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Abstract

There is a belief that subdivision schemes require the subdominant aigenv, to
be the same around extraordinary vertices as in the regular regions wiete [Barthe
and Kobbelt, 2004, Zulti et al., 2006, Ni and Nasri, 2006]. This beliefviéng to the
polar rendering artifacts which occur around extraordinary pointswahis significantly
larger than in the regular regions [Sabin and Barthe, 2003]. By camistgathe tuning
of subdivision schemes to solutions which fulfill this condition we may prevergelves
from finding the optimal limit surface [Zorin and Sciuer, 2000, pp 95-97]. We show
that the perceived problem is purely a rendering artifact and that & doe reflect the
quality of the underlying limit surface. Using theunded curvature Catmull-Clark scheme
[Augsdbrfer et al., 2006] as an example, we describe three practical methadsidty this
rendering artifact can be removed, thereby allowing us to tune subdissitemes using
any appropriate values af.

1 Problem statement

In regular regions, all good binary subdivisions schemes ha=1/2. At extraordinary points,
tuning of the scheme may requikevery different to one half. Such tuning should ideally be
done with respect to the mathematical properties of thet lsmiface, not in relation to any
polygonal approximation.

The practical outcome of havinggreater than one half is that the polygons around an extraor-
dinary point do not shrink in size as quickly as those in ragtgions of the mesh [Sabin and
Barthe, 2003]. A typical application will want to subdividatil every polygon is roughly the
size of a pixel on screen but no further. For an initial mesi@d polygons displayed on a
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1000x 1000 pixel screen this requires roughly seven subdivisiepss If there is an extraor-
dinary vertex around which = 0.9 then, after seven subdivision steps, while the majority of
polygons will have edge lengths on the order of a pixel, thgesdadiating from the extraor-
dinary vertex will be of the order af0.9/0.5)” ~ 60 pixels long. That is: the majority of the
surface will appear smooth while the region around the exdiiaary vertex appears faceted.
An example can be seen in Figure 1(a). Do not confuse thisteffi¢h the unbounded curvature
at extraordinary vertices of, for example, the original Qatr€lark scheme.

This is clearly a rendering artifact caused by the particptdygonal approximation. The limit
surface itself is smooth. Simply rendering the polyhedrfieran subdivision steps does not
provide a sufficiently good approximation to the limit sudgor reasonable valuesmf Figures
1(b)—(e) show four better approximations to the limit soegfaof which (c) and (e) are visually
acceptable.

We need to make clear that wee interested in values of which are closer to 1.0 than to 0.5,
for high valency extraordinary vertices [Augster et al., 2006]. This makes it impractical to
continue subdividing until the polygons around the extilawary vertex are small enough. For
A = 0.9 this would require fifty subdivision steps in the examphegi above, by which point
there would be around $®polygons, most with edges of length 19 of a pixel edge length
(compared with the 0polygons and the unit edge length generated by seven stEps)is
clearly untenable. Even if we make the assumption that wealarate longer edges, say one
ninth of the length of the longest edge after seven stepstilveeed [log, 1/9] steps. In case
of A = 0.9, this is 21 further steps.

2 Solutions

Pushing vertices to the limit surface. If, after a number of subdivision steps, the polygons
in the subdivided mesh are sufficiently small to be consilerggjood approximation to the
limit surface, then the vertices of those polygons are saffity close to the limit surface to be
considered approximately on it. This follows from the conbell property of the box splines
on which the standard subdivision methods are based. Howtbeeextraordinary vertex itself
is not in this category and the vertices in the 1-ring aroamday not be in this category. The
limit points on a subdivision surface can be obtained fromrthw eigenvector corresponding
to the dominant eigenvalu® = 1. We can form stencils from these to determine the limit
points at regular and extraordinary vertices. If we pushhase vertices onto the limit surface
by convolving the mesh with the limit stencils we get somerovement in the rendered result,
but the artifact is still clearly visible. See Figure 1(b). ®¥is required instead is an appropriate
polygonization which allows for a smooth variation of sawdanormal as we move across the
1-ring. Phong shading across the large polygons, althosgful) is not sufficient because it
preserves the coarse polygonal silhouette.

Adaptive subdivison has been widely implemented (e.g. byulér and Jaeschke [1998]).
The issues are how to maintain a good mesh with no cracks, ewdid identify when to

switch between levels. In the present situation, we switetvben levels in rings around the
extraordinary vertex and change from lower to higher lee¢lsefinement as we get closer to
the extraordinary vertex. This means that the join betweeel$ of refinement always occurs
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Figure 1: Bounded curvature Catmull-Clark [Augstr et al., 2006] applied to an elliptic
shape with an extraordinary vertex of valency eight at itstree In each case the rendered
surface is shown on left, and the polygon edges in the centt@tright. (a) basic subdivision,

(b) vertices pushed to the limit surface, (c) adaptive subiin, (d) Bezier curves on spoke
edges, (e) Bzier patches between spoke edges.



6

in the same way. These facts make it relatively easy to impigradaptive subdivision to solve
the rendering artifact problem compared with implementiegeral adaptive subdivision. As
an example, assume that all edges in the base mesh are ofyrdhglsame length and that
n subdivision steps are sufficient in the regular regions efrtfesh. The spoke edges (those
emanating from the extraordinary vertex) will be too longssAme thah is sufficiently large
that the polygons in the 2-ring are sufficiently small. Theraf edge lengths between polygons
in the 2-ring and polygons in the 1-ring is approximatght (1—A)/A. Adaptive subdivision
thus needs to ensure that the maximum edge lengthtiimes the spoke edge length. For
A =0.9, y=1/9. Figure 1(c) shows an example. This produces a renderatisolwhich

Is a visually acceptable approximation to the limit surfacel thus solves the polar artifact
problem. It has the practical drawback that some of the moiggear the extraordinary vertex
are extremely small.

Stam’s exact evaluation [Stam, 1998] is another method that is obviously relevdmntel poly-
gonize the region around the extraordinary vertex in a umftashion, as illustrated in Figure
1(e), then we can evaluate the limit surface at every vertélkai polygonization. The issues
here are that we need to handle Stam’s evaluation to higthslépt highA (at least 21 steps
for the A = 0.9 example above), that we need to precalculate and storé #leaecessary
matrices, and that we should ideally store a uniform mesteémh valency of extraordinary
vertex. This is time-consuming to implement. The uniforntygonization in the parameter
space can be generated easily enough by placing verticespatafy along each spoke edge,
joining these by transverse edges divided into steps ncelotiigny and then connecting ver-
tices on adjacent transverse edges in an appropriate wgyré=i(e)). For a sufficiently fine
polygonization, this clearly produces a surface whichdstinguishable from the limit surface
and indistinguishable from the surface in Figure 1(c). Ipioves on adaptive subdivision by
not generating a large number of tiny polygons. However, wald prefer a solution which is
easier to implement and faster to evaluate than either s&theethods.

Exact evaluation of an approximate curved surface produces an adequate approximation
to the limit surface without generating tiny polygons andhout the need to perform Stam’s
exact evaluation. We approximate the limit surface aroteceixtraordinary vertex by Hermite
interpolation, using a set of&ier triangles, and we sample off this approximation. Riexy
that the REezier triangles give a sufficiently good approximation te timit surface, this will
provide sufficiently good results. An early idea was to agpnate the spoke edges by quadratic
Bézier curves. The end points were the vertices pushed oatorilt surface. The third control
point could be determined in several ways. Itis possiblaibtie tangent planes at the two end
points, using the two eigenvectors corresponding to thessmominant eigenvalues, We
defined the third control point to be the point on the intetisedine of the two tangent planes
that lies closest to the straight line joining the end poiktsing these quadraticéier curves,
we could determine points at appropriate intervals alomgciirve, as shown in Figure 1(d).
However, for all but very high valency, the triangles createtween the spokes were too large,
causing rendering artifacts. We propose, therefore, t@égeer triangles. The three corners of
the triangle are the extraordinary vertex and two adjacerttoes in the 2-ring, all pushed onto
the limit surface. We use vertices in the 2-ring so that tlégi@ triangles cover the entirety
of the quadrilaterals surrounding the extraordinary veride three other control points of the
guadratic Bzier triangles are determined analogously to tbei& curves, above. We use the
same uniform polygonization as in Stam'’s exact evaluatihower computational cost, with
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the result shown in Figure 1(e). This only has a guarantég0oontinuity across the spoke
edges, but the angles between the tangent planes of adig&zat triangles is significantly less
than between the facets that are actually being rendered.

3 Conclusion

High values ofA are required to get limit surfaces with optimal propertiesiad extraordinary
vertices. The polar rendering artifacts which occur aroextdaordinary vertices for high can

be removed by providing a better approximation to the limiface than is given by subdividing
a small number of times. Adaptive subdivision, Stam’s exaetluation, and Bzier triangle
evaluation all provide a good approximation to the limitfaae and visual smoothness. Any of
these solutions allows subdivision schemes to use highesad@iA without introducing polar
artifacts into the rendered approximation of the limit s, thus allowing us to achieve highest
quality by using optimal values fa.
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