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A smooth manifold based construction of
approximating lofted surfaces

Richard Southern and Neil A. Dodgson

Abstract

We present a new method for constructing a smooth (theoretiCatlymanifold ap-
proximating a curve network or control mesh. In our two-step method, smaathxv
patches are initially defined by extrapolating and then blending a univanidivariate
surface representation. Each face is then constructed by blendirnydogige segments
of each vertex patch corresponding to the face corners. By apprtmgrhe input curve
network, rather than strictly interpolating it, we have greater flexibility in cadligpsur-
face behaviour and have local control. Additionally no initial control mesindi or fairing
needs to be performed, and no derivative information is needed tossrmutinuity at patch
boundaries.

1 Introduction

Curves are extensively used in CAD packages to specify sudabaviour. Coons patches
[Coons, 1967] can be used for bilinear blending between fountdary curves, although adja-
cent patches may not join smoothly. The more genesatled Gregory patches [Plowman and
Charrot, 1996] are used in the ACIS modelling kernel. Loftiagnethod by which a smooth
surface is constructed to fit a network of curves, is a wedlldsthed technique for surface spec-
ification. We present a method which, given a network of csived topological information
(vertices and faces), produces a smooth suré@peoximatingthe curve network.

Our approach defines the surface in two steps. First we defifece functions which meet
at each vertex based on either the curves meeting at the eerdebivariate patch representation
for each face incident on that vertex. These functions a@ragalated in a conformal space, and
the results are blended together to define a smearttex patch

Then, for each face in the surface, tleeesfrom the vertex patches associated with that
face are blended together. In this way, the surface is agetstl from a smooth blend of a
smoothly blended function — the resulting smoothness igddonly by the smoothness of the
function used to describe the surface.

Our approximative approach has several advantages:

e Most importantly, curves which are not necessarily confgpat(i.e. would not lie on
the same surface) can be approximated with a smooth vertel. pehis accounts for all
possible curve configurations €drves do not need to meet at the same position in space
The function describing the surface (either univariateieafate) does however require
some form of computable extrapolation.
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e The continuity of the resulting surface is theoreticallyyoliimited by the functions de-
scribing the initial surface.

e No control mesh fitting or optimisation step is required. Thethod works directly on
the input curve network (assuming that each face is topcédigia quad).

e The overlap of the vertex patches can be defined locallyvallp the designer greater
flexibility in defining properties of the surface.

e The results are visually smooth.
e The method is simple to implement.

We do not know of any other method which increases surfacegmess by approximating
rather than interpolating the input curves.

2 Background
Curves have been used extensively in surface design andmoliglling applications. All
modelling packages provide an interface for the speciboatif surfaces from the definition

of spline patch boundaries. For a thorough background imtimeerous established methods
which exist for producing lofted surfaces, the reader isnrefd to Piegl [1993].

Coons [1967] Charrot and Gregory [1984]

Plowman and Charrot [1996] Kato [1991], Sabin [1998]

Figure 1: The evolution of the supported curve configuraiartransfinite surface interpolation
techniques. The 4-sided method of Coons [1967] was extengd€&tharrot and Gregory [1984]
to 5-sided polygons, and later to arbitrargons by Plowman and Charrot [1996]. Kato [1991]
and Sabin [1998] further extended these approaches to gugyptace holes.
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The problem of constructing a surface from a sendjounding curves is well studied,
originating with Coons’ method [Coons, 1967]. Since its iri@m, it has been developed
further and applied in various areas of geometric modelfing Finite Element methods by
Sabin [1996]. A summary of the development of these teclesgsometimes callddcansfinite
interpolation is given in Figure 1. Numerous recent methods have beeremtess to fit a
surface to a network of input curves, ranging from subdrigiNasri and Abbas, 2002, Levin,
1999, Schaefer et al., 2004] to geometric diffusion usingeB[Xu et al., 2003].

Several approaches have been pursued recently to corsihdivision surfaces interpolat-
ing a network of curves [Nasri and Abbas, 2002, Levin, 199haefer et al., 2004]. These
methods typically rely on a dual coarse grid defining surtap@logy matching the curve net-
work (which may be constructed during the course of the #lyor[Schaefer et al., 2004]). We
too require a topological description of the surface in otdgroduce the surface. Our method
differs inherently from subdivision in that the resultingface has a parametric definition.

Xu et al. [2003] use a geometric diffusion model which carfgren surface blendsy-sided
hole filling and free form surface fitting with non-linear bis. Although this method does have
attractive properties and is particularly applicable tibddd surfaces, alterations to the surface
will have a global effect as there is no localised topololgstaicture.

The process of blending together overlapping charts totosetsa manifold was first pro-
posed to the graphics community by Grimm and Hughes [199%heéir approach an input
medium, consisting of a topological structure of any gemsigonverted into a manifold by
blending overlapping vertex, face and edge charts witrsttiam functions.

Grimm and Hughes’ manifold construction was extended by Ying and Zorin [2004]
to allow the construction a£>° manifolds from control meshes. Their method uses a similar
principle to ours, but their transition function can be thbuof as blending together patches
defined by the edges of the grid rather than the faces as teeyitr our method. The proof
of C*° continuity of transition maps and partition of unity furasts provided in their paper is
directly relevant to this work, as our method uses an egemtadonstruction for both the vertex
patches and the final manifold blend.

Our method is also similar to the Moving Least Squares (MIUBlese approximation pio-
neered by David Levin and later developed for constructmdyr@ndering point set surfaces by
Alexa et al. [2003]. MLS uses partitions of unity to blendétiger local surface approximations
in a similar manner to ours.

3 Terminology

In general,i and j are used to represent the indices of vertices and facescteghe 7 is
used to represent the set of vertex indices at the corneracefjf(in a mesh consisting of
quadrilaterals|Zj| = 4) andJ; is the set of faces incident on the veriggo|J;| is the valence
of the vertex). Both sets are cyclic, ordered, finite and non-empty.

We define a set indexing operatpsuch thafZj [n] returns they, element of a sefj, modulo
the size of the sdfZj|. An example is given in Figure 2. We will refer ko= | Ji| as the valence
of vertexi, often denoted as a subscript as many of the functions weamskecprecomputed in
the implementation for expected valueskof

For clarity, we define three separate vector spaces:

e U:=(u,v) € U=R2?whereU is the parameter space of each pasghif u € [0,1]? then it
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Figure 2: An example of vertex sets and face sets. Each fa@hwlordersv; is included in
the ordered sefi,, = {f1,..., fs}, while each corner vertex of fadg is included in the ordered
setZy, = {v1,...,Va}.

describes a point within patchy. These coordinates are used to describe how the surface
is traversed in parameter space.

e X € X =R?whereX is the “conformal space” (described in Section 4.1), &nd (x,y) €
R2. Conformal space is used to define smooth blending betweghbwiring patches.

e RR3, the Euclidean space, where the final surface lives.
The curve network is specified by three components:

e An ordered set ofi; curvesC = {cy, ...,Cn. } whereg; : R — R3 is any parametric repre-
sentation.

e An ordered set ofi, verticesV = {v1,...,Vp, } Where each vertex is a set of tuples each
consisting of the index of an incident curve and a parametierevalong the curve where
the vertex lies. This definition allows the physical locataf connected vertices to differ.

e An ordered set ofy facesF = {f4,...,fn, }. Each face entry contains the indices of the
vertices which bound the face.

Note that the above structure does not indicate the locafidhe vertices ifR3, but they are
easily deduced as the average of the points they correspandthe incident curves. Another
observation is that this method will obviously work on oy control meshes (such as those
used in subdivision) as the edges of the coarse grid coulglgibe defined as parametric
curves.

4 Method overview

We construct a surface from a network of curves, which foretabundaries afi surface patches
Si,j € {1,..,n}. The final surface takes the form of surface pat@jes) — RR3 which approx-
imate the curve network, but has smooth cross border deegatvith its neighbour patches.

e A smoothly blendedrertex patch Ru, j) is defined for each vertéx This patch consists
of separate “slices”, one for each fage J; (as in Figure 4).
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Figure 3: In (a) is a two-dimensional depiction of our methdthree parametric curve seg-
ments are defined, along with information about how they areet connected (note that this
information could be deduced geometrically). Each pairw¥es associated with a vertex is
used to construct the associated vertex patch. The patohnmedl by extrapolating the curves
and blending these together. The curve in the final surfaivedas both these vertices is defined
by blending together the vertex patch segments (in this ttese are only two, one on either
side of the vertex) associated with that particular curmeglb) we show the equivalent process
in R3.

e The approximative surface constructisj'(u) for face j is constructed by blending to-
gether all vertex patchd%(u, j) such that € Z;.

This is demonstrated in the two-dimensional case in Figure 3

4.1 Vertex patches

The smoothness of the vertex patch determines the smogtbfid final surface. The smooth-
ness of the region is achieved by using local coordinatestoams to define how each vertex
patch segmengxtrapolates into neighbouring patches. This extrapolation is achievgd
conformal space transformation for edch 7.

Each sample point is mapped into conformal (angle preserving) space usingiéonoal
mapping functiorp : U — X. We use on of the standard conformal complex transfpg(a) =
7'/ [Feynman et al., 1989], wheteis the valence of the vertex. A rotati® is then applied
to determine the extrapolated location of {lxey) coordinate in the local patch. The rotation
is dependent on the method being used — further discusseddiio8 6. The transformed
point is then remapped into parameter space with an invens@ienal mappingb,:l(z). The
concatenation of functionqs,;l oR o¢k: U~ U we call theextrapolation transform The
choice of the initial curve (or patch in the bivariate casedrient with they-axis is unimportant,
although it will affect the parameterisation (which may nigdhe behaviour of the function
Am introduced in Equation 2). This process is illustrated iguFe 4.

We define each vertex patch by

=~

oo(6k(u,l)) . Sji['] (q);lo R O(I)k(U)) , (1)

ol -

R(u,j) =



(x.5,) . (%,)3)

(a) | (b)

Figure 4. Extrapolating into local patch coordinates. Ingaoint in parameter spacec U

is transformed into “conformal space&’c X using the conformal mappingy. A rotationR

is then applied to the conformal space coordinate to deter(wj,y;). The rotation used here
corresponds with the univariate (curve based) schemestiedun Section 6.1. In (b) we give
an example of a complex 6 vertex patch on the haunch of theybhmodel in Figure 9.

wherek = | 7i| (the valence of vertely andS; : U — R3 is some parametric sampling function to
determine the position i3 (discussed in Section 6). The weightiags either determined in
conformal spacef: U — R, see Section 6.1) or in parameter spaseX — R, see Section 6.2)
depending on the shape of the desired blending function. éfieal

[ ortoRodk(u), (w:U—R
Bk(u’l)_{ R|k0¢k(u),k ‘0:X—R

which gives us greater flexibility in defining how our surfa& interact with each other. We
set

k
Q=3 W@ (u.l)).
=1

so the weighting functions form a partition of unity. An intpant observation is that &, 1o
R o ¢k returns au ¢ [0, 1]? then the functiorg; returns an extrapolated value.

4.2 Manifold construction

The goal of this method is to fit smooth surfaces to the netwdrich best approximates the
input curves. In Section 4.1 we described a method to cartstroooth vertex patché¥(u, j)
for a vertexi, and allj € 7. The surfaceS’j (u) is constructed by blending together all vertex
patches withi € Z;. This is performed using a blending function similar to tdafined in
Section 6. So
1 |Zj |
S(u)== zli(km(U)) Pz im (Am(U), i), (2
m=
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whereAn, is a simple coordinate transformation function to ensuag titre coordinate frame of
consecutive patches is aligned with the first patoh=1), ¢ : U — R is a blending function
based only on the parameter space coordinates of the pothgsabefore the partition of unity
Is ensured by dividing through by the total blend weight @alu

Zj]

== 5 &0w(W),

There is obviously a great deal of flexibility in the desigrttod bivariate blending function
¢. We have experimented with a range of variations in its contbn but empirical evidence
shows that altering this function produces little effectloa resultant surface except in extreme
cases. For simplicity we usgu,v) = (u)B(v), using a smooth blending functiddit) defined
in Section 4.3.

4.3 A smooth blending function

The quality of the resultant surface is greatly influencedhgychoice of blending function for
the vertex patch region. This function is used to consthetiend weightso andé mentioned
in Equations 1 and 2. In order to preserve the smoothnesseafwbrall region, we use the
infinitely differentiable blending function

4
B(t) = exp<4+ tZTl) ; (3

defined over the open interviak (—1,1) (see Figure 5).

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 5: The blending function defined in Equation 3.

5 Continuity

In this section we show how the continuity of the surface isvee. A setM has a manifold
structure if there exists a collection of open domdisand associate mapping functiong :
Cn — M (together callecharty, wherea,, is one-to-one and the images(C,) coverM. M
is aC> manifold if the transition maps from chart to chash = 0(;]1 o ap defined for pairs of
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chart for whichan(Cn) andam(Cm) intersect ar€>. In our caseS; (u) represents the transition
map.

The two stage process consists of Equation 1 and Equatiom@ cdmponent®, ¢k, Am
and the partitions of unity [Ying and Zorin, 2004] are infelit smooth and invertible. The con-
tinuity therefore depends on the behaviour of the surfasertggion functionS;. Two options
are presented for describing the surface behaviour asxtrigpmolated over the region:

e a univariate approach which samples value®¥from the input curves meeting at the
given vertex, and

e a bivariate approach which extrapolates the patches fraimfeae incident on the vertex
over the entire domain with a smooth and invertible “flattggiifunctiond —* (defined in
Section 6.2).

In both cases these methods are constrained by the contofuite representation of the ex-
trapolated surface. In the case of the univariate extréipalaéhe continuity is constrained by
the designer, who could use higher order curves to speaifiyeniorder continuity. Similarly,
the bivariate case would be constrained by the type of paged.uTherefore the continuity of
the resulting surface is limited only by the continuity oétfunctions which are extrapolated.

6 Vertex sampling

The functionS; : U — R3 returns a point which best defines the extrapolation of aserbver
the vertex patch region. We define two possible surface iomeS;(u): one based on the
curves meeting at the vertex, and one based on a bivariatle estrapolation.

6.1 Univariate vertex patches

In this section we present a simple univariate scheme to eefisurface function fo;(u)
which extrapolates theurvesinto the blended region. If the cuneg(t) is the curve corre-
sponding with thes axis of facd € Ji[l] we use

Sjim(U) = C|(U). (4)

We use a conformal space blewd,ve: X — R and define a blending shape as follows:

1 x=0,y>0

) B X#£0,y>0
B =) BBly) —1<x<1-1<y<0 ?

0 : otherwise

In order to orient the blending function shape we define tatien R = 2ITt/k+ 11/2, and
we normalise the resulting values @£ y) to ensure that the blending function reduces to zero
at the corners of the conformal region (i.e. the locatpgf, 1), rotated byR). The resulting
shape is a blend that falls off evenly to the left and righthaf vertical, and falls away radially
wheny < 0.

This method causes bunching due to the distribution of aunvgparameter space, and the
results are not generally visually pleasing (see Figure ywever, the smoothness of this
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Input network Univariate extrapolation Bivariate extragi@in

Figure 6: A comparison of the univariate and bivariage=(0.5) extrapolation methods (see
Section 6). Note in particular the parameter line bunchirth@univariate (curve) extrapolation
method.

method is only limited by the smoothness of the input cun&isould a method be found to
evenly distribute the samples this would lead to a betteaweth surface. This is an area for
future work.

6.2 Bivariateextrapolation

For better visual results, we instead def8jeu) to return a point on a bivariate patch represen-
tation bounded by the four input curves associated with #telp Any bivariate patch can be
used for this operation, such as a bivariate b-spline pagtark or even simple flat quadrilat-
eral patches, yielding surfaces which &f&. For simplicity we have used a Coons patch Coons
[1967], limiting the continuity of the resulting scheme taaostC?.

Such a bivariate patch representation provides a magpikgu’) : U — R3, whereK is
the set of four curves bounding the current face. We reqmineesfunctionq)k_l X~ Uto
provide the extrapolated parameter space coordinates. farhe functiond, 1 — Z/4 would
be an obvious choice, but unfortunately the extrapolatdarmation would be lost. This is
difficult to visualise, but it is the equivalent of convedia higher valency vertex back to a 4
valency vertex, causing one or more faces to be foldetkerneathan existing face.

We use an alternative “flattening” approach to deﬁrljé, shown in Figure 7, using a com-
plex transform using a smooth mapping between the angldseedbtm0 + a sinb. We define
the function in complex notation as follows:

@lzl(z) _ |Z‘ei(9+aksin6) (6)

whereqy = %@f}k), ando is the angle between the poiand the start curve in conformal

space. In the case of the bivariate construction, we appglydtationR = 2I1t/k.
We define the bivariate blending function in parameter spaggns: U — R to be

GoondU) = B(S(0.5— U)) B(S(05—V)).

The value ofsis a user controlled parameter which can be used to conedktrel of overlap
between neighbouring patches in the vertex patch. Thisnsodstrated in Figure 8. We have
found through experimentation that= 0.8 produces surfaces of a respectable visual quality
(see Figure 10). However this value can be specified by thigrsfor each vertex in the
surface. Adaptively determining vertex overlap weighta tepic for future work.
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Figure 7: Inverting the conformal map usifig?. The arrows indicate the coordinate frame of
the patch from which we are extrapolating. This patch istéia¢d”, causing other patches to
be squashed proportionally.

7 Implementation

The method is simple to implement — the vertex patch ger@ratode is only a few hundred

lines of code. Key to the continuity of the resulting surfacéhe parametric representation of
the input curves. We have allowed for both algebraic cur@ss)(to evaluate the smoothness
of the method, and Catmull-Rom splin&!) for compatibility with existing models.

As the method requires a topology consisting only of quagdasurfaces consisting of
other polygons must first be topologically subdivided withedteration of an interpolative
subdivision. We a topological alteration analogous to them@8 Clark scheme [Catmull and
Clark, 1978] but use differing rules to compute the locatiohsew vertices. We evaluate edge
vertices directly from the input curves, and face verticesithe midpoints of a-sided patch
using the method of Plowman and Charrot [1996]. New curvedeaonstructed by sampling
points in the parametric coordinates of tiigided patch and fitting a spline of the desired order.
One stage of this subdivision is shown in Figure 9.

Sharp edges — either specified per vertex or detected bydgjeal discontinuities — are
handled by using a simple bivariate patch interpolatingdloe input curves. This would blend
into the remaining vertex patches corresponding to the $aosein Equation 1.

Geometry is defined by regularly sampling coordinates wifaces. This will obviously
produce unpleasant parameter bunching within small famés;ould be rectified by using the
Least-Squares approach of Ying and Zorin [2004], althowgiin @in approach would require a
redefinition of the final blending step in Equation 2.

8 Conclusion and future work

We have presented a method of constructing a smooth suiacexamating a network of input
curves by first constructing smooth vertex patches and themding together the segments
corresponding to the corners of each face. Each stage usasitolth based construction. Our
main contributions have been:

¢ atwo step manifold based approach for producing smoothsesfby extrapolation (Sec-
tion 4),

e a univariate surface function approach to the method whiehds together the curves
meeting at each vertex to form a surface (Section 6.1), and
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No blend

s=0.2

Figure 8: The result of varying the parametéthe overlap) on a 5 valency vertex patch and the
handmodel. Note that a crease at the base of the thumb (right eglbecomes progressively
more prominent as the overlap increases.
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Figure 9: One subdivision step is applied to the bunny madelrder to convert the-sided
patches to only 4-sided patches. This is described in Se¢tio

e a bivariate surface function approach which computes thegalated coordinate of a

standard patch representation by using a smooth inveftibtgion$ ! (Section 6.2).

There are a number of shortcomings of this technique, givisgjto several avenues for
future work:

Coons patches do not extrapolate well when vertices haveeacalgreater than 8. We
have experimented with Mean Value Coordinates (see Fldz@@a3] and Ju et al. [2005])
as a method to define extrapolation patches which do notayvevith high valence.

Further research in this direction is required.

The method does not prevent self intersection, which ansésrally in regions where
neighbouring patches are of significantly differing siZzBsis phenomenon can also cause
undesirable surface artifacts (such as bumps). This ceutdgmired by adding geometric

sensitivity in the blending process, causing parametrigesito be weighted inversely
based on their length.

At present, the behaviour of corners are limited to eithémdpeompletely sharp or com-
pletely smooth, so complex blending configurations arigiog realistic modelling are
currently not possible (several examples are shown by $sheteal. [2004]).

Topological alterations of the surface patches, such asshml seams, are not currently
supported. Itis probable that these could be supported approximative fashion defin-
ing holes with a method like that of Kato [1991] or Sabin [1PBBeach bivariate patch
extrapolated over the vertex patch region.

Performing extrapolation can be problematic (likened bye§B et al., 1992] to “turn-
ing lead into gold”). It is a simple task to construct splindsich curl sharply back on
themselves unpredictably. While a method of performing sblextrapolation is not a
topic of this paper, developments in this field will have @sg impact on the quality and
predictability of the surfaces that our method produces.
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0.8. Note that some bulging
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Figure 10: Some results of our technique. The first colummwshibe input curve network

after one level of subdivision (with the method describe&action 7). The second and third
columns illustrate the resultant surface with the unitarand bivariate extrapolation methods

respectively. All results were generated with the overlalpies
artifacts arise on the surface where neighbouring patcresfasignificantly differing sizes

(most obvious at the front grille of tHeugmodel). This can be rectified by adapting the overlap

between patches.
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