
Technical Report
Number 698

Computer Laboratory

UCAM-CL-TR-698
ISSN 1476-2986

Pulse-based, on-chip interconnect

Simon J. Hollis

September 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Simon J. Hollis

This technical report is based on a dissertation submitted
June 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

This thesis describes the development of an on-chip point-to-point link, with
particular emphasis on the reduction of its global metal area footprint.

To reduce its metal footprint, the interconnect uses a serial transmission approach.
8-bit data is sent using just two wires, through a pulse-based technique, inspired
by the GasP interconnect from Sun Microsystems. Data and control signals
are transmitted bi-directionally on a wire using this double-edged, pulse-based
signalling protocol, and formatted using a variant of dual-rail encoding. These
choices enable a reduction in the number of wires needed, an improvement in
the acknowledgement overhead of the asynchronous protocol, and the ability to
cross clock domains without synchronisation hazards.

New, stateful, repeaters are demonstrated, and results from spice simulations
of the system show that data can be transferred at over 1Gbit/s, over 1mm of
minimum-sized, minimally-spaced metal 5 wiring, on a 180nm (0.18µm) techno-
logy. This reduces to only 926Mbit/s, when 10mm of wiring is considered, and
represents a channel utilisation of a very attractive 45% of theoretical capacity
at this length. Analysis of latencies, energy consumption, and area use are also
provided.

The point-to-point link is then expanded with the invention and demonstration of
a router and an arbitrated merge element, to produce a Network-on-Chip (NoC)
design, called RasP. The full system is then evaluated, and peak throughput is
shown to be 763Mbit/s for 1mm of wiring, reducing to 599Mbit/s for 10mm of the
narrow metal 5 interconnect.

Finally, RasP is compared in performance with the Chain interconnect from the
University of Manchester. Results for the metrics of throughput, latency, energy
consumption and area footprint show that the two systems perform very similarly
— the maximum absolute deviation is under 25% for throughput, latency and area;
and the energy-efficiency of RasP is approximately twice that of Chain. Between
the two systems, RasP has the smaller latency, energy and area requirements and
is shown to be a viable alternative NoC design.

Acknowledgements

This thesis is dedicated to my parents, without whose help and belief it would
have never been written. They have always encouraged me to do what I enjoy,
whatever the cost. It is with this credo that I have found my niche in research. I
will always thank them.

My eternal gratitude goes to my supervisor, Simon Moore, without whose ex-
pertise and help, I would have never got this far. Over the years, Simon has not
only provided me with advice and funding, but has never complained when I
wanted to go off on a tangent. This thesis is, I hope, proof of the success of such
an approach; thank you.

John Whitington and Daniel Greenfield deserve special mention for proof-reading
this mighty document, and providing a great deal of corrections (even if we did
sometimes disagree about the finer points of grammar).

I also wish to thank my dear friends, Andy, Ash and Mark, who have filled my
nights with experiences dear during the three and half years it has taken to prepare
this dissertation.

Finally, I wish to express my appreciation to my housemates over the years — you
have kept me sane (and frequently fed and watered) along the journey.

Contents

Contents 7
List of Tables . 11

List of Figures . 13

1 Introduction 17
1.1 Overview of the proposed system . 18

1.2 Approach . 19

2 Interconnect design 21
2.1 Introduction . 21

2.2 Parallel interconnect design . 21

2.2.1 Performance . 22

2.2.2 Overheads . 23

2.3 Serial interconnect design . 23

2.3.1 Performance . 25

2.3.2 Overheads . 25

2.4 Clock skew . 26

2.4.1 GALS . 26

2.5 Data encoding . 27

2.6 Summary . 29

3 Connectivity of interconnects 31
3.1 Point-to-point links . 31

3.1.1 Uni-directional links . 32

3.1.2 Bi-directional links . 32

3.1.3 Packetisation . 32

3.1.4 Half-duplex links . 32

3.2 Point-to-multipoint links . 33

3.3 Multipoint-to-point links . 34

3.4 Multipoint-to-multipoint links . 34

3.4.1 Buses . 34

3.4.2 Networks-on-Chip . 35

3.4.3 Circuit-switched networks . 35

3.5 Summary . 36



Contents

4 Physical characteristics and limitations of interconnects 37
4.1 Wires . 37

4.1.1 Wire Resistance . 38
4.1.2 Wire Capacitance . 39
4.1.3 Wire Inductance . 42

4.2 Delay models . 44
4.2.1 The Elmore delay model . 44
4.2.2 The π delay model . 45
4.2.3 First-order RC delay approximation . 45
4.2.4 Effects on delay of resistance, capacitance and inductance 45
4.2.5 Trade-offs . 48

4.3 Signal integrity . 49
4.3.1 Crosstalk . 50

4.4 The routing problem . 55
4.5 Conventional trade-offs in interconnect design . 56

4.5.1 Throughput and latency . 56
4.5.2 Throughput and space . 57
4.5.3 Throughput and power . 57

4.6 Driving transistors . 57
4.6.1 Models . 58
4.6.2 Driving transistor behaviour . 58

4.7 Summary . 60

5 An area-efficient, pulse-based interconnect 61
5.1 Asynchronous logic . 62

5.1.1 Handshaking . 62
5.2 The GasP control system . 66

5.2.1 Micropipelines . 66
5.2.2 GasP and micropipelines . 67
5.2.3 The unsuitability of GasP for area-efficient interconnect 68

5.3 Introduction to my point-to-point interconnect . 69
5.4 Chosen data encoding . 71

5.4.1 Serial transmission . 71
5.4.2 Voltage swing . 72

5.5 The core interconnect (dual distributed inverter structure) 72
5.5.1 Pulse generation . 74

5.6 Point-to-point interconnect implementation . 75
5.7 MUXs . 75

5.7.1 State . 78
5.8 DEMUXs . 80

5.8.1 State . 80
5.8.2 Operation . 81

5.9 Pulse latches . 82
5.10 Synchronisers and metastability . 84
5.11 Wire repeaters . 86

5.11.1 Stateless (GasP) repeater . 87



Contents

5.11.2 Stateful repeater . 88
5.11.3 A potential optimisation . 90

5.12 Summary . 90

6 Evaluation of the area-efficient interconnect 93
6.1 Introduction . 93
6.2 Methodology . 93

6.2.1 Wire model . 94
6.2.2 Optimal repeater insertion . 96
6.2.3 Driving transistor characterisation . 97
6.2.4 Output buffer cascading factor . 99

6.3 Simulation of correctness . 100
6.3.1 Test results . 100

6.4 Point-to-point link results . 103
6.5 A loop oscillator . 103

6.5.1 Additional repeater insertion . 105
6.5.2 Comparison to published literature . 107

6.6 Basic link evaluation . 114
6.7 Pulse widths . 114
6.8 Voltage swing . 119

6.8.1 Crosstalk . 120
6.8.2 Reflections and ringing . 122
6.8.3 Effects of inductance . 123

6.9 Pulse generator design choice . 123
6.10 Evaluation of the flop-based design . 125

6.10.1 Throughput . 126
6.10.2 Latency . 127
6.10.3 Energy use . 127

6.11 Summary of the flop-based design . 128
6.12 Evaluation of the pulse-chopper based design . 131

6.12.1 Latency . 131
6.12.2 Throughput . 131

6.13 Repeater insertion with the chopper-based link . 134
6.13.1 Latency . 134
6.13.2 Throughput . 135
6.13.3 Repeater logic delay . 135
6.13.4 Energy . 137
6.13.5 Energy use breakdown . 137
6.13.6 Repeater energies . 140
6.13.7 Logic delays . 141

6.14 Area . 143
6.15 Theoretical analysis of interconnect efficiency . 144
6.16 Comparison to other interconnect designs . 147

6.16.1 Parallel wires . 147
6.16.2 Synchronous serial interconnect . 147
6.16.3 GasP . 148



Contents

6.17 Summary . 148

7 RasP: a network-on-chip implementation 149
7.1 Introducing the Chain interconnect system . 150
7.2 Improving Chain . 152
7.3 RasP: a network-on-chip implementation . 152

7.3.1 Overview of RasP . 153
7.3.2 RasP router . 155
7.3.3 RasP arbitrated merge element . 157

7.4 Summary . 160

8 Evaluation of RasP 161
8.1 Introduction . 161
8.2 Evaluation methodology . 162
8.3 RasP base link . 163
8.4 RasP performance evaluation . 163

8.4.1 Latencies . 163
8.4.2 Throughput . 164
8.4.3 Energy . 165
8.4.4 Area . 168

8.5 Comparison to the base link . 169
8.6 Comparison with the Chain interconnect system . 170

8.6.1 Optimal buffer sizing for Chain . 170
8.7 Chain system results . 171

8.7.1 Latency . 171
8.7.2 Throughput . 172
8.7.3 Energy . 172
8.7.4 Area . 174
8.7.5 Comparison to original paper results . 175

8.8 Comparison between RasP and Chain . 175
8.9 Summary . 177

9 Conclusions 179
9.1 Future work . 180

Bibliography 181

A Spice wire model definition 185
A.1 Two-wire model . 185
A.2 Five-wire model . 186



List of Tables

2.1 16-bit, 1000µm parallel interconnect capacitances and inductances for various
sizes and spacings . 23

2.2 2-bit, 1000µm parallel interconnect capacitances and inductances for various
sizes and spacings (parallel ground plane m4&6) . 25

4.1 Coupling capacitances for one millimetre of various track configurations 41

5.1 Dual-rail semantics . 64
5.2 Inverted Dual-rail semantics . 64
5.3 Area requirements for various interconnection methods, over 10mm of global

wiring . 72

6.1 Extracted wire model parameters (0.18µm, two wires, min. width, min. spacing) 95
6.2 Driver pulse widths produced for various configurations of pulse chopper pulse

generator . 115
6.3 Valid base link pulse widths . 116
6.4 Area requirements (in µm2) for various configurations . 144
6.5 Theoretical maximum bandwidths for a single minimal-sized, minimal-spaced

wire . 145
6.6 Theoretical maximum bandwidths for a single minimal-sized, minimal-spaced

wire — inter-symbol interference insignificant . 145

8.1 Logic latencies of the various RasP components (10mm wire) 164
8.2 Minimum bit cycle times of the various RasP components 165
8.3 Energy consumption for RasP elements for a total link length of 10mm, with

three repeaters inserted . 166
8.4 RasP test system area breakdown . 168
8.5 Chain element forward latencies . 172
8.6 Chain element energy consumptions per bit with 5mm wires 173
8.7 Complex Chain system area breakdown . 174
8.8 Test system comparison between RasP and Chain (total wire length 10mm) 175



List of Figures

2.1 The difference between parallel and serial interconnect data transfers 22
2.2 A Globally Asynchronous, Locally Synchronous (GALS) system 27

3.1 An abstract view of a two-way arbiter with request and grant inputs and outputs 33
3.2 An open-collector bus . 35
3.3 A packet-switched, mesh-topology network on chip overview 36

4.1 Standard surrounded wire model . 40
4.2 Wire layout for wire spacing simulations . 42
4.3 A current loop in an interconnection circuit . 43
4.4 Elmore or ‘L’ delay model . 45
4.5 π delay model . 45
4.6 Lumped RLC model . 46
4.7 Noise margins of conventional CMOS logic . 50
4.8 Differential transmission of logic values over two wires 54
4.9 The difficulty in routing wide wires . 56

5.1 Completion detection . 64
5.2 Two- and four-phase signalling protocols . 66
5.3 A micropipeline . 67
5.4 A distributed inverter . 68
5.5 Block diagram of my point-to-point interconnect . 70
5.6 Core interconnect, based on a dual-rail distributed inverter 74
5.7 Sequence of events as observed on an active core interconnect wire 75
5.8 Interleaved paths taken by three bits through the interconnect MUX and

DEMUX trees . 78
5.9 Three flavours of multiplexer . 79
5.10 Demultiplexer element . 82
5.11 Pulse latch . 84
5.12 Two-flop synchroniser . 85
5.13 Round-trip time of a data bit and an ack is 2τ . 87
5.14 The ‘Pipelining’ effect of Stateful Repeaters . 87
5.15 Standard GasP repeater . 88
5.16 Stateful wire repeater . 91
5.17 Stateful wire repeater with an output safeguard . 91
5.18 Two types of pulse generator . 91



List of Figures

6.1 Rising propagation delay with length for our wire model 97
6.2 Wire driving transistor width sweep: 1–3mm wires . 98
6.3 Inverter cascading factor sweep. Note the optimal value is three. 100
6.4 The outputs and control signals for a transmitted data value of 00001011 102
6.5 The major events during the pulse-based signalling protocol 104
6.6 Observed segment delay (total wire + repeater forward delay upon four) for

various wire segment lengths in an four repeater oscillator loop 105
6.7 Four repeater oscillator loop configuration . 108
6.8 Required pulse widths for various wire segment lengths in an four repeater

oscillator loop . 108
6.9 End-to-end latencies for full loop traversal for various wire segment lengths in

an four repeater oscillator loop . 109
6.10 Observed bit cycle times between neighbouring stages for various wire segment

lengths in an four repeater oscillator loop . 109
6.11 End-to-end latencies for full loop traversal for various wire segment lengths in

an four repeater oscillator loop with repeater insertion 110
6.12 Repeater logic plus wire delays in a four repeater loop vs segment length 110
6.13 Wire length versus pulse width sweeps . 112
6.14 The shape of received pulses over 1mm of wiring . 113
6.15 Wire pulse widths vs delay units for varying wire lengths 115
6.16 Too wide a data pulse can cause multiple acknowledge cycles 116
6.17 Two improvements to the basic wire pulse generating chopper circuit 117
6.18 Bit cycle times for a 1000µm MUX-DEMUX link . 118
6.19 Energy-delay products for a 1000µm MUX-DEMUX link 118
6.20 The voltage swing observed over a 1000µm wire with a minimal driving pulse

width of 246ps . 120
6.21 The voltage swing observed over a 3000µm wire with a minimal driving pulse

width of 246ps . 120
6.22 The voltage swing observed over a 1000µm wire with a driving pulse width of

506ps . 121
6.23 The voltage swing observed over a 3000µm wire with a minimal driving pulse

width of 506ps . 121
6.24 Crosstalk on a 1000µm line . 122
6.25 Crosstalk on a 3000µm line . 122
6.26 Bit cycle time comparison between the chopper- and flop-based

implementations . 124
6.27 First bit latency comparison between the chopper- and flop-based

implementations . 124
6.28 Block diagram of the basic MUX-DEMUX link . 125
6.29 Bit cycles times for a MUX-DEMUX link with total wire length, for varying

numbers of repeaters inserted — flop pulse generator . 129
6.30 End-to-end latencies for a MUX-DEMUX link with total wire length, for varying

numbers of repeaters inserted — flop pulse generator . 129
6.31 Energy per bit for MUX-DEMUX link with total wire length, for varying numbers

of repeaters inserted — flop pulse generator . 130



List of Figures

6.32 Energy-delay products for MUX-DEMUX link with total wire length, for varying
numbers of repeaters inserted — flop pulse generator . 130

6.33 First bit latencies with unrepeated wire length –
pulse chopper unrepeated base link . 132

6.34 Byte end-to-end latencies with unrepeated wire length —
pulse chopper unrepeated base link . 132

6.35 The effect of interconnect length on bit cycle times —
pulse chopper unrepeated base link . 133

6.36 First bit latencies for the repeated interconnect . 136

6.37 Bit cycle times for the repeated case — chopper pulse generator 136

6.38 Full system energy-delay product for various repeater insertion configurations . 139

6.39 Base link energy consumption with wire length . 139

6.40 The increase in energy consumption of the wire drivers with wire length 140

6.41 Energy per bit transferred of repeaters, excluding MUX and DEMUX logic 142

6.42 Repeater only energy-delay product for various repeater insertion
configurations . 142

7.1 Chain implementation collage . 151

7.2 Overview of RasP test system components . 154

7.3 RasP router . 156

7.4 Reduction in RasP router latency with increasing n-Stack transistor widths 157

7.5 RasP arbitrated merge element . 159

8.1 RasP test system setup . 163

8.2 RasP end-to-end byte latencies . 165

8.3 RasP test system cycle times, with wire length and repeaters inserted per link . . 166

8.4 RasP energy consumption by element breakdown (5000µm wire) 167

8.5 RasP test system wire energy with length . 167

8.6 RasP test system area breakdown by element, in µm2 . 169

8.7 Chain wire driver input buffer sweep for a 5000µm wire 171

8.8 Bit cycle times and maximum throughput with repeater insertion length for the
Chain system . 173

8.9 Chain element energy consumptions per bit with 5mm wires 174



Introduction 1
There are more computer circuits on the radio of a new car than there were
computer circuits on Apollo missions. These days everything is interconnected with
computers. So unless you understand physics, you’re not going to be able to fix a car

Mary Cantrell

Soon after the invention of the transistor, the integrated circuit was born. The cost of
integration and the small number of transistors available made switching very precious.
Connecting them up was a minor concern, and so the saying, “Wires are free, transistors are
expensive.” came into being. Now, this adage has gone full-circle to become, “Transistors
are free, wires are expensive.” Why is this so? In this dissertation, we will investigate the
increasing importance to a chip designer of on-chip interconnect.

One of the greatest contributors to this turn-around in thinking has been Moore’s Law [45],
which has been a blessing for logic designers concerned with the increasingly demanding
applications placed on semiconductor devices. The dramatic increase in the number of
transistors available has enabled applications inconceivable by the fathers of the ‘silicon
revolution’.

However, all has not been smooth. By far, the greatest hurdle facing the semiconductor
industry today is that of power consumption: the increasing density of devices has produced
thermal fluxes approaching that of the surface of the sun [48]. Power density is now the most
important factor when designing an integrated circuit, and designers are already incorporating
power reduction measures such as variable-threshold gates, voltage and clock scaling and
clock gating into their designs. These approaches are providing tractable solutions to the
power problem.

So why is interconnect any different? Surely, once it becomes the prevalent factor in integ-
rated design, then people will address it well? Unfortunately, interconnect is an all-together
different problem. At the heart of the upcoming difficulty is the asymptotic complexity of the
problem. Rent’s Rule [8] predicts an exponential increase in the number of wires required
as we increase the numbers of transistors in a device, and whilst other predictions are more
conservative, one thing is certain: the small, incremental increases in available wires provided
by additional metal layers in integrated circuits will not be able to keep up with such a blowup.

It is not only the complexity of wiring that causes headaches for device designers, we must
also deal with a side-effect of Moore’s Law: that devices get faster. Strictly, it is the increase in
clock frequency of traditional, synchronous designs producing the problem. Combined with
the slowness of the speed of light†, this can cause problems where signals cannot physically
traverse their interconnect in a single clock cycle. Most importantly, this means that it

†The speed of light in a vacuum, c = 3×108m/s, is fast, but even light can travel only 10cm during one clock
tick of a 3GHz processor. Wires on board a chip can easily extend to a significant fraction of this.



1. Introduction

is impossible for a global clock, the cornerstone of synchronous design, to be distributed
simultaneously across an entire die. This gives rise to clock skew [16], which has been a bane
of integrated circuit designers for many years. Clock skew has no noticeable effect at a local
(sub-circuit) scale, but when these are composed (by means of an interconnection), the skew
becomes apparent and can cause a multitude of undesired effects (see §2.4 for more details).

These are fundamental issues, which need to be addressed. Yet, we have not even men-
tioned the requirement for interconnect to pass signals quickly around a chip. This goes
almost without saying, since a shorter interconnect latency can lead to performance advant-
ages by delivering data more quickly, perhaps so it may be operated on in the same clock cycle,
or by decreasing the round-trip time of a protocol with acknowledgements. As an example of
where this helps, consider the popular TCP protocol, where decreasing the round-trip time
increases throughput for a fixed window size [10, pp.212–213].

All this has shown there is much work to be done on the problem of on-chip interconnect,
and the remainder of this dissertation will focus on the main issues in turn. We shall take the
standpoint of the desirability for small, yet flexible and highly performing interconnection
systems.

These kinds of systems are ideally suited for use in custom Application Specific Integrated
Circuit (ASIC) designs. However, the complexity involved when producing a modern ASIC
means that designers would prefer not to have to consider the problems of interconnection,
instead focusing on logical design.

Since interconnect design may well be the hardest task facing architects, the Holy Grail
must surely be to produce a drop-in interconnect system for an ASIC design flow. To do
this, the system should be modular, scalable and able to transfer data across differing clock
domains. This latter point will enable the system to fit in easily with the common approach of
connecting together a set of Intellectual Property (IP) blocks from different vendors. These
often run at different clock speeds or voltages, and so make traditional communication
difficult. Further, we desire high performance and energy-efficiency in any such design.

Therefore, the subject of this thesis is to produce such an interconnect system, with our
target application being an 8-bit ASIC design, running synchronously at a clock rate of 66MHz.
This gives us an interconnect end-to-end data rate requirement of at least 528Mbit/s, over
chip-scale distances (which we will take to mean up to 1cm, the side dimension of a large
modern die).

By the end of this document, our target will have been achieved; with the design of a
point-to-point link capable of operating at over 1Gbit/s; and its incorporation into a Network-
on-Chip (NoC) design, to produce a large scale interconnect that runs at over 700Mbit/s.

1.1 Overview of the proposed system

The problems outlined above will be tackled in two stages. First will be the creation of a
pulse-based point-to-point link. Based on an asynchronous signalling protocol, this will be
shown to run at speeds in excess of 1Gbit/s at distances of up to 1mm, and continue high
performance operation up to 10mm of global wiring. It will, therefore, exceed our design
specification.

The link will address all of the issues outlined above. To do this, it will employ a Globally
Asynchronous, Locally Synchronous, or GALS approach. It will be based loosely on the GasP
interconnect from Sun Microsystems [59], and a modified technique will allow it to transmit



1.2 Approach

data and control signals both asynchronously and bi-directionally using just two global metal
wires; many fewer than a conventional parallel interconnect. The signalling protocol will be
pulse-based, to fit in with the GasP mentality, and asynchronous to eliminate the problem of
low-skew signal distribution, easily allowing clock domain crossing.

Asynchronous logic allows us to eliminate the need for a clock to be transmitted alongside
our data stream. Its removal frees us to concentrate on increasing the frequency of data
transmission without the worry of skew, whilst simultaneously removing the need for a clock
wire. In order to interface cleanly and modularly with traditional designs, we present standard,
FIFO-like, interfaces to the transmitting and receiving environments.

Second, this point-to-point link will be shown to be capable of being deployed at the heart
of a NoC design. The additional elements needed will be introduced and evaluated, and a
fully-functional NoC design, named RasP, will be demonstrated. End-to-end performance
of RasP will be demonstrated to be less than that of the point-to-point link upon which it
is built, but still in excess of the requirements of our ASIC application. To provide context
for the results, we will compare it with the Chain interconnect system from the University of
Manchester [3], and we will see that RasP provides competitive performance.

1.2 Approach

This thesis will start in Chapters 2 and 3 by introducing some basic concepts of interconnects,
such as topologies and connectivities. Then, in Chapter 4, we will see the various physical
limitations on interconnect, such as bandwidth limits and the impact of crosstalk, caused
by the capacitive and inductive coupling between neighbouring wires. We then go on to an
introduction of a potential point-to-point interconnect, and the use of repeaters to effectively
cover long distances. This will be Chapter 5, and is based on an improved version of the system
presented in two peer-reviewed papers, presented at the 2006 International Symposium on
Circuits and Systems (ISCAS) [24], and the 19th International Conference on VLSI Design [25].
For both papers, the writer is the first author, and produced all of the content.

The system will then be evaluated in Chapter 6 with respect to our target ASIC application,
and also some common interconnect performance metrics. Once this has been done, in
Chapter 7 we will show how this basic link can be scaled into a Network-on-Chip application.
To support this, we will design and incorporate router, arbiter and multiplexer elements.
Again, this chapter is based upon a first-author paper, presented at the 24th International
Conference on Computer Design (ICCD) [26]. Subsequently, in Chapter 8, there will be an
evaluation of this NoC, which the author has named RasP, and we will provide a comparison
with an implementation of a reference system called Chain [3]. Finally, in Chapter 9, we will
draw some conclusions.





Interconnect design 2
We keep moving forward, opening new doors, and
doing new things, because we’re curious and
curiosity keeps leading us down new paths

Walt Disney

2.1 Introduction

Approaches to interconnect design are much the same whether we deal with on-chip com-
munication or off-chip transfers. The basic choices of parallel or serial have been around for
a long time, and their respective advantages and disadvantages are well known. Traditional
wisdom dictates that for high bandwidth applications, parallel interconnects are the correct
approach. However, skew, power and packaging cost issues have caused a general trend
towards more serial implementations.

Serial interconnects are not without their disadvantages: the increase in logic complexity
can cause increases in end-to-end latency, power consumption and even logic routing prob-
lems. In order to be chosen, these factors must be carefully weighed and, only then, a choice
taken.

Once this broad choice of approach has been carried out, we can concern ourselves with
finer details, such as the choice of signalling and coding techniques, in order to maximise
performance and reliability. In the following sections, we will see how the various approaches
compare, and when they should and should not be used.

2.2 Parallel interconnect design

Parallel interconnects have been with us since the dawn of computing: they are the simplest
manifestation of the need to transfer multiple bits of data concurrently. Operation of a basic
parallel interconnect is very simple, involving a separate wire for each bit of information to be
transferred. An overview diagram is given as Figure 2.1(a), showing how an 8-bit parallel wire
transfers all eight data bits d0...d7 simultaneously in time slot t 0. The major advantage this
approach is its simplicity: to transfer a word of N bits, we just need N wires in parallel. In this
way, the throughput of a parallel system can be increased by simply adding more wires. Thus,
the throughput of M wires, with a base rate of B bit/s is M ×B.

The last statement is true in the ideal world, but it becomes incorrect when considering
actual implementations, when we have to account for the interaction between wires. This in-
teraction causes the impression of noise by switching (active) wires on non-switching (passive)
wires, via capacitive and inductive coupling [33, pp.26–36]. The noise causes signal-integrity



2. Interconnect design

d0

d1

d2

d3

d4

d5

d6

d7

t0t1t2t3t4t5t6t7

time

wires

(a) Transfers across an 8-bit parallel inter-
connect

d0d1d2d3d4d5d6d7

t0t1t2t3t4t5t6t7

time

wires

(b) Transfers across an 8-bit serial intercon-
nect

Figure 2.1: The difference between parallel and serial interconnect data transfers

problems, and the capacitive coupling causes an effective increase in wire capacitance, re-
ducing its effective bandwidth, by increasing its time constant, from the equation t = RC ,
where t is the time constant of an RC wire, and R and C are its characteristic resistance and
capacitance, respectively. This equation will be fully explained in Chapter 4.

Another problem faced by parallel interconnect is that of signal skew. Skew is the phe-
nomenon of non-simultaneous arrival of signals to a common destination. Since many logical
blocks require (near-)simultaneous arrival of their inputs to function correctly, skew can cause
unreliable operation, and even metastability (see §2.4 for more details). Parallel wires induce
relative skew when their lengths are not exactly matched [65, p.788] , and since we never get
two identical wires in practice, skew will always be a problem for parallel interconnects.

Such concerns are very real for designers of on-chip interconnects, and have been the
major motivating factors in the move to more serial links.

2.2.1 Performance

Parallel interconnects contain many closely spaced wires. This configuration has severe
implications for capacitive and inductive coupling (see sections 4.1.2 and 4.1.3), and their
respective impacts on signal integrity (Section 4.3).

Simulations of a 1000µm long, 16-bit, minimally-sized, minimally-spaced parallel bus in
the capacitance extraction tool Quickcap [41] illustrate the high potential for this destructive
effect — as shown in Table 2.1 below, the worst-case capacitive crosstalks are almost univer-
sally around 90% of vdd. For comparison, I show also the results from an identical bus, but
where the width or spacing have been changed to twice their minimal values.

We see that increasing the width w of a wire increases its capacitance slightly, and does
not decrease its inductance by an appreciable amount. Similarly, the worst-case (W/C) and
RMS capacitive crosstalk (Xtlk) figures are not improved significantly. Given that the area
requirements of this configuration entail an increase of 50% when including spacing, this is



2.3 Serial interconnect design

Table 2.1: 16-bit, 1000µm parallel interconnect capacitances and inductances
for various sizes and spacings (extracted, parallel-plane metal layers 4 & 6)

Configuration W/C Xtlk RMS Xtlk Ctotal Cmutualmax Lself Lmutualmax

Min w, min s 91% 60% 231fF 98fF 1.64nH 1.42nH
2×w, min s 87% 59% 252fF 106fF 1.59nH 1.35nH
Min w, 2×s 79% 52% 149fF 55fF 1.63nH 1.33nH

not necessarily a trade-off we wish to make (although it may still be useful in practice since
the wire’s high frequency bandwidth will be increased).

Conversely, doubling the spacing s of a wire has an appreciable effect on its performance
with these metrics. Capacitance is reduced by roughly one third, and inductance remains
similar. The reduction in capacitance yields a drop in capacitive crosstalk of around 10%.
Recalling that wire delay t = RC , these changes give a performance increase of about a third
(directly in line with the reduction in capacitance; resistance remains fixed), plus signal
integrity improvements. All the mutual inductances decrease linearly with distance from the
victim wire.

2.2.2 Overheads

Parallel interconnects, which add one more wire for each extra data bit, are very area-
inefficient. Their area cost grows linearly with word width. In extreme cases, an increase
in word width can cause a reduction in core clock rate due to the added complexity. Then,
overall throughput may static, or even decrease, despite the fact that additional area has been
consumed.

When used in a clocked system, parallel interconnects may switch N wires in a clock
cycle for an N bit word. This is very power inefficient, particularly if used with the popular
precharging methodology [65, p.332]. In precharging’s worst case (all wires 0), a link running
at a clock frequency of f will consume the energy of f ×N “0->1->0” transitions. The energy
consumption of a wire, modelling it as a pure capacitor with the following formula:

∆E =C∆V 2 (2.1)

where E is energy, C is the capacitance and V is the supply voltage, vdd, of a capacitor. For
a wire with capacitance of C Farads, and a supply voltage of V volts, this corresponds to
V 2C N f /2 Joules every second [65, pp.190–191]. As wire length increases, so does energy
consumption, and this is approximately linear with length, plus a constant term relating to
the fixed energy consumption of the switching logic.

2.3 Serial interconnect design

Serial designs easily overcome the high wire overhead of their parallel cousins. Instead of
many parallel wires, they take the approach of few wires, each carrying multiple bits. The
style is characterised by the sequential nature of the bits, when looking at a single wire. To
transfer eight bits, d0...d7, for example, the first, d0 is transmitted fully, before d1, d2, and



2. Interconnect design

so on. An illustration is given as Figure 2.1(b) where we see that the transfer of eight data bits
d0...d7 occurs sequentially using eight time slots t 0. . . t 7.

Typically, logical blocks do not understand serial data streams, but rather prefer data to
be presented to them in parallel. Thus, to convert logical output data into a serial format
for transmission, and back again for delivery, serial links must typically perform parallel-to-
serial and then serial-to-parallel conversions. These conversions involve logical processing,
and typically the latching of certain pieces of data. Naturally, this entails penalties in area,
throughput, end-to-end latency and power consumption, degrading the overall performance
of the link. Throughput and logical complexity can be ameliorated by pipelining the link [20,
pp.A-2–A-4, A-10], although this increases the latency and power consumption. An alternative
is to increase the frequency of operation. However, this is not a trivial task: with most modern
systems this means increasing the frequency of a clock. This is a notoriously difficult problem,
mostly due to difficulties in low-skew distribution of a high-speed signal [16].

For short links, the various overheads can mean that serial connections, whilst using fewer
wires, have a larger footprint and worse performance than their more simplistic, parallel,
counterparts.

One of the biggest selling points of serial interconnects is the low area footprint in global
metal layers. Global metal is the most precious of a designer’s routable layers, and is fast
running out. Rent’s rule [8], whilst a loose guideline to real events, predicts an exponential
increase in the number of point-to-point connections required with shrinks in logic feature
size. Compare this with the linear increase in metal layers with evolution of integrated circuits,
and designers clearly have a problem. Serial approaches allow word-wide data links to be
squeezed into the space of perhaps a single bit. In this way, serial links allow the evolution of
technology whilst keeping the reigns on wiring complexity blowups. Further, and arguably
more importantly for modern designs, the reduction in wiring area allows the use of wider
wires for higher performance, or greater spacing of wires, reducing crosstalk and increasing
signal integrity. Thus a narrow, serial interconnect can often provide better performance than
a parallel counterpart over long runs of wire.

The reduction in the number of wires also makes it easier to equalise transmission dis-
tances, which help with skew problems (see §2.4). Serial interconnects can even use clock
recovery or data detection schemes [51] in order to function independently from a global
clock. This saves not only wires and power in distributing the clock, but also allows the
problem of low-skew clock distribution to be removed. This approach can be considered a
Globally Asynchronous, Locally Synchronous scheme, and is described fully in Section 2.4.1.

The situations where a serial or parallel choice provides optimum performance depend
upon a combination of the technology used, design priorities and other factors. In the past the
serial approach has not been the natural choice for high throughput requirements — rather
parallel systems have been used, since one can simply increase the number of wires to add
additional performance. However, at high signalling speeds this ceases to be true. Amongst
the many reasons this is so is the problem of crosstalk. Crosstalk involves interference between
neighbouring wires and can seriously degrade performance [65, 207–210],[33, 26–36] over
what may naïvely be expected.

Naturally, though, the biggest perceived advantage of serial interconnection systems is
its low wire count and correspondingly small area footprint. As previously mentioned, wires
are critical in modern designs, and the reduction in number afforded by serial interconnect
implementations can be a great boon for designers. Along with the reduction in number of



2.3 Serial interconnect design

Table 2.2: 2-bit, 1000µm parallel interconnect capacitances and inductances
for various sizes and spacings (parallel ground plane m4&6)

Configuration W/C Xtlk RMS Xtlk Ctotal Cmutualmax Lself Lmutualmax

Min w, min s 65% 65% 162fF 105fF 1.65nH 1.42nH
2×w, min s 62% 62% 178fF 110fF 1.58nH 1.36nH
Min w, 2×s 42% 42% 120fF 58fF 1.66nH 1.35nH

wires come related benefits, such as a reduction in the overall power use (due in part to a
reduction in drivers) leading to lower static power dissipation. Given the importance of power
density in modern circuits, this can only help implementations.

Therefore, it is impossible to say definitively when one approach is superior to the other.
However, most modern designs, for both on and off chip interconnect, perform some form of
serialisation or packetisation. Thus, it is safe to assume that the attractiveness of serialisation
increases with technology advances. Therefore, a key design choice of the interconnect we
will see later in this thesis to use a serial approach.

2.3.1 Performance

Unlike its parallel counterpart, serial interconnect requires few wires. Consequently, the
magnitudes of capacitive and inductive coupling are greatly reduced. As an illustration, results
for crosstalk on a 1000µm dual-rail, minimally-sized, minimally-spaced interconnect are
shown below. We see a reduction of over 20% of vdd compared with a parallel implementation.

In addition to these results, the simplicity of the dual-wire implementation makes it
possible to accurately simulate the metal 4 and 6 layers with realistic wire layouts and spacings,
rather than just as a ground plane. I performed this for our technology, with metals 4 and
6 minimally spaced, and varying arrangements for our metal 5 signal wires. However, for
compactness, I display only the parallel-plate results as Table 2.2.

2.3.2 Overheads

In the absence of an advanced encoding scheme, the transmission of bits in a serial nature
are mutually exclusive in time. This presents certain inefficiencies when using serial intercon-
nects.

Of concern to many designers, with relation to serial interconnects is that the bits are
ordered in time. In particular, all bits do not arrive simultaneously, and so the relative latency
of different parts of a data word may vary (for example, Little Endian transmission will transfer
the least significant bit (LSB) first [9]). This means that a data consumer may not get all
the information it needs to make a computation when it needs it. For example, if the block
is relying on a flag bit in the middle of a word, it will have to wait for at least half of the
byte to be transferred. This is not a problem for parallel interconnects, since all bits arrive
simultaneously.

Of course, this problem can be ameliorated by good interaction between designers when
deciding the format of a word (e.g., always place the most critical information in the LSBs,
which arrive first), but this is not always possible.



2. Interconnect design

So, serial interconnects have some latency issues, and may not always be suitable for all
applications. However, for the vast majority, their area-efficiency and crosstalk minimisation
abilities outweigh all other considerations, and this explains their almost ubiquitous use for
modern off-chip communications. This trend is also observed to be moving on-chip due to
the increasing density requirements of modern integrated circuits.

2.4 Clock skew

Clock skew is simply a specialisation of the general signal skew problem, so I explain that first.
Skew is defined as the difference in time between the time a signal is expected to arrive

(and wanted) at its destination in a circuit and the time it actually appears. Skew can be
negative or positive or (ideally) zero. Skew exists for all real signals, but is only significant
when considered relative to other signal arrival times (relative skew). Thus, if signal a arrives
at time ta and signal b at tb , we say the relative skew, δskew = ta − tb . More information can be
found in Weste and Harris [65, pp. 786–789].

Low values of relative skew (i.e., those which are small compared with the logical delay of
a functional block), do not generally cause any problems in a circuit. However, those which
are larger can induce undesired behaviour. Ranging from additional power consumption,
through glitches, to metastability on outputs, the consequences can be severe. Exactly what
values of relative skew cause problems are beyond the scope of this thesis, but it is true to say
that (until values approaching that of a clock cycle in a synchronous system) the higher the
magnitude of the skew value, the worse a circuit fares.

Clock skew is the natural extension of relative skew between a single signal arrival time
and that of the global clock signal. It is of particular concern when considering state-holding
components such as latches. If data and clock inputs to such an element have a large relative
skew, then it is possible for both to change simultaneously. This may violate the setup and hold
times of a component, leading to unpredictable and/or incorrect operation. Therefore, skew
is something circuit designers work very hard to avoid — but this is difficult to parametrise
and solve when considering long distance interconnects, as we do in this thesis.

With today’s high variations in CMOS processes, the necessary guarantees when designing
for safe values of skew are harder to make. Uncertainties in wire thicknesses and propagation
delays, as well as driver strengths and receiver thresholds, mean that two wires that appear
identical on paper may end up wildly different when manufactured.

This makes skew-tolerant design even more necessary than ever, and there is an approach
becoming more and more popular in order to give the necessary safety to logical blocks which
are composed via long distance wiring. Called GALS, it is a popular contemporary approach,
described in the following section.

2.4.1 GALS

GALS (shown as Figure 2.2) stands for ‘Globally Asynchronous, Locally Synchronous’, and
is a paradigm for the implementation of systems composed of multiple functional blocks,
where clock skew is expected across block domains [46]. Each block operates in a standard,
clocked, synchronous manner, producing and consuming data on clock edges. Intercon-
nection of blocks, however, is performed without need for clock synchrony. This allows the
interconnection fabric to avoid any clock skew issues. Additionally, it allows it to operate at its



2.5 Data encoding

Synchronous
logic

block A

Synchronous
logic

block B

Clock domain A Clock domain B

Asynchronous
communication

Figure 2.2: A Globally Asynchronous, Locally Synchronous (GALS) system

own frequency. This final point enables many performance enhancements, such as a higher
transmission frequency than would be obtained if concerned with the global system’s worst
case, and also the ability to clock gate the power hungry interconnection subsystem (or an
arbitrary logic block), without affecting other parts of the system. This independence of a
global clock is what gives the interconnect its ‘asynchronous’ label.

GALS systems are finding favour with a large proportion of system designers since logical
blocks remain fully synchronous, and thus are readily understood and designed using existing
tools. The simplicity that the assumptions of clocked systems allow reduces development
time and helps manage complexity. On the other side, not needing to guarantee clock and
signal arrival times over long distances is a great relief when analysing wiring. In this way, the
synchronous and asynchronous components of a GALS approach complement each other.

The final point to address then is the complexity of a full GALS system, and this varies. At
its simplest, synchronisation can be added at a receiver as an after-thought, and may entail a
very low logical overhead but an additional latency of one or two latch delays. In the middle of
the range, source synchronous systems can use an asynchronous FIFO structure to decouple
sender and receiver data transfers. The most complex systems are asynchronous networks
and offer multipoint-to-multipoint connectivity (see Section 3.4 for an explanation) and very
high throughputs. These are often referred to as Network on Chip (NoC) implementations.

So, there are a multitude of GALS systems out there, dependent on application; and the
approach is set to become more applicable than ever with process variation and growing
complexity.

2.5 Data encoding

Transmission efficiencies of all forms of interconnect can be increased by applying an encod-
ing scheme to the data before transmission. Encoding can be as simple as the parallel-to-serial
conversion required by serial interconnects (see §2.3), or as complicated as compression or
encryption.

Most usefully for on-chip interconnect, data encoding can alter the format of data in order
to minimise transitions. This property reduces power consumption, reduces crosstalk and
can even increase the overall throughput of a system, since fewer transitions are needed. A
popular encoding scheme is used as the template for ethernet [54, 469–471] and USB [29]



2. Interconnect design

physical layers, and its aim is to reduce the number of transitions in a code word. This is
unlike Manchester Encoding [51, pp18–21], the purpose of which is to provide edges at three
times the base clock frequency. This very energy-expensive scheme facilitates clock recovery
at the receiver.

Key to ensuring Electromagnetic Emissions Compatibility (EMC) is a low ‘effective sig-
nalling rate’ (i.e., a low frequency of transitions, regardless of the master clock frequency).
Easy EMC compliance brings huge cost and complexity benefits to an interconnect systems
designer. These concerns were once solely those of off-chip link architects but, with on-
chip wires being proportionally larger and more power hungry than logic, EMC is a serious
issue on-die as well. Again, the minimisation of transitions minimised the magnitude of
electromagnetic radiation, by reducing the effective signalling frequency.

Data encoding may also be used to introduce redundancy into a data stream. Once
considered necessary only for those inherently unreliable links, such as transatlantic satellites
or long-distance, high-loss cables, redundancy is now also becoming used on-chip. The
huge manufacturing variations in modern processes [65, 231–239] make for highly variable
transistors and the need for either hugely pessimistic timing assumptions, or the tolerance of
a number of errors at run-time.

To this end, error detecting and error correcting codes are set to play a crucial role in the
implementation of modern chip interconnects. A taxonomy of such codes is beyond the
scope of this thesis, but the interested reader is invited to consult the excellent books by
Macwilliams and Peterson [40; 50]

To boost throughput of a link (almost certainly at the expense of latency), compression
may be applied to a data stream. Compression takes data at a rate Rate and, using a trans-
formation of effective rate Compression ratio > 1, produces a data stream of effective rate
Rate′ = Rate×Compression ratio. Compression is an orthogonal transformation — it may be
combined arbitrarily with other encodings, without effecting their efficiencies. Compression
has one major drawback when considering on-chip communication, and this is that it works
best when applied simultaneously to a large block of data, something that is rare to find
on-chip, in one location. As such, it is generally suited better for off-chip transmissions
although, on a wide on-chip link, simple compression schemes such as run-length encoding
[55, pp.320–322] may still be effective.

Finally, link security may be improved by adding a layer of encryption to it. This is another
form of encoding, but one where the data is transformed, and becomes unrecoverable to any-
body without the correct knowledge of how to decode it [53]. Encryption may be performed
in combination with other data encoding schemes: like compression, it is an orthogonal
transform. Encryption generally incurs a negligible overhead on a data stream’s rate.

Almost all encoding schemes introduce some overhead to the link to which they are
applied. This arises through inefficiencies in data transfer, such as the padding required by
USB with repeated bit values [29]; the transmission of redundant information, such as in error
correcting codes ; the latency overheads of compression and encryption; and in the logical
overhead caused by the need to perform the encoding at all. In all cases, except for the last
three, the overheads are fundamental and unavoidable. For the others, techniques such as
pipelining may help, but at the cost of additional logic.



2.6 Summary

2.6 Summary

In this chapter, we have seen a brief overview of the issues faced when developing an inter-
connection system, and how some of them may be overcome. All the topics are as important
for on-chip communication that for the more traditional off-chip approaches.

For this reason, we will encounter most of them again in this thesis, and in particular the
issues of skew, crosstalk, energy and serialisation.

We now continue our introduction with an overview of the various topologies available for
interconnect systems, having stressed to the reader that topology is a concept independent of
those presented so far. Thus, any topology may also be combined with any other technique
from this chapter.





Connectivity of interconnects 3
Society does not consist of individuals; it expresses the sum of
connections and relationships in which individuals find themselves

Karl Heinrich Marx, The Grundrisse, 1857–8

The topology of an interconnection network dictates many of its most important charac-
teristics. Altering the connection graph can allow a designer to manipulate factors such as
bandwidth, reliability and quality of service. For example, adding a dedicated, point-to-point
link between two logical blocks will increase their bandwidth, and offer a predictable service.

Different topologies have different requirements, both at the resource level, and also at
the protocol level. For example, point-to-point links can use a wide variety of signalling tech-
niques, but multipoint ones must beware conflicting drivers, and perform arbitration/conflict-
safe signalling†.

I will now present a brief taxonomy of interconnect connectivities, followed by an evalu-
ation of the performance and the drawbacks and benefits of each. The correct choice from
the set is very application dependent, and so no one can be said to be the definitive solution
for all designs.

3.1 Point-to-point links

Point-to-point links are the simplest form of interconnection: they directly connect two logical
blocks. This allows designers a good deal of flexibility when choosing their interconnect
requirements for the following reasons:

• Quality of service is not an issue, since the links are dedicated;

• Bandwidth can be trivially increased by scaling the number of links;

• Each link may use its own encoding scheme and voltage levels, as appropriate;

• Timing closure is necessary only for the two blocks being connected.

The independence of these factors means a designer has the most freedom possible and
is essentially able to choose the optimal link methodology in most cases.

The reason point-to-point links are not exclusively used is their high requirements for
area and power. Since each link requires its own routing lane, adding more blocks (and hence
links) increases the area requirements spectacularly. In fact, to fully connect all n blocks on a
die bi-directionally requires n(n −1) links. This size blowup explains the need for alternative

†An example of a conflict-safe driver is an open-collector bus (see §3.4.1).



3. Connectivity of interconnects

connection strategies and, in the following sections, we will see some other proposals, each
with its own advantages and disadvantages.

First, however, let us make the distinction between a point-to-point link and a uni-
directional link, since this is a common cause of confusion.

3.1.1 Uni-directional links

A uni-directional link is simply one where data always moves in a single direction. For example,
when moving from block A to block B. This is not to say that there is no information transfer
from B to A: indeed there will almost certainly be transfer of control information, often to
ensure the reliability of data transfer. These control signals generally require dedicated wires,
and so introduce area inefficiency.

Often, uni-directional links operate with a push data behaviour [56] where, once the data
channel is idle, the transmitter (block A) may transfer data without further consultation of the
receiver (block B), who must simply accept any arriving traffic. This protocol simplifies the
arrangement, since no reservation of receiving resources is required.

3.1.2 Bi-directional links

The simplest bi-directional link is a pair of uni-directional links, connected in opposing
directions. This naïve approach can work well for links where the utilisation is high and the
traffic well balanced in both directions. However, since both links require their own control
wiring, the area footprint is double that of a single link.

3.1.3 Packetisation

A simple way of increasing the area-efficiency is to remove the dedicated control wires and
transmit one channel’s control information over the other’s data path. The area saving is
obvious, at the expense of an increase in complexity of the signalling protocol (now each
channel must monitor the other for control information), and be able to inject the relevant
data. This approach is increasingly common, with the favourite technique for separating data
and control being packetisation [35, pp.33–34], which causes switches to perform routing
decisions on a case-by-case basis [49, pp.164–223] . In a Network-on-Chip application [5] (see
also Section 3.4.2), packets are the de-facto standard, since they are well suited to traversing a
switching fabric.

Many other ways of increasing the area-efficiency of a bi-directional link over that of a
pair of links exist, too many to discuss here; but I wish to bring the reader’s attention to one
more important technique in this field: that of half-duplex links.

3.1.4 Half-duplex links

The principle behind a half-duplex link is straightforward: take a single link and allow data
transfer over it in both directions, but only in one at a time. This can be thought of as a basic
time-division multiplexing (TDM) scheme [51, pp.73–76],[18, pp.158–160] where the time
intervals may or may not be fixed.

In the case of fixed intervals, a simple scheme could be that block A may transfer to block
B on every odd clock cycle; and B to A on every even one. In this way, both A and B gain



3.2 Point-to-multipoint links

Arbiter

reqA

gntA
Block

A

reqB

gntB
Block

B

Figure 3.1: An abstract view of a two-way arbiter with request (req) and grant (gnt)
inputs and outputs

50% utilisation of the link, with guaranteed quality of service (the latency is always two clock
cycles). The logical overhead is also very low, requiring only a one-bit counter at either end,
for an enable signal. This form obviously suits scenarios where traffic is predictable and
balanced in the two directions. The allocation policy can be trivially altered to favour one link
over another but, so far, it is defined statically.

If traffic is less predictable, or bursty, then an on-demand allocation policy may be fa-
voured. Inevitably, this will require control signals, pushing up the area requirements of the
link, albeit potentially by only a small amount. The simplest scheme may see blocks A and B
possessing request wires, say reqA and reqB, converging at an arbiter, which would reply by
asserting one of two grant wires, say gntA and gntB, to a winning block, which would then be
able to transmit until releasing the link by de-asserting its request signal. An illustration of
this approach is given as Figure 3.1.

We have now seen the distinction between directionality of interconnections, and clarified
the varieties available. I will now present the orthogonal concept of connectivity. Each form
will have a different degree of connectivity, aggregate bandwidth and availability. In the
following sections, I will use the variables M and N to refer to the sets of transmitting and
receiving nodes, respectively.

3.2 Point-to-multipoint links

A simple way to connect a single data producer to multiple consumers is to use a point-to-
multipoint link (1-to-N). Where the logical topology allows, this scheme allows an increase
in effective bandwidth from that of a single point-to-point link to that of N of them, with
negligible increase in area over that of an elementary point-to-point link.

Since the aggregated bandwidth of this form of link scales with N , it seems that it can
offer almost-miraculous throughput increases, without any increase in complexity. Since
that which appears too good to believe always is, our scheme must have a down-side. In the
case of a point-to-multipoint link, this is its method of operation: it can only be operated in a
master–slave manner. The slaves (i.e., the N receiving nodes) may or may not have a shared
control wire, which one may jam as a busy signal, in order to prevent further data transfer
until it is ready. If the control does exist, it is possible for a single node to perform a kind of



3. Connectivity of interconnects

‘denial of service’ attack on the entire network; something to be avoided wherever possible.
This broadcast nature somewhat limits the applicability of the topology, and explains why

it is seldom used — after all, few structures involve parallel computation on the same data
stream, with little allowance for differing completion times or guarantees on throughput.

3.3 Multipoint-to-point links

Multipoint-to-point links are the inverse of the point-to-multipoint variety. Featuring an M-to-
1 topology, they are useful when there are multiple data providers, all wishing to communicate
with a single consumer. Again, it is wire-efficient, since all producers may share a common
data bus. However, bandwidth is strictly limited by that of the consumer — after all, there is
little point placing new data on a bus if the only thing for which it is intended is busy.

Thus, this topology is only useful where the data providers are high latency, or data stream
is sparse or sporadic. In this situation, contention on the data bus is limited and the system
has a reasonable throughput. Arbitration may be implemented similarly to the previous
topology, through a shared control line.

It is easy to see, however, that in most situations a multipoint-to-point link will result in
an acute shortage of bandwidth, high contention and a distinct quality of service problem.

3.4 Multipoint-to-multipoint links

Multipoint-to-multipoint links seek to remove the disadvantages of the one-to-N and M-to-
one topologies, whilst keeping close to the performance of dedicated, point-to-point links.
Since this is a popular topology, such links come in many forms, the most common of which I
now outline.

3.4.1 Buses

The simplest form of multipoint-to-multipoint link is that of a broadcast network. Here, all
data providers and consumers are connected to the same wire (logically at least — with so
many nodes connected, repeaters may be necessary). The broadcast network, often called a
bus, offers an extremely simple implementation, low propagation latency and the minimal
amount of wiring, but with one major disadvantage: contention. On a broadcast network,
only one of the M+N nodes may be communicating at any one time and, worse, without care,
any node can cause denial-of-service to the entire network. For this reason, above all others,
broadcast networks are uncommon on-chip, designers preferring instead to seek solutions
where aggregate bandwidth is increased, and fairness (almost) guaranteed.

Off chip, where pin and trace counts are critical, buses are a lot more common — a modern
PC contains several, such as the PCI, IDE and AGP buses. Here, a separate control structure
links all nodes on the bus to a centralised arbiter, and it is this arbiter’s job to ensure fairness
and contention-free communication. Fail-safe physical-layer protocols are often used to
ensure that in the worst case, where multiple nodes are attempting to drive the bus at the
same time, short-circuits do not occur, causing damage. The open-collector bus is an example
of this, and is illustrated in Figure 3.2 with four input nodes, A,B,C,D and an output out. We



3.4 Multipoint-to-multipoint links

A B C D

out

Figure 3.2: An open-collector bus

see that, since there is only ever a passive pull-up, conflicting signals are either masked by the
always-on resistor (if they are high) or agree with one another (if they are low).

Given the passive pull-up nature of the open-collector bus, we see that it will have asym-
metric rise and fall times. and that its maximum operational frequency will be limited by the
charging time through the resistor. As with all passive pull-up schemes, it also features static
power dissipation when any node is driving the bus low. For these reasons, it is rarely seen
on-chip. It is, however, highly area-efficient, requiring only one transistor per node per bit.

3.4.2 Networks-on-Chip

Generalised as an M-to-N system, the most common real-world implementation of a multipoint-
to-multipoint link is that of a Network-on-Chip (NoC). In this flavour of interconnect, each
transmitting and receiving node has a point-to-point link to its nearest router node, which
aggregates such traffic into lanes — point-to-point trunk links — and data will typically tra-
verse several routers before being placed on its final leg on another point-to-point link for its
destination node. A diagram of the most common configuration, a packet-switched mesh
topology NoC, is seen as Figure 3.3, and was taken from the survey paper by Bjerregaard and
Mahadevan [5].

Data producers provide their data with control information, generally in the form of a
packet header, which allows routing of the data through the network to its destination. When
packetised in such a way, there is no need for control wiring‡, and the area efficiency of such a
system is good.

By the end of this thesis, we will have seen a step-by-step guide to creating an on-chip
NoC, so I give no more explanation here, but encourage the reader to look forward to the
material to come.

3.4.3 Circuit-switched networks

Packet-based systems require quite a large logical overhead at the routing nodes, since headers
must be looked up, queueing and arbitration may occur, and data packets may be of variable

‡In many implementations, control wiring is still required for the purposes of flow control.



3. Connectivity of interconnects
8 T. Bjerregaard and S. Mahadevan

Fig. 4. Topological illustration of a 4-by-4 grid structured NoC, in-
dicating the fundamental components.

which the NoC contains the following fundamental components.

—Network adapters implement the interface by which cores (IP blocks) connect to the
NoC. Their function is to decouple computation (the cores) from communication (the
network).

—Routing nodes route the data according to chosen protocols. They implement the
routing strategy.

—Links connect the nodes, providing the raw bandwidth. They may consist of one or
more logical or physical channels.

Figure 4 covers only the topological aspects of the NoC. The NoC in the figure could
thus employ packet or circuit switching or something entirely different and be imple-
mented using asynchronous, synchronous, or other logic. In Section 3, we will go into
details of specific issues with an impact on the network performance.

2.2. Architectural Issues

The diversity of communication in the network is affected by architectural issues such
as system composition and clustering. These are general properties of SoC but, since
they have direct influence on the design of the system-level communication infrastruc-
ture, we find it worthwhile to go through them here.

Figure 5 illustrates how system composition can be categorized along the axes of
homogenity and granularity of system cores. The figure also clarifies a basic difference
between NoC and networks for more traditional parallel computers; the latter have gen-
erally been homogeneous and coarse grained, whereas NoC-based systems implement
a much higher degree of variety in composition and in traffic diversity.

Clustering deals with the localization of portions of the system. Such localization
may be logical or physical. Logical clustering can be a valuable programming tool. It
can be supported by the implementation of hardware primitives in the network, for
example, flexible addressing schemes or virtual connections. Physical clustering, based
on preexisting knowledge of traffic patterns in the system, can be used to minimize
global communication, thereby minimizing the total cost of communicating, power and
performancewise.

ACM Computing Surveys, Vol. 38, March 2006.

Figure 3.3: A packet-switched, mesh-topology network on chip overview, taken from [5]

length. Recalling from Section 3.1.4, the technique of Time Division Multiplexing, multipoint-
to-multipoint systems can eliminate a large degree of routing complexity by forcing data
streams to conform to predictable timing patterns. With TDM, a circuit-switched network is
generated. Here, particular time slots are allocated to each end-to-end link, and a transmitter
must comply with the allocation scheme to transfer data successfully. The allocations may be
static, which gives the lowest complexity and greatest predictability, or produced on-demand,
in response to control signals from the source and destination nodes. The latter increases
the available bandwidth for irregular or bursty traffic, at the potential expense of arbitration
problems.

Much work has been done on circuit-switched networks, particularly in the field of digital
communications, and the interested reader is advised to read the following excellent book by
Keshav on the subject [35, 162–174]. We will say no more here, since circuit switching is at a
tangent to our approach.

3.5 Summary

We have now seen how both directionality and topology contribute to the selection of an
interconnection system. The most scalable choice is the NoC structure, and this has been
justified by its substantive deployment in real systems. Therefore, this thesis will focus on
implementing such an NoC, using new techniques to minimise its cost per link. In order to
do this, however, we must first understand the various physical properties and constraints
associated with an integrated circuit link.



Physical characteristics and
limitations of interconnects 4

Physical concepts are free creations of the human mind, and are not,
however it may seem, uniquely determined by the external world

Albert Einstein

However clever we may be with our signalling schemes and protocols, the performance of
an interconnect is ultimately bounded by physics. We can optimise other factors as much as
we like, but we will never be able to breach the performance constraints of physical barriers.
In this chapter, we will see many of these in turn, with particular relation to wires. First though,
let us take on a theoretical bent, and investigate the absolute performance ceiling of channel
capacity.

Given by Shannon’s Coding Theorem [61, p.82], [12, pp.242,249] the maximum data rate
Rate transferable down a channel, such as one of our interconnect wires, is bounded by the
capacity of the channel Capacity in the simple relationship

Rate ≤ Capacity. (4.1)

Capacity is equally straightforward to derive, and is given by,

Capacity = Blog 2(1+S/N) (4.2)

where B is the channel bandwidth, and S/N is the signal-to-noise ratio of the channel (see
Section 4.3 for a definition). Bandwidth is defined as the range of sinusoids, in Hertz, that
may be transmitted from one end of the channel to another [61, pp.78–81], [19, pp.237–249],
[12, pp.247–250].

Assuming we fix the type and material of wire to be used for an interconnect, then band-
width is fixed. We see from Equation 4.2 that the capacity of our interconnect wire will then
be directly related to the signal-to-noise ratio S/N . We will now see what this ratio means,
and how we may improve its value using purely physical means. We can do all of this before
worrying about optimising our transmission protocols.

4.1 Wires

The physical characteristics of the wires dictate their performance. Critically are their proper-
ties of resistance R, capacitance C , and inductance L. In this thesis, the parameters R̂, L̂ and
Ĉ represent per-unit-length values for resistance, inductance and capacitance, whereas R,L
and C are the total line values.

We will now investigate these in turn, show how they affect the performance of intercon-
nects, and how we can optimise for them.



4. Physical characteristics and limitations of interconnects

4.1.1 Wire Resistance

The resistance, R, of a wire is its opposition to the movement of current along its length. It is
dictated solely by its resistivity, ρ, its cross-sectional area A and its length l .

R = ρl

A
(4.3)

The equation can be rewritten to make the reliance on wire length and width explicit [65,
p.198],

R = R�
l

w
(4.4)

where R� = ρ
h is coined as the sheet resistance or resistance per square; and is the resistance

per unit area. h denotes the height, or thickness of the wire.
Resistivity is fixed by the material used for the wire, and the temperature it is at. Since

temperature is not something not easily controlled at design time (although making a wire
with a lower resistance will indeed cause it to run cooler), we ignore this parameter and
concentrate on optimising A and l .

The length of the wire will most likely be fixed by the problem under consideration; for
example, if two blocks 1mm apart need connecting, a wire of approximately 1mm length will
be needed. Complications may arise in routing, where a wire may have to take a circuitous
route in order to be placed, and this will adversely affect its resistance. Conversely, good
layout and fortuitous routing can reduce the length considerably, and lead to increases in
interconnect performance.

This leaves us with cross-sectional area as the main knob to turn when designing for low
resistance. Area is, in fact, very easily varied by changing the width of the wire to be laid
out. Height is fixed by the fabrication technique used, but different metal layers may have
differing thicknesses of material. Thus, by increasing the width, we can reduce resistance to
an (arbitrarily low, but still non-zero) level. The ratio of wire height h to that of its width w is
called the aspect ratio,

aspect ratio = h/w (4.5)

and gives an idea of the profile of a wire. I introduce this concept here, but it will not become
relevant until we consider fringing capacitances in Section 4.1.2. The aspect ratio is also the
key factor in determining the relative values of inter- and intra-layer coupling capacitances.

However, choosing a width is not that easy. By increasing the width of a wire, we have
affected several other important factors — not least the area we have used on that metal layer.
Increasing the width of a wire by two to three times (dependent on the minimal spacing rules)
will halve the number of wires available to lay on that metal layer. Since we need to connect
up many blocks, this will cause us tremendous routing headaches. The other major factor
to be concerned with is that increasing the width also increases the capacitance of the wire,
and we will see in the next subsection that this could end up increasing the RC delay (see
Section 4.1.2) of a wire, rather than reducing it as intended.

Nevertheless, global wire designers do often favour few, wide, low resistance wires for the
most critical signals since, in the vast majority of cases, this does reduce the overall RC delay
but, critically, at the expense of a great deal of area



4.1 Wires

4.1.2 Wire Capacitance

The second important parameter of a wire is its capacitance. Capacitance is the ability of
a wire to store energy in an electric field between it and another, charged surface, which is
commonly taken to be ground. Capacitance does not retard signals — in fact it can accelerate
their phase — however, it does increase the time to bring a wire to a desired value, since
energy must be put in to raise a wire’s voltage. In this way, capacitance is directly related to
the charging time of a wire.

Capacitance occurs when two surfaces couple together capacitively. In an interconnection
structure, this happens between a wire under interest and its surrounding wires, ground
planes, power planes and substrates. With so many objects to consider, computing capacit-
ance could become overwhelming. Luckily, capacitance is a reasonably short-range effect
and is also shielded by closer wires from those further away. Thus, we generally only consider
neighbouring surfaces when computing capacitance.

The time constant for a lumped capacitor is the time taken for a capacitor to reach a value
of (1/e)V∆ from ground, when a step voltage of V∆ is applied at one terminal instantaneously,
and the other is grounded.

It is very simply related to the capacitance:

time constant : t = RC (4.6)

Here, R is the output resistance of the current source (and since no real-world component
has zero resistance, t will always be non-zero). It is clear that reducing the value of either R or
C will decrease the time constant, and that is the aim of much of interconnect optimisation,
since a reduced time constant leads to faster signal edges.

We will now investigate how capacitance arises in interconnection wires. Shown in Fig-
ure 4.1 is the standard model used by designers for extracting the capacitance of a wire, in
this case wire m5.b. Metals 4 and 6 (abbreviated hereafter to m4 and m6) are approximated as
planes, designed to simulate the orthogonally routed wires on alternate layers. However, they
are most likely arrays of wires in real life (the model is only accurate if their contribution to
the capacitance of m5.b is insignificant compared with the intra-layer wires on metal 5).

To verify this assumption, I used the capacitance extraction program Quickcap [41] with
an accurate 0.18µm model to produce capacitance values for a 1mm line laid out as shown in
Figure 4.2. I produced models of wires for worst, average and best case layouts for capacitive
coupling in metals 5 and 6 wires in our 0.18µm technology.

The results from the configuration with maximum capacitive coupling were as follows:
the total capacitance of one of the centre lines (e.g., m5.b) was 0.224pF, of which 0.178pF were
produced by the two adjacent wires on the same metal layer (m5.a and m5.c). This represents
a huge 79% of the total capacitance of the wire (a little larger than the claim by Ho in [23] that
over 70% is possible, but then he models the adjacent layers as ground planes rather than
the actual wire layout we consider here, so his estimate would be a little low). In contrast,
the wires directly above and below (m6.b and m4.b) contributed only 0.023pF to the total —
a mere 10%, yet note that, since m4.b is the same width and aligned and m6.b is wider, they
should appear like a parallel-plate capacitor to the centre wire. All values are to within ±
3%, and this shows vividly the significance of intra-layer coupling, compared to inter-layer
coupling. Hence, the parallel-plate assumptions are correct (and, equally unimportant) to a
first approximation (the reader may be interested to know that the dominance of intra-layer



4. Physical characteristics and limitations of interconnects

m5.bm5.a m5.c

metal 6 ground

metal 4 ground

dielectric

Figure 4.1: Standard surrounded wire model

capacitance is mostly due to the very tall and thin profile of modern metal layers — in this
way, wires on the same layer more closely resemble parallel plates for capacitance purposes
than do the physically parallel metal layers themselves).

Under this assumption, we may use the parallel-plate capacitor equation to quickly
calculate capacitances:

C = εrε0 A

d
(4.7)

Here, εr is the relative permittivity of the dielectric separating the two plates, be it air or,
more commonly for integrated circuits, silicon dioxide; ε0 is a constant; A is the area of the
smaller plate; and d the separation between the wire and the other plane in question. This is
normally a neighbouring wire.

The parallel-plate equation does not though take into account the fringing capacitances.
These are the capacitances caused by the non-parallel electric field lines that form at either
end of a wire, and also to the edges of the wires along their lengths. Weste and Harris [65,
p.201] suggest the follow equation to take these into account:

C = ε0εr l

w − h
2

d
+ 2π

ln
(
1+ 2d

z +
√

2d
z (2d

z +2)
)
 (4.8)

where z is the height of the bottom of the wire above a ground plane. This equation is substan-
tially more complex than the parallel-plate version and, since the fringing capacitances are
only significant for short wires. It is also only valid for values of aspect ratios (see Equation 4.5)
of less than two. Another formula, more computationally efficient, and also scalable to aspect
ratios of less than 3.3 is shown in [65, p.201].

Since our wires are long, end fringing capacitance is negligible. Additionally, we have
just seen that inter-layer capacitance only contributes 10% to total wire capacitance. Hence,
the more minor inter-layer fringing effect will be even less important, and may be ignored.
Therefore, we will leave consideration of fringing as a topic for the interested reader.



4.1 Wires

Table 4.1: Coupling capacitances for one millimetre of various track configurations

Configuration Cmutual Cgnd Ctotal

Minimally-spaced, no gnd 0.115pF — 0.115pF
Doubly-spaced, no gnd 0.0589pF — 0.0589pF
Triply-spaced, no gnd 0.0426pF — 0.0426pF
Minimally-spaced, gnd 0.142pF 0.0534pF 0.195pF
Doubly-spaced, gnd 0.0951pF 0.0624pF 0.157pF
Triply-spaced, gnd 0.0205pF 0.0663pF 0.0868pF
Minimally-spaced, gnd, M4&6 wires 0.0880pF 0.0771pF 0.224pF
Doubly-spaced, gnd, M4&6 wires 0.0454pF 0.0860pF 0.132pF
Minimally-spaced, guard wires, no gnd 0.0155pF 0.102pF 0.118pF
Minimally-spaced, guard wires, gnd 0.00290pF 0.139pF 0.142pF

If the two wires are on adjacent metal layers, the value of d is fixed by the process. If,
however, they are on the same layer, d becomes their separation; which may be controlled at
design time. For these two scenarios, A is the width times the length of the wire (w × l), or a
process-specific height, respectively.

A full table of the results for varying spacings and ground arrangements for a pair of 1mm
metal 5 wires is given as Table 4.1. In the table, when I say ‘ground’, the ground is not a planar
approximation as shown in Figure 4.1, but rather an accurate model with metal 4 and 6 wires
in realistic locations. This is shown as Figure 4.2. Conventional models use ground planes in
the metal 4 and 6 layers, to approximate a set of closely-spaced wires at right angles to the layer
of interest (here, metal 5). This approximation is a little coarse since, especially at the lower
metal layers, wires may be spaced as highly as they are wide; and so a plane approximation
is only half correct, since it ought really be slotted. Choosing to extract worst-case figures,
the setup of Figure 4.2 runs wires (i.e., m4.b and m6.b) parallel to, and the full length of the
wire of interest (m5.b). Thus, a parallel plane approximation to these layers is maintained, but
with fringing also taken into account by the extraction tool. I believe that this gives a higher
accuracy of extraction than a simple planar approximation would offer.

Additionally, ‘guard wires’ means the addition of grounded shielding wires, at locations
alternating with signal wires. Since these wires are themselves connected to ground, it is
possible to have a non-zero ground capacitance when they exist, even if the ground plane has
been omitted from the extraction.

The figures follow the same trend with those given by Weste and Harris [65, pp.203–204]:
that increased spacing decreases mutual capacitances, and thus the ground capacitance
becomes more significant, but total capacitance is always reduced. However, I believe that
they overestimate the contribution from the neighbouring layers, since their figures are
derived for the simplified model with planar metal 4 and 6 layers. They do, however, give an
enlightening graph of total capacitance as a function of width and spacing on page 205, but
again for the lower metal 2 layer, which cannot be directly applied to my work.

Thus, we see that doubling a wire’s width may decrease its resistance, from Equation 4.3,
but may also increase its capacitance, from Equation 4.7 by the same amount. Thus, its
RC delay (Equation 4.6) may be unaffected. Yet, we have increased routing complexity and
capacitance.



4. Physical characteristics and limitations of interconnects

m5.bm5.a m5.c

m4.bm4.a m4.c

m6.a m6.b m6.c

dielectric

m5.d

m4.d

Figure 4.2: Wire layout for wire spacing simulations

In order for the RC delay to decrease significantly then, we must also increase the wire
spacing. This manipulates the separation, d for same-layer wires, and allows the RC product
to drop off linearly with increased separation. However, the same proviso applies here as
for increasing the wire width: fewer wires may be accommodated for a given area footprint.
Much work has focused in the past on addressing this tussle, such as Li et al.’s excellent paper
[38] and Weste and Harris’ consideration of widths and spacing [65, pp.219–221].

One important point to note about the effect of capacitance is that wires in close proximity
will attract the vast majority of the electric field lines radiating from a wire under considera-
tion. The net effect of this that these wires to a first order approximation contribute all the
capacitance to a victim. As a by-product of this, any wires further away and in the same direc-
tion as an existing wire are effectively shielded from capacitive coupling. During evaluation,
it was observed that the mutual capacitances for wires in the same layer drop to negligible
levels after only one wire’s distance from the victim wire (e.g., a factor of 45 less was seen).
Even with far-away neighbours, capacitance falls off linearly with distance (this follows from
from Equation 4.7).

This kind of behaviour leads us to say that capacitance is generally a short-range effect,
strongly influencing near neighbours, but not a layout as a whole.

4.1.3 Wire Inductance

Inductance is the opposition to change of potential, realised by the ability to store energy in
magnetic fields. It does not affect the fields in capacitors, since electric and magnetic fields
are orthogonal, but it does effect signal propagation (see Equation 4.15), retarding velocity
with increasing magnitude. Also, it contributes to the overall impedance of a wire, and thus
impacts current flow. So, like all the wire properties so far, we wish to reduce the inductance
of a wire wherever possible (although when a wire operates in the RC region, the contribution
of inductance becomes negligible, as we will shortly see).

The inductance of a wire in a system consists of two principle part-inductances: the self
inductance, Lself — the inductance caused by the wire on itself, and the mutual inductance,



4.1 Wires

vdd connection
via logic

ground plane
or other signal wire

signal wire

current loop

Figure 4.3: A current loop in an interconnection circuit

Lmutual — the component from two, coupling, wires.
Unlike resistance and capacitance, the value of a wire’s inductance can be increased

without increasing the size of the wire. What matters in determining the value of inductance
is the size of the current loop. Illustrated in Figure 4.3, the current loop consists of a complete
path from a power rail to ground. In many cases this may be the loop created by a signal wire,
where current at the far end flows back along a ground or power plane, bearing in mind that
the electrons themselves do not necessarily have to traverse this route, but rather inductive
coupling allows the inductance of flow in the return path. In cases where the designer has
been careful to minimise inductance, a guard trace may even be used to provide a close
proximity return path. This proximity is vital to maintaining the value of a trace’s inductance
at a low level. This can be seen in the formula for the inductance of a loop:

Lself = rµ0µr (ln
8r

a
−2) (4.9)

This equation is for a circular wire, of diameter a producing a loop of radius r [33]. On-chip
traces are not circular, but this approximation is close enough to that of a rectangular wire’s
inductance, given the indifference the result has on the value of a due to the log term. µ0 is
the permeability of free space, and µr is the relative permeability of the dielectric on chip.

The equation clearly shows the well-known dependence of inductance on the area en-
closed by the current loop — it is directly proportional to r , and this phenomenon is not
constrained to circular loops: for any shaped loop, the higher the area of the current loop, the
higher the resultant inductance.

Given this, the approach is clear when managing inductance: place traces as close as
possible to their return paths, be they other traces or power/ground planes.

Like capacitance, inductance not only affects the wire under consideration, but also
neighbouring wires. In fact, unlike capacitance, inductance’s range is virtually unbounded,
meaning that every wire in a layout can potentially couple inductively to another. This
coupling is called mutual inductance, and leads to voltages being induced between pairs of



4. Physical characteristics and limitations of interconnects

current loops in a circuit. This phenomenon means that inductance contributes to all wires in
a system (to a first approximation), and so they need all be taken into account when designing
for inductance optimisation.

The mutual inductance between two parallel current loops is given as:

Lmutual =α
A1 A2

r 3
(4.10)

where α is a constant, given in [33, p.421] as 5.08, and A1, A2 are the areas of the two current
loops under consideration. We again see the criticality of minimising the loop areas.

Also, with any inductor:

Vinduced across an inductor = L
dI

dt
(4.11)

We see here that, for any inductor, changing current flow induces a voltage across this.
When we look at crosstalk in Section 4.3.1, we will see that this causes induction of voltages
between coupled wires, and the impression of noise therefrom.

Finally, we note that, since minimisation of current loop area almost certainly involves pla-
cing selected wires closer together, inductance minimisation is often at odds with capacitance
minimisation.

For the system in this thesis, a full inductance extraction was carried out using the tool
Quickind [42] to gain inductance values for the layout shown in Figure 4.2, a likely scenario
for global interconnection wires.

4.2 Delay models

The criticality of propagation delay in the performance of circuits has led to the development
of many models, of varying accuracy, for its characterisation. The family ranges from analyt-
ical, through computationally infeasible but highly accurate, all the way to simplified but very
quick to compute.

4.2.1 The Elmore delay model

The Elmore delay model is the most common model used when estimating wire RC delays.
Splitting a wire with total resistance R and capacitance C into N sections, it models the
distributed resistance and capacitance. Each ‘L’ shaped branch consists a resistor R j and
capacitor Ci , and is shown in Figure 4.4. When modelled in this way, the propagation delay is
computationally efficient to determine:

tpropagation =
N∑

i=1
Ci

i∑
j=1

R j (4.12)

This simplifies to [7, p.18]

τ= R̂Ĉ

2
l2 (4.13)



4.2 Delay models

Vin R/N L/N C/N R/N L/N C/N R/N L/N C/N Vout

Figure 4.4: Elmore or ‘L’ delay model

Vin R/N L/N C/N R/N L/N C/N R/N L/N C/2N VoutC/NC/2N

Figure 4.5: π delay model

As i = j →∞, the Elmore model tends to a true distributed model†. However, for high
levels of accuracy, i , j may need to be large indeed, and this increases the computational
complexity.

4.2.2 The π delay model

The π (pΛI) model is a variation of the Elmore model, where each stage’s capacitance is split
into two capacitances, each of size Ci /2. This simplification, shown in Figure 4.5, allows a
much greater accuracy, with ranges of ±3% possible from only three stages [65, pp.205–207].
The computational efficiency of the π model is therefore that much better than the Elmore
variant [65, pp.206–207], enabling speedups and high accuracies from a much smaller number
of segments.

4.2.3 First-order RC delay approximation

If an even greater simplification is desired, then the following expression gives a good first-
order approximation [65, p.170] to the time required for the voltage of a lumped RC line’s far
end to rise from 20%–80% of vdd, following the same rise at the near end:

tpropagation = (ln0.8− ln0.2)RC (4.14)

4.2.4 Effects on delay of resistance, capacitance and inductance

When combined, resistance R, capacitance C and inductance L provide both the propagation
delay of a signal travelling down the length of the wire (i.e., the time for a delayed copy of
the input waveform to arrive at the far end, generally taken to be the time between the 50%
crossings of the input and output), and the time taken to charge the wire to a given voltage.
Equally useful is the contamination delay, which is the minimum bound on how long the
previous value remains on the wire before being changed by the new value.

†But for the assumption of drivers with linear output currents. For non-linear effects, an ‘ln2’ term can be

added to take account of these. The full equation is then t = ln2R̂Ĉ
2 l2, often approximated to 0.37R̂Ĉ l2.



4. Physical characteristics and limitations of interconnects

R L

CVin Vout

Figure 4.6: Lumped RLC model

The equations for propagation delay are trivial: for a transmission line, where inductance
dominates resistance [33, p.423], vis.:

propagation delay (τprop) =
p

LC (4.15)

and, as we saw in Section 4.1.2, for an RC line, where inductance is insignificant:

charging delay constant (RC delay) = RC

2
(4.16)

This is for the distributed wire model. For a lumped model, it increases to RC (see Equa-
tion 4.13). Note that, since R,L and C all increase linearly with length, transmission line delay
increases linearly with length, but that of an RC line does so quadratically.

We can clearly see the effect of varying the three parameters R,C and L on the performance
of the wire. Fortunately, the are many ways in which these values may be manipulated in
order to increase the performance of a given wire. We have seen many of these already, but
first I will show that the problem can often be simplified to reduce the consideration down to
two variables: namely R and C .

Up to this point, we have been considering the model, shown in Figure 4.6, as a wire with
R and L in series, and C in parallel. This is indeed a correct model, however it is the case
that we may often approximate it to a wire possessing only R and C . This greatly simplifies
analysis, but changes the propagation characteristics.

For a pure RC wire, delay increases quadratically rather than linearly with length (vis.
Equation 4.16) since,

tpropagationRC
= RC (4.17)

and both R and C will double with a doubling in wire length. Also, if a step input is applied at
the transmitting end of an RC wire, the shape of the waveform at the receiving end resembles
an inverse exponential function, and so waveforms are distorted [33]. For this reason, and RC
line is called a diffusion line, since sharp edges are spread over time.

We saw in Section 4.1.2 that intra-layer capacitances are much more significant than inter-
layer capacitances. So, doubling the width of a wire will reduce its resistance to half, but only
increase its capacitance slightly. Hence, we can reduce the RC delay of a given wire. Making
a wire fatter does also mean that its driver must be a lot stronger — capable of sourcing an
increased amount of current, to charge the additional wire capacitance. We consider this in
Section 4.6, but the interested reader may also wish to consult Ho’s thesis [21] for information.
The RC wire approximation is appropriate here, since inductance is significant only when line
resistance is low or the waveform being driven down it is very quickly changing.



4.2 Delay models

We care whether a wire is in the RC or RLC region since it alters its characteristics when a
signal passes down it. Whilst attenuation is relatively low, an RC wire smooths out a square
pulse into a logarithmic curve, significantly distorting it. This is since the phase of a signal on
an RC line is non-linear with respect to the angular velocity of an input frequency component.
This leads to a frequency-dependent response for a pure RC wire, and is given by [7, p.24]

νpropagation =
√

ω

R̂Ĉ
(4.18)

where ω is the frequency component under consideration. Recalling that all waveform shapes
may be split up into a sum of sinusoids by Fourier Analysis ([39, pp.211–279] has a good
introduction), different parts of an input to an RLC wire will propagate at different rates.
For example, sharp edges contain high-frequency components and these are affected more
severely by inductance, and are slowed more than gently rising, or constant slopes. For a
pulse edge, the maximum such frequency component is given by the following equation

ωmax ≈ 2π

6trise/fall
(4.19)

The net effect of this action is to sharpen edges (to make them more upright by propagating
the high frequency components preferentially), but also to increase the propagation time of
the total pulse. Sharp edges are good for reliable logic operation, but increases in delay reduce
throughput — so inductance can be thought of as good and bad here.

Conversely, an RLC wire attenuates in a frequency independent manner, but with a higher,
fixed value than those available in the RC region. This so-called low-loss region prevents
distortion, at the expense of an increased propagation delay.

The propagation velocity of a signal down a pure RLC wire is,

νpropagation = 1√
L̂Ĉ

(4.20)

At frequencies higher still than those for the low-loss region, an effect called the skin effect
comes into play, where attenuation is linearly related to wire length and the the square root of
frequency. However, we need not consider this in this thesis since Weste and Harris [65, p.212]
claim that this only significantly affects wires thicker than 1.6µm in current technologies like
ours.

In the interest of completeness however, Hall, Hall and McCall [17] give the following
formula for the skin effect region. The skin depth is the depth of a conductor which contains
63% of the total current, ρ is the resistivity of the conductor, µ0 is the permeability of free
space and ω is the angular velocity of the waveform of interest (or, correspondingly, f is the
frequency of the signal).

Skin depth =
√

2ρ

ωµ0
=

√
ρ

π f µ0
(4.21)

Real on-chip wires combine aspects of RC and low-loss regions and, at low frequencies,
resistance dominates and the RC equation is sufficient to describe behaviour. The opposite
is true for high frequencies. The break-even point is when ωL = R (i.e., the impedance from
inductance equals resistance), and near this region, a hybrid behaviour exists.



4. Physical characteristics and limitations of interconnects

It has been shown [65, pp.212–214], [21, p.12 (with a few modifications)], [33, p.150] that
inductance is unimportant if either of the following hold:

a) Resistive losses outweigh transmission line effects. This is the case when,

R

2

√
C

L
> 1 (4.22)

b) Edge transition time is more than twice the propagation time of a signal along the wire.
This is true when,

rise/fall time > 2
p

LC (4.23)

When in the RLC region, delay of interconnect wires grows linearly with increasing length.
Unlike their RC counterparts, RLC lines generally preserve the shape of their input waveforms,
and so a delayed copy of the input waveform arrives at their outputs.

4.2.5 Trade-offs

From what we have seen so far this chapter, it seems that all our problems can easily be solved:
simply increase wire and driver sizes until a signal can be transmitted at the speed you want.
Whilst this is true to a point, it rapidly becomes intractable.

Fatter wires means fewer wires for a given area, so whilst a given wire’s bandwidth may be
increased using the techniques above, the total bandwidth over an area — say an interconnec-
tion channel — may be reduced, since fewer wires are available to be aggregated.

Finding the sweet-spot can be a complicated task, but has been the subject of a good
amount of work. For RC lines, good analyses of overall bandwidth optimisation are available.
Ho [21, p.20] gives the following equation for the total available bandwidth for a given area,
when no repeaters are used:

Bandwidth over area = 1

3(FO4+ RC
2)

× block width

w + s
(4.24)

The symbol ‘FO4’ represents the fan-out-four delay of the wire driver. In our 0.18µm
technology, this is around 68ps. The sum of wire width and spacing w + s is also known as
the wire pitch; and ‘block width’ is the width of the area of interest, over which bandwidth is
trying to be optimised. Equation 4.24 shows that bandwidth over a given area is decreased
by increases in resistance or capacitance, and also by increases in wire pitch. However,
changing the pitch is more involved than it may seem, since decreasing pitch will increase
capacitance, and so careful analysis is needed before choosing to decrease the pitch of a
system to increase performance. Naturally, sometimes pitch decreases will be preferred to
make way for previously un-routable signals. Wire pitch also increases when wires are made
fatter, which reduces resistance.

A more complete analysis of the trade-offs between wire width, spacing and bandwidth,
including results on power dissipations for different configurations can be found in Li et al.’s
excellent paper [38]. Again considering RC lines, they show that, with a 0.13µm technology
and using optimal repeater insertion, maximum bandwidth is produced with minimally
spaced, minimum width wires.



4.3 Signal integrity

When repeaters are not used, the bandwidth is given by Li et al. as:

bandwidth = block width

W +S
× 1

delay
(4.25)

W represents the wire widths, S their spacing, and the delay is that derived from considering
the wire RC delay along with the output impedance of its driver — for more details the reader
is invited to read their paper.

They come to the same conclusion as Ho: that maximum bandwidth is obtained when
W = S = Wmin. Later on, we will see that this result is the inspiration for my implementation’s
similar design choice.

4.3 Signal integrity

Moving signals quickly is all very well. However, if the receiver cannot determine their
meaning, delay optimisation becomes a moot point. Therefore, we also care about signal
integrity: how reliably a symbol transmitted at one end of an interconnect can be recovered
at the other end.

Generally, we care about a signals voltage value in relation to the threshold values of the
transistors in the receiving gate. For example, a 0V signal arriving at the gate of an n-type
transistor with a grounded source will definitely not turn on the transistor, but a 1.8V signal
almost certainly will. However, if the transistors threshold voltage Vt is 0.7V, what effect will
an input close to 0.7V have? McCluskey [43, pp.100–103], Weste and Harris [65, pp.98–99] all
consider this topic. For a given transistor, this answer may be characterisable but, with the
wide variations in manufacturing experienced today, we cannot say anything about other
transistors on the die.

These two uncertainties mean that we need a safety margin when transmitting signals,
and this leads to a lower bound being set on the voltage swing of the inputs.

Voltage swing

All transistors have two ranges of input voltages, one which they consider to represent logic
high (1), and one to represent logic low (0). To ensure reliable operation, these ranges should
be disjoint, and the larger the separation, the higher the noise immunity, since a larger
voltage swing is necessary to move from the high to low state and vice-versa. The range
where a transistor will reliably interpret the voltage as neither high nor low is known as the
indeterminate region, and is to be avoided in normal operation. By means of illustration, I
reproduce Weste and Harris’ diagram [65, pp.98–99] of noise margins as Figure 4.7. Another,
good consideration of this topic is given by Johnson [33, pp.63–66].

In this way, the range of voltages used to denote high and low values on a wire influences
its tolerance to noise by varying the effective magnitude of signal and that value of noise
needed to perturb it. There are two main drawbacks though to increasing the magnitude of
the swing: increased delay and increased power consumption.

Delay is increased since the driving transistor must raise the wire to a higher voltage, and
this takes additional charge Q, and thus time (by ∆V = ∆Q/C). Similarly, dynamic power
consumption is increased by:

Pswitching =
1

2
C V 2 (4.26)



4. Physical characteristics and limitations of interconnects

Figure 4.7: Noise margins of conventional CMOS logic (reproduced from [65])

So, high voltage swings have a double performance hit and, for this reason, we often
seek lower swings. We will see in Section 4.3.1 that differential signalling can be used to give
reliable signalling with low voltage swing levels — albeit at the expense of doubling the wiring
and increasing logical requirements.

Some implementations trade static power for delay by placing the two thresholds very
close together, so the swing needed to switch a transistor is minimal. However, when they
are in such proximity, an effect called sub-threshold leakage means that the transistor has a
greatly increased static power dissipation, and so this technique is ordinarily reserved only
for those transistors on the critical path.

Noise

Noise may be induced in the wires, perturbing the voltage on them. Be it from thermal
agitation (Johnson noise); Schottky/Shot noise [6], [28, pp.430–432]; leakages to power or
other signal rails; or induced by capacitive or inductive coupling; all reduce the available
margin for reliable operation at the receiver. We measure the impact of noise on signal
integrity by producing a signal-to-noise ratio, denoted S/N . Increases in the noise magnitude
degrade the value of S/N , whilst increases in the size of the signal increase it. Information
theory then gives us the maximum theoretical capacity of the interconnect (see Equation 4.2
for the exact expression).

Of all the possible ways for noise to be induced on a wire transmitting information, the
most significant is the mechanism of crosstalk, and we will now discuss this.

4.3.1 Crosstalk

Crosstalk is the combined effect of mutual capacitance (see Section 4.1.2) and mutual in-
ductance (see Section 4.1.3) on a wire’s signal value. It comes into play when a wire switches
nearby to a wire under consideration. For example, if we have neighbouring wires at 0V and
one of them switches to some vdd, the crosstalk will exert influence on the passive wire to try



4.3 Signal integrity

to move it towards vdd as well. This force will cause some fluctuation in the value of the wire
and, hence, some noise has been induced in it. The exact value of the noise depends on many
factors, such as the relative capacitances and inductances of the wires, and also the location
of the drivers.

Crosstalk due to mutual capacitance

A mutual capacitance Cmutual between active wire A and passive wire B causes a current
Imutual to flow when the voltage V changes magnitude in one wire [33, p.25]:

ImutualB =Cmutual ×
dVA

dt
(4.27)

We can see that, since voltages on coupled wires will indeed change in order to transmit
information, this creation of current will cause voltage changes on wire B, leading to crosstalk,
vis. [33, p.26]:

% crosstalk = RBCmutual

triseA

(4.28)

The above equation gives the percentage voltage crosstalk experienced by B when wire
A switches with a transition time trise. RB is the effective resistance of wire B (i.e., that value
which may be gained by taking the real component of B’s impedance).

The crosstalk from multiple wires is additive and has sign, dependent on switching direc-
tions. For example, if two coupled wires switch in the same direction simultaneously, then
their net electric field potential will be unchanged, and no energy will be transferred between
them — the wires at that point have an effective coupling capacitance of zero. Conversely, if
the two wires simultaneously switch in opposing directions, the potential difference between
them is doubled. This leads to a situation where the effective mutual capacitance is twice that
of the rest value.

In both situations, the self capacitances (those to ground) are unaffected and may still
contribute to crosstalk. If the switching directions combine favourably, it is possible for a
highly-switching (i.e., noisy) environment to produce little net crosstalk, although worst cases
naturally exist. We will see more of this shortly, in the summary section.

Before we leave this topic, we should examine the effect of varying drivers on wire crosstalk.
Weste and Harris show [65, p.209] that, whilst the action of crosstalk on a floating wire is quite
severe and undamped:

∆Vvictim wire =∆Vaggressor wire × Cmutual

Cmutual +Cvictim
(4.29)

For a driven wire, the story is a little different. Driving transistors are able to reinforce
voltage levels and replace or remove that charge which is impressed via crosstalk. This causes
a damping of the fluctuations caused by crosstalk, and the interested reader is advised to
see [65, p.209] for more details. The stronger the driver, the less influence crosstalk has on a
victim’s voltage levels, and this can be seen in the upcoming Equation 4.31, .

Ho [23] says that, for non-floating wires, assuming lumped capacitance, we get the follow-
ing equation:

Vnoise = Vswing × Cmutual

Ctotal
× 1

1+ trise/fallattacker
trise/fallvictim

(4.30)



4. Physical characteristics and limitations of interconnects

where VSwi ng is the change in voltage on the attacking wire; trise/fallattacker
is the fastest of the

rise and fall times for a signal edge on the aggressing wire, and the same case holds for the
victim wire. When used for balanced drivers, the right-hand term here reduces to one half.

When considering distributed, rather than lumped, capacitance the equation expands as
follows:

Vpeak_noise = Vswing
‡ × Cmutual

Ctotal
×

(
1+M

k +M

)(k+M)/(k−1)

(4.31)

where M = nRwire/2Rattacker, and n is the number of segments in the model. k is the ratio of
attacker to victim driving resistances, and Vpeak_noise is the maximum voltage of noise which
is impressed on the victim wire.

For matched drivers, the above equation reduces to:

Vpeak_noise = Vswing
‡ × Cmutual

Ctotal
(4.32)

which is twice that of a lumped capacitance, as expected since only half the effective capacit-
ance Ctotal is ‘seen’ at one end of a distributed capacitance model.

Note, though, that a stronger driver will allow faster edge transitions, and so may itself
contribute to a crosstalk problem on other wires. This is a case where drivers must be designed
carefully!

Crosstalk due to mutual inductance

For mutually coupled inductors, there are several equations to find the value of Lmutual. For
example,

Lmutual = k
√

L1L2 (4.33)

k is an arbitrary ‘coefficient of coupling’, representing the proximity and orientation of the
two inductors.

Or, as in the case of a transformer,

Lmutual = N1N2P21 (4.34)

Where N1,N2 are the number of turns of inductor 1 and 2, respectively and P21 is again a
coupling coefficient.

When changes of current flow occur in one conductor, it induces a voltage both in itself
and the other. Below we see how the voltage in inductor 1 depends on the current flows in
itself and inductor 2.

V1 = L1
dI1

dt
+Lmutual

dI2

dt
(4.35)

Finally, these can be applied to find the inductive crosstalk equation, between wires A and
B, from [33, p.31]:

% crosstalk = Lmutual

RAtrise
(4.36)

Again, trise is the rise time of the signal on wire A, and RA is the real component of A’s
impedance.

‡The Vswing term has been added to the original reference’s formula, to correct the error there.



4.3 Signal integrity

This shows that crosstalk can be minimised by:

1) Making the areas of both current loops as small as possible;

2) Reducing the impedance of the wire being aggressed;

3) Increasing the rise time of the signal (making it less sharp).

The second method has already been addressed fully in Section 4.1.3, and a nice side-
effect of the interconnect system I will introduce in Chapter 5 of this dissertation will be to
minimise the other two points here. This leads to the observation of negligible inductive
crosstalk in its implementation.

Summary

In summary, we have seen that, with minimally-spaced wires, crosstalk can pose a serious
problem. The layout shown in Section 4.1.2 has many wires closely spaced to the signal wire of
interest. Under these conditions, figures from Quickcap show that capacitive coupling is able
to impress a worst-case crosstalk of 80% of vdd on our wire. This very obviously would cause
a signal integrity failure at the receiving end. These worst case figures come when all other
wires in the circuit switch in simultaneously, so a more average case, with random switching
is also given by my simulations. Here, total crosstalk is at the 56% of vdd. All these figures
have an accuracy of ±1%. This magnitude of crosstalk will cause signal reliability problems
when using an interconnect system that does not actively drive its wires all the time (and so
voltage drifts can be significant). Similarly, for actively-driven systems, addition of crosstalk
noise can degrade the rise times of components, and add to the delay of a line. Therefore,
this noise must be addressed, and one method of doing so is to use differential transmission,
which will be introduced presently.

Additional data on the effect of crosstalk on signal delay, taking into account wire width,
spacing and also the metal layer they occupy (and so their resistance and height) are illustrated
well by Bainbridge [2, pp.36–40]. The various graphs given in Bainbridge’s book clearly show
the expected trends of decreased delay when signals are moved to a higher layer, or routed on
wider or staggered wires. It does not show much of a difference when spacing alone is adjusted,
and this is due to the wires being on low metal layers, where their near-square profile favours
capacitive coupling between adjacent layers, rather than between neighbouring traces. In the
higher metal layers considered here, one would expect the trend to show a trend of increased
spacing giving increased performance, but Bainbridge does not present this data.



4. Physical characteristics and limitations of interconnects

wire a

wire a

V

t

V

t

V

t

Figure 4.8: Differential transmission of logic values over two wires

Differential transmission

Differential transmission is a commonly used solution to the problem of signal lines with a
low signal-to-noise ratio. It takes the approach, illustrated in Figure 4.8 that, if we consider
two signal lines in close proximity (say, laid parallel and next to one another), we find that they
generally experience the same amount of noise injected from the surrounding environment.
This is easily visualised as a hollow sphere of aggressor wires all producing noise for our victim
wires at the sphere’s centre. At the limit, where our pair of wires are much closer together
than any of the neighbours are to either one, we can approximate them as being co-located,
and hence both of the pair must experience the same induced noise. This form of crosstalk is
referred to as common mode crosstalk — the value is common, and equal in sign and phase to
both our pair.

Now, suppose that, to transmit a signal of x volts, we transmit both x volts on one wire (A),
and −x volts on the other (B). The receiving end simply performs the computation A−B and
should obtain a value of 2x volts.

If noise is present, this approach has two main benefits:

1) The sum voltage is twice that of the original one, so the signal magnitude is greater than
with one wire, hence the S/N ratio is increased;

2) If a common mode crosstalk voltage of ∆V is induced, it will be induced on both. After
computing (A+∆V)− (B +∆V), the noise is cancelled out, to leave just A+B again,
theoretically noise-free.

So, we see that differential transmission is extremely useful in high noise or low signal
environments to help ensure error-free transmission of information over an interconnect.

The main problems with differential transmission are clear though: we require twice as
many wires as normal, and some form of differential generator and comparator circuits are
required. The latter is exacerbated by the fact that the generators may need to generate a
negative supply voltage, or twice the standard value of vdd. Finally, placing two wires next to
each other that simultaneously switch in opposite directions means they have a huge, and
artificially induced, capacitance problem. Here, a lot of energy is required from a driver to
swing them quickly, or degraded performance must be accepted.

To get over these disadvantages, and in particular to save power and increase signalling
rates, a form of differential signalling known as LVDS has become popular.



4.4 The routing problem

LVDS

LVDS or ‘Low Voltage Differential Signalling’ is simply differential signalling, but where full
excursions to gnd and vdd are not made. Typically, both wires idle at vdd/2, and switch either
to gnd or vdd itself. In other implementations, even lower swings can be used. In this mode,
LVDS does not provide as much reliability as its full-swing brother, but allows fast signalling
rates, since less energy has to be put in to create a valid signal level. This allows the driving
circuits to be smaller, and particularly suits complementary logic styles where, say, values a
and ā are produced and consumed. A brief overview can also be found in Weste and Harris’
book [65, pp.227–231].

4.4 The routing problem

Optimisation of delays, crosstalk and overall performance are all very good, but if they cannot
be realised then they have all been for nothing. As we have seen, almost all the solutions to
these problems involve the resizing or re-spacing of wires in an upwards manner. Thus, they
take additional area on their respective metal layers. Increases in area have three interlinked
problems: cost, routing and, correspondingly, performance.

Cost is rather straightforward: if more area is required per trace, the total area required
will increase. Thus, the die size must become bigger. Since the cost of a die is proportional
in a roughly squared manner to its area [20, pp.17–20], this is a large motivator for compact
designs.

Second, track routing becomes increasingly difficult with trace width. This occurs both
because, for a given layer area, linearly fewer routes can be squeezed in if each is wider; and
also because when corners have to be turned, routing requires the use of an area equal to the
square of the trace widths. So the number of possible routes quickly dwindles.

Finally, if routing becomes more difficult, then traces are forced to take sub-optimal
paths to their destination. This may lead to multiple kinks, vias, or simply a circuitous route.
Unfortunately, all of these decrease the performance of the link, and may even make it worse
than before the wire was widened.

We can see a ‘before and after’ picture of this in Figures 4.9(a) and 4.9(b). See how, with
the wider wires, fewer can fit in the direct path from logic block A to block B, and so two of
the four must take an extended route.

So, we have seen how there are inter-related factors to bear in mind when designing
for a practical layout, and that sometimes these will prevent the use of otherwise optimal
interconnect track widths. All of these points have shown that interconnect designers must
certainly keep their wits about them!



4. Physical characteristics and limitations of interconnects

logic
block
 A

logic
block
 B

die

4 x interconnections

(a) Four narrow wires may take a
direct route

logic
block
 A

logic
block
 B

die

4 x interconnections

(b) But some thicker wires need
diverting at a cost of w2

Figure 4.9: The difficulty in routing wide wires

4.5 Conventional trade-offs in interconnect design

I hope that it has been clear when reading the preceding sections that interconnect design
is a hugely complex task, with many inter-related factors to be considered when optimising
for performance. Often, in the course of producing a layout, a designer will be working with
optimisation of a particular variable in mind, most commonly system throughput. Whilst
this may guide their strategy initially, it will often be the case that another will become more
pressing when the design becomes closer to completion. A simple example of such a time
would be when a system with many parallel channels, each using wide wires is chosen for
performance reasons, but layout is impossible since the area requirement is too high.

At this point, a designer must rethink, potentially discarding many months’ work. In this
chapter, I wish to show the various trade-offs that must be made to produce a viable design
for incorporation onto a real die. We will consider trade-offs for the performance metric of
throughput (defined as the number of bits of data outputted per second) against those of
latency, space, power and design complexity.

4.5.1 Throughput and latency

Throughput and latency are orthogonal concepts, but for many interconnect designers are
equally important. Whilst throughput is concerned with the magnitude of data that can be
transferred, latency is a measure of the time that data spent traversing the interconnect.

Latency is measured in seconds, and a low latency interconnect can transfer time-critical
data reliably. A good example of where low latency is necessary is at bottlenecks such a micro-
processor to cache connections. It is well known that a high cache latency can dramatically
reduce the work that can usefully be done by a processor [20]. If the interconnection itself
adds latency, the situation could get a lot worse. Low latency implementations require careful
attention to all components on the critical path. Commonly, for low latency links, the control
path will be as critical as the data path, as is our experience from microprocessor designs.

For some applications, however, latency is not critical. This is the case for non-interactive
or so-called bulk traffic. Here, raw throughput is the sole concern, and hardware implementa-
tions can be optimised for highly efficient data transfers, since the constraint of latency has
been relaxed.



4.6 Driving transistors

4.5.2 Throughput and space

The trade-off between throughput and space is perhaps the most straightforward to under-
stand. Most simply, if we have one point-to-point link running with a throughput of B bits/s,
then placing N of them side-by-side will offer a total throughput of N ×B bits/s. However,
quite obviously, if one interconnect’s area requirements is Aµm2 then N will take N × Aµm2.

Increases in die area allow the inclusion of dramatically more transistors, and each of
these has its own interconnection requirements. If the number of transistors doubles, then
an analysis of Rent’s Rule [8] suggests that the number of global connections might need to
increase by 20.36. Whilst this is a slow exponential, it suggests that a die with sides twice a
nominal length would need 65% more global wires than its smaller counterpart. Therefore,
simply tiling additional copies of interconnections in the manner described above will rapidly
deplete both metal layers and driving resources. Therefore, if there is limited space, there
must be limited bandwidth, and the two are intimately linked (in fact, we will see later, that
Ho has a formula to show just such a relationship [22]).

4.5.3 Throughput and power

Radio aficionados will be aware that throughput and power consumption are often correlated.
For example, a more powerful radio transmitter will generally be able to produce a signal
with fewer errors at a receiver. This can then increase the available bandwidth, since fewer
error-correction bits will be needed, and so the coding overhead decreases.

The physical reasoning is quite different for on-chip communications, but the end result
is similar: the dedication of an increased number and/or wider driving transistors; more
repeaters; or more wires can all result in being able to support a higher throughput. Needless
to say, each of these techniques requires additional power to be expended.

One positive way that on-chip communication varies though is that, whilst a higher
throughput may involve increased power consumption, for a fixed data payload commu-
nication will be completed in a shorter time period. Thus, when integrated over time, the
total energy consumed may be constant across a choice of throughputs§. This leads to the
notion that design for throughput may be a good idea from a power consumption point of
view (provided, of course, that the peak dissipation does not melt your chip!)

4.6 Driving transistors

No transistor can source an infinite amount of current, with zero output resistance, as re-
quired by simplistic wire response models. Nor does it have zero output capacitance. These
components add onto the intrinsic values of a wire when determining its actual charging time.
For example, if the wire has characteristic resistance Rwire, and capacitance Cwire, and the
driver has an output resistance Rdriver, and capacitance Cdriver, then the total charging time
will be:

t = (Rwire +Rdriver)(Cwire +Cdriver) (4.37)

When we produce a wider wire, we have seen in Section 4.1.2 that its capacitance will
increase. Therefore, in order to try and maintain the same rise time, our driver transistor

§This assumption ignores static leakages, which is not necessarily a good approximation for modern
processes.



4. Physical characteristics and limitations of interconnects

must decrease in resistance (the value of Cdriver is negligible compared to Cwire for our long
interconnects, and so we will ignore its contribution on rise time. For a similar reason, Equa-
tion 4.37 does not include the receiver’s input capacitance — if the wide driver is insignificant,
so will be a narrow receiving transistor). The output resistance of a transistor is inversely
proportional to its channel/gate width, and directly proportional to its channel length. This
simple relationship makes it easy for a designer to vary Rdriver on demand (subject to design
rules), and so timing requirements can reasonably easily be satisfied.

The penalties a designer pays for larger driving transistors are threefold though:

1) Area — as mentioned, a lower driving resistance needs a wider channel, and this takes
additional area.

2) Power — charging and discharging an increased capacitance requires more power, since
the energy per switching Eswitch = (1/2)C V 2, and, for a fixed frequency of operation f ,
the total power is then P = (f /2)C V 2.

3) Input delay — whilst the driver may be able to drive more current, the increased channel
size causes an increased gate capacitance. This in turn must be charged by some
preceding circuit with a finite resistance. Thus, counter-intuitively, the circuit may
actually become slower overall [32].

The contributions of these three overheads can mean that all of a designer’s good work
has been in vain. All three problems have stemmed from the decision to use a thicker in-
terconnection wire. In particular, the additional driver area overhead, added to that of that
produced from the wire re-sizing can lead to some real headaches in routing and layout and,
as we saw in Section 4.4, cost.

These factors are a huge catalyst for the development of area-efficient designs. Thus, this
is where a large proportion of the motivation of the author’s work stems from for this thesis.

4.6.1 Models

There are many models of transistors and how they behave under load. The most simple
and ubiquitous is that of Logical Effort [32]. This straightforward approach is a good way of
making a first-order approximation to which of a set of designs is likely to operate with the
smallest delay. However, it omits many factors, and it is not clear how applicable it will be to
technologies below the 90nm node. It also optimises solely for delay, at the expense of power
and area.

Other models are more complicated, taking into account many more factors about the
transistors themselves, such as leakage or layout variation. Weste and Harris provide a good
tutorial [65, pp.67–108], and Horowitz and Hill give a more thorough treatment of switching
characteristics [28, pp.113–171].

For the transistors performing wire driving, we should understand their operation, since
they are so critical to interconnect performance.

4.6.2 Driving transistor behaviour

We now consider the behaviour of the interconnect’s most critical components: the wire
driving transistors.



4.6 Driving transistors

The ability of a driving transistor to source a large amount of current is key to driving an
interconnection wire effectively, and so we need to check that it is able to do so.

The alpha power law [52] is a common way of determining the current sourcing ability of
a transistor, when it operates predominantly in either the saturation or the linear operating
region [65, pp.71–75]. At the border, components of both equations are needed to fully
describe transistor output behaviour.

In the linear region, the drain-source current ability of an nMOS transistor is:

Idslinear = k
w

l
(Vg s −Vth)α/2Vds =

Vds

Rtransistor
(4.38)

where k is a compound process constant, w, l are the width and length of the nMOS
channel, Vg s is the gate-source voltage, Vth is the threshold voltage, Vds is the drain-source
voltage and α is a variable in the range 1 ≤ α ≤ 2, which characterises the shape of the
transistor’s I-V curve. Rtransistor is the effective resistance of the transistor, which is constant
in the linear region, and so we see the transistor acts as a normal resistor, with the current
passing through it being directly proportional to the voltage across the drain and the source
terminals.

For the saturated region, where current saturates, the transistor’s effective output resist-
ance rises with drain-source voltage and the output current becomes:

Idssaturated = PC
w

l
(Vg s −Vth)α (4.39)

where the symbols are the same as those defined above, plus a process constant PC .
The main effect of the current driving ability of a transistor is the impact a low value will

have on the rise and fall times of a signal going onto a wire, and the contribution of this time
to the overall delay of the interconnect system. Ismail and Friedman [30] give some formulæ
to calculate the overall wire propagation delay for an RLC wire, considering charge/discharge
times.

In the linear region of a transistor, the RLC propagation delay is given as

tpdlinear =
e−2.9ζ1.35 +1.48ζ

ω
(4.40)

where:

ω= 1p
LwireCwire

p
1+Cdriver

(4.41)

and,

ζ= Rwire

2

√
Cwire

Lwire
× Rdriver +Cdriver +RdriverCdriver +0.5p

1+Cdriver
(4.42)

When the driver’s output impedance and parasitic capacitance are insignificant with
respect to those of the wire, then the right-hand terms of equations 4.41 and 4.42 may be
omitted. When this is done, the formulæ become familiar as Equation 4.20 and the left-hand
side of Equation 4.22.

When in saturation, the transistor’s effect on the propagation delay is given as:

tpdsat urat ed = Vdd

2

l

w

(Cwire +Cload)

PC (Vdd −Vth)α
(4.43)



4. Physical characteristics and limitations of interconnects

Note that, for a fixed gate voltage and size, the transistor’s current sourcing ability is
constant in the saturation region, and so we can model it as a constant current source. Also
note that the saturation equations are frequency-independent, whilst the linear range ones
are frequency-dependent. The independence further simplifies our calculations when we are
in saturation.

With good design, our driving transistors ought to be able to be in saturation the majority
of the time, since we hope to be in the situation where wire delay is much more significant
than transistor gate delay. The saturation voltage Vdsat is given by the formula:

Vdsat = Pv (Vg s −Vt h)α/2 (4.44)

and, as an example, the value of Vdsat , given by Weste and Harris [65, pp.83–87] is 0.36V. When
we come to consider a point-to-point interconnect in the next chapter, we will apply these
results, along with some other techniques, to ascertain the optimal sizings for the wire driving
transistors.

4.7 Summary

In this chapter, we have seen how physical factors affect our notion of an ideal interconnect
system, and how they can interfere with our planned layout. It is very difficult for a designer
to wrest with all of them simultaneously, and so prioritisation of one, or a small set of factors
must be carried out if a design is to be completed at all.

Of all the parameters we have seen, it is clear that a reduction in track width ameliorates
almost all negative effects (e.g., capacitance, crosstalk and routing densities), whilst allowing
the designer greater flexibility to add more wires or increase spacings. All of these points have
the potential to increase system bandwidth, and so must be welcomed by a designer.

For this reason, the author decided that the production of the following would be of great
interest: an on-chip interconnect requiring only minimally-spaced metal 5 wires, and thus
yielding an area-efficient and high throughput design. We will see this system in the rest of this
thesis, beginning with the next chapter, which will introduce the concept of an area-efficient,
pulse-based point-to-point link.



An area-efficient,
pulse-based interconnect 5

A journey of a thousand miles must begin with a single step

Chinese proverb

It is clear from the preceding chapters that an area-efficient, power-efficient, high-throughput
and low latency interconnect system would be a silver bullet to the needs of modern-day I.C.
designers. However, as the previous chapter has also shown, having all of these properties at
once is also wishing for the impossible!

So, we must take a subset of these requirements and aim to produce a system as highly
optimised as possible for this choice. To this end, I have produced an on-chip intercon-
nect, intended for use with on-chip global data signals, with the following characteristics:

1) Point-to-point: a transmitting and receiving block have a dedicated link, with the
reliability and availability that this entails;

2) Serial: with conversion to and from parallel interfaces. This means that it needs only a
few global metal wires (in fact, just two per link), and therefore is;

3) Area-efficient: the global metal footprint is very small indeed. This enables many
advantages, as described in Chapter 4, such as wide interconnect spacing to reduce
signal degradation, or the placement of many different interconnections, to produce
a massively point-to-point interconnection system. In keeping with the theoretical
results of Equation 4.24 and 4.25, minimum width, minimally-spaced wires are used, to
maximise the bandwidth over a given area;

4) Power-efficient: the approach given means that energy consumption is within 25% of
an optimised existing approach (and this will be justified in the following chapter);

5) Clock-skew tolerant: to an arbitrary level. My system requires no global clock signal
to be transferred with data, and so is able to transcend issues such as clock skew or
clock-domain crossing. This quality is very useful in providing easy composition of
multiple IP blocks or when interfacing differing logic styles.

In exchange for these benefits, the interconnection system has throughput and latency
that is not cutting-edge, but still perfectly acceptable for non-aggressive ASIC designs. The
interconnection system has been designed specifically to fit in to conventional design prac-
tices and, to this end, includes standard, synchronous FIFO interfaces, black-boxing the
data from transmitter to receiver. This allows it to be used as a ‘drop-in’ replacement for
existing interconnection systems in a design. The target application for the interconnect is as



5. An area-efficient, pulse-based interconnect

a replacement in an 8-bit ASIC design, running at a clock frequency of 66MHz. This gives a
target throughput for the system of 528Mbit/s.

Before I can describe this interconnect properly, I first introduce some related basic
concepts; namely asynchronous logic; and some prior work called GasP.

5.1 Asynchronous logic

Following Chapter 2.4, we are familiar with the issues involved when composing multiple
synchronous logic blocks together to comprise a bigger system. Of these, the most difficult is
ensuring that a common notion of time is shared between blocks. This reference is needed in
order to guarantee that data values, passed between blocks, are sampled at a time when they
are valid, and not potentially transitioning. To do this, most synchronous designs introduce a
global clock signal.

The problem with distributing this common clock is that of clock skew (which I explained
in Section 2.4). Clock skew is very difficult to eliminate, or even to reduce to acceptable levels,
and yet we still need to compose our blocks.

An approach to solve this problem is to use a flavour of logic called asynchronous logic.
Asynchronous logic shuns the notion of a global clock, electing instead to generate a set of
localised ‘clocks’, on demand, when the interfacing between two neighbouring logic blocks
(or environments) requires. These clocks take the form of control wires, shared between the
environments, and comprise a protocol called handshaking [56].

Since asynchronous logic operates ‘on-demand’ — handshaking, and therefore activity,
is only performed when data is available to be processed — it is power-efficient and, for
an interconnect, able to offer power savings over traditional interconnect by shutting down
operation when there is no data to be transmitted.

5.1.1 Handshaking

Handshaking involves two, neighbouring components participating in a common control
protocol. Synchronous designers will already be familiar with the FIFO control signals (i.e.,
FIFO_full/FIFO_empty, data_read, data_write etc.) Cycling these signals in their per-
mitted orders is a form of handshaking, where the input and output environments are hand-
shaking with the FIFO via the control signal transitions.

With asynchronous logic, all computation involves performing handshaking when re-
ceiving or transmitting data. There are many varieties of handshake, each with differing
resource requirements and overheads. For a survey, Bainbridge [2, pp. 12–13, 44–45] and
Sparsø and Furber [56, pp. 17–22, 57–8] describe in detail both a variety of protocols, and
their implementations. I now discuss the two most common ones. These are bundled data
and completion detection.

Bundled data

The bundled data approach operates using separated control wires and data path. This
simplifies implementation, allowing the data path to remain unaltered and yet supports hand-
shaking. In this approach, there are two control wires, request, which allows a transmitting
environment to tell a receiving environment that valid data has arrived; and acknowledge,



5.1 Asynchronous logic

whereby the receiving environment marks its operation completed, and informs the trans-
mitting environment of this. Following an acknowledge, but strictly not before it arrives, the
transmitting environment is permitted to change the data wires. Then we cycle the protocol
and a new data word begins to transfer.

Overall, the bundled approach requires the use of additional global wiring for the two
control signals, albeit wiring not needing strict timing requirements. Bundled data therefore
helps the composability problem, but at the expense of area-efficiency in the form of global
metal wiring.

Completion detection

Fundamentally, completion detection embeds control information inside a data flow, re-
moving the need for separate control wires in the forward direction. A backward-flowing
acknowledgement is still necessary, however, so not all control wires are eliminated.

Completion detection involves altering the format of transmitted data signals to embed
information about their current validity in themselves. For example, a simple way to do this
might be to take a binary data bits d1, d2 and add a data value d3, which is the odd parity
of d1 and d2 if they are valid, otherwise it is the even parity. d1, d2, d3 are then transmitted
simultaneously. A receiver is then able to detect valid data by simply checking that d1 ⊕d2 ⊕
d3 = 0, where ⊕ signifies a binary XOR operation.

There is a flaw with this particular encoding (e.g., what happens if d3 changes before new
values of d1, d2 are received), but it serves to illustrate the point. However, it is also clear that
the efficiency of data transfer is reduced: instead of transmitting one data bit per wire, we
have two bits per three wires, which is significantly worse. In general though, this is the kind
of penalty we pay for completion detection.

The particular form of completion detection I use in my interconnect is that of dual-rail
logic [56, pp. 11–13]. As its name suggests, dual-rail encoding involves encoding a single bit of
data on a pair of wires, d0, d1. States are explained in Table 5.1, with the system initialised to
the 00 (idle) state, and operation of a cycle proceeds as follows:

1) A data bit is signalled by asserting exactly one of d0 and d1, the former to indicate logic
0, and vice-versa for logic 1.

2) The receiver logically ORs together the bits, and the output of the OR constitutes a
request signal, so a transition causes processing at the receiver.

3) Having completed processing or latching of the data, the receiver asserts the
acknowledgement wire.

4) At which time the transmitter is free to return the wires to the 00 state (4-phase protocol),
or transition exactly one to indicate the next data bit, and repeat from the beginning
(2-phase protocol).

5) For a 4-phase protocol only, we now repeat from the beginning.

Also shown, as Table 5.2, is a protocol I call inverted dual-rail, whereby the states corres-
pond to inverted wire values. This, inverted, protocol is identical to dual-rail, but with the
polarity of the data wires inverted. It is more amenable to implementation in certain logic
styles, for example pre-charged logic.



5. An area-efficient, pulse-based interconnect

Figure 5.1: Completion detection, as illustrated by Sparsø and Furber [56]

Table 5.1: Dual-rail semantics

Wire Values Meaning
00 Idle/Invalid data
01 0
10 1
11 Undefined/Error

Table 5.2: Inverted Dual-rail semantics

Wire Values Meaning
00 Undefined/Error
01 1
10 0
11 Idle/Invalid data

We will see later that it is also suited to implementation with my interconnect solution. By
means of illustration of completion detection, I reproduce Figure 5.1 from the book by Sparsø
and Furber [56].



5.1 Asynchronous logic

Two-phase or four-phase?

Both the bundled data and completion detection protocols can operate in a two-phase mode
or a four-phase one (see Figure 5.2).

With 2-phase, a data bit is transmitted by toggling the state of a data bit, say d0 to transmit
a 0; or d1 to transmit a 1. Following transmission of a bit, the receiver transmits an acknow-
ledgement signal back to the transmitter, who then knows that data has been safely received,
and the next bit may be transferred.

The 4-phase dual-rail protocol involves an additional transition per bit transferred, and it
thus natively slower than its 2-phase cousin. However, the 2-phase variety requires that state
be kept at the receiving end (to determine which wire it was that toggled, since the wires may
start in any of four combinations). This state contributes significantly to receiver complexity,
and therefore entails a slowdown of its own. 4-phase removes the need for receiver state by
ensuring that each handshake begins at a fixed value, which is 00. As before, exactly one
wire will change state to signal data transfer but, unlike before, after an acknowledgement, it
will transition back to 0 before the next data bit may be transmitted. This, resetting phase,
is known as the return-to-zero (RTZ) phase. As previously mentioned, RTZ protocols take
longer to perform than ones without this phase, but greatly simplify receiver design (with the
associated speedup).

To illustrate the 4-phase dual rail protocol clearly, I include Table 5.1, which displays the
four wire states and their meanings. Note that there are two data states, and idle (RTZ) state,
and one, unused and therefore invalid state. The existence of the invalid state implies some
inefficiency in the encoding of 4-phase dual-rail, but is necessarily wasted by the RTZ nature.

Summary of handshaking

We have seen both the bundled data and completion detection approach to handshaking.
Bundled data allows a completely conventional data path design, which makes it more
suitable as a wrapper around existing systems. Conversely, completion detection requires a
customised data-transfer protocol, but enables additional gains in wire savings and a removal
of the strict length matching requirement, that data should arrive with, or before, the request
signal.

We have also had a taste of the sub-varieties available in the form of two-phase and four-
phase implementations. Here, a trade-off is available between complexity of implementation
and the number of transitions in a handshaking cycle; with an associated impact on data
throughput.

Note that in all completion detection protocols, signal transitions may occur at any time
they are valid given the protocol, and we may have to wait arbitrarily long between them.
However long we wait, though, data will never be lost at the receiving end, since the next
phase of the protocol may not complete out of order. Thus, completion detection avoids the
need of a synchronising clock, and yet is data safe — no data values may be lost during the
run of the protocol due to timing violations.

Finally, all of these protocols have an additional, backwards-flowing acknowledgement
wire, which contributes further to the area-inefficiency. My approach removes the need for
even this wire.



5. An area-efficient, pulse-based interconnect

Figure 5.2: Two- and four-phase signalling protocols, as shown by Bainbridge [2]

5.2 The GasP control system

In this section, I describe GasP. Standing for ‘Global asynchronous signalling Protocol’, GasP
is a technique developed at Sun Microsystems [59] for the control of micropipelines [58], an
asynchronous design paradigm resembling a FIFO structure.

GasP was designed with the intention of being an extremely lightweight control structure,
featuring very low latency and fast cycle times. GasP is an implementation scheme for
handshaking (see §5.1.1) on the control path of micropipelines.

5.2.1 Micropipelines

I show micropipelines in Figure 5.3, which I reproduce from Sparsø and Furber’s book [56]. The
idea is to generate control signals (Ci) for use in controlling the sequence of latches deployed
in a FIFO element. In the generalised structure, logic can be added between the various FIFO
stages to produce a pipelines, asynchronous data flow with computation. Micropipelines use
a bundled-data approach, with the control path being shown in that shown in Figure 5.3,.
They are primitive asynchronous design elements, and often serve as data buffers between to
logic blocks with differing latencies.



5.2 The GasP control system

Bundled data path

Figure 5.3: A micropipeline, reproduced from Sparsø and Furber [56]

5.2.2 GasP and micropipelines

The presence of both req and ack signals in the micropipeline is an unwanted area overhead.
GasP’s key innovation was that it requires only a single control wire to perform bundled-data
control. Replacing both the forward-moving req and the backward-moving ack control wires
with a single one, GasP therefore also reduces the control wire count by one.

How does it accomplish this? The key innovation was for GasP’s designers to realise that
wires are not uni-directional by physical necessity, but merely by popular convention. So, they
decided to create a single, bi-directional control wire, capable of propagating both request

and acknowledge signals. These wires they call state conductors, and they form the basis of
GasP.

GasP manages bi-directional communication safely by running an event-based protocol
over the wire. The protocol is return-to-one (RTO), for implementation reasons, which means
that the idle state is logic high. To perform a request, a transmitter applies an input pulse
to its driving transistor, causing its state conductor wire to fall to zero, which is seen at the
receiver, and noted. Once the receiver has completed use of the data stream (sent bundled
data style, on separate data wires, in a conventional binary format), it resets the wire to one
via the application of another pulse. Visualised, a cycle creates a waveform looking like a
longer pulse, along the state conductor: 1 ↓ 0 (req) ; 0 ↑ 1 (ack).

The wire transitions are driven by a structure called a distributed inverter, which I illus-
trate as Figure 5.4. Distributed inverters are very simple structures, comprising the same n-
and p-type transistors of a standard inverter, but without physical co-location. This allows
the n- and p- components to be placed in disparate locations on-chip. Both request and
acknowledgement inputs are driven by pulses.

If we assume that the left-hand side of the diagram is the requesting circuitry, and the
right-hand side the acknowledging, then we can see how the protocol described above is
materialised with this structure: since with the distributed inverter scheme each end may



5. An area-efficient, pulse-based interconnect

long wire

request

acknowledge

request_bar

Figure 5.4: A distributed inverter

perform only one event (i.e., the left may drop the line, and the right may raise it). Furthermore,
it is obvious to see that they must occur in lock-step; and so a similarly-minded protocol is
easily enforced by the use of a distributed inverter.

GasP is simply an expansion of the distributed inverter concept, with the distributed
inverter’s ‘long wire’ being a GasP state conductor. As previously described, GasP’s purpose
is as a micropipeline control and, to do this, it is responsible for the propagation of storage
bubbles — empty storage locations in a FIFO-like structure. A way to visualise bubbles is to
imagine the backward-propagating holes left when a data item moves forward though a FIFO.
It transpires that these bubbles have exactly the same behaviour as an acknowledgement in a
handshaking protocol, when the handshake is talking about the forward-flowing data.

Thus, GasP simply uses the request line of a distributed inverter to control the passage of
data items through a pipeline (by using it to toggle data latching in locations they call places).
In GasP, the acknowledgement is automatically created if the succeeding place is free. Hence,
data flows as quickly as possible through the micropipeline structure. Since the rate of flow
is essentially bounded by the cycle time of a handshake, GasP’s very low latency handshake
entails high micropipeline throughput.

5.2.3 The unsuitability of GasP for area-efficient interconnect

Good as it is, GasP is not directly suited to the task of controlling data transfers over long
distance interconnect, especially one intended to be very area-efficient, such as the design I
propose. This is for two main reasons.

The first is that is that GasP is only a control system. Its design merely allows the control
of a separate data path, assumed to be propagating in parallel with the control flow (the state
conductor is alongside the data wires). This control still requires a global control wire (the
state conductor), which is an area price too high for a very area-efficient design.

Second, GasP assumes that all control and arbitration occurs in exactly three inversion
cycles. This assumption implies that, whilst wire delays will be tolerated (the data would be
delayed alongside the handshaking), there cannot be any significant relative skew between
data and control.

This assumption is, unfortunately, not valid for the kind of long-distance interconnect
we consider in this dissertation. A separate data path takes up area and also is unlikely to be



5.3 Introduction to my point-to-point interconnect

routed uniformly, and identically to the control path. On top of this, driver logic variation may
result in data skew. The main cause of skew is the probability that, over global distances, wires
not be routed uniformly. In fact, at high data rates, even minor differences such as whether a
line is on the inside or outside of a turn can cause significant data skew, relative to the control
signals. Without being correctly addressed, this could cause data corruption if all data values
do not arrive in line with the sampling signal.

My solution, then, is to combine aspects of the GasP signalling system and a dual-rail
based protocol, to produce an interconnect approach that is able to serially transmit data bits
with completion detection and acknowledgement. The total wire requirement will be shown
to be two, making this a very area-efficient solution†.

5.3 Introduction to my point-to-point interconnect

I have already described the key features of my interconnect system in the introduction to
this chapter. I introduce the components, and highlight how they contributed to produce a
high-performance system.

The overall form of the interconnection is shown as Figure 5.5, where we see a block
diagram of the system components. The ‘zones’ I will shortly talk about correspond to the
labels across the top of this diagram. Clearly shown on the extreme left and right of the
diagram (zones a and g) are the synchronous input and output interfaces. Standard FIFO
interface signals are provided, along with an eight-bit data path.

Following creation of data by an input environment (a data producer), the system latches
the value in a set of parallel latches (zone b), before launching it on its journey across the
interconnect. In this way the latches provide a simple input buffer functionality.

After the data has been safely captured, the interconnection system performs parallel-
to-serial conversion (zone c) in preparation for transmission over a serial interconnection.
However, it is at this stage that it differs from conventional approaches to interconnection. As
will be explained later on in this chapter, the global interconnection of my system is based
on a dual-rail, pulse-based protocol. I leave the details aside here, but it suffices to say that
conversion to this format is required. To perform parallel-to-serial conversion, my design
uses a multiplexer tree; with data bits from a parallel word being selected and interleaved in
turn to produce a serial stream of data. This interleaving process is the reason that the data
bit values d0...d7 are shown out of order. The level-based data is converted to pulses by
truncation of signals at the leaf nodes, triggered by the reception of acknowledgements.

Once the data is in the correct format, and parallel-to-serial conversion has been com-
pleted, it is ready for transmission across the global interconnection. This is the zone d box
at the very centre of Figure 5.5, and most importantly, contains some (potentially very) long
wires. These long wires are the most area-hungry component of a global interconnection
system and my system is able to transmit the eight-bit data word using just two, compared
with eight for a comparable parallel interconnection system. In addition, they do not need to
be any wider than a standard trace, which is often a drawback of conventional serial intercon-
nect designs. This factor-of-four decrease in global wiring gives my system a great advantage
in area-efficiency.

†For comparison, dual-rail requires two data wires per data bit, plus one acknowledge wire; and GasP needs
one request / acknowledgement wire plus n data wires, for n-bit data.



5. An area-efficient, pulse-based interconnect

Distributed
inverter

and long wires
Multiplexer

Tree
Demultiplexer

Tree

new_data

8

acks

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

FIFO empty

data valid

8

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

reset latches

empty

d0

d4

d2

d6

d1

d5

d3

d7

d0

d4

d2

d6

d1

d5

d3

d7

a b c d e f g

Figure 5.5: Block diagram of my point-to-point interconnect

Once data has successfully travelled down the global wiring, the inverse processes occur:
namely that it is serial-to-parallel converted in a demultiplexer (DEMUX) tree (zone e);
latched; and made available at a synchronous FIFO output interface via some pulse latches in
zone f .

This entire process of data flows through the interconnect may be summarised in the
following manner:

1) Synchronous parallel data is placed in a FIFO-like latch by a transmitting environment;

2) The data is converted to a pulse-based protocol;

3) Data is parallel-to-serial converted by a tree of multiplexers;

4) The, now serial, data stream is dispatched over the global interconnect, driven by a
distributed inverter;

5) Serial data is received at the far end, and placed into a demultiplexer tree, where it is
serial-to-parallel converted;

6) The data is converted back from a pulse-based form to conventional, level-based sig-
nalling;

7) Finally, when a full word of data has been collected, the receiving environment is alerted
through a new_data signal.



5.4 Chosen data encoding

The basic version of my interconnect supports eight-bits with the intention that wider
data widths may easily be supported by placing multiple copies of the system side-by-side.
Different data width may also be supported, however, by altering the number of levels in the
MUX and DEMUX trees (see sections 5.7 & 5.8).

5.4 Chosen data encoding

I now introduce my interconnect’s data encoding, and the protocol used to transmit data over
the global link. We will see that it is:

• Pulse-based;

• Dual-rail based;

• Control signals are embedded in the data path, requiring no extra wires;

• The total global wire requirement is two minimum-sized, minimally-spaced wires;

• The system uses serial transfers to accomplish this.

The data encoding my interconnect uses is pulse based, and the protocol based on a
variant of dual-rail encoding (recall from Section 5.1.1). This variant is inverted dual-rail
encoding, which was shown earlier as Table 5.2. We see that it is a return-to-one protocol
(very much akin to pre-charging), run over two wires, with the transition of exactly one of
those wires to zero indicating a single binary value.

The inversion of dual-rail value is just an optimisation, given implementation details. The
main innovation comes through the conversion of dual-rail from a level-based system to
an edge, or event based one. Basing communication on edges, rather than levels offers an
number of advantages, many of which boost performance over a more conventional design.

As we have seen, 4-phase dual rail requires a return-to-one phase, during which no data
may be transferred. This leads to a performance hit, since we must wait for this cycle to
complete. Under my protocol, this corresponds to the need for two edges to be observed
per data bit transferred. Since my design uses pulses, which are naturally double-edged, we
can roll both of these edges into a single atom, with an associated increase in performance.
Essentially, we are able to use a 4-phase protocol with its benefit of simple receiving logic, but
the increased utilisation ratio of a 2-phase design (see Section 5.1.1).

This is not the only way I transmit data in an area-efficient manner. Besides eliminating
control signals, which reduces the per-bit wire penalty, I choose a serial-based approach.

5.4.1 Serial transmission

Serial transmission was introduced in Chapter 2, and is a well known approach to reducing
the number of wires needed to transmit a fixed width of data across an interconnect. Rather
than n data bits being sent on n data wires (near) simultaneously, they are queued and sent
sequentially across a smaller number of data wires; at the limit, one.

My system performs parallel-to-serial conversion to allow multiple data bits (nominally
eight) to be sent across an interconnection that natively supports just a single bit transfer. In



5. An area-efficient, pulse-based interconnect

Table 5.3: Area requirements for various interconnection methods, over 10mm of global
wiring (optimally repeated and logic buffered)

Configuration Logic Area Wire Area Total Area
Parallel, 8-bit simplex 4320µm2 44800µm2 49120µm2

Serial, 8-bit simplex 2367µm2 11200µm2 13567µm2

This interconnect, 8-bit simplex 5984µm2 11200µm2 17184µm2

this way, my interconnection has a total of only two global wires for an eight-bit data transfer.
This is highly area efficient.

To illustrate the point, I show Table 5.3, where I show the various interconnection designs
for parallel and serial systems, and we see that mine is extremely lightweight. For the standard
systems, I perform optimal repeater sizing and insertion to give a logic area size. The serial
link uses a simple shift-register implementation and transmits one data bit in parallel with a
clock. All are for repeated implementations.

5.4.2 Voltage swing

Low voltage swing interconnects [65, 229–231] are well know to increase the performance of
an interconnect, at the expense of signal-to-noise ratio. The performance increase comes
about due to a lower magnitude of slew being required, as was seen in Section 4.3.1.

In my protocol, where a receiving node can acknowledge a data transfer immediately
upon observing it, the voltage fall need only be big enough to be seen. After this, the receiver
can begin resetting the signal to its idle value. In simulations, however, the swing has generally
been for the full line voltages (vdd to 0V), except when pulses have been too narrow to charge
the entire wire capacitance — and we will discuss this later.

5.5 The core interconnect (dual distributed inverter structure)

At the heart of any interconnect system is a method for physically transferring a chosen data
format over global wiring, and my system is no different. The previous few sections have
outlined the required properties, and I now show how these may be achieved.

The core is based on the distributed inverter design I showed in Section 5.2, but is adapted
to be able to carry data, rather than only events. The design is shown as Figure 5.6, and we
see that it consists of two distributed inverters side-by-side, with some additional logic. To
transfer a data bit, exactly one of the wires makes a transition, in accordance with the inverted
dual-rail semantics (refer to Table 5.2); and this is received at the far end as data, with a value
dependent on which wire transitioned. The receiver latches in the value, then asserts its
acknowledgement signal, resetting the line high. Once the high signal propagates back to the
transmitter, it is interpreted as an ack, and the next data bit is allowed to be sent.



5.5 The core interconnect (dual distributed inverter structure)

The protocol can be summarised thus:

1) We see that the wire is initially high;

2) The transmitter drives the line low, for a certain time, to signal a data bit;

3) This edge propagates until it reaches the receiver;

4) Observation of the edge caused the data value to be interpreted, and simultaneously
the reset phase begins, consisting of the wire being driven high again;

5) After a delay, the pull-up is deactivated, in preparation for transmission of the next data
bit;

6) Loop.

Physically, on the active line this looks like the sequence I show in Figure 5.7, where the
total protocol is a collaboration between the two logic blocks at either end of the wire, to
produce a data pulse. The transmitting end creates a leading (high→low) edge by asserting its
n-type transistor for a while, to cause a discharge of the wire, with the semantics of a data bit.
Later, the trailing (rising) edge is caused by the partner at the far end of the wire. Put together,
these create a pulse on the active data wire.

There is one more component to the operation of this link, and it stems from the observa-
tion that, were both ends of the wire to be driven simultaneously, both data corruption and
power wastage would occur. Therefore, we realise that the two drivers must themselves be
driven by pulse-shaped inputs.

If we arrange that each driver is turned on for a period long enough to cause the wire to
transition correctly (at around three wire delays), yet short enough so one driver stops before
the other begins (so less than the wire delay plus the logic delay of the receiver), we will get
effective, reliable and power-efficient operation. The question of how long the pulses should
be is critical to the correct operation of this protocol: too long and throughput is degraded
by an overly-long cycle time; or worse, an attempt to transmit a subsequent data bit may be
swamped, resulting in data loss. Too short a pulse, and the data wire will not be fully charged
to one, violating the protocol. Neither prospect is attractive, and so pulse width must be
carefully tuned to the length and capacitance of the transmission wires.

Thankfully, though, this tuning turns out to be rather coarse, and we can get away with a
range of delays and still have correct operation. This will be shown more clearly in Section 5.6.
The range of acceptable values is sufficiently broad that a designer need only roughly estimate
process parameters, and yet still end up with a design that works reliably. I now explain how
the pulses may be generated.



5. An area-efficient, pulse-based interconnect

long wire

din_0

ack

dout_0_bar

long wire
din_1

ack

dout_1_bar

valid_data

empty_bar

Figure 5.6: Core interconnect, based on a dual-rail distributed inverter

5.5.1 Pulse generation

To generate our pulses, we make use of a form of logic called self-resetting logic (Sutherland
and Lexau demonstrate the advantages of this approach [60]), where the presence of a valid
incoming signal edge causes a delay to be triggered, and the line to be driven to its active
value. Driving continues until the delay has been fulfilled, at which point it ceases. It is the
responsibility of the delay to ensure that the output is asserted sufficiently long to create a
proper pulse.

Some example implementation details may be seen from the two pulse generators shown
in Figure 5.18; or the n-transistor→delay→p-transistor loop, part of the stack arrange-
ment of a GasP stage (Figure 5.15). There are many more examples, but these are two that are
used in this development process, and they will be fully explained later.



5.6 Point-to-point interconnect implementation

Propagation
delay

wire discharge time
(data bit pulse width)

wire charge time
(ack pulse width)

Propagation
delay

Transmitting end

Receiving end

Receiver logic delay

Transmitter logic delay

bit cycle time

bit cycle time

Figure 5.7: Sequence of events as observed on an active core interconnect wire

5.6 Point-to-point interconnect implementation

We have now seen how the core of my system operates. I now go through the full setup of
Figure 5.5 and explain the implementation of the remaining components. I will proceed
left-to-right through the diagram, and so start with consideration of the multiplexer (MUX)
element.

5.7 MUXs

To perform parallel-to-serial conversion of a data stream, my interconnect does not use
the standard technique of a parallel-load shift register. Rather it uses a tree of two-input
multiplexers (MUXs) operating by alternating their input selection after each data bit flows
through them. Parallel data begins at the leaves of the tree and, by the time data reaches the
root MUX, it is a fully-serial stream. Refer to Figure 5.5 to see how a tree accomplishes this.

The data flowing down the MUX tree is transmitted using the normal, non-inverted dual-
rail protocol. The change to the inverted protocol, used by the rest of the interconnect system
occurs directly after the root MUX has been traversed, and data has exited the tree at the
interface with the distributed inverter. Thus, in the idle state, MUX outputs are in the 00 state.

A tree structure has numerous advantages over a shift register for our needs. First, for
each level in the MUX tree we go towards the leaves, the data rate seen by that MUX halves.
This means that, for an n-deep tree, the required speed of a leaf MUX is a mere 1/2n−1 of the
root data rate. For an eight-bit data word, and a line rate of 1Gbit/s, this means we need only
design some multiplexers to run at 250Mbit/s. This allows us to optimise these elements for a
parameter other than speed, for example power or area. Even if all MUXs are designed equally,



5. An area-efficient, pulse-based interconnect

a quarter of the data rate implies a quarter of the power consumption, since the MUXs are
asynchronous logic elements and shut down when data is not passing through them. This is a
native ability of asynchronous logic, and can offer large dynamic power savings.

Much work was put into attempting to make the multiplexers as lightweight as possible.
As such, each MUX has the minimum functionality required, allowing the full, three-stage
MUX tree to be travelled in only 1.59ns — just over two FO4 delays in our technology.

Second, remembering that our data protocol involves bi-directional communication
along the same wire, it is difficult to see how a conventional parallel-to-serial converter will fit
in. However, it is very easy to design a MUX to comply with this protocol: simply use pass
transistor logic as the path switch. Then, data values can flow freely in either direction. My
MUXs are constructed this way (see Figure 5.9(a)). A further benefit of pass transistor logic
is that the data propagation delay is minimal, since a path is selected before its data stream
arrives and there is no logic on the data path; so the signal simply passes through.

Overall then, a MUX tree will have a higher performance in my pulse-based system than a
more conventional design, and so I have implemented my parallel-to-serial conversion using
this approach.

The MUX data path implementation is straightforward: use pass transistors. So, now we
turn our attention to the control path. Two-way MUXs require a single control signal, to select
between input a or input b.

Because there are small differences in what a MUX must do, depending upon whether
it is at the root, leaf, or another location in the tree, there are three different MUX designs.
Called the vanilla, leaf and root designs, each differs slightly from the other. I now outline
them briefly.

Leaf MUXs (Figure 5.9(b)) are connected to the input data latches. As we will see shortly,
they deal with interfacing to this element of the synchronous input environment. There
is only one root MUX, and it (Figure 5.9(c)) interfaces between the MUX tree and the core
interconnect’s distributed inverter. Finally, vanilla MUXs (Figure 5.9(a)) are used for all other
locations in the tree. The major difference between the three designs is the generation and
acceptance of handshaking signals.

Vanilla MUXs

The required operation of our MUX blocks is to interleave data bits from the two inputs. This
corresponds to toggling the selection of a and b. A natural suggestion, then, is to implement
the selection using a toggle flip-flop, and this is, indeed, the approach I take in my imple-
mentation. We can see the design of a basic (or vanilla) MUX element in Figure 5.9(a). Once a
flip-flop is in existence and pass-transistors have been chosen, the design is obvious: connect
one path’s transistor to flip-flop output Q, and the other to Q. The control signal now becomes
the flop’s clock signal. The only remaining question is how this signal is generated.

It transpires that, if we choose to use the asynchronous logic paradigm, with local hand-
shaking as the control path for the MUX tree, then clock generation is trivial. We simply
rename the clock as acknowledgement (ack_in in the diagrams), and the problem is solved.
This leaves us solely with the issue of acknowledgement generation. Again, this issue is ex-
tremely straightforward: simply use the enable outputs, from Q or Q, as the acknowledgements
to the next level down the tree. Since Q and Q are mutually exclusive, only one branch will be
enabled at any one time, and the selected branch will toggle strictly every acknowledgement:



5.7 MUXs

exactly the behaviour we want. In addition to toggling the state at a MUX, an acknowledge-
ment is also used as the signal to reset the output channel to its idle state (clearing the data
value currently on that branch). Each new handshake selects a new data bit for transmission,
in the order d0...d7, as shown in Figure 5.5, and the termination of the old creates the trailing
edge of its respective data pulse.

To further clarify this, I illustrate in Figure 5.8 the paths taken by the first three data bits.
We see that transfers always transmit down the opposite branches that were taken by the
directly preceding bit; and thus every level of the tree structure operates at half the data rate of
its parent. Propagating these acknowledgements deals with all of the non-root nodes, so the
final detail is how to generate the single root node’s acknowledgement-in signal. The answer
to this will also turn out to be remarkably simple.

Root MUXs

First, recall that the root multiplexer interfaces with the input to the core interconnect’s
distributed inverter. Now recall that a distributed inverter returning from a state with data
undergoing transmission to an idle state performs a transition from one line being low to a 11
state. This corresponds to a completion of a cycle. Therefore, the same point in time is when
the root MUX should receive an acknowledgement. Further observe that attaching a NAND
gate to the distributed inverter data wires will produce a signal that may be interpreted as an
indication of whether it is busy with transmission or not. This distinv_full signal (active
high, see Figure 5.9(c)) is exactly what we use to clock the root MUX node. So, a high→low
transition causes the root MUX node to reset its output, toggle its enabled path and generate
another (high→low) pulse for the next MUX element downstream, and so on, in a cascade
of acknowledgements. The customisable delay between distinv_full being asserted and
generating the acknowledgement determines the width of the data pulse passing down the
MUX tree. Note that an acknowledgement will not be generated by the distributed inverter if
it is not able to reset. Not resetting could be caused by the receiving DEMUX tree (see later)
being full, and thus we block and ‘buffer’ data for transmission. However, this is data-safe —
no data can be lost.

Leaf MUXs

We have now dealt with the root and vanilla multiplexers, so to complete the discussion of the
multiplexer environments, we now consider the leaf MUXs. Interfacing with the synchronous
data environment, leaf MUXs see a data word, as latched into a set of input latches. Therefore,
they must enforce some data safety property, and only accept data when those latches are
actually displaying valid data (i.e., when it is not stale or transitioning). An additional task it
to inform the transmitting environment when all bits have been successfully serialised, and
the data buffer is ready to be refilled.

The first task is rather easy to accomplish: an output_enable signal is produced by a
combination of signals from the input environment, and MUX state. Upon loading data into
the input latch array, the FIFO protocol calls for the environment to set a new_data signal
(see Figure 5.5). After a delay, for the data to be correctly latched, this signal can be used
as the output_enable signal, to indicate that the data in the latches is valid. However, this
does not safeguard against stale data potentially being re-transmitted once the MUX tree
has cycled through all eight path combinations, and returns to the d0 point. This issue is



5. An area-efficient, pulse-based interconnect
Basic link (byte wide)

Core interconnect1

2

3

Figure 5.8: Interleaved paths taken by three bits through the interconnect MUX and
DEMUX trees

solved in parallel with that of informing the input environment of successful serialisation
completion. The latter is easily done by observing when d7’s latch signals an acknowledge-out.
A transition here means that the the final tree branch (that containing d7) has finished its data
bit transmission. Thus the word transmission process must be complete. This signal then
forms the basis for producing an FIFO_empty signal. Since the acknowledgement is, by its very
nature, transient the FIFO_empty signal is implemented by latching this acknowledgement.
The latch is only cleared by the environment’s application of the next new_data signal. Finally,
this FIFO_empty signal can be inverted and ANDed with the output_enable signal to ensure
that the FIFO is not empty (i.e., with stale data at the latches) before really enabling the MUX
leaf outputs.

5.7.1 State

We notice that, other than a single flip-flop to toggle path selection, my MUXs do not have
any state. This implies several things about the data path. First, once a data path is enabled,
data needs to be able to propagate all the way to the root without encountering any blocking,
or it may be lost. This seemingly important issue is actually irrelevant, due to the way a path
setup is handled. A new path always begins being established at the root node (after it has
successfully forwarded data on the core link), and ripples monotonically outwards to a leaf
node. Therefore, by the time a leaf node has enabled a path, and dispatched data down it, the
path is guaranteed to be fully established. And, given that MUXs pass data transparently, we
see that blocking can never occur, and hence we need no state on the data path.

Such a characteristic, where data passing through an element, such as a MUX, may



5.7 MUXs

D
Q
CLR

Q

ack_a

ack_b

reset_bar

ack_in

a0

a1

b0

b1

c0

c1

ack_in

(a) The vanilla multiplexer block

D
Q
CLR

Q

ack_a

ack_b

reset_bar

ack_in

a0

a1

b0

b1

c0

c1

ack_in

output_enable

(b) Leaf node multiplexers

D
Q
CLR

Q

ack_b

ack_a

reset_bar

a0

a1

b0

b1

c0

c1

distinv_full

delay

pa
rt

of
 th

e
di

st
rib

ut
ed

in
ve

rte
r

(c) Root multiplexer

Figure 5.9: Three flavours of multiplexer

assume the next element is ready to accept it, and simply move on without any checks can be
expressed by saying that the MUX tree operates in fundamental mode [56, pp.83–85]. Strictly,
operation in fundamental mode states that an input to a circuit (here a MUX) may change,
and then it may not change again until the circuit has stabilised its state and output. Since my
MUXs do not have any state, and the output is simply a (barely) delayed copy of the input,
this property is trivial to verify.

Further, there exists another theoretical mode called burst mode, which is an extension
of fundamental mode behaviour. In burst mode, a set of input changes causes a ‘burst’ of
output changes, which all complete before any inputs change again. The whole MUX tree
could be considered to also be operating in this mode, since a data word is input (changing
multiple inputs), causing a burst of outputs at the root (the stream of data bits to be send over
the core interconnect). Once the tree is emptied, a new data word can be loaded, and so the
tree as a whole is ‘bursty’.



5. An area-efficient, pulse-based interconnect

5.8 DEMUXs

Just as a multiplexer tree is used to convert parallel data into a serial format for transmission
over the core interconnect, a demultiplexer (DEMUX) tree on the other side re-expands it
into parallel. Many DEMUX design features are the same as in the MUXs. For example, we
find that the most practical path selector is built from pass transistor logic. However, where a
naïve implementer might assume that the design of the control path would be similar, I show
that this is not the case. We now see why this is the case.

The control paths differ since the DEMUX tree does not, and can not, operate in funda-
mental mode. Recall from Section 5.7 that an assumption of fundamental mode allows us to
safely ignore emptiness checking of a following element (there, the subsequent MUX in the
tree). We see how it is not the case for the DEMUX tree.

The first reason fundamental mode may not hold for the entire tree is that we may wish
to make the same optimisation as for the MUX tree: namely to have non-root DEMUXs run
more slowly than the root, for power or area reasons. If we implement in this manner, we
are no longer guaranteed that a non-root DEMUX can accept a data bit as quickly as the
root DEMUX would wish to distribute it. This assumption held for the MUX tree, since MUX
performance increases in the direction of data flow, and so a data bit always leaves a MUX
destined for another, at least as fast as its current location. With DEMUXs, speed decreases in
the direction of data flow, hence the hazard.

Secondly, we may wish to purposefully decouple the DEMUX elements’ control flows.
Whereas the MUX tree features local handshaking, the DEMUX tree does not. The main
reason for this is obvious, and is based on the ordering of control and data flows. With the
MUXs, a control cycle sets up a path, originating at the root MUX, and flowing in the opposite
direction to data propagation. With this behaviour, it is able to complete a path setup in
its entirety before any data is sent. With the DEMUXs, the root node would only be able to
initiate a control sequence after it had already observed a data symbol. Thus, the control flow
would run behind the data flow in time, and be the critical path in the system, either delaying
data’s propagation, or providing obsolete control signals. We can categorise this behaviour by
saying that, in the DEMUX tree, data uses a push channel protocol [56, pp.10,115,156]. This
means that the data is performing a request for servicing to the receiving element, which
must then process it (i.e., processing occurs after data arrival). Here, this corresponds to data
arriving off the core interconnect, and expecting to be serviced. For comparison, the MUX
tree was a pull channel, where an element requests new data (via handshaking) before its
arrival.

Another reason for the desire to decouple may be to increase performance. We will see in
a later chapter (7), that handshaking can sometimes be a bottleneck, and that decoupling can
reduce the handshake round-trip (Figure 5.14).

5.8.1 State

To solve these problems, and to add an additional element of output buffering, the DEMUX
design both generates its control signals locally (there are no external control signals), and
relies instead on state. State is provided by the addition of D-latches on the data path, in
addition to the ones for toggling path selection (this latch is very similar to its cousin in the
MUX implementation).



5.8 DEMUXs

State is both a blessing and a curse. On one hand, it allows simplicity of design by eliminat-
ing timing assumptions on the data path, allowing DEMUXs to be interfaced to arbitrarily-slow
elements on their outputs, and the removal of inter-DEMUX handshaking. On the other hand,
the insertion of a D-latch on the data path entails the addition of a large delay, which will
ultimately translate into increased interconnect latency. However, for DEMUXs, the benefits
offered by state outweigh the drawbacks, and so we choose to latch the data path. We also
gain a boon through latching at every stage in the tree, in the form of free output buffering.
If data at the output latches is not consumed quickly, each DEMUX element can hold its
respective data bit, and the entire tree can hold just under two data words‡.

Finally, the lack of inter-DEMUX handshaking allows the use of a universal design, regard-
less of their location in the tree, so we do not require differing flavours, as was the case for the
MUXs.

5.8.2 Operation

We will now see how DEMUX elements generate their local control signals. Please refer to
Figure 5.10 for a visualisation of the element. A very neat feature of the DEMUX design is that
all state is derived solely from observing the flow of data through that particular DEMUX (and
is thus independent of other DEMUXs’ state). Hence, we see that the data flow can also be
thought of as the control flow; and this is exactly what we intended when we decided upon a
dual-rail based implementation.

Since the only interesting events we have in our system are those which transition from
high to low, we need only be concerned about transmitting logic 0s. Therefore, we choose
a design utilising n-type pass transistors to produce our path selection circuitry. We also
include a global reset signal reset_bar.

Clocking the D-flop is perhaps the most interesting aspect of the DEMUX, and is very
simple given our protocol. We know that when we see a transition from a 11 input state to
a state with either input 0 then we have gained new data. We can use this information to
disable the current data path, reset the input and enable an new path.

Input resetting is provided by strong p-type transistors on the input side of our n-type
pass transistors. These are able to override any latched low signal coming from the previous
DEMUX stage, signalling successful capture. This is then detected by the preceding stage’s
output, and causes the D-flops to cease driving their outputs via the latch preset signal. As
with most of our design, the p-types are triggered by a pulse, generated by a pulse generator.
The pulse’s parameters are vital to correct operation and high performance, and it has been
designed so that the initial signal passes through immediately, before being truncated or
extended later. This configuration means that it has virtually no impact at all on cycle time.

‡Recall that the total number of nodes in a binary tree with w leaf nodes is 2w −1. Here, the number of leaf
nodes corresponds to the data word width, and so the entire tree may store up to one fewer bit than two words.



5. An area-efficient, pulse-based interconnect

a0

a1

lo
w

 p
ul

se
ge

ne
ra

to
r

reset_bar

D

Q
CLR

Q

D Q

PRE

reset_bar

D Q

PRE

D Q

PRE

D Q

PRE

enable b

enable c

d_in valid

d_in valid

enable c

d_in valid

enable b

b0

b1

c0

c1

low pulse
generator

reset_bar

reset_bar

low pulse
generator

very
strong

Figure 5.10: Demultiplexer element

5.9 Pulse latches

Following the DEMUX tree, we have a data word, formatted in parallel, at its destination. All
that is left is for the output environment to read it in and inform the system of this.

However, up until this point, we have put to the back of our minds that the data symbols
are transmitted as pulses. As such, one detail we have not yet cleared up is how the data
is transformed from a pulse format, back to a conventional level-based binary format, for
consumption by an output environment. It turns out that this is, perhaps, the simplest of all
operations in the interconnect. I introduce the concept of a pulse latch, its relevance, and
describe its operation.

Pulses are, by their very nature, transient. If we are not careful, we risk missing them, if
we evaluate too long after they arrive. Therefore, some form of static capture is needed; and
this looks rather like a requirement for a latch. However, not any latch will do, since most
latch designs operate on logic levels, not events. Therefore, I use the pulse latch shown in
Figure 5.11. We see how simple it is, constructed from just two transistors. Also only a single
gate capacitance is presented to the input circuitry (one-third that of a balanced inverter),
and this makes it very fast to respond to an input. We use one per bit of our inverted dual-rail



5.9 Pulse latches

protocol. Here, we also note that the pulse latch inverts its input, and even this is of use to
us, since it allows us to flip data bits from the inverted dual-rail encoding, and back into the
conventional dual-rail one. The output environment’s reading of the binary value is is simply
a matter of discarding a0, and reading a1 (for a dual-rail symbol {a1, a0}).

Why do we transmit a0 at all then, if we are merely to discard at the readout stage? Well,
the answer is simple: the output stage only has valid data once all eight data bits have been
received. To know when a bit has been received, we NAND together the two bits, and so a0 is
necessary. Otherwise, we would not be able to distinguish between 01 being transmitted, and
the 00 idle state. We extend this reasoning to determine how the FIFO’s data_valid signal is
generated. This signal is the one that informs a receiving environment that a new data word
has been successfully received and it should read it out at the earliest opportunity. Following
readout, the protocol is for the output environment to reset the latches with the reset_latch
control signal (equivalent to a more conventional done signal). This signal is simply attached
to the gate of the n-type featured in the pulse latch, as well as the reset signals for the DEMUX
elements. This clears the entire parallel-to-serial logic, and makes it, and its buffer space,
available for the transmission of the next data word.

The pulse latches use dynamic logic [65, p.376], and so we must be careful when consider-
ing what happens if the output environment has an arbitrary delay before reading out data,
since there is the possibility of data loss. Even so, as presented so far, the interconnection
will never lose data. This is because the pulse latches get their inputs from leaf DEMUXs,
and all DEMUXs feature D-latches on their data outputs. Thus, even though the pulse latch
may be dynamic, their inputs are static, and so the pulse latches’ values are constantly being
refreshed, and they can never lose data due to leakage.

However, this coupling to a D-latch begs the question of redundancy — why bother
having a second tier of latches, when all that could possibly add is latency? This is indeed
a valid question, and the answer depends on the context of operation. If arbitrary output
environment delays are possible, one should use the safe implementation as above. As an
aside, if the environment delay is possibly high, then the addition of some latency in the
interconnect path is likely to be insignificant in comparison, and so our penalty is not too
high. If, however, we can guarantee the output environment always reads its data word within
the reliable retention time of the pulse latches, we can optimise our design and eliminate the
output latches of the leaf DEMUXs.



5. An area-efficient, pulse-based interconnect

pulse_in

output

reset

Figure 5.11: Pulse latch

5.10 Synchronisers and metastability

We have now seen the full description of the interconnect’s data path, and almost all of the
control path (which mostly consists of localised handshaking). We have also seen how data is
interfaced to the synchronous input and output environments, and the control signals they
provide and receive. The one topic we have not yet covered is the reliability of this interfacing
and, in particular, the issue of metastability.

Metastability is the process whereby a logic block’s output value becomes indeterminate
for some period of time. Potentially oscillating between either intermediate, or valid logical
values, before finally settling down to a decision one way of the other, metastability can cause
a cascade of undesired and erroneous operation in an electronic circuit. Kinniment [36; 37]
gives a very good examination of this topic.

The root cause of metastability is generally an indeterminate or changing input value to a
logic block. After all, if the input to a function is not fixed, how could the output possibly be?
Thankfully, it is rare that an arbitrary piece of logic becomes metastable, and in particular this
is thanks to the inclusion of a clock in synchronous circuitry. The definition of the minimum
clock period is that time in which all clocked logic blocks have resolved their outputs, given
fixed inputs. Thus, in a pipelined design, we can prevent intermediate (and potentially
changing) results from propagating through to a subsequent logic block (the latches get in the
way, and store a valid value from a previous clock cycle).

However, given that a clock enforces a strict notion of when data should be guaranteed
valid, it also causes problems when interfacing with the real world. Real life quantities do not
only change on a clock tick, and so violate the very neat assumption of synchronous design.
A good example of this is the interfacing of buttons or other mechanical devices to some
clocked electronics. The fact that a transition may occur at any time raises the possibility of
that chance coinciding with a clock edge, and thus the spectre of metastability.

As I have said, metastability can cause erroneous operation if it is not dealt with carefully.
One way to combat it is to redesign a component to be more resistant to it. In general this
involves increasing the size of transistors, making the design faster (which decreases the
vulnerable window size), but also larger and more power hungry. These factors mean that we



5.10 Synchronisers and metastability

D Q D Q

Unsynchronised
(clock domain A) data

Synchronised
(clock domain B) data

Receiving environment’s clock (domain B)

Figure 5.12: Two-flop synchroniser

would like to have as few a number of components as possible exposed to metastability.
A popular way to do this is to make use of so-called synchronisers [13, pp.462–486]. A

synchroniser is a dedicated piece of electronics whose sole purpose is to reduce the chance of
metastability on its output, even if its input may be oscillating or metastable. The simplest,
and probably the most effective synchroniser design is to use two D-flip-flops, with the
potentially unstable input connected to one, then the output feeds into the next, which then
produces the cleaned-up output. The two flops are connected directly to the destination
environment’s clock. An illustration of this is Figure 5.12.

The downside of a synchroniser is that it increases the latency of the signal passing through
it. This can be neutralised in my design, however, by pre-emptively generating the signal,
say when the penultimate bit is observed, rather than waiting for the final one. This does, of
course, require some assumptions about the speed of data transfer and the clock speed of the
synchronous domain, but these should be straightforward enough. If they cannot be made,
abort circuity could be added to allow pre-emption to be safe, even if there is the chance or
guessing incorrectly.

When crossing clock domains (or as we do, from an asynchronous domain to a synchron-
ous one), the issue of metastability is also encountered, so we must take measures to ensure it
does not affect the reliability of our interconnect. Hence, synchronisation is required on those
FIFO control signals flowing from the interconnect to the environment (i.e., FIFO_empty
and data_valid). Note that synchronisation is not required on those signals originating in a
synchronous domain and arriving in the interconnect’s asynchronous domain (e.g., new_data
and receiver_ack). This is another advantage of an asynchronous logic implementation.

It would be easy at this point to simply say, “Perform synchronisation, and you are safe
from metastability”, and we would probably be correct. However, we can be more rigorous
than this, since there is a formula for the chance of metastability being encountered by a logic
circuit, given its parameters. The full calculation is taken from Sparsø and Furber [56, p.80],
and is (with some variable renaming for clarity):

MTBF = e t /τ

TW fc fd
(5.1)

where t is the gate resolution time; τ is a process-specific metastability constant, approxim-
ately equal to 35ps in a 0.18µm technology; TW is the gate propagation delay; fc is the clock
frequency; and fd is the input data frequency.

Using values for our process, the formula gives a Mean Time Before Failure (MTBF) for
a synchronous environment receiving data from our interconnect, and running at 1GHz, of



5. An area-efficient, pulse-based interconnect

greater than 10135 years. This is certainly longer than the expected lifespan of any integrated
circuitry. using this design we may conclude that, with synchronisation, metastability cannot
occur when using the proposed interconnect.

5.11 Wire repeaters

Signal integrity is not the only thing impeded by long wires. Performance is also reduced due
to the impact of an increased delay. The delay of a line is responsible not only for end-to-
end latency of a system, but also for throughput in a system where acknowledgements are
required. My system uses this scheme, and so it has such a potential performance penalty
— as an analogy, it may be helpful for the reader to consider the performance of a computer
network using a sliding window protocol with window size of one [61]. It is clear that an
increased rate of acknowledgements (more strictly a decreased latency on them) increases
system throughput (this is illustrated succinctly in Figure 5.13).

Hence, the throughput of a section of my system is, indeed, limited by the delay (and
therefore the length) of its wires. There are two approaches to ameliorating this problem:
reduce the delay; or segment the wires, producing multiple sections with lower unit delays.
Repeaters do both.

The delay of a line can be minimised by the technique of optimal repeater-insertion
[21; 31]. This is a well-known approach, and reduces the delay of a signal travelling down a
long wire by placing repeaters of optimal sizes at optimal locations.

The Elmore delay model explains why repeaters offer performance enhancements. Recall-
ing from Equation 4.13, where propagation delay, τ, depends quadratically on the length of a
wire, splitting the total length l into n segments of length l ′ reduces the per-segment delay
linearly with the number of segments, and so we now simply have to sum n, reduced, delays.
Optimal repeating, thus, makes propagation delay linear with total length (see Chang [7,
p.18]):

τrepeated = RC

2
× (l ′)2 ×n (5.2)

Rearrangement makes delay’s linear dependence on the total wire length much more apparent:

τrepeated = RC

2
× l ′× l (5.3)

Optimal repeating is equally applicable to a our implementation, but additional care must
be taken since its links require bi-directional communication, and repeaters traditionally
offer only uni-directional operation.

To solve this problem, and also that of the critical impact of acknowledgements on the per-
formance of my system, I chose to pipeline, rather than repeat. In this approach, we split a long
wire at intervals with repeaters, and also add elements that provide a full signalling-protocol
cycle (they consume the data and re-transmit it, but also provide backward-propagating
acknowledgement signals). Our technique, illustrated as Figure 5.14, is similar to the one
used by Ho et al. to pipeline an asynchronous channel [22]. Our approach therefore increases
system performance, as well as boosting signal integrity.

Repeaters are not only necessary for delay minimisation, they are also invaluable for
reducing signal-integrity problems. Repeaters may be used for signal regeneration when a
segment with a low signal-to-noise ratio has been diagnosed. Naturally, there is a balance



5.11 Wire repeaters

τ

Transmitter Receiver
τ

data

ack

Figure 5.13: Round-trip time of a data bit and an ack is 2τ

Transmitting
block

Stateful
repeater

Stateful
repeater

Receiving
block

Stateful
repeater

data

ack

data

ack

data

ack

data

ack

Figure 5.14: The ‘Pipelining’ effect of Stateful Repeaters — acks are generated at each
element traversed, and circulate locally in a ‘racetrack-like’ manner

with S/N ratio being traded off against the additional logic delay of extra repeaters. Signal
attenuation can occur due to resistive losses in interconnection wires or due to energy losses
in the electric and magnetic fields caused by wire capacitance and inductance. Similarly, these
phenomena can create noise on a wire in the form of cross-coupled noise, further degrading
the S/N ratio.

In these circumstances, repeaters can be used to boost the signal magnitudes back to their
original levels, whilst filtering out a good proportion of the unwanted noise component. The
latter is often difficult to achieve though, since simple (i.e., fast) repeaters will often amplify
the noise component of the signal, leaving the S/N ratio largely unchanged, albeit at higher
magnitudes of S and N .

My stateful repeaters, which we will see shortly, do not suffer from this problem, since the
input and output sides are decoupled by a state-holding element. Thus, a noise-free output
can be generated, once a value has been successfully latched. State also allows arbitrary delay
to be tolerated between NoC components.

I use two types of repeater, dependent on the required function at a particular position in
a flow. I will now describe the stateless (and most lightweight) repeater first, followed by the
stateful one.

5.11.1 Stateless (GasP) repeater

A pipelined approach has a drawback in the form of increased latency, induced by the addition
of state-holding elements on the data path. There are some occasions when state is not
necessary, such as for pure signal regeneration applications where the propagation delay of
a wire is insignificant and does not warrant state and the premature acknowledgement that
comes with it. A prime example of its applicability is as a voltage re-generator for the output
stage of some of the other interconnect blocks, where pass-transistor logic can cause some
voltage attenuation and signal-integrity problems.

For these applications, I instead use a stateless repeater, derived from the original GasP



5. An area-efficient, pulse-based interconnect

delay

long wire

long wire

in

out

Figure 5.15: Standard GasP repeater

work [59], which inspired my point-to-point interconnect. It is essentially a single GasP
pipeline control stage (albeit for a dual-rail data path), and I illustrate it as Figure 5.15. Its
simplicity and high performance is obvious from the brevity of the schematic. Requiring
only nine transistors in total, it’s performance is very good, with a forward delay of 235ps,
approximately three and a half fan-out-four delays in the 180nm technology used — high for
a path transistor count of six, but note that the output driver transistor must be large and
drive a large load. When loaded only by another repeater stage, latency is 198ps (=2.9×FO4)
with a z0 input, or 159ps (=2.3×FO4) with an artificial, 100ps slew, voltage input.

5.11.2 Stateful repeater

I will now describe my preferred wire repeater, which is a stateful design using D-type latches.
It is the component I use for repeating long wire lengths in the presented system, and I
illustrate it as Figure 5.16. The repeater can be separated into three main sections:

1) Input acknowledgement and data validity detection;

2) State holding and resetting;

3) Output driving.

We can see from the schematic that the input section is more or less the same as for the
other components: it consists of an input with a NAND gate detecting valid input symbols,
and resetting circuitry in the form of p-type pull-up transistors. In the case of the repeater, I



5.11 Wire repeaters

have chosen to add a set of dedicated reset p-type pull-ups on the input of the second, rather
than logically ANDing the reset signal into the acknowledgement p-types. This choice is made
to eliminate an additional gate delay on the reverse, acknowledgement, path; I believe that the
parasitic delay from the additional p-types is less than the corresponding logical overhead.

The state holding section is very simple, comprising D-type flip-flops. Of the inputs and
outputs available from these devices, I use only D, PRE, Q and the clock input. Operation
is straightforward, with new data being latched into the flip-flops by upward transitions
of the d_in_valid signal, which occurs when a new, non-idle data symbol has appeared
on the inputs. Data is cleared by the application of a low PRE signal, which is created by a
pulse generator that is triggered by the clearing of the outputs z0 and z1 from a valid data
symbol to the idle state. As a reminder to the reader, this is caused by the succeeding stage
acknowledging the data. Full D-flops are needed since a simpler element such as an RS-flop
will not suffice. To understand why, we need to examine the possible orderings of the input
and output cycles. Imagine that the input side is presenting a valid data bit, and the output
side manages to dispatch a copy, and the receiver resets the output wires before the input
side has finished clearing. Here, the use of a simple RS-latch would see the input side still
asserting an input, and hence the output may never be reset. This would result in an duplicate
transmission of the input data bit, and so we must use an edge-sensitive latch, such as a
D-flop.

The final section of the repeater is the lightweight wire driving circuity. The active-high
outputs Q are fed directly into wide n-type driving transistors, the strength of which affects
the speed of swing on the output wires. This completes the propagation of a symbol, from
input to output.

Inside the repeater, two different forms of pulse generator (or chopper) are used, to
generate either high or low pulses. They are based on the simple edge detector circuit in
Johnson and Graham’s book [64, p.181], and are very similar. Depending on the polarity
of their input, I use either a NOR-based design, (Figure 5.18(a)), or a NAND-based one,
(Figure 5.18(b)). The delay is tunable by adding or subtracting inverters in a long chain,
directly influencing the width of the output pulse. In both cases, the output pulse is active
low.

This repeater design does make one timing assumption: that the output environment can
consume a symbol and reset the lines at least as quickly as the input environment produces
data. If this is not the case, it is possible for data to be lost.
Consider the following sequence of events:

1) The repeater begins with all lines idle (at 11);

2) A symbol, say 01, appears on the input;

3) It is latched, and the input is reset to 11;

4) The complementary symbol, in this case, 10 is received on the inputs;

5) The symbol will be latched, without the latches being reset.

this pattern results in a 00 value on the repeater’s outputs, which is an illegal value.

To safeguard against this erroneous behaviour, protection circuitry can be added to a
stateful repeater, resulting in the schematic shown as Figure 5.17. Safety is ensured by disal-



5. An area-efficient, pulse-based interconnect

lowing an input reset unless the output wires are at the 11 idle state. This has the side-effect
of increasing the cycle time of the inputs to an arbitrary level, dependent on the speed of
output consumption. At this point, the stateful repeater acts much more like a FIFO stage
than it does a conventional repeater or pipelining stage.

Additional to the difference in behaviour, the safe design also imposes a latency penalty
due to the additional NOR gate, and inverter (to change the NAND gate into an AND). In the
technology I consider, these gates may be merged into an AND-NOR compound gate and the
increase in latency calculated: with safety, the repeater design has an additional latency of
99ps and occupies an extra 9.66µm2. The area difference is small, but the increase in latency
may be unacceptable for more aggressive designs. If this is the case, I suggest that repeaters
be placed non-uniformly, with decreasing spacing in the direction of data flow. This should
ensure that each repeater’s output environment is faster than its input one; with the result
that the simpler design may be used without fear of data loss.

Often, the addition of a large state-holding element such as a D-type flip-flop adds sig-
nificantly to the propagation delay of a repeater. This is true for my design as well, but the
fact that its inclusion enables acknowledgements to be more locally generated than would
otherwise be the case means that this overhead is less critical than the enhancement to the
throughput of the overall interconnect system, and so inclusion is advantageous overall.

5.11.3 A potential optimisation

Since evaluation began, the following optimised layout has been suggested by Simon Moore. I
describe it here, but do not update the diagrams, since the results we will see in the following
chapter are based on the design indicated. The improved design has the D-flop fed a constant
0 value into its D input and, clocked instead not by the NAND gate, but by the falling edge
of the data line to which it is attached. This requires a flop operating on the falling, rather
than rising, clock edge, but that is easily accomplished. Performance is high, since we save a
NAND gate delay, and the flop is fast, since its data input is always strongly asserted by being
tied to vdd.

5.12 Summary

In this chapter, I have introduced a point-to-point link capable of connecting together two
8-bit synchronous parallel interfaces over a long distance on-chip. It uses just two minimally-
sized, minimally-spaced global wires, and can cross arbitrary clock domains without ill effect.

I have introduced the building blocks and shown how they are composed. I have also
presented the concept of a pulse-based transmission protocol, its phases and how pulses may
be produced.

Long links need repeating to give high performance, and I have outlined how this may be
performed with the link presented.

In the chapters that follow, I will evaluate this link, show that is has good performance
and that is meets our target ASIC application. Later, I will show how the link can be scaled up
to a fully-fledged Network on Chip implementation. We now continue with the remaining
chapters, and see this for ourselves.



5.12 Summary

a0

a1

NOR pulse
generator

D Q

PRE

reset_bar
D Q

PRE
d_in valid

z0

z1

NAND pulse
generator

reset_bar

All p-types are very strong

Figure 5.16: Stateful wire repeater

a0

a1

NOR pulse
generator

D Q

PRE

reset_bar

D Q

PRE
d_in valid

z0

z1

NAND pulse
generator

reset_bar

All p-types are very strong

Figure 5.17: Stateful wire repeater with an output safeguard

delay

level in
pulse out

(a) NOR pulse generator
(Generates a high pulse from a
low input level)

delay

level in
pulse out

(b) NAND pulse generator
(Generates a low pulse from a
high input level)

Figure 5.18: Two types of pulse generator





Evaluation of the
area-efficient interconnect 6

I must begin with a good body of facts
and not from a principle,
(in which I always suspect some fallicy),
and then as much deduction as you please

Charles Darwin, Letter to J. Fiske, 8 Dec 1874

6.1 Introduction

In the previous chapter, I outlined an implementation of an area-efficient interconnect. Here,
I will evaluate its performance, consider some optimisations, and compare it with other
designs in the interconnect space.

6.2 Methodology

To test the operational correctness and performance of the interconnect system, I decided to
simulate it in its entirety. Since the system involves both analogue and clock-less components,
a conventional hardware description language such as Verilog [63] or VHDL is inappropriate
(there do exist variants of these languages with support for analogue components, e.g., VHDL-
AMS, but the lack of a global clock makes circuit description problematic).

Taking all of this into account, I decided that the best solution would be to describe and
simulate in the analogue component simulation language spice. The spice languages are
the most developed and numerically stable such tools. Of the family, hspice [62] is the most
popular and highly accurate instance, and so I chose to use hspice for the simulations of my
system.

In spice, all components are described as instantiations of a basic component, created
with a netlist and a basic component name (with optional parameters).

Spice lacks modern structure support, such as objects or modules, so the nearest thing is
a ‘sub-circuit’, a circuit declaration which may itself be instantiated.

In general though, spice is very low level and the verbosity of declarations, combined with
the need for unique names and the importance of declaration case and ordering makes it
a language unsuitable for large systems. Despite these shortcomings though, it is still the
best tool for the job of simulating my system, albeit with an increased development time
compared with higher level languages.

Hspice is capable of outputting results in a number of formats, as textual measurements
or as graphs of the voltages or currents of various nodes through time. The latter is the most
useful tool for debugging operation, and is also a good way of verifying the correctness of



6. Evaluation of the area-efficient interconnect

operation of wires, units and other components. Some of the graphs presented in the section
have been generated in this way.

Simulation performance

Simulations of a complex system in hspice are slow. The basic point-to-point interconnect
design contains around 1000 nodes, and simulation of a single word transfer takes around 45
minutes on a modern PC. For a sweep over the length space between 0µm and 10,000µm, a
simulation run takes around 12 hours. These times are for simulation runs with a maximum
time-step, or resolution, of 1ps. In an attempt to reduce the run time, coarser resolutions were
experimented with. It was found that, if the resolution was decreased from 1ps to 5ps, the
speedup is significant (around five times), whilst results varied by only plus or minus one at
the third significant figure. This gives an decrease in accuracy of less than one per-cent, but a
great deal of a speedup. Therefore, a resolution of 5ps was used throughout.

6.2.1 Wire model

A good wire model is vital when simulating long-distance interconnect. Not only does it
determine the signal delay, but also other effects such as the crosstalk and noise injected
and the shaping of signals. In Chapter 4, I introduced these concepts and showed how a
model could be accurately extracted. I performed an extraction for a minimally-spaced wire
array in metal 5 in our 180nm technology, in order to generate an accurate model for spice
simulations. The wire physical model was as seen in Figure 4.2, and metal 5 is considered a
‘semi-global’ wire in this technology. The choice of minimally-spaced wires is a product of the
conclusions of both Ho [21] and Li [38], and Chapter 4: namely that interconnect bandwidth
is optimised when wire spacing and width are both set to their minimum values. Therefore, I
attempted to create an effective interconnect under this constraint.

The model’s spice description is included as Appendix A. I will not list the full details now,
but will say that it is based on the distributed π model (see Figure 4.5), and models wires as
bundles of up to five traces, cross-coupled via inductance and capacitance, and sharing a
common reference plane. This models our setup perfectly, since a dual-rail implementation
uses two wires, routed together. The spice model definition scales automatically to any wire
length, so the performance of a range of interconnect lengths can be simulated without the
need for further extraction or alterations to the model.

Displayed in Table 6.1 are the extracted values per metre for resistance, capacitance and
inductance for a two wire model. The resistance is 221kΩ/m. Were they to be for a metal
6 wire, the resistance would decrease to 93kΩ/m, but the self capacitance increases to only
238pF/m from 224pF/m; and the mutual capacitance from 88pF/m to 100pF/m, a total
increase of only 8%. Therefore, the RC constant is much smaller than for metal 5 (only 45% of
it over 1mm), as is to be expected for a top level wire. To place the metal 5 values in context,
Horowitz et al. [27] claim that a ‘mid-layer’ metal (as metal 5 could be considered) wire will
have a resistance of 0.11Ω/µm(or 110kΩ/m), but use 50% wider wires than presented here.
Therefore, their estimate extrapolated for use here would be around 165kΩ/m, not too distant
from the extracted value shown. In their later paper, [23] they update the value to 96kΩ/m for
a ‘semi-global’ wire



6.2 Methodology

Table 6.1: Extracted wire model parameters (0.18µm, two wires, min. width,
min. spacing)

Parameter Value (per metre)
Self-capacitance of line 1 224pF
Self-capacitance of line 2 224pF
Resistance of line 1 221.43kΩ
Resistance of line 2 221.43kΩ
Self-inductance of line 1 1.652µH
Self-inductance of line 2 1.652µH
Mutual capacitance 88.2pF
Mutual inductance 1.428µH

Cong and Pan [11] give a more accurate estimation based on NTRS [1]† figures. They claim
a sheet resistance of 0.0679Ω/� at the 0.18µm node. This would give a resistance for my wires
of 242.5kΩ/m.

Similarly, both publications give values for capacitance at the 0.18µm node. Horowitz et al.
state that capacitance is 0.22fF/µm, and Cong and Pan claim (0.0596fF/µm2+ 0.0641fF/µm).
These equate to 220pF/m and 81pF/m respectively. Note that Horowitz et al.’s result is in
excellent agreement with my data for the self capacitance of the line. Also, in their second
paper, Ho et al. include coupling capacitances to generate a total wire capacitance of 414pF/m,
which compares well to my total extracted value of 312pF/m. My value is smaller since I
consider actual wire placements on neighbouring planes, rather than parallel grounds as
normally assumed. Not presented in Table 6.1 is the percentage of capacitance I see coming
from intra-layer cross-capacitance, but the extracted figure is 79.8%. This compares with the
76% Ho et al. publish [23].

Therefore, given there are published results erring on either side of my extracted figures, I
have confidence that they are very close to the real world values.

One striking result is how large some of the values actually were. For example, trace
self inductance was a huge 1.65µH per metre, and self capacitance was 0.22nF per metre.
These are very large, and so capacitance and inductance will contribute strongly to signal
degradation and crosstalk. Mutual inductance was very similar in value to self inductance,
whilst mutual capacitance was nearer a third of self inductance. These, of course, mean that
cross-coupled noise is likely to be fairly strong.

Since the wire model includes a large inductive component, we must see if we need to
consider all interconnect behaviour in the context of a full RLC model. This model, which
was introduced in Chapter 4, tells us a few important things about wire operation. The
most important for consideration in this chapter is that pure RLC operation involves a linear
propagation delay with length, as opposed to the behaviour of sluggish RC wires, where
propagation delay scales quadratically the longer the line. There is not a clear changeover
between a line’s operation in the RC and RLC regions, but rather a continuum over which
one effect becomes more and more pronounced, as the other’s influence wanes. For this
reason, it is best to consider the line as fully RLC. However, if we can determine that we are

†The ‘NTRS’ (National Technology Roadmap for Semiconductors) was the precursor to the well-known ITRS
(International Roadmap for Semiconductors).



6. Evaluation of the area-efficient interconnect

modelling the degenerate case, when inductance is insignificant, we will be able to assume
RC behaviour.

Let us now check whether inductance should be significant for the interconnect used
here, or whether we can safely treat its effects as negligible. We saw in Section 4.2.4 that is
is possible to perform two rule-of-thumb calculations to find out. We do these now, for the
shortest interesting length in our design of 1000µm:

1) Is,
R

2

√
C

L
> 1 ?

For 1mm, with our model we get values of 110
√

3.12×10−13

3.08×10−9 = 1.11 > 1, so resistance is
significant (and grows in significance linearly with length).

2) And is,

rise/fall time > 2
p

LC ?

We see that 2
p

LC ' 6ps, so yes again, since even moderately loaded gate delays are well
in excess of this.

Both answers are ‘yes’, allowing us to assume that inductance is not significant for our model
over lengths above 1mm, the range we are interested in. Thus, we will ignore its effects during
calculations.

The interconnect 50%–50% of vdd delay values are illustrated for the model in Figure 6.1,
where we see the wire delay rising quadratically with length. This is exactly as expected with
an RC wire model, and concisely illustrates the problems faced by designers when creating
long wires: the delay rises sharply with additional length. We can now use Equation 4.13 to
verify the figures for the propagation delay shown in Figure 6.1, where we see the value for
1mm is 35ps.

6.2.2 Optimal repeater insertion

We saw in Section 5.11 that the delay of a line can be minimised by the technique of optimal
repeater-insertion [21; 31]. Now, we consider what the best sizings are for such repeaters.

To do this theoretically, we use the following equations from Weste and Harris [65, pp.222–
223], when the repeaters are single inverter elements:

lsegment =
√

2R̂inverterĈinverter

R̂wireĈwire
(6.1)

and,

winverter_output =
√

R̂inverterĈwire

R̂wireĈinverter
(6.2)

The inverter characteristics are for a unit-sized inverter, and the wire per unit length. Those
for non-inverting buffers are used are similar, but involve a cascading factor, k, representing
the ratio of transistor widths between the first stage inverter and the output one. It is suggested



6.2 Methodology

Interconnect propagation delay vs wire length

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Wire length (um)

In
te

rc
on

ne
ct

 d
el

ay
 (n

s)

Figure 6.1: Rising propagation delay with length for our wire model

that this should be very close to two as an optimal value, but extraction of our technology
suggests that three is a better selection, and so k is set to three for our system (see Figure 6.3).

lsegment =
√√√√2R̂inverterĈinverter(k + 1

k)

R̂wireĈwire
(6.3)

and,

winverter1 =
√

R̂inverterĈwire

R̂wireĈinverter
/
p

k ; winverter2 =
√

R̂inverterĈwire

R̂wireĈinverter
×
p

k (6.4)

I remind the reader that R̂inverter and Ĉinverter are the unit inverter resistance and capacitances.
Similarly R̂wire and Ĉwire are the per-unit length wire resistance and capacitances.

During development, I used these equations to give a first approximation to the transistor
sizings for repeater insertion. Further information was then gained by performing sizing
sweeps, centred around the formulæ’s results. These are described in the next section.

6.2.3 Driving transistor characterisation

In order to determine the exact relationship between driving transistor performance and wire
swing times, we need a little more information in the form of transistor characterisation. Since
we do not have the values of the process constants used in equations 4.38 and 4.39 to hand, yet
we should like to know the relationship between the current sourcing ability of a transistor and
the voltage presented to its output, we need to extract transistor characteristics by another
method. Known as I-V characterisation, we can do this by considering the drain-source
current (Ids) as a function of drain-source voltage (Vds). Given that our driving transistors are



6. Evaluation of the area-efficient interconnect

Bit cycle times with wire driver width for 1-3mm wires

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80 90 100

Driver n-type width (um)

B
it

cy
cl

e
tim

e
(n

s)
1000um

2000um

3000um

Figure 6.2: Wire driving transistor width sweep: 1–3mm wires

driven strongly by logic gates, which should rapidly (with respect to the interconnect wire)
switch between high and low, we need only consider I-V for a fixed gate voltage; vdd for an
n-type, and 0V for a p-type.

Following simulation of the I-V characteristics, I plotted the values for the technology
used. The results follow the well understood I-V curve [65, pp.293–296], involving an initial
linear region, followed by a saturation region. We wish to know the crossover point, Vdsat,
between these two, and inspection suggests that it occurs for the n-type transistor at at Vds of
approximately 0.6V, and a Vds of −0.5V for the p-type transistor. These equate to both drivers
working in saturation when the interconnect voltage is in the range 0.6–1.3V. If the significant
majority of our interconnect’s operation occurs in this range, we can treat the drivers as always
working in saturation, which will simplify our analysis.

As we will see in more detail later, when simulating our interconnect with very short wires,
excursions are observed from vdd to ground. However, simulations show that an average case
(5000µm length wire) maximum voltage swing is between 0.2–1.3V, with approximately two
thirds of the total time of a pulse being in the 0.6–1.3V range.

Recall also that the useful swing of an interconnect is the range which causes transitions
between the two threshold voltages of its receiving buffer’s transistors, in order to transmit
information. Simulations show that a value is considered logic ‘high’ once it passes 1.12V, and
‘low’ upon falling below 0.61V. We have just seen that the entirety of this range corresponds to
drivers in saturation, and can assume that both the p- and n-types are in saturation, for our
entire period of interest. Therefore, we can consider them as constant current sources (refer
to Equation 4.39) without incurring much loss of accuracy. So, we need to check that they are
sufficiently large that their output impedance is much lower than that of the wires, to ensure
their impact on delay is minimal.



6.2 Methodology

We could do this from the equations in Section 6.2.2, but good as theory is, it is often more
instructive and accurate to perform a parameter sweep for a design such as this. This way,
and additional factors not shown in the model can be accounted for, and an optimal design
rapidly chosen.

I performed such a sweep of driver size versus interconnect performance, and I display
the results as Figure 6.2.

We clearly see the optimum driver width is 20µm. The reason the optimum size reduces
with longer wires is that the output resistance is not on the critical path of the wire delay, yet
the larger input capacitance of a wider transistor adversely effects the receiver logic delays
via reduced slew rate. We see that the performance at the 20µm size is very nearly optimal
for all three wire lengths, and so it is an excellent choice for our driver width, and so it is
fixed at this size for all simulations. p-type transistors use double the width, at 40µm. Many
implementations use p-transistors of three times the width of their n-type counterparts, to
create an inverter with balanced pull-up and pull-down resistances. However, we find here
that the increased input capacitance when widening p-types from two to three times slows
impacts overall performance more than output resistance. Thus, we find that p-types twice
the width of n-types are optimal for our performance. Further, the reader may be interested
to note that this sizing is different from the conventionally-taken value of

p
2 for a repeater’s

inverter since the p- and n-types are independently driven, and so we do not consider their
combined delay, as for a normal inverter.

6.2.4 Output buffer cascading factor

Transistors as wide as 20µm offer a high loading to any logic driving them. In order to keep
transitions sharp, their inputs must be reinforced by a well designed output buffer.

The first stage in designing an output buffer is to set the inter-stage cascading factor, k.
This is the ratio of inverter sizes between subsequent stages of a multi-inverter buffer. Logical
effort calculations typically set this value to be as close to e, the natural number, as possible,
with the nearest integer being two. However, since the theory does not cover all real-world
parameters, a preliminary sweep was performed to select the optimal value.

To ensure that the simulations were accurate, an artificial input slope was first passed
through a set of inverters to give it a more realistic slew profile, before encountering a cascade
of four inverters, each a factor k larger than the previous. The output of the cascade drives an
RC load, modelling a wire of length 1000µm.

The optimal value from these simulations can be determined from Figure 6.3, where we
see the output from such a four-inverter buffer with different values of k, from two to five.
We see that the earliest and sharpest transition (i.e., the best) occurs with a value of k = 3.
Therefore, buffers using this scale ratio were inserted into wire driving components between
their outputs and the wire driving transistors, to efficiently drive the latter.



6. Evaluation of the area-efficient interconnect

Cascade
Factor = 3

Cascade
Factor = 2

Cascade
Factor = 4

Cascade
Factor = 5

Time

Vo
lt

ag
e

Figure 6.3: Inverter cascading factor sweep. Note the optimal value is three.

6.3 Simulation of correctness

Using the results from hspice simulations, I am able to confidently say that the area-efficient
interconnect solution proposed in the previous chapter does indeed operate correctly. By
‘correctly’ I mean that a transmitted data word is received error-free, with a high probability
by the receiving environment. As an illustration of correct operation, I show as Figure 6.4 the
plot of the outputs of the output pulse latches, compared for an input stimulus of 00001011,
transmitted via the dual-rail MUX-DEMUX base-link, with the distributed inverter running
over 1000µm wires. The outputs are dual-rail, and so consist of two wire per bit, suffixed
‘0’ and ‘1’ (refer back to Section 5.1.1 and Table 5.1 for a reminder of the dual-rail protocol).
Assertion of exactly one of those wires to high corresponds to the corresponding logical value
being transmitted. For example, the penultimate trace, labelled out0_0 transitions high
around a third of the way across the plot. This indicates that bit 0 equals logic 0.

6.3.1 Test results

Figure 6.4 that the data values received correspond exactly to those transmitted, with reception
of each bit offset in time. Transmission occurs in the order d0. . . d7. Upon reception of d7, the
data_out_valid control line (third trace) is asserted, to inform the receiving environment
that a full data word has been received correctly. Also displayed are two more control signals:
new_data_bar (top), sent low when the input environment supplies a fresh data word; and
input_fifo_empty (second), which indicates back once that word has been consumed and
the MUX tree is prepared to accept a new word. Note from the traces that this particular
signal transitions to low (the FIFO empty state) just before bit six is successfully seen at the
receiving end. This indicates that, at this point, bits six and seven are simultaneously in flight



6.3 Simulation of correctness

through the interconnect structure. However, the transmitting environment has been pre-
emptively instructed to refill the transmit buffer. This pattern of control signal cycles enables
the transmit buffer to be refilled with minimal delay, and increases the overall throughput of
the system.

Test data value

The transmitted data value of 00001011was chosen since it contains both rapid value changes
(0101 sub-word) and runs of length one, two and four of the same value (0, 11, 0000). I
discovered early on in simulations that these two extremes of bit run-length caused the most
unreliable operation, and so if a simulation is successful on the shown data word, it will most
likely be reliable on all others.

I believe the reason this word is the most error prone is that rapid changes may occur
before a previous value has had time to settle, and may cause data corruption, or even a 1 and
a 0 to be transmitted simultaneously, resulting in an erroneous output.

On the other side of the fence, large runs of the same value have been observed to cause a
drifting of the bias level of the passive (non-transmitting) wire away from its idle value towards
its active one. Over multiple bits, the drift accumulated and sometimes passed the receiver’s
threshold voltage, again causing the simultaneous transmission of a 0 and a 1; and an error.

Since high accuracy simulation run-times were in the order of half a day, it was not possible
to perform an exhaustive search to demonstrate correctness with all bit patterns. Therefore, it
is this author’s belief that the word presented above is the best solution to the problem of fault
coverage in the base link system, and that the results from a simulation with it are reliable
indicators of the correctness of system operation for all data words.



Figure 6.4: The outputs and control signals for a transmitted data value of 00001011



6.4 Point-to-point link results

6.4 Point-to-point link results

We will now see some results from an implementation of the point-to-point link, as presented
in Chapter 5. Ultimately, it will consist of a synchronous data environment, feeding a MUX
tree, then data being passed over a correctly repeated wire, arriving at a DEMUX tree, before
finally being passed to a different synchronous receiving environment.

First, though, we test the limits of performance of the pulse-based dual-rail protocol. To
do this, we configure the fastest possible free-running system: a loop oscillator.

6.5 A loop oscillator

Since our repeaters are non-inverting, we can configure any number N of them in a loop to
produce a free-running oscillator where, for a single circulating data item, the frequency of
transition at any point is equal to one upon the sum of the delays of all the repeaters, plus the
delays of all the wire segments connecting them together. For a regular system, the delay of a
single repeater and wire can thus be found by dividing the sum by N .

This configuration, illustrated in Figure 6.7, is perfect for testing the maximum perform-
ance of our point to point system. In particular, the ease of tweaking the width of the pulses
driven and acknowledged by each repeater allows us to test the minimum pulse widths re-
quired to successfully transfer data over a variety of wire lengths. Shown in Figure 6.8 is a
graph of the pulse widths needed to drive data transfer along different wire lengths.

Due to the slightly different lengths of the logic paths in the data and acknowledgement
pulse generation circuitry, it is not possible to exactly match the widths of data and acknow-
ledgement pulses, and the latter is always shorter by approximately 0.5–1×FO4 (30–60ps). For
this reason, the acknowledgement pulse width is more critical than its data counterpart, and
all data graphed is with relation to it. Before we proceed to the results discussion, please take
the time to familiarise yourself with Figure 6.5, which illustrates a cycle of the protocol, and
the naming convention we will use to denote its various phases.

Throughput

There are several possible measures of throughput for our link, dependent on which section(s)
of the interconnect one is considering. The simplest, and perhaps most informative is the bit
cycle time. This metric indicates the amount of time elapsed between the beginning of one bit
being sent to the beginning of the next, all as observed at the transmitter side. Measurements
are triggered by downward passings of vdd/2.

We see the bit cycle times (the time for a two way data→ack→start of the next data bit
handshake to be performed between two neighbouring repeaters) and the time taken for a
single data bit to travel completely around the loop (from hereon in, the end-to-end latency‡).
Both have been swept with the length of inter-repeater wires, and are displayed as Fig-
ures 6.10 and 6.9, respectively.

An important note is that, for each wire length setup, the pulse widths have been tuned to
provide the highest possible performance. Figure 6.8 shows how widths increase with wire
length, from as little as 233ps to a whopping 2.90ns. As expected, after an initial plateau, where

‡The reader may note with a smile the irony of an ‘end-to-end’ metric for a circular configuration, but we use
it here to maintain compatibility with other interconnect evaluations.



6. Evaluation of the area-efficient interconnect

Propagation
delay

wire discharge time
(data bit pulse width)

wire charge time
(ack pulse width)

Propagation
delay

Transmitting end

Receiving end

Receiver logic delay

Transmitter logic delay

bit cycle time

bit cycle time

Figure 6.5: The major events during the pulse-based signalling protocol

the minimum producible pulse width is able to service a multitude of short wire lengths,
increase is quadratic, as determined by the wire charging delay. The ‘plateau’ section indicates
that, for a minimum pulse width of 233ps, we gain reliable operation in the wire segment
length range of 1–3mm.

We see both pulse width and throughput are influenced by the increasing effect of increas-
ing wire delay with length. Rising, as it does, quadratically with length, it impacts end-to-end
latency and bit cycle times in a similar fashion. Bit cycle times rise from as little as 755ps at
1mm (which equates to 1.33Gbit/s of throughput) to 5.65ns for a 10mm wire (only 177Mbit/s).

It is hard to discern an exact pattern by eye since the data past the 3000µm point may be
linear or quadratic. Data with wire lengths of less than 3000µm shows similar pulse width
values since, due to logic delays in the system, it does not operate at all with pulse widths
under 233ps, and an RC /2 line charging delay of only 60ps. Therefore, all wire lengths for
which this width is sufficient (i.e., the 1000–3000µm range) show up as requiring this pulse
width when they may, perhaps, accept a lower value.

Therefore, if we discard these data points, we can perform a regression on the remainder to
attempt to find the shape of the graph: and both lines fit a quadratic with values of R2 = 0.999,
much higher than those of a linear regression, suggesting that the pulse charges the wire in
the RC mode.

Latency

Latencies follow an almost identical pattern, but, since they involve a data bit travelling all the
way around the ring, have a larger magnitude, in the range 2.74–15.5ns. This comprises four
wire delays plus four repeater forward delays, whereas the bit cycle time is made up from two
wire delays and a repeater data and acknowledgement time. This explains the difference in



6.5 A loop oscillator

Repeater + wire segment delay with wire length

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Wire segment length (um)

W
ire

 +
 re

pe
at

er
 d

el
ay

 (n
s)

Figure 6.6: Observed segment delay (total wire + repeater forward delay upon four) for
various wire segment lengths in an four repeater oscillator loop

scaling and allows us to say something about the relative importance of the repeater logic and
wire delays — the former is more important at shorter wire lengths, but the wire eventually
dominates.

We find that the total delay of a single repeater and wire segment grows quadratically with
with length. In Figure 6.6 we see a plot of this delay for input pulse widths providing maximum
link performance. The form is quite clearly quadratic, and a regression even provides an
almost-unheard of value of R2 = 1.000, implying perfect matching. If all the delay increase
with length can be attributed to wire delays, then the regression even gives us the fixed logic
delay of our repeater element: 592ps. However, we might realistically expect the repeaters to
slow with wire length, since their inputs rise more slowly, and so should their internal signals.
Therefore, the perfect correlation may be more of a coincidence, but still strongly suggests
that the wire delays are quadratic, and dominating.

6.5.1 Additional repeater insertion

Since our interconnect may reasonably be expected to run over several millimetres (the
edge of a large ASIC die may extend to one centimetre or more), and we have just seen that
performance plummets as soon as we scale up to such lengths, we require a strategy for
increasing performance. Fortunately, repeater insertion [21; 65, pp.221–226] comes to the
rescue.

From the metrics we have seen above, we can calculate when the insertion of an additional
repeater element will increase overall performance over that of the nominal four repeater
loop configuration. Terminology has the potential to get confusing here, with an overloading



6. Evaluation of the area-efficient interconnect

of the word ‘repeater’, so we will use the convention of ‘repeater insertion’ referring to the
insertion of additional intermediate repeater elements between the original loop repeater
‘nodes’.

Insertion for latency

First we can formalise when performance is actually increased by repeater insertion. It occurs
when:

2×wire delay

(
l

2

)
+ repeater logic delay < wire delay(l) (6.5)

Since wire delay increases quadratically with length, it intuitively makes sense to keep
wires short. However, what is the optimum length?

To get a feel for the answer, let us look at a few test cases. First we need the information,
gained from multiple simulation runs, that the forward logic delay of a stateful repeater is
more-or-less constant at around 600ps. Then we are in a position to see when this overhead
is justified by savings in wire delay.

We approach this calculation in two ways: theoretical and results-based. Our theoretical
version considers the inequality 6.5, and when the left-hand side is satisfied.

We know that repeater logic delay is 600ps, so we can re-arrange the equation to find
when:

wire delay(l)−2×wire delay

(
l

2

)
> 600ps (6.6)

Additionally, Figure 6.1 indicates the value of wire delays with length, so we need only find two
equally-spaced points where the value of interconnect delay changes by 600ps. Given the poor
resolution of this graph, an alternative calculation remembers that the wire delay over 1mm is
35ps, rising quadratically with length. Both inspection and calculation give somewhere in
the range l = 5000–6000µm to satisfy Equation 6.6. By calculation, we have that l = 5000µm
yields a difference of 437ps, and l = 6000µm gives 36(35)−2×9(35) = 630ps. Therefore, the
optimal value of l for additional repeater insertion is within this range.

Our second method of calculating this value comes from the results presented in Fig-
ure 6.11, where end-to-end latency is shown for loop oscillators containing four, eight and
twelve repeater elements, for a fixed range of total loop wire lengths. We observe the following:

1) At a 4000µm length, the end-to-end latency of the loop oscillator is 2.74ns. We also
know that the wire delay is four lots of 44ps. Inserting a repeater here clearly makes no
sense, since it could save at most 22ps per segment, but at a cost of four times 600ps.

2) At 24mm (magenta arrow), we see the line for latency of an eight repeater loop duck
below that for the four repeater version. This suggests that, for per-segment lengths of
greater than 6mm, additional repeater insertion is useful.

3) At 32mm (green arrow), the same becomes true for a twelve repeater loop. This corres-
ponds to double repeater insertion per segment. And, since 32/3 ' 24/2 the increase is
roughly linear.

4) Whilst there is insufficient data to say for certain, it looks likely that the eight- and twelve-
repeater lines will cross over at somewhere in the 44–48mm range, thus suggesting that
the repeater insertion relationship is a linear one: whenever a segment exceeds 6mm,
we should insert another repeater to keep latency under control.



6.5 A loop oscillator

So, we see that the optimal time to insert a repeater for latency reasons must be when
total segment length is somewhere around twenty-four millimetres, and this corresponds to
optimal performance where wire segment lengths for the oscillator are at most 6mm. Thus,
we draw the design rule that we should never create a system with an inter-repeater gap larger
than 6mm.

Insertion for throughput

Repeater insertion does not only reduce latency, but can also be used to boost throughput.
Happily, the analysis for throughput is trivial. Throughput is simply equal to one upon the
bit cycle time, since one bit of data (and its corresponding acknowledgement) is transferred
every cycle.

Figure 6.10 shows how bit cycle times vary with wire lengths, from 750ps for a 1mm
segment and rising quadratically to 5.65ns for a 10mm one. Throughput, therefore, goes as its
inverse.

Equally simple is a consideration of when inserting an additional repeater makes the
oscillator increase in throughput — always. This is very unlike conventional interconnects
where data must flow end-to-end in a single clock cycle, and so inserting additional logic
reduces throughput (by increasing the end-to-end delay) at the point where it outweighs the
reduction in wire delay a repeater may afford.

With my system, however, inserting an additional repeater reduces the wire length and
leaves the ‘per-hop’ logic delay unchanged. Therefore, the cycle time always decreases. The
reader may wish to liken this approach to deeper pipelining being applied to a logic path
— operating frequency always increases (albeit with a law of diminishing returns) with the
addition of more pipeline stages; but so does latency, and this is the same situation we have
here.

The positive impact of repeater insertion is vividly illustrated in the next section, and in
particular a forward glance at Figure 6.29 will give an idea of the improvements available,
under a law of diminishing returns.

Summary

We have seen how a loop oscillator composed of stateful repeaters operates over various
wire lengths. Insertion of additional repeaters to further pipeline long wire segments always
increases throughput, but may either increase or decrease end-to-end latency, dependent on
the segment length and the number of repeaters being inserted. For latency purposes, we
have seen the optimal configuration is to constrain the distances between two pipeline stages
to the range 0–6mm.

6.5.2 Comparison to published literature

Ebergen, Furber et al. perform a similar evaluation to the one just presented for a pulse-
based interconnect system [15], and plot the maximum wire length vs pulse width, which I
reproduce as Figure 6.13(a). I use a cascading factor of three, and so my trace corresponds
to the black line on the results they display. To ease comparison, Figure 6.13(b) re-plots my
results with the axes swapped to map to those they use. Note that their results are generated
from an eleven stage repeater ring, presumably since they deal with shorter wire lengths,



6. Evaluation of the area-efficient interconnect

Repeater Repeater

Repeater Repeater

data flow

ack flow

Figure 6.7: Four repeater oscillator loop configuration

Pulse widths vs wire lengths - 4 repeater loop

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Segment length (um)

Pu
ls

e
w

id
th

 (p
s)

Minimum functional width
Maximum performance width

Figure 6.8: Required pulse widths for various wire segment lengths in an four repeater
oscillator loop

they require more stages then used here to increase the accuracy and provide stable initial
conditions. This difference should not significantly affect the comparison since, in both cases,
we are evaluating a single stage’s maximum performance.

Looking at their graph, it is impossible to be certain about the best regression without
accurate data, but their plot does indeed seem to have the same form as ours, including
the cluster of vertical data points at the extreme bottom end of wire length (I explained how
these come about in the previous section). Note, however, the difference in scale: my results
are over the wire range 1–10mm, whereas theirs are only in the range 0.5–3mm; the upper



6.5 A loop oscillator

Loop end-to-end latency with segment length

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Segment wire length (um)

En
d-

to
-e

nd
 la

te
nc

y
(n

s)

Figure 6.9: End-to-end latencies for full loop traversal for various wire segment lengths
in an four repeater oscillator loop

Loop oscillator bit cycle time (data->ack) with length

0

1

2

3

4

5

6

0 2000 4000 6000 8000 10000

Wire segment length (um)

B
it

cy
cl

e
tim

e
(n

s)

Figure 6.10: Observed bit cycle times between neighbouring stages for various wire
segment lengths in an four repeater oscillator loop



6. Evaluation of the area-efficient interconnect

Loop end-to-end latencies for varying numbers of repeaters

0

2

4

6

8

10

12

14

16

18

0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000

Total loop length (um)

En
d-

to
-e

nd
 d

el
ay

 (n
s)

4 repeater loop
8 repeater loop
12 repeater loop

Figure 6.11: End-to-end latencies for full loop traversal for various wire segment lengths
in an four repeater oscillator loop with repeater insertion

Repeater logic delays vs wire segment length

0

200

400

600

800

1000

1200

1400

1600

0 2000 4000 6000 8000 10000 12000

Wire length (um)

D
el

ay
 (p

s)

Forward delay
Backward delay

Figure 6.12: Repeater logic plus wire delays in a four repeater loop vs segment length



6.5 A loop oscillator

limit being imposed by the lack of robustness with long wire lengths. This is supported by
their own admission that pulse widths must be carefully matched, and this arises due to the
implementation of fewer safeguards and the lack of data latching with stateful elements.

In addition, they are able to produce finer-grained changes to their pulse widths than can
be done with my system. Therefore, their results graph displays equivalently more data points
in a given range. Due to the way that pulse widths in my system must be multiples of two
inverter-delays, I would only be able to generate four data points in the 100–350ps range they
display. This is the reasoning behind the very different scales on the their graph and mine. I
include my graph to show the similarity of form, even if not of scale.

In Figure 6.14(b) we also see a trace of a pulse from a repeater loop simulation, as captured
at the receiving end of a 1000µm wire segment. Displayed in Figure 6.14(a) is the same trace,
reproduced from Ebergen, Furber et al. [15]. We see that the traces are very similar, featuring
the same, exponential discharge and charge profiles, and pre-shoot at the beginning of both
the discharge and charge phases. The lack of any undershoot shows that the system is well
damped, implying RC wire operation, rather than having any obvious inductive influence.
Note that the pulse from my system has an observed width of approximately 600ps, whereas
Ebergen, Furber et al.’s has a width of 300ps. Whilst they may therefore seem to be a factor
of two different, the pulses are actually comparable, since the driver in my scheme drives
for 294ps, with the remainder being taken up by the acknowledge (233ps) and the wire delay
(RC /2 = 35ps). Therefore, the total time the wire is driven low in the forward direction is the
same in both cases.



6. Evaluation of the area-efficient interconnect

sition and once for a falling transition. The total cycle time
for this circuit is roughly 10 gate delays.

We performed a study into the energy-delay trade
offs of various pulse-signaling implementations and level-
signaling implementations of simple pipelines in a CMOS
180nm technology. The pipelines contained two quad-rail
data paths and assumed 500µ wires between stages and
100µ wires before the four-input Merges to generate the ac-
knowledgement. We then calculated the estimated energy
consumption per cycle for each given minimum cycle time,
assuming that all gates are sized for equal delay. These cal-
culations render the trade-off curves for energy consump-
tion versus cycle time. The trade-off curves in Figure 7
show that the implementations for negative pulse signaling
have the best energy-delay trade off, followed by the im-
plementations for positive pulse signaling, and then the im-
plementations for level signaling. The units for delay and
energy in Figure 7 are normalized to those of a minimum-
sized inverter,τ andε respectively. In 180nm TSMC CMOS
technologyτ = 14.5ps andε = 2.8fJ. The results suggest
that the cycle time for a given energy consumption for the
negative pulse-signaling implementation is almost a factor
two better than the cycle time for the level-signaling imple-
mentation. A similar experiment can be performed for the
area-delay trade off curves with similar results.

40 50 60 70 80 90 100
1000

2000

3000

4000

5000

6000

7000

8000

Cycle Time [τ]

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
S

ta
ge

 [
ε]

Energy vs. Cycle Time

Level Signaling

Positive Pulse Signaling

Negative Pulse Signaling

Figure 7. The energy-delay trade offs for var-
ious pipeline implementations

6. Robustness Issues

Sending pulses along long wires can be hazardous. Long
wires attenuate pulses, and capacitive coupling between
wires may deteriorate the pulses even more. Some long

wires may deteriorate a pulse so much that the pulse will
not be detected by a receiving pulse module.

In order to find the influence of long wires on pulses
we conducted two experiments: one experiment to find the
maximum wire length between pulse modules for a given
pulse width and no capacitive coupling between wires and
one experiment to find the influence of capacitive coupling
on pulse widths.

To find how long a wire can be before it deteriorates a
pulse beyond detection, we constructed a ring with eleven
pulse repeaters each connected with a long wire to its neigh-
bor. For different pulse widths and slew rates we found the
maximum wire length for which a pulse keeps circulating
along the ring. For this experiment we used the more ag-
gressive repeaters of Figure 2(b). For each wire length, we
sized the gates to obtain the proper pulse width and then
sent a pulse around the ring. We varied the slew rates by
varying the stepup, or gain, of the gates in the forward path.
The stepup of a gate is the ratio of its total output load to
its own drive strength. We carried out the experiments in
a 180nm CMOS TSMC technology. The results appear in
Figure 8.

0 50 100 150 200 250 300 350 400
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Pulse Width (ps)

M
ax

im
um

 W
ire

 L
en

gt
h

(m
m

)

Maximum Wire Length vs. Pulse Width

Stepup = 3

Stepup = 4

Stepup = 5

Stepup = 6

Figure 8. The maximum wire length between
pulse modules as a function of the pulse
width

The figure shows that there is a rough first order rela-
tionship between pulse width and maximum wire length.
The maximum wire length varies from roughly 1.25mm for
a pulse width of 200ps (2.66FO4 delays) to 2.75mm for a
pulse width of 375ps (5FO4 delays). These wire lengths
are sufficiently long to allow the construction of a large net-
work. The figure also shows that pulses with larger slew
rates lead to slightly smaller maximum wire lengths. For a
stepup of 6 we had to use a sufficient number of gates in

(a) Maximum wire length vs pulse width (reproduced from Ebergen, Furber et al. [15])
— results from an eleven repeater loop oscillator

Wire length vs Pulse width

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

Pulse width (ps)

Fu
nc

tio
na

l w
ire

 le
ng

th
 (m

m
)

Minimum functional width
Maximum performance width

Area of comparison

(b) Wire length vs pulse widths — results from a four repeater loop oscillator

Figure 6.13: Wire length versus pulse width sweeps



6.5 A loop oscillator

the reset loop to get a viable pulse, hence the larger pulse
widths for a stepup of 6.

These results are very conservative considering that we
assumed a simple RC model, called the pi model, for the
long wires. A pi model gives a longer delay than a distribu-
tive delay model, as illustrated in Figure 9, and the differ-
ence gets larger as the wire gets longer. Figure 9 shows
typical wave forms of a pulse at the beginning and at the
end of a 1mm wire given by a pi model. Also shown is the
wave form at the end of a 1mm wire, but now modeled by a
distributive RC model.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (ns)

S
ig

na
l v

ol
ta

ge
 (

V
)

π model

Distributed model

without coupling

Distributed model

with coupling

Figure 9. Typical wave forms of a 300ps pulse
at the end of a 1mm wire modeled by different
RC models

For several wire lengths we looked at the effect of capac-
itive coupling between two wires. For this experiment we
took two pairs of pulse repeaters, each pair connected with a
long wire. This time we modeled the two wires by distribu-
tive RC models and we calculated the capacitance between
the two wires with a field solver assuming a worst-case min-
imum spacing over the total length of the minimum-width
wires. To create the worst-case coupling between aggressor
and victim, we generated a negative pulse on the victim and
a positive pulse on the aggressor with different offsets.

Figure 9 shows typical waveforms as a result of capac-
itive coupling between aggressor and victim. Notice that
not only can the pulse width be reduced by capacitive cou-
pling, but also spurious pulses can be generated. Because
the wires are always strongly driven in our designs such
spurious pulses remained small and did not create any er-
rors. For weakly driven tri-state wires, spurious pulses cre-
ated by capacitive coupling can create havoc.

Figure 10 shows the variation in the pulse width on the
victim wire. All experiments were done with a stepup of 5.

−100 −50 0 50 100
240

250

260

270

280

290

300

310

320

P
ul

se
 w

id
th

 (
ps

)

Normalized timing offset between aggressor and pulse (ps)

L = 0.5mm
L = 1.0mm
L = 2.0mm
Without crosstalk

Figure 10. The effect of capacitive coupling
on pulse width

The dashed lines show the pulse width at the end of a long
wire, absent any capacitive-coupling effects. The solid lines
show the effect of capacitive coupling on the pulse width as
a function of the offset between the pulses. All curves are
centered around the minimum pulse width due to capaci-
tive coupling. The figure shows that in the worst case the
pulse width reduces by 9-16%. These results are encour-
aging considering that we assumed minimum spacing and
minimum width over the total length of the wires and that
we did not include any ground planes in our capacitance cal-
culations, which reduce the effects of capacitive coupling.

7. Protocol Conversions

In order to communicate pulses over very long wires,
one can either use many pulse repeaters or simply switch
to communicating transitions. Communicating a transition
over a long wire rather than a pulse can be more energy
efficient, because there is only one transition to commu-
nicate rather than two per event. The energy savings of
sending a single transition instead of two, however, has to
outweigh the extra energy and delay costs in converting be-
tween pulses and transitions. Let us examine this compari-
son more closely.

Here are two converters between transition signaling and
pulse signaling. Figure 11(a) shows an implementation to
convert a positive pulse to a transition. The implementation
consists of a pulse latch and an inverting feedback loop with
sufficient delay. Figure 11(b) shows an implementation to
convert any transition to a positive pulse. In case the inputto
the transition-to-pulse converter has poor slew rates because
of very long wires, one can improve the noise immunity by

(a) Received pulse shapes for different wire models (reproduced from Ebergen, Furber et al. [15])

Time (ns)
0 0.2 0.4 0.6 0.8 1.0

V
o

lt
a

g
e

 (
V

)

0

1.8

(b) Received pulse shape at a stage of a four repeater loop
oscillator

Figure 6.14: The shape of received pulses over 1mm of wiring



6. Evaluation of the area-efficient interconnect

6.6 Basic link evaluation

In Chapter 5 we saw how multiplexer (MUX) and a demultiplexer (DEMUX) elements may be
connected together via a wiring segment. This comprises the simplest possible link configura-
tion, providing a data path between two eight-bit parallel interfaces. In any interconnection
system, we desire that the wires joining together data sources and sinks be the critical path,
rather than any logic. In this section, we will see if this holds for our basic interconnect, and
several other important performance metrics will be evaluated.

Operation of the link consists of a low wire-driving pulse being produced at the MUX end,
in order to transmit data, followed later by a high pulse at the DEMUX end to transmit the
acknowledge pulse and reset the wires to high. The widths of these pulses can be varied so
that the elements drive for shorter or longer periods of time. Longer periods are of use for
long wire segments, where a minimum pulse width may be insufficient to charge the whole
wire. Conversely, for short wire segments, the smallest possible pulse is likely to give optimal
performance and minimal power consumption.

6.7 Pulse widths

We now look at the effect that varying the transmitted pulse width has on the reliability of
communication over different lengths of interconnect. Generated at the transmitting end
is a pulse of width varied by the number of inverter pairs in a delay chain. After a fixed
minimum amount, to ensure the pulse generator gates operate correctly, this value, which
I call ‘the delay’ is varied to produce an output pulse of different widths. The situation is
identical at the receiving end, to produce the acknowledgement pulse. Each additional pair of
inverters inserts a delay to the wire driving circuitry of approximately 65ps. However, this is
not necessarily reflected in the pulse observed on the wire, since it must first travel through
buffering circuitry that may alter its profile. Table 6.2 shows how inverter pair insertion
relates to pulse widths. When these widths are input to lines 0–3mm in length, their edges are
smeared by the charging of the wire, and this produces swings on the wire with timings as
shown in Figure 6.15. As expected, longer wires make swing slower, and require wider input
pulses. At 4mm correct function can only be observed with a delay factor of at least four.

I displayed a simplified representation of the phases of the pulse-based protocol as Fig-
ure 6.5, and the reader would be well advised to familiarise themselves with this, since much
discussion will refer to the basic operations presented there. Correctness of data transfer is
dependent on a data pulse being long enough on the wire to cause a transition at the far end to
a valid logic value, but not so long that it causes a prolonged fight with the acknowledgement
pulse, resulting in the loss of the latter, and an associated drift in the idle wire voltage.

Up to this point, I have merely given the best results available for a loop oscillator, regard-
less of how wide a pulse was needed to generate them. We will now see a full consideration of
pulse widths and their impact on designs.

Thankfully, the range of valid pulse widths is fairly large and some error can be tolerated
when choosing the correct width for a given wire length.

The basic design of a pulse generator from Chapter 5 uses the chopper circuit of Fig-
ure 6.17(a) to generate the output pulses. During runs of the loop oscillator simulation, I
noticed that this design has a failure mode if it observes too long a pulse on the wire. At this
point, multiple acknowledgement pulses may be generated for a single input data bit, if the



6.7 Pulse widths

Pulse widths versus delay length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5

No delay units

Pu
ls

e
w

id
th

 (n
s)

0um
1000um
2000um
3000um
4000um

Figure 6.15: Wire pulse widths vs delay units for varying wire lengths

Table 6.2: Driver pulse widths produced for various configurations of pulse chopper
pulse generator

Delay factor No. inverters data pulse width matched ack unmatched ack
pulse width pulse width

1 1 246ps 262ps 136ps
2 3 320ps 342ps 261ps
3 5 385ps 413ps 343ps
4 7 445ps 467ps 414ps
5 9 506ps 498ps 468ps

logic path of the receiver has a delay much smaller than the pulse width. Seen in Figure 6.16
this can lead to multiple triggerings at the data receiver, and the repeated latching of a single
bit of data, and an associated corruption of the data stream.

Failure modes like this are alluded to by Ebergen, Furber et al.[15], where they say, “. . . the
pulse must have a width at most equal to the loop delay.” They talk here about repeater design,
but it is a good observation for our receiver design. Equally, they say that one can make an
implementation, “more robust against too wide input pulses”, but omit any details of how to
do so.

It is possible to design a much more robust circuit for the link here, where the use of a
latch (Figure 6.17(b)) prevents the problem of too short an input pulse generating too short an
output pulse, by holding the notion of an event in state. However, the delay must be designed
to be not longer than the ack-to-data bit cycle time on the wire, otherwise the clr signal is
not de-asserted in time to receive a subsequent bit. In this case, the bit would be ignored and
our protocol violated, resulting in lost data and a potential seizing up of the system.



6. Evaluation of the area-efficient interconnect

Table 6.3: Valid base link pulse widths

Wire length valid delay factor range tx end driver pulse rx end driver pulse
1000µm 1–12 318–1033ps 260–975ps
2000µm 1–12 318–1033ps 260–975ps
3000µm 1–14 318–1163ps 260–1105ps

Too long a delay(top) causes fighting with the tx and rx, and the failure of the rx pulse chopper cct pulse

 (
V

)

0.0

0.5

1.0

1.5

2.0

 t(s)
0.0 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n 13n 14n 15n 16n 17n 18n 19n 20n 21n 22n 23n 24n 25n 26n

 (
V

)

0.0

0.5

1.0

1.5

2.0

(V) : t(s)
v(u1)

v(z1)

(V) : t(s)
v(u1)

v(z1)

Figure 6.16: Too wide a data pulse can cause multiple acknowledge cycles (orange)

This calibration problem can be overcome by the addition of a chopper on the pulse
generator’s clr input, as shown in 6.17(c), but the additional overhead of all these safety
measures is to decrease the overall system performance by around 10%.

In the next section, I compare the performance of the basic and flop-based designs, and
make a choice about the correct one to proceed with for the rest of the evaluation.

Matching pulse widths

As an aside, one may expect that some symmetry of design would ensure that the driven data
and ack pulse widths are near identical. In fact, this is not the case, and there is some flexibility
in their sizes. In particular, the simpler ack pulse’s path means that acknowledgement pulse
widths can be made much smaller (by about two inverter delays) than the data ones. This
means that an ack pulse can be made over 100ps shorter than the data one. Surely doing this
will result in increased performance, especially with short wire lengths since there is less time
given over to driving?

Well, as Figure 6.18, I show that this is, in fact not the case. The graph shows the total
bit cycle times for a link using pulse widths of the minimum possible (‘unmatched’, which is
246ps data / 136ps ack, at their lowest value), or with the two matched to the larger, by the
artificial insertion of two inverters’ delay on the ack path (‘matched’, lowest values 246ps data
/ 262ps ack). Points are plotted when these widths are scaled up, in multiples of two inverter
delays, and data is transmitted over a 1000µm link.



6.7 Pulse widths

delay

level in
pulse out

(a) The original pulse chopper circuit

D Q

CLR

Q

delay

pulse out

level in

(b) A flop-based wire driving pulse
generator

D Q

CLR

Q

long delay

pulse out

level in

short delay

(c) A flop-based wire driving pulse generator
with over-wide input pulse protection

Figure 6.17: Two improvements to the basic wire pulse generating chopper circuit

Bit cycle times are observed to be shortest when the two pulse widths are matched, and
operation is even more energy-efficient, as shown by the energy-delay product in Figure 6.19.
Although the differences are slight, the result is still counter-intuitive. The explanation lies
in the fact that, at this length of wire, the acknowledgement, whilst still long enough in the
unmatched case to reliably drive the wire, drives it for less time. This then impacts the slew
rate at the far end, and it takes longer for the ack to be detected, than in the matched case,
where it gets to drive for longer. The speed increase then affects the energy-delay product by
decreasing delay and mirroring the conclusion here.

In Figure 6.19 we also see the energy-delay product values for the matched and unmatched
MUX-DEMUX link, and come to the same conclusion, that matched delays are best.

Both result sets for both configurations have the same form, with a flat section on the
left-hand side, with a roughly polynomial rise afterwards. Both begin their climb at a total
pulse width of 1.0ns.

What does this tell us? Well, first we see that it does not matter if the pulses are balanced
or not — from an energy-delay perspective it is the total pulse width that counts, and this is
intuitive if we consider that the total width is the total time that a wire is being driven for and
driving energy should be the same per-unit-time constant.

Second, and perhaps most importantly, is the explanation of the shape. The flat section
shows that pulse widths may be varied in a range of roughly 500–1000ps without impacting
the delay-energy product. We will see in Equation 6.8 that, for a range of short pulses, bit cycle
times remain constant since the logic delays in the MUX and DEMUX elements are instead
the critical path. The same is true here, for the energy-delay product. Essentially, all pulses in
the flat range charge the wire fully, and so dissipate the same energy. They also all produce
the same bit cycle time, thus their product is also constant.



6. Evaluation of the area-efficient interconnect

Bit cycle times vs total pulse width (matched and unmatched MUX & DEMUX widths) - 1000um wire

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Total pulse width (ns)

B
it

cy
cl

e
tim

e
(n

s)

Unmatched pulse widths
Matched pulse widths

Figure 6.18: Bit cycle times for a 1000µm MUX-DEMUX link

Energy-delay product vs total pulse width (matched and unmatched MUX & DEMUX delays) - 1000um
wire

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Total pulse width (ns)

En
er

gy
-d

el
ay

 p
ro

du
ct

 (a
Js

)

Unmatched pulse widths
Matched pulse widths

Figure 6.19: Energy-delay products for a 1000µm MUX-DEMUX link



6.8 Voltage swing

Pulse width matching conclusion

We have come to the following conclusion about the best setup for pulse widths: latency and
throughput are optimal when the pulse widths of the data and acknowledgement drivers are
matched and the narrowest possible for reliable operation at a given wire length.

With this knowledge, we can proceed to evaluate the performance of the two pulse gener-
ator designs and how they may be scaled. We will do this, but first I explain how pulse widths
affect the voltage swing on the wire.

6.8 Voltage swing

Voltage swing on interconnect wires is a key factor when determining the reliability of signals.
In this section, we will examine the effect that wire length has on the voltage swing, and how
it can be increased by the widening of driving pulses.

As a base case, compare Figures 6.20 and 6.21, where the traces for a minimum driving
pulse are displayed for wire lengths of 1000µm and 3000µm, respectively. For both, the
transmitting end voltage is drawn in green, and the receiving end in magenta. Measurement
lines are also drawn to show the magnitude of peaks and troughs. Striking is the difference in
shape between the two traces. Whilst the 1mm drawing shows clear transitions, as would be
expected by any well-behaved system, the 3mm version shows a much more complex picture.
Here, whilst the transmitting end makes a full transition from vdd to 0 volts during its swing,
the wire capacitance means this is not so for the far end, and a discharge to a mere 0.8V is
seen. Note how, after a period of driving the transmitting end low, the voltage then drifts back
up to equalise at that of the receiving end. This is the effect of charge sharing — driving has
stopped, so the capacitance of the line eventually equalises the voltages of the two sides by
averaging them out, with the effect that both drift toward a median value. The situation is
made even worse when a change in data value causes a wire to settle to a bias voltage, rather
than going rail-to-rail.

In total, we see that swings down at the receiving end can be as high as 0.8V, and swings up
at the receiving end as low as 1.2V. When combined, this makes a differential signal swing of
only 0.4V, compared to a vdd of 1.8V. At this point, signal integrity becomes a problem — what
bit value should the logic at either end detect? For this reason, we find that the interconnect
system begins to fail at the 3mm length.

Increasing the driver pulse width

We know the reason voltage swing is degraded when driving long wires is that charge sharing
equalises two unlike voltages after positive drives have stopped (i.e., the pulse width is over).
Can we, therefore, arrange that there is less charge sharing?

The answer is yes: by altering the driving time (which is the pulse width), we can change
how much the far end is charged and discharged before sharing occurs. To ensure signal
integrity, the pulse width can be widened to 506ps (see Figures 6.22 and 6.23). The change is
obvious: both the one and three millimetre traces look similarly well-shaped, and so 3mm is
easily reachable with this pulse width.

What is the downside of using the wider pulse then? Well, whilst hard to see from the
diagrams, the time taken to transfer a bit is increased, and the analysis of this can be seen in
other sections of this chapter.



6. Evaluation of the area-efficient interconnect

Graph1

 (
V

)

−0.25

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

 t(s)
2.5n 3n 3.5n 4n 4.5n 5n 5.5n 6n 6.5n 7n 7.5n

Level: 0.011256

Level: 1.291

Level: 1.7366

x: 6.9107n

x: 6.7575n

(V) : t(s)
v(u1)

v(z1)

Figure 6.20: The voltage swing observed over a 1000µm wire with a minimal driving
pulse width of 246ps

Charge sharing

Data pulse discharge

Ack pulse charge

Figure 6.21: The voltage swing observed over a 3000µm wire with a minimal driving
pulse width of 246ps

If the designer is confident of the wire lengths used, and trims the driver pulse widths as
short as possible, then an advantage may be gained, since low swing operation offers potential
power and time savings (since less wire capacitance must be charged in each cycle).

6.8.1 Crosstalk

Now we have seen how the transmitted signal quality varies with wire length and pulse width,
it is time to consider the other factor in the S/N ratio: noise. The injection of noise has a
detrimental effect on operation, since it reduces the received signal quality. With an on-chip
interconnect, noise manifests itself mainly through crosstalk. The effect of crosstalk is to
couple together two interconnect wires, so that transitions on one (the aggressor wire) cause



6.8 Voltage swing

Graph3

 t(s)
2.5n 3n 3.5n 4n 4.5n 5n 5.5n 6n 6.5n 7n 7.5n 8n

 (
V

)

−0.25

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0
(V) : t(s)
v(u1)

v(z1)

Level: 0.0017055

x: 6.9243n

Level: 1.4247

x: 7.0876n

Level: 1.8321

x: 7.3998n

Figure 6.22: The voltage swing observed over a 1000µm wire with a driving pulse width
of 506ps

Graph4

 (
V

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 t(s)
2.5n 3n 3.5n 4n 4.5n 5n 5.5n 6n 6.5n 7n 7.5n 8n 8.5n 9n 9.5n

(V) : t(s)
v(u1)

v(z1)

Level: 0.079425

x: 8.2767n

Level: 1.0698

x: 8.9425n

Level: 1.4179

x: 9.3078n

Level: 1.6471

x: 9.0661n

Level: 0.31712

x: 8.5769n

Figure 6.23: The voltage swing observed over a 3000µm wire with a minimal driving
pulse width of 506ps

voltage fluctuations on the other (the victim wire). How large are these fluctuations then,
when considering our interconnect situation?

With crosstalk, it is the rate of change of voltage at a particular point on the aggressor
wire, rather than its absolute value that effects the victim (see Section 4.3.1 for a refresher), so
we can actually discount the effect of pulse width, since all widths are driven with the same
strength. This simplifies our analysis down to the effect of wire length. In Figures 6.24 and 6.25,
I show the effect on 1mm and 3mm lines, and I outline this now.

At 1000µm, swings on an aggressor wire from 1.8V down to 0V cause a drop down to 1.5V
on the victim wire, implying a crosstalk value of 0.3V on the transmitting end. The analysis is
the same in this case for the receiving end.

Additionally, when data changes on the active wire (e.g., when the bit sequence is a 1

followed by a 0), the bias left by the previous transmission can add up to an extra 0.2V of drift
to the new victim.



6. Evaluation of the area-efficient interconnect

Graph5

 t(s)

3n 3.5n 4n 4.5n 5n 5.5n 6n 6.5n 7n 7.5n

 (
V

)

−0.5

0.0

0.5

1.0

1.5

2.0

 (
V

)

−0.5

0.0

0.5

1.0

1.5

2.0

Level: 1.5044

Level: 1.5053

Level: 1.3288

Level: 1.3078

(V) : t(s)

v(z0)

v(z1)

(V) : t(s)

v(u0)

v(u1)

Figure 6.24: Crosstalk on a 1000µm line

Graph6

 t(s)

2.5n 3n 3.5n 4n 4.5n 5n 5.5n 6n 6.5n 7n 7.5n 8n 8.5n

 (
V

)

0.0

0.5

1.0

1.5

2.0

 (
V

)

0.0

0.5

1.0

1.5

2.0

Level: 1.4689

x: 8.323n

Level: 0.91282

x: 7.9288n

Level: 1.2114

Level: 1.4228

Level: 1.2062

Level: 0.84917

(V) : t(s)

v(z0)

v(z1)

(V) : t(s)

v(u0)

v(u1)

Figure 6.25: Crosstalk on a 3000µm line

For a 3000µm wire, the aforementioned distortion of the waveform leaves it hard to
determine exactly what is crosstalk and what is signal attenuation, but it appears that crosstalk
swings are down to 1.45V from vdd, and to 1.2V after a bias has been impressed — crosstalk
levels of 0.35V and 0.6V, respectively.

6.8.2 Reflections and ringing

Ringing [33, pp.160–164], caused by reflections on the wire can be observed on lines where the
pulse width is smaller than a few times the propagation delay. Since ringing is not observed, we
can confirm that the pulse widths (∼ 250ps) is much greater than the calculated propagation
delay of the line (35ps).



6.9 Pulse generator design choice

6.8.3 Effects of inductance

In Section 6.2.1 I made the argument that inductance is unimportant in the design here. It
would be nice if the profile of our traces backs this up.

Were inductance to be significant, we would expect to see some degree of resistance to
changes of voltage on the wire when undergoing charge or discharge, altering the profile to
one with sharper rises or a truncated length. These are not seen, and so our hypothesis does,
indeed, appear to be correct.

6.9 Pulse generator design choice

In Section 6.7, I proposed two varieties of pulse generation circuit, it is prudent to evaluate
the performance of each before proceeding any further.

When operating with minimal output pulse widths, both designs provide results for wire
lengths up to 3000µm, for an unrepeated MUX-DEMUX link (recall the pulse generators here
stem from the delay elements in the root MUXs and root DEMUXs). But, as we will see, their
quality of performance varies. We have also seen from the loop oscillator (Section 6.5) that,
up to 3000µm, operation is reliable with a fixed and minimal generated pulse width of 233ps.
Therefore consider we choose to simplify analysis by considering only the range 0–3mm, with
this fixed, minimum pulse size. Results from the loop oscillator can easily be used to scale
any results we gain here, if needed.

Throughput

Figure 6.26 shows a comparison of the performance of the two designs, measured by their bit
cycle times. Throughput of the interconnects is simply one over this value, and so lower is
better on the graph. Both implementations operate with their minimum output pulse widths.

We see that the flop-based design has a slightly better performance over much of the range,
but this is probably due to it being more heavily optimised at design time. I am confident
that the pulse chopper implementation could obtain this level of performance given enough
time and resources to improve its implementation. Note also that both designs are capable of
achieving a throughput of over 1Gbit/s for a 1mm wire, and so both satisfy the interconnect’s
original design criteria.

Latency

The two latencies are shown for comparison as Figure 6.27, and we see that, here, the pulse
chopper has the edge§ over the flop-based design. Further, for these, minimal width output
pulses, reliable end-to-end transfer of a data word (not shown) is observed for the full 3000µm
length for the pulse chopper, but only up to 2500µm for the flop-based design, since the pulse
ceases to be wide enough for correct logic operation at this length. We will see more about
this shortly.

So, the flop-based design is fine if one has the time to calculate the delay value needed for
correct operation at a certain wire length, but the chopper based design is simpler and gives
good performance over a wider range of wire lengths, without parametrisation.

§No pun is intended, nor warranted funny by the author.



6. Evaluation of the area-efficient interconnect

Bit cycle times for an unrepeated MUX-DEMUX link

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 500 1000 1500 2000 2500 3000 3500

Wire length (um)

B
it

cy
cl

e
tim

e
(n

s)

Flop-based pulse generators
Chopper-based pulse generators

Figure 6.26: Bit cycle time comparison between the chopper- and flop-based imple-
mentations

First bit latencies for an unrepeated MUX-DEMUX link

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

0 500 1000 1500 2000 2500 3000 3500

Wire length (um)

Fi
rs

t b
it

la
te

nc
y

(n
s)

Flop-based pulse generator
Chopper-based pulse generator

Figure 6.27: First bit latency comparison between the chopper- and flop-based imple-
mentations



6.10 Evaluation of the flop-based design

Distributed
inverter

and long wires
Multiplexer

Tree
Demultiplexer

Tree

new_data

8

acks

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

Pulse
latch

FIFO empty

data valid

8

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

reset latches

empty

d0

d4

d2

d6

d1

d5

d3

d7

d0

d4

d2

d6

d1

d5

d3

d7

Figure 6.28: Block diagram of the basic MUX-DEMUX link

Summary

Given that each implementation design wins on one of the two metrics, choice will be driven
by which of the two is more important to a particular design instantiation. We will see later
that bit cycle time is comparatively easier to optimise than forward latency, so it makes sense
to choose the lower latency candidate; and this is the chopper design.

To be rigorous though, and since there may still be circumstances where the flop-based
design’s lower cycle times may be of use, we evaluate it also. We do this next, where we will
see that is has undesirable features, making it of little use. An evaluation of the chopper will
follow, where we will fully evaluate all of its characteristics, and see it is the design of choice
for our system.

6.10 Evaluation of the flop-based design

Having introduced the flop-based design, we proceed to evaluate its performance more fully.
Since we have already seen latency and bit cycle time results in the previous section, all that
remains is to examine performance with relation to energy, and how the design scales with
repeater insertion.

The setup used is a full point-to-point link implementation from Chapter 5 and repro-
duced here as Figure 6.28, with a MUX tree feeding a link with varying numbers of repeaters,
based on the flop pulse generator. At the far end, a DEMUX tree takes the data and it is
checked for correctness.

For initial results, the simplest design, using minimal pulse widths was chosen, with the



6. Evaluation of the area-efficient interconnect

intention that these be examined at a later stage. As we will see, however, analysis did not get
this far, since faulty operation caused a full analysis to be abandoned after the initial sweep.
For now though, note that all results operate on pulse widths of 294ps in the data direction,
and 233ps in the acknowledgement one.

When we look at the results in Figures 6.30 and 6.29, the first thing to strike you will be the
sparsity of data points, compared to what may be expected. It is easy to understand many of
the lines do not make it to the right-hand side of the graph: their segment lengths eventually
exceed 2500–3000µm and, as we have previously seen, this is the limit of the known operating
range with the minimum delay setup we have here. Less obvious, though, is the reason why
all traces do not extend fully to the left-hand side (to begin at 0mm, but instead they start at
1mm), as was the case for the unrepeated system (and will also be the case for the repeated
pulse-chopper). The answer lies in the implementation details of the flop-based repeaters,
and is a rather unsatisfactory and stubborn problem.

When used with short links, a complex and non-obvious interaction occurs between
the latch inputs and the transitions on the wire. This causes the latch to produce only one
acknowledgement signal during a run, regardless of the number of transitions on its input
wire. Essentially, there is insufficient time for the internal nodes of the latch to fully stabilise
after generating one output pulse, before receiving its next clock input. Hence, the first data
points occur at wire lengths of 1mm or more, and for these points of correct operation I have
generated graphs of the end-to-end latencies, per bit energies and energy-delay products,
and we will examine these now.

6.10.1 Throughput

As we know, the bit cycle time gives the best indication of throughput of the link. Figure 6.29
shows how this scales with length and number of repeaters.

We see that, at the point where each repeater line begins operation, the bit cycle time is the
same (approximately 1.2ns), regardless of actual end-to-end wire length. This corresponds to
a throughput of 833Mbit/s. This slightly counter-intuitive result is actually easily explained
by noticing that each plot line begins when that number of repeaters causes the segment
(inter-repeater) length to be the same: 1000µm (as an example, the two repeater line begins at
3mm, creates three segments, and 3mm/3 = 1mm). Only two repeater configurations are able
to successfully transfer data up to 10mm, those of four and five repeaters. Similarly, these two
succeed where the others fail since they are the only ones capable of sub-dividing 10mm into
segments of less than 2.5mm (10/5 = 2, but 10/4 = 2.5). Therefore, we can say that correct
operation occurs only for segment lengths in the range 1–2.5mm.

Just noticeable is the characteristic of the various lines to diverge slightly with increases in
number of repeaters (they are not exactly parallel) — bit cycle time climbs more slowly with
increased repeating, since a constant wire length change is less and less significant the more
segments it is divided into.

In summary though, we can see that, with proper repeater insertion, correct operation can
be obtained over the full 1–10mm range, and bit cycle times can be maintained as constant,
regardless of total wire length. The latter is, in itself, an attractive point and an advantage of a
system using stateful repeater elements.



6.10 Evaluation of the flop-based design

6.10.2 Latency

End-to-end latency of a real world link can be the critical design factor if blocks are unable to
buffer data bits, and data must arrive before computation can occur. Figure 6.30 shows how
the latency for our setup changes with varying of total wire length, and repeater insertion.
The range is from 0–10mm, with correct operation being observed from 1mm upward.

The latency graph exhibits a high degree of symmetry for the repeater insertion plots. We
see that each number of repeaters creates a line parallel to all others, and the greater the
number of repeaters, the higher and more offset to the right the line. The meaning of this is
quite simple: latency is increased by additional repeaters, since they insert a high logic delay
into the path (this is the move upwards), and the greater the number of repeaters, the longer
the total wire length that can be spanned (the horizontal translation).

However, were one to draw a regression line through the start, middle or end points
of the individual traces (as illustrated by the green dashed line), you would find it a good
approximation to linear, and so our repeater insertion increases latency linearly overall. This
point is an important one. The main feature of optimal repeater insertion is that it produces
delays that increase linearly with wire length, and that is what we see here too. So, we are happy
that repeater insertion has successfully converted a quadratically-decreasing performance
curve into a linearly-decreasing one.

In comparison to the unrepeated case, repeaters reduce overall latency when the total
wire length is 3000µm. Here, the wire delay, plus the degradation in signal rise time outweighs
one repeater forward delay in latency. Therefore, from a latency point of view, repeaters are
useful for wire lengths over 3000µm.

This result differs substantially from the loop oscillator case, and arises due to the relatively
poorer performance of the MUX and DEMUX element’s logic inputs and pulse generators,
compared to a system consisting solely of repeaters. Were the elements not to be equally
spaced, one might reasonably expect that, if MUX and DEMUX elements were repeated at
three millimetres, then the spacing between remaining repeaters could be stretched to nearer
six millimetres to improve performance. However, to keep things simple and uniform, this
analysis is not done here.

6.10.3 Energy use

Now that we have seen how our link performs, how much energy does it take to transfer a
bit, and how does that relate to overall energy optimisation? The key metric relating to the
power efficiency of any modern VLSI implementation is the energy-delay product [65, p.193].
Simply put, it highlights the optimal balance between performing power-hungry computation
quickly and more modest computations stretched over a longer period of time. The lowest
value of energy-delay product indicates the most efficient system, but not necessarily the
highest performance one.



6. Evaluation of the area-efficient interconnect

Energy per bit

However, since the energy-delay product is not necessarily the most intuitive one to look
at and understand what is going on, first I display as Figure 6.31 the energy taken per bit
transferred, with our 0–5 repeater setups.

We see two things from this graph: that the greater the number of repeaters, the higher
the power consumption; and also that power consumption per bit is mostly constant for
each trace, but peaks when a configuration is in the middle of its operating range. The first is
easily explained by realising that each additional repeater consumes additional logical power,
whilst the overall wire capacitance to be charged remains unchanged. Therefore, the increases
indicate the energy cost of a repeater.

The second is a little more difficult to understand, and will be explained more fully in the
repeater evaluation section (§6.13), where the same characteristic is observed.

Energy-delay product

Excepting the unrepeated case, the energy-delay product plot shows a continuous line of
increasing energy-delay product with total wire length. Also, the different repeater configura-
tions’ extents blend well to form a solid line, much longer than any individual trace. Finally,
to a best approximation, the energy-delay product is linear with length.

Again, this suggests an instance of optimal repeater insertion. We have just seen that
energy consumption is nearly constant. Therefore, we can deduce that it must be delay that
increases linearly (and, in fact this is confirmed by our earlier analysis of latencies).

6.11 Summary of the flop-based design

In the previous few sections, we have evaluated the performance of an end-to-end link design
using the flop-based pulse generator from Figure 6.17(b). We have seen that a functional link
can be produced when segment lengths are in the 1–2.5mm range unrepeated, up to 10mm
(or more) if repeated using our stateful repeaters.

Latency has been shown to increase linearly with length if properly repeated, but through-
put can be maintained near constant at 833Mbit/s.

The energy-delay product also rises linearly with wire length, which is roughly optimal
given that so does the wire capacitance that must be charged.

Despite all these promising results, however, reliability problems with long and short wire
segments means that further evaluation was abandoned by the author, in favour of producing
a more robust design. We will see this in the next section, where the pulse chopper circuit
is resurrected to produce a simpler, more lightweight and reliable drop-in replacement for
segment lengths of 0–3mm, and yet still uses a fixed pulse width.



6.11 Summary of the flop-based design

Bit cycle time versus total wire length for repeater insertion (minimum pulse width)

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Total wire length (um)

B
it

cy
cl

e
tim

e
(n

s)

1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters
0 repeaters

Figure 6.29: Bit cycles times for a MUX-DEMUX link with total wire length,
for varying numbers of repeaters inserted — flop pulse generator, 1 delay

End-to-end data latency with total wire length and repeaters

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000

Total wire length (um)

En
d-

to
-e

nd
 la

te
nc

y
 (n

s)

0 repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.30: End-to-end latencies for a MUX-DEMUX link with total wire length,
for varying numbers of repeaters inserted — flop pulse generator



6. Evaluation of the area-efficient interconnect

Energy per bit with wire lengths and repeaters

5

9

13

17

21

25

0 2000 4000 6000 8000 10000 12000

Total wire length (um)

En
er

gy
 p

er
 b

it
(p

J)

0 repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.31: Energy per bit for MUX-DEMUX link with total wire length,
for varying numbers of repeaters inserted — flop pulse generator

Energy-delay product with total wire length for repeater insertion

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0 2000 4000 6000 8000 10000 12000

Total wire length (um)

En
er

gy
-d

el
ay

 p
ro

du
ct

 (a
Js

)

No repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.32: Energy-delay products for MUX-DEMUX link with total wire length,
for varying numbers of repeaters inserted — flop pulse generator with
minimum delay



6.12 Evaluation of the pulse-chopper based design

6.12 Evaluation of the pulse-chopper based design

I now display a similar, but more complete analysis of the point-to-point link; the only differ-
ence being the use of chopper-based pulse-generators in the MUX and DEMUX elements,
in place of the latch-based design. For a circuit diagram, see Figure 5.18(b). The implement-
ation is very simple, but incorporates none of the over- and under-width pulse protection
mechanisms of the flop-based design. However, fault-free data transfer using this generator
can be observed from 0–3mm wire segment lengths with a minimal pulse width. Therefore, as
long as we remain in this range, we can easily deploy and evaluate the chopper-based system.
So, from hereon in, that is all we will consider.

6.12.1 Latency

As before, we evaluate the end-to-end latency of our link. We saw in Figure 6.27 that a pulse-
chopper based implementation offers a lower latency than its latch-based counterpart, due to
being more lightweight. In fact, the chopper line in that graph gives us all the latency figures
we need for a standard implementation: that latency is 1.66ns at 0µm, rising quadratically to
2.09ns over 3000µm.

It is at this stage when it is interesting to consider the effect of changing the pulse width,
to corroborate the, previously unjustified, assumption that the best performance over the
range of interest is with a minimal pulse width. Therefore, I re-ran the latency simulations,
with pulse widths increased by four and eight inverter delays, corresponding to observed
DEMUX driven pulse widths of 262, 413 and 498ps, respectively (which I call 1, 3 and 5 delays).
These figures are similar for the MUX and repeater widths, and so total (data + ack) pulse
widths are approximately double this. Table 6.2 shows the actual figures. The latency results
from this evaluation for the first bit are shown in Figure 6.33, and also for a full byte transfer
(Figure 6.34). We see that the smallest available delay (blue diamonds) always gives the lowest
end-to-end latency, and this can be easily reasoned about if we realise that a wider data
driving pulse results in a delay before acknowledgements can be successfully transmitted.
And, for all except the very first data bit through the network this holds up a bit’s transmission.

So, for latency, the smaller the pulse width the better, as long as it is long enough to reliably
transmit data.

6.12.2 Throughput

In Figure 6.35 we see how the value of the bit cycle time varies with the length of the intercon-
nect wire. We saw earlier that the most effective and reliable operation occurs over the range
0–3000µm, and so that is the range we show here. As we also saw, practical pulse width sizes
for this range are in the region 1–5 delay elements, and so we see curves for one, three and
five delays here.

We observe many interesting things. Perhaps the most important are the general shape of
the plots: they are all quadratics. Whilst this is hard to fully appreciate visually, a quadratic
regression applied to the data yields an R2 value of 0.999 in the one and three delay cases,
and 0.998 in the five delay case. This suggests that the curves are indeed very good fits to a
polynomial function. The regression also suggests that the x2 term only dominates the linear
term for lengths over 10mm for one delay, 5mm for three delays, and 1.5mm for five delays.



6. Evaluation of the area-efficient interconnect

First bit latency with wire length

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

0 500 1000 1500 2000 2500 3000

Wire length (um)

Fi
rs

t b
it

La
te

nc
y

(n
s)

1 delay
3 delays
5 delays

Figure 6.33: First bit latencies with unrepeated wire length –
pulse chopper unrepeated base link

End-to-end byte latency with wire length

8

9

10

11

12

13

14

15

16

0 500 1000 1500 2000 2500 3000

Wire length (um)

En
d-

to
-e

nd
 b

yt
e

la
te

nc
y

(n
s)

1 delay
3 delays
5 delays

Figure 6.34: Byte end-to-end latencies with unrepeated wire length —
pulse chopper unrepeated base link



6.12 Evaluation of the pulse-chopper based design

Bit cycle times with wire length for various input pulse widths - unrepeated base link

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 500 1000 1500 2000 2500 3000

Wire length (um)

B
it

cy
cl

e
tim

e
(n

s)

1 delay
3 delays
5 delays

Figure 6.35: The effect of interconnect length on bit cycle times —
pulse chopper unrepeated base link

This information is consistent with our hypothesis, since we expect the transmission time
of a bit to rise quadratically with wire length, since the physical RC delay rises in this manner
(see Section 4.2.1).

Again, we have already seen the performance of the vanilla chopper interconnect in
Figure 6.26; the results are a bit cycle time of 841ps at 0µm, which rises to 1.39ns at 3000µm.

We can even derive a formula for the shape of these curves by recalling the sequence of
events on our interconnect that leads to a bit transfer taking place. Illustrated in Figure 6.5,
we see that the transmission of a data bit by the transmitter is followed by a acknowledgement
transmission at the receiver. An acknowledgement is only generated after an internal logic
delay at the receiver, and equally, subsequent data bits may only come after a transmitter
logic delay. Added to these is the RC delay of the wire in each direction, which as a distributed
capacitance takes the value t = RC /2. Thus:

bit cycle time = RC

2
+ receiver logic delay+ RC

2
+ transmitter logic delay (6.7)

however, we have so far ignored the interaction of the width of the data/acknowledge pulses.
If the pulse width in a direction is longer than the wire RC /2 delay plus the logic delay of the
end it arrives at, then it will cover these functions up and insert an additional delay, since the
next phase of the protocol (in the opposing direction) cannot commence until the pulse has
ceased.



6. Evaluation of the area-efficient interconnect

Therefore, the complete equation describing a bit cycle time should be :

bit cycle time = MAX(
RC

2
+ receiver logic delay , transmitter pulse width)

+MAX(
RC

2
+ transmitter logic delay , receiver pulse width) (6.8)

where MAX is the ‘maximum’ function, returning the greater of its two arguments.

Summary

We have compared the operational correctness and performance of two types of pulse gen-
erator circuit for deployment in a base link implementation. A pulse chopper circuit has
been shown to operate correctly, and with good performance over the range of wire segment
lengths 0-3mm. A flop-based pulse generator has also been shown to have good performance,
but with reduced operational range, 1-2.5mm.

When repeated, the pulse chopper circuit has been shown to have the best performance
and give the most reliable operation of the two designs, operating flawlessly with any number
of repeaters, from zero to five over a design range sweep of 0–10mm, as long as segment
lengths are kept no longer than 3mm.

The reliability problems with a flop-based design, however, highlight the hazards when
deploying a stateful element with setup and hold time constraints in an otherwise asynchron-
ous design. For this reason, and since the unrepeated performance is comparable, but the
repeated performance better, I choose the pulse-chopper circuit for use with simulation for
the remainder of the evaluations in this chapter.

For both implementations, we can simplify and improve performance by the use of
repeaters, when long wire segments are involved. The following section will demonstrate
their use and how performance scales with them.

6.13 Repeater insertion with the chopper-based link

Having evaluated the chopper link, we now consider how its performance and reachable
span scales with the addition of repeater insertion. I have already introduced this concept in
several sections, including Section 6.10, so I move straight on to the evaluation.

6.13.1 Latency

We saw that, for the flop-based system, latency was always increased by repeater insertion
with segment lengths up to 2500µm, but that repeaters were able to extend the total wire
length over which data could be transferred successfully. Therefore, we would expect to
find similar results for the chopper-based implementation, since nothing fundamental has
changed. And, in fact, we do find this, with latency increases of approximately 600ns per
repeater, which is the same penalty as found during the loop oscillator evaluation.

In Figure 6.36 we see that very much the same kind of thing is going on. In contrast though,
all lines are able to start at the 0µm point, before tailing off when per-segment lengths reach
3000µm. The general trend is that each additional repeater insertion permits an additional
3mm of length to be successfully traversed, whilst also very slightly shallowing the increase



6.13 Repeater insertion with the chopper-based link

of latency with length over the previous number of repeaters. If the regression line is to be
believed (and there may not be sufficient data points to make it significant), at around 6mm a
single repeater insertion provides a net latency improvement over the unrepeated version.
This may be a moot point since unrepeated operation cannot occur up to this length and a
repeater is demanded anyway, but it does neatly agree with the results we got for the loop
oscillator previously.

6.13.2 Throughput

From the loop oscillator results, we already know that our stateful repeaters are very helpful
from a throughput point of view; they are able to pipeline our interconnect and reduce bit
cycle times. The question here then is, “By how much, and when is an increase in number
useful?” We investigate this now.

Figure 6.37 shows a plot of bit cycle times for total wire lengths of 0–10mm, with 0–5
repeaters inserted. Peak throughputs are 1.01Gbit/s for 1mm, and 926Mbit/s for 10mm of
wiring. We see that, as expected, for a given total wire length, repeater insertion increases
interconnect throughput (decreases the cycle time), and the greater the number of repeaters,
the higher the improvement; albeit with a trend of diminishing returns. This trend is easily
explained since, whilst the first repeater insertion causes the average wire segment length to
halve, the next one only causes a decrease by a third, then a quarter, then a fifth, and so on.
Strictly, the reduction given by inserting the Nth repeater is N/(N +1) of the previous value.
And the counter-intuitive result of more repeaters decreasing bit cycle time when performance
in a conventional system is normally hurt by this extra logic is due to the ‘pipelining effect’ of
repeater insertion (see Section 5.11, and in particular Figure 5.14). The metric of bit cycle time
talks only about the time taken between adjoining repeaters, and nothing about end-to-end
performance.

We see once again that the graph shows data points for the respective repeater configura-
tions until each reaches a segment length of greater than 3000µm, when operation ceases.
This corresponds to the operational limit of a segment with a minimum pulse width.

An interesting point from the plot is that performance can always be increased by inserting
additional repeaters — even when the wire length is zero. This phenomenon is caused by the
fact that a repeater’s input cycle time (data low to acknowledge high) is slightly faster than the
DEMUX’s. Therefore, a transmitting MUX will see a slightly higher performance than direct
connection for some of the data bits being sent due to a decoupling effect provided by the
repeaters.

6.13.3 Repeater logic delay

Repeaters may reduce wire delays by segmenting long sections, but they also insert an ad-
ditional logic delay for each repeater used. If the logic delay outweighs the saving along the
wire, then repeater insertion is pointless and power inefficient.

The stateful repeaters offer a forward (data path) logic delay of 639ps, independent of
input pulse width, but rising with segment wire lengths. This is measured as the time from
the 50% of vdd falling at the input, and the equivalent fall at the output. The loop oscillator
result of Figure 6.12 shows this, and also that the backward delays have a very similar pattern.
Points are taken from the corresponding maximum performance pulse widths.



6. Evaluation of the area-efficient interconnect

Repeated latencies for a MUX-DEMUX link (pulse chopper)

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000

Total wire length (um)

En
d-

to
-e

nd
 la

te
nc

y
(n

s)

Unrepeated
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.36: First bit latencies for the repeated interconnect

Bit cycle times vs total wire length with 0--5 repeaters inserted

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total wire length (um)

B
it

cy
cl

e
tim

e
(n

s) No repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.37: Bit cycle times for the repeated case — chopper pulse generator



6.13 Repeater insertion with the chopper-based link

6.13.4 Energy

Now that we have seen how the conventional performance metrics of latency and throughput
apply to our vanilla and repeated links, it is time to move on to what, today, is perhaps the
most important factor when designing a large-scale system: power consumption. Power
constraints are the most pressing in today’s design environment, and so it would be very nice
if my system not only had good throughput characteristics, but also transferred data in an
energy-efficient way. Therefore, we examine the metric of energy-delay product, which has
been introduced previously as the best way of evaluating the efficiency of an implementation.

We have just seen that additional repeater insertion boosts throughput, so we may expect
that as high a number of repeaters as possible would be optimal from an energy-delay product
point of view, since (data→ack loop) delay per bit would be minimised.

Looking at the actual energy-delay product results (Figure 6.38) however, we see a differ-
ent situation: the energy overhead of inserting additional repeater elements outweighs the
increase in performance they provide. Further, for every repeater inserted, the higher the
energy penalty, and there are no situations when it is advantageous from an energy-delay
point of view to insert a repeater. Therefore, when implementing this interconnect, a designer
must make a choice to where their priorities lie; power or performance?

This trade-off between power and performance is a classic dilemma for interconnect
designers.

6.13.5 Energy use breakdown

To try and help a designer to make an informed decision when using my point-to-point
interconnect, it is useful to understand where the energy consumption comes from. We will
now see how the energy consumption breaks down, and what components in particular are
energy intensive.

Wire driver energy

To start, we look at the straightforward Figure 6.39, where we plot the energy consumption per
bit of the unrepeated full system, and also display how much of that consumption is actually
being taken up by driving the wires. We see that, unhappily for an efficient point-to-point
interconnect, only a fifth of the energy consumed is for this vital task.

More interestingly, if we actually look carefully at the energy consumed, we can see
something a little odd: energy consumption increases with wire length, as we would expect,
but only up to a point. After this, it remains more or less constant, despite the fact that the
wire capacitance is still increasing. How can this be?

Well, theory says, by E =C V 2/2 [28, p.970], that if I drive the wire full swing up and down
for one bit and 1mm, it should dissipate 1.011pJ of energy, and that this should scale linearly
with wire length, since capacitance does, and all other variables remain constant. However, we
have, so far, omitted any thought of the finite length of our driving pulses. So, to understand
better, Figure 6.40 shows how the driver energy fares with different pulse widths.

If one subtracts the fixed internal logic power dissipation of the 0mm case (∼1.5pJ with a
vdd of 1.8V), we see that the actual wire dissipation with a single delay is 0.246pJ at 250µm,
0.501pJ at 500µm, 0.912pJ at 1000µm, increasing in even steps, until a break-point at around



6. Evaluation of the area-efficient interconnect

1250µm, after which it tends to a constant value. In fact, this behaviour is mirrored by the 3
delay line, but with a higher asymptote; whilst the 5 delay line carries on growing. Why is this?

The answer is simple: energy consumption increases with the capacitance increase of the
longer wires until there is no energy left to consume. At 1250µm, the charging time of the wire
matches the pulse width. Given that the pulse width is fixed, longer wires will simply not be
fully charged. However they will still absorb all of the energy†† available in the pulse.

Let us consider two cases from the graph, when power is still increasing (l = 1mm), and
when it becomes constant (l = 2mm). We know from before that at 1mm, t = RC /2 = 33ps
(where t is the charging constant of the wire, equal to the time taken to charge to vdd(1−(1/e))
from 0V), and a pulse width of around 250ps easily charges the wire.

However, the situation is different at 2mm. Here, t = 132ps, which is approximately a half
of the pulse width. Therefore, the wire charges for approximately 2t . Now, in 2t the wire
charges to only vdd(1− (1/e2)) = 1.56V. So, we see that not all the wire capacitance is charged.
Further, at 3mm, the calculation gives a swing of only 1.14V, which is very much reduced from
the nominal 1.8V, and explains why 3mm is the extent of reliable operation with a minimum
width pulse. For further enlightenment, the reader is referred to the plots of voltage swing
presented before in Section 6.8.

This tells us two things: that the pulse width equals the charge time at 1250µm, and that
the wire will be operating without a full voltage swing for longer lengths. The latter point
is a boon and a potential for disaster. Low swing systems (see §4.3.1 for more details) offer
reduced energy consumption and faster response times that their full-swing counterparts.
However, since the difference between voltage levels is reduced, they are more susceptible
to noise, and so erroneous operation may occur. This is one reason that there are minimum
pulse widths for the varying lengths of wire in this system.

The ‘5 delay’ line is an exception since its pulse is still wide enough to fully charge wires in
excess of 3mm, and so it keeps increasing with length.

A final thing to mention is that the displayed value of 0.912pJ/bit/mm is well in keeping
with the reported energy consumptions of contemporary high performance interconnects of
around 0.8pJ/bit/mm for a charge and discharge cycle (at a vdd of 1.8V). For example, Ho et
al. state [23] that, for a 0.18µm process, 1mm of semi-global interconnect has a capacitance
of 414fF. So, if I charge and discharge this wire, then by E =C V 2/2, full swing consumption
is 1.34pJ. And, recalling that the capacitance I extracted totals 3.08fF/mm, including mutu-
als, this calculation becomes 0.998pJ/mm. Both of these are close enough to the value of
0.912pJ/mm to give the author high levels of confidence in his model and simulation results.

Dynamic power from driver conflicts, compared to pulse widths

We have dealt with the plateau of driver energy with a fixed pulse width, but how about the
rapid increase observed with increases in pulse width for a fixed wire length from Figure 6.19?

Well, Equation 6.8 shows that, once the pulse width exceeds the processing time of these
components, bit cycle times increase linearly with pulse width. Additionally, being longer
than the processing delay of the elements means that, say, a data pulse will still be being
driven by the transmitting end when the receiving end is attempting to acknowledge it: and
so conflict will occur on the wire, with both ends driving and excess energy being dissipated.

††Most electronics discussions would talk about current here, rather than energy. This is certainly also true,
but the author stays with the terminology of ‘energy’ to avoid confusion.



6.13 Repeater insertion with the chopper-based link

Energy-delay product for full repeated MUX-DEMUX link

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total wire length (um)

En
er

gy
-d

el
ay

 p
ro

du
ct

 (a
Js

)

Unrepeated
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.38: Full system energy-delay product for various repeater insertion configura-
tions — chopper pulse generator, 1 delay

Base link energy consumption per bit with wire length

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000

Wire length (um)

En
er

gy
 p

er
 b

it
(p

J)

Total energy
Of which, wire driver energy

Figure 6.39: Base link energy consumption with wire length



6. Evaluation of the area-efficient interconnect

Driver energy per bit with length and delays

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 500 1000 1500 2000 2500 3000

Wire length (um)

D
riv

er
 e

ne
rg

y
co

ns
um

pt
io

n
pe

r b
it

(p
J)

1 delay
3 delays
5 delays

Figure 6.40: The increase in energy consumption of the wire drivers with wire length

The longer the pulse, the longer the conflict, in a linear relationship. Combined in a product
with the linear increase of bit cycle time with width, and the energy-delay product shoots
up quadratically; thus explaining the shape of the graph and illustrating, once again, the
importance of picking the minimum sized delay to do the job with this interconnect.

The remaining energy

The remaining energy goes to the MUX and DEMUX logic, and I beg the reader’s indulgence
when I say that the exact breakdown will be presented later, in Chapter 8.

6.13.6 Repeater energies

How much energy goes on supplying our repeaters’ logic? We see Figure 6.41, which informs
us that, for most points, the energy increases by approximately 2pJ for every repeater inserted.
The figures exclude energy consumed from driving wires. The value of 2pJ is, then, a good
approximation to the energy repeater logic consumes per bit.

More interesting, perhaps is the general shape of the graph. Visible for the one, two and
three repeater cases, and starting to be noticeable for the four number case as well is a dome-
like shape to the curves. This tells us that repeater energy consumption starts off relatively low,
then increases to a peak, before slowly dropping off again. The reason behind the initial rise is
straightforward and stems from the fact that the repeater inputs slew less quickly when their
wire segments become longer. This then leads to increased dynamic power dissipation in
the repeater logic gates, as each spends more time with both pull-up and pull-down circuitry
partially conducting. The fall-off is a little less obvious, but again relates the degradation



6.13 Repeater insertion with the chopper-based link

of input rise and fall times. When the wire becomes so long it is pushing the operational
boundaries of a repeater’s capability, the reduced swing voltage and rate causes the repeater
input to see a shorter pulse than was transmitted. This results in the input detecting data

valid for a reduced period of time (this may be reduced by as much as 40ps for an extra 1mm
of wire length). This, reduced period then gives internal logic less time to settle, and some
internal signals swing over a reduced range, suppressing total power consumption.

This energy consumption shape has a knock-on effect to the energy-delay product of
the repeater configurations, and we see that Figure 6.42 shows the same form, albeit a little
stretched out. The energy-delay product graph then, deserves no additional explanation.

Energy-delay product

A very similar analysis than for raw energy can be given for the energy-delay product, shown
in Figure 6.19.

Essentially, all pulses in the flat range charge the wire fully, and so dissipate the same
energy. They also all produce the same bit cycle time, and so their product is also constant.

Whilst for both these graphs, there are many more data points shown to improve the
quality of the regression, reliable data transfer only actually occurs in the system with total
pulse widths of less than 1.8ns, for both the matched and unmatched cases.

So, for 1000µm of wire length and no repeaters, the pulse widths should be less than 1ns
in length to produce optimal performance. Note that this will be different once repeaters are
inserted.

6.13.7 Logic delays

The logic delays for the MUX tree at maximum performance are 393ps, 381ps and 374ps, for
segment lengths of 1000µm, 2000µm and 3000µm, respectively. The DEMUX tree is a little
higher, at 434ps, 459ps and 473ps. Again, these are measured between successive falls past
the 50% of vdd at their output / input nodes. Compared to the wire delay, these are high and
explain why logic is on the critical path for short wire lengths. This is a price paid for having a
wire-efficient implementation and robust operation at the same time.

We can perform a cursory correctness check of several of the results presented so far
by seeing that the total of the logic and propagation delays equals the bit cycle time. The
calculation is 393ps+434ps+(2×35) = 897ps, compared with a stated bit cycle time at 1000µm
of 957/988ps (latch/chopper). The values are within margin of error of our first-order wire
delay model, and so we are self-consistent.



6. Evaluation of the area-efficient interconnect

Total repeater energies per bit when in a MUX-DEMUX system

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total wire length (um)

R
ep

ea
te

r t
ot

al
 e

ne
rg

y
pe

r b
it

(p
J)

1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.41: Energy per bit transferred of repeaters, excluding MUX and DEMUX logic

Energy-delay product for varing repeater configurations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total wire length (um)

En
er

gy
-d

el
ay

 p
ro

du
ct

 (a
Js

)

1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 6.42: Repeater only (excluding MUX & DEMUX elements) energy-delay product
for various repeater insertion configurations — chopper pulse generator,
one delay



6.14 Area

6.14 Area

Since the primary motivation for developing the interconnect system we have been evaluating
was to provide a very area-efficient link, its area performance demands a close inspection. In
this section, we will see that the system is, indeed, very area-efficient, when related to more
conventional interconnection strategies.

I start by asserting that the area-efficiency we desire most is that of global metal footprint.
Global metal is that which is available at the highest metal layers (metals 5 & 6 in the techno-
logy we consider), and is typically used to provide wide, low resistance tracks for signals of a
global nature. Good examples of its use are for power nets and long-distance interconnects.
Since the interconnect we are considering is designed for long distance, any implementation
would typically be routed on global metal layers.

We have seen previously that a reduction in the area footprint of a channel using these
layers offers a multitude of benefits: from offering space for additional channels; to minim-
ising wire delays via increasing trace sizes; to a reduction in inter-trace noise. All of these are
enabled by area-efficient channels.

Conversely, logic area is expendable. With every shrink of a process technology, more
and more transistors become available to be used. This is not so for wiring, which remains a
more-or-less fixed resource, in terms of quantity and, often, size. However, smaller transistors
make weaker drivers, and so are less able to drive their wires quickly. The explanation for this
is simple under the constant field model of scaling, as discussed by Streetman and Banerjee
[57, p.307–316]. Both transistor width and length are reduced by a scaling factorα, leading to a
transistor with the same bulk resistance as the original one. Without the additional reduction
of gate oxide thickness, the electric field will not be strong enough to firmly control transistor
operation. However, if the gate oxide thickness is reduced, then the supply voltage must also
be to avoid dielectric breakdown under a higher field strength. This also has the side effect
of keeping leakage currents under control. Since the overall resistance of the transistor has
remained largely unchanged, the reduction in supply voltage lowers the current driving ability
of the transistor. Under the assumption that global wires do not scale with transistors and that
their capacitance remains roughly constant with shrinks, the end result is a reduced driving
ability, and increased rise and fall times on the wire. Naturally, this implies that unrepeated
wires suffer in performance.

Under these conditions, we should be more than happy to burn transistors if it means
a reduction in the number of global wires that have to be routed and driven. This is the
approach my interconnect takes. We will now see that it does, indeed, save a large amount
of global wiring area over a parallel interconnect, and also saves in overall area after wiring
lengths of around 1000µm.

In Table 6.4, we see the area requirements of the interconnect we have been considering,
alongside those of a parallel interconnect to transfer the same quantity of data. Area usage is
displayed for both the native 8-bit width of the system, and also for a 32-bit width, as may
be more applicable for high-end designs. The interconnect is scaled from eight to thirty-two
bits by aggregating four copies of the structure in parallel, and so it uses a total of eight wires.
For comparison, the area use of a standard, parallel interconnect is shown, and we consider
both one-way (simplex) and bi-directional (duplex) schemes. We see data for lengths of 1mm
and 5mm, and the area usage values are split between logic area (transistor area) and wire
area (global metal area), with a total being available on the right. Estimates were produced by



6. Evaluation of the area-efficient interconnect

Table 6.4: Area requirements (in µm2) for various configurations

Configuration Logic Area Wire Area Total Area

8-bit, simplex, this scheme, 1mm 5,984 1,320 7,304
8-bit, simplex, std. parallel, 1mm 416 6,925 7,341
32-bit, duplex, this scheme, 1mm 47,872 10,560 58,432
32-bit, duplex, std. parallel, 1mm 3,328 55,440 58,768
32-bit, duplex, this scheme, 5mm 47,872 52,800 100,672
32-bit, duplex, std. parallel, 5mm 4,560 277,000 281,560

summing the contributions from standard cell footprints, where available, and an estimate of
the size of any custom logic used.
The results show several things:

• This interconnect design always consumes less global metal area than a parallel design
(since it is serial based);

• It also always requires more logic area than an equivalent parallel design (since it must
perform parallel-to-serial and serial-to-parallel conversion);

• The total area is always less than that for a parallel interconnect (so it has no bad use
cases);

• As wire lengths increase, so does the improvement my system offers over that of parallel
interconnect — at 1mm, they are comparable in total area, but at 5mm, my system
requires just over a third of the total area of a parallel system (and under a fifth of the
global metal area).

So, my interconnect system always requires around a fifth of the metal of a similar parallel
interconnect, and thus is very area-efficient.

6.15 Theoretical analysis of interconnect efficiency

Ho [22, p.20] gives the following equation for the maximum possible bandwidth for unre-
peated wires, such as those discussed in this section. The formula‡‡ was previously seen as
Equation 4.24:

Bandwidth over area = 1

3(FO4+wire_delay)
× Block_width

w + s
(6.9)

It is interesting to calculate the maximum theoretical bandwidth of the proposed interconnect
and a traditional parallel scheme, and compare both to the measured available bandwidths.
This will generate a measure of interconnect implementation efficiency.

The table below shows the result of the theoretical bandwidth calculations for both the
distributed and lumped RC wire models.

‡‡Ho’s actual formula states RwireCwire/2, the equation for a distributed wire delay, where I write ‘wire_delay’.
I substitute this term both for clarity and to generalise the expression somewhat.



6.15 Theoretical analysis of interconnect efficiency

Table 6.5: Theoretical maximum bandwidths for a single minimal-sized, minimal-spaced
wire

Wire length Wire model Theoretical Maximum Summary
1000µm distributed RC 3.25Gbit/s

10000µm distributed RC 94.6Mbit/s
1000µm lumped RC 2.43Gbit/s

10000µm lumped RC 47.8Mbit/s

Table 6.6: Theoretical maximum bandwidths for a single minimal-sized, minimal-spaced
wire — inter-symbol interference insignificant

Wire length Wire model Theoretical Maximum Bandwidth
1000µm distributed RC 9.75Gbit/s

10000µm distributed RC 284Mbit/s
1000µm lumped RC 4.88Gbit/s

10000µm lumped RC 142Mbit/s

We see that the models are all comparable in value for short wires (1000µm), but the
variation rises dramatically for a longer wire, to a maximum variation of 91% between the
distributed RC and lumped RC models. This result shows the importance of choosing a
model carefully, and the negative impact that inductance can have on an interconnect signal’s
performance.

If we now look at the observed throughput of the area-efficient interconnect, we can get
an implementation efficiency ratio. We saw in Section 6.5 that the loop repeater throughput
is measured at 1.33Gbit/s for a 1000µm link, and scales down to 177Mbit/s at the 10,000µm
length.

We see immediately that there must be something wrong here, since observed throughput
at 10mm is around three times the theoretical maximum! Rather than being an error in simu-
lation, this error derives from Ho’s overly-pessimistic bandwidth calculation. Equation 6.9
includes a ‘3’ under the line to account for the settling time of a wire, in order to prevent
inter-symbol interference. However, observations show that this is an unnecessary precaution
with my system, since rise and fall times are too slow to cause reflections of any appreciable
magnitude. Therefore, this tripling constant can be removed safely, and the values for our
table recalculated in Table 6.6.

We now see all values treble, and whilst this much reduces the efficiency of my intercon-
nect at short wire length to 15% of theoretical maximum, it runs at a plausable 91% efficiency
at 10mm, again, assuming the distributed RC model. However, since two wires are used in
our interconnect (and only one is ever active), across the link area, these efficiencies halve to
7.5% and 45%, respectively.

Note two things about this figure: the per wire bandwidth is twice that, and is actually
dominated by logic delays at short wire lengths, but these are easily amortised at lengths as
large as 10mm (see §6.13.7). Were the critical path to be the wires themselves, the efficiency
would increase dramatically. A fully optimised logic design for the proposed interconnect



6. Evaluation of the area-efficient interconnect

would, therefore, offer much high wire efficiencies.
To place the performance in relation to other designs with practical implementations, let

us first consider what it means to operate at the theoretical maximum. For any system, it is
the maximum possible bandwidth, but for a synchronous system it also subsumes the clock
frequency. Therefore, a synchronous serial link running over two wires, one for data and one
for a clock, could possibly run at the 4Gbit/s mark. However, this performance is unlikely to
be achieved for many reasons. First, the data sourcing and sinking logic (for a synchronous
serial link this would be a parallel-to-serial converter and vice-versa at the receiving end)
must be capable of supporting this rate. For example, the standard cell latches in our 0.18µm
technology have a maximum clock rate of very close to 1GHz, and so would be unable to
support data transfer faster that this. Whilst full-custom design may be able to improve over
this many-fold, the effort may be undesirable, and timing margins, and therefore safety, would
decrease.

Second, having two very quickly transitioning wires in such close proximity to each
other as would be the case for a serial interconnect would pose immense problems through
cross-coupling and the effects of inductance and capacitance at high frequencies. The noise
impressed could rapidly rise to the point of causing false transitions at a receiver (Ho’s ‘3’
covers only self-impedance induced inter-symbol noise).

A third major problem is the need to distribute both clock and signal with very low relative
skew, if reliable data transmission is to be assured. This problem encompasses those of
matched layout and process variations. My interconnect solution is much more tolerant to
these.

Finally, recall that the intended application for the area-efficient interconnect presented
in this thesis is ASIC design. Many ASICs will not run at a high frequency, and so it may often
be the case that an interconnect with very performance will remain idle for the majority of
the time, and so nothing is gained from improving the available bandwidth — better to have a
more reliable and modular approach, such as the system I propose.

All of these issues lead us to the conclusion that the efficiency of the proposed area-
efficient interconnect, whilst appearing low, is in fact competitive with the other realistic
designs available.



6.16 Comparison to other interconnect designs

6.16 Comparison to other interconnect designs

How does this point-to-point interconnect compare to other common interconnect designs?
In this section, I provide a brief summary of the nominal performances of the two main inter-
connect paradigms (serial and parallel), plus that of GasP. I evaluate each for its performance
when providing an 8-bit point-to-point link. For energy, I assume that a bit value toggles in
the cycle under consideration.

6.16.1 Parallel wires

The simplest interconnect to transfer eight bits of data is a parallel interconnect. Consisting
of eight data wires and one or two control wires, (near) simultaneous transitions on all wires
allows the transmission of a byte of data. Most commonly, one control wire is used, to transmit
a synchronous clock signal to a receiving end, informing it when a new data bit has arrived on
a wire.

Needless to say, this methodology, when used over long wire lengths, runs rapidly into
problems of data skew and other signal integrity issues, as we have discussed in previous
chapters.

An alternative is to use two control wires and an asynchronous transmission style, with
one wire being a request wire, and the other an acknowledge.

We look first at the synchronous design, which requires eight data wires and a clock wire
to do the job.

Area: 9 global metal wires + 9 wire drivers + receiving latch logic.

Latency: 1 Driver delay + 1 wire delay + 1 latch delay

Throughput: 8B, where B is the maximum theoretical throughput given by Ho’s equation,
and assuming that the clock runs at BHz.

Energy: 1 1
8 transitions per bit. However, crosstalk is likely to increase this value. Therefore,

energy consumption is 1 1
8 × vdd

2×Cwire
2 Joules/bit.

6.16.2 Synchronous serial interconnect

In this approach, I consider the use of a single data wire, with serial data produced by a parallel
to serial converter feeding a serial to parallel converter at the far end. Bits are clocked using
the signal on a second wire.

Area: Two global metal wires + parallel to serial conversion logic (∼ 8 flops), + serial to parallel
(∼ 8 flops) + a misc. control logic (∼ 8 more flops)

Latency: Assuming that the clock runs at the maximum theoretical frequency B, latency is
8/B + 2(latch delay) + 1 wire delay

Throughput: Bbit/s

Energy: 2 transitions are per bit transferred (one clock plus one data bit). So, energy con-

sumption is 2× vdd
2×Cwire

2 Joules/bit.



6. Evaluation of the area-efficient interconnect

6.16.3 GasP

Since the GasP system was the basis for the development of my link, it is only fair to compare
with it. GasP uses a parallel data path, but replaces the clock with an advanced handshaking
system, using just one extra wire.

Area: 9 global metal wires + 9 wire drivers + receiving latch logic + the inverters needed for
the control logic, including a delay line

Latency: Driver latency + wire delay + the delay of the ‘3 inverter loop’ (approx 3 gate delays)

Throughput: 8
1
B +3×inverter delay

Energy: 1 1
16 transitions per bit (GasP uses double edged control). Plus the energy to overcome

crosstalk. Total is thus, > 1 1
16 × vdd

2×Cwire
2 Joules.

6.17 Summary

We have seen the throughput for a parallel interconnect can be very high, but recall that the
global metal footprint it has is over four times that of my system. If we were to use this area
for my link, then extraction shows that we could:

• Double space the lines, resulting in a reduction of capacitance to two-thirds, and an
associated reduction in wire delay.

• Quadruple space the lines. The wire capacitance halves, and therefore so does the wire
delay.

• Double space the lines and double their width, halving resistance as well. Here, we get
new values of 2C /3 and R/2, resulting in a hugely improved wire delay of a one third the
original wire delay.

So, my link could easily make use of this area and, over long distances increase performance
by 2–2.5 times.

Finally, we have to consider if any of this optimisation is necessary — recall our target
application is to transfer somewhere around 500Mbit/s. All designs have already exceeded
this rate, and so we should be happy to sit back and enjoy the area efficient benefits of the
interconnect evaluated in this chapter. Anything more is just a waste of wires and power.



RasP: a network-on-chip
implementation 7

Parvis imbutus tentabis grandia tutus
(When you have mastered small things, you shall attempt great ones safely)

Motto of Barnard Castle School, Co. Durham, UK

In the previous chapters, I have introduced my point-to-point link, based loosely on the
GasP control system. I have shown that it has good performance and, critically, that it is
extremely area-efficient.

Now that we have such a basic link, can we apply it to a large-scale problem, such as the
issue of chip-wide communication, encountered by modern IC designers?

The answer is ‘yes’ but, before we see how it can be done, let us first take in an overview
of the problem. Modern chips typically incorporate a large number of logic blocks, each of
which may wish to communicate with any of the others. As process shrinks occur, the number
of such blocks increases rapidly, to the point where a traditional interconnect (such as a bus)
becomes intractable due to scale.

Therefore, many modern designs make use of the Network-on-Chip (NoC) paradigm (see
Section 3.4.2 for an introduction to NoCs) to provide an interconnection fabric between logic
blocks. As an example of how ubiquitous NoCs now are, Dally and Towles show in their 2001
paper [14] that the scalability and ease of interconnecting many IP blocks enabled by NoCs
means they will soon become indispensable. The overriding reason for which is the plethora
of desirable properties they offer, some examples of which are given below.

• Scalability — since NoCs often offer a regular structure, an increase of blocks to be
interconnected increases the number of nodes in a system linearly. Therefore, NoC
overheads grow no faster than the logic they support, even with the increases in density
given by process shrinks;

• Regular layout — this is similar to scalability, but also makes design and layout easier;

• Global interconnections — even logic with only a local-scale connection to a NoC fabric
is able to route data to any block on-chip;

• Manageable complexity — for each node and IP block, only local relationships need to
be considered for routing, timing closure, etc. This eases design and verification;

• The ability for dedicated interconnections between blocks to be supported if needed —
guarantees of bandwidth, latency etc. can be offered via virtual networks without the
need for additional point-to-point links;



7. RasP: a network-on-chip implementation

• A large total bandwidth — the NoC bandwidth is up to the sum of the links in the system;

• Potential run-time configurability of topology and characteristics — a ‘soft fabric’ can
allow dynamic resource allocation, and give a higher utilisation ratio than a set of
dedicated links could offer;

• Often, a GALS based approach is used (see Section 2.4.1 for details on GALS) — this
allows multiple clock domains to be interconnected without detailed knowledge of
timing required at any logic node. This reduces logic system complexity, and speeds
design.

Standard on-chip buses are unable to offer all these advantages. For buses, the complexity
and scalability issues are particularly acute, since link quality degradation and the number of
connections required increases rapidly with additional nodes.

The NoC trend offers scalable multipoint-to-multipoint connections, with ease of band-
width aggregation. Most of all, perhaps, NoCs offer a template-style implementation, where
black-box routers and data lanes can be placed in pre-reserved areas of a floor-plan, in a very
predictable manner. The routers or data aggregators then offer standard input and output
interfaces, allowing those blocks supplying data to — or sinking data from — them to be
swapped around or modified without affecting the connections between the other blocks
in a system. This makes a layout designer’s job much easier, allows design changes late in
the flow, and allows multiple IP providers to connect together seamlessly. Further, the a
priori knowledge of the floor-planning needed and a good estimation of the time needed for
implementation using black-boxed NoCs allows design projects to be more predictable and
the engineering resources and time required to be estimated more accurately. This, of course,
offers cost savings.

Their desirable properties mean that there are many NoC implementations now available
(and Bjerregaard catalogues a few types [5]), but the most popular and effective choice in the
asynchronous logic space is the Chain interconnect system from the University of Manchester.
I now describe it.

7.1 Introducing the Chain interconnect system

Bainbridge et al. have spent many years developing the Chain interconnection system [3].
Intended as a scalable system to connect together logic blocks from multiple IP providers,
it provides standard interfaces to blocks which, critically, need not all operate at the same
frequency. This speed-independent nature gives it great flexibility when composing systems
whose exact implementation details are not necessarily know early on in the design process.

Chain consists of a sequence of modular blocks, each with a specific purpose. In their
paper, Bainbridge et al. demonstrate a pipeline latch, router, arbiter, and multiplexer [3].
Each use C-elements [56] as their basic gate, and all are connected together with a one-of-five
data encoding, which allows two data bits to be transmitted per cycle. This wire-intensive
arrangement makes it highly robust, and insensitive to delays of any block or data producer or
consumer. It uses a 4-phase signalling protocol (this was described in Section 5.1), entailing
a performance overhead, since all active wires must complete two transitions to transfer a
single data symbol.



7.1 Introducing the Chain interconnect system

the slowest stage. The key difference is that
with a synchronous approach, the entire inter-
connect must be operated from the same clock,
or a multiple thereof, whereas the asynchro-
nous approach is self-regulating, operating as
fast as the paths allow. The “Self-timed cir-
cuits” sidebar (next page) gives a detailed expla-
nation of how asynchronous circuits work.

The pipe latches in Figure 1 represent the
self-timed latch stages for the one-hot links.4

The loop between these latches can be
thought of as a ring oscillator, interlocked with
the preceding and following stages via the
Muller C-elements, with the minimum oscil-
lation period determined by the two C-ele-
ments, the OR gate, the inverter, and the

17SEPTEMBER–OCTOBER 2002

Table 1. One-of-five data encoding.

End-of-packet signal d3 wire d2 wire d1 wire d0 wire Information transferred

1 0 0 0 0 End of packet
0 1 0 0 0 Two-bit data value 11
0 0 1 0 0 Two-bit data value 10
0 0 0 1 0 Two-bit data value 01
0 0 0 0 1 Two-bit data value 00
0 0 0 0 0 Idle state

S
en

de
r

b

Pipe latch

Route
control

M
ut

ua
l

ex
cl

us
io

n
el

em
en

t

r0

r1

go

g1

S

R

Q

Q

La
tc

h
La

tc
h

S

R

Q

Q

ro
ut

e
x

ro
ut

e
y

sx

sy

neopxyEOP

S

R

Q

Q

S
R

la
tc

h
S

R
la

tc
h

R

S

Q

Qroute x

route y

sx

sy

neopxyEOP

MUX

Arbiter

Router

eop

d0

d1

d2

d3

ack

eop

d0

d1

d2

d3

ack

eop

d0

d1

d2

d3

ack

S
en

de
r

a

R
ec

ei
ve

r
z

R
ec

ei
ve

r
y

eop

d0

d1

d2

d3

ack

Route control

C

+C
+C
+C
+C

C

+C
+C
+C
+C

C

+C
+C
+C
+C

C

+C
+C
+C
+C

C

C

C

C
C
C

C
C

C
C
C

C
C

C

C

C

C

Pipe latch

Figure 1. Collage of Chain network components.

Figure 7.1: Chain implementation collage (Reproduced from [3])

As mentioned, Chain uses one-of-five encoding [56] for its data transmission, which re-
quires five data wires to transmit two bits of data. Further, they add an acknowledgement wire,
bringing the total to six wires (for only two bits of data). Chain, unfortunately, suffers perform-
ance penalties: asynchronous designs are based on C-elements, state-holding multiple-input
gates. C-elements are generally slow, and so Chain’s latency and cycle times are dominated by
these sluggish components, even when properly buffered. A full performance evaluation of
Chain will be displayed in the next chapter.

So far we have seen that Chain is indeed a flexible system, but lacks very obviously in one
respect: area-efficiency. Nothing ever comes for free, and asynchronous logic is no different:
the price paid for clock independence is area and, potentially, power. Asynchronous logic
typically takes around fifty percent more than that of more conventional types. Amazingly, this
does not always entail a power disadvantage, since asynchronous designs consume switching
power only when there is data to be processed.

I show a collage, reproduced from Bainbridge and Furber’s paper [3], of the reference
Chain configuration as Figure 7.1. To ensure full fairness of comparison, I implemented the
Chain elements as shown, but with the configuration modified to mirror the RasP test system.
I will explain the modification in more detail in Section 8.7.



7. RasP: a network-on-chip implementation

One thing is not clear from the collage, so I mention it here: Chain deletes the first symbol
of every packet in the router, using its contents to determining the routing path. Thus,
complex paths can be made by appending multiple preamble symbols, with the associated
packet overhead.

One of the greatest motivators for choosing Chain as a comparison system is that, like
our point-to-point link, it does not make use of conventional wire repeaters. In fact, Chain
employs the same technique of pipelining, with elements its designers call pipe latches.
Evaluations in the next chapter will show how these affect Chain’s performance in a very
similar manner to the stateful repeaters used for our link.

7.2 Improving Chain

Chain, with its speed-independent design, neatly addresses the issues of clock skew and
composability. These advantages go on to give it scalability and a low implementation com-
plexity. However, it lacks in one crucial respect: efficiency of global metal wiring. With its
one-of-five encoding plus an acknowledgement signal, Chain uses six wires to transfer two
bits. Its efficiency, therefore, is three wires per bit, and we note that this is worse than the two
wires per bit offered by out point-to-point link of Chapter 5.

The most important trade-offs for NoCs mirror those of a point-to-point link: throughput-
per-area, and latency-per-area. Therefore, it is natural to wonder if my point-to-point link
would do a better job of producing an NoC than Chain does with its native signalling scheme.
The Chain elements neatly address the problems of scalability and data routing, and so it is
helpful choose to use it as a blueprint for a new NoC implementation.

In the remainder of this chapter, I will present RasP, an area-efficient NoC, based on Chain.
I show its components, and evaluate their performance individually. Then, in Chapter 8, we
will see how RasP performs when compared with Chain.

7.3 RasP: a network-on-chip implementation

I have demonstrated in Chapter 5 my highly area-efficient point-to-point serial link. It requires
only two wires to transfer a data word, giving it tremendous area and performance advantages
over more traditional forms of interconnect.

We will now consider how to scale my point-to-point link into RasP: a network-on-chip
application that inherits the properties of area-efficiency, high bandwidth, routability and
signal integrity. In comparison to more traditional Carallel interconnect structures it will
occupy only 20% of the global metal footprint, and a comprable amount of logic area, for
line lengths of up to 1mm. At lengths greater than this, its implementation area becomes
significantly less than that of a parallel interconnect (see Table 6.4), whilst retaining the high
bandwidth and throughput characteristics that are so important for NoCs.

My basic point-to-point link is ideal for deployment as the node-to-node interconnection
of a NoC. Its clockless operation gives it numerous advantages over conventional NoC im-
plementations, but the two most important are the ability to cross arbitrary clock domains
and tolerate skew, plus the flexibility of on-demand operation, made available by the use of
handshakes rather than clock-synchronous operation.



7.3 RasP: a network-on-chip implementation

I briefly outline these and other basic link advantages now:

• The link internally runs our pulse-based, dual-rail signalling protocol. Conversion from
a parallel format occurs immediately after data needs to be transferred, and data is only
restored to parallel at the very last opportunity before reaching the receiver. This means
that all nodes operate on, and are interconnected by, dual-rail signals. Therefore, the
metal area footprint of RasP is much smaller than an alternative parallel fabric; and so
it retains the area-efficiency of its base link.

• Arbitrary clock-domain crossing enables the link to interconnect logical or IP blocks
running at different clock frequencies without any compositional problems being
posed. With my system, the block frequencies need not have any known relationship
(e.g., rational clocks) for reliable operation. This property also extends to provide
skew-tolerant design.

• The free-running operation of the link means that it always offers the highest possible
throughput to the blocks individually, and to the system as a whole. The effective fre-
quency of the individual links to data sources and sinks will always run at the maximum
rate at which data can be provided or consumed. This minimises latency and maximises
throughput at the nodes. Similarly, the routers and arbiters of RasP operate as soon
as data arrives at them, and not at some clock cycle boundary. This again maximises
throughput and minimises latency, which is such a critical parameter when designing
an NoC implementation. With RasP it comes ‘free by construction’.

• The modularity of the link allows plug-in operation at design time. Since each node
operates independently from a designer’s point of view, they need only concern them-
selves with the most local of connections and dependencies. This greatly speeds up
design time, reduces complexity and increases the chance of the system working first
time.

• Scaling the link is trivial: simply add more nodes, and RasP will do the rest. This is in
main part due to its self-synchronising nature via clock-free operation. An increased
number of nodes naturally leads to increased contention for resources, but a sensible
structuring of routers and arbiters will allow this to be controlled. For a good example
of this, look at tree arbitration, as described in [2; 34; 47].

7.3.1 Overview of RasP

RasP consists of several basic elements: routers, arbiters and repeaters. To explain their
interaction and operation, I start with a block diagram of its overall form. Shown as Figure 7.2,
we see a sample configuration with two data providers and four data consumers. Data flows
left-to-right, along a path selected by a configurable address.

The occurrence of data fan-in and fan-out requires that some scheduling and/or arbitra-
tion be performed. This is accomplished in RasP by a combination of routers and arbiters.
A router is able to take in a stream of data and an address, which may either be encoded
in the data stream, or transmitted via separate address wires, and selects one out of four
mutually-exclusive outputs. In this way, the data has ‘value added’, and routing is possible to



7. RasP: a network-on-chip implementation

MUX
tree

DEMUX
tree

Arbitrated
merge

Address
Source

long wire
with repeaters

DEMUX
tree

DEMUX
tree

DEMUX
tree

RasP
Router

MUX
tree long wire

with repeaters

long wire
with repeaters

long wire
with repeaters

long wire
with repeaters

long wire
with repeaters

2 input - 4 output port routing

Data
source

Data
source

Data
sink

Data
sink

Data
sink

Data
sink

Figure 7.2: Overview of RasP test system components

a selected destination. This procedure can be thought of as applying a fork function [56] to
the data path.

Arbiters are able to take in two streams of data, potentially arriving simultaneously, and
select at most one to be transmitted at that point in time on its single output channel. In
this way, arbiters ensure data-safe transmission, by preventing data collisions on merging
channels. This can be thought of as implementing the complimentary merge function to
the router element’s fork. The reader may be interested in Molnar’s elegant solution to a
two-phase arbiter implementation, and novel uses for such arbiters [44].

For all elements, unserviced data is easily queued by the simple act of not resetting
(acknowledging) the line after data is placed on it.

If an element is ever busy when data is presented to its input interface, the data can be
easily queued for processing at a later time. If we simply do not reset the input interface
(i.e., do not generate an acknowledge signal), the transmission protocol states that data must
remain there arbitrarily. Thus, in these circumstances, the data will just sit on the wires until it
is serviced at some later point. Critically, no data will be lost due to queueing — transmission
and processing is always data safe.

Finally, since long wires will be involved in an NoC implementation, since it is a global
venture, wires may suffer from the effects of the phenomena outlined in Chapter 4. For
example, attenuation and crosstalk will be encountered, and signal-to-noise ratios will be
degraded. This may culminate in erroneous values, or even phantom transmissions if steps are



7.3 RasP: a network-on-chip implementation

not taken to restore logical values at appropriate stages throughout their flight. Traditionally
these issues can be overcome by the use of a repeater element [65, pp.221–226]. With this in
mind, I have designed two forms of RasP repeater element, depending on the exact needs of a
particular repeater location. Repeaters are also often able to decrease the end-to-end delay of
a link (see Section 6.2.2) since they ‘shield’ downstream capacitances from any line driving
logic, but in RasP they are more valuable for their level-restoring ability.

I will now introduce the implementation of the two building-blocks of RasP, starting with
the the router, and then the arbitrated merge element.

7.3.2 RasP router

Key to the RasP system is a router element, shown as Figure 7.3. It takes destination address
information and a single data input channel, and chooses one of four output channels to
route that data to.

For simplicity, I illustrate operation with two address wires indicating one of four routes
by their states and generating an enable signal for the relevant routing direction. In a larger
system, the first transmitted data word could be used to indicate one of 256 possible routes;
or we could convert the two address wires to a fully-fledged point-to-point link, serially
transferring a long address. I show the schematic for the ‘north’ output channel. The logic
is repeated for each of the four routable directions, with a central route controller shown
in dashed lines. Our simplified address wires are steered with AND gates, from the same
direction enable signals since, unlike the data wires, they do not use the pulse-based protocol.
In this example, where we have only four possible destinations, the address does not actually
need to be routed to the following stage, but I have included the circuitry in the diagram,
to indicate how this may be accomplished for larger systems. It should be clear from the
schematic that the addressing logic is ‘plug-in’, with respect to the routing circuitry, and this is
a key aspect of the flexibility of my system: regardless of the particular physical-layer protocol
being used by a system, RasP can trivially adapt to it.

Performance evaluations are sufficiently accurate using our simple addressing scheme,
so a more complex one is not necessary. This is mainly because address decoding need only
happen once per data word, and so any overhead would be amortised over several data bits,
making almost all performance penalties negligible compared to the cycle time of the rest
of the router. Further, for the example shown, address decoding is very much off the critical
path of the router element, and so most alternative designs would, likewise, have little or no
impact on performance. For these reasons, the author is confident that the evaluation results
given in this, and the following sections, are accurate.

In our example ‘north’ channel, we can see that the enable_north channel is logically
ANDed via transistor n1 in an n-type with two other signals, before allowing the passage
of data. The bottom transistor, n2, is active whenever the output channel (both north_0

and north_1) is empty of a data symbol. Thus, when the output channel is safely enabled
(addressed and empty), transmission of a data symbol relies solely on the activation of
transistor n0, which occurs as soon as a valid data symbol appears on the data_in inputs.
Presently, the output enabling inverter is caused to go to high, and the two output drivers,
p1, and its mirror on the north_1 wire are enabled. The arrangement of the enable and data
signals follows that of a best practice tristate design (as shown by Weste and Harris [65, p.103]),
to provide the lowest output switching latency. The driver corresponding to the input data



7. RasP: a network-on-chip implementation

data_in_0

data_in_1

reset_bar

data_valid

north_0p-types are very strong

north_1

delay

one-of-four
decoder

address0

address1

enable_north

enable_east

enable_south

enable_west

address_north0

address_north1

n0

n1

n2

p0 p1

p2

p3p4

Figure 7.3: RasP router

symbol wire being activated (driven low) becomes the one which copies the input data symbol
on the outputs. Thus, the router stage has successfully propagated the forward-going data
symbol, and now only needs to complete the acknowledge stage. This is completed, as is
the case for the stateless GasP repeater of Section 5.11.1, by the inclusion of a self-resetting
pull-up stage on the transistor stack (consisting of transistor p0), which drives both the output
stage to the high-impedance idle state, and the input stage to the all high idle state.

All of this functionality is contained in a very simple design, comprising only an inverter
and an n-type transistor on the critical forward data path. Needless to say, this gives a very
good latency characteristic, with data propagation taking merely around 310ps when attached
to a system, which corresponds to under five fan-out-four delays in our technology.

The router has a critical path in the form of the stack of n-type transistors, comprising the
data_valid, enable and output_clear transistors. This stack forms the discharge path of
the output-enabling inverter and so no output may be driven without a transition here. Good



7.3 RasP: a network-on-chip implementation

(n
s
)

Figure 7.4: Reduction in RasP router latency with increasing n-Stack transistor widths

discharge performance depends on a low resistance path to ground, and this implies that the
stack transistors should be wider than nominal. To illustrate the effect varying the width of
these transistors has in performance, I present Figure 7.4, where the width of each n-type is
plotted against the overall router latency. For example, we see that doubling the width from
1.28µm to 2.54µm reduces the router delay from 412ps to 310ps, a reduction of around 25%.

These figures come from a router attached to a long output wire, measuring an input
80%→20% of vdd transition, in-situ in the RasP system, to the same values on the output
wires.

To perform unit testing on the router, its output was connected to a standard load for
the 0.18µm technology (0.004pF). The input was connected to a linear ramp voltage, with
the technology nominal slew rate of 0.08ns. When in this configuration, the router’s per-
formance is much improved over its normal configuration: propagation of 50% vdd input to
50% vdd output takes 290ps. This equates to 4.25×FO4 delays in our technology. The increase
in performance compared to the in-system case is easily related to the reduction in output
loading, and we see the overall efficiency of implementation is high.

7.3.3 RasP arbitrated merge element

I call this element an ‘arbitrated merge element’ (from hereon simply ‘arbiter’) because it
performs both functions (which are traditionally separated) simultaneously. Merging two
RasP signals is simply a matter of connecting the two paths together, and ensuring that no
driver conflicts occur. Since the latter is essentially the job description of an arbiter, MUXing
comes for free. Our arbiter design uses pass transistor outputs, in the form of transmission
gates, to ensure mutual-exclusivity when driving an output.

The input side of the arbiter element is much the same as for all RasP elements, with reset



7. RasP: a network-on-chip implementation

circuitry and validity detection. The validity detection occurs in parallel on both input chan-
nels, and is funnelled into a bit counter and a MUTEX request input simultaneously. Before I
go on to explain the operation of these first note that, unusually, no acknowledgements are
generated in the arbiter. This is because it uses transmission gates, and the acknowledgement
from a succeeding stage will flow through to a preceding one. Since the arbiter’s data lines
are not latched, to ensure signal integrity following these transmission gates, I recommend
the immediate use of a GasP-style repeater (Figure 5.15), to boost line levels. Staticisers are
added to the inputs to ensure that input line data values are not lost when there is a long wait
for arbitration. Further, the active transistors of the staticising inverters also help to restore
acknowledgement signals, after passing though the transmission gates.

The heart of the arbiter (shown as Figure 7.5) is a two-way mutual-exclusion (MUTEX)
element, which takes in two request signals, req0 and req1 (corresponding to a valid data
symbol on input a or b respectively), and grants at most one of gnt0 and gnt1 (corresponding
to enabling the pass-through of input a or b respectively). If both requests are asserted
simultaneously, one channel will be chosen at random to be granted and, when the request
is de-asserted, the other grant will be enabled. This property ensures a degree of fairness:
once one input channel has had a packet transmitted, the other one will get to transmit, if it is
waiting.

An interesting feature of my arbiter is the operation of the transmission gates: they are
driven asymmetrically. The inverted dual-rail protocol uses low pulses in the forward direction,
and high ones in the backward. This places the n-type pass transistors on the critical forward
path, and the p-types on the equally-critical backward one. Hence, we activate the n-type
pass transistors immediately after a grant signal is produced, to allow the fastest possible data
propagation.

Activation of the p-types is more interesting: since they are not critical on the forward
path, we can afford to delay their activation after receiving data. However, they must remain
on for a period after the backward-going acknowledge signal is detected, to ensure it has time
to charge the input line fully. This involves a period of time where the MUTEX’s request line is
reset since all wires have gone high locally, even if the signal has not yet propagated fully to
the preceding stage. Ordinarily, the data_valid signal would then be de-asserted; removing
the MUTEX grant; and de-activating the transmission line. Instead, I insert a delay to keep
the grant activated for a time sufficient to charge the input line. This is easily implemented if
one delays p-type activation for an equal time after valid, forward-going data is detected on
an input. Since I have already shown that the p-types are not on the forward critical path, this
additional delay in activation does not affect the performance of the arbiter.

Output enabling is dependent on one additional factor: the current state of the output.
Since the p-types are the last transistors to switch, they may still be on when the following
input data symbol arrives at an arbiter input. Therefore, to prevent successive symbols from
crashing into each other and potentially merging, enabling of the an output is conditional on
its p-types being inactive (a high input signal), and this is the role of the AND gates on the gnt
signal paths.

Finally, in this description, I will explain how the arbiter arbitrates on a per-word basis, in
order to reduce the arbitration overhead. In the example presented here, we use 8-bit words to
fit in with the implementation of the point-to-point link shown in Chapter 5. After arbitration
on the first bit of a word, the output path remains enabled until the end of the word. This is
accomplished by a counter that tracks the number of bits transmitted since arbitration began,



7.3 RasP: a network-on-chip implementation

input reset p-types are very strong

b0

b1

reset_bar

MUTEX

req0

req1 gnt1

gnt0

a0

a1

reset_bar

de
la

y
de

la
y

z0

z1

3-bit counter

q0

q1

q2

clk

3-bit counter

q0

q1

q2

clk

Figure 7.5: RasP arbitrated merge element

and only releases the MUTEX request after all eight bits of a data word have been transmitted.
The counter need not be glitch-free, since the hysteresis inherent in the MUTEX smooths
out such problems, and leads to error-free operation. Using a counter increases the amount
of logic, but removes the need for another global wire signalling ‘end-of-packet’. Per-word
consideration also amortises the time cost of arbitration over a whole word, making it less
critical than might otherwise be the case.

For wider data paths, where we aggregate multiple point-to-point links, the counter should
not be clocked until all data wires are showing valid_data signals. This is easily implemented
by clocking using a tree of C-elements: stateful gates whose output only changes once all
inputs have changed in the same direction. These are further described by Sparsø and Furber
in [56, p.21–23], where an example implementation is also given.



7. RasP: a network-on-chip implementation

7.4 Summary

In this chapter, I have introduced the problem of creating a large scale multipoint-to-multipoint
interconnect. To address this issue, I have outlined how a Network-on-Chip (NoC) can provide
the desired functionality and performance, and so is ideal for use in these circumstances.

To this end, I have demonstrated the Chain interconnect system, a NoC implementation
and shown that it is suitable for the task. However, I have also shown that it suffers from the
problem of inefficiency at the global metal level (it needs to use six wires to transfer just a pair
of data bits).

Realising how the point-to-point link designed in Chapter 5 could help to ameliorate this
problem, I have produced a new NoC, RasP. To enable its construction, I have demonstrated
designs for a router and an arbitrated merge element for the RasP system. Both operate on
the pulse-based, dual-rail protocol of the point-to-point interconnect. Therefore, a RasP
implementation appears similar to the Chain structure, but decreases the wire count to two:
an area reduction of two-thirds.



Evaluation of RasP 8
Every man has a right to his opinion,
but no man has a right to be wrong in his facts

Attributed to Bernard M. Baruch

8.1 Introduction

RasP possesses all of the advantages outlined in Section 7.3 it is an area-efficient NoC, with
cutting-edge performance. RasP is modular, scalable and area and power efficient. It offers
standard interfaces to logic blocks, appearing as a simple FIFO structure. This makes it a very
easy, drop-in replacement for other NoCs. I believe that RasP offers substantial complexity and
area savings over conventional interconnect structures, such as those featured in Chapter 3.
We now evaluate its performance, and compare it to Chain.

There are many factors of interest when evaluating the performance of an NoC implement-
ation. Generally, they centre around factors relating to the data rates available, but designers
are increasingly giving priority to those involving implementation details, for example size
and ease of use. In this way, the priorities attached to the different metrics may vary, depend-
ing on the particular constraints of a design. Therefore, I make no claim to the exact ranking
of them, but outline the four most important below.

• Throughput: both at the link and end-to-end level

• Latency: end-to-end and node level

• Energy consumption: generally in the form of pJ/bit/mm

• Area: requirements of global metal, routing nodes and a full system; in µm2 of die space
used

In this chapter, I will address each, and show how the performance of RasP measures up.
For fairness of comparison, I present not only my own results, but also those from a reference
implementation of the Chain interconnect system [3]. Chain is the system most similar to
ours that is available in the literature and was designed by Bainbridge et al. at the University of
Manchester. Like RasP, Chain is intended as a NoC design to easily connect together multiple
IP blocks on a single die. I introduced it in Section 7.1. Let me also point out that, to produce
a fair comparison, I re-implemented Chain in the CMOS process I use for RasP. This was done
to bring the technology values up-to-date from those published in the Chain papers, and give
a fair comparison with my system.



8. Evaluation of RasP

8.2 Evaluation methodology

System testing

The results in the following sections are all produced from hspice simulations. Following
verification of the correct operation of all the circuitry, a spice test harness was produced to
simulate the inputs and outputs of the systems under test. Rather than use artificial inputs,
we evaluate the performance of each RasP system block in-situ, as part of a full system
implementation. This allows us to more accurately model the transition characteristics of
the system and, in particular, the performance of its drivers; and therefore to provide realistic
implementation performance figures. The configuration of the RasP system can be seen as
Figure 8.1, and this setup is used for all the following evaluation.

Inside the blue box in Figure 8.1, I show how the arbitrated merge element and router
elements may be combined to produce a two-input, four-output router. This forms a primitive
element used in many NoC implementations. Further, the node can trivially be extended into
an n-input, 4-output router (∀n ≥ 2, n mod2 = 0) by creating a tree of n −1 MUX nodes.

Throughout the results, simple data patterns were used, in most part because of the
data-independence of the performance of RasP’s point-to-point link (this was described in
Section 6.3.1). For the arbiter evaluation, both non-overlapping/non-conflicting and co-
incident inputs were considered, with functional correctness for coinciding inputs proved
separately. The only observed effect of these worst-case inputs is to increase delay whilst
metastability is resolved [36]. Given the very small probability of very coincident inputs
occurring, amortisation over many data words makes its impact negligible. The RasP system
figures are for designs with fully buffered inputs and outputs to logic blocks.

Unit testing

In addition to the full system evaluation, some performance figures for individual RasP
components have already been given in Chapter 7. These data values come from test as
stand-alone units. To perform this unit testing, RasP elements were isolated and configured
as follows:

• Their outputs were connected to a standard load of 0.004pF†, with an initialisation to
the appropriate idle state (most frequently the 11 state);

• Inverted dual-rail inputs were connected with one input to vdd, and the other a voltage
source, ramping from vdd to gnd in 0.08ns†.

Chain comparison

For the comparison Chain system, optimal logic buffering and wire repeating was both
calculated before and measured empirically after implementation. Results for overall system
performances therefore come from such optimally-buffered systems.

†These values are not arbitrary; rather they are taken from the nominal values used in our technology for
determining the performance of standard cells. Thus, it is prudent to use the same evaluation metric here. In
fact, in the data book, the input values are for 80%→20% of vdd transitions, and so our evaluation is, perhaps,
even a little pessimistic in comparison.



8.3 RasP base link

MUX
tree

DEMUX
tree

Arbitrated
merge

Address
Source

long wire
with repeaters

DEMUX
tree

DEMUX
tree

DEMUX
tree

RasP
Router

MUX
tree long wire

with repeaters

long wire
with repeaters

long wire
with repeaters

long wire
with repeaters

long wire
with repeaters

2 input - 4 output port routing

Data
source

Data
source

Data
sink

Data
sink

Data
sink

Data
sink

Figure 8.1: RasP test system setup

8.3 RasP base link

Since RasP uses the point-to-point link of Chapter 5 as its base case, the wire performance
figures for RasP are the same as seen previously. Therefore, they are not reproduced fully in
this chapter, though it is instructive to re-read that data and compare it with the performance
of the RasP system, as observed end-to-end. Similarly to its base link, RasP’s throughput is
also improved by the insertion of stateful repeaters.

8.4 RasP performance evaluation

I now give the results for the performance of the RasP test system. As for the base link, we are
concerned about the latency, throughput, area requirements and energy consumption of the
system. Therefore, those are the metrics we will see results from.

8.4.1 Latencies

I characterised the logic latencies of the various RasP components, and these are shown in
Table 8.1. The arbiter element has variable latency, dependent on how co-incident in time data
arrives at its two input ports; the closer together, the longer its latency, since arbitration time is
inversely proportional to the proximity of data arrival times. Therefore, I show arbiter latencies



8. Evaluation of RasP

Table 8.1: Logic latencies of the various RasP components (10mm wire)

Component Latency
MUX tree 917ps
DEMUX tree 1500ps
Router 384ps
Arbiter (single data input asserted) 653ps
Arbiter (co-incident data inputs) 694ps

End-to-end handshake latency (new data in→data_out_valid) 24.3ns

for a data stream with no conflicting arbitration requests, and for one with co-incident data.
We see the penalty for simultaneous arrival is 41ps.

The results do vary with wire length, since the wire logic inputs are presented with different
rates of input slew for different lengths, but the variance observed was negligible compared
to the magnitude of the latencies, and so is fixed with wire length to a first approximation,
and I see no need to present additional data here.

Now that we have seen the latency of the individual components, we are in a position to
see how they effect the end-to-end latency of a data word (which is one byte), when connected
into a full RasP system. The figure for a 10mm total length is given at the bottom of Table 8.1
as 24.3ns for the first word. This is the time between new_data_in being asserted by the input
environment, and data_out_valid being displayed to the output environment.

Figure 8.2 shows how this value changes as we not only range from one to ten millimetres,
but also as we insert repeaters. We see the expected trend: longer wires take a longer time; and
repeater insertion always increases latency, but with a lessened impact at longer lengths. The
overall shape is very much like that for the repeated base link (Figure 6.36), with the minor
alteration that one extra repeater is needed for correct operation with 10mm wires. Both
figures show that, after the initial latency penalty is taken, latencies increase by only 40ps/mm
when five repeaters are used. This compares very favourably to the known wire propagation
delay of 35ps/mm, and shows that we can get within 15% of optimal performance.

8.4.2 Throughput

We will now see how RasP behaves in terms of throughput. First, in Table 8.2, I give the bit
cycle times of the components, when presented with their first data bit of the day, and all
other stages are empty. Very much like pipelining a conventional logic block, we wish all
the times to be very well matched, so that no one component is obviously the critical path
for the RasP design. Also, we understand that the system’s steady-state throughput will be
determined by the speed of the slowest component, so we wish none to be overly slow.

Whereas logic latencies are fixed regardless of wire length, bit cycle times also take into
account wire propagation delays and so alter with total wire length and number of wire
repeaters inserted. In Table 8.2 I display the bit cycle times associated with the optimal
number of repeaters inserted for one and five millimetre wire segment lengths.

We see that the arbiter element has the worst bit cycle time. This is because it is a more
passive component than the others; so is unable to strongly drive signals; and in turn receives
weaker ones. Thus, both its reception and transmission operations are liable to be slower
than the more active blocks.



8.4 RasP performance evaluation

Byte end-to-end RasP latencies

10

12

14

16

18

20

22

24

26

0 2 4 6 8 10 12

Wire lengths (mm)

En
d-

to
-e

nd
 la

te
nc

y
(n

s)

No repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 8.2: RasP end-to-end byte latencies

Table 8.2: Minimum bit cycle times of the various RasP components

Element Cycle time (1mm wires) Cycle time (5mm wires)
MUX tree 955ps 1033ps
DEMUX tree 1213ps 1388ps
Router 1249ps 1422ps
Arbiter (single data input asserted) 1311ps 1523ps
Arbiter (co-incident data inputs) 1352ps 1564ps

Now that we have identified the critical component for performance as the arbiter, we can
observe its cycle times for varying lengths of wire, to determine overall RasP performance.
Figure 8.3 shows how throughput scales. We see that RasP is just as amenable to repeater
insertion than the link it is based on (compare with Figure 6.37). For example, at 7mm,
changing from a one repeater to a five repeater setup results in a speedup of 30%.

The maximum throughput at 1mm is 763Mbit/s, falling to 599Mbit/s at 10mm (both when
optimally repeated). This represents a 16% drop in throughput over a ten times increase in
distance, which is a slow decline, and so indicates a scalable interconnect.

8.4.3 Energy

I include a table (8.3) of the power consumption of the various principle RasP components.
Data is collected from multiple word runs and then averaged out to give a per-bit energy value.



8. Evaluation of RasP

RasP overall cycle times with wire length and repeater insertion (minimum pulse width)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 2000 4000 6000 8000 10000 12000

Wire lengths (um)

C
yc

le
 ti

m
e

(n
s)

No repeaters
1 repeater
2 repeaters
3 repeaters
4 repeaters
5 repeaters

Figure 8.3: RasP test system cycle times, with wire length and repeaters inserted per
link

Table 8.3: Energy consumption for RasP elements for a total link length of 10mm, with
three repeaters inserted

Component Energy consumption per bit
MUX tree 0.297pJ
DEMUX tree 3.37pJ
Arbiter 0.328pJ
Router 1.03pJ
Repeaters 5.67pJ

For the repeaters, multiple repeaters were measured and an average taken to increase the
accuracy of measurement. vdd is 1.8 Volts in the system.

We see that, whilst the DEMUX tree may be area heavy, it still consumes significantly less
energy than the repeater, which is what one would hope from an efficient implementation,
since the capacitance of long wires should require the largest share of system power.

The breakdown of energy consumption is best illustrated as a pie chart, and we can see
this as Figure 8.4. As expected, wire driving, repeating and buffering takes around three
quarters of the power consumption, indicating that logic optimisation is not the critical factor
in the design’s energy efficiency.

The full graph of the repeater power versus wire length can be seen as Figure 8.5. Once
again, the non-wire-driving components increase their energy consumption with wire lengths
due to decreased rates of input slew and the associated extra dynamic power dissipation.



8.4 RasP performance evaluation

RasP Power Consumption Breakdown by element at maximum performance - 10mm total length

1% 2%

15%

20%

5%

57%

Arbiter

MUX tree

DEMUX tree

Buffers

Router

Repeaters

Figure 8.4: RasP energy consumption by element breakdown (5000µm wire)

Wire energy per bit transferred over the RasP system

0

1

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000 12000

Wire lengths (um)

En
er

gy
 p

er
 b

it
on

 th
e

w
ire

 (
pJ

)

Repeater logic energy

Wire driver energy

Total repeated energy

Figure 8.5: RasP test system wire energy with length (3 repeaters inserted, minimum
pulse width)



8. Evaluation of RasP

Table 8.4: RasP test system area breakdown

Element Area
Stateful RasP repeaters 2712µm2

RasP router 2533µm2

RasP arbiter 841µm2

Logic buffering 288µm2

Wire drivers 160µm2

DEMUX tree 6044µm2

MUX tree 855µm2

We see a counter-intuitive result: for three repeaters with a minimum pulse width, the
energy required in repeater logic increases roughly linearly (by approximately 0.25pJ/mm)with
length, whilst the energy needed to drive the wire capacitance increases much more slowly. In
fact, the increase tails of at longer wire lengths (although this is not easy to see from the plot).

Why is this? Well, the logic takes more energy than the wires since stateful repeaters have
a lot more logic than conventional ones, and so gives a less efficient implementation. Their
energy needs increase with length due, once again, to the detrimental effect of reduced input
slew rate on dynamic power consumption. For drivers, the slowing of the increase at long
lengths is again due to the phenomenon of not fully charging the wire at long lengths for a
given pulse width (recall the explanation from §6.13.5). This could lead to signal integrity
problems, and so for these lengths a longer pulse duration could be necessary in practice.

Overall, the total RasP system power consumption follows the shape of the wire driver total
energy consumption (green triangle) line from the graph, but totals for the entire RasP setup
range from 11.3–17.5pJ/bit for the wire range 1–10mm. This is twice the variation than can be
explained by wire energy alone from the graph, and so approximately 3pJ/bit is additionally
expended by RasP logic blocks when wire lengths are increased from 1–3mm.

8.4.4 Area

Like the base link, area estimates for RasP elements were produced by summing the contribu-
tions from standard cell footprints, where available, and an estimate of the size of any custom
logic used.

The breakdown by element is shown in Table 8.4. Figure 8.6 presents the table information
as a pie chart of area consumed, were a single instance of each element to comprise the
system.

The test RasP system logic uses a total of 29,548µm2 (of which 25,886µm2 is taken up by
the six MUX and DEMUX trees, leaving the core system taking only 3,662µm2), plus repeater
area dependent on the number inserted of 0–13,650µm2.

We see that roughly half the area footprint is taken up by the DEMUX tree, with a fifth
going in wire repeaters, and another fifth in the router element.

We expect to have to pay in area for wire repeating and routing, but the DEMUX tree
value is slightly surprising, and is due to the number of state-holding elements it contains.
However, bearing in mind that only one DEMUX tree is needed per end-to-end connection,
and there may be a number of intermediate routing nodes, its area cost can be amortised



8.5 Comparison to the base link

RasP logic area footprint breakdown

2712um

288um

2533um

160um855um

6044um

841um

Stateful repeaters

Logic buffering

Router

Arbiter

Wire drivers

MUX tree

DEMUX tree

Figure 8.6: RasP test system area breakdown by element, in µm2

somewhat. In the test system, however, we use four DEMUX trees and only one routing node,
so its importance is artificially inflated in this chapter.

Finally, we compare the system’s logic area footprint to that of the global wiring. For the
RasP test system, wiring area ranges from 1,120µm2 for a 1000µm long wire, to 11,120µm2 for
10mm. Thus, a system with 10mm of interconnect has a total footprint of 40,748µm2.

So, we see that the total area footprint for long wires is shared, three-quarters in the logic
and only one-quarter in the wiring. Since our original assumptions were that logic is much
more disposable than wiring, our goal has been met when we find that we have created a
logic-heavy design, with a resulting decrease in global metal requirement.

8.5 Comparison to the base link

How does RasP’s performance compare to the link upon which it is based? We expect to see
a performance hit in terms of latency, since more components must be traversed, and their
increased complexities is also likely to hit throughput.

Both of these assumptions are correct: at 10mm, RasP throughput is 599Mbit/s, compared
with 926Mbit/s for a solo link, and latency is 16.1ns, compared with 13.0ns. At 1mm, these
change to 763/1012Mbit/s and 13.2/8.2ns, for the RasP system and the base link, respectively.
So, we see that the RasP system’s performance is 30% lower than that of the base link, for both
throughput and latency. Given the additional complexity of RasP over the base link, this is
quite reasonable.



8. Evaluation of RasP

8.6 Comparison with the Chain interconnect system

At this stage, we have seen results from RasP, but are not quite sure of their relevance in
comparison to other interconnect systems. Therefore, in the next few sections, we will see
how our reference Chain system performs with an identical setup, and technology parameters.
Then, at the end of this chapter, I will compare the figures, and the pros and cons of RasP and
Chain.

8.6.1 Optimal buffer sizing for Chain

Before performance figures can be accurately generated, the sizing of Chain drivers must be
determined. Given the custom nature of the Chain pipe latches, none of the standard repeater
insertion equations we saw in Section 6.2.2 apply. Therefore, a repeater sizing and placement
sweep was performed to determine optimal performance.

Repeaters

To provide a fair comparison between the performance of the RasP and Chain systems, we
need to ensure that both operate on a level playing field. For Chain, this entails providing
full optimal repeater insertion along long wire segments. This reflects likely real-life practice,
were the design to be implemented. To determine the optimal values, we first perform a
calculation of the optimal driver widths and inter-repeater length.

Simulations show that Chain operates most effectively when wires are driven by a two
inverter buffer, with an optimal output n-type transistor width of 13.5µm. The sweep results
for 5mm wires are shown as Figure 8.7, with other lengths telling a very similar story. The
shape is perfectly characteristic of a repeater insertion sweep, as characterised by Sutherland
in his book on Logical Effort [32].

We see the expected curve of an initial rapidly reducing delay, followed by a levelling off
period, and then a hint of a slow increase again. This is as well known [32]. We see that the
optimal size from a delay point of view is about 13.5µm for the output width.

Like the RasP sweeps, the results were for a complete Chain implementation, and so logic
inputs have an equivalently imperfect rise time and realistic behaviour.

Power consumption versus width is not illustrated here, but data was extracted and it
scales linearly with transistor width (this is also in line with received theory). When taken
into account to create the metric of delay-energy product, then smaller transistor sizes rapidly
become more attractive: a 1µm width consumes just over half the power of a 2µm one (from
extracted data), and yet the delay penalty is not nearly as bad as two-fold. So, in practice
smaller driving transistors would be chosen. However, we choose to consider the optimal
performance configuration for the evaluations that follow.



8.7 Chain system results

Wire driver output width sweep for 5mm wires (10mm total)

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

0 5 10 15 20 25 30 35

Output n-type width (um)

B
uf

fe
r c

yc
le

 ti
m

e
(n

s)

Figure 8.7: Chain wire driver input buffer sweep for a 5000µm wire

8.7 Chain system results

The setup for the Chain system is the same as that for the RasP implementation, to ensure
a fair comparison. To recap, it involves the following: two data sources, each going into a
parallel-to-Chain converter; two repeated long wire sections, feeding into a MUX, then an
arbiter, and then a router. The routed data is buffered, fed onto a second long wire, and is
finally converted back to parallel, before being consumed and acknowledgements generated.

In their literature [3], Bainbridge et al. omit the implementation details of how to convert
a standard parallel data channel into the one-of-five encoding they use for Chain, and back
again. Since it is only fair to compare systems with identical input and output interfaces, I
implemented such a converter. I then consider Chain’s ‘base link’ to be this parallel-to-one-
of-five conversion, fed into a pipe latch, driving a long wire, followed by conversion back to
parallel.

8.7.1 Latency

The latency of various Chain components contribute to the overall end-to-end latency, and
the values are shown in Table 8.5. For Chain, the latencies are constant with wire length,
except for the output buffers (where the increase in wire capacitance causes a decrease in
output voltage slew) and the arbiter (where a reduced input slew causes the resolution time
to increase). I show a range, at one, five and ten millimetre wire lengths, and the maximum
performance figure for each. At the bottom, I show the word end-to-end latency, which
increases as expected with wire length. We see that the word latency increases by 800ps for



8. Evaluation of RasP

Table 8.5: Chain element forward latencies

Element Forward latency Forward latency Forward latency
(1mm wires) (5mm wires) (10mm wires)

Parallel-to-Chain converter 1130ps 1130ps 1140ps
Chain-to-parallel converter 960ps 980ps 1010ps
Router 215ps 216ps 217ps
Arbiter 745ps 870ps 990ps
Multiplexer 408ps 408ps 410ps
Pipe latch 375ps 399ps 399ps
Output driver buffering 1520ps 1590ps 1680ps

Word end-to-end latency 18.2ns 22.2ns 26.2ns

every additional millimetre of wire length, which is substantially more than can be explained
by the wire delay alone (at 35–40ps/mm, when optimally repeated).

8.7.2 Throughput

We now look at how quickly Chain is able to deliver data to its endpoints: its throughput. Like
RasP, Chain’s throughput depends on the maximum bit cycle time of its component elements.
With Chain this was found to be the router element, as expected for the most complex element.
Again, in steady-state operation, all other components’ cycle times become synchronised to
that of the router; therefore I present only the values for the router in this section.

Throughput with Chain is shown in Figure 8.8, and is affected in exactly the same way as
RasP: decreasing quadratically with increasing wire length. However, the scale factor of this
quadratic is reduced by the addition of repeater stages (pipe latches). As is the case for RasP,
the addition of an infinite number of repeater stages would theoretically allow throughput
to remain unaffected by length changes; whilst an unrepeated link rapidly becomes slow.
Obviously, the exact number of stages in a real design will more likely be based on power and
area trade-offs, rather than raw throughput figures.

The maximum throughput figures are 823Mbit/s over 1mm, decreasing to 752Mbit/s for
10mm.

8.7.3 Energy

We now perform the same energy consumption analysis as we did for RasP. The values for the
energy consumed per bit (recalling that Chain transfers two bits per symbol), at maximum
efficiency are displayed in Table 8.6 for transfers over 5mm wire sections.

We see that Chain consumes considerably more energy per bit transferred than RasP, even
though 62% of energy is consumed with wire driving and pipe latches, which is percentage-
wise a more efficient implementation than RasP. The main reason for Chain’s larger value is
its need to drive several wires to transmit a symbol; and every transition has an energy cost.
Therefore, when compared to RasP, which requires only one transition per bit, Chain’s energy
consumption is much higher.



8.7 Chain system results

Chain bit cycle times and maximum throughput with pipe latch insertion and wire length

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0 1 2 3 4 5 6 7 8 9 10

Wire length (mm)

B
it

cy
cl

e
tim

e
(n

s)

No pipe latches

1 pipe latch

2 pipe latches

3 pipe latches

4 pipe latches

5 pipe latches

6 pipe latches

7 pipe latches

8 pipe latches

9 pipe latches

10 pipe latches

Figure 8.8: Bit cycle times and maximum throughput with repeater insertion length for
the Chain system

Table 8.6: Chain element energy consumptions per bit with 5mm wires

Element Energy consumption
Parallel-to-Chain converter 1.02pJ/bit
Chain-to-parallel converter 0.16pJ/bit
Non-pipe latch wire buffers 1.13pJ/bit
Router 0.17pJ/bit
Arbiter 0.26pJ/bit
Multiplexer 0.52pJ/bit
Pipe latches (one off) 1.32pJ/bit
Pipe latches (three off) 2.29pJ/bit
Pipe latches (five off) 3.42pJ/bit

Again, I display an alternative representation at 5mm with three pipe latches as a pie chart
in Figure 8.9. To compare this with RasP, the total per-bit energy over the range 1–10mm,
with the same number of latches, varies from 9.5–32pJ. This is a much larger variation than
with RasP, although it starts off from a lower value. Therefore, we can say that Chain is most
energy-efficient at short wire lengths, and RasP better for longer ones.



8. Evaluation of RasP

Energy consumption breakdown for Chain

1.02pJ

0.16pJ

0.52pJ

0.26pJ

0.18pJ

1.13pJ

2.29pJ
Parallel-Chain converter
Chain-parallel converter
MUX
Arbiter
Router
Buffers
Pipe latches

Figure 8.9: Chain element energy consumptions per bit with 5mm wires

Table 8.7: Complex Chain system area breakdown

Element Area
Parallel-to-Chain converter 2013µm2

Chain-to-parallel converter 1171µm2

Non-pipe latch wire buffers 3240µm2

Router 789µm2

Arbiter 701µm2

Multiplexer 259µm2

Pipe latch (inc. buffer) 3444µm2

Other 23µm2

8.7.4 Area

The breakdown of the area-requirements for Chain elements may be seen as Table 8.7. Com-
paring the values with RasP’s, we see that the opposite conversions are area-expensive —
parallel-to-Chain conversion takes around 2,000µm2 for Chain, yet the RasP MUX tree takes
less than 1,000µm2. Conversely, Chain-to-parallel takes only around 1,000µm2, but RasP
DEMUXing is the most area-expensive operation, at around 6,000µm2. Also, Chain’s router is
around a third of the size of the RasP variant. However, the Chain Arbiter and MUX elements
are slightly bigger.

Overall, then the total Chain test system area, excluding wires, comes to 12,180µm2. So,
with 5mm of wire added taking 16,800µm2, the grand total of area becomes 28,980µm2.



8.8 Comparison between RasP and Chain

8.7.5 Comparison to original paper results

It is always good practice to compare a re-implementation of a system such as Chain with the
originally published results, and I do this now.

In their later paper [4], Bainbridge, Plana and Furber state that the peak performance of a
single Chain link on a 180nm process, and over one pipe latch stage, is 750Mbit/s over 2mm
of wiring. To compare, the result I get is 566Mbit/s, although this rises rapidly to 858Mbit/s
once two repeater stages are inserted over the same distance.

8.8 Comparison between RasP and Chain

So far in this chapter, I have presented results from the RasP interconnect system, based on
the point-to-point link of Chapter 5 and also the Chain interconnect system as a reference
implementation. In this section, I compare their relative performance.

Our discussion has been based on the four main performance metrics of throughput,
latency, area footprint and energy requirements per bit. I therefore summarise these for the
two systems in Table 8.8. We see that, for a total wire length of ten millimetres, the two systems
are within 25% of each other for all metrics except energy. RasP has the edge on latency, area
and energy-efficiency, with Chain being better for throughput. At shorter wire lengths, Chain’s
energy efficiency increases, and here the selection of the most energy-efficient becomes
blurred.

In summary, both approaches produce viable NoC implementations, and performance
against the metrics varies between the two designs, and with the wire lengths under consid-
eration. Therefore, the choice of which to use in a system will ultimately depend on what
relative priorities a designer assigns to the various parameters, but RasP has certainly been
shown to be a viable alternative for an NoC implementation.

To conclude the evaluation between RasP and Chain, I now outline in bullet-point form
the various pros and cons of the two systems, as observed by the author during development
and evaluation. I first start with a discussion of RasP, and then go on to Chain.

Table 8.8: Test system comparison between RasP and Chain (total wire length 10mm)

Characteristic RasP Chain
End-to-end latency of first byte 24.3ns 26.2ns
Throughput over 10mm total length, optimally pipelined 599Mbit/s 752Mbit/s
Energy per bit transferred over 10mm total length 17.5pJ 32.2pJ
Two-input, four-output router logic area 3,682µm2 1,772µm2

Test system global metal area 11,200µm2 33,600µm2

Test system total logic area 29,548µm2 12,180µm2

Total test system area 40,748µm2 45,780µm2



8. Evaluation of RasP

RasP pros:

• Very low wire complexity, greatly simplifying routing;

• Uses only standard gates and conventional transistors;

• Clock domain crossing is free;

• Operates independently of data producer / consumer rates safely;

• Energy efficient.

RasP cons:

• Pulse length must be varied according to wire length or inefficiency results;

• Potential routing complexity in the MUX / DEMUX tree;

• Signal integrity needs to be analysed closely if minimum pulse widths and/or minimum
spaced wires are used;

• Semi-analogue operation may be unfamiliar to a designer, and can be harder to verify.

Chain pros:

• Clock domain crossing is free;

• Operates independently of data producer / consumer rates safely;

• Is speed-independent — tolerates arbitrary wire delays without any ill effect or design
consideration needed;

• One-of-five encoding is power-efficient;

• Digital transition paradigm is easy for a designer to understand.

Chain cons:

• Needs custom-designed C-elements, which are inherently slow;

• Requires six wires to transfer two bits, which has a high routing complexity;

• Uses up to an eight input gate, with associated stability and glitch issues.

All the above points are more complex manifestations of the properties of their respective
base links. Thus, the trade-offs for each test system closely mirror those of the underlying
units.



8.9 Summary

8.9 Summary

In the preceding two chapters, I have shown how the pulse-based point-to-point link of
Chapter 5 may be scaled into an NoC with routing, multiplexing and arbitration facilities.
We have seen that end-to-end performance is promising, and easily meets our target ASIC
application requirements, even over distances as long as 10mm. To do this successfully,
stateful repeaters must be deployed, and I have shown the various trade-offs (in particular
that of throughput versus energy) associated with use. We have seen end-to-end throughputs
of 763Mbit/s for the test RasP system with 1mm wire lengths, dropping slowly to 639Mbit/s
for a 10mm wire. Latency scales near linearly over the same range from 13.2ns to 24.3ns, for
an 8-bit data word.

To provide a reference comparison, I re-implemented the Chain interconnect system, and
employed it to produce a second NoC, with an identical system layout. Chain’s throughput
just exceeded RasP’s at 1mm, with 823Mbit/s, and dropped similarly at 10mm, to 752Mbit/s.
However, Chain’s end-to-end latency was observed to be substantially higher, at 18.2–26.2ns.

In other metrics, over 10mm RasP consumed just over half the energy per-bit than Chain,
even taking into account that Chain transfers two bits per data cycle. This is a key result for
RasP, since energy efficiency is a key factor in new designs.

The two systems also displayed values within 25% of each other for area-efficiency, with
RasP being the smaller. However, this similarity in the total figures hides the more interesting
comparison: global metal area. RasP uses just one third of the global metal of Chain, and so is
likely to be much more easily routed, and to have better performing links, since additional
wire spacing could be allocated. Therefore, in the “Transistors are free, wires are expensive.”
ideology of the modern VLSI design, RasP can be said to be much more area efficient than
Chain.





Conclusions 9
Great things are done by a series of small things brought together

Vincent Van Gogh

Interconnect design is always difficult, and on-chip interconnect design is no different.
The large number of factors simultaneously in play during development is greatly complicated
by their high degrees of interdependency (for example, increasing throughput may also
increase latency, and we may wish both to be optimised).

For many years, throughput and latency have been the major parameters to consider
when creating a link, but with modern designs, power consumption and area-efficiency have
become equally important. Additionally, the scale of integrated systems, and the deployment
of multi-core circuits have led to the need for even more widespread and coordinated inter-
connection. The solution to this is clearly a move to Network-on-Chip fabrics, as outlined in
this thesis (and in particular Section 3.4.2).

At the heart of every good NoC design is a high performance point-to-point link, and
so this dissertation has shown how to produce such a link. Particular emphasis was given
to reducing the global metal footprint of the interconnect (and global metal is our most
important on-die routing resource). To this end, a serial transmission scheme was employed
to improve area-efficiency.

The link operates unconventionally, using pulse-based transmission techniques, rather
than the, more conventional, level-based logic style. The approach has been shown to present
advantages such as compactness and the ability to use power-efficient low-swing operation
over long wire lengths. Equally, though, it has posed challenges, since a non-standard tech-
nique with analogue voltages has proved more difficult to debug or to theoretically guarantee
correct operation. The latter point is particularly noticeable from the need to calibrate the
widths of transmitted pulses to the length of the wires, if fault-free transactions are to be
assured.

With the use of novel stateful repeaters, we have shown how to pipeline transmissions over
long wire lengths, maintaining throughput, despite the system’s use of an acknowledgement-
based protocol. Peak throughput has been shown to be 1.01Gbit/s over 1mm of wiring, and
926Mbit/s over 10mm of wiring, with a steady decrease between the two.

The point-to-point link thus compares favourably with conventional wiring schemes.
Not only does it support a high data rate, but its ability to transfer both data and control
signals, using a bi-directional signalling scheme, leads to an increase in area efficiency over
native wiring. The evaluation in Section 6.15, based on Ho’s work [22], compared the available
bandwidth of the link to that theoretically available. The results were promising, particularly
for long wire lengths: 91% efficiency for a single wire at 10mm, assuming a distributed RC



9. Conclusions

model. However, since two wires are used for the interconnect (only one is ever active), across
the link area, this drops to 45% of the theoretical maximum — still a very good utilisation
ratio.

To demonstrate that the point-to-point link was not a purely academic exercise, we have
also seen how to scale it into a fully-fledged NoC design called RasP. RasP’s performance is
slightly reduced from the basic link, due to the additional overhead of the extra components
needed to perform networking functions. The overall throughput is still high, however, at
763Mbit/s over 1mm of wiring, and 599Mbit/s over 10mm.

To provide a realistic benchmark for RasP, and to put it properly in context, a version of
the Chain interconnect from the University of Manchester [3] was re-implemented in the
same 180nm process technology as RasP. Chain is an NoC implementation, based on more
conventional asynchronous logic structures. It provided the perfect comparison for RasP, due
to its like-for-like component mapping and, in particular, its similar use of stateful elements
to pipeline long links. Chain produced better throughput results, but was worse performing
than RasP in the key metrics of latency, power and area.

This, pleasing comparison shows that the implementation of RasP was a realistic and
effective one. Finally, with performances as stated, the author is pleased to say that both the
point-to-point link and RasP have met the target ASIC application, set out in the introduction
to this thesis.

9.1 Future work

There is always more research to be performed on the topic of on-chip interconnect, and the
RasP implementation’s future opportunities are no different.

Perhaps the biggest piece of work omitted from this dissertation is to consider the impact
of changing the shape of the wires over which data is transmitted. Here, we talk only of
minimally-sized, minimally-spaced wires, since our goal was to provide the smallest possible
area footprint. Whilst, earlier on, I provided a table of how capacitance and crosstalk are
affected by changes in width and spacing, further investigations could show how this causes
changes in overall system performance. Changes need not be limited to width and spacing,
but may extend to shape and the positions of neighbouring wires. In fact, there are many
variables when considering a wire’s performance, and this is why investigation here was
limited to a single case.

Additional future topics could be to expand the NoC with respect to data formatting;
particularly with an emphasis on optimisation for low latency routing; and also the associated
decoding schemes needed at the router nodes.



Bibliography

[1] Semiconductors Industry Association. National technology roadmap for semiconductors.
1997.

[2] John Bainbridge. Asynchronous System-on-chip Interconnect. Kluwer Academic Publish-
ers, 2001.

[3] John Bainbridge and Steve Furber. CHAIN: A delay-insensitive chip area interconnect.
IEEE Micro, 22:16–23, 2002.

[4] W. J. Bainbridge, L. A. Plana, and S. B. Furber. The design and test of a smartcard chip
using a chain self-timed network-on-chip. In DATE ’04: Proceedings of the conference on
Design, automation and test in Europe, page 30274, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of
network-on-chip. ACM Comput. Surv., 38(1):1–51, 2006.

[6] R. E. Burgess. Electronic fluctuations in semiconductors. British Journal of Applied
Physics, 6:185–190, June 1955.

[7] Richard Chang. Near Speed-of-Light on-chip Electrical Interconnects. PhD thesis, Stanford
University, 2003.

[8] Philip Christie and Dirk Stroobandt. The interpretation and application of Rent’s rule.
IEEE Trans. Very Large Scale Integr. Syst., 8(6):639–648, 2000.

[9] Danny Cohen. On holy wars and a plea for peace. IEEE Computer Magazine, October
1981.

[10] Douglas E. Comber. Internetworking with TCP/IP: Principles, Protocols, and Architectures
(Fourth Edition). Prentice Hall, 2000.

[11] Jason Cong and David Zhigang Pan. Interconnect performance estimation models for
synthesis and design planning. Technical Report 980017, University of California, Los
Angeles, 10, 1998.

[12] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

[13] William J. Dally and John W. Poulton. Digital Systems Engineering. Cambridge University
Press, 1998.



Bibliography

[14] William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection
networks. In Design Automation Conference, pages 684–689, 2001.

[15] Jo Ebergen, Steve Furber, Arash Saifhashemi, Naela Nissar, and Alex Chow. Notes on
pulse signalling. In Proc. 13th International Symposium on Asynchronous Circuits and
Systems. IEEE Computer Society Press, March 2007.

[16] E. Friedman. Clock distribution networks in synchronous digital integrated circuits. In
Proceedings of the IEEE, Vol 89, No. 5, pages 665–692, May 2001.

[17] Stephen H. Hall, Garrett W. Hall, and James A. McCall. High-Speed Digital System Design
— A Handbook of Interconnect Theory and Design Practices. Wiley, 2000.

[18] Fred Halsall. Data Communications, Computer Networks and Open Systems. Addison-
Wesley, 1996.

[19] Richard W. Hamming. Coding and Information Theory (Second Edition). Prentice-Hall,
1986.

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach (Third Edition). Morgan Kaufmann, 2003.

[21] Ron Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Department of Electrical
Engineering, Stanford Universiy, Aug 2003.

[22] Ron Ho, John Gainsley, and Robert Drost. Long wires and asynchronous control. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and Systems,
pages 240–249. IEEE Computer Society Press, April 2004.

[23] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of wires. In Proceedings of
the IEEE, volume 89, pages 490–504, April 2001.

[24] Simon Hollis and Simon W. Moore. An area-efficient, pulse-based interconnect. In Proc.
International Symposium on Circuits and Systems (ISCAS), May 2006.

[25] Simon Hollis and Simon W. Moore. An asynchronous interconnect architecture for device
security enhancement. In Proc. 19th International Conference on VLSI Design, Jan 2006.

[26] Simon Hollis and Simon W. Moore. RasP: An area-efficient, on-chip network. In Proc.
24th International Conference on Computer Design (ICCD), Oct 2006.

[27] M. Horowitz, R. Ho, and K. Mai. The future of wires, 1999.

[28] Paul Horowitz and Winfield Hill. The Art of Electronics (Second Edition). Cambridge
University Press, 1989.

[29] John Hyde. USB Design by Example. Intel University Press, 1999.

[30] Y. Ismail and E. Friedman. Optimum repeater insertion based on a CMOS delay model
for on-chip RLC interconnect. In Proceedings of the IEEE ASIC Conference, pages 369–373,
September 1998.



Bibliography

[31] Yehea I. Ismail and Eby G. Friedman. Repeater insertion in RLC lines for minimum
propagation delay. In Proc. IEEE International Symposium on Circuits and Systems
(ISCAS), May 1999.

[32] Bob Sproull Ivan Sutherland and David Harris. Logical Effort, Designing Fast CMOS
Circuits. Morgan Kaufmann, 1999.

[33] Howard Johnson and Martin Graham. High-speed Digital Design: A Handbook of Black
Magic. Prentice Hall, 1993.

[34] Mark B. Josephs and Jelio T. Yantchev. CMOS design of the tree arbiter element. IEEE
Trans. Very Large Scale Integr. Syst., 4(4):472–476, 1996.

[35] S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley, 1997.

[36] David Kinniment. Synchronisation and arbitration circuits in digital systems. In Pro-
ceedings of the IEE, volume 123, pages 961–966, October 1976.

[37] David Kinniment. Synchronizers and arbiters. In Proceedings of ACiD Working Group,
January 2005.

[38] Xiao-Chun Li, Jun-Fa Mao, Hui-Fen Huang, and Ye Lui. Global interconnect width and
spacing optimization for latency, bandwidth and power dissipation. IEEE Transactions
on Electron Devices, pages 2272–2279, 2005.

[39] Paul A. Lynn and Wolfgang Fuerst. Introductory Digital Signal Processing with Computer
Applications. Wiley, 1994.

[40] F.J. Macwilliams and N. J. A. Sloane. The Theory of Error-correcting Codes. North-Holland,
1977.

[41] Magma Design Automation Ltd. Quickcap.

[42] Magma Design Automation Ltd. Quickind.

[43] Edward J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

[44] Charles E. Molnar and Ian W. Jones. Simple circuits that work for complicated reasons.
In ASYNC ’00: Proceedings of the 6th International Symposium on Advanced Research
in Asynchronous Circuits and Systems, page 138, Washington, DC, USA, 2000. IEEE
Computer Society.

[45] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[46] Simon W. Moore, George Taylor, Robert Mullins, and Peter Robinson. Point to point GALS
interconnect. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 69–75, April 2002.

[47] Robert Mullins and Simon W. Moore. Demystifying data-driven and pausible clocking
schemes. In Proceedings of the 18th UK Asynchronous Forum, September 2006.



Bibliography

[48] David Newport. Cooling the communications revolution, Available online at:
http://www.ul.ie/elements/Issue5/David%20Newport.htm.

[49] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach (Third
Edition). Morgan Kaufmann, 2003.

[50] W. Wesley Peterson and Jr. E. J. Weldon. Error-correcting Codes (Second Edition). The
MIT Press, 1972.

[51] D. Russell. Principles of Computer Networking. Cambridge University Press, 1989.

[52] T. Sakurai and A. R. Newton. Alpha-power law mosfet model and its applications to
CMOS inverter delay and other formulas. In IEEE Journal of Solid-State Circuits, volume
SC-25, pages 584–593, April 1990.

[53] Bruce Schneier. Applied Cryptography. Wiley, 1996.

[54] Mischa Schwartz. Telecommunication Networks. Addison-Wesley, 1988.

[55] Robert Sedgewick. Algorithms (Second Edition). Addison Wesley, 1988.

[56] Jens Sparsø and Steve Furber, editors. Principles of Asyncronous Circuit Design: A Systems
Perspective. Kluwer Academic Publishers, Boston, 2001.

[57] Ben G. Streetman and Sanjay Banerjee. Solid State Electronic Devices (Fifth Edition).
Prentice Hall, 2000.

[58] I. E. Sutherland. Micropipelines (the Turing award lecture). Comm. A.C.M., 32(6):720–
738, June 1989.

[59] Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proc. Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems, pages
46–53. IEEE Computer Society Press, March 2001.

[60] Ivan Sutherland and Jon Lexau. Designing fast asynchronous circuits. In Proceedings of
the Seventh International Symposium on Advanced Research in Asynchronous Circuits
and Systems. IEEE Computer Society Press, March 2001.

[61] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 1981.

[62] Synopsis ®. hspice.

[63] Donald E. Thomas and Philip R. Moorby. The Verilog ®Hardware Description Language
(Fourth Edition). Kluwer Academic Publishers, 1998.

[64] Ronald J. Tocci. Digital Systems: Principles & Applications, 6th Edition. Prentice Hall,
1995.

[65] Neil H.E. Weste and David Harris. CMOS VLSI Design (Third Edition). Wesley, 2005.

All I know is what I read in the papers

Will Rogers



Spice wire model definition A
Below I display the wire model as used for spice simulations of interconnects in this thesis.
I display first the definition for a two-wire model, as used by my point-to-point and RasP
interconnects, and then a five-wire model used for the forward data direction in the Chain
system.

A.1 Two-wire model

.model U_RLC_lines2_newR U LEVEL=3 ELEV=2 DLEV=0 PLEV=1 LLEV=0 NL=2

** number of lumps per line

+ MAXL=100

** values are per metre

** gnd capacitors

+ CR1=0.224n CR2=0.224n R11=221.43k L11=1.652u R22=221.43k L22=1.652u

+ C12=88.2p L12=1.428u

** set conductance to zero and gnd plance resistance to 10 Ohms/m

+ RRR=10 GR1=0 GR2=0 G12=0



A. Spice wire model definition

A.2 Five-wire model

.model U_RLC_lines5_newR U LEVEL=3 ELEV=2 DLEV=0 PLEV=1 LLEV=0 NL=5

** number of lumps per line

+ MAXL=100

** values are per metre

** gnd capacitors

+ CR1=0.224n CR2=0.222n CR3=0.223n CR4=0.219n CR5=0.224n

** gnd inductors - (however, not used with LLEV=0)

+ LR1=1.21u LR2=1.23u LR3=1.21u LR4=1.20u LR5=1.22u

** line 1

+ R11=221.43k L11=1.649u C12=88.4p L12=1.423u C13=2.17p L13=1.292u

+ C14=0.238p L14=1.231u C15=0.003p L15=1.163u

** line 2

+ R22=221.43k L22=1.662u C23=88.3p L23=1.41u C24=2.26p L24=1.303u

+ C25=0.258p L25=1.158u

** line 3

+ R33=221.43k L33=1.652u C34=97.8p L34=1.421u C35=5.7p L35=1.292u

** line 4

+ R44=221.43k L44=1.645u C45=87.5p L45=1.421u

** line 5

+ R55=221.43k L55=1.644u

** set conductance to zero and gnd plance resistance to 10 Ohms/m

+ RRR=10 GR1=0 GR2=0 GR3=0 GR4=0 GR5=0

+ G12=0 G13=0 G14=0 G15=0 G23=0 G24=0 G25=0 G34=0 G35=0 G45=0



	698.pdf
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures

	1 Introduction
	1.1 Overview of the proposed system
	1.2 Approach

	2 Interconnect design
	2.1 Introduction
	2.2 Parallel interconnect design
	2.2.1 Performance
	2.2.2 Overheads

	2.3 Serial interconnect design
	2.3.1 Performance
	2.3.2 Overheads

	2.4 Clock skew
	2.4.1 GALS

	2.5 Data encoding
	2.6 Summary

	3 Connectivity of interconnects
	3.1 Point-to-point links
	3.1.1 Uni-directional links
	3.1.2 Bi-directional links
	3.1.3 Packetisation
	3.1.4 Half-duplex links

	3.2 Point-to-multipoint links
	3.3 Multipoint-to-point links
	3.4 Multipoint-to-multipoint links
	3.4.1 Buses
	3.4.2 Networks-on-Chip
	3.4.3 Circuit-switched networks

	3.5 Summary

	4 Physical characteristics and limitations of interconnects
	4.1 Wires
	4.1.1 Wire Resistance
	4.1.2 Wire Capacitance
	4.1.3 Wire Inductance

	4.2 Delay models
	4.2.1 The Elmore delay model
	4.2.2 The Pi delay model
	4.2.3 First-order RC delay approximation
	4.2.4 Effects on delay of resistance, capacitance and inductance
	4.2.5 Trade-offs

	4.3 Signal integrity
	4.3.1 Crosstalk

	4.4 The routing problem
	4.5 Conventional trade-offs in interconnect design
	4.5.1 Throughput and latency
	4.5.2 Throughput and space
	4.5.3 Throughput and power

	4.6 Driving transistors
	4.6.1 Models
	4.6.2 Driving transistor behaviour

	4.7 Summary

	5 An area-efficient, pulse-based interconnect
	5.1 Asynchronous logic
	5.1.1 Handshaking

	5.2 The GasP control system
	5.2.1 Micropipelines
	5.2.2 GasP and micropipelines
	5.2.3 The unsuitability of GasP for area-efficient interconnect

	5.3 Introduction to my point-to-point interconnect
	5.4 Chosen data encoding
	5.4.1 Serial transmission
	5.4.2 Voltage swing

	5.5 The core interconnect (dual distributed inverter structure)
	5.5.1 Pulse generation

	5.6 Point-to-point interconnect implementation
	5.7 MUXs
	5.7.1 State

	5.8 DEMUXs
	5.8.1 State
	5.8.2 Operation

	5.9 Pulse latches
	5.10 Synchronisers and metastability
	5.11 Wire repeaters
	5.11.1 Stateless (GasP) repeater
	5.11.2 Stateful repeater
	5.11.3 A potential optimisation

	5.12 Summary

	6 Evaluation of the area-efficient interconnect
	6.1 Introduction
	6.2 Methodology
	6.2.1 Wire model
	6.2.2 Optimal repeater insertion
	6.2.3 Driving transistor characterisation
	6.2.4 Output buffer cascading factor

	6.3 Simulation of correctness
	6.3.1 Test results

	6.4 Point-to-point link results
	6.5 A loop oscillator
	6.5.1 Additional repeater insertion
	6.5.2 Comparison to published literature

	6.6 Basic link evaluation
	6.7 Pulse widths
	6.8 Voltage swing
	6.8.1 Crosstalk
	6.8.2 Reflections and ringing
	6.8.3 Effects of inductance

	6.9 Pulse generator design choice
	6.10 Evaluation of the flop-based design
	6.10.1 Throughput
	6.10.2 Latency
	6.10.3 Energy use

	6.11 Summary of the flop-based design
	6.12 Evaluation of the pulse-chopper based design
	6.12.1 Latency
	6.12.2 Throughput

	6.13 Repeater insertion with the chopper-based link
	6.13.1 Latency
	6.13.2 Throughput
	6.13.3 Repeater logic delay
	6.13.4 Energy
	6.13.5 Energy use breakdown
	6.13.6 Repeater energies
	6.13.7 Logic delays

	6.14 Area
	6.15 Theoretical analysis of interconnect efficiency
	6.16 Comparison to other interconnect designs
	6.16.1 Parallel wires
	6.16.2 Synchronous serial interconnect
	6.16.3 GasP

	6.17 Summary

	7 RasP: a network-on-chip implementation
	7.1 Introducing the Chain interconnect system
	7.2 Improving Chain
	7.3 RasP: a network-on-chip implementation
	7.3.1 Overview of RasP
	7.3.2 RasP router
	7.3.3 RasP arbitrated merge element

	7.4 Summary

	8 Evaluation of RasP
	8.1 Introduction
	8.2 Evaluation methodology
	8.3 RasP base link
	8.4 RasP performance evaluation
	8.4.1 Latencies
	8.4.2 Throughput
	8.4.3 Energy
	8.4.4 Area

	8.5 Comparison to the base link
	8.6 Comparison with the Chain interconnect system
	8.6.1 Optimal buffer sizing for Chain

	8.7 Chain system results
	8.7.1 Latency
	8.7.2 Throughput
	8.7.3 Energy
	8.7.4 Area
	8.7.5 Comparison to original paper results

	8.8 Comparison between RasP and Chain
	8.9 Summary

	9 Conclusions
	9.1 Future work

	Bibliography
	A Spice wire model definition
	A.1 Two-wire model
	A.2 Five-wire model

