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A smooth manifold based construction of
approximating lofted surfaces

Richard Southern and Neil A. Dodgson

Abstract

We present a new method for constructing a smooth (theoreticallyC∞) manifold ap-
proximating a curve network or control mesh. In our two-step method, smooth vertex
patches are initially defined by extrapolating and then blending a univariate or bivariate
surface representation. Each face is then constructed by blending together the segments
of each vertex patch corresponding to the face corners. By approximating the input curve
network, rather than strictly interpolating it, we have greater flexibility in controlling sur-
face behaviour and have local control. Additionally no initial control mesh fitting or fairing
needs to be performed, and no derivative information is needed to ensure continuity at patch
boundaries.

1 Introduction

Curves are extensively used in CAD packages to specify surfacebehaviour. Coons patches
[Coons, 1967] can be used for bilinear blending between four boundary curves, although adja-
cent patches may not join smoothly. The more generaln-sided Gregory patches [Plowman and
Charrot, 1996] are used in the ACIS modelling kernel. Lofting,a method by which a smooth
surface is constructed to fit a network of curves, is a well established technique for surface spec-
ification. We present a method which, given a network of curves and topological information
(vertices and faces), produces a smooth surfaceapproximatingthe curve network.

Our approach defines the surface in two steps. First we define surface functions which meet
at each vertex based on either the curves meeting at the vertex or a bivariate patch representation
for each face incident on that vertex. These functions are extrapolated in a conformal space, and
the results are blended together to define a smoothvertex patch.

Then, for each face in the surface, theslicesfrom the vertex patches associated with that
face are blended together. In this way, the surface is constructed from a smooth blend of a
smoothly blended function — the resulting smoothness is limited only by the smoothness of the
function used to describe the surface.

Our approximative approach has several advantages:

• Most importantly, curves which are not necessarily compatible (i.e. would not lie on
the same surface) can be approximated with a smooth vertex patch. This accounts for all
possible curve configurations —curves do not need to meet at the same position in space.
The function describing the surface (either univariate or bivariate) does however require
some form of computable extrapolation.
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• The continuity of the resulting surface is theoretically only limited by the functions de-
scribing the initial surface.

• No control mesh fitting or optimisation step is required. Themethod works directly on
the input curve network (assuming that each face is topologically a quad).

• The overlap of the vertex patches can be defined locally, allowing the designer greater
flexibility in defining properties of the surface.

• The results are visually smooth.

• The method is simple to implement.

We do not know of any other method which increases surface smoothness by approximating
rather than interpolating the input curves.

2 Background

Curves have been used extensively in surface design and solidmodelling applications. All
modelling packages provide an interface for the specification of surfaces from the definition
of spline patch boundaries. For a thorough background in thenumerous established methods
which exist for producing lofted surfaces, the reader is referred to Piegl [1993].

Coons [1967] Charrot and Gregory [1984]

Plowman and Charrot [1996] Kato [1991], Sabin [1998]

Figure 1: The evolution of the supported curve configurations in transfinite surface interpolation
techniques. The 4-sided method of Coons [1967] was extended by Charrot and Gregory [1984]
to 5-sided polygons, and later to arbitraryn-gons by Plowman and Charrot [1996]. Kato [1991]
and Sabin [1998] further extended these approaches to support surface holes.
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The problem of constructing a surface from a set ofn bounding curves is well studied,
originating with Coons’ method [Coons, 1967]. Since its invention, it has been developed
further and applied in various areas of geometric modellingand Finite Element methods by
Sabin [1996]. A summary of the development of these techniques, sometimes calledtransfinite
interpolation, is given in Figure 1. Numerous recent methods have been presented to fit a
surface to a network of input curves, ranging from subdivision [Nasri and Abbas, 2002, Levin,
1999, Schaefer et al., 2004] to geometric diffusion using PDEs [Xu et al., 2003].

Several approaches have been pursued recently to constructsubdivision surfaces interpolat-
ing a network of curves [Nasri and Abbas, 2002, Levin, 1999, Schaefer et al., 2004]. These
methods typically rely on a dual coarse grid defining surfacetopology matching the curve net-
work (which may be constructed during the course of the algorithm [Schaefer et al., 2004]). We
too require a topological description of the surface in order to produce the surface. Our method
differs inherently from subdivision in that the resulting surface has a parametric definition.

Xu et al. [2003] use a geometric diffusion model which can perform surface blends,n-sided
hole filling and free form surface fitting with non-linear blends. Although this method does have
attractive properties and is particularly applicable to lofted surfaces, alterations to the surface
will have a global effect as there is no localised topological structure.

The process of blending together overlapping charts to construct a manifold was first pro-
posed to the graphics community by Grimm and Hughes [1995]. In their approach an input
medium, consisting of a topological structure of any genus,is converted into a manifold by
blending overlapping vertex, face and edge charts with transition functions.

Grimm and Hughes’ manifold construction was extended recently by Ying and Zorin [2004]
to allow the construction ofC∞ manifolds from control meshes. Their method uses a similar
principle to ours, but their transition function can be thought of as blending together patches
defined by the edges of the grid rather than the faces as they are with our method. The proof
of C∞ continuity of transition maps and partition of unity functions provided in their paper is
directly relevant to this work, as our method uses an equivalent construction for both the vertex
patches and the final manifold blend.

Our method is also similar to the Moving Least Squares (MLS) surface approximation pio-
neered by David Levin and later developed for constructing and rendering point set surfaces by
Alexa et al. [2003]. MLS uses partitions of unity to blend together local surface approximations
in a similar manner to ours.

3 Terminology

In general,i and j are used to represent the indices of vertices and faces respectively. I j is
used to represent the set of vertex indices at the corners of face j (in a mesh consisting of
quadrilaterals,|I j | = 4) andJi is the set of faces incident on the vertexi (so |Ji | is the valence
of the vertexi). Both sets are cyclic, ordered, finite and non-empty.

We define a set indexing operator[] such thatI j [n] returns thenth element of a setI j , modulo
the size of the set|I j |. An example is given in Figure 2. We will refer tok = |Ji | as the valence
of vertexi, often denoted as a subscript as many of the functions we use can be precomputed in
the implementation for expected values ofk.

For clarity, we define three separate vector spaces:

• u := (u,v)∈U≡R
2 whereU is the parameter space of each patchS j . If u ∈ [0,1]2 then it
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Figure 2: An example of vertex sets and face sets. Each face which bordersv1 is included in
the ordered setJv1 = { f1, ..., f6}, while each corner vertex of facef1 is included in the ordered
setI f1 = {v1, ...,v4}.

describes a point within patchS j . These coordinates are used to describe how the surface
is traversed in parameter space.

• x ∈X≡R
2 whereX is the “conformal space” (described in Section 4.1), andx := (x,y)∈

R
2. Conformal space is used to define smooth blending between neighbouring patches.

• R
3, the Euclidean space, where the final surface lives.

The curve network is specified by three components:

• An ordered set ofnc curvesC = {c1, ...,cnc} whereci : R
1 7→ R

3 is any parametric repre-
sentation.

• An ordered set ofnv verticesV = {v1, ...,vnv} where each vertex is a set of tuples each
consisting of the index of an incident curve and a parameter value along the curve where
the vertex lies. This definition allows the physical location of connected vertices to differ.

• An ordered set ofnf facesF = {f1, ..., fnf}. Each face entry contains the indices of the
vertices which bound the face.

Note that the above structure does not indicate the locationof the vertices inR3, but they are
easily deduced as the average of the points they correspond to on the incident curves. Another
observation is that this method will obviously work on ordinary control meshes (such as those
used in subdivision) as the edges of the coarse grid could simply be defined as parametric
curves.

4 Method overview

We construct a surface from a network of curves, which form the boundaries ofnsurface patches
Sj , j ∈ {1, ..,n}. The final surface takes the form of surface patchesS′j : U 7→ R

3 which approx-
imate the curve network, but has smooth cross border derivatives with its neighbour patches.

• A smoothly blendedvertex patch Pi(u, j) is defined for each vertexi. This patch consists
of separate “slices”, one for each facej ∈ Ji (as in Figure 4).
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(a) (b)

Figure 3: In (a) is a two-dimensional depiction of our method. Three parametric curve seg-
ments are defined, along with information about how they are to be connected (note that this
information could be deduced geometrically). Each pair of curves associated with a vertex is
used to construct the associated vertex patch. The patch is formed by extrapolating the curves
and blending these together. The curve in the final surface between both these vertices is defined
by blending together the vertex patch segments (in this casethere are only two, one on either
side of the vertex) associated with that particular curve. In (b) we show the equivalent process
in R

3.

• The approximative surface constructionS′j(u) for face j is constructed by blending to-
gether all vertex patchesPi(u, j) such thati ∈ I j .

This is demonstrated in the two-dimensional case in Figure 3.

4.1 Vertex patches

The smoothness of the vertex patch determines the smoothness of the final surface. The smooth-
ness of the region is achieved by using local coordinate transforms to define how each vertex
patch segmentextrapolates into neighbouring patches. This extrapolation is achievedby a
conformal space transformation for eachl ∈ Ji.

Each sample pointu is mapped into conformal (angle preserving) space using a conformal
mapping functionϕ : U 7→ X. We use on of the standard conformal complex transformϕk(z) =
z4/k [Feynman et al., 1989], wherek is the valence of the vertex. A rotationRl is then applied
to determine the extrapolated location of the(x,y) coordinate in the local patch. The rotation
is dependent on the method being used — further discussed in Section 6. The transformed
point is then remapped into parameter space with an inverse conformal mappingϕ−1

k (z). The
concatenation of functionsϕ−1

k ◦Rl ◦ ϕk : U 7→ U we call theextrapolation transform. The
choice of the initial curve (or patch in the bivariate case) to orient with they-axis is unimportant,
although it will affect the parameterisation (which may modify the behaviour of the function
λm introduced in Equation 2). This process is illustrated in Figure 4.

We define each vertex patch by

Pi(u, j) =
1
Ω

k

∑
l=1

ω(δk(u, l)) ·SJi [l ]
(

ϕ−1
k ◦Rl ◦ϕk(u)

)

, (1)
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Figure 4: Extrapolating into local patch coordinates. In (a) a point in parameter spaceu ∈ U

is transformed into “conformal space”x ∈ X using the conformal mappingϕk. A rotationRl

is then applied to the conformal space coordinate to determine (xl ,yl ). The rotation used here
corresponds with the univariate (curve based) scheme discussed in Section 6.1. In (b) we give
an example of a complex 6 vertex patch on the haunch of the bunny model in Figure 9.

wherek= |Ji| (the valence of vertexi) andSj : U 7→R
3 is some parametric sampling function to

determine the position inR3 (discussed in Section 6). The weightingω is either determined in
conformal space (ω : U 7→R, see Section 6.1) or in parameter space (ω : X 7→R, see Section 6.2)
depending on the shape of the desired blending function. We define

δk(u, l) =

{

ϕ−1
k ◦Rl ◦ϕk(u), : ω : U 7→ R

Rl ◦ϕk(u), : ω : X 7→ R

which gives us greater flexibility in defining how our surfaces Sj interact with each other. We
set

Ω =
k

∑
l=1

ω(δk(u, l)) ,

so the weighting functions form a partition of unity. An important observation is that ifϕ−1
k ◦

Rl ◦ϕk returns au 6∈ [0,1]2 then the functionSj returns an extrapolated value.

4.2 Manifold construction

The goal of this method is to fit smooth surfaces to the networkwhich best approximates the
input curves. In Section 4.1 we described a method to construct smooth vertex patchesPi(u, j)
for a vertexi, and all j ∈ Ji . The surfaceS′j(u) is constructed by blending together all vertex
patches withi ∈ I j . This is performed using a blending function similar to thatdefined in
Section 6. So

S′j(u) =
1
Ξ

|I j |

∑
m=1

ξ(λm(u))PI j [m](λm(u), j), (2)

8



whereλm is a simple coordinate transformation function to ensure that the coordinate frame of
consecutive patches is aligned with the first patch (m = 1), ξ : U 7→ R is a blending function
based only on the parameter space coordinates of the point, and as before the partition of unity
is ensured by dividing through by the total blend weight value

Ξ =
|I j |

∑
m=1

ξ(λm(u)) .

There is obviously a great deal of flexibility in the design ofthe bivariate blending function
ξ. We have experimented with a range of variations in its construction but empirical evidence
shows that altering this function produces little effect onthe resultant surface except in extreme
cases. For simplicity we useξ(u,v) = β(u)β(v), using a smooth blending functionβ(t) defined
in Section 4.3.

4.3 A smooth blending function

The quality of the resultant surface is greatly influenced bythe choice of blending function for
the vertex patch region. This function is used to construct the blend weightsω andξ mentioned
in Equations 1 and 2. In order to preserve the smoothness of the overall region, we use the
infinitely differentiable blending function

β(t) = exp

(

4+
4

t2−1

)

, (3)

defined over the open intervalt ∈ (−1,1) (see Figure 5).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

β(t)

Figure 5: The blending function defined in Equation 3.

5 Continuity

In this section we show how the continuity of the surface is derived. A setM has a manifold
structure if there exists a collection of open domainsCn and associate mapping functionsαn :
Cn 7→ M (together calledcharts), whereαn is one-to-one and the imagesαn(Cn) coverM. M
is aC∞ manifold if the transition maps from chart to charttmn = α−1

m ◦αn defined for pairs of
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chart for whichαn(Cn) andαm(Cm) intersect areC∞. In our caseS′j(u) represents the transition
map.

The two stage process consists of Equation 1 and Equation 2. The componentsRl , ϕk, λm

and the partitions of unity [Ying and Zorin, 2004] are infinitely smooth and invertible. The con-
tinuity therefore depends on the behaviour of the surface description functionSj . Two options
are presented for describing the surface behaviour as it is extrapolated over the region:

• a univariate approach which samples values inR
3 from the input curves meeting at the

given vertex, and

• a bivariate approach which extrapolates the patches from each face incident on the vertex
over the entire domain with a smooth and invertible “flattening” functionϕ̃−1 (defined in
Section 6.2).

In both cases these methods are constrained by the continuity of the representation of the ex-
trapolated surface. In the case of the univariate extrapolation the continuity is constrained by
the designer, who could use higher order curves to specify higher order continuity. Similarly,
the bivariate case would be constrained by the type of patch used. Therefore the continuity of
the resulting surface is limited only by the continuity of the functions which are extrapolated.

6 Vertex sampling

The functionSj : U 7→ R
3 returns a point which best defines the extrapolation of a surface over

the vertex patch region. We define two possible surface functions Sj(u): one based on the
curves meeting at the vertex, and one based on a bivariate patch extrapolation.

6.1 Univariate vertex patches

In this section we present a simple univariate scheme to define a surface function forSj(u)
which extrapolates thecurvesinto the blended region. If the curvecl (t) is the curve corre-
sponding with theu axis of facel ∈ Ji[l ] we use

SJi [l ](u) = cl (u). (4)

We use a conformal space blendωcurve : X 7→ R and define a blending shape as follows:

ωcurve(x) =















1 : x = 0,y≥ 0
β(x) : x 6= 0,y > 0
β(x)β(y) : −1 < x < 1,−1 < y < 0
0 : otherwise

(5)

In order to orient the blending function shape we define the rotationRl = 2lπ/k+π/2, and
we normalise the resulting values of(x,y) to ensure that the blending function reduces to zero
at the corners of the conformal region (i.e. the locationϕ(1,1), rotated byRl ). The resulting
shape is a blend that falls off evenly to the left and right of the vertical, and falls away radially
wheny < 0.

This method causes bunching due to the distribution of curves in parameter space, and the
results are not generally visually pleasing (see Figure 6).However, the smoothness of this

10



Input network Univariate extrapolation Bivariate extrapolation

Figure 6: A comparison of the univariate and bivariate (s = 0.5) extrapolation methods (see
Section 6). Note in particular the parameter line bunching of the univariate (curve) extrapolation
method.

method is only limited by the smoothness of the input curves.Should a method be found to
evenly distribute the samples this would lead to a better behaved surface. This is an area for
future work.

6.2 Bivariate extrapolation

For better visual results, we instead defineSj(u) to return a point on a bivariate patch represen-
tation bounded by the four input curves associated with the patch. Any bivariate patch can be
used for this operation, such as a bivariate b-spline patch network or even simple flat quadrilat-
eral patches, yielding surfaces which areC∞. For simplicity we have used a Coons patch Coons
[1967], limiting the continuity of the resulting scheme to at mostC1.

Such a bivariate patch representation provides a mappingC(K,u′) : U 7→ R
3, whereK is

the set of four curves bounding the current face. We require some functionϕ−1
k : X 7→ U to

provide the extrapolated parameter space coordinates forC. The functionϕ−1
k = zk/4 would

be an obvious choice, but unfortunately the extrapolation information would be lost. This is
difficult to visualise, but it is the equivalent of converting a higher valency vertex back to a 4
valency vertex, causing one or more faces to be foldedunderneathan existing face.

We use an alternative “flattening” approach to defineϕ̃−1
k , shown in Figure 7, using a com-

plex transform using a smooth mapping between the angles of the formθ + αsinθ. We define
the function in complex notation as follows:

ϕ̃−1
k (z) = |z|ei(θ+αk sinθ) (6)

whereαk = π(k−4)
4ksin(π/k) , andθ is the angle between the pointx and the start curve in conformal

space. In the case of the bivariate construction, we apply the rotationRl = 2lπ/k.
We define the bivariate blending function in parameter spaceωcoons: U 7→ R to be

ωcoons(u) = β(s(0.5−u))β(s(0.5−v)) .

The value ofs is a user controlled parameter which can be used to control the level of overlap
between neighbouring patches in the vertex patch. This is demonstrated in Figure 8. We have
found through experimentation thats = 0.8 produces surfaces of a respectable visual quality
(see Figure 10). However this value can be specified by the designer for each vertex in the
surface. Adaptively determining vertex overlap weights isa topic for future work.
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ϕ−1~

Figure 7: Inverting the conformal map usingϕ̃−1. The arrows indicate the coordinate frame of
the patch from which we are extrapolating. This patch is “flattened”, causing other patches to
be squashed proportionally.

7 Implementation

The method is simple to implement — the vertex patch generation code is only a few hundred
lines of code. Key to the continuity of the resulting surfaceis the parametric representation of
the input curves. We have allowed for both algebraic curves (C∞) to evaluate the smoothness
of the method, and Catmull-Rom splines (C1) for compatibility with existing models.

As the method requires a topology consisting only of quad faces, surfaces consisting of
other polygons must first be topologically subdivided with one iteration of an interpolative
subdivision. We a topological alteration analogous to the Catmull Clark scheme [Catmull and
Clark, 1978] but use differing rules to compute the locationsof new vertices. We evaluate edge
vertices directly from the input curves, and face vertices from the midpoints of an-sided patch
using the method of Plowman and Charrot [1996]. New curves canbe constructed by sampling
points in the parametric coordinates of then-sided patch and fitting a spline of the desired order.
One stage of this subdivision is shown in Figure 9.

Sharp edges — either specified per vertex or detected by topological discontinuities — are
handled by using a simple bivariate patch interpolating thefour input curves. This would blend
into the remaining vertex patches corresponding to the sameface in Equation 1.

Geometry is defined by regularly sampling coordinates within faces. This will obviously
produce unpleasant parameter bunching within small faces,but could be rectified by using the
Least-Squares approach of Ying and Zorin [2004], although such an approach would require a
redefinition of the final blending step in Equation 2.

8 Conclusion and future work

We have presented a method of constructing a smooth surface approximating a network of input
curves by first constructing smooth vertex patches and then blending together the segments
corresponding to the corners of each face. Each stage uses a manifold based construction. Our
main contributions have been:

• a two step manifold based approach for producing smooth surfaces by extrapolation (Sec-
tion 4),

• a univariate surface function approach to the method which blends together the curves
meeting at each vertex to form a surface (Section 6.1), and
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No blend

s= 0.8

s= 0.5

s= 0.2

Figure 8: The result of varying the parameters (the overlap) on a 5 valency vertex patch and the
handmodel. Note that a crease at the base of the thumb (right column) becomes progressively
more prominent as the overlap increases.
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Figure 9: One subdivision step is applied to the bunny model in order to convert then-sided
patches to only 4-sided patches. This is described in Section 7.

• a bivariate surface function approach which computes the extrapolated coordinate of a
standard patch representation by using a smooth invertiblefunctionϕ̃−1 (Section 6.2).

There are a number of shortcomings of this technique, givingrise to several avenues for
future work:

• Coons patches do not extrapolate well when vertices have a valence greater than 8. We
have experimented with Mean Value Coordinates (see Floater [2003] and Ju et al. [2005])
as a method to define extrapolation patches which do not overlap with high valence.
Further research in this direction is required.

• The method does not prevent self intersection, which arisesnaturally in regions where
neighbouring patches are of significantly differing sizes.This phenomenon can also cause
undesirable surface artifacts (such as bumps). This could be repaired by adding geometric
sensitivity in the blending process, causing parametric curves to be weighted inversely
based on their length.

• At present, the behaviour of corners are limited to either being completely sharp or com-
pletely smooth, so complex blending configurations arisingfrom realistic modelling are
currently not possible (several examples are shown by Schaefer et al. [2004]).

• Topological alterations of the surface patches, such as holes or seams, are not currently
supported. It is probable that these could be supported in anapproximative fashion defin-
ing holes with a method like that of Kato [1991] or Sabin [1998] in each bivariate patch
extrapolated over the vertex patch region.

• Performing extrapolation can be problematic (likened by [Press et al., 1992] to “turn-
ing lead into gold”). It is a simple task to construct splineswhich curl sharply back on
themselves unpredictably. While a method of performing robust extrapolation is not a
topic of this paper, developments in this field will have a strong impact on the quality and
predictability of the surfaces that our method produces.
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Figure 10: Some results of our technique. The first column shows the input curve network
after one level of subdivision (with the method described inSection 7). The second and third
columns illustrate the resultant surface with the univariate and bivariate extrapolation methods
respectively. All results were generated with the overlap values= 0.8. Note that some bulging
artifacts arise on the surface where neighbouring patches are of significantly differing sizes
(most obvious at the front grille of thebugmodel). This can be rectified by adapting the overlap
between patches.
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