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Abstract

There is a belief that subdivision schemes require the subdominant eigenvalue,λ , to
be the same around extraordinary vertices as in the regular regions of themesh [Barthe
and Kobbelt, 2004, Zulti et al., 2006, Ni and Nasri, 2006]. This belief is owing to the
polar rendering artifacts which occur around extraordinary points when λ is significantly
larger than in the regular regions [Sabin and Barthe, 2003]. By constraining the tuning
of subdivision schemes to solutions which fulfill this condition we may preventourselves
from finding the optimal limit surface [Zorin and Schröder, 2000, pp 95–97]. We show
that the perceived problem is purely a rendering artifact and that it does not reflect the
quality of the underlying limit surface. Using thebounded curvature Catmull-Clark scheme
[Augsd̈orfer et al., 2006] as an example, we describe three practical methods bywhich this
rendering artifact can be removed, thereby allowing us to tune subdivision schemes using
any appropriate values ofλ .

1 Problem statement

In regular regions, all good binary subdivisions schemes haveλ = 1/2. At extraordinary points,
tuning of the scheme may requireλ very different to one half. Such tuning should ideally be
done with respect to the mathematical properties of the limit surface, not in relation to any
polygonal approximation.

The practical outcome of havingλ greater than one half is that the polygons around an extraor-
dinary point do not shrink in size as quickly as those in regular regions of the mesh [Sabin and
Barthe, 2003]. A typical application will want to subdivide until every polygon is roughly the
size of a pixel on screen but no further. For an initial mesh of100 polygons displayed on a
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1000×1000 pixel screen this requires roughly seven subdivision steps. If there is an extraor-
dinary vertex around whichλ = 0.9 then, after seven subdivision steps, while the majority of
polygons will have edge lengths on the order of a pixel, the edges radiating from the extraor-
dinary vertex will be of the order of(0.9/0.5)7 ≈ 60 pixels long. That is: the majority of the
surface will appear smooth while the region around the extraordinary vertex appears faceted.
An example can be seen in Figure 1(a). Do not confuse this effect with the unbounded curvature
at extraordinary vertices of, for example, the original Catmull-Clark scheme.

This is clearly a rendering artifact caused by the particular polygonal approximation. The limit
surface itself is smooth. Simply rendering the polyhedron after n subdivision steps does not
provide a sufficiently good approximation to the limit surface for reasonable values ofn. Figures
1(b)–(e) show four better approximations to the limit surface, of which (c) and (e) are visually
acceptable.

We need to make clear that weare interested in values ofλ which are closer to 1.0 than to 0.5,
for high valency extraordinary vertices [Augsdörfer et al., 2006]. This makes it impractical to
continue subdividing until the polygons around the extraordinary vertex are small enough. For
λ = 0.9 this would require fifty subdivision steps in the example given above, by which point
there would be around 1036 polygons, most with edges of length 10−15 of a pixel edge length
(compared with the 106 polygons and the unit edge length generated by seven steps).This is
clearly untenable. Even if we make the assumption that we cantolerate longer edges, say one
ninth of the length of the longest edge after seven steps, we still need⌈logλ 1/9⌉ steps. In case
of λ = 0.9, this is 21 further steps.

2 Solutions

Pushing vertices to the limit surface. If, after a number of subdivision steps, the polygons
in the subdivided mesh are sufficiently small to be considered a good approximation to the
limit surface, then the vertices of those polygons are sufficiently close to the limit surface to be
considered approximately on it. This follows from the convex hull property of the box splines
on which the standard subdivision methods are based. However, the extraordinary vertex itself
is not in this category and the vertices in the 1-ring around it may not be in this category. The
limit points on a subdivision surface can be obtained from the row eigenvector corresponding
to the dominant eigenvalueλ0 = 1. We can form stencils from these to determine the limit
points at regular and extraordinary vertices. If we push allthese vertices onto the limit surface
by convolving the mesh with the limit stencils we get some improvement in the rendered result,
but the artifact is still clearly visible. See Figure 1(b). What is required instead is an appropriate
polygonization which allows for a smooth variation of surface normal as we move across the
1-ring. Phong shading across the large polygons, although useful, is not sufficient because it
preserves the coarse polygonal silhouette.

Adaptive subdivision has been widely implemented (e.g. by Müller and Jaeschke [1998]).
The issues are how to maintain a good mesh with no cracks, and how to identify when to
switch between levels. In the present situation, we switch between levels in rings around the
extraordinary vertex and change from lower to higher levelsof refinement as we get closer to
the extraordinary vertex. This means that the join between levels of refinement always occurs
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(a)

(b)

(c)

(d)

(e)

Figure 1: Bounded curvature Catmull-Clark [Augsdörfer et al., 2006] applied to an elliptic
shape with an extraordinary vertex of valency eight at its centre. In each case the rendered
surface is shown on left, and the polygon edges in the centre and at right. (a) basic subdivision,
(b) vertices pushed to the limit surface, (c) adaptive subdivision, (d) B́ezier curves on spoke
edges, (e) B́ezier patches between spoke edges.
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in the same way. These facts make it relatively easy to implement adaptive subdivision to solve
the rendering artifact problem compared with implementinggeneral adaptive subdivision. As
an example, assume that all edges in the base mesh are of roughly the same length and that
n subdivision steps are sufficient in the regular regions of the mesh. The spoke edges (those
emanating from the extraordinary vertex) will be too long. Assume thatn is sufficiently large
that the polygons in the 2-ring are sufficiently small. The ratio of edge lengths between polygons
in the 2-ring and polygons in the 1-ring is approximatelyγ = (1−λ )/λ . Adaptive subdivision
thus needs to ensure that the maximum edge length isγ times the spoke edge length. For
λ = 0.9, γ = 1/9. Figure 1(c) shows an example. This produces a rendered solution which
is a visually acceptable approximation to the limit surfaceand thus solves the polar artifact
problem. It has the practical drawback that some of the polygons near the extraordinary vertex
are extremely small.

Stam’s exact evaluation [Stam, 1998] is another method that is obviously relevant. If we poly-
gonize the region around the extraordinary vertex in a uniform fashion, as illustrated in Figure
1(e), then we can evaluate the limit surface at every vertex of that polygonization. The issues
here are that we need to handle Stam’s evaluation to high depths for highλ (at least 21 steps
for the λ = 0.9 example above), that we need to precalculate and store all of the necessary
matrices, and that we should ideally store a uniform mesh foreach valency of extraordinary
vertex. This is time-consuming to implement. The uniform polygonization in the parameter
space can be generated easily enough by placing vertices at steps ofγ along each spoke edge,
joining these by transverse edges divided into steps no longer thanγ and then connecting ver-
tices on adjacent transverse edges in an appropriate way (Figure 1(e)). For a sufficiently fine
polygonization, this clearly produces a surface which is indistinguishable from the limit surface
and indistinguishable from the surface in Figure 1(c). It improves on adaptive subdivision by
not generating a large number of tiny polygons. However, we would prefer a solution which is
easier to implement and faster to evaluate than either of these methods.

Exact evaluation of an approximate curved surface produces an adequate approximation
to the limit surface without generating tiny polygons and without the need to perform Stam’s
exact evaluation. We approximate the limit surface around the extraordinary vertex by Hermite
interpolation, using a set of B́ezier triangles, and we sample off this approximation. Provided
that the B́ezier triangles give a sufficiently good approximation to the limit surface, this will
provide sufficiently good results. An early idea was to approximate the spoke edges by quadratic
Bézier curves. The end points were the vertices pushed onto the limit surface. The third control
point could be determined in several ways. It is possible to find the tangent planes at the two end
points, using the two eigenvectors corresponding to the twosubdominant eigenvalues,λ . We
defined the third control point to be the point on the intersection line of the two tangent planes
that lies closest to the straight line joining the end points. Using these quadratic Bézier curves,
we could determine points at appropriate intervals along the curve, as shown in Figure 1(d).
However, for all but very high valency, the triangles created between the spokes were too large,
causing rendering artifacts. We propose, therefore, to useBézier triangles. The three corners of
the triangle are the extraordinary vertex and two adjacent vertices in the 2-ring, all pushed onto
the limit surface. We use vertices in the 2-ring so that the Bézier triangles cover the entirety
of the quadrilaterals surrounding the extraordinary vertex. The three other control points of the
quadratic B́ezier triangles are determined analogously to the Bézier curves, above. We use the
same uniform polygonization as in Stam’s exact evaluation,at lower computational cost, with
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the result shown in Figure 1(e). This only has a guarantee ofC0 continuity across the spoke
edges, but the angles between the tangent planes of adjacentBézier triangles is significantly less
than between the facets that are actually being rendered.

3 Conclusion

High values ofλ are required to get limit surfaces with optimal properties around extraordinary
vertices. The polar rendering artifacts which occur aroundextraordinary vertices for highλ can
be removed by providing a better approximation to the limit surface than is given by subdividing
a small number of times. Adaptive subdivision, Stam’s exactevaluation, and B́ezier triangle
evaluation all provide a good approximation to the limit surface and visual smoothness. Any of
these solutions allows subdivision schemes to use high values ofλ without introducing polar
artifacts into the rendered approximation of the limit surface, thus allowing us to achieve highest
quality by using optimal values forλ .
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