calculus in (3.3.3) can be considered as an F-ILeTSs with carrier Xπ. In this way Axioms I1–I6

(Figure 3.4) on I-ILeTSs can be considered as axioms on F-ILeTSs. Recalling Theorem 3.3.8, we note

that

The class of U I
F
-structured Be-coalgebras is in bijective correspondence with the class of

those F-ILeTSs that satisfy Axioms I1–I6.

3.4.2 Bisimulation

We now introduce notions of bisimulation on F-ILeTSs and F-ILgTSs, and compare these notions

with U I
F
-structured Be-bisimulation and U I

F
-structured Bg-bisimulation.

Indexed bisimulation.

Definition 3.4.5.

1. Consider presheaves X , Y ∈ SetF. An F-indexed binary relation R between X and Y is a pre-

sheaf R ∈ SetF that is a subobject of X × Y . Thus an F-indexed binary relation R is an I-in-

dexed binary relation between U I
F
X and U I

F
Y such that for any function f : C → D in F, and

any (x , y) ∈ R(C), we have ([f]x , [f]y) ∈ R(D).

2. An F-indexed early bisimulation between F-ILeTSs (X ,−→
X
) and (Y,−→

Y
) is an F-indexed bi-

nary relation R between X and Y such that U I
F
R is an I-indexed early bisimulation between

(U I
F
X ,−→

X
) and (U I

F
Y,−→

Y
).

3. An F-indexed ground bisimulation between F-ILgTSs (X ,−+
X
) and (Y,−+

Y
) is an F-indexed

binary relation R between X and Y such that U I
F
R is an I-indexed ground bisimulation between

(U I
F
X ,−+

X
) and (U I

F
Y,−+

Y
).

Wide open bisimulation for the π-calculus. The notion of F-indexed binary relation can be

thought of as an abstract form of the notion of wide open relation on π-calculus terms introduced

in Definition 3.1.13: an F-indexed binary relation is an indexed relation that is closed under all

substitutions. The following result follows straightforwardly from Prop. 3.1.14 and Prop. 3.3.5.

Proposition 3.4.6.

Consider two π-calculus terms, p, q, with fn(p)∪ fn(q)⊆ C . The following are equivalent.

1. p is wide open bisimilar with q.

2. There is an F-indexed early bisimulation R on (Xπ,−→
Xπ
) such that (p,q) ∈ R(C).

3. There is an F-indexed ground bisimulation R on (Xπ,−+
Xπ
) such that (p,q) ∈ R(C).

The equivalence of items 1 and 2 has also been established by Cattani and Sewell [2004, Thm.

4.5].

3.4. Arbitrary substitutions and uniform input 75

Coalgebraic bisimulation. We now relate the notions of F-indexed bisimulation with the coalge-

braic notions of structured bisimulation. We begin by defining a closure operator on subpresheaves

in SetF, analogous to that defined in equation 3.3.14 for subpresheaves in SetI. Given any pre-

sheaves X , Y ∈ SetF such that Y ⊆ X , we let Ȳ ∈ SetF be the subpresheaf of X that is given on

objects C ∈ F by

Ȳ (C) = {x ∈ X (C) | ∃D ⊇ C in F. X [C ,→ D](x) ∈ Y (D)} . (3.4.7)

To see that Ȳ is indeed a subfunctor of X , the important thing to note is that for every span in F

of the form (C ′
f
← C ,→ D) there is a superset D′ of C ′ and a function g : D → D′ such that the

following diagram commutes in F.

C
� � //

f

��

D

g

��

C ′
� � // D′

Note that for any subpresheaf of a presheaf in SetF, if one first applies the closure operator

of (3.4.7), and then the functor U I
F

: SetF → SetI, the result is the same as if one first applies the

functor U I
F

: SetF→ SetI and then the closure operator of (3.3.14). That is, whenever we have Y ⊆ X

in SetF, then U I
F
Y = U I

F
Y .

We highlight the following result, which follows immediately from Prop. 3.3.13 and Theo-

rem 3.3.16. It is related to an assertion of Fiore and Turi [2001, Prop. 3.1].

Proposition 3.4.8. Consider two U I
F
-structured Be-coalgebras, (X ,h) and (Y, k). Let R be an F-indexed

binary relation between X and Y .

1. If R is a U I
F
-structured Be-bisimulation between (X ,h) and (Y, k) then it is also an F-indexed early

bisimulation between induced F-ILeTSs (X ,−→h) and (Y,−→k).

2. If R is an F-indexed early bisimulation between induced F-ILeTSs (X ,−→h) and (Y,−→k) then R̄

is a U I
F
-structured Be-bisimulation between (X ,h) and (Y, k).

Wide open early = wide open ground, revisited. In Prop. 3.1.14 we asserted that, for wide open

relations on π-calculus terms, all notions of bisimulation coincide. We now provide an abstract form

of this result.

Theorem 3.4.9. An F-indexed binary relation is a final U I
F
-structured Bg-bisimulation if and only if it

is a final U I
F
-structured Be-bisimulation.

Proof. To prove this result, we will appeal to Theorem 2.5.7. Because of the isomorphism (3.4.3),

it is sufficient to exhibit a retraction ((jIF)∗BeU I
F
)-Coalg→ ((jIF)∗BgU I

F
)-Coalg.

Indeed, as discussed in Section 3.2.2, the natural transformation

r : [N ⇒−]→ δ(−)

of (3.2.5) induces a natural transformation Be → Bg between endofunctors on SetI, and hence

also a natural transformation ((jIF)∗BeU I
F
) → ((jIF)∗BgU I

F
) between endofunctors on SetF. Us-

ing the ideas of Section 2.3.1, this natural transformation can be seen to induce a functor

((jIF)∗BeU I
F
)-Coalg→ ((jIF)∗BgU I

F
)-Coalg between categories of coalgebras. It is this functor that we

will show to be a retraction.

We will first describe a natural transformation s : δU I
F
(−) → [N ⇒ U I

F
(−)] between functors

SetF→ SetI; then we will show that s is a section of

rU I
F

: [N ⇒ U I
F
(−)]→ δU I

F
(−) .

76 Transition Systems and Coalgebras for Name-Passing

For each presheaf X ∈ SetF and each C ⊆f N we define sX ,C : δU I
F
X (C)→ [N ⇒ U I

F
X](C) to be

such that for any φ ∈ δU I
F
X (C), z ∈ (N − C), and any c ∈ N ,

sX ,C(φ)(c) = X [c/z]
�
φ(z)

�
.

The uniformity condition in the definition of δ(−) ensures that this equation is independent of

the choice of z, and so can be taken as a definition of s. It is routine to check that for each

presheaf X ∈ SetF the family
¦

sX ,C

©
C∈I

is natural, and then that the family
�
sX

	
X∈SetF of natural

transformations is natural. It is equally straightforward to see that the composite

δU I
F
(−)

s
−→ [N ⇒ U I

F
(−)]

rUI
F

−−→ δU I
F
(−)

is the identity on δU I
F

: SetF→ SetI.

(As an aside, we note that the natural transformation s : δU I
F
(−) → [N ⇒ U I

F
(−)] has been

used by Fiore and Turi [2001, Sec. 3] to give a coalgebraic semantics to the input operator of the

π-calculus.)

Now, the pointwise non-empty powerset endofunctorPne on SetI lifts along the forgetful functor

U I
F

: SetF→ SetI. That is, we have an endofunctor P (F)ne on SetF such that U I
F
P (F)ne =PneU I

F
. Thus the

natural transformation

rPneU I
F

: [N ⇒PneU I
F
]→ δPneU I

F

also has a section, and so we have a retraction BeU I
F
։ BgU I

F
in the functor category [SetF,SetI].

Applying the right adjoint (jIF)∗ : SetI→ SetF, we arrive at a retraction ((jIF)∗BeU I
F
)։ ((jIF)∗BgU I

F
) in

the category of endofunctors on SetF.

Using the constructions of Section 2.3.1, we obtain a retraction between categories of coalge-

bras, ((jIF)∗BeU I
F
)-Coalg։ ((jIF)∗BgU I

F
)-Coalg, and the result follows, using Theorem 2.5.7.

3.4.3 Uniform input behaviour

In this subsection, we describe how F-ILgTSs give rise to F-ILeTSs. The F-ILeTSs that arise in this

way are shown to be those satisfying an additional axiom, Axiom F2’ (Figure 3.5). In this way

we arrive at a labelled transition system characterisation of the U I
F
-structured Bg-coalgebras. This

axiom ensures that input behaviour is uniform across known and unknown values. We study the

strength of Axiom F2’, showing that it implies certain of the Axiom I1–I6 of Figure 3.4. Finally,

we show that the F-ILeTSs that satisfy I1–I6 and F2’ are precisely the N -LTSs of Cattani and Sewell

[2004]. Thus, combining the results of this section, we derive a coalgebraic foundation for N -LTSs.

F-ILgTSs form a subclass of the F-ILeTSs. In our proof of Theorem 3.4.9, it is crucial that the cat-

egory of ((jIF)∗BgU I
F
)-coalgebras is essentially a split subcategory of the category of ((jIF)∗BeU I

F
)-coal-

gebras. We now consider this relationship in a concrete way. In (3.3.21) it was explained how

an I-ILeTS induces an I-ILgTS. Now, to each F-ILgTS (X ,−+) we associate an F-ILeTS with the same

carrier X and with transition relation

e−+ ⊆
∫

X × Labe×
∫

X

the least satisfying the following predicates.

If C ⊢ p
c?(z)
−+ C ′ ∪ {z} ⊢ p′ and z 6∈ (C ∪ C ′)

then C ⊢ p
c?d

e−+ C ′ ∪ {d} ⊢ [d/z]p′.

If C ⊢ p
c!d
−+ C ′ ⊢ p′ then C ⊢ p

c!d
e−+ C ′ ⊢ p′.

If C ⊢ p
c!(z)
−+ C ′ ⊢ p′ then C ⊢ p

c!z
e−+ C ′ ⊢ p′.

If C ⊢ p
τ
−+ C ′ ⊢ p′ then C ⊢ p

τ
e−+ C ′ ⊢ p′.

(3.4.10)

3.4. Arbitrary substitutions and uniform input 77

Thus we move between F-ILgTSs and F-ILeTSs. This can be seen as an abstract form of Prop. 3.1.9.

Observe that we have the following situation. (Compare with diagram 3.3.22.)

U I
F
-structured

Bg-coalgebras
thm. 3.4.9

//

�
Bg→I

�
-1–4

��

U I
F
-structured

Be-coalgebras

�
Be→I

�
-1–4

��

F-ILgTSs
(3.4.10)

// F-ILeTSs

(3.4.11)

(We do not claim that the mapping of (3.4.10) is inverse to the mapping of (3.3.21).)

Which F-ILeTSs are F-ILgTSs?. We now investigate the extent to which the F-ILgTSs provide a

generous model of name-passing. In Figure 3.5 we introduce Axiom F2’ on F-ILeTSs. It says that all

input data is treated in a uniform way.

F2’. Input is determined by the input of fresh names:

C ⊢ x
c?d
−→ C ∪ {d} ⊢ x ′

⇐⇒ ∃z ∈ (N − C), x ′′ ∈ X (C ∪ {z}). [d/z]x ′′ = x ′ ∧ C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′′

Figure 3.5: Axiom F2’ on an F-indexed early labelled transition system over X ∈ SetF, expressing

that input behaviour treats all data in a uniform way.

We now justify this axiom by showing that, in the presence of Axiom I1, an F-ILeTS satisfying

Axiom F2’ is the same thing as an F-ILeTS that has been been induced from an F-ILgTS.

Theorem 3.4.12.

1. Every F-ILeTS satisfying I1 and F2’ is induced from an F-ILgTS. Indeed, for any F-ILeTS (X ,−→)

satisfying I1 and F2’, we have −→ = eg−→.

2. If the F-ILeTS induced from an F-ILgTS satisfies I1 then it also satisfies F2’.

Proof. To show item (1), we consider an F-ILeTS (X ,−→) that satisfies Axioms I1 and F2’; we will

show that −→ = eg−→.

Quick inspection of (3.3.21) and (3.4.10) leads us to the observation that eg−→ is the least

relation satisfying

If C ⊢ x
c?z
−→ C ′ ∪ {z} ⊢ x ′ and z 6∈ (C ∪ C ′)

then C ⊢ x
c?d

eg−→ C ′ ∪ {d} ⊢ [d/z]x ′

If C ⊢ x
c!d
−→ C ′ ⊢ x ′ then C ⊢ x

c!d
eg−→ C ′ ⊢ x ′

If C ⊢ x
τ
−→ C ′ ⊢ x ′ then C ⊢ x

τ
eg−→ C ′ ⊢ x ′.

(3.4.13)

It is clear that for output and silent labels ℓ ∈ Labe,

C ⊢ x
ℓ
−→ C ′ ⊢ x ′ iff C ⊢ x

ℓ
eg−→ C ′ ⊢ x ′ .

So it remains for us to show this correspondence for input labels. To see that −→⊆ eg−→, sup-

pose that C ⊢ x
c?d
−→ C ′ ⊢ x ′. By Axiom I1, C ′ = C ∪ {d}. By Axiom F2’, we have z ∈ (N − C)

78 Transition Systems and Coalgebras for Name-Passing

and x ′′ ∈ X (C ∪ {z}) such that [d/z]x ′′ = x ′ and C ⊢ x
c?z
−→ C ∪{z} ⊢ x ′′. So by (3.4.13), a transition

C ⊢ x
c?d

eg−→ C ′ ⊢ x ′ is induced, as required.

Now, to see that eg−→⊆−→, suppose that C ⊢ x
c?d

eg−→ C ′ ⊢ x ′ is induced. Then, by (3.4.13) we

must have C ′′ ⊆f N , z ∈ (N − (C ∪ C ′′)) and x ′′ ∈ X (C ′′ ∪ {z}) such that C ⊢ x
c?z
−→ C ′′ ∪ {z} ⊢ x ′′

and C ′ = C ′′ ∪ {d} and x ′ = [d/z]x ′′. By Axiom F2’ (right-to-left), C ⊢ x
c?d
−→ C ′ ⊢ x ′ as required.

To show item (2), we consider an F-ILgTS (X ,−+) that induces, according to (3.4.10), an F-ILeTS

(X , e−+) that satisfies Axiom I1. We will show that (X , e−+) also satisfies Axiom F2’.

We show Axiom F2’ from left to right. Suppose that

C ⊢ x
c?d

e−+ C ∪ {d} ⊢ x ′ .

Then, following (3.4.10), we must have C ′ ⊆f N , z ∈ (N − (C ∪ C ′)) and x ′′ ∈ X (C ∪ {z}) such that

C ⊢ x
c?(z)
−+ C ′ ∪ {z} ⊢ x ′′ and (C ′ ∪ {d}) = (C ∪ {d}) and x ′ = [d/z]x ′′. Indeed, (3.4.10) also induces

C ⊢ x
c?z

e−+ C ′ ∪ {z} ⊢ x ′′, and, by Axiom I1, (C ′ ∪ {z}) = (C ∪ {z}).

The other direction of Axiom F2’ is proved in a similar manner. Thus Theorem 3.4.12 is proved.

From this result we have a labelled transition system characterisation of the U I
F
-structured

Bg-coalgebras.

Corollary 3.4.14. The following data are equivalent.

1. An F-ILeTS that satisfies Axioms I1–I6 and F2’.

2. A U I
F
-structured Bg-coalgebra.

Proof. We move from data (1) to data (2) by the process

F-ILeTS with

I1–I6, F2’

�
I→Be

�
-1–4
//

U I
F
-structured

Be-coalgebra

(3.2.14)
//

U I
F
-structured

Bg-coalgebra
.

We move from data (2) to data (1) by the process

U I
F
-structured

Bg-coalgebra
thm. 3.4.9

//
U I

F
-structured

Be-coalgebra

�
Be→I

�
-1–4
//

F-ILeTS with

I1–I6, F2’
.

To see that I1–I6 hold of the F-ILeTS that results from the second process, consult Theorem 3.3.6;

as for F2’, consult diagram 3.4.11 with reference to Theorem 3.4.12.

We now show that moving from (1) to (2) to (1) again yields the original F-ILeTS. It follows

from diagrams 3.3.22 and 3.4.11 that the process (1)→(2)→(1) is the same as the process

F-ILeTS

with I1–I6, F2’

(3.3.21)
// F-ILgTS

(3.4.10)
// F-ILeTS

that is, the process sending an F-ILeTS (X ,−→) that satisfies I1–I6, F2’ to the F-ILeTS(X , eg−→). By

Theorem 3.4.12, −→= eg−→, and we are done.

To see how moving from (2) to (1) to (2) again yields the original U I
F
-structured Bg-coalgebra,

consider the composite mapping, and apply Theorem 3.3.8 followed by Theorem 3.4.9.

3.4. Arbitrary substitutions and uniform input 79

Strength of Axiom F2’. Axiom F2’ relates with the other axioms as follows.

Proposition 3.4.15. For any F-ILeTS:

1. Axiom F2’ implies Axiom I2.

2. Axioms F2’, I3, I5 and I6 together imply Axiom I4a.

Proof. We begin with item (1). Consider an F-ILeTS (X ,−→) of which Axiom F2’ holds. Suppose

that the premise of Axiom I2 holds, i.e.

C ⊢ x
c?d
−→ C ∪ {d} ⊢ x ′ .

Then, by Axiom F2’, we have z ∈ (N − C) and x ′′ ∈ X (C ∪ {z}) such that [d/z]x ′′ = x ′ and

C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′′. Consider some other name d ′ ∈ N . Applying Axiom F2’ again, this time

from right-to-left, we have

C ⊢ x
c?z
−→ C ∪

�
d ′
	
⊢ [d ′/z]x ′′

and so x ′′ provides a witness for Axiom I2.

We turn now to item (2). Consider an F-ILeTS (X ,−→) of which Axioms F2’, I3, I5 and I6 hold.

We will prove I4a from left-to-right. Suppose that the left-hand-side holds, i.e.

C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′ .

We concentrate on the case z 6∈ C , otherwise the result is trivial. Pick some z′ ∈ (N − (C ∪ {z})).

By I3, considering the bijection [z′/z] : (C ∪ z)
∼
→ (C ∪ z′), we have C ⊢ x

c?z′

−→ C ∪
�
z′
	
⊢ [z′/z]x ′.

Now, by I5,

C ∪ {z} ⊢ [C ,→ C ∪ {z}]x
c?z′

−→ C ∪
�
z, z′
	
⊢ [C ∪

�
z′
	
,→ C ∪

�
z, z′
	
][z′/z]x ′.

Finally, by F2’,

C ∪ {z} ⊢ [C ,→ C ∪ {z}]x
c?z
−→ C ∪ {z} ⊢ [z/z′][C ∪

�
z′
	
,→ C ∪

�
z, z′
	
][z′/z]x ′.

But the composite

C ∪ {z}
[z′/z]

// C ∪
�
z′
	 � � // C ∪

�
z, z′
	 [z/z′]

// C ∪ {z}

is the identity map, and so the right-hand-side of I4a follows.

The converse of I4a is proved in a similar way, by applying Axiom F2’ followed by Axiom I6 and

Axiom I3.

The transition systems of Cattani and Sewell. We now consider the model of name-passing

suggested by Cattani and Sewell. According to Cattani and Sewell [2004, Defn. 3.4], an N -LTS

is an F-ILeTS that satisfies Axioms N1–N4 in Figure 3.6. Axioms N1, N3 and N4 only mention

injective substitutions, and so Cattani and Sewell (in Sec. 7) define an Ninj-LTS to be an I-ILeTS

that satisfies Axioms N1, N3 and N4. (Cattani and Sewell work with transition systems that have

distinguished initial states; we neglect this aspect here.) N -LTSs and Ninj-LTSs are related with the

systems that we have introduced, as follows.

Theorem 3.4.16.

1. An I-ILeTS is an Ninj-LTS if and only if it satisfies Axioms I1 and I3–I6.

2. An F-ILeTS is an N -LTS if and only if it satisfies Axioms I1–I6 and Axiom F2’.

80 Transition Systems and Coalgebras for Name-Passing

N1. Naming:

C ⊢ x
ℓ
−→ C ′ ⊢ x ′

=⇒ ch(ℓ)⊆ C ∧ C ′ = C ∪ n(ℓ)

N2a. Input – new, where z 6∈ C:

C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′

=⇒ ∀d ∈ C . C ⊢ x
c?d
−→ C ⊢ [d/z]x ′′

N2b. Input – old:

C ⊢ x
c?d
−→ C ⊢ x ′

=⇒ ∀z ∈ (N − C). ∃x ′′. C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′′ ∧ x ′ = [d/z]x ′′

N3a. Injective substitution, for ı : C ֌ D, β : (n(ℓ)− C)
∼
→ D′ with D ∩ D′ = ;:

C ⊢ x
ℓ
−→ C ′ ⊢ x ′

=⇒ ∃D′′, x ′′. D ⊢ [ı]x
[ı+β]ℓ
−→ D′′ ⊢ x ′′

N3b. Shifting, z 6∈ C:

C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′

=⇒ C ∪ {z} ⊢ [C ,→ C ∪ {z}]x
c?z
−→ C ∪ {z} ⊢ x ′

N4. For any injection ı : C ֌ D:

If D ⊢ [ı]x
ℓ′

−→ D′ ⊢ x ′′

Then D′ = D ∪ n(ℓ′)

and either: there exist ℓ, x ′′, β : (n(ℓ)− C)
∼
→ (n(ℓ′)− D)

such that ℓ′ = [ı+ β]ℓ

and C ⊢ x
ℓ
−→ C ∪ n(ℓ) ⊢ x ′ and x ′′ = [ı+ β]x ′

or: there exist c ∈ C , d ∈ (D− im(ı)), z ∈ (N − C) and x ′

such that ℓ′ = (ıc)?d and C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′

and x ′′ = [ı, [d/z]]x ′

Figure 3.6: Requirements on an F-indexed labelled transition system as suggested by Cattani and

Sewell [2004, Defn. 3.4], rewritten with our notation.

Proof. We begin by proving item (1). It is clear that Axiom N1 is equivalent to Axiom I1. In the

presence of Axioms N1 and I1, Axiom N3a is equivalent to Axioms I3 and I5 together. To see this,

consider the decomposition of each injection into its image bijection and an inclusion map of the

image into the codomain.

It remains for us to show how Axioms N1–N4 imply Axioms I4 and I6 and how Axioms I1–I6

imply Axioms N3b and N4.

First, we assume Axioms N1, N3 and N4, and prove Axioms I4 and I6. First, Axiom I4a follows

3.4. Arbitrary substitutions and uniform input 81

immediately from N3b and Cattani and Sewell’s Proposition 3.8.

For Axiom I4b, we proceed as follows. Suppose that the premise of Axiom I4b holds, i.e. that

C ∪ {d} ⊢ [C ,→ C ∪ {d}]x
c!d
−→ C ′ ⊢ x ′ .

We now regard Axiom N4 with respect to the inclusion map [C ,→ C ∪ {d}]. The first conclusion

must hold for this case since the label is not an input label. So in particular we have a label ℓ

together with a bijection

β : (n(ℓ)− C)
∼
→ ({c, d} − (C ∪ {d}))

such that
�
[C ,→ C ∪ {d}],β

�
ℓ = c!d. By Axiom N1, c ∈ C ∪ {d}, so we know that (n(ℓ)− C) is

empty. So we have ℓ= c!d and consequently that ({c, d}−C) = (n(ℓ)−C) = ;, and hence that d ∈ C ,

as required.

Axiom I6 is essentially the same as Cattani and Sewell’s Proposition 3.7.

Finally, we assume that Axioms I1 and I3–I6 hold of an I-ILeTS (X ,−→) and prove that Ax-

ioms N3b and N4 hold of (X ,−→). Axiom N3b is part of Axiom I4a. As for Axiom N4, we proceed

as follows. Suppose that the premise of N4 holds — i.e., that we have some injection ı : C → D and

a name-context D′ ⊆f N together with x ∈ X (C), x ′′ ∈ X (D′), such that

D ⊢ [ı]x
ℓ′

−→ D′ ⊢ x ′′ .

Then by Axiom I1 we have D′ = D ∪
�
datℓ′

	
. We divide the proof according to the following cases.

1. dat(ℓ)⊆ im(ı).

2. dat(ℓ) =
�
z′
	

for some z′ 6∈ D.

3. dat(ℓ) = {d} for some d ∈ (D− im(ı)).

In case (1) we will derive the first conclusion of Axiom N4. Axiom I6 gives x ′′′ ∈ X (ı(C)) such

that [ı(C) ,→ D]x ′′′ = x ′′ and

ı(C) ⊢ [ı|C]x
ℓ′

−→ ı(C) ⊢ x ′′′

We let ℓ= ı−1(ℓ′) and we let x ′ = [ı|C
−1]x ′′′. By Axiom I3 we have

C ⊢ x
ℓ
−→ C ⊢ x ′

and we know that [ı]x = x ′′ and [ı]ℓ= ℓ′, as required.

In case (2) we will again derive the first conclusion of Axiom N4. Axiom I6 ensures that there

is x ′′′ ∈ X (ı(C)∪
�
z′
	
) such that [ı(C)∪

�
z′
	
,→ D ∪

�
z′
	
]x ′′′ = x ′′ and

ı(C) ⊢ [ı|C]x
ℓ′

−→ ı(C)∪
�
z′
	
⊢ x ′′′

Now, we pick z ∈ (N − C). We let β : {z}
∼
→
�
z′
	

be the unique such bijection, and we

let ℓ= [ı|C
−1+ β−1](ℓ′) and let x ′ = [ı|C

−1+ β−1]x ′′′. By Axiom I3 we have

C ⊢ x
ℓ
−→ C ∪ {z} ⊢ x ′

and, moreover, [ı+ β]x ′ = x ′′ and [ı+ β]ℓ= ℓ′, as required.

For case (3), we will derive the second conclusion of Axiom N4. First, observe that, because

of I4b, ℓ′ cannot be an output label, and so ℓ′ must be an input label — so we have c′ ∈ N such

that ℓ′ = c′?d. By Axiom I4a, we have

(D− {d}) ⊢ [ı(C) ,→ (D− {d})][ı|C]x
c′?d
−→ D ⊢ x ′′ .

82 Transition Systems and Coalgebras for Name-Passing

Now, by Axiom I6, we have x ′′′ ∈ X (ı(C)∪ {d}) such that

ı(C) ⊢ [ı|C]x
c′?d
−→ ı(C)∪ {d} ⊢ x ′′′ .

By Axiom I1, we have that c′ ∈ ı(C). We let c = ı−1c′, and we pick some z ∈ (N − C).

Let x ′ = [ı|C
−1+ z/d]x ′′′. By Axiom I3, we have

C ⊢ x
c?z
−→ C ∪ {z} ⊢ x ′

and, moreover, [ı, d/z]x ′ = x ′′. Thus Axiom N4 is satisfied, and so item (1) is proved.

Item (2) follows straightforwardly because it is clear that Axioms N2a, N2b are together equiv-

alent to Axiom F2’, while, by Prop. 3.4.15, Axiom F2’ implies I2.

Combining this result with Corollary 3.4.14, we can view N -LTSs from a coalgebraic perspec-

tive.

Corollary 3.4.17. The following data are equivalent.

1. An N -LTS.

2. A U I
F
-structured Bg-coalgebra.

3.A. Appendix to Chapter 3: Proofs of results in Section 3.3 83

3.A Appendix to Chapter 3: Proofs of results in Section 3.3

Here, we give proofs for Theorems 3.3.6 and 3.3.7.

3.A.1 Preliminary result

The naturality of h plays a very important and rather subtle role in ensuring that behaviour is

invariant under injective renamings. We record here the following properties.

Proposition 3.A.1. Consider a presheaf P ∈ SetI and a family

�
hC : P(C)→ BeP(C)

	
C∈I .

The family h is natural if and only if the following properties hold, for every C ⊆f N , and any p ∈ P(C):

1. For any D ⊆f N such that C ⊆ D, and any c, d ∈ D,

πinp(hD([C ,→ D]p)) ↓ c iff c ∈ C and πinp(hC(p)) ↓ c

πout(hD([C ,→ D]p)) ↓ (c, d) iff c, d ∈ C and πout(hC(p)) ↓ (c, d)

πbout(hD([C ,→ D]p)) ↓ c iff c ∈ C and πbout(hC(p)) ↓ c

πtau(hD([C ,→ D]p)) ↓ ∗ iff πtau(hC(p)) ↓ ∗ .

When both sides are defined,

�
πinp(hD([C ,→ D]p))

�
(c) = [N ⇒PneP][C ,→ D]

��
πinp(hC(p))

�
(c)
�

�
πout(hD([C ,→ D]p))

�
(c, d) =PneP[C ,→ D]

��
πout(hC(p))

�
(c, d)

�
�
πbout(hD([C ,→ D]p))

�
(c) = δPneP[C ,→ D]

��
πbout(hC(p))

�
(c)
�

�
πtau(hD([C ,→ D]p))

�
(∗) =PneP[C ,→ D]

��
πtau(hC(p))

�
(∗)
�

.

2. For any bijection β : C
∼
→ D, and any c, d ∈ C ,

πinp(hD([β]p)) ↓ β(c) iff πinp(hC(p)) ↓ c

πout(hD([β]p)) ↓ (β(c),β(d)) iff πout(hC(p)) ↓ (c, d)

πbout(hD([β]p)) ↓ β(c) iff πbout(hC(p)) ↓ c

πtau(hD([β]p)) ↓ ∗ iff πtau(hC(p)) ↓ ∗ .

When both sides are defined,

�
πinp(hD([β]p))

�
(β(c)) = [N ⇒PneP]β

��
πinp(hC(p))

�
(c)
�

�
πout(hD([β]p))

�
(β(c),β(d)) =PnePβ

��
πout(hC(p))

�
(c, d)

�
�
πbout(hD([β]p))

�
(β(c)) = δPnePβ

��
πbout(hC(p))

�
(c)
�

�
πtau(hD([β]p))

�
(∗) =PnePβ

��
πtau(hC(p))

�
(∗)
�

.

Proof notes. These results follow immediately from the actions of products and of partial exponen-

tials.

3.A.2 Proof of Theorem 3.3.6

We now provide a proof of Theorem 3.3.6.

Theorem 3.3.6. For every Be-coalgebra (P,h), the induced I-ILeTS (P,−→h) satisfies Axioms I1–I6.

84 Transition Systems and Coalgebras for Name-Passing

Proof. We must show that for any Be-coalgebra (P,h), the transition system (P,−→h) induced by�
Be→I

�
-1–
�
Be→I

�
-4 satisfies Axioms I1–I6.

Axiom I1 follows directly from the definition.

Axiom I2 arises from the use of the exponential for the input component. Suppose that

C ⊢ p
c?d
−→h C ⊢ p′ is induced. This transition must have been induced by

�
Be→I

�
-1. Thus we must

have πinp(hC(p)) ↓ c and p′ ∈ (πinp(hC(p))(c))(d). Now, we know (πinp(hC(p))(c)) ∈ [N ⇒PneP](C),

while

[N ⇒PneP](C) =

(
φ ∈

∏

d∈N

PneP(C ∪ {d})

����� ∀z, z′ 6∈ C . P[z′/z](φ(z)) = φ(z′)

)

.

So, for any other name d ′ ∈ N , we have a state p′′ ∈ (πinp(hC(p))(c))(d
′). By

�
Be→I

�
-1, the transi-

tion

C ⊢ p
c?d ′

−→h C ∪
�

d ′
	
⊢ p′′

is induced. So Axiom I2 is satisfied.

Axiom I3 holds because of the naturality of the coalgebra map; the uniform treatment of fresh

names by the exponential and name generation structures is also important here. For instance,

suppose that C ⊢ p
c!z
−→h C ∪ {z} ⊢ p′ is induced, with z 6∈ C . This must have been induced by�

Be→I
�
-3, so we must have

πbout(hC(p)) ↓ c and p′ ∈
�
πbout(hC(p))(c)

�
(z).

Consider some bijection β : C ∪ {z}
∼
→ D. Prop. 3.A.1, with regard to the bijection β |C : C

∼
→ β(C),

gives

πbout(hβ(C)(Pβ |C(p))) ↓ (β(c))

and πbout(hβ(C)(Pβ |C(p)))(β(c)) = (δPne(P))(β |C)
�
πbout(hC(p))(c)

�
.

We know that β(z) 6∈ β(C), so the action of δ(PneP)) gives

Pβ(p′) ∈
�
πbout(hβ(C)(Pβ |C(p)))(β(c))

�
(β(z)) .

Thus, by
�
Be→I

�
-3, β(C) ⊢ [β |C]p

[β](c!z)
−→ h D ⊢ [β]p′ is induced. Other modes of communication

are treated similarly; thus Axiom I3 is proved.

We turn now to Axiom I4a. We will prove the left-to-right part of this axiom; a proof of the

converse is very similar. Suppose that

C ⊢ p
c?z
−→h C ∪ {z} ⊢ p′

is induced. If z ∈ C , the axiom is trivial, so suppose that z 6∈ C . The transition must have been

induced by
�
Be→I

�
-1, so we must have

πinp(hC(p)) ↓ c and p′ ∈
�
πinp(hC(p))(c)

�
(z).

Since h is natural, Prop. 3.A.1 gives

πinp(hC∪{z}([C ,→ C ∪ {z}]p)) ↓ c

and

πinp(hC∪{z}([C ,→ C ∪ {z}]p))(c) = [N ⇒ P][C ,→ C ∪ {z}]
�
πinp(hC(p))(c)

�
.

3.A. Appendix to Chapter 3: Proofs of results in Section 3.3 85

From the action of the exponential and powerset we have

p′ ∈
�
πinp(hC∪{z}([C ,→ C ∪ {z}]p))(c)

�
(z)

and so, by
�
Be→I

�
-1, we have C ⊢ p

c?z
−→h C ∪ {z} ⊢ p′ as required. Thus Axiom I4a is satisfied.

To prove Axiom I4b we proceed as follows. Suppose that the premise of the axiom holds, i.e.,

C ∪{d} ⊢ [C ,→ C ∪{d}]p
c!d
−→h C ∪{d} ⊢ p′. This must have been induced by

�
Be→I

�
-2. So we must

have that

πout(hC∪{d}([C ,→ C ∪ {d}]p)) ↓ (c, d) .

Prop. 3.A.1(1) asserts that d ∈ C , as required. So Axiom I4b holds.

We now turn to Axiom I5. We will concentrate on the case of input transitions. Suppose that

C ⊢ p
c?d
−→h C ∪ {d} ⊢ p′, and consider D ⊆f N such that C ⊆ D and with d 6∈ (D− C). The transition

must have been induced by
�
Be→I

�
-1, so we must have that

πinp(hC(p)) ↓ c and p′ ∈
�
πinp(hC(p))(c)

�
(d).

Prop. 3.A.1(1) gives us that πinp

�
hD([C ,→ D]p)

�
↓ c and

πinp(hD([C ,→ D]p))(c) = [N ⇒Pne(P)][C ,→ D]
�
πinp(hC(p))(c)

�
.

Either d ∈ C , or d 6∈ D. For both these cases, the action of the exponential gives us

�
πinp(hD([C ,→ D]p))(c)

�
(d) = (PneP)[C ∪ {d} ,→ D ∪ {d}]

��
πinp(hC(p))(c)

�
(d)
�

.

We know that p′ ∈
�
πinp(hC(p))(c)

�
(d). The action of the powerset is pointwise, so

[C ∪ {d} ,→ D ∪ {d}]p′ ∈
�
πinp(hD([C ,→ D]p))(c)

�
(d) .

So, by
�
Be→I

�
-1, a transition

D ⊢ [C ,→ D]p
c?d
−→h D ∪ {d} ⊢ [C ∪ {d} ,→ D ∪ {d}]p′

is induced, as required. Other modes of communication are treated similarly; thus Axiom I5 is

proved.

Finally, we show that Axiom I6 holds of the induced transition system −→h. We will focus on

the case of output transitions. Suppose, then, that

D ⊢ [C ,→ D]p
c!d
−→h D ∪ {d} ⊢ p′

with d 6∈ (D− C), as in the premise of Axiom I6.

For the case d ∈ C , the transition must have been induced by
�
Be→I

�
-2, so we have

πout(hD([C ,→ D]p)) ↓ (c, d) and p′ ∈ πout(hD([C ,→ D]p))(c, d).

By Prop. 3.A.1(1), we have c ∈ C , πout(hC(p)) ↓ (c, d), and

�
πout(hD([C ,→ D]p))

�
(c, d) = PneP[C ,→ D]

�
πout(hC(p))(c, d)

�
.

Now, since

p′ ∈ PneP[C ,→ D]
�
πout(hC(p))(c, d)

�

the action of the powerset ensures that there exists a state p′′ ∈ πout(hC(p))(c, d)with [C ,→ D]p′′ = p′.

By
�
Be→I

�
-2, C ⊢ p

c!d
−→h C ⊢ p′′ as required.

86 Transition Systems and Coalgebras for Name-Passing

For the case of output where d 6∈ D, the transition must have been induced by
�
Be→I

�
-3, so we

have

πbout(hD([C ,→ D]p)) ↓ c and p′ ∈
�
πbout(hD([C ,→ D]p))(c)

�
(d).

By Prop. 3.A.1(1), we have c ∈ C , πbout(hC(p)) ↓ c, and

�
πbout(hD([C ,→ D]p))

�
(c) = (δPneP)[C ,→ D]

�
πbout(hC(p))(c)

�
.

Since d 6∈ D we have d 6∈ C and the action of δPneP gives

�
πbout(hD([C ,→ D]p))(c)

�
(d) = (PneP)[C ∪ {d} ,→ D ∪ {d}]

��
πbout(hC(p))(c)

�
(d)
�

.

So we have

p′ ∈ (PneP)[C ∪ {d} ,→ D ∪ {d}]
��
πbout(hC(p))(c)

�
(d)
�

.

The action of the powerset ensures that there exists p′′ ∈
�
πbout(hC(p))(c)

�
(d) which is such that

[C ∪ {d} ,→ D ∪ {d}]p′′ = p′. By
�
Be→I

�
-3, C ⊢ p

c!d
−→h C ∪ {d} ⊢ p′′ as required.

Other modes of communication are treated similarly; thus Axiom I6 is proved. Thus we have

shown that the I-ILeTS induced by a coalgebra satisfies Axioms I1 – I6, and Theorem 3.3.6 is

proved.

3.A.3 Proof of Theorem 3.3.7

We now provide a proof of Theorem 3.3.7.

Theorem 3.3.7. For any I-ILeTS−→ that satisfies Axioms I1–I6, the induced family
¦
−→
h C

©
C

is natural

in C .

Proof. We consider an I-ILeTS that satisfies Axioms I1–I6, and show that the family

¦
−→
h C : P(C)→ BeP(C)

©
C∈I

induced according to
�
I→Be

�
-1–4 is natural in C . For this, we use Prop. 3.A.1. We begin by proving

naturality with respect to inclusion maps — that is, property (1) of Prop. 3.A.1. Here, we will

focus on the input component of the coalgebras. We fix some C , D ⊆f N such that C ⊆ D, and

consider p ∈ P(C).

We begin by showing that if πinp(
−→
h D ([C ,→ D]p)) ↓ c then c ∈ C and πinp(

−→
h C (p)) ↓ c, and also

that for each d ∈ N ,

�
πinp(

−→
h D ([C ,→ D]p))(c)

�
(d) ⊆ (PneP)[C ,→ D]

��
πinp(

−→
h C (p))(c)

�
(d)
�

.

Suppose that πinp(
−→
h D ([C ,→ D]p)) ↓ c, and that for some d ∈ N there is p′ ∈ P(C ∪ {d}) such

that p′ ∈
�
πinp(

−→
h D ([C ,→ D]p))(c)

�
(d). This must all have been induced by

�
I→Be

�
-1, so we must

have

D ⊢ [C ,→ D]p
c?d
−→ D ∪ {d} ⊢ p′ .

Either d ∈ C , or d ∈ (N − D), or d ∈ (D − C). If d ∈ C or d ∈ (N − D), then by Axiom I6 we

have p′′ ∈ P(C ∪ {d}) such that p′ = [C ∪ {d} ,→ D ∪ {d}]p′′ and

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′′ .

If d ∈ (D− C), then by Axiom I6 we have

C ∪ {d} ⊢ [C ,→ C ∪ {d}]p
c?d
−→ C ∪ {d} ⊢ p′′

3.A. Appendix to Chapter 3: Proofs of results in Section 3.3 87

and, by Axiom I4a,

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′′ .

Now, no matter which subset of N contains d, by Axiom I1 we have c ∈ C , and
�
I→Be

�
-1 ensures

that πinp(
−→
h C (p)) ↓ c, and that p′′ ∈

�
πinp(

−→
h C (p))(c)

�
(d). So

�
πinp(

−→
h D ([C ,→ D]p))(c)

�
(d) ⊆ (PneP)[C ,→ D]

��
πinp(

−→
h C (p))(c)

�
(d)
�

as required.

We now consider the converse: we show that if c ∈ C and πinp(
−→
h C (p)) ↓ c then we have

πinp(
−→
h D ([C ,→ D]p)) ↓ c, and also that for each d ∈ N ,

(PneP)[C ,→ D]
��
πinp(

−→
h C (p))(c)

�
(d)
�
⊆
�
πinp(

−→
h D ([C ,→ D]p))(c)

�
(d) .

Indeed suppose that c ∈ C and πinp(
−→
h C (p)) ↓ c and suppose that for some d ∈ N there

is p′ ∈ P(D ∪ {d}) such that

p′ ∈ (PneP)[C ,→ D]
��
πinp(

−→
h C (p))(c)

�
(d)
�

.

Then we must have p′′ ∈ P(C ∪ {d}) such that p′ = [C ,→ D]p′′ and

p′′ ∈
�
πinp(

−→
h C (p)(c)

�
(d) .

All this must have been induced by
�
I→Be

�
-1 so we must have

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′′ .

Now, either d ∈ C , or d ∈ (N − D), or d ∈ (D− C). If d ∈ C or d ∈ (N − D) then Axiom I5 gives

D ⊢ [C ,→ D]p
c?d
−→ D ∪ {d} ⊢ p′ .

If d ∈ (D− C) then Axiom I4a ensures that

C ∪ {d} ⊢ [C ,→ C ∪ {d}]p
c?d
−→ C ∪ {d} ⊢ p′′

and by Axiom I5 we have

D ⊢ [C ,→ D]p
c?d
−→ D ⊢ p′ .

So, no matter which subset of N contains d,
�
I→Be

�
-1 ensures that πinp(

−→
h D ([C ,→ D]p)) ↓ c and

also that

(PneP)[C ,→ D]
��
πinp(

−→
h C (p)(c)

�
(d)
�
⊆
�
πinp(

−→
h D ([C ,→ D]p))(c)

�
(d) .

The components for other modes of communication are seen to be natural with respect to

inclusion maps in a similar manner. For output and bound output, Axiom I4b is required.

We now turn to show that the family
¦
−→
h C

©
C

is natural in C with respect to bijections — this

is property (2) of Prop. 3.A.1. This property involves only Axiom I3. For an example we con-

centrate on the bound output component. Consider some C , D ⊆f N , and some p ∈ P(C), and a

bijection β : C
∼
→ D. Because bijections are invertible, to prove the bound output aspect of prop-

erty (2) of Prop. 3.A.1 it is sufficient to show that for any c ∈ C , whenever πbout(
−→
h C (p)) ↓ c we

have that πbout(
−→
h D ([β]p)) ↓ (β(c)) and that for all z 6∈ D,

�
δPnePβ

��
πbout(

−→
h C (p))

�
(c)
��
(z)⊆

�
πbout(

−→
h D ([β]p))

�
(c)
�
(z)

88 Transition Systems and Coalgebras for Name-Passing

Indeed, suppose that πbout(
−→
h C (p)) ↓ c and that

p′ ∈
�
δPnePβ

��
πbout(

−→
h C (p))

�
(c)
��
(z) .

Pick some z′ ∈ (N −C). The actions of δ andPne ensure that there is p′′ ∈
��
πbout(

−→
h C (p))

�
(c)
�
(z′)

such that p′ = [β , z/z′]p′′. This must have been induced by
�
I→Be

�
-3, so we must have that

C ⊢ p
c!z′

−→ C ∪
�
z′
	
⊢ p′′ .

By Axiom I3, considering the bijection [β , z/z′] : C ∪
�
z′
	 ∼
→ D ∪ {z},

D ⊢ [β]p
β(c)!z
−→ D ∪ {z} ⊢ p′ .

So, by
�
I→Be

�
-3, πbout(

−→
h D ([β]p)) ↓ (β(c)) and

p′ ∈
�
πbout(

−→
h D ([β]p))

�
(β(c))

�
(z) .

Thus
−→
h : P → BeP is seen to be natural, and Theorem 3.3.7 is proved.

Chapter 4

Models for Name-Passing, Refined

In this chapter we investigate refinements of the models of Chapter 3 by imposing a sheaf condition

on the presheaves that we consider as state spaces. We consider a coverage of the category I for

which the separatedness condition for a presheaf P ∈ SetI enforces that the action of P on the

injections of I is injective. The sheaf condition for this coverage further enforces that a presheaf P

maps pullbacks in I to pullbacks of sets. We assert that this sheaf condition is reasonable, given our

intuitions about presheaves as state spaces.

We recall some basic and general aspects of sheaf theory in Section 4.1. In Section 4.2 we

introduce a coverage on the category I for which the category of sheaves is known as the Schanuel

topos. We show that the problems with coalgebraic bisimulation (observed in 3.3.3) disappear

when the state spaces are sheaves. We then establish that the behaviour endofunctors on SetI

restrict to endofunctors on this sheaf subcategory.

In Section 4.3 we account for state spaces that admit all substitutions by identifying an appro-

priate sheaf subcategory of SetF. In Section 4.4 we explore some benefits of restricting the model

in this way, by working with certain minimal elements of presheaves. In doing this, we arrive at a

simple axiomatisation of transition systems.

4.1 Preliminaries: Coverages on categories

We begin with some definitions from Grothendieck’s sheaf theory. It is usual in sheaf theory to deal

with contravariant functors, but for the purposes of this thesis it is sensible to work with covariant

functors. For instance, the presheaves considered in the previous chapter were all presented as

covariant functors. We take this opportunity to rewrite the usual definitions from this covariant

perspective.

The exposition here is terse as it is intended merely to set notation and collect some results

that will be important in our development. The interested reader should turn to the literature for

examples and discussion, perhaps beginning with the books by Mac Lane and Moerdijk [1992] and

by Johnstone [2002]. The terminology here is based on Johnstone’s book [2002].

4.1.1 Coverages, sheaves, and separated presheaves

We begin by recalling the notion of coverage on a category. We follow this by providing notions

of separated presheaves and sheaves for coverages. We conclude this subsection by considering

coverages made of singleton families.

Coverages. Let C be a small category. A coverage on C is an assignment T from objects C ∈ C to

collections T C of families of morphisms with domain C . The families in T C are called T -covers

of C . (The prefix T will be omitted when it is obvious.)

89

90 Models for Name-Passing, Refined

A coverage is stable if for every T -cover T of C , and every morphism f : C → D in C, there is a

T -cover T f of D such that for every g : D → E in T f , the composite g f : C → E factors through a

morphism in T .

Sieves. For any object C of a small category C, a sieve on C is a collection T of morphisms in C

with domain C , such that if f : C → D is in T then for any E ∈ C, and any morphism g : D→ E in C,

the composite g f : C → E is in T .

Every collection T of morphisms in C with domain C generates a sieve on C by closure under

postcomposition.

Presheaves that are separated or sheaves for a coverage. Let C be a small category. Consider

a covariant presheaf P : C→ Set, and consider a coverage T on C. We recall what it means for P to

be T -separated, and for P to be a T -sheaf.

Definition 4.1.1. Let T be a coverage on a small category C.

1. Consider an object C ∈ C, and let T be a collection of morphisms in C, all with domain C .

A compatible family for T is given by assigning to each morphism f : C → D in T an element

p f ∈ P(D), such that, for any two morphisms f : C → D, f ′ : C → D′ in T , and any object E ∈ C,

and any morphisms g : D→ E, g ′ : D′→ E, if g f = g ′ f ′ then we have that P g(p f) = P g ′(p f ′).

2. For any object C ∈ C, and any collection T of morphisms in C with domain C , an amalga-

mation of a compatible family (p f) f ∈T is an element p ∈ P(C) such that for every morphism

f : C → D in T we have P f (p) = p f .

3. A presheaf is T -separated if for every C ∈ C, every compatible family for every T -cover of C

has at most one amalgamation.

4. A presheaf is a T -sheaf if for every C ∈ C, every compatible family for every T -cover of C has

a unique amalgamation.

Sites. A site (C,T) is a small category C equipped with a coverage T . A sheaf for a site (C,T) is a

presheaf on C that is a T -sheaf. We write Sep(C,T) for the full subcategory of SetC whose objects

are T -separated; we write Sh(C,T) for the full subcategory of SetC whose objects are T -sheaves.

If T is stable then the category Sh(C,T) is a Grothendieck topos [see e.g. Johnstone, 2002, Prop.

C2.1.9 and Ex. C2.1.13].

Coverages made of singleton families. In this thesis the coverages that we will consider will

either consist of singleton families of morphisms, or will be sifted coverages that are induced by

such coverages. Fixing a category C, we let A be a class of morphisms in C; the morphisms in A

will be called A -morphisms. This class A generates a coverage TA on C, for which the TA -covers

of an object C ∈ C are the singleton sets containing A -morphisms with domain C .

It is straightforward to establish that the induced coverage TA is stable if and only if for every

A -morphism f : C → D and every morphism g : C → C ′ in C, there is an A -morphism f ′ : C ′→ D′

and a morphism g ′ : D→ D′ in C such that the following diagram commutes.

D
g ′

""
FF

FF
FF

F

C

f

(∈A)

<<yyyyyyy

g ""
DD

DD
DD

D D′

C ′
f ′

(∈A)
<<yyyyyyy

4.1. Preliminaries: Coverages on categories 91

4.1.2 Morphisms between sites

Recall that every functor F : C→ D induces an essential geometric morphism SetC→ SetD. That is,

we have a functor F∗ : SetD→ SetC given by precomposition with F , and this functor F∗ always has

a left adjoint F! : SetC→ SetD and a right adjoint F∗ : SetC→ SetD.

When C and D are equipped with coverages, these functors do not always restrict to functors

between categories of sheaves, or of separated presheaves. However, by imposing some conditions

on the way that F respects the coverages, one can achieve some results in this direction.

Definition 4.1.2. Let (C,S) and (D,T) be sites, and let F : C→ D be a functor.

1. We say that F preserves covers if, for every object C ∈ C and every S -cover S of C , the sieve

generated by the family
¦

F f
�� f ∈ S

©
contains a T -cover of FC .

2. We say that F reflects covers if, for every object C ∈ C and every T -cover T of FC , there is an

S -cover S of C such that the family
¦

F f
�� f ∈ S

©
is contained in T .

Inverse images. We record some properties of the inverse image functor F∗ : SetD→ SetC. These

three results follow straightforwardly from expanding the definitions.

Proposition 4.1.3. Let (C,S) and (D,T) be sites, and let F : C→ D be a functor. Consider a presheaf

P ∈ SetD.

1. If F preserves covers, and P is T -separated, then F∗P is S -separated.

2. If F reflects covers, and F∗P is S -separated, then P is T -separated.

3. If F reflects covers, and F∗P is an S -sheaf, then P is T -sheaf.

Note that Prop. 4.1.3 does not assert that the inverse image functor F∗ maps T -sheaves to

S -sheaves.

Direct images. We record a property of the direct image functor F∗ : SetD→ SetC. This result is

given by [Johnstone, 2002, Prop. C2.3.18], although he assumes some additional properties of the

sites and the proof there is not direct. For these reasons we include a proof here.

Proposition 4.1.4. Let (C,S) and (D,T) be sites, with T stable. For any cover reflecting functor

F : C→ D, the direct image functor F∗ : SetC→ SetD restricts to a functor F∗ : Sh(C,S)→ Sh(D,T).

Proof. Let P be a presheaf on C.

We begin by recalling that, by the Yoneda lemma, we must have for each C ∈ D that

F∗P(C)
∼= SetC(D(C , F−), P)

and that this natural isomorphism is natural in C ∈ D. Here, we will take this isomorphism as a

definition of F∗P.

We will show that if P is an S -sheaf then the presheaf F∗P is a T -sheaf. To this end we let T be

a T -cover of an object D of D, and consider a compatible family in F∗P

�
α f : D(E, F−)→ P

�
f :D→E∈T

(4.1.5)

for this cover. We define an amalgamation

α : D(D, F−)→ P

for this family as follows.

92 Models for Name-Passing, Refined

Consider an object C ∈ C, and a morphism f : D → FC in D. Since T is stable we have a

T -cover T f of FC such that for every morphism g : FC → E the composite g f : D → E factors

through a morphism in T . Because F reflects covers, and T f is a T -cover of FC , we must have an

S -cover S f of C such that the family FS f is contained in T f .

We now create a compatible family for S f in P,

�
p(f)g ∈ P(C ′)

�
g:C→C ′∈S f

. (4.1.6)

We do this as follows. Since F reflects covers, we know that for every morphism g : C → C ′ in S f ,

there is a morphism f ′ : D → D′ in T and a morphism g ′ : D′ → FC ′ in D such that the following

diagram commutes in D.

FC
F g

&&M
MMMMM

D

f 99ssssss

f ′ %%J
JJ

JJ
JJ FC ′

D′
g ′

88rrrrrrr

Therefore we have a member α f ′ : D(D′, F−) → P of the compatible family (4.1.5), and we let

p
(f)
g = α f ′C ′

(g ′). It follows from the compatibility of (4.1.5) that this definition of p
(f)
g is indepen-

dent of the choice of f ′ and g ′. The resulting family
�

p
(f)
g ∈ P(C ′)

�
g:C→C ′∈S f

is compatible since

(4.1.5) is compatible.

We define αC(f) ∈ P(C) to be the amalgamation of this family (4.1.6). This exists, since P is

a sheaf. It is routine to verify that the family of functions
�
αC

	
C∈C defined in this way is natural.

Thus we have an amalgamation for the family (4.1.5).

The uniqueness of this amalgamation α follows from the uniqueness of the amalgamations of

families (of the form (4.1.6)) used to define α.

4.2 Models of name-passing in the Schanuel topos

In Sections 3.2 and 3.3 we studied models of name-passing for which the state spaces were organ-

ised as presheaves over the category I. We now introduce a coverage on I, and argue that the only

state spaces of interest are in fact sheaves for this coverage.

In Section 4.2.1 we investigate some basic properties of this sheaf category. Following this, in

Section 4.2.2 we consider bisimulations for sheaf state spaces, and then prove that the behaviour

endofunctors introduced in equations 3.2.11 and 3.2.13 lift along the inclusion of the sheaf cate-

gory into the presheaf category.

4.2.1 The Schanuel topos

We will consider the singleton coverage TI on I generated by the collection of all inclusion

maps (C ,→ D), for C ⊆ D in I. To see that TI is stable, suppose that C ⊆ D, and consider an

injection ı : C ֌ C ′. Pick an object E with a bijection β : D→ E such that E is disjoint from C ′. We

have the following situation.

C
� � //

!!

ı
!!

BB
BB

BB
B

D
""

(ı∪β)

""
FF

FF
FF

FF

C ′
� � // C ′ ∪ E

A similar situation arose in Section 3.3.3, in showing that the closure operator presented in

(3.3.14) was well-defined. In fact, the operator (Q 7→ Q̄) presented there is the closure operator on

4.2. Models of name-passing in the Schanuel topos 93

subobjects of presheaves in SetI as derived from the coverage TI [see e.g. Johnstone, 2002, Example

A4.3.5].

Supports and seeds. It is convenient to reformulate the notion of compatible family for the

Schanuel topos. There is a way of determining the names used by a state by observing the action

of the injections on the state. We say that a set of names obtained in this way supports the state;

formally:

A set D ∈ I supports a state p ∈ P(C) if D ⊆ C and, for any ı,  : C ֌ C ′ in I with ı|D = |D,

we have Pı(p) = P (p).

Thus, if D supports p ∈ P(C) then the action of an injection on the state is determined by the action

of the injection on D.

For an example, consider the presheaf Pπ of π-calculus processes, introduced in (3.2.1). A

set D ⊆ C supports a process p ∈ Pπ(C) if and only if fn(p)⊆ D.

If D does support p ∈ P(C), and there is an element p′ ∈ P(D) such that [D ,→ C]p′ = p, then

we say that the element p′ is a seed of p at D.

In our sheaf-theoretic terminology, the statement “D supports p ∈ P(C)” means that the single-

ton set
�

p
	

is compatible with the singleton family {(D ,→ C)}. The statement “p′ is a seed of p at D”

means that p′ is an amalgamation of that compatible family. Thus, to require that a presheaf P is

TI-separated is to require that whenever D supports p ∈ P(C), then p has at most one seed at D. To

require that a presheaf P is a TI-sheaf is to require that whenever D supports p ∈ P(C), then p has

a unique seed at D.

For a sheaf P, when D supports p ∈ P(C) we will write seed(p@D) for the unique seed of p at D.

Properties of supports. We collect some useful basic properties of supports.

Proposition 4.2.1. Let P be a presheaf in SetI. Consider name contexts C , D ∈ I such that D ⊆ C .

1. Consider p ∈ P(C) supported by D. For any natural transformation α : P → Q to a presheaf Q

we have that D supports αC(p).

2. Consider p ∈ P(C). For any monic natural transformation α : P ֌ Q to a presheaf Q, if D

supports αC(p), then D also supports p.

3. If p ∈ P(D) then D supports [D ,→ C]p.

Proof. Consider injections ı,  : C → C ′ such that ı|D = |D. For item (1),

[ı](αC(p)) = αC ′([ı]p) (naturality of α)

= αC ′([]p) (since D supports p)

= [](αC(p)) (naturality of α)

as required.

For item (2), we note that

αC ′([ı]p) = [ı](αC(p) (naturality of α)

= [](αC(p) (since D supports αC)

= αC ′([]p) (naturality of α).

Since α is monic, the component αC ′ is an injection between sets. Thus [ı]p = []p, as required.

For item (3), [ı][D ,→ C] = [][D ,→ C] and so [ı][D ,→ C]p = [][D ,→ C]p, as required.

94 Models for Name-Passing, Refined

Separated presheaves.

Proposition 4.2.2. A presheaf P ∈ SetI is TI-separated if and only if for each C , D ∈ I with C ⊆ D, the

function P(C ,→ D) : PC → PD is injective.

Proof. First, we prove from left to right. We suppose that a presheaf P ∈ SetI is TI-separated, and

show that, for any C , D ∈ I with C ⊆ D, the function P(C ,→ D) : PC → PD is injective.

Consider some p, p′ ∈ PC such that [C ,→ D]p = [C ,→ D]p′. By Prop. 4.2.1, we have that p

and p′ are two seeds of the element [C ,→ D]p ∈ P(D) that is supported by C . Since P is TI-sepa-

rated, we must have at most one such seed, so p = p′.

To prove from right to left, we suppose that C supports p ∈ P(D). Suppose that we have two

seeds p, p′ ∈ PC , for p at C — so [C ,→ D]p = [C ,→ D]p′. Then, because P(C ,→ D) is injective, we

have that p = p′, and the two seeds are the same.

Every injection in I factors as a bijection followed by an inclusion. Bijections are invertible so

the action of P on bijections is necessarily bijective; thus a presheaf P ∈ SetI is TI-separated if and

only if P preserves injections.

We assert that TI-separation is a reasonable property to expect of presheaves. Suppose that

C ⊆ C ′ ∈ I. If we follow the intuition that has been introduced, the action of a presheaf P ∈ SetI on

the inclusion map (C ,→ C ′) will map states in name context C to states in name context C ′. Our

argument is that if two states are distinct in one name context then it is strange if they become the

same state when more names are considered.

Sheaves. We assert that the sheaf condition for TI is a reasonable one to expect of presheaves.

Our intuition is that a state that appears to be only using names in D should exist in name context D.

It is clear that the presheaf Pπ ∈ SetI introduced in (3.2.1) is a sheaf.

Since we will not consider any other coverage on I, we will hereafter refer to TI-separated

functors as simply separated and we will refer to TI-sheaves as sheaves. We write Sh(I) for the full

subcategory of SetI whose objects are sheaves.

Pullback-preserving presheaves, and intersections of supports. Since pullbacks of monos are

monic, we know that I has pullbacks and that the inclusion functor I → Set preserves them. We

recall a characterisation result.

Proposition 4.2.3. A presheaf in SetI is a sheaf if and only if it preserves pullbacks.

This result is Exercise III.13 of Mac Lane and Moerdijk [1992]. A solution is given by Johnstone

[2002, Example A2.1.11(h)], and involves an elegant combinatorial argument.

According to Johnstone [1989, Remark 1.4], Prop. 4.2.3 was first observed in unpublished work

by S. H. Schanuel; the category Sh(I) has been called the Schanuel topos.

Prop. 4.2.3 has the following consequence.

Proposition 4.2.4. Let P ∈ SetI be a TI-separated presheaf. If both D and D′ support p ∈ P(C),

then D ∩ D′ also supports p.

Proof. For the case where P is a sheaf, the result follows from Prop. 4.2.3 by considering the

following pullback in I.

D ∩ D′
mM

||xxxxxxxx q�

##
FFFFFFFF

D � q

""
FFFFFFFF D′M m

{{xxxxxxxx

D ∪ D′

4.2. Models of name-passing in the Schanuel topos 95

Now, for the case where P is separated, we know that the map from P into its associated sheaf

is monic [see e.g. Mac Lane and Moerdijk, 1992, Lem.III.5.2], and so the result follows from

Prop. 4.2.1(2).

4.2.2 Coalgebras in the Schanuel topos

We now develop coalgebraic models of name-passing in the Schanuel topos. We begin with an

improvement on the analysis of bisimulation provided in Section 3.3.2, which provides a strong

motivation for restricting attention to coalgebras whose carriers are sheaves.

We then show that all the operators on SetI that were introduced in Section 3.2.1 restrict to

constructions on Sh(I), and hence we are able to consider Be as an endofunctor on Sh(I).

Bisimulation for coalgebras over sheaves. We now revisit the discussion of Section 3.3.2. When

the carriers of coalgebras are sheaves then a direct correspondence between the coalgebraic and

transition system notions of bisimulation is possible.

Theorem 4.2.5. Let (P,h) and (Q, k) be Be-coalgebras. Suppose that P and Q are both sheaves.

Every I-indexed early bisimulation R between induced I-ILeTSs −→h and −→k is also a Be-bisimulation

between Be-coalgebras (P,h) and (Q, k).

A proof of this result is provided in Appendix 4.A. I further conjecture that the statement of Theo-

rem 4.2.5 holds if P and Q are only required to be separated.

Sheaf-structured coalgebras. Following Section 3.2, we are led to sheaf-based coalgebraic mod-

els of name-passing, namely the classes of J
(I,TI)

I -structured Be-coalgebras and J
(I,TI)

I -structured

Bg-coalgebras, where we write J
(I,TI)

I for the embedding of Sh(I) into SetI.

Constructions of sheaves. Structuring of coalgebras is not necessary, since, as we now explain,

the constructions of Section 3.2.1 all restrict to constructions on sheaves, and so we can define a

behaviour endofunctor directly on the category Sh(I).

Theorem 4.2.6.

1. Products of sheaves are calculated pointwise, as in SetI.

2. The function space [N ⇒ P] in SetI is a sheaf whenever P is a sheaf.

3. Coproducts of sheaves are calculated pointwise, as in SetI.

4. The object of names N ∈ SetI is a sheaf.

5. If P ∈ SetI is a sheaf, the space δP of names generated into P is a sheaf.

6. If P is a sheaf then so are P P and PneP.

7. If P and Q are sheaves then [Q++P] is a sheaf.

Proof. Item (1) is standard [see e.g. Mac Lane and Moerdijk, 1992, Prop. III.4.4]. Item (2) can also

be derived from standard results [e.g. Mac Lane and Moerdijk, 1992, Prop. III.6.1] by showing that

[N ⇒ P] is the exponential in SetI. However, instead of doing this, we will provide an explicit proof

that [N ⇒ P] is a sheaf when P is a sheaf.

We begin by proving that if P is separated then so is [N ⇒ P]. So we suppose that P is separated,

and, following Prop. 4.2.2, we show that for each C , D ∈ I with C ⊆ D, the action [N ⇒ P](C ,→ D)

is injective.

96 Models for Name-Passing, Refined

To this end, consider φ,ψ ∈ [N ⇒ P](C), and suppose that

[N ⇒ P](C ,→ D)(φ) = [N ⇒ P](C ,→ D)(ψ) .

We know from equation 3.2.3c that, for all z ∈ N ,

P(C ∪ {z} ,→ D ∪ {z})(φ(z)) = P(C ∪ {z} ,→ D ∪ {z})(φ(z)) .

It follows that φ = ψ, because for each z ∈ N , the action P(C ∪ {z} ,→ D ∪ {z}) is injective, by

Prop. 4.2.2. Thus we know that [N ⇒ P] is separated if P is.

To finish proving item (2), we now suppose that P is a sheaf, and show that [N ⇒ P] is also a

sheaf. Consider C ∈ I together with φ ∈ [N ⇒ P](C). Suppose that we have that D ⊆ C and that D

supports φ.

We will first prove that for each z ∈ N we have that (D ∪ {z}) supports φ(z) ∈ P(C ∪ {z}).

To this end, consider a name context E ∈ I, and injections ı,  : C ∪ {z} → E which are such

that ı|D∪{z} = |D∪{z}. We must show that Pı(φ(z)) = P (φ(z)). We do this differently depending on

whether z is in C .

For the case where z ∈ C , consider the following sequence of identities.

Pı(φ(z)) =
�
[N ⇒ P]ı(φ)

�
(ı(z)) (1)

=
�
[N ⇒ P] (φ)

�
(ı(z)) (2)

=
�
[N ⇒ P] (φ)

�
((z)) (3)

= P (φ(z)) (4)

Using: (1) defn. of action of [N ⇒ P]; (2) since D supports φ, and ı|D = |D; (3) since ı(z) = (z); (4) action of [N ⇒ P].

For the case where z ∈ (N − C), we let ı′, ′ : C → E act as the injections ı,  on the restricted

domain. Then we have the following sequence of equations.

Pı(φ(z)) = P[ı′, ı(z)/z](φ(z)) (1)

=
�
[N ⇒ P]ı′(φ)

�
(ı(z)) (2)

=
�
[N ⇒ P] ′(φ)

�
(ı(z)) (3)

=
�
[N ⇒ P] ′(φ)

�
((z)) (4)

= P[′, (z)/z](φ(z)) (5)

= P (φ(z)) (6)

Using: (1) defn. of [ı′, ı(z)/z]; (2) action of [N ⇒ P]; (3) since D supports φ, and ı′|D = 
′|D; (4) since ı(z) = (z);

(5) action of [N ⇒ P]; (6) defn. of [′, (z)/z].

So we know that for each z ∈ N we have that (D ∪ {z}) supports φ(z). Using this fact, and the

assumption that P is a sheaf, we define the seed of φ at D,

seed(φ@D) ∈
∏

z∈N

P(C ∪ {z})

as follows: for each z ∈ N , let

seed(φ@D)(z) = seed((φ(z))@(D ∪ {z})) .

It remains for us to check that seed(φ@D) is in [N ⇒ P](D), i.e., that it satisfies the uniformity

condition. Consider z, z′ ∈ (N −D). If neither of z, z′ are in C then the uniformity condition follows

from the uniformity condition for φ. We now consider the case where z ∈ C and z′ 6∈ C . We must

show that

P[z′/z](seed((φ(z))@(D ∪ {z}))) = seed((φ(z′))@(D ∪
�
z′
	
)) .

4.2. Models of name-passing in the Schanuel topos 97

By the universal property of seeds, it suffices to show that

P((D ∪
�
z′
	
,→ C ∪

�
z′
	
) ◦ [z′/z]) (seed((φ(z))@(D ∪ {z}))) = φ(z′) .

This is established by the following sequence of identities.

P
�
(D ∪

�
z′
	
,→ C ∪

�
z′
	
) ◦ [z′/z]

��
seed((φ(z))@(D ∪ {z}))

�

= P
�
((C − {z})∪

�
z′
	
,→ C ∪

�
z′
	
) ◦ [z′/z] ◦ (D ∪ {z} ,→ C)

�
�
seed((φ(z))@(D ∪ {z}))

�
(1)

= P
�
((C − {z})∪

�
z′
	
,→ C ∪

�
z′
	
) ◦ [z′/z]

� �
φ(z)

�
(2)

=
�
[N ⇒ P]

�
((C − {z})∪

�
z′
	
,→ C ∪

�
z′
	
) ◦ [z′/z]

�
(φ)
�
(z′) (3)

=
�
[N ⇒ P](C ,→ C ∪

�
z′
	
) (φ)

�
(z′) (4)

= φ(z′) (5)

Using: (1) factorisation; (2) defn. of seeds; (3) action of [N ⇒ P]; (4) since D supports φ, and since

(C ,→ C ∪ {z′})|D = (((C − {z})∪ {z
′} ,→ C ∪ {z′}) ◦ [z′/z]) |D; (5) eqn. 3.2.3c.

So we have the uniformity condition when at most one of
�
z, z′
	

are in C . For the case when both z

and z′ are in C , we pick another name z′′ ∈ N that is not in C , and use the former result twice.

Thus seed(φ@D) satisfies the uniformity condition, and so is indeed an element of [N ⇒ P](D). So

[N ⇒ P] is a sheaf.

Item (3) is true in any sheaf topos with a coverage generated by singleton families. In the

present case, consider an I-indexed family of sheaves
�

Pi

	
i∈I and the coproduct

∐
i∈I Pi in SetI. For

any element

inji(p) ∈

 ∐

i∈I

Pi

!
(C)

if D supports inji(p) then D supports p ∈ Pi(C). Hence we have a seed seed(p@D) ∈ Pi(D) and also

a seed

inji(seed(p@D)) ∈

 ∐

i∈I

Pi

!
(D) .

Item (4) is straightforward, because if D supports c ∈ N(C) then c ∈ D. To put it another way: N

is the inclusion functor I→ Set, and pullbacks of monos are monic, so N preserves pullbacks and

item (4) follows from Prop. 4.2.3. (Indeed, the coverage TI is subcanonical, and N is representable

— it represents a singleton name context.)

Item (5) is established in a manner similar to item (2). Turning to item (6), the simplest proof

that I know uses Prop. 4.2.3. We concentrate on the powerset functor P ; the non-empty variant is

treated similarly. The presheaf P P is the composite

I
P
−→ Set

P
−→ Set (4.2.7)

where P is the powerset endofunctor on Set.

Suppose that P is separated. Then, by Prop. 4.2.2, we have that the presheaf P preserves monos.

It is well-known that the endofunctor P on Set preserves monos; thus we know that the composite

of (4.2.7) preserves monos, i.e. is separated.

Now suppose that P is a sheaf; by Prop. 4.2.3, it preserves pullbacks. It remains for us to

show that the endofunctor P on Set preserves pullbacks of monos. It is well-known that P on Set

preserves weak pullbacks (i.e. pullbacks but where the mediating morphisms need not be unique).

As mentioned above, the endofunctor P also preserves monos. (In fact, preservation of monos

follows from preservation of weak pullbacks.) A weak pullback of monos is a strong pullback, and

so the composite of (4.2.7) also preserves pullbacks, and so, by Prop. 4.2.2, it is a sheaf.

98 Models for Name-Passing, Refined

For item (7), we consider a partial function φ ∈ [Q++P](C) that is supported by D ⊆f C and we

prove that (i) if φ ↓ q then D supports q; (ii) that if φ ↓ q and D supports q then D supports φ(q).

Given these two results we can define seed(φ@D) ∈ [Q++P](D) by (for q ∈Q(D)):

seed(φ@D) (q) =

(
seed(φ([D ,→ C]q)@D) if φ ↓ [D ,→ C]q

undefined otherwise.

For item (i): note that, by Prop. 4.2.1(1), D also supports

φ′ = [Q++(! : P → 1)]C(φ) ∈ [Q++1](C)

It is easy to see that [Q++1] is isomorphic to P (Q). Now, by item (6), P (Q) is a sheaf, and so

[Q++1] is a sheaf. Hence we have a seed seed(φ′@D) ∈ [Q++1](D). Consider some q ∈ dom(φ).

By definition of [Q++(! : P → 1)] we have q ∈ dom(φ′). So, looking at the action of φ′, we have q′

in Q(D) such that [D ,→ C]q′ = q. So, by Prop. 4.2.1(3) we know that D supports q.

For item (ii): we consider injections ı,  : C → C ′ such that ı|D = |D. We suppose that D

supports q ∈ dom(φ); we must show that [ı](φ(q)) = [](φ(q)). Now

[ı](φ(q)) = ([ı]φ)([ı]q) (action of φ)

= ([]φ)([]q) (since D supports φ and q)

= [](φ(q)) (action of φ)

as required.

Coalgebras over sheaves. From Theorem 4.2.6 we know that the behaviour endofunctors Be

and Bg on SetI both lift, along the embedding J
(I,TI)

I : Sh(I)→ SetI, to endofunctors BSh
e and BSh

g on

Sh(I). (We will omit the superscript (Sh) when it is clear from the context.) We have the situation

discussed in Example 2.4.3(3), and so there are isomorphisms of categories

(J
(I,TI)

I , Be)-Coalg∼= BSh
e -Coalg (J

(I,TI)

I , Bg)-Coalg∼= BSh
g -Coalg .

The embedding J
(I,TI)

I : Sh(I) → SetI has a left adjoint [the associated sheaf functor; see e.g.

Johnstone, 2002, Example A4.1.8]. Thus we can conclude, using Prop. 2.3.1, that the morphisms

of endofunctors

(Sh(I), BSh
e)→ (SetI, Be) (Sh(I), BSh

g)→ (SetI, Bg)

both have left adjoints in coEndo. Thus, by Theorem 2.5.7, the final Be-bisimulation between a pair

of Be-coalgebras whose carriers are sheaves, is itself a sheaf; a similar result holds for the ground

case. (An alternative way to establish this result is to combine Prop. 3.3.13 with Theorem 3.3.16.)

4.3 Sheaves and all substitutions

In Section 3.4.3 we considered models for name-passing for which the state spaces admitted all sub-

stitutions, not only injective renamings. These models captured the uniformity of input behaviour,

and also provided a framework for studying wide open bisimulation.

We will now bring these models in line with the sheaf-based approach of the previous section.

To do this, it is necessary to consider a coverage on the category F. After studying the corresponding

category of sheaves, we show that the sheaf requirement for this coverage on F is in fact very simple.

4.3. Sheaves and all substitutions 99

Coverages for F. Unfortunately, the forgetful functor U I
F

: SetF→ SetI does not factor through the

subcategory Sh(I). It is necessary to impose a sheaf condition on the presheaves in SetF. We will

consider the coverage TF of singletons, generated by the collection of all inclusion maps in F. To

see that TF is stable, consider C , D ∈ F such that C ⊆ D, and consider a function f : C → C ′ in F.

Then the following diagram commutes in F.

C
� � //

f
AA

AA
AA

AA
D

(f ∪idD)

""
FF

FF
FF

FF
F

C ′
� � // C ′ ∪ D

A similar situation arose in Section 3.4.2, in showing that the closure operator of (3.4.7) was

well-defined. Indeed, that closure operator on subobjects of presheaves in SetF derives from the

coverage TF, in the same way that the closure operator on subobjects of presheaves in SetI (of

(3.3.14)) derives from the coverage TI.

As we now prove, this coverage is exactly the one needed to restrict the forgetful functor to a

functor Sh(F,TF)→ Sh(I,TI).

Proposition 4.3.1. Consider a presheaf X ∈ SetF.

1. X is TF-separated if and only if U I
F
X is TI-separated.

2. X is a TF-sheaf if and only if U I
F
X is a TI-sheaf.

Proof. To begin, we note that the inclusion functor jIF : I → F preserves and reflects covers. Thus

item (1), and also the right-to-left part of item (2), follow from Prop. 4.1.3.

It remains for us to prove item (2) from left to right. Suppose that X is a TF-sheaf. We will show

that U I
F
X is a TI-sheaf. Consider a compatible family

¦
x ∈ U I

F
X (D)

©
for some TI-cover, {(C ,→ D)}.

This TI-cover is also a TF-cover. We will show that the family {x ∈ X (D)} is compatible for this

TF-cover.

The category F has finite coproducts. We pick such a binary coproduct structure, as usual

writing ‘+’ for the binary coproduct, and inl and inr for the left and right binary coproduct injections

respectively.

Consider E ∈ F, and two functions f , g : D→ E in F, which are such that f |C = g|C . We define

two injections ı,  : D→ (D+ D) as follows.

ı = D
inl
−→ (D+ D)

 = D
=
−→ (C ∪ (D− C))

(inl◦(C ,→D))∪ (inr◦((D−C),→D))
−−−−−−−−−−−−−−−−−−→ (D+ D)

So ı|C = |C . Also, since f |C = g|C , we have (f + idD) ◦  = (g + idD) ◦  : D→ (E + D).

Note that the following diagrams commute.

D
f

//

ı

��

E

inl
��

D
g

//

ı

��

E

inl
��

(D+ D)
(f +id)

// (E + D) (D+ D)
(g+id)

// (E + D)

Thus

[inl(E+D)][f]x = [f + idD][ı]x (4.3.2a)

= [f + idD][]x (4.3.2b)

= [g + idD][]x (4.3.2c)

= [g + idD][ı]x (4.3.2d)

= [inl(E+D)][g]x (4.3.2e)

100 Models for Name-Passing, Refined

Using: (4.3.2a): since (inl(E+D) ◦ f) = (f + idD ◦ ı); (4.3.2b): since U I
FX is a TI-sheaf, and C supports x , and ı|C = |C ;

(4.3.2c): since ((f +idD)◦ ) = (g+idD◦ ); (4.3.2d): since U I
FX is a TI-sheaf, and C supports x , and ı|C = |C ; (4.3.2e): since

(inl(E+D) ◦ g) = (g + idD ◦ ı).

Since X is a TF-sheaf, it is TF-separated. So, by item (1) of this proposition, we have that U I
F
X

is TI-separated, and so the action of the injection inl : E → (E + D) is injective. Thus we have that

[f]x = [g]x . So the singleton {x} is a compatible family for the TF-cover {(C ,→ D)}. Since X is

a TF-sheaf, there is an amalgamation, x ′ ∈ X (C). This element also serves as an amalgamation for

the TI-cover {(C ,→ D)}. Thus U I
F
X is a TI-sheaf.

We write Sh(F) for the full subcategory of SetF with objects TF-sheaves.

A simple check for TF-separated presheaves and TF-sheaves. Let 1 ∈ F be a terminal object

of F; it is a singleton set. It is interesting to consider the coverage TF,1 on F for which the only

cover is the initial/terminal map (0
!
→ 1). The following result explains that the requirements for

TF-separatedness and TF-sheaves are very simple.

Proposition 4.3.3. Consider a presheaf X ∈ SetF.

1. X is TF-separated if and only if it is TF,1-separated.

2. X is a TF-sheaf if and only if it is a TF,1-sheaf.

Proof. The left-to-right direction of both items is trivial. They follow from Prop. 4.1.3 together with

the fact that the identity functor on F is cover-reflecting between sites (F,TF)→ (F,TF,1).

To prove item (1) from right to left, we suppose that X is TF,1-separated. We will show that it

is TF-separated. By Prop. 4.3.1, this is equivalent to showing that for every injection ı : C ֌ D then

the action X ı : X C → X D is injective.

For the case when C 6= 0, we can find a retraction D→ C of the injection ı; thus the action X ı is

forced to be injective.

For the case when C = 0, we proceed as follows. Since (0
!
→ 1) is a cover, we have that the

action X (0
!
→ 1) is injective. Now, every function 0

!
→ D is either the identity on 0, in which case

the result is trivial, or it factors as the unique map (0
!
→ 1) followed by an injection 1→ D. In this

case, the actions of both these parts have been shown to be injective, thus the action X (0
!
→ D) is

injective.

To prove item (2) from right to left, we suppose that X is a TF,1-sheaf. We will show that it is

TF-sheaf.

Consider a singleton family {(C ,→ D)} that is a TF-cover, and let {x ∈ X (D)} be a compatible

family for this cover.

For the case C 6= 0, we pick a retraction r : D → C of the inclusion map (C ,→ D). So we have

that ((C ,→ D) ◦ r ◦ (C ,→ D)) = (C ,→ D). Thus, since x is compatible for (C ∈ D), we have that

[C ,→ D][r]x = x . In other words, [r]x is an amalgamation for x .

For the case C = 0, we proceed as follows. If also D = 0, then the result is trivial, so we

concentrate on the case when D 6= 0. In this case, we pick a function ı : 1→ D. For any such choice,

the cover factors as

(0 ,→ D) = 0
!
−→ 1

ı
−→ D .

Moreover, the unique function r : D→ 1 is a retraction of ı.

It is easy to see that, since {x} is a compatible family for the TF-cover (0 ,→ D), then {[r]x} is

a compatible family for the TF,1-cover (0
!
→ 1). Since X is a TF,1-sheaf, we have an amalgamation

x ′ ∈ X (0) of {[r]x}. In fact, x ′ is an amalgamation of the compatible family {x}, as we now show.

4.4. Transition systems simplified 101

[0 ,→ D]x ′ = [ı][0
!
→ 1]x ′

= [ı][r]x (4.3.4a)

= [idD]x (4.3.4b)

= x

Using: (4.3.4a): because x ′ is an amalgamation of {[r]x} for (0
!
→ 1); (4.3.4b): because

(ı ◦ r ◦ (0 ,→ D)) = (idD ◦ (0 ,→ D)), and {x} is compatible for {(0 ,→ D)}.

From TI-sheaves to TF-sheaves. The development so far leads us to consider the model for

name-passing given by the classes of U I
F
-structured BSh

e -coalgebras.

We note, however, that the structuring here is not strictly necessary. The inclusion functor I→ F

reflects covers, and so, by Prop. 4.1.4, the direct image functor (jIF)∗ : SetI→ SetF considered in

Section 3.4.1 restricts to a functor Sh(I)→ Sh(F). Thus the behaviour endofunctor ((jIF)∗BeU I
F
) on

SetF, considered in Section 3.4.1, restricts to an endofunctor on Sh(F).

4.4 Transition systems simplified

We now return to the models of name-passing over sheaves in Sh(I), as considered in Section 4.2.

In Section 4.4.1 we recall some of the analysis of Fiore [2001], who has shown that a sheaf in Sh(I)

can be specified in terms of its minimal seeds. We follow this, in Section 4.4.2, by studying indexed

labelled transition systems (in the spirit of Section 3.3) where the only states that are considered

are those that are minimal seeds. We thus arrive at a simpler axiomatisation of transition systems

for name-passing.

4.4.1 Least supports and minimal seeds

We begin this section by observing that every separated presheaf has a least support. Thus we

are led to consider presheaves of minimal seeds, where we consider only the action of bijective

renamings. We find a functor from the category of such presheaves into the Schanuel topos, which

we show to be essentially surjective.

Least supports and minimal seeds. For any TI-separated presheaf P ∈ SetI we can associate to

each element p ∈ P(C) a least support

supp(p) =
⋂
{D ⊆ C | D supports p}.

The set supp(p) is a subset of C , because C trivially supports p. All the sets of names under

consideration are finite; thus, by Prop. 4.2.4, we know that supp(p) supports the element p. One

might think of supp(p) as the precise set of names that a state p uses. For the sheaf Pπ of π-calculus

processes, introduced in (3.2.1), the least support supp(p) of a process p ∈ Pπ(C) is precisely the

set of free names of that process, fn(p).

For a sheaf P ∈ Sh(I), we write seed(p) for the minimal seed of p, i.e., we let

seed(p) = seed(p@supp(p)) .

102 Models for Name-Passing, Refined

Presheaves on B. We have been working with the intuition that the elements of a sheaf P at C

are the states whose names are contained in C . Following this, one might expect that the entire

sheaf can be described simply in terms of the minimal seeds. This is true, as we now describe.

Let B be the category with objects finite subsets of N , and morphisms bijections between them.

A presheaf on B is to be thought of as assigning to each name context C a collection of states for

which the set of names that they use is precisely C . The action of a bijection β : C
∼
→ D is to be

thought of as mapping states that use precisely the names in C to states that use precisely the

names in D.

Presheaves of seeds. Examples of presheaves in SetB are found as follows. To every

sheaf P ∈ Sh(I) we can associate a “presheaf of seeds” 〈P〉 ∈ SetB, given by

〈P〉(C) = {p ∈ P(C) | p = seed(p)} ; (4.4.1a)

for any β : C
∼
→ C ′ we have a map 〈β〉 : 〈P〉(C)

∼
→ 〈P〉(C ′) given by

〈P〉β(p) = Pβ(p) . (4.4.1b)

The construction 〈P〉 : B→ Set respects composition and identities, since P does.

(Note that 〈−〉 does not extend to a functor Sh(I) → SetB. For there is a map N → 1 in Sh(I),

but, for any name c ∈ N ,

〈N〉({c}) = {c} and 〈1〉({c}) = ;

and so there are no maps 〈N〉 → 〈1〉 in SetB.)

Presheaf of seeds for the π-calculus. For a basic example, recall the sheaf Pπ ∈ SetI of π-calculus

processes introduced in (3.2.1). The presheaf 〈Pπ〉 ∈ SetB is given by, for C ∈ B,

〈Pπ〉(C) =
¦

p
�� p is a π-calculus process, and fn(p) = C

©
.

Relating SetI with SetB. The 〈−〉 construction is sufficient for us to develop and analyse a model

of name-passing based on presheaves in SetB (as is done in Section 4.4.2). As a further motivation,

however, we explore some properties of this construction.

The inclusion jBI : B→ I induces (by precomposition) an inverse image functor

U I
B = (j

B
I)
∗ : SetI→ SetB

that forgets what to do with non-bijective renamings. For P ∈ SetI,

U I
BP = B ,→ I

P
−→ Set. (4.4.2)

For α : P → P ′ in SetI we have U I
Bα : U I

BP → U I
BP ′ in SetB given by U I

Bα= α; we know U I
Bα is natural

with respect to bijections since α is natural with respect to all injections.

As usual, this forgetful functor U I
B has a left adjoint FB

I = (j
B
I)! : SetB → SetI. This is given on

objects as follows. For Q ∈ SetB and C ∈ B,

FB
I Q(C) =

∐

D⊆C

Q(D) . (4.4.3a)

So the elements of the set FB
I Q(C) are of the form injDq, where D ⊆ C and q ∈Q(D).

The presheaf FB
I Q is defined to act on morphisms in B as follows. For ı : C ֌ C ′ and

injDq ∈ FB
I Q(C) we have FB

I Qı : FB
I Q(C)→ FB

I Q(C ′) given by

FB
I Qı(injDq) = injı(D)(Q(ı|D)(q)) . (4.4.3b)

4.4. Transition systems simplified 103

Intuitively: FB
I Q is the presheaf in SetI found by growing the minimal seeds described by Q ∈ SetB.

Recall that every injection ı : C → D in I factors as an inclusion (ı(C) ,→ D) precomposed with a

bijection ı|C . The action of FB
I Q on bijections is inherited from Q; the action on inclusions is as the

identity. This matches the slogan “if the names of a state lie in C and C ⊆ D then they also lie in D”.

Finally, we define the action of the left adjoint FB
I : SetB → SetI on natural transformations

in SetB. For α : Q→Q′ in SetB and injDq ∈ FB
I Q(C) we have FB

I α : FB
I Q→ FB

I Q′ given by

(FB
I α)C(injDq) = injD(αD(q)) . (4.4.3c)

Essential surjectivity. The functor FB
I can be thought of as “growing a sheaf FB

I Q from the seeds

in Q”. This construction is inverse to the “finding seeds” construction 〈−〉 introduced above, in that

we have the following properties.

Proposition 4.4.4.

1. Let Q be a presheaf in SetB. We have an isomorphism Q
∼
→ 〈FB

I Q〉.

2. Let P be a sheaf in Sh(I). We have an isomorphism P
∼
→ FB

I 〈P〉.

Prop. 4.4.4 says that the functor FB
I : SetB → Sh(I) is essentially surjective: every sheaf in Sh(I) is

isomorphic to a sheaf of the form FB
I Q, for some Q ∈ SetB.

Sh(I) is a Kleisli category. Prop. 4.4.4 is an important step towards establishing the following

result; Fiore [2001], and Fiore and Menni [2005, Example 1.14], provide some details and discus-

sion.

Theorem 4.4.5 (Fiore [2001, Thm. 6.2]). Sh(I) is equivalent to the Kleisli category of the monad

on SetB induced by the adjunction FB
I ⊣ U I

B.

4.4.2 B-indexed early labelled transition systems

We introduce transition systems on presheaves in SetB. By doing so we are able to significantly

simplify the axiomatisation of transition systems given in Figure 3.4. Notice that Axioms I4–I6 are

concerned only with inclusion maps. By considering transition systems over minimal seeds, we are

thus able to eliminate these axioms.

We now introduce a class of indexed labelled transition systems whose carriers are sets of

elements of presheaves over B.

Definition 4.4.6. A B-indexed early labelled transition system (B-ILeTS) over Q ∈ SetB, is a labelled

transition relation

¹¹→ ⊆
∫

Q× Labe×
∫

Q .

Figure 4.1 introduces Axioms B1–B3 on B-ILeTSs.

From B-ILeTSs to I-ILeTSs. Consider P ∈ Sh(I). Let ¹¹→ be a B-ILeTS over 〈P〉. We induce an

I-ILeTS with carrier P, and with transition relation

¹¹→! ⊆
∫

P × Labe×
∫

P

the least satisfying the following.

104 Models for Name-Passing, Refined

If C0 ⊢ p
c?d
¹¹→ C ′0 ⊢ p′ and C0 ⊆ C and C ′0 ⊆ C ∪ {d},

then C ⊢ [C0 ,→ C]p
c?d
¹¹→! C ∪ {d} ⊢ [C ′0 ,→ (C ∪ {d})]p

′.

If C0 ⊢ p
c!d
¹¹→ C ′0 ⊢ p′ and d ∈ C0 ⊆ C and C ′0 ⊆ C ,

then C ⊢ [C0 ,→ C]p
c!d
¹¹→! C ⊢ [C ′0 ,→ C]p′.

If C0 ⊢ p
c!d
¹¹→ C ′0 ⊢ p′ and C0 ⊆ C and C ′0 ⊆ C ∪ {d} and d 6∈ C

then C ⊢ [C0 ,→ C]p
c!d
¹¹→! C ∪ {d} ⊢ [C ′0 ,→ (C ∪ {d})]p

′.

If C0 ⊢ p
τ
¹¹→ C ′0 ⊢ p′ and C0 ⊆ C and C ′0 ⊆ C

then C ⊢ [C0 ,→ C]p
c!d
¹¹→! C ⊢ [C ′0 ,→ C]p′.

(4.4.7)

From I-ILeTSs to B-ILeTSs. Consider P ∈ Sh(I). Let −→ be an I-ILeTS over P. We induce a B-ILeTS

with carrier 〈P〉, and with transition relation

〈−→〉 ⊆
∫
〈P〉 × Labe×

∫
〈P〉

the least satisfying the following.

If C ⊢ p
ℓ
−→ C ′ ⊢ p′ then supp(p) ⊢ seed(p) 〈

ℓ
−→〉 supp(p′) ⊢ seed(p′) . (4.4.8)

Theorem 4.4.9. Consider a sheaf P ∈ Sh(I).

1. The above mappings (4.4.7, 4.4.8) describe a bijective correspondence between B-ILeTSs over 〈P〉

that satisfy Axiom B1, and I-ILeTSs over P that satisfy Axioms I1, and I4–I6.

2. A relation ¹¹→ satisfies Axiom B2 (resp. Axiom B3) if and only if the induced relation ¹¹→!

satisfies Axiom I2 (resp. Axiom I3).

A proof of this result is provided in Appendix 4.B.

B1. Channel is known and at most transmitted data is learnt:

C ⊢ q
ℓ
¹¹→ C ′ ⊢ q′ =⇒ ch(ℓ)⊆ C ∧ C ′ ⊆ C ∪ dat(ℓ)

B2. If one name can be input, then so can any other: for all d ′ ∈ N :

C ⊢ q
c?d
¹¹→ C ′ ⊢ q′

=⇒ ∃C ′′, q′′ ∈Q(C ′′). C ⊢ q
c?d ′

¹¹→ C ′′ ⊢ q′′

B3. Bijective maps preserve transitions: for all D ∈ I, with C ∪ dat(ℓ)
β
∼= D:

C ⊢ q
ℓ
¹¹→ C ′ ⊢ q′ ∧ ch(ℓ)⊆ C ∧ C ′ ⊆ C ∪ dat(ℓ)

=⇒ β(C) ⊢ [β |C]q
[β]ℓ
¹¹→ β(C ′) ⊢ [β |C ′]q

′

Figure 4.1: Requirements on a B-indexed labelled transition system.

4.A. Appendix to Chapter 4: Proof of Theorem 4.2.5 105

4.A Appendix to Chapter 4: Proof of Theorem 4.2.5

We now provide a proof of Theorem 4.2.5.

Theorem 4.2.5. Let (P,h) and (Q, k) be Be-coalgebras. Suppose that P and Q both sheaves. Every I-in-

dexed early bisimulation R between induced I-ILeTSs −→h and −→k is also a Be-bisimulation between

Be-coalgebras (P,h) and (Q, k).

Proof. We consider Be-coalgebras (P,h) and (Q, k), and an I-indexed early bisimulation between the

induced I-ILeTSs, −→h and −→k.

We define a new I-ILeTS, with carrier R, and transition relation −→ the least satisfying the

following implication, for all C ∈ I, and (p,q) ∈ R(C), every label ℓ ∈ Labe, and every pair

(p′,q′) ∈ R(C ∪ dat(ℓ)):

If ∀C0 ⊆ C , (p0,q0) ∈ R(C0).

(C − C0)∩ dat(ℓ) = ; and [C0 ,→ C](p0,q0) = (p,q) =⇒

∃(p′0,q′0) ∈ R(C0 ∪ dat(ℓ)). [C0 ∪ dat(ℓ) ,→ C ∪ dat(ℓ)](p′0,q′0) = (p
′,q′)

and C0 ⊢ p0
ℓ
−→h C0 ∪ dat(ℓ) ⊢ p′0

and C0 ⊢ q0
ℓ
−→k C0 ∪ dat(ℓ) ⊢ q′0

Then C ⊢ (p,q)
ℓ
−→ C ∪ dat(ℓ) ⊢ (p′,q′) .

Recall that, by Theorem 3.3.6, the I-ILeTSs (P,−→h) and (Q,−→k) satisfy Axiom I1–I6. It follows

straightforwardly from this, and from the definition, that the I-ILeTS (R,−→) satisfies Axioms I1,

I3, I4a, I4b and I6. Axioms I2 and I5 are more subtle.

We will use Axiom I5 to prove Axiom I2, and so we prove Axiom I5 first. Suppose that the

premise of Axiom I5 holds, i.e.

C ⊢ (p,q)
ℓ
−→ C ∪ dat(ℓ) ⊢ (p′,q′)

and consider D ∈ I with C ⊆ D and (D− C)∩ dat(ℓ) = ;. We must show that the transition

D ⊢ [C ,→ D](p,q)
ℓ
−→ D ∪ dat(ℓ) ⊢ [C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′,q′)

is permitted. So suppose that we have C0 ⊆ D and (p0,q0) ∈ R(C0), all such that (D− C0)∩ dat(ℓ) = ;

and [C0 ,→ D](p0,q0) = [C ,→ D](p,q). Since both C0 and C support [C ,→ D]p ∈ P(D), we

know, by Prop. 4.2.4, that (C0 ∩ C) supports [C ,→ D]p ∈ P(D); since P is a sheaf, we have

seed(p@(C0 ∩ C)) ∈ P(C0 ∩ C) and

[(C0 ∩ C) ,→ C]
�
seed(p@(C0 ∩ C))

�
= p and [(C0 ∩ C) ,→ C0]

�
seed(p@(C0 ∩ C))

�
= p0 .

By Axiom I6 for (P,−→h), we know that ((C0 ∩ C)∪ dat(ℓ)) supports p′ and that

(C0 ∩ C) ⊢ seed(p@(C0 ∩ C))
ℓ
−→h (C0 ∩ C)∪ dat(ℓ) ⊢ seed(p′@(((C0 ∩ C)∪ dat(ℓ)))) .

Let p′0 = [(C0 ∩ C)∪ dat(ℓ) ,→ C0 ∪ dat(ℓ)]
�
seed(p′@(C0 ∩ C)∪ dat(ℓ))

�
. By Axiom I5, we have

C0 ⊢ p0
ℓ
−→h C0 ∪ dat(ℓ) ⊢ p′0 .

In the same way, since Q is a sheaf, we have an element q′0 ∈ Q(C0 ∪ dat(ℓ)) such that

[C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)]q′ = [C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)]q, and

C0 ⊢ q0
ℓ
−→k C0 ∪ dat(ℓ) ⊢ q′0 .

106 Models for Name-Passing, Refined

It remains for us to show that (p′0,q′0) ∈ R(C0 ∪ dat(ℓ)). We show this differently depending on

whether or not C0 is smaller in size than C .

If C0 is smaller than C then we can construct an injection ı : C0 ∪ dat(ℓ)֌ C ∪ dat(ℓ) and a bijec-

tion β : D ∪ dat(ℓ)
∼
→ D ∪ dat(ℓ) such that β |(C0∩C)∪dat(ℓ) = id(C0∩C)∪dat(ℓ), and such that the following

diagram commutes.
C0 ∪ dat(ℓ)

ı

��

� � // D ∪ dat(ℓ)

β

��

C ∪ dat(ℓ)
� � // D ∪ dat(ℓ)

Consider the following sequence of identities between elements of (P ×Q)(D ∪ dat(ℓ)).

[C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′,q′) = [C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′0,q′0)

= [β][C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′0,q′0) (∗)

= [C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)][ı](p′0,q′0)

(Here, line (∗) holds because ((C0 ∩ C) ∪ dat(ℓ)) supports (p′0,q′0), and because β fixes the

set ((C0 ∩ C)∪ dat(ℓ)).) The sheaves P and Q must both act injectively, and hence we can

cancel [C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)] from both sides of the resulting equation to deduce that

(p′,q′) = [ı](p′0,q′0). Since, by assumption, the transition

C ⊢ (p,q)
ℓ
−→ C ∪ dat(ℓ) ⊢ (p′,q′)

is allowed, we can conclude from the closure condition in the definition of −→ that

[ı|C0∪dat(ℓ)](p
′
0,q′0) ∈ R(ı(C0 ∪ dat(ℓ)))

and so, since R is a functor, that

(p′0,q′0) = [(ı|C0∪dat(ℓ))
−1][ı|C0∪dat(ℓ)](p

′
0,q′0) ∈ R(C0 ∪ dat(ℓ))

as required.

If, on the other hand, C is smaller in size than C0, then we can construct an injec-

tion ı : C ∪ dat(ℓ)֌ C0 ∪ dat(ℓ) and a bijection β : D ∪ dat(ℓ)
∼
→ D ∪ dat(ℓ) such that we

have β |(C0∩C)∪dat(ℓ) = id(C0∩C)∪dat(ℓ), and such that the following diagram commutes.

C ∪ dat(ℓ)

ı

��

� � // D ∪ dat(ℓ)

β

��

C0 ∪ dat(ℓ) � � // D ∪ dat(ℓ)

This time we consider the following sequence of identities between elements of the set

(P ×Q)(D ∪ dat(ℓ)).

[C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′0,q′0) = [C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′,q′)

= [β][C ∪ dat(ℓ) ,→ D ∪ dat(ℓ)](p′,q′)

= [C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)][ı](p′,q′)

We cancel [C0 ∪ dat(ℓ) ,→ D ∪ dat(ℓ)] from both sides of the resulting equation to deduce that

(p′0,q′0) = [ı](p
′,q′). Since (p′,q′) ∈ R(C∪dat(ℓ))we conclude that we have (p′0,q′0) ∈ R(C0 ∪ dat(ℓ)),

as required. Thus Axiom I5 is proved.

For Axiom I2, we suppose that we have a transition

C ⊢ (p,q)
c?d
−→ C ∪ {d} ⊢ (p′,q′) (4.A.1)

4.A. Appendix to Chapter 4: Proof of Theorem 4.2.5 107

and we will show that, for any name d ′ ∈ N , we have (p′′,q′′) ∈ R(C ∪
�

d ′
	
) such that

C ⊢ (p,q)
c?d ′

−→ C ∪
�

d ′
	
⊢ (p′′,q′′) .

It follows from (4.A.1) that we must have the transition

C ⊢ p
c?d
−→h C ∪ {d} ⊢ p′ .

By Axiom I4a, we have

C ∪ {d} ⊢ [C ,→ C ∪ {d}]p
c?d
−→h C ∪ {d} ⊢ p′ .

Let n0 be the smallest number for which there exists a subset C0 of C of size n0 that sup-

ports (p,q) ∈ (P ×Q)(C) and such that

�
seed(p@C0), seed(q@C0)

�
∈ R(C0) .

We pick some such C0 of this minimal size. By Axiom I6, we know that C0 ∪ {d} supports p′, and

that

C0 ∪ {d} ⊢ [C0 ,→ C0 ∪ {d}]
�
seed(p@C0)

� c?d
−→h C0 ∪ {d} ⊢ seed(p′@(C0 ∪ dat(ℓ))) .

Using Axiom I4a again, we deduce that

C0 ⊢ seed(p@C0)
c?d
−→h C0 ∪ {d} ⊢ seed(p′@(C0 ∪ dat(ℓ))) .

Axiom I2 provides p′0 ∈ P(C0 ∪
�

d ′
	
) such that

C0 ⊢ seed(p@C0)
c?d ′

−→h C0 ∪
�

d ′
	
⊢ p′0 .

Since R is an I-indexed early bisimulation we have an element q′0 ∈ Q(C0 ∪
�

d ′
	
) such that

(p′0,q′0) ∈ R(C0 ∪
�

d ′
	
) and

C0 ⊢ seed(q@C0)
c?d ′

−→h C0 ∪
�

d ′
	
⊢ q′0 .

It follows from the minimality of C0 that the transition

C0 ⊢
�
seed(p@C0), seed(q@C0)

� c?d ′

−→ C0 ∪
�

d ′
	
⊢ (p′0,q′0)

is permitted. By Axioms I4a, I5, and I4a again, we conclude that

C ⊢ (p,q)
c?d ′

−→ C ∪
�

d ′
	
⊢ [C0 ∪

�
d ′
	
,→ C ∪

�
d ′
	
](p′0,q′0) .

Thus Axiom I2 is proved. So (R,−→) satisfies Axioms I1–I6, and by Theorem 3.3.7 we have

an Be-coalgebra structure r : R → BeR that induces the relation −→. In other words, we

have −→r=−→.

To conclude our proof of this theorem we must show that the Be-coalgebra structure r : R→ BeR

lifts the relation R to a span of coalgebras. We do this using the characterisation of Lemma 3.3.12:

we will show that the properties of that lemma (properties 1–3) are satisfied. Property 1 is

immediate from the definition of −→. For property 2, we proceed as follows. Suppose that

we have (p,q) ∈ R(C) such that C ⊢ p
ℓ
−→h C ′ ⊢ p′. We must exhibit q′ ∈ Q(C ′) such that

(p′,q′) ∈ R(C ′) and C ⊢ (p,q)
ℓ
−→ C ′ ⊢ (p′,q′). We will focus on the case where ℓ = τ. By Ax-

iom I1, we know that C ′ = C . As in our proof of Axiom I2, we let n0 be the smallest number

108 Models for Name-Passing, Refined

for which there exists a subset C0 of C of size n0 that supports (p,q) ∈ (P × Q)(C) and is such

that
�
seed(p@C0), seed(q@C0)

�
∈ R(C0). We pick some such minimal set C0. By Axiom I6, C0

supports p′, and

C0 ⊢ seed(p@C0)
ℓ
−→h C0 ⊢ seed(p′@C0) .

Since R is an I-indexed early bisimulation we have an element q′0 ∈Q(C0) such that
�
seed(p′@C0),q

′
0

�
∈ R(C0)

and

C0 ⊢ seed(q@C0)
ℓ
−→k C0 ⊢ q′0 .

The transition

C0 ⊢
�
seed(p@C0), seed(q@C0)

� ℓ
−→ C0 ⊢

�
seed(p′@C0),q

′
0

�

must be permitted, due to the minimality of C0. Axiom I5 now ensures that we have a transition

C ⊢ (p,q)
ℓ
−→ C ⊢ (p′, [C0 ,→ C]q′0)

as required. Input and output labels are treated similarly, requiring Axioms I4a and I4b respectively.

Thus property 2 of Lemma 3.3.12 is satisfied. Property 3 of Lemma 3.3.12 is established in a

symmetric manner, and thus we can conclude that R is a Be-bisimulation.

4.B Appendix to Chapter 4: Proof of Theorem 4.4.9

We now provide a proof of Theorem 4.4.9.

Theorem 4.4.9. Consider a sheaf P ∈ Sh(I).

1. The above mappings (4.4.7, 4.4.8) describe a bijective correspondence between B-ILeTSs over 〈P〉

that satisfy Axiom B1, and I-ILeTSs over P that satisfy Axioms I1, and I4–I6.

2. A relation ¹¹→ satisfies Axiom B2 (resp. Axiom B3) if and only if the induced relation ¹¹→!

satisfies Axiom I2 (resp. Axiom I3).

Proof. We begin by proving item (1). Let ¹¹→ be a B-ILeTS over 〈P〉. We will show that

¹¹→ = 〈¹¹→!〉 . (4.B.1)

(None of the axioms are needed for this part.)

First, we show that ¹¹→ ⊆ 〈¹¹→!〉. We will consider here the case of output transitions, which

is the most complex; other kinds of label are treated similarly. Suppose that

C0 ⊢ p
c!d
¹¹→ C ′0 ⊢ p′ .

Either d ∈ C0, or d 6∈ C0. In first case, d ∈ C0, we let C = C0 ∪ C ′0. In the second case, d 6∈ C0, we let

C = (C0 ∪ C ′0)− {d}. In both cases, we have induced

C ⊢ [C0 ,→ C]p
c!d
¹¹→! C ∪ {d} ⊢ [C ′0 ,→ (C ∪ {d})]p

′ .

Now, by definition of 〈P〉, supp([C0 ,→ C]p) = C0, and supp([C ′0 ,→ (C ∪ {d})]p
′) = C ′0. So we have

induced

C0 ⊢ p 〈
c!d
¹¹→!〉 C ′0 ⊢ p′

as required.

Next, we show that 〈¹¹→!〉 ⊆ ¹¹→. This time we focus on input transitions, although other

kinds of label are treated similarly. Suppose that

C0 ⊢ p 〈
c?d
¹¹→!〉 C ′0 ⊢ p′ .

4.B. Appendix to Chapter 4: Proof of Theorem 4.4.9 109

Then we must have C , C ′ ∈ I, and q ∈ P(C), q′ ∈ P(C) such that

C0 = supp(q), p = seed(q), C ′0 = supp(q′), p′ = seed(q′)

and that

D ⊢ q
c?d
¹¹→! D′ ⊢ q′ .

We must have E0, E′0 ∈ B, and r ∈ 〈P〉(E0), and r ′ ∈ 〈P〉(E′0), such that

[E0 ,→ D]r = q and [E′0 ,→ D′]r ′ = q′ and E0 ⊢ r
c?d
¹¹→ E′0 ⊢ r ′ .

Now, we must have that E0 = supp(q), but we already have that C0 = supp(q); so we know that

E0 = C0. Similarly, E′0 = C ′0. Since P is separated, the map [C0 ,→ D] is injective, and so p = r.

Similarly, p′ = r ′. So we must have

C0 ⊢ p
c?d
¹¹→ C ′0 ⊢ p′

as required. Thus we establish equation 4.B.1.

Next we show that for every B-ILeTS ¹¹→ that satisfies Axiom B1, the relation ¹¹→! satisfies

Axiom I1 and Axioms I4–I6. It is easy to see that Axiom I1 follows from Axiom B1 and the definition

of ¹¹→!, and that Axioms I4a, I4b and I5 all follow from the the definition of ¹¹→!.

We now explain why Axiom I6 holds of ¹¹→!. Suppose that we have, as in the premise of

Axiom I6,

D ⊢ [C ,→ D]p
ℓ
¹¹→! D ∪ {d} ⊢ p′

and, for now, we assume that ℓ= c?d. Then, using equation 4.B.1, we must have that

supp(p) ⊢ seed(p)
ℓ
¹¹→ supp(p′) ⊢ seed(p′)

We know that supp(p) ⊆ C , and, by Axiom B1, supp(p′) ⊆ supp(p) ∪ {d}. So we know that

supp(p)⊆ C ∪ {d}. Thus we have

C ⊢ p
ℓ
¹¹→! C ∪ {d} ⊢ [supp(p′) ,→ C ∪ {d}]seed(p′)

as required. Thus Axiom I6 holds of ¹¹→!.

Let −→ be a I-ILeTS over P that satisfies Axiom I1 and Axioms I4–I6. We will now show that

−→ = 〈−→〉! . (4.B.2)

We first show that −→ ⊆ 〈−→〉!. Suppose that

C ⊢ p
ℓ
−→ C ′ ⊢ p′ .

We will concentrate on the case ℓ = c!d where d ∈ C . From Axiom I1, we know that C ′ = C . The

following transition is induced:

supp(p) ⊢ seed(p) 〈
ℓ
−→〉 supp(p′) ⊢ seed(p′) .

By Axiom I4b, we know that d ∈ supp(p). Thus the transition

C ⊢ p 〈
ℓ
−→〉! C ′ ⊢ p′

is induced. Other modes of communication are considered in a similar manner.

We now show that 〈−→〉! ⊆ −→. Suppose that the transition

C ⊢ p 〈
ℓ
−→〉! C ′ ⊢ p′

110 Models for Name-Passing, Refined

is induced. Suppose that ℓ = c?d. We must have C ′ = C ∪ {d} and C0, C ′0 ∈ B together with

q ∈ 〈P〉(C0), q′ ∈ 〈P〉(C ′0) such that C0 ⊆ C , C ′0 ⊆ (C ∪{d}) and [C0 ,→ C]q = p, [C ′0 ,→ C ′]q′ = p′ and

C0 ⊢ q 〈
c?d
−→〉 C ′0 ⊢ q′ .

This transition, in turn, must have been induced, so we must have D, D′ ∈ I and r ∈ P(D), r ′ ∈ P(D′)

for which supp(r) = C0, supp(r ′) = C ′0 and seed(r) = q, seed(r ′) = q′ and

D ⊢ r
c?d
−→ D′ ⊢ r ′ .

By Axiom I1 we have that D′ = D ∪ {d}. Using Axiom I4a we have

D ∪ {d} ⊢ [D ,→ (D ∪ {d})]r
c?d
−→ D′ ⊢ r ′ .

Using Axiom I6 we have

C0 ∪ {d} ⊢ [C0 ,→ (C0 ∪ {d})]q
c?d
−→ C0 ∪ {d} ⊢ [C

′
0 ,→ (C0 ∪ {d})]q

′ .

Using Axiom I5, we have

C ∪ {d} ⊢ [C ,→ (C ∪ {d})]p
c?d
−→ C ∪ {d} ⊢ p′ .

We use Axiom I4a to conclude that

C ⊢ p
c?d
−→ C ∪ {d} ⊢ p′ .

The other modes of communication are treated in a similar manner. Thus we establish equa-

tion 4.B.2.

Finally, we show that, provided Axioms I1 and I4–I6 hold of an I-ILeTS −→, then Axiom B1

holds of 〈−→〉. Suppose that

C0 ⊢ p 〈
ℓ
−→〉 C ′0 ⊢ p′ .

We will focus on the case where ℓ= c?d; other modes of communication are considered in a similar

manner.

We must have C , C ′ ∈ I together with q ∈ P(C), q′ ∈ P(C ′) such that

C ⊢ q
ℓ
−→ C ′ ⊢ q′

and so that C0 = supp(q), C ′0 = supp(q′) and p = seed(q), p′ = seed(q′). By Axiom I1, we know that

C ′ = C ∪{d}. Using Axiom I4a, we can assume, without loss of generality, that if d ∈ C0 then d ∈ C ,

and that if d 6∈ C0 then d 6∈ C . By Axiom I6, we have q′′ ∈ P(C0 ∪ dat(ℓ)) such that

C0 ⊢ p
ℓ
−→ C0 ∪ {d} ⊢ q′′

and [(C0 ∪ {d}) ,→ C ′]q′′ = q′. Thus we know that C ′0 ⊆ C0 ∪ {d}. By Axiom I1, we have that c ∈ C0.

Thus Axiom B1 holds of 〈−→〉.

Item (2) follows straightforwardly from the definition (4.4.7).

Chapter 5

Practicality

In Chapters 3 and 4 we introduced models for name-passing process calculi. One reason for pursu-

ing a model theory is to develop efficient model checking procedures. In this chapter we take some

steps in this direction.

An important idea in model-checking is to take advantage of any symmetry in a model. Clarke,

Grumberg, and Peled [2000, Chapter 14] provide a general overview. For model-checking name-

passing systems, named-sets have been proposed by Montanari and Pistore [e.g. 1997] and others

in their work on history dependent automata. This work has led to efficient verification tools for

name-passing systems [see e.g. Ferrari, Gnesi, Montanari, and Pistore, 2003]. The essential idea of

named-sets is that the size of the state space can be drastically reduced by representing states up-to

renaming of free variables.

In Section 5.1 we explain how a certain flavour of named-set provides an efficient presentation

of the sheaves in the Schanuel topos, used in the models of Section 4.2.2, by taking advantage

of the inherent symmetry there. We do this by establishing an equivalence between the Schanuel

topos and a category of named-sets.

In Section 5.2 we move away from name-passing systems to consider final bisimulations in

the general setting. We introduce a description of final bisimulations as greatest fixed points,

and discuss criteria for the existence of final bisimulations. A transfinite procedure is introduced

for finding such final bisimulations by repeatedly refining the coarsest relation. We relate this

procedure with the well-known terminal sequence for an endofunctor. Furthermore, we provide

conditions under which the procedure will find the final bisimulation on a coalgebra within a finite

number of steps. One of these conditions is that the carrier of the coalgebra is finitely presentable:

for sheaves in the Schanuel topos, finite presentability amounts to finiteness of the correponding

named-set presentation.

Thus the two sections of this chapter together provide first steps towards an analysis of a par-

tition refinement technique for checking bisimulation in the π-calculus, such as the algorithm sug-

gested by Ferrari, Montanari, and Pistore [2002], perhaps eventually leading to the algorithm

suggested by Pistore and Sangiorgi [2001].

In this chapter, and particularly in Section 5.1, we will make frequent reference to the theory

of locally presentable categories, for which a reference is provided by Adámek and Rosický [1994].

For basic algebra, my reference is that of Cohn [2003].

5.1 Presentations of sheaves

For the transition systems that were studied in Chapters 3 and 4, the state spaces were either

empty or infinite. (For instance, let 1 be a terminal presheaf in SetI; then the set of elements
∫

1

is in bijection with the set of objects of I.) As such, the presheaf description of state spaces is not

immediately useful for implementation.

111

112 Practicality

In this section we recall some notions of named-set from the work of Montanari and Pistore

[1997] and others. We find that named-sets provide an efficient description of sheaves in the

Schanuel topos.

We begin this section with a discussion of some basic notions: categories of group actions, and

coproduct completions. In Section 5.1.2 we use these notions to study named-sets with symmetries,

concentrating on a category that we prove to be equivalent to the presheaf category SetB used in

Section 4.4. Next, in Section 5.1.3, we explain that named-sets can be viewed as presentations

of presheaves in SetB, in the same way as generators and relations are presentations of algebraic

structures. Finally, in Section 5.1.4, we introduce a category of named-sets that is equivalent to the

Schanuel topos.

5.1.1 Preliminaries: Categories of coset actions, and coproduct completions

In this subsection we develop some basic notions. We begin by introducing categories of coset ac-

tions, which are equivalently categories of transitive group actions. We then discuss free coproduct

completions, and the ‘families’ construction as an explicit description of this. In Theorem 5.1.3 we

present the orbit-stabliser theorem as the statement that the category of group actions is a free

coproduct completion of its subcategory of transitive actions.

Categories of coset actions. For any group G, the category Coset-Act(G) of left coset G-actions

is defined as follows.

• Objects of Coset-Act(G) are subgroups of G.

• Morphisms in Coset-Act(G) from H to H ′ are given by left H ′-cosets gH ′ which are such

that H ⊆ gH ′g−1.

• The identity morphism on H is given by the coset H. The composition of a mor-

phism gH ′ : H → H ′ with morphism g ′H ′′ : H ′→ H ′′ is given by g g ′H ′′ : H → H ′′.

Transitive group actions. The category Coset-Act(G) embeds into of the category SetG

of left G-sets, as (essentially) the full subcategory of transitive G-sets. We define a func-

tor e : Coset-Act(G)→ SetG as follows. For any object of Coset-Act(G), i.e. a subgroup H of G, we

let eH be the G-set of left cosets of H in G. A morphism gH ′ : H → H ′ in Coset-Act(G) determines

a G-set homomorphism e(gH) : eH → eH ′, mapping a left coset g ′H of H to the left coset g−1 g ′gH ′

of H ′.

It is routine to confirm that this action on morphisms respects the coset equivalence classes.

Notice that the condition H ⊆ gH ′g−1 states that the stabiliser of the coset action idGH must also

stabilise gH ′.

The use of cosets as morphisms in Coset-Act(G) ensures that the functor e is faithful. In

fact, e : Coset-Act(G)→ SetG is also full. Consider subgroups H and H ′ of G. Every G-set ho-

momorphism f : eH → eH ′ determines a coset gH ′ of H ′ found by applying f to the coset idGH.

The property H ⊆ gH ′g−1 follows because the stabiliser of idGH must be contained in gH ′, since f

is a G-set homomorphism.

Free coproduct completions and the families construction. We write COPROD for the 2-cate-

gory whose objects are categories with all small coproducts, morphisms are coproduct preserving

functors, and 2-cells are natural transformations.

Recall [e.g. from Kock, 1995] that a functor F : C→C is a free coproduct completion if C has

small coproducts, and if, for any other category D with coproducts, precomposition with F induces

an equivalence of categories between COPROD(C ,D) and CAT(C,D).

5.1. Presentations of sheaves 113

We now recall an explicit description of a free coproduct completion. For any small category C

we have a category Fam(C) given as follows. Objects of Fam(C) are given by a set I together with

an I-indexed family of objects from C. A morphism in Fam(C) from (I ,
�

X i

	
i∈I) to (J ,

¦
Yj

©
j∈J
) is

given by a function f : I → J together with, for each i ∈ I , a morphism X i → Yf (i) in C.

Proposition 5.1.1. Let 1 be a one element set. The functor C→ Fam(C) which maps an object X ∈ C

to the family (1, {X }) exhibits Fam(C) as a free coproduct completion of C.

There is another, more intrinsic, characterisation of free coproduct completions. Recall

that an object X of a locally small category C is said to be indecomposable if the hom-functor

C (X ,−) :C → Set preserves coproducts.

Proposition 5.1.2 (see e.g. Carboni and Vitale, 1998, Lemma 42). Let C be a small category. A

functor F : C → C is a free coproduct completion if and only if C has small coproducts, F is an

embedding, the objects in the image of F are indecomposable, and every object in C is a coproduct of

objects from C.

Orbit-stabiliser theorem and free coproduct completions. Having exhibited the category

Coset-Act(G) as the full category of transitive G-sets, we can give a categorical account of the

orbit-stabiliser theorem.

Theorem 5.1.3. The embedding e : Coset-Act(G)→ SetG exhibits the category SetG of left G-sets as a

free coproduct completion of Coset-Act(G).

Proof. We will prove this result by reference to Prop. 5.1.2. It is standard that SetG has coproducts,

and we have just explained that e : Coset-Act(G)→ SetG is an embedding.

The coset actions are indecomposable for the following reason. Let
�

X i

	
i∈I be a family of

G-sets, and consider a subgroup H of G, together with a homomorphism f : eH →
∐

i∈I X i. Suppose

that f (H) = inji(x); then it is clear that f factors through the coproduct injection inji : X i →
∐

i∈I X i.

The fact that every G-set is a coproduct of coset actions is precisely the orbit-stabiliser theorem.

Consider a G-set X ∈ SetG. We write Orb(X) for a set of canonical representatives of the orbits of X ,

i.e. canonical representatives of equivalence classes for the relation ∼ on X given by

x ∼ y if and only if ∃g ∈ G. x = g • y .

The stabiliser Stab(x) of x ∈ X is the subgroup of G containing those elements that fix x . A standard

result of group theory is the following:

X ∼=
∐

x∈Orb(X)

e (Stab(x)) .

Thus Theorem 5.1.3 is proved.

5.1.2 Named-sets with symmetries

Montanari and Pistore [e.g. 1997] have developed models of name-passing systems using history

dependent automata, viz. automata internal to a categories of so-called named-sets. A variety of

categories of named-sets have been considered; among them are the categories of named-sets with

symmetries which provide efficient representations of states by taking into account the symmetry

involved in name-passing systems.

We begin this subsection with some remarks about the category of named-sets with symmetries

that is studied in Pistore’s thesis [1999]. As we explain, this category is equivalent to a category

of group actions. We then go on to consider a more practically orientated version of named-sets

with symmetries, inspired by the work of Ferrari, Montanari, and Pistore [2002]. We show that

this latter category is equivalent to the presheaf category SetB that was considered in Section 4.4.

114 Practicality

Named-sets with symmetries as in Pistore’s thesis. A first version of named-sets with symme-

tries was studied by Pistore [1999, Chapter 7 and Defn. 9.3]. Let N be a countably infinite set,

and let Sym(N) is the group of permutations on that set. It is straightforward to see that category

Sym introduced in Pistore’s Defn. 9.3 is the category Coset-Act(Sym(N)) that we introduced above.

(Here we are assuming that the sets involved in Pistore’s morphisms must not be empty; this point

is not clear in his thesis.)

Pistore’s category SymSet of named-sets with symmetries, introduced in his Defn. 9.3, is the

category

Fam(Coset-Act(Sym(N))) .

Using Theorem 5.1.3, we can conclude that Pistore’s category SymSet of named-sets with symme-

tries is equivalent to the category SetSym(N) of Sym(N)-sets.

This category will appear again in Section 7.1, where we will see that it contains the Schanuel

topos as a subcategory.

Named-sets with symmetries of Ferrari, Montanari, and Pistore. The named-sets with symme-

tries of Pistore’s thesis have a major practical disadvantage: the group involved in their definition

is infinite. In implementing a verification procedure for name-passing calculi, Ferrari, Montanari,

and Pistore [2002] have used an alternative definition. For the category that they consider, we will

eventually achieve an equivalence with the Schanuel topos.

First, though, we define the category NSetB by

NSetB = Fam

 ∐

n∈N

Coset-Act(Sym(n))

!
.

(Here, for any number n ∈ N, we write Sym(n) for the symmetric group on n symbols.) The objects

of NSetB can be understood as tuples

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
,

where I is a set, and for all i ∈ I , mi is a natural number and Hi is a subgroup of Sym(mi). A

morphism
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�

in NSetB is given by a pair (f ,
¦
σiK f (i)

©
i
) where f is a function I → J , and for each i ∈ I , σi is a

permutation in Sym(n f (i)), all such that, for each i ∈ I , mi = n f (i) and Hi ⊆ σiK f (i)σ
−1
i

.

The named-sets considered by Ferrari et al. [2002] are defined in the same way, except that

they require a total order on the indexing set. The morphisms in NSetB are different from the

morphisms of Ferrari et al., and this matter will be addressed in Section 5.1.4.

NSetB is a presheaf category. We now consider a skeleton category B of the category B (in-

troduced in Section 4.4). Here, B is the groupoid whose objects are natural numbers, consid-

ered as sets, and whose morphisms are permutations on those sets. So B is the coproduct cate-

gory
∐

n∈N Sym(n).

We now establish an equivalence between NSetB and SetB.

Theorem 5.1.4. The category NSetB is equivalent to SetB.

5.1. Presentations of sheaves 115

Proof. We prove the result by the following chain of equivalences.

NSetB = Fam

 ∐

n∈N

Coset-Act(Sym(n))

!
(5.1.5a)

∼=
∏

n∈N

(Fam (Coset-Act(Sym(n)))) (5.1.5b)

≃
∏

n∈N

�
SetSym(n)

�
(5.1.5c)

∼= Set(
∐

n Sym(n)) (5.1.5d)

∼= SetB (5.1.5e)

Equation 5.1.5a is the definition of the category NSetB. The next step (5.1.5b) relies on the fact

that the Fam construction transforms coproducts of categories into products of categories. To

see this, consider a set J and a J-indexed family of categories,
¦
C j

©
j∈J

. We claim that the cate-

gory Fam
�∐

j∈J C j

�
is a product of the family

¦
Fam(C j)

©
j∈J

of categories. We have a cone



π j : Fam



∐

j∈J

C j


→ Fam(C j)





j∈J

.

For each j ∈ J , the functor π j maps a family (I ,
�

X i

	
i∈I) to the family

�
I | j ,

�
X i

	
i∈J

�

where I | j =
¦

i ∈ I
�� X i ∈ C j

©
. Each π j acts by restriction on morphisms. It is straightforward to

show that this cone is limiting.

Step (5.1.5c) follows immediately from Theorem 5.1.3. Step (5.1.5d) is a basic property of

bicartesian closed categories (and CAT in particular, modulo size), and finally, (5.1.5d) is the defi-

nition of B.

We note here an explicit description of the functor NSetB → SetB suggested by (5.1.5). This

functor takes a named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
∈ NSetB to the presheaf Q ∈ SetB given as follows.

For any number n ∈ N, we let

Q(n) =
∐

i∈I

¦
σHi

�� n= mi and σ ∈ Sym(n)
©

.

For any permutation τ on n, and any element inji(σHi) ∈Q(n), we let

Qτ(inji(σHi)) = inji(τσHi) .

Suppose that we have two named-sets,

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
and

�
J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in NSetB

with corresponding presheaves Q,R ∈ SetB. A morphism

�
f ,
¦
σiK f (i)

©
i∈I

�
:
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in NSetB

gives rise to a natural transformation α : Q → R which is given by, for each number n ∈ N,

αn(inji(σHi)) = inj f (i)(σiσσ
−1
i

K f (i)).

116 Practicality

5.1.3 Presentable named-sets

In algebra, structures are often specified by presentations; for example, a group can be specified by

a set of generators and a set of relations. As we now explain, named-sets with symmetries can be

viewed as presentations for presheaves in SetB.

Presentable families. We begin with an elementary remark about presentable families in general.

Theorem 5.1.6. Let λ be a regular cardinal, and let C be an arbitrary category with a terminal

object. A family (I ,
�

X i

	
i∈I) in Fam(C) is λ-presentable if and only if I has cardinality smaller than λ

and for each i ∈ I the object X i is λ-presentable in C .

Proof. We begin by proving this statement from left to right. So we assume that a fam-

ily φ = (I ,
�

X i

	
i∈I) in Fam(C) is λ-presentable.

The forgetful functor π : Fam(C) → Set, sending a family to its indexing set, has a right ad-

joint (−, 1) : Set→ Fam(C), sending a set I to the I-indexed family of terminal objects. In conse-

quence, we see that the following diagram of categories commutes (up to isomorphism).

Set
Set(I ,−)

//

(−,1)
""

FFFFFFFFFF Set

Fam(C)

Fam(C)(φ,−)

<<xxxxxxxxxx

The functor (−, 1) : Set→ Fam(C) has itself a right adjoint, sending a family (I ,
�

X i

	
i∈I) to the set

of points of the family, i.e. the set ∐

i∈I

C (1, X i) .

Since φ is λ-presentable, the hom-functor Fam(C)
�
φ,−

�
: Fam(C) → Set preserves λ-filtered

colimits. Since (−, 1) : Set → Fam(C) has a right adjoint, it preserves colimits, and so the hom-

functor Set(I ,−) : Set→ Set preserves λ-filtered colimits. So I is λ-presentable, i.e. has cardinality

smaller than λ.

To complete the left-to-right direction, it remains to show that for each i ∈ I the object X i

is λ-presentable in C . Indeed, suppose that we have a λ-filtered diagram D : C→C that

has a colimit L, and consider a morphism f : X i → L in C . Then we can construct another

λ-filtered diagram D′ : C → Fam(C) of the same shape, mapping an object c ∈ C to the family

D′c = (I ,
�
if j = i then Dc else 1

	
j∈I). The colimit of this diagram D′ is (I ,

�
if j = i then L else 1

	
j∈I).

We also have a morphism (idI ,
¦
if j = i then f : X i → Dc else !1 : X j → 1

©
j∈I
) from φ to that col-

imit. Since φ is λ-presentable, there is an indexing object c ∈ C and we can derive a mor-

phism f : X i → Dc in C making appropriate diagrams commute. Thus X i is λ-presentable in C .

Thus the statement of the theorem is proved from left to right. Before we prove from right to

left, we will show that the embedding C → Fam(C) maps λ-presentable objects in C to λ-pre-

sentable objects in Fam(C). To this end, we assume that we have a λ-presentable X in C , and

show that the singleton family (1, {X }) in Fam(C) is λ-presentable in Fam(C).

Consider a λ-filtered diagram D : C→ Fam(C) with a colimit (I ,
�

Li

	
i∈I) in Fam(C), and con-

sider a morphism f : (1, {X })→ (I ,
�

Li

	
i∈I) in Fam(C). This morphism f picks out an element f (∗)

of I as well as a morphism f1 : X → L f (∗).

We now form a new category C′, which is a full subcategory of the category of elements

∫ �
C

D
−→ Fam(C)

π
−→ Set

�
.

5.1. Presentations of sheaves 117

The objects in C′ are those elements (injc(i)) for which the leg Dc→ (I ,
�

Li

	
i∈I) of the colimiting

cone maps i to the chosen element f (∗). To see that C′ is λ-filtered, note that π : Fam(C) → Set

preserves filtered colimits, and then use properties of λ-filtered colimits in Set.

We define a diagram D′ : C′ → C as follows: for any object (injc(i)) in C′, the object D′(injc(i))

in C is defined to be the i-th component of the family Dc in Fam(C).

It is now straightforward to see that L f (∗) is a colimit of this diagram D′ : C′→C . We have a

morphism f1 : X → L f (∗), and so, since X i is λ-presentable, we have an object (injc(i)) in C′ together

with a morphism f ′ from X to the i-th component of Dc, which is essentially unique in making

appropriate diagrams commute in C .

From this we derive a morphism (i,
�

f ′
	
) : (1, {X }) → Dc in Fam(C) making appropriate di-

agrams commute there. The required uniqueness property of this morphism follows from the

essential uniqueness of f ′, and thus we can conclude that (1, {X }) is λ-presentable in Fam(C).

We are now ready to prove the statement of the theorem from right to left. So we consider a

family φ = (I ,
�

X i

	
i∈I) in Fam(C) for which I is smaller than λ, and for each i ∈ I the object X i is

λ-presentable in C .

This family (I ,
�

X i

	
i∈I) is a coproduct of a diagram of λ-presentable objects, and that diagram

λ-small— i.e., the cardinality of the set of objects and morphisms of the diagram is smaller than λ.

It is well-known that a λ-small colimit of λ-presentables is itself λ-presentable, and thus we can

conclude that (I ,
�

X i

	
i∈I) is indeed λ-presentable.

Presentable named-sets.

Corollary 5.1.7. Let λ be a regular cardinal. A named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
∈ NSetB is λ-pre-

sentable if and only if I is smaller than λ.

Proof. Recall that the category NSetB is defined as

NSetB = Fam

 ∐

n∈N

Coset-Act(Sym(n))

!
.

Thus this corollary follows from Theorem 5.1.6, provided we show that every object of the cat-

egory
�∐

n∈NCoset-Act(Sym(n))
�

is λ-presentable. Indeed, we will show that every object of�∐
n∈NCoset-Act(Sym(n))

�
is finitely presentable.

We begin by showing that, for every finite group G, all the objects of Coset-Act(G) are finitely

presentable. Let H be a subgroup of G. Recall that we have an embedding e : Coset-Act(G)→ SetG,

and hence that eH is a model of the theory of G-sets: it is presented by one generator H, and for

each element g ∈ H, an equation

gH = H .

Thus eH is finitely presentable in SetG. By Theorem 5.1.3, the embedding e : Coset-Act(G)→ SetG

is the free coproduct completion of eH, and so it follows from Theorem 5.1.6 that H is finitely

presentable in Coset-Act(G).

For each n ∈ N the group Sym(n) is certainly finite, and so we know that every object of

Coset-Act(Sym(n)) is finitely presentable. We are now ready to show that every object of the

coproduct category
�∐

n∈NCoset-Act(Sym(n))
�

is finitely presentable. To this end, consider

some m ∈ N and a subgroup H of Sym(m).

118 Practicality

We first observe that the following two functors are equal; this follows from the nature of

coproducts of categories.

Coset-Act(Sym(m)) +
�∐

n∈N,n 6=m Coset-Act(Sym(n))
�

Hom(inl(H),−)

��

(Hom(H,−) , ;)

��

Set

(Here, the left-hand functor maps an object K of Coset-Act(Sym(m)) to the hom-set Hom(H, K),

and an object of
�∐

n∈N,n 6=m Coset-Act(Sym(n))
�

to the empty set. The right-hand functor maps

any object X in the domain to the hom-set Hom(inl(H), X).)

The object H ∈ Coset-Act(Sym(m)) is finitely presentable; in other words, the hom-

functor (Coset-Act(Sym(m))) (H,−) : Coset-Act(Sym(m))→ Set preserves filtered colimits. So

too does the constant functor

; :




∐

n∈N,n 6=m

Coset-Act(Sym(n))


→ Set .

Filtered diagrams are connected, and so we know that the copairing

(Hom(H,−) , ;) : Coset-Act(Sym(m)) +




∐

n∈N,n 6=m

Coset-Act(Sym(n))


→ Set

preserves filtered colimits. Thus the hom-functor

Hom(injm(H),−) :

 ∐

n∈N

Coset-Act(Sym(n))

!
→ Set

preserves filtered colimits, and so the object injm(H) is finitely presentable.

We thus conclude, using Theorem 5.1.6, that a named-set in NSetB is λ-presentable if and only

if its indexing set is smaller than λ.

5.1.4 Named-sets with symmetries and the Schanuel topos

We now modify the morphisms between named-sets to match those suggested by Ferrari, Monta-

nari, and Pistore [2002]. In doing so, we arrive at a category equivalent to the Schanuel topos.

In Theorem 4.4.5 we stated that the Schanuel topos is the Kleisli category of the monad on SetB

that arises from the forgetful functor U I
B : SetI→ SetB and its left adjoint.

We begin this subsection by considering the Schanuel topos as a Kleisli category over the cate-

gory of presheaves on the skeleton B. We then introduce the modified morphisms between named-

sets, and, in Theorem 5.1.9, we establish an equivalence between the resulting category of named-

sets and the Schanuel topos. We conclude by discussing notions of presentability for the sheaves in

the Schanuel topos.

A monad on SetB. Let I be the category of natural numbers, considered as sets, with injections

between them. Notice that I is a skeleton of I.

The monad U I
BFB

I on SetB lifts to a monad U I
B

FB
I

on SetB. Fiore [2001, Defn. 1.1] provides a

description of this lifted monad: it is given on objects as follows. For Q ∈ SetB and m ∈ N, let

U I
B

FB
I

Q(m) =
∑

n∈N

�
I(n, m) ·Qn

�
/∼n

5.1. Presentations of sheaves 119

with (ıσ, p)∼n (ı,Qσ(p)) for any σ ∈ Sym(n). For σ ∈ Sym(m), let

U I
B

FB
I

Q(σ)(injn
�

ı, p
�
∼n
) = injn

�
σı, p

�
∼n

.

It follows from Theorem 4.4.5 that the Schanuel topos is equivalent to the Kleisli category for

the monad U I
B

FB
I

on SetB.

Notation. Consider sets X , Y, Z . Let F be a set of functions X → Y , and let G be a set of func-

tions Y → Z . We write GF for the set of all functions X → Z found by composing a function in F

with one in G. When F has only one element, say f , we will write G f for GF ; and we adopt a

similar convention when G has only one element.

Modified morphisms. We define another category of named-sets NSetI as follows. The objects of

NSetI are the objects of NSetB. A morphism from
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
to
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in

NSetI is given by a function f : I → J together with, for each i ∈ I , a non-empty set ıi of injections

from n f (i) to mi such that for each ı ∈ ıi,

(a) ıiK f (i) = ıi and (b) Hiıi ⊆ ıi. (5.1.8)

The identity morphism on a named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
is the identity function id : I → I to-

gether with, for each i ∈ I , the group Hi.

Composition of morphisms is as follows. Given two composable morphisms,

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�

�
f ,{ıi}i∈I

�

���
I ′,
�

m′ i′
	

i′∈I ′ ,
�

H ′ i′
	

i′∈I ′

�

�
g,{  i′}i′∈I′

�

���
I ′′,
�

m′′ i′′
	

i′′∈I ′′ ,
�

H ′′ i′′
	

i′′∈I ′′

�

we let the composite be the morphism

�
g f ,

¦
ıi  f (i)

©
i∈I

�
:
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

I ′′,
�

m′′ i′′
	

i′′∈I ′′ ,
�

H ′′ i′′
	

i′′∈I ′′

�
.

This category NSetI of named-sets is essentially the category considered by Ferrari, Montanari,

and Pistore [2002, Sec. 3.1]. We note two differences. Firstly, as mentioned above, the named-sets

of Ferrari et al. are equipped with a total-order on the indexing set. This order structure, though, is

not required to be respected by their morphisms, and so (assuming the axiom of choice) a category

without this order structure is equivalent to one with it. The second difference is as follows: with

the morphisms considered by Ferrari et al., the sets of injections (here denoted ıi) are not required

to be non-empty. However, it seems that the development of their paper would work equally well

with this restriction imposed.

NSetI is the Schanuel topos. Notice that any morphism in NSetB
�

f ,
¦
σiK f (i)

©
i∈I

�
:
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�

is also a morphism between the same objects in NSetI; for each i ∈ I , condition (a) of (5.1.8)

is immediate, while condition (b) amounts to the condition Hi ⊆ σiK f (i)σ
−1
i

that is imposed on

morphisms in NSetB. Thus we have a faithful functor NSetB→ NSetI.

120 Practicality

We also have a functor NSetI→ Kl(U I
B

FB
I
) into the Schanuel topos. This functor acts on objects

as the equivalence NSetB ≃ SetB suggested by Theorem 5.1.4: a named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�

in NSetB is mapped to the presheaf Q ∈ SetB given as follows. For any number n ∈ N, we let

Q(n) =
∐

i∈I

¦
σHi

�� n= mi and σ ∈ Sym(n)
©

.

For any permutation τ on n, and any element inji(σHi) ∈Q(n), we let

Qτ(inji(σHi)) = inji(τσHi) .

Suppose that we have two named-sets,

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
and

�
J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in NSetB

with corresponding presheaves Q,R ∈ SetB. A morphism

(f ,
�
ıi

	
i∈I) :

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in NSetI

gives rise to a natural transformation α : Q→ U I
B

FB
I

R which is given by, for each number n ∈ N,

αn(inji(σHi)) = injn f (i)

�
σı, inj f (i)(K f (i))

�
∼nf (i)

for some ı ∈ ıi. Condition (a) in equation 5.1.8 ensures that it doesn’t matter which injection is

chosen.

It clear that the following diagram commutes.

NSetB //

��

SetB

��

NSetI // Kl(U I
B

FB
I
)

Theorem 5.1.9. The functor NSetI→ Kl(U I
B

FB
I
) is an equivalence of categories.

Proof. This functor is essentially surjective, since, by Theorem 5.1.4, the restriction NSetB → SetB

is essentially surjective. So it remains for us to show that the functor is full and faithful. To

this end, we consider named-sets
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
and

�
J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�
in NSetI, with

corresponding presheaves Q,R ∈ SetB.

To see that the functor in question is full, consider a natural transformation α : Q→ U I
B

FB
I

R

between presheaves on B. We define a morphism of named sets as follows. For each i ∈ I , we must

have an element j ∈ J , an injection ı : n j → mi, and a permutation σ ∈ Sym(n j) such that

αmi
(inji(idHi

)) = injn j

�
ı, inj j(σK j)

�
∼n j

.

We let f (i) = j, and define ıi to be the set ıσK j of injections n j ֌ mi. This definition is unambigu-

ous, by definition of the equivalence relation ∼n j
.

Condition (a) of (5.1.8) is satisfied straightforwardly. As for condition (b): consider an ele-

ment τ ∈ Hi. Since τHi = Hi, we know that

αmi
(inji(τHi)) = injn j

�
ı, inj j(σK j)

�
∼n j

.

5.1. Presentations of sheaves 121

In other words, (τı, inj j(σK j)) ∼n j
(ı, inj j(σK j)). So we know that there is τ′ ∈ Sym(K j) such

that τı = ıτ′, and with τ′σK j = σK j. So

τıσK j = ıτ′σK j = ıσK j

and we can conclude that Hiıi ⊆ ıi.

In this way, we derive a morphism

(f ,
�
ıi

	
i∈I) :

�
I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�

in NSetI. It is not hard to see that the functor NSetI→ Kl(U I
B

FB
I
) maps this morphism to the natural

transformation α : Q→ U I
B

FB
I

R. Thus this functor is full.

To see that the functor NSetI→ Kl(U I
B

FB
I
) is faithful, consider two morphisms

(f ,
�
ıi

	
i∈I), (g,

¦
i
©

i∈I
) :
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
→
�

J ,
¦

n j

©
j∈J

,
¦

K j

©
j∈J

�

in NSetI with common domain and codomain. Suppose that the functor maps these morphisms

respectively to natural transformations α,β : Q → U I
B

FB
I

R between the corresponding presheaves

on B, and suppose that α= β . We must show that (f ,
�
ıi

	
i∈I) = (g,

¦
i
©

i∈I
).

Consider some i ∈ I; we will show that f (i) = g(i) and that ıi = i. Since α = β , we know that

for every ı ∈ ıi, we have

injn f (i)

�
ı, inj f (i)(K f (i))

�
∼nf (i)

= injng(i)

�
, injg(i)(Kg(i))

�
∼ng(i)

for some  ∈ ıi. So we know that n f (i) = ng(i), and that

(ı, inj f (i)(K f (i)))∼n f (i)
(, injg(i)(Kg(i))) .

So, by definition of the equivalence relation (∼n f (i)
), we know that f (i) = g(i), and that there is

a permutation σ ∈ Sym(n f (i)) such that ıσ =  and σ ∈ K f (i). Using condition (a) of (5.1.8), we

can conclude that ı ∈ i. Thus we have shown that, for each i ∈ I , f (i) = g(i) and ıi ⊆ i; in

a symmetric way one shows that also i ⊆ ıi. Hence we can conclude that the two named-sets

morphisms are equal:

(f ,
�
ıi

	
i∈I) = (g,

¦
i
©

i∈I
) .

Thus the functor NSetI→ Kl(U I
B

FB
I
) is an equivalence of categories.

Theorem 5.1.9 has also been established (independently) by Gadducci, Miculan, and Montanari

[2006]. (Combine Prop. 29, Thm. 36, and Corollary 37 of their article.)

Presentability. Corollary 5.1.7 characterises presentable objects in NSetB. To conclude this sec-

tion, we now show that this characterisation extends to presentable objects for the category NSetI
of named-sets with modified morphisms.

To begin, we provide a general result. We consider a condition on monads that is a weak form

of the Cartesianness studied by Burroni [1971]. Under this condition, the canonical functor into

the Kleisli category reflects presentable objects.

Proposition 5.1.10. Let λ be a regular cardinal. Let T be a monad on a category C , for which the

naturality squares of the unit of T are pullbacks. If an object X ∈ C is λ-presentable in the Kleisli

category Kl(T) then X is also λ-presentable in C .

122 Practicality

Proof. Suppose that X ∈ C is λ-presentable in Kl(T), and consider a λ-filtered diagram D : C→C

that has a colimit L ∈ C , together with a morphism f : X → L. The functor C → Kl(T) has a

right adjoint, and so preserves colimits; hence L is a colimit of the diagram C
D
−→C −→ Kl(T).

By considering the morphism f : X → L as a morphism in Kl(T), we have an object c ∈ C and

a sufficiently unique morphism f ′ : X → Dc in Kl(T), so that the following triangle commutes

in Kl(T).

Dc

��

X

f ′
>>}}}}}}}}

f
// L

(Here, the vertical arrow is part of the colimiting cocone.) So the following diagram commutes

in C .

T (Dc)

��

X

f ′
77nnnnnnnnnnnnnn

f
// L

ηL
// T (L)

(5.1.11)

Now, by assumption, the naturality square (in C)

Dc
η(Dc)

//

��

T (Dc)

��

L
ηL

// T L

is a pullback, while diagram 5.1.11 is a cone for the same diagram. Thus we have a mor-

phism f ′′ : X → Dc in C making the following diagram commute (in C).

X
f

��~~
~~

~~
~~

f ′′

��

f ′

##
GG

GG
GG

GG
G

L Dcoo

η(Dc)
// T (Dc)

To conclude that X is λ-presentable in C , one must show that the morphism f ′′ : X → Dc is

appropriately unique. This follows from the fact that that f ′ is appropriately unique in Kl(T). Here

it is helpful to note that η is monic: this is true since for any object Y in C the naturality square

(in C)

Y
ηY

//

ηY

��

T Y

TηY

��

T Y
ηT Y

// T T Y

is a pullback.

Corollary 5.1.12. Let λ be a regular cardinal. A named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
is λ-presentable in

NSetI if and only if the index I is smaller than λ.

Proof. We already know, from Corollary 5.1.7, that a named-set
�

I ,
�

mi

	
i∈I ,
�

Hi

	
i∈I

�
is λ-pre-

sentable in NSetB (note the subscript) if and only if the index I is smaller than λ. To conclude

the corollary, we will work across the equivalences introduced in Theorems 5.1.4 and 5.1.9, and

furthermore work with the corresponding non-skeletal categories, to show that

a presheaf Q ∈ SetB is λ-presentable if and only if FB
I P is λ-presentable in Sh(I). (∗)

5.1. Presentations of sheaves 123

To prove statement (∗) from left to right, we proceed as follows. Consider a presheaf Q ∈ SetB.

Notice that, since FB
I is left adjoint to U I

B, the following diagram commutes.

Sh(I)
Sh(I)(FB

I Q,−)
//

U I
B ##

GGGGGGGG
Set

SetB

SetB(Q,−)

<<zzzzzzzzz

If Q is λ-presentable, then the hom-functor SetB(Q,−) : SetB → Set preserves λ-filtered colim-

its. The inclusion functor jBI : B → I reflects covers (in the sense of Definition 4.1.2), when B is

considered with the coverage generated by all identity morphisms, and I is considered with the

coverage TI. Hence, by Prop. 4.1.4, the forgetful functor U I
B : Sh(I) → SetB has a right adjoint,

namely (jBI)∗ : SetB→ Sh(I). Thus U I
B preserves colimits, and we can conclude that the hom-functor

Sh(I)(FB
I Q,−) : Sh(I)→ Set preserves λ-filtered colimits, and so that FB

I Q is λ-presentable.

To prove statement (∗) from right to left, we will appeal to Prop. 5.1.10, so it remains for us to

show that the naturality diagrams of the unit of the monad U I
BFB

I on SetB are pullbacks. (In fact,

the monad U I
BFB

I on SetB is Cartesian, but we do not need this here.)

First, we give an explicit description of the unit η : 1 → U I
BFB

I . For any Q ∈ SetB, the

unit ηQ : Q→ U I
BFB

I is the natural transformation with components

(
(ηQ)C : Q(C)→

∐

D⊆C

Q(D)

)

C∈B

given by, for each C ∈ B and each q ∈QC ,

(ηQ)C(q) = injC(q) .

Consider presheaves Q,Q′ ∈ SetB, and a natural transformation α : Q → Q′. We will show that

the naturality square

Q
α

//

ηQ

��

Q′

ηQ′

��

U I
BFB

I Q
U I

BFB
I α

// U I
BFB

I Q′

is a pullback. To this end, suppose that we have R ∈ SetB together with natural transformations,

β : R→Q and β ′ : R→Q′, making the following diagram commute.

R

β
��

β ′
// Q′

ηQ′

��

U I
BFB

I Q
U I

BFB
I α

// U I
BFB

I Q′

(5.1.13a)

We must show that there is a unique natural transformation γ : R → Q making the following

diagram commute.

R

β

��

β ′

&&

γ

""

Q
α

//

ηQ

��

Q′

ηQ′

��

U I
BFB

I Q
U I

BFB
I α

// U I
BFB

I Q′

(5.1.13b)

124 Practicality

Since diagram 5.1.13a commutes, we know for each C ∈ B and every r ∈ R(C), that

if βC(r) = injDq, then injC(β
′
C(r)) = injD(αD(q)). Thus we know that C = D, and so that q ∈Q(C).

So we let γC(r) = q.

Clearly, a family
�
γC

	
C∈B defined in this way will be natural. It is the unique natural transfor-

mation making diagram 5.1.13b commute, since the unit ηQ is manifestly monic.

Thus statement (∗) is proved.

5.2 Final bisimulations

This section is comprised of two parts. In the first, Section 5.2.1, we discuss the existence of final

bisimulations. In the second, Section 5.2.2, we introduce a procedure for finding them.

Section 5.2.1 is devoted to the redevelopment, within a general coalgebraic setting, of the

usual greatest-fixed-point characterisation of bisimulation [for a conventional presentation, see

e.g. Milner, 1989, Sec. 4.6]. We define a monotone operator on the preorder of relations for which

bisimulations are exactly the prefixed points. Under certain assumptions, the preorder of relations

forms a complete lattice, and hence the existence of final bisimulations can be concluded from

Tarski’s fixed point theorem.

Section 5.2.2 is concerned with an analysis of the construction of fixed points. We introduce

a transfinite relation refinement sequence that relates to the well-known terminal sequence. We

provide conditions under which the relation refinement sequence will converge in a finite number

of steps.

Throughout this section we fix a category C with finite limits and images [see e.g. Johnstone,

2002, Sec. A1.3], and consider an arbitrary endofunctor B on C . We let h : X → BX , k : Y → BY

be two B-coalgebras.

We will consider the full subcategory Rel(X , Y) of C /(X×Y) whose objects are pairs of an object

R of C and a monomorphism R֌ X × Y . As is common, we will often elide the monomorphism,

denoting objects simply by their object parts. As usual, this full subcategory is a preorder; we

write (⊂∼) for the preorder relation.

5.2.1 Final bisimulations

We begin this subsection by defining an operator Φ on the preorder Rel(X , Y). We then explore

some properties of Φ. We conclude this subsection by explaining how Tarski’s fixed point theorem

can be used to derive final bisimulations.

For any R ∈ Rel(X , Y), we define ΦR ∈ Rel(X , Y) as follows. First, let LR be the following

pullback in C .

LR

��

// BR

��

B(X × Y)

(Bπ1,Bπ2)

��

X × Y
h×k

// BX × BY

(5.2.1)

We let ΦR ֌ X × Y be the image of the pullback map LR→ X × Y . (So the pullback map factors

through ΦR, and moreover ΦR is the least such relation, under the inclusion preorder ⊂∼.)

It follows from the universal properties of pullbacks and images that the operator Φ on Rel(X , Y)

is monotone.

Suppose that C is the category Set of sets, and that the endofunctor B is the endofunc-

tor Blts =P (Lab×−) for labelled transitions systems suggested in Section 2.1. For any rela-

5.2. Final bisimulations 125

tion R⊆ X × Y , the refined relation ΦR⊆ X × Y is the following set.

ΦR=

(
(x , y) ∈ X × Y

�����
∀(l, x ′) ∈ h(x). ∃y ′ ∈ Y. (l, y ′) ∈ k(y) and (x ′, y ′) ∈ R

∀(l, y ′) ∈ k(y). ∃x ′ ∈ X . (l, x ′) ∈ h(x) and (x ′, y ′) ∈ R

)

Thus the operator Φ is the construction F defined by Milner [1989, Defn. 4.7].

Regular relations and bisimulations. We will say that a relation R ∈ Rel(X , Y) is regular if the

corresponding span X ← R→ Y arises as a pullback.

We have the following properties. For the specific case of coalgebras for CCS, items 1 and 2 of

Prop. 5.2.2 amount to Prop. 15(2) of Milner [1989]: they correspond post-fixed points of Φ with

bisimulations.

Proposition 5.2.2. Consider a relation R in Rel(X , Y).

1. If R is a B-bisimulation between (X ,h) and (Y, k) then R⊂∼ ΦR.

2. If R⊂∼ ΦR and R is regular, and if B preserves weak pullbacks, then R is a B-bisimulation between

(X ,h) and (Y, k).

3. If B preserves weak pullbacks and R is regular, then so is ΦR. Indeed, if R is a pullback of a span

(X → Z ← Y) then ΦR is a pullback of (X
h
→ BX → BZ ← BY

k
← Y).

Proof. Item (1) follows from straightforwardly from the definitions. For if R is a B-bisimulation

between (X ,h) and (Y, k) then there is a morphism r : R → BR making the following diagram

commute.

R
��

��

r
// BR

��

B(X × Y)

(Bπ1,Bπ2)
��

X × Y
h×k

// BX × BY

By the universality of LR, we have a morphism R→ LR making the following diagram commute in

particular.

R //

��

��
55

55
55

55
55

55
5

LR

��

ΦR
��

��

X × Y

Before we prove items 2 and 3 we provide some general background discussion. Suppose that R

is a pullback of a cospan (X → Z ← Y), and that B preserves weak pullbacks. We let I be a strong

pullback of the cospan (BX → BZ ← BY). We will prove that ΦR is a pullback of the cospan

(X × Y
h×k
−→ BX × BY ←− I).

We have the following situation.

BX

""
DD

DD
DD

DD

BR

Bπ1
//

Bπ2 //

e
**
I

>>}}}}}}}}

AA

AA
AA

AA
m

kk BZ

BY

<<zzzzzzzz

126 Practicality

The universal property of I and the weak universal property of BR give us maps m : I → BR

and e : BR→ I such that m is a section of e, and such that the following diagram commutes.

I
m

//

""

BR
e

//

��

I

||

B(X × Y)

��

BX × BY

We (temporarily) write R′ for a pullback of the cospan

(X × Y
h×k
−→ BX × BY ←− I) .

We know that LR is a pullback of the cospan (R′ → I
e
← BR) since we have the following situation,

and pullback squares compose.

LR //

��

BR

e

�� $$H
HH

HH
HH

HH

R′ //

��

I

��

B(X × Y)

(Bπ1,Bπ2)zzvv
vv

vv
vv

v

X × Y
h×k

// BX × BY

The morphism e : BR→ I is split epi, and the morphism I → X × Y is monic, since it is an equaliser.

Both split epis and monos are stable under pullback, and so the decomposition LR→ R′→ X×Y is a

split-epi/mono factorisation. Such factorisations are images, and so R′ is ΦR (up-to isomorphism).

We will write e′ : LR→ ΦR for the retraction, and m′ : ΦR→ LR for its section.

We are now ready to prove item (2). Suppose that we have R ⊂∼ ΦR. Then there is a mor-

phism R→ BR given by the composite (R→ ΦR
m′

→ LR→ BR). To see that this structure lifts R to a

span of coalgebras, consider the following subdivision.

R //

��

ΦR
m′

//

id
!!

CC
CC

CC
CC

LR //

e′

��

BR

��

ΦR

vvlllllllllllllll B(X × Y)

(Bπ1,Bπ2)

��

X × Y
h×k

// BX × BY

For item (3), notice that ΦR is a pullback of the cospan (X
h
→ BX → BZ ← BY

k
← Y). Indeed,

cones over this cospan correspond bijectively with cones over the cospan (X × Y
h×k
−→ BX × BY ←− I).

Using Tarski’s fixed point theorem. Recall that ifC is complete then so is the preorder Rel(X , Y).

Proposition 5.2.3. If C is complete then the property of regularity is meet-closed in Rel(X , Y).

Proof notes. For any set I , the meet of an I-indexed family of regular relations
�
Ri

	
i∈I is computed

as follows. For each i ∈ I there is a cospan (X → Zi ← Y) in C of which Ri is a pullback. A

meet
∧

i∈I Ri of
�
Ri

	
i∈I is a pullback of the cospan

X

∆
−→

∏

i∈I

X −→
∏

i∈I

Zi ←−
∏

i∈I

Y
∆
←− Y

!
. (5.2.4)

5.2. Final bisimulations 127

(Here, the arrows labelled ∆ are the diagonals.)

This relation
∧

i∈I Ri factors through Ri, for each i ∈ I , since a cone over the cospan (5.2.4) is

also a cone over the cospan (X → Zi ← Y).

Suppose now that B preserves weak pullbacks, and that C is complete and well-powered. The

latter assumption ensures that the partial order determined by Rel(X , Y) is a complete lattice.

As mentioned above, the operator Φ is certainly monotone, and so, in this setting, Tarski’s fixed

point theorem says that the operator Φ has a greatest fixed point. By fixed-point induction, with

Prop. 5.2.2(3) and Prop. 5.2.3, we conclude that the greatest fixed point is regular. Hence, by

Prop. 5.2.2(1, 2), the greatest fixed point of Φ is a final B-bisimulation.

5.2.2 Constructing final bisimulations

In this subsection we introduce two sequences (precisely: ordinal indexed cochains). The first

sequence that we consider is the terminal sequence. This sequence is often used to construct a final

coalgebra for an endofunctor. We are not especially concerned with final coalgebras here, but the

reader will find a recent overview by Worrell [2005, Sec. 2]. The idea of the terminal sequence

is to begin with the terminal object, and then successively find B-algebra structures, so that if the

sequence converges, i.e. the B-algebra structure is an isomorphism, then we have a B-coalgebra

structure, and indeed the final such.

The second sequence that we consider we call the relation refinement sequence. This is a se-

quence of relations in Rel(X , Y) that arises when trying to construct a greatest fixed point for the

operator Φ introduced in the previous section. Thus we begin with the universal relation on the

carriers of the coalgebras, successively refining this relation.

Having introduced these two sequences, we show that they are very closely connected. We then

provide a basic condition for the termination of the relation refinement sequence.

In this subsection we strengthen the previous assumptions about the ambient category C ; we

now assume that C is complete, as well as having images. We continue to consider an arbitrary

endofunctor B on C , and B-coalgebras h : X → BX and k : Y → BY .

The terminal sequence. The terminal sequence of B is the cochain (zβ ,α : Zβ → Zα)α≤β defined

by transfinite induction, as follows.

• The limiting step is as follows. For any limit ordinal α, we suppose that we have already

defined the α-cochain (zγ,β : Zγ → Zβ)β≤γ<α. We define Zβ to be the limit of this cochain;

then we let zβ ,α be the arrows of the limiting cone.

In particular, Z0 is the terminal object of C .

• The inductive step is as follows. If, for some ordinal α, the object Zα has been defined, then

we let Zα+1 = B(Zα).

We define the morphism zα+1,α : Zα+1→ Zα differently depending on whether α is limiting.

– If α is limiting, we already have an α-cochain (zγ,β : Zγ → Zβ)β≤γ<α and we know that

the cone (zα,β : Zα → Zβ)β<α is a limit for the cochain. There is another cone for this

cochain, with apex Zα+1 and with edges

�
Zα+1

=
// B(Zα)

B(zα,β)
// B(Zβ)

=
// Zβ+1

zβ+1,β
// Zβ

�

β<α

.

Hence we have a mediating morphism Zα+1→ Zα. In this case then we define zα+1,α to

be this morphism.

128 Practicality

– Otherwise, if α= β + 1, let zα+1,α be the composite

Zα+1
=

// B(Zβ+1)
B(zβ+1,β)

// BZβ
=

// Zα .

In either case, for any β ≤ α, we then define zα+1,β : Zα+1→ Zβ by letting zα+1,β = zα+1,α ◦ zα,β .

(It is straightforward to verify that the ordinal indexed family (zβ ,α : Zβ → Zα)α≤β is indeed a

cochain.)

The relation refinement sequence. We define an ordinal indexed cochain (Rβ ⊂∼ Rα)α≤β in

Rel(X , Y) by transfinite induction as follows.

• For a limiting ordinal α, let Rα be the limit of the α-cochain (Rγ ⊂∼ Rβ)β≤γ<α in Rel(X , Y).

In particular, R0 = X × Y .

• We define Rα+1 to be ΦRα.

If α is a limit ordinal, then, since Φ is monotone, we know that for each ordinal β < α we

have Rα+1 ⊂∼ Rβ . Thus we can conclude that Rα+1 ⊂∼ Rα. On the other hand, if α= β + 1 then

we can conclude that Rα+1 ⊂∼ Rα since Φ is monotone.

Coalgebras determine cones over the terminal sequence. For each ordinal α, we have a mor-

phism xα : X → Zα given as follows.

• If α is a limit ordinal, we have an α-cochain (zγ,β : Zγ→ Zβ)β≤γ<α; the cone (zα,β : Zα→ Zβ)β<α
is by definition limiting for the cochain.

The morphisms xα : X → Zα for α < β form a cocone over this cochain, with apex X . We

let xα : X → Zα be the unique mediating morphism.

For instance, if α= 0, then xα : X → Zα is the terminal map X → 1.

• Otherwise, if α= β + 1, then we let xβ be the composite

X
h

// BX
Bxβ

// BZβ
=

// Zα .

In the same way, we determine a cone (yα : Y → Zα)α over the terminal sequence with apex Y .

Relating the relation sequence with the terminal sequence. We are now in a position to relate

the sequence of relations (Rα)α with the terminal sequence (Zα)α.

Proposition 5.2.5. Suppose that B preserves weak pullbacks, and consider an ordinal α. The following

square is a pullback.

Rα

rα,0

��

rα,0
// X × Y

π2
// Y

yα

��

X × Y

π1

��

X xα
// Zα

Proof notes. This statement is proved by transfinite induction on α. The case when α is a limiting

ordinal holds because limits commute with limits. The inductive step follows immediately from

Prop. 5.2.2(3).

5.2. Final bisimulations 129

Bounds for convergence. We now provide conditions under which the relation refinement se-

quence will converge. In the category of sets, it is clear that for any finite set, the subset relation

on its subsets is well-founded. We now establish this property in a slightly more general setting.

(Here we say that a diagram of monos is bounded if there is a cocone of monos over it.)

Theorem 5.2.6. Let λ be a limit ordinal for which card(λ) is regular. Let C be a Boolean

topos with colimits of bounded λ-chains of monos. Consider a λ-cochain (mβ ,α : Sβ ֌ Sα)α≤β<λ
of monomorphisms such that S0 is (card(λ))-presentable. Then there is an ordinal α < λ for

which mα+1,α : Sα+1→ Sα is an isomorphism.

Proof. Consider a pair of ordinals α,β such that α ≤ β < λ. Since the category C is Boolean,

the morphism mβ ,α : Sβ ֌ Sα is complemented, and so we have an object (Sα − Sβ) such that the

object Sα is a coproduct of Sβ and (Sα−Sβ), and the monomorphism mβ ,α is the coproduct injection.

We now define a λ-chain
�

m′α,β : (S0− Sα)֌ (S0− Sβ)
�
α≤β<λ

(5.2.7)

with morphisms m′α,β given as follows. First, observe that whenever α≤ β then we have

(S0− Sβ) + Sβ
∼= S0

∼= (S0− Sα) + Sα
∼= (S0− Sα) + (Sα− Sβ) + Sβ .

Since coproducts in the topos C are universal we can cancel the Sβ from the resulting equation to

conclude that

(S0− Sβ)
∼= (S0− Sα) + (Sα− Sβ) .

We define m′α,β : (S0 − Sα) ֌ (S0 − Sβ) to be the evident coproduct injection. It is monic since

coproducts in the topos C are disjoint.

There is a cone of monomorphisms over (5.2.7) with apex S0. Being bounded, the chain must

have a colimit, which we denote (S0− Sλ); we denote the colimiting cone by

�
m′α,λ : (S0− Sα)֌ (S0− Sλ)

�
α<λ

. (5.2.8)

We have a mediating morphism (S0 − Sλ) → S0 from this colimit to the cone of monos, and

it follows that every morphism of the colimiting cone (5.2.8) is monic. Moreover, the mediat-

ing morphism (S0− Sλ)→ S0 is monic because pullbacks commute with colimits in toposes —

so (S0− Sλ) is a union of (5.2.7). Since C is Boolean there is an object Sλ such that S0 is a co-

product (S0− Sλ) + Sλ.

Now, consider the λ-chain

�
(m′α,β + Sλ) : (S0− Sα) + Sλ→ (S0− Sβ) + Sλ

�
α≤β<λ

of which (S0 − Sλ) + Sλ
∼= S0 must be a colimit. By assumption, S0 is (card(λ))-presentable, and

the λ-chain
�

m′α,β + Sλ

�
α≤β<λ

is certainly (card(λ))-filtered; hence there is an ordinal α and a

morphism f : S0→ ((S0− Sα) + Sλ) such that the following diagram commutes.

((S0− Sα) + Sλ)

m′
α,λ
+Sλ

��

S0

f
88qqqqqqqqqqqq

id
// S0

130 Practicality

Thus the morphism (m′α,λ + Sλ) : (S0 − Sα) + Sλ → S0 is split epic. It is also monic, since sums are

universal, and so we can conclude that it is an isomorphism.

By considering the following fragment of the colimiting cone, one can conclude that the mor-

phism m′α,α+1 : (S0− Sα) + Sλ→ (S0− Sα+1) + Sλ is an isomorphism.

�
(S0− Sα) + Sλ

�

m′
α,λ
+Sλ

��

m′α,α+1
//
�
(S0− Sα+1) + Sλ

�

m′
α+1,λ

+Sλ
vvllllllllllllllllll

S0

Thus we have

(S0− Sα+1)
∼= (S0− Sα)

∼= (S0− Sα+1) + (Sα− Sα+1) .

Since coproducts are universal, we can cancel the common factor (S0−Sα+1), leaving (Sα− Sα+1) = 0.

So we know that the morphism mα+1,α : Sα+1 ֌ Sα (part of the original λ-cochain) is an isomor-

phism, and the theorem is proved.

According to this result, the relation refinement process will terminate when C is a Boolean

Grothendieck topos and the carrier object X × Y is finitely presentable.

The Schanuel topos is Boolean, and so, by combining Theorem 5.2.6 with Corollary 5.1.12,

we can conclude that the relation refinement algorithm for the endofunctor Be on Sh(I) for early

bisimulation will always terminate when run on a sheaf that is presented by a named-set with finite

index.

Part II

Structural Operational Semantics

131

Chapter 6

Rule Induction and Mathematical

Operational Semantics

We begin this chapter with an overview of some important elements of an abstract theory of syn-

tax. The development is largely standard, although the characterisation of free monads in Theo-

rem 6.1.5 seems to be novel.

In Section 6.2, we survey some aspects of the Mathematical Operational Semantics begun by

Turi and Plotkin [1997]. The idea behind this field of research is to put some important results of

operational semantics in a mathematical framework. In doing so we can abstract away from the

low level details that so often dominate results in operational semantics. Here, we explain how

the usual way of defining transition systems by rule induction can be understood as using initial

algebra induction to lift a monad to a category of coalgebras. We explain how the main results are

valid from the point of view of structured coalgebras.

Finally, in Section 6.3, we illustrate the theory of Section 6.2. We recall a positive version of

the GSOS rule format proposed by Bloom, Istrail, and Meyer [1995], and explain the process of

monad lifting for rules in this format. This process has been discussed before; our main reason for

discussing it here is to introduce the ideas and techniques involved, since in Section 8.4 we will

follow a similar process in a more complex setting.

6.1 Rudiments of abstract syntax

We overview some important elements of the theory of abstract syntax. We begin by providing a

notion of algebraic signature, and defining a notion of model for such a signature. Such a model

can often be seen as an algebra for an endofunctor; this leads us to study categories of algebras for

endofunctors, and for monads, in some detail. To do this we introduce, in Section 6.1.2, categories

of endofunctors and of monads. We conclude this section with a discussion about free monads on

endofunctors, in Section 6.1.3.

6.1.1 Algebraic signatures and their models

We recall a notion of algebraic signature, and explain how a category of models for the signature

is often the same thing as a category of algebras for an endofunctor.

Algebraic signatures.

Definition 6.1.1. An algebraic signature S is a set OpS of operators op each equipped with an

arity ar(op) ∈ N.

133

134 Rule Induction and Mathematical Operational Semantics

As a first example, we consider a signature CCS for a finite fragment of the pure CCS of Milner

[1989], which has operators

OpCCS = {par, sum,nil, tau} ∪ {a.(−) | a ∈ Act} ∪ {ā.(−) | a ∈ Act} (6.1.2)

while arities are given according to the following table.

op ∈OpCCS ar(op)

par 2

sum 2

nil 0

tau 1

a.(−) 1

ā.(−) 1

(Here, Act is a chosen set of CCS actions.)

Models of algebraic signatures. Let S be a signature. In any category C with finite products, an

S-structure is an object X ∈ C together with, for each op ∈ OpS, a morphism ¹opºX : X ar(op)→ X .

(Here, X ar(op) denotes the ar(op)-fold product of X .)

For our example of CCS: a CCS-structure X in C = Set is given by a set X , to be thought of as

a set of processes, together with functions denoting the operations of CCS, including, for instance,

• a function ¹parºX : X × X → X representing parallel composition — to be thought of as

mapping a pair of processes to the process that behaves as the two in parallel;

• an element ¹nilºX in X representing the deadlocked process.

Morphisms between models. A morphism X → Y between two S-structures in C is given by a

morphism f : X → Y in C such that, for each op ∈OpS, the following diagram commutes.

X ar(op)
¹opºX

//

f ar(op)

��

X

f

��

Y ar(op)
¹opºY

// Y

These objects and morphisms form a category; identities and composition are as in C .

Models as algebras for an endofunctor. If C also has OpS-indexed coproducts then we can

associate the signature S with an endofunctor ΣS,C on C :

ΣS,C =
∐

op∈OpS

�
idC

ar(op)
�

. (6.1.3)

In this situation, to give an S-structure in C is to give an object X of C together with a mor-

phism
∐

op∈OpS

�
X ar(op)

�
→ X ; in other words, an S-structure in C is the same thing as an algebra

for the endofunctor ΣS,C . Indeed, the category of S-structures in C is isomorphic to the category

of algebras for the endofunctor ΣS,C .

6.1.2 Categories of endofunctors and of monads

The concept of algebras for an endofunctor is a basic one. We now turn to consider endofunctors

and their algebras in a general setting. The endofunctors arising as in equation 6.1.3 provide

important examples.

6.1. Rudiments of abstract syntax 135

Morphisms of endofunctors. We introduce a 2-category Endo of endofunctors. This is somehow

dual to the 2-category coEndo considered in Section 2.3.

• Objects of Endo are pairs (C ,Σ) of a category C and an endofunctor Σ on C .

• A morphism from (C ,Σ) to (C ′,Σ′) is given by a functor F : C →C ′ together with a natural

transformation φ : Σ′F → FΣ; composition of two morphisms

(C ,Σ)
(F,φ)
−−→ (C ′,Σ′)

(G,γ)
−−→ (C ′′,Σ′′)

is given by

(GF, Σ′′GF
γF
−→ GΣ′F

Gφ
−→ GFΣ) .

• Let (F,φ) and (G,γ) be two morphisms from (C ,Σ) to (C ′,Σ′). A 2-cell from (F,φ) to (G,γ)

is given by a natural transformation α : F → G such that the following diagram commutes.

Σ′F
φ

//

Σ′α
��

FΣ

αΣ

��

Σ′G γ
// GΣ

Composition and identities of 2-cells are as in the category CAT of categories.

The construction of categories of algebras for an endofunctor extends to a 2-functor Endo→ CAT,

exactly as was the case for coalgebras in Section 2.3. This functor is isomorphic to the hom-functor

Endo((1, id1),−), where we write (1, id1) for the identity endofunctor on the terminal category.

For any endofunctor Σ on a category C , we let Σ-Alg be the category of Σ-algebras.

Morphisms of monads. We will also need to work with the category Monad of monads; we

reproduce here the definition of Street [1972], for the case of monads in CAT:

• Objects of Monad are pairs (C ,T) of a category C and a monad T on C . (As a convention,

we will use a bold symbol for a monad, and an italic symbol for the underlying endofunctor.)

• A morphism from (C ,T = (T,η,µ)) to (C ′,T′ = (T ′,η′,µ′)) is given by a functor F :C →C ′

together with a natural transformation φ : T ′F → F T for which the following two diagrams

commute.

F
η′F

//

Fη
!!

BB
BB

BB
BB

T ′F

φ

��

F T

T ′T ′F
T ′φ

//

µ′F
��

T ′F T
φT

// F T T

Fµ

��

T ′F
φ

// F T

Composition of two morphisms (C ,T)
(F,φ)
−−→ (C ′,T′)

(G,γ)
−−→ (C ′′,T′′) is given by

(GF, T ′′GF
γF
−→ GT ′F

Gφ
−→ GF T) .

• Let (F,φ) and (G,γ) be two morphisms from (C ,T) to (C ′,T′). A 2-cell from (F,φ) to (G,γ)

is a natural transformation α : F → G making the following diagram commute.

T ′F
φ

//

T ′α
��

F T

γT

��

T ′G
γ

// GT

Composition and identities of 2-cells are as in CAT.

136 Rule Induction and Mathematical Operational Semantics

Notice that we have a faithful forgetful 2-functor Monad→ Endo, which is in fact locally full and

faithful.

For any monad T on a category C , we always understand a T-algebra to be an algebra for the

monad T in the sense of Eilenberg and Moore [see e.g. Mac Lane, 1998, Sec. VI.2], as opposed to

the more liberal notion of an algebra for the endofunctor underlying T.

The construction of algebras for a monad extends to a 2-functor Monad→ CAT. Once again, this

functor is isomorphic to the hom-functor Monad((1, id1),−), where (1, id1) is the terminal monad,

given by the identity endofunctor on the terminal category. In particular, to give a T-algebra is to

give a morphism (1, id1)→ (C ,T) in Monad.

For any monad T on a category C , we let T-Alg be the category of T-algebras.

Liftings of endofunctors and monads. We say that a morphism (F,φ) : (C ,Σ)→ (C ′,Σ′) in Endo

is a lifting if φ is an isomorphism. In the same way, we say that a morphism (F,φ) : (C ,T)→ (C ′,T′)

in Monad is a lifting if φ is an isomorphism.

Occasionally, we will refer to strict liftings, i.e. liftings for which the isomorphism is the identity.

We recall two results, which both follow immediately from a basic result of two-dimensional

monad theory [see e.g. Kelly, 1972, Thm. 1.4], since both Endo and Monad are categories of alge-

bras and lax morphisms for particular 2-monads on CAT [see e.g. Blackwell et al., 1989, Sec. 6.1].

Proposition 6.1.4.

1. A morphism of endofunctors (F,φ) : (C ′,Σ)→ (C ,Σ′) has a right adjoint in Endo if and only if

the underlying functor F has a right adjoint in CAT and φ is an isomorphism.

2. A morphism of monads (F,φ) : (C ′,T)→ (C ,T′) has a right adjoint in Monad if and only if the

underlying functor F has a right adjoint in CAT and φ is an isomorphism.

Morphisms of model categories and morphisms of signature endofunctors. Fix a signature S.

We let MS be the 2-category of model categories: objects of MS are categories with finite prod-

ucts and OpS-indexed coproducts; morphisms are finite product preserving functors; 2-cells are

natural transformations. The construction of an endofunctor provided in (6.1.3) extends to a

2-functor MS → Endo. In particular, any morphism F : C → D in MS induces a natural transfor-

mation ΣS,DF → FΣS,C as a mediating morphism into the cone



(F(idC))

ar(op) ∼
−→ F(idC

ar(op))
F(injop)
−−−−→ F



∐

op∈OpS

�
idC

ar(op)
�

 =
−→ FΣS,C





op∈OpS .

Hence F :C →D extends to a morphism (C ,ΣS,C)→ (D,ΣS,D) in Endo.

If a morphism F : C → D of model categories also preserves OpS-indexed coproducts, then

the induced natural transformation ΣS,DF → FΣS,C is an isomorphism, and so we have a lifting of

endofunctors.

6.1.3 Free monads on endofunctors

Theorem 6.1.5. Let Σ be an endofunctor on a category C , and let TΣ be a monad on C . The following

are equivalent.

1. There is a natural family of isomorphisms of categories

n
Endo((D, T), (C ,Σ))

∼
→Monad((D,T), (C ,TΣ))

o
(D,T)∈Monad

6.1. Rudiments of abstract syntax 137

for which the following diagram commutes, where the vertical arrows are the evident forgetful

functors.

Endo((D, T), (C ,Σ))
∼

//

&&N
NNNNNNNNNN

Monad((D,T), (C ,TΣ))

wwooooooooooo

CAT(D,C)

2. The forgetful functor Σ-Alg→C has a left adjoint and the resulting monad on C is TΣ.

Although this result is somewhat fundamental in understanding free monads, I could not find

it stated in the literature and so a proof is provided in Appendix 6.A.

Whenever we have the situation in Theorem 6.1.5 then we say that the monad TΣ is the free

monad on Σ. We will write ηΣ : 1→ TΣ for the unit of TΣ, and µΣ : TΣTΣ→ TΣ for the multiplication

of TΣ. Using item (1), we can transpose the identity morphism on (C ,TΣ) in Monad to obtain a

natural transformation σΣ : Σ→ TΣ, exhibiting TΣ as free on Σ in the slightly more general sense

studied by (e.g.) Barr [1970], Kelly [1980, Sec. 22], and Barr and Wells [1984, Sec. 9.4].

It is well-known that for any endofunctor Σ on any category C , if the forgetful func-

tor Σ-Alg→C has a left adjoint then it is monadic [see e.g. Barr and Wells, 1984, Prop. 9.4.1].

Indeed, this result can be derived from Theorem 6.1.5, by taking (D,T) to be the terminal monad

(1, id1).

Suppose that we have the situation in item (2) of Theorem 6.1.5. Then the left adjoint to

the forgetful functor Σ-Alg → C sends an object X of C to an algebra with carrier TΣX ; we will

denote the structure map by tΣX : ΣTΣX → TΣX . The adjunction can be understood as providing

the following recursion principle: for any Σ-algebra (Y, y), and any morphism f : X → Y , we have

a unique morphism (f , y)♯ : TΣX → Y such that the following diagram commutes in C .

ΣTΣX

tΣX

��

Σ(f ,y)♯
// ΣY

y

��

TΣX
(f ,y)♯

// Y

X

ηΣX

OO

f

::ttttttttttt

The family of structure maps for the free Σ-algebras
�

tΣX : ΣTΣX → TΣX
	

X∈C is natural; the natural

transformation tΣ : ΣTΣ→ TΣ is such that tΣ = µΣ ◦σΣTΣ.

Existence of free monads. We record here a sufficient condition for the existence of free monads,

that encompases all the cases that arise in this thesis. For a proof of this result, see, for instance,

Barr and Wells [1984, Prop. 9.4.7].

Proposition 6.1.6. If C is complete and has pushouts and colimits of ω-chains, and an endofunctor Σ

on C preserves colimits of ω-chains, then the free monad on (C ,Σ) exists.

Functoriality of the free monad construction. The construction T(−) of free monads is 2-func-

torial in the following sense. When the free monads on (C ,Σ) and (C ′,Σ′) exist then we have a

functor between hom-categories

Endo((C ,Σ), (C ′,Σ′)) −→ Monad((C ,TΣ), (C
′,TΣ′))

sending a morphism (F,φ) : (C ,Σ)→ (C ′,Σ′) in Endo to the monad morphism found by transpos-

ing (using Theorem 6.1.5(1)) the following composite morphism of endofunctors.

(C , TΣ)
(idC ,σΣ)
−−−−→ (C ,Σ)

(F,φ)
−−→ (C ′,Σ′)

138 Rule Induction and Mathematical Operational Semantics

Term monads for signatures. When Σ = ΣS,C is the endofunctor on a category C according to

equation 6.1.3 for a signature S, then we let TS,C = (TS,C , tS,C ,ηS,C ,µS,C) be the corresponding

free monad structure, whenever it exists.

For the signature CCS given in (6.1.2), then for any set X , we have a set TS,Set(X) of CCS terms

with free variables in X . Since the empty set is initial, and left adjoints preserve colimits, we know

that the ΣCCS,Set-algebra (TCCS,Set(0), tCCS,Set0
) is initial in the category of ΣCCS,Set-algebras.

6.2 Mathematical operational semantics

We now present some aspects of the mathematical operational semantics introduced by Turi and

Plotkin [1997].

We begin, in Section 6.2.1, by explaining how a lifting of a monad of syntax to a category

of coalgebras corresponds to an operational semantics for which bisimulation is a congruence.

In Section 6.2.2, we describe a priniciple of parameterised recursion. We use this principle in

Section 6.2.3 to create a monad lifting from a mathematical structure that we call an abstract rule.

All the above work takes place in the context of structured coalgebras. In Section 6.2.4 we

explain that if the structure map has a right adjoint then the same process can be carried out in the

context of (non-structured) coalgebras.

6.2.1 Lifted monads and bisimulation congruences

Congruence. Let Σ be an endofunctor on C and let (X , x), (Y, y) be two Σ-algebras. A Σ-con-

gruence between (X , x) and (Y, y) is a span (X
r1
←− R

r2
−→ Y) such that there exists a Σ-algebra

structure r : ΣR→ R lifting the span (R, r1, r2) to a span
�
(X , x)

r1
←− (R, r)

r2
−→ (Y, y)

�
of Σ-alge-

bra homomorphisms. In the terminology of Definition 2.1.3: a Σ-congruence is a V -lifting span,

writing V for the forgetful functor Σ-Alg→C .

In the same way, we can define congruences between algebras for monads. Let T be a monad

on C ; we say that a T-congruence between T-algebras (X , x) and (Y, y) is a span (X
r1
←− R

r2
−→ Y)

for which there exists a T-algebra structure r : TR → R lifting the span to a span of T-algebra

homomorphisms. So a T-congruence is also a V -lifting span, this time writing V for the forget-

ful functor T-Alg → C . Note that when T is the free monad TΣ on an endofunctor Σ, we know

that TΣ-Alg∼= Σ-Alg and so that a TΣ-congruence between TΣ-algebras is the same thing as a Σ-con-

gruence between the corresponding Σ-algebras.

Following the convention of Section 2.5.1, we will use the term congruence relation to describe

a congruence whose span is jointly monic.

For a basic example we return to the example signature CCS introduced in (6.1.2).

A ΣCCS,Set-congruence relation on the initial ΣCCS,Set-algebra is a binary relation R on the

set TCCS,Set(0) of closed CCS terms which is a congruence in the usual sense. For instance,

suppose that we have terms t1, t2, t1
′, t2
′ ∈ TCCS,Set(0) such that (t1, t1

′) ∈ R and (t2, t2
′) ∈ R; then

we must have
�
par(t1, t2),par(t1

′, t2
′)
�
∈ R.

Monad liftings. Recall, from Section 2.1, that to give a labelled transition system is to give a

coalgebra for the endofunctor Blts = P (Lab×−) on Set. For the case of pure CCS, the labels are

actions, coactions or silent, and it is sensible to take Lab = Act + Act + 1. A strict lifting of the

term monad TCCS,Set on Set along the forgetful functor Blts-Coalg→ Set describes, in particular, a

way of transforming a Blts-coalgebra with carrier X into a Blts-coalgebra with carrier TCCS,Set(X). In

other words: given a behaviour for variables, a monad lifting describes the behaviour of compound

terms. Thus a monad lifting can be thought of as defining a compositional operational semantics.

In fact, as we now explain, such an operational semantics will necessarily be well-behaved.

6.2. Mathematical operational semantics 139

The following central result has nothing in particular to do with coalgebras, and so we state

and prove the general form using lifting spans as introduced in Definition 2.1.3. We explain the

relevance of this result in Corollary 6.2.3.

Theorem 6.2.1. Consider a functor V :B →C between categories. Consider a monad T̃ onB which

is a lifting along V of a monad T on C .

Let (X , x), (Y, y) be two T̃-algebras. A final V -lifting span between X and Y is a T-congruence.

Proof. As usual we write (T,η,µ) for the monad T, and (T̃ , η̃, µ̃) for the monad T̃. We

let v : T V → V T̃ be the lifting isomorphism.

Consider a final V -lifting span between X and Y .

V X
r1
←− R

r2
−→ V Y

This means that we have a span in B

X
r̃1
←− R̃

r̃2
−→ Y

such that (R, r1, r2) = (V R̃, V r̃1, V r̃2).

Applying the monad T̃ and composing with the algebra maps x , y gives the following span

between X and Y in B .

X
x
←− T̃ X

T̃ r̃1
←− T̃ R̃

T̃ r̃2
−→ T̃ Y

y
−→ Y

Thus we have a V -lifting span in C :

V X
V x
←− V T̃ X

V T̃ r̃1
←− V T̃ R̃

V T̃ r̃2
−→ V T̃ Y

V y
−→ V Y .

Since (R, r1, r2) is a final span we have a unique morphism f : V T̃ R̃→ R such that the following

diagram commutes in C .

V T̃ R̃
V T̃ r̃1

{{ww
ww

ww
ww

w

f

��

V T̃ r̃2

##
GG

GG
GG

GG
G

V T̃ X
V x

{{xxxxxxxx
V T̃ Y

V y

##
FFFFFFFF

V X Rr1

oo
r2

// V Y

(6.2.2)

We will show that the composite r = TR
vR̃
−→ V T̃ R̃

f
−→ R equips TR with a T-algebra structure. First,

we prove the unit law. Consider the following span in B .

X
x
←− T̃ X

T̃ r̃1
←− T̃ R̃

η̃R̃
←− R̃

η̃R̃
−→ T̃ R̃

T̃ r̃2
−→ T̃ Y

y
−→ Y

This gives a V -lifting span in C :

V X
V x
←− V T̃ X

V T̃ r̃1
←− V T̃ R̃

V η̃R̃
←− R

V η̃R̃
−→ V T̃ R̃

V T̃ r2
−→ V T̃ Y

V y
−→ Y .

Because (R, r1, r2) is a final V -lifting span, we have a unique morphism g : R → R making the

following diagram commute in C .

V T̃ R̃
V T̃ r̃1

{{ww
ww

ww
ww

w
R

V η̃R̃
oo

V η̃R̃
//

g

��

V T̃ R̃
V T̃ r̃2

##
GG

GG
GG

GG
G

V T̃ X

V x

��

V T̃ Y

V y

��

V X Rr1

oo
r2

// V Y

140 Rule Induction and Mathematical Operational Semantics

It is clear from diagram 6.2.2 that setting g = f ◦ V η̃R makes the diagram commute. But so does

setting g = idR, as the following decomposition shows.

V T̃ R̃
V T̃ r̃1

{{ww
ww

ww
ww

w

(1)

R
V η̃R̃
oo

r1
}}||

||
||

||
|

V η̃R̃
//

r2
!!

BB
BB

BB
BB

B

id

��

V T̃ R̃
V T̃ r̃2

##
GGGGGGGG

V T̃ X

V x

��

(2)

V X

(3)

V η̃X
oo

=
{{vvvvvvvvv

V Y
V η̃Y

//

=
##G

GGGGGGGG V η̃Y

V y

��

V X Rr1

oo
r2

// V Y

Using: (1) nat. of η̃; (2) V applied to the unit law for α; (3) equality. The right-hand side is similar.

Thus we have that f ◦ V η̃R̃ = idR. To conclude the unit law for r : TR → R, we observe that

the following diagram commutes in C .

R
ηR

//

V η̃R̃ &&M
MMMMMMMMMMM

id

..

TR

vR̃
��

(1)

(2) V T̃ R̃

f

��

R

Using: 1: unit law for v; 2: just established.

As for the multiplication law, consider the following span in B .

X
x
←− T̃ X

T̃ r̃1
←− T̃ R̃

µ̃R̃
←− T̃ T̃ R̃

µ̃R̃
−→ T̃ R̃

T̃ r̃2
−→ T̃ Y

y
−→ Y .

By finality of (R, r1, r2), there must be a unique morphism h : V T̃ R̃→ R in C making the following

diagram commute (in C).

V T̃ R̃
V T̃ r̃1

{{ww
ww

ww
ww

w
V T̃ T̃ R̃

V µ̃R̃
oo

h

��

V µ̃R̃
// V T̃ R̃

V T̃ r̃2

##
GG

GG
GG

GG
G

V T̃ X

V x

��

V T̃ Y

V y

��

V X Rr1

oo
r2

// V Y

It is clear from diagram 6.2.2 that h= f ◦V µ̃R̃ is one such map. Another one is h= f ◦ vR̃ ◦ T f ◦ v−1 T̃ R̃,

6.2. Mathematical operational semantics 141

as illustrated in the following decomposition.

V T̃ R̃

V T̃ r̃1

��

(1)
(2)

V T̃ T̃ R̃
V µ̃R̃

oo

v−1 T̃ R̃
��

V µ̃R̃
//

id

ttiiiiiiiiiiiiiiiiii
id

**UUUUUUUUUUUUUUUUUU V T̃ R̃

V T̃ r̃2

��

V T̃ T̃ R̃

V T̃ T̃ r̃1

��

(3)

T V T̃ R̃
T V T̃ r̃1

yyttttttttt

vT̃ R̃
oo

vT̃ R̃
//

T V T̃ r̃2

%%J
JJJJJJJJ

T f

��

V T̃ T̃ R̃

V T̃ T̃ r̃2

��

T V T̃ X
vT̃ X

yyttttttttt

T V x

��

(4) T V T̃ Y
vT̃ Y

%%J
JJJJJJJJ

T V y

��

V T̃ X

V x

��

(6)

V T̃ T̃ X
V µ̃X
oo

V T̃ x
��

(5) T V X

vX
yytttttttttt

(7)

TR
T V r̃1

oo

T V r̃2

//

vR̃

��

T V Y

vY
%%J

JJJJJJJJJ V T̃ T̃ Y
V µ̃Y

//

V T̃ y

��

V T̃ Y

V y

��

V T̃ X
V x

zzttttttttt

(8)

V T̃ R̃
V T̃ r̃1

oo

f

��

V T̃ r̃2

// V T̃ Y
V y

$$J
JJJJJJJJ

V X Rr1

oo
r2

// V Y

Using: (1) nat. of µ̃; (2) v ◦ v−1 = id; (3) nat.of v; (4) T applied to dgm. 6.2.2; (5) nat.of v; (6) mult. law for x;

(7) nat.of v; (8) dgm. 6.2.2. The right-hand side is similar.

Hence f ◦ V µ̃R̃= f ◦ vR̃ ◦ T f ◦ v−1 T̃ R̃.

To conclude that r = f ◦ vR̃ : TR → R satisfies the multiplication law, consider the following

diagram.

T TR

µR

��

T vR̃

$$H
HHHHHHHH

T vR̃
//

(1)

T V T̃ R̃
T f

// TR

vR̃
��

T V T̃ R̃
vT̃ R̃

//

(2)

V T̃ T̃ R̃

v−1 T̃ R̃

::ttttttttt

V µ̃R̃

$$J
JJJJJJJJ

(3) V T̃ R̃

f

��

TR
vR̃

// V T̃ R̃
f

// R

Using: (1) v−1v = id; (2) mult. law for v; (3) as just established.

Thus we know that r : TR → R is a T-algebra, and so the final V -lifting span (R, r1, r2) is a

T-congruence.

By specialising Theorem 6.2.1 to the case where B is a category of structured coalgebras, and

restricting attention to free T̃-algebras, we arrive at the following corollary.

Corollary 6.2.3. Let U : D → C be a functor between categories, and let B be an endofunctor on C .

Let T̃ be a monad on (U , B)-Coalg which is a strict lifting of a monad T on D. Let (X ,h), (Y, k) be

U-structured B-coalgebras.

Every final U-structured B-bisimulation between T̃ (X ,h) and T̃ (Y, k) is a T-congruence between the

free T-algebra on X and the free T-algebra on Y .

Our approach to Corollary 6.2.3 differs from that of Turi and Plotkin [1997, Corollary 7.5], in

that we do not make use of a final coalgebra, or their notion of bialgebra for a distributive law.

Characterisation of monad liftings along forgetful functors. We conclude this subsection with

the following elementary observation. Turi and Plotkin [1997, Rem. 5.1] use this result for cate-

gories of coalgebras.

142 Rule Induction and Mathematical Operational Semantics

Remark 6.2.4. Let V : B → C be a faithful functor between categories. Let T = (T,η,µ) be a

monad on C .

To give a strict lifting of T along the functor V is to assign to each object X in B an object T̃ X

in B such that V T̃ X = T V X , and such that

1. for each morphism f : X → Y in B there is a morphism T̃ f : T̃ X → T̃ Y in B such that

V T̃ f = T V f : T V X → T V Y ;

2. for each object X of B there is a morphism η̃X : X → T̃ X in B such that

V η̃X = ηV X : V X → T V X ; and

3. for each object X of B there is a morphism µ̃X : T̃ T̃ X → X in B such that

V µ̃X = µV X : T T V X → T V X .

Functoriality of T̃ , and naturality of η̃ and µ̃, are guaranteed because V is faithful.

6.2.2 Parameterised recursion

Let T be a free monad on an endofunctor Σ on a category C with binary products; we omit the

usual subscript Σ for brevity. Let X , Y be objects of C . For any pair of morphisms

f : Σ(T X × Y)→ Y g : X → Y (6.2.5)

in C , the principle of “parameterised recursion” gives a unique morphism

(C ,Σ,T, X , Y, f , g)♯ : T X → Y

making the following diagram commute.

Σ(T X)
Σ(∆T X)

//

tX
��

Σ(T X × T X)
Σ(T X×(C ,Σ,T,X ,Y, f ,g)♯)

// Σ(T X × Y)

f

��

T X
(C ,Σ,T,X ,Y, f ,g)♯

// Y

X

g

11ccc

ηX

OO

(6.2.6)

We refer to such a tuple (C ,Σ,T, X , Y, f , g) as (parameterised) recursion data.

Taylor [1999, Example 6.1.7] discusses the various forms of recursion. As he demonstrates,

parameterised recursion as defined above is exactly the notion that is often used in definitions of

unary primitive recursive functions, for instance for the factorial function.

Morphisms of recursion data. By introducing morphisms between items of recursion data, we

show, in Lemma 6.2.8, that the operation of parameterised recursion is functorial.

A morphism (F,φ,ψ,α,β) between two items of recursion data, from (C ,Σ,T, X , Y, f , g) to

(C ′,Σ′,T′, X ′, Y ′, f ′, g ′), is a functor F :C →C ′ that preserves binary products, together with natu-

ral transformations φ : Σ′F → FΣ and ψ : T ′F → F T , and morphisms α : X ′→ FX and β : Y ′→ FY

in C ′, all such that we have a morphism of endofunctors (F,φ) : (C ,Σ)→ (C ′,Σ′) inducing a

6.2. Mathematical operational semantics 143

monad morphism (F,ψ) : (C ,T)→ (C ′,T′), and such that the following diagrams commute. (Dia-

gram (a) is in the functor category [C ,C ′], while diagrams (b) and (c) are in C ′.)

(a) Σ′T ′F
t ′F

//

Σ′ψ
��

T ′F

ψ

��

Σ′F T

φT ′

��

FΣT
F t

// F T

(b) X ′
g ′

//

α
��

Y ′

β
��

FX
F g

// FY

(c) Σ′(T ′X ′× Y ′)

Σ′(T ′α×β)
��

f ′
// Y ′

β

��

Σ′(T ′FX × FY)

Σ′(ψX×FY)
��

Σ′(F T X × FY)

≀
��

Σ′F(T X × Y)

φ(T X×Y)
��

FΣ(T X × Y)
F f

// FY

(6.2.7)

Note that diagram 6.2.7(a) says that (F,ψ) : (C ,T)→ (C ′,T′) is the monad morphism induced by

the morphism of endofunctors, (F,φ) : (C ,Σ)→ (C ′,Σ′).

Lemma 6.2.8. Let (F,φ,ψ,α,β) be a morphism between two items of recursion data, say

from d = (C ,Σ,T, X , Y, f , g) to d ′ = (C ′,Σ′,T′, X ′, Y ′, f ′, g ′). Then the following diagram commutes

in C ′.

T ′X ′
d ′♯

//

T ′α
��

Y

β

��

T ′FX

ψX

��

F T X
Fd♯

// FY

(6.2.9)

Proof. By considering the recursion data

d ′′ =




C ′,Σ′,T′, X ′, FY,

f ′′ = Σ′(T ′X ′×FY)
Σ′(T ′α×FY)

// Σ′(T ′FX×FY)
Σ′(ψX×FY)

// Σ′(F T X×FY)

∼= Σ′F(T X×Y)
φ(...)

// FΣ(T X×Y)
F f

// FY ,

g ′′ = X ′
α

// FX
F g

// FY




we see that there is exactly one arrow d ′′♯ : T ′X ′→ FY making the following diagram commute.

Σ′(T ′X ′)
Σ′(∆T ′X ′)

//

t ′X ′

��

Σ′(T ′X ′× T ′X ′)
Σ′(T ′X ′×d ′′♯)

// Σ′(T ′X ′× FY)

f ′′

��

T ′X ′
d ′′♯

// FY

X ′

g ′′

22dd

η′X ′

OO

(6.2.10)

We will show that d ′′♯ could be either of the two sides of diagram 6.2.9. For the case of

d ′′♯ = Fd♯ ◦ψX ◦ T ′α, consider the following decomposition.

144 Rule Induction and Mathematical Operational Semantics

Σ′T ′X ′
Σ′∆T ′X ′

//

t′X ′

��

Σ′T ′α ((PPPPPPPPPP Σ′(T ′X ′×T ′X ′)
Σ′(···×T ′α)

// Σ′(T ′X ′×T ′FX)
Σ′(···×ψX)

//

(1)

Σ′(T ′X ′×F T X)
Σ′(···×Fd♯)

// Σ′(T ′X ′×FY)

Σ′(T ′α×...)
��

Σ′T ′FX

t′FX

��

Σ′ψX

##
GGGGGGGGGGGGGGGGG Σ′(T ′FX×FY)

Σ′(ψX×...)
��

(2) Σ′(F T X×FY)

≀

��

(3) Σ′F T X

φT X

��

Σ′F∆T X
// Σ′F(T X×T X)

Σ′F(···×d♯)
//

(4)

Σ′F(T X×Y)

φ(...)

��

FΣT X

F tX

��

FΣ∆T X
// FΣ(T X×T X)

FΣ(···×d♯)
//

(5)

FΣ(T X×Y)

F f ′

��

T ′X ′
T ′α

// T ′FX
ψX

// F T X
Fd♯

// FY

(6)

(7)

X ′

η′

OO

α
// FX

F g

33ff

η′FX

OO

FηX

99tttttttttttttttt

(8)

Using: (1) properties of products; (2) nat. of t ′; (3) dgm. 6.2.7(a); (4) nat. of φ; (5) F applied to defn. of d♯; (6) nat.

of η′; (7) unit law for ψ; (8) F applied to defn. of d♯.

For the case of d ′′♯ = β ◦ d ′♯, consider the following decomposition.

Σ′(T ′X ′)
Σ′(∆T ′X ′)

//

t′X ′

��

(1)

Σ′(T ′X ′×T ′X ′)
Σ′(T ′X ′×d′♯)

// Σ′(T ′X ′×Y ′)
Σ′(T ′X ′×β)

//

f ′

��

(2)

Σ′(T ′X ′×FY)

Σ′(T ′α×...)
��

Σ′(T ′FX×FY)

Σ′(ψX×...)
��

Σ′(F T X×FY)

≀

��

Σ′F(T X×Y)

φ(...)

��

FΣ(T X×Y)

F f ′

��

T ′X ′
d′♯

// Y ′
β

// FY

(3)

X ′

g′

44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

η′X ′

OO

α
// FX

F g

88qqqqqqqqqqqqqqqqqq

(4)

Using: (1) defn. of d ′♯; (2) dgm. 6.2.7(c); (3) defn. of d ′♯; (4) dgm. 6.2.7(b).

Since the mediating morphism d ′′♯ of diagram 6.2.10 must be unique, we can conclude that dia-

gram 6.2.9 commutes.

6.2.3 Abstract rules inducing monad liftings

Definition 6.2.11. Let U : D →C be a functor between categories, and let B and Σ be endofunctors

on C . Suppose that the free monad T on Σ exists, and that T lifts along U to a monad T̃ on D. We

write u : T U → U T̃ for the lifting isomorphism.

6.2. Mathematical operational semantics 145

An abstract rule for (C ,D, U , B,Σ, T̃) is a natural transformation

ρ : Σ(U × BU)→ BU T̃ .

Abstract rule induction. Together, an abstract rule of this form and a U-structured B-coalgebra,

(X ,h : UX → BUX), provide parameterised recursion data

(C ,Σ,T, UX , BU T̃ X , fρ,X , gX ,h)

where the morphisms fρ,X , gX ,h are defined as follows.

fρ,X = Σ(T UX × BU T̃ X)
Σ(uX×...)
−−−−−→ Σ(U T̃ X × BU T̃ X)

ρ T̃ X
−→ BU T̃ T̃ X

BUµ̃X
−→ BU T̃ X

gX ,h = UX
h
−→ BUX

BUη̃X
−−−→ BU T̃ X .

(6.2.12)

Hence an abstract rule ρ gives rise to an operator Tρ which assigns to each U-structured B-coalge-

bra (X ,h) a U-structured B-coalgebra with carrier T̃ X , and with structure given by

Tρh= U T̃ X
u−1X
−→ T UX

(C ,Σ,T,UX ,BU T̃ X , fρ,X ,gX ,h)
♯

−−−−−−−−−−−−−−−→ BU T̃ X . (6.2.13)

Theorem 6.2.14. The operator Tρ defined in equation 6.2.13 defines a strict lifting of the monad T̃

along the forgetful functor from the category of U-structured B-coalgebras.

Proof. The forgetful functor (U , B)-Coalg → D is faithful, so we make use of the characterisation

highlighted in Remark 6.2.4. We begin by proving requirement (1) of that remark: for any coal-

gebra homomorphism α : (X ,h) → (Y, k), the morphism T̃α in D is a map of coalgebras, i.e. the

following diagram commutes in C .

U T̃ X
U T̃α

//

u−1X
��

U T̃ Y

u−1Y
��

T UX

(C ,Σ,T,UX ,BU T̃ X , fρ,X ,gX ,h)
♯

��

T Uα
// T UY

(C ,Σ,T,UY,BU T̃ Y, fρ,Y ,gY,k)
♯

��

BU T̃ X
BU T̃α

// BU T̃ Y

(6.2.15)

The top square commutes by naturality of u−1. For the lower square, we appeal to Lemma 6.2.8,

using the following morphism between items of recursion data.

(idC , idΣ, idT, Uα, BU T̃α) : (C ,Σ,T, UX , BU T̃ X , fρ,X , gX ,h) → (C ,Σ,T, UY, BU T̃ Y, fρ,Y , gY,k)

We check that this is a valid morphism, that is, that diagrams 6.2.7(a–c) commute. Dia-

gram 6.2.7(a) is trivial in this case. Diagram 6.2.7(b) commutes since α is a U-structured

B-coalgebra homomorphism and η̃ is natural. Diagram 6.2.7(c) commutes since fρ,X is natural

in X .

For requirements (2) and (3) of Remark 6.2.4, we must show that the unit and multiplication of

the monad T̃ lift to homomorphisms of coalgebras, i.e. that the following diagrams commute in C .

(a) UX
Uη̃X

//

h

��

U T̃ X

Tρh

��

BUX
BUη̃X

// BU T̃ X

(b) U T̃ T̃ X
Uµ̃X

//

Tρ(Tρh)

��

U T̃ X

Tρh

��

BU T̃ T̃ X
BUµ̃X

// BU T̃ X

(6.2.16)

146 Rule Induction and Mathematical Operational Semantics

To see that diagram 6.2.16(a) commutes, consider the following triangulation.

UX
Uη̃X

//

h

��

ηUX
##H

HHHHHHHH

(1)
(2)

U T̃ X

u−1X
��

T UX
id

//

uX
::uuuuuuuuu

(3)

T UX

(C ,Σ,T,UX ,BU T̃ X , fρ,X ,gX ,h)
♯

��

BUX
BUη̃X

// BU T̃ X

Using: (1) unit law for u; (2) u−1 ◦ u= id; (3) dgm. 6.2.6.

For diagram 6.2.16(b), multiplication, we proceed as follows. By parameterised initiality there

is a unique map d♯ : T U T̃ X → BT UX making the following diagram commute.

Σ(T U T̃ X)

tU T̃ X

��

Σ(∆T U T̃ X)
// Σ(T U T̃ X × T U T̃ X)

Σ(T U T̃ X×d♯)
//

(a)

Σ(T U T̃ X × BU T̃ X)

Σ(Tu−1X×...)
��

Σ(T T UX × BU T̃ X)

Σ(µUX×...)
��

Σ(T UX × BU T̃ X)

fρ,X
��

T U T̃ X
d♯

//

(b)
BU T̃ X

U T̃ X

ηU T̃ X

OO

Tρh

11ccc

(6.2.17)

We will show that such d♯ is found by precomposing either side of diagram 6.2.16(b) with uT̃ X .

For d♯ = Tρh ◦ Uµ̃X ◦ uT̃ X , we see that part (a) of diagram 6.2.17 commutes by considering the

decomposition in Figure 6.1. As for part (b) of diagram 6.2.17, consider the following decomposi-

tion.

T U T̃ X
uT̃ X

//

(1)

U T̃ T̃ X
Uµ̃X

//

(2)

U T̃ X
Tρh

// BU T̃ X

U T̃ X

ηU T̃ X

OO

UηT̃ X

99ttttttttt Tρh

44

Using: (1) unit law for u; (2) unit law for T̃ .

For the other case, d♯ = BUµ̃X ◦ Tρ(Tρh) ◦ uT̃ X , we see that part (a) of diagram 6.2.17 com-

mutes by considering the decomposition in Figure 6.2. As for part (b) of diagram 6.2.17,

consider the following decomposition. Here, the arrow labelled (f , g)♯ represents the morphism

(C ,Σ,T, U T̃ X , BU T̃ T̃ X , fρ,T̃ X , g T̃ X ,Tρh)
♯ : T UX → BU T̃ X .

T U T̃ X
uT̃ X

//

(f ,g)♯

44
U T̃ T̃ X

Tρ(Tρh)
// BU T̃ T̃ X

BUµ̃X
// BU T̃ X

(1) BU T̃ X

BUηT̃ X

99ssssssssss
(2)

U T̃ X

ηU T̃ X

OO

Tρh

;;

Tρh

99ttttttttt

Using: (1) defn. of (f , g)♯; (2) unit law for T̃.

6.2. Mathematical operational semantics 147

Σ
(T

U
T̃

X
)

tU
T̃

X

��

Σ
(∆

T
U

T̃
X
)

//

Σ
T̃

u
−

1
X

��

Σ
(T

U
T̃

X
×

T
U

T̃
X
)

id
//

Σ
(···×

T
u
−

1
X
)

''
O

O
O

O O
O

O
O O

O
O

O O
O

O
O O

O
O

O O
Σ
(T

U
T̃

X
×

T
U

T̃
X
) Σ
(···×

u
T̃

X
)//

(2
)

Σ
(T

U
T̃

X
×

U
T̃

T̃
X
) Σ
(···×

U
µ̃

X
)//

(3
)

Σ
(T

U
T̃

X
×

U
T̃

X
)
Σ
(···×

T
ρ

X
)//

Σ
(···×

u
−

1
X
)

��

(4
)

Σ
(T

U
T̃

X
×

B
U

T̃
X
)

Σ
(T

u
−

1
X
×

...)

��

Σ
(T

U
T̃

X
×

T
T

U
X
)

Σ
(···×

T
u

X
)

OO

Σ
(···×

µ
U

X
)//

(1
)

Σ
(T

U
T̃

X
×

T
U

X
) Σ
(···×

u
X
)

88
pp

pp
pp

pp
pp

pp
pp

pp
pp

pp
p

Σ
(T

u
−

1
X
×

...)

''
N N

N N
N N

N N
N N

N N
N N

N N
N N

N N
N

(5
)
Σ
(T

U
T̃

X
×

T
U

X
)

Σ
(···×

(
f,g
)
♯)

88
pp

pp
pp

pp
pp

pp
pp

pp
pp

pp
p

Σ
(T

u
−

1
X
×

...)

��

(6
)

Σ
T

T
U

X
Σ
∆

T
T

U
X

//

Σ
µ

U
X

++
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W
W

W

tT
U

X

��

Σ
(T

T
U

X
×

T
T

U
X
)

Σ
(···×

µ
U

X
)

//

(7
)

Σ
(T

T
U

X
×

T
U

X
)

Σ
(µ

U
X
×

...)

��

Σ
(T

T
U

X
×

B
U

T̃
X
)

Σ
(µ

U
X
×

...)

��

(8
)

(9
)

Σ
T

U
X

Σ
∆

T
U

X
//

tU
X

''
O O

O O
O O

O O
O O

O O
O O

O O
O O

O O
O O

Σ
(T

U
X
×

T
U

X
)
Σ
(···×

(
f,g
)
♯)//Σ
(T

U
X
×

B
U

T̃
X
)

fρ
,T̃

X

��

(1
1
)

T
T

U
X

µ
U

X
//

T
u

U
X

��

(1
2
)

T
U

X

u
X

��

(
f,g
)
♯

''
O O

O O
O O

O O
O O

O O
O O

O O
O O

O O
O O

(1
0
)

T
U

T̃
X

T
u
−

1
X

88
rr

rr
rr

rr
rr

rr
rr

rr
rr

r

id
//T

U
T̃

X
u

T̃
X

//U
T̃

T̃
X

U
µ

X
//U

T̃
X

T
ρ

h
//

(1
3
)

B
U

T̃
X

F
ig

u
re

6
.1

:
P

ro
o
f

th
a
t

d
♯
=

T
ρ

h
◦

U
µ̃

X
◦

u
T̃

X
is

a
m

e
d

ia
tin

g
m

o
rp

h
ism

fo
r

d
ia

g
ra

m
6

.2
.1

7
(a

).
H

e
re

,
th

e
a
rro

w
s

la
b
e
lle

d
(
f,

g
)
♯

re
p
re

se
n

t
th

e
m

o
rp

h
ism
(C

,Σ
,T

,U
X

,B
U

T̃
X

,
fρ

,X
,
g

X
,h)
♯

:
T

U
X
→

B
U

T̃
X

.

U
sin

g
:

(1
)

n
a
tu

re
o
f

p
ro

d
u

cts;
(2

)
u
◦

u
−

1
=

id
;

(3
)

m
u

lt.
la

w
fo

r
u
;

(4
)

d
e
fn

.
o
f

T
ρ
h
;

(5
)

u
−

1
◦

u
=

id
;

(6
)

n
a
tu

re
o
f

p
ro

d
u

cts;

(7
)

n
a
tu

re
o
f

p
ro

d
u

cts;
(8

)
n

a
t.

o
f

t;
(9

)
sin

ce
µ

is
a

h
o
m

o
m

o
rp

h
ism

o
f
Σ

-a
lg

e
b
ra

s;
(1

0
)

d
e
fn

.
o
f
(
f,

g
)
♯;

(1
1

)
u
◦

u
−

1
=

id
;

(1
2

)
m

u
lt.

la
w

fo
r

u
;

(1
3

)
d

e
fn

.
o
f

T
ρ
h
.

148 Rule Induction and Mathematical Operational Semantics

Σ
(T

U
T̃

X
)

tU
T̃

X

��

Σ
(∆

T
U

T̃
X
)

//Σ
(T

U
T̃

X
×

T
U

T̃
X
) Σ(···×

u
T̃

X
)

//

Σ
(···×

(
f,g
)
♯)

55

(1
)

Σ
(T

U
T̃

X
×

U
T̃

T̃
X
)
Σ
(···×

T
ρ
(T
ρ

h
))

//Σ
(T

U
T̃

X
×

B
U

T̃
T̃

X
)

Σ
(···×

B
U
µ̃

X
)

//

Σ
(u

T̃
X
×

...)

��� �

(2
)

Σ
(T

U
T̃

X
×

B
U

T̃
X
)

Σ
(T

u
−

1
X
×

...)

&&
M M

M M
M M

M M
M M

M M
M M

M M
M M

M M

Σ
(u

U
T̃

X
×

...)

��� �(3
)

Σ
(T

U
T̃

X
×

B
U

T̃
X
)

Σ
(u

T̃
X
×

...)

xxq q q q q q q q q q q q q q q q q q q q

(4
)

Σ
(T

T
U

X
×

B
U

T̃
X
)

Σ
(µ

U
X
×

...)

��

Σ
(T

u
X
×

...)
oo

Σ
(U

T̃
T̃

X
×

B
U

T̃
X
)

Σ
(U
µ̃

X
×

...)

**
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V

(5
)

Σ
(T

U
X
×

B
U

T̃
X
)

Σ
(u

X
×

...)

��

fρ
,X

~~

Σ
(U

T̃
T̃

X
×

B
U

T̃
T̃

X
)ρ
T̃

T̃
X

''
N N

N N
N N

N N
N N

N N
N N

N N
N N

N N
N

Σ
(U
µ̃

X
×

B
U
µ̃

X
)

//

Σ
(···×

B
U
µ̃

X
)

88
pp

pp
pp

pp
pp

pp
pp

pp
pp

pp
p

(6
)

Σ
(U

T̃
X
×

B
U

T̃
X
)

ρ
T̃

X

��

B
U

T̃
T̃

T̃
X

B
U

T̃
µ̃

X

//

B
U
µ̃

T̃
X

��

(7
)

B
U

T̃
T̃

X

B
U
µ̃

X

��

T
U

T̃
X

u
T̃

X

//

(
f,g
)
♯

**

U
T̃

T̃
X

T
ρ
(T
ρ

h
)

//B
U

T̃
T̃

X
B

U
µ̃

X
//B

U
T̃

X

F
ig

u
re

6
.2

:
P

ro
o
f

th
a
t

d
♯
=

B
U
µ̃

X
◦

T
ρ
(T
ρ

h
)
◦

u
T̃

X
is

a
m

e
d

ia
tin

g
m

o
rp

h
ism

fo
r

d
ia

g
ra

m
6

.2
.1

7
.

H
e
re

,
th

e
a
rro

w
s

la
b
e
lle

d
(
f,

g
)
♯

re
p
re

se
n

t
th

e
m

o
rp

h
ism
(C

,Σ
,T

,U
T̃

X
,B

U
T̃

T̃
X

,
fρ

,T̃
X

,
g

T̃
X

,T
ρ

h)
♯

:
T

U
X
→

B
U

T̃
X

.

U
sin

g
:

(1
)

d
e
fn

.
o
f
(
f,

g
)
♯;

(2
)

n
a
t.o

f
µ̃

;
(3

)
u
◦

u
−

1
=

id
;

(4
)

m
u

lt.
la

w
fo

r
u
;

(5
)

n
a
tu

re
o
f

p
ro

d
u

ct;
(6

)
n

a
t.

o
f
ρ

;
(7

)
m

u
lt.

la
w

.

6.2. Mathematical operational semantics 149

Such a mediating map d♯ must be unique, and so we know that

Tρh ◦ Uµ̃X ◦ uT̃ X = BUµ̃X ◦ Tρ(Tρh) ◦ uT̃ X .

Because uT̃ X is an isomorphism, we can conclude that diagram 6.2.16(b) commutes.

Thus we have established all the requirements of Remark 6.2.4, and we can conclude that we

have a lifting Tρ of the monad T.

In Section 6.3.5, and again in Chapter 8, it will be seen that the inductive method of Theo-

rem 6.2.14 for lifting a monad to a category of coalgebras can be understood as the definition of

transition systems by rule induction.

6.2.4 Rule induction, when the structure functor has a right adjoint

We retain the notation of the previous subsection.

As we observed in Example 2.4.3(4), if the structure functor U : D → C has a right ad-

joint R :C →D then we have an isomorphism of categories (U , B)-Coalg ∼= RBU-Coalg. We now

explain how, under mild conditions, we can use an abstract rule of the type used in the previ-

ous subsection to lift the monad T̃ on D directly to the category RBU-Coalg. Thus the problem is

reduced to that considered by Turi and Plotkin [1997].

Preliminaries. Suppose now that the structure functor U : D →C has a right adjoint R :C →D,

and also that U preserves binary products. We write η⊣ : idD → RU for the unit of the adjunction

(U ⊣ R), and ǫ⊣ : UR → idC for the counit; we use the superscript ⊣ here to distinguish from the

units of the free monads that are under consideration.

We will also need to suppose that the endofunctor Σ on C lifts along U to an endofunctor Σ̃

on D, and that T̃ is the free monad on Σ̃. We write u both for the endofunctor lifting isomorphism

ΣU → UΣ̃ and for the monad lifting isomorphism T U → U T̃ ; we assume that the latter is the

extension of the former according to part (1) of Theorem 6.1.5.

By Prop. 6.1.4(1) we have a morphism of endofunctors (R, r) : (C ,Σ) → (D, Σ̃) which is

right adjoint in Endo to the lifting (U ,u) : (D, Σ̃) → (C ,Σ). Similarly, by Prop. 6.1.4(2), we

have a morphism of monads (R, r) : (C ,T) → (D, T̃) which is right adjoint in Monad to the lift-

ing (U ,u) : (D, T̃)→ (C ,T). Note that, again, we use the same notation for both the morphism of

endofunctors and the morphism of monads, since here the latter is the extension of the former.

The fact that the unit η⊣ of the adjunction is a morphism of endofunctors and of monads means

that the following diagrams commute in the functor category [D,D].

Σ̃
Σ̃η⊣

//

η⊣Σ̃

��
33

33
33

33
33

33
33

Σ̃RU

rU
��

RΣU

Ru
��

RUΣ̃

T̃
T̃η⊣

//

η⊣ T̃

��
33

33
33

33
33

33
33

T̃RU

rU
��

RT U

Ru
��

RU T̃

(6.2.18)

Derivation of an abstract rule for (D,D, idD ,RBU , Σ̃, T̃). An abstract rule ρ for data (C ,D, U , B,Σ, T̃),

in the form of Definition 6.2.11, gives rise to an abstract rule

ρ̄ : Σ̃(−× RBU)→ RBU (6.2.19)

for (D,D, idD ,RBU , Σ̃, T̃), as follows: precompose ρ with the counit ǫ⊣,

Σ(U −×URBU)
Σ(···×ǫ⊣BU)
−−−−−−→ Σ(U −×BU)

ρ
−→ BU T̃ ;

150 Rule Induction and Mathematical Operational Semantics

then use the lifting isomorphism and the fact that U preserves products to arrive at a natural

transformation

UΣ̃(−× RBU)→ BU ;

and finally transpose across the adjunction (U ⊣ R) to obtain a natural transformation of the form

of (6.2.19).

In summary, ρ̄ is the following composite.

Σ̃(−× RBU)

η⊣Σ̃(...)
��

RUΣ̃(−× RBU)

Ru−1(...)
��

RΣU(−× RBU)

≀
��

RΣ(U × URBU)

RΣ̃(U×ǫ⊣BU)
��

RΣ(U × BU)

Rρ
��

RBU T̃

Relating the derived rule with the original. Using this abstract rule ρ̄, we can lift the monad T̃

on D to an monad Tρ̄ on the category RBU-Coalg of coalgebras. As we now show, this monad Tρ̄
on the category RBU-Coalg corresponds to the monad Tρ on the isomorphic category (U , B)-Coalg.

Theorem 6.2.20. The isomorphism of categories (U , B)-Coalg ∼= RBU-Coalg lifts to an isomor-

phism ((U , B)-Coalg,Tρ)
∼= (RBU-Coalg,Tρ̄) of monads.

Proof. Any isomorphism is necessarily faithful, and so, following Remark 6.2.4, it is sufficient to

show that

for every U-structured B-coalgebra (X ,h : UX → BUX), the left adjunct of Tρ(h)

is Tρ̄(h
†), writing h† for the right adjunct of h.

In other words, we must show that, for every RBU-coalgebra (X ,h : X → RBUX), the following

diagram commutes.

T̃ X
Tρ̄(Rh◦η⊣X)

%%K
KKKKKKKKK

η⊣ T̃ X
��

RU T̃ X
RTρh

// RBU T̃ X

We prove this by considering the following decomposition.

T̃ X
η⊣ T̃ X

xxqqqqqqqqq

T̃η⊣X
��

Tρ̄(Rh◦η⊣X)
// RUBT̃ X

id

��

RU T̃ X

id
��

(1)
T̃RUX

rUX
��

(3)

RU T̃ X
Ru−1X

//

RTρh

22

(2)

RT UX

RuX
ffMMMMMMMM (C ,Σ,T,UX ,BU T̃ X , fρ,X ,gX ,h)

♯

// RBU T̃ X

(6.2.21)

6.3. The Positive GSOS rule format 151

Part (1) is diagram 6.2.18, and part (2) follows since u ◦ u−1 = id. For part (3), note that, by

definition, Tρ̄(Rh ◦η⊣X) = (D, Σ̃, T̃, X ,RBU T̃ X , fρ̄,X , gX ,(Rh◦η⊣X))
♯. Now, we consider the morphism of

recursion data

(R, r, r,η⊣X , id) : (C ,Σ,T, UX , BU T̃ X , fρ,X , gX ,h)→ (D, Σ̃, T̃, X ,RBU T̃ X , fρ̄,X , gX ,(Rh◦η⊣X))

and we will use Lemma 6.2.8 to show that part (3) commutes. Since R is a right adjoint, it certainly

preserves binary products, and so it remains for us to show that the three diagrams in (6.2.7)

commute. Diagram (a) is straightforward, since the morphism of monads (R, r) : (C ,T)→ (D, T̃) is

chosen to be the extension of the morphism of endofunctors (R, r) : (C ,Σ)→ (D, Σ̃).

For diagram (b), we consider the following decomposition.

X

ηX

��

gX ,Rh◦ηX
// RBU T̃ X

id

��

RBUX

RBUη̃X

99ssssssssss

RUX

Rh

::uuuuuuuuu

RgX ,h

// RBU T̃ X

To see that diagram (c) commutes, consider the decomposition given in Figure 6.3.

6.3 The Positive GSOS rule format

We now illustrate some aspects of the theory of the previous sections by considering concrete rules

in a positive version of the GSOS format of Bloom, Istrail, and Meyer [1995].

Notation. As in Section 2.1, we fix a set of labels Lab. We also fix a signature S, in the sense of

Definition 6.1.1; we will make use of the endofunctor ΣS,Set on the category Set of sets as defined

in equation 6.1.3. (Hereafter we write ΣS for ΣS,Set, since we will only consider the category of sets

in this section.)

Because Set satisfies the conditions of Prop. 6.1.6, there is a free monad TS,Set on ΣS,Set. (Here-

after we write TS = (TS,ηS,µS) for this free monad.) For each set X , elements of the set TSX are to

be thought of as terms built out of the operators of S, with free variables taken from X .

6.3.1 Rule structures

Definition 6.3.1. A premise structure over a set X of variables is a triple in X× Lab× X with the

components respectively named the source, action and target. A conclusion structure over a set X of

variables is a triple in ΣSX× Lab× TSX with the components respectively named the source, action

and target.

A rule structure R over a set X of variables is a set Prems of premise structures over X and a

conclusion structure (src, l,tar) over X.

We will often refer to classesR of rule structures R; the intention is not that each rule structure R

in R is over a common set of variables, but rather that each rule structure R has an implicit set of

variables over which it is defined.

Notice that we use a typewriter font to denote the set X of variables. We will use the same font

to notate elements of X. So the symbol x is different from the symbol x .

152 Rule Induction and Mathematical Operational Semantics

Σ̃
(T̃

X
×

R
B

U
T̃

X
)

η
Σ̃
(...)

��

Σ̃
(T̃
η

X
×

...)//

Σ̃
(η

T̃
X
×

...)
Q Q

Q Q
Q Q

Q Q
Q

((
Q Q

Q Q
Q Q

Q Q
Q

Σ̃
(T̃

R
U

X
×

R
B

U
T̃

X
)
Σ̃
(r

U
X
×

...)//

(1
)

Σ̃
(R

T
U

X
×

R
B

U
T̃

X
)

∼
//

Σ̃
(R

u
X
×

...)
m m m m m m m m m

vvm m m m m m m m m
Σ̃
(R

u
X
×

...)
Q Q

Q Q
Q Q

Q Q
Q

((
Q Q

Q Q
Q Q

Q Q
Q

(2
)

Σ̃
R
(T

U
X
×

B
U

T̃
X
)

r(...)
//R
Σ
(T

U
X
×

B
U

T̃
X
)

R
Σ
(u

X
×

...)

��

R
U
Σ̃
(T̃

X
×

R
B

U
T̃

X
)

R
u
−

1
(...)

��

Σ̃
(R

U
T̃

X
×

R
B

U
T̃

X
)̃Σ (···×

η
R

B
U

T̃
X
)

//

(3
)

Σ̃
(R

U
T̃

X
×

R
U

R
B

U
T̃

X
)

Σ̃
(···×

R
ǫ
B

U
T̃

X
)

//

≀��

Σ̃
(R

U
T̃

X
×

R
B

U
T̃

X
)

≀��

R
Σ

U
(T̃

X
×

R
B

U
T̃

X
)

≀

��

R
Σ

U
(T̃

X
×

R
B

U
T̃

X
)

id
oo R
u
(...)

hhQ
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

(6
)

Σ̃
R

U
(T̃

X
×

R
B

U
T̃

X
)

r
U
(...)

oo

≀��

(4
)

(5
)

R
Σ
(U

T̃
X
×

U
R

B
U

T̃
X
)

R
Σ
(···×

ǫ
B

U
T̃

X
)

��

Σ̃
R
(U

T̃
X
×

U
R

B
U

T̃
X
)

r(...)
oo

Σ̃
R
(...ǫ

B
U

T̃
X
)//

(7
)

Σ̃
R
(U

T̃
X
×

B
U

T̃
X
)

r(...)

((
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P

R
Σ
(U

T̃
X
×

B
U

T̃
X
)

id
//

R
ρ

T̃
X

��

R
Σ
(U

T̃
X
×

B
U

T̃
X
)

R
ρ

T̃
X

��

R
B

U
T̃

T̃
X

R
B

U
T̃

X

��

id
//R

B
U

T̃
T̃

X

R
B

U
T̃

X

��

R
B

U
T̃

X
id

//R
B

U
T̃

X

F
ig

u
re

6
.3

:
P

ro
o
f

th
a
t

d
ia

g
ra

m
6

.2
.7

(c)
co

m
m

u
te

s,
a
s

re
q
u

ire
d

fo
r

u
sin

g
L
e
m

m
a

6
.2

.8
to

p
ro

v
e

th
a
t

p
a
rt

(3
)

o
f

d
ia

g
ra

m
6

.2
.2

1
co

m
m

u
te

s.

U
sin

g
:

(1
)

d
g
m

.
6

.2
.1

8
;

(2
)

tria
n

g
le

id
.;

(3
)

d
g
m

.
6

.2
.1

8
;

(4
)

n
a
t.

o
f

p
ro

d
u

ct
p
re

se
rv

a
tio

n
;

(5
)

n
a
t.

o
f

r;
(6

)
n

a
t.

o
f

r;

(7
)

n
a
t.

o
f

r.

6.3. The Positive GSOS rule format 153

Rule structures as first-order logic formulae. Suppose that we have a classR of rule structures.

We will explain how this class can be considered as a theory of (potentially) infinite logic, for the

language with operations S and with a binary predicate
l
−→ for each label l ∈ Lab. We note that, for

each set X of variables, every element of ΣSX and every element of TSX is a term in the language,

with free variables in the set X.

For each rule structure R ∈ R , we define a formula ΦR as the following Horn clause.

ΦR =




∧

(x,l,y)∈Prems

x
l
−→ y


 =⇒ src

l
−→ tar (6.3.2)

Now, the theory associated to R has an axiom for each R, as we now explain. If X is the set of

variables over which R is defined, then the axiom associated to R is:

∀X. ΦR .

We use this notation to indicate simultaneous universal quantification in the formula ΦR of every

variable in the set X — this is a convention that is common in infinitary logics. If we can enumerate

the variables in X, say X=
¦
x1, . . . ,x|X|

©
, then we have

∀X. ΦR ⇐⇒ ∀x1, . . . ,x|X|. ΦR .

Models of rule structures. A structure for the language of the above theory we call an R-struc-

ture. That is, an R-structure is a set X equipped with a ΣS-algebra structure α : ΣSX → X and a

labelled transition relation −→⊆ X × Lab× X .

We say that such an R-structure is an R-model if the transition relation −→⊆ X × Lab× X

satisfies every instance of each formula ΦR, for R ∈ R . Simpson [1995, Sec. 2] restricts the notion

of model by only allowing transitions out of elements in the image of α when they are derivable

from some ΦR. But of principle interest for operational semantics is the model that Simpson says is

intended; in this case it is defined as follows:

• the carrier set is TS;, the set of free terms of the signature S;

• the ΣS-algebra structure is the structure map tS; : ΣSTS; → TS; of the free ΣS algebra;

• the labelled transition relation −→ ⊆ X × Lab× X is the smallest relation that satisfies every

axiom of the theory.

6.3.2 GSOS conditions

We say that a rule structure R over variables X is in the Positive GSOS rule format if it satisfies

GSOS+-1–5 in Figure 6.4.

Discussion. The class of rules considered here differs from that introduced by Bloom, Istrail, and

Meyer [1995, Defn. 4.3.2] in two ways: we have removed the image-finiteness condition, and we

do not consider negative premises.

The image-finiteness condition can be reintroduced by considering a finite powerset functor;

indeed, this is the approach taken by Turi and Plotkin [1997].

A positive version of the GSOS format has previously been studied by Groote and Vaandrager

[1992, Sec. 9]. It is beyond the scope of this thesis to discuss the merits and demerits of negative

premises in detail, but we can summarise some of the arguments.

• Against negative premises: the meaning (i.e., the intended model) of rules with negative

premises is a matter of debate [see e.g. Aceto et al., 2001, Sec. 3].

154 Rule Induction and Mathematical Operational Semantics

Of a rule R over variables X, where

R=
Prems

op(x1, . . . ,xar(o))
l
→ tar

we require:

GSOS+-1. All variables appear either in the conclusion source or in the targets of the

premises.

∀x ∈ X.

∃ j ∈ [1, ar(op)]. x j = x

∨ ∃l ∈ Lab, y ∈ X. (x, l,y) ∈ Prems

!
.

GSOS+-2. The source of each premise appears in the conclusion source.

∀(x, l,y) ∈ Prems. ∃ j ∈ [1, ar(op)]. x= x j.

GSOS+-3. The target of any premise does not appear as the target of any other premise.

∀(x, l,y), (x′, l ′,y′) ∈ Prems. y= y′ =⇒ x= x′ ∧ l = l ′.

GSOS+-4. The target of any premise does not appear in the conclusion source.

∀(x, l,y) ∈ Prems, j ∈ [1, ar(op)]. y 6= x j.

GSOS+-5. Variables in the conclusion source are distinct.

∀ j, j′ ∈ [1, ar(op)]. x j = x j′ =⇒ j = j′

Figure 6.4: The Positive GSOS format

• One might argue that if inaction is not observable then it cannot be used in system definition.

• In favour of negative premises, though, they do provide a convenient means of system speci-

fication for properties such as deadlock detection.

We will address some model-theoretic aspects of Positive GSOS in Section 9.3.4.

6.3.3 Natural transformations from single rules

In this subsection we fix a rule structure R over variables X, with premise set Prems, and conclusion

(src, l,tar). So we must have an operator op ∈OpS and, for each j ∈ [1, ar(op)] an element x j ∈ X

such that

src= op

��
x j

�
j∈[1,ar(op)]

�
.

(We underline variables that appear in the conclusion source to distinguish them from other vari-

ables.) We will show how R induces a family of maps

�
¹RºX : ΣS(X × BX)→ BTSX

	
X∈Set

which will be natural if R is in the GSOS format.

6.3. The Positive GSOS rule format 155

Behaviour. Here, the endofunctor B on Set that we have in mind is the endofunctor

B = Blts =P (Lab×−)

as discussed in Section 2.1. We will also make use of the endofunctor L on Set given by

L = Lab× (−) .

This endofunctor describes labelled transition systems where each state can and must perform

exactly one transition.

Valuations. A valuation of the variables of the rule R is a set X together with a function V : X→ X

between sets.

Instantiating premises. A valuation V : X → X determines, for each j ∈ ar(op), a subset of LX

that we denote V (Prems j). It describes the of “requirements on parameter j”, and is given by

V (Prems j) =

§
(l, y) ∈ LX

��� ∃y ∈ X.
�
x j , l,y

�
∈ Prems and V (y) = y

ª
.

Instantiations of rules. We say that a valuation V : X → X is an instantiation of R into an

element s ∈ ΣS(X × BX), if there is a family (b j ∈ BX) j∈[1,ar(op)] such that

s = op

��
V (x j), b j

�
j∈[1,ar(op)]

�

and, for each j ∈ [1, ar(op)], we have V (Prems j)⊆ b j.

Archetypal results. For every valuation, we have a result given by

�
l, TSV (tar)

�
∈ LTSX .

Here, we are using the function TSV : TSX→ TSX .

Induced family of maps. A rule induces a family of maps

�
¹RºX : ΣS(X × BX)→ BTSX

	
X∈Set

given by

¹RºX (s) =
¦
(l, TSV (tar))

�� V is an instantiation of R into s
©

. (6.3.3)

Thus ¹RºX can be thought of as taking an expression in which each element is equipped with a

behaviour, and returning a set of all possible resumptions.

Naturality of the induced family of maps.

Theorem 6.3.4. If R is in the GSOS format then the family
�
¹RºX

	
X∈Set is natural in X .

Proof. Consider a function f : X → Y ; we must show that for any

s = op
�
(x1, b1), . . . , (xar(op), bar(op))

�
∈ Σ(X × BX)

156 Rule Induction and Mathematical Operational Semantics

we have

BTS f
�
¹RºX

�
op((x1, b1), . . . , (xar(op), bar(op)))

��

= ¹RºY

�
op((f (x1), B f (b1)), . . . , (f (xar(op)), B f (bar(op))))

�
. (6.3.5)

It is easy to show that LHS ⊆ RHS in (6.3.5) — the GSOS conditions are not needed for this.

Indeed, suppose that (l, t) ∈ LHS. Then l = l and we must have an instantiation V of R into s such

that TSV (tar) = t. It is straightforward to see that the valuation (f ◦V) : X→ Y is an instantiation

of R into ΣS(f × B f)(s) for which TS(f ◦ V)(tar) = t. Thus (l, t) ∈ RHS; and so LHS ⊆ RHS

in (6.3.5).

To show that RHS ⊆ LHS in (6.3.5) is more involved, and does use the GSOS conditions.

Suppose that (l, t) ∈ RHS. Then op = op, and l = l, and we must have an instantiation V ′ : X→ Y

of R into ΣS(f × B f)(s) for which TSV
′(tar) = t.

We will exhibit a valuation V : X→ X satisfying

(i) ∀ j ∈ [1, ar(op)]. V (x j) = x j

(ii) ∀l ∈ Lab, y ∈ X, j ∈ [1, ar(op)].

(x j , l,y) ∈ Prems =⇒ (l,V (y)) ∈ b j ∧ V
′(y) = f (V (y)) .

It follows immediately from these properties that V is an instantiation of R into s. We will later

argue that it also follows that (f ◦ V) = V ′, and hence that (l, t) ∈ LHS.

To help us define such a valuation V , we consider an equivalent formulation of the GSOS

conditions. Indeed, the GSOS conditions ensure that the function

[1, ar(op)] +
∐

j∈[1,ar(op)]

§
(x, l,y) ∈ Prems

��� x= x j

ª
// X

inl(j)
� // x j

inr(inj j(x, l,y)) � // y

(6.3.6)

is a bijection. Surjectivity corresponds to Conditions GSOS+-1,2. Injectivity for the upper map corre-

sponds to Condition GSOS+-5, and injectivity for the lower map corresponds to Condition GSOS+-3.

Injectivity for the sum of the two maps corresponds to Condition GSOS+-4.

There may be many valuations that satisfy conditions (i) and (ii) above. We explain precisely

why such a valuation can be found. (Note that we do use the axiom of choice for this.)

For each l ∈ Lab and j ∈ [1, ar(op)], we define sets (l∗Prems j)⊆ X and (l∗b j)⊆ X by

l∗Prems j =

§
y ∈ X

��� (x j , l,y) ∈ Prems

ª
l∗b j =

¦
y ∈ X

�� (l, y) ∈ b j

©
.

(The symbols (l∗Prems j) and (l∗b j) are only notation, but are chosen because (l∗b j) is a pullback

of the cospan (b j ֌ Lab× X
(l,idX)
←− X).)

We observe that because V ′ is an instantiation of R into ΣS(f × B f)(s), we have

V ′(l∗Prems j)⊆ f (l∗b j) .

Now, for the subset X l, j ⊆ X defined by by

X l, j =
¦

x ∈ l∗b j

�� ∃y ∈ l∗Prems j . f (y) = V ′(x)
©

6.3. The Positive GSOS rule format 157

we have that f (X l, j) = V
′(l∗Prems j); in other words we have a surjection

f |X l, j
: X l, j ։ V

′(l∗Prems j) .

We pick a section of this surjection,

ml, j : V ′(l∗Prems j)֌ X l, j .

We are now in a position to define our valuation V . We do this using the bijection of (6.3.6):

• for j ∈ [1, ar(op)], we let V (x j) = x;

• for (x j , l,y) ∈ Prems, we let V (y) = ml, j(V
′(y)).

This valuation satisfies conditions (i) and (ii) above.

Finally, we explain that any valuation V satisfying conditions (i) and (ii) must have the prop-

erty f ◦ V = V ′. To do this, we again make use of the bijection in (6.3.6). For variables y ∈ X that

appear as targets of premises, condition (ii) insists that f (V (y)) = V ′(y). For each j ∈ [1, ar(op)],

we know that V ′(x j) = f (x j) because V ′ is an instantiation of R into ΣS(f × B f)(s). Thus we have

that f (V (x j)) = V
′(x j).

6.3.4 Interpretation of multiple rules

The collection of natural transformations

ΣS((−)× B(−))→ BTS(−)

inherits a complete join semi-lattice structure from the powerset functor P . We use this to give

meaning to a class R of rule structures in the GSOS format: we define a natural transforma-

tion ¹Rº : ΣS((−)× B(−))→ BTS(−) by

¹Rº =
∨

R∈R

¹Rº .

So for any set X we have a function ¹RºX : ΣS(X×BX)→ BTSX mapping an element s ∈ ΣS(X×BX)

to the set

¹RºX (s) =
⋃

R∈R

�
¹RºX (s)

�
.

6.3.5 Relating our semantics of rules with the usual one

We have described how any classR of positive GSOS rule structures gives rise to a natural transfor-

mation ¹Rº : ΣS((−)× B(−))→ BTS(−). Using the techniques of Section 6.2.3, then, we arrive at

a monad TS¹Rº on the category of B-coalgebras. The initial TS¹Rº-algebra can be thought of as an

R-structure; its carrier is a B-coalgebra, indeed it is the set TS; equipped with a labelled transition

relation. We now explain why it is in fact the intended model.

Instantiations really are instantiations. For now, we consider single rules. We fix an R-structure

(X ,α,−→); that is, anR-structure for the singleton classR = {R}. Our comments here only require

Condition GSOS+-2 to hold of the rule structure R.

Note that a valuation in the sense used in Section 6.3.3 is the same thing as a valuation of the

logic formula ΦR that we associated to the rule in (6.3.2).

Suppose that we have, for each j ∈ [1, ar(op)], an element x j ∈ X . We have the following result

for every valuation V into X :

158 Rule Induction and Mathematical Operational Semantics

The valuation V is an instantiation of R into

op

���
x j ,

§
(l, y)

��� x j

l
−→ y

ª��

j∈[1,ar(op)]

�

if and only if the formula ∧

(x,l,y)∈Prems

�
x

l
−→ y

�

is true for the valuation V in the R-structure (X ,α,−→).

The abstract rule specifies allowed transitions. We now consider a class R of rules structures,

all of which we assume satisfy Condition GSOS+-2.

The family of functions ¹RºX : ΣS(X × BX) → BTSX can be understood as follows. Con-

sider a Lab-labelled transition system (X ,−→), For any operator op ∈ OpS, and x j ∈ X for

each j ∈ [1, ar(op)], and for any (l, t) ∈ LTSX , we have:

(l, t) ∈ ¹RºX

�
op

���
x j ,

§
(l, y)

��� x j

l
−→ y

ª��

j∈[1,ar(op)]

��

if and only if for every ΣS-algebra structure extending (X ,−→) to a R-model allows the

transition α

�
op

��
x j

�
j∈[1,ar(op)]

��
l
−→ α♯(t).

Here we write α♯ for the extension of the ΣS-algebra structure α : ΣSX → X to a TS-algebra struc-

ture α♯ : TSX → X .

Thus the intended R-model can be found by using ¹Rº to build up a transition relation struc-

ture on the set TS; of ground terms. This is precisely the role of the parameterised recursion in

Section 6.2.3. So we have:

Theorem 6.3.7. For a classR of rule structures in the positive GSOS format, the initial TS¹Rº-algebra

is the intended R-model.

From Corollary 6.2.3, we conclude the following result.

Theorem 6.3.8. In the intended model of a set R of rule structures in the positive GSOS format,

bisimilarity is a congruence.

6.A. Appendix to Chapter 6: Proof of Theorem 6.1.5 159

6.A Appendix to Chapter 6: Proof of Theorem 6.1.5

We prove Theorem 6.1.5. We begin by recalling the statement of the theorem from page 136.

Theorem 6.1.5. Let Σ be an endofunctor on a category C , and let TΣ be a monad on C . The following

are equivalent.

1. There is a natural family of isomorphisms of categories

n
Endo(U(D, T), (C ,Σ))

∼
→Monad((D,T), (C ,TΣ))

o
(D,T)∈Monad

(where we write U for the forgetful 2-functor Monad→ Endo) for which the following diagram

commutes, where the vertical arrows are the evident forgetful functors.

Endo((D, T), (C ,Σ))
∼

//

&&N
NNNNNNNNNN

Monad((D,T), (C ,TΣ))

wwooooooooooo

CAT(D,C)

2. The forgetful functor Σ-Alg→C has a left adjoint and the resulting monad on C is TΣ.

Proof. From item (1) to item (2): observe the following diagram in CAT, where the unlabelled

arrows are forgetful functors.

Endo((1, id1), (C ,Σ))
∼

//

≀

��))SSSSSSSSSSSSSS
Monad((1, id1), (C ,TΣ))

≀

��uukkkkkkkkkkkkkkk

Σ-Alg

))SSSSSSSSSSSSSSSSS CAT(1,C)

≀

��

TΣ-Alg

uujjjjjjjjjjjjjjjjjj

C

By definition, the forgetful functor TΣ-Alg→C is monadic, and hence so is Σ-Alg→C .

To establish item (1) from item (2) is more involved. We suppose that the forgetful functor

UΣ : Σ-Alg→C has a left adjoint FΣ :C → Σ-Alg, and that the resulting monad on C is TΣ.

Let D be any category. We write (Σ−) for the endofunctor on the functor category [D,C] given

by postcomposition with Σ; and we write (TΣ−) for the monad on the functor category [D,C],

whose underlying endofunctor is postcomposition with TΣ. We will now show that the forgetful

functor U(Σ−) : (Σ−)-Alg→ [D,C] has a left adjoint, and the resulting monad is (TΣ−).

First, consider the hom 2-functor [D,−] on CAT. By applying this to the adjunction FΣ ⊣ UΣ :

Σ-Alg→C we arrive at the following adjunction in CAT

[D,Σ-Alg]

[D,UΣ]

⊤
..

[D,C]
[D,FΣ]

mm

for which the resulting monad has underlying endofunctor [D, UΣFΣ] = [D, TΣ]. Now, to conclude

that the forgetful functor U(Σ−) : (Σ−)-Alg→ [D,C] has a left adjoint it remains for us to exhibit

an isomorphism of categories i : (Σ−)-Alg
∼
→ [D,Σ-Alg] making the following diagram commute.

(Σ−)-Alg

U(Σ−) %%L
LLLLLLLLL

i
// [D,Σ-Alg]

[D,UΣ]xxqqqqqqqqqq

[D,C]

160 Rule Induction and Mathematical Operational Semantics

Such an isomorphism i is found as follows.

For each (Σ−)-algebra, which is a functor G : D → C together with a natural transforma-

tion γ : ΣG→ G, we have a functor i(G,γ) : D → Σ-Alg which acts as follows:

• for any object D of D, we let i(G,γ)(D) be the Σ-algebra given by (G(D),γD);

• for any morphism f : D → D′ in D ′, we let i(G,γ)(f) be the Σ-algebra homomorphism

i(G,γ)(D) → i(G,γ)(D′) given by G f : GD → GD′; this is a homomorphism because γ is

natural.

Meanwhile, for every (Σ−)-algebra homomorphism from (G,γ) to (G′,γ′), which is a natural trans-

formation α : G→ G′ making the following diagram commute,

ΣG
Σα

//

γ

��

ΣG′

γ′

��

G α
// G′

(6.A.1)

we have a natural transformation iα : i(G,γ) → i(G′,γ′) between functors D → Σ-Alg given as

follows. For each D ∈ D we have a Σ-algebra homomorphism given by (iα)D = αD; this is a

homomorphism because diagram 6.A.1 commutes.

It is straightforward to find an inverse for i. Thus we can conclude that the forgetful functor

U(Σ−) : (Σ−)-Alg→ [D,C] has a left adjoint, and that the resulting monad on [D,C] is (TΣ−). So

for any functor F : D → C , the left adjoint provides a natural transformation tΣF : ΣTΣF → TΣF

that is universal, in the sense that for any other (Σ−)-algebra, (G,γ), and any natural transfor-

mation α : F → G, there is a unique natural transformation (α,γ)♯ : T F → G making the following

diagram commute.

ΣTΣF

tΣF

��

Σ(α,γ)♯
// ΣG

γ

��

TΣF
(α,γ)♯

// G

F

ηΣF

OO

α

;;wwwwwwwwww

The functoriality of the left adjoint to U(Σ−) : (Σ−)-Alg → [D,C] ensures that the family�
ΣTΣF → TΣF

	
F :D→C is natural in F .

We are now in a position to define a isomorphism

Endo((D, T), (C ,Σ)) ∼= Monad((D,T), (C ,TΣ))

as required by item (1). To this end, we define a functor

j : Endo((D, T), (C ,Σ))→Monad((D,T), (C ,TΣ))

as follows. For any morphism (F,φ) : (D, T) → (C ,Σ) in Endo, we define a morphism

j(F,φ) : (D,T)→ (C ,TΣ) in Monad by letting j(F,φ) = (F,φ♯), where we write φ♯ for the unique

6.A. Appendix to Chapter 6: Proof of Theorem 6.1.5 161

natural transformation TΣF → F T making the following diagram commute.

ΣTΣF
Σφ♯

//

tΣF

��

ΣF T

φT

��

F T T

Fµ

��

TΣF
φ♯

// F T

F

ηΣF

OO

Fη

::uuuuuuuuuu

We have to check that j(F,φ) : (D,T) → (C ,TΣ) is a monad morphism, that is, that it respects

the units and multiplications. For the units, we must show that the following diagram of natural

transformations commutes.

TΣF
φ♯

// F T

F

ηΣF

OO

Fη

=={{{{{{{{{

This follows immediately from the definition of φ♯. For the multiplications, we must show that the

following diagram of natural transformations commutes.

TΣTΣF

TΣφ
♯

��

µΣF
// TΣF

φ♯

��

TΣF T

φ♯T

��

F T T
Fµ

// F T

(6.A.2)

To show this, we first note that there is a unique natural transformation β : TΣTΣF → F T such that

the following diagram commutes

ΣTΣTΣF
Σβ

//

tΣTΣF

��

ΣF T

φT

��

F T T

Fµ

��

TΣTΣF
β

// F T

TΣF

ηΣTΣF

OO

φ♯

::uuuuuuuuuu

and then we explain that β could be either side of diagram 6.A.2. To show β = FµΣ ◦φ
♯T ◦ TΣφ

♯,

we use the following decomposition.

162 Rule Induction and Mathematical Operational Semantics

ΣTΣTΣF
ΣTΣφ

♯

//

tΣTΣF

��

ΣTΣF T
Σφ♯T

//

tΣF TΣ

��

ΣF T T
ΣFµ

//

φT T

��

(3)

ΣF T

φT

��

(1) (2) F T T T
F Tµ

//

FµT

��

(4)

F T T

Fµ

��

TΣTΣF
TΣφ

♯

//

(5)

TΣF T
φ♯T

//

(6)

F T T
Fµ

//

(7)

F T

TΣF

ηΣTΣF

OO

φ♯
// F T id

;;

FηT

99ssssssssss

ηΣF T

OO

Using: (1) nat. of tΣ; (2) defn. of φ♯; (3) nat. of φ; (4) mult. law for T; (5) nat. of ηΣ; (6) defn. of φ♯; (7) unit law

for T.

For the case β = φ♯ ◦µΣF , we use the following decomposition.

ΣTΣTΣF
ΣµΣF

//

tΣTΣF

��

(1)

ΣTΣF
Σφ♯

//

tΣF

��

(2)

ΣF T

φT

��

F T T

Fµ

��

TΣTΣF
µΣF

//

(3)

TΣF
φ♯

// F T

TΣF

ηΣTΣF

OO

φ♯

77

Using: (1) µΣF is a Σ-algebra homomorphism, since it can be defined in terms of the counit; (2) defn. of φ♯; (3) unit

law for TΣ.

Thus the action of j : Endo((D, T), (C ,Σ))→Monad((D,T), (C ,TΣ)) on objects is described.

A morphism (F,φ) → (F ′,φ′) in the category Endo((D, T), (C ,Σ)) is a natural transforma-

tion α : F → F ′ making the following diagram commute.

ΣF

φ

��

Σα
// ΣF

φ′

��

F T
αT

// F ′T

We let jα : j(F,φ) → j(F ′,φ′) be the same natural transformation, regarded as a 2-cell between

monad morphisms. We must check that it is a valid 2-cell, that is, we must check that the following

diagram commutes.

TΣF

φ♯

��

Tα
// TΣF

φ′♯

��

F T
αT

// F ′T

(6.A.3)

To show this, we first observe that there is exactly one natural transformation β : TΣF → F ′T mak-

6.A. Appendix to Chapter 6: Proof of Theorem 6.1.5 163

ing the following diagram commute.

ΣTΣF
Σβ

//

tΣF

��

ΣF ′T

φ′T

��

F ′T T

F ′µ

��

TΣF
β

// F ′T

F

ηΣF

OO

α
// F ′

F ′ηΣ

=={{{{{{{{{

We now claim that this natural transformation, β , could be either side of diagram 6.A.3.

For β = αT ◦φ♯, consider the following decomposition.

ΣTΣF
Σφ♯

//

tΣF

��

ΣF T
ΣαT

//

φT

��

(2)

ΣF ′T

φ′T

��

(1) F T T

Fµ

��

αT T
//

(3)

F ′T T

F ′µ

��

TΣF
φ♯

//

(4)

F T
αT

//

(5)

F ′T

F

ηΣF

OO

α
//

Fη

<<xxxxxxxxxxx
F ′

F ′ηΣ

<<xxxxxxxxxx

Using: (1) defn. of φ♯; (2) since α is a 2-cell in Endo; (3) nat. of α; (4) defn. of φ♯; (5) nat. of α.

For β = φ′♯ ◦ TΣα, consider the following decomposition.

ΣTΣF
ΣTΣα

//

tΣF

��

ΣTΣF ′

tΣF ′

��

Σφ′♯
// ΣF ′T

φ′T

��

(1) (2) F ′T T

F ′µ

��

TΣF
TΣα

//

(3)

TΣF ′
φ′♯

//

(4)

F ′T

F

ηΣF

OO

α
// F ′

F ′ηΣ

;;wwwwwwwwwww

ηΣF ′

OO

Using: (1) nat. of tΣ; (2) defn. of φ′♯; (3) nat. of ηΣ; (4) defn. of φ′♯.

In this way we define, for each monad (D,T), a functor

j(D,T) : Endo((D, T), (C ,Σ))→Monad((D,T), (C ,TΣ)) .

We will show that this family of functors is natural in (D, T). We must show that for every monad

morphism (G,γ) : (D ′,T′)→ (D,T) and for every morphism of endofunctors (F,φ) : (D, T)→ (C ,Σ)

164 Rule Induction and Mathematical Operational Semantics

we have

(j(D,T)(F,φ)) ◦ (G,γ) = j(D′,T′)((F,φ) ◦ (G,γ)) .

By the definition of composition in Endo, it suffices for us to prove that the following diagram

commutes in the category of functors D ′→C .

TΣFG
φ♯G

//

(γ◦φ)♯
##

GGGGGGGGG F T G

Fγ

��

FGT ′

(6.A.4)

Here, (γ ◦φ)♯ is the unique morphism TΣFG→ FGT ′ making the following diagram commute.

ΣTΣFG
Σ(γ◦φ)♯

//

tΣFG

��

ΣFGT ′

φGT ′

��

F T GT ′

FγT ′

��

FGT ′T ′

FGµ′

��

TΣFG
(γ◦φ)♯

// FGT ′

FG

ηΣFG

OO

FGη′

77ooooooooooo

So, to show that diagram 6.A.4 commutes, we consider the following decomposition.

ΣTΣFG
Σφ♯G

//

tΣFG

��

ΣF T G
ΣFγ

//

φT G

��

ΣFGT ′

φGT ′

��

F T T G
F Tγ

//

FµG

��

(2)

F T GT ′

FγT ′

��

FGT ′T ′

FGµ′

��

TΣFG
φ♯G

//

(1)

F T G

(3)

Fγ
//

(5)

FGT ′

FG

ηΣFG

(4)ffMMMMMMMMM
FηG

OO

FGη′

88qqqqqqqqqq

Using: (1) defn. of φ♯; (2) nat. of φ; (3) mult. law for γ; (4) defn. of φ♯; (5) unit law for γ.

It remains for us to show that j is an isomorphism. To define the inverse, we define, for each

monad (D,T), a functor

k(D,T) : Monad((D,T), (C ,TΣ))→ Endo((D, T), (C ,Σ)) .

This functor k(D,T) acts on the objects of Monad((D,T), (C ,TΣ)) as follows. Given a monad mor-

phism (F,φ) : (D,T)→ (C ,TΣ), we define a morphism of endofunctors k(D,T)(F,φ) : (D, T)→ (C ,Σ),

by setting k(D,T)(F,φ) = (F,φ♭), where the natural transformation φ♭ : ΣF → T F is the composite

ΣF
ΣηΣF

// ΣTΣF
tΣF

// TΣF
φ

// F T .

6.A. Appendix to Chapter 6: Proof of Theorem 6.1.5 165

The functor k(D,T) acts as identity on 2-cells.

It is straightforward to show that the family of functors k(D,T) is natural in (D,T).

We now explain why k(D,T) is left and right inverse to j(D,T). For left inverse, it is sufficient

to show that for any monad morphism (F,φ) : (D,T) → (C ,TΣ) we have an equality of natural

transformations

φ♭♯ = φ : TΣF → F T . (6.A.5)

Now, φ♭♯ is defined to be the unique map TΣF → F T making the following diagram commute.

ΣTΣF

tΣF

��

Σφ♭♯
// ΣF T

φ♭T
��

F T T

Fµ

��

TΣF
φ♭♯

// F T

F

ηΣF

OO

Fη

::uuuuuuuuuu

To conclude equation 6.A.5, we consider the following decomposition.

ΣTΣF

tΣF

��

Σφ
//

ΣηΣTΣF

%%K
KKKKKKKKK

(1)

ΣF T

ΣηΣF T

��

ΣTΣTΣF
ΣTΣφ

//

ΣµΣF

��

tΣTΣF

%%L
LLLLLLLLL

ΣTΣF T

tΣF T

��

(2) ΣTΣF

tΣF

����
��

��
��

��
��

��
��

(3) TΣTΣF
TΣφ

//

µΣF

yyrrrrrrrrrrrrrrrrrrrrrrrr

(4)

(5)

TΣF T

φT

��

F T T

Fµ

��

TΣF
φ

//

(6)

F T

F

ηΣF

OO

Fη

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Using: (1) nat. of ηΣ; (2) unit law for TΣ; (3) since µΣ is a Σ-algebra homomorphism; (4) nat. of tΣ; (5) mult. law for

φ; (6) unit law for φ.

To show that k(D,T) is right inverse to j(D,T), it is sufficient to show that for any morphism of

endofunctors (F,φ) : (D, T)→ (C ,Σ) we have an equality of natural transformations

φ♯ ♭ = φ : ΣF → F T .

To see this, consider the following decomposition, in which the leftish outer leg is the definition

166 Rule Induction and Mathematical Operational Semantics

of φ♯ ♭.

ΣF
φ

//

ΣFη

%%L
LLLLLLLLL

ΣηΣF

��

F T
id

��

F Tη

%%K
KKKKKKKKK

(2)

ΣTΣF
Σφ♯

//

tΣF

��

(1)

ΣF T
φT

//

(4)

F T T

Fµ
$$I

IIIIIIIII (3)

TΣF
φ♯

// F T

Using: (1) defn. of φ♯; (2) nat.of φ; (3) unit law for T; (4) defn. of φ♯.

Thus we have derived item (1) from item (2), and Theorem 6.1.5 is proved.

Chapter 7

Nominal Sets for Syntax and Behaviour

The purposes of this chapter are threefold. Firstly, we address a problem with the approach to

abstract syntax taken in Chapter 6: it is not immediately relevant for name-passing systems, which

tend to involve name binding and α-equivalence. We address this problem by recalling the theory of

nominal sets that has been championed by Gabbay and Pitts (and others) as an elegant framework

for abstract syntax with binding.

Arbitrary, non-injective, substitution significantly enhances the model theory of name-passing

systems, as was seen in Section 3.4. The second purpose of this chapter is to emphasise that

arbitrary substitution is relevant for systems built of abstract syntax. To this end we introduce a

theory of nominal substitutions to accommodate arbitrary substitution in the context of nominal

sets.

It is convenient to work with syntax and behaviour within the same framework. The third

purpose of this chapter is to exploit the equivalence between nominal sets and the Schanuel topos

in order to study the models for name-passing of the first part of this thesis in the context of nominal

sets. In doing this we arrive at a rather simple axiomatisation for a labelled transition system model

of name-passing.

We begin in Section 7.1 by recalling some of the basic aspects of nominal sets. We include a

sketch of a proof that the category Nom of nominal sets is equivalent to the Schanuel topos Sh(I)

which was studied in Section 4.2. Using this equivalence, we translate an endofunctor for non-

determinism from Sh(I) to Nom, so that it is possible to work with coalgebras for an endofunctor

defined on Nom.

Having introduced nominal sets, we recall in Section 7.2 a variant of Pitts’s nominal logic,

which is essentially a first order fragment of the internal logic of the category of nominal sets. It is

in this setting that we introduce, in Section 7.3, the theory of nominal substitutions, proving that

the category of models of nominal substitutions is equivalent to the sheaf category Sh(F) that was

studied in Section 4.3. This equivalence is important because it means that the model theory of

Chapters 3 and 4 can be carried out in the setting of nominal sets, where syntax sits most naturally.

We investigate signatures for abstract syntax in Section 7.4. We introduce a restricted form

of nominal logic signature, and illustrate this by showing that structures for such signatures in

the category of nominal substitutions provide models of syntax up-to α-equivalence with arbitrary

substitutions. On the other hand, structures for such signatures in the category of sets provide

models of raw syntax, with no α-equivalence. The forgetful functor from nominal substitutions to

the category of sets induces a way of instantiating raw syntax into abstract syntax.

The final section of this chapter, Section 7.5, is concerned with a nominal logic theory of labelled

transition systems. We show that the models of our theory correspond to I-ILeTSs over sheaves that

satisfy Axioms I1–I6, as introduced in Section 3.3.

167

168 Nominal Sets for Syntax and Behaviour

7.1 Nominal sets

In this section we recall some aspects of the nominal sets of Gabbay and Pitts. The reader will

find further details and discussion elsewhere [e.g. Gabbay’s thesis, 2001; Gabbay and Pitts, 2001,

Sec. 3; Pitts, 2006, Sec. 3].

We begin, in Section 7.1.1, by recalling the basic definitions and properties of nominal sets.

In Section 7.1.2 we briefly investigate connections between the category of nominal sets and a

category of permutation actions, and the category of sets. We then turn, in Section 7.1.3, to

recall various basic constructions of nominals sets — limits, colimits, the set of names, and the

binding operator. In Section 7.1.4, we recall the equivalence between the category of nominal sets

and the sheaf category Sh(I) considered in Section 4.2. We close in Section 7.1.5 by lifting the

powerset endofunctor from Sh(I) to an endofunctor on Nom. by doing so we are able to consider

the endofunctor for ground behaviour in the nominal setting.

7.1.1 Nominal sets

We recall the notion of nominal set, as an action of a permuation group subject to a finite-support

condition. As a first example, we consider a nominal set of π-calculus terms. We recall some basic

results about supports, in particular that every nominal set has a least support.

Actions of the symmetric group on N . As in earlier chapters, we fix an infinite set N of names.

We write Sym(N) for the group of permutations on N . Recall that a Sym(N)-set is a functor in

the category SetSym(N) (here, the group Sym(N) is regarded as a category with one object). More

concretely, a Sym(N)-set is a set X together with a function

•X : Sym(N)× X → X .

This function is written infix and must be such that, for all σ,τ ∈ Sym(N), x ∈ X ,

idN •X x = x and τ •X (σ •X x) = (τ ·σ) •X x .

Morphisms between Sym(N)-sets X and Y are equivariant functions; that is, functions f : X → Y

that are such that for any x ∈ X and any σ ∈ Sym(N), f (σ •X x) = σ •Y (f (x)). Composition and

identities are found according to the underlying functions.

The permutations in Sym(N) that swap two names play an important role. We write [a↔ b]

for the permutation of N that swaps a with b and does not affect any other names.

We will often abuse notation by writing X for a Sym(N)-set (X ,•X).

Finite supports and nominal sets. A finite set C ⊆f N of names is said to support an ele-

ment x ∈ X of a Sym(N)-set if for any permutation σ ∈ Sym(N) we have

σ|C = idC =⇒ σ • x = x .

A nominal set is a Sym(N)-set X for which every element x ∈ X has a (finite) support. We let Nom

be the full subcategory of SetSym(N) whose objects are nominal sets.

Example. As a first example, we give a nominal set of π-calculus terms. A grammar for a variant

of the π-calculus was given in (3.1.1); recall that we work with terms up-to α-equivalence.

Thus we consider the set of π-calculus terms

Xπ = {t | t is a term of the π-calculus with names taken from N } (7.1.1a)

7.1. Nominal sets 169

with an action given by

σ •Xπ
t = the term t renamed according to σ . (7.1.1b)

For t ∈ Xπ, a finite set C ⊆f N supports t if and only if all the free names appearing in t are

contained in C .

Nominal sets of π-calculus terms will be constructed in a more methodical way in Section 7.4.

(The same symbol, Xπ, is used briefly here for the nominal set of π-calculus terms, and also

in Section 3.4 for the presheaf over F of π-calculus terms. The reader should not confuse the two

different entities.)

Basic results. We recall some basic results about nominal sets and equivariant functions.

Proposition 7.1.2.

1. Let X be a Sym(N)-set, and consider x ∈ X together with C , D ⊆f N . If C supports x and C ⊆ D

then D supports x .

2. Let X be a Sym(N)-set, and consider x ∈ X together with C , D ⊆f N . If both C and D support x ,

then (C ∩ D) also supports x .

3. Let X be a Sym(N)-set, and consider x ∈ X together with C ⊆f N and a permuta-

tion σ ∈ Sym(N). If C supports x then σ(C) supports σ •X x .

4. Let f : X → Y be an equivariant function between nominal sets. If C supports x ∈ X , then C

supports f (x) ∈ Y .

Proof notes. Statements 1, 3 and 4 follow immediately from the definitions. For item 2, see e.g. the

comments of Pitts [2006, discussion after Defn. 3.1].

Least support. It follows from Prop. 7.1.2(2) that every element x of a nominal set X has a least

support which we will denote suppX (x). (The subscript will often be omitted.)

For a variable a ∈ N and an element x ∈ X of a N -nominal set we write

aBx for a 6∈ suppX (x) .

The symbol B is pronounced “is fresh for”. It follows from Prop. 7.1.2(4) that for any equivariant

function f : X → Y between nominal sets,

∀a ∈ N , x ∈ X . aBx =⇒ aBf (x) .

For an element of our example nominal set Xπ of π-calculus terms, the least support of a term

is the set of its free names. It is often helpful to think of the supp function as an abstract form of

the ‘free variables’ function that is used by many authors when dealing with syntax.

7.1.2 Relating Nom with SetSym(N) and Set

We remark briefly how the category of nominal sets relates with the category of Sym(N)-sets and

with the category of sets. Our primary motivation for this is to explain the structure of limits and

colimits of nominal sets.

170 Nominal Sets for Syntax and Behaviour

An adjunction between Nom and SetSym(N). The embedding

Nom ,→ SetSym(N)

has a right adjoint (−)fs : SetSym(N) → Nom which sends a Sym(N)-set X to the nominal set with

carrier

X fs =
¦

x ∈ X
�� x has finite support

©
.

The embedding Nom ,→ SetSym(N) preserves finite limits, and so we have a geometric morphism

SetSym(N)→ Nom.

This geometric morphism can be seen to arise from a continuous map between topological

groups [see e.g. Moerdijk, 1995, Sec. 2.3].

An adjunction between Nom and Set. The unique functor 1 → Sym(N) induces an essential

geometric morphism Set→ SetSym(N) in the usual way; the inverse image is the forgetful functor

SetSym(N)→ Set sending a Sym(N)-set to its underlying set.

By considering the composite geometric morphism

Set−→ SetSym(N) −→ Nom

we see that the faithful forgetful functor Nom→ Set, that maps a nominal set to its underlying set,

is the inverse image of a geometric morphism. Thus it preserves all colimits and finite limits.

7.1.3 Constructions on nominal sets

We recall some constructions in the category of nominal sets. Limits and colimits are determined

according to the previous section, but we also recall the nominal set of names, and, crucially, the

abstraction operator for nominal sets.

Limits and colimits. Above, we explained that the forgetful functor Nom→ Set preserves finite

limits and arbitrary colimits; this determines the underlying sets of limits (resp. colimits) of finite

(resp. arbitrary) diagrams in Nom. Most relevant for the present work are finite products and

arbitrary coproducts.

Because the embedding Nom → SetSym(N) preserves finite limits and all colimits, the group

actions are componentwise. Specifically, given Sym(N)-sets X , Y , the product of the underlying

sets is equipped with action given by

σ •X×Y (x , y) = (σ •X x ,σ •Y y)

for any (x , y) ∈ X × Y . A finite set C ⊆f N supports both x and y if and only if C sup-

ports (x , y) ∈ X × Y .

For any set I , and any I-indexed family of Sym(N)-sets,
�

X i

	
i∈I , the coproduct of the underlying

sets is equipped with action given by

σ •(
∐

i∈I X i) (inj j(x)) = inj j

�
σ •X j

x
�

for any j ∈ I and any x ∈ X j. A finite set C ⊆f N supports x ∈ X j if and only if C sup-

ports inj j(x) ∈
∐

i∈I X i.

Names. The set N of names has an action

•N : Sym(N)×N →N

which is given by evaluating a permutation at a name. A set C ⊆f N supports a ∈ N if and only

if a ∈ C . Thus suppN (a) = {a}.

7.1. Nominal sets 171

Name abstraction. For each nominal set X we have a set [N]X of elements of X with names

abstracted from them. Let

[N]X = (N × X)/∼

where (a, x)∼ (b, y) if there exists c ∈ N such that cBx , cBy, and

[c↔ a] •X x = [c↔ b] •X y .

This equivalence relation can be seen as α-equivalence, an interpretation that will be particularly

important in Section 7.4.

We will write 〈a〉 x for the ∼-equivalence class containing (a, x). Notice that if C supports x ∈ X

then (C − {a}) supports 〈a〉 x ∈ [N]X .

Proposition 7.1.3. 1. Let X be a nominal set.

a) ∀a ∈ N , x , y ∈ X . 〈a〉 x = 〈a〉 y =⇒ x = y .

b) ∀a ∈ N , x ∈ X . aB〈a〉 x .

2. There is a bijective correspondence between equivariant functions Y × [N]X → Z and equivari-

ant functions f : Y ×N × X → Z for which

∀y, a, x . aBy =⇒ aBf (y, a, x) .

7.1.4 Nominal sets are the Schanuel topos

In this section we recall some constructions involved in the following well-known result.

Theorem 7.1.4. The category Nom of nominal sets is equivalent to the category Sh(I) of sheaves.

Gabbay and Pitts [2001, Sec. 7] discuss this result and supply some references. Here, we provide

an outline of a proof. We conclude this subsection by explaining how the operators on Nom,

introduced in Section 7.1.3, correspond to the operators on Sh(I) considered in Theorem 4.2.6.

From nominal sets to sheaves. Given a nominal set X ∈ Nom, we define a sheaf P ∈ SetI as

follows. For any C ∈ I, we let

P(C) =
¦

x ∈ X
�� C supports x

©

while for any morphism ı : C ֌ D in I, and any x ∈ P(C), we let

Pı(x) = ı♯ •X x .

Here, ı♯ ∈ Sym(N) is a permutation such that ı♯|C = ı; since C supports x , it doesn’t matter

which one is chosen. There always is such a permutation, for the following reason. The restricted

function ı|C : C ֌ ı(C) is a bijection, and so the set (ı(C)− C) is in bijection with (C − ı(C)). We

pick any bijection β : (ı(C)−C)→ (C− ı(C)), and now define a permutation ı♯ ∈ Sym(N) according

to the following diagram.

N

ı♯

��

= C ⊎ (ı(C)− C) ⊎ (N − C − ı(C))

ı|C ⊎β ⊎ id

��

N = ı(C) ⊎ (C − ı(C)) ⊎ (N − C − ı(C))

(Here, and elsewhere in this thesis, we adopt the usual convention that set subtraction associates

to the left: so N − C − ı(C) = (N − C)− ı(C).)

To see that this presheaf P ∈ SetI satisfies the sheaf condition, observe that for any C , D ∈ I

and x ∈ P(C) such that D ⊆ C: the set D supports x ∈ P(C) (in the sense of Section 4.2.1) if and

only if D supports x in the nominal set X .

172 Nominal Sets for Syntax and Behaviour

From equivariant functions to natural transformations. We now translate equivariant func-

tions between nominal sets into natural transformations between the corresponding sheaves. Sup-

pose we have two nominal sets, X and X ′, with associated sheaves P and P ′ in Sh(I). An equivariant

function f : X → X ′ between the nominal sets induces a natural transformation α : P → P ′ as fol-

lows. For any C ∈ I, and any x ∈ P(C) (i.e. x ∈ X that is supported by C) we let

αC(x) = f (x) .

This makes sense as a result of Prop. 7.1.2(4).

Equivalence. One can straightforwardly verify that the above construction yields a func-

tor Nom→ Sh(I) that is full and faithful. To conclude that it is an equivalence, we will outline a

construction that demonstrates that the functor is essentially surjective. To this end, we consider a

sheaf P, and from this construct a nominal set that corresponds to this sheaf.

To construct this nominal set, we first consider the presheaf 〈P〉 ∈ SetB of seeds of P, introduced

in (4.4.1). From this we form the set
∫
〈P〉 of elements of 〈P〉, as elsewhere in this thesis, follow-

ing (3.2.2). The set
∫
〈P〉 is to be thought of as a set of minimal elements of the presheaf P. This set

has Sym(N)-action given by

σ • (C ⊢ p) =
�
σ(C) ⊢ Pσ|C(p)

�
.

To see that the sheaf corresponding to this nominal set is indeed isomorphic to P, observe that

for any C , D ∈ I and x ∈ P(C) such that D ⊆ C , the set D supports x ∈ P(C) if and only if D

supports (D ⊢ x) in the nominal set
∫
〈P〉.

Relating constructions in Nom with constructions in Sh(I). Because Nom and Sh(I) are equiv-

alent, limits and colimits correspond across the equivalence. It is straightforward to show that

the nominal set of names N ∈ Nom corresponds to the sheaf N ∈ Sh(I). Moreover, the binding

operator [N](−) on Nom corresponds to the name generation operator δ on Sh(I).

It is easy to see that the sheaf associated to the nominal set Xπ of π-calculus terms, introduced

in equations 7.1.1, is precisely the sheaf Pπ ∈ Sh(I) introduced in equations 3.2.1.

7.1.5 Non-determinism in nominal sets

The pointwise powerset endofunctor on SetI (of equations 3.2.6) was used in Section 3.2.2 to

introduce non-determinism into the coalgebraic model of ground transitions. We now explictly

describe an endofunctor on Nom that corresponds to the pointwise powerset functor, via the equiv-

alence Nom≃ Sh(I) considered in the previous subsection.

We begin by introducing the notion of support-bounded subset of a nominal set. We use this

notion to define an endofunctor on Nom. We prove that this endofunctor corresponds to the

pointwise powerset functor on Sh(I), and thus arrive at an explicit description of an endofunctor

on Nom for ground behaviour.

Support-bounded subsets. Let X be a nominal set. We say that a subset S of X is support-bounded

if there is a finite set of names C ⊆f N that supports every element of S. We write S ⊆sb X to indicate

that S is a support-bounded subset of X .

A powerset endofunctor on Nom. We introduce an endofunctor Psb on Nom as follows. For any

nominal set X , we define the set PsbX to be the set of support-bounded subsets of X . The group

action on PsbX is given by, for each σ ∈ Sym(N), and each S ⊆sb X ,

σ •PsbX S =
�
σ •X x | x ∈ S

	
.

7.1. Nominal sets 173

To show that PsbX is a nominal set we provide an explicit description of the support of its elements

in the following proposition.

Proposition 7.1.5. A set of names C ⊆f N supports S in PsbX if and only if C supports every element

of S.

Proof. From right-to-left is straightforward, so we concentrate on proving the left-to-right direction.

To this end, consider S ∈ PsbX that is supported by C . We know that there is a finite set that

supports every element of S. Here, we let D be the smallest set that supports every element of S.

(Such a smallest set can always be found, since if both D′ and D′′ support every element of S,

then so does (D′ ∩ D′′).) We will show that D ⊆ C . To do this, we suppose not, and establish a

contradiction.

If D 6⊆ C then there must be a name c ∈ (D − C). We pick another name z ∈ (N − C − D) —

this is possible since N is infinite, while C and D are finite. Since the set D is the smallest set that

supports every element of S, there must be an element x ∈ S for which c ∈ suppX (x); otherwise the

smaller set (D− {c}) would support every element of S. By Prop. 7.1.2(3), the least support of the

permuted element [c ↔ z] •X x is
�
(suppX (x)− {c})∪ {z}

�
. Since z 6∈ D, we see that D does not

support [c↔ z] •X x , and so this permuted element cannot be in S.

On the other hand, our assumption is that C supports S, and certainly the swapping permuta-

tion [c↔ z] fixes C . So the permuted element [c↔ z] •X x is in S — a contradiction.

Thus D ⊆ C , and, by Prop. 7.1.2(1), we know that C supports every element of S.

The functorial action of Psb is as follows: for any equivariant function f : X → Y , and

any S ⊆sb X , we let

(Psb f)(S) =
�

f (x) | x ∈ S
	

.

The subset (Psb f)(S)⊆ Y is necessarily support-bounded; this follows from Prop. 7.1.2(4).

Support bounded powersets and sheaves.

Proposition 7.1.6. The support-bounded powerset endofunctor Psb on Nom lifts the pointwise pow-

erset endofunctor on Sh(I) across the equivalence Nom≃ Sh(I) of Section 7.1.4.

Proof. Consider a nominal set X , and let P be the corresponding sheaf in Sh(I), constructed accord-

ing to the techniques of Section 7.1.4. We must show that the pointwise powerset sheaf P P is the

sheaf corresponding to the nominal set (PsbX). In other words, we must show, for each C ∈ I, that

P (PC) =
¦

S ⊆sb X
�� C supports S

©
.

This result follows immediately from Prop. 7.1.5. It is equally straightforward to show a correspon-

dence for the actions of the two endofunctors.

Coalgebras for ground behaviour over Nom. The endofunctor Lg on Sh(I) (of equation 3.2.15),

for determinstic ground behaviour, is lifted to Nom as follows.

Lg(−) = binp : N × [N](−) Bound input

+ out : N ×N × (−) Free output

+ bout : N × [N](−) Bound output

+ tau : (−) Silent.

(7.1.7a)

Using Prop. 7.1.6, we see that the endofunctor Bg on Sh(I) (of equation 3.2.16), for non-

determinstic ground behaviour, is lifted as follows.

Bg(−) =Psb(Lg(−)) . (7.1.7b)

174 Nominal Sets for Syntax and Behaviour

7.2 Nominal logic

Nominal logic was introduced by Pitts [2003] as a first-order theory of names and binding. We

introduce the syntax of the variant that we will use in Section 7.2.1. In Section 7.2.2 we define

structures for signatures, and briefly note how models of theories are defined.

Our presentation here differs from that of Pitts in two ways. Firstly, we only allow one sort of

names, while Pitts allows a countable number of name sorts. Secondly, we consider structures for

signatures within a class of different categories, whereas Pitts only considers structures in Nom.

This latter generalisation is important in Section 7.4.

For models of nominal logic theories, though, we only consider structures in Nom (and, indeed,

the reader is referred to Pitts’s article for full details) primarily because these kinds of models are

sufficient for this thesis.

7.2.1 Syntax of nominal logic

Nominal logic signatures. Here, a nominal logic signature is understood as a collection of basic

sorts together with a collection of relation symbols and a collection of function symbols. The sorts

of a signature are defined inductively as follows: every basic sort is a sort; there is a sort N of

names; for every sort S there is a sort [N]S of abstractions. Each relation symbol is equipped with

an arity consisting of a list of sorts (we write R⊆ S1, . . . ,Sn); each function symbol is equipped with

an arity consisting of a list of sorts, together with a result sort (we write f : S1, . . . ,Sn→ S).

Constructing terms and formulas. Terms and formulas over the signature are built up as in

many-sorted first-order logic with equality, with three additional constructions: if a, b are terms of

sort N and t is a term of sort S then: 〈a〉 t is a term of sort [N]S; [a↔ b]t is a term of sort S; and

aBt is a formula.

Nominal logic theories. A nominal logic theory is a nominal logic signature together with a

collection of axioms in the language of nominal logic.

7.2.2 Semantics of nominal logic

Structures for nominal logic signatures. Let S be a nominal logic signature. Let C be a cat-

egory with finite products, a distinguished object N (‘of names’), and a distinguished ‘binding’

endofunctor [N]− :C →C . An S-structure M in C is given as follows.

• To each basic sort X of the signature is assigned an object ¹XºM . Compound sorts are then

interpreted as follows: ¹NºM =N , and ¹[N]SºM = [N]¹SºM .

• To each relation symbol R⊆ S1, . . . ,Sn is assigned an a subobject

¹RºM ⊆ ¹S1ºM × · · · ×¹SnºM .

• To each function symbol f : S1, . . . ,Sn→ S is assigned a morphism

¹fºM : ¹S1ºM × · · · ×¹SnºM → ¹SºM .

Morphisms between S-structures. Let M , M ′ be two S-structures in C . Suppose we are given,

for each basic sort X, a morphism

fX : ¹XºM → ¹XºM ′ in C .

7.3. Nominal substitutions 175

Then for a compound sort S, we define fS inductively on the structure of sorts, as follows: we

let fN = idN , and we let f[N]S = [N] fS. A homomorphism of S-structures M → M ′ is such a sort

indexed family of morphisms �
fS : ¹SºM → ¹SºM ′

	
S

such that the following conditions hold.

• For each function symbol f : S1, . . . ,Sn→ S the following diagram commutes.

¹S1ºM × · · · ×¹SnºM

fS1
×···× fSn

��

¹fºM
// ¹SºM

fS
��

¹S1ºM ′ × · · · ×¹SnºM ′ ¹fºM ′

// ¹SºM ′

• For each relation symbol R⊆ S1, . . . ,Sn there exists a morphism (necessarily unique)

fR : ¹RºM → ¹RºM ′

such that the following diagram commutes.

¹RºM
// //

fR
��

¹S1ºM × · · · ×¹SnºM

fS1
×···× fSn

��

¹RºM ′
// // ¹S1ºM ′ × · · · ×¹SnºM ′

S-structure homomorphisms are composed by composing the underlying morphisms of base sorts;

the identity S-structure homomorphism is found by taking the identity morphisms for the interpre-

tations of each of the base sorts. Thus we have a category of S-structures.

Structures in Nom. The case C = Nom is particularly important — indeed it is the only case

originally considered by Pitts [2003]. In this case, the object of names and the binding endofunctor

are taken to be the corresponding structures in Nom as introduced in Section 7.1.3.

Models. Nominal logic formulas over a signature S are interpreted in S-structures in Nom, in a

straightforward way. Pitts [2003, Defn. 2] provides the details and a thorough analysis. Thus we

arrive at a category of models for a nominal logic theory over a signature S; it is the full subcategory

of the category of S-structures, containing those S-structures that satisfy interpretations of the

axioms.

7.3 Nominal substitutions

The framework of nominal sets has provided a notion of α-equivalence, for which permutation

actions were required. When defining name-passing systems, though, non-injective substitutions

are indispensable — for instance, in the rule for communication in Figure 3.3, and also in the

models of uniform input of Section 3.4. For this reason we now introduce a theory of nominal

substitutions which, roughly speaking, is a theory of nominal sets that additionally allow arbitrary

non-injective substitution of names.

We begin this section with the nominal logic theory of nominal substitutions. Two presentations

are possible. The first has a more elaborate signature but a simpler axiomatisation. The second has

a simpler signature but requires an extra axiom. It will be useful in Section 8.4 to have the extra

176 Nominal Sets for Syntax and Behaviour

axiom pushed into the signature (in a sense we will make precise), but for proving basic results

about the theory it is convenient to have the extra axiom explicit.

In Section 7.3.1 we prove that the category NomSub of nominal substitutions is equivalent to

the sheaf category Sh(F) considered in Section 4.3. By doing so we can more readily understand

the exactness properties of NomSub, and in Section 7.3.2 we give explicit descriptions of various

operations in NomSub.

We conclude this introductory paragraph by noting that Fiore, Plotkin, and Turi [1999] took the

category SetF as a basis for their study of abstract syntax with variable binding. Thus, by working

with nominal substitutions, the work of Fiore et al. can be recast in the context of nominal sets,

and two approaches to abstract syntax are related.

The theory of nominal substitutions. The signature for nominal substitutions has one sort X

and one function symbol sub : N, [N]X → X. We use ‘[b/a]x ’ as shorthand for the expression

‘sub(b, 〈a〉 x)’.

The theory of nominal substitutions consists of the signature for nominal substitutions together

with the following four axioms.

NOMSUB-1. ∀a : N. ∀x : X. [a/a]x = x .

NOMSUB-2. ∀a, b : N. ∀x : X. aBx =⇒ [b/a]x = x .

NOMSUB-3. ∀a, b, c : N. ∀x : X. [c/b][b/a]x = [c/b][c/a]x .

NOMSUB-4. ∀a, b, c, d : N. ∀x : X. c 6= b 6= a 6= d =⇒ [d/b][c/a]x = [c/a][d/b]x .

We write NomSub for the category of models of this theory in Nom.

We will abuse notation by writing X for a nominal substitution (X , subX).

For a first example, notice that the nominal set Xπ of π-calculus processes, introduced in equa-

tion 7.1.1, can be given a nominal substitution in a straightforward manner. For any π-calculus

process t ∈ Xπ, and any names a, b, we let [b/a]t be the process t in which all free occurrences of

the name a are replaced with b.

An alternative presentation. An alternative theory of nominal substitutions is inspired by

Prop. 7.1.3(2) above, as follows. As with the original theory, the signature has one sort, X, and an

operator sub with result sort X, but this time with arity (N,N,X). Writing ‘[b/a]x ’ for ‘sub(b, a, x)’,

Axioms NOMSUB-1–4 above can be interpreted for this signature. To these axioms we add the

following additional one.

NOMSUB-0. ∀a, b : N , x : X. a 6= b =⇒ aB[b/a]x .

Proposition 7.3.1. The category of models for this alternative theory is isomorphic to the cate-

gory NomSub introduced above.

A proof of this statement is provided in Appendix 7.A.

7.3.1 Nominal substitutions are sheaves

We now explain that the category NomSub of nominal substitutions is equivalent to the sheaf

category Sh(F) introduced in Section 4.3. To do this, we begin by explaining that the forgetful

functor Sh(F)→ Sh(I) is monadic. We then interpret the theory of nominal substitutions directly in

Sh(I). So, to conclude the main theorem (Theorem 7.3.2), it remains to show that the category of

nominal substitutions in Sh(I) is equivalent to the category of algebras for the monad arising from

the monadic forgetful functor Sh(F)→ Sh(I).

7.3. Nominal substitutions 177

SetF is monadic over SetI. Before looking at the relationships between the sheaf subcategories,

we remark that SetF is monadic over SetI. The forgetful functor U I
F

: SetF → SetI is the inverse

image of the essential geometric morphism induced by the inclusion functor jIF : I→ F, and so

it has a left adjoint (jIF)! : SetI→ SetF. To conclude that the adjunction (jIF)! ⊣ U I
F

: SetF→ SetI is

monadic, we appeal to the weak monadicity theorem: the category SetF has all colimits, and

certainly coequalisers; the functor U I
F

: SetF→ SetI has a right adjoint and so preserves colimits, and

coequalisers in particular; and the functor U I
F

: SetF→ SetI reflects isomorphisms (because jIF : I→ F

is surjective on objects).

Sh(F) is monadic over Sh(I): outline. In Prop. 4.3.1 we showed that the forgetful func-

tor U I
F

: SetF→ SetI restricts to a functor U I
F

: Sh(F)→ Sh(I). To show that this functor is monadic,

we can use the weak monadicity theorem in essentially the same way as above. The right adjoint

for U I
F

: Sh(F)→ Sh(I) was discussed at the end of Section 4.3. It remains for us to show that the

left adjoint (jIF)! : SetI→ SetF restricts to a functor (jIF)! : Sh(I)→ Sh(F).

A left adjoint for the forgetful functor Sh(F) → Sh(I). In order to reason about the left ad-

joint (jIF)! : SetI→ SetF, we write down an explicit description. For P ∈ SetI, and C ∈ F, we have

(jIF)!P(C) =

�∐

D∈F

(F(D, C)× P(D))

�Â

∼C

where ∼C is the equivalence relation on the set
�∐

D∈F(F(D, C)× P(D))
�

generated by

injD
�

f ı, p
�
∼C injD′

�
f , Pı(p)

� for any D, D′ ∈ I, ı : D֌ D′ in I,

any f : D′→ C in F, p ∈ P(D).

An equivalence class [injD(f , p)] in (jIF)!P(C) is to be thought of as describing the element p subject

to the substitution f .

The action of (jIF)!P is as follows. For any function g : C → C ′ in F, and any ∼C -equivalence

class [injD(f , p)] in (jIF)!P(C), we let

(jIF)!P g[injD(f , p)] = [injD(g ◦ f , p)] in (jIF)!P(C
′).

A natural transformation α : P → Q between presheaves in SetI induces a natural transformation

(jIF)!α : (jIF)!P → (j
I
F)!Q given as follows. For each C ∈ F, and each [injD(f , p)] in (jIF)!P(C), we let

((jIF)!α)C[injD(f , p)] = [injD(f ,αD(p))] .

If P is a sheaf in Sh(I), then (jIF)!P is a sheaf in Sh(F), as we now explain.

We begin by noting that when P is a sheaf then the equivalence relation used to de-

fine (jIF)!P has the following characterisation. For any set C ∈ F we define a relation ≡C on

the set
∐

D∈F (F(D, C)× P(D)) as follows. For any two components injD(f , p), injD′(f
′, p′), we

let injD(f , p)≡C injD′(f
′, p′) if and only if there is a set D′′ ∈ F, an element p′′ ∈ P(D′′), and

injections κ : D′′֌ D, κ′ : D′′֌ D′ in I such that f ◦ κ = f ′ ◦ κ′ and such that Pκ(p′′) = p

and Pκ′(p′′) = p′. It is easy to show that ≡C is an equivalence relation; the sheaf condition on P

(in the form of Prop. 4.2.3) is required for transitivity. In this circumstance, it is straightforward to

show that the relation ≡C is equal to the relation ∼C used in the definition of (jIF)!P.

Following Prop. 4.3.3, to check separatedness for the presheaf (jIF)!P in SetF, it is sufficient to

check that the action (jIF)!P(! : 0→ 1) is injective. (Here, ! : 0→ 1 denotes the initial and terminal

morphism into an arbitrary singleton name set.) This follows straightforwardly from the above

characterisation of (jIF)!P.

178 Nominal Sets for Syntax and Behaviour

To check that (jIF)!P satisfies the sheaf condition, we again use Prop. 4.3.3: it is sufficient to

check the sheaf condition for the elements of (jIF)!P(1) with empty support.

To this end, consider an element [injD(f , p)] ∈ (jIF)!P(1) with empty support. Note that 1 is

terminal, and so f : D → 1 can only be the unique terminal map. Consider a two element

set, 2 ∈ I, and distinct injections ı,  : 1 ֌ 2. Since the element [injD(f , p)] has empty support,

we know that [ı][injD(f , p)] = [][injD(f , p)] in (jIF)!P(2); so [injD(ı f , p)] = [injD( f , p)]. The above

characterisation ≡C of ∼C means that there is a set D′′, and an element p′′ ∈ P(D′′), and injec-

tions κ : D′′֌ D, κ′ : D′′֌ D′ in I, such that [κ]p′′ = p = [κ′]p′′ and making the following diagram

commute.

2

1

ı ??���
1

__>>>

D

f BB��
D

f\\::

D′′
κ

ffMMMMM
κ′

88qqqqq

Thus the set D′′ must be empty, and we have an amalgamation p′′ ∈ P(;) for p ∈ P(1), and hence

an amalgamation [inj;(id;, p′′)] ∈ (jIF)!P(;), as required.

It follows that the functor (jIF)! : SetI→ SetF restricts to give a left adjoint for U I
F

: Sh(F)→ Sh(I),

as required. Thus the forgetful functor U I
F

: Sh(F)→ Sh(I) is monadic.

The monad on Sh(I). We record here explicit descriptions of the unit and multiplication of the

monad (U I
F
◦ (jIF)!) on Sh(I).

The unit is a natural transformation η : id→ (U I
F
◦ (jIF)!) between endofunctors on SetI given as

follows. For each P ∈ SetI, C ∈ I, and p ∈ P(C), we let

ηP,C(p) = [injC(idC , p)] .

The multiplication is a natural transformation

µ : (U I
F
◦ (jIF)! ◦ U I

F
◦ (jIF)!)→ (U

I
F
◦ (jIF)!)

between endofunctors on SetI given as follows. For each P ∈ SetI, C , D, E ∈ I, and f : E → D,

g : D→ C in F, and p ∈ P(E) we let

µP,C

�
injD(g, [injE(f , p)])

�
= [injE(g ◦ f , p)] .

Nominal substitutions in Sh(I). We can interpret the theory of nominal substitutions directly

in Sh(I) by using the equivalence between Sh(I) and Nom recalled in Theorem 7.1.4. Here, we

focus on the second, alternative presentation of the theory because it is convenient not to have the

binder in the arity.

A nominal substitution in Sh(I) is given by a sheaf P together with a natural transfor-

mation N × N × P → P, satisfying the following properties, for all C ∈ I, a, b, c, d ∈ C , and

all p ∈ P(C):

NOMSUB-0. a 6= b =⇒ a 6∈ supp(subC(b, a, p)).

NOMSUB-1. subC(a, a, p) = p.

NOMSUB-2. a 6∈ supp(p) =⇒ subC(b, a, p) = p.

NOMSUB-3. subC

�
c, b, sub(b, a, p)

�
= subC

�
c, b, sub(c, a, p)

�
.

NOMSUB-4. If c 6= b 6= a 6= d

then subC

�
d, b, sub(c, a, p)

�
= subC

�
c, a, sub(d, b, p)

�
.

7.3. Nominal substitutions 179

(Here, we are using the least support construction supp on elements of sheaves in Sh(I), defined in

Section 4.4.1.)

A morphism between nominal substitutions in Sh(I), say (P, subP) and (Q, subQ), is a natural

transformation α : P →Q such that

subQ,C(b, a,αC(p)) = αC(subP,C(b, a, p)) for all C ∈ I, a, b ∈ C , and all p ∈ P(C).

Theorem 7.3.2. The category NomSub is equivalent to Sh(F).

A proof of this theorem is provided in Appendix 7.B. There, we show that the category of models

in Sh(I) for the theory of nominal substitutions is isomorphic to the category of algebras for the

monad (U I
F
◦ (jIF)!) on Sh(I).

7.3.2 Constructions of nominal substitutions

The forgetful functor NomSub→ Nom lifts much of the structure of Nom into NomSub, as we now

explain. We provide explicit descriptions of products and coproducts; we define a nominal substi-

tution structure for the object of names; and we lift the binding operator from Nom to NomSub.

Products and coproducts. Since NomSub is a Grothendieck topos, it has limits and colimits, and

the forgetful functor NomSub → Nom has left and right adjoints, and so preserves them. Thus,

in particular, products and coproducts of nominal substitutions are computed according to their

underlying sets.

Specifically, a singleton nominal set {∗} has the nominal substitution given by the terminal

map N × [N] {∗} → {∗}. Given two nominal substitutions, X and Y , the product set X × Y has

substitution action

[b/a](x , y) = ([b/a]x , [b/a]x) .

The initial nominal set ; has nominal substitution structure given by the identity map, since

N ×[N];= ;. Given two nominal substitutions, X and Y , the coproduct set X +Y has substitution

action

[b/a](inl x) = inl ([b/a]x) [b/a](inr y) = inr
�
[b/a]y

�
.

Names. The nominal set N of names has exactly one nominal substitution structure that is a

model of the theory, given by

[b/a]c =

(
b if a = c

c if a 6= c.

The first case is forced by equivariance, and the second by Axiom NOMSUB-2.

The nominal substitution of names corresponds to the sheaf N in Sh(F) that is the inclusion of

the category F into Set.

Abstraction. The abstraction operator [N]− on Nom lifts along the forgetful functor NomSub→

Nom as follows. If a nominal set X is equipped with a nominal substitution structure, then a

nominal substitution structure on [N]X can be given as follows:

[b/a] (〈c〉 x) = 〈c〉 ([b/a]x) provided a 6= c 6= b .

(Some such c can always be chosen.) Axioms NOMSUB-1–4 hold of this induced structure because

they hold of the structure on X .

It might be interesting to investigate whether this lifting is the only one that satisfies the axioms

and is functorial.

180 Nominal Sets for Syntax and Behaviour

Internalising the structure. Using the above operations, we see that, for every nominal substi-

tution X ∈ NomSub we can build a nominal substitution N × [N]X . Using Axioms NOMSUB-3

and 4, we can conclude that the function subX :N × [N]X → X is a homomorphism of nominal

substitutions. It is easy to show that the resulting family
�
subX :N × [N]X → X

	
X∈NomSub of ho-

momorphisms is natural.

The reader might notice that in this subsection we have mentioned Axiom NOMSUB-2 as being

necessary to ensure the uniqueness of a structure N for names, and Axioms NOMSUB-3 and 4 as

being necessary to ensure that the structure can be internalised.

7.4 Nominal algebraic signatures

This section redevelops the theory of syntax of Section 6.1.1 in the context of name binding. We

begin with a notion of nominal algebraic signature, which, as we explain, isolates a restricted class

of the nominal logic signatures considered in Section 7.2.1. We illustrate this kind of signature

with a signature for the π-calculus.

Next, we provide explicit descriptions of structures for such signatures. We provide exam-

ples, specifically: the π-calculus up-to α-equivalence, with substitution action, by interpreting in

NomSub; and the π-calculus in raw syntax, by interpreting in Set. Certain special morphisms

between categories induce morphisms of endofunctors, and hence functors between categories of

algebras. We illustrate this by relating syntax in NomSub with syntax in Nom, and also by showing

how raw syntax (in Set) can be instantiated into abstract syntax (in Nom).

Definition 7.4.1. A nominal algebraic signature S is given by a collection OpS of operators, where

each operator op ∈OpS is associated with

• an arity of names, arn(op) ∈ N

• an arity of terms, art(op) ∈ N

• a binding depth dep j(op) ∈ N for each term parameter j ∈ [1, art(op)].

The data of Definition 7.4.1 defines a nominal logic theory as follows.

• The theory has one ground sort: the term sort X.

• There are no relation symbols.

• The function symbols are the operators in OpS.

• The arity of a function symbol op ∈ OpS is given by the string Narn(op) concatenated with the

string
�
[N]dep j(op)X

�
j∈[1,art(op)]

.

• The result sort of every function symbol is the term sort X.

Example: Signature for the π-calculus. We consider a nominal algebraic signature PI for the

π-calculus grammar that was introduced in equation 3.1.1. We have a collection of operators

OpPI = {nil,par, sum, inp,out, tau,match,mismatch, restrct} .

7.4. Nominal algebraic signatures 181

The operators are assigned arities according to the following table.

op ∈OpPI arn(op) art(op)
�
depi(op)

�
i∈[1,art(op)]

nil 0 0 () deadlock

par 0 2 (0,0) parallel composition

sum 0 2 (0,0) non-deterministic choice

inp 1 1 (1) input prefix

out 2 1 (0) output prefix

tau 0 1 (0) silent prefix

match 2 1 (0) match prefix

mismatch 2 1 (0) mismatch prefix

restrct 0 1 (1) restriction

(7.4.2)

Structures for signatures. Let S be a nominal algebraic signature. We will consider structures for

this signature, as in Section 7.2.2. Thus, for any category C with finite products, a distinguished

object N , and an endofunctor [N], a S-structure in C is given by an object and X in C together

with, for each operation op ∈OpS, a morphism

¹opºX :


N arn(op)×

∏

i∈[1,art(op)]

[N]depi(op)X


 −→ X .

(Here, we write [N]nX for the n-fold application of the endofunctor [N](−) to the object X .)

We will illustrate this later by considering structures for the signature of the π-calculus.

Categories of structures as categories of algebras. If the category C has OpS-indexed coprod-

ucts as well as the structure of the previous paragraph (finite products, an object, and an endo-

functor) then a nominal algebraic signature S induces the following endofunctor on C .

ΣS,C X =
∐

op∈OpS


N arn(op)×

∏

j∈[1,art(op)]

[N]dep j(op)X


 (7.4.3)

The category of ΣS,C -algebras is isomorphic to the category of S-structures in C .

Following the developments of Section 6.1.1, if a free monad on ΣS,C exists then it is de-

noted TS,C = (TS,C ,ηS,C ,ηS,C).

Example: Syntax of the π-calculus up-to-α-equivalence. A structure for the π-calculus sig-

nature PI in NomSub is a nominal substitution X together with interpretations of the operators,

including, for instance, an input operator as a nominal substitution homomorphism

¹inpºX :N × [N]X → X ,

an output operator as a nominal substitution homomorphism

¹outºX :N ×N × X → X ,

and a restriction operator as a nominal substitution homomorphism

¹restrctºX : [N]X → X .

In this way the signature induces an endofunctor ΣPI,NomSub on NomSub, and, indeed, the free

monad TPI,NomSub on ΣPI,NomSub exists. In a similar way one can consider PI-structures in Nom,

and we have an endofunctor ΣPI,Nom and a monad TPI,Nom on Nom. For example, the nominal

set TPI,Nom; is the nominal set Xπ of π-calculus terms up-to α-equivalence, introduced in equa-

tion 7.1.1, and the nominal substitution TPI,NomSub; is the nominal substitution of π-calculus terms,

as suggested at the beginning of Section 7.3.

182 Nominal Sets for Syntax and Behaviour

Congruence in Nom and NomSub. We remark that the notions of congruence introduced in

Section 6.2.1 specialise to the usual, intuitive notions of congruence for syntax with variable bind-

ing: closure under all contexts, including those that may capture variables. (For the π-calculus,

this notion is considered by Sangiorgi and Walker [2001, Defn. 1.2.2], although their care over

non-degeneracy is not relevant here.)

Example: Raw syntax of the π-calculus. We can consider PI-structures in the category of sets

as follows. We will interpret the sort of names as a set N of name metavariables; from this set

we can derive an endofunctor [N] : Set→ Set given by [N]X = N × X . We will write 〈c〉 x for an

element (c, x) ∈ [N]X . This is merely suggestive notation; there are no quotients involved.

We write SetN for the category of sets, with the understanding that N is the object of names,

and [N] is the binding endofunctor.

There is a free monad TPI,SetN
for the endofunctor ΣPI,SetN

. For each set X , we have the

set TPI,SetN
X of π-calculus terms with name variables from N, and free term variables in X ; the

terms in TPI,SetN
X are not quotiented by α-equivalence.

Model categories and morphisms of endofunctors. A nominal S-model category is a category C

with finite products, OpS-indexed coproducts, a distinguished object N , and a distinguished endo-

functor [N]. (Above, we have been abusing notation by writing C for the structure (C ,N , [N]).)

A morphism between nominal S-model categories

(C ,NC , [NC])→ (D,ND , [ND])

is given by a triple (F, f ,φ), where F : C → D is a functor that preserves finite prod-

ucts, f :ND → F(NC) is a morphism in D, and φ : [ND]F → F[NC] is a natural transformation

between functors in [C ,D]. The situation here is analogous to the situation at the end of Sec-

tion 6.1.2: these data induce a natural transformation (F, f ,φ)∗ : ΣS,DF → FΣS,C in an obvious way,

and so we have a morphism of endofunctors (C ,ΣS,C)→ (D,ΣS,D). According to Section 6.1.3, if

free monads on ΣS,C and ΣS,D exist then a monad morphism (C ,TS,C)→ (D,TS,D) is induced.

Note that if F : C → D preserves coproducts, and f : ND → F(NC) is an isomorphism,

and F[N] : [ND]F → F[NC] is a natural isomorphism, then the induced natural transforma-

tion (F, f ,φ)∗ : ΣS,DF → FΣS,C is an isomorphism. In the terminology of Section 6.1.2, (F, f ,φ)

defines a lifting of the endofunctor ΣS,D along the functor F :C →D.

The 2-categorical situation is as follows. We write MS for the 2-category of nominal S-model

categories, with objects and morphisms as introduced above; a 2-cell between morphisms

(F, f ,φ), (G, g,γ) : (C ,NC , [NC])→ (D,ND , [ND])

is a natural transformation α : F → G making the following diagrams commute.

ND
f
//

g
##G

GG
GG

GG
GG

F(NC)

αNC
��

GNC

[ND]F
φ

//

[ND]α

��

F[NC]

α[NC]

��

[ND]G γ
// G[NC]

Then the construction of equation 7.4.3 extends to a 2-functorMS→ Endo.

Example: Lifting π-calculus syntax from Nom to NomSub. As discussed in Section 7.3.1, the

forgetful functor NomSub → Nom preserves limits and colimits. It is clear that it also preserves

the object of names and the binding endofunctor. Thus we know that the endofunctor ΣPI,NomSub

on NomSub is a lifting, along the forgetful functor NomSub → Nom, of the endofunctor ΣPI,Nom

on Nom.

7.5. Nominal transition systems 183

Since the forgetful functor NomSub→ Nom has a right adjoint, we know from Prop. 6.1.4(1)

that the induced morphism (NomSub,ΣPI,NomSub)→ (Nom,ΣPI,Nom) of endofunctors has a right

adjoint in Endo. The 2-functoriality of the free algebra construction ensures that the induced

morphism of monads (NomSub,TPI,NomSub)→ (Nom,TPI,Nom) has a right adjoint in Monad; i.e. that

the monad TPI,NomSub on NomSub is a lifting, along the forgetful functor NomSub→ Nom, of the

monad TPI,Nom on Nom.

Of course, this phenomenon is not specific to the π-calculus, and similar results hold for every

signature S.

Example: Instantiating name metavariables. Let N be a set of name metavariables. Consider

a function V : N→N between sets, to be thought of as a valuation of the name metavariables as

names. As remarked in Section 7.1, the forgetful functor U : Nom→ Set preserves finite limits. The

valuation function supplies a function N→ U(N) and so induces a natural transformation

[N] (U(−)) = N× U(−)
V ×idU
−→ U(N)× U(−) ∼= U(N × (−))→ U([NNom](−))

between functors Nom → Set. Here, the rightmost morphism is the quotient arising from the

binding construction in nominal sets.

In this way the valuation function V : N → N induces a morphism of endofunctors

(Nom,ΣPI,Nom)→ (Set,ΣPI,SetN
), and hence also a monad morphism (Nom,TPI,Nom)→ (Set,TPI,SetN

).

This can be regarded as an operation transforming π-calculus expressions in raw syntax with name

metavariables into π-calculus expressions (involving names) up-to α-equivalence.

7.5 Nominal transition systems

We now investigate how nominal logic can be used to axiomatise labelled transition systems for

name-passing. Thus we arrive at an alternative to the indexed labelled transition systems studied

in Sections 3.3, 3.4.3 and 4.4.2. We introduce a notion of nominal labelled transition system,

and prove a correspondence with I-ILeTSs over sheaves in Sh(I). We then briefly explain how the

uniform input behaviour studied in Section 3.4.3 can be axiomatised in nominal logic using the

theory of nominal substitutions.

An axiomatisation of ground labelled transition systems is provided next, and we have a corre-

spondence with the Bg-coalgebras of Section 3.2.2. We conclude this section by considering notions

of ground and wide open bisimulation in this setting.

Nominal early labelled transition systems.

Definition 7.5.1. The nominal logic theory of nominal early labelled transition systems (Ae-LTSs)

has one ground sort X and three relation symbols:

• an input transition relation symbol

�
−?−
−→

�
with arity X,N,N,X;

• an output transition relation symbol

�
−!−
−→

�
with arity X,N,N,X;

• a silent transiton relation symbol
�

τ
−→
�

with arity X,X

subject to Axioms Ae1–Ae3 in Figure 7.1a.

A model of this theory (in Nom) is given by a nominal ‘carrier’ set X together with three equiv-

ariant relations
�
−?−
−→

�
⊆ X ×N ×N × X

�
−!−
−→

�
⊆ X ×N ×N × X

�
τ
−→
�
⊆ X × X

184 Nominal Sets for Syntax and Behaviour

Ae1. The channel is known.

∀x , y : X, c, d : N.

�
x

c?d
−→ y =⇒ ¬(cBx)

�

∧

�
x

c!d
−→ y =⇒ ¬(cBx)

�Ae2. Names in the derivative depend only on names in the source and communication data.

∀x , y : X, a, c, d : N.

�
x

c?d
−→ y ∧ aB(x , d) =⇒ aBy

�

∧

�
x

c!d
−→ y ∧ aB(x , d) =⇒ aBy

�

∧
�

x
τ
−→ y ∧ aBx =⇒ aBy

�Ae3. If one name can be input then so can any other.

∀x , y : X, c, d, d ′ : N. x
c?d
−→ y =⇒ ∃y ′ : X. x

c?d ′

−→ y ′

Figure 7.1a: Axioms for the nominal logic theory of nominal early labelled transition systems.Ae1. The channel is known.

∀x , y ∈ X , c, d ∈ N .

�
x

c?d
−→ y =⇒ c ∈ suppX (x)

�

∧

�
x

c!d
−→ y =⇒ c ∈ suppX (x)

�Ae2. Names in the derivative depend only on names in the source and communication data.

∀x , y ∈ X , c, d ∈ N .

�
x

c?d
−→ y =⇒ suppX (y)⊆ suppX (x)∪ {d}

�

∧

�
x

c!d
−→ y =⇒ suppX (y)⊆ suppX (x)∪ {d}

�

∧
�

x
τ
−→ y =⇒ suppX (y)⊆ suppX (x)

�Ae3. If one name can be input then so can any other.

∀x , y ∈ X , c, d, d ′ ∈ N . x
c?d
−→ y =⇒ ∃y ′ ∈ X . x

c?d ′

−→ y ′

Figure 7.1b: Requirements on a nominal early labelled transition system with nominal carrier

set X .

7.5. Nominal transition systems 185

that together satisfy the interpretations of Axioms Ae1–Ae3. For reference, these interpretations are

given explicitly in Figure 7.1b.

Relating Ae-LTSs with I-ILeTSs. In Section 7.1.4 we gave a construction that exhibits the Schanuel

topos as equivalent to the category of nominal sets. By using this construction, we now establish a

correspondence with some of the I-ILeTSs of Section 3.3. Consider a Ae-LTS −→ over X . An I-ILeTS

−→I over the sheaf corresponding to X (as in Section 7.1.4) is induced as follows.

If x
c?d
−→ y and C supports x and C ∪ {d} supports y

then C ⊢ x
c?d
−→I C ∪ {d} ⊢ y.

If x
c!d
−→ y and d ∈ suppX (x) and C supports x and C supports y

then C ⊢ x
c!d
−→I C ⊢ y.

If x
c!d
−→ y and d 6∈ C and C supports x and C ∪ {d} supports y

then C ⊢ x
c!d
−→I C ∪ {d} ⊢ y.

If x
τ
−→ y and C supports x and C supports y

then C ⊢ x
τ
−→I C ⊢ y.

(7.5.2)

Theorem 7.5.3. The mapping described in (7.5.2) takes a Ae-LTS to an I-ILeTS satisfying Axioms I1–

I6. For each nominal set X , the mapping defines a bijective correspondence between Ae-LTSs over X

and I-ILeTSs over the sheaf in Sh(I) corresponding to X , that satisfy Axioms I1–I6.

A proof of this theorem is provided in Appendix 7.C.

Nominal transition systems for the π-calculus. The early transition system for the π-cal-

culus, recalled in Section 3.1.1, provides a model of the theory of Ae-LTSs, with the nominal

set Xπ of π-calculus terms (7.1.1) as the carrier. Equivariance of these relations corresponds to

Prop. 3.1.12(1). Axioms Ae1 and Ae2 are Prop. 3.1.2, and Axiom Ae3 is Corollary 3.1.4(1).

Uniform input. We form the theory of nominal labelled transition systems with uniform input by

combining the theory of nominal labelled transition systems with the theory of nominal substitu-

tions (Section 7.3), and adding the following axiom.Ae4. Uniform input.

∀x , y : X, c, d, d ′ : N.

�
dBx ∧ x

c?d
−→ y

�
=⇒ x

c?d ′

−→ [d ′/d]y

For the Ae-LTS for the π-calculus, Axiom Ae4 corresponds to Prop. 3.1.3. Using the construction of

Theorem 7.5.3, we have the following result.

Proposition 7.5.4. There is a bijective correspondence between nominal labelled transition systems

with uniform input over a nominal substitution X , and F-ILeTSs over the sheaf in Sh(F) corresponding

to X , that satisfy Axioms I1–I6 and F2’.

Nominal ground labelled transition systems. We now axiomatise a class of ground labelled

transition systems.

Definition 7.5.5. The nominal theory of nominal ground labelled transition systems (Ag-LTSs) has

one ground sort X and four relation symbols:

186 Nominal Sets for Syntax and Behaviour

• a bound input transition relation symbol

�
−?(−)
−+

�
with arity X,N,N,X;

• an output transition relation symbol

�
−!−
−+

�
with arity X,N,N,X;

• a bound output transition relation symbol

�
−!(−)
−+

�
with arity X,N,N,X;

• a silent transiton relation symbol
�

τ
−+
�

with arity X,X

subject to Axioms Ag1 and Ag2 in Figure 7.2.Ag1. The channel and free data are known, while binding data is fresh.

∀x , y : X, c, d : N.

�
x

c?(d)
−+ y =⇒ ¬(cBx)∧ (dBx)

�

∧

�
x

c!d
−+ y =⇒ ¬(cBx)∧¬(dBx)

�

∧

�
x

c!(d)
−+ y =⇒ ¬(cBx)∧ (dBx)

�Ag2. Names in the derivative depend only on names in the source and communication data.

∀x , y : X, a, c, d : N.

�
x

c?(d)
−+ y ∧ aB(x , d) =⇒ aBy

�

∧

�
x

c!d
−+ y ∧ aBx =⇒ aBy

�

∧

�
x

c!(d)
−+ y ∧ aB(x , d) =⇒ aBy

�

∧
�

x
τ
−+ y ∧ aBx =⇒ aBy

�

Figure 7.2: Axioms for the nominal logic theory of nominal ground labelled transition systems.

For a first example, we note that the ground transition system for the π-calculus, recalled in

Section 3.1.2, provides a model of the theory of Ag-LTSs, with the nominal set Xπ of π-calculus

terms (7.1.1) as the carrier.

Every Ae-LTS induces a Ag-LTS, according to a straightforward procedure akin to (3.3.21). Con-

versely, a model of the combined theory of nominal substitutions and Ag-LTSs, induces an Ae-LTS

with uniform input, via a process akin to (3.4.10). In this way, one establishes that models of the

combined theory of nominal substitutions and Ag-LTSs are in bijective correspondence with Ae-LTSs

with uniform input. In other words:

Proposition 7.5.6. To give a Ag-LTS together with a nominal substitution structure on its carrier,

is to give a coalgebra for the endofunctor Bg on Nom that is structured by the forgetful functor

NomSub→ Nom.

Bisimulation for nominal transition systems. We conclude this section by introducing notions

of bisimulation for Ag-LTSs. This amounts to translating the definitions of Definition 3.3.4 to the

nominal setting.

Definition 7.5.7. Consider structures (X ,−+X) and (Y,−+Y) in Nom for the theory of Ag-LTSs,

and let R be an equivariant relation between X and Y .

7.5. Nominal transition systems 187

1. R is a ground simulation if, for all x , x ′ ∈ X , y ∈ Y , and a, c, d ∈ N :

• whenever x R y and x
c?(a)
−+X x ′, with aB(x , y), then we have y ′ ∈ Y with y

c?(a)
−+Y y ′ and

x ′ R y ′; and

• whenever x R y and x
c!d
−+X x ′ then we have y ′ ∈ Y with y

c!d
−+Y y ′ and x ′ R y ′; and

• whenever x R y and x
c!(a)
−+X x ′, with aB(x , y), then we have y ′ ∈ Y with y

c!(a)
−+Y y ′ and

x ′ R y ′; and

• whenever x R y and x
τ
−+X x ′ then we have y ′ ∈ Y with y

τ
−+Y y ′ and x ′ R y ′.

2. R is a ground bisimulation if both R and Rop are ground simulations.

3. Suppose that X and Y are equipped with nominal substitution structures. Then an equiv-

ariant relation R between nominal sets X and Y is a wide open bisimulation if it is a ground

bisimulation and it is closed under substitution, i.e.

∀x ∈ X , y ∈ Y. ∀b, a ∈ N . x R y =⇒ [b/a]x R [b/a]y .

4. An element x of X is ground bisimilar to an element y of Y if there exists an (equivariant)

ground bisimulation that relates them.

5. If X and Y are equipped with nominal substitution structures, then an element x of X is wide

open bisimilar to an element y of Y if there exists an (equivariant) wide open bisimulation

that relates them.

188 Nominal Sets for Syntax and Behaviour

7.A Appendix to Chapter 7: Proof of Prop. 7.3.1

We now prove Proposition 7.3.1, from page 176:

Proposition 7.3.1. The category of models for the alternative theory is isomorphic to the cate-

gory NomSub.

Proof notes. Starting with a conventional nominal substitution sub :N × [N]X → X , one obtains

a nominal substitution in the alternative presentation by precomposing with the quotient map

N × X → [N]X . It is immediate that axioms NOMSUB-1–4 remain true, and easy to see that

NOMSUB-0 is also true.

Starting with a model of the alternative presentation, that is, an equivariant function

sub :N ×N × X → X , we can find a conventional nominal substitution, sub′ :N × [N]X → X ,

such that

∀a, b ∈ N , x ∈ X . a 6= b =⇒ sub′(b, 〈a〉 x) = sub(b, a, x) (7.A.1)

because sub satisfies NOMSUB-0. This is the essence of Prop. 7.1.3(2). One must then verify that

axioms NOMSUB-1–4 hold of sub′. Axiom NOMSUB-1 requires the most work. Pick b, cB(x , a),

with b 6= c; then

sub′(a, 〈a〉 x) = sub′(a, 〈b〉 [a↔ b] •X x) (defn. of [N]X)

= sub(a, b, [a↔ b] •X x) (defn. of sub′, (7.A.1))

= [a/b][a↔ b] •X x (change notation)

= [a/c][a/b][a↔ b] •X x (NOMSUB-2)

= [a/c][c/b][a↔ b] •X x (NOMSUB-3)

= [a/c][c/a]x (NOMSUB-0, and equivariance)

= [a/c][a/a]x (NOMSUB-2)

= [a/c]x (NOMSUB-1)

= x (NOMSUB-2)

To show that the rest of the axioms, NOMSUB-2–4, hold of sub′, one has to break the axioms

down into cases, depending on which names are disjoint. For example, to show axiom NOMSUB-2,

∀a, b : N. ∀x : X. aBx =⇒ [b/a]x = x ,

we consider separately the cases where a = b, and where a 6= b. When a = b, axiom NOMSUB-2

follows immediately from NOMSUB-1; when a 6= b, we use the definition of sub′ (7.A.1) together

with the fact that NOMSUB-2 holds of sub.

7.B Appendix to Chapter 7: Proof of Theorem 7.3.2

We now prove Theorem 7.3.2, from page 179:

Theorem 7.3.2. The category NomSub is equivalent to Sh(F).

Proof. We will show that the category of models in Sh(I) for the theory of nominal substitutions is

isomorphic to the category of algebras for the monad (U I
F
◦ (jIF)!) on Sh(I).

Let P be a sheaf in Sh(I). Given a (U I
F
◦ (jIF)!)-algebra structure α : U I

F
((jIF)!(P))→ P for P, we

define a nominal substitution structure sub : N × N × P → P as follows. For each C ∈ I, and

each a, b ∈ C , p ∈ P(C), we let

subC(b, a, p) =

(
p if a = b

αC[injC
�
[C − {a} ,→ C][b/a], p

�
] if a 6= b.

7.B. Appendix to Chapter 7: Proof of Theorem 7.3.2 189

(Here, as usual, [b/a] denotes the function C → (C − {a}) acting as the identity except that a is

mapped to b.) To see that the family
�
subC : C × C × P(C)→ P(C)

	
C is natural, we consider an

injection ı : C ֌ D in I, and (b, a, p) ∈ (C × C × P(C)). If we have a = b then we must also

have ı(a) = ı(b), and so in this case it follows immediately that

[ı]
�
subC(b, a, p)

�
=
�
subD(ı(b), ı(a), [ı]p)

�
.

For the case where a 6= b, then we must also have ı(a) 6= ı(b), and in this case,

[ı]
�
subC(b, a, p)

�
= [ı]

�
αC

�
injC

�
[C − {a} ,→ C][b/a], p

���
(1)

= αD[ı]
�
injC

�
[C − {a} ,→ C][b/a], p

��
(2)

= αD

�
injC

�
ı ◦ [C − {a} ,→ C] ◦ [b/a], p

��
(3)

= αD

�
injC

�
[D− {ı(a)} ,→ D] ◦ [ı(b)/ı(a)] ◦ ı, p

��
(4)

= αD

�
injD

�
[D− {ı(a)} ,→ D] ◦ [ı(b)/ı(a)], [ı]p

��
(5)

= subD(ı(b), ı(a), [ı]p) . (6)

Using: (1) defn. of subC ; (2) nat. of α; (3) defn. of action of ı; (4) factorisation; (5) defn. of ∼D; (6) defn. of subD.

We now explain why Axioms NOMSUB-0–4 hold of this structure. For Axiom NOMSUB-0, we

consider C ∈ I, and (b, a, p) ∈ (C × C × P(C)). Suppose that b 6= a; then

subC(b, a, p) = αC

�
injC

�
[C − {a} ,→ C][b/a], p

��

= αC

�
[C − {a} ,→ C]

�
injC−{a}

�
[b/a], p

���

= [C − {a} ,→ C]
�
αC−{a}

�
injC−{a}

�
[b/a], p

���

and hence (C − {a}) supports subC(b, a, p).

Axiom NOMSUB-1 follows immediately from the definition of sub. For Axiom NOMSUB-2, con-

sider C ∈ I, and (b, a, p) ∈ (C × C × P(C)). Suppose that a 6∈ supp(p). For the case where a = b, the

result follows from axiom NOMSUB-1; for the case where a 6= b, we have

subC(b, a, p) = αC

�
injC

�
[C − {a} ,→ C][b/a], p

��
(1)

= αC

�
injC

�
[C − {a} ,→ C][b/a], [C − {a} ,→ C]seed

�
p@C − {a}

���
(2)

= αC

�
injC

�
[C − {a} ,→ C][b/a][C − {a} ,→ C], seed

�
p@C − {a}

���
(3)

= αC

�
injC

�
[C − {a} ,→ C], seed

�
p@(C − {a})

���
(4)

= αC

�
injC

�
idC , p

��
(5)

= p . (6)

Using: (1) defn. of subC ; (2) since a 6∈ supp(p); (3) defn. of ∼C ; (4) equality of functions; (5) defn. of ∼C ; (6) unit law

for α.

To show Axiom NOMSUB-3, we consider C ∈ I and a, b, c ∈ C , together with p ∈ P(C). We must

show that subC(c, b, subC(b, a, p)) = subC(c, b, subC(c, a, p)). For the case where b = c, this follows

immediately from the definition of sub. When b 6= c but a = b, the result follows from Axioms

190 Nominal Sets for Syntax and Behaviour

NOMSUB-0–2, already established. When a 6= b 6= c yet a = c, we have:

subC(c, b, subC(b, a, p))

= subC(a, b, subC(b, a, p)) (1)

= αC

�
injC

�
[C − {b} ,→ C][a/b],αC

�
injC

�
[C − {a} ,→ C][b/a], p

����
(2)

=
�
α ◦ (U I

F
((jIF)!(α)))

�
C

�
injC

�
[C − {b} ,→ C][a/b],
�
injC

�
[C − {a} ,→ C][b/a], p

��
��

(3)

= αC

�
injC

�
[C − {b} ,→ C][a/b][C − {a} ,→ C][b/a], p

��
(4)

= αC

�
injC

�
[C − {b} ,→ C][a/b], p

��
(5)

= subC(a, b, p) (6)

= subC(c, b, subC(c, a, p)) . (7)

Using: (1) since a = c; (2) defn. of subC ; (3) defn. of action of (U I
F ◦ (j

I
F
)!); (4) mult. law for α; (5) equality of functions;

(6) defn. of subC ; (7) since a = c, and using NOMSUB-1.

Finally, in the case when a, b and c are all distinct, we have:

subC(c, b, subC(b, a, p))

= αC

�
injC

�
[C − {b} ,→ C][c/b],αC

�
injC

�
[C − {a} ,→ C][b/a], p

����
(1)

=
�
α ◦ (U I

F
((jIF)!(α)))

�
C

�
injC

�
[C − {b} ,→ C][c/b],
�
injC

�
[C − {a} ,→ C][b/a], p

��
��

(2)

= αC

�
injC

�
[C − {b} ,→ C][c/b][C − {a} ,→ C][b/a], p

��
(3)

= αC

�
injC

�
[C − {b} ,→ C][c/b][C − {a} ,→ C][c/a], p

��
(4)

=
�
α ◦ (U I

F
((jIF)!(α)))

�
C

�
injC

�
[C − {b} ,→ C][c/b],
�
injC

�
[C − {a} ,→ C][c/a], p

��
��

(5)

= αC

�
injC

�
[C − {b} ,→ C][c/b],αC

�
injC

�
[C − {a} ,→ C][c/a], p

����
(6)

= subC(c, b, subC(c, a, p)) . (7)

Using: (1) defn. of subC ; (2) defn. of action of (U I
F ◦ (j

I
F
)!); (3) mult. law for α; (4) equality of functions; (5) mult. law

for α; (6) defn. of action of (U I
F ◦ (j

I
F
)!); (7) defn. of subC .

Axiom NOMSUB-4 is verified in a similar manner. Thus a (U I
F
◦ (jIF)!)-algebra induces a nominal

substitution.

Given a nominal substitution sub : N×N× P → P in Sh(I), we define a (U I
F
◦ (jIF)!)-algebra struc-

ture α : U I
F
((jIF)!(P))→ P as follows. Consider some C ∈ I, and consider [injD(f , p)] ∈ U I

F
((jIF)!(P))(C).

By definition of ∼C , we can assume that D and C are disjoint. We now pick an ordering of D,

say D =
¦

d1, . . . , d|D|
©
, and we consider the following element of P(C ∪ D):

subC∪D

�
f d|D|, d|D|,

�
. . . subC∪D

�
f d1, d1, [D ,→ C ∪ D]p

�
. . .
��

.

By repeated use of NOMSUB-0, one concludes that C supports this element, and so we let

αC

�
injD(f , p)

�
= seed

�
subC∪D

�
f d|D|, d|D|,

�
. . . subC∪D

�
f d1, d1, [D ,→ C ∪ D]p

�
. . .
��

@C
�

.

It follows from NOMSUB-4 that this definition is independent of the ordering of D.

We now show that the function αC : U I
F
((jIF)!(P))(C)→ P(C) respects equivalence classes. Every

injection decomposes into a bijection and an inclusion, and we will treat these two special types of

injection separately.

Consider D, D′ ∈ I, both disjoint from C , and consider a bijection β : D
∼
→ D′, a func-

tion f : D′→ C and an element p ∈ P(D). Then, picking an ordering of D, say D =
¦

d1, . . . d|D|
©
, we

7.B. Appendix to Chapter 7: Proof of Theorem 7.3.2 191

have

αC

�
injD(f ◦ β , p)

�
= seed

�
subC∪D(f βd|D|, d|D|, . . .

subC∪D(f βd1, d1, [D ,→ C ∪ D]p) . . .) @C

�
(1)

= seed

�
[idC ⊎ β]

�
subC∪D(f βd|D|, d|D|, . . .

subC∪D(f βd1, d1, [D ,→ C ∪ D]p) . . .)

�
@C

�
(2)

= seed

�
subC∪D′(f βd|D|,βd|D|, . . .

subC∪D′(f βd1,βd1, [D′ ,→ C ∪ D][β]p) . . .) @C

�
(3)

= αC

�
injD′(f , [β]p)

�
. (4)

Using: (1) defn. of αC ; (2) since C supports the expression, and [idC ⊎β] : C ∪ D
∼
→ C ∪ D′ acts as identity on C; (3) nat.

of sub; (4) defn. of αC , bearing in mind that, since β is a bijection, we have D′ =
¦
βd1, . . .βd|D|

©
.

To deal with the case of inclusions, we consider three disjoint sets of names, C , D, E ∈ I, a

function f : D ∪ E → C , and an element p ∈ P(D). We will show that, according to the definition

above,

αC

�
injD(f ◦ [D ,→ D ∪ E], p)

�
= αC

�
injD∪E(f , [D ,→ D ∪ E]p)

�
.

Indeed, pick orderings of D and E, say D =
¦

d1, . . . , d|D|
©
, E =

¦
e1, . . . , e|E|

©
, and then

αC

�
injD(f ◦ [D ,→ D ∪ E], p)

�

= seed

�
subC∪D∪E(f d|D|, d|D|, . . .

subC∪D∪E(f d1, d1, [D ,→ C ∪ D ∪ E]p) . . .) @C

�
(1)

= seed




subC∪D∪E(f e|E|, e|E|, . . .

subC∪D∪E(f e1, e1,

subC∪D∪E(f d|D|, d|D|, . . .

subC∪D∪E(f d1, d1, [D ,→ C ∪ D ∪ E]p) . . .)) . . .) @C




(2)

= αC

�
injD(f , [D ,→ D ∪ E]p)

�
. (3)

Using: (1) defn. of αC ; (2) repeated use of NOMSUB-2; (3) defn. of αC .

The family
¦
αC : U I

F
((jIF)!(P))(C)→ P(C)

©
C∈I

is natural in C , since sub is natural.

We now show that α : U I
F
((jIF)!(P))→ P is an algebra for the monad (U I

F
◦ (jIF)!), by showing that

it satisfies the unit and multiplication laws.

For the unit law, consider C ∈ I, and p ∈ P(C). We must show that

αC

�
injC(idC , p)

�
= p .

We do this by considering the following sequence of equations. Pick some set D ∈ I disjoint from C ,

for which there is a bijection β : D
∼
→ C , and suppose that D =

¦
d1, . . . , d|D|

©
. Then

192 Nominal Sets for Syntax and Behaviour

αC

�
injC(idC , p)

�
= αC

�
injD(β , [β−1]p)

�
(1)

= seed

subC∪D(βd|D|, d|D|, . . .

subC∪D

�
βd1, d1, [D ,→ C ∪ D][β−1]p

�
. . .) @C

!
(2)

= seed
��
[βd|D|↔ d|D|] . . . [βd1↔ d1][D ,→ C ∪ D][β−1]p

�
@C
�

(3)

= seed
��
[β−1 ⊎ β][D ,→ C ∪ D][β−1]p

�
@C
�

(4)

= seed
��
[C ,→ C ∪ D][β][β−1]p

�
@C
�

(5)

= seed
��
[C ,→ C ∪ D]p

�
@C
�

(6)

= p . (7)

Using: (1) defn. of ∼C ; (2) defn. of αC ; (3) repeated use of NOMSUB-1; (4–6) manipulating functions; (7) defn. of

seed.

For the multiplication law, consider distinct C , D, E ∈ I, and f : E → D, g : D → C in F,

and p ∈ P(E). We must show that

αC

�
injE(g ◦ f , p)

�
= αC

�
injD

�
g,αD

�
injE(f , p)

���
.

We do this by considering the following sequence of equations. Suppose that D =
¦

d1, . . . , d|D|
©

and E =
¦

e1, . . . , e|E|
©
. Then

αC

�
injE(g ◦ f , p)

�
= seed

�
subC∪E(g f e|E|, e|E|, . . .

subC∪E(g f e1, e1, [E ,→ C ∪ E]p) . . .) @C

�
(1)

= seed

�
subC∪D∪E(g f e|E|, e|E|, . . .

subC∪D∪E(g f e1, e1, [E ,→ C ∪ D ∪ E]p) . . .) @C

�
(2)

= seed




subC∪D∪E(g f e|E|, f e|E|,

subC∪D∪E(f e|E|, e|E|, . . .

subC∪D∪E(g f e1, f e1,

subC∪D∪E(f e1, e1, [E ,→ C ∪ D ∪ E]p)) . . .)) @C




(3)

= seed




subC∪D∪E(gd|D|, d|D|, . . .

subC∪D∪E(gd1, d1,

subC∪D∪E(f e|E|, e|E|, . . .

subC∪D∪E(f e1, e1, [E ,→ C ∪ D ∪ E]p)) . . .)) @C




(4)

= seed




subC∪D(gd|D|, d|D|, . . .

subC∪D(gd1, d1,

[D ,→ C ∪ D]seed(

subD∪E(f e|E|, e|E|, . . .

subD∪E(f e1, e1, [E ,→ D ∪ E]p) . . .) @D)) . . .) @C




(5)

= αC

�
injD

�
g,αD

�
injE(f , p)

���
. (6)

Using: (1) defn. of αC ; (2) nat. of sub; (3) repeated use of NOMSUB-3 and NOMSUB-2; (4) repeated use of NOMSUB-2

and NOMSUB-4; (5) properties of supports and seeds; (7) defn. of αC and αD.

Thus a nominal substitution induces a (U I
F
◦ (jIF)!)-algebra.

The operation converting a (U I
F
◦ (jIF)!)-algebra to a nominal substitution is left and right inverse

to the operation converting a nominal substitution to a (U I
F
◦ (jIF)!)-algebra. To see this, it is a matter

7.C. Appendix to Chapter 7: Proof of Theorem 7.5.3 193

of stepping through the conversion processes, using Axioms NOMSUB-0–4 on the one hand, and the

laws for (U I
F
◦ (jIF)!)-algebras on the other.

Moreover, for any two (U I
F
◦ (jIF)!)-algebras, (P,α) and (Q,β), a natural transformation P →Q is a

homomorphism of (U I
F
◦ (jIF)!)-algebras if and only if is a homomorphism between the corresponding

nominal substitutions.

7.C Appendix to Chapter 7: Proof of Theorem 7.5.3

We now prove Theorem 7.5.3. We begin by recalling the statement of the theorem from page 185.

Theorem 7.5.3. The mapping described in (7.5.2) takes a Ae-LTS to an I-ILeTS satisfying Axioms I1–

I6. For each nominal set X , the mapping defines a bijective correspondence between Ae-LTSs over X

and I-ILeTSs over the sheaf in Sh(I) corresponding to X , that satisfy Axioms I1–I6.

Proof. Let P ∈ Sh(I) be the sheaf corresponding to X , according to Section 7.1.4. We first verify

that Axioms I1–I6 of Figure 3.4 hold of the I-ILeTS −→I over P induced from a Ae-LTS −→ over X .

As regards Axiom I1, suppose that

C ⊢ x
ℓ
−→I D ⊢ y

is induced. We will focus on the case ℓ = c?d, cases for the other modes of communication are

treated similarly. We know that

x
c?d
−→ y

and that C supports x , while D = C ∪ {d} — the data is learnt. By Axiom Ae1, c ∈ suppX (x). But

suppX (x)⊆ C , so c ∈ C — the channel is known.

Turning to Axiom I2: suppose that

C ⊢ x
c?d
−→I C ∪ {d} ⊢ y

is induced, and consider a name d ′ ∈ N . We know that

x
c?d
−→ y

and that C supports x . By Axiom Ae3, we have y ′ ∈ X such that

x
c?d ′

−→ y ′ .

Axiom Ae2 enforces that (C ∪
�

d ′
	
) must support y ′; thus

C ⊢ x
c?d ′

−→I C ∪
�

d ′
	
⊢ y ′

as required.

We turn now to Axiom I3. Suppose that

C ⊢ x
ℓ
−→I C ∪ {d} ⊢ y

is induced, with ch(ℓ) ∈ C . We consider a bijection β : C ∪ {d}
∼
→ D. We will focus on the case

of free output, where ℓ = c!d and d ∈ suppX (x), but other modes of communication are treated

similarly. We must have that C supports x and that C supports y, and that

x
c!d
−→ y .

194 Nominal Sets for Syntax and Behaviour

Since
−!−
−→ is equivariant,

�
β ♯ •X x

� (β c)!(βd)
−→

�
β ♯ •X y

�

for any permutation β ♯ of N that acts as β on (C ∪ {d}); we outlined how such a permutation can

be constructed in the proof of Section 7.1.4. By Prop. 7.1.2(3), β(C) = D supports σ •X x and D

supports σ •X y. By definition of P,

β ♯ •X x = P(β |C)(x) β ♯ •X y = P(β)(y) .

Thus Axiom I3 holds.

Axiom I4a follows directly from the definition of −→. As regards Axiom I4b: suppose that

C ∪ {d} ⊢ [C ,→ C ∪ {d}]x
c!d
−→I C ∪ {d} ⊢ y .

There are two ways that an output transition can be induced; here though, we know that the name

context of the transition source is the same as the name context of the transition target. Thus the

transition must be induced by

x
c!d
−→ y

with d ∈ suppX (x). Since x is supported by C , we have that d ∈ C , as required.

Axioms I5 and I6 arise because if C supports x ∈ X then for any D ⊇ C we have that D sup-

ports x .

This concludes our proof that Axioms I1–I6 hold of the induced transition system −→I over P.

We now describe how to induce a Ae-LTS from an I-ILeTS. We continue to consider a nomi-

nal set X ∈ Nom, with corresponding sheaf P ∈ Sh(I) according to Section 7.1.4. Suppose that

we have an I-ILeTS −→ over P, that satisfies Axioms I1–I6 of Figure 3.4. We induce a Ae-LTS

(
−?−
−→A,

−!−
−→A,

τ
−→A) over X as follows.

If C ⊢ x
c?d
−→ D ⊢ y then x

c?d
−→A y .

If C ⊢ x
c!d
−→ D ⊢ y then x

c!d
−→A y .

If C ⊢ x
τ
−→ D ⊢ y then x

τ
−→A y

(7.C.1)

We must show that these relations are equivariant and satisfy Axioms Ae1–Ae3.

As for equivariance, suppose that

x
c?d
−→A y

is induced, and consider σ ∈ Sym(N). We must have some C , D such that C supports x and D

supports y and

C ⊢ x
c?d
−→ D ⊢ y .

By Axiom I1, c ∈ C and D = C ∪ {d}. By Axiom I3,

σ(C) ⊢ P
�
(σ|D)|C

�
(x)

c?d
−→ σ(D) ⊢ P(σ|D)(y) .

But, by definition, P
�
(σ|D)|C

�
(x) = σ •X x and P(σ|D)(y) = σ •X y. So we have

σ(C) ⊢ (σ •X x)
c?d
−→ σ(D) ⊢ (σ •X y) .

Thus

(σ •X x)
c?d
−→A (σ •X y)

is induced, and so the relation
−?−
−→A is equivariant. The relations for other modes of communication

are seen to be equivariant in a similar way.

7.C. Appendix to Chapter 7: Proof of Theorem 7.5.3 195

We turn now to show that Axiom Ae1 is satisfied by the induced relations. Suppose, for instance,

that

x
c!d
−→A y

is induced. Then we must have sets of names C and D such that C supports x and

C ⊢ x
c!d
−→ D ⊢ y.

By Axiom I1, D = C ∪ {d}. Now, note that d 6∈
�
C \ (suppX (x)∪ (C ∩ {d}))

�
. Thus, by Axiom I6,

�
suppX (x)∪ (C ∩ {d})

�
⊢ x

c!d
−→

�
suppX (x)∪ {d}

�
⊢ y ′

(We simplify using the definition of the action of P.) By Axiom I4b, if d ∈ C then we

have d ∈ suppX (x). So �
suppX (x)∪ (C ∩ {d})

�
= suppX (x) .

Axiom I1 ensures that c ∈ suppX (x); thus Axiom Ae1 is satisfied for the induced output relation.

Axiom Ae1 is proved for the input relation in a similar way.

As regards Axiom Ae2, we proceed as follows. Suppose, for instance, that

x
τ
−→A y

is induced. Then we have name sets C , D such that C supports x and

C ⊢ x
τ
−→ D ⊢ y .

Axiom I1 enforces that D = C . By Axiom I6, we have y ′ ∈ P(suppX (x)) such that

P(suppX (x) ,→ C)(y ′) = y and suppX (x) ⊢ x
τ
−→ suppX (x) ⊢ y ′ .

By definition of P, the first condition amounts to requiring that y = y ′, and thus we have

suppX (y)⊆ suppX (x). Axiom Ae2 is verified for other modes of communication in a similar manner.

Axiom Ae3 is quickly seen to be a consequence of Axioms I2 in the presence of Axiom I1.

It remains for us to show that for any Ae-LTS −→ over X and any I-ILeTS −→ over P,

(i) −→=
�
−→I

�A and (ii) −→=
�
−→A�I . (7.C.2)

We begin by showing that LHS ⊆ RHS in (7.C.2)(i): that if x
ℓ
−→ y then x

ℓ
−→IA y. We concentrate

on the case where ℓ = c!d; reasoning is similar for the other modes of communication. If x
c!d
−→ y

then, by Axiom Ae2, (suppX (x) ∪ {d}) supports y. Whether or not d ∈ suppX (x) we have that the

transition

suppX (x) ⊢ x
c!d
−→I suppX (x)∪ {d} ⊢ y

is induced. Thus the transition

x
c!d
−→IA y

is induced, as required.

We now show the converse: if x
ℓ
−→IA y then x

ℓ
−→ y. Indeed, suppose that x

c!d
−→IA y is induced,

this time with ℓ = c?d. Then we must have C , C ′ ⊆f N such that C supports x and C ′ supports y

and such that

C ⊢ x
c?d
−→I C ′ ⊢ y .

This, in turn, must be have been induced by a transition

x
c?d
−→ y .

196 Nominal Sets for Syntax and Behaviour

Thus property (i) of (7.C.2) is proved.

Turning to property (ii) of (7.C.2), we show that if C ⊢ x
ℓ
−→ C ′ ⊢ y then we have

C ⊢ x
ℓ
−→AI C ′ ⊢ y. Indeed, suppose that

C ⊢ x
ℓ
−→ C ′ ⊢ y

is induced, with ℓ= c!d. Then we have that C supports x and the transition

x
c!d
−→A y

has been induced. If d ∈ C then, by I4b, d ∈ suppX (x). So, whether or not d ∈ C , the transition

C ⊢ x
c!d
−→AI C ∪ {d} ⊢ y

is induced. Also, by Axiom I1, C ′ = C ∪ {d}. Other modes of communication are treated similarly;

in this way one direction of property (ii) is proved.

For the other direction, that if C ⊢ x
ℓ
−→AI C ′ ⊢ y then C ⊢ x

ℓ
−→ C ′ ⊢ y, we proceed as follows.

Suppose that

C ⊢ x
ℓ
−→AI C ′ ⊢ y

is induced. We will consider the case ℓ= c?d. We must have that C ′ = C ∪ {d}, and a transition

x
c?d
−→A y

must have been induced. Thus we must have D, D′ ⊆f N such that D supports x , D′ supports y,

and we have a transition

D ⊢ x
c?d
−→ D′ ⊢ y .

By Axiom I4a we can assume that d ∈ D. Axiom I1 ensures that D′ = D ∪ {d}. Since suppX (x)

supports x , so does (suppX (x)∪ {d}), and so, by Axiom I6, we have the transition

(suppX (x)∪ {d}) ⊢ x
c?d
−→ (suppX (x)∪ {d}) ⊢ y .

We know that (suppX (x)∪ {d})⊆ C ∪ {d}; thus Axiom I5 gives the transition

C ∪ {d} ⊢ x
c?d
−→ C ∪ {d} ⊢ y

and Axiom I4a provides

C ⊢ x
c?d
−→ C ∪ {d} ⊢ y .

The cases for other modes of communication are treated similarly; for output, Axiom I4b is re-

quired.

Thus properties (i) and (ii) of (7.C.2) are established, and Theorem 7.5.3 is proved.

Chapter 8

Operational Semantics for Name-Passing

For various reasons, the GSOS format (as recalled in Section 6.3) is not relevant for name-passing

systems. The purpose of this chapter is to provide a rule format for name-passing systems, together

with an analysis based on the mathematical structural operational semantics of Section 6.2. We do

all this by using the models of syntax and behaviour that were developed in the previous chapter.

We begin, in Section 8.1, by providing a notion of rule structure for name-passing systems. As

we explain, these rule structures can be understood as nominal logic formulae. Thus the problem

of finding a rule format for name-passing systems becomes the problem of finding conditions on

rule structures that ensure that the intended models of the corresponding nominal logic theories

are well-behaved. We introduce these conditions in Section 8.2; we call the resulting format theA-GSOS+ format. This format serves, in particular, to explain the good behaviour of the π-calculus:

its models are nominal ground labelled transition systems, in the sense of Section 7.5, and wide

open bisimilarity is a congruence.

In Section 8.3 we provide examples of rule structures that violate the conditions, and we ob-

serve how the semantics induced by such rule structures may break the requirements of well-

behavedness.

Finally, in Section 8.4, we explain how rule structures give rise to abstract rules and hence to

monad liftings. In this way, we conclude that every system that is induced from a set of rules in theA-GSOS+ format is well-behaved.

8.1 Rules for name-passing

In this section we redevelop the notion of rule structure from Section 6.3.1 in the context of name-

passing systems. The development of that section is not adequate for this context. To see this,

recall (e.g. from Figure 3.3) one of the rules of communication and the rule for scope opening, for

ground transitions in the π-calculus:

p
c̄d
−+π q p′

c(z)
−+π q′

p | p′
τ
−+π q | [d/z]q′

p
c̄z
−+π q

νννz.p
c̄(z)
−+π q

(z 6= c) .

Note that, in the communication rule (on the left) there is an explicit substitution operator; mean-

while, in the rule for scope opening (on the right), we see that the syntax and also the labels include

binding operators, while the rule has side conditions about the distinctness of names. None of these

aspects can be accomodated within the rule structures of Section 6.3.1, nor indeed within the GSOS

framework of Bloom et al. [1995]. Thus we move from the standard algebraic treatment of syntax

used in Section 6.3.1, to the treatment based on nominal sets and nominal substitutions developed

in the previous chapter. Indeed, instead of interpreting the rule structures as theories of first or-

der logic, as in Section 6.3.1, rule structures for name-passing are to be understood as theories of

nominal logic.

197

198 Operational Semantics for Name-Passing

We introduce the notion of rule structure for name-passing in Section 8.1.1. Section 8.1.2 is

dedicated to an exposition of the intended meaning of rule structures.

Throughout this section we fix a nominal algebraic signature S (in the sense of Definition 7.4.1).

8.1.1 Rule structures for name passing

In this subsection we introduce and recall various notions, culminating, in Definition 8.1.1, with

the notion of rule structure for name-passing. We begin by recalling our treatment of raw syntax,

and introduce a simple mechanism for handling the explicit substitutions that appear in rules. We

then discuss why it is that rule structures are built from raw syntax, rather than abstract syntax with

α-equivalence. Before introducing rule structures, we recall a set of labels for ground behaviour,

and some basic properties of such labels.

Raw syntax. In Section 7.4 we showed how, for a given set N of name metavariables, the nominal

signature S induces an endofunctor ΣS,SetN
on Set such that for any set X, the set ΣS,SetN

X contains

all basic expressions of raw syntax, of the form

op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

x j

�

j∈[1,art(op)]

�

with name metavariables ci , a
j

k
taken from the set N and term variables x j taken from the set X.

Recall that the suggestive notation D
a

j

k

E
k∈[1,dep j(op)]

x j

denotes simply a tuple (a
j

1, . . . ,a
j

dep j(op)
,x j); there is no quotient or α-equivalence involved in the

raw syntax.

In the introduction to this section we noted that explicit substitutions may appear in the conclu-

sion of the rule. To accommodate this, we will sometimes add to the nominal algebraic signature S

the nominal substitution operator sub, from Section 7.3, with

arn(sub) = 1 art(sub) = 1 dep1(sub) = 1 .

We write (S+ sub) for the resulting signature. This corresponds to the combination of the nominal

logic signature for S with the signature for the theory of nominal substitutions. It makes no sense,

though, to consider Axioms NOMSUB-1–NOMSUB-3 in this raw syntax setting.

The free monad TS+sub,SetN
on the endofunctor ΣS+sub,SetN

exists. The set TS+sub,SetN
(X) contains

all compound terms of raw syntax with explicit substitutions and with name variables taken from

the set N and term variables from the set X.

Discussion: Raw syntax in the rules. We use raw syntax in the definition of rule structures, as

opposed to α-equivalence classes of syntax. This is because it is not immediately clear how to define

α-equivalence for expressions that have free term variables. Indeed consider one of the π-calculus

rules for transition under restriction, written here according to the conventions of syntax in SetN.

x
c!d
−+ y

restrct(〈a〉x)
c!d
−+ restrct(〈a〉y)

(c 6= a 6= d)

Suppose we were to consider 〈a〉x as an α-equivalence class using the machinery of nominal sets

introduced in Chapter 7. A first question is: What is the support of x? If the support is empty, then

restrct(〈a〉x) = restrct(〈c〉x)

8.1. Rules for name-passing 199

and so we equally have the rule

x
c!d
−+ y

restrct(〈c〉x)
c!d
−+ restrct(〈a〉y)

(c 6= a 6= d)

which was certainly not intended. On the other hand, if the term variable x has non-empty support

then there must be a permutation σ of name variables such that σ • x is also a term variable and

such that σ • x 6= x. Such relationships between term variables would surely make for a very

elaborate notion of rule [but see e.g. Urban et al., 2004].

Thus, while α-equivalence is fundamental to our treatment of syntax of process terms, the rules

that we consider will not involve any α-equivalence.

In the following subsection we will explain how rules can be understood from the standpoint

of nominal logic (as recalled in Section 7.2). Nominal logic is simply a first-order theory, so the

logical equality of the theory, which involves an axiomatisation of α-equivalence, is stronger than

syntactic equality, which treats syntax as raw.

Labels. In (3.3.18) we introduced the set of ground labels as

Labg =N ×N + N ×N + N ×N + 1 .

Our rules will involve name metavariables, and so it is helpful to parameterise the set of labels, by

the set of names under consideration. To this end, we define, for each set N, the set of labels

Labg(N) = N× N + N× N + N× N + 1 .

As with the set of (3.3.18), we consider the components as describing input of a fresh name (writ-

ten c?(a)), output (c!a), bound output (c!(a)), and silent action (τ). Note that here it is essential

to distinguish between free and bound outputs, because it does not make sense to refer to the free

names of a term metavariable.

For each label l ∈ Labg(N), we define the sets of free names fn(l) of l and bound names bn(l)

of l in the following table.

l fn(l) bn(l)

c?(a) {c} {a}

c!d {c,d} ;

c!(a) {c} {a}

τ ; ;

The function bn is essentially the assignment for π-calculus ground labels provided in Section 3.1.2.

Rule structures.

Definition 8.1.1. Let (X,N) be a pair of sets, with N finite. A premise structure over (X,N) is an

element of the set X× Labg(N)× X. A conclusion structure over (X,N) is a tuple in the set

ΣS,SetN
(X)× Labg(N)× TS+sub,SetN

(X).

(Notice that in the last component of the product, the signature (S+sub) with explicit substitutions

is used.)

A rule structure for name-passing over (X,N) is a pair of a finite set of premise structures

over (X,N) and a conclusion structure over (X,N).

200 Operational Semantics for Name-Passing

8.1.2 Understanding rule structures

The reader may already have an inkling of the intended meaning of the rule structures of Defini-

tion 8.1.1. The purpose of this subsection is to develop this further. First, we explain our intention

that rule structures be interpreted as having implicit side conditions about the freshness of names.

We then provide some examples of rule structures, including, in Figure 8.1, rule structures describ-

ing the π-calculus. Apart from the implicit side conditions, the rule structures essentially follow the

presentation of the π-calculus of Figure 3.3. We conclude this subsection by making the interpre-

tation of rule structures precise, by exposing rule structures as a restricted class of nominal logic

formulae.

Implicit side conditions. In the introduction to this section we observed that rules for name-

passing systems often include side conditions. For instance, consider the π-calculus rules for paral-

lel transitions and scope opening. (The rules here are essentially as they appear in Figure 3.3, only

we use a more formal syntax and the nominal logicBoperator.)

x
c!a
−+ y

restrct(〈a〉x)
c!(a)
−+ y

(a 6= c)
x′

c!(a)
−+ y′

par(x,x′)
c!(a)
−+ par(x,y′)

(aBx)

These side conditions, insisting on freshness and distinctness of names, are the only kinds of side

conditions that need to be considered. To make matters simpler, we will make these side conditions

implicit by always imposing the following side conditions:

1. All names must be as distinct as they are in the rule.

2. Bound data in the conclusion label must be fresh for the conclusion source.

This will all be made precise below, when we introduce an interpretation of a rule structure as a

nominal logic formula.

Because the side conditions are always implicit, in order to describe rules without side condi-

tions it may be necessary to consider several versions of the rule together; examples are provided in

the following paragraph. Including several versions is rather inconvenient, and one might concoct

a notion of ‘rule structure with explicit side conditions’ from which a family of rule structures with

implicit side conditions could be derived via a standard procedure.

Examples. As a first example we show how part of the π-calculus rule for communication arises

as a rule structure for the nominal algebra signature PI introduced in (7.4.2). The term variables

for this rule structure are X =
�
x,x′,y,y′

	
and the name metavariables are N = {a,c,d}. There are

two premises

(x,c!d,y) and (x′,c?(a),y′)

and the conclusion is the triple

�
par(x,x′),τ,par(y, [d/a]y′)

�
.

We will often write rule structures in a more suggestive way, with the premises above and the

conclusion below, as follows.

x
c!d
−+ y x′

c?(a)
−+ y′

par(x,x′)
τ
−+ par(y, [d/a]y′)

For this rule structure, the implicit side conditions amount to requiring that a 6= c, a 6= d and c 6= d.

One would need a separate rule structure to handle the case where c= d.

8.1. Rules for name-passing 201

Further examples of rules from the π-calculus are given in Figure 8.1. Because the side con-

ditions are implicit it is not necessary to include side conditions such as “c 6= d” in the rule for

mismatch, or “aBx” in the rule for transitions in parallel. On the other hand it is often necessary

to include several copies of rules. For example, in Figure 8.1, we have included one rule for output

of data that is distinct from the channel, and one rule for output of data that is the same as the

channel. For free output under a mismatch operator, a full presentation would require seven rules

to describe all the possible coincidences of variables.

As mentioned in Section 3.1, we have not explicitly introduced any facilities for infinitary be-

haviour in this thesis. There are various ways of adding replication to the calculus, and we note that

the semantics suggested by Sangiorgi and Walker [2001, Table 1.5] does fit into our rule format.

Interpretation in nominal logic. Suppose that we have a set R of rule structures. This set

induces a nominal logic theory, in the sense of Section 7.2. The theory has one basic sort, X, and

the signature has all the function symbols of the signature S together with the nominal substitution

operator sub, and also four relation symbols:

• a bound input transition relation symbol

�
−?(−)
−+

�
with arity (X,N,N,X);

• an output transition relation symbol

�
−!−
−+

�
with arity (X,N,N,X);

• a bound output transition relation symbol

�
−!(−)
−+

�
with arity (X,N,N,X);

• a silent transition relation symbol
�

τ
−+
�

with arity (X,X).

(The reader will recognise these relation symbols as the symbols in the theory of nominal ground

transition systems, introduced in Definition 7.5.5.)

The axioms of the theory are, firstly, the axioms NOMSUB-1–3 of nominal substitutions, and,

secondly, axioms corresponding to the rule structures in R , which are determined as follows.

Consider sets X and N, with N finite. For each rule structure R over (X,N) in R , we define a

nominal logic formula ΦR, with free term variables in X and free name variables in N, as follows.

Let Prem be the set of premises of R, and let (src,l,tar) be the conclusion of R. As such, src

and tar can be considered as expressions of nominal logic, of sort X, with free term variables in X

and free name variables in N. Then

ΦR =



∧

c,d∈N
c 6=d

c 6= d ∧
∧

c∈bn(l)

cBsrc ∧
∧

(x,l,y)∈Prem

x
l
−+ y


 =⇒ src

l
−+ tar .

For each rule structure R over (X,N) in R , we enumerate the sets of variables, say

X=
¦
x1, . . . ,x|X|

©
N=

¦
a1, . . . ,a|N|

©

and include, in the theory associated to R , an axiom

∀x1, . . . ,x|X| : X. ∀a1, . . . ,a|N| : N. ΦR .

Models of rule structures. As in Section 6.3.1, there is an ‘intended’ model of the nominal logic

theory associated with a set R of rules, that is particularly important. This model has a carrier

set TS,Nom;, the nominal set of terms of the signature S. An S-structure is given by the structure

map ΣS,NomTS,Nom; → TS,Nom;. Recall, from Section 7.4, that the monad TS,Nom on Nom lifts along

202 Operational Semantics for Name-Passing

(a) Silent

X= {x}, N= ;
—

tau(x)
τ
−+ x

(b) Input

X= {x}, N= {a,c}
—

inp(c, 〈a〉x)
c?(a)
−+ x

(c) Output of the channel name

X= {x}, N= {c}

—

out(c,c,x)
c!c
−+ x

(d) Output of a name distinct from the channel

name

X= {x}, N= {c,d}

—

out(c,d,x)
c!d
−+ x

(e) Match for input transitions where channel

is match name

X=
�
x,y
	
, N= {a,c}

x
c?(a)
−+ y

match(c,c,x)
c?(a)
−+ y

(f) Mismatch for input transitions with channel

as second mismatch name

X=
�
x,y
	
, N= {c,d,e}

x
d?(e)
−+ y

mismatch(c,d,x)
d?(e)
−+ y

(g) Sum for bound output on the left

X=
�
x,x′,y

	
, N= {a,c}

x
c!(a)
−+ y

sum(x,x′)
c!(a)
−+ y

(h) Parallel for bound output on the right

X=
�
x,x′,y′

	
, N= {a,c}

x′
c!(a)
−+ y′

par(x,x′)
c!(a)
−+ par(x,y′)

(i) Communication with output on left, where

data differs from channel

X=
�
x,x′,y,y′

	
, N= {a,c,d}

x
c!d
−+ y x′

c?(a)
−+ y′

par(x,x′)
τ
−+ par(y, [d/a]y′)

(j) Restriction for bound output

X=
�
x,y
	
, N= {a,b,c}

x
c!(b)
−+ y

restrct(〈a〉x)
c!(b)
−+ restrct(〈a〉y)

(k) Scope closure for output on left

X=
�
x,x′,y,y′

	
, N= {a,c}

x
c!(a)
−+ y x′

c?(a)
−+ y′

par(x,x′)
τ
−+ restrct

�
〈a〉par(y,y′)

�

(l) Scope opening

X=
�
x,y
	
, N= {a,c}

x
c!a
−+ y

restrct(〈a〉x)
c!(a)
−+ y

Figure 8.1: Examples of rule structures for the π-calculus. Note that the side conditions are implicit.

8.2. Rules that induce well-behaved semantics 203

the forgetful functor NomSub→ Nom, and so we have a nominal substitution structure on TS,Nom;.

The transition relations of the model are the smallest (equivariant) relations that satisfy axioms

arising from the rule structures in R . Thus the intended model of a set R of rule structures is in

fact the initial model in the category of models for the nominal logic theory associated with R .

8.2 Rules that induce well-behaved semantics

In this section we introduce conditions on rule structures that, as will be shown in Section 8.4,

ensure that the intended model will be well-behaved. We begin, in Section 8.2.1, with a discus-

sion of appropriate notions of well-behavedness for name-passing systems. Following this, in Sec-

tion 8.2.2, we translate the conditions of the positive GSOS format to the setting of name-passing

systems. These are not the only conditions needed, however, and in Sections 8.2.3 and 8.2.4 we de-

velop some properties of rule structures that are used in Section 8.2.5 to define further conditions

on rule structures, resulting in the A-GSOS+ format.

Throughout this section we continue to fix an arbitrary nominal algebraic signature S, and we

consider finite sets X and N, and an arbitrary rule structure R over (X,N). Let Prem be the set of

premises of R, and let (src,l,tar) be the conclusion of R; so we have an operator op ∈OpS and

ci ∈ N (for i ∈ [1, arn(op)])

x j ∈ X (for j ∈ [1, art(op)])

a
j

k
∈ N (for j ∈ [1, art(op)], k ∈ [1,dep j(op)])

such that

src= op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

x j

�

j∈[1,art(op)]

�
.

Here, as in Section 6.3.3, we underline the variables and the operator symbol that appear in the

conclusion source. We refer to the elements ci as free name variables and the elements a
j

k
as binding

name variables.

8.2.1 Notions of well-behavedness

In Section 6.3, we developed a rule format that ensured that the induced semantics would be well-

behaved; there, that meant that bisimilarity would be a congruence. This is certainly not the only

notion of well-behavedness that one can take for labelled transition systems. For instance, in their

presentation of the GSOS format, Bloom et al. [1995, Sec. 5] take as a basic property of transition

systems that they are finitely branching.

For name-passing systems, there are yet more notions of well-behavedness available. In Sec-

tion 3.1.3 we recalled four notions of bisimilarity for the π-calculus; if we are to insist that one is a

congruence, which one should it be? Neither early, late nor ground bisimilarity is a congruence for

the full π-calculus, so we will not use them here. Thus we are left with the simpler notion of wide

open bisimilarity.

Another consideration is that, in Chapters 3 and 4, and Section 7.5, we have axiomatised

various properties of transition systems for name-passing. Moreover, the intended model of the

nominal logic theory associated with a class of rule structures will certainly provide a structure for

the theory of nominal ground labelled transition systems (Definition 7.5.5), and so it makes sense

to insist that this intended model is also a model of the theory of nominal ground labelled transition

systems.

In summary, we say that the intended model of a class of rule structures is well-behaved if

(a) wide open bisimilarity is a congruence, and (b) Axioms Ag1 and Ag2 of Figure 7.2 are satisfied.

204 Operational Semantics for Name-PassingA-GSOS+-1. Every element of X appears in the conclusion source or as a premise

target.

∀x ∈ X.

∃ j ∈ [1, ar(op)]. x j = x

∨ ∃y ∈ X, l ∈ Labg(N). (y,l,x) ∈ Prem

!A-GSOS+-2. The source of each premise appears in the conclusion source.

∀(x,l,y) ∈ Prem. ∃ j ∈ [1, ar(op)]. x j = xA-GSOS+-3. The target of any premise does not appear in any other premise.

∀(x,l,y), (x′,l′,y′) ∈ Prem. y= y′ =⇒ x= x′ ∧ l= l′A-GSOS+-4. The target of any premise does not appear in the conclusion source.

∀(x,l,y) ∈ Prem, j ∈ [1, ar(op)]. y 6= x jA-GSOS+-5. Each variable in the conclusion source is distinct.

∀ j, j′ ∈ [1, ar(op)]. x j = x j′ =⇒ j = j′

Figure 8.2: Conditions on a rule structure for name-passing. Notation is defined at the beginning

of Section 8.2.

8.2.2 First conditions on rule structures

We introduce Conditions A-GSOS+-1–5 (Figure 8.2) on rule structures. The reader will recognise

Conditions A-GSOS+-1–5 as direct translations of Conditions GSOS+-1–5 of Figure 6.4.

Alone, Conditions A-GSOS+-1–5 are insufficient to guarantee well-behavedness. Instead, they

allow us to define further conditions from which we will be able to derive such a result.

For the rest of this section we assume that Conditions A-GSOS+-1–5 hold of the ambient rule

structure R. The following result — which is essentially (6.3.6) — is useful when defining functions

with domain X, the set of term variables.

Proposition 8.2.1. The function

[1, art(op)] +
∐

j∈[1,art(op)]

§
(x,l,y) ∈ Prem

��� x= x j

ª
// X

inl(j)
� // x j

inr(inj j(x,l,y)) � // y

is a bijection.

8.2.3 Associating names with components of the rule

We now introduce a variety of functions that associate name variables to components of the rule

structure. By doing this we are able to approximate the variables that may appear once the term

variables have been instantiated.

8.2. Rules that induce well-behaved semantics 205

We define a function BN : X→ P (N) which assigns to each term variable x ∈ X a set of names

which are ‘bound’ in x in the rule structure. We use the bijection introduced in Prop. 8.2.1 to make

this definition.

• For j ∈ [1, art(op)], we let BN(x j) =

§
a

j

k

��� k ∈ [1,dep j(op)]

ª
.

• For (x,l,y) ∈ Prem and each j ∈ art(op) such that x= x j:

we let BN(y) =

§
a

j

k

��� k ∈ [1,dep j(op)]

ª
∪ bn(l).

By way of example consider rule structure (j) of Figure 8.1, for bound output under restriction.

There, we have BN(x) = {a} while BN(y) = {a,b}.

We will also find it useful to refer to the set BN⊆ N of all names that appear in binding position

anywhere in the premise labels or in the conclusion source, given by

BN=
⋃
{BN(x) | x ∈ X} .

For example: in the case that R is rule structure (j) of Figure 8.1, we have BN= {a,b}.

We define a function FN : X→ P (N) which assigns to each term variable a set of names to be

thought of as ‘those names that can be assumed free in the expression to which the variable is

instantiated’.

First, define a set FN⊆ N of names ‘free in the conclusion source or the premises’ by

FN=

§
c1, . . . ,carn(op)

ª
∪

⋃

j∈[1,art(op)]

l∈Labg(N)

§
fn(l)− BN(x j)

��� ∃y ∈ X. (x j ,l,y) ∈ Prem

ª
.

(8.2.2)

Next we define the function FN : X→P (N) by

FN(x) = FN∪ BN(x) . (8.2.3)

We extend this function FN to raw terms with explicit substitutions: let

FN : TS+sub,SetN
(X)→P (N)

be the unique function satisfying (8.2.3) and

FN

�
op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

t j

�

j∈[1,art(op)]

��

=
�
ci | i ∈ [1, arn(op)]

	
∪

⋃

j∈[1,art(op)]

�
FN(t j)−

§
a

j

k

��� k ∈ [1,dep j(op)]

ª�

for every op ∈ OpS+sub, all ci (for i ∈ [1, arn(op)]), all a
j

k
(for j ∈ [1, arn(op)], k ∈ [1,dep j(op)]),

and all x j ∈ X (for j ∈ [1, art(op)]).

Consider some examples:

• When R is the input rule structure, item (b) of Figure 8.1, then FN = {c} while BN(x) = {a},

and so FN(x) = {a,c}.

• When R is rule structure (h) of Figure 8.1, for bound output under parallel composition,

we have FN = {c}, and FN(x) = FN(x′) = {c}, while FN(y′) = {a,c}. It follows that

FN(par(x,y′)) = {a,c}.

• When R is rule structure (i) of Figure 8.1, for communication, we have FN= {c,d}, and

FN(x) = FN(x′) = FN(y) = {c,d} while FN(y′) = {a,c,d} .

As for the target of the conclusion, we have FN([d/a]y′) = {c,d} and so

FN(par(y, [d/a]y′)) = {c,d} .

206 Operational Semantics for Name-Passing

8.2.4 Well-formedness of terms

We now define a predicate on raw terms that will be used to ensure that the binding names in the

conclusion source and in the premises are not used to bind ‘different’ variables in the conclusion

target. We define a predicate WF on TS+sub,SetN
(X) inductively, as follows.

• For x ∈ X, we always let WF(x).

• For t = op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

t j

�

j∈[1,art(op)]

�
, we let WF(t) if for all j ∈

[1, art(op)] we have WF(t j), and furthermore for all k ∈ [1,dep j(op)], if a
j

k
∈ BN then for all

x appearing in t j we have a
j

k
∈ FN(x).

For instance, suppose that R is rule structure (i) of Figure 8.1, for communication, and consider the

raw term [d/a]y′ that appears in the conclusion target. By definition we have WF(y′). The name

metavariable a appears in binding position, and it is in BN, and so to conclude that WF([d/a]y′)

we observe that a ∈ FN(y′).

On the other hand, the raw term [d/a]y does not satisfy WF; although WF(y) by definition,

the name metavariable a is in BN while a 6∈ FN(y). Thus the following rule structure is bizarre: the

name variable a binds in y′ through the premise transition, but in the conclusion target, it is used

to bind in y.

x
c!d
−+ y x′

c?(a)
−+ y′

par(x,x′)
τ
−+ par([d/a]y,y′)

8.2.5 The A-GSOS+ format

We are now in a position to introduce the final set of conditions on the rule structures that we

consider. Conditions A-GSOS+-6–12 on rule structures are presented, using the function FN and the

predicate WF, in Figure 8.3.

Definition 8.2.4. A rule structure is in A-GSOS+ format if it satisfies Conditions A-GSOS+-1–12 of

Figures 8.2 and 8.3.

8.3 The conditions are necessary: Examples and counter-examples

It is straightforward to check that all the rule structures for the π-calculus given in Figure 8.1 are

in the A-GSOS+ format. In this section we will consider some rule structures that are not in theA-GSOS+ format, and explain why they should indeed be disallowed.

Conditions A-GSOS+-1–5 are very similar to Conditions GSOS+-1–5, and as such they are neces-

sary for well-behavedness, specifically for congruence of bisimilarity, for the reasons discussed by

Bloom et al. [1995, App. A]. So we concentrate here on Conditions A-GSOS+-6–12.

As we now explain, all these conditions, bar A-GSOS+-10, are necessary if wide open bisimilarity

is to be a congruence. Some of the conditions also help to ensure that Axioms Ag1 and Ag2 hold of

the induced system.

In what follows, we will make use of the following two π-calculus terms

t1 = nil t2 =match(a, b,nil)

which are wide open bisimilar. Neither term has any behaviour, under any renaming; the only

difference is that t1 has no free name variables while t2 has a and b free.

8.3. The conditions are necessary: Examples and counter-examples 207A-GSOS+-6. The binding variables in the conclusion source are not also free.

∀ j ∈ [1, art(op)], k ∈ [1,dep j(op)]. a
j

k
6∈ FNA-GSOS+-7. For each term parameter in the conclusion source, the binding variables

are all distinct.

∀ j ∈ [1, art(op)], k, k′ ∈ [1,dep j(op)]. a
j

k
= a

j

k′
=⇒ k = k′A-GSOS+-8. Bound names in premise labels are fresh for the premise sources.

∀(x,l,y) ∈ Prem. bn(l)∩ FN(x) = ;A-GSOS+-9. Free names of the conclusion label appear in the conclusion source or

in the premises.

fn(l)⊆ FNA-GSOS+-10. Bound names of the conclusion label are fresh for the conclusion source.

bn(l)∩ FN= ;A-GSOS+-11. Renamings in the conclusion target only affect relevant names.

WF(tar)A-GSOS+-12. No names become unbound in the induced transition.

FN(tar)⊆ FN∪ bn(l)

Figure 8.3: Further conditions on a rule structure for name-passing.

Condition A-GSOS+-6. This condition helps to ensure that bisimilarity is a congruence. Suppose

that we add an operator if-fresh to the π-calculus, with arities given by

arn(if-fresh) = 1 art(if-fresh) = 1 dep1(if-fresh) = 1 .

Let the semantics of if-fresh be given by the following rule structure, with term variables X=
�
x,y
	

and name variable N= {a}.

x
τ
−+ y

if-fresh(a, 〈a〉x)
τ
−+ y

(8.3.1)

Consider this extension of the π-calculus, under the nominal logic semantics proposed in Sec-

tion 8.1.2. If aB〈b〉 x then the term if-fresh(a, 〈b〉 x) behaves exactly as x with regard to silent

actions; otherwise if-fresh(a, 〈b〉 x) cannot reduce.

The context if-fresh(a, 〈b〉 tau(−)) distinguishes t1 from t2. For

if-fresh(a, 〈b〉 tau(t1)) = if-fresh(a, 〈b〉 tau(nil)) = if-fresh(a, 〈a〉 tau(nil)) .

(The first equality is the defn. of t1; the second equality is α-equivalence.) So if-fresh(a, 〈b〉 tau(t1))

can perform a silent action. On the other hand, if-fresh(a, 〈b〉 tau(t2)) cannot perform a silent action

because there is no term t with 〈b〉 tau(t2) = 〈a〉 tau(t).

208 Operational Semantics for Name-Passing

Condition A-GSOS+-6 disallows the rule structure (8.3.1), because FN= {a} and a also appears

as a binder in the conclusion source.

The alternative rule structure
x

τ
−+ y

if-fresh(b, 〈a〉x)
τ
−+ y

is in the A-GSOS+ format but gives rise to a different semantics. If we introduce this rule structure

instead of (8.3.1) then the term if-fresh(b, 〈a〉 x) can perform exactly the silent actions of x , whether

or not a = b. The implicit side condition, which enforces that a 6= b, is somewhat redundant, since

for any b ∈ N , and any π-calculus term t, there is a name a ∈ N and a term t ′ such that

if-fresh(b, 〈b〉 t) = if-fresh(b, 〈a〉 t ′) .

Condition A-GSOS+-7. This condition helps to ensure that bisimilarity is a congruence, for a sim-

ilar reason to that given for Condition A-GSOS+-6. Suppose that we add an operator if-fresh2 to the

π-calculus, with arities given by

arn(if-fresh2) = 0 art(if-fresh2) = 1 dep1(if-fresh2) = 2 .

Let the semantics of if-fresh2 be given by the following rule structure, which clearly violates Con-

dition A-GSOS+-7. The rule structure has term variables X=
�
x,y
	

and a name variable N= {a}.

x
τ
−+ y

if-fresh2(〈a a〉x)
τ
−+ y

Informally, if bB〈a〉 x then the term if-fresh2(〈b a〉 x) behaves exactly as x with regard to silent

actions; otherwise if-fresh(〈b a〉 x) cannot reduce.

The context if-fresh2(〈b a〉 tau(−)) distinguishes t1 from t2. For

if-fresh2(〈b a〉 tau(t1)) = if-fresh2(〈b a〉 tau(nil)) = if-fresh2(〈a a〉 tau(nil))

and so the term if-fresh2(〈b a〉 tau(t1)) can perform a silent action, while the term if-fresh2(〈b a〉 tau(t2))

cannot.

Condition A-GSOS+-8. Condition A-GSOS+-8 is necessary to ensure that bisimilarity is a congru-

ence, as the following example illustrates. Suppose we add an operator tau-if-bout to the π-calcu-

lus, with arities given by

arn(tau-if-bout) = 1 art(tau-if-bout) = 1 dep1(tau-if-bout) = 0 .

Let the semantics of tau-if-bout be given by the following rule structure, which has term vari-

ables X=
�
x,y
	

and name variables N= {a,c}.

x
c!(a)
−+ y

tau-if-bout(a,x)
τ
−+ x

(8.3.2)

So if a process x can perform a bound output of the specific value a then tau-if-bout(a, x) can

perform a silent action.

Now, the context tau-if-bout(a, restrct(〈b〉out(c, b, (−)))) can distinguish t1 from t2. For

restrct(〈b〉out(c, b, t1)) can perform a bound output (of a) on channel c, while restrct(〈b〉out(c, b, t2))

cannot.

Condition A-GSOS+-8 disallows the rule structure of (8.3.2) because FN(x) = {a,c} while a also

appears as a binder in the premise label.

8.3. The conditions are necessary: Examples and counter-examples 209

Condition A-GSOS+-9. In a moment we will explain why Condition A-GSOS+-9 is necessary to

ensure that wide open bisimilarity is a congruence; first we illustrate how Condition A-GSOS+-9

helps to enforce Axiom Ag1. Without this condition we could violate Axiom Ag1 by adding an

operator noise to the π-calculus, with arities given by

arn(noise) = 0 art(noise) = 0

and with semantics given by the following rule structure, that violates Condition A-GSOS+-9. The

rule structure has no term variables and has name variables N= {c,d}.
—

noise
c!d
−+ noise

The process noise will repeatedly output data on any distinct channel, violating Axiom Ag1.

Indeed, Conditions A-GSOS+-1–A-GSOS+-12 enforce that any nullary operator (that takes no pa-

rameters) can only perform silent actions in the intended model.

We now introduce a more sophisticated example to illustrate that Condition A-GSOS+-9 is nec-

essary if we are to guarantee that wide open bisimilarity is a congruence. Consider an operator

bout-to-out with arities

arn(bout-to-out) = 0 art(bout-to-out) = 1 dep1(bout-to-out) = 0

and with semantics given by the following rule structure, which has term variables X=
�
x,y
	
, and

has name variables N= {a,c}.

x
c!(a)
−+ y

bout-to-out(x)
c!a
−+ y

(8.3.3)

So: whenever x can perform a bound output then bout-to-out(x) can perform a free output with

the same channel and data.

The induced behaviour will once again violate Axiom Ag1, but here, moreover, wide open bisim-

ilarity will not be a congruence: the context bout-to-out(restrct(〈a〉out(c, a, (−)))) will distinguish

between t1 and t2. For the term

bout-to-out(restrct(〈a〉out(c, a, t1))) = bout-to-out(restrct(〈a〉out(c, a,nil)))

= bout-to-out(restrct(〈b〉out(c, b,nil)))

can output b on channel c, while bout-to-out(restrct(〈a〉out(c, a, t2))) cannot output b.

Condition A-GSOS+-9 disallows the rule structure of (8.3.3) because FN= {c}while fn(l) = {c,a}.

Condition A-GSOS+-10. In the presence of the other conditions, Condition A-GSOS+-10 is redun-

dant — indeed, we will not use this condition in the proofs of Section 8.4. Moreover, a rule that

violates this condition can never be applied, according to the nominal logic semantics introduced

in Section 8.1.2. By way of example, consider an operator out-to-bout with arities

arn(out-to-bout) = 0 art(out-to-bout) = 1 dep1(out-to-bout) = 0 .

Suppose the semantics of out-to-bout is given by the following rule, which violates ConditionA-GSOS+-10. Term variables are X=
�
x,y
	

and name variables are N= {c,d}.

x
c!d
−+ y

out-to-bout(x)
c!(d)
−+ y

The implicit side conditions on this rule are that (i) c 6= d, and (ii) dBx. So: for any π-calculus

term t, out-to-bout(t) can only progress if t can perform a free output of fresh data. But Axiom Ag1

says that free output data must not be fresh, and so the term out-to-bout(t) can do nothing — the

same behaviour would be achieved if the rule structure was omitted.

210 Operational Semantics for Name-Passing

Condition A-GSOS+-11. The WF construction that is used in Condition A-GSOS+-11 ensures that

bisimilarity will be a congruence. To see this, consider an operator strange with

arn(strange) = 0 art(strange) = 2 dep1(strange) = 1 dep1(strange) = 0 .

Consider a semantics described by the following rule structure, which violates ConditionA-GSOS+-11. The rule structure has term variables X=
�
x,x′

	
and name variable N= {a}.

—

strange(〈a〉x,x′)
τ
−+ restrct(〈a〉par(x,x′))

So the scope of the binder a can extrude during a τ transition, to include x′. The context

strange(〈b〉 (−),out(c, a,nil)) distiguishes between t1 and t2. For

strange(〈b〉 t1,out(c, a,nil)) = strange(〈b〉nil,out(c, a,nil))

= strange(〈a〉nil,out(c, a,nil))

and so strange(〈b〉 t1,out(c, a,nil)) can perform a silent action and follow this with a bound output

on channel c; the term strange(〈b〉 t2,out(c, a,nil)) cannot perform this sequence of actions.

Condition A-GSOS+-12. Condition A-GSOS+-12 ensures both that Axiom Ag2 holds of the induced

transition system, and also that wide open bisimilarity will be a congruence. Consider the se-

mantics described by the following rule structure, which has a term variable X = {x} and a name

variable N= {a}. —

restrct(〈a〉x)
τ
−+ x

(8.3.4)

Informally: restrictions can be silently forgotten. This behaviour violates Axiom Ag2 because the

name a is fresh for the term restrct(〈a〉out(c, a,nil)), and this term can perform a silent action to

become the term out(c, a,nil), for which a is no longer fresh.

Moreover, wide open bisimilarity will not be a congruence for the induced semantics: the

context restrct(〈a〉out(c, a, (−))) can distinguish t1 from t2. For we have

restrct(〈a〉out(c, a, t1)) = restrct(〈a〉out(c, a,nil)) = restrct(〈b〉out(c, b,nil))

so that restrct(〈a〉out(c, a, t1)) can perform a silent action and follow this with output of b on c.

But restrct(〈a〉out(c, a, t2)) can perform no such sequence of transitions.

The rule structure in (8.3.4) violates Condition A-GSOS+-12 because FN= bn(τ) = ;, while

FN(tar) = FN(x) = {a}.

8.4 Inducing abstract rules from rule structures

In the final section of this chapter, we explain how a set R of rule structures induces an abstract

rule

¹Rº : ΣS,Nom(|−| × Bg|−|)→ BgTS,Nom|−| (8.4.1)

in the sense of Definition 6.2.11, for which the induced monad lifting corresponds to the intended

model of the nominal logic theory induced byR introduced in Section 8.1.2. Here, we write |−| for

the forgetful functor NomSub→ Nom. The endofunctor Bg is the endofunctor on Nom for ground

bisimulation considered in equations 7.1.7; recall that we have Bg =Psb Lg.

Most of the work involved is in deriving a natural transformation of the form (8.4.1) for a

single rule structure. In Section 8.4.1 we explain how a single rule structure gives rise to a family

of functions in the shape of (8.4.1); we delay proving that these functions are equivariant and that

the family is natural until Section 8.4.3. Central to the derivation of this family is the notion of

8.4. Inducing abstract rules from rule structures 211

valuation, which amounts to the usual notion of valuation for the nominal logic formula ΦR for a

rule structure R. Section 8.4.2 is dedicated to exploring a special class of valuations, which are

useful in the proofs of Section 8.4.3.

We conclude this section in Section 8.4.4 by explaining how this derivation of abstract rules

extends to sets of rule structures, and by explaining why one can deduce that the intended model

is well-behaved.

In the first three subsections of this section we fix a rule structure R in the A-GSOS+ format. As

in Section 8.2, we let Prem be the set of premises of R, and let (src,l,tar) be the conclusion of R.

Then we have an operator op ∈OpS and

ci i ∈ [1, arn(op)]

x j j ∈ [1, art(op)]

a
j

k
j ∈ [1, art(op)], k ∈ [1,dep j(op)]

such that

src= op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

x j

�

j∈[1,art(op)]

�
.

8.4.1 Instantiating parts of the rule

We begin this subsection by introducing a notion of valuation; this is a valuation for the nominal

logic formula ΦR that was associated to the rule R in Section 8.1.2, with the extra requirement

that the nominal set in which the term variables are valued must be equipped with a nominal

substitution structure.

We then proceed to explain how such a valuation enables one to create instances of terms of

raw syntax, and explicit substitutions. One can also use the valuation to instantiate behaviours,

and the premises of R in particular. Thus we are able to recognise when a valuation matches with

an element of the domain, ΣS,Nom(|X | × Bg|X |), of the natural transformation of (8.4.1). We are

further able to use a valuation to instantiate the conclusion label and conclusion target to obtain

an element of the codomain, BgTS,Nom|X |, of the natural transformation of (8.4.1).

Valuations. A valuation V of the pair (N,X) into a nominal substitution X ∈ NomSub is given by

two functions of sets: a valuation of name metavariables, Vn : N → N , and a valuation of term

variables, Vt : X→ X . (That is, Vt is a function from the set X to the set underlying X .)

Instantiating terms. A valuation V into some X can be used to instantiate terms of raw syntax,

with explicit substitutions, into abstract syntax. This is done via the composite function

TS+sub,SetN
(X)

��

TS+sub,SetN
(UNS

S X)

��

UNS
S TS+sub,NomSub(X)

��

UNS
S TS,NomSub(X)

��

UN
S TS,Nom(U

NS
N X)

(8.4.2)

mapping a raw term with explicit substitutions, and with name metavariables from N and term

variables from X, into an abstract term with the explicit substitutions carried out, and with variables

212 Operational Semantics for Name-Passing

from X . (Here, we are using the forgetful functors UNS
S : NomSub → Set, UN

S : Nom → Set,

and UNS
N : NomSub→ Nom; the last functor is elsewhere denoted |−|.)

The first function in the composite (8.4.2) instantiates the term variables according to Vt, us-

ing the functorial action of TS+sub,SetN
. The second function instantiates the name metavariables,

and quotients by α-equivalence: in Section 7.4 we explained that a function Vn : N → N in-

duces a monad morphism (SetN,TS,SetN
) → (NomSub,TS,NomSub), and it is the natural transforma-

tion TS,SetN
UNS

S → UNS
S TS,Nom which is key to this second function.

The third function in the composite (8.4.2) evaluates the explicit substitutions using the mech-

anism built into the nominal substitution X . Formally, this step can be performed by considering

the unique natural transformation sub♯ : TS+sub,NomSub → TS,NomSub making the following diagram

commute.

ΣS+sub,NomSubTS+sub,NomSub

tS+sub,NomSub

��

ΣS+sub,NomSub(sub♯)
// ΣS+sub,NomSubTS,NomSub

≀

��

ΣS,NomSubTS,NomSub + N × [N]TS,NomSub

(tS,NomSub , subTS,NomSub)

��

TS+sub,NomSub
sub♯

// TS,NomSub

idNomSub

ηS+sub,NomSub

OO

ηS,NomSub

22fffffffffffffffffffffffffffff

(On the right of the diagram, we are using the natural transformation for substitution,

sub :N × [N](−)→ (−), between endofunctors on NomSub.)

The fourth and final function in the composite (8.4.2) arises since, as explained in Sec-

tion 7.4, the monad TS,NomSub is a lifting of the monad TS,Nom along the forgetful func-

tor UNS
N : NomSub→ Nom.

We denote the composite function of (8.4.2) by the symbol V .

Instantiating behaviour. Consider a nominal set X and a name valuation function Vn : N→N .

Every label-element pair (l ∈ Labg(N), x ∈ X) is associated with a behaviour in Lg|X | that we de-

note V (l)(x), and which is given as follows.

If l = c?(d), If l = c!d,

V (l)(x) = injbinp(Vn(c),

Vn(d)

�
(x)). V (l)(x) = injout(Vn(c),Vn(d), x).

If l = c!(d), If l = τ,

V (l)(x) = injbout(Vn(c),

Vn(d)

�
(x)). V (l)(x) = injtau(x).

Instantiating the premises. For each j ∈ [1, art(op)] we use a valuation V into X to instantiate

those premises with source x j, by defining an element of Bg|X | that we notate V (Prem j). We

make this definition by collecting instantiations of all the relevant premises, using the behaviour

instantiation technique of the last paragraph:

V (Prem j) =

§
V (l)(Vt(y))

��� (x j , l,y) ∈ Prem

ª
.

This set is finite, and so certainly support bounded. The intention is that V (Prem j) is the smallest

behaviour that satisfies the premises corresponding to element x j, under the valuation V .

8.4. Inducing abstract rules from rule structures 213

Instantiating the conclusion source and the premises. Consider a nominal substitution X , and

let s be an element of ΣS,Nom(|X |×Bg|X |). We say that a valuation V into X is an instantiation into s

if Vn is injective, and

Vn(bn(l))∩ supp(s) = ;

and if there are β j ∈ Bg|X | for each j ∈ [1, art(op)] such that

s = op


(Vn(ci))i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

�

j∈[1,art(op)]




and such that V (Prem j)⊆ β j, for all j ∈ [1, art(op)].

Instantiating the conclusion label and target. Each valuation V induces an archetypal be-

haviour, denoted V (l,tar), in LgTS,Nom|X |, by

V (l,tar) = V (l)(V (tar)) .

Proposition 8.4.3. Consider a nominal substitution X , and let s be an element of ΣS,Nom(|X | × Bg|X |).

If V is an instantiation into s, and C supports s in ΣS,Nom(|X |×Bg|X |), then C also supports V (l,tar)

in LgTS,Nom|X |.

This basic property, which relies on Condition A-GSOS+-9 and 12, is proved in Appendix 8.A.

Sets of induced behaviours. For each set X and each s ∈ ΣS,Nom(|X | × Bg|X |) we consider the

set ¹RºX (s)⊆ LgTS,Nom|X | of those archetypal results that arise from instantiating the conclusion

label and target using instantiations into s. Precisely, we let

¹RºX (s) =



b ∈ LgTS,Nom|X |

�������

There is an instantiation V

of rule R into s

such that b = V (l,tar)



 . (8.4.4)

It follows immediately from Prop. 8.4.3 that the set ¹RºX (s) ⊆ LgTS,Nom|X | is support bounded

(by supp(s)) — so we know that ¹RºX (s) is in BgTS,Nom|X |.

8.4.2 Valuations that provide fresh binders

In the theory of abstract syntax, there is usually an expectation that binders can be chosen so as to

be sufficiently fresh, and indeed making such choices for binders tends to make reasoning easier.

In this short subsection we explain the extent to which every valuation can be replaced by one that

does provide sufficiently fresh binders.

Throughout this discussion we fix a nominal substitution X .

Definition 8.4.5. Let V be a valuation into X . Let C be finite set of names. When Vn : N→N is

injective and Vn(BN∪ bn(l))∩ C = ; then we say that V provides fresh binders for C .

For any element s ∈ ΣS,Nom(|X | × Bg|X |), if V provides fresh binders for supp(s) then we say

that V provides fresh binders for s.

For any valuation V that provides fresh binders for an element s ∈ ΣS,Nom(|X | × Bg|X |), we have

the following useful property.

214 Operational Semantics for Name-Passing

Proposition 8.4.6. Let V be a valuation that provides fresh binders for an element s ∈ ΣS,Nom(|X | × Bg|X |)

of component type op. Then there exist

ci ∈ N for i ∈ [1, arn(op)]

x j ∈ X , β j ∈ Bg|X | for j ∈ [1, art(op)]

such that

s = op


(ci)i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(x j ,β j)

�

j∈[1,art(op)]


 .

Proof notes. This follows from the definition of name abstraction, and Condition A-GSOS+-7.

Lemma 8.4.7. Consider some s ∈ ΣS,Nom(|X | × Bg|X |), and C ⊆f N . For any instantiation V

into s, there is another instantiation V ′ into s that provides fresh binders for C and which is such

that V (l,tar) = V ′(l,tar).

Appendix 8.B is dedicated to a proof of this lemma. Conditions A-GSOS+-6–8 and A-GSOS+-11–12

are involved here.

Worked example. We illustrate the developments of this subsection. We will suppose that the

rule structure R is the rule (i) of Figure 8.1, for communication, and we will consider the ele-

ment s ∈ ΣS,Nom(|TS,NomSub;| × Bg|TS,NomSub;|) given by

s = par

 �
out(c, d,out(c, a,nil)),

�
injout(c, d,out(c, a,nil))

	�
,

�
inp(c, 〈a〉 (out(c, a,nil))),

¦
injbinp(c, 〈a〉 (out(c, a,nil)))

©�
!

.

(Here a, c and d are fixed name constants from N .) This element would arise during the process

of parameterised recursion for defining the π-calculus semantics.

There is an instantiation V into s with

Vn(a) = a Vt(x) = out(c, d,out(c, a,nil))

Vn(c) = c Vt(x
′) = inp(c, 〈a〉 (out(c, a,nil)))

Vn(d) = d Vt(y) = out(c, a,nil)

Vt(y
′) = out(c, a,nil) .

For this instantiation, the archetypal behaviour is

V (l,tar) = injtau
�
par(out(c, a,nil),out(c, d,nil))

�
.

When working with this instantiation, it may be important to assume that the binders are not

given values inside some finite set C of names. For example, this instantiation is a little strange

because a is a binder in the rule while a is free in s. Lemma 8.4.7 states that it is appropriate

to make assumptions about the freshness of binders. For the present example, one can pick a

name b ∈ N which is fresh for s and then consider the valuation, V ′, given as follows.

V ′n(a) = b V ′t (x) = out(c, d,out(c, a,nil))

V ′n(c) = c V ′t (x
′) = inp(c, 〈a〉 (out(c, a,nil)))

V ′n(d) = d V ′t (y) = out(c, a,nil)

V ′t (y
′) = out(c, b,nil)

Notice that V ′ is also an instantiation into s. A simple calculation reveals that

V ′(l,tar) = injtau
�
par(out(c, a,nil),out(c, d,nil))

�

so that V and V ′ give rise to the same archetypal result.

8.4. Inducing abstract rules from rule structures 215

8.4.3 Inducing an abstract rule

We introduced in equation 8.4.4 a family of functions
¦
¹RºX : ΣS,Nom(|X | × Bg|X |)→ BgTS,Nom|X |

©
X∈NomSub

.

We now show that each function ¹RºX is equivariant, and subsequently that the family
�
¹RºX

	
X

is natural.

Proposition 8.4.8. Each function ¹RºX is equivariant.

Proof. Consider some σ ∈ Sym(N) and s ∈ ΣS,Nom(|X | × Bg|X |). We must show that

¦
b
�� ∃V . V is an instantiation into σ • s and b = V (l,tar)

©

=
¦
σ • b

�� ∃V . V is an instantiation into s and b = V (l,tar)
©

. (8.4.9)

To see that RHS ⊆ LHS in equation 8.4.9, we write (σV) for the valuation into X given by

(σ ◦ Vn, (σ •X −) ◦ Vt), and observe that

(i) V is an instantiation into s if and only if (σV) is an instantiation into σ • s, and

(ii) σ • V (l,tar) = (σV)(l,tar).

To derive that LHS⊆ RHS in equation 8.4.9, replace V with σ−1V in (i) and (ii) above.

Theorem 8.4.10. The family
�
¹RºX

	
X∈NomSub is natural.

Proof. Proof of this theorem bears a strong resemblance to the proof of Theorem 6.3.4 for the

Positive GSOS format. We must show that for any homomorphism f : X → Y in NomSub we have

that

BgTS,Nom| f |
�
¹RºX (s)

�
= ¹RºY (ΣS,Nom(| f | × Bg| f |)(s)) . (8.4.11a)

That is, we must show that

(
LgTS,Nom| f |(b)

�����
∃V . V is an instantiation into s

and b = V (l,tar)

)

=

(
b

�����
∃V . V is an instantiation into ΣS,Nom(| f | × Bg| f |)(s)

and b = V (l,tar)

)

.

(8.4.11b)

To see that LHS ⊆ RHS we consider an instantiation V into s and find an instantiation V ′

into ΣS,Nom(| f | × Bg| f |)(s) such that LgTS,Nom| f |(V (l,tar)) = V ′(l,tar).

We write (f V) for the valuation (Vn, f ◦ Vt) into Y , and we now explain that V ′ = f V is an

appropriate valuation. It follows immediately from the definition of V (l,tar) that

LgTS,Nom| f |(V (l,tar)) = (f V)(l,tar) .

It remains for us to show that this choice of V ′ is an instantiation into s.

Since V is an instantiation into s, we have, for each j ∈ [1, art(op)], a β j ∈ Bg|X | such that

s = op


(Vn(ci))i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

�

j∈[1,art(op)]


 (8.4.12a)

and such that for all j ∈ [1, art(op)],

V (Prem j)⊆ β j . (8.4.12b)

216 Operational Semantics for Name-Passing

It follows from equation 8.4.12a, and from the action of the functor ΣS,Nom(|−| × Bg|−|), that

ΣS,Nom(| f | × Bg| f |)(s) = op




(Vn(ci))i∈[1,arn(op)],
�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(f (Vt(x j)), Bg| f |(β j))

�

j∈[1,art(op)]




= op




((f Vn)(ci))i∈[1,arn(op)],
�D
(f Vn)(a

j

k
)
E

k∈[1,dep j(op)]
((f Vt)(x j), Bg| f |(β j))

�

j∈[1,art(op)]




.

From (8.4.12b), together with the action of the functor Bg|−|, we have

(f V)(Prem j)⊆ Bg| f |(β j)

for all j ∈ [1, art(op)]. We also know that Vn(bn(l))Bs, since V is an instantiation into s. It follows

from Prop. 7.1.2(4) that Vn(bn(l))BΣS,Nom(| f | × Bg| f |)(s); that is,

(f Vn)(bn(l))BΣS,Nom(| f | × Bg| f |)(s) .

Thus (f V ′) is an instantiation into s.

We now turn to prove that RHS ⊆ LHS in equation 8.4.11b. We consider an instan-

tiation V into ΣS,Nom(| f | × Bg| f |)(s) and exhibit an instantiation V ′ into s which is such

that V (l,tar) = LgTS,Nom| f |(V
′(l,tar)). Lemma 8.4.7 allows us to assume that V provides

fresh binders for s (and here we mean s, not ΣS,Nom(| f | × Bg| f |)(s)).

We will find an instantiation V ′ into s such that V = f V ′. (Here, as above, we write (f V ′)

for the valuation (V ′n , f ◦ V ′t) into Y .) As observed previously, given such a V ′, it follows from the

definitions that (f V ′)(l,tar) = LgTS,Nom| f |(V
′(l,tar)), and so equation 8.4.11b will also follow.

In general, there is no canonical instantiation V ′ into s with V = f V ′; we make the choice as

follows.

Since V is an instantiation into ΣS,Nom(| f |×Bg| f |)(s), we have β ′j ∈ Bg|Y |, for each j ∈ [1, art(op)],

such that

ΣS,Nom(| f | × Bg| f |)(s) = op


(Vn(ci))i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β

′
j)

�

j∈[1,art(op)]




and such that V (Prem j)⊆ β
′
j for all j ∈ [1, art(op)].

Moreover, since V provides fresh binders for s, we have, by Prop. 8.4.6, that there are, for

each i ∈ [1, arn(op)], names ci ∈ C , and for each j ∈ [1, art(op)], elements x j ∈ X and β j ∈ Bg|X |

such that

s = op


(ci)i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(x j ,β j)

�

j∈[1,art(op)]


 .

For each i ∈ [1, arn(op)] it is immediate that ci = Vn(ci). Also, for each j ∈ [1, art(op)] we have,

by Prop. 7.1.3(1),

f (x j) = Vt(x j) and Bg| f |(β j) = β
′
j . (8.4.13)

For each j ∈ [1, art(op)] and l ∈ Labg(N), we define the sets X j,l ⊆ X, X j,l ⊆ X as follows.

X j,l =

§
x ∈ X

��� (x j ,l,x) ∈ Prem

ª

X j,l =
¦

x ∈ X
�� V (l)(x) ∈ β j

©

8.4. Inducing abstract rules from rule structures 217

Note that for each j ∈ [1, art(op)] and l ∈ Labg(N) we have

Vt(X j,l)⊆ f (X j,l) (⊆ Y) . (8.4.14)

This follows from (8.4.13): suppose, for instance, that (x j ,l,x) ∈ Prem, in which case we must

have V (l)(Vt(x)) ∈ β
′
j . There must be b ∈ β j such that V (l)(Vt(x)) = Lg| f |(b). We focus on the

case where l= c?a; then we have x ∈ X , and a ∈ N such that

b = injbinp

�
Vn(c), 〈a〉 x

�
.

Since V provides fresh binders for s, we know that Vn(a)Bb; hence we can assume that a = Vn(a),

and so Vt(x) ∈ f (X j,l).

The next step is to define sets Y ′j,l ⊆ Y and X ′j,l ⊆ X j,l as follows.

Y ′j,l = Vt(X j,l)

X ′j,l = (f |X j,l
)−1(Y ′j,l)

Thus Y ′j,l is the image of the function f |X j,l
: X j,l→ Y on the set X ′j,l ⊆ X j,l. For each appropriate j

and l we choose a section m j,l : Y ′j,l֌ X ′j,l of the quotient f |X ′
j,l

: X ′j,l։ Y ′j,l. So f |X ′
j,l
◦m j,l = idY ′

j,l
.

We are now in a position to define a valuation V ′ into X . We let V ′n = Vn : N֌N . To define V ′t
we use the bijection introduced in Prop. 8.2.1.

• For j ∈ [1, art(op)], we let V ′t (x j) = x j.

• For each premise (x,l,y) ∈ Prem and each j ∈ [1, art(op)] such that x = x j, we proceed as

follows. Note that Vt(y) ∈ Vt(X j,l), and so we know that Vt(y) lies in the domain of m j,l. We

let

V ′t (y) = m j,l(Vt(y)) .

By construction, we have

s = op


(V ′n(ci))i∈[1,arn(op)],

�D
V ′n(a

j

k
)
E

k∈[1,dep j(op)]
(V ′t (x j),β

′
j)

�

j∈[1,art(op)]




and V ′(Prem j) ⊆ β
′
j for all j ∈ [1, art(op)]. So, since V ′ provides fresh binders for s, we know

that V ′ is an instantiation into s.

We have V = f V ′ for the following reason. For x appearing in the source of the conclu-

sion, Vt(x) = f (V ′t (x)) follows from (8.4.13). For y appearing as the target of a premise (x j ,l,y),

we have f (V ′t (y)) = f (m j,l(Vt(y))) = Vt(y).

Thus ¹Rº is natural.

8.4.4 Revisiting the intended model

We conclude this section by relating this development back to the intended model of the nominal

logic theory associated to a collection of rules, as considered in 8.1.2. The development of this

section so far has explained the derivation of an abstract rule ¹Rº from a solitary rule structure, R,

and so our first task is to explain how a set of rule structures gives rise to an abstract rule.

We conclude by briefly relating the induced monad lifting with the intended model, concluding

that the intended model of a set of rules in the A-GSOS+ format will be well-behaved, in the precise

sense proposed in Section 8.2.1.

218 Operational Semantics for Name-Passing

Instantiating a collection of rules. A class R of rule structures in the A-GSOS+ format gives rise

to a natural transformation

¹Rº : ΣS,Nom(|−| × Bg|−|)→ BgTS,Nom|−|

given by, for each X ∈ NomSub and every s ∈ ΣS,Nom(|X | × Bg|X |),

¹RºX (s) =
⋃

R∈R

¹RºX (s) .

The only cause for concern in this definition is that the set

⋃

R∈R

¹RºX (s)⊆ LgTS,Nom|X |

ought to be support bounded. Indeed, it follows from Prop. 8.4.3 that each set ¹RºX (s) is supported

by supp(s).

The intended model is well-behaved. Let R be a class of rule structures in the A-GSOS+ format.

Using the techniques of Section 6.2.3, the induced natural transformation

¹Rº : ΣS,Nom(|−| × Bg|−|)→ BgTS,Nom|−|

lifts the monad TS,Nom on Nom to a monad T(S,Nom)¹Rº on the category of |−|-structured Bg-coal-

gebras. By adapting the discussion of Section 6.3.5 to this context, we arrive at the following

result.

Theorem 8.4.15. For a class R of rules in the A-GSOS+ format, the initial T(S,Nom)¹Rº-algebra is the

intended model of the nominal logic theory arising from the class R .

The carrier of this initial T(S,Nom)¹Rº-algebra is the nominal substitution TS,NomSub; of S-terms,

and we have a Bg-coalgebra structure

|TS,NomSub;| → Bg|TS,NomSub;|

which corresponds to the transition relation of the intended model.

Moreover, the nature of the model theory that we have used, together with Corollary 6.2.3,

gives rise to the following result.

Theorem 8.4.16. The intended model of the nominal logic theory arising from a class R of rule

structures in the A-GSOS+ format has the following properties:

1. Axioms Ag1 and Ag2 (of Figure 7.2) are satisfied.

2. Wide open bisimilarity is a congruence.

8.A. Appendix to Chapter 8: Proof of Prop. 8.4.3 219

8.A Appendix to Chapter 8: Proof of Prop. 8.4.3

We now proceed to prove Proposition 8.4.3.

Proposition 8.4.3. Consider a nominal substitution X , and let s be an element of ΣS,Nom(|X | × Bg|X |).

If V is an instantiation into s, and C supports s in ΣS,Nom(|X |×Bg|X |), then C also supports V (l,tar)

in LgTS,Nom|X |.

Proof. We will show that for every raw term t ∈ TS+sub,SetN
X we have

supp(V (t))⊆ supp(s)∪Vn(FN(t)) . (8.A.1)

We establish this property by induction on the structure of t. We begin with the base case,

when t= x, for some x ∈ X. In this case, (8.A.1) holds since V is an instantiation into s, and

by the properties of supports for sums, products, support-bounded powersets, and abstractions.

For instance, suppose that x appears as the target of a premise; indeed suppose that this premise is

(x j ,c?(a),x). Since V is an instantiation into s, we know that

s = op


(Vn(ci))i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

�

j∈[1,art(op)]




and also that

injbinp(Vn(c),

Vn(a)

�
Vt(x)) ∈ β j for all j ∈ [1, art(op)].

By using properties of supports for products, we know that the set supp(s) supports

D
Vn(a

j

k
)
E

k∈dep j(op)
(Vt(x j),β j) .

Properties of supports for products and abstractions allow us to deduce that the set

supp(s)−
�
Vn(a

j

k
)
�� k ∈ [1,dep j(op)]

	
(8.A.2)

supports β j in Bg|X |. Since β j is a support bounded subset of Lg|X |, this means that the set of (8.A.2)

also supports every element of β j, including, in particular, the element injbinp(Vn(c),

Vn(a)

�
Vt(x)).

Using the properties of supports for sums, and for products and abstractions again, we conclude

that the set

supp(s)−
�
Vn(a

j

k
)
�� k ∈ [1,dep j(op)]

	
−
�
Vn(a)

	

supports Vt(x). By definition, the set FN(x) contains a
j

k
for every k ∈ [1,dep j(op)], and it also

contains a. Thus the base case for (8.A.1) is established.

For the inductive step, we consider an operator op ∈ OpS+sub, together with: name vari-

ables ci ∈ N, for each i ∈ [1, arn(op)]; name variables a
j

k
∈ N, for each j ∈ [1, art(op)]

and k ∈ [1,depi(op)]; and terms t j ∈ TS+sub,SetN
(X) for each j ∈ [1, art(op)]. We suppose that

t= op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

t j

�

j∈[1,art(op)]

�
.

Our induction hypotheses are that property (8.A.1) holds of t j, for each j ∈ [1, art(op)]; we must

now show that (8.A.1) holds of t.

The induction hypotheses ensure that for each j ∈ [1, art(op)] we have

supp(V
�
t j

�
)⊆ supp(s)∪Vn(FN(t j)) .

220 Operational Semantics for Name-Passing

So, from the nature of supports of abstractions, we have

supp(
D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
V
�
t j

�
) ⊆

�
supp(s)∪Vn(FN(t j))

�
−

§
Vn(a

j

k
)

��� k ∈ [1,dep j(op)]

ª
.

So certainly

supp(
D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
V
�
t j

�
) ⊆ supp(s)∪Vn

�
FN(t j)−

§
a

j

k

��� k ∈ [1,dep j(op)]

ª�
.

By properties of supports of products and abstractions,

supp(V (t)) ⊆
¦
Vn(ci)

�� i ∈ [1, arn(op)]
©

∪
⋃�

supp(
D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
V
�
t j

�
)
�� j ∈ [1, art(op)]

�
.

Moreover, from the definition of FN we have

FN(t j)−

§
a

j

k

��� k ∈ [1,dep j(op)]

ª
⊆ FN(t)

and by definition of FN(t)we have
¦
Vn(ci)

�� i ∈ [1, arn(op)]
©
⊆ Vn(FN(t)). Putting this all together,

we conclude that supp(V (t))⊆ supp(s)∪Vn(FN(t)), as required. Thus (8.A.1) is established.

The statement of the proposition follows from (8.A.1), via Condition A-GSOS+-9 and ConditionA-GSOS+-12; for the case when l= c?(a) we proceed as follows. We know that

V (l,tar) = injbinp(Vn(c),

Vn(a)

�
V (tar))

so, by basic properties of supports of products and abstractions, we have

supp(V (l,tar)) =
�
Vn(c)

	
∪
�
supp(V (tar))−

�
Vn(a)

	�
.

Using property (8.A.1) we can deduce that

supp(V (l,tar)) ⊆
�
Vn(c)

	
∪
��

supp(s)∪Vn(FN(tar))
�
−
�
Vn(a)

	�

and so certainly

supp(V (l,tar)) ⊆
�
Vn(c)

	
∪ supp(s)∪

�
Vn(FN(tar))−

�
Vn(a)

	�
.

Using Condition A-GSOS+-9, we have

supp(V (l,tar)) ⊆ supp(s)∪
�
Vn(FN(tar))−

�
Vn(a)

	�

since fn(l) = {c}, and using properties of supports of products, abstractions and support-bounded

powersets, coupled with the fact that V is an instantiation into s.

Finally, we appeal to Condition A-GSOS+-12 to conclude that

supp(V (l,tar)) ⊆ supp(s)

since BN(l) = {a} and, again, since V is an instantiation into s. Other kinds of conclusion label are

treated similarly; thus Proposition 8.4.3 is proved.

8.B. Appendix to Chapter 8: Proof of Lemma 8.4.7 221

8.B Appendix to Chapter 8: Proof of Lemma 8.4.7

We now establish Lemma 8.4.7.

Lemma 8.4.7. Consider some s ∈ ΣS,Nom(|X | × Bg|X |), and C ⊆f N . For any instantiation V

into s, there is another instantiation V ′ into s that provides fresh binders for C and which is such

that V (l,tar) = V ′(l,tar).

Proof. Let V be an instantiation into s. So we have, for each j ∈ [1, art(op)], some β j ∈ Bg|X | such

that

s = op


(Vn(ci))i∈[1,arn(op)],

�D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

�

j∈[1,art(op)]




and such that V (Prem j)⊆ β j for all j ∈ [1, art(op)].

For convenience, we define A=
¦
a ∈ (N− BN)

�� Vn(a)Bs
©
. We pick an injection

ξ : N֌
�
N −

�
supp(s)∪ im(Vn)∪ C

��

This is possible as the sets supp(s), im(Vn), C are all finite. We define V ′n : N→N by

V ′n(c) =

(
ξ(c) if c ∈ BN∪ A

Vn(c) if c ∈ (N− (BN∪ A)).
(8.B.1a)

We define V ′t : X→ X by

V ′t (x) = [Vn(a)↔V ′n(a)]a∈BN(x) • Vt(x) . (8.B.1b)

(It follows from the definition of V ′n that the order of the swaps, [Vn(a) ↔ V ′n(a)]a∈BN(x),

doesn’t matter.) We now explain that this instantiation, V ′, is an instantiation into s. It is clear

that V ′n : N→N is injective, and indeed satisfies (8.B.1a).

We explain why V ′n(bn(l)) ∩ supp(s) = ;. Since V is an instantiation into s, we have

that Vn(bn(l))∩ supp(s) = ;. So, by (8.B.1a), we know that, for any a ∈ bn(l), we have V ′n(a) = ξ(a).

It follows, by considering the codomain of ξ, that V ′n(bn(l))∩ supp(s) = ;.

To conclude that V ′ is an instantiation into s, we must find (β ′j ∈ Bg|X |) j∈[1,art(op)] such that

s = op


(V ′n(ci))i∈[1,arn(op)],

�D
V ′n(a

j

k
)
E

k∈dep j(op)
(V ′t (x j),β

′
j)

�

j∈art(op)


 (8.B.2a)

and such that for all j ∈ [1, art(op)],

V ′(Prem j)⊆ β
′
j . (8.B.2b)

To this end, we let β ′j = [Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,dep j(op)]

•β j. By Conditions A-GSOS+-6 and A-GSOS+-8,

we know that, for each i ∈ [1, arn(op)], ci 6∈ BN; moreover, it is clear that for each i ∈ [1, arn(op)]

it is not the case that Vn(ci)Bs. Thus, by considering the definition of V ′n , we can conclude that,

for each i ∈ [1, arn(op)], Vn(ci) = V
′

n(ci).

To conclude that equation 8.B.2a holds, it remains for us to show that for each j ∈ [1, art(op)],

D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j) =

D
V ′n(a

j

k
)
E

k∈[1,dep j(op)]
(V ′t (x j),β

′
j) . (8.B.3)

222 Operational Semantics for Name-Passing

We will show that for each k′ ∈ [0,dep j(op)] we have

D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

=
D
Vn(a

j

k
)
E

k∈[k′+1,dep j(op)]

D
V ′n(a

j

k
)
E

k∈[1,k′]
[Vn(a

j

k
)↔V ′n(a

j

k
)]k∈[1,k′] • (Vt(x j),β j) .

For the case k′ = 0, this result is trivial; for the inductive step k′ = k′′ + 1, then we arrive at this

equation by the following sequence.

D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
(Vt(x j),β j)

=
D
Vn(a

j

k
)
E

k∈[k′′+1,dep j(op)]

D
V ′n(a

j

k
)
E

k∈[1,k′′]
(8.B.4a)

[Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,k′′] • (Vt(x j),β j)

=
D
Vn(a

j

k
)
E

k∈[k′+1,dep j(op)]

D
Vn(a

j

k′
)
ED
V ′n(a

j

k
)
E

k∈[1,k′′]
(8.B.4b)

[Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,k′′] • (Vt(x j),β j)

=
D
Vn(a

j

k
)
E

k∈[k′+1,dep j(op)]

D
V ′n(a

j

k′
)
E

(8.B.4c)

[Vn(a
j

k′
)↔V ′n(a

j

k′
)] •

D
V ′n(a

j

k
)
E

k∈[1,k′′]

[Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,k′′] • (Vt(x j),β j)

=
D
Vn(a

j

k
)
E

k∈[k′+1,dep j(op)]

D
V ′n(a

j

k
)
E

k∈[1,k′]
(8.B.4d)

[Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,k′] • (Vt(x j),β j)

Using: (8.B.4a): ind. hyp.; (8.B.4b): since k′ = k′′ + 1; (8.B.4c): since V ′
n
(a

j

k′
) is fresh for the pair

[Vn(a
j

k
)↔V ′

n
(a

j

k
)]k∈[1,k′′] • (Vt(x j

),β j); (8.B.4d): defn. of permutation action on abstractions, using ConditionA-GSOS+-7.

Thus (8.B.3) is established, and we can conclude equation 8.B.2a.

To show (8.B.2b), we must show that for each j ∈ [1, art(op)], and each (x j ,l,y) ∈ Prem we

have V ′(l)(y) ∈ β ′j .

Consider some (x,l,y) ∈ Prem. Since V is an instantiation into s, we know that V (l)(y) ∈ β j.

We will show that V ′(l)(y) ∈ β ′j .

We will focus on the case of input premises; let l = c?(a). In this situation we know

that injbinp

�
Vn(c),

Vn(a)

�
Vt(y)

�
∈ β j. Thus, by definition,

[Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,dep j(op)]

• injbinp

�
Vn(c),

Vn(a)

�
Vt(y)

�
∈ β ′j .

That is, using Condition A-GSOS+-8,

injbinp

�
V ′n(c),

Vn(a)

��
[Vn(a

j

k
)↔V ′n(a

j

k
)]k∈[1,dep j(op)]

• Vt(y)
��
∈ β ′j .

By definition of V ′n , we know that V ′n(a) is fresh for s; so we know that V ′n(a) is fresh forD
V ′n(a

j

k
)
E

k∈dep j(op)
(V ′t (x j),β

′
j). Since V ′n is injective, we know from Condition A-GSOS+-8 that V ′n(a)

is distinct from each binder V ′n(a
j

k
). Thus we know that V ′n(a) is fresh for β ′j , and in particular V ′n(a)

is fresh for

Vn(a)

��
[Vn(a

j

k
)↔V ′n(a

j

k
)]k∈[1,dep j(op)]

• Vt(y)
�

.

8.B. Appendix to Chapter 8: Proof of Lemma 8.4.7 223

Hence, by definition of abstraction, we have

injbinp


V

′
n(c),

¬
V ′n(a)

¶




[Vn(a)↔V ′n(a)]

• [Vn(a
j

k
)↔V ′n(a

j

k
)]k∈[1,dep j(op)]

• Vt(y)





 ∈ β

′
j .

That is,

injbinp

�
V ′n(c),

¬
V ′n(a)

¶
V ′t (y)

�
∈ β ′j

as required. Thus (8.B.2b) is established, and we can conclude that V ′ is an instantiation into s.

To prove that V (l,tar) = V ′(l,tar), we proceed as follows. We will show that for

each t ∈ TS+sub,SetN
(X) we have properties 8.B.5a and b:

V ′n(BN∪ A)∩ supp(V (t)) = ; (8.B.5a)

and
For any set C⊆f N:

if WF(t) and (BN∪ A)∩ FN(t)⊆ C

and for all x appearing in t and all a ∈ C

we have either a ∈ FN(x) or Vn(a)BV ′t (x)
then [Vn(a)↔V ′n(a)]a∈C • V (t) = V

′ (t) .

(8.B.5b)

The order of the swaps in property 8.B.5b is irrelevant since Vn and V ′n are both injective and since

whenever Vn(a) 6= V
′

n(a) we have a ∈ (BN∪ A), and hence Vn(a) 6∈ im(V ′n) and V ′n(a) 6∈ im(Vn).

We prove properties 8.B.5a and b by induction on the structure of terms t ∈ TS+sub,SetN
(X). For

convenience, we prove the two statements together.

For the base case t = x, property 8.B.5a follows by definition of V ′n: we know that

im(β)∩
�
im(Vn)∪ supp(s)

�
= ;, and also that supp(Vt(x))⊆

�
im(Vn)∪ supp(s)

�
.

We tackle the base case of property 8.B.5b as follows. Suppose that we have C⊆f N such that

(BN∪ A)∩ FN(x)⊆ C and that for each a ∈ C we have either that a ∈ FN(x) or Vn(a)BV ′t (x).
Let C′ = (C− FN(x)); so for each a ∈ C′ we have Vn(a)BV ′t (x). It follows from Conditions A-GSOS+-6

and A-GSOS+-8 that BN∩FN(x) = BN(x); note further that, by definition of A, we have A∩FN(x) = ;;

so BN(x)⊆ C. Hence C= C′ ∪ BN(x)∪ (C∩ FN). Thus we must prove that

[Vn(a)↔V ′n(a)]C′∪BN(x)∪(C∩FN) • Vt(x) = V
′

t (x) .

Property 8.B.1b ensures that [Vn(a)↔ V ′n(a)]a∈BN(x) • Vt(t) = V
′

t (t). As we have remarked,

the order of the swaps doesn’t matter, so it remains for us to explain why the remaining

swaps, [Vn(a)↔V ′n(a)]a∈C′∪(C∩FN), fix V ′t (t). That is, we must show that

[Vn(a)↔V ′n(a)]a∈C′∪(C∩FN) • V
′

t (x) = V
′

t (x) .

For each a ∈ (C ∩ FN), Conditions A-GSOS+-6 and A-GSOS+-8 ensure that a 6∈ BN; furthermore,

since V is an instantiation into s, we cannot have that Vn(a)Bs. Hence, by definition of V ′n , we

must have Vn(a) = V
′

n(a), and so [Vn(a)↔V ′n(a)] • V
′

t (x) = V
′

t (x):

For each a ∈ C′, either a is in (BN ∪ A) or not. We will show that in both cases we

have [Vn(a)↔V ′n(a)] • V
′

t (x) = V
′

t (x):

• If a ∈ (C′∩(BN∪A)), then since a ∈ C′ we know that Vn(a)BV ′t (x). Moreover, since a ∈ (BN∪A),

then by definition of V ′n we have that V ′n(a) = ξ(a), and so V ′n(a) 6∈
�
im(Vn)∪ supp(s), and

hence V ′n(a)BV ′t (x). Thus for a ∈ (C′ ∩ (BN∪ A)) we have [Vn(a)↔V ′n(a)] • V
′

t (x) = V
′

t (x).

224 Operational Semantics for Name-Passing

• If a ∈ (C′ − (BN ∪ A)), then we know that Vn(a) = V
′

n(a), from which it follows that

[Vn(a)↔V ′n(a)] • V
′

t (x) = V
′

t (x).

So we have [Vn(a)↔V ′n(a)]a∈C′∪(C∩FN) • V
′

t (x) = V
′

t (x). We conclude that

[Vn(a)↔V ′n(a)]a∈C • Vt(x) = V
′

t (x) .

We turn now to the inductive steps for properties 8.B.5a and b. We consider an opera-

tor op ∈OpS+sub, together with name variables ci ∈ N, for i ∈ [1, arn(op)]; name variables a
j

k
∈ N,

for j ∈ [1, art(op)] and k ∈ [1,depi(op)]; and terms t j ∈ TS+sub,SetN
(X) for j ∈ [1, art(op)]. We let

t= op

�
(ci)i∈[1,arn(op)],

�D
a

j

k

E
k∈[1,dep j(op)]

t j

�

j∈[1,art(op)]

�

and we will show that properties 8.B.5a and b hold of t.

First we explain the inductive step for property 8.B.5a. We know that

supp(V (t)) ⊆ im(Vn)∪
⋃¦

supp(V
�
t j

�
)
�� j ∈ [1, art(op)]

©
.

So

V ′n(BN∪ A)∩ supp(V (t)) ⊆
�
V ′n(BN∪ A)∩ im(Vn)

�
∪

⋃

j∈[1,art(op)]

�
V ′n(BN∪ A)∩ supp(V

�
t j

�
)
�

.

By definition of V ′n we have V ′n(BN∪ A) ∩ im(Vn) = ;. By the induction hypothesis, for each

j ∈ [1, art(op)] we have V ′n(BN∪ A)∩ supp(V
�
t j

�
) = ;. Hence

V ′n(BN∪ A)∩ supp(V (t)) = ;

as required.

To conclude, we explain the inductive step for property 8.B.5b. We assume WF(t) and that for

any C ⊆f N such that (BN ∪ A) ∩ FN(t) ⊆ C we have, for all x appearing in t and each a ∈ C, either

a ∈ FN(x) or Vn(a)BV ′t (x). We must show that

[Vn(a)↔V ′n(a)]a∈C • V (t) = V
′ (t)

We will justify the following sequence of equations.

[Vn(a)↔V ′n(a)]a∈C • V (t)

= [Vn(a)↔V ′n(a)]a∈C • op




�
Vn(ci)

�
i∈[1,arn(op)] ,�D

Vn(a
j

k
)
E

k∈[1,dep j(op)]
V
�
t j

��

j∈[1,art(op)]


 (8.B.6a)

= op




�
V ′n(ci)

�
i∈[1,arn(op)]

,
�
[Vn(a)↔V ′n(a)]a∈C •

D
Vn(a

j

k
)
E

k∈[1,dep j(op)]
V
�
t j

��

j∈[1,art(op)]


 (8.B.6b)

= op




�
V ′n(ci)

�
i∈[1,arn(op)]

,



D
V ′n(a

j

k
)
E

k∈[1,dep j(op)]

[Vn(a)↔V ′n(a)]a∈C∪
�
(BN∪A)∩

§
a

j

k

��� k∈[1,dep j(op)]

ª� • V
�
t j

�




j∈[1,art(op)]




(8.B.6c)

8.B. Appendix to Chapter 8: Proof of Lemma 8.4.7 225

= op




�
V ′n(ci)

�
i∈[1,arn(op)]

,
�D
V ′n(a

j

k
)
E

k∈[1,dep j(op)]
V ′
�
t j

��

j∈[1,art(op)]


 (8.B.6d)

Equation 8.B.6a expands the definition of V (t). To arrive at Equation 8.B.6b, we firstly expand

the action of a product of group actions. Then we observe that, for any i ∈ [1, arn(op)], we

have [Vn(a)↔V ′n(a)]a∈C
�
Vn(ci)

�
= V ′n(ci). This is clearly true if ci ∈ C. If ci 6∈ C, then be-

cause (BN∪ A)∩ FN(t)⊆ C, and ci ∈ FN(t), we know that ci 6∈ (BN ∪ A). Therefore, by definition

of V ′n , we have Vn(ci) = V
′

n(ci).

To show equation 8.B.6c, we show that for each j ∈ [1, art(op)], k′ ∈ [0,dep j(op)− 1],

[Vn(a)↔V ′n(a)]a∈C •
D
Vn(a

j

k
)
E

k∈[1,k′]
V
�
t j

�

=
D
V ′n(a

j

k
)
E

k∈[1,k′]
[Vn(a)↔V ′n(a)]a∈C∪((BN∪A)∩

n
a

j

k
| k∈[1,k′]

o
)
• V

�
t j

�
. (8.B.7)

We show this property (8.B.7) by induction on k′ ∈ [0,dep j(op)]. The base step, k′ = 0, is trivial.

As for the inductive step: if a
j

k′+1
6∈ (BN∪ A) then Vn(a

j

k′+1
) = V ′n(a

j

k′+1
) and the step follows from

the induction hypothesis. Otherwise, if a
j

k′+1
∈ (BN∪ A), then property 8.B.5a ensures that we

have V ′n(BN∪ A)∩ supp(V
�
t j

�
) = ;. So certainly V ′n(a

j

k′+1
)BV �t j

�
, and hence

V ′n(a
j

k′+1
)BDVn(a

j

k+1
)
E

k∈[1,k′]
V
�
t j

�
.

Finally, equation 8.B.6d follows from the induction hypothesis. To see this, for each j ∈ [1, art(op)],

we let

C j = C∪

�
(BN∪ A)∩

§
a

j

k

��� k ∈ dep j(op)

ª�
.

It is clear that (BN∪ A)∩ FN(t j)⊆ C j. Moreover, for every a ∈ C j we have that

for each x appearing in t j we have either a ∈ FN(x) or Vn(a)BV ′t (x).
We will prove this statement by considering the subsets of C j in which a may lie. If a is in C then

this follows by assumption. If there is k ∈ [1,dep j(op)] with a= a
j

k
, and a ∈ BN, then, since WF(t),

we know that a ∈ FN(x). On the other hand, if k ∈ [1,dep j(op)] with a = a
j

k
, and a ∈ A, then

we know Vn(a)Bs. By definition of V ′n , we know that V ′n(BN(x)) ∩ im(Vn) = ;, and thus we can

conclude that Vn(a)BV ′t (x).
Thus properties 8.B.5a and b are established.

We conclude by using properties 8.B.5a and b to show that V (l,tar) = V ′(l,tar). ConditionA-GSOS+-12 asserts that FN(tar)⊆ FN∪ bn(l). It follows from Conditions A-GSOS+-6 and A-GSOS+-8

that BN∩ FN= ;; hence

BN∩ FN(tar)⊆ bn(l) .

Moreover, for any x ∈ X and any a ∈ bn(l) we can show that Vn(a) B V ′t (x). Con-

sider some x ∈ X and a ∈ bn(l). By assumption, Vn(a)B s. For any x ∈ X we have that

supp(V ′t (x))⊆ supp(s)∪V ′n(BN(x))— this is a basic case of Prop. 8.4.3. The definition of V ′n is such

that V ′n(BN) is disjoint from im(Vn), and hence we must have Vn(a)BV ′t (x).
We are now in a position to use property 8.B.5b. Condition A-GSOS+-11 ensures that WF(tar).

So we have that

[Vn(a)↔V ′n(a)]a∈bn(l) • V (tar) = V
′ (tar) . (8.B.8)

Now, for a ∈ (bn(l)−BN)we have Vn(a) = V
′

n(a). On the other hand, we know from property 8.B.5a

that for a ∈ BN∩ bn(l) we have V ′n(a)BV (tar). Hence

Vn(a)

�
a∈bn(l)V (tar) =

¬
V ′n(a)

¶
a∈bn(l)

[Vn(a)↔V ′n(a)]a∈bn(l) • V (tar) .

226 Operational Semantics for Name-Passing

So, combining with (8.B.8) we have

Vn(a)

�
a∈bn(l)V (tar) =

¬
V ′n(a)

¶
a∈bn(l)

V ′ (tar) .

It follows that V (l,tar) = V ′(l,tar). For instance, in the case l = c(b) we proceed as follows.

We have, by Condition A-GSOS+-9, that c ∈ FN and so, by Conditions A-GSOS+-6 and A-GSOS+-8, we

have Vn(c) = V
′

n(c). Hence

V (l,tar) = injbinp

�
Vn(c),

Vn(b)

�
V (tar)

�

= injbinp

�
V ′n(c),

¬
V ′n(b)

¶
V ′ (tar)

= V ′(l,tar) .

Other modes of communication are treated in a very similar manner.

To conclude, we explain why V ′n provides fresh binders for C . Notice that for all a ∈ (BN∪ bn(l))

we have that V ′n(a) = ξ(a): when a ∈ BN, this follows from the definition of V ′n; on the other hand,

when a ∈ (bn(l)− BN), we know that Vn(a)Bs, since V is an instantiation into s, and so a ∈ A. By

looking at the codomain of the chosen ξ, we have V ′n(a) 6∈ C . Thus Lemma 8.4.7 is proved.

Chapter 9

Concluding Discussion

We conclude by recalling the main contributions of this thesis, and then highlighting some new

questions and research directions that are suggested by this work.

9.1 Contributions

We recall the main contributions of this thesis, following the outline of Section 1.2.

Indexed labelled transition systems and coalgebras. In Chapter 3, we recalled and developed

models of name-passing that are based on coalgebras over presheaf categories. We provided an

explicit characterisation of these models in terms of indexed labelled transition systems. Thus the

coalgebraic approach of Fiore and Turi [2001] is related with transition system approach of Cattani

and Sewell [2004].

Sheaf conditions on states spaces. We have investigated the relevance of a sheaf condition

on the carriers of coalgebras. In Section 4.2 we introduced and developed a category of sheaves

over I, commonly called the Schanuel topos. We showed that the behaviour endofunctors on SetI of

Section 3.2 restrict to the Schanuel topos. In Section 4.4 we introduced indexed labelled transition

systems over presheaves on B.

We showed, in Section 5.1, that the Schanuel topos is equivalent to a category of named-sets

with symmetries, as proposed by Ferrari, Montanari, and Pistore [2002]. Thus the coalgebraic and

labelled transition system models of name-passing are related with the work on History Dependent

Automata. The named-sets can be seen as efficient presentations of sheaves.

In Chapter 7 we exploited the equivalence between the Schanuel topos and the category of

nominal sets of Gabbay and Pitts [2001] to develop a model of name-passing behaviour in that

setting. We introduced a nominal logic theory of transition systems for name-passing, translating

the axioms on labelled transition systems from Chapter 3 to the language of nominal logic.

Name-for-name substitution. In Section 4.3 we introduced a coverage on the category F in

order to restrict the adjunction between SetI and SetF to an adjunction between related sheaf

subcategories. It was seen that the sheaf condition for this coverage on F has a notably simple

description.

To work with name-for-name subsitutions in the context of nominal sets, we introduced in

Section 7.3 a theory of nominal substitutions, proving an equivalence between the category of

models of this theory and the category of sheaves on F.

227

228 Concluding Discussion

Structured coalgebras and wide open bisimulation. In Section 2.4 we developed a theory of

structured coalgebras. This was used in Section 3.4, and in similar developments in later chapters,

to give a model theoretic account of wide open bisimulation and to develop a more refined model

theory.

A rule format for name-passing calculi. In Chapter 8 we presented a concrete rule format for

name-passing calculi. The format was extracted from the abstract developments of Section 6.2,

using the structured-coalgebra model of behaviour over nominal sets and the model of syntax over

nominal substitutions.

Final coalgebraic bisimulations. The coalgebraic aspects of this thesis have been developed

without reference to final coalgebras. In Section 2.5 we provided basic results for relating notions

of bisimulation. In Section 5.2 we developed a theory of final bisimulations, providing an algo-

rithm for computing them. In Section 6.2.1 we established results about congruence of bisimilarity

in complete generality, without recourse to final coalgebras or bialgebras, thus redeveloping the

presentation of Turi and Plotkin [1997].

9.2 Other rule formats for name-passing calculi

The concrete rule format developed in Chapter 8 is not the only format proposed for name-passing

calculi. A distinguishing feature of the rule format presented here, though, is the model-theoretic

perspective from which it is developed.

We now very briefly discuss approaches to rule formats for name-passing proposed by Bernstein

[1998], by Weber and Bloom [1996], and by Ziegler, Miller, and Palamidessi [2006].

Bernstein [1998]: Promoted tyft/tyxt. Bernstein has presented a generalisation of the tyft/tyxt

format of Groote and Vaandrager [1992] that allows higher-order systems to be described by al-

lowing arbitrary terms to appear in the transition labels. Her format is sufficiently general as to

allow a semantics of the π-calculus. There, syntax is not considered up-to α-equivalence, and rules

are used not only for describing the behaviour, but also for deriving the free and bound names of

terms. The format shows that a variant of wide open bisimilarity is a congruence for the π-cal-

culus. Because the assignment of free and bound names is part of the transition relation, the

notion of bisimilarity that arises will distinguish near-identical processes when they have different

free names. For instance, her notion of bisimilarity distiguishes the process [a = b]0 from the nil

process 0 [see Bernstein, 1998, Prop. 5.2].

Weber and Bloom [1996]: Meta-π. Weber and Bloom have presented a framework for adding

operators to the π-calculus. The semantics of these operators are specified in terms of rules in a

GSOS-like format. There is a built-in restriction operator, which distributes over certain operators.

Syntax is considered up-to α-equivalence with respect to the binding of the restriction operator.

Other operators involving binding, though, are considered in the style of higher-order abstract

syntax: for instance, the input operator constructs a process out of a channel, together with a

function from channels to processes. In this respect, the framework is similar in style to an earlier

congruence format for syntax with binding proposed by Bloom and Vaandrager [1994].

A notion of bisimulation is introduced, and it is proved that the corresponding bisimilarity is a

congruence. It seems that, for the π-calculus, this notion of bisimulation is the open bisimulation

of Sangiorgi [1996], because of the way that name variables and constants are treated differently.

In their article, however, they make no connections of these kinds.

Full details of this framework, and proofs, can be found in Weber’s PhD thesis [1995,

Secs. 8–13].

9.3. Research directions 229

Ziegler, Miller, and Palamidessi [2006]: tyft/tyxt in FOλ∆∇. Recently, Ziegler et al. have con-

sidered the tyft/tyxt format of Groote and Vaandrager [1992] within the logical framework FOλ∆∇

of Miller and Tiu [2005]. The work is carried out almost entirely in this proof-theoretic domain. By

working with higher-order abstract syntax, and with the quantifier ∇ for quantifying ‘new’ names,

they arrive at a rule format that is suitable for the π-calculus. They avoid having to impose con-

ditions such as those in Figures 8.2 and 8.3 by treating term parameters as metavariables, and

working with a variable-capture convention.

A notion of bisimilarity is introduced, which is shown to correspond to the open bisimilarity of

Sangiorgi [1996]. It is shown that, for systems defined using rules in their format, this bisimilarity

is a congruence.

9.3 Research directions

We now discuss some miscellaneous issues that arose in the development of this thesis. We men-

tion refinements and revisions of the model for the name-passing case: different approaches to

the behavioural model theory (Section 9.3.1); different powersets for different notions of non-

determinism (Section 9.3.2); different logical frameworks (Section 9.3.3); and models that are

complete for Positive GSOS (Section 9.3.4). It is hoped that the developments of this thesis can

serve as a foundation for the mathematical study of yet more elaborate process calculi and pro-

gramming languages: here we outline possible approaches to open bisimulation (Section 9.3.5)

and guarded recursion (Section 9.3.6).

9.3.1 Different operational models for name-passing

There is a quirk that is common to both the labelled transition system and the coalgebraic models

developed in Chapter 3. For the variation in name contexts, one form of Kripke semantics is

used, namely functor categories; for the behavioural aspects of the model, another form of Kripke

semantics is used, either coalgebras or transition relations. It is convenient to distinguish these two

aspects of the models in this way, but, as other authors have shown, it is not necessary.

The models of name-passing proposed by Honsell, Lenisa, Montanari, and Pistore [1998] and

by Baldamus [2000] solely involve coalgebras over Set. The coalgebra structure assigns to each

state not only a description of its possible evolution, but also the set of names ‘free’ in that state.

These authors report a problem of ‘junk’ in the models, which indicates that the models are far

from canonical. Thus these model theories are arguably less successful than those studied here at

providing an abstract account of name-passing behaviour.

The semantics of the π-calculus given by Bernstein [1998, Sec. 5], mentioned above, is given

soley in terms of inductively defined transition relations. We have already mentioned that the

natural notion of bisimilarity for this semantics is obscure.

A model of Cattani, Stark, and Winskel [1997] is based entirely on functor categories. A cate-

gory of presheaf categories is a category of domains, and the model of name-passing is based on

functors from I to this category. There remains an inequality here, in that the domains of behaviour

come first, and the variation of name contexts comes second.

We turn now to consider models in the style of Chapter 7. In Section 7.5 we studied models

of name-passing in terms of transition systems in the category of nominal sets. The models of

Buscemi and Montanari [2002] and of Montanari and Pistore [2005] also work with categories

of group actions, but without the finite support restriction, and so, for instance, the treatment of

bound output is more involved.

230 Concluding Discussion

9.3.2 Different powerset functors

Throughout this thesis we have focussed on a notion of non-determinism based on the pointwise

powerset functor P on SetI: for P ∈ SetI, and C ∈ I, we have that (P (P))(C) =P (P(C)). In

Theorem 4.2.6(6) we established that this operator restricts to the category Sh(I) of sheaves, and

in Section 7.1.5 we lifted this operator to the category Nom of nominal sets to obtain the endo-

functor Psb that we called the support-bounded powerset.

A topos-theoretic approach. The categories SetI, Sh(I) and Nom are all toposes. From a topos-

theoretic perspective, the natural endofunctor for non-determinism is the covariant powerobject

functor [see e.g. Johnstone, 2002, Sec. A2.3]. This construction has been described concretely on

Nom as the finite-support powerset Pfs by Gabbay and Pitts [2001, Example 3.5(iv)]. On SetI, the

covariant powerobject functor is an especially elaborate construction. In all cases the powerobject

operator differs from the construction inspired by the pointwise considerations.

Theories of lattice. In any topos, the powerobject construction provides free models of the

second-order theory CJSL of partially ordered objects in which every internal subobject has a

join. Models of the theory CJSL in Set are complete join semilattices. (By a simple argument, a

lattice with all joins also has all meets [Crawley and Dilworth, 1973, p. 9]; here, though, we are

not concerned with meets.)

The theory CJSL is not the only way to capture the notion of complete join semilattice, though.

There is an alternative presentation that has a more algebraic flavour. We let ORD-JSL be the

infinitary algebraic theory whose signature contains, for each ordinal α, an α-ary join operator
∨
α.

There is a class of equations in ORD-JSL ensuring that the join operators are idempotent and

expressing appropriate laws of commutativity, associativity, and distributivity. This theory can be

interpreted in any category with small products.

In the category of sets, the two theories, CJSL and ORD-JSL, have exactly the same models.

This is not true in Nom or in SetI, however; from a logical standpoint, this is because the proof

of equivalence of the theories involves the axiom of choice [see e.g. Crawley and Dilworth, 1973,

2.1].

The pointwise powerset functor on SetI provides free models of the theory ORD-JSL. For every

object C ∈ I, the corresponding point 1 → I induces a functor (−) • C : SetI → Set, sending a

presheaf P ∈ SetI to the set P(C). This functor has a left adjoint, and so preserves all limits, and in

particular preserves models of ORD-JSL; thus we see that the free models of ORD-JSL in SetI are

the pointwise powersets. A similar argument can be made for the sheaf category Sh(I). Indeed, in

the category Nom of nominal sets, the carrier of the free model of ORD-JSL on a nominal set X is

the support-bounded powerset PsbX , as introduced in Section 7.1.5.

A different behaviour endofunctor. From a pragmatic point of view, we have seen in Chap-

ters 3, 4 and 7 that the pointwise powerset endofunctor is sufficient for modelling non-determinism

in systems such as the π-calculus. The topos-theoretic ideas above suggest alternative behaviour

endofunctors, such as the endofunctor (Pfs Lg) on Nom, using the finite-support powerset. Indeed,

to give a (Pfs Lg)-coalgebra is to give a nominal set X together with an equivariant subset of X×LgX .

This is rather similar to the kinds of transition system used by Gabbay [2003, Sec. 3.2] in his treat-

ment of the π-calculus.

Relating the two notions of non-determinism. We briefly consider the relationship between

the endofunctor Bg = Psb Lg on Nom which has been used so far, and the alternative endofunc-

tor (PfsLg) on Nom that is suggested by topos-theoretic ideas. It is clear that Psb is a subfunctor

of Pfs, and so the category of (Psb Lg)-coalgebras embeds into the category of (Pfs Lg)-coalgebras.

9.3. Research directions 231

In fact, the embedding (Psb Lg)-Coalg ,→ (Pfs Lg)-Coalg has a retraction, mapping a (Pfs Lg)-coalge-

bra h : X →Pfs(Lg(X)) to the restricted Bg-coalgebra with carrier

⋃¦
S ⊆ X

�� ∀x ∈ S. h(x)⊆sb LgS
©

.

It follows from Theorem 2.5.7 that, for (Psb Lg)-coalgebras, (Psb Lg)-bisimulation is the same thing

as (PfsLg)-bisimulation.

Behaviour in categories of substitutions. Once one begins to consider different notions of pow-

erset, it becomes possible to consider behaviour endofunctors for name-passing over categories

such as SetF and NomSub, as we now explain.

The definition of the endofunctor Lg on Nom, given in equation 7.1.7a, can be considered as

the definition of an endofunctor on NomSub, by following the developments of Section 7.3.2. We

thus have an endofunctor Lg on NomSub for deterministic ground systems.

The problem that remains is that of finding an appropriate powerset endofunctor on NomSub.

A first idea that might spring to mind is to lift the endofunctor Psb on Nom along the forgetful func-

tor NomSub→ Nom. A natural way to do this is to consider the pointwise powerset endofunctor

on the presheaf category SetF, and translate this construction into the category NomSub.

The model arising from the resulting endofunctor Psb on NomSub is not right, though. For

any X ∈ NomSub, and any coalgebra h : X →Psb LgX , we have the formulas

l ∈ h(x) =⇒ [b/a]l ∈ h([b/a]x) (9.3.1a)

l ∈ h([b/a]x) =⇒ ∃l ′ ∈ h(x). [b/a]l ′ = l . (9.3.1b)

Formula (9.3.1a) is a common property of name-passing calculi. (It is not ubiquitous, though, for

the mismatch operator of the π-calculus will violate it.) Formula (9.3.1b), though, is obscure and

unwanted.

Similar problems arise if one lifts the endofunctor Pfs on Nom along NomSub→ Nom, and also

if one considers the free finite-join-semilattice monad on NomSub.

The developments of this subsection suggest a different powerset endofunctor on NomSub: this

category is a topos, and so we can work with its powerobject endofunctor P . This endofunctor

does not arise from lifting either of the endofunctors, Psb or Pfs, considered on Nom. It is left

for the reader to calculate an explicit description of P , but we note here that a coalgebra for the

resulting endofunctor (P Lg) on NomSub can be given by a nominal substitution X together with a

subobject −→ of X × LgX . Such a subobject necessarily satisfies the property

If x −→ l then [b/a]x −→ [b/a]l

(but, in general, not its converse). Thus we arrive at a model for wide open bisimulation in the

π-calculus (without mismatch).

The more general results of this thesis (and Theorem 6.2.1 in particular) can be proved at

the level of final lifting spans. From this perspective, it may be profitable to move away from

modelling behaviour in categories of coalgebras, and to work instead with suitable categories of

transition systems, and suitable functional bisimulations between them.

9.3.3 Different logical frameworks for syntax with variable binding

The formats of Weber and Bloom [1996] and of Ziegler et al. [2006] work with higher-order

abstract syntax, and this approach seems to lead to simpler conditions. With this in mind, it may

be profitable to use frameworks other than nominal logic as a logical basis for the notions of rule.

To adopt the FOλ∆∇ framework of Miller and Tiu [2005] within the general approach presented

here, it would be necessary to develop a model theory, perhaps following the proposals of Miculan

and Yemane [2005] and of Schöpp [2006].

232 Concluding Discussion

9.3.4 Partial orders and completeness for Positive GSOS

In the developments of Section 6.3 and Chapter 8 we were concerned with finding explicit, logical

characterisations of the abstract rules that arose from the model theory. An interesting question

is: how complete is this characterisation — are all the abstract rules definable in terms of concrete

rules?

The answer is: no. There are abstract rules that do not arise from rule structures. The primary

reason for this is that we have not allowed negative premises. Negative premises increase the

expressivity of the GSOS rule format. As Turi and Plotkin [1997, Thm. 1.1] explain, a complete

characterisation of the abstract rules in the form studied in Chapter 6 must allow for rules with

negative premises.

There are two possible resolutions for this mismatch between the concrete and abstract do-

mains. The first resolution is to achieve completeness by allowing a more generous class of con-

crete rules. This amounts to considering negative premises for rules for name-passing. We leave

the precise definitions and calculations to future work (if indeed the problems that arise in this

direction are sufficiently interesting to warrant much study).

The second possible resolution is to keep the same concrete rule format, and constrain the

model so as to achieve a completeness result. One can ask: what is a category-theoretic model for

Positive GSOS? We now outline some issues related to this question, for the simple case without

binding or name-passing.

A model of Positive GSOS. The model that we propose here involves working with the cat-

egory Poset of partial orders and monotone functions between them, instead of with the cate-

gory Set of sets. The category Poset is complete, and so we can model syntax (without binding)

there, following Section 6.1. For behaviour, an appropriate endofunctor on Poset is the endo-

functor D(Lab× (−)); here D is the endofunctor mapping a poset to the poset of its down-closed

subsets.

The appropriate abstract notion of rule is that of natural transformations of the form of Defini-

tion 6.2.11, i.e. natural transformations

Σ((−)×D(Lab× (−))) −→ D(Lab× T (−))

between endofunctors on Poset. The positivity of rules amounts to the requirement that these

natural transformations be componentwise monotone.

As in Section 6.3.4, the collection of abstract rules forms a complete lattice: working with a

collection of concrete rules amounts to taking joins of the corresponding abstract rules. The single

concrete rules correspond to the completely prime elements of the lattice.

Precongruence of similarity. A distinguishing property of a system defined by GSOS rules with

no negative premises is that the similarity preorder is a precongruence: that is, the greatest simula-

tion is respected by the operators of the syntax. For example, for any unary operator op, if there is a

simulation relating processes x and y, then there will also be a simulation relating processes op(x)

and op(y). This property can be established at the abstract level, as follows.

In this order-enriched setting, simulations can be defined in terms of spans of coalgebras by

considering lax morphisms of coalgebras, following Fiore [1996, Sec. 7]. The precongruence of

similarity can be understood by adapting Theorem 6.2.1 and Corollary 6.2.3 to the order-enriched

setting.

A model of Positive GSOS for name-passing. There is still work to be done if this tighter model

of Positive GSOS is to be adapted to the name-passing setting. For instance, it is not clear how to

extend the support-bounded powerset functor Psb on Nom to give an endofunctor on a suitable

category of ‘nominal posets’.

9.3. Research directions 233

9.3.5 Semantics of proper open bisimulation

It could be argued that wide open bisimilarity (Definition 3.1.13) is too fine, in that it dis-

tinguishes processes that could perhaps could never be told apart. For instance, the pro-

cess P1 = νd. c̄d. [c = d]c̄d .0 is not wide open bisimilar with P2 = νd. c̄d. 0. This is essentially

because the subprocesses [c = d]c̄d. 0 and 0 are not wide open bisimilar. Some would assert

that this is unreasonable, because names ‘generated’ by the ν operator, such as the name d in

process P1, should never be identified with other names.

Open bisimulation. Sangiorgi [1996] has introduced a refined notion of bisimulation that re-

solves this issue. To define this notion, we recall the concept of distinction as a finite symmetric

irreflexive binary relation on the setN of names. We say that a substitution function f :N →N re-

spects a distinction # if whenever c#c′ then we have f (c) 6= f (d); in this circumstance we write (f #)

for the image of the relation # under f . We write fn(#) for the set of names appearing in the dis-

tinction #. For any binary relation R, we write R= for its symmetric closure.

Definition 9.3.2 (c.f. Sangiorgi [1996, Defn. 6.2 and Sec. 7]). Let
�
R#

	
be a distinction-indexed

binary relation on π-calculus terms. (So for each distinction #, a binary relation R# is given.)

This family
�
R#

	
is an open simulation if for all distinctions # and all substitutions f that

respect #, then whenever p R# q and [f]p
ℓ
−+π p′ with bn(ℓ)∩ fn(p,q,#) = ;, we have

1. if ℓ= c̄(z) then there exists q′ such that [f]q
ℓ
−+π q′ and p′ R#′ q

′, where

#′ = (f#)∪ ({z} × fn([f]p, [f]q))= , and

2. if ℓ is not a bound output label then there exists q′ such that [f]q
ℓ
−+π q′ and p′ R f# q′.

A distinction indexed family of binary relations
�
R#

	
on π-calculus terms is an open bisimulation

if both
�
R#

	
and {R

op

#
}# are open simulations.

A model of Ghani, Yemane and Victor. Ghani et al. [2004] suggest a modification of the coal-

gebraic analysis of Fiore and Turi [2001] to capture this notion of open bisimulation. They suggest

that, in place of the category F of finite sets of names and functions between them, a category F#

is used, defined as follows: objects are finite sets of names and distinction relations over them;

morphisms are functions that preserve these distinctions. (They denote this category by D.)

However, the model presented there uses the pointwise finite powerset functor on SetF# , and

thus the problems highlighted in (9.3.1), at the end of Section 9.3.2, will arise. In their model, the

transitions must be preserved and reflected by substitutions. The obscure substitution-reflection

property does not hold for the π-calculus, and so, as it stands, this model cannot be used to model

name-passing.

A possible remedy. The development at the end of Section 9.3.2 suggests a simple remedy for

the problems with the model of Ghani et al. [2004]. Instead of using a pointwise powerset functor

on SetF# , the topos-theoretic powerobject functor could be used. The details have to be checked,

however. The resulting model will not be able to model mismatching, but many argue that open

bisimilarity is not relevant for the calculus with mismatch anyway [e.g. Sangiorgi, 1996, Sec. 8].

Structured coalgebras for open bisimulation. We now sketch a model for open bisimulation

that is suggested from the developments in this thesis. The definition of open bisimulation for

the π-calculus can be straightforwardly reformulated at the model-theoretic level for F-ILgTSs, as

introduced in Section 3.4.

234 Concluding Discussion

There is a forgetful functor F#→ F, inducing an inclusion of SetF into SetF# . One can thus define

a distinction indexed relation between presheaves over F as a relation in SetF# between the induced

presheaves over F#. It is then straightforward to translate the remainder of Definition 9.3.2 to this

abstract setting. Thus open bisimulation can be defined for F-ILgTSs.

For a coalgebraic model, the important step is to introduce a new category I#: objects are

finite sets of names and distinction relations on them, and morphisms (C ,#C)→ (D,#D) are injec-

tions ı : C → D that preserve and reflect the distinction structure, in the sense that

∀c, c′ ∈ C . c #C c′ ⇐⇒ ı(c) #C ı(c′) .

On the category SetI# there are two choices for the name generation operator, δ. Both are defined

in a manner analgous to (3.2.4), although care must be taken over the distinction relation. The first

operator, which we also denote δ, describes the generation of new names that are not marked as

distinct from the other names. The second operator, which we denote δ#, describes the generation

of new names that are marked (in the distinction relation) as distinct from all the other names in

the current context.

We can now define a behaviour endofunctor Bg# on SetI# using a definition analogous to equa-

tions 3.2.15 and 3.2.16. The operator δ is used for the bound input component, and the opera-

tor δ# is used for the bound output component.

The inclusion functor I# → F# induces a forgetful functor U
I#

F#
: SetF# → SetI# . Now, U

I#

F#
-struc-

tured Bg#-coalgebras are models for open bisimulation, just as U I
F
-structured Bg-coalgebras are

models for wide open bisimulation.

The forgetful functors F# → F, I# → I suggest how to convert a U I
F
-structured Bg-coalgebra

into a U
I#

F#
-structured Bg#-coalgebra, and it is then straightforward to correspond U

I#

F#
-structured

Bg#-bisimulations with open bisimulations on the corresponding F-ILgTSs.

Open bisimulation and nominal sets. In Chapter 7 of this thesis, we have seen that the theory

of nominal sets provides a elegant framework within which a model of name-passing behaviour

can be presented. It remains to be seen how well-suited the framework of nominal sets is to more

sophisticated notions of behaviour.

As regards the models of open bisimulation introduced briefly in this subsection, a ‘nominal’

presentation might be found as follows. The set of all distinction relations can be considered as a

nominal set with an equivariant lattice structure. One can then study notions of ‘nominal presheaf’

over this lattice, by considering the notion of presheaf as internal to the category of nominal sets

[as described by, e.g. Johnstone, 2002, Sec. B2.3], in order to arrive at a category related to SetI# .

We leave the full investigation of these ideas for possible future research.

9.3.6 Semantics of guarded recursion

An operational semantics for recursive definitions is often given by a rule of the following form

[see e.g. Milner, 1989, Sec. 2.9].

P{fix(X = P)/X }
l
−→ P ′

fix(X = P)
l
−→ P ′

(9.3.3a)

This rule is certainly not in the GSOS format: there are variables in the syntax, and the premise

contains a substitution. Reasoning about recursive definitions in this way can difficult. For these

reasons, the following simpler rule has been suggested.

P
l
−→ P ′

fix(X = P)
l
−→ P ′{fix(X = P)/X }

(9.3.3b)

9.3. Research directions 235

Badouel and Darondeau [1991] provide conditions under which Rule (9.3.3a) is equivalent to

Rule (9.3.3b). These conditions include the requirement that the recursion is guarded: informally,

occurrences of X in P are all preceded by action prefixes.

Rule (9.3.3b) is roughly in the shape of a GSOS rule. It is not in the GSOS format because

variables are involved, and transitions are over open terms, and there is a substitution in the

conclusion target. All these issues have been addressed in the development of this thesis, except

that term-for-name substitution has not been considered.

We now outline how the developments of this thesis can be adapted to explain rules of the

form (9.3.3b).

It is not difficult to invent a ‘nominal algebraic theory’ for term-for-name substitutions. The sub-

stitution algebras of Fiore, Plotkin, and Turi [1999, Defn. 3.1] provide inspiration. Writing SubstAlg

for the resulting category of models, we have a forgetful functor U : SubstAlg→ Nom. Fixing the

set Lab of labels, we let B be the endofunctor P (Lab× (−)) on Nom. The theory of U-structured

B-coalgebras provides an appropriate model of behaviour for understanding Rule (9.3.3b). To

model syntax, one must show that the nominal algebraic signatures of Definition 7.4.1 can be

modelled in SubstAlg, giving rise to a monad T on SubstAlg. (This development is carried out by

Fiore et al. [1999].) The Rule (9.3.3b) can then be seen as recursion data for lifting the monad T

on SubstAlg to the category of U-structured B-coalgebras.

Rule formats for recursion have been proposed before, by various authors: for instance the

format of Middelburg [2001] allows recursion. From the category-theoretic perspective, there

have been developments by Turi [1997, Sec. 8], Plotkin [2001] and Klin [2004], although these

three reports side-step the issue of variable binding.

Future research. By working with increasingly sophisticated notions of behaviour and of sub-

stitution, we are able to study more elaborate process calculi and programming languages. For

instance, the kinds of model considered above for the semantics of recursion provide a first step

towards models for the higher-order systems, involving the communication of processes, as per-

mitted in calculi such as CHOCS [Thomsen, 1995] and HOπ [Sangiorgi, 1992]. Indeed, part of

the presentation of CHOCS considered by Amadio and Dam [1995] seems to already fit into the

framework alluded to above. One might also investigate the kinds of model theory required for

calculi involving the communication of encrypted values and keys, as occurs in the spi-calculus of

Abadi and Gordon [1999].

Bibliography

Note: The abbreviated reference [SW01] for [Sangiorgi and Walker, 2001] has been used in Chapter 3.

M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Inform. and

Comput., 148(1):1–70, 1999. (Cited on page 235.)

S. Abramsky. A domain equation for bisimulation. Inform. and Comput., 92:161–218, 1991. (Cited

on page 14.)

L. Aceto, W. Fokkink, and F. Vaandrager. Structural operational semantics. In Bergstra, Ponse, and

Smolka, editors, Handbook of Process Algebra. Elsevier, 2001. Available in BRICS Report Series,

RS-99-30, University of Aarhus. (Cited on pages 15 and 153.)

P. Aczel. Non-Well-Founded Sets, volume 14 of CSLI Lecture Notes. CSLI, 1988. (Cited on pages 14

and 22.)

J. Adámek, S. Milius, and J. Velebil. A general final coalgebra theorem. Math. Structures Comput.

Sci., 15:409–432, 2005. (Cited on page 22.)

J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Number 189 in London

Math. Soc. Lecture Note Ser.. Cambridge University Press, 1994. (Cited on page 111.)

R. M. Amadio and M. Dam. Reasoning about higher-order processes. In Proceedings of Theory and

Practice of Software Development, Sixth International Joint Conference CAAP/FASE (TAPSOFT’95),

volume 915 of Lecture Notes in Comput. Sci., pages 202–216. Springer, 1995. (Cited on page

235.)

E. Badouel and P. Darondeau. On guarded recursion. Theoret. Comput. Sci., 82(2):403–408, 1991.

(Cited on page 235.)

M. Baldamus. Compositional constructor interpretation over coalgebraic models for the π-calculus.

In Proceedings of the Third International Workshop on Coalgebraic Methods in Computer Science

(CMCS’00), volume 33 of Electron. Notes Theor. Comput. Sci., pages 13–41, 2000. (Cited on page

229.)

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Number 103 in Studies in Logic

and the Foundations of Mathematics. Elsevier, 1981. (Cited on page 17.)

M. Barr. Coequalisers and free triples. Math. Z., 116:307–322, 1970. (Cited on page 137.)

M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1984. Republished in: Reprints

in Theory Appl. of Categ., No. 12 (2005) pp. 1-287. (Cited on page 137.)

K. L. Bernstein. A congruence theorem for structured operational semantics of higher-order lan-

guages. In Proceedings of the Thirteenth Annual IEEE Symposium on Logic in Computer Science

(LICS’98), pages 153–164. IEEE Computer Society Press, 1998. (Cited on pages 228 and 229.)

237

238 Bibliography

R. Blackwell, G. M. Kelly, and A. J. Power. Two-dimensional monad theory. J. Pure Appl. Algebra,

59:1–41, 1989. (Cited on page 136.)

B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232–268, 1995.

(Cited on pages 15, 21, 133, 151, 153, 197, 203, and 206.)

B. Bloom and F. Vaandrager. SOS rule formats for parameterized and state-bearing processes. Draft,

1994. (Cited on page 228.)

M. Boreale and R. D. Nicola. A symbolic semantics for the π-calculus. Inform. and Comput., 126:

34–52, 1996. (Cited on page 13.)

R. Bruni, F. Honsell, M. Lenisa, and M. Miculan. Modeling fresh names in the π-calculus using

abstractions. In Proceedings of the Seventh International Workshop on Coalgebraic Methods in

Computer Science (CMCS’04), volume 106 of Electron. Notes Theor. Comput. Sci., pages 25–41,

2004. (Cited on page 14.)

A. Burroni. T -catégories: catégories dans un triple. Cah. Topol. Géom. Différ. Catég., XII(3):215–

321, 1971. (Cited on page 121.)

M. G. Buscemi and U. Montanari. A first order coalgebraic model of π-calculusearly observational

equivalence. In Proceedings of the Thirteenth International Conference on Concurrency Theory

(CONCUR’02), volume 2421 of Lecture Notes in Comput. Sci., pages 449–465. Springer-Verlag,

2002. (Cited on page 229.)

A. Carboni and E. M. Vitale. Regular and exact completions. J. Pure Appl. Algebra, 125:79–116,

1998. (Cited on page 113.)

G. L. Cattani and P. Sewell. Models for name-passing processes: interleaving and causal. Inform.

and Comput., 190:136–178, 2004. (Cited on pages 13, 14, 18, 45, 46, 60, 61, 62, 72, 73, 74, 76,

79, 80, 81, and 227.)

G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the pi-calculus. In Proceedings of the

Sixth Conference on Category Theory and Computer Science (CTCS’97), volume 1290 of Lecture

Notes in Comput. Sci., pages 106–126, 1997. (Cited on page 229.)

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000. (Cited on page

111.)

P. M. Cohn. Basic Algebra: Groups, Rings and Fields. Springer, 2003. (Cited on page 111.)

P. Crawley and R. P. Dilworth. Algebraic Theory of Lattices. Prentice-Hall, 1973. (Cited on page

230.)

N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. Indagationes Math., 34:381–392,

1972. (Cited on page 17.)

R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoret. Comput. Sci., 37:245–

267, 1985. (Cited on page 15.)

U. H. Engberg and M. Nielsen. A calculus of communicating systems with label passing – ten years

after. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction: Essays

in Honour of Robin Milner, pages 599–622. MIT Press, 2000. (Cited on page 11.)

Bibliography 239

G. L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification environment

for mobile processes. ACM Trans. Softw. Eng. Methodol., 12(4):440–473, 2003. (Cited on page

111.)

G. L. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name passing calculi:

A co-algebraic formulation. In Proceedings of the Fifth International Conference on Foundations

of Software Science and Computation Structures (FOSSACS’02), volume 2303 of Lecture Notes in

Comput. Sci., pages 129–158. Springer-Verlag, 2002. (Cited on pages 19, 111, 113, 114, 118,

119, and 227.)

M. P. Fiore. A coinduction principle for recursive data types based on bisimulation. Inform. and

Comput., 127:186–198, 1996. (Cited on page 232.)

M. P. Fiore. Notes on combinatorial functors. Available from the author’s home page, January

2001. (Cited on pages 19, 23, 101, 103, and 118.)

M. P. Fiore and M. Menni. Reflective Kleisli subcategories of the category of Eilenberg-Moore

algebras for factorization monads. Theory Appl. of Categ., 15(2):40–65, 2005. (Cited on page

103.)

M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the π-calculus. Inform. and

Comput., 179(1):76–117, 2002. (Cited on pages 13 and 14.)

M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding (extended abstract).

In Proceedings of the Fourteenth Annual IEEE Symposium on Logic in Computer Science (LICS’99),

pages 193–202. IEEE Computer Society Press, 1999. (Cited on pages 17, 176, and 235.)

M. P. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Inform.

and Comput., 204(4):435–678, 2006a. Extended abstract appeared in Proceedings of the Seventh

International Workshop on Coalgebraic Methods in Computer Science (CMCS’04). (Cited on page

24.)

M. P. Fiore and S. Staton. A congruence rule format for name-passing process calculi from mathe-

matical structural operational semantics. In Proceedings of the Twenty-First Annual IEEE Sympo-

sium on Logic in Computer Science (LICS’06), pages 49–58. IEEE Computer Society Press, 2006b.

(Cited on page 24.)

M. P. Fiore and D. Turi. Semantics of name and value passing (extended abstract). In Proceedings

of the Sixteenth Annual IEEE Symposium on Logic in Computer Science (LICS’01), pages 93–104.

IEEE Computer Society Press, 2001. (Cited on pages 5, 13, 14, 18, 33, 35, 45, 53, 55, 57, 58,

66, 73, 75, 76, 227, and 233.)

W. J. Fokkink and C. Verhoef. A conservative look at operational semantics with variable binding.

Inform. and Comput., 146(1):24–54, 1998. (Cited on page 17.)

P. Freyd. Algebraically complete categories. In A. Carboni, M. C. Pedicchio, and G. Rosolini, editors,

Proceedings of Category Theory, Como ’90, volume 1488 of Lecture Notes in Comput. Sci., pages

95–104. Springer-Verlag, 1991. (Cited on page 14.)

P. Freyd. Remarks on algebraically compact categories. In M. P. Fourman, P. T. Johnstone, and A. M.

Pitts, editors, Applications of Categories in Computer Science: Proceedings of the LMS Symposium,

Durham 1991, volume 177 of London Math. Soc. Lecture Note Ser., pages 95–106. Cambridge

University Press, 1992. (Cited on page 14.)

M. J. Gabbay. The π-calculus in FM. In F. D. Kamareddine, editor, Thirty Five Years of Automating

Mathematics, volume 28 of Applied Logic Series. Kluwer, 2003. (Cited on page 230.)

240 Bibliography

M. J. Gabbay. A Theory of Inductive Definitions with Alpha-Equivalence. PhD thesis, University of

Cambridge, 2001. (Cited on page 168.)

M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra. In Proceedings

of Theoretical Aspects of Computing – ICTAC 2006, Third International Colloquium, volume 4281

of Lecture Notes in Comput. Sci., pages 198–212. Springer, 2006. (Cited on page 17.)

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects of Computing, 13:341–363, 2001. (Cited on pages 17, 19, 24, 167, 168, 171, 227,

and 230.)

F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and named

sets. Higher-Order Symb. Comput., 19(2–3):283–304, 2006. (Cited on page 121.)

N. Ghani, K. Yemane, and B. Victor. Relationally staged computations in calculi ofmobile processes.

In Proceedings of the Seventh International Workshop on Coalgebraic Methods in Computer Science

(CMCS’04), volume 106 of Electron. Notes Theor. Comput. Sci., pages 105–120. Elsevier, 2004.

(Cited on page 233.)

J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specification,

correctness and implementation of abstract data types. In R. T. Yeh, editor, Current Trends in

Programming Methodology, volume IV, chapter 5, pages 80–149. Prentice-Hall, 1978. (Cited on

pages 15 and 17.)

A. D. Gordon. Bisimilarity as a theory of functional programming. Theoret. Comput. Sci., 228:5–47,

1999. (Cited on page 12.)

J. F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a congruence.

Inform. and Comput., 100(2):202–260, 1992. (Cited on pages 153, 228, and 229.)

I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. In Proceedings of the Eighth International

Workshop on Coalgebraic Methods in Computer Science (CMCS’06), volume 164 of Electron. Notes

Theor. Comput. Sci., pages 47–65, 2006. (Cited on page 60.)

M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comput. Sci., 138(2):353–389, 1995.

(Cited on page 13.)

F. Honsell, M. Lenisa, U. Montanari, and M. Pistore. Final semantics for the pi-calculus. In Pro-

ceedings of the International Conference on Programming Concepts and Methods (PROCOMET’98),

volume 125 of IFIP Conference Proceedings, pages 225–243. Chapman & Hall, 1998. (Cited on

page 229.)

A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited. Logical

Methods in Computer Science, 1(1), 2005. (Cited on page 12.)

P. T. Johnstone. A topos theorist looks at dilators. J. Pure Appl. Algebra, 58:235–249, 1989. (Cited

on page 94.)

P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Number 43, 44 in Oxford

Logic Guides. Oxford University Press, 2002. (Cited on pages 89, 90, 91, 93, 94, 98, 124, 230,

and 234.)

G. M. Kelly. Doctrinal adjunction. In Proceedings, Sydney Category Theory Seminar, volume 420 of

Lecture Notes in Math., pages 257–280. Springer, 1972. (Cited on pages 34 and 136.)

G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits,

associated sheaves, and so on. Bull. Austral. Math. Soc., 22:1–83, 1980. (Cited on page 137.)

Bibliography 241

B. Klin. Adding recursive constructs to bialgebraic semantics. J. Log. Algebr. Program., 60–61:

259–286, 2004. (Cited on page 235.)

A. Kock. Monads for which structures are adjoint to units. J. Pure Appl. Algebra, 104:41–59, 1995.

(Cited on page 112.)

J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In Proceedings

of the Eleventh International Conference on Concurrency Theory (CONCUR’00), volume 1877 of

Lecture Notes in Comput. Sci.. Springer-Verlag, 2000. (Cited on page 12.)

M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-pointed

endofunctors, monads and comonads. In H. Reichel, editor, Proceedings of the Third International

Workshop on Coalgebraic Methods in Computer Science (CMCS’00), volume 33 of Electron. Notes

Theor. Comput. Sci., pages 230–260. Elsevier, 2000. (Cited on page 34.)

H. Lin. Complete inference systems for weak bisimulation equivalences in the π-calculus. Inform.

and Comput., 180(1):1–29, 2003. (Cited on page 13.)

S. Mac Lane. Categories for the working mathematician. Graduate Texts in Mathematics. Springer,

second edition, 1998. (Cited on pages 31 and 136.)

S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: a First Introduction to Topos Theory.

Universitext. Springer-Verlag, 1992. (Cited on pages 89, 94, and 95.)

M. Miculan and K. Yemane. A unifying model of variables and names. In Proceedings of the Eighth

International Conference on Foundations of Software Science and Computation Structures (FOS-

SACS’05), volume 3441 of Lecture Notes in Comput. Sci., pages 170–186, 2005. (Cited on page

231.)

C. A. Middelburg. Variable binding operators in transition system specifications. J. Log. Algebr.

Program., 47:15–45, 2001. (Cited on pages 17 and 235.)

D. Miller. A proof theoretic approach to operational semantics. In L. Aceto and A. D. Gordon,

editors, Proceedings of Algebraic Process Calculi: The First Twenty Five Years and Beyond, volume

162 of Electron. Notes Theor. Comput. Sci., pages 243–247, 2006. (Cited on page 13.)

D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. Comput. Log., 6(4):749–

783, 2005. (Cited on pages 229 and 231.)

R. Milner. Communication and Concurrency. Prentice Hall, 1989. (Cited on pages 11, 124, 125,

134, and 234.)

R. Milner. A calculus of communicating systems, volume 92 of Lecture Notes in Comput. Sci.. Springer-

Verlag, 1980. (Cited on pages 11, 14, 15, 34, and 36.)

R. Milner. Communicating and Mobile Systems : The π-Calculus. Cambridge University Press, 1999.

(Cited on page 11.)

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Inform. and Comput.,

100(1):1–77, 1992. (Cited on pages 11, 13, 21, 46, 47, 49, 50, and 53.)

R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoret. Comput. Sci., 114

(1):149–171, 1993. (Cited on page 47.)

I. Moerdijk. Classifying Spaces and Classifying Topoi. Number 1616 in Lecture Notes in Math..

Springer-Verlag, 1995. (Cited on page 170.)

242 Bibliography

U. Montanari and M. Pistore. An introduction to history dependent automata. In Proceedings of

HOOTS II: Second Workshop on Higher-Order Operational Techniques in Semantics, volume 10

of Electron. Notes Theor. Comput. Sci., pages 170–188, 1997. (Cited on pages 14, 111, 112,

and 113.)

U. Montanari and M. Pistore. Structured coalgebras and minimal HD-automata for the π-calculus.

Theoret. Comput. Sci., 340(4):539–576, 2005. (Cited on page 229.)

U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS. Fund.

Inform., 16(1):171–199, 1992. (Cited on page 13.)

R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, chapter 5, pages 89–101.

ACM Press, 1989. (Cited on page 11.)

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM J. on Comput., 16(6):

973–989, 1987. (Cited on pages 12 and 23.)

J. Parrow. An introduction to the pi-calculus. In Bergstra, Ponse, and Smolka, editors, Handbook of

Process Algebra, pages 479–543. Elsevier, 2001. (Cited on pages 11 and 53.)

J. Parrow and B. Victor. The update calculus (extended abstract). In Proceedings of the Sixth

International Conference on Algebraic Methodology and Software Technology (AMAST’97), volume

1349 of Lecture Notes in Comput. Sci., pages 409–423. Springer, 1997. (Cited on page 13.)

M. Pistore. History Dependent Automata. PhD thesis, University of Pisa, Dipartimento di Informat-

ica, 1999. (Cited on pages 113 and 114.)

M. Pistore and D. Sangiorgi. A partition refinement algorithm for the π-calculus. Inform. and

Comput., 164:264–321, 2001. (Cited on page 111.)

A. M. Pitts. A co-induction principle for recursively defined domains. Theoret. Comput. Sci., 124:

195–219, 1994. (Cited on page 14.)

A. M. Pitts. Nominal logic, a first order theory of names and binding. Inform. and Comput., 186:

165–193, 2003. (Cited on pages 21, 174, and 175.)

A. M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):459–506, 2006. (Cited on

pages 168 and 169.)

A. M. Pitts and I. Stark. On the observable properties of higher order functions that dynamically

create local names (preliminary report). In Proceedings of the ACM SIGPLAN Workshop on State

in Programming Languages (SIPL’93), pages 31–45, 1993. Technical Report YALE/DCS/TR968,

Yale University Department of Computer Science. (Cited on page 18.)

G. D. Plotkin. Bialgebraic semantics and recursion (extended abstract). In Proceedings of the Fourth

International Workshop on Coalgebraic Methods in Computer Science (CMCS’01), volume 44(1) of

Electron. Notes Theor. Comput. Sci., pages 1–4, 2001. (Cited on page 235.)

G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI-FN-19,

Computer Science Dept., Aarhus University, Denmark, 1981. Republished in J. Log. Algebr.

Program., 60–61:17–140. (Cited on pages 13 and 15.)

G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60–61:3–15,

2004. (Cited on page 16.)

Bibliography 243

J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In Proceedings of the

Eighth Conference on Category Theory and Computer Science (CTCS’99), volume 29 of Electron.

Notes Theor. Comput. Sci., pages 259–274. Elsevier, 1999. (Cited on page 60.)

J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80,

2000. (Cited on pages 14, 22, and 31.)

D. Sangiorgi. On the bisimulation proof method. Math. Structures Comput. Sci., 8(5):447–479,

1998. (Cited on page 12.)

D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inform., 33(1):69–97, 1996. (Cited

on pages 13, 37, 52, 53, 228, 229, and 233.)

D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD

thesis, University of Edinburgh, 1992. (Cited on page 235.)

D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. Cambridge University

Press, 2001. (Cited on pages 11, 12, 13, 47, 48, 49, 50, 51, 52, 53, 182, 201, and 237.)

U. Schöpp. Modelling generic judgements. In Proceedings of the International Workshop on Logical

Frameworks and Meta-Languages: Theory and Practice (LFMTP’06), Seattle, 2006. (Cited on page

231.)

P. Sewell. π-calculi. In H. Bowman and J. Derrick, editors, Formal Methods for Distributed Pro-

cessing: A Survey of Object-Oriented Approaches, chapter 9, pages 177–197. Cambridge University

Press, 2001. (Cited on page 14.)

P. Sewell. From rewrite rules to bisimulation congruences. Theoret. Comput. Sci., 274:183–230,

2002. (Cited on page 12.)

A. K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for an arbitrary GSOS.

In Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer Science (LICS’95), pages

420–430. IEEE Computer Society Press, 1995. (Cited on page 153.)

I. Stark. A fully abstract domain model for the π-calculus. In Proceedings of the Eleventh Annual

IEEE Symposium on Logic in Computer Science (LICS’96), pages 36–42. IEEE Computer Society

Press, 1996. (Cited on pages 13 and 14.)

R. Street. The formal theory of monads. J. Pure Appl. Algebra, 2:149–168, 1972. (Cited on pages

34 and 135.)

P. Taylor. Practical Foundations of Mathematics. Number 59 in Cambridge Studies in Advanced

Mathematics. Cambridge University Press, 1999. (Cited on page 142.)

B. Thomsen. A theory of higher order communicating systems. Inform. and Comput., 116:38–57,

1995. (Cited on page 235.)

D. Turi. Categorical modelling of structural operational rules: Case studies. In Proceedings of the

Sixth Conference on Category Theory and Computer Science (CTCS’97), volume 1290 of Lecture

Notes in Comput. Sci., pages 127–146. Springer, 1997. (Cited on page 235.)

D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free University,

Amsterdam, June 1996. (Cited on page 31.)

D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proceedings of the

Twelfth Annual IEEE Symposium on Logic in Computer Science (LICS’97), pages 280–291. IEEE

Computer Society Press, 1997. (Cited on pages 15, 20, 24, 35, 36, 133, 138, 141, 149, 153, 228,

and 232.)

244 Bibliography

C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoret. Comput. Sci., 323:473–497,

2004. (Cited on page 199.)

S. M. Weber. Process Algebras and Meta-Algebras: Theory and Practice. PhD thesis, Cornell University,

August 1995. (Cited on page 228.)

S. M. Weber and B. Bloom. Metatheory of the π-calculus. Technical Report TR96-1564, Cornell

University, Computer Science, 1996. (Cited on pages 228 and 231.)

J. Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci., 338:184–199,

2005. (Cited on pages 23 and 127.)

A. Ziegler, D. Miller, and C. Palamidessi. A congruence format for name-passing calculi. In Pro-

ceedings of the Second Workshop on Structural Operational Semantics (SOS’05), volume 156 of

Electron. Notes Theor. Comput. Sci., pages 169–189, 2006. (Cited on pages 228, 229, and 231.)

