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Abstract

This dissertation investigates the interplay between complexity, infinite games, and finite graphs.
We present a general framework for considering two-player games on finite graphs which may
have an infinite number of moves and we consider the computational complexity of important
related problems. Such games are becoming increasingly important in the field of theoreti-
cal computer science, particularly as a tool for formal verification of non-terminating systems.
The framework introduced enables us to simultaneously consider problems on many types of
games easily, and this is demonstrated by establishing previously unknown complexity bounds
on several types of games.

We also present a general framework which uses infinite gamesto define notions of struc-
tural complexity for directed graphs. Many important graphparameters, from both a graph
theoretic and algorithmic perspective, can be defined in this system. By considering natural
generalizations of these games to directed graphs, we obtain a novel feature of digraph com-
plexity: directed connectivity. We show that directed connectivity is an algorithmically impor-
tant measure of complexity by showing that when it is limited, many intractable problems can
be efficiently solved. Whether it is structurally an important measure is yet to be seen, however
this dissertation makes a preliminary investigation in this direction.

We conclude that infinite games on finite graphs play an important role in the area of com-
plexity in theoretical computer science.
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Chapter 1

Introduction

The aim of this dissertation is to investigate the interplaybetween infinite games, finite graphs,
and complexity. In particular, we focus on two facets: the computational complexity of infinite
games on finite graphs, and the use of infinite games to define the structural complexity of finite
graphs. To present the motivation behind this investigation, we consider the three fundamental
concepts of games, graphs and complexity.

What is a game?

Ask anyone what a game is and most people will respond with an example: chess, bridge,
cricket, and so on. Almost everyoneunderstandswhat a game is, but few people can imme-
diately give a precise definition. Loosely speaking, a game involves interactions between a
number of players (possibly only one) with some possible outcomes, though the outcome is
not always the primary concern. The importance of games in many scientific fields arises from
their usefulness as an informal description of systems withcomplex interactions; as most peo-
ple understand games, a description in terms of a game can often provide a good intuition of the
system. The prevalence of this application motivates the formal study of games, which results
in the use of games to provide formal definitions. Such definitions can sometimes provide inter-
pretations of concepts where traditional approaches are cumbersome or less than adequate. For
example, the semantics of Hintikka’s Independence Friendly logic [HS96] are readily expressed
using games of imperfect information, but the traditional Tarski-style approaches are unwieldy.

Games in computer science

Mathematical games are playing an increasingly important role in computer science, both as
informal descriptions and formal definitions. For example,tree-width, an algorithmically im-
portant graph parameter which we see frequently in this dissertation, can be intuitively presented
as a game in which a number of cops attempt to capture a robber on a graph. Examples where
games can provide formal definitions include interactive protocols and game semantics. An
important example of an application of games, which motivates the games we consider, is the
following game that arises when verifying if a system satisfies certain requirements.

Starting with the simple case of checking if a formula of propositional logic is satisfied by
a truth assignment, consider the following game played by two players, Verifier and Falsifier,
“on” the formula. The players recursively choose subformulas with Verifier choosing disjuncts
and Falsifier choosing conjuncts until a literal is reached.If the truth value of that literal is

8
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true then Verifier wins, otherwise Falsifier wins. The formula is satisfiable if, and only if,
Verifier has a strategy to always win. This game is easily extended to the verification of first
order formulas, with Verifier choosing elements bounded by existential quantifiers and Falsifier
choosing elements bounded by universal quantifiers. Verifying a first order logic formula is
very useful for checking properties of a static system, but often in computer science we are
also interested in formally verifying properties ofreactive systems, systems which interact with
the environment and change over time. Requirements for such systems are often specified in
richer logics such as Linear Time Logic (LTL), Computation Tree Logic (CTL) or the modalµ-
calculus. This motivates the following extension of the Verifier-Falsifier game for verifying if a
reactive system satisfies a given set of requirements. The game is played by two players, System
and Environment, on the state space of the reactive system. The current state of the system
changes, either as a consequence of some move effected by Environment, or some response by
System. System takes the role of Verifier, trying to keep the system in a state which satisfies
the requirements to be verified. Environment endeavours to demonstrate the system does not
satisfy the requirements by trying to move the system into a state which does not satisfy the
requirements.

The natural abstraction of these games is a game where two players move a token around
a finite directed graph for a possibly infinite number of moveswith the winner determined by
some pre-defined condition. This abstraction encompasses many two-player, turn-based, zero-
sum games of perfect information, and such games are found throughout computer science: in
addition to the games associated with formal verification ofreactive systems, examples of games
which can be specified in this manner include Ehrenfeucht-Fräısśe games and the cops and
robber game which characterizes tree-width. Unsurprisingly, these games have been extensively
researched, particularly in the area of formal verification: see for example [BL69, Mul63, EJ88,
Mos91, EJ91, IK02, DJW97]. Two important questions regarding the complexity of such games
are left unresolved in the literature. These are the exact complexity of decidingMuller games
and the exact complexity of decidingparity games. One of the goals of this dissertation is to
address these questions with an investigation of the computational complexity of deciding the
winner of these types of games.

What is a graph?

Graphs are some of the most important structures in discretemathematics. Their ubiquity can be
attributed to two observations. First, from a theoretical perspective, graphs are mathematically
elegant. Even though a graph is a simple structure, consisting only of a set of vertices and a
relation between pairs of vertices, graph theory is a rich and varied subject. This is partly due
the fact that, in addition to being relational structures, graphs can also be seen as topological
spaces, combinatorial objects, and many other mathematical structures. This leads to the second
observation regarding the importance of graphs: many concepts can be abstractly represented
by graphs, making them very useful from a practical viewpoint. From an algorithmic point
of view, many problems can be abstracted to problems on graphs, making the study of graph
algorithms a particularly fruitful line of research.

In computer science, many structures are more readily represented bydirected graphs, for
example: transition systems, communications networks, orthe formal verification game we saw
above. This means that the study of directed graphs and algorithms for directed graphs is par-
ticularly important to computer science. However, the increased descriptive power of directed
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graphs comes at a cost: the loss of symmetry makes the mathematical theory more intricate. In
this dissertation we explore both the algorithmic and mathematical aspects of directed graphs.

What is complexity?

Just as the definition of a game is difficult to pin down, the quality of “being complex” is
best described by examples and synonyms. From an algorithmic perspective, a problem is
more complex than another problem if the latter is easier to compute than the former. From
a structural point of view, one structure is more complex than another if the first structure
contains more intricacies. These are the two kinds of complexity relevant to this dissertation:
computational complexityandstructural complexity.

In the theory of algorithms, the notion of computational complexity is well defined. In
model theory however, being structurally complex is very much a subjective notion, depending
largely on the application one has in mind. For example, a graph with a large number of edges
could be considered more complex than a graph with fewer edges. On the other hand, a graph
with a small automorphism group could be considered more complex than a graph with a large
automorphism group, as the second graph (which may well havemore edges) contains a lot of
repetition. As we are primarily interested in algorithmic applications in this dissertation, we
focus on the structural aspects of graphs which influence thedifficulty of solving problems. In
Section 1.1.2 below, we loosely define this notion of graph structure by describing the funda-
mental concepts important in such a theory.

Having established what constitutes “structure”, we turn to the problem of defining struc-
tural complexity. The most natural way is to define some sort of measure which gives an intu-
ition for how “complex” a structure is. In Chapter 4, we discuss those properties that a good
measure of structural complexity should have. But how do we find such measures in the first
place? Also in Chapter 4 we present the notion of tree-width and argue that it is a good measure
of complexity for undirected graphs. As we remarked above, tree-width has a characterization in
terms of a two-player game, so it seems that investigating similar games would yield useful mea-
sures for structural complexity. Indeed this has been an active area of research for the past few
years, for example: [KP86, LaP93, ST93, DKT97, JRST01, FT03,FFN05, BDHK06, HK07].
This line of research has recently started to trend away fromshowing game-theoretic charac-
terizations of established structural complexity measures to defining important parameters from
the definition of the game, an example of the transition from the use of games as an informal
description to their use as a formal definition. Despite thisactivity, very little research has con-
sidered games on directed graphs. This is perhaps partly dueto the lack, for some time, of a
reasonable measure of structural complexity for directed graphs.
The second major goal of this dissertation is to use infinite games to define a notion of structural
complexity for directed graphs which is algorithmically useful.

Organization of the thesis

In the remainder of this chapter we define the conventions we use throughout. Chapters 2 and 3
are primarily concerned with the analysis of the complexityof deciding the winner of infinite
games on finite graphs. From Chapter 4 to Chapter 8 we investigate graph complexity measures
defined by infinite games.

In Chapter 2 we formally define the games we are interested in. We introduce the notion
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of awinning condition typeand we establish a framework in which the expressiveness andsuc-
cinctness of different types of winning conditions can be compared. We show that the problem
of deciding the winner in Muller games is PSPACE-complete, and use this to show the non-
emptiness and model-checking problems for Muller tree automata are also PSPACE-complete.

In Chapter 3 we analyse an algorithm for deciding parity games, the strategy improvement
algorithm of [VJ00a]. We present the algorithm from a combinatorial perspective, showing
how it relates to finding a global minimum on an acyclic uniquesink oriented hypercube. We
combine this with results from combinatorics to improve thebounds on the running time of the
algorithm.

In Chapter 4 we discuss the problem of finding a reasonable notion of complexity for di-
rected graphs. We present the definition oftree-width, arguably one of the most practical mea-
sures of complexity for undirected graphs, and we discuss the problem of extending the concept
to directed graphs.

Building on the games defined in Chapter 2, in Chapter 5 we define the graph searching
game. We show how we can use graph searching games to define robust measures of complexity
for both undirected and directed graphs. This framework is general enough to include many
examples from the literature, including tree-width.

In Chapters 6 and 7 we introduce two new measures of complexityfor directed graphs:
DAG-widthandKelly-width. Both arise from the work in Chapter 5, and both are generalizations
of tree-width to directed graphs. While DAG-width is arguably the more natural generalization
of the definition of tree-width, Kelly-width is equivalent to natural generalizations of other graph
parameters equivalent to tree-width on undirected graphs,which we also introduce in Chapter 7.
We show each measure is useful algorithmically by providingan algorithm for deciding parity
games which runs in polynomial time on the class of directed graphs of bounded complexity.
We compare both measures with other parameters defined in theliterature such as tree-width,
directed tree-width and directed path-width and show that these measures are markedly different
to those already defined. Finally, in Chapter 7 we compare Kelly-width and DAG-width. We
show that the two measures are closely related, but we also show that there are graphs on which
the two measures differ.

In Chapter 8 we present some preliminary work towards a graph structure theory for di-
rected graphs based on DAG-width and Kelly-width. We define generalizations of havens and
brambles which seem to be appropriate structural features present in graphs of high complexity
and absent in graphs of low complexity. We also consider the problem of generalizing the minor
relation to directed graphs.

We conclude the dissertation in Chapter 9 by summarizing the results presented. We dis-
cuss the contribution made towards the stated research goals, and consider directions of future
research arising from this body of work.

Notation and Conventions

We assume the reader is familiar with basic complexity theory, graph theory and discrete math-
ematics. We generally adopt the following conventions for naming objects.

• For elementary objects, or objects we wish to consider elementary, for example vertices
or variables:a, b, c, . . .

• For sets of elementary objects:A,B,C, . . .
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• For structures comprising several sets, including graphs and families of sets:A,B, C, . . .

• For more complex structures:A, B, C, . . .

• For sequences and simple functions:α, β, γ, . . .

• For more complex functions:A,B,C, . . .

1.1.1 Sets and sequences

All sets and sequences we consider in this dissertation are countable. We use bothN andω to
denote the natural numbers, using the latter when we requirethe linear order. We also assume
that0 is a natural number.

Let A be a set. We denote byP(A) the set of subsets ofA. For a natural numberk, [A]k

denotes the set of subsets ofA of sizek, and[A]≤k denotes the set of subsets ofA of size≤ k.
Given two setsA andB, A∪̇B denotes theirdisjoint unionandA △ B denotes theirsymmetric
difference. That is,

A △ B := (A \B) ∪ (B \ A).

For readability, we generally drop innermost parentheses or brackets when the intention is clear,
particularly with functions. For example iff : P(A) → B, anda ∈ A, we write f(a) for
f({a}).

We write sequences as wordsa1a2 · · · , using0 as the first index when the first element of the
sequence is especially significant. For a sequenceπ, |π| denotes the length ofπ (|π| = ω if π is
infinite). We denote sequence concatenation by·. That is, ifπ = a1a2 · · · an is a finite sequence
andπ′ = b1b2 · · · is a (possibly infinite) sequence, thenπ ·π′ is the sequencea1a2 · · · anb1b2 · · · .
If π = a1a2 · · · an is a finite sequence,πω is the infinite sequenceπ ·π ·π · · · . Given a setA, the
setA∗ denotes the set of all finite sequences of elements ofA, and the setAω denotes the set of
all infinite sequences. We say a reflexive and transitive relation≤ onA is awell-quasi ordering
if for any infinite sequencea1a2 · · · ∈ Aω, there exists indicesi < j such thatxi ≤ xj.

Let π = a1a2 · · · andπ′ = b1b2 · · · be sequences of elements ofA. We writeπ � π′ if π is
a prefixof π′, that is, if there exists a sequenceπ′′ such thatπ′ = π · π′′. We writeπ ≤ π′ if π
is asubsequenceof π′, that is, there exists a sequence of natural numbersn1 < n2 < · · · such
thatai = bni

for all i ≤ |π|.

1.1.2 Graphs

The notation we use for the graph theoretical aspects of thisdissertation generally follow Dies-
tel [Die05], however rather than regarding directed graphsas undirected graphs with two maps
Head andTail from edges to vertices, we view directed graphs as relational structures. That is, a
directed graph, or digraph, G consists of a set ofvertices, denotedV (G), and anedge relation,
E(G) ⊆ V (G)× V (G). We use the definition in [Die05] for anundirected graph, that isE(G)
is a subset of[V (G)]2. For an edgee = (u, v) in a directed graph, theheadof e is v and thetail
is u, and we saye goesfrom u to v. To avoid ambiguities, we assume that the vertex and edge
sets are disjoint. Theelementsof a graphG, is the set defined as

Elts(G) := V (G) ∪ E(G).
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We note that we could either adopt the policy of Diestel and view a directed graph as an
undirected graph with some additional structural information, or alternatively we could view
an undirected graph as a directed graph where the edge relation is symmetric and irreflexive.
We reserve those interpretations for the following two mapsbetween directed and undirected
graphs. LetD be a directed graph. Theunderlying undirected graph ofD is the undirected
graphD where:

• V (D) = V (D), and

• E(D) =
{
{u, v} : (u, v) ∈ E(D)}.

Let G be an undirected graph. Thebidirected graph ofG is the directed graph
←→G where:

• V (
←→G ) = V (G), and

• E(
←→G ) =

{
(u, v), (v, u) : {u, v} ∈ E(G)}.

We extend the definition of bidirection to parts of undirected graphs. For example abidirected
cycleis a subgraph of a directed graph which is a bidirected graph of a cycle. Regarding the pair
of edges{(u, v), (v, u)} arising from bidirecting an undirected edge, we call such a pair anti-
parallel. For clarity when illustrating directed graphs, we use undirected edges to represent
pairs of anti-parallel edges. For the remaining definitions, we use ordered pairs to describe
edges in undirected graphs.

Let G be an undirected (directed) graph. A(directed) pathin G is a sequence of vertices
π = v1v2 · · · such that for alli, 1 ≤ i < |π|, (vi, vi+1) ∈ E(G). For a subsetX ⊆ V (G), the set
of verticesreachablefrom X is defined as:

ReachG(X) := {w ∈ V (G) : there is a (directed) path tow from somev ∈ X}.

For a subsetX ⊆ V (G) of the vertices, the subgraph ofG inducedby X is the undirected
(directed) graphG[X] defined as:

• V (G[X]) = X, and

• E(G[X]) = {(u, v) ∈ E(G) : u, v ∈ X}.

For convenience we writeG \X for the induced subgraphG[V (G) \X]. Similarly, for a setE
of edges,G[E] is the subgraph ofG with vertex set equal to the set of endpoints ofE, and edge
set equal toE.

Let v ∈ V (D) be a vertex of a directed graphD. Thesuccessors ofv are the verticesw
such that(v, w) ∈ E(D). Thepredecessors ofv are the verticesu such that(u, v) ∈ E(D).
The successors and predecessors ofv are the verticesadjacent tov. We sayv is a root (ofD)
if it has no predecessors, and aleaf (ofD) if it has no successors. Theoutgoing edges ofv
are all the edges fromv to some successor ofv, and theincoming edges ofv are all the edges
from a predecessor ofv to v. Theoutdegree ofv, dout(v) is the number of outgoing edges ofv
and theindegree ofv, din(v) is the number of incoming edges ofv. Given a subsetV ⊆ V (G)
of vertices, theout-neighbourhood ofV , Nout(V ) is the set of successors of vertices ofV not
contained inV .
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If D is a directed acyclic graph (DAG), we write�D for the reflexive, transitive closure of
the edge relation. That isv �D w if, and only if, w ∈ ReachD(v). If v �D w, we sayv is a
ancestorof w andw is adescendantof v.

We denote byDop the directed graph obtained by reversing the directions of the edges ofD.
That is,Dop is the directed graph defined as:

• V (Dop) = V (D), and

• E(Dop) = (E(D))−1 = {(v, u) : (u, v) ∈ E(D)}.

In this dissertation we considertransition systemswith a number of transition relations.
That is, a transition system is a tuple(S, sI , E1, E2 . . .) whereS is the set ofstates, sI ∈ S is
theinitial state, andEi ⊆ S×S are the transition relations. We observe that a transition system
with one transition relation is equivalent to a directed graph with an identified vertex.

Structural relations

As we indicated earlier, the notion ofgraph structureis very much a qualitative concept. Just as
the “structure” of universal algebra is best characterizedby subalgebras, homomorphisms and
products, the particular graph structure theory we are interested in is perhaps best characterized
by the following “fundamental” relations: subgraphs, connected components and graph compo-
sition. As these concepts are frequently referenced, we include their definitions. First we have
the subgraph relation.

Definition 1.1 (Subgraph). Let G andG ′ be directed (undirected) graphs. We sayG is a sub-
graphof G ′ if V (G) ⊆ V (G ′) andE(G) ⊆ E(G ′).

The next definition describes the building blocks of a graph,theconnected components.

Definition 1.2 (Connected components). Let G be an undirected graph. We sayG is connected
if for all v, w ∈ V (G), w ∈ ReachG(v). A connected component ofG is a maximal connected
subgraph.

It is easy to see that an undirected graph is the union of its connected components. That
is, if G1, . . . ,Gm are the connected components ofG, thenV (G) =

⋃m
i=1 V (Gi) andE(G) =⋃m

i=1 E(Gi). From the maximality of a connected component, it follows that a connected com-
ponent is an induced subgraph. Thus we often view a connectedcomponent as a set of vertices
rather than a graph.

The final fundamental relation islexicographic product, also known asgraph composition.

Definition 1.3 (Lexicographic product). Let G andH be directed (undirected) graphs. The
lexicographic product ofG andH is the directed (undirected) graph,G •H, defined as follows:

• V (G • H) = V (G)× V (H), and

•
(
(v, w), (v′, w′)

)
∈ E(G • H) if, and only if, (v, v′) ∈ E(G) or v = v′ and(w,w′) ∈

E(H).
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Figure 1.1: The lexicographic product of graphsG andH

Intuitively, the graphG • H arises from replacing vertices inG with copies ofH, hence the
name graph composition. Figure 1.1 illustrates an example of the lexicographic product of two
graphs.

For directed graphs we have three more basic structural concepts: weakly connected com-
ponents, strongly connected components and directed union. The first two are a refinement of
connected components.

Definition 1.4 (Weakly/Strongly connected components). Let G be a directed graph. We sayG
is weakly connectedif G is connected. We sayG is strongly connectedif for all v, w ∈ V (G),
w ∈ ReachG(v) and v ∈ ReachG(w). A weakly (strongly) connected component ofG is a
maximal weakly (strongly) connected subgraph.

We observe that a directed graph is the union of its weakly connected components. The
union of the strongly connected components may not include all the edges of the graph. How-
ever, it is easy to see that if there is an edge from one strongly connected component to another,
then there are no edges in the reverse direction. This leads to the third structural relation specific
to directed graphs.

Definition 1.5 (Directed union). Let G, G1, andG2 be directed graphs. We sayG is adirected
union ofG1 andG2 if:

• V (G) = V (G1) ∪ V (G2), and

• E(G) ⊆ E(G1) ∪ E(G2) ∪ (V (G1)× V (G2)).

It follows that a directed graph is a directed union of its strongly connected components.

1.1.3 Complexity

The computational complexity definitions of this dissertation follow [GJ79]. We consider poly-
nomial time algorithms efficient, so we are primarily concerned with polynomial time reduc-
tions. We use standardbig-O notationto describe asymptotically bounded classes of functions,
particularly for describing complexity bounds.
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Collaborations

The work in several chapters of this dissertation arose through collaborative work with others
and we conclude this introduction by acknowledging these contributions. The work regarding
winning conditions in Chapter 2 was joint work with Anuj Dawarand was presented at the 30th
International Symposium on Mathematical Foundations of Computer Science [HD05]. Chap-
ter 6 arose through collaboration with Dietmar Berwanger, Anuj Dawar and Stephan Kreutzer,
and was presented at the 23rd International Symposium on Theoretical Aspects of Computer
Science [BDHK06]. The concept and nameDAG-width were also independently developed
by Jan Obdřzálek [Obd06]. Finally, the work in Chapter 7 arose through collaboration with
Stephan Kreutzer and was presented at the 18th ACM-SIAM Symposium on Discrete Algo-
rithms [HK07].



Chapter 2

Infinite games

In this chapter we formally define the games we use throughoutthis dissertation. The games
we are interested in are played on finite or infinite graphs (whose vertices represent a state
space) with two players moving a token along the edges of the graph. The (possibly) infinite
sequence of vertices that is visited constitutes a play of the game, with the winner of a play being
defined by some predetermined condition. As we discussed in the previous chapter, such games
are becoming increasingly important in computer science asa means for modelling reactive
systems; providing essential tools for the analysis, synthesis and verification of such systems.

It is known [Mar75] that under some fairly general assumptions, these games are deter-
mined. That is, for any game one player has a winning strategy. Furthermore, under the con-
ditions we consider below, the games we consider are decidable: whichever player wins can be
computed in finite time [BL69]. We are particularly interested in the computational complexity
of deciding which player wins in these games. Indeed, this forms one of the underlying research
themes of this dissertation.

As we are interested in the algorithmic aspects of these games, we need to restrict our
attention to games that can be described in a finite fashion. This does not mean that the graph
on which the game is played is necessarily finite as it is possible to finitely describe an infinite
graph. Nor does having a finite game graph by itself guaranteethat the game can be finitely
described. Even with two nodes in a graph, the number of distinct plays can be uncountable
and there are more possible winning conditions than one could possibly describe. Throughout
this dissertation, we are concerned withMuller gamesplayed on finite graphs. These are games
in which the graph is finite and the winner of a play is determined by the set of vertices of the
graph that are visited infinitely often in the play (see Section 2.1 for formal definitions). This
category of games is wide enough to include most kinds of gamewinning conditions that are
considered in the literature, including Streett, Rabin, Büchi and parity games.

Since the complexity of a problem is measured as a function ofthe length of the description,
the complexity of deciding which player wins a game depends on how exactly the game is
described. In general, a Muller game is defined by a directed graphA, and a winning condition
F ⊆ P(V (A)) consisting of a set of subsets ofV (A). One could specifyF by listing all its
elements explicitly (we call this anexplicit presentation) but one could also adopt a formalism
which allows one to specifyF more succinctly. In this chapter we investigate the role the
specification of the winning condition has in determining the complexity of deciding regular
games. Examples of this line of research can be found throughout the literature, for instance
the complexity of deciding Rabin games is known to be NP-complete [EJ88], for Streett games
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it is known to be co-NP-complete. The complexity of decidingparity games is a central open
question in the theory of regular games. It is known to be in NP∩co-NP [EJ91] and conjectured
by some to be in PTIME. In Chapters 3, 6 and 7 we explore this problem in more detail. For
Muller games, the exact complexity has not been fully investigated. In Section 2.3 we show that
the complexity of deciding Muller games is PSPACE-complete for many types of presentation.

We also establish a framework in which the expressiveness and succinctness of different
types of winning conditions can be compared. We introduce a notion of polynomial timetrans-
latability between formalisms which gives rise to a notion of game complexity stronger than
that implied by polynomial time reductions of the corresponding decision problems. Infor-
mally, a specification is translatable into another if the representation of a game in the first can
be transformed into a representationof the same gamein the second.

The complexity results we establish for Muller games allow us to show two important prob-
lems related to Mullerautomataare also PSPACE-complete: the non-emptiness problem and
the model-checking problem on regular trees.

The chapter is organised as follows. In Section 2.1 we present the formal definitions of
arenas, games and strategies that we use throughout the remainder of the dissertation. In Sec-
tion 2.2 we introduce the notion of awinning condition type, a formalization for specifying
winning conditions. We provide examples from the literature and we consider the notion of
translatability between condition types. In Section 2.3 wepresent some results regarding the
complexity of deciding the games we consider here, including the PSPACE-completeness re-
sult for Muller games, and a co-NP-completeness result for two games we introduce. Finally,
in Section 2.4 we show that the non-emptiness and model checking problems for Muller tree
automata are also PSPACE-complete.

2.1 Preliminaries

In this section we present the definitions of arenas, games and strategies that we use throughout
the dissertation. The definitions we use follow [GTW02]. In Section 2.1.4 we introduce a
generalization of bisimulation appropriate for arenas andgames,game simulation, and we show
how it can be used to translate plays and strategies from one arena to another.

2.1.1 Arenas

Our first definition is a generalization of a transition system where two entities orplayerscontrol
the transitions.

Definition 2.1 (Arena). An arenais a tupleA := (V, V0, V1, E, vI) where:

• (V,E) is a directed graph,

• V0, the set ofPlayer 0 vertices, andV1, the set ofPlayer 1 vertices, form a partition ofV ,
and

• vI ∈ V is theinitial vertex.

Viewing arenas as directed graphs with some additional structure, we define the notions
of subarenaand induced subarenain the obvious way. Figure 2.1 illustrates an arenaA with
V0(A) = {v4, v5, v6} andV1(A) = {v1, v2, v3, v7, v8, v9}.
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Figure 2.1: An example of an arena

Given an arena,A, we consider the following set of interactions between two players:
Player 0 and Player 1.1 A token, or pebble, is placed onvI(A). Whenever the pebble is on
a vertexv ∈ V0(A), Player 0 chooses a successor ofv and moves the pebble to that vertex, and
similarly when the pebble is on a vertexv ∈ V1(A), Player 1 chooses the move. This results in
a (possibly infinite) sequence of vertices visited by the pebble. We call such a sequence aplay.
More formally,

Definition 2.2 (Play). Given an arenaA andv ∈ V (A), a play inA (from v) is a (possibly
infinite) sequence of verticesv1v2 · · · such thatv1 = v and for alli ≥ 1, (vi, vi+1) ∈ E(A). If
v is not specified, we assume the play is fromvI(A). The set of all plays inA from vI(A) is
denoted by Plays(A).

We observe that ifA′ is a subarena ofA then Plays(A′) ⊆ Plays(A).
As an example, the infinite sequencev1v4v7v5v8v6v9v4v7(v5v2)

ω is a play in the arena pic-
tured in Figure 2.1, as is the finite sequencev1v4v7v5v8v6v9v4.

When one of the players has no choice of move, we may assume thatthere is only one player
as there is no meaningful interaction between the players.

Definition 2.3 (Single-player arena). Let A = (V, V0, V1, E, vI) be an arena. We sayA is a
single-player arenaif for somei ∈ {0, 1} and everyv ∈ Vi, dout(v) ≤ 1.

An important concept relating to arenas and the games we consider is the notion ofduality.
In the dual situation, we interchange the roles of Player 0 and Player 1. This gives us the
following definition of adual arena.

Definition 2.4 (Dual arena). LetA = (V, V0, V1, E, vI) be an arena. Thedual arena ofA is the
arena defined bỹA := (V, V1, V0, E, vI).

We observe that for each arenaA, Plays(A) = Plays(Ã).

2.1.2 Games

Arenas and plays establish the interactions that we are concerned with. We now use these to
define games by imposing outcomes for plays. The games we are interested in are zero-sum
games, that is, if one player wins then the other player loses. We can therefore define a winning
condition as a set of plays that are winning for one player, say Player 0, working on the premise
that if a play is not in that set then it is winning for Player 1.

1For convenience we use the feminine pronoun for Player 0 and the masculine pronoun for Player 1
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Definition 2.5 (Game). A gameis a pairG := (A, Win) whereA is an arena andWin ⊆
Plays(A). For π ∈ Plays(A) if π ∈ Win, we sayπ is winning for Player 0, otherwiseπ is
winning for Player 1. A single-player gameis a game(A, Win) whereA is a single player
arena.

As we mentioned earlier, to consider algorithmic aspects ofthese games we need to assume
that they can be finitely presented. Muller games are an important example of a class of finitely
presentable games. With a Muller game, if a player cannot move then he or she loses, otherwise
the outcome of an infinite play is dependent on the set of vertices visited infinitely often.

Definition 2.6 (Muller game). A gameG = (A, Win) is aMuller gameif A is finite and there
existsF ⊆ P(V (A)) such that for allπ ∈ Plays(A):

π ∈Win ⇐⇒
{

π is finite and ends with a vertex fromV1(A), or

π is infinite and{v : v occurs infinitely often inπ} ∈ F .

If G is a Muller game, witnessed byF ⊆ P(V (A)), we writeG = (A,F).

As an example, consider the arenaA pictured in Figure 2.1. LetF =
{
{v2, v5}

}
. Then

G = (A,F) is a Muller game. The playv1v4v7v5v8v6v9v4v7(v5v2)
ω is winning for Player 0, but

the playv1v4v7(v5v8v6v9v4v7)
ω is winning for Player 1.

The games used in the literature in the study of logics and automata are generally Muller
games. In these games, the setF is often not explicitly given but is specified by means of a
condition. Different types of condition lead to various different types of games. We explore this
in more detail in Section 2.2.

An important subclass of Muller games are the games where only one player wins any
infinite play. Games such as Ehrenfeucht-Fraı̈sśe games (on finite structures) [EF99] and the
graph searching games we consider in Chapter 5 are examples ofthese types of games.

Definition 2.7 (Simple game). A Muller gameG = (A,F) is asimple gameif eitherF = ∅,
orF = P(V (A)).

Two other important subclasses of Muller games which we consider in this chapter are
union-closed and upward-closed games.

Definition 2.8 (Union-closed and Upward-closed games). A Muller gameG = (A,F) isunion-
closedif for all X,Y ∈ F , X ∪ Y ∈ F . G is upward-closedif for all X ∈ F andY ⊇ X,
Y ∈ F .

Remark.Union-closed games are often called Streett-Rabin games in the literature, as Player 0’s
winning set can be specified by a set of Streett pairs (see Definition 2.38 below) and Player 1’s
winning set can be specified by a set of Rabin pairs (see Definition 2.37). However, to minimize
confusion, we reserve the termStreett gamefor union-closed games with a condition presented
as a set of Streett pairs, and the termRabin gamefor the dual of a union-closed game (see
below) with a condition presented as a set of Rabin pairs.

We conclude this section by considering dual games and subgames. In Definition 2.4 we
defined the dual of an arena. The dual game is played on the dualarena, but we have to com-
plement the winning condition in order to fully interchangethe roles of the players. That is,
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Definition 2.9 (Dual game). Let G = (A, Win) be a game. The gamẽG := (Ã, Win) where
Ã is the dual arena ofA andWin = Plays(A) \Win is thedual game ofG.

Given a game on an arenaA we can define a restricted game on a subarenaA′ by restricting
the winning condition to valid plays in the subarena.

Definition 2.10 (Subgame). Let G = (A, Win) be a game, andA′ a subarena ofA. The
subgame induced byA′ is the gameG′ = (A′, Win′) whereWin′ = Win ∩ Plays(A′).

2.1.3 Strategies

As with most games we are less interested in outcomes of single plays in the game and more
interested in the existence of strategies that ensure one player wins against any choice of moves
from the other player.

Definition 2.11 (Strategy). Let A = (V, V0, V1, E, vI) be an arena. Astrategy (for Playeri)
in A is a partial functionσ : V ∗Vi → V such that ifσ(v1v2 · · · vn) = v′ then(vn, v

′) ∈ E.
A play π = v1v2 · · · is consistentwith a strategyσ if for all j < |π| such thatvj ∈ Vi,
σ(v1v2 · · · vj) = vj+1.

Given a sequence of vertices visited, ending with a vertex inVi, a strategy for Playeri gives
the vertex that Playeri should then play to. We observe that given a strategyσ for Player 0 and
a strategyτ for Player 1 from any vertexv there is a unique maximal playπσ

τ from v consistent
with σ andτ in the sense that any play consistent with both strategies isa prefix ofπσ

τ . We call
this play theplay (fromv) defined by strategiesσ andτ .

A useful class of strategies are those that can be defined froma fixed number of previously
visited vertices.

Definition 2.12 (Strategy memory). If a strategyσ has the property that for some fixedm,
σ(w) = σ(w′) if w andw′ agree on their lastm letters, then we say that the strategy requires
finite memory(of sizem− 1). If m = 1, we say the strategy ismemorylessor positional.

Strategies extend to games in the obvious way.

Definition 2.13 (Game strategies). Given a gameG = (A, Win), a strategy for Playeri in G

is a strategy for Playeri in A. A strategyσ for Playeri is winning if all plays consistent withσ
are winning for Playeri. Playeri winsG if Playeri has a winning strategy fromvI(A).

We observe that for any playπ = v1v2 · · · vn in a Muller game, consistent with a winning
strategyσ for Playeri, if vn ∈ Vi(A) thenσ(π) is defined.
Earlier we alluded to the following important result of Büchi and Landweber [BL69].

Theorem 2.14([BL69]). LetG = (A,F) be a Muller game. One player has a winning strategy
onG with finite memory of size at most|V (A)|!.

An immediate corollary of this is that Muller games are decidable: we can check all possi-
ble strategies for both players that use at most|V (A)|! memory, and see if the corresponding
defined plays are winning. However, the complexity bounds onsuch an algorithm are enor-
mous. In [McN93] McNaughton provided an algorithm with considerably better space and
time bounds.
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Theorem 2.15([McN93]). Let G = (A,F) be a Muller game withA = (V, V0, V1, E, vI).
Whether Player 0 has a winning strategy fromvI can be decided in timeO(|V |2|E||V |!) and
spaceO(|V |2).

For union-closed games and their duals we can reduce the memory requirement for a win-
ning strategy.

Theorem 2.16([Kla94]). Let G = (A,F) be a Muller game. IfF is closed under unions and
Player 1 has a winning strategy, then Player 1 has a memorylesswinning strategy. Dually, if
the complement ofF is closed under union and Player 0 has a winning strategy, thenPlayer 0
has a memoryless winning strategy.

Two useful tools for constructing decidability algorithmsareforce-setsandavoid-sets.

Definition 2.17 (Force-set and Avoid-set). Let A be an arena, andX,Y ⊆ V (A). The set
Forcei

X(Y ) is the set of vertices from which Playeri has a strategyσ such that any play con-
sistent withσ reaches some vertex inY without leavingX. The setAvoidi

X(Y ) is the set of
vertices from which Playeri has a strategyσ such that any play consistent withσ that remains
in X avoids all vertices inY .

We observe from the definitions thatForcei
X(Y ) = X \ Avoid1−i

X (Y ). We also observe that
we may assume the strategiesσ are memoryless: if Playeri can force the play fromv to some
vertex ofY , the play tov is irrelevant.

Computing a force-set is an instance of the well-known alternating reachability problem,
and in Algorithm 2.1 we present the standard algorithm for computing a force-set. Nerode,
Remmel and Yakhnis [NRY96] provide an implementation of thisalgorithm which runs in time
O(|E(A)|), giving us the following:

Lemma 2.18. LetA be an arena. For any setsX,Y ⊆ V (A), Force0
X(Y ) can be computed in

timeO(|E(A)|)

Algorithm 2.1 FORCE0
X(Y )

Returns: The set of verticesv ∈ V (A) such that Player 0 has a strategy to force a play fromv
to some element ofY without visiting a vertex outsideX.
let R = {v ∈ V0(A) ∩X : there existsw ∈ Y with (v, w) ∈ E(A)}.
let S = {v ∈ V1(A) ∩X : for all w with (v, w) ∈ E(A), w ∈ Y }.
if R ∪ S ⊆ Y then

return Y
else

return FORCE0
X(R ∪ S ∪ Y ).

2.1.4 Simulations

One of the most important concepts in transition systems is the notion of bisimulation. Two
transition systems are bisimilar if each system can simulate the other. That is,

Definition 2.19(Bisimulation). Let T = (S, s0, E) andT ′ = (S ′, s′0, E
′) be transition systems.

We sayT andT ′ arebisimilar if there exists a relation∼⊆ S × S ′ such that:
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• s0 ∼ s′0,

• If (s, t) ∈ E ands ∼ s′ then there existst′ ∈ S ′ such that(s′, t′) ∈ E ′ andt ∼ t′, and

• If (s′, t′) ∈ E ′ ands ∼ s′ then there existst ∈ S such that(s, t) ∈ E andt ∼ t′.

We now consider a generalization of bisimulation appropriate for arenas.

Definition 2.20 (Game simulation). LetA andA′ be arenas. Agame simulation fromA toA′

is a relationS⊆
(
V0(A)× V0(A′)

)
∪

(
V1(A)× V1(A′)

)
such that:

(SIM-1) vI(A) S vI(A′),

(SIM-2) If (u, v) ∈ E(A), u ∈ V0(A) andu S u′, then there existsv′ ∈ V (A′) such that
(u′, v′) ∈ E(A′) andv S v′, and

(SIM-3) If (u′, v′) ∈ E(A′), u′ ∈ V1(A′) andu S u′, then there existsv ∈ V (A) such that
(u, v) ∈ E(A) andv S v′.

We writeA - A′ if there exists a game simulation fromA toA′.

We observe that- is reflexive and transitive and ifA - A′ thenÃ′ - Ã. In Proposition 2.28
we show that it is also antisymmetric (up to bisimulation).

If A - A′, then Player 0 can simulate plays onA′ as plays onA: every move made by
Player 1 onA′ can be translated to a move onA, and for every response of Player 0 inA, there
is a corresponding response onA′. Dually, Player 1 can simulate a play onA as a play onA′.
More precisely,

Lemma 2.21.LetA andA′ be arenas, and letS be a simulation fromA toA′. For any strategy
σ for Player 0 inA, and any strategyτ ′ for Player 1 inA′, there exists a strategyσ′ for Player 0
in A′ and a strategyτ for Player 1 inA such that ifπ = v0v1 · · · ∈ Plays(A) is a play from
v0 = vI(A) consistent withσ andτ andπ′ = v′

0v
′
1 · · · ∈ Plays(A′) is a play fromv′

0 = vI(A′)
consistent withσ′ andτ ′, thenvi S v′

i for all i, 0 ≤ i ≤ min{|π|, |π′|}.

Proof. We defineσ′ andτ as follows. Letπ = v0v1v2 · · · vn andπ′ = v′
0v

′
1 · · · v′

n and suppose
vi S v′

i for all i, 0 ≤ i ≤ n. Suppose first thatvn ∈ V0(A) (sov′
n ∈ V0(A′)) andσ(π) = vn+1.

Since(vn, vn+1) ∈ E(A) andvn S v′
n, from Condition (SIM-2) there existsv′

n+1 such that
(v′

n, v
′
n+1) ∈ E(A′) andvn+1 S v′

n+1. Defineσ′(π′) := v′
n+1. Now supposevn ∈ V1(A) (so

v′
n ∈ V1(A′)). Let τ ′(π′) = v′

n+1 and letvn+1 be the successor ofvn, such thatvn+1 S v′
n+1

guaranteed by Condition (SIM-3). Defineτ(π) = vn+1. We observe that althoughσ′ andτ
are only defined for some plays, this definition is sufficient:asv0 S v′

0, it follows by induction
that for every playπ′ = v′

0v
′
1 · · · v′

n consistent withσ′ andτ ′ there is a playπ = v0v1 · · · vn

(consistent withσ) such thatvi S v′
i for all i, 0 ≤ i ≤ n. Thus if v′

n ∈ V0(A′), σ(π′) is well-
defined. ⊓⊔

We observe that the strategiesσ′ andτ are independently derivable fromτ ′ andσ respec-
tively. That is, we can interchange the∀τ ′ and∃σ′ (or the∀σ and∃τ ) quantifications to obtain:
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Corollary 2.22. LetA andA′ be arenas, and letS be a game simulation fromA to A′. For
every strategyσ for Player 0 inA there exists a strategyσ′ for Player 0 inA′ such that for every
play v′

0v
′
1 · · · consistent withσ′ there exists a playv0v1 · · · , consistent withσ such thatvi S v′

i

for all i. Dually, for every strategyτ ′ for Player 1 inA′ there exists a strategyτ for Player 1
in A such that for every playv0v1 · · · consistent withτ there exists a playv0v1 · · · , consistent
with τ ′ such thatvi S v′

i for all i.

We call the strategies which we can derive in such a mannersimulated strategies.

Definition 2.23 (Simulated search strategy). LetA,A′, S, σ, σ′, τ andτ ′ be as above. We call
σ′ aS-simulated strategy ofσ, andτ aS-simulated strategy ofτ ′.

We can use game simulations to translate winning strategiesfrom one game into winning
strategies in another. However, we require that a simulation respects the winning condition in
some sense.

Definition 2.24 (Faithful simulation). Let G = (A, Win) andG
′ = (A′, Win′) be games. Let

S be a game simulation fromA to A′, and letS also denote the pointwise extension of the
relation to plays:π S π′ if |π| = |π′| andvi S v′

i for all vi ∈ π andv′
i ∈ π′. We sayS is

(Win, Win′)-faithful if for all π ∈ Plays(A) and allπ′ ∈ Plays(A′) such thatπ S π′:

π ∈Win =⇒ π′ ∈Win′.

The next result follows immediately from the definitions.

Proposition 2.25.LetG = (A, Win) andG
′ = (A′, Win′) be games. LetS be a(Win, Win′)-

faithful game simulation fromA to A′. If σ is a winning strategy for Player 0 inG then any
S-simulated strategy is a winning strategy for Player 0 inG

′. Dually, if τ ′ is a winning strategy
for Player 1 inG

′ then anyS-simulated strategy is a winning strategy for Player 1 inG.

For simple games checking if a game simulation is faithful isrelatively easy. It follows from
the definition of a game simulation that all finite plays automatically satisfy the criterion. Thus
it suffices to check the infinite plays. But for simple games these are vacuously satisfied in two
cases:

Lemma 2.26. Let G = (A,F) andG
′ = (A′,F ′) be Muller games and letS be a simulation

fromA toA′. If eitherF = ∅ or F ′ = P(V (A′)) thenS is faithful.

Corollary 2.27. Let G = (A,F) and G
′ = (A′,F ′) be Muller games such thatF = ∅ or

F ′ = P(V (A′)). If A - A′ and Player 0 winsG, then Player 0 winsG′. Dually, ifA - A′

and Player 1 winsG′, then Player 1 winsG.

We conclude this section by showing how game simulations relate to bisimulation.

Proposition 2.28. LetA = (V, V0, V1, E, vI) andA′ = (V ′, V ′
0 , V

′
1 , E

′, v′
I) be arenas. IfA -

A′ andA′ - A then the transition systems(V, vI , E) and(V ′, v′
I , E

′) are bisimilar.

Proof. Let S be a game simulation fromA to A′ and letS′ be a game simulation fromA′ to
A. It follows from the definitions that the relationS ∪(S′)−1 is a bisimulation between the two
transition systems. ⊓⊔
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2.2 Winning condition presentations

As we discussed above, if we are interested in investigatingthe complexity of the problem
of deciding Muller games, we need to consider the manner in which the winning condition is
presented. As we see in Section 2.2.1, for many games that occur in the literature relating to
logics and automata the winning condition can be expressed in a more efficient manner than
simply listing the elements ofF . To formally describe such specifications, we introduce the
concept of acondition type.

Definition 2.29 (Condition type). A condition typeis a functionA which maps an arenaA to a
pair (IA, |=A) whereIA is a set and|=A⊆ Plays(A) × IA is theacceptance relation. We call
elements ofIA condition types(or simply,conditions). A regular condition typemaps an arena
A to a pair(IA, |=A) whereIA is a set of conditions and|=A⊆ P(V (A))× IA.

Remark.In the sequel we will generally regard the relation|=A as intrinsically defined, and
associateA(A) with the setIA. That is, we will useΩ ∈ A(A) to indicateΩ ∈ IA.

A (regular) condition type defines a family of (Muller) gamesin the following manner. LetA
be a condition type,A an arena, andA(A) = (IA, |=A). ForΩ ∈ IA, the game(A, Ω) is the
game(A, Win) whereWin = {π ∈ Plays(A) : π |=A Ω}. We generally call a game where the
winning condition is specified by a condition of typeA anA-game, for example aparity game
is a game where the winning condition is specified by aparity condition(see Definition 2.41
below). We can now state precisely the decision problem we are interested in.

A-GAME

Instance: A gameG = (A, Ω) whereΩ ∈ A(A).
Problem: Does Player 0 have a winning strategy inG?

The exploration of the complexity of this problem is one of the main research problems that
this dissertation addresses.

Research aim.Investigate the complexity of decidingA-GAME for various (regular) condition
typesA.

2.2.1 Examples

We now give some examples of regular condition types that occur in the literature. First we
observe that an instanceΩ ∈ A(A) of a regular condition typeA defines a family of subsets of
V (A):

FΩ := {I ⊆ V (A) : I |=A Ω}.
We call this theset specified by the conditionΩ. In the examples below, we describe the set
specified by a condition to define the acceptance relation|=A.

General purpose condition types

The first examples we consider are general purpose formalisms in that they may be used to
specify any family of sets.

The most straightforward presentation of the winning condition of a Muller game(A,F) is
given by explicitly listing all elements ofF . We call this anexplicit presentation. We can view
such a formalism in our framework as follows:
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Definition 2.30 (Explicit condition type). An instance of theexplicit condition typeis a set
F ⊆ P(V (A)). The set specified by an instance is the set which defines the instance.

In the literature an explicit presentation is sometimes called aMuller condition. However,
we reserve that term for the more commonly used presentationfor Muller games in terms of
colours given next.

Definition 2.31 (Muller condition type). An instance of theMuller condition typeis a pair
(χ, C) where, for some setC, χ : V (A) → C andC ⊆ P(C). The setF(χ,C) specified by a
Muller condition(χ, C) is the set{I ⊆ V (A) : χ(I) ∈ C}.

To distinguish Muller games from games with a winning condition specified by a Muller
condition, we explicitly state the nature of the presentation of the winning condition if it is
critical.

From a more practical perspective, when considering applications of these types of games
it may be the case that there are vertices whose appearance inany infinite run is irrelevant. This
leads to the definition of awin-set condition.

Definition 2.32 (Win-set condition type). An instance of thewin-set condition typeis a pair
(W,W) whereW ⊆ V (A) andW ⊆ P(W ). The setF(W,W) specified by a win-set condition
(W,W) is the set{I ⊆ V (A) : W ∩ I ∈ W}.

Another way to describe a winning condition is as a boolean formula. Such a formalism
is somewhat closer in nature than the specifications we have so far considered to the moti-
vating problem of verifying reactive systems: requirements of such systems are more readily
expressed as logical formulas. Winning conditions of this kind were considered by Emerson
and Lei [EL85].

Definition 2.33 (Emerson-Lei condition type). An instance of theEmerson-Lei condition type
is a boolean formulaϕ with variables from the setV (A). The setFϕ specified by an Emerson-
Lei conditionϕ is the collection of setsI ⊆ V (A) such that the truth assignment that maps
each element ofI to true and each element ofV (A) \ I to false satisfiesϕ.

A boolean formula can contain a lot of repetition, so it may bemore efficient to consider
boolean circuitsrather than formulas. This motivates one of the most succinct types of winning
condition we consider.

Definition 2.34 (Circuit condition type). An instance of thecircuit condition typeis a boolean
circuit C with input nodes from the setV (A) and one output node. The setFC specified by a
circuit conditionC is the collection of setsI ⊆ V (A) such thatC outputstrue when each input
corresponding to a vertex inI is set totrue and all other inputs are set tofalse.

The final general purpose formalisms we consider are somewhat more exotic. In [Zie98],
Zielonka introduced a representation for a family of subsets of a setV , F ⊆ P(V ), in terms of
a labelled tree where the labels on the nodes are subsets ofV .

Definition 2.35 (Zielonka tree and Zielonka DAG). Let V be a set andF ⊆ P(V ). The
Zielonka tree(also called asplit treeof the setF , ZF ,V , is defined inductively as:

1. If V /∈ F thenZF ,V = ZF ,V , whereF = P(V ) \ F .
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2. If V ∈ F then the root ofZF ,V is labelled withV . Let M1,M2, . . . ,Mk be the⊆-
maximal sets inF , and letF|Mi

= F ∩ P(Mi). The successors of the root are the
subtreesZF|Mi

,Mi
, for 1 ≤ i ≤ k.

A Zielonka DAGis constructed as a Zielonka tree except nodes labelled by the same set are
identified, making it a directed acyclic graph. Nodes ofZF ,V labelled by elements ofF are
called0-level nodes, and other nodes are1-level nodes.

Zielonka trees are intimately related to Muller games. In particular they identify the size of
memory required for a winning strategy: the “amount” of branching of 0-level nodes indicates
the maximum amount of memory required for a winning strategyfor Player 0, and similarly
for 1-level nodes and Player 1 [DJW97]. For example, the 1-level nodes of a Zielonka tree of a
union-closed family of sets have at most one successor, indicating that if Player 1 has a winning
strategy then he has a memoryless winning strategy. Thus we also consider games where the
winning condition is specified as a Zielonka tree (or the moresuccinct Zielonka DAG).

Definition 2.36(Zielonka tree and Zielonka DAG condition types). An instance of theZielonka
tree (DAG) condition typeis a Zielonka tree (DAG)ZF ,V (A) for someF ⊆ P(V (A)). The set
specified by an instance is the setF used to define the instance.

Other condition types

We now consider formalisms that can only specify restrictedfamilies of sets such as union-
closed or upward-closed families. The first formalism we consider is a well-known specifica-
tion, introduced by Rabin in [Rab72] as an acceptance condition for infinite automata.

Definition 2.37(Rabin condition type). An instance of theRabin condition typeis a set of pairs
Ω = {(Li, Ri) : 1 ≤ i ≤ m}. The setFΩ specified by a Rabin conditionΩ is the collection of
setsI ⊆ V (A) such that there exists ani, 1 ≤ i ≤ m, such thatI ∩ Li 6= ∅ andI ∩Ri = ∅.

The remaining formalisms we consider can only be used to specify families of sets that are
closed under union. The first of these, the Streett conditiontype, introduced in [Str82], is similar
to the Rabin condition type.

Definition 2.38(Streett condition type). An instance of theStreett condition typeis a set of pairs
Ω = {(Li, Ri) : 1 ≤ i ≤ m}. The setFΩ specified by a Streett conditionΩ is the collection of
setsI ⊆ V (A) such that for alli, 1 ≤ i ≤ m, eitherI ∩ Li 6= ∅ or I ∩Ri = ∅.

The Streett condition type is useful for describing fairness conditions such as those consid-
ered in [EL85]. An example of a fairness condition for infinite computations is: “every process
enabled infinitely often is executed infinitely often”. Viewing vertices of an arena as states of
an infinite computation system where some processes are executed and some are enabled, this
is equivalent to saying “for every process, either the set ofstates which enable the process is
visited finitely often or the set of states which execute the process is visited infinitely often”,
which we see is easily interpreted as a Streett condition.

The Streett and Rabin condition types are dual in the following sense: for any setF ⊆
P(V (A)) which can be specified by a Streett condition, there is a Rabin condition which speci-
fiesP(V (A))\F , and conversely. Indeed, ifΩ = {(Li, Ri) : 1 ≤ i ≤ m} is a Streett condition,
then for the Rabin conditioñΩ = {(Ri, Li) : 1 ≤ i ≤ m} we haveFeΩ = P(V (A)) \ FΩ. This
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implies that the dual of a Streett game can be expressed as a Rabin game, and conversely the
dual of a Rabin game can be expressed as a Streett game.

If we are interested in specifying union-closed families ofsets efficiently, we can consider
the closure under union of a given set. This motivates the following definition:

Definition 2.39 (Basis condition type). An instance of thebasis condition typeis a setB ⊆
P(V (A)). The setFB specified by a basis conditionB is the collection of setsI ⊆ V (A) such
that there areB1, . . . , Bn ∈ B with I =

⋃
1≤i≤n Bi.

In a similar manner to the basis condition type, if we are interested in efficiently specifying
an upward-closed family of sets, we can explicitly list the⊆-minimal elements of the family.
This gives us thesuperset condition type, also called asuperset Muller conditionin [LTMN02].

Definition 2.40 (Superset condition type). An instance of thesuperset condition typeis a set
M⊆ P(V (A)). The setFM specified by a superset conditionM is the set{I ⊆ V (A) : M ⊆
I for someM ∈M}.

The final formalism we consider is one of the most important and interesting Muller condi-
tion types, theparity condition type.

Definition 2.41 (Parity condition type). An instance of theparity condition typeis a function
χ : V (A)→ P whereP ⊆ ω is a set ofpriorities. The setFχ specified by a parity conditionχ
is the collection of setsI ⊆ V (A) such thatmax{χ(v) : v ∈ I} is even.

Remark.We have technically defined here themax-parity condition. There is an equivalent
formalism sometimes considered where the parity of theminimumpriority visited infinitely
often determines the winner, called themin-parity condition. Throughout this dissertation we
only consider the max-parity condition.

It is not difficult to show that the set specified by a parity condition is closed under union as
is the complement of the set specified. Therefore, from Theorem 2.16 we have the following:

Theorem 2.42(Memoryless determinacy of parity games [EJ91, Mos91]). Let G = (A, χ) be
a parity game. The player with a winning strategy has a winning strategy which is memoryless.

Indeed, any union-closed set with a union-closed complement can be specified by a parity
condition, implying that the parity condition is one of the most expressive conditions where
memoryless strategies are sufficient for both players. Thisresult is very useful in the study of
infinite games and automata: one approach to showing that Muller automata are closed under
complementation is to reduce the problem to a parity game, and utilise the fact that if Player 1
has a winning strategy then he has a memoryless strategy to construct an automaton which
accepts the complementary language [EJ91].

One of the reasons why parity games are an interesting class of games to study is that the
exact complexity of the problem of deciding the winner remains elusive. In Chapter 3 we
discuss this and other reasons why parity games are important in more detail.

2.2.2 Translations

We now present a framework in which we can compare the expressiveness and succinctness of
condition types by considering transformations between games which keep the arena the same.
More precisely, we define what it means for a condition type tobe translatableto another
condition type as follows.
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Definition 2.43 (Translatable). Given two condition typesA andB, we say thatA is polyno-
mially translatableto B if for any arenaA, with A(A) = (IA

A
, |=A

A
) andB(A) = (IA

B
, |=A

B
),

there is a functionf : IA
A
→ IA

B
such that for allΩ ∈ IA

A
:

• f(Ω) is computed in time polynomial in|A|+ |Ω|, and

• For allπ ∈ Plays(A), π |=A
A

Ω ⇐⇒ π |=A
B

f(Ω).

As we are only interested in polynomial translations, we simply sayA is translatableto B

to mean that it is polynomially translatable. Clearly, if condition typeA is translatable toB
then the problem of deciding the winner for games of typeA is reducible in polynomial time to
the corresponding problem for games of typeB. That is,

Lemma 2.44.LetA andB be condition types such thatA is translatable toB. Then there is a
polynomial time reduction fromA-GAME to B-GAME.

If condition typeA is not translatable toB this may be for one of three reasons. EitherA

is more expressive thanB in that there are setsF that can be expressed using conditions from
A but no condition fromB can specifyF ; or there are some sets for which the representation
of typeA is necessarily more succinct; or the translation, while notsize-increasing, can not be
computed in polynomial time. We are primarily interested inthe second situation. Formally,
we say

Definition 2.45(Succinctness). A is more succinctthanB if B is translatable toA butA is not
translatable toB.

We now consider translations between some of the condition types we defined in Sec-
tion 2.2.1.

Translations between general purpose condition types

It is straightforward to show that win-set conditions are more succinct than explicit presen-
tations. To translate an explicitly presented game(A,F) to a win-set condition, simply take
W = V (A) andW = F . To show that win-set conditions are not translatable to explicit pre-
sentations, consider a game whereW = ∅ andW = {∅}. The setF(W,W) specified by this
condition consists of all subsets ofV (A) and thus an explicit presentation must be exponential
in length.

Proposition 2.46.The win-set condition type is more succinct than an explicit presentation.

Similarly, there is a trivial translation from the Emerson-Lei condition type to the circuit
condition type. However, the question of whether there is a translation in the other direction is
an important open problem in the field of circuit complexity [Pap95].

Open problem 2.47.Is the circuit condition type more succinct than the Emerson-Lei condition
type?

We now show, through the next theorems, that circuit presentations are more succinct than
Zielonka DAG presentations, which, along with Emerson-Leipresentations, are more succinct
than Muller presentations, which are in turn more succinct than win-set presentations.
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Theorem 2.48.The Muller condition type is more succinct than the win-set condition type.

Proof. Given a win-set game
(
A, (W,W)

)
, we construct a Muller condition describing the

same set of subsets as(W,W). For the set of colours we useC = W ∪ {c}, wherec is distinct
from any element ofW . The colouring functionχ : V (A)→ C is then defined as:

• χ(w) = w for w ∈ W ,

• χ(v) = c for v /∈ W .

The familyC of subsets ofC is the set
{
X,X ∪ {c} : X ∈ W

}
. For I ⊆ V , if I ⊆ W , then

χ(I) = I otherwiseχ(I) = {c} ∪ I. Either way,I ∩W is inW if, and only if,χ(I) ∈ C.
To show that there is no translation in the other direction, consider a Muller game onA,

where half ofV (A), Vr, is coloured red, the other half coloured blue, and the family of sets of
colours isC =

{
{red}

}
. The familyF described by this condition consists of the2|V (A)|/2 − 1

non-empty subsets ofVr. Now consider trying to describe this family using a win-setcondition.
In general, for the setF ′ specified by the win-set condition(W,W), anyv /∈ W , andX ⊆ V (A)
we have{v} ∪X ∈ F ′ ⇔ X ∈ F ′. Observe that in our game no vertex has this latter property:
if v ∈ Vr, then{v} ∈ F , but∅ /∈ F ; and if v /∈ Vr then{v} ∪ Vr /∈ F , butVr ∈ F . Thus our
win-set,W must be equal toV (A), andW is the explicit listing of the2|V (A)|/2 − 1 subsets of
Vr. Thus(W,W) cannot be produced in polynomial time. ⊓⊔

Theorem 2.49.The Zielonka DAG condition type is more succinct than the Muller condition
type.

Proof. Given a Muller game consisting of an arenaA = (V, V0, V1, E, vI), a colouringχ : V →
C and a familyC of subsets ofC, we construct a Zielonka DAGZF ,V which describes the same
set of subsets ofV (A) as the Muller condition(χ, C). Consider the Zielonka DAGZC,C , whose
nodes are labelled by sets of colours. If we replace a labelL ⊆ C in this tree with the set
{v ∈ V : χ(v) ∈ L} then we obtain a Zielonka DAGZF ,V over the set of vertices. We argue
thatF is, in fact, the set specified by the Muller condition(χ, C) and then show thatZC,C can be
constructed in polynomial time. Since the translation fromZC,C to ZF ,V involves an increase
in size by at most a factor of|V |, this establishes that Muller games are translatable to Zielonka
DAGs.

Let I ⊆ V be a set of vertices. IfI ∈ F then, by the definition of Zielonka DAGs,I is a
subset of a labelX of a 0-level nodet of ZF ,V and is not contained in any of the labels of the
1-level successors oft. That is, for each 1-level successoru of t, there is a vertexv ∈ I such
that χ(v) 6∈ χ(Lu) whereLu is the label ofu. Moreover,χ(I) ⊆ χ(X). Now χ(X) is, by
construction, the label of a 0-level node ofZC,C and we have established thatχ(I) is contained
in this label and is not contained in any of the labels of the 1-level successors of that node.
Therefore,χ(I) ∈ C. Similarly, by interchanging 0-level and 1-level nodes,χ(I) /∈ C if I /∈ F .

To show that we can constructZC,C in polynomial time, observe first that every subset
X ⊆ C has at most|C| maximal subsets. Note further that the label of any node inZC,C is
eitherC, some element ofC or a maximal (proper) subset of an element ofC. Thus,ZC,C is no
larger than1 + |C|+ |C||C|. This bound on the size of the DAG is easily turned into a boundon
the time required to construct it, using the inductive definition of Zielonka trees. Thus, we have
shown that the Muller condition type is translatable into the Zielonka DAG condition type.

To show there is no translation in the other direction, consider the familyF of subsets of
V (A) which consist of2 or more elements. The Zielonka DAG which describes this family
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consists of|V (A)| + 1 nodes – one 0-level node labelled byV (A), and|V (A)| 1-level nodes
labelled by the singleton subsets ofV (A). However, to express this as a Muller condition, each
vertex must have a distinct colour since for any pair of vertices there is a set inF that contains
one but not the other. Thus,|C| = |F| = 2|V (A)| − |V (A)| − 1. It follows that the translation
from Zielonka DAGs to Muller conditions cannot be done in polynomial time. ⊓⊔

To show the remaining results, we use the following observation:

Lemma 2.50.There is no translation from the Emerson-Lei condition typeto the Zielonka DAG
condition type.

Proof. Let V (A) = V = {x1, . . . , x2k}, and consider the family of setsF described by the
formula

ϕ :=
∨

1≤i≤k

(x2i−1 ∧ x2i).

Clearly |ϕ| = O(|V (A)|). Now consider the Zielonka DAGZF ,V describingF . As V ∈ F ,
the root ofZF ,V is a 0-level node labelled byV . The maximal subsets ofV not inF are the2k

subsets containing exactly one of{x2i−1, x2i} for 1 ≤ i ≤ k. ThusZF ,V must have at least this
number of nodes, and is therefore not constructible in polynomial time. ⊓⊔

Theorem 2.51. The Emerson-Lei condition type is more succinct than the Muller condition
type.

Proof. Given a Muller game consisting of an arenaA, a colouringχ : V (A)→ C and a family
C of subsets ofC, let ϕ be the boolean formula defined as:

ϕ :=
∨

X∈C

(∧

c∈X

( ∨

χ(v)=c

v
)
∧

∧

c/∈X

( ∧

χ(v)=c

¬v
))

.

It is easy to see that a subsetI ⊆ V (A) satisfiesϕ if, and only if, there is some setX ∈ C
such that for all coloursc ∈ X there is somev ∈ I such thatχ(v) = c and for all colours
c′ /∈ X there is nov ∈ I such thatχ(v) = c′. Sinceϕ can clearly be constructed in time
polynomial in|C|+ |V (A)|, it follows that there is a translation from the Muller condition type
to the Emerson-Lei condition type.

For the reverse direction, we observe that as there is a translation from the Muller condition
type to the Zielonka DAG condition type, if there were a translation from the Emerson-Lei con-
dition type to the Muller condition type, this would contradict Lemma 2.50 as “translatability”
is transitive. ⊓⊔

Theorem 2.52.The circuit condition type is more succinct than the Zielonka DAG condition
type.

Proof. Given a Zielonka DAG game(A,ZF ,V ) whereV = V (A), we define, for each node
t in ZF ,V a boolean circuitCt. This circuit is defined by induction on the height oft. For
convenience, we associate each circuit with its output node. Suppose the label oft is X. We
have the following cases:

(i) t is a 0-level (X ∈ F) leaf: In this case, letCt =
∧

x/∈X ¬x.

(ii) t is a 1-level (X /∈ F) leaf: In this case, letCt =
∨

x/∈X x.
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Figure 2.2: Summary of the succinctness results

(iii) t is a 0-level node withk successorst1, . . . , tk: In this case, letCt =
∧

x/∈X ¬x∧∧k
i=1 Cti .

(iv) t is a 1-level node withk successorst1, . . . , tk: In this case, letCt =
∨

x/∈X x ∨∨k
i=1 Cti .

We claim that the conditionF is specified by the circuitCr wherer is the root ofZF ,V . This
formula has size at most|V (A)||ZF ,V | and is constructed in polynomial time. To show its
correctness we argue by induction on the height of any nodet with labelX thatCt defines the
restriction ofF to X. We consider the following cases:

(i) t is a 0-level leaf. In this case any subset ofX is inF . I ⊆ V (A) satisfiesCt if, and only
if, no variable that is not inX appears inI, that isI ⊆ X.

(ii) t is a 1-level leaf. In this case any subset ofX is not inF . HereI ⊆ V (A) satisfiesCt if,
and only if, there is some element inI which is not inX, that isI 6⊆ X.

(iii) t is a 0-level node withk successors labelled byX1, . . . , Xk. In this case any subset ofX
is inF unless it is a subset ofXi for somei, in which case whether it is inF is determined
by nodes lower in the DAG. HereI ⊆ V (A) satisfiesCt if, and only if, I is a subset ofX
andI satisfiesCti for all successors.

(iv) t is a 1-level node withk successors labelled byX1, . . . , Xk. In this case any subset ofX
is not inF unless it is a subset ofXi for somei. HereI ⊆ V satisfiesCt if, and only if,
eitherI is not contained inX, or there is some successorti such thatI satisfiesCti.

We observe that as there is a translation from the Emerson-Lei condition type to the circuit
condition type, Lemma 2.50 implies there is no translation from the circuit condition type to the
Zielonka DAG condition type. ⊓⊔

Figure 2.2 summarizes the succinctness results we have so far shown, with the more succinct
types towards the top. The dashed edge indicates that there is a translation but it is not known
whether there is a translation in the opposite direction.

Translations between union-closed condition types

Turning to union-closed condition types, we observe that the basis condition type is a succinct
way of describing union-closed sets. It is not even known if it is translatable to the circuit
condition type, the most succinct type considered above. InSection 2.3.2 we show that the
problem of deciding basis games is co-NP-complete. It follows from the NP-completeness of
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Rabin games [EJ88], and duality that the problem of deciding Streett games is co-NP-complete.
The following result implies that we cannot use translatability to obtain upper or lower bounds
on the complexity of basis games based on the known bounds forStreett games.

Theorem 2.53.The basis and Streett condition types are incomparable with respect to trans-
latability. That is, neither is translatable to the other.

Proof. To show there is no translation from Streett games to basis games, letV (A) = {x1, . . . , x2k},
and consider the Streett game with winning condition described by the pairs

{
(Li, ∅) : 1 ≤

i ≤ k
}

, whereLi = {x2i−1, x2i}. Note that the family of sets described by this condition is
F =

{
X ⊆ V (A) : ∀i X 6⊆ V (A) \ Li

}
. Any basis forF must include the minimal elements

of F . However, the minimal elements include

M =
{
{v1, . . . , vk} : vi ∈ {x2i−1, x2i}

}
,

and|M| = 2k. ThusF cannot be represented by a basis constructible in polynomial time.
To show there is no translation in the other direction, letV (A) = {x1, . . . , x2k}, and con-

sider the familyF of sets formed by closing

B =
{
{x2i−1, x2i} : 1 ≤ i ≤ k

}

under union. Note that this is the same construction as for the proof of Theorem 2.52. Observe
thatF contains2k−1 sets, each with an even number of elements. Any Streett condition which
describes the same family must contain at least this number of pairs in order to exclude the sets
of odd cardinality. ThusF cannot be represented by a Streett condition which is constructible
in polynomial time. ⊓⊔

It should be clear that the superset condition type is translatable to the basis condition type.
We include the result for completeness.

Proposition 2.54.The superset condition type is translatable to the basis condition type.

We conclude these results with the following two observations regarding translations be-
tween explicit presentations and the basis and superset condition types.

Proposition 2.55.The superset condition type is more succinct than an explicit presentation of
an upward-closed set.

Proof. Given an explicitly presented upward-closed game(A,F), the setF , viewed as a super-
set condition, clearly describes the same set of subsets ofV (A). Conversely, for the superset

game
(
A,

{
{v} : v ∈ V (A)

})
, the set described by the winning condition is of size2|V (A)|−1,

and therefore cannot be explicitly presented in polynomialtime. ⊓⊔

Corollary 2.56. The basis condition type is more succinct than an explicit presentation of a
union-closed set.

Proof. The fact that the basis condition type is not translatable toan explicit presentation fol-
lows from Proposition 2.55 and Proposition 2.54 as “translatable” is transitive. The other direc-
tion is straightforward, the explicit presentation itselfsuffices as a basis. ⊓⊔
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2.2.3 Extendibility

We now introduce a property of condition types that allows usto make simplifying assumptions
about the arena. We say a regular condition type isextendibleif it can “ignore” a set of added
vertices. More precisely,

Definition 2.57 (Extendible condition type). Let A be a regular condition type. We sayA is
extendibleif for any arenasA andA′ such thatV (A) ⊆ V (A′), and any instanceΩ ∈ A(A),
there is an instanceΩ′ ∈ A(A′), computable in time polynomial in|Ω| + |V (A′)|, such that
FΩ′ = {I ⊆ V (A′) : I ∩ V (A) ∈ FΩ}.

We observe that if|V (A′)|− |V (A)| = m, then|FΩ′| = 2m|FΩ|, so in particular, an explicit
presentation is not extendible. However, all the other condition types we have so far considered
are extendible.

Proposition 2.58. The following condition types are extendible: Muller, circuit, Emerson-Lei,
Zielonka tree/DAG, win-set, parity, Rabin, Streett, basis,and superset.

Proof. Let us fix arenasA andA′ such thatV (A) ⊆ V (A′). We show for each condition type
above how to compute the required instanceΩ′ from a givenΩ. It follows from the definitions
that for the circuit, Emerson-Lei, win-set, Rabin, Streett and superset conditions takingΩ′ = Ω
suffices. So let us consider the other condition types.

SupposeΩ = (χ, C) is a Muller condition instance withχ : V (A) → C. We define
Ω′ = (χ′, C′) as follows. LetC ′ = C ∪ {c} wherec is not an element ofC. We define

χ′(v) :=

{
χ(v) if v ∈ V (A)

c otherwise

and we defineC′ := C ∪ {I ∪ {c} : I ∈ C}. (χ′, C′) is clearly computable in time polynomial in
|Ω| + |V (A′)|, and for everyI ⊆ V (A′) we haveχ′(I) ∈ C′ if, and only if,χ(I ∩ V (A)) ∈ C.
ThusΩ′ is as required.

Similarly, if Ω = (χ, P) is a parity condition, we letP′ = P ∪ {p} for some oddp <
min{χ(v) : v ∈ V (A)} and defineχ′(v) = p for v /∈ V (A), andχ(v) = v otherwise. For any
setI ⊆ V (A′), if I ∩ V (A) 6= ∅ thenmax{χ′(v) : v ∈ I} = max{χ(v) : v ∈ I ∩ V (A)}, so
I ∈ FΩ′ if, and only if, I ∩ V (A) ∈ FΩ. Otherwise, ifI ∩ V (A) = ∅, thenmin{χ′(v) : v ∈
I} = p, and as∅ /∈ FΩ andp is odd, we haveI /∈ FΩ′ andI ∩ V (A) /∈ FΩ. ThusΩ′ is as
required.

Given a Zielonka structureZF ,V whereV = V (A), consider the Zielonka structureΩ′ =
ZF ′,V ′, whereV ′ = V (A′), defined by addingV (A′)\V (A) to each label. That is, ift is a node
in ZF ,V , labelled byX ⊆ V , thent is a node inZF ′,V ′ labelled byX ∪ (V (A′) \ V (A)). Now
considerI ∈ F ′. From the definition of a Zielonka structure,I is a subset of a label of a 0-level
nodet and not a subset of a label of any of the successors oft. Supposet is labelled, inZF ,V , by
X, soI ⊆ X ∪ (V ′ \V ). ThusI ∩V (A) ⊆ X. Now supposeI ∩V (A) is a subset ofY , a label
(in ZF ,V ) of a successor oft. It follows thatI ⊆ Y ∪ (V ′ \V ), and soI is a subset of a label (in
ZF ′,V ′) of a successor oft, contradicting the choice oft. SoI ∩ V (A) ∈ F . Interchanging the
roles of 0-level nodes and 1-level nodes establishes that ifI /∈ F ′ thenI ∩ V (A) /∈ F . ThusΩ′

is as required.
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Finally, given an instance of a basis condition typeΩ = B, we defineΩ′ = B′ as follows:

B′ = B ∪
{
{v} : v ∈ V (A′) \ V (A)

}
.

SupposeI =
⋃n

i=1 Bi for setsB1, . . . , Bn ∈ B′, where for somem ≤ n, Bi ∈ B for i ≤ m.
From the definition ofB′, it follows thatI∩V (A) =

⋃m
i=1 Bi, soI∩V (A) ∈ FΩ. Conversely, if

I∩V (A) ∈ FΩ, letI∩V (A) =
⋃m

i=1 Bi. From the definition ofB′, there existsBm+1, . . . , Bn ∈
B′ such thatI \ V (A) =

⋃n
i=m+1 Bi. SoI =

⋃n
i=1 Bi for B1, . . . , Bn ∈ B′ and henceI ∈ FΩ′.

⊓⊔

Given a game with a winning condition specified by an extendible condition type, we can
add vertices to the arena without significantly changing thesize of the instance. This enables us
to assume that the arena has a very simple structure.

Theorem 2.59.Let A be an extendible regular condition type andG = (A, Ω) be a Muller
game withΩ ∈ A(A). Then there exists a Muller game(A′, Ω′) with Ω′ ∈ A(A′), computable
in time polynomial in||G||, such that:

(i) A′ is a bipartite graph withE(A′) ⊆ (V0(A′)× V1(A′)) ∪ (V1(A′)× V0(A′)),

(ii) All vertices inV0(A′) have out-degree at most 2, and

(iii) Player 0 winsG if, and only if, she winsG′.

Proof. We constructA′ fromA in a series of stages by adding vertices and adding and replacing
edges, soV (A) ⊆ V (A′). We observe that the resulting arena has size polynomial in|A|, so
it can be constructed in polynomial time. We then use the definition of extendible condition
type to obtain the winning conditionΩ′ from Ω. Since the size ofA′ is polynomial in the size
of A, we can computeΩ′ in time polynomial in|Ω| + |A|. It is clear from the definition of
extendible condition types that in the resulting game Player 0 wins fromvI(A) if, and only if,
she wins fromvI(A′). Thus it remains to show the first two conditions may be met with at most
a polynomial increase in the size of the arena.

First we ensure all vertices inV0(A′) have out-degree at most 2. Ifv ∈ V0(A) has out-degree
m > 2, we replace them outgoing edges fromv with a binary branching tree, rooted atv, with
m leaves – the successors ofv. We observe that this requires adding at mostm vertices andm
edges. Each of the newly added vertices are added toV1(A). After repeating this for all vertices
in V0(A), the resulting arenaA′ has at most|V (A)|+ |E(A)| vertices, and2|E(A)| edges, and
every vertex inV0(A′) has out-degree at most 2.

Now suppose all vertices inA have out-degree at most 2. For each edgee = (u, v) ∈ E(A)
such thatu, v ∈ V0(A) (u, v ∈ V1(A)), add a vertexve to V1(A) (V0(A)) and replace the edge
e with edges(u, ve) and(ve, v). After repeating this for all edges inE(A), the resulting arena
A′ has at most|V (A)|+ |E(A)| vertices, and2|E(A)| edges, andE(A′) ⊆ V0(A′)× V1(A′)∪
V1(A′)× V0(A′). ⊓⊔

2.3 Complexity results

In this section we consider the complexity of deciding whether Player 0 has a winning strategy
in a Muller game when the winning condition is specified usingsome of the formalisms we
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have considered. We show that the problem of deciding Mullergames in which the winning
condition is specified by a win-set condition is PSPACE-complete. It follows from our results on
translatability that the decision problems for Muller games with winning condition specified by
a Muller condition, Zielonka DAG or an Emerson-Lei condition are all also PSPACE-complete.
We also show that the decision problems for basis and superset games are co-NP-complete.

We first consider some upper bounds. A well-known result is that simple games can be
decided in linear time.

Theorem 2.60.LetG = (A,F) be a simple game. Whether Player 0 winsG can be decided in
timeO(|E(A)|).

Proof. SupposeF = ∅, the case whenF = P(V (A)) is dual. LetW ⊆ V1(A) be the set
of vertices inV1(A) with no outgoing edges. We observe that Player 0 wins fromvI(A) if,
and only if, Player 0 can force the play to a vertexv ∈ W . Thus, Player 0 has a winning
strategy if, and only if,vI(A) ∈ Force0

A(W ). The required complexity bound then follows from
Lemma 2.18. ⊓⊔

In [IK02], Ishihara and Khoussainov considered the following restriction on explicitly pre-
sented Muller games:

Definition 2.61 (Fully Separated game). Let G = (A,F) be an explicitly presented Muller
game. We sayG is fully separatedif for eachX ∈ F there existsvX ∈ X such thatvX /∈ Y
for all Y ∈ F , Y 6= X.

Khoussainov showed that the winner of a fully separated gamecan be decided in time
O(|V (A)|2|E(A)|). We now prove a generalization of this result by showing thatexplicitly
presented Muller games can be decided in polynomial time if the winning condition is an anti-
chain with respect to the subset relation.

Theorem 2.62.LetG = (A,F) be an explicitly presented Muller game such thatF is an anti-
chain, that is,X 6⊆ Y for all X,Y ∈ F . Whether Player 0 winsG can be decided in time
O(|F||V (A)|2|E(A)|).

Proof. Consider the algorithm ANTICHAIN(A,F) in Algorithm 2.2. We show that it is correct
and returns in timeO(|F||V (A)|2|E(A)|).

We first show that ANTICHAIN(A,F) returnstrue if, and only if, Player 0 has a winning
strategy inG = (A,F). Let us supposeN has been computed as above. We consider three
cases:

(i) vI(A) ∈ N . From the definition ofN , there existsv ∈ V (A) andX ∈ F such that
Player 0 can force the play tov from vI(A) and Player 0 has a winning strategy from
v which visits every vertex inX, and only vertices inX, infinitely often. The winning
strategy for Player 0 is then to force the play tov and play this strategy. SinceX ∈ F ,
this is a winning strategy.

(ii) N = ∅. In this case, for everyX ∈ F , Player 1 has a strategyτX from every vertex inA
which can ensure either not all vertices ofX are visited infinitely often, or some vertices
not in X are visited infinitely often. The strategy for Player 1 on(A,F) is as follows.
Play anything until the play enters someX ∈ F , then play the strategyτX until the play
leavesX. Clearly if there is noX ∈ F such that the play remains forever inX, Player 1
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Algorithm 2.2 ANTICHAIN(A,F)

Returns: true if, and only if, Player 0 has a winning strategy fromvI(A) in (A,F) whenF is
an anti-chain.
for eachX ∈ F do

let NX = {v : Player 0 has a winning strategy fromv in the game(A, {X})}
let N = Force0

A(
⋃

X∈F NX)
if vI(A) ∈ N then

return true

else ifN = ∅ then
return false

else
let F ′ = {X ∈ F : X ∩N = ∅}
return ANTICHAIN(A \N,F ′)

wins the play. So let us suppose the play remains indefinitelyin X for someX ∈ F . From
the definition ofτX , the setI of vertices visited infinitely often is properly contained in
X. SinceF is an anti-chain, it follows thatI /∈ F . Thus Player 1 wins the play.

(iii) N 6= ∅ andvI(A) /∈ N . In this case, Player 1 can force the play to remain inA\N and it
follows from case (i) above that Player 0 has a winning strategy from every vertex inN .
Clearly, if Player 0 has a winning strategy in(A \N,F ′) then she has a winning strategy
in the larger game: if Player 1 chooses to keep the play inA \ N then Player 0 can play
her winning strategy on the subgame, otherwise if Player 1 chooses to move to a vertex in
N , Player 0 can play her winning strategy fromN . Conversely, if Player 1 has a winning
strategy in(A \N,F ′) then, as he can force the play to remain inA \N , he can play his
winning strategy on the subgame.

Thus, ANTICHAIN(A,F) returnstrue if, and only if, Player 0 has a winning strategy inG =
(A,F).

To show the algorithm returns in timeO(|F||V (A)|2|E(A)|), we require the following re-
sult from [IK02]:

Lemma 2.63([IK02]) . LetG = (A,F) be an explicitly presented Muller game withF = {X}.
Whether Player 0 has a winning strategy from a vertexv ∈ V (A) can be decided in time
O(|V (A)||E(A)|).

It follows that at each stage of the recursion, it takesO(|F||V (A)||E(A)|) time to com-
puteN . Furthermore, since|N | ≥ 1 whenever ANTICHAIN(A,F) is recursively called, it
follows that the algorithm has recursion depth at most|V (A)|. Thus the algorithm runs in time
O(|F||V (A)|2|E(A)|) as required. ⊓⊔

2.3.1 PSPACE-completeness

As we saw in Theorem 2.15, McNaughton [McN93] presented an algorithm for deciding Muller
games in spaceO(|V (A)|2). In fact, the games he considered were win-set games. However,
the algorithm is easily adapted to the case where the winningcondition is presented explicitly,
or as a Muller condition, a Zielonka DAG, an Emerson-Lei condition, or a circuit condition
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without significant increase in the space requirements. Thus, each of these classes of games is
decidable in PSPACE.

We now show corresponding lower bounds. By the results of the previous section, it suffices
to establish the hardness result for the win-set condition type.

Theorem 2.64.Deciding win-set games isPSPACE-complete.

Proof. By the above comments, we only need to show PSPACE-hardness. For this, we reduce
the problem of QSAT (satisfiability of a quantified boolean formula [QBF]) to the problem of
deciding the winner of a win-set game.

We assume, without loss of generality a QBF,Φ = Qk−1xk−1 . . . ∀x1∃x0ϕ is given in which
quantifiers are strictly alternating andϕ is in disjunctive normal form with 3 literals per clause.
We then define a win-set gameGΦ = (A, Ω), whereΩ = (W,W), as follows:

• V0(A) = {ϕ} ∪ {x,¬x : for all variablesx},

• V1(A) = {C0, . . . , Cm−1}, the set of clauses inϕ,

• E(A) given by:

– (ϕ,Cj) ∈ E(A) for 0 ≤ j < m;

– If Cj = (l0 ∧ l1 ∧ l2), then(Cj, l0), (Cj, l1), (Cj, l2) ∈ E(A);

– (xi, xi−1), (xi,¬xi−1) ∈ E(A) for 0 < i < k;

– (¬xi, xi−1), (¬xi,¬xi−1) ∈ E(A) for 0 < i < k; and

– (x0, ϕ), (¬x0, ϕ) ∈ E(A),

• vI(A) = ϕ,

• W = V0(A) \ {ϕ}, andW is

W =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}

whereS0 = ∅ and fori > 0, Si = {xj,¬xj : 0 ≤ j < i}.
Figure 2.3 illustrates how the arena ofGΦ would look if ϕ contained the clauses(x0∧xk−1∧

¬xk) and(¬x0 ∧ xk−1 ∧ xk).
Note that as this is a win-set game, we are only interested in vertices ofW that are visited

infinitely often. Observe that the winning condition ensures that Player 0 can win if, and only
if, the minimumi such that at most one ofxi and¬xi is visited infinitely often is even. The
idea behind the strategy for Player 0 is to perpetually verify ϕ. The choice of strategies by both
players then dictates the choices of the truth values for each of the variables, and the winning
condition guarantees a winning strategy for Player 0 if, andonly if, Φ is true. To formally show
that Player 0 has a winning strategy if, and only if,Φ is true, we proceed by induction onk, the
number of quantifiers ofΦ.
Base case:k = 1 By the idempotence of∧ and∨ and assumingΦ is closed,Φ is logically
equivalent to one of the following forms.

• Φ = ∃x0.x0 or ∃x0.¬x0. In this case the arena consists of four vertices,{ϕ,C0, x0,¬x0}.
Player 0 wins by always returning toϕ from whichever ofx0 and¬x0 Player 1 is forced
to play to, andΦ is clearly true.
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Figure 2.3: Arena ofGΦ for ϕ = (x0 ∧ xk−1 ∧ ¬xk) ∨ . . . ∨ (¬x0 ∧ xk−1 ∧ xk)

• Φ = ∃x0.(x0∨¬x0). HereΦ is also true. The arena consists of five vertices{ϕ,C0, C1, x0,¬x0}
and Player 0 has the only choice (atϕ andx0). A winning strategy is to always play from
ϕ to C0, and to return immediately toϕ from x0.

• Φ = ∃x0.(x0∧¬x0). HereΦ is false. The arena consists of four vertices{ϕ,C0, x0,¬x0}
and Player 1 can force the play to visit bothx0 and¬x0 infinitely often by alternately
choosing each fromC0. Note that this strategy requires memory to remember which
vertex was visited last time.

Note that ifx0 does not appear inϕ, we can add the clause(x0 ∧ ¬x0) without changing the
truth value ofΦ.
Inductive case: The inductive hypothesis asserts that ifΦ hask − 1 quantifiers and is closed,
then Player 0 has a winning strategy if, and only if,Φ is true. To show that this implies the
case fork quantifiers, we use the following lemma which shows how subgames correspond to
restricted subformulas. First we introduce some notation.If x is free inϕ andv is eithertrue

or false, we writeϕ[x 7→ v] to denote the formula obtained by substitutingv for x in ϕ and
simplifying. Note that ifϕ[x 7→ true] simplifies totrue thenϕ must have at least one clause
containing the single literalx, and if it simplifies tofalse, then all clauses contain¬x. The
crucial lemma can now be stated as

Lemma 2.65.If Φ = Qxϕ (Q ∈ {∃,∀}) andϕ[x 7→ true] does not simplify totrue or false, then
Gϕ[x 7→true] is isomorphic to the subgame ofGΦ = (A, Ω) induced by the set Avoid1Avoid0

A
(¬x)(x).

Dually, if ϕ[x 7→ false] does not simplify totrue or false, thenGϕ[x 7→false] is isomorphic to the
subgame ofGΦ induced by the set Avoid1Avoid0

A
(x)(¬x).

Proof. ϕ[x 7→ true] consists of the clauses ofϕ that do not contain¬x, with all occurrences
of x removed. The assumption thatϕ[x 7→ true] does not simplify totrue or false implies that
there is at least one such clause. The arena for the gameGϕ[x 7→true] thus consists of vertices for
ϕ[x 7→ true], the clauses, and the variables (and their negations) ofϕ, excludingx and¬x. The
edges are the same as those forGΦ restricted to this vertex set. We show that the subarena ofGΦ

induced byAvoid1
Avoid0

A
(¬x)(x) is identical. As the winning condition only depends on vertices

corresponding to variables, it follows that the winning conditions are also identical.
In GΦ = (A, Ω), the setAvoid0

A(¬x) consists of the vertices from which Player 0 can avoid
¬x. As Player 1 chooses the play from vertices corresponding toclauses, the set of vertices
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from which Player 1 can reach¬x is {¬x} ∪ {C : ¬x ∈ C}. As there is at least one clause that
does not contain¬x, Player 0 can play to that clause to avoid¬x from ϕ. The only other vertex
from which it is possible to reach¬x is x (asx is the outermost variable inΦ), and from there
Player 0 can play to eithery (for the next outermost variabley) or ϕ (if no such variable exists).
Thus

Avoid0
A(¬x) = V (A) \

(
{¬x} ∪ {C : ¬x ∈ C}

)
.

Next we considerAvoid1
V ′(x) for V ′ = Avoid0

A(¬x). As ϕ does not contain a clause containing
x by itself, Player 0 cannot force the play tox from ϕ, as Player 1 can always choose to play to
another literal. Furthermore, asx is the outermost variable inΦ, the only edges tox are from
vertices associated with clauses. Thusx is the only vertex from which Player 0 can force the
play to visitx, so

Avoid1
V ′(x) = V ′ \ {x}.

ThusAvoid1
Avoid0

A
(¬x)(x) = V (A) \

(
{x,¬x}∪{C : ¬x ∈ C}

)
, which is precisely the vertex set

of Gϕ[x 7→true]. The edges for both arenas are those ofGΦ restricted to these vertices, as are the
winning conditions. Thus the two games are identical. ⊣

To complete the inductive step, we consider two cases.

• Φ = ∃xk−1.ϕ. If Φ is true, then there is a truth valuev such thatϕ[xk−1 7→ v] is true.
Assume thatv = true, the case forv = false being similar. The winning strategy for
Player 0 is then to avoid¬xk−1 and try to play toxk−1, playing through each vertex in
Sk−1 when the latter vertex is reached. Note that to play through each vertex inSk−1

requires at least two visits toxk−1 – Player 0 must remember (the parity of) the number
of times she has visited that vertex. Ifϕ[xk−1 7→ v] simplifies totrue, then Player 0 can
force the play to visitxk−1, by playing to the clause that only containsxk−1. Otherwise
Player 1 can play to avoidxk−1, restricting the play toAvoid1

Avoid0
A

(¬xk−1)(xk−1). From
the above lemma, this subgame is equivalent toGϕ[xk−1 7→true], and from the inductive
hypothesis, Player 0 has a winning strategy on this game. Thus the strategy of Player 0
is to play her winning strategy on the smaller game. IfΦ is false, then Player 1 plays a
strategy similar to the strategy of Player 0 in the case below.

• Φ = ∀xk−1.ϕ. In this case, ifΦ is true, then for both choices of truth valuev ∈
{true, false}, ϕ[xk−1 7→ v] is true. The winning strategy for Player 0 is to alternately
attempt to play to each ofxk−1 and¬xk−1 (and then through all vertices inSk−1), avoid-
ing the other at the same time. If, at any point, Player 1 playsto avoid the vertex Player 0
is attempting to reach, Player 0 plays her winning strategy on the reduced game (which
exists from the lemma and the inductive hypothesis). Again,if Φ is false, Player 1 plays
a strategy similar to the strategy of Player 0 in the previouscase. Note that in this case
Player 0 cannot force the play to visit bothxk−1 and¬xk−1.

⊓⊔

From our work on translatability in Section 2.2 and our observation regarding the PSPACE

solvability of these games, we obtain completeness resultsfor Muller games when the winning
condition is presented as a Muller condition, Zielonka DAG,Emerson-Lei condition or a circuit
condition.
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Corollary 2.66. The following problems arePSPACE-complete: Deciding Muller games with
winning condition specified by a Muller condition, deciding Zielonka DAG games, deciding
Emerson-Lei games, and deciding circuit games.

It can be verified that an explicit presentation of the winning condition constructed in the
proof of Theorem 2.64 would be exponentially larger than thepresentation using a win-set.
Thus, the proof cannot be used to provide a PSPACE-hardness result for the explicitly presented
games. The exact complexity of deciding the winner of such games remains open. Indeed, it is
conceivable (though it appears unlikely) that the problem is in PTIME.

Open problem 2.67.Determine the precise complexity of deciding explicitly presented Muller
games.

Bounded tree-width arenas

In Chapter 4 we present a graph parameter known astree-width. Tree-width is a measure of how
closely a graph resembles a tree. It has proved useful in the design of algorithms as many prob-
lems that are intractable on general graphs are known to havepolynomial time solutions when
restricted to graphs of bounded tree-width. In the context of Muller games, Obdr̆zálek [Obd03]
exhibited a polynomial-time algorithm for deciding the winner in parity games on arenas of
bounded tree-width. We show that this is not the case for Muller games (and neither, therefore,
for Zielonka DAG games, Emerson-Lei games, and circuit games). The proof of Theorem 2.64
can be modified so that the arenas constructed all have tree-width two provided we allow our-
selves to specify the winning condition as a Muller condition rather than a win-set.

Theorem 2.68.Deciding Muller games specified by a Muller condition on arenas of tree-width
2 is PSPACE-complete.

Proof. Membership of PSPACEfollows from the fact that deciding general Muller games spec-
ified by a Muller condition is in PSPACE.

The construction to show PSPACE-hardness is similar to that of Theorem 2.64. The reduc-
tion is also from QSAT, and the proof that it is in fact a reduction is similar. Given a QBF
Φ = Qk−1xk−1 . . . ∀x1∃x0ϕ whereϕ is in DNF with three literals per clause, the Muller game
we construct is:

• V1(A) = D whereD is the set of clauses.

• V0(A) = {ϕ} ∪
(
D × {1, 2, 3} × {x,¬x : x is a variable}

)
.

• We have the following edges inE(A) for all c ∈ D:

– (ϕ, c),

–
(
c, (c, n, l)

)
if l is then-th literal in c,

–
(
(c, n, xi), (c, n, xi−1)

)
if the n-th literal of c is xi (i > 0)

–
(
(c, n, x0), ϕ

)
if the n-th literal of c is x0

–
(
(c, n, xi), (c, n,¬xi)

)
for all i less than the index of then-th literal of c

–
(
(c, n,¬xi), (c, n, xi−1)

)
for all i less than or equal to the index of then-th literal of

c
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Figure 2.4: Arena with bounded tree-width

–
(
(c, n,¬x0), ϕ

)
for all n.

• C = {ϕ} ∪ {x,¬x : x is a variable} is the set of colours,

• χ : V (A)→ C defined as:

– χ(ϕ) = χ(c) = ϕ for all c ∈ D

– χ
(
(c, n, l)

)
= l.

• C =
{
Si, Si ∪ {xi}, Si ∪ {¬xi} : 0 ≤ i < k, i even

}
whereS0 = {ϕ} and fori > 0,

Si = {ϕ} ∪ {xj,¬xj : 0 ≤ j < i}.
Figure 2.4 illustrates how this arena differs from that of Theorem 2.64.

The resulting arena has tree-width 2, and the proof that Player 0 has a winning strategy if,
and only if,Φ is true is similar to that of Theorem 2.64. ⊓⊔

2.3.2 Complexity of union-closed games

We now turn our attention to Muller games where the winning conditionF is a union-closed
set. Among games studied in the literature, Streett games and parity games are examples of
condition types that can only specify union-closed games. Union-closed games were also stud-
ied as a class in [IK02]. One consideration that makes them aninteresting case to study is that
they admit memoryless strategies for Player 1 [Kla94]. Thatis, on a game with a union-closed
winning condition, if Player 1 has a winning strategy then hehas a strategy which is a function
only of the current position. One consequence of this fact isthat, for explicitly presented union-
closed games, the problem of deciding whether Player 0 wins such a game is in co-NP. This
is because once a memoryless strategy for Player 1 is fixed, the problem of deciding whether
Player 0 wins against that fixed strategy is in PTIME. Indeed, it is a version of a simple game.
Thus, to decide whether Player 1 has a winning strategy we cannondeterministically guess such
a strategy and then verify that Player 0 cannot defeat it. Hence, determining whether Player 1
wins is in NP and therefore deciding whether Player 0 wins is in co-NP. In this section, we
aim to establish a corresponding lower bound for two condition types that can only represent
union-closed games, namely the basis and superset condition types.

We saw with Theorem 2.53 that we cannot use the known complexity bounds on Streett
games to easily establish similar bounds for basis games. Nevertheless, deciding basis games is
still in co-NP.
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Proposition 2.69.Deciding basis games is inco-NP.

Proof. From the comments above, it suffices to show that if we fix a memoryless strategy for
Player 1 then we can decide the resulting single player basisgame in polynomial time.

The algorithm is as follows. LetB be the basis for the winning condition. Initially let
B0 = B, and repeat the following:

1. LetXi =
⋃

B∈Bi
B.

2. PartitionXi into strongly connected components (SCCs).

3. Remove any element ofBi which is not wholly contained in a SCC to obtainBi+1,

until Bi = Bi−1, at which point, letX = Xi. This takes at mostO
(
|B|(|V (A)|+ |E(A)|)

)
time

using a standard SCC-partitioning algorithm. At this point, every SCC ofX is a union of basis
elements – allx in X are members of basis elements, and any basis elements not contained in
any SCC ofX is removed at step 3. Furthermore, any strongly connected set of V (A) which is
a union of basis elements is a subset (of an SCC) ofX, because the algorithm preserves such
sets. Thus, Player 0 can win from any node from which she can reachX (play toX and then
visit every node within an SCC ofX forever); and Player 0 cannot win if she cannot reachX
(there is no union of basis elements for which Player 0 can visit every vertex infinitely often).
Thus the set of nodes from which Player 0 wins can be computed in O

(
|B|(|V | + |E|) + |E|

)

time. ⊓⊔

We now obtain the lower bounds we seek on superset games.

Theorem 2.70.Deciding superset games isco-NP-complete.

Proof. Membership of co-NP follows from Propositions 2.54 and 2.69. To show co-NP-hardness,
we use a reduction from validity of DNF formulas.

Given a formulaϕ(x0, x1, . . . , xk−1) in DNF, consider the superset game defined as follows:

• for every variablexi we include three vertices,xi,¬xi ∈ V0(A) andx′
i ∈ V1(A);

• for eachi we have the edges(x′
i, xi), (x

′
i,¬xi), (xi, x

′
i+1), (¬xi, x

′
i+1), where addition is

taken modulok;

• vI(A) = x0; and

• the winning condition is specified by the set

M =
{
{li ∈ V0(A) : li is a literal ofC} for every clauseC of ϕ

}
,

As the superset condition is closed under union, if Player 1 has a winning strategy he has
a memoryless winning strategy. Note that any memoryless strategy for Player 1 effectively
chooses a truth value for each variable. The set of vertices visited infinitely often is a superset
of an element ofM if, and only if, the truth assignment chosen by Player 1 makesone clause of
ϕ (and henceϕ) true. Thus Player 0 wins this game if, and only if, there is notruth assignment
which makesϕ false. ⊓⊔

Corollary 2.71. Deciding basis games isco-NP-complete.
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We note in conclusion that the exact complexity of deciding union-closed games when they
are explicitly presented remains an open problem. It is clearly in co-NP but the above arguments
do not establish lower bounds for it.

Open problem 2.72.Determine the precise complexity of deciding explicitly presented union-
closed games.

2.4 Infinite tree automata

One of the original motivations for studying Muller and related games was to establish de-
cidability results for problems such as non-emptiness and model checking for infinite tree au-
tomata [McN66]. A reduction to non-emptiness of infinite tree automata is used in some of
the most effective algorithms for deciding satisfiability of formulas in logics such asS2S, µ-
calculus, CTL∗, and other logics useful for reasoning about non-terminating, branching compu-
tation. Furthermore, determining if a structure satisfies aformula in any of these logics reduces
to determining if a certain automaton accepts a particular tree. In this section we show that
the non-emptiness and model-checking problems (for regular trees) are PSPACE-complete for
Muller automata. We first present the definitions of infinite trees and infinite tree automata.

Definition 2.73 (Infinite tree). For k ∈ N, let [k] = {1, 2, . . . , k}. An infinite, k-ary branching
tree labelled by elements ofΣ is a functiont : [k]∗ → Σ. Nodesof an infinite tree are elements
of its domain, theroot of an infinite tree is the empty string.

Definition 2.74 (Regular tree). A subtreeof treet rooted atu ∈ [k]∗ is the treetu defined as
tu(v) = t(u · v) for all v ∈ [k]∗. A treet is regular if it has finitely many distinct subtrees, or
equivalently, if there are finitely many equivalence classes under the equivalence relation

u ∼ v ⇐⇒ t(u · w) = t(v · w) ∀w ∈ [k]∗.

Note that if a tree is regular it can be represented by a finite transition system, with the
equivalence classes of the above equivalence relation as states, the equivalence class containing
the root as the initial vertex, andk distinct transition relations.

Definition 2.75 (Infinite tree automaton). An infinite (Muller) (k-ary) tree automaton is a tuple
A = (Q, Σ, δ, q0,F) where

• Q is a finite set of states

• Σ is a finite alphabet

• δ ⊆ Q× Σ×Qk is a transition relation

• q0 is the initial state

• F ⊆ P(Q) is the acceptance condition.

Given an infinite,k-ary branching treet labelled by elements ofΣ, a run ofA on t is an in-
finite, k-ary branching treer labelled by elements ofQ satisfying the following two conditions.

• The root ofr is labelled byq0 (r(ǫ) = q0).
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• For all w ∈ [k]∗, if r(w) = q, r(w · 1) = q1, r(w · 2) = q2, . . . , r(w · k) = qk, and
t(w) = a, then(q, a, q1, q2, . . . , qk) ∈ δ.

We say a runr is successful if for every (infinite) path, the setI of states visited infinitely often
is an element ofF . We sayA acceptst if there is a successful run ofA ont. Given an automaton
A, thelanguageof A is the set of trees

L(A) := {t : A acceptst}.

Two important decision problems in automata theory are non-emptiness and model-checking.

NON-EMPTINESS OFMULLER TREE AUTOMATA

Instance: A Muller automatonA
Problem: IsL(A) 6= ∅?

MODEL-CHECKING FORMULLER TREE AUTOMATA

Instance: A Muller automatonA, and a regular infinite treet
Problem: Is t ∈ L(A)?

The close connection between automata and games can be established by considering the
game where the moves of Player 0 consist of choosing a transition in δ to make from a current
state, and the moves of Player 1 consist of choosing which branch of the tree to descend. With
this translation in mind, the non-emptiness problem reduces to the problem of finding the winner
in the win-set game

(
A, (W,W)

)
with

• V0(A) = W = Q,

• V1(A) = Qk,

• W = F ,

• edges fromV0(A) to V1(A) determined byδ: an edge fromq to (q1, q2, . . . , qk) if there is
a ∈ Σ such that(q, a, q1, . . . qk) ∈ δ, and

• edges fromV1(A) to V0(A) being projections: an edge from(q1, . . . , qk) to qi for all
i ∈ [k].

Clearly if Player 0 has a winning strategy in this game, it is possible to construct a tree which
the automaton accepts. Conversely, if Player 1 has a winning strategy, no such tree exists.

By adapting the proof of Theorem 2.64 we are able to show that the non-emptiness problem
for Muller automata as well as the problem of determining whether a given automaton accepts
a given regular tree are both PSPACE-complete.

Theorem 2.76.The non-emptiness problem for Muller tree automata isPSPACE-complete.

Proof. Membership in PSPACEis established by the above polynomial time reduction from the
non-emptiness problem of Muller automata to win-set games.Here we show PSPACEhardness
through a reduction from QSAT (satisfiability of a quantifiedboolean formula [QBF]).

Given a QBFΦ = Qk−1xk−1 . . . ∀x1∃x0ϕ, whereϕ is in disjunctive normal form with 3
literals per clause, we construct the following Muller automatonAΦ = (Q, Σ, qI , δ,F) that
accepts infinite ternary trees:
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• Q = {qϕ} ∪ {qx, q¬x : for all variablesx}

• Σ = {a} 2

• qI = qϕ

• δ ⊆ Q×Q3 given by:

– for each clause(l0 ∧ l1 ∧ l2) ∈ ϕ, (qϕ, ql0 , ql1 , ql2) ∈ δ;

– (qxi
, qxi−1

, qxi−1
, qxi−1

) ∈ δ for 0 < i < k;

– (q¬xi
, qxi−1

, qxi−1
, qxi−1

) ∈ δ for 0 < i < k;

– (qx0
, qϕ, qϕ, qϕ) ∈ δ; and

– (q¬x0
, qϕ, qϕ, qϕ) ∈ δ.

• F =
{
Si, Si ∪ {qxi

}, Si ∪ {q¬xi
} : 0 ≤ i < k, i even

}
whereSi = {qϕ} ∪ {qxj

, q¬xj
:

0 ≤ j < i}.

Now by using the reduction to win-set games outlined above, asking if AΦ accepts any tree is
equivalent to asking if Player 0 has a winning strategy (fromqϕ) on the win-set game used in
Theorem 2.64. ⊓⊔

The model checking problem also reduces to deciding which player wins an infinite game.
However, depending on how the tree is presented, the resulting arena may be of infinite size. If
the tree is presented as a finite transition system, a game with finite arena can be constructed,
and we can apply Theorem 2.76 to obtain the following corollary.

Corollary 2.77. Given a regular, infinite,k-ary branching treet (represented as a transition sys-
tem) and a Muller automatonA = (Q, Σ, δ, qI ,F), asking ifA acceptst is PSPACE-complete.

Proof. PSPACEhardness follows from the proof of Theorem 2.76, as the automata constructed
there accept at most one tree – the ternary branching tree with all nodes labelled bya.

To show that the problem is in PSPACE, we reduce it to the problem of deciding a Muller
game. Let(S, s0, t1, . . . , tk) denote the transition system representing the treet. The required
Muller game,

(
A, (χ, C)

)
, is given by the following.

• V0(A) = Q× S.

• V1(A) = Q× S ×Qk.

• There is an edge from(q, s) ∈ V0(A) to (q, s, q1, . . . qk) ∈ V1(A) whenever(q, a, q1, . . . , qk) ∈
δ wherea is the label ofs.

• There is an edge from(q, s, q1, . . . , qk) ∈ V1(A) to (qi, ti(s)) ∈ V0(A) for 1 ≤ i ≤ k.

• vI(A) = (qI , s0),

• Q is the set of colours,

• χ : V (A)→ Q is defined by taking the first component of the vertex.

2asΣ is a singleton, for ease of reading we omita from the description ofδ
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• C = F .

It is clear from the definitions that Player 0 has a winning strategy from(qI , s0) in this game if,
and only if,A acceptst. ⊓⊔



Chapter 3

Strategy Improvement for Parity Games

In Chapter 2 we introduced parity games and briefly remarked onthe significance of determin-
ing the complexity of deciding them. One factor contributing to the importance of the analysis
of parity games is that deciding the winner of a parity game ispolynomial-time equivalent to the
model-checking problem of modalµ-calculus, a highly expressive fragment of monadic second
order logic [EJS01]. Indeed, the modalµ-calculus is the bisimulation invariant fragment of
monadic second order logic, and therefore includes logics useful for verification such as the
branching time temporal logic CTL∗ [Dam94].

Another interesting aspect of parity games is that the complexity of deciding the winner
remains tantalizingly elusive. In Section 2.3 we observed that when we can restrict one player
to memoryless strategies we can nondeterministically guess the strategy and if we can check in
polynomial time if that strategy is winning, we have demonstrated an NP algorithm (if Player 0
has a memoryless winning strategy) or a co-NP algorithm (if Player 1 has a memoryless strat-
egy). So, from Theorem 2.42 we obtain the following corollary:

Corollary 3.1. Deciding the winner of a parity game is inNP∩ co-NP.

It is believed by some that parity games are decidable in polynomial time, however the
problem has so far resisted attempts to find tractable algorithms, giving us the following well-
researched open problem:

Open problem 3.2.Determine the exact complexity of deciding parity games.

In this chapter, we analyse one of the best candidates for a tractable algorithm for parity
games: the strategy improvement algorithm. In Chapters 6 and7 we define a large class (indeed,
the largest class so far known) of graphs on which parity games can be solved in polynomial
time.

Currently, the best known algorithm for deciding a parity game on general arenas runs in

time nO(
√

n/ log n) wheren is the number of vertices of the arena [JPZ06]. If the number of
priorities,p, is small compared to the size of the arena, sayp = o(

√
n/ log n), we can slightly

improve on this with an algorithm that runs in timeO
(
dm ·

(
n

⌊p/2⌋

)⌊p/2⌋
)

wherem is the num-

ber of edges of the arena [Jur00]. However, in [VJ00a], Vöge and Jurdziński introduced a
strategy improvement algorithm which appears to do quite well in practice, even when the
number of priorities is large. To date, the best known upper bound for its running time is
O

(
mn

∏
v∈V0(A) dout(v)

)
, which is in general exponential in the number of vertices. However,

no family of examples has yet been found that runs in worse than linear time. In this chapter

48
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we analyse the structure of this algorithm and use combinatorial results to improve the known
upper and lower bounds. The analysis we use is primarily taken from [VJ00b].

3.1 The strategy improvement algorithm

The idea behind the strategy improvement algorithm is to define a measure dependent on the
strategy of Player 0. Then, starting with an arbitrary strategy for Player 0, to make local ad-
justments based on this measure to obtain a new strategy which is in some sense improved.
This process is then repeated until no further improvementscan be made. At this point, with
a judicious choice of measure, the strategy is the optimal play for Player 0, and the winning
sets for each player can easily be computed. This procedure is readily extended to any strat-
egy that requires finite memory, so from Theorem 2.14 we see that it can be used for games
other than parity games. However, with parity games we can restrict ourselves to memoryless
strategies and then at each stage both the measure and the local improvements can be efficiently
computed.

In order to fully describe the algorithm, we need to introduce some concepts. Using the no-
tation of Chapter 2, let us fix a parity gameG = (A, χ) whereχ : V (A)→ P. For convenience
we assume no vertex inA has out-degree0. For the remainder of this chapter, we assume all
strategies are positional.

To be able to evaluate strategies, we first identify the characteristics of a play which are
important. Aplay profileis a triple(l, P, e) wherel ∈ P, P ⊆ P ande ∈ ω. Given an infinite
play π = v1v2 · · · in G, we associate withπ a play profile,Θ(π) := (l, P, e), as follows.
We definel to be the maximum priority occurring infinitely often inχ(π), so the parity ofl
determines the winner of the play. We defineP to be the set of priorities greater thanl that
occur inχ(π), ande to be the minimal index such thatχ(ve) = l andχ(ve′) ≤ l for all e′ ≥ e.
A valuationis a mapping from each vertexv ∈ V (A) to a play profile of an infinite play from
v.

We next define an ordering that compares play profiles by how beneficial they are to each
player. We begin by defining a useful linear order on the set ofpriorities. Thereward order,⊑,
is defined as follows: fori, j ∈ P, i ⊑ j if either

(i) i is odd andj is even, or
(ii) i andj are even andi ≤ j, or
(iii) i andj are odd andi ≥ j.

Intuitively, i ⊑ j if j is “better” for Player 0 thani. We extend⊑ to play profiles by defining
(l, P, e) ⊏ (m,Q, f) if either

(i) l ⊏ m; or
(ii) l = m andmax≤(P △ Q) is odd and inP , or even and inQ; or
(iii) l = m, P = Q, and eitherl is odd ande < f , or l is even ande > f .

The measure we use to implement the strategy improvement algorithm is a valuation that
gives the⊑-minimal play profile amongst all plays consistent with the current strategy for
Player 0. More precisely, letσ be a strategy for Player 0, and forv ∈ V (A) let Playsσ(v)
be the set of all infinite plays starting fromv consistent withσ. We define the valuationϕσ by:

ϕσ(v) := min ⊑{Θ(π) : π ∈ Playsσ(v)}.
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The next proposition, taken from [VJ00b], helps give an intuitive understanding ofϕσ.
Given a strategyσ for Player 0 and a strategyτ for Player 1, we observe there is precisely
one infinite playπστ (v) consistent withσ andτ from each vertexv ∈ V (A). We writeΘστ for
the valuation defined by:

Θστ (v) := Θ
(
πστ (v)

)
.

If we further extend⊑ to a partial order on valuations,E, in a pointwise manner then Proposi-
tion 5.1 of [VJ00b] can be stated as:

Proposition 3.3. The set{Θστ : τ is a strategy for Player 1} has aE-minimal element and it
is equal toϕσ.

Intuitively, this means thatϕσ is equivalent to the valuation defined byσ and the best counter-
strategy for Player 1 againstσ. Consequently,ϕσ can be efficiently computed by fixing the
strategy of Player 0 and considering the strategies of Player 1 in the resulting single player
game.

After computingϕσ, the algorithm makes localimprovementsto the strategyσ by switching
(if necessary)σ(v) to the successor ofv with the⊑-maximalϕσ value. The resulting strategy
σ′ is improved in the sense thatϕσ E ϕσ′. This is then repeated until no further improvements
can be made. At this point the strategyσ is optimal for Player 0, that is, Player 0 can win from
a vertexv ∈ V (A) against any strategy for Player 1 if, and only if, she can win playing σ
from v against any strategy. We can then compute the winning sets byfixing Player 0’s strategy
and finding the winning sets for Player 1 in the single player game. Algorithm 3.1 provides a
detailed description of the critical part of the strategy improvement algorithm.

Algorithm 3.1 Strategy optimization
Returns: An optimal strategy for Player 0

selecta strategyσ for Player 0 at random
repeat

let σ = σ′ {Store current strategy}
Computeϕσ

for eachv ∈ V0 do {Improveσ locally according toϕσ}
selectw such that(v, w) ∈ E(A) and

ϕσ(w) = max⊑{ϕσ(v′) : (v, v′) ∈ E(A)}
if ϕσ

(
σ(v)

)
⊏ ϕσ(w) then

let σ′(v) = w
until σ = σ′

return σ

As an example, let us consider the parity game pictured in Figure 3.1. Letσ be the strategy
for Player 0 defined byσ(a) = a0, σ(b) = b0 andσ(c) = c1. We will computeϕσ for the
verticesa0, b0 andb1. Againstσ, Player 1 has a choice of strategies ata0: either he can play
to c, resulting in an infinite play with maximum priority4, or he can play toa, resulting in
an infinite play with maximum priority1. As 1 ⊏ 4, the latter is the⊑-minimal choice and so
ϕσ(a0) = (1, ∅, 0). At b0, Player 1’s choice appears to depend on the strategy ata0: if he plays to
a and the strategy ata0 is to play toa then the resulting play has maximum priority1, otherwise
if the strategy ata0 is to play toc the resulting play has maximum priority4. However3 ⊏ 1,
so the⊑-minimal play in either case is going to be to play tob, resulting inϕσ(b0) = (3, ∅, 0).
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Figure 3.1: A parity game

σ i ϕσ(ai) ϕσ(bi) ϕσ(ci) σ′ VID

000
0 (3, {6}, 4) (3, ∅, 0) (3, {6}, 2)

011 011
1 (3, ∅, 2) (3, {5, 6}, 4) (3, {4, 6}, 6)

001
0 (1, ∅, 0) (3, ∅, 0) (3, {6}, 2)

011 010
1 (3, ∅, 2) (1, {4, 5}, 4) (1, {4}, 2)

010
0 (1, ∅, 0) (1, {3}, 2) (6, ∅, 0)

110 100
1 (6, ∅, 4) (6, ∅, 2) (1, {4}, 2)

011
0 (1, ∅, 0) (1, {3, 4, 5}, 6) (1, {4, 5, 6}, 6)

010 001
1 (1, {2, 4, 5}, 6) (1, {4, 5}, 4) (1, {4}, 2)

100
0 (3, ∅, 4) (3, ∅, 0) (3, {6}, 2)

010 110
1 (3, ∅, 2) (3, {5, 6}, 4) (3, {4}, 4)

101
0 (3, ∅, 4) (3, ∅, 0) (3, {6}, 2)

000 101
1 (3, ∅, 2) (3, {4, 5}, 6) (3, {4}, 4)

110
0 (6, ∅, 6) (6, ∅, 6) (6, ∅, 0)

110 000
1 (6, ∅, 4) (6, ∅, 2) (6, ∅, 6)

111
0 (5, ∅, 4) (5, ∅, 2) (5, {6}, 2)

000 111
1 (5, ∅, 2) (5, ∅, 0) (5, ∅, 4)

Table 3.1: Table of valuations, next strategy and improvement vectors for all strategies

The valuation atb1 is only dependent on the choice of strategy ata0, soϕσ(b1) = (1, {4, 5}, 4).
Turning to the subsequent, improved strategyσ′, we have(3, ∅, 0) ⊏ (1, {4, 5}, 4). Therefore,
switchingσ at b will be an improvement for Player 0, and henceσ′(b) = b1.

Using ijk as shorthand for the strategy which mapsa to ai, b to bj, andc to ck, the full table
of relevant valuations and subsequent strategies for each strategy is presented in Table 3.1. Also
included in this table is thevector of improving directions (VID), indicating which elements of
σ had improvements. Not only does this help identify110as the optimal strategy, but it is worth
observing that each entry in the VID column is unique. As we see in the next section, this is not
a coincidence.
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Figure 3.2: AUSOs of the2-cube (l) and the orientations which are not AUSOs (r)

3.2 A combinatorial perspective

In this section we show how the strategy improvement algorithm can be viewed as an opti-
mization problem on a well-studied combinatorial structure. We will introduce the concepts of
acyclic unique sink oriented hypercubesand thebottom-antipodal sink-finding algorithmand
we will prove the following result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodal sink-finding algo-
rithm on an acyclic unique sink orientation of the strategy hypercube.

Although this result appears in [BSV03], we present an alternative proof that utilises results
from [VJ00b].

First we recall some definitions relating to hypercubes. Ad-dimensional hypercubeis an
undirected graphHd such thatV (Hd) = {0, 1}d, and there is an edge between(a1, . . . , ad) and
(b1, . . . , bd) if for somei ≤ d, ai 6= bi andaj = bj for all j 6= i. We callai thei-th componentof
a vertex(a1, . . . , ad) in ad-dimensional hypercube. Asubcubeis a subgraph induced by a set of
vertices which agree on some set of components. We observe that a subcube of ad-dimensional
hypercube is ad′-dimensional hypercube for somed′ ≤ d, and we can specify a subcube by
a single vertex together with a set of adjacent edges. Given asetI ⊆ {1, . . . , d} of natural
numbers and a vertexv = (a1, . . . , ad) of ad-dimensional hypercube, we denote by SwitchI(v)
the vertexv′ = (b1, . . . , bd) obtained by switching the components inI of v. That is,bi = ai if,
and only if,i /∈ I. Given a vertexv in a d-dimensional hypercube, the vertexantipodalto v is
the vertex Switch{1,...,d}(v).

Given a parity game(A, χ), we assume that every vertex inV0(A) has out-degree two. From
Theorem 2.59, we can always transform a parity game into one for which every vertex inV0(A)
has out-degree at most two. We can assume there are no vertices of out-degree0, as we can
use force-sets to determine if either player can force the play to one of these vertices. We can
also change any vertex inV0(A) with out-degree1 to be a vertex inV1(A) as this does not
affect the outcome of the game. As this can all be done in polynomial time, this assumption
is not too restrictive. If we fix an order onV0(A) = {v1, . . . , vd}, and writev0

i andv1
i for the

two successors ofvi ∈ V0(A), then each vector(b1, . . . , bd) ∈ {0, 1}n defines a strategy for
Player 0 by mappingvi to vbi

i , and conversely each strategy defines a unique vector. Therefore,
the space of all Player 0’s strategies is equivalent to vertex set of thed-dimensional hypercube.
For convenience, we will simply refer to the strategy space as thestrategy hypercube. We now
introduce some additional concepts to help establish Theorem 3.4.

An orientationof a d-dimensional hypercube is a directed graph with ad-dimensional hy-
percube as an underlying undirected graph and at most one edge between any pair of vertices.
We say an orientation is anacyclic unique sink orientation (AUSO)if it is acyclic and every
subgraph induced by a subcube has a unique sink (or, equivalently, a unique source). Figure 3.2
shows the two AUSOs for the2-cube (left), together with the two orientations of the2-cube
which are not AUSOs (right).
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Acyclic unique sink orientations of hypercubes are very important combinatorial structures,
particularly as a generalization of linear programming optimization problems. For example, a
pseudo-boolean function (PBF)is a function from a hypercube toR, and a common optimiza-
tion problem is to find the vertex which attains the maximum (or minimum) value of a PBF.
In [HSLdW88], a hierarchy of classes of PBFs was introduced, and one of these classes was
the completely unimodal pseudo-boolean functions: functions such that every subcube has a
unique local minimum. Clearly, a completely unimodal PBF induces an AUSO, and conversely
any function toR which respects an AUSO will be completely unimodal.

One useful concept associated with AUSOs is thevector of improving directions. Let VID :
{0, 1}n → {0, 1}n be the function that maps each vertex of a hypercube with an AUSO to the
vector which indicates which edges are outgoing from that vertex. That is, if there is an edge
from v to v′ wherev andv′ differ in thei-th component, then thei-th component of VID(v) is
1 and thei-th component of VID(v′) is 0.

An important class of problems for AUSOs and similar structures arepolynomial local
searchproblems (PLS). These are optimization problems where the cost of a solution and
“neighbouring” solutions can be efficiently computed, withthe overall goal being to find a
locally optimal solution – one which is better than all its neighbours. For example, if computing
the directions of edges incident with a vertex can be done in polynomial time, then finding the
unique global sink of an acyclic unique sink oriented hypercube is a problem in PLS. Clearly,
given a hypercube we could iterate through all vertices to find the sink, but as is usually the case
for interesting problems in PLS, iterating through all possible solutions is considered infeasible.
For the sink-finding problem a more interesting question is:can we find the global sink in
time polynomial in the dimension of the hypercube? In fact, for acyclic unique sink oriented
hypercubes, this is an important open problem.

Open problem 3.5.Given ann-dimensional hypercube with an AUSO, is there a polynomialp
such that the global sink can be found with at mostp(n) vertex queries?

One reason for the importance of this question is that there are interesting structural re-
sults for AUSOs that suggest this question can be answered inthe affirmative. Firstly, ann-
dimensional hypercube with an AUSO satisfies the Hirsch conjecture [WH88], which means
that from each vertex there is a directed path of length at most n to the global sink. Secondly,
we have the following observation from Williamson Hoke [WH88] which shows that the vector
of improving direction takes a very special form:

Theorem 3.6([WH88]). VID is a bijection.

However, despite these results, an efficient sink-finding algorithm on hypercubes with AUSOs
remains elusive.

The connection between AUSOs and the strategy improvement algorithm is summarized in
the following theorem:

Theorem 3.7.The valuationϕσ induces an AUSO on the strategy hypercube.

In order to prove this, we must first indicate howϕσ induces an orientation. Let< be any
linear ordering on the set of Player 0’s strategies. We extendE to a partial order on strategies
by sayingσ ⊳ σ′ if either

(i) ϕσ ⊳ ϕσ′, or
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(ii) ϕσ = ϕσ′ andσ < σ′.

This gives us an orientation on the strategy hypercube, as wesee with the following result:

Lemma 3.8. Let σ and σ′ be strategies for Player 0 such thatσ(v) = σ′(v) for all but one
v ∈ V0(A). Then eitherσ ⊳ σ′, or σ′ ⊳ σ.

The proof of this result follows directly from the followingtwo results from [VJ00b].

Lemma 5.7 of [VJ00b]. LetI ⊆ {1, . . . , d} be a set of natural numbers, and letσ be a strategy
for Player 0. If, for eachi ∈ I, ϕσ

(
σ(vi)

)
⊏ ϕσ(v′

i) wherev′
i is the successor ofvi not equal to

σ(vi), thenσ E SwitchI(σ).

Claim 7.2 of [VJ00b]. Let I ⊆ {1, . . . , d} be a set of natural numbers, and letσ be a strategy
for Player 0. If, for eachi ∈ I, ϕσ

(
σ(vi)

)
6⊏ ϕσ(v′

i) wherev′
i is the successor ofvi not equal to

σ(vi), then SwitchI(σ) E σ.

The orientation is then obtained by adding an edge fromσ to σ′ if σ(v) = σ′(v) for all but one
v ∈ V0(A) andσ ⊳ σ′. We now need to show that this orientation is an AUSO. To do this, we
use the fact that the strategy improvement algorithm terminates.

Theorem 3.1 of [VJ00b]. The strategy improvement algorithm correctly computes thewinner
of a parity game.

SinceE is a partial order it is clear that this orientation is acyclic. In order to show that it is
an AUSO, we use the following result about unique sink orientations.

Proposition 3.9([WH88]). A hypercube orientation is a unique sink orientation if, andonly if,
every2-dimensional subcube has a unique sink.

Next we observe that every subcube of the strategy hypercubeinduces a subgame of the
original parity game: by definition, there is a setV ⊆ V0(A) on which all strategies of the sub-
cube agree. The induced subgame is obtained by fixing Player 0’s choices onV to agree with all
the strategies of the subcube. Furthermore, in these subgamesϕσ takes the same values as in the
original parity game. Thus the resulting strategy hypercube of the subgame is a subcube of the
strategy hypercube of the original game. Therefore, if any2-dimensional subcube of the strat-
egy hypercube does not have a unique sink, we can produce a parity game with a2-dimensional
strategy hypercube with the same orientation. The only acyclic orientation of a2-cube with-
out a unique sink is one with antipodal sinks and sources (seeFigure 3.2). In Lemma 3.10 we
describe how the strategy improvement algorithm works on anoriented hypercube, and from
this we see that if the algorithm begins at a source of this2-dimensional hypercube, then the
subsequent strategy will always be the other source. Thus, on this orientation, the algorithm
never terminates. Since Theorem 3.1 of [VJ00b] ensures thatthe strategy improvement algo-
rithm always terminates, every2-dimensional subcube has a unique sink, and we have therefore
shown that the orientation defined by⊳ is an AUSO. This completes the proof of Theorem 3.7.

Returning to the example parity game from the previous section, we can read the orientation
of the strategy hypercube directly from Table 3.1. For example, consider the strategyσ =
{001}. Sinceϕσ(a1) ⊏ ϕσ(a0), it follows that101 E 001, thus there is an edge from101 to
001. Figure 3.3 shows the resulting oriented strategy hypercube.

Having established that the set of strategies for Player 0 forms a hypercube oriented by⊳,
we can investigate how the strategy improvement algorithm operates on this cube. From Algo-
rithm 3.1, we see that a strategyσ switches at each point whereϕσ

(
σ(v)

)
is not⊑-maximal.
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Figure 3.3: Oriented strategy hypercube for the parity gamein Figure 3.1

If this is adjusted so that when there is a choice of strategies with⊑-maximalϕσ values, we
choose the<-largest strategy, then from Lemma 3.8 we see that we are switching σ at the
vertices corresponding to the outgoing edges in the strategy hypercube. That is,

Lemma 3.10. Let σ be a strategy for Player 0 andCσ be the subcube of the oriented strategy
hypercube defined byσ and the outgoing edges fromσ. Then the subsequent strategyσ′ in the
strategy improvement algorithm is the vertex antipodal toσ onCσ.

This is a well-known sink-finding procedure for AUSO hypercubes called BOTTOM-ANTIPODAL [SS05],
described in Algorithm 3.2. It is clear that on an AUSO hypercube, BOTTOM-ANTIPODAL ter-

Algorithm 3.2 BOTTOM-ANTIPODAL

Returns: Global sink of an AUSO hypercube
selecta vertexv at random
repeat

Compute VID(v)
let v = v ⊕ VID(v) {XOR v and VID(v)}

until VID(v) = 0

return v

minates with the global sink: at each stage we are jumping from the unique source of the sub-
cube defined by the improving directions to some other vertexin that subcube, so we are always
reducing the minimal distance to the global sink. Combining Lemma 3.10 with Theorem 3.7
gives us the main result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodal sink-finding algo-
rithm on an acyclic unique sink orientation of the strategy hypercube.

3.3 Improving the known complexity bounds

The upper bound ofO
(
mn

∏
v∈V0

dout(v)
)

for the running time of the strategy improvement
algorithm arises from the observations that it takesO(mn) time to computeϕσ and there are(∏

v∈V0(A) dout(v)
)

different strategies for Player 0 [VJ00a]. The results of Section 3.2 enable us
to improve the trivial upper bound obtained by naı̈vely running through all possible strategies.
Mansour and Singh [MS99] showed that a BOTTOM-ANTIPODAL sink-finding algorithm will
visit at mostO

(
2d

d

)
vertices of ad-dimensional hypercube. However, we can improve this upper

bound further by using results from combinatorics. Insteadof using the BOTTOM-ANTIPODAL

algorithm, we can use other sink-finding algorithms such as the FIBONACCI SEE-SAW of Szab́o
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and Welzl [SW01], described in Algorithm 3.3. This algorithmutilises structural results of
AUSOs such as Theorem 3.6 and has the best-known running timeupper bound,O(1.61d),
amongst sink-finding algorithms.

Algorithm 3.3 FIBONACCI SEE-SAW

Returns: Global sink of an AUSO hypercube
selecta vertexm at random
let w be the vertex antipodal tom
let Cm = {m} andCw = {w} {Antipodali-dimensional subcubes}
for i = 0 to n do

Compute VID(m) = (m0,m1, . . .) and VID(w) = (w0, w1, . . .)
let d = min{j : mj 6= wj}
let C ′

m be thei-dimensional subcube parallel toCm in directiond from m
let C ′

w be thei-dimensional subcube parallel toCw in directiond from w
if md = 1 then {m is the minimal vertex of an(i + 1)-dimensional subcube}

Computew = FIBONACCI SEE-SAW(C ′
w)

else {w is the minimal vertex of an(i + 1)-dimensional subcube}
Computem = FIBONACCI SEE-SAW(C ′

m)
let Cm = Cm ∪ C ′

m andCw = Cw ∪ C ′
w

return m

These results give us the following improved upper bounds for the strategy improvement
algorithm:

Proposition 3.11.Assuming each vertex inV0(A) has out-degree two:

(i) The strategy improvement algorithm runs in timeO(mn · 2n0/n0).

(ii) The Fibonacci strategy improvement algorithm runs in timeO(mn · 1.61n0).

Wherem = |E(A)|, n = |V (A)| andn0 = |V0(A)|.

Turning to lower bounds, natural questions to consider are completeness results. In par-
ticular, is strategy improvement or finding the sink of an AUSO hypercube PLS-complete?
Björklund et al. [BSV03] show that this is not the case.

Theorem 3.12([BSV03]). The problem of finding optimal strategies in parity games is not
PLS-complete with respect to tightPLS-reductions.

Because PLS-complete problems have exponentially long improvement paths [Yan97], the fact
that strategy improvement is not PLS-complete gives further support to the hypothesis that it
may only require polynomially many iterations.

However, we can also ask if there are examples of parity gameswhich require an expo-
nential number of strategies to be considered by the strategy improvement algorithm. As a
first step towards this, Schurr and Szabó [SS05] generated a family of oriented hypercubes for
which BOTTOM-ANTIPODAL visits 2d/2 vertices. It remains an open problem whether there is
a family of parity games with these hypercubes as their strategy hypercubes. In fact, this can be
generalized to a more interesting open problem:
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Open problem 3.13.Given a hypercube with an AUSO, can a parity game be constructed in
polynomial time with that hypercube as its strategy hypercube?

A positive answer to this question would not only give an exponential worst case for the strategy
improvement algorithm, but it would also relate Open Problems 3.2 and 3.5: a polynomial time
algorithm for finding the sink on an AUSO would give a polynomial time algorithm for solving
parity games and vice versa. On the other hand a negative answer to this question would give
a smaller class of AUSOs for which finding a polynomial time sink-finding procedure is an
interesting and important problem.

This leads to another interesting question: Can we classify the AUSO hypercubes that cor-
respond to parity games? As we mentioned previously, Hammeret al. [HSLdW88] introduced
a hierarchy of pseudo-boolean functions including completely unimodal functions. It seems
plausible that the class of PBFs corresponding to parity games might lie within one of the more
restrictive families they considered. For example, viewing ad-dimensional hypercubeHd as a
polytope inR

d, a PBFϕ onHd is linearly separableif for all r ∈ R there exists a hyperplane
separating the verticesv with ϕ(v) ≥ r from the verticesv′ with ϕ(v′) < r. It is easily seen that
a divide-and-conquer algorithm can find the sink of a linearly separable hypercube in time lin-
ear in the dimension, so if the hypercube orientations associated with parity games are linearly
separable then the strategy improvement algorithm would run in polynomial time. However, as
the next result shows, the hierarchy of [HSLdW88] is not fine enough to separate parity games
and completely unimodal functions. We say a pseudo-booleanfunction f : {0, 1}n → R is
pseudomodularif for all v, w ∈ {0, 1}n:

(i) min{f(v), f(w)} ≤ max{f(v ∧ w), f(v ∨ w)}, and
(ii) min{f(v ∧ w), f(v ∨ w)} ≤ max{f(v), f(w)}.

In [HSLdW88], the class of pseudomodular functions was the least restrictive class of PBFs
included in completely unimodal functions. However,

Proposition 3.14. There exists a parity game with an oriented strategy hypercube that cannot
be induced by a pseudomodular function.

Proof. Consider the parity game from Figure 3.1. Its oriented strategy hypercube can be seen
in Figure 3.3. We see that

111⊳ 000⊳ 001⊳ 110.

Now takingv = 001andw = 110we see that there is no functionf : {0, 1}3 → R that can
simultaneously respect⊳ and satisfy both pseudomodular axioms above. ⊓⊔

This result is not surprising, there is no obvious reason whythe joins and meets of strategies
should satisfy the pseudomodular conditions. However, it does imply for instance that there are
strategy hypercubes which are not linearly separable.



Chapter 4

Complexity measures for digraphs

In the last few chapters we examined the computational complexity of some graph-based games.
We saw how the winning condition influences the difficulty of the problem of finding a winner
of such games. We now turn our attention to the other aspect ofsuch games, the arena. The aim
of the next few chapters is to investigate measures of graph complexity, in particular measures
for directed graphs. As we will see, such metrics give insight into the structure theory of graphs
and help identify those characteristics that act as a barrier to finding efficient solutions of various
important problems (for example, finding the winner of a parity game, or finding a Hamiltonian
path). Consistent with the overall theme of this dissertation, the complexity measures we define
will be based on games.

So what makes a good complexity measure? First we have to consider what it is we are aim-
ing to measure. This of course depends largely on the application one has in mind. For instance,
a group theorist may be interested in graph automorphisms and so a useful measure might reflect
the size of the automorphism group. A topologist might be interested in a measure that indicates
how many edges must cross in a drawing of the graph on a surface, or how many paths there are
between any pair of vertices. We are interested in algorithmic aspects, so a practical measure
might indicate the difference between tractable and intractable instances of many NP-complete
problems. A good measure of complexity may even encompass more than one such aim. So
one desirable property issoundness: the measure can be defined in equivalent ways for different
applications. Another desirable property isrobustness: the measure should be “well-behaved”.
For example, if we simplify the graph, then the measure should not increase. Again, the concept
of simplification is dependent on the application. For the group theorist, a simple graph is one
in which all vertices have similar structure, for example, aclique. For the topologist a simple
graph might be an acyclic graph. From the algorithmic perspective, simplifying would include
operations that likely reduce the complexity of many problems, for instance taking subgraphs.
In this case simple graphs would be a class on which many NP-complete problems have poly-
nomial time solutions – again, acyclic graphs are a good example. Dually, if we complicate the
graph the measure should not decrease, and if this complication is in some way uniform, we
would expect the measure to increase uniformly. One final desirable feature, particularly for
algorithmic purposes, is that the measure should somehow encompass large classes of graphs.
For example, acyclicity is a sound and robust measure, but itonly takes two values, a graph
is either acyclic or it is not. So although acyclicity provides a boundary between tractable and
intractable instances of many NP-complete problems, we cannot use it to find larger classes of
graphs which may admit efficient solutions. This suggests that a generalization of acyclicity,

58
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perhaps indicating how acyclic a graph is, would be an ideal candidate for a good complexity
measure. This is precisely the type of measure we consider inthis and the following chapters.

In this chapter we introduce an important and well-known measure for undirected graphs
called tree-width. We show how it matches the criteria outlined above, and we discuss the
problem with its extension to directed graphs, providing motivation for subsequent chapters.

4.1 Tree-width

Tree-width can be seen as a measure of graph complexity for both topological and algorithmic
purposes. That it serves both purposes is not surprising as it is often the complexity of the
structure of the graph that makes problems difficult to solve; many NP-complete problems can
be solved in polynomial time on the topologically simple class of acyclic graphs. As the name
suggests, the tree-width of a graph indicates how close thatgraph is to being a tree. For example,
trees have tree-width1, simple cycles have tree-width2, and highly connected graphs such as
cliques have tree-width one less than the number of verticesin the graph.

Although Robertson and Seymour coined the name tree-width [RS84], the parameter had
been around for many years prior to this, testament to the importance of tree-width as a mea-
sure of graph complexity. Rose and Tarjan [RT75] considered asymbolic approach to Gaussian
elimination on matrices which amounts to vertex elimination on graphs. They introduced sev-
eral parameters which reflect how “difficult” it is to performa sequence of eliminations: for
example thewidth of an elimination reflects the maximum number of operations required at
any stage of the elimination. The minimum width over all vertex eliminations is a graph mea-
sure equivalent to tree-width. Halin [Hal76] considered S-functions: mappings from graphs
to integers satisfying certain formal conditions, a class of functions which includes graph pa-
rameters such as the chromatic number, the vertex-connectivity and the homomorphism-degree.
Halin showed that there is a maximal S-function under the natural point-wise partial ordering
of S-functions, and this function turns out to be the tree-width of the graph. Arnborg [Arn85]
was one of the first to show the algorithmic importance of tree-width, by finding efficient solu-
tions to many NP-complete problems on partialk-trees, a characterization of the class of graphs
with tree-width bounded byk. We will revisit some of these alternative characterizations of
tree-width in Chapter 7.

To formally define tree-width, we must first introduce the notion of a tree decomposition. A
tree decomposition of a graphG is an arrangement of subgraphs ofG in a tree-like manner so
that all paths in the graph respect this arrangement. More precisely,

Definition 4.1 (Tree decompositions and tree-width). Let G be an undirected graph. Atree
decompositionof G is a pair(T ,X ) whereT is a tree andX = (Xt)t∈V (T ) is a family of
subsets ofV (G) such that:

(T1) X is a cover ofV (G), that is,
⋃

X∈X X = V (G),

(T2) For each vertexv ∈ V (G) the subgraph ofT induced by the set{t : v ∈ Xt} is a
connected subtree, and

(T3) For each edge{u, v} ∈ E(G) there existst ∈ V (T ) such that{u, v} ⊆ Xt.

Thewidth of a decomposition(T ,X ) is max{|Xt| : t ∈ V (T )} − 1. Thetree-widthof a graph
G, Tree-width(G) is the minimum width over all tree decompositions ofG.
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To see how this definition corresponds with our informal description above, letG be an
undirected graph and(T ,X ) be a pair such thatT is a tree andX = (Xt)t∈V (T ) is a cover
of V (G). For an arc1 e = {s, t} ∈ E(T ), we observe that the removal ofe from T gives two
subtrees: one,Ts, containing the nodes, the other,Tt containing the nodet. LetVs =

⋃
t′∈Ts

Xt′

andVt =
⋃

t′∈Tt
Xt′. We define the following condition:

(T4) For each arc{s, t} ∈ E(T ), every path fromVs to Vt contains at least one vertex in
Xs ∩Xt.

Condition (T4) can be used as an alternative to conditions (T2) and (T3) as we see in the fol-
lowing lemma.

Lemma 4.2. LetG be an undirected graph, and(T ,X ) a pair such thatT is a tree andX =
(Xt)t∈V (T ) is a cover ofV (G). Then (T4) holds if, and only if, both (T2) and (T3) hold.

Proof. Suppose (T4) holds. For each vertexv ∈ V (G), let T [v] be the subgraph ofT induced
by the set{t ∈ V (T ) : v ∈ Xt}. SupposeT [v] is not connected. LetC1 andC2 be two distinct
components ofT [v]. SinceT is a tree, there is a unique path inT from C1 to C2. Let (s, s′)
be the first arc in that path. SinceC1 andC2 are distinct components, we haves ∈ C1 and
s′ /∈ V (T [v]), sov ∈ Xs ⊆ Vs, butv /∈ Xs′ , sov /∈ Xs ∩Xs′ . However,C2 ⊆ Ts′ , sov ∈ Vs′ .
As the path (of length0) from v to itself does not go throughXs ∩Xs′ we have a contradiction.
Thus (T2) holds. Now lete = {u, v} be an edge ofG and supposeT [u] andT [v] have no nodes
in common. Let(s, s′) be the first arc in the unique path fromT [u] to T [v] in T . We observe
thatu ∈ Ts, u /∈ Ts′ , v /∈ Ts andv ∈ Ts′ . But then no vertex on the (length1) path fromu to v
alonge is contained inXs ∩Xs′ , a contradiction. Therefore, (T3) holds.

Now suppose (T2) and (T3) hold. Let{s, s′} be an arc ofT . Let (v1, . . . , vn) be a path from
v1 ∈ Vs to vn ∈ Vs′ . We show that there must be somei such thatvi ∈ Xs∩Xs′ . If vi ∈ Vs∩Vs′

for anyi, 1 ≤ i ≤ n, then it follows from (T2) thatvi ∈ Xs ∩Xs′ and we are done. So assume
that there is noi such thatvi ∈ Vs∩Vs′. Sincev1 ∈ Vs andvn ∈ Vs′ , it follows that there is some
j, 1 < j ≤ n such thatvi ∈ Vs for all 1 ≤ i < j, andvj ∈ Vs′ . But there is an edge fromvj−1 to
vj so from (T3) there existst ∈ V (T ) such that{vj−1, vj} ⊆ Xt. NowV (Ts)∪V (Ts′) = V (T ),
so eithert ∈ V (Ts) or t ∈ V (Ts′). In the first case it follows thatvj ∈ Vs, and in the second it
follows thatvj−1 ∈ Vs′ , both of which are contradictions. Therefore (T4) holds. ⊓⊔

Path-width

Path-width, also introduced by Robertson and Seymour [RS83],is a measure of complexity for
undirected graphs closely related to tree-width. Just as tree-width indicates how close a graph
is to being a tree, path-width indicates how close a graph is to being a path. Indeed, a path
decomposition is a tree decomposition in which the underlying tree is a path. More precisely,

Definition 4.3 (Path decomposition and path-width). Let G be an undirected graph. Apath
decompositionof G is a sequenceX1, . . . , Xn of subsets ofV (G) such that:

(P1)
⋃n

i=1 Xi = V (G),

(P2) If i ≤ j ≤ k thenXi ∩Xk ⊆ Xj, and

1To assist with descriptions, we use the termsnodesandarcswhen referring toT , and the termsverticesand
edgesfor G.
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(P3) For eache = {u, v} ∈ E(G), there existsi ≤ n such that{u, v} ⊆ Xi.

Thewidthof a path decomposition,X1, . . . , Xn, ismax{|Xi| : 1 ≤ i ≤ k}− 1. Thepath-width
of G is the smallest width of any path decomposition ofG.

It is worth observing that ifX1, . . . , Xn is a path decomposition of a graphG, then so
is Xn, . . . , X1. Thus a path decomposition is not completely dependent on the linear order
imposed by the fact that it is a sequence.

Because a path decomposition is also a tree decomposition, path-width is a weaker notion
of graph complexity than tree-width. That is, if a graph has path-widthk, then the graph has
tree-width≤ k. The difference between the two can be arbitrarily large: the class of trees has
tree-width1, but unbounded path-width. However, as argued in [DK05], path-width can be seen
as a first approximation of tree-width, and many interestingstructural results can be established
with the measure. For example, we have the following result of Bienstock, Robertson, Seymour
and Thomas:

Theorem 4.4([BRST91]). For every forestT , every graph of path-width≥ |V (T )| − 1 has a
minor isomorphic toT .

4.1.1 Structural importance of tree-width

Lemma 4.2 gives us a good insight into what graph properties tree-width measures. If we take
the given definition of a tree decomposition, we see that tree-width is essentially a measure in-
dicating how much structure we need to ignore before the graph becomes acyclic. In this way,
tree-width measures the cyclicity of a graph. On the other hand, if we define tree decomposi-
tions using (T1) and (T4) we see that tree-width measures howwell separate parts of the graph
are linked. In other words, tree-width also measures the connectedness of a graph. Lemma 4.2
asserts that on undirected graphs cyclicity and connectedness generalize to the same measure.
As we will see, this distinction is important, because on directed graphs cyclicity and connect-
edness are significantly different, giving us a variety of complexity measures to consider.

In Chapter 1, we indicated that the concept of “graph structure” that we are interested in in-
vestigating is algorithmically motivated. As we have suggested, cyclicity and connectedness are
important algorithmic structural properties, so this suggests that tree-width is a useful measure
for graph structure.

An important relation for the theory of graph structure thatwe are investigating is theminor
relation. Intuitively the minor relation relates two graphs if one isstructurally “more complex”
than the other. We formally define the concept in Chapter 8. It is not surprising that tree-width
and the minor relation are closely connected. Indeed, tree-width was an important tool in the
proof by Robertson and Seymour [RS04] of the Graph Minor Theorem (see Theorem 8.42),
described by Diestel as “among the deepest results mathematics has to offer” [Die05]. In addi-
tion many other structural measures have been shown to be intimately related to tree-width. For
instance afeedback vertex setis a set of vertices whose removal result in an acyclic graph.It is
easy to show that if a graph has a feedback vertex set of sizek, then it has tree-width at most
k + 1. Two other important structural measures are havens and brambles.

Definition 4.5 (Haven). Let G be an undirected graph andk ∈ N. A haven of orderk in G is a
functionβ : [V (G)]<k → P(V (G)) such that for allX ⊆ V (G) with |X| < k:

(H1) β(X) is a non-empty connected component ofG \X, and
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(H2) If Y ⊆ X, thenβ(Y ) ⊇ β(X).

Definition 4.6 (Bramble). LetG be an undirected graph. Abramblein G is a setB of connected
subsets ofV (G) such that for all pairsB,B′ ∈ B eitherB ∩ B′ 6= ∅, or there exists{u, v} ∈
E(G) with u ∈ B andv ∈ B′. Thewidth of a brambleB is the minimum size of a set which
has a non-empty intersection with every element ofB.

Seymour and Thomas [ST93] demonstrated the relation between havens, brambles and tree-
width with the following theorem:

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≥ k − 1

2. G has a haven of orderk.

3. G has a bramble of widthk.

This theorem asserts that the smallest width of all tree decompositions is always equal to the
largest width of all brambles. Since the width of tree decompositions is a maximizing measure
and the width of brambles is a minimizing measure, Theorem 4.7 is a minimax theorem. We
explore this aspect of tree-width further in Chapter 8.

The importance of tree-width as a measure of structural complexity suggests that tree-width
is robust under various structural transformations, particularly those, such as taking subgraphs,
which may affect the complexity of problems. Indeed, this can be verified by examining the
definition of tree decompositions, but is perhaps best illustrated by Theorem 5.37, which we
present in the next chapter.

4.1.2 Algorithmic importance of tree-width

The nature of tree decompositions further supports the algorithmic significance of tree-width, as
the structure of a decomposition lends itself well to dynamic programming techniques [Bod88].
When we restrict to a class of graphs of bounded tree-width, webound the size of the tree
decompositions and many algorithms based on dynamic programming will run in polynomial
time. Thus restricting to classes of graphs of bounded tree-width can provide large classes
of tractable instances for many NP-complete problems. Thiswas best illustrated by Arnborg
and Proskurowski [AP89], when they provided efficient algorithms for many well-known NP-
complete problems on graphs of bounded tree-width. This wasfurther extended by Courcelle’s
elegant characterization of a large class of problems whichcan be efficiently solved with dy-
namic programming:

Theorem 4.8([Cou90]). Any problem which can be formulated in Monadic Second Order logic
can be solved in linear time on any class of graphs of bounded tree-width.

Of course the applicability of these results depends largely on the complexity of the follow-
ing decision problem:

TREE-WIDTH

Instance: An undirected graphG, and a natural numberk
Problem: Is the tree-width ofG at mostk?



4.1. TREE-WIDTH 63

While this problem is NP-complete [ACP87], for a fixed valuek determining if a graph
has tree-widthk and indeed, computing a tree decomposition of widthk if one exists, can be
performed in linear time [Bod96]. This means that finding the tree-width of a graph is fixed
parameter tractable, and so it is not surprising that tree-width has also played a major role in
advancing the field of parameterized complexity.

As we mentioned earlier many important graph parameters areclosely related to tree-width,
so a common technique for finding fixed parameter tractable algorithms for parameterized prob-
lems is to use tree-width to separate instances into those which can be trivially solved and those
which can be solved using bounded tree-width techniques. For example, consider the param-
eterized problem of finding a feedback vertex set of sizek. We can use the fixed parameter
tractable algorithm for computing tree-width to compute a tree decomposition of widthk + 1.
If no such decomposition exists then there cannot be a feedback vertex set of sizek. Other-
wise, since the feedback vertex set problem can be formulated in MSO, Courcelle’s theorem
implies there exists an algorithm to solve the problem in linear time, giving us a fixed parameter
tractable algorithm for finding a feedback vertex set of sizek.

4.1.3 Extending tree-width to other structures

The above discussion indicates that tree-width is a practical, sound and robust complexity mea-
sure for undirected graphs. We now consider other structures such as directed graphs or hyper-
graphs. One key to the success of tree-width is that tree decompositions are readily extendable
to arbitrary relational structures. If, in Definition 4.1, we replace “vertices” with “elements of
the universe”, and condition (T3) with:

(T3′) For each relationR and each tuple(a1, a2, . . .) in the interpretation ofR there exists
t ∈ V (T ) such that{a1, a2, . . .} ⊆ Xt,

then we obtain a definition of tree-width for general relational structures. Consequently, we
can benefit from the algorithmic advantages of tree-width, such as a structure well-suited to
dynamic programming, and obtain large classes of tractableinstances of problems outside graph
problems. But how good is tree-width as a measure of complexity on these structures? It is easy
to see that the tree-width of a structure is precisely the tree-width of the Gaifman graph of that
structure: the graph with vertex set equal to the universe ofthe structure and an edge between
any two elements that occur in a tuple of a relation. The main drawback of this approach is that
by considering the Gaifman graph, we lose information aboutthe structure, and in some cases
this information loss may be crucial. For example, the Gaifman graph of a directed graph is
the undirected graph obtained by ignoring the orientation of the edges, so the tree-width of a
directed graph is the tree-width of the underlying undirected graph. This means that directed
acyclic graphs (DAGs) can have arbitrary tree-width as any graph can be the underlying graph
of a DAG. However, many interesting problems based on directed graphs are greatly simplified
when restricted to DAGs, so we would expect DAGs to have low complexity. This suggests
that tree-width is not a good complexity measure of directedgraphs, especially for algorithmic
purposes.

This leads to the following research problem, the investigation of which forms the core of
the remaining chapters.

Research aim.Find a complexity measure for directed graphs which generalizes tree-width.
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Before we give an overview of the current status of this problem, we discuss what exactly
“generalizes tree-width” entails. First, we are interested in measures which generalize tree-
width as a measure. This has two aspects. As tree-width is defined for directed graphs, we
are not interested in measures that may be “worse than” tree-width. In other words, we are
searching for measures that are bounded above by tree-width. On the other hand, we can view
undirected graphs as directed graphs by interpreting an undirected edge as a pair of anti-parallel
edges – recall the definition of bidirection in Section 1.1.2. So we can look for a measure which
matches tree-width on undirected graphs by using this transformation to directed graphs.

The second property of tree-width we are interested in generalizing is the structural aspect.
Many structural properties of graphs have natural extensions to directed graphs, for example
acyclicity or connectivity. A good generalization of tree-width to directed graphs would reflect
the behaviour of tree-width with regard to these properties. In particular we expect structurally
simple directed graphs such as DAGs and directed cycles to have low complexity, but struc-
turally complex directed graphs such as cliques to have highcomplexity, just as trees and cycles
have small tree-width and cliques have large tree-width. Similarly, we expect that a reasonable
measure would be robust under the structural relations for directed graphs we considered in
Section 1.1.2. For example, we expect that the measure wouldnot increase under the taking of
subgraphs, or that it would be possible to compute the measure on a graph from its strongly or
weakly connected components, or more generally from a pair of subgraphs which comprise a
directed union. This last property was considered in [JRST01] as an important property for the
generalization of tree-width to directed graphs.

Finally, we are also interested in generalizing tree-widthin the algorithmic sense. We are
particularly interested in being able to find efficient algorithms for interesting problems on
directed graphs of bounded complexity. Having some sort of decomposition which generalizes
tree decompositions might be one way to achieve this.

4.2 Directed tree-width

In [JRST01], Johnson, Robertson, Seymour and Thomas introduced an extension of tree-width
to directed graphs known as directed tree-width. Informally, directed tree-width is based on a
decomposition, known as an arboreal decomposition, which is defined by generalizing Condi-
tion (T4). Formally, to define directed tree-width, we require the following definition:

Definition 4.9 (Z-normal). Given two disjoint subsetsZ andS of vertices of a digraphG, we
sayS is Z-normal if for every directed path,v1 · · · vn, in G such thatv1, vn ∈ S, eithervi ∈ S
for all 1 ≤ i ≤ n, or there existsj ≤ n such thatvj ∈ Z.

Also, given a directed treeT with edges oriented away from a unique vertexr ∈ V (T )
(called theroot), we writet > e for t ∈ V (T ) ande ∈ E(T ) if e occurs on the unique directed
path fromr to t, ande ∼ t if e is incident witht. The following concepts were introduced
in [JRST01].

Definition 4.10(Arboreal decompositions [JRST02]). An arboreal decompositionof a digraph
G is a tuple(T ,B,W) whereT is a directed tree with a unique root, andB = (Bt)t∈V (T ) and
W = (We)e∈E(T ) are families of subsets ofV (G) that satisfy:

(R1) B is a partition ofV (G) into non-empty sets, and
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(R2) If e ∈ E(T ), thenB≥e :=
⋃{Bt|t > e} is We-normal.

Thewidthof an arboreal decomposition(T ,B,W) is the minimumk such that for allt ∈ V (T ),
|Bt ∪

⋃
e∼t We| ≤ k + 1. Thedirected tree-widthof a digraphG, dtw(G), is the minimal width

of all its arboreal decompositions.

It follows from this definition that directed tree-width does generalize tree-width as a mea-
sure in the sense described above.

Towards showing that directed tree-width is also a structural generalization, Johnson et al.
considered the natural generalization of havens (using strongly connected components rather
than connected components) and proved the following analogue of Theorem 4.7:

Theorem 4.11([JRST01]). LetG be a directed graph.

1. If G has a haven of orderk thenG has directed tree-width≥ k − 1.

2. If G has no haven of orderk thenG has directed tree-width≤ 3k − 2.

Johnson et al. conjectured that the bound in the second item could be reduced to≤ k − 1,
showing an equivalence between havens and directed tree-width. However Adler [Adl05] has
shown that this is not the case. Safari [Saf05] showed that natural generalization of brambles
(using strongly connected sets rather than connected sets), can also be related to havens and
directed tree-width.

Theorem 4.12([Saf05]). For a directed graphG let H(G) be the largest order of a haven inG,
andB(G) the largest width of any bramble inG. Then

H(G) ≤ 2B(G) ≤ 2H(G),

and there exist graphs for which equality holds in either inequality.

Johnson et al. also demonstrated the algorithmic potentialof directed tree-width, firstly by
providing a general algorithm scheme for finding efficient algorithms on digraphs of bounded
directed tree-width, and secondly by using this scheme to produce an algorithm which solves
the following problem in polynomial time on graphs of bounded directed tree-width:

k-DISJOINT PATHS

Instance: A directed graphG, and a set ofk pairs of (not necessarily
disjoint) vertices{(s1, t1), . . . (sk, tk)}

Problem: Are therek vertex disjoint pathsP1, . . . , Pk in G such that for
eachi, Pi is a path fromsi to ti?

A corollary of this result is that many other important NP-complete problems, such as the
Hamiltonian path and cycle problems, can be solved efficiently on graphs of bounded directed
tree-width.

Theorem 4.13([JRST01]). The following problems can be solved in polynomial time on any
class of directed graphs with bounded directed tree-width: Hamiltonian cycle, Hamiltonian
path,k-Disjoint paths, Hamiltonian path with prescribed endpoints, Even cycle through a given
vertex.
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In terms of parameterized complexity, directed tree-widthis also quite useful. Although
there is no known algorithm for computing the exact directedtree-width of a graph apart from
a brute-force search, generalizing the approach used to compute tree-width in fixed parameter
linear time gives us a fixed parameter tractable algorithm for computing an approximation of
directed tree-width. This means that we can use directed tree-width in a similar role as tree-
width for finding fixed parameter tractable algorithms for problems on directed graphs.

Johnson et al. conclude their paper by observing that several other more natural extensions
of tree decompositions to directed graphs are not appropriate as they are not robust under simple
graph operations. They highlight that one of the major problems with defining a notion of tree-
width for directed graphs is that on directed graphs many other structural measures are not as
closely linked as they are in the undirected case, as we saw inTheorem 4.12.

4.3 Beyond directed tree-width

So with a seemingly appropriate complexity measure defined,why is the generalization of tree-
width to directed graphs still an interesting research problem? The answer is that directed
tree-width does not seem to complete the whole picture. For astart, unlike with tree-width the
definition is awkward, as is the given algorithm scheme, and it is difficult to gain an intuitive un-
derstanding. The structure of arboreal decompositions is not as flexible as tree decompositions,
which means we cannot provide alternative forms of the decomposition which may be useful
algorithmically (see, for example, Theorem 6.28). This makes it challenging to develop algo-
rithms outside of those provided in [JRST01], suggesting directed tree-width is not as practical
as it first appears.

In addition, contrary to the claims made in [JRST01], directed tree-width is not robust under
some very simple graph operations. Adler [Adl05] has shown that directed tree-width may
increase under the taking of butterfly minors (see Definition8.28), and it appears that this can
be extended to showing that directed tree-width may increase under the taking of subgraphs.
However, it follows from Theorem 4.11, that this increase can only be by a constant factor, as
havens are robust under these operations. While this means that algorithmically directed tree-
width is still a useful measure of complexity, it lessens theimportance of directed tree-width as
a structural measure. This was further shown by Adler, with the following result which shows
that havens are distinct from directed tree-width.

Theorem 4.14([Adl05]). There exists a directed graphG with no haven of order4 and directed
tree-width4.

This implies that we cannot reduce the bound in the second part of Theorem 4.11 to obtain
an equivalence between havens and directed tree-width.

Nevertheless, in the next chapter we show that Theorem 4.11 implies that directed tree-
width at least approximates a good complexity measure for directed graphs. But the picture is
still not complete. The problem is that on directed graphs there is a difference between con-
nectivity and reachability – if there is a path fromu to v it does not necessarily follow thatu
andv are in the same strongly connected component, and similarly, if u andv are in the same
weakly connected component, there may not be a path fromu to v. The tree-width of a di-
rected graph can be seen as a measure of its weak connectivity, as tree-width is a connectivity
measure that, on directed graphs, ignores edge direction. Likewise, the definitions of directed
tree-width and its alternative characterizations suggestthat directed tree-width is a measure of
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the strong connectivity of a graph. So the question can be asked, “What, if anything, measures
the reachability, ordirected connectivity, of a directed graph?” In Chapters 6 and 7 we address
this question, introducing two distinct, but closely related measures which seem to indicate
directed connectivity. As strong connectedness implies reachability, and reachability implies
weak connectedness, it is not surprising that these measures lie between tree-width and directed
tree-width. We argue that as these measures are closer to tree-width than directed tree-width
is, they are more practical as a complexity measure for directed graphs. In Chapter 8 we con-
sider the structural implications of the question, endeavouring to find generalizations of havens,
brambles and minors that correspond to our measures.

An interesting follow-up question is “Should a good complexity measure for directed graphs
be invariant under edge reversal?” As many important structural features such as cycles or
strongly connected sets are preserved under reversing edges, it would seem that a good structural
measure would be invariant under this operation. However, from an algorithmic point of view
edge direction is much more critical. Consider the problem oftrying to find a path between two
vertices when it is not easy to compute the edge relation, butit is relatively easy to compute
the successors of a vertex. Such a problem might arise for instance if we were considering
the computations of a Turing machine. On a tree where all edges are oriented away from
a single vertex, finding such a path could involve a lot of back-tracking, but with all edges
oriented towards a single vertex, the problem becomes significantly easier. Unlike directed tree-
width, the measures we introduce in Chapters 6 and 7 are not invariant under the edge reversal
operation, providing further evidence that they are more suitable extensions of tree-width from
a practical point of view.



Chapter 5

Graph searching games

With a view to finding good complexity measures for directed graphs, we now turn our attention
to a means of developing robust measures of graph complexity. We introduce a game played
between two players, one controlling a fugitive located on the graph, and the other controlling
a set of searchers whose purpose is to locate the fugitive. Such games are useful for describing
problems such as trying to locate a virus in a network, or locate someone in a cave system.
They can also be used to define measures of graph complexity: we obtain various complexity
measures by considering variants of the game and the resources required by the searchers to
locate the fugitive. Indeed, the tree-width of a graph can becharacterized by the minimum
number of searchers required to locate the fugitive in some of the variants we consider.

We first define a very general form of the game which encompasses many games consid-
ered in the literature, for example [ST93, KP86, BG04, DKT97,FFN05, GLS01, GM06]. This
enables us to define some important concepts we use throughout the next few chapters: plays,
searches, strategies and monotonicity. After demonstrating how this game includes other games
considered in the literature, we introduce a general framework for developing measures of graph
complexity. In Section 5.4, we show how these measures are robust under some basic graph
operations such as taking subgraphs. Finally, we conclude the chapter by considering the com-
plexity of the problem of determining these graph parameters.

5.1 Definitions

The definitions we present in this chapter are applicable to both directed and undirected graphs,
though it is often necessary to assume we are working within only one of these classes. Thus
we use the termgraph to refer to a structure with a single, binary edge relation which may or
may not be symmetric.

We recall from Definition 2.7, the definition of asimple game. The game we are interested
in is a simple game played on an arena defined by the graph to be searched. That is,

Definition 5.1 (Graph searching game). A graph searching game typeis a functionΓ which
maps a graphG to a triple(Ls,Lf ,A) whereLs andLf are sets of subsets of Elts(G) andA is
an arena which satisfy:

• ∅ ∈ Ls,

• ∅ /∈ Lf , andLf has a unique⊆-maximal elementRmax,

68
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• V0(A) ⊆ Ls × Lf consists of pairs(X,R) whereX ∩R = ∅,

• V1(A) ⊆ Ls × Ls × Lf consists of triples of the form(X,X ′, R) whereX ∩R = ∅,

• vI(A) = (∅, Rmax),

• If
(
(X,R), (X ′, X ′′, R′)

)
∈ E(A) thenX = X ′ andR = R′,

• If
(
(X,X ′, R), (X ′′, R′)

)
∈ E(A) thenX ′ = X ′′ and for allr′ ∈ R′ there isr ∈ R such

thatr andr′ are in the same (weakly) connected component ofG \ (X ∩X ′), and

• If S ⊆ R, then for allS ′ such that
(
(X,X ′, S), (X ′, S ′)

)
∈ E(A), there existsR′ ⊇ S ′

such that
(
(X,X ′, R), (X ′, R′)

)
∈ E(A).

Given a graph searching game typeΓ, and a graphG, with Γ(G) = (Ls,Lf ,A) thegraph
searching game onG (defined byΓ(G)) is the simple gameGΓ

G := (A,F), whereF = ∅, so
Player 1 wins all infinite plays. In a graph searching game elements ofV0(A) are calledposi-
tions (of the game), elements ofV1(A) are calledintermediate positions, and we call Player 0
thesearchersand Player 1 thefugitive.

Intuitively, the game works as follows. A graph searching game onG is a game played by a
number of co-operating searchers against an omniscient fugitive. All entities occupy elements
of G, however, while the locations of the searchers are known to everyone, the location of the
fugitive is not necessarily known, so the fugitive “occupies” a set of potential locations. When
the game is at the position(X,R), X ∈ Ls represents the location of the searchers, andR ∈ Lf

represents the set of potential fugitive locations. The initial position,(∅, Rmax), thus indicates
that at the beginning there are no searchers onG and the fugitive may be anywhere onRmax.
The searchers and fugitive move aroundG, but, as indicated by the edge relation of the arena,
only the fugitive is necessarily constrained by the topology of G.

From position(X,R), the searchers, if possible, choose a new set of locationsX ′. If this
is not possible then the fugitive has escaped and he wins. Otherwise, the game proceeds to the
intermediate position(X,X ′, R). For ease of later descriptions, we say the searchers onX \X ′

have beenremovedwhile the searchers onX∩X ′ remainstationaryand the searchers onX ′\X
will be placedafter the fugitive has completed his move.

The fugitive responds to the move of the searchers at each of his potential locations, but
he is not permitted to pass through any stationary searchers. However, he is omniscient and
is aware of the impending occupation ofX ′ \ X by the searchers that will be placed, and can
modify his response accordingly. The final condition in the definition of the arena of a graph
searching game asserts that the responses of the fugitive ateach of his potential locations are
somewhat independent: if the set of potential locations is increased, then so are the sets of
his potential responses. Some information about the response of the fugitive may be available
to the searchers, resulting in a (visible) choice for the fugitive about the next set,R′, of his
potential locations. If he has no such choice and no possiblelocation to move to (R′ = ∅),
then he has been captured and the searchers win. Otherwise, the game proceeds to the position
(X ′, R′). This whole process is represented in the graph searching game by moving the token
from (X,R) to the vertex(X,X ′, R), and then to(X ′, R′). If the fugitive can avoid capture
forever, then again he has escaped and he wins.
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From this we can see that an arena of a graph searching game onG can be described by
defining the set of positions and a set of legal transitions between positions, essentially “ignor-
ing” non-terminal intermediate positions. It follows thatall plays ending with a move from the
fugitive can be fully described as a sequence of positions:

(X0, R0)(X1, R1) · · · (Xn, Rn)

where(X0, R0) = (∅, Rmax) and for0 ≤ i < n and for allr′ ∈ Ri+1 there isr ∈ Ri such that
r andr′ are in the same connected component ofG \ (Xi ∩ Xi+1). We extend this to include
plays that are winning for the searchers by usingRn = ∅ to indicate that the play ended at
(Xn−1, Xn, Rn−1). This motivates the following definition:

Definition 5.2 (Search). Let G
Γ
G be a graph searching game onG defined by(Ls,Lf ,A), and

let (X1, R1) ∈ V0(A). A proper search from(X1, R1) in G
Γ
G is a (possibly infinite) sequence,

(X1, R1)(X2, R2) · · · , such that for alli ≥ 1:

• (Xi, Ri) ∈ V0(A),

•
(
(Xi, Ri), (Xi, Xi+1, Ri)

)
∈ E(A), and

•
(
(Xi, Xi+1, Ri), (Xi+1, Ri+1)

)
∈ E(A).

A complete search from(X1, R1) in G
Γ
G is a finite sequence(X1, R1) · · · (Xn, Rn) such that

• (X1, R1) · · · (Xn−1, Rn−1) is a proper search from(X1, R1) in G
Γ
G,

•
(
(Xn−1, Rn−1), (Xn−1, Xn, Rn−1)

)
∈ E(A),

• (Xn−1, Xn, Rn−1)
)
∈ V1(A) has no outgoing edges, and

• Rn = ∅.
A searchin G

Γ
G is a sequence which is either a proper or a complete search. A searchπ can be

extendedto a searchπ′, if π is a prefix ofπ′. A search fromvI(A) is winning for the searchers
if it can be extended to a complete search, otherwise it iswinning for the fugitive.

In the sequel we will generally adopt this representation ofplays as we are primarily con-
cerned with the game from the perspective of the searchers.

Variants of graph searching games are obtained by restricting the moves available to the
searchers and the fugitive, in other words, by placing restrictions on the arena on which the
game is played. Before we consider some examples, we introduce some definitions and results
relating to strategies.

5.1.1 Strategies

Since a graph searching game is a simple game, it follows thatthe winner is determined by
reachability, and therefore if either the fugitive or the searchers have a winning strategy, they
have a memoryless strategy. However, in this chapter we are interested inresource bounded
winning strategies, and in this case memoryless strategies, indeed, even finite memory strate-
gies may no longer be sufficient. However, to ensure that computing such strategies remains
decidable, we impose restrictions on the resource measureswe consider so that searches con-
sistent with strategies are only ever simple paths in the arena. This motivates the definition of a
history-dependent strategy.
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Definition 5.3 (History-dependent strategy). Let G be a graph, andGΓ
G a graph searching game

onG defined by(Ls,Lf ,A). Given a setΣ, ahistory-dependent strategy for the searchersis a
partial functionσ : Σ∗ × Ls × Lf → Σ× Ls such that:

• σ(ǫ,X0, R0) is defined for the empty wordǫ, and(X0, R0) = vI(A),

• If σ(w,X,R) = (a,X ′) for (X,R) ∈ V0(A), then

– (X,X ′, R) ∈ V1(A),

– there is an edge inE(A) from (X,R) to (X,X ′, R), and

– if there is an edge inE(A) from (X,X ′, R) to (X ′, R′) ∈ V0(A) thenσ(w·a,X ′, R′)
is defined.

We say a searchπ = (X0, R0)(X1, R1) · · · is consistentwith σ if there exists a wordw =
a1a2 · · · ∈ Σ∗ ∪ Σω such that for alli ≥ 0, Xi+1 = σ(a1 · · · ai, Xi, Ri). We callw thehistory
consistentwith π.

Remark.In the sequel we will usually define history-dependent strategies inductively, often
omitting the associated history when it is clear from the context what the play to a given position
should be.

Nevertheless, we show in Section 5.3 that the resource bounded strategies we are primarily
concerned with are equivalent to winning strategies in a graph searching game. For this reason,
we reserve the definition ofstrategiesfor positional strategies.

Definition 5.4 (Strategy). Let G be a graph, andGΓ
G a graph searching game onG defined

by (Ls,Lf ,A). A strategy for the searchersis a partial function,σ : Ls × Lf → Ls, such
that if σ(X,R) is defined there is an edge inE(A) from (X,R) to (X, σ(X,R), R). If π =
(X0, R0)(X1, R1) · · · is a search inGΓ

G, we sayπ is consistentwith σ if for all i ≥ 0, Xi+1 =
σ(Xi, Ri). We sayσ is winning (for the searchers)if every search fromvI(A) consistent with
σ is winning for the searchers.

A strategy for the fugitiveis a partial functionρ : Ls × Ls × Lf such that if(X,X ′, R) ∈
V1(A), there is an edge inE(A) from (X,X ′, R) to (X ′, ρ(X,X ′, R)). If π = (X0, R0)(X1, R1) · · ·
is a search inGΓ

G, we sayπ is consistentwith ρ if for all i ≥ 0, Ri+1 = σ(Xi, Xi+1, Ri). We
sayρ is winning (for the fugitive)if every search fromvI(A) consistent withρ is winning for
the fugitive.

Given a strategyσ for the searchers and a strategyρ for the fugitive, the unique maximal
search consistent withσ andρ is thesearch defined byσ andρ

We now use strategies to define a structure that will prove useful in the next few chapters.
Given a strategyσ for the searchers in a graph searching gameG

Γ
G defined by(Ls,Lf ,A), we

see thatσ induces a subgraph ofA in the following way. LetV ⊆ V (A) be the set of positions
and intermediate positions reached by some play fromvI(A) consistent withσ. Considering
for the moment positional strategies, it follows that from each position(X,R) ∈ V there is
precisely one successor(X,X ′, R) ∈ V , namely the element ofV1(A) with X ′ = σ(X,R).
The structure we are interested in is a slight variation of this subgraph where, just as with our
policy for describing searches, the intermediate positions are ignored.
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Definition 5.5 (Strategy digraph). LetG be a graph andGΓ
G a graph searching game onG defined

by (Ls,Lf ,A). Let σ be a strategy for the searchers. Thestrategy digraph defined byσ,Dσ, is
the directed graph defined as:

• V (Dσ) is the set of all pairs(X,R), including “positions” of the form(X, ∅), such that
there is some search inGΓ

G, (X0, R0)(X1, R1) · · · , from vI(A) = (X0, R0) and consistent
with σ, with (X,R) = (Xi, Ri) for somei.

• There is an edge from(X,R) to (X ′, R′) in E(Dσ) if X ′ = σ(X,R) and either there is
an edge from(X,X ′, R) to (X ′, R′) in E(A), or there are no edges from(X,X ′, R) in
E(A) andR′ = ∅.

Remark.Sometimes it may be convenient to assume that nodes of the form (X ′, ∅) of a strategy
digraph are duplicated so that each such position actually corresponds to a vertex(X,X ′, R) in
V1(A). When this is the case, we see that every leaf of the form(X, ∅) has a unique predecessor:
if (X ′, ∅) is associated with(X,X ′, R) then(X,R) is the unique predecessor of(X ′, ∅). We
observe that after these duplications, we still have|V (Dσ)| ≤ |V (A)|.

An observation that will prove useful concerns the form the strategy digraph takes for win-
ning strategies.

Lemma 5.6. LetG be a graph andGΓ
G a graph searching game onG defined by(Ls,Lf ,A). If

σ is a winning strategy for the searchers thenDσ is a directed acyclic graph and all leaves of
Dσ are of the form(X, ∅).

Proof. We observe that from the definition, there is a path fromvI(A) = (X0, R0) to every
node(X,R) ∈ V (Dσ). We also observe that every path(X0, R0)(X1, R1) · · · in Dσ from
vI(A) corresponds to a search inG

Γ
G consistent withσ, and if (X,R) is a leaf then there is no

search consistent withσ extending any consistent search which ends at(X,R). Sinceσ is a
winning strategy for the searchers, all searches consistent with σ can be extended to a complete
search. Thus, if(X,R) is a leaf, it follows that all searches from(X0, R0) which end at(X,R)
must be complete, soR = ∅. To show acyclicity, it suffices to show that ifDσ is not acyclic, then
σ is not a winning strategy for the searchers. Suppose(Y1, S1) · · · (Ym, Sm) is a cycle inDσ. By
our earlier observation,π = (Y1, S1) · · · (Ym, Sm)(Y1, S1) is a search from(Y1, S1) consistent
with σ. Now from the definition ofV (Dσ), there exists a searchπ′ = (X0, R0) · · · (Xk, Rk),
where(Xk, Rk) = (Y1, S1) consistent withσ from (X0, R0) = vI(A). Therefore, the infinite
search

π′ · π · π · · · = (X0, R0) · · · (Y1, S1) · · · (Ym, Sm), (Y1, S1) · · ·
is a search fromvI(A) consistent withσ. As this cannot possibly be extended to a finite
search and the fugitive wins all infinite plays, it follows that σ is not a winning strategy for
the searchers. ⊓⊔

Definition 5.7 (Strategy DAG). Let G be a graph andGΓ
G a graph searching game onG. If σ is

a winning strategy for the searchers then we callDσ thestrategy DAGdefined byσ.

One important property of plays, searches and strategies that we are interested in is the
concept of monotonicity. In particular, we concentrate on two types of monotonicity: fugitive-
monotonicity, where the set of potential fugitive locations is always non-increasing, and searcher-
monotonicity, where no location vacated by a searcher is ever re-occupied.
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Definition 5.8 (Fugitive and Searcher Monotonicity). LetG be a graph and letπ = (X0, R0)(X1, R1) · · ·
be a search in a graph searching game onG. We sayπ is

• fugitive-monotoneif Ri ⊇ Ri+1 for all i ≥ 0, and

• searcher-monotoneif Xi ∩Xk ⊆ Xj for 0 ≤ i ≤ j ≤ k.

A strategy,σ, for the searchers in a graph searching game onG is fugitive-monotone(searcher-
monotone) if every search consistent withσ is fugitive-monotone (searcher-monotone).

Our next result concerning strategies in the general graph searching game is a useful ob-
servation regarding monotone strategies. We show that, under some simple assumptions, a
searcher-monotone winning strategy must also be fugitive-monotone. Let us say that a graph
searching gamepermits idlingif the fugitive is able to remain at any location which is not about
to be occupied by a searcher. Furthermore, let us say that a graph searching game isvacat-
ing sensitiveif, whenever some location becomes available to the fugitive, there must be some
location, previously occupied by a searcher, that the fugitive can now occupy. More precisely,

Definition 5.9 (Permits idling). Let G be a graph andGΓ
G a graph searching game onG defined

by (Ls,Lf ,A). We sayG
Γ
G permits idlingif for all (X,X ′, R) ∈ V1(A) and allr ∈ R \ X ′,

there existsR′ ⊆ Elts(G) such thatr ∈ R′ and there is an edge inE(A) from (X,X ′, R) to
(X ′, R′).

Definition 5.10 (Vacating sensitive). Let G be a graph andGΓ
G a graph searching game onG

defined by(Ls,Lf ,A). We say thatGΓ
G is vacating sensitiveif, whenever there is an edge in

E(A) from (X,X ′, R) to (X ′, R′) with R′ 6⊆ R, thenX ∩R′ 6= ∅.

Lemma 5.11.LetG be a graph andGΓ
G a graph searching game onG which permits idling and

is vacating sensitive. Ifσ is a searcher-monotone winning strategy for the searchers onG
Γ
G,

thenσ is fugitive-monotone.

Proof. Supposeπ = (X0, R0)(X1, R1) · · · is a search consistent withσ which is not fugitive-
monotone. Leti be the least index such thatRi 6⊇ Ri+1. SinceG

Γ
G is vacating sensitive,

there existsr ∈ Xi ∩ Ri+1. But then, asGΓ
G permits idling, the fugitive can always choose a

response which includesr until it is occupied by a searcher. That is, there is a searchπ′ =
(X ′

0, R
′
0)(X

′
1, R

′
1) · · · , consistent withσ, which agrees withπ up to (Xi+1, Ri+1) and either

there is somek such thatr ∈ R′
j for all j with i + 1 ≤ j < k andr ∈ Xk, or r ∈ R′

j for all
j ≥ i + 1. In the first case, we haver ∈ X ′

i ∩ X ′
k but asr ∈ R′

i+1, we also haver /∈ X ′
i+1,

contradicting the fact thatσ is searcher-monotone. In the second case, sinceR′
j 6= ∅ for all j,

it follows thatπ′ is an infinite search, contradicting the fact thatσ is a winning strategy for the
searchers. ⊓⊔

Remark.Earlier, we asserted that variations of graph searching games are obtained by imposing
restrictions on the arena. In this way, we see that questionsrelating to fugitive-monotone strate-
gies can be viewed as questions in a restricted version of thegame: the game defined in the same
way with the restriction that we do not allow the searchers tomake any move which enables the
fugitive to make a non-monotone move (a move for which the setof potential fugitive locations
is not non-increasing). That is, ifA is the arena of a graph searching game, letA′ be the arena
obtained by removing edges from(X,R) to (X,X ′, R) if there is an edge from(X,X ′, R) to
(X ′, R′) whereR′ 6⊆ R. Now a strategy for the searchers onA′ is a fugitive-monotone strategy
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for the searchers onA. On the other hand, searcher-monotonicity is a more dynamicrestriction
– the moves available to the searchers are dependent on the play to that point. Lemma 5.11
illustrates how, in some cases, the strategy restrictions imposed by searcher-monotonicity can
also be interpreted as restrictions on the game.

5.1.2 Simulations

In Definition 2.20, we saw the idea of agame simulation. We now introduce a refinement of
this suitable for graph searching games.

Definition 5.12 (Searching simulation). Let G
Γ
G be a graph searching game onG defined by

(Ls,Lf ,A), andG
Γ′

G′ be a graph searching game onG ′ defined by(L′
s,L′

f ,A′). A searching
simulationfrom G

Γ
G to G

Γ′

G′ is a pair of relations(Rs, Rf ) such that:

• Rs ⊆ Ls × L′
s, Rf ⊆ Lf × L′

f , and

• The relationS onV (A)× V (A′) defined by

– (X,R) S (Y,R′) if (X,Y ) ∈ Rs and(R,R′) ∈ Rf , and

– (X,X ′, R) S (Y, Y ′, R′) if (X,Y ), (X ′, Y ′) ∈ Rs and(R,R′) ∈ Rf ,

is a game simulation fromA toA′.

As a searching simulation is a restricted game simulation, and searches correspond to plays
in the arena, the next result follows immediately from Lemma2.21.

Lemma 5.13. Let G
Γ
G be a graph searching game onG defined by(Ls,Lf ,A), andG

Γ′

G′ be a
graph searching game onG ′ defined by(L′

s,L′
f ,A′). Let (Rs, Rf ) be a searching simulation

fromG
Γ
G to G

Γ′

G′ with (∅, ∅) ∈ Rf . For all searcher strategiesσ onG
Γ
G and all fugitive strategies

ρ′ on G
Γ′

G′, there exists a searcher strategyσ′ on G
Γ′

G′ and a fugitive strategyρ on G
Γ
G such

that if π(σ,ρ) = (X1, R1)(X2, R2) · · · is the search inGΓ
G defined byσ and ρ, andπ(σ′,ρ′) =

(X ′
1, R

′
1)(X

′
2, R

′
2) · · · is the search inGΓ

G defined byσ′ and ρ′, then |π(σ,ρ)| = |π(σ′,ρ′)|, and
(Xi, X

′
i) ∈ Rs and(Ri, R

′
i) ∈ Rf for all i ≤ |π(σ,ρ)|.

As with game simulations, we observe that the definition of the strategyσ′ is independent
of the choice ofρ. This gives us the following analogue to Corollary 2.22:

Corollary 5.14. Let GΓ
G be a graph searching game onG, andG

Γ′

G′ be a graph searching game
on G ′. Let (Rs, Rf ) be a searching simulation fromGΓ

G to G
Γ′

G′ with (∅, ∅) ∈ Rf , and letσ
be a strategy for the searchers onGΓ

G. Then there exists a strategyσ′ for the searchers on
G

Γ′

G′ such that for every search(X ′
1, R

′
1)(X

′
2, R

′
2) · · · consistent withσ′ there exists a search

(X1, R1)(X2, R2) · · · consistent withσ with (Xi, X
′
i) ∈ Rs and(Ri, R

′
i) ∈ Rf for all i ≥ 1.

As with game simulations, we call the strategies which we canderive from a simulation
simulated strategies.

Definition 5.15 (Simulated search strategy). The strategyσ′ in Corollary 5.14 is called astrat-
egy(Rs, Rf )-simulated byσ.

This enables us to state the following consequence of Corollary 2.27.
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Lemma 5.16.LetGΓ
G be a graph searching game onG andG

Γ′

G′ a graph searching game onG ′.
Let(Rs, Rf ) be a searching simulation fromGΓ

G to G
Γ′

G′, and letσ be a strategy for the searchers
onG

Γ
G. If σ′ is a strategy(Rs, Rf )-simulated byσ onG

Γ′

G′, then:

1. If σ is a winning strategy, thenσ′ is a winning strategy, and

2. If (X,X ′) ∈ Rs and(R,R′) ∈ Rf , then
(
σ(X,R), σ′(X ′, R′)

)
∈ Rs.

With some straightforward assumptions about the relationswhich comprise a searching sim-
ulation, we can show that strategies simulated by monotone strategies are also monotone. First
we recall two definitions regarding relations of sets.

Definition 5.17 (Monotone and∩-compatible relation). Let X andY be sets, and letR ⊆
P(X) × P(Y ) be a relation between subsets ofX and subsets ofY . We sayR is monotoneif
for all (A,A′), (B,B′) ∈ R with A ⊆ B, we haveA′ ⊆ B′. We sayR is∩-compatibleif for all
(A,A′), (B,B′) ∈ R, (A ∩B,A′ ∩B′) ∈ R.

Lemma 5.18.LetGΓ
G be a graph searching game onG andG

Γ′

G′ a graph searching game onG ′.
Let (Rs, Rf ) be a searching simulation fromGΓ

G to G
Γ′

G′, and letσ is a strategy for the searchers
onG

Γ
G. If σ′ is a strategy(Rs, Rf )-simulated byσ onG

Γ′

G′, then:

1. If Rf is monotone andσ is fugitive-monotone, thenσ′ is fugitive-monotone, and

2. If Rs is monotone and∩-compatible andσ is searcher-monotone, thenσ′ is searcher-
monotone.

Proof. Let π′ = (X ′
1, R

′
1)(X

′
2, R

′
2) · · · be a search consistent withσ′. By the definition of

simulated strategies, there exists a search(X1, R1) · · · consistent withσ such that(Xi, X
′
i) ∈

Rs and(Ri, R
′
i) ∈ Rf for all i ≥ 1.

1: If σ is fugitive-monotone, thenRi ⊇ Ri+1 for all i ≥ 1, so if Rf is monotone, it follows
thatR′

i ⊇ R′
i+1 for all i ≥ 1. Thusπ′ is fugitive monotone, and asπ′ was arbitrary, it follows

thatσ′ is fugitive-monotone.
2: If σ is searcher-monotone, then for alli ≤ j ≤ k, we haveXi ∩Xk ⊆ Xj. If Rs is ∩-

compatible, then(Xi ∩Xk, X
′
i ∩X ′

k) ∈ Rs, and so ifRs is also monotone, thenX ′
i ∩X ′

k ⊆ X ′
j.

Thusπ′ is searcher-monotone, and asπ′ was arbitrary, it follows thatσ′ is searcher-monotone.
⊓⊔

We now introduce some concepts that will prove useful later when we establish robustness
results for graph searching games.

Definition 5.19 (Quasi-simulation family). A quasi-simulation familyis a partial functionR
which assigns to a pair of graphs(G,G ′) a pair of relations(R′

s, R
′
f ) with R′

s, R
′
f ⊆ P(Elts(G))×

P(Elts(G ′)).

Often it is easier to define a quasi-simulation family as a pair of partial functions(Rs,Rf ),
each of which takes a pair of graphs(G,G ′) to a relation fromP(Elts(G)) toP(Elts(G ′))

Definition 5.20(R-closure). Let R be a quasi-simulation family, andΓ a graph searching type.
We sayΓ is R-closedif for any pair of graphsG andG ′ with R(G,G ′) = (R′

s, R
′
f ), Γ(G) =

(Ls,Lf ,A) and Γ(G ′) = (L′
s,L′

f ,A′); (Rs, Rf ) is a searching simulation fromGΓ
G′ to G

Γ
G,

whereRs = R′
s ∩ (L′

s × Ls) andRf = R′
f ∩ (L′

f × Lf ).
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To help gain an intuition, we provide an example ofR-closure. Consider the following
property of graph searching game types.

Definition 5.21(Respects restriction). Let Γ be a graph searching game type. We sayΓ respects
restrictionif for any graphsG andG ′ such thatG is a subgraph ofG ′, if Γ(G) = (Ls,Lf ,A) and
Γ(G ′) = (L′

s,L′
f ,A′), then

• If Rmax is the⊆-maximal element ofLf , andR′
max is the⊆-maximal element ofL′

f , then
Rmax = R′

max ∩ Elts(G).

• If there is an edge from(X,R) to (X,X ′, R) in E(A′) and v = (X ∩ Elts(G), R ∩
Elts(G)) ∈ V (A), then there is an edge fromv to (X∩Elts(G), X ′∩Elts(G), R∩Elts(G))
in E(A), and

• If there is an edge from(Y, Y ′, S) to (Y ′, S ′) in E(A) then for allX,X ′, R such that
(X,X ′, R) ∈ V1(A′), Y = X ∩ Elts(G), Y ′ = X ′ ∩ Elts(G), andS = R ∩ Elts(G), there
existsR′ such thatS ′ = R′ ∩ Elts(G) and there is an edge from(X,X ′, R) to (X ′, R′) in
E(A′).

Intuitively, if a graph searching game type respects restriction, then ifG is a subgraph ofG ′,
a strategy for the searchers inG ′ is also a strategy inG when we disregard the elements ofG ′
which are not part ofG. In other words, a restriction of a search strategy is a search strategy of a
restriction. In Section 5.4 we introduce the dual notion, restriction reflection, in which a search
strategy of a graph can be viewed as a search strategy in any larger graph. We now show that
this property corresponds to anR-closure for a quasi-simulation familyR of relations similar
to the superset relation.

Definition 5.22 (⊃· ). For each pair of graphs(G ′,G), with G a subgraph ofG ′, we define⊃· G′

G ⊆
P(Elts(G ′)) × P(Elts(G)) as follows. ForA ⊆ Elts(G ′) andB ⊆ Elts(G) we sayA ⊃· G′

G B if
B = A ∩ Elts(G). Let⊃· denote the function which assigns to each pair of graphs(G ′,G), with
G a subgraph ofG ′, the pair of relations(⊃· G′

G ,⊃· G′

G ).

Lemma 5.23.LetΓ be a graph searching game type. ThenΓ respects restriction if, and only if,
Γ is⊃· -closed.

Proof. Let G andG ′ be graphs. We observe that if neitherG is a subgraph ofG ′ nor G ′ is
a subgraph ofG then nothing can be said about whetherΓ respects restriction or whether
Γ is ⊃· -closed. Thus we assume without loss of generality thatG is a subgraph ofG ′. Let
Γ(G) = (Ls,Lf ,A) andΓ(G ′) = (L′

s,L′
f ,A′). For convenience we will drop the subscript and

superscript and use⊃· to denote the relation⊃· G′

G .
First let us assumeΓ respects restriction. From the definition of⊃· , we have Elts(G ′) ⊃·

Elts(G), thus we must show that(⊃· ,⊃· ) is a searching simulation fromGΓ
G′ to G

Γ
G. In the

definition ofR-closure, we assume⊃· is restricted to be a relation on the appropriate sets, so
it suffices to show that the relation defined by pointwise application of⊃· is a game simulation
fromA′ toA. For convenience we will also denote the pointwise relationby⊃· . Clearly, since
∅ ∩ Elts(G) = ∅, we have∅ ⊃· ∅. Furthermore, ifRmax is the⊆-maximal element ofLf and
R′

max is the⊆-maximal element ofL′
f , then asΓ respects restriction,Rmax = R′

max ∩ Elts(G).
ThusR′

max ⊃· Rmax, and(∅, R′
max) ⊃· (∅, Rmax). Thus(⊃· ,⊃· ) satisfies (SIM-1). Now suppose

there is an edge from(X,R) to (X,X ′, R) in A′ and(X,R) ⊃· (Y, S). From the definition
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of ⊃· , Y = X ∩ Elts(G) andS = R ∩ Elts(G), so by the definition of respecting restriction,
there is an edge from(Y, S) to (Y,X ′ ∩ Elts(G), S) in A. Since clearlyX ′ ⊃· (X ′ ∩ Elts(G)),
it follows that (SIM-2) is satisfied. Finally suppose there is an edge inA from (Y, Y ′, S) to
(Y ′, S ′) and(Y, Y ′, S) ⊃· (X,X ′, R). From the definition of⊃· , we haveY = X ∩ Elts(G),
Y ′ = X ′ ∩ Elts(G) andS = R ∩ Elts(G). Thus, asΓ respects restriction, there existsR′ ∈ L′

f

such thatS ′ = R′ ∩ Elts(G) and there is an edge inA from (X,X ′, R) to (X ′, R′). Since
X ′ ⊃· Y ′ andR′ ⊃· S ′, it follows that(X ′, R′) ⊃· (Y ′, S ′), thus (SIM-3) is satisfied. Therefore,
(⊃· ,⊃· ) is a searching simulation fromGΓ

G′ to G
Γ
G. SinceG andG ′ were arbitrary, it follows that

Γ is⊃· -closed.
Now supposeΓ is ⊃· -closed. Since the relation defined by pointwise application of ⊃· is a

game simulation fromA′ to A, vI(A) = (∅, Rmax), andvI(A′) = (∅, R′
max), it follows from

(SIM-1) that∅ ⊃· ∅ andR′
max ⊃· Rmax. From the definition of⊃· , it follows thatRmax = R′

max ∩
Elts(G). Now suppose there is an edge from(X,R) to (X,X ′, R) in A′, and(Y, S) ∈ V (A)
whereY = X ∩Elts(G) andS = R∩Elts(G). From the definition of⊃· , it follows thatX ⊃· Y
andR ⊃· S, thus as(⊃· ,⊃· ) is a game simulation, it follows from (SIM-2) that there existsv′ such
that there is an edge from(Y, S) to v′ andv′ is related to(X,X ′, R) by the pointwise application
of ⊃· . By the definition of graph searching games,v′ = (Y, Y ′, S) for someY ′ ∈ Ls, and by
the definition of searching simulationX ′ ⊃· Y ′. ThusY ′ = X ′ ∩ Elts(G). Finally suppose
there is an edge from(Y, Y ′, S) to (Y ′, S ′) and X,X ′, R are such thatY = X ∩ Elts(G),
Y ′ = X ′ ∩ Elts(G) andS = R ∩ Elts(G). From the definition of⊃· , X ⊃· Y , X ′ ⊃· Y ′ and
R ⊃· S. Thus, from (SIM-3), there existsv ∈ V0(A′) such that there is an edge from(X,X ′, R)
to v andv is related to(Y ′, S ′). From the definition of graph searching games,v = (X ′, R′)
for someR′, and by the definition of searching simulation,R′ ⊃· S ′. ThusS ′ = R′ ∩ Elts(G).
Therefore, all conditions necessary for respecting restriction are satisfied. SinceG andG ′ were
arbitrary, it follows thatΓ respects restriction. ⊓⊔

5.2 Examples

We now look at some examples of graph searching game types which occur in the literature.
Many of these examples were introduced to provide an intuitive understanding of some of the
graph parameters we discussed in the previous chapter. We show how each of these games
can be described using the framework we have introduced, thereby motivating the use of graph
searching games to formally define measures of graph complexity.

5.2.1 Cops and visible robber

The cops and visible robber gamewas introduced in [ST93] to provide a characterization of
tree-width. We can define it as a graph searching game played on an undirected graphG, as
follows.

Definition 5.24 (Cops and visible robber game). Let G be an undirected graph. Thecops and
visible robber game onG is a graph searching game onG defined by the triple(Ls,Lf ,A)
where:

• Ls = P(V (G)), Lf = {R ⊆ V (G) : R is non-empty and connected} ∪ {V (G)},

• (X,R) ∈ V0(A) if R is a connected component ofG \X,
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• (X,X ′, R) ∈ V1(A) if (X,R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X,R), (X,X ′, R)

)
∈ E(A) for all (X,R) ∈ V0(A),

•
(
(X,X ′, R), (X ′, R′)

)
∈ E(A) if R ∪ R′ is contained in a connected component of

G \ (X ∩X ′).

Intuitively, the cops (searchers) and robber (fugitive) occupy vertices of the graph. There is
no constraint on the cops, they can be removed and placed on any set of vertices. The robber is
constrained to move along paths of any length in the graph, provided he does not pass through
a stationary cop. The robber’s location in the graph is knownto the cops, but because he is
able to move infinitely fast, we view his set of potential locations as a connected component
of the subgraph obtained by removing vertices occupied by cops. A move consists of some
cops being removed from the graph, and announcing vertices that are about to be occupied.
The robber is then able to move to any vertex he can reach, and then cops are placed on the
announced vertices. If the robber is located on a vertex which has become occupied, then he is
captured and the cops win. If he can avoid capture forever, then he wins.

We observe that the cops and visible robber game permits idling: given an intermediate
position (X,X ′, R) and r ∈ R \ X ′, let R′ be the connected component ofG \ X ′ which
containsr. ThenR∪R′ is contained in a connected component as they are connected sets with
a non-empty intersection. Thus there is an edge from(X,X ′, R) to (X ′, R′). Furthermore, the
game is vacating sensitive: if it is possible to move from(X,X ′, R) to (X ′, R′) whereR′ 6⊆ R
then there existsr ∈ R′ \ R such thatr is adjacent to some vertex inR. Now R ∪ {r} is
connected, so ifr /∈ X, thenR is not a connected component ofG \ X. Hencer ∈ X, so
X ∩R′ 6= ∅. Thus we can apply Lemma 5.11 to obtain:

Lemma 5.25.A cop-monotone winning strategy in the cops and visible robber game is robber-
monotone.

There are some interesting variants of the cops and visible robber game obtained by restrict-
ing the movements of the cops. For example, cops are either removed or placed so(X,X ′, R)
is an intermediate position only if eitherX ′ ⊆ X, or X ⊆ X ′; at most one cop is moved, so
(X,X ′, R) is an intermediate position only if|X ′ △ X| ≤ 1; or at most one cop is placed, so
(X,X ′, R) is an intermediate position only if|X ′ \ X| ≤ 1. Another variation is the follow-
ing parameterized class of games, in which we bound the number of cops trying to capture the
robber:

Definition 5.26 (k-cops and visible robber game). Let G be an undirected graph. Thek-cops
and visible robber game onG is defined as the cops and visible robber game, exceptLs =
[V (G)]≤k.

In Section 5.3 we show that strategies in these games are equivalent to resource-bounded
strategies in the unrestricted game, where the resource we are concerned with is the maximum
number of cops occupying the graph at any stage. While this mayseem obvious, the observation
is quite useful when we consider the complexity of the problem of determining the existence of
resource-bounded winning strategies.

We also show in Section 5.3 how this game, particularly this last variant, is closely connected
to tree-width. So it would seem that extending this game to directed graphs would be a useful
way to generalize tree-width to directed graphs. There are two obvious ways to extend this
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game: we could extend the informal description, constraining the robber to move along directed
paths of any length; or we could extend the formal description, having positions(X,R) where
R is a strongly connected component ofG\X, and a transition from(X,R) to (X ′, R′) if R∪R′

is contained in a strongly connected component ofG \ (X ∩ X ′). The game corresponding to
the latter extension seems less intuitive: it corresponds to restricting the robber to being able to
move along directed paths to any vertex from which he has a directed cop-free path back to his
starting vertex. This game, which we call thestrongly connected visible robber game, or more
simply thestrong visible robber game, was considered in [JRST01], and later in this chapter
we discuss its relationship with directed tree-width. We investigate the other, arguably more
natural, generalization in Chapter 6.

5.2.2 Cops and invisible robber

Thecops and invisible robber game, also known as thenode searching game, or vertex decon-
taminationhas been well-studied in the context of graph theory [KP86, BS91, LaP93]. In our
framework, the definition is as follows.

Definition 5.27 (Cops and invisible robber game). Let G be an undirected graph. Thecops and
invisible robber game onG is a graph searching game onG defined by the triple(Ls,Lf ,A)
where:

• Ls = P(V (G)), Lf = P(V (G)) \ {∅},

• (X,R) ∈ V0(A) if R is a union of non-empty connected components ofG \X,

• (X,X ′, R) ∈ V1(A) if (X,R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X,R), (X,X ′, R)

)
∈ E(A) for all (X,R) ∈ V0(A),

•
(
(X,X ′, R), (X ′, R′)

)
∈ E(A) if R′ = ReachG\(X∩X′)(R) \X ′.

The game is played on an undirected graphG in the same way as the cops and visible
robber: the cops are free to move anywhere onG, and the robber can run at great speed along
cop-free paths in the graph. In this game however, the location of the robber is not known to
the cops – they are only aware of the vertices the robber cannot be at: either because those
vertices are currently occupied by cops, or there is no possibility that the robber could not have
reached those vertices from when they were vacated by cops. So positions in this game are pairs
(X,R) whereX,R ⊆ V (G) andR is a union of connected components ofG \X, and a search
in this game ending at(X,R) can be extended to a search ending at(X ′, R′) if, and only if,
R′ = ReachG\(X∩X′)(R). We observe that sinceR′ is uniquely determined fromX, X ′ andR,
the robber has no choice from the intermediate position(X,X ′, R), so this game is effectively
a single player game.

In the literature, this game is often viewed as the problem oftrying to clean a contaminated
graph. Vertices where the robber could be are “contaminated”, vertices where the robber cannot
be are “cleared”, and occupation of a vertex by a cop “clears”that vertex.
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5.2.3 Cave searching

The next game we consider is an example of a searching game motivated by a real-life problem.
In [Bre67], in a publication for the spelunking community, Breisch considered the problem of
finding a lost person in a cave system. In response to a question posed by some cavers about
whether existing search techniques could be improved, Parsons [Par78] reformulated the prob-
lem as a graph-theoretical problem and investigated games known asgraph sweeping games.
These can be defined as graph searching games as follows.

Definition 5.28 (Graph sweeping game). Let G be an undirected graph. Thegraph sweeping
game onG is the graph searching game onG defined by the triple(Ls,Lf ,A), where:

• X ∈ Ls if, and only if, X = V ∪ E, whereV ⊆ V (G), E ⊆ E(G), |E| ≤ 1, and if
E = {e} thene ∩ V 6= ∅,

• Lf = P(Elts(G)) \ {∅},

• (X,R) ∈ V0(A) if, and only if,X ∩R = ∅,

• (X,X ′, R) ∈ V1(A) if, and only if,X = V ∪ E, X ′ = V ′ ∪ E ′, with V, V ′ ⊆ V (G) and
E,E ′ ⊆ E(G), and eitherE ′ = ∅ andV ′ \ V = ∅, or if E ′ =

{
{u, v}

}
with v ∈ V ′ then

u ∈ V .

• If (X,R) ∈ V0(A) and(X,X ′, R) ∈ V1(A) then
(
(X,R), (X,X ′, R)) ∈ E(A), and

• There is an edge from(X,X ′, R) to (X ′, R′) if, and only if, R′ consists of all elements
x ∈ Elts(G) \X ′ such that ifC is the connected component ofG \

(
X ′ ∩ (X ∪ E(G))

)

which containsx, thenC ∩R 6= ∅.

In this game, the graph represents the cave system, with edges representing traversable
paths. The fugitive, or lost caver, is located somewhere in the cave system – represented in
this game by having sets of elements ofG for the locations of the fugitive. The searchers move
through the graph by moving from one vertex to an adjacent vertex along an edge connecting
them.

5.2.4 Detectives and robber

The next game was introduced by Berwanger and Grädel [BG04] to define a measure of com-
plexity for directed graphs known asentanglement. We can present their definition in terms of
graph searching games as follows.

Definition 5.29 (Detectives and robber game). Let G be a directed graph. Thedetectives and
robber game onG is a graph searching game defined by the triple(Ls,Lf ,A) where:

• Ls = P(V (G)), Lf =
{
{r} : r ∈ V (G)} ∪ {V (G)},

• V0(A) = {(∅, V (G))} ∪ {(X, {r}) : r /∈ X},

• V1(A) = {(∅, ∅, V (G))} ∪ {(X,X ′, {r}) : (X, {r}) ∈ V0(A) andX ′ ⊆ X ∪ {r}},

• If (X,R) ∈ V0(A) and(X,X ′, R) ∈ V1(A) then
(
(X,R), (X,X ′, R)

)
∈ E(A),
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• There is an edge from(∅, ∅, V (G)) to (∅, {r}) for all r ∈ V (G),

• For all (r, r′) ∈ E(G) and(X,X ′, {r}) ∈ V1(A) with r′ /∈ X ′, there is an edge inE(A)
from (X,X ′, {r}) to (X ′, r′), and

• There are no other edges inE(A).

In this game, the detectives and robber occupy vertices in the graph. The robber has to move
to a successor of his current location and the detectives canonly move to the last position of the
robber or remain where they are.

5.2.5 Cops and inert robber

As with the cops and visible robber game defined in Definition 5.24, the final game we consider
is also a game played on an undirected graph closely related to tree-width. Introduced by
Dendris, Kirousis and Thilikos [DKT97], thecops and inert robber gamecan also be viewed as
a graph searching game in the following manner.

Definition 5.30 (Cops and inert robber). Let G be an undirected graph. Thecops and inert
robber game onG is the graph searching game onG defined by the triple(Ls,Lf ,A), where:

• Ls = P(V (G)), Lf = P(V (G)) \ {∅},

• (X,R) ∈ V0(A) if R is a union of non-empty connected components ofG \X,

• (X,X ′, R) ∈ V1(A) if (X,R) ∈ V0(A) andX ′ ∈ Ls,

•
(
(X,R), (X,X ′, R)

)
∈ E(A) for all (X,R) ∈ V0(A),

•
(
(X,X ′, R), (X ′, R′)

)
∈ E(A) if R′ =

(
R ∪ ReachG\(X∩X′)(R ∩X ′)

)
\X ′.

As with the cops and invisible robber game defined in Definition 5.27, in this game the cops
and robber occupy vertices of the graph, the cops are free to move anywhere in the graph, and
the robber may run at great speed along paths in the graph. Furthermore, the location of the
robber is unknown to the cops. However we impose the restriction that he is only able to move
from his position if it is about to be occupied by a cop. Thus atposition(X,R), X represents
the location of the cops andR represents the set of potential locations. Now if the cops move
to X ′, then the resulting potential locations for the robber consist of his current set of locations
together with any vertexv for which there is a path from a vertex inR∩X ′ to v, excluding any
vertex now occupied by a cop. ThusR′, the new set of potential locations, can be defined as:

R′ =
(
R ∪ ReachG\(X∩X′)(R ∩X ′)

)
\X ′.

In the next section we see that this game is also closely connected to tree-width, suggesting
that the generalization of this game to directed graphs would be a practical way to develop
complexity measures which extend tree-width. In Chapter 7 weconsider such a generalization.
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5.2.6 Cops and robber games

Examples 5.2.1, 5.2.2, and 5.2.5 highlight one of the most important and simple variants of the
graph searching game, the cops and robber game. In this game the cops (searchers) and the
robber (fugitive) only occupy vertices of graph, with the robber being able to start at any vertex
of the graph.

Definition 5.31 (Cops and robber game). Let G be a graph andGΓ
G be a graph searching game

onG defined by a triple(Lc,Lr,A). We sayGΓ
G is acops and robber gameif Lc ⊆ P(V (G)),

Lr ⊆ P(V (G)) andV (G) ∈ Lr. We call the searchers of a cops and robber game thecops,
and the fugitive is called therobber. Likewise, searcher-monotone searches and strategies are
cop-monotoneand fugitive-monotone searches and strategies arerobber-monotone. A graph
searching game typeΓ is a cops and robber game typeif for all graphsG, G

Γ
G is a cops and

robber game.

One advantage of the restriction of the searchers and fugitive to vertices of the graph is that
the resulting games are less dependent on the edges of the graph. In particular, it is often the
case that the presence of multiple edges or loops does not affect the game – the arena is the
same as the arena for the graph searching game on the graph with all loops removed and all
multiple edges replaced with a single edge. In the sequel we assume all cops and robber games
are played on simple graphs, unless otherwise stated.

5.3 Complexity measures

Unlike the games we considered in Chapter 2, we are not solely concerned with which player
wins a graph searching game. In most of the examples above, itis clear that the searchers can
always find the fugitive by (eventually) occupying all of thegraph, so as it stands the question
is not interesting – the searchers always have a winning strategy. One exception to this is the
parameterized class of games, thek-cops and visible robber games defined in Definition 5.24.
This suggests that it may be more fruitful to consider resource-bounded strategies. For instance,
for a cops and robber game, we can ask “Givenk ∈ N, can the cops capture the robber while at
any time occupying at mostk vertices?”. Consistent with viewing the cops as physical entities,
this can be viewed as asking if there is a winning strategy fork cops, defined more precisely as:

Definition 5.32 (Winning strategy fork cops). Let G
Γ
G be a cops and robber game,σ a strategy

for the cops, andk ∈ N. We say thatσ is awinning strategy fork copsif σ is a winning strategy,
and for any search(X0, R0)(X1, R1) · · · consistent withσ, |Xi| ≤ k for all i.

From this we can derive a complexity measure, in this particular case, the minimum number
of cops required to capture the robber. In the following chapters this is the measure we are
interested in, but for the remainder of this chapter we consider a more general framework which
encompasses many other important graph parameters. For this we introduce the concept of a
resource measurethat can be used to restrict plays and, by association, strategies in a graph
searching game. First, we introduce two partial orders on the class of sequences of sets.

Definition 5.33. Let π = X1X2 · · · andπ′ = Y1Y2 · · · be two (possibly infinite) sequences of
sets. We writeπ′ ≤ π if π′ is a subsequence ofπ. That is, there exists an increasing sequence of
indicesn1 < n2 < · · · ≤ |π| such thatYi = Xni

for all i ≤ |π′|. We writeπ′ ⊆ π if |π′| ≤ |π|
and for alli ≤ |π′|, Yi ⊆ Xi.
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Definition 5.34(Resource measure). A resource measureis a functionϕ which maps sequences
of finite sets to elements ofω ∪ {ω}, with ϕ(π) = ω only if π is infinite. We sayϕ is order-
preserving (order-reversing)if for all π, π′ ∈ dom(ϕ), π′ ≤ π ⇒ ϕ(π′) ≤ ϕ(π) (π′ ≤ π ⇒
ϕ(π′) ≥ ϕ(π)). We sayϕ is monotone (anti-monotone)if for all π, π′ ∈ dom(ϕ), π′ ⊆ π ⇒
ϕ(π′) ≤ ϕ(π) (π′ ⊆ π ⇒ ϕ(π′) ≥ ϕ(π)).

The resource measure which motivated the above discussion is an example of a monotone,
order-preserving resource measure:

Definition 5.35 (ϕmax). The resource measureϕmax is defined as follows. Ifπ = X1X2 · · · is
a sequence of finite sets, then

ϕmax(π) = max
i≥1
{|Xi|}.

A resource measureϕ defines a measure on a searchπ = (X0, R0)(X1, R1) · · · in the
following way: letπ1 = X0X1 · · · be the sequence of first components of elements ofπ, and
defineϕ(π) := ϕ(π1). We only consider the sequence of searcher locations because we are
primarily interested in the resource usage of the searchers. It follows that requiring a resource
measure to be bounded imposes a restriction on the searches,and consequently, the strategies
available in a graph searching game. So asking if the searchers have a winning strategy is no
longer a trivial problem. Indeed, it would seem that interesting metrics for graphs could be
derived from the “optimal” bounds of resource measures for which the searchers still have a
winning strategy. This leads to the following definition of avery general measure of graph
complexity defined by graph searching games.

Definition 5.36 (Graph searching width). Let Γ be a graph searching game type, andϕ an
order-preserving (order-reversing) resource measure. Let G be a graph. The(Γ, ϕ)-width of G,
w(Γ,ϕ)(G), is the minimum (maximum)k such that inG

Γ
G there exists a winning strategy for

the searchers,σ, so that for any search,π, consistent withσ, we haveϕ(π) ≤ k (ϕ(π) ≥ k).
Likewise, if we restrict to fugitive-monotone or searcher-monotone winning strategies inGΓ

G,
we obtain thefugitive-monotoneor searcher-monotone(Γ, ϕ)-width of G.

Remark.As we are interested in minimizing (maximizing) an order-preserving (order-reversing)
measure, it suffices to consider searches that are simple paths in the arena – any loops are only
going to increase (decrease) the resource requirements. Consequently, we only need to consider
strategies that require finite memory to determine if the searchers have a resource bounded win-
ning strategy. Thus, the requirement that the resource measure is order-preserving (or order-
reversing) ensures that the restriction of searches obtained by bounding the resource measure
does not affect the decidability of determining if the searchers have a winning strategy. In par-
ticular, the requirement maintains our maxim that strategies with finite memory are sufficient,
especially for the resource bounded game.

Many practical measures of graph complexity can be defined using this framework, as we
see with the following examples.

5.3.1 Example: Cops and visible robber

We recall the cops and visible robber game defined in Example 5.2.1. In [ST93] when this
game was first considered, Seymour and Thomas showed that it could be used to characterize
tree-width by observing that the number of cops required to capture the robber was equal to one
more than the tree-width of the graph being searched. More precisely, they proved:
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Theorem 5.37([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≤ k − 1.

2. k cops have a cop-monotone winning strategy in the cops and visible robber game.

3. k cops have a robber-monotone winning strategy in the cops and visible robber game.

4. k cops have a winning strategy in the cops and visible robber game.

Recalling the definition ofϕmax in Definition 5.35, we can rephrase this theorem as:

Corollary 5.38. LetΓ be the cops and visible robber game type defined in Definition 5.24, and
let G be an undirected graph. Then

Tree-width(G) = w(Γ,ϕmax)(G).

We remarked in Example 5.2.1 that there were several variants of the cops and visible rob-
ber depending on various restrictions placed on the movement of the cops. It is easy to see
informally that the number of cops required to catch the robber in each of these games is the
same. We now provide a formal proof of this often glossed-over point.

Proposition 5.39. Let Γ0 be the cops and visible robber game type defined in Definition 5.24.
Let Γ1 be the cops and visible robber game type where cops are either placed or removed. Let
Γ2 be the cops and visible robber game type where at most one cop isplaced, and letΓ3 be
the cops and visible robber game type where at most one cop is moved at a time. LetG be an
undirected graph. Then the following are equivalent:

(i) k cops have a winning strategy inGΓ0

G .

(ii) k cops have a winning strategy inGΓ1

G .

(iii) k cops have a winning strategy inGΓ2

G .

(iv) k cops have a winning strategy inGΓ3

G .

Proof. From the definitions provided in Example 5.2.1, it follows easily that a strategy for the
searchers inGΓ3

G is a strategy inGΓ2

G and also a strategy inGΓ1

G ; a strategy for the searchers in
G

Γ2

G is a strategy inGΓ0

G ; and a strategy inGΓ1

G is also a strategy inGΓ0

G . Thus (iv)⇒(iii)⇒(i)
and (iv)⇒(ii)⇒(i). We now show that (i)⇒(iv).

Supposek cops have a winning strategyσ in G
Γ0

G . Let Γ0(G) = (Lc,Lr,A), andΓ3(G) =
(L′

c,L′
r,A′). Note that by the definition ofΓ3, L′

c = Lc, L′
r = Lr, V0(A) = V0(A′) and

V1(A) ⊇ V1(A′). We show how to define a strategyσ′ for k cops such that for all(X,R) ∈
V0(A′), |σ′(X,R) △ X| ≤ 1. The idea is that we replace each move ofσ which involves
moving more than one cop with a sequence of moves: removing one cop at a time fromX until
cops remain onX ∩ σ(X,R), and then adding cops one at a time until they occupyσ(X,R).
More formally, letΣ = V0(A). We define a history-dependent strategyσ′ as follows. Let
σ′(ǫ,X0, R0) =

(
(X0, R0), ∅

)
where(X0, R0) = vI(A). Now supposew ∈ Σ∗, w 6= ǫ, and the

last symbol ofw is (X,R) ∈ V0(A). Defineσ′(w,X ′, R′) as follows. IfX ∩ σ(X,R) ⊂ X ′ ⊆
X, let X ′′ = X ′ \ {v} for somev ∈ X ′ \ σ(X,R), and defineσ′(w,X ′, R′) :=

(
(X,R), X ′′

)
.
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Otherwise, ifX ∩ σ(X,R) ⊆ X ′ ⊂ σ(X,R), let X ′′ = X ′ ∪ {v} for somev ∈ σ(X,R) \X ′,
and defineσ′(w,X ′, R′) :=

(
(X,R), X ′′

)
. Finally, if X ′ = σ(X,R) defineσ′(w,X ′, R′) =(

(X ′, R′), X ′
)
. Clearlyσ′ is a strategy for at mostk cops which involves placing or removing

at most one cop at each step. We now show that it is a winning strategy.
Let π = (X ′

0, R
′
0)(X

′
1, R

′
1) · · · be a search consistent withσ′. Let w′ ∈ Σ∗ ∪ Σω be the

history consistent withπ, and letw be the word obtained by replacing repeated symbols inw′

with single occurrences. We observe that these repetitionsarise where we have replaced a single
multiple-cop move with a finite sequence of single-cop movessow is infinite if, and only if,w′

is infinite. We also observe that by the definition ofσ′, w is a subsequence ofπ. We make the
following claim:

Claim. The search defined byw is a search consistent withσ.

Proof of claim. Let w = (X1, R1)(X2, R2) · · · . From the definition ofσ′ we haveXi+1 =
σ(Xi, Ri) for all i ≥ 1, so it suffices to show that for alli ≥ 1 there is an edge inA from
(Xi, Xi+1, Ri) to (Xi+1, Ri+1). That is, each possible set of locations for the robber available
after the sequence of single-cop moves is available after a single multiple-cop move. Letm
andn be such that(Xi, Ri) = (X ′

m, R′
max) and(Xi+1, Ri+1) = (X ′

n, R′
n) and letq be such that

m ≤ q ≤ n andX ′
q = Xi ∩ Xi+1. We prove by induction that for allj, with m ≤ j ≤ n,

R′
j ∪ R′

max is contained in a connected component ofG \ (X ′
m ∩ X ′

j). Clearly this is true for
j = m. Now suppose for somej ≥ m, R′

j ∪ R′
max is contained in a connected component

of G \ (X ′
m ∩ X ′

j), and considerR′
j+1. By the definition of the cops and visible robber game,

R′
j∪Rj+1 is contained in a connected component ofG\(X ′

j∩Xj+1). We consider the following
two cases. Ifj < q, thenXj+1 ⊆ Xj ⊆ Xm andRj ⊇ Rmax. Thus the connected component
R of G \ X ′

j+1 which containsRmax is the only component contained in the same connected
component ofG \ (X ′

j+1 ∩ X ′
j) asRj. ThusR′

j+1 = R. SinceR ∪ R′
max = R is a connected

component ofG \X ′
j+1 = G \(X ′

j+1∪X ′
m), our hypothesis holds forj +1. Now supposej ≥ q.

ThenX ′
m∩Xj = Xi∩Xi+1, andX ′

j+1 ⊇ X ′
j. Thus ifR′

j+1 is in the same connected component
of G \ (X ′

j ∩ X ′
j+1) = G \ X ′

j asR′
j, it follows thatR′

j ⊇ R′
j+1. By the inductive hypothesis,

R′
j is in the same connected component ofG \ (X ′

m ∩ X ′
j) asR′

max. But asG \ (X ′
m ∩ X ′

j) =
G \ (Xi ∩Xi+1) = G \ (X ′

m ∩X ′
j+1), it follows thatR′

j+1 is in the same connected component
of G \ (X ′

m ∩X ′
j+1) asR′

max. This completes the inductive step and the proof of the claim. ⊣

Next we observe that as there is always a move available to thecops,π is winning for the
robber if, and only if, it is infinite. But this is the case if, and only if, w is infinite. Asσ is
a winning strategy, there are no infinite searches consistent with σ, thusπ must be finite and
therefore winning for the searchers. ⊓⊔

Our final observation regarding the cops and visible robber game and the number of cops
required to capture the robber is a straightforward result which relates the game and the resource
measure with the parameterized class of games we also introduced in Example 5.2.1.

Lemma 5.40. Let G be an undirected graph. The cops have a winning strategy in thek-cops
and visible robber game if, and only if,k cops have a winning strategy in the cops and visible
robber game.

Proof. Clearly a winning strategyσ for k cops in the cops and visible robber game is a winning
strategy for the cops in thek-cops and robber game: since|σ(X,R)| ≤ k for all positions
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(X,R) in the cops and visible robber game, it follows thatσ(X,R) ∈ [V (G)]≤k for all positions
(X,R) in thek-cops and visible robber game.

For the converse, letσ be a winning strategy for the cops in thek-cops and robber game.
Let us extendσ to a strategy in the cops and visible robber game by definingσ(X,R) = ∅ for
all X ⊆ V (G) with |X| > k. Then, since|σ(X,R)| ≤ k for all positions(X,R), σ is a strategy
for k cops. Since any search in the cops and visible robber game consistent withσ is also a
search in thek-cops and visible robber game consistent withσ, it follows thatσ is a winning
strategy in the cops and visible robber game. ⊓⊔

Remark.This example shows that with the resource measureϕmax we can view resource bounded
strategies as winning strategies in a parameterized familyof graph searching games. As such
games are simple, if either the fugitive or the searchers have a winning strategy, then they have
a memoryless winning strategy. This justifies our use of positional strategies in subsequent
chapters.

Theorem 5.37 motivates the nomenclature used for Theorem 4.7: a haven is, as the name
suggests, a characterization of a winning strategy for the robber. Carrying this reasoning to
the definition of haven used in [JRST01], we see that Theorem 4.11 can be restated as the
following characterization of directed tree-width in terms of graph searching games. We recall
the strongly connected visible robber game defined in Example 5.2.1.

Lemma 5.41. LetG be a digraph. EitherG has directed tree-width≤ 3k + 1 or k cops do not
have a winning strategy in the strong visible robber game onG.

5.3.2 Example: Cops and invisible robber

We now consider the resource measureϕmax applied to the cops and invisible robber game.
Kirousis and Papadimitriou [KP86] showed that the number ofcops required to capture the
robber in this game is equivalent to one more than the path-width of the graph.

Theorem 5.42([KP86]). LetG be an undirected graph. The following are equivalent:

1. G has path-width≤ k − 1.

2. k cops have a cop-monotone winning strategy in the cops and invisible robber game.

3. k cops have a robber-monotone winning strategy in the cops and invisible robber game.

4. k cops have a winning strategy in the cops and invisible robber game.

Together with Theorem 5.37, this theorem shows how we can view the relationship between
path-width and tree-width via graph searching games. As an example of the consequence of
this, Fomin, Fraigniaud and Nisse [FFN05] considered a parameterized family of cops and
robber games where the robber is invisible, but the cops are allowed q queries of the location
of the robber during a search. The resulting family of measures corresponding to the number
of cops required in each game gives a parameterization whichlies between path-width (q = 0)
and tree-width (q =∞). Because such parameterized measures can be seen as a generalization
of both path-width and tree-width, they are particularly useful for investigating the structural
complexity of graphs.
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5.3.3 Example: Cops and inert robber

We again consider theϕmax resource measure, but this time with the cops and inert robber game.
Dendris, Kirousis and Thilikos [DKT97] showed that the number of cops required to capture an
invisible, inert robber is another measure equivalent to one more than tree-width.

Theorem 5.43([DKT97]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≤ k − 1.

2. k cops have a robber-monotone winning strategy in the cops and inert robber game.

3. k cops have a winning strategy in the cops and inert robber game.

Combining this with Theorem 5.37, we see that the number of cops required to capture a
robber in the cops and visible robber game is equal to the number of cops required to capture a
robber in the cops and inert robber game. In Chapter 7, where weconsider the generalization
of the cops and inert robber game to directed graphs, we show that this is not the case for the
generalizations of the games to digraphs.

Dendris et al. also showed that the cop-monotone version of the cops and inert robber game
may require more cops than the robber-monotone version. In Chapter 7, we show that the
number of cops required in the cop-monotone version of the natural extension of this game to
directed graphs is equivalent to the extension of path-width to digraphs.

5.3.4 Example: Other resource measures

We now consider some graph parameters which can be characterized by the invisible and inert
robber games, but with other resource measures. In [FG00], Fomin and Golovach considered
the following resource measure which intuitively represents the “cost” of a search.

Definition 5.44 (ϕcost). The resource measureϕcost is defined as follows. Ifπ = X1X2 · · · is a
sequence of finite sets, then

ϕcost(π) =
∑

i≥1

|Xi|.

In [FG00] it was shown that the minimum cost of a search in a cops and invisible robber
game on a graphG is equivalent to theprofileof G: the minimal number of edges of an interval
supergraph ofG. In [FHT04] it was shown that the minimum cost of a search in a cops and inert
robber game onG is equivalent to the fill-in ofG: the minimum number of edges which need to
be added to makeG chordal. Summarizing these results in our framework:

Theorem 5.45([FG00, FHT04]). LetΓ0 be the cops and invisible robber game type defined in
Definition 5.27 and letΓ1 be the cops and inert robber game type defined in Definition 5.30.
LetG be an undirected graph. Then

1. The profile ofG is equal tow(Γ0,ϕcost)(G).

2. The fill-in ofG is equal tow(Γ1,ϕcost)(G).
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In [RS82] Rosenberg and Sudborough considered a pebbling gamewhich Fomin et al. [FHT04]
observed can be seen as a version of the cops and invisible robber game. Rosenberg and Sud-
borough showed that minimizing the resource measure definedby the maximum life-time of
a pebble on the graph is equivalent to finding the bandwidth ofthe graph: the minimum, over
all linear layouts of the vertices of the graph, of the maximum distance between any pair of
adjacent vertices. Fomin et al. [FHT04] viewed this resource measure in the setting of graph
searching games, to define the following measure which indicates the “occupation time” of a
search.

Definition 5.46 (ϕot). Let π = X1X2 · · · be a sequence of finite subsets of a setV . For each
i ≥ 1 let χi : V → {0, 1} be the characteristic function ofXi, so thatχi(v) = 1 if, and only if,
v ∈ Xi. Thenϕot is defined as follows:

ϕot(π) = max
v∈V

∑

i≥1

χi(v).

Remark.In order for this measure to be non-trivial, we assume that weare working with version
of the cops and robber game where at most one cop is moved at a time.

The result of Rosenberg and Sudborough can then be summarizedthus:

Theorem 5.47([RS82]). Let Γ be the cops and invisible robber game type defined in Defini-
tion 5.27 where at most one cop is moved at a time, and letG be an undirected graph. Then the
bandwidth ofG is equal tow(Γ,ϕot)(G).

Fomin et al. [FHT04] used Theorem 5.47 to generate a generalization of bandwidth, called
treespan, by considering the resource measureϕot on the cops and inert robber game.

Theorem 5.48([FHT04]). Let Γ be the cops and inert robber game type defined in Defini-
tion 5.30 where at most one cop is moved at a time, and letG be an undirected graph. Then the
treespan ofG is equal tow(Γ,ϕot)(G).

5.3.5 Monotonicity

Theorems 5.37, 5.42 and 5.43 all indicate an interesting property of some of the graph search-
ing games we have considered: the restriction imposed by bounding the resources supercedes
the restriction imposed by monotonicity. This provides an explanation as to why measures like
tree-width are good complexity measures from a practical and structural perspective: winning
strategies which are not necessarily monotone indicate theexistence of various structural prop-
erties such as havens or brambles (as we see in Chapter 8); on the other hand, monotone winning
strategies are very useful algorithmically. As we saw with Lemma 5.11, monotone strategies
can be represented as restrictions on the arena, so it is often easier to compute monotone win-
ning strategies. Furthermore, as we see in the next few chapters, monotone strategies often lend
themselves to decompositions with properties that make them very useful for practical purposes.
Thus it is important to identify games where monotonicity isnot too great a restriction, as these
games will provide measures that are good indicators of algorithmic and structural complexity.
This leads to the question, “For which graph searching game types and resource measures is
monotonicity sufficient?” More precisely,
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Open problem 5.49.For which graph searching game typesΓ and resource measuresϕ does
(Γ, ϕ)-width give a bound on fugitive-monotone or searcher-monotone(G, ϕ)-width?

Remark.Allowing approximate equivalence gives some flexibility inthe above question: while
it may not be the case that a winning strategy implies the existence of a monotone winning
strategy with the same resource bounds, it might still be possible that the resource requirements
for a monotone strategy can be deduced from those of a winningstrategy.

5.4 Robustness results

We now use the framework we have developed to show that the complexity measures we have
defined are well-behaved under some simple graph operations, thus indicating their significance
as a robust measure of graph complexity. In particular we show that, under some reasonable
assumptions, the width measure defined by a graph searching game and a resource measure
does not increase under the simplification operation of taking subgraphs. We also show that the
complexity measure we have defined can be determined from theconnected components of the
graph. Finally, we consider the cops and robber game. We showthat the restriction of having
the searchers and the fugitive located on vertices enables us to show that the width measure
defined by the number of cops required in a cops and robber gamesuitably increases under a
graph operation which can be seen as a uniform complication,namely graph composition.

For convenience, we only consider width measures defined by order-preserving resource
measures. Thus for each of the following results, there is a dual result obtained by replacing
order-preserving with order-reversing, monotone with anti-monotone, and≤ with ≥.

5.4.1 Subgraphs

In Definition 5.21 we introduced a restriction on graph searching game types,respecting re-
striction, which asserted that searching strategies in a graphG can be restricted to be searching
strategies in subgraphs ofG. It turns out that imposing this restriction on the graph searching
game type and the monotonicity restriction on the resource measure is sufficient to show that
graph searching width is well-behaved with respect to subgraphs.

Theorem 5.50. Let Γ be a graph searching game type which respects restriction. Let ϕ be
a monotone, order-preserving resource measure. For any two graphsG,G ′ such thatG ′ is a
subgraph ofG:

w(Γ,ϕ)(G ′) ≤ w(Γ,ϕ)(G).

Proof. Let G
Γ
G andG

Γ
G′ be the graph searching games onG andG ′ defined byΓ(G) andΓ(G ′)

respectively. SinceΓ respects restriction, it follows from Lemma 5.23 that(⊃· ,⊃· ) is a searching
simulation fromG

Γ
G to G

Γ
G′ . Letσ be a winning searcher strategy inG

Γ
G such that for any search

π consistent withσ, ϕ(π) ≤ w(Γ,ϕ)(G). Let σ′ be a searching strategy inGΓ
G′ (⊃· ,⊃· )-simulated

by σ. It follows from Lemma 5.16 thatσ′ is a winning strategy for the searchers. Furthermore,
by the definition ofσ′, for any searchπ′ = (X ′

0, R
′
0)(X

′
1, R

′
1) · · · consistent withσ′ there exists

a searchπ = (X0, R0)(X1, R1) · · · consistent withσ such thatXi ⊃· X ′
i for all i. Thus,X ′

i =
Xi ∩ Elts(G ′) ⊆ Xi. Sinceϕ is monotone, it follows thatϕ(π′) ≤ ϕ(π) ≤ w(Γ,ϕ)(G), and this
holds for any searchπ′. Thus, from the definition ofw(Γ,ϕ)(G ′), we havew(Γ,ϕ)(G ′) ≤ w(Γ,ϕ)(G)
as required. ⊓⊔
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In Lemma 5.18 we observed properties sufficient for a simulation to respect fugitive and
searcher-monotonicity. We now show that⊃· satisfies these properties, implying that Theo-
rem 5.50 can be extended to fugitive-monotone and searcher-monotone width.

Lemma 5.51. LetG andG ′ be graphs withG a subgraph ofG ′. The relation⊃· G′

G is monotone
and∩-compatible.

Proof. Take X ′, Y ′ ⊆ Elts(G ′) and X,Y ⊆ Elts(G) such thatX ′ ⊃· G′

G X and Y ′ ⊃· G′

G Y .
From the definition of⊃· , it follows that X = X ′ ∩ Elts(G) andY = Y ′ ∩ Elts(G). Thus,
if X ′ ⊆ Y ′, X = X ′ ∩ Elts(G) ⊆ Y ′ ∩ Elts(G) = Y , so⊃· G′

G is monotone. Furthermore,
(X ′ ∩ Y ′) ∩ Elts(G) = (X ′ ∩ Elts(G)) ∩ (Y ′ ∩ Elts(G)) = X ∩ Y , so(X ′ ∩ Y ′) ⊃· G′

G (X ∩ Y ),
and therefore⊃· G′

G is∩-compatible. ⊓⊔

Corollary 5.52. Let Γ be a graph searching game type which respects restriction. Let ϕ be
a monotone, order-preserving resource measure. For any two graphsG,G ′ such thatG ′ is a
subgraph ofG:

1. The fugitive-monotone(Γ, ϕ)-width ofG is at most the fugitive-monotone(Γ, ϕ)-width of
G ′, and

2. The searcher-monotone(Γ, ϕ)-width ofG is at most the searcher-monotone(Γ, ϕ)-width
of G ′.

5.4.2 Connected components

We now show how the widths of the connected components of a graph can be used to compute
the width of the graph. First we need to introduce a notion which is dual to restriction respecting.

Definition 5.53 (Reflects restriction). Let Γ be a graph searching game type. We sayΓ reflects
restriction if for any graphsG andG ′ such thatG is a subgraph ofG ′, Γ(G) = (Ls,Lf ,A), and
Γ(G ′) = (L′

s,L′
f ,A′), then

• If Rmax is the⊆-maximal element ofLf , andR′
max is the⊆-maximal element ofL′

f , then
Rmax = R′

max ∩ Elts(G).

• If there is an edge from(Y, S) to (Y, Y ′, S) in E(A) then for all(X,R) ∈ V0(A′) and
(X,X ′, R) ∈ V1(A′) such thatY = X∩Elts(G), S = R∩Elts(G) andY ′ = X ′∩Elts(G),
there is an edge inE(A′) from (X,R) to (X,X ′, R), and

• If there is an edge from(X,X ′, R) to (X ′, R′) in E(A′) and (Y, Y ′, S) ∈ V (A) for
Y = X ∩ Elts(G),Y ′ = X ′ ∩ Elts(G) andS = R ∩ Elts(G), then eitherR′ ∩ Elts(G) = ∅
or there is an edge from(Y, Y ′, S) to (Y ′, R′ ∩ Elts(G)) in E(A).

Just as respecting restriction can be viewed as⊃· -closure, it would appear that restriction
reflection should also be equivalent toR-closure for some quasi-simulation familyR similar
to⊃· . However, the last condition in the definition is problematic for the game simulation: the
fugitive may be able to move in the larger graph (R′ 6= ∅), but becauseR′ ∩ Elts(G) = ∅, there
is no response on the smaller graph. Nevertheless, we are able to obtain a result, similar to
Lemma 5.13, sufficient for our purposes.
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Lemma 5.54. Let Γ be a graph searching game type which reflects restriction and let G and
G ′ be graphs such thatG is a subgraph ofG ′. LetΓ(G) = (Ls,Lf ,A), Γ(G ′) = (L′

s,L′
f ,A′),

and take(X ′
0, R

′
0) ∈ V (A′) such thatX ′

0 ∩ Elts(G) = ∅ and R′
0 ∩ Elts(G) is either∅ or the

⊆-maximal element ofLf . If σ is a winning strategy for the searchers inG
Γ
G, then there exists

a strategỹσ for the searchers onGΓ
G′ such that any search from(X ′

0, R
′
0) consistent with̃σ can

be extended to a search(X ′
0, R

′
0)(X

′
1, R

′
1) · · · consistent with̃σ so that there existsn ≥ 0 with

R′
n∩Elts(G) = ∅, and for alli, 1 ≤ i ≤ n, X ′

i = σ(Xi−1, Ri−1) for some(Xi−1, Ri−1) ∈ V0(A).

Proof. For (X ′, R′) ∈ V (A′) with (X,R) ∈ V (A) whereX = X ′ ∩ Elts(G) andR = R′ ∩
Elts(G), defineσ̃(X ′, R′) := σ(X,R). From the second condition of restriction reflection, this
is a well-defined (partial) strategy:(X ′, σ(X ′, R′), R′) is a successor of(X ′, R′). We now show
thatσ̃ is sufficiently defined to satisfy the requirements of the lemma.

Let π′ = (X ′
0, R

′
0)(X

′
1, R

′
1) · · · (X ′

n, R′
n) be a search from(X ′

0, R
′
0) consistent with̃σ. For

i ≥ 0, letXi = X ′
i∩Elts(G) andRi = R′

i∩Elts(G). By the definition of̃σ, X ′
i = σ(Xi−1, Ri−1)

for all i such thatRi−1 6= ∅. Thus if we taken to be the minimum index such thatRn = ∅, we
are done. So suppose there is non such thatRn = ∅. We claim:

Claim. π = (X0, R0)(X1, R1) · · · is a search fromvI(A) consistent withσ.

Proof of claim. We prove this by induction oni, the length ofπ consistent withσ. From the
definition of (X ′

0, R
′
0), and sinceR′

0 ∩ Elts(G) 6= ∅, (X0, R0) = vI(A), so the claim is true
for i = 0. Now suppose(X0, R0) · · · (Xi, Ri) is consistent withσ. From the definition ofσ′,
Xi+1 = X ′

i+1 = σ(Xi, Ri). As (X ′
0, R

′
0) · · · (X ′

i+1, R
′
i+1) is consistent with̃σ, andR′

i+1 ∩
Elts(G) 6= ∅, it follows that there is an edge inE(A′) from (X ′

i, X
′
i+1, R

′
i) to (X ′

i+1, R
′
i+1).

Thus, from the third condition of restriction reflection, there is an edge from(Xi, Xi+1, Ri) to
(Xi+1, Ri+1). Therefore,(X0, R0) · · · (Xi+1, Ri+1) is consistent withσ asXi+1 = σ(Xi, Ri)
and there is an edge from(Xi, Xi+1, Ri) to (Xi+1, Ri+1). ⊣

Now, sinceσ is a winning strategy for the searchers, every search fromvI(A) consistent
with σ can be extended to a complete search. However,Ri 6= ∅ for all i ≥ 0, soπ cannot
be extended to a complete search. Thus there existsn such thatRn = ∅, contradicting the
assumption that there is no suchn. ⊓⊔

We also need to assume that our graph searching games satisfythe following property: if
the searchers have a winning strategy from(X,R) then the searchers can play the same strategy
and win from(X,S) for anyS ⊆ R. To be more precise, we require the graph searching game
type to be(id,⊇)-closed where id is the quasi-simulation family which assigns to each pair of
graphs(G,G ′) with G = G ′ the identity relation, and⊇ is the quasi-simulation family which
assigns to each pair of graphs(G,G ′) with G = G ′ the superset relation. Given such a graph
searching game type, we can apply Lemma 5.13 to obtain the following:

Lemma 5.55. Let Γ be a graph searching type which is(id,⊇)-closed, and letG be a graph
with Γ(G) = (Ls,Lf ,A). For any(X1, R1), (X

′
1, R

′
1) ∈ V (A) with X1 = X ′

1 andR1 ⊇ R′
1

and any strategyσ for the searchers onGΓ
G, there exists a strategy for the searchersσ′ on

G
Γ
G such that for every search(X ′

1, R
′
1)(X

′
2, R

′
2) · · · consistent withσ′, there exists a search

(X1, R1)(X2, R2) · · · consistent withσ with Xi = X ′
i andRi ⊇ R′

i for all i.

To compute the width of a graph from the widths of its connected components, we need to be
able to combine the widths of the components. To do this we require some sort of operation,⊕,
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onω which reflects how our resource measure is computed. For example, if we are interested in
the number of searchers required to capture a fugitive, thenthe functionmax is the combining
operation we are interested in, the number of searchers required in the whole graph is at most
the maximum number of any of its components. In fact, we can use any operation⊕ for which
our resource measure is “well-behaved”, in the following sense:

Definition 5.56 (⊕-morphism). Let ϕ be a resource measure and⊕ : ω × ω → ω an operation
onω. We sayϕ is a⊕-morphismif ϕ(π · π′) = ϕ(π)⊕ ϕ(π′) for all sequencesπ andπ′.

Remark.We note that ifϕ is a⊕-morphism, then (on the image ofϕ) the operation⊕ is uniquely
defined. That is, for any resource measureϕ, there is at most one possible operation⊕ such
thatϕ is a⊕-morphism. However, we also observe that given any monoid structure(id,⊕) on
ω and a functionf from finite sets toω, we can define a⊕-morphismϕ⊕ as follows:

ϕ⊕(ǫ) = id,

ϕ⊕(X1 · · ·Xn) = f(X1)⊕ · · · ⊕ f(Xn), and

ϕ⊕(π) = ω if π is infinite.

We also note that ifϕ is a⊕-morphism, then, due to the associativity of concatenation,⊕ is
necessarily associative. That is, ifa = ϕ(πa), b = ϕ(πb), andc = ϕ(πc), then we have:

(a⊕ b)⊕ c =
(
ϕ(πa)⊕ ϕ(πb)

)
⊕ ϕ(πc)

= ϕ
(
(πa · πb) · πc

)

= ϕ
(
πa · (πb · πc)

)

= ϕ(πa)⊕
(
ϕ(πb)⊕ ϕ(πc)

)
= a⊕ (b⊕ c).

Our next observation is that if we combine the restrictions we have just introduced, then the
combination of the widths of the components of a graph provides an upper bound on the width
of the graph.

Lemma 5.57. Let Γ be a graph searching game type which reflects restriction and is (id,⊇)-
closed. Letϕ be an order-preserving⊕-morphism. IfG is a graph with (weakly) connected
componentsG1,G2, . . . ,Gn, then:

w(Γ,ϕ)(G) ≤
n⊕

j=1

w(Γ,ϕ)(Gj).

Proof. Let Γ(G) = (Ls,Lf ,A) and for1 ≤ j ≤ n, let Γ(Gj) = (Lj
s,Lj

f ,Aj). For convenience,
for each setX ⊆ Elts(G), let Xj = X ∩ Elts(Gj). Note that sinceΓ reflects restriction, if
Rmax is the⊆-maximal element ofLf , thenRj

max is the⊆-maximal element ofLj
f . For eachj,

1 ≤ j ≤ n, let σj be a winning strategy for the searchers such that for every searchπj in G
Γ
Gj

consistent withσj, ϕ(πj) ≤ w(Γ,ϕ)(Gj). The idea is that the strategy defined by playing each of
the strategiesσj sequentially is a winning strategy which has a resource requirement of at most⊕n

j=1 w(Γ,ϕ)(Gj). Before we formally define the strategy, we make the followingobservation.

Claim. Let (X1, R1)(X2, R2) · · · be a search inGΓ
G. For anyj, 1 ≤ j ≤ n, if there existsn ≥ 0

such thatRj
n = ∅, thenRj

i = ∅ for all i ≥ n.
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Proof of claim. Fix j, and supposen is such thatRj
n = ∅. Suppose there existsi > n such that

Rj
i 6= ∅. Let k be the minimal index such thatRj

k 6= ∅, and taker′ ∈ Rj
k. From the definition

of a graph searching game, there existsr ∈ Rk−1 such thatr andr′ are in the same (weakly)
connected component ofG \ (Xk−1 ∩Xk). Thus, asr′ ∈ Elts(Gj), it follows thatr ∈ Elts(Gj).
Thusr ∈ Rj

k−1, contradicting the minimality ofk. ThereforeRj
i = ∅ for all i ≥ n. ⊣

We defineσ inductively as follows. IfG has one connected component, letσ = σ1. Clearly
σ is a winning strategy onG, and for any searchπ consistent withσ we haveϕ(π) ≤ w(Γ,ϕ)(G1).
Now consider the subgraphG ′ =

⋃n
j=2 Gj. Let Γ(G ′) = (L′

s,L′
f ,A′). Suppose there exists a

winning strategyσ0 on G
Γ
G′ such that for any searchπ consistent withσ0 we haveϕ(π) ≤⊕n

j=2 w(Γ,ϕ)(Gj). Using the notation from Lemma 5.54, letσ̃0 be the strategy onGΓ
G defined by

σ0, and letσ̃1 be the strategy onGΓ
G defined byσ1. The strategyσ is as follows: from(∅, Rmax),

play σ̃1 until a position(X,R) is reached whereR ∩ V (G1) = ∅. That is, untilR′ ∩ V (G ′) = ∅,
let σ(X ′, R′) = σ̃1(X

′, R′). From Lemma 5.54, we haveX ⊆ V (G1), soX ∩ V (G ′) = ∅,
and sinceR ⊆ V (G ′), R ∩ V (G ′) ⊆ R′

max whereR′
max is the⊆-maximal element ofL′

f . Thus
(X,R′

max) is (id,⊇)-related to(X,R). SinceX ∩ V (G ′) = ∅, it follows that σ̃0(X,R′
max) is

defined. Letσ′
0 be a(id,⊇)-simulated strategy of̃σ0, which, from Lemma , plays from(X,R)

whenσ̃0 plays from(X,Rmax). For all subsequent positions(X ′, R′) reached, including(X,R),
defineσ(X ′, R′) = σ′

0(X
′, R′). From the earlier claim, asR′ ∩ V (G1) = ∅, it follows from the

definition of simulated strategies thatσ is well-defined for all subsequent positions. Asσ1 and
σ′ are winning strategies, it also follows thatσ is a winning strategy.

Let us now consider the resources required byσ. Let π = (X0, R0)(X1, R1) · · · be a search
consistent withσ. From the definition ofσ, it follows thatπ = π1 · π′ whereπ1 is a search
consistent with̃σ1 andπ′ is a search consistent withσ′

0. Therefore, from Lemmas 5.54 and 5.55,
it follows that the sequenceπ = X0X1 · · · is equal toπ1 · π′ whereπ1 is the sequence of first
components of a search consistent withσ1 andπ′ is the sequence of first components of a search
consistent withσ′. Thus

ϕ(π) = ϕ(π1 · π′) = ϕ(π1)⊕ ϕ(π′)

≤ w(Γ,ϕ)(G1)⊕
n⊕

j=2

w(Γ,ϕ)(Gj) =
n⊕

j=1

w(Γ,ϕ)(Gj).

As this holds for any play consistent withσ, and σ is a winning strategy, it follows that
w(Γ,ϕ)(G) ≤

⊕n
j=1 w(Γ,ϕ)(Gj). ⊓⊔

If we impose some further restrictions on the operation⊕, and suitable restrictions onΓ and
ϕ, we can use Theorem 5.50 to obtain equality in the above result.

Definition 5.58. Let ⊕ : ω × ω → ω be an operation onω. We say⊕ is monotoneif for all
a, b, c, d ∈ ω with a ≤ b andc ≤ d, a ⊕ c ≤ b ⊕ d. We say⊕ is deflationaryif for all a ∈ ω,
a ≥ a⊕ a.

Theorem 5.59.Let Γ be a graph searching game type which respects and reflects restriction
and is (id,⊇)-closed. Let⊕ : ω × ω → ω be an associative, monotone, and deflationary
operation onω. Let ϕ be a monotone, order-preserving⊕-morphism. IfG is a graph and
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G1,G2, . . . ,Gn are the (weakly) connected components ofG, then,

w(Γ,ϕ)(G) =
n⊕

j=1

w(Γ,ϕ)(Gj).

Proof. From Lemma 5.57, we havew(Γ,ϕ)(G) ≤
⊕n

j=1 w(Γ,ϕ)(Gj). For the reverse inequality,
we observe that asGj is a subgraph ofG for all j, we have from Theorem 5.50,w(Γ,ϕ)(Gj) ≤
w(Γ,ϕ)(G) for all j. Thus, as⊕ is deflationary and monotone:

w(Γ,ϕ)(G) ≥
n⊕

j=1

w(Γ,ϕ)(G) ≥
n⊕

j=1

w(Γ,ϕ)(Gj).

⊓⊔

5.4.3 Lexicographic product

We now consider the cops and robber game with the resource measure that indicates the maxi-
mum number of cops used by a strategy,ϕmax. We show that, under some simple assumptions,
if we replace vertices in a graph with copies of a complete graph with n vertices, the number
of cops required to capture the robber increases by a factor of n. We recall from Section 1.1.2
the definition of the lexicographic product. We now introduce some useful relations between a
graph and its lexicographic factors. Although these definitions are quite technical, later in the
section we introduce some more intuitive properties which we show are sufficient to establish
the robustness results we are interested in.

Definition 5.60 (MH, DH andPH). Let G andH be graphs and letG ′ = G • H. We define
MG

H⊆ P(V (G)) × P(V (G ′)) andDG
H,PG

H⊆ P(V (G ′)) × P(V (G)) as follows. IfA ⊆ V (G)
andB ⊆ V (G ′), then

• A MG
H B if B = A× V (H),

• B DG
H A if A = {u : (u, v) ∈ B for all v ∈ V (H)},

• B PG
H A if A = {u : (u, v) ∈ B for somev ∈ V (H)}.

The following results follow immediately from Lemma 5.16 and provide an idea of the
results we are interested in.

Lemma 5.61. LetG andH be graphs and letG ′ = G • H. LetGΓ
G be a cops and robber game

onG andG
Γ′

G′ be a cops and robber game onG ′. If (MG
H,MG

H) is a searching simulation from
G

Γ
G to G

Γ′

G′ and k cops have a winning strategy onGΓ
G, thenk · |V (H)| cops have a winning

strategy onGΓ′

G′ .

Proof. Let σ be a winning strategy for the cops onG
Γ
G which uses at mostk cops. Letσ′ be

a strategy for the cops onGΓ′

G′ (MG
H,MG

H)-simulated byσ. From Lemma 5.16,σ′ is a winning
strategy for the cops. From the definition ofMG

H, for each position(X ′, R′) of G
Γ′

G′ we have
σ′(X ′, R′) = σ(X,R)× V (H) for some position(X,R) of G

Γ
G. So|σ′(X ′, R′)| ≤ k · |V (H)|,

and thereforeσ′ is a winning strategy for at mostk · |V (H)| cops. ⊓⊔
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Lemma 5.62. LetG andH be graphs and letG ′ = G • H. LetGΓ
G be a cops and robber game

on G andG
Γ′

G′ be a cops and robber game onG ′. If (DG
H,PG

H) is a searching simulation from
G

Γ′

G′ to G
Γ
G and the robber can defeatk−1 cops onGΓ

G, then the robber can defeatk · |V (H)|−1
cops onGΓ′

G′ .

Proof. We consider the contrapositive: supposek · |V (H)| − 1 cops have a winning strategyσ′

onG
Γ′

G′. We show thatk−1 cops have a winning strategy onG
Γ
G. Letσ be a strategy(DG

H,PG
H)-

simulated byσ′. From Lemma 5.16,σ is a winning strategy for the cops. Suppose|σ(X,R)| ≥
k for some position(X,R). From the definition ofσ, there exists a position(X ′, R′) of G

Γ′

G′

such thatσ′(X ′, R′) DG
H σ(X,R). But then, as|σ(X,R)| ≥ k, |σ′(X ′, R′)| ≥ k · |V (H)|,

contradicting the assumption thatσ′ was a strategy fork · |V (H)|−1 cops. Thusσ′ is a winning
strategy fork − 1 cops. ⊓⊔

With these two results in mind, we introduce two quasi-simulation families which we use
to define the restriction on graph searching game types that we require for games to be well-
behaved under lexicographic product.

Definition 5.63(Composition-expanding). LetM be the quasi-simulation family which assigns
to each pair of graphs(G,G ′), whereG ′ = G•K for some complete graphK, the pair of relations
(MG

K,MG
K). Let D be the quasi-simulation family which assigns to each pair ofgraphs(G ′,G),

whereG ′ = G • K for some complete graphK, the pair of relations(DG
K,PG

K). Let Γ be a cops
and robber game type. We sayΓ is composition-expandingif it is M-closed andD-closed.

Using Lemmas 5.61 and 5.62, we obtain:

Theorem 5.64. Let Γ be a composition-expanding cops and robber game type. LetG be a
graph, and letKn be the complete graph onn vertices. Then

n · w(Γ,ϕmax)(G) = w(Γ,ϕmax)(G • Kn).

Proof. Letw(Γ,ϕmax)(G) = k andw(Γ,ϕmax)(G•Kn) = m. From Lemma 5.61, we havem ≤ n·k,
so supposem = n ·k− r. But if r ≥ 1, then by Lemma 5.62,w(Γ,ϕmax)(G) ≤ k−1. Thusr = 0
and the result follows. ⊓⊔

To help identify cops and robber game types which are composition-expanding, we now
present an alternative characterization of composition-expanding, similar to the definition of
restriction respecting in Definition 5.21. Just as with Lemma 5.23, the proof follows directly
from the definitions, and is therefore omitted.

Lemma 5.65.LetΓ be a cops and robber game type such that for all graphsG and all complete
graphsK, whereΓ(G) = (Lc,Lr,A), Γ(G • K) = (L′

c,L′
r,A′) and:

(I) If there is an edge inE(A) from (Y, S) to (Y, Y ′, S) and (X,R) ∈ V0(A′) for X =
Y ×V (K) andR = S×V (K), then there is an edge inE(A′) from (X,R) to (X,X ′, R)
whereX ′ = Y ′ × V (K);

(II) If there is an edge inE(A′) from (X,R) ∈ V0(A′) to (X,X ′, R) and(Y, S) ∈ V0(A) for
Y = {u : (u, v) ∈ X for all v ∈ V (K)} andS = {u : (u, v) ∈ R for somev ∈ V (K)}
, then there is an edge inE(A) from (Y, S) to (Y, Y ′, S) whereY ′ = {u : (u, v) ∈
X ′ for all v ∈ V (K)};
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(III) If there is an edge inE(A′) from (X,X ′, R) to (X ′, R′) and (Y, Y ′, S) ∈ V1(A) where
X = Y × V (K), X ′ = Y ′ × V (K), andR = S × V (K); and thenR′ = S ′ × V (K) for
someS ′ and there is an edge inE(A) from (Y, Y ′, S) to (Y ′, S ′)

(IV) If there is an edge inE(A) from (Y, Y ′, S) to (Y ′, S ′) and (X,X ′, R) ∈ V1(A′) where
Y = {u : (u, v) ∈ X for all v ∈ V (K)}, Y ′ = {u : (u, v) ∈ X ′ for all v ∈ V (K)},
and S = {u : (u, v) ∈ R for somev ∈ V (K)}, then there is an edge inE(A′) from
(X,X ′, R) to (X ′, R′) for someR′ such thatS ′ = {u : (u, v) ∈ R′ for somev ∈ V (K)},

thenΓ is composition-expanding.

We observed in Lemma 5.51 that the⊃· relation satisfied the necessary conditions for(⊃· ,⊃·
)-simulation to respect fugitive and searcher-monotonicity. We now show that the relationsM,
D, andP also satisfy similar conditions implying that Theorem 5.64holds for robber-monotone
and cop-monotone width.

Lemma 5.66.LetG be a graph andK a complete graph.

1. The relationMG
K is monotone and∩-compatible.

2. The relationDG
K is monotone and∩-compatible.

3. The relationPG
K is monotone.

Proof. 1: TakeX,Y ⊆ V (G) andX ′, Y ′ ⊆ V (G • K) such thatX MG
K X ′ andY MG

K Y ′. By
the definition ofMG

K, it follows thatX ′ = X×V (K) andY ′ = Y ×V (K). So ifX ⊆ Y , X ′ ⊆
Y ′, and soMG

K is monotone. Furthermore, since(X∩Y )×V (K) = (X×V (K))∩(Y ×V (K)),
it follows thatMG

K is∩-compatible.
2: TakeX,Y ⊆ V (G) andX ′, Y ′ ⊆ V (G • K) such thatX ′ DG

K X andY ′ DG
K Y . By the

definition ofDG
K, it follows thatX = {u : (u, v) ∈ X ′ for all v ∈ V (K)} andY = {u : (u, v) ∈

Y ′ for all v ∈ V (K)}. Now if X ′ ⊆ Y ′, it follows that X = {u : (u, v) ∈ X ′ for all v ∈
V (K)} ⊆ {u : (u, v) ∈ Y ′ for all v ∈ V (K)} = Y . ThusDG

K is monotone. Furthermore,
{u : (u, v) ∈ X ′ ∩ Y ′ for all v ∈ V (K)} = {u : (u, v) ∈ X ′ for all v ∈ V (K)} ∩ {u : (u, v) ∈
Y ′ for all v ∈ V (K)}, so(X ′ ∩ Y ′) DG

K X ∩ Y , and henceDG
K is∩-compatible.

3: Take X,Y ⊆ V (G) and X ′, Y ′ ⊆ V (G • K) such thatX ′ PG
K X and Y ′ PG

K Y .
By the definition ofPG

K, it follows that X = {u : (u, v) ∈ X ′ for somev ∈ V (K)} and
Y = {u : (u, v) ∈ Y ′ for somev ∈ V (K)}. Now if X ′ ⊆ Y ′, it follows that X = {u :
(u, v) ∈ X ′ for somev ∈ V (K)} ⊆ {u : (u, v) ∈ Y ′ for somev ∈ V (K)} = Y . ThusPG

K is
monotone. ⊓⊔

Corollary 5.67. Let Γ be a composition-expanding cops and robber game type. LetG be a
graph, and letKn be the complete graph onn vertices. Then:

1. The robber-monotone(Γ, ϕmax)-width ofG•Kn isn times the robber-monotone(Γ, ϕmax)-
width ofG.

2. The cop-monotone(Γ, ϕmax)-width ofG•Kn isn times the cop-monotone(Γ, ϕmax)-width
of G.
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5.5 Complexity results

To conclude this chapter we consider the complexity of the problem of determining the(Γ, ϕ)-
width of a graph. More precisely, for a graph searching game typeΓ and an order-preserving
resource measureϕ, we are interested in the complexity of the following problem:

(Γ, ϕ)-WIDTH

Instance: A graphG andk ∈ ω
Problem: Is the(Γ, ϕ)-width of G at mostk?

Of course, the complexity of this problem is dependent on howdifficult it is to compute the
arena ofGΓ

G and the resource functionϕ. To have a sensible analysis, we assume that we can
compute these in amortized constant time, that is, we can compute a path of lengthn in the
arena, or theϕ-value of a sequence ofn sets in timeO(n). In practice computing edges of the
arena and values ofϕ are more likely to require time polynomial in the size of the graph, but as
the bounds we obtain are generally exponential in the size ofthe graph, this assumption is not
going to significantly affect the overall complexity.

From Definition 5.1, we know that a graph searching gameG
Γ
G defined by(Ls,Lf ,A) is a

simple game, so it might appear at first that determining if the searchers have a winning strategy
can be decided in time linear in the size of the arena, as per Theorem 2.60. However, for an
arbitrary resource measureϕ, whether a vertex of the arena is winning for the searchers inthe
resource-bounded game is dependent on the play to that vertex. So it could be the case that for
any strategy, all possible consistent plays have to be checked to ensure the resource measure is
bounded. Hence it may not be possible to do better than to iterate through all possible strategies
and all consistent searches, or equivalently, all possibleplays in the arena. However, as we
observed after Definition 5.36, we need only consider plays that are simple paths in the arena,
so this is at least decidable. Since every play can be characterized by a search, and a search is a
sequence of positions, there are at mostO(|V0(A)|!) plays that might have to be checked. Now
V0(A) consists of pairs of subsets of Elts(G), thus|V0(A)| = O(4|Elts(G)|) = O(4||G||), giving us
the following bound:

Proposition 5.68. Let Γ be a graph searching game type andϕ an order-preserving resource
measure.(Γ, ϕ)-WIDTH can be decided in timeO(4n!).

We can do considerably better by considering specific resource measures, in particular the
measureϕmax. In Lemma 5.40, we saw how the existence of a resource boundedwinning
strategy is equivalent to the existence of a winning strategy in a game with a smaller arena: the
parameterized game defined in Definition 5.26. We can use Theorem 2.60 to decide if the cops
have a winning strategy in this parameterized game in lineartime, and therefore determine if
the cops have a resource bounded winning strategy in the original game. More precisely,

Proposition 5.69. Let Γ be the cops and visible robber game type defined in Definition 5.24.
Then(Γ, ϕmax)-WIDTH can be decided in timeO(n2k+4).

Proof. SupposeG, an undirected graph, andk ∈ ω are given. LetΓ′ be thek-cops and vis-
ible robber game type defined in Definition 5.26, and supposeΓ′(G) = (Lc,Lr,A). From
Lemma 5.40, we have thatk cops have a winning strategy inGΓ

G if, and only if, the cops have
a winning strategy inGΓ′

G . From Theorem 2.60, we can determine if the cops have a winning
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strategy inG
Γ′

G in time O(|E(A)|), so it suffices to find an upper bound on|E(A)|. From
the definition of the game, we observe that for eachX,X ′ ∈ Lc there are at most|V (G)|
setsR such that(X,R) ∈ V0(A) and (X,X ′, R) ∈ V1(A). Therefore, from the defini-
tion of A we see that each element(X,X ′, R) of V1(A) has a unique incoming edge (from
(X,R)) and at most|V (G)| outgoing edges (to(X ′, R′)). Thus the number of edges is at most
(|V (G)| + 1)|V1(A)|. From the definition ofLc, we have|Lc| ≤ |V (G)|k+1, thus|V1(A)| is
at most|Lc||Lc||V (G)| ≤ |V (G)|2k+3. Therefore, the number of edges ofA is bounded by
O(|V (G)|2k+4), and the result follows. ⊓⊔

The parameterized class of games we defined in Definition 5.26is easily extended to other
graph searching game types, so we can use a similar argument as above to decide(Γ, ϕmax)-WIDTH

more efficiently than Proposition 5.68. In the more general case, we may not be able to bound
the size ofV1(A) as efficiently, nor the number of outgoing edges from elements of V1(A).
However, we observe thatV1(A) ⊆ Ls × Ls × Lf , so |V1(A)| ≤ ||G||k · ||G||k · 2||G||, and there
are at most|Lf | ≤ 2||G|| outgoing edges from any element ofV1(A). This gives us the following
improvement for deciding(Γ, ϕmax)-WIDTH:

Proposition 5.70. Let Γ be a graph searching game type.(Γ, ϕmax)-WIDTH can be decided in
timeO(n2k+24n).

We observe that all the algorithms we have so far considered are constructive: if the algo-
rithm returns a positive answer, then it is possible to extract a winning strategy for the searchers.

We conclude the section by considering the complexity of determining the fugitive-monotone
and searcher-monotone widths of a graph. As we observed following Lemma 5.11, the re-
striction to fugitive-monotone strategies can be enforcedby removing edges from the arena.
It therefore follows that the bounds we obtained for the general games are applicable to the
fugitive-monotone case.

Proposition 5.71.LetΓ be a graph searching game type.

(i) FUGITIVE-MONOTONE (Γ, ϕmax)-WIDTH can be decided in timeO(n2k+24n), and

(ii) If Γ is the cops and visible robber game type defined in Definition 5.24. ThenFUGITIVE-MONOTONE (Γ, ϕ
can be decided in timeO(n2k+4).

Unfortunately, for searcher-monotone strategies the situation is not as straightforward. In-
deed, just as with arbitrary resource measures, the algorithm of Theorem 2.60 cannot, in general,
be used as the set of successors available from(X,R) is dependent on the play to(X,R). Thus
in the searcher-monotone case, we can in general do no betterthan the bounds obtained for an
arbitrary resource measure.

Proposition 5.72.LetΓ be a graph searching game type.SEARCHER-MONOTONE(Γ, ϕmax)-WIDTH

can be decided in timeO(4n!).



Chapter 6

Digraph measures: DAG-width

In Chapter 4 we discussed the problem of finding a measure of complexity for digraphs. We
reviewed the definition of tree-width, arguably one of the most suitable measures of complexity
for undirected graphs, and we considered the problem of finding a suitable generalization of
tree-width for directed graphs. In Chapter 5 we introduced graph searching games, a useful tool
for developing robust measures of graph complexity, and sawthat several such games can be
used to characterize tree-width. In this chapter we introduce a complexity measure for directed
graphs which we argue is a more natural generalization of tree-width than directed tree-width.
We introduce a decomposition which, unlike arboreal decompositions, is defined in a similar
manner to tree decompositions. Just as tree decompositionsare decompositions based on trees,
our decompositions are based on directed, acyclic graphs (DAGs), so we use the nameDAG-
decompositions. And just as tree decompositions give rise to tree-width, DAG-decompositions
give rise to a graph parameter which we callDAG-width.

We show that DAG-decompositions and DAG-width enjoy many properties similar to tree
decompositions and tree-width. For example, in Theorem 6.28, we show that we may assume
a DAG-decomposition satisfies certain conditions similar to those of nice tree decompositions,
introduced in [Bod97]. This normalized form is particularlyuseful for designing dynamic pro-
gramming algorithms which run efficiently on classes of directed graphs of bounded DAG-
width. We see this in Section 6.3.3 when we present such an algorithm for parity games. But
perhaps the strongest point in favour of DAG-width being a more natural generalization of tree-
width is that it can be characterized by a natural generalization of the cops and visible robber
game, a graph searching game which we saw in Chapter 5 characterizes tree-width. As the
generalized game is particularly dependent on directed paths in the graph, this suggests that
DAG-width is a good indicator of the directed connectivity of a digraph, a notion we discussed
in Chapter 4.

The game characterization of DAG-width also provides support for the argument that DAG-
width is a good measure of digraph complexity. For example, it is straightforward to show that
DAG-width does not increase under the taking of subgraphs, and that the DAG-width of a graph
can be computed from the DAG-width of its strongly connectedcomponents.

After we introduce DAG-width and its associated graph searching game, we consider the
algorithmic benefits of DAG-width. As a digraph measure, DAG-width lies between tree-width
and directed tree-width. That is, classes of graphs of bounded tree-width have bounded DAG-
width and graphs of bounded DAG-width have bounded directedtree-width. In particular this
implies that algorithms which are efficient on graphs of bounded directed tree-width are effi-

99
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cient on graphs of bounded DAG-width, so in particular Theorem 4.13 applies also to graphs
of bounded DAG-width. In this chapter we extend this algorithmic result and show that parity
games can be decided in polynomial time on arenas of bounded DAG-width, something which is
not currently known for graphs of bounded directed tree-width. We also show that DAG-width,
tree-width and directed tree-width are different measuresby exhibiting a class of digraphs with
bounded DAG-width and unbounded tree-width and a class of digraphs with bounded directed
tree-width and unbounded DAG-width. This suggests that weak connectivity, directed connec-
tivity and strong connectivity are three very different properties of directed graphs.

The chapter is arranged as follows. In Section 6.1 we introduce the cops and visible robber
game for directed graphs and we establish some results to help gain an understanding of the
game. We then define DAG-decompositions in Section 6.2, and show the equivalence between
DAG-width and the number of cops required to capture the fugitive with a monotone strategy.
In Section 6.3 we discuss some algorithmic aspects of DAG-width. We also prove the existence
of a polynomial time algorithm for solving parity games on arenas of bounded DAG-width,
and in Section 6.4 we relate DAG-width to other measures of graph connectivity, in particular
tree-width, directed tree-width and directed path-width.

6.1 Cops and visible robber game

We recall from Chapter 5 the cops and visible robber game from Example 5.2.1. In this game
a number of cops and a robber occupy vertices of an undirectedgraph and the objective of the
cops is to capture the robber. The cops move by removing some of their number from the graph
and announcing a set of vertices to be occupied. Following this, the robber can move at great
speed along paths in the graph to avoid capture, however he isnot permitted to pass through
any cop which remains on the graph. The cops then occupy the vertices that were announced,
and if the robber is located on one of these vertices then he iscaptured. The location of the
robber in the graph is always known to the cops. In Theorem 5.37 we saw that the minimum
number of cops required to capture a robber on an undirected graph is equal to one more than
the tree-width of the graph.

We now consider the natural extension of this game to directed graphs, where the robber is
constrained to move along directed cop-free paths. More precisely,

Definition 6.1 (Cops and visible robber game). LetG be a directed graph. Thecops and visible
robber game onG is the cops and robber game defined by(Lc,Lr,A), where

• Lc = P(V (G)) andLr = P(V (G)) \ {∅},

• V0(A) consists of(∅, V (G)) together with pairs(X,R) ∈ Lc × Lr such thatR =
ReachG\X(r) for somer ∈ V (G),

• V1(A) consists of triples(X,X ′, R) ∈ V1(A) for all (X,R) ∈ V0(A) and allX ′ ∈ Lc,

• For all (X,R) ∈ V0(A) and all X ′ ∈ Lc there is an edge inE(A) from (X,R) to
(X,X ′, R), and

• If R′ = ReachG\X′(r′) then there is an edge inE(A) from (X,X ′, R) to (X ′, R′) if, and
only if, r′ ∈ ReachG\(X∩X′)(R).
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Remark.In the sequel, it may be more convenient to view (non-initial) positions of the game
as pairs(X, r) with X ⊆ V (G) andr ∈ V (G) to represent the position(X,R) whereR =
ReachG\X(r).

We recall from Chapter 5 the definitions of asearchand astrategy. As with the game
characterizing tree-width, we are interested in the minimum number of cops required to capture
the robber. Because of this, and from the definition of the game, it follows that we may assume
the first move of the cops is to not place any cops on the graph and “wait and see” where the
robber moves: if the robber can win from(∅, r1) for somer1 ∈ V (G) then he can win from
(∅, V (G)), and conversely, if the cops have a winning strategyσ which uses at mostk cops from
(∅, r) for all r ∈ V (G), then the strategy defined by playing∅ at (∅, V (G)) andσ otherwise is
also a winning strategy which uses at mostk cops. In view of this, and the above remark, we
introduce a more practical definition of a strategy where thestrategy is only defined for positions
(X, r) whereX ⊆ V (G), |X| ≤ k, andr ∈ V (G).

Definition 6.2 (k-cop strategy). Let G be a directed graph, and consider the cops and visible
robber game onG. A (k-cop) strategyfor the cops is a functionσ : [V (G)]≤k × V (G) →
[V (G)]≤k. A search(X1, r1)(X2, r2) · · · is consistentwith a strategyσ if Xi+1 = σ(Xi, ri) for
all i. A strategyσ is awinning strategy, if every search consistent withσ is finite.

In a similar way, we can define a strategy for the robber against k cops.

Definition 6.3 (Strategy againstk cops). Let G be a directed graph, and consider the cops and
visible robber game onG. A strategy againstk copsis a functionρ : [V (G)]≤k × [V (G)]≤k ×
V (G)→ V (G) such that for allX,X ′ ⊆ V (G) andr ∈ V (G)\X, ρ(X,X ′, r) ∈ ReachG\(X∩X′)(r).
A search(X1, r1)(X2, r2) · · · is consistentwith a strategyρ if ri+1 = ρ(Xi, Xi+1, ri) for all i.

We observe that, similar to the game on undirected graphs, variants of the cops and visible
robber game where only one cop can be moved at a time, or the cops are lifted and placed in
separate moves are all equivalent in that the number of cops required to capture the robber on a
graph does not depend on the variant.

We call the graph searching width (recall Definition 5.36) associated with this game and the
resource we are interested in bounding, thecop numberof the graph. That is,

Definition 6.4 (Cop number). Thecop numberof a directed graphG is the leastk such thatk
cops have a strategy to win the cops and visible robber game onG.

Before we introduce the technical aspects of this game neededin later sections, we present
a couple of results that illustrate some of its properties.

Lemma 6.5. Let G be a (finite) non-empty directed graph. At least one cop is required to
capture a visible robber onG and exactly one cop is required if, and only if,G is acyclic.

Proof. As we have no requirement that the robber moves, as long as there is one vertex, the
robber can defeat zero cops by remaining at that vertex. Thatis, if v ∈ V (G), then functionρ
defined byρ(∅, ∅, v) = v is clearly a winning strategy against0 cops.

If G is acyclic, then one cop can catch the robber by always playing to the current position of
the robber. Eventually, the robber will not be able to move and the cops will capture him. More
precisely, defineσ(X, r) = {r}. Then for any search(X0, r0)(X1, r1) · · · consistent withσ, we
observe that for alli, ri 6= ri+1 and there is a directed path fromri to ri+1. SinceG is finite and
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acyclic, it follows that every search consistent withσ must be finite and therefore winning for
the cops.

Conversely, ifG has a cycle(v1, v2, . . . , vm), then the robber can defeat one cop by forever
staying in the cycle. That is, for allr ∈ V (G) andX ∈ [V (G)]≤1 let ρ(X,X ′, r) = v1 for all X ′

such thatv1 /∈ X ′ andρ(X, {v1}, r) = v2. This is clearly a strategy for the robber against one
cop, and as any search consistent withρ can be extended to an infinite search, it is winning for
the robber. ⊓⊔

The cops and visible robber games we have already seen Chapter5 characterizing tree-width
and directed tree-width have the property that they are invariant under edge reversal. That is,
the number of cops required to catch the robber does not change if the directions of all the edges
of the graph are reversed. As we see below, this is not the casefor the game we consider here.
One exception is graphs of cop number1, that is, acyclic graphs. We recall from Section 1.1.2,
the definition ofGop.

Proposition 6.6. The cop number of a directed graphG is 1 if, and only if, the cop number of
Gop is 1.

Proof. This follows from Lemma 6.5 by observing thatG is acyclic if, and only if,Gop is acyclic.
⊓⊔

Proposition 6.7. For anyj, k with 2 ≤ j ≤ k, there exists a graphT j
k with cop numberj such

that the cop number of(T j
k )op is k.

Proof. Informally, T j
k is a binary branching tree of heightk such that every vertex has edges

to all its descendants, and edges back to itsj − 1 nearest ancestors.1 More precisely,T j
k is the

directed graph defined as follows:

• V (T j
k ) = {w ∈ {0, 1}∗ : |w| < k}, and

• (w1, w2) ∈ E(T j
k ) if, and only if, eitherw1 ≺ w2 or w2 ≺ w1 and|w1| − |w2| < j, where

≺ is the prefix ordering on{0, 1}∗.

We now show that the cop number ofT j
k is j and the cop number of(T j

k )op is k. First we see
that j cops have a winning strategy onT j

k by initially playing on the root then following the
robber down, in a leap-frogging manner, whichever subtree he plays in. More precisely, we
inductively define the strategyσ as follows. Initially,σ(∅, V (G)) = {ǫ}. We observe that from
the definition of the edge relation, if the robber chooses to respond by moving to a vertexw
with first symbol0, then he is unable to reach any vertexw′ with first symbol1. Similarly if
the robber chooses to move to a vertex with first symbol1, he cannot reach any vertex in the
0-subtree. Now suppose the cops are onX and the robber is onwr andX andwr satisfy the
following:

There existswmin and wmax such thatX = {w : wmin � w ≺ wmax} and
ReachT j

k
\X(wr) = {w : wmax � w}. (∗)

1To aid informal descriptions we view this graph as a directedtree with additional structure. Thus we use
descendants, ancestors, root and leaves to refer to variousvertices in the graph as they would be in the underlying
directed tree.
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Thenwmax is the next vertex to be occupied by a cop. If|X| < j, thenσ(X,wr) = X∪{wmax},
otherwise if|X| = j, σ(X,wr) = X \ {wmin} ∪ {wmax}. Let w′

r be the next location of the
robber after the cops move fromX to X ′ = σ(X,wr). We show that the resulting position
(X ′, w′

r) satisfies (∗). Clearly from the definition ofσ, we have eitherX ′ = {w : wmin � w �
wmax} or X ′ = {w : wmin ≺ w � wmax}, so the first part of (∗) is true. Next we show that
w′

r ∈ ReachT j

k
\X(X)wr \ {wmax}. Clearly, ifX ′ ⊇ X this is true, so we need only consider the

case when|X| = j. But this implies|wmax| − |wmin| = j, thus there are no edges fromwmax to
wmin. As wmin is the only vertex vacated and every vertex reachable fromwr is reachable from
wmax, the set of vertices reachable by the robber must decrease. Now letw′ be the shortest word
which is a prefix ofw′

r and for whichwmax is a proper prefix. It follows from the definition of
the edge relation that every vertex which the robber can reach must havew′ as a prefix. Thus
ReachT j

k
\X(X ′)w′

r = {w : w′ � w}. Clearly the strategyσ is a strategy forj cops, we now
show that it is winning. We observe that for every search consistent withσ, the sequence of
wmax is a sequence of words of increasing length. So afterk moves there will be no vertex
available for the robber to move to. Thusσ is a winning strategy forj cops. A winning strategy
for k cops on(T j

k )op can be similarly defined, replacingj with k in the above definition. Note
that when|X| = k there is no vertex available for the robber, so the cops neverhave to make a
“leap-frog” move.

We now show that the robber can defeatj − 1 cops onT j
k andk − 1 cops on(T j

k )op. The
strategy for the robber involves choosing some leaf. Whenever a cop moves to that leaf, a simple
counting argument shows that there must be at least one unoccupied ancestor which the robber
can reach with at least one clear path to a leaf below. The robber then plays to that ancestor and
along that path to the leaf. More precisely, letL = {w ∈ V (T j

k ) : |w| = k − 1}. For each
X,X ′ ∈ [V (G)]<j andwr ∈ V (G), letρ(X,X ′, wr) = w′ for somew′ ∈ (L∩ReachT j

k
\X((X ∩

X ′))r) \X ′. Clearly if ρ is well defined, it describes a winning strategy for the robber against
j − 1 cops. We now show that there always exists some suchw′. Since|L| = 2k−1 > j − 1, the
robber can always choose an element ofL initially, so we may assume thatwr ∈ L. If wr /∈ X ′

then choosingw′ = wr suffices, so supposewr ∈ X ′. Sincewr /∈ X and |X|, |X ′| < j, it
follows that |X ∩ X ′| < j − 1. Thus there existsw′′ ≺ wr such that|wr| − |w′′| < j and
{w : w′′ � w andw′

r 6� w} ∩X ′ = ∅ wherew′
r is the shortest word which is a prefix ofwr and

for which w′′ is a proper prefix. Thus for everyw ∈ L such thatw′′ is a prefix ofw, there is a
path fromwr to w in T j

k \ (X ∩X ′). Thus choosingw′ ∈ L such thatw′′ is a prefix ofw gives a
well-defined strategy. A winning strategy for the robber againstk− 1 cops on(T j

k )op is defined
similarly, replacingj with k in the above definition. ⊓⊔

6.1.1 Monotonicity

For the remainder of this chapter, we are primarily concerned with monotone strategies. We
recall from Definition 5.8 the definitions of fugitive-monotone (robber-monotone) and searcher-
monotone (cop-monotone) searches and strategies. We observe that, as with the cops and visible
robber game on undirected graphs, the cops and visible robber game for directed graphs permits
idling and is vacating sensitive. Thus from Lemma 5.11, we have:

Lemma 6.8. A cop-monotone winning strategy fork cops is robber-monotone.

We saw in Theorem 5.37 that for the cops and visible robber game on undirected graphs,
the converse to this holds: ifk cops have a robber-monotone winning strategy thenk cops
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have a cop-monotone winning strategy. In [JRST01] it was shown that this is not the case for
the strongly connected visible robber game. The next resultshows that as with the game on
undirected graphs, for the game we are considering, the two notions of monotonicity coincide.

Lemma 6.9. If k cops have a cop-monotone or robber-monotone winning strategy, then they
have a winning strategy that is both cop-monotone and robber-monotone.

Proof. From Lemma 6.8, it suffices to show that ifk cops have a robber-monotone winning
strategy thenk cops have a cop-monotone winning strategy. Suppose the copshave a robber-
monotone winning strategy, and let(X0, r0)(X1, r1) · · · be a search consistent with that strategy.
From this we construct a sequence which can be used to define a cop-monotone strategy in the
obvious way. SupposeXi 6⊆ Xi+1 and letv ∈ Xi \ Xi+1. As v ∈ Xi, the robber is unable to
reachv when the cops are onXi. As the strategy is robber-monotone, the robber is unable to
reachv at any further stage, in particular, he cannot reachv when the cops are onXi+1. Thus,
no cop needs to revisitv in order to prevent the robber from reachingv. Thus, we can remove
v from all Xj, j > i. Proceeding in this way results in a sequence(X0, r0)(X

′
1, r1) · · · . The

strategy which takes(X ′
i, ri) to X ′

i+1 is cop-monotone for this search. Repeating this for all
plays (that is, every choice for robber) results in a cop-monotone strategy. Hence, whenever the
cops have a robber-monotone winning strategy they also has acop-monotone strategy. ⊓⊔

With this lemma in mind we define amonotone winning strategyin the obvious way. Note that
we have actually proved a slightly stronger assertion:

Corollary 6.10. If k cops have a monotone winning strategy in the cops and visible robber game
on a digraphG, thenk cops have a winning strategyσ such thatσ(X, r) ⊆ X ∪ ReachG\X(r)
for all X ⊆ V (G) andr ∈ V (G) \X.

In Theorem 5.37, we also saw that in the visible robber game onundirected graphs, ifk cops
have a winning strategy thenk cops have a monotone winning strategy. An interesting question
is whether this extends to the game on directed graphs. Kreutzer and Ordyniak [KO07] have
recently shown that this is not the case.

Theorem 6.11([KO07]). For anym ∈ N, there exists a digraph for which5m cops can capture
a visible robber but6m cops are required to do so with a monotone strategy.

Of course, this result does not preclude the possibility that, as with the strong visible robber
game, the number of cops required for a monotone capture is bounded by some function of the
number of cops required for a winning strategy which is not necessarily monotone. This gives
us the following interesting open problem:

Open problem 6.12.Does there exist a functionf : ω → ω such that for all digraphsG, if k
cops can capture a visible robber onG thenf(k) cops can capture the robber with a monotone
strategy?

6.2 DAG-decompositions and DAG-width

In this section, we present a decomposition of directed graphs that is somewhat similar in style
to tree decompositions of undirected graphs. This leads to the definition of DAG-width, which
can be seen as a measure of how close a given graph is to being acyclic. We show then that a
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graph has DAG-widthk if, and only if, k cops have a monotone winning strategy in the cops
and robber game played on that graph. We conclude with some algorithmic properties enjoyed
by DAG-width.

Definition 6.13(Guarding). LetG be a directed graph. A setW ⊆ V (G) guardsa setV ⊆ V (G)
if W ∩ V = ∅ and whenever there is an edge(u, v) ∈ E(G) such thatu ∈ V andv 6∈ V , then
v ∈ W .

Definition 6.14 (DAG-decomposition). Let G be a digraph. ADAG-decompositionof G is a
pair (D,X ) whereD is a directed, acyclic graph andX = (Xd)d∈V (D) is a family of subsets of
V (G) such that

(D1)
⋃

d∈V (D) Xd = V (G).

(D2) For all verticesd �D d′ �D d′′, Xd ∩Xd′′ ⊆ Xd′ .

(D3) For all edges(d, d′) ∈ E(D), Xd ∩Xd′ guardsX≥d′ \Xd , whereX≥d′ :=
⋃

d′�Dd′′ Xd′′ .
For any rootd, X≥d is guarded by∅.

The width of a DAG-decomposition(D,X ) is defined asmax{|Xd| : d ∈ V (D)}. TheDAG-
width of a graph is defined as the minimal width of any of its DAG-decompositions.

The main result of this section is an equivalence between monotone strategies for the cop
player and DAG-decompositions.

Theorem 6.15.For any directed graphG, there is a DAG-decomposition ofG of widthk if, and
only if, k cops have a monotone winning strategy in the cops and visible robber game onG.

To prove this, we first need some simple observations about guarding.

Lemma 6.16.LetG be a directed graph, andW,X, Y, Z ⊆ V (G).

(i) X guards ReachG\X(Y ).

(ii) If W guardsY , X guardsZ, then(W ∪X) \ (Y ∪ Z) guardsY ∪ Z.

(iii) If X guardsY , Z ⊇ X andZ ∩ Y = ∅, thenZ guardsY .

(iv) If X guardsY thenX ∪ Z guardsY \ Z

Proof. (i): ClearlyX ∩ ReachG\X(Y ) = ∅. Now suppose(v, w) ∈ E(G), v ∈ ReachG\X(Y )
andw /∈ ReachG\X(Y ). It follows from the definition ofReachG\X(Y ) thatw ∈ X. Therefore
X guardsReachG\X(Y ).

(ii) : Suppose(v, w) ∈ E(G), v ∈ Y ∪ Z andw /∈ Y ∪ Z. If v ∈ Y , thenw ∈ W , asW
guardsY . Similarly, if v ∈ Z thenw ∈ X asX guardsZ. Hencew ∈ (W ∪X) \ (Y ∪Z), and
(W ∪X) \ (Y ∪ Z) guardsY ∪ Z.

(iii) : Suppose(v, w) ∈ E(G), v ∈ Y andw /∈ Y . As X guardsY , w ∈ X. As Z ⊇ X,
w ∈ Z. Therefore,Z guardsY .

(iv): SinceX ∩ Y = ∅ andZ ∩ (Y \ Z) = ∅, it follows that(X ∪ Z) ∩ (Y \ Z) = ∅. Now
suppose(v, w) ∈ E(G), v ∈ Y \ Z andw /∈ Y \ Z. Thus,w /∈ Y or w ∈ Z. For the first case,
w ∈ X asX guardsY . Hencew ∈ X ∪ Z. ⊓⊔
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We now turn to the proof of Theorem 6.15.

Proof of Theorem 6.15.Supposek cops have a monotone winning strategyσ in the cops and
visible robber game on a directed graphG. As σ is monotone, from Corollary 6.10 it follows
that we may assume that cops are only ever placed on vertices that are reachable by the robber.
That is,

σ(X, r) ⊆ X ∪ ReachG\X(r). (6.1)

We recall the definition of a strategy DAG,Dσ, from Definition 5.7. Since the nodes ofDσ

are positions in the cops and robber game, the functionσ is well defined for alld ∈ V (Dσ). We
claim that(Dσ,X ), with X defined byXd = σ(d) for all d ∈ V (Dσ), is a DAG-decomposition
of G of width ≤ k. To support our claim, we first observe the following simple facts. For
d = (X, r) ∈ V (Dσ),

ReachG\X(r) ⊆
⋃

d�Dσ d′

σ(d′) ⊆ X ∪ ReachG\X(r). (6.2)

The first inclusion follows from the fact thatσ is a winning strategy for the cop player: at
position(X, r) every vertex reachable by the robber (ReachG\X(r)) will be occupied by a cop
at some point in the future. The second inclusion follows from repeated application of (6.1).
Further, ford = (X, r) ∈ V (Dσ),

ReachG\X(r) = ReachG\(X∩σ(X,r))(r). (6.3)

As X ∩ σ(X, r) ⊆ X, ReachG\X(r) ⊆ ReachG\(X∩σ(X,r))(r). The reverse inclusion follows
from the fact thatσ is a robber-monotone strategy.

Equations (6.2) and (6.3) together imply ford = (X, r):

( ⋃

d�Dσ d′

σ(d′)
)
\X = ReachG\(X∩σ(X,r))(r). (6.4)

We now show that(Dσ,X ) is indeed a DAG-decomposition of width≤ k. For (D1), if there
was av ∈ V (G) \⋃

d∈V (Dσ) Xd, then the robber could defeatσ by playing tov at the beginning
and staying there indefinitely. Hence

⋃
d∈V (D) Xd = V (G). (D2) follows immediately from the

(cop-)monotonicity of the winning strategyσ. Towards establishing (D3), let us first consider a
rootd = (X, r) of Dσ. From the definition ofDσ, this root is unique, thusX≥d = V (G) and is
therefore guarded by∅. Now suppose(d, d′) ∈ E(Dσ). If d′ = (X ′, r′) thenXd = σ(d) = X ′.
So by (6.4),

X≥d′ \Xd =
( ⋃

d′�Dσ d′′

σ(d′′)
)
\X ′ = ReachG\(X′∩σ(X′,r′))(r

′).

Therefore, from Lemma 6.16(i),Xd ∩Xd′ = X ′ ∩ σ(X ′, r′) guardsX≥d′ \Xd. It follows that
(Dσ,X ) is a DAG-decomposition. To see that it has width≤ k, note thatmax{|Xd| : d ∈
V (Dσ)} = max{|σ(d)| : d ∈ V (Dσ)} ≤ k.

Conversely, let(D,X ) be a DAG-decomposition of widthk. A strategy fork cops can then
be defined as:
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(1) Let the robber choose a vertexv ∈ V (G). From (D1), there existsdv ∈ V (D) such that
v ∈ Xdv

. Let d be a root ofD which lies abovedv.

(2) Place cops onXd.

(3) From (D3) and Lemma 6.16(iii),Xd guardsX≥d \Xd. Therefore, the robber can only move
to vertices inX≥d \Xd. Suppose the robber moves tov′ ∈ Xd′′ . Let d′ be a successor ofd
which lies aboved′′.

(4) Remove cops onXd \Xd′ (leaving cops onXd ∩Xd′)

(5) As Xd ∩Xd′ guardsX≥d′ \Xd, the robber can only move to vertices inX≥d′ – that is, the
robber must remain in the sub-DAG rooted atd′.

(6) Return to step 2 withd′ asd.

AsD is a DAG, at some point the robber will not be able to move becauseX≥d \Xd is empty
whend is a leaf. Hence, this is a winning strategy fork cops. To show that it is monotone,
observe that (D2) ensures that at no point does a cop return toa vacated vertex. This concludes
the proof of Theorem 6.15. ⊓⊔

We observe that as a strategy DAG is the underlying DAG in the decomposition(D,X )
constructed in this proof, and a strategy DAG has a unique root, we have the following:

Corollary 6.17. If a digraph G has a DAG-decomposition of widthk, thenG has a DAG-
decomposition(D,X ) of width≤ k such thatD has a unique root.

In the sequel we show that we can make further simplifying assumptions about the structure
of DAG-decompositions.

The remainder of this section looks at some properties of DAG-decompositions motivated
by similar results for tree-width and tree decompositions.We first observe that the winning
strategies for the cop player in Lemma 6.5 and Proposition 6.7 are monotone. These results
therefore imply that a graph has DAG-width1 if, and only if, it is acyclic (indeed, the graph itself
will suffice as a decomposition) and that the DAG-width of a graph may change by an arbitrary
amount if its edges are reversed. This last observation is particularly useful when searching for
alternative characterizations of DAG-width, such as thosewe introduce in Chapter 8.

We further observe that, as with the game on undirected graphs, the cops and visible robber
game enjoys the properties of graph searching games introduced in Section 5.4. In particular this
means that DAG-width decreases when taking subgraphs, and suitably increases when taking
lexicographic products.

Lemma 6.18.Let (D,X ) be a DAG-decomposition of a digraphG, and letG ′ be a subgraph of
G. (D,X|G′) whereX|G′ :=

(
Xd ∩ V (G ′)

)
d∈V (D)

is a DAG-decomposition ofG ′.

Proof. Clearly, (D1) and (D2) still hold for(D,X|G′). For (D3), we observe that, ifX guardsY
in G, thenX ∩V (G ′) guardsY ∩V (G ′) in G ′. This is because, ifv ∈ Y ∩V (G ′), w ∈ V (G ′)\Y
and(v, w) ∈ E(G ′) ⊆ E(G), thenw ∈ X (asX guardsY ), hencew ∈ X ∩ V (G ′). Then, (D3)
follows immediately from (D3) for the original decomposition (D,X ). ⊓⊔

Corollary 6.19. Let G and G ′ be directed graphs such thatG ′ is a subgraph ofG. Then
DAG-width(G ′) ≤ DAG-width(G).
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Lemma 6.20.LetG be a directed graph andKn the complete graph onn vertices. DAG-width(G•
Kn) = n · DAG-width(G).
Proof. From Theorem 5.64, it suffices to show that the cops and visible robber game is composition-
expanding. We show that it satisfies conditions (I)–(IV) of Lemma 5.65. Clearly as the cops
are free to make any move, conditions (I) and (II) are satisfied. For condition (III), suppose
on G as the cops move fromX to X ′, the robber can move fromr to r′. It follows by the
definitions ofReachand lexicographic product that if the cops move fromX × V (Kn) to
X ′ × V (Kn) in G • Kn, the robber can move from(r, v) to (r′, w′) for all v, w ∈ V (Kn).
Thus there is an edge in the arena (of the game onG •Kn) from (X×V (Kn), X ′×V (Kn), R×
V (Kn)) to (X ′ × V (Kn), R′ × V (Kn)) whereR = ReachG\X(r) andR′ = ReachG\X′(r′).
Finally, to show condition (IV), we observe that forX ⊆ V (G • Kn) and(r, v) ∈ V (G • Kn),
Reach(G•Kn)\X(r, v) consists of those vertices(r′, v′) /∈ X such thatr′ inReachG\Y (r) where
Y = {x ∈ V (G) : (x,w) ∈ X for all v ∈ V (Kn)}. Thus, if there is an edge in the arena (for
the game onG) from (Y, Y ′, S) to (Y ′, S ′), then there is an edge in the arena (for the game on
G • Kn) from (X,X ′, R) to (X ′, R′) whereX, X ′, Y , Y ′, R, R′, S andS ′ are as defined in
condition (IV) of Lemma 5.65. ⊓⊔

We also show that the DAG-width of graphs is closed under directed unions, which, as
we discussed in Chapter 4, is an important property of a reasonable decomposition of directed
graphs.

Lemma 6.21.LetG be a directed union of the digraphsG1 andG2. Then

DAG-width(G) = max{DAG-width(G1), DAG-width(G2)}.

Proof. For DAG-decompositions(D1,X 1) and(D2,X 2) of G1 andG2 respectively, the DAG
D obtained by adding an edge from every leaf ofD1 to every root ofD2. together with
X := (X1

d)d∈V (D1)∪̇(X2
d)d∈V (D2) forms a DAG-decomposition ofG. Conversely, any DAG-

decomposition(D,X ) of G can be restricted toG1 andG2 yielding DAG-decompositions for
these graphs, according to Lemma 6.18. ⊓⊔

We observe that it follows that the DAG-width of a directed graph is the maximum DAG-
width of all its strongly connected components.

For algorithmic purposes, it is often useful to have a normalform for decompositions. The
following is similar to one for tree decompositions as presented in [Bod97].

Definition 6.22. [Nice DAG-decompositions] A DAG-decomposition(D,X ) is nice if

(N1) D has a unique root.

(N2) Everyd ∈ V (D) has at most two successors.

(N3) If d1, d2 are two successors ofd0, thenXd0
= Xd1

= Xd2
.

(N4) If d1 is the unique successor ofd0, then|Xd0
△ Xd1

| ≤ 1.

The final result we establish in this section is that every graph with DAG-widthk has a nice
decomposition with widthk. For this, we transform a DAG-decomposition into one which is
nice that has the same width. To do this we formalize the transformations we use, and show that
executing them (possibly subject to some constraints) doesnot violate any of the properties of
a DAG-decomposition. First we require the following usefulobservation.
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Figure 6.1: Splitting atd0

Lemma 6.23.Let (D,X ) be a DAG-decomposition. For all(d, d′) ∈ E(D),

X≥d′ \Xd = X≥d′ \ (Xd ∩Xd′).

Proof. As Xd ∩ Xd′ ⊆ Xd, X≥d′ \ Xd ⊆ X≥d′ \ (Xd ∩ Xd′). Conversely, supposev ∈ X≥d′ ,
that is,v ∈ Xd′′ for somed′′ �D d′. We will show thatv ∈ Xd ∩ Xd′ , or v /∈ Xd. Suppose
v ∈ Xd. Then asd �D d′ �D d′′, v ∈ Xd ∩ Xd′′ ⊆ Xd′ . Hencev ∈ Xd ∩ Xd′ . Thus,
X≥d′ \Xd ⊇ X≥d′ \ (Xd ∩Xd′). ⊓⊔
Definition 6.24 (Splitting). Let (D,X ) be a DAG-decomposition, and supposed0 ∈ V (D)
hasm > 1 successorsd1, d2, . . . , dm. The decomposition(D′,X ′) obtained from(D,X ) by
splittingd0 is defined as follows:

(i) V (D′) = V (D)∪̇{dl, dr},
(ii) E(D′) =

(
E(D) \ {(d0, di) : 1 ≤ i ≤ m}

)

∪ {(d0, dl), (d0, dr), (dl, d1)}
∪ {(dr, di) : 2 ≤ i ≤ m}, and

(iii) X ′
d = Xd, for all d ∈ V (D), andX ′

dl
= X ′

dr
= Xd0

.

Figure 6.1 gives a visual representation of this transformation.

Lemma 6.25. Let (D,X ) be a DAG-decomposition of a digraphG of width k, and suppose
d0 ∈ V (D) hasm > 1 successorsd1, d2, . . . , dm. Then(D′,X ′) obtained from(D,X ) by
splittingd0 is a DAG-decomposition ofG of widthk.

Proof. First we observe that, asd0 is the unique predecessor ofdl anddr, for anyd ∈ V (D)
such thatd ≺D′ dl or d ≺D′ dr, it must be the case thatd �D d0. Thus, for alld ∈ V (D),

X ′
≥d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = X≥d,

since ifXdl
or Xdr

is included in the union on the left, then so isXd0
, and so neitherXdl

nor
Xdr

contribute to the overall union.
Also, for all i such that1 ≤ i ≤ m, it is the case thatXd0

∩Xdi
guardsX≥di

\Xd0
. Therefore,

by Lemma 6.16(iii),

Xd0
guardsX≥di

\Xd0
. (6.5)
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It is easily seen that the edges added do not create any cycles, soD′ is a DAG. Further,⋃
d∈V (D′) X ′

d =
⋃

d∈V (D) Xd = V (G). To prove the connectivity condition (D2), letd, d′, d′′ ∈
V (D′), be such thatd �D′ d′ �D′ d′′. If d′ = d or d′′ then triviallyX ′

d ∩X ′
d′′ ⊆ X ′

d′ , so suppose
d ≺D′ d′ ≺D′ d′′. We consider four cases:

• If none of d, d′, d′′ is dl or dr, thend, d′, d′′ ∈ D, and (D2) follows from the fact that
(D,X ) is a DAG-decomposition.

• If d is dl or dr then since all descendants ofd are inV (D), andd0 ∈ V (D) is the unique
predecessor ofd, we obtain the following chain of nodes inD: d0 ≺D d′ ≺D d′′. So
X ′

d ∩X ′
d′′ = Xd0

∩Xd′′ ⊆ Xd′ = X ′
d′ .

• If d′′ is dl or dr then from the comments at the beginning of the proof,d ≺D d′ �D d0.
Thus,X ′

d ∩X ′
d′′ = Xd ∩Xd0

⊆ Xd′ = X ′
d′ .

• Finally, if d′ is dl or dr then by the same reasoning as the previous two cases,d �D d0 ≺D

d′′. SoX ′
d ∩X ′

d′′ = Xd ∩Xd′′ ⊆ Xd0
= X ′

d′ .

Thus, in all cases,X ′
d ∩ X ′

d′′ ⊆ X ′
d′ , showing that (D2) holds. To see that condition (D3) also

holds, observe first that every root ofD′ is a root ofD too. So∅ guardsX≥d = X ′
≥d. Now let

(d, d′) ∈ E(D′). We consider three cases:

• d′ ∈ V (D) (i.e.,d′ 6= dl, dr). If d = dl or dr, thenX ′
d = Xd0

. Otherwise(d, d′) ∈ E(D).
In both cases,X ′

d ∩X ′
d′ guardsX ′

≥d′ \X ′
d.

• d′ = dl (sod = d0). HereX ′
≥d′ = Xd0

∪X≥d1
, soX ′

≥d′ \X ′
d = X≥d1

\Xd0
. Hence, by

(6.5),Xd0
= X ′

d ∩X ′
d′ guardsX≥d1

\Xd0
= X ′

≥d′ \X ′
d.

• d′ = dr (sod = d0). HereX ′
≥d′ = Xd0

∪⋃
2≤i≤m X≥di

, and soX ′
≥d′ \X ′

d = (
⋃

X≥di
) \

Xd0
=

⋃
(X≥di

\ Xd0
), where the unions are taken overi for 2 ≤ i ≤ m. From

Lemma 6.16(ii) and (6.5),X ′
d ∩X ′

d′ = Xd0
guards

⋃
2≤i≤m(X≥di

\Xd0
) = X ′

≥d′ \X ′
d.

As X ′
dl

= X ′
dr

= Xd0
, we have

max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈ V (D)} = k.

Consequently, the decomposition(D′,X ′) has widthk. ⊓⊔
By the decomposition resulting from splittingd m − 1 timeswe mean the decomposition

resulting from splittingd, and then recursively splittingdr until dr has only one successor. A
complete splitof (D,X ) is the decomposition(D′,X ′) obtained by recursively splitting every
node with more than two successors.

Definition 6.26 (Adding). Let (D,X ) be a DAG-decomposition of a digraphG. If (d0, d1) ∈
E(D) andX ⊆ V (G) thedecomposition resulting from addingX to (d0, d1) is the pair(D′,X ′)
with

(i) V (D′) = V (D)∪̇{dX}

(ii) E(D′) = (E(D) \ {(d0, d1)}) ∪ {(d0, dX), (dX , d1)}

(iii) X ′
dX

= X, and for alld ∈ V (D), X ′
d = Xd.
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Figure 6.2: AddingX to (d0, d1)

See Figure 6.2 for a visual interpretation.

Lemma 6.27. Let (D,X ) be a DAG-decomposition of a digraphG of widthk and let(D′,X ′)
be the decomposition resulting from addingX ⊆ V (G) to (d0, d1). If either

(i) Xd0
∩Xd1

⊆ X ⊆ Xd0
, or

(ii) Xd0
∩Xd1

⊆ X ⊆ Xd1
,

then(D′,X ′) is a DAG-decomposition ofG of widthk.

Proof. We observe that for alld ∈ V (D), if d ≺D′ dX , then, asd0 ∈ V (D) is the unique
predecessor ofdX , we haved �D d0, and if dX ≺D′ d, then asd1 ∈ V (D) is the unique
successor ofdX , we haved1 �D d. This implies, for alld ∈ V (D)

X ′
≥d =

⋃

d�D′d′

X ′
d′ =

⋃

d�Dd′

Xd′ = X≥d,

since ifX ′
dX

is included in the union on the left, then bothX ′
d0

andX ′
d1

are, and so in either
case of the lemmaX ′

dX
= X does not contribute to the overall union.

Further,Xd0
∩Xd1

guardsX≥d1
\Xd0

= X≥d1
\ (Xd0

∩Xd1
) from Lemma 6.23.

Clearly,D′ is a DAG. We now show that(D′,X ′) satisfies the properties (D1) to (D3).
It is easily seen that

⋃
d∈V (D′) X ′

d = X ∪ ⋃
d∈V (D) Xd = V (G). This shows (D1). Towards

establishing condition (D2), supposed �D′ d′ �D′ d′′. If d′ = d or d′ = d′′ then trivially
X ′

d ∩X ′
d′′ ⊆ X ′

d′ , so supposed ≺D′ d′ ≺D′ d′′. We consider four cases:

• If none ofd, d′, d′′ is dX thend, d′, andd′′ are all inV (D), so (D2) follows from the fact
that(D,X ) is a DAG-decomposition.

• Supposed = dX . From the observations made at the beginning of the proof, weget the
following chain of nodes inD: d0 ≺D d1 �D d′ ≺D d′′. So in case(i) of the lemma, we
haveX ⊆ Xd0

. SoX ′
d∩X ′

d′′ = X∩Xd′′ ⊆ Xd0
∩Xd′′ ⊆ Xd′ = X ′

d′ , by condition (D2) of
(D,X ). Otherwise, ifX ⊆ Xd1

, thenX ′
d ∩X ′

d′′ = X ∩Xd′′ ⊆ Xd1
∩Xd′′ ⊆ Xd′ = X ′

d′ .

• The other cases are similar. Ifd′′ = dX then we obtaind ≺D d′ �D d0 ≺D d1. So if
X ⊆ Xd0

, thenX ′
d ∩ X ′

d′′ = Xd ∩ X ⊆ Xd ∩ Xd0
⊆ Xd′ = X ′

d′ . If X ⊆ Xd1
, then

X ′
d ∩X ′

d′′ = Xd ∩X ⊆ Xd ∩Xd1
⊆ Xd′ = X ′

d′ .

• Finally, assumed′ = dX . Thend �D d0 ≺D d1 �D d′′. HenceXd ∩ Xd′′ ⊆ Xd0
and

Xd ∩Xd′′ ⊆ Xd1
. Thus,X ′

d ∩X ′
d′′ = Xd ∩Xd′′ ⊆ Xd0

∩Xd1
⊆ X = X ′

d′ .
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Finally, towards (D3), ifd is a root ofD′, thend is a root ofD. Hence∅ guardsX≥d = X≥d′ .
Now let (d, d′) ∈ E(D′). We consider three cases:

• dX 6∈ {d, d′}, i.e.,(d, d′) ∈ E(D). In this case, (D3) follows from the fact that(D,X ) is
a DAG-decomposition.

• Now supposed = dX (sod′ = d1). If Xd0
∩Xd1

⊆ X ⊆ Xd0
, so we are in case(i) of the

lemma, then

X≥d1
\ (Xd0

∩Xd1
) ⊇ X≥d1

\X ⊇ X≥d1
\Xd0

.

Further, by Lemma 6.23,X≥d1
\ (Xd0

∩ Xd1
) = X≥d1

\ Xd0
. ThereforeX≥d1

\ X =
X≥d1

\ Xd0
. As (D,X ) is a DAG-decomposition,Xd0

∩ Xd1
guardsX≥d1

\ Xd0
, and

asXd0
∩ Xd1

⊆ X ∩ Xd1
, Lemma 6.16(iii) implies thatX ′

d ∩ X ′
d1

= X ∩ Xd1
guards

X≥d1
\Xd0

= X ′
≥d1
\X ′

d.

Otherwise we are in case(ii) and we haveXd0
∩Xd1

⊆ X ⊆ Xd1
. Let Z = X \ (Xd0

∩
Xd1

). We know(Xd0
∩Xd1

) guardsX≥d1
\ (Xd0

∩Xd1
), due to Lemma 6.23. Hence, by

Lemma 6.16(iv),X ′
d ∩X ′

d1
= X = (Xd0

∩Xd1
) ∪ Z guards

(X≥d1
\ (Xd0

∩Xd1
)) \ Z = X≥d1

\ ((Xd0
∩Xd1

) ∪ Z)

= X≥d1
\X = X ′

≥d1
\X ′

d′ .

• Finally, supposed′ = dX (so d = d0). Here we claimX ′
≥dX
\ X ′

d0
= X≥d1

\ Xd0
. If

X ⊆ Xd0
, thenX ′

≥dX
\X ′

d0
= (X∪X≥d1

)\Xd0
= (X\Xd0

)∪(X≥d1
\Xd0

) = X≥d1
\Xd0

.
If X ⊆ Xd1

, then sincedX �D′ d1, X ′
≥dX

= X ′
≥d1

= X≥d1
. Now X ⊇ Xd0

∩Xd1
, so by

Lemma 6.16(iii),X ′
d′ = X guardsX≥d1

\Xd0
= X ′

≥dX
\X ′

d0
.

Note that sinceX ⊆ Xd0
or Xd1

, max{|X ′
d| : d ∈ V (D′)} = max{|Xd| : d ∈ V (D)} = k. So

(D′, (X ′
d)d∈V (D′)) has widthk. ⊓⊔

If X1, X2, . . . , Xn is a sequence of subsets ofV (G), thedecomposition resulting from adding
X1, X2, . . . , Xn to (d0, d1) is the decomposition resulting from addingX1 to (d0, d1) and then
recursively addingXi+1 to (dXi

, d1).
We can now describe how to transform a DAG-decomposition into one which is nice and

has the same width.

Theorem 6.28.If G has a DAG-decomposition of widthk, thenG has a nice DAG-decomposition
of widthk.

Proof. Let (D,X ) be a DAG-decomposition of widthk. From Corollary 6.17, we may assume
thatD has a unique root. We carry out each of the following steps.

1. We apply a complete split on(D,X ) to obtain a DAG-decomposition such that every node
has at most two successors, and ifd has two successorsd1 andd2, thenXd = Xd1

= Xd2
.

This establishes (N2) and (N3).

2. To satisfy (N4), we require two stages. First, for each(d0, d1) ∈ E(D) with Xd0
6= Xd1

,
we addXd0

∩Xd1
to (d0, d1) to obtain a DAG-decomposition such that for every(d, d′) ∈

E(D′), Xd is either a subset or a superset ofXd′ .
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3. Secondly, for each(d, d′) ∈ E(D) with |Xd| − |Xd′ | = m > 1 (or |Xd′ | − |Xd| = m >
1), let X0 = Xd, X1, . . . , Xm = Xd′ be a strictly decreasing (increasing) sequence of
subsets. Such a sequence exists because at the previous stepwe finished with a DAG-
decomposition such thatXd ⊆ Xd′ or Xd ⊇ Xd′ . Add X1, X2, . . . , Xm−1 to (d, d′). At
this point we have a decomposition which satisfies (N1) to (N4), and is therefore nice.

Finally, from Lemmas 6.25 and 6.27, at each step we have a DAG-decomposition of widthk.
⊓⊔

6.3 Algorithmic aspects of DAG-width

We now consider algorithmic applications of DAG-width as well as the complexity of deciding
the DAG-width of a graph and computing a DAG-decomposition.

6.3.1 Computing DAG-width and decompositions

Because deciding if the tree-width of a graph is at most a giveninteger is NP-complete, it is
no surprise that deciding if the DAG-width of a graph is at most a given integer is intractable.
Indeed, the following is a direct consequence of the NP-completeness of the TREE-WIDTH

decision problem and Proposition 6.36.

Theorem 6.29.Given a digraphG and a natural numberk, deciding if the DAG-width ofG is
at mostk is NP-hard.

Despite the similarity to tree-width, it is currently unknown whether deciding if the DAG-
width of a graph is bounded by a given value is in NP. However, we strongly believe that this is
the case, giving us the following:

Conjecture 6.30. Given a digraphG and a natural numberk, deciding if the DAG-width ofG
is at mostk is NP-complete.

However, for any fixedk, it is possible, in polynomial time, to decide if a graph has DAG-
width at mostk and to compute a DAG-decomposition of this width if it has. This follows in
a similar manner to Proposition 5.71, so for the proof of the next result we refer the reader to
Section 5.5.

Theorem 6.31.LetG be a directed graph and letk < ω. Deciding ifk cops have a monotone
winning strategy in the cops and visible robber game onG, and computing such a strategy if it
exists can be executed in timeO(|V (G)|2k+4).

Note also that the translation of strategies into decompositions is computationally easy, that
is, it can be done in polynomial time. Since winning strategies can be computed in polynomial
time in the size of the graph, we get the following.

Proposition 6.32.Given a graphG of DAG-widthk, a DAG-decomposition ofG of widthk can
be computed in timeO(|G|O(k)).
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6.3.2 Algorithms on graphs of bounded DAG-width

We can use DAG-decompositions, particularly nice DAG-decompositions, to define dynamic
programming algorithms similar to those used with tree decompositions. Working bottom-up
from the leaves of the underlying DAGD, for each noded ∈ V (D) we compute a data set
containing information for the subgraph induced byX≥d :=

⋃
d′�Dd Xd. The general pattern

is described in Algorithm 6.1. We observe that if the starting decomposition is nice, then the
combineandexpandsteps become significantly simplified. Indeed, thecombinestep can be
seen as applying to inner nodes with two successors and theupdatesteps apply to inner nodes
with only one successor.

Algorithm 6.1 Dynamic programming using a DAG-decomposition
Given a DAG-decomposition(D,X ):

Leaves:Compute the data set forXd for all leavesd.

Combine: If d ∈ V (D) is an inner node with successorsd1, . . . , dm, combine the data sets
computed forX≥d1

, . . . , X≥dm
to a data set for the union

⋃m
i=1 X≥di

.

Expand: Finally, expand the data set to includeXd.

As the directed tree-width of a graph is bounded above by a constant factor of its DAG-width
(see Proposition 6.37), any graph property that can be decided in polynomial time on classes of
graphs of bounded directed tree-width can be decided on classes of graphs of bounded DAG-
width also. This implies that properties such as Hamiltonicity that are known to be polynomial
time on graphs of bounded directed tree-width can be solved efficiently on graphs of bounded
DAG-width too. We give a nontrivial application of DAG-width in Section 6.3.3 where we show
that parity games can be solved efficiently on arena of bounded DAG-width, something which
is not known for directed tree-width.

We observe that the arena used in the proof of Theorem 2.64 hasDAG-width 2: place one
cop on vertexqϕ and the remaining graph is acyclic and can be searched monotonely with
one cop. This implies that, unlike parity games, win-set games (and, consequently, Muller
games, Zielonka DAG games, Emerson-Lei games and circuit games) remain hard on arenas of
bounded DAG-width.

Proposition 6.33.Deciding win-set games on arenas of DAG-width2 is PSPACE-hard.

As for the relation to undirected tree-width, it is clear that not all graph properties that can
be decided in polynomial time on graphs of bounded tree-width can also be decided efficiently
on graphs of bounded DAG-width. For instance, the 3-colourability problem is known to be
decidable in polynomial time on graphs of bounded tree-width. However, the problem does
not depend on the direction of edges. For any given (undirected) graph, we can simply direct
the edges in such a way that it becomes acyclic. Thus, arbitrary instances are polynomial-time
reducible to instances of DAG-width 1. As 3-colourability over arbitrary graphs is NP-hard,
it follows that the problem cannot be solved in polynomial time on graphs of bounded DAG-
width, unless PTIME = NP.
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6.3.3 Parity Games on Graphs of Bounded DAG-Width

Using the algorithm scheme of Algorithm 6.1, we now outline adynamic programming algo-
rithm for solving parity games. The advantage of such an algorithm is that on any class of
arenas of bounded DAG-width it runs in polynomial time, giving us a large class of graphs for
which there exists a tractable algorithm for solving paritygames. Full details of the algorithm
can be found in [BDHK06].

Given an arenaA, a DAG-decomposition ofA is a DAG-decomposition of the underlying
directed graph(V (A), E(A)).

Theorem 6.34.For anyk, given a parity game(A, χ) where the DAG-width ofA is at mostk,
determining if Player 0 has a winning strategy can be decided in polynomial time.

Let us fix a parity game(A, χ) whereχ : V (A)→ P, and letn = |V (A)|. We assume that
every vertex inA has out-degree at most2. It is easy to see that the arena resulting from the
transformation described in Theorem 2.59, replacing vertices that have out-degree more than2
with binary branching trees, requires at most one more cop tocapture a visible robber. Thus
such a transformation results in an arena with DAG-width at mostk +1. Let (D,X ) be a DAG-
decomposition ofA of width k which we assume is nice. For technical reasons, we also assume
that for the rootd of D, Xd = ∅. From Proposition 6.32 we can compute such a decomposition
in polynomial time. The idea is that we utilise the restrictions imposed by a DAG-decomposition
to bound the number of strategies we need to consider. Although memoryless strategies are
sufficient for parity games, we do not assume the strategies we consider are memoryless.

ConsiderU ⊆ V (A) and a setW that guardsU . Fix a pair of strategiesσ andτ . For any
v ∈ U , there is exactly one playπ = v0v1 · · · that is consistent with Player 0 playingσ and
Player 1 playingτ . Let π′ be the maximal prefix ofπ that is contained inU . Theoutcomeof
the pair of strategies(σ, τ) (givenU andv) is defined as follows.

outσ,τ (U, v) :=





win0 if π′ = π andπ is winning for Even;

win1 if π′ = π andπ is winning for Odd;

(vi+1, p) if π′ = v0 · · · vi andp = max{χ(vj) : j ≤ i + 1}.

That is to say that, if the play consistent with Player 0 playing σ and Player 1 playingτ leads
to a cycle contained entirely withinU , then the outcome simply records which player wins the
game. However, if the winner is not determined entirely within U , the outcome records the
vertexw in W in which the play emerges fromU and the largest priority that is seen in the play
π starting inv and ending inw, including the end points.

By construction, if outσ,τ (U, v) = (w, p) thenw ∈ W . More generally, for any setW ⊆ V ,
define the set of potential outcomes inW , written pot-out(W ), to be the set{win0, win1} ∪
{(w, p) : w ∈W andp ∈ P}.

We recall from Chapter 3, the definition of thereward order⊑. We now define a partial
orderE on pot-out(W ) which orders potential outcomes according to how good they are for
Player 1. It is the least partial order satisfying the following conditions:

(i) win1 E o for all outcomeso;
(ii) oE win0 for all outcomeso;
(iii) (w, p)E (w, p′) if p ⊑ p′ for all w ∈ W .
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In particular,(w, p) and(w′, p′) are incomparable ifw 6= w′. The idea is that ifτ andτ ′ are
strategies such that outσ,τ (U, v) E outσ,τ ′(U, v) then Player 1 is better off playing strategyτ
rather thanτ ′ in response to Player 0 playing according toσ.

A single outcome is the result of fixing the strategies playedby both players in the sub-
game induced by a set of verticesU . If we fix the strategy of Player 0 to beσ but consider
all possible strategies that Player 1 may play, we can order these strategies according to their
outcome. If one strategy achieves outcomeo and anothero′ with o E o′, there is no reason
for Player 1 to consider the latter strategy. Thus, we define resultσ(U, v) to be the set of out-
comes that are achieved by the best strategies that Player 1 may follow, in response to Player 0
playing according toσ. More formally, resultσ(U, v) is the set ofE-minimal elements in the
set{o : o = outσ,τ (U, v) for someτ}. Thus, resultσ(U, v) is an anti-chain in the partial order
(pot-out(W ),E), whereW is a set of guards forU . Finally, we write RESULT(U, v) for the set
{resultσ(U, v) : σ is a strategy for Player 0}.

The data structure which we wish to compute is defined as follows. For anyd ∈ V (D), let
Vd = X≥d \Xd. Let

FRONTIER(d) = {(v, r) : v ∈ Vd andr ∈ RESULT(Vd, v)}.

We show how to compute in polynomial time FRONTIER(d) for all d ∈ V (D). It follows from
the definitions that ifwin0 ∈ RESULT(V (A), v), then Player 0 has a winning strategy fromv.
Thus, asX≥r = V (A) whenr is the root ofD, it follows thatwin0 ∈ RESULT(X≥r, vI(A)) if,
and only if, Player 0 wins the game.

We observe that SinceX≥d \Xd is guarded byXd, |Xd| ≤ k and|Vd| ≤ n, the number of
distinct values of resultσ(Vd, v) asσ ranges over all possible strategies is at most(n + 1)k + 2.
This bound on the number of possible values of resultσ(Vd, v) guarantees that|FRONTIER(d)| ≤
n
(
(n + 1)k + 2

)
.

We now outline how we compute FRONTIER(d) for each stage of the dynamic programming
scheme presented earlier.

Leaves: If d ∈ V (D) is a leaf, then as|Vd| ≤ k, it is clear that for allv ∈ Vd, RESULT(Vd, v),
and hence FRONTIER(d), can be computed in constant time.

Combine: If d ∈ V (D) is a node with two successorsd1 andd2, then asXd = Xd1
= Xd2

, it
follows thatVd = Vd1

∪ Vd2
. In this case, asXd guardsVd1

andVd2
there is no path from

a vertex inVd1
to a vertex inVd2

except throughXd. It is straightforward to show that
FRONTIER(d) = FRONTIER(d1) ∪ FRONTIER(d2).

Expand: If d ∈ V (D) is a node with one successord′, we consider three cases.

Case 1:Xd = Xd′ . In this case, FRONTIER(d) = FRONTIER(d′).

Case 2:Xd\Xd′ = {u}. Then, by (D2),u 6∈ Vd′ . Also, by the definition ofVd, u 6∈ Vd. We
conclude thatVd = Vd′ . Moreover, sinceXd′ guardsVd′ (by Lemma 6.16(iii)), there is no
path from any element ofVd′ to u except throughXd′ . Thus, if(w, p) ∈ resultσ(Vd, v) for
somev andσ, it must be the case thatw ∈ Xd′ . Hence, FRONTIER(d) = FRONTIER(d′).

Case 3:Xd′ \ Xd = {u}. This is the critical case. HereVd = Vd′ ∪ {u} and in order
to construct FRONTIER(d) we must determine the results of all plays beginning atu. If
u has one successor, then this is trivial, so let us assumeu has2 successorsu1 andu2.
We observe that fori ∈ {1, 2} either ui ∈ Xd or ui ∈ Vd′ . If ui ∈ Xd, let Ri =
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{(ui, max{p, q})}, wherep = χ(u) andq = χ(ui). Otherwise letRi = RESULT(Vd′ , ui).
ThusRi is the set of outcomes obtained if the play proceeds fromu to ui.

Consider a play fromv ∈ Vd. If it does not reachu, then we can read, from RESULT(Vd′ , v) ∈
FRONTIER(d′), the outcome of the play. Otherwise, if the play reachesu, it continues to
eitheru1 or u2. If both u1 andu2 are inVd′ then either the play returns tou, in which
case we know the winner of the play, or the play reaches a vertex in Xd. This latter case
also occurs if either ofu1 or u2 is in Xd. Thus to compute RESULT(Vd, v), and hence
FRONTIER(d), we proceed as follows.

For eachr ∈ RESULT(Vd′ , v), we do the following. If there is nop ∈ P such that
(u, p) ∈ r add r to RESULT(Vd, v). Otherwise, let(u, p) ∈ r for somep. We now
consider two cases. Ifu ∈ V1(A) then for eachr1 ∈ R1 andr2 ∈ R2, let R = r1 ∪ r2.
Replace each(w, q) ∈ R with (w, max{p, q}). LetR′ = R∪ (r \{(u, p)}). If (u, q) ∈ R′

for some oddq then Player 1 wins the play for the chosen strategies, so replace(u, q)
with win1. Similarly, replace(u, q) ∈ R′ for q even withwin0. Finally, we remove the
elements ofR′ which are notE-minimal and addR′ to RESULT(Vd, v).

Now supposeu ∈ V0(A) for eachr′ ∈ R1∪R2, if (u, q) ∈ r′ andmax p, q is odd, replace
r′ with win1 and add it to RESULT(Vd, v). Otherwise, letR =

(
r \ {(u, p)}

)
∪

{
(w, q) :

(w, q′) ∈ r′ andq = max{p, q′}
}

. If R contains a pair(u, q) thenq must be even and
we replace this pair inR by win0. Finally, we add theE-minimal elements ofR to
RESULT(Vd, v).

In a similar way, we can also compute the set RESULT(Vd, u).

It is clear from the bounds on the size of FRONTIER(d) that at each stage, FRONTIER(d) can
be computed in polynomial time. Since the DAG-decomposition has size at mostO(n2k+4), it
follows that this algorithm runs in polynomial time. This completes the outline of the proof of
Theorem 6.34.

6.4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the concept of tree-width is of unrivalled robust-
ness. On the realm of directed graphs, however, its heritageseems to be split among several
different concepts. In the sequel we compare DAG-width withseveral other connectivity mea-
sures for directed graphs, namely tree-width, directed tree-width, and directed path-width. We
show that, despite their similar nature, the measures are all significantly different.

6.4.1 Undirected tree-width

First we formalize the relationship between DAG-width and undirected tree-width alluded to in
previous sections. We recall from Chapter 4, the definition oftree-width. We also recall that the
tree-width of a directed graphG is defined as the tree-width of the undirected graph obtained
from G by forgetting the orientation of the edges.

Proposition 6.35.

(i) If a directed graphG has tree-widthk, it has DAG-width at mostk + 1.
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(ii) There exists a family of directed graphs with arbitrarily large tree-width and DAG-width1.

Proof. (i): Suppose(T ,W) is a tree decomposition ofG of width k, withW = (Wt)t∈V (T ).
Choose somer ∈ V (T ) and orient the edges ofT away fromr. That is, if{s, t} ∈ E(T ) ands
is on the unique path fromr to t, then change{s, t} to (s, t). SinceT is a tree, every edge has a
unique orientation in this manner. LetD be the resulting DAG. For alld ∈ V (D), setXd := Wt

wheret is the node ofT corresponding tod. We claim that(D,X ) with X = (Xd)d∈V (D) is a
DAG-decomposition ofG of width k + 1. The condition (D1) is trivial from (T1); (D2) follows
from (T2). The orientation ensuresD has one rootr, soX≥r = V (G). Condition (D3) is hence
satisfied at the root. For the other nodes, (D3) follows from Lemma 4.2. Let(d, d′) ∈ E(D) and
supposev ∈ X≥d′ \Xd. Suppose also that(v, w) ∈ E(G) andw /∈ X≥d′ \Xd. As there is a path
(of length1) from v to w, it follows from Lemma 4.2 that eitherv ∈ Xd∩Xd′ or w ∈ Xd∩Xd′ .
Sincev /∈ Xd, w ∈ Xd ∩Xd′ and (D3) holds.

(ii) : For any integern ∈ N, let Kn be the (undirected) complete graph withn vertices
v1, v2, . . . , vn. Orient the edges ofKn such that(vi, vj) is an edge if and only ifi < j. The
resulting directed graph is acyclic and therefore has DAG-width 1, but the underlying undirected
graph is a complete graph ofn vertices and therefore has tree-widthn− 1. ⊓⊔

We now observe that DAG-width is equivalent to tree-width onundirected graphs if we view
an undirected graph as a directed graph in the natural way. Werecall from Section 1.1.2, the
directed graph

←→G obtained from an undirected graphG by replacing each edge{u, v} with two
anti-parallel edges(u, v) and(v, u).

Proposition 6.36.LetG be an undirected graph.G has tree-widthk − 1 if, and only if,
←→G has

DAG-widthk.

Proof. It is easily seen that thek-cops and robber game for undirected graphs onG is equiv-
alent to thek-cops and robber game for directed graphs on

←→G . The result follows from the
correspondence between the measures and existence of monotone winning strategies. ⊓⊔

6.4.2 Directed tree-width

In Chapter 4 we saw directed tree-width from [JRST01] and in Chapter 5 we discussed how it
was characterized by the strong visible robber game. We can use this game characterization to
relate directed tree-width and DAG-width: as the strong visible robber game is defined similarly
to the cops and visible robber game with added restrictions on movement of the robber, we see
that a (robber-monotone) winning strategy fork cops in the cops and visible robber game is a
(robber-monotone) winning strategy fork cops in the strong visible robber game. Thus, we can
use Lemma 5.41 to obtain a bound on the directed tree-width. Towards a converse to this, we
show that directed tree-width and DAG-width are very different measures by exhibiting a class
of graphs with small directed tree-width and arbitrarily large DAG-width.

Proposition 6.37.

(i) If a directed graphG has DAG-widthk, it has directed tree-width at most3k + 1.

(ii) There exists a family of graphs with arbitrarily large DAG-width and directed tree-width1.
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Proof. (i): If G has DAG-widthk thenk cops can win the cops and visible robber game onG.
Thus,k cops can win the strongly visible robber game onG, as the robber is more restricted in
this game. From Lemma 5.41, it follows thatG has directed tree-width at most3k + 1.

(ii) : Consider the family{(T 2
k )op : k ≥ 2} of graphs defined in Proposition 6.7. Note

that (T 2
k )op is a binary branching tree of heightk with back-edges from every vertex to each

of its ancestors. We have shown that(T 2
k )op has cop numberk, and it is clear that the strategy

described fork cops is monotone, so(T 2
k )op has DAG-widthk. On the other hand, consider

the directed treeT obtained from(T 2
k )op by removing back-edges. For eacht′ ∈ V (T ), let

Bt′ := {t, s} wheret is the vertex inV ((T 2
k )op) corresponding tot′ ands is the predecessor of

t (if t′ is not the root ofT ), and letW(s′,t′) := {s} for all (s′, t′) ∈ E(T ). Then, it is easy to
see that(T , (B′

t)t′∈V (T ), (We)e∈E(T )) is a directed tree decomposition of(T 2
k )op of width 1. For

k ≥ 2, (T 2
k )op is not acyclic and therefore has directed tree-width exactly 1. ⊓⊔

6.4.3 Directed path-width

We saw in Chapter 4 the definition ofpath-width. According to Baŕat [Bar05], Reed, Sey-
mour and Thomas defined a natural extension of path-width to directed around 1995, how-
ever [Tho02] seems to be the first occurrence of the definitionin the literature. The definition
mirrors the definition of path-width, however the directionof the edges is accounted for by fully
utilising the linear ordering present in a sequence.

Definition 6.38 (Directed path decompositions and directed path-width [Bar05]). Let G be a
directed graph. Adirected path decompositionof G is a sequenceX1, . . . , Xn of subsets of
V (G) such that:

(DP1)
⋃n

i=1 Xi = V (G),

(DP2) If i ≤ j ≤ k thenXi ∩Xk ⊆ Xj, and

(DP3) For eache = (u, v) ∈ E(G), there existsi ≤ j such thatu ∈ Xi andv ∈ Xj.

Thewidth of a directed path decomposition,X1, . . . , Xn, is max{|Xi| : 1 ≤ i ≤ k} − 1. The
directed path-widthof G is the smallest width of any directed path decomposition ofG.

Just as tree-width can be characterized by the cops and visible robber game, we saw in
Chapter 5 that path-width can also be characterized by a cops and robber game: the cops and
invisible robber game of Example 5.2.2. In [Bar05] Barát considered the natural extension of
this cops and robber game to directed graphs and showed that it the number of cops required
to capture an invisible robber lies within one of the directed path-width of the graph. He also
observed that the number of cops required to capture an invisible robber with a cop-monotone
strategy is equal to one more than the directed path-width ofthe graph.

It is therefore not surprising that directed path-width is intimately related to DAG-width.
From the game characterizations, it appears that directed path-width is to DAG-width as path-
width is to tree-width. Indeed, as we see from the definitionsthe two are closely connected.
In fact, a DAG-decomposition can be seen as a generalizationof a directed path decomposition
where we replace the linear order of the subsets ofV (G) with a partial order. This means that a
directed path decomposition is a DAG-decomposition where the underlying DAG is a directed
path. It is therefore not surprising that DAG-width bounds directed path-width below and there
are families of graphs of bounded DAG-width and unbounded directed path-width. Just as the
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class of binary trees is a class of graphs with bounded tree-width and unbounded directed path-
width, we now show that the class of bidirected binary trees is a class of graphs with bounded
DAG-width and unbounded directed path-width.

Proposition 6.39.

(i) If a directed graphG has directed path-widthk, it has DAG-width at mostk + 1.

(ii) There exists a family of graphs with arbitrarily large directed path-width and DAG-width
2.

Proof. (i): Let W1, . . . ,Wn be a directed path decomposition ofG of width k. LetDn be the
directed path withn vertices. That isV (Dn) = {d1, . . . , dn} and(di, dj) ∈ E(Dn) if, and only
if, j = i + 1. SetXdi

:= Wi for all di ∈ V (Dn). We claim(Dn, (Xd)d∈V (Dn)) is a DAG-
decomposition ofG of width k + 1. Condition (D1) follows from (DP1) and (D2) follows from
(DP2). To show (D3) for1 ≤ i < n, supposev ∈ X≥di+1

\ Xdi
and(v, w) ∈ E(G). From

(DP3) there existi′ ≤ j′ such thatv ∈ Wi′ andw ∈ Wj′. If i′ ≤ i, then by (DP2)v ∈ Xdi
,

contradicting the choice ofv. Thus,i < i′ ≤ j′ andw ∈ X≥di+1
. If w /∈ X≥di+1

\ Xdi
then

w ∈ Xdi
and thereforew ∈ Xdi+1

by (DP2). Thus,Xdi
∩Xdi+1

guardsX≥di+1
\Xdi

.

(ii) : Let Tk be the (undirected) binary tree of heightk ≥ 2. From Proposition 6.36,
←→Tk has

DAG-width 2. It is easy to see that on
←→Tk , an invisible robber can defeatk − 1 cops, butk cops

have a winning strategy. Therefore, from [Bar05],
←→Tk must have directed path-width at least

k − 2. Thus, the family{←→Tk : k ≥ 2} satisfies the proposition. ⊓⊔



Chapter 7

Digraph measures: Kelly-width

In Chapter 4 we introduced the concept of tree-width as a measure of graph complexity. We
remarked on its usefulness for algorithmic purposes, and discussed the importance of the prob-
lem of extending tree-width to directed graphs. In this chapter, we continue investigating this
extension by considering other characterizations of tree-width and their natural generalizations
to digraphs.

Part of the reason why tree-width is such a good measure of graph complexity is that many
other measures arising from different areas of graph theorycan be shown to be equivalent to
tree-width. For instance, we saw in Chapter 5 that the number of cops required to capture a visi-
ble robber in a graph-searching game is equivalent to the tree-width of that graph. In this chapter
we consider three other characterizations of tree-width: partial k-trees, elimination orders and
a graph searching game in which an invisible robber attemptsto avoid capture by a number
of cops, subject to the restriction that he may only move if a cop is about to occupy his posi-
tion. Partialk-trees are the historical forerunner of tree-width and are therefore associated with
graph structure theory [Ros70]. In fact, many of the originalalgorithmic results for tree-width
were formulated in terms of partialk-trees (see, for example [AP89]). Elimination orderings
are particularly useful in the analysis of (symmetric) matrix factorizations such as Cholesky
decompositions [Liu90]. For example, elimination orders can be used to determine the parallel
time required to factorize a symmetric matrix with Gaussianelimination [BGHK95]. Finally,
as we saw in Chapter 5 (and also [DKT97, FHT04]), graph searching games have recently been
used to explore and generate robust measures of graph complexity. We generalize all these to
directed graphs, resulting in partialk-DAGs, directed elimination orderings, and an inert robber
game on digraphs. We show that all these generalizations areequivalent on digraphs and are
also equivalent to the width-measure associated to a new kind of decomposition we introduce.
As the game is reminiscent of capturing hideout-based outlaws, we propose the name Kelly-
decompositions, after the infamous Australian bushrangerNed Kelly. The fact that all these
notions are equivalent on digraphs as they are on undirectedgraphs suggests that this might be
a robust measure of complexity and connectivity of digraphs.

As with tree-decompositions and DAG-decompositions, Kelly-decompositions have a struc-
ture that is well suited for designing dynamic programming algorithms that will run in poly-
nomial time when the width of these decompositions is bounded. However, unlike DAG-
decompositions (as far as is currently known), the size of Kelly-decompositions can be made
linear in the size of the graph it decomposes, significantly reducing the space complexity of
such algorithms. As with the previous chapter, we will introduce a general scheme for produc-
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ing dynamic programming algorithms that use the additionalstructural information provided by
Kelly-decompositions. We illustrate its use by producing algorithms for solving NP-complete
problems such as Hamiltonian cycle, and computing the winner of a parity game. Both these
algorithms run in polynomial time on graphs of bounded Kelly-width.

The chapter is organised as follows. In the first section we formally define inert robber
games, elimination orders, and partialk-trees andk-DAGs. We show that on digraphs the as-
sociated width measures are all equivalent. In Section 7.2,we introduce Kelly-decompositions
and Kelly-width and show that it also coincides with the measures defined in Section 7.1. In
Section 7.3, we present applications: Algorithms for Hamiltonian cycle, weighted disjoint paths
and parity games that all run in polynomial time on graphs of bounded Kelly-width, and detail
a connection between Kelly-decompositions and asymmetricmatrix factorization. Finally, we
compare Kelly-width to some of the other directed graph measures we have already seen such
directed tree-width and DAG-width, showing that it is a unique measure of complexity. How-
ever, we also provide evidence to suggest that Kelly-width and DAG-width are measuring the
same fundamental property of digraphs.

7.1 Inert robber games, elimination orderings, and partial
k-DAGs

7.1.1 Inert robber game

The cops and robber game we consider for this chapter is the cops and inert robber game from
Example 5.2.5. This game consists of an invisible robber whois able to run from his position
along any path which does not pass through a cop, however he may only move if a cop is about
to land on his position. For convenience, we say that he isinert. The natural generalization of
this game to directed graphs is defined as followed.

Definition 7.1 (Cops and inert robber game). Let G be a directed graph. Thecops and inert
robber game onG is the cops and robber game defined by(Lc,Lr,A), where

• Lc = P(V (G)) andLr = P(V (G)) \ {∅},

• V0(A) consists of pairs(X,R) ∈ Lc × Lr such thatX ∩R = ∅,

• V1(A) consists of triples(X,X ′, R) ∈ V1(A) for all (X,R) ∈ V0(A) and allX ′ ∈ Lc,

• For all (X,R) ∈ V0(A) and all X ′ ∈ Lc there is an edge inE(A) from (X,R) to
(X,X ′, R), and

• There is an edge inE(A) from (X,X ′, R) to (X ′, R′) if, and only if,

R′ =
(
R ∪ ReachG\(X∩X′)(X

′ ∩R)
)
\X ′.

We recall from Chapter 5 the definitions of asearch, monotonicityand astrategy. As with
the game characterizing tree-width, we are interested in the minimum number of cops required
to capture the robber, so we also recall the definition of astrategy fork cops from Defini-
tion 5.32. SinceR′ is uniquely defined fromX,R andX ′, the inert robber game is in actuality a
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single player game. As we mentioned earlier, this is typicalfor games with an invisible robber.
One consequence is that given a strategy for the cops, there is a unique play consistent with
that strategy. We call this the playassociatedwith the strategy. In the remainder of this chap-
ter we are primarily concerned with robber-monotone strategies. However, we first show that
the added constraint on the movement of the invisible robberdoes not affect the existence of a
cop-monotone winning strategy fork cops.

Proposition 7.2. Let G be a digraph. Thenk cops have a cop-monotone winning strategy in
the cops and invisible robber game onG if, and only if,k cops have a cop-monotone winning
strategy in the cops and inert robber game onG.

Proof. Since the cops and inert robber game is more restrictive on the robber than the cops
and invisible robber game, a winning strategy in the latter is a winning strategy in the former.
We now show how a cop-monotone winning strategy,σ, for k cops in the cops and inert rob-
ber game is also a cop-monotone winning strategy fork cops in the cops and invisible robber
game. Let(X0, R0)(X1, R1) · · · (Xn, Rn) be the unique search associated withσ in the cops
and inert robber game. We define ak-cop cop-monotone strategy,σ′, for the cops and invis-
ible robber game as follows. DefineR′

i inductively as: R′
0 = V (G), and for1 ≤ i ≤ n,

R′
i = ReachG\(Xi∩Xi−1)(R

′
i−1) \ Xi. Then defineσ′(Xi, R

′
i) = Xi+1, so σ′ is essentially

the strategy resulting from playingσ in the cops and invisible robber game. By definition,
(X0, R

′
0)(X1, R

′
1) · · · is the search associated withσ′, and it is clearly a cop-monotone strategy

for k cops. We now show that it is winning. In particular, we prove by induction oni that
R′

i = Ri for 0 ≤ i ≤ n.

SinceR0 = V (G) = R′
0 our claim is clearly true fori = 0. Now supposeRi = R′

i

for somei ≥ 0. SinceRi ∪ ReachG\(Xi∩Xi+1)(Ri ∩ Xi+1) ⊆ ReachG\(Xi∩Xi+1)(R
′
i), we have

Ri+1 ⊆ R′
i+1. So supposeRi+1 6⊇ R′

i+1. Then there existsw ∈ ReachG\(Xi∩Xi+1)(Ri) \ Xi+1

such thatw /∈ Ri ∪ ReachG\(Xi∩Xi+1)(Ri ∩ Xi+1) \ Xi+1. Thusw /∈ Xi ∪ Ri. Note that since
w /∈ Ri, we havei ≥ 1. Furthermore, there existsv ∈ Ri \ Xi+1 such that there is a path
from v to w in G \ (Xi ∩ Xi+1). Let v′ be the last element ofRi on this path, and letw′ /∈ Ri

be the successor ofv′ on this path. Since the path is inG \ (Xi ∩ Xi+1), w′ /∈ Xi ∩ Xi+1.
Supposew′ /∈ Xi. Then sinceXi ∩Ri = ∅, there is a path fromv to w′ in G \Xi. Therefore, as
v ∈ Ri = R′

i = ReachG\(Xi−1∩Xi)(Ri−1) \Xi we havew′ ∈ Ri, contradicting the definition of
w′. Thus

w′ ∈ Xi \Xi+1.

Now let j ≥ i + 1 be such thatv′ ∈ Rj \Rj+1. Sinceσ is winning, andv′ ∈ Ri+1, there is such
a j. By the definition of the cops and inert robber game, it must be thatv′ ∈ Xj+1 \ Xj. We
claim thatw′ ∈ Rj+1. Sincei ≤ i + 1 ≤ j + 1, andw ∈ Xi \Xi+1, by the cop-monotonicity of
σ, w′ /∈ Xj+1. Therefore, as(v′, w′) ∈ E(G),

w′ ∈ ReachG\(Xj∩Xj+1)(Rj ∩Xj+1) = Rj+1.

Now let l ≥ j + 1 be such thatw′ ∈ Rl \ Rl+1. Sinceσ is winning andw′ ∈ Rj+1, such anl
exists. By the definition of the cops and inert robber game, it must be thatw′ ∈ Xl+1. But since
i ≤ i + 1 ≤ l + 1, andw′ ∈ Xi, by the cop-monotonicity ofσ, w′ ∈ Xi+1 – contradiction. Thus
Ri ⊇ R′

i, and thereforeRi = R′
i. ⊓⊔
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7.1.2 Elimination orderings

Our next definition extends the idea of vertex elimination todigraphs. Vertex elimination, for
undirected and directed graphs, has been researched for many years in the study of linear pro-
gramming [RT75]. One technique for solving a system of equations is to combine equations so
that the value of some variables can easily be determined, thereby eliminating those variables
and reducing the system to a simpler one. This elimination process may introduce new relations
between the remaining variables, and capturing this process in a more general setting is the mo-
tivation behind vertex elimination of graphs. We can represent a system of equations as a graph
with a vertex for each variable occurring in the system, and an edge between variables that are
related by some equation in the system. Vertex elimination is then a symbolic representation of
variable elimination.

More precisely, letG be an undirected graph andv ∈ V (G). To eliminatev from G, we
removev, but add edges (if necessary) between any two vertices adjacent tov. In this way, we
see that vertex elimination is the process of removing vertices from a graph but adding edges to
preserve reachability. It is this concept that we extend to directed graphs.

Definition 7.3 (Directed elimination). Let G be a digraph andv ∈ V (G). The graph resulting
from directed elimination ofv fromG is the graphG ′ obtained fromG by deletingv and adding
new edges(u,w) (if necessary) if(u, v) and(v, w) ∈ E(G).

We can use vertex elimination to define a complexity measure on undirected graphs. Let
G be an undirected graph. A linear order⊳ = (v1, v2, . . . , vn) on V (G) defines a sequence
of eliminations whereby the vertices ofG are successively eliminated in the order specified by
⊳. For convenience we call⊳ anelimination orderingand this sequence of eliminations, the
elimination defined by⊳. We define thewidth of ⊳ to be the maximum of the degrees of the
vertices when they are eliminated. These definitions easilytranslate to directed graphs, but the
complexity measure we are interested in is the maximum out-degree of eliminated vertices.

Definition 7.4 ((Partial) Directed elimination ordering). Let G be a digraph and letV ⊆ V (G)
be a subset of vertices. Apartial directed elimination ordering onV is a linear ordering⊳ =
(v1, v2, . . . , vn) of V . A directed elimination orderingis a partial directed elimination ordering
onV (G). The(partial) directed elimination defined by⊳ is the following sequence of directed
graphs. We defineG⊳

0 := G, and letG⊳

i+1 be the graph resulting from directed elimination of
vi+1 from G⊳

i . Thewidth of ⊳ is the maximum over alli of the out-degree ofvi in G⊳

i . For
convenience we also define thesupport ofvi with respect to⊳ as supp

⊳
(vi) := {vj : (vi, vj) ∈

E(G⊳

i )}.

We observe that the width of a directed elimination orderingis the maximum cardinality of
all its supports.

Immediately from the definitions, we have this simple lemma relating the support of an
element in an elimination ordering to the set of vertices reachable from that vertex.

Lemma 7.5. Let⊳ be a directed elimination ordering of a graphG and letv ∈ V (G). Let
R := {u : v ⊳ u}. Then supp

⊳
(v) = {u : v ⊳ u and there isv′ ∈ ReachG\R(v) such that

(v′, u) ∈ E(G)}.
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7.1.3 Partialk-trees and partial k-DAGs

The class ofk-trees and, more generally, chordal graphs are important and widely studied
classes of undirected graphs. A graph ischordal if any cycle of four or more vertices con-
tains a chord – an edge between a pair of vertices not adjacentin the cycle, and a chordal graph
is ak-tree if it contains no(k + 2)-clique as a subgraph. These structural restrictions are algo-
rithmically beneficial: for example, chordal graphs have a linear number of maximal cliques,
so problems such as finding a clique of a given size, which are in general NP-complete, can be
efficiently solved on chordal graphs andk-trees.

An equivalent way to characterize the class ofk-trees is as a class of graphs generated by a
generalization of how one might construct a tree.

Definition 7.6 ((Partial)k-trees). The class ofk-trees is defined recursively as follows:

• The complete graph onk vertices is ak-tree.

• A k-tree withn+1 vertices is obtained from ak-treeH with n vertices by adding a vertex
and making it adjacent to ak-clique inH.

A partial k-tree is a subgraph1 of ak-tree.

The last concept we define in this section is a generalizationof partialk-trees, called partial
k-DAGs. Just ask-trees are a generalization of trees,k-DAGs are a class of digraphs generated
by a generalization of how one might construct a directed, acyclic graph in a top-down manner.

Definition 7.7 ((Partial)k-DAG). The class ofk-DAGsis defined recursively as follows:

• A complete digraph withk vertices is ak-DAG.

• A k-DAG with n + 1 vertices is obtained from ak-DAG H with n vertices by adding a
vertexv and edges satisfying the following:

– Edges fromv to X ⊆ V (H) where|X| ≤ k

– An edge fromu ∈ V (H) to v if (u,w) ∈ E(H) for all w ∈ X \ {u}.

A partial k-DAG is a subgraph of ak-DAG.

The second condition on the edges provides a method to add as many edges as possible
going to the new vertex without introducing cycles. Note that if X = ∅, the antecedent of this
condition is true for allu ∈ V (H), so a digraph is a partial 0-DAG if, and only if, it is a directed
acyclic graph.

We also observe that this definition generalizesk-trees, for if the vertices (X) adjacent to
the new vertex (v) induce a clique, we will add edges back fromX to v, effectively creating
bidirected edges betweenv andX (and possibly some additional edges fromH \X to v). The
following result shows thatk-DAGs generalize the alternative characterization ofk-trees we
presented initially.

Lemma 7.8. LetG be ak-DAG. Then:

1Technically a partial graph is a spanning subgraph, that is,subgraph with the same vertex set. However, for
the results we establish the distinction is not significant.
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(i) G contains no(k + 2)-clique as a subgraph,

(ii) Any cycle inG with at least three vertices contains a chord, and

(iii) Any bidirected cycle with at least four vertices contains a bidirected chord.

Proof. (i): Let W ⊆ V (G) be a set ofk + 2 vertices. Supposev ∈ W was the last vertex of
W to be added in the construction ofG. Since all other vertices ofW were added beforev,
all edges fromv to W were added as part of the first condition on the added edges. Therefore,
there must be at mostk outgoing edges fromv to vertices inW , and soW cannot be the vertex
set of a(k + 2)-clique.

(ii) : Let C = (v1, v2, . . . , vn) be a cycle of lengthn ≥ 3 in G. Without loss of generality,
assumev0 was the last vertex ofC to be added in the construction ofG. Since there is an edge
from vn to v1, it follows that there must be an edge fromvn to all successors ofv1 added before
v1, in particular tov2. Thus(vn, v2) is a chord ofC.

(iii) : Let C = (v1, v2, . . . , vn) be a bidirected cycle of lengthn ≥ 4. Again we assumev1

was the last vertex ofC to be added in the construction ofG. From the proof of(ii) , there is an
edge(vn, v2) ∈ E(G). Since(v1, vn, . . . , v2) is also a cycle, the same argument implies there is
also an edge(v2, vn) ∈ E(G). These two edges make up a bidirected chord ofC. ⊓⊔

Lemma 7.8 does not provide an equivalent characterization for k-DAGs because the given
properties are invariant under edge-reversal. We see in Proposition 7.40 that the class ofk-
DAGs is not closed under this operation.

7.1.4 Equivalence results

We have introduced three notions that can be used to define thecomplexity of digraphs, all
of which naturally extend measures for undirected graphs. On undirected graphs, the three
measures are equivalent to each other, and also to tree-width [DKT97]. Our main result of this
section is that the three measures introduced are equivalent on digraphs.

Theorem 7.9.LetG be a digraph. The following are equivalent:

1. k + 1 cops have a robber-monotone winning strategy to capture an inert robber onG.

2. G has a directed elimination ordering of width≤ k.

3. G is a partialk-DAG.

Proof. 1 ⇒ 2: Supposek + 1 cops have a robber-monotone winning strategyσ. Without loss
of generality, we assume that only one cop is placed at a time.Let (X0, R0)(X1, R1) · · · be the
(unique) search consistent withσ. For eachv ∈ V (G), let xv = min{i : v ∈ Xi}. Sinceσ
involves placing one cop at a time, for distinctv, w ∈ V (G), xv 6= xw. Let⊳ = (v1, v2, . . . , vn)
be the order defined as:vi⊳vj if, and only if,xvj

< xvi
. For convenience, letVi = {v1, . . . , vi},

andxi = xvi
for all i. We observe that from the definition ofxi, Vi ∩Xxi

= {vi}.
We claim⊳ has width≤ k. If this were not the case, there must existvi such that

|supp
⊳
(vi)| ≥ k + 1. As |supp

⊳
(vi)| ≥ k + 1 and |Xxi

| ≤ k it follows that there exists
vj ∈ supp

⊳
(vi) \Xxi

. From the definition of supp
⊳
(vi), we havevi ⊳ vj, soxj < xi. Further-

more, from Lemma 7.5,vj ∈ ReachG[Vi∪{vj}](vi). Therefore, sinceVi ∩ Xxi−1 ∩ Xxi
= ∅ and
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vi ∈ Xxi
it follows thatvj ∈ Rxi

. But sincevj /∈ Rxj
, the robber-monotonicity ofσ implies

vj /∈ Rl for all l ≥ xj, contradicting the fact thatvj ∈ Rxi
. Thus there exists no suchvi with

|supp
⊳
(vi)| ≥ k + 1, and⊳ has width≤ k.

2 ⇒ 3: Let ⊳ = (v1, v2, . . . , vn) be a directed elimination ordering ofG of width k. For
ease of notation, defineXi := supp

⊳
(vi), and letm = n− k. LetK0 be the complete graph on

the vertices{vm+1, vm+2, . . . , vn}, and letKj (j ≥ 1) be thek-DAG formed by addingvm−j+1

toKj−1, and edges fromvm−j+1 to Xm−j+1 (together with the other edges added fromKj−1 to
vn−k−j+1 in the definition ofk-DAGs). We claim that for all0 ≤ j ≤ m, G⊳

m−j is a subgraph of
Kj. The result then follows by takingj = m. We prove our claim by induction onj. For the
base case (j = 0) the result is trivial asKj is a complete graph. Now assume the result is true
for j ≥ 0, and consider the graphG⊳

m−j−1. For simplicity leti = m − j. By the definition of
directed elimination, for every edge(u, v) ∈ E(G⊳

i−1) either:

(a) vi /∈ {u, v},
(b) u = vi, or
(c) v = vi.

In the first case,(u, v) ∈ E(G⊳

i ) and therefore inE(Kj) ⊆ E(Kj+1) by the induction hypothe-
sis. For the second case,(u, v) is added during the construction ofKj+1. For the final case, for
anyw ∈ Xi, (vi, w) is an edge ofG⊳

i−1, so(u,w) is an edge ofG⊳

i (for u 6= w), and therefore
of Kj by the induction hypothesis. Thus(u, vi) is added during the construction ofKj+1, and
E(G⊳

i−1) ⊆ E(Kj+1) as required.
3 ⇒ 1: Let G be a partialk-DAG. SupposeG is a subgraph of thek-DAG, K, formed

from a complete graph on the verticesXk := {v1, v2, . . . , vk}, and then by adding the vertices
vk+1, vk+2, . . . , vn. For1 ≤ i ≤ n− k let Xk+i ⊆ {v1, . . . , vk+i−1} denote the set of successors
of vk+i. That is, whenvk+i is added during the construction ofK, edges are added fromvk+i to
each vertex inXk+i. Note that for alli, |Xi| ≤ k. We define a (history dependent) strategyσ
for the cops inductively as follows. For allR, σ(∅, R) = Xk. If X = Xi for somei,

k ≤ i ≤ n then for allR, σ(X,R) = Xi ∪ {vi}. If X = Xi ∪ {vi} for somei, k ≤ i < n,
then for allR, σ(X,R) = Xi+1. We claim that this defines a monotone winning strategy for
k + 1 cops. LetRi = {vj : j > i}, then from the definition ofk-DAGs and theXi, it is easy to
see that the search associated with the strategy is:

(∅, V (G))(Xk, Rk)(Xk+1, Rk)(Xk+1 ∪ {vk+1}, Rk+1) · · · (Xn ∪ {vn}, ∅).

As Ri ⊇ Ri+1 for all i, the strategy is monotone and winning as required. ⊓⊔

7.2 Kelly-decompositions and Kelly-width

Theorem 7.9 shows that the concepts introduced in the previous section define a sound measure
of digraph complexity which naturally generalizes tree-width. We now turn to the problem of
finding a closely related digraph decomposition. The decomposition we introduce is a partition
of the vertices, arranged as a directed acyclic graph, together with sets of vertices which guard
against paths in the graph that do not respect this arrangement. We have an additional restriction
to avoid trivial decompositions: vertices in the guard setsmust appear either to the left or earlier
in the decomposition. Before we present the formal definition, we recall from Definition 6.13,
the definition ofguarding.
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Definition 7.10(Kelly-decomposition and Kelly-width). A Kelly-decompositionof a digraphG
is a tripleD := (D,B,W) whereD is a DAG andB = (Bd)d∈V (D) andW = (Wd)d∈V (D) are
families of subsets ofV (G) such that

(K1) B is a partition ofV (G),

(K2) for all d ∈ V (D), Wd guardsB≥d :=
⋃

d′�DDd Bd′ , and

(K3) for all d ∈ V (D) there is a linear order on its successorsd1, . . . , dp so that for all1 ≤ i ≤
p, Wdi

⊆ Bd ∪Wd ∪
⋃

j<i B≥dj
. Similarly, there is a linear order on the roots such that

Wri
⊆ ⋃

j<i B≥rj
.

Thewidth of D is max{|Bd ∪Wd| : d ∈ V (D)}. TheKelly-widthof G is the minimal width of
any of its Kelly-decompositions.

Our main result of this section is that Kelly-decompositions do in fact correspond with the
complexity measure defined at the end of the previous section.

Theorem 7.11.LetG be a digraph. The following are equivalent:

1. k cops have a robber-monotone winning strategy to capture an inert robber onG.

2. G has Kelly-width≤ k.

Proof. 2 ⇒ 1: Let (D,B,W) a Kelly-decomposition ofG of width k. Let T be the spanning
tree ofD obtained from the depth-first traversal ofD which always chooses the greatest suc-
cessor according to the ordering on successors guaranteed by (K3). Let (t1, t2, . . . , tn) be the
order ofV (T ) (and hence,V (D)) visited in the depth-first traversal ofT which always chooses
the least successor according to the ordering. Sot1 will always be the root ofD which is first
in the linear order on the roots,t2 will be the least successor oft1 which is not a descendant of
any greater root, or the next root ofD in the ordering if no such successor exists, and so on.
We observe that by the construction of this ordering, every descendanttj of ti in D is either a
descendant ofti in T , or ti andtj have a common ancestor from whichti is a descendant of a
lesser successor thantj. In both casesj ≥ i from the depth-first traversal ofT . It follows that

⋃

j<i

Btj ∩B≥ti = ∅. (7.1)

We now define the strategy. For1 ≤ i ≤ n, let X2i−1 = Wti andX2i = Wti ∪ Bti . We
define a (history dependent) strategyσ inductively asσ(∅, R) = X1 andσ(Xi, R) = Xi+1

for all R ⊆ V (G). We claim thatσ is a robber-monotone winning strategy fork cops. Let
(X0, R0) · · · (X2n, R2n) be the search associated with the strategy. We show by induction on i
that for0 < i ≤ n, R2i−2 = R2i−1 =

⋃
j≥i B≥tj . It follows immediately that the strategy must

be monotone and winning. SinceX1 = Wt1 = ∅, we haveR1 = R0 = V (G) =
⋃

j≥1 B≥tj .
Now let us assumeR2i−2 = R2i−1 =

⋃
j≥i B≥tj for somei ≥ 1. From (K2), we observe that

ReachG\Wti
(Bti) ⊆ B≥ti ⊆ R2i−1. Thus

R2i =
(
R2i−1 ∪ ReachG\(X2i−1∩X2i)(R2i−1 ∩X2i)

)
\X2i

=
(
R2i−1 ∪ ReachG\Wti

(Bti)
)
\Bti

=
⋃

j≥i B≥tj \Bti

=
⋃

j≥i+1 B≥tj (from Equation 7.1).
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SinceWd∩B≥d = ∅ for all d ∈ V (D), it follows from (K3) and the construction of the ordering
that Wti+1

⊆ ⋃
j≤i Btj . Therefore, from Equation 7.1, we haveR2i ∩ Wti+1

⊆ ⋃
j>i B≥tj ∩⋃

j≤i Btj = ∅. Hence,

R2i+1 =
(
R2i ∪ ReachG\(X2i∩X2i+1)(R2i ∩X2i+1)

)
\X2i+1

= (R2i ∪ ∅) \Wti+1

= R2i,

completing the inductive step.
1 ⇒ 2: It follows from Theorem 7.9 that it suffices to show that ifG has a directed

elimination ordering of widthk − 1 thenG has Kelly-width≤ k. Let⊳ = (v1, v2, . . . , vn) be a
directed elimination ordering ofG of width k − 1. We define(D,B,W) as follows.V (D) :=
V (G). For alld ∈ V (D) let Bd := {d} andWd := supp

⊳
(d) and defineB := (Bd)d∈V (D) and

W := (Wd)d∈V (D). Towards defining the edge relation ofD, let d ∈ V (D) be a node. For
convenience we writeGd for the induced subgraphG[{w : w ⊳ d} ∪ {d}]. Let C1, . . . , Cp be
the strongly connected components ofGd \ d. Let d1, . . . , dp be the⊳-maximal elements of
C1, . . . , Cp, respectively. We put an edge(d, di) betweend anddi if di is reachable fromd in
Gd and there is nodj with di ⊳ dj ⊳ d such thatdj is reachable fromd in Gd anddi is reachable
from dj in Gd \ d.

We claim that(D,B,W) is a Kelly-decomposition of width≤ k. Clearly,D is a DAG,
as all the edges inE(D) are oriented following the ordering⊳. Further, the width of the
decomposition is clearly at most one more than the width of⊳.

To establish (K2), we first show the following claim.

Claim. For alld ∈ V (D), ReachGd
(d) = B≥d.

Proof of claim. We first show by induction on the indexi of d in ⊳ that ReachGd
(d) ⊆ B≥d.

For i = 1 there is nothing to show. Suppose the claim has been proven for all j < i. Let
v ∈ ReachGd

(d). LetC1, . . . , Cm be the strongly connected components ofGd \d. Without loss
of generality we assume thatv ∈ C1. Let s be the⊳-maximal element ofC1 and letd′ be the
⊳-maximal element such that

• d′ is the⊳-maximal element of someCi

• there is a directed path fromd to d′ in Gd

• there is a directed path fromd′ to s in Gd \ d.

By construction, there is an edge(d, d′) ∈ E(D). If d′ = v, or in fact if d′ is the⊳-maximal
element ofC1, then there is nothing more to show. Otherwise, ifd′ andv are not in the same
strongly connected component ofGd \ d, thens, and hencev, must be reachable fromd′ in Gd′ .
For, by construction,s is reachable fromd′ in Gd \ d andd′ is the⊳-maximal element reachable
from d in Gd and from whichs can be reached inGd \ d. Thus, if s was not reachable from
d′ in Gd′ then the only path fromd′ to s in Gd \ d must include an elementw ⊳ d such that
d′ ⊳ w, contradicting the maximality ofd′. Hence,v is reachable fromd′ in Gd′ and therefore,
by induction hypothesis,v ∈ B≥t′ ⊆ B≥t.

A simple induction on the height of the nodes inD establishes the converse. ⊣
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It remains to show that for alld ∈ V (D) there is a linear ordering⊏ of the successors
d satisfying the ordering condition required by the definition of Kelly-decompositions. For
successorsv 6= v′ of d definev ⊏ v′ if v′ ⊳ v, that is,⊏ is the inverse ordering of⊳.

Let d1, . . . , dm be the successors ofd ordered by⊏. We claim that for alli ∈ {1, . . . ,m},

Wdi
⊆ Bd ∪Wd ∪

⋃

j<i

B≥dj
.

If v ∈ Bd there is nothing to show. Ifd ⊳ v thenv ∈ Wd asdi ⊳ d is reachable fromd and
thereforeWdi

∩ {x : dE x} = supp
⊳
(di)∩ {x : dE x} ⊆ supp

⊳
(d)∩ {x : dE x} = Wd ∩ {x :

d E x}. Finally, supposev ⊳ d. But then,v ∈ B≥d and hencev ∈ B≥dj
for some1 ≤ j ≤ m.

By definition of support sets,v /∈ B≥di
anddi ⊳ v. But then,v /∈ B≥dj

for all j ⊐ i, that is,
j ⊳ i, as thendj ⊳ v and by construction,w ⊳ dj for all w ∈ B≥dj

. Hence,v ∈ B≥dl
for some

dl ⊲ di. This completes the proof of the theorem. ⊓⊔
The proof of Theorem 7.11 is constructive in that given an elimination ordering of width

k − 1 we construct a Kelly-decomposition of widthk, and conversely. In fact, the proofs
establish a slightly stronger statement.

Corollary 7.12. Every digraphG of Kelly-widthk has a Kelly-decompositionD = (D,B,W)
of widthk such that for alld ∈ V (D):

• |Bd| = 1,

• Wd is the minimal set which guardsB≥d, and

• Every vertexv ∈ B≥d is reachable inG \Wd from the uniquew ∈ Bd.

Further, ifG is strongly connected, thenD has only one root.

We call such a decompositionspecial.
Just as with the cops and visible robber game, it is easy to seethat the cops and inert robber

game satisfies the properties introduced in Section 5.4. Thecharacterization of Kelly-width by
such graph searching games implies that Kelly-width is wellbehaved under important structural
relations. The proofs of the following results are similar to those presented in Section 6.3.

Lemma 7.13.Let(D,B,W) be a Kelly-decomposition of a digraphG, and letG ′ be a subgraph
of G. (D,B|G′ ,W|G′) whereB|G′ := (Bd ∩ V (G ′))d∈V (D) andW|G′ := (Wd ∩ V (G ′))d∈V (D) is
a Kelly-decomposition ofG ′.
Corollary 7.14. Let G and G ′ be directed graphs such thatG ′ is a subgraph ofG. Then
Kelly-width(G ′) ≤ Kelly-width(G).
Lemma 7.15.LetG be a directed graph andKn the complete graph onn vertices. Kelly-width(G•
Kn) = n · Kelly-width(G).
Lemma 7.16.LetG be a directed union of the digraphsG1 andG2. Then

Kelly-width(G) = max{Kelly-width(G1), Kelly-width(G2)}.

We observe that from this last result it follows that the Kelly-width of a directed graph is the
maximum Kelly-width of all its strongly connected components.
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7.3 Algorithmic aspects of Kelly-width

7.3.1 Computing Kelly-decompositions

In this section we mention several algorithms for computingKelly-width and Kelly-decompositions.
The proofs of Theorems 7.9 and 7.11 show that Kelly-decompositions can efficiently be con-
structed from directed elimination orderings or monotone winning strategies, so we concern
ourselves with the problem of finding any of the equivalent characterizations.

In a recent paper Bodlaender et al. [BFK+06] study exact algorithms for computing the
(undirected) tree-width of a graph. Their algorithms are based on dynamic programming to
compute an elimination ordering of the graph. The algorithms translate easily to directed elim-
ination orderings and can therefore be used to compute Kelly-width, giving us the following
theorem:

Theorem 7.17.The Kelly-width of a graph withn vertices andm edges can be determined in

• O
(
(n + m) · 2n

)
time andO

(
n · 2n

)
space, or

• O
(
(n + m) · 4n

)
time andO(n2) space.

Proof. The algorithms we require for these bounds are presented as Algorithm 7.1 and Al-
gorithm 7.2 respectively. Lemmas 7.18 and 7.20 prove that these algorithms are correct, and
Lemmas 7.19 and 7.21 establish the running times and space requirements. ⊓⊔

Algorithm 7.1 KELLY-WIDTH-DP(G)
let KW (∅) = 0
for k = 1 to |V (G)| do

for eachS ∈ [V (G)]k do
for eachv ∈ S do

Compute suppS(v) := Nout(ReachS(v)) ∪ {v}
let KW (S) = minv∈S max{KW (S \ {v}), |suppS(v)|}

return KW (V (G))

Lemma 7.18.For any digraphG, KELLY-WIDTH-DP(G) outputs the Kelly-width ofG.

Proof. We observe that for a directed elimination ordering⊳ = (v1, . . . , vn), supp
⊳
(vi) is not

dependent on the order of the vertices{v1, . . . , vi−1}. The algorithm uses this observation to
reduce the number of possible orderings which need to be considered fromn! to 2n. It is easily
seen that|suppS(v)| is v together with the support set ofv in any directed elimination ordering
wherev is preceded by some ordering of the remaining elements ofS. Thusmax{KW (S \
{v}), |suppS(v)|} is one more than the minimal width of a partial directed elimination ordering
on S wherev is the last vertex eliminated. It follows thatKW (S) returns one more than the
minimal width of a partial directed elimination ordering onS, and thusKW (V (G)) returns the
Kelly-width of G. ⊓⊔

Lemma 7.19.LetG be a digraph withn vertices andm edges.KELLY-WIDTH-DP(G) requires
at mostO

(
(n + m) · 2n

)
time andO

(
n · 2n

)
space.
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Proof. For a setS ⊆ V (G) and a vertexv ∈ V (G), it is readily seen thatReachS(v) can
be computed with a depth-first search fromv. Since such a search can be executed in time
O(n+m) [CLR96], it follows that suppS(v) can be computed in timeO(n+m). The innermost
for loop is executed once for eachS ⊆ V (G), and loops|S| times. So if each value forKW (S)
is stored as it is computed so that its value can be found in constant time, the total running time
for the algorithm isO(n + m)

∑
S⊆V (G) O(|S|) = O

(
(n + m) · 2n

)
. ⊓⊔

Algorithm 7.2 KELLY-WIDTH-REC(G, L, S)

if S = {v} for somev then
return suppL(v)

let Opt =∞
for eachS ′ ⊆ S with |S ′| = ⌊|S|/2⌋ do

Computew1 = KELLY-WIDTH-REC(G, L, S ′)
Computew2 = KELLY-WIDTH-REC(G, L ∪ S ′, S \ S ′)
let Opt = min

{
Opt, max{w1, w2}

}

return Opt

Lemma 7.20. For any digraphG, KELLY-WIDTH-REC(G, ∅, V (G)) outputs the Kelly-width of
G.

Proof. We prove by induction on|S| that KELLY-WIDTH-REC(G, L, S) returns one more than
the minimal width of a partial directed elimination ordering onL∪S where the first|L| vertices
are elements ofL. From our observations regarding suppL(v) in the proof of Lemma 7.18, we
see this is true for|S| = 1. Now suppose it is true for|S| ≤ s, we show that it is true for all
S with |S| ≤ 2s. Consider a single execution of thefor loop. Since|S ′| = ⌊|S|/2⌋, it follows
by the induction hypothesis thatw1 is one more than the minimal width of a partial directed
elimination ordering onL∪ S ′ where the first|L| elements are fromL andw2 is one more than
the minimal width of a partial directed elimination ordering onL ∪ S where the first|L|+ |S ′|
elements are fromL ∪ S ′. Thus, the maximum ofw1 andw2 is one more than the minimal
width of a partial directed elimination ordering onL ∪ S where the first|L| elements are from
L, and the next|S ′| elements are fromS ′. Opt stores the minimum of all these maxima, over all
subsetsS ′ with |S ′| = ⌊|S|/2⌋. As the minimal width of a partial directed elimination ordering
of L∪S where the first|L| elements are fromL must be the minimal width of a partial directed
elimination ordering ofL ∪ S where the first|L| elements are fromL and the next⌊|S|/2⌋
elements are fromS ′ for someS ′ ⊆ S, it follows that Opt stores the required value. Thus
KELLY-WIDTH-REC(G, ∅, V (G)) returns the Kelly-width ofG. ⊓⊔

Lemma 7.21.LetG be a directed graph withn vertices andm edges. ThenKELLY-WIDTH-REC(G, ∅, V (G))
runs inO

(
(n + m) · 4n

)
time andO(n2) space.

Proof. Let T (s) be the time required to compute KELLY-WIDTH-REC(G, L, S) when|S| = s.
We prove by induction ons that T (s) = O

(
(n + m) · 4s

)
time. If s = 1, as we saw in

Lemma 7.21, suppL(v) can be computed inO(n + m) time, so the assumption holds for this
case. Fors > 1, the algorithm runs in time2

(
s

s/2

)
T (s/2). Using asymptotic approximations

of Catalan numbers [GKP98],
(
2n
n

)
∈ O(4n), soT (s) = O(4s/2)T (s/2) = O

(
(n + m) · 4s

)
.

The space requirement follows from the observation that at each stage of the recursion we need
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O(n) space to store the current subsetS ′ of S and the values we have computed. Since the
recursion tree has maximum height⌈log |S|⌉ ≤ n, we obtain the space bound ofO(n2). ⊓⊔

For a givenk, the problem whether a digraphG has Kelly-width≤ k is decided in exponen-
tial time with the above algorithms. As the minimization problem is NP-complete (it generalizes
the NP-complete problem of deciding the tree-width of an undirected graph), we cannot expect
polynomial time algorithms to exist. However, the exact complexity of determining if a digraph
has Kelly-width≤ k for fixedk is currently unknown. Clearly a digraph has Kelly-width equal
to 1 if, and only if, it is acyclic, and recently Meister, Telle and Vatshelle [MTV07] exhibited
a polynomial time algorithm for determining if a digraph hasKelly-width 2. So fork ≤ 2 the
problem can be solved in polynomial time. Fork > 2 it is an open problem.

Open problem 7.22.For a fixedk > 2, what is the complexity of the following problem: Given
a digraphG doesG have Kelly-width≤ k?

It seems plausible that, as in the case of DAG-width, studying strategies in the inert robber
game will lead to a polynomial time algorithm whenk is fixed.

7.3.2 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of Kelly-decompositions, including a general
scheme that can be used to construct algorithms based on a decomposition. We assume that a
Kelly-decomposition (or even an elimination ordering) hasbeen provided or pre-computed. We
give an example algorithm based on this to compute the winnerof a parity game, which runs in
polynomial time on graphs of bounded Kelly-width. As the algorithm is similar to the algorithm
of the previous chapter, we outline the major difference between the two.

Dynamic programming algorithms using Kelly-decompositions follow a pattern similar to
algorithms that use tree-decompositions and DAG-decompositions. Starting with a special
Kelly-decomposition(D,B,W) and then working bottom up to compute for each noded ∈
V (D) a data set containing information on the setB≥d :=

⋃
d′�d Bd. The general pattern is

described in Algorithm 7.3.

Algorithm 7.3 Dynamic programming using a Kelly-decomposition
Given a special Kelly-decomposition(D,B,W):

Leaves:Compute the data set forBd for all leavesd.

Combine: If d ∈ V (D) is an inner node with successorsd1, . . . , dm ordered by the or-
dering guaranteed by the Kelly-decomposition (we observe that such an ordering can
be computed easily with a greedy algorithm), combine the data sets computed for
B≥d1

, . . . , B≥dm
to a data set for the union

⋃m
i=1 B≥di

.

Update: Update the data set computed in the previous step so that the new vertexu with Bd =
{u} is taken into account. Usually, the vertexu will have been part of at least some guard
setsWdi

.

Expand: Finally, expand the data set to include guards inWd \
⋃

i Wdi
and also paths starting

atu.
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We illustrate this pattern by briefly presenting an algorithm for computing the winner of
a parity game. The full algorithm can be found in [HK07]. The algorithm is similar to
the algorithm based on DAG-decompositions, however the separation of guard sets in Kelly-
decompositions makes the presentation more straightforward. As with DAG-decompositions,
we define a Kelly-decomposition of an arenaA as a Kelly-decomposition of the underlying
directed graph(V (A), E(A)).

Theorem 7.23.For anyk, given a parity game(A, χ) and a Kelly-decomposition ofA of width
≤ k, determining if Player 0 has a winning strategy fromvI(A) can be computed in polynomial
time.

To prove the theorem, we first need some preparation. For the rest of this section fix a parity
game(A, χ) whereχ : V (A) → P. We assume that the maximal out-degree of any vertex in
V (A) is 2. Using the inert robber game, it is straightforward to show that the graph resulting
from the modification described in Theorem 2.59 has Kelly-width at most one more than the
original graph.

We recall from the proof of Theorem 6.34 the definitions of resultσ(U, v) and RESULT(U, v)
for a (not necessarily memoryless) strategyσ for Player 0, a subset of verticesU ⊆ V (A)
and a vertexv ∈ V (A). We show how, for a fixedk and given a special Kelly-decomposition
(D,B,W) of A of width k, to compute RESULT(B≥d, v) for eachd ∈ V (D) andv ∈ B≥d in
polynomial time. As with Theorem 6.34 we observe that asB≥d has at mostk guards (Wd),
|RESULT(B≥d, v)| ≤ (n + 1)k + 2.

The dynamic programming algorithm can then be presented as follows.

Leaves: It follows with the same argument as theLeavesstep in the proof of Theorem 6.34,
that for any leafd ∈ V (D), and vertexv ∈ Bd the set RESULT(Bd, v) can be computed
in constant time.

Combine: Let d be an inner node ofD with successorsd1, . . . , dm ordered according to the
ordering guaranteed by (K3). For1 ≤ i ≤ m, let Bi :=

⋃
j≤i B≥di

and letB := Bm =⋃
1≤i≤m B≥di

. We aim to compute the set RESULT(B, u) for eachu ∈ B. We observe
that if i < j andu ∈ B≥di

then every path fromu to a vertexv ∈ B≥dj
\ B≥di

must go
throughWd. Hence, ifu ∈ B≥di

then RESULT(B, u) = RESULT(Bi, u). We compute
for eachi ≤ m and u ∈ Bi the set RESULT(Bi, u) by induction oni. For i = 1,
RESULT(B1, u) = RESULT(d1, u). Let i > 1 and letu ∈ Bi \Bi−1.

To compute RESULT(Bi, u), we do the following. Letr = resultσ(B≥di
, u) ∈ RESULT(B≥di

, u)
be a set of results against a strategyσ for Player0. The result setr gives us the set of
verticesv ∈ Wdi

to which Player1 can force the play againstσ and also the best priority
he can achieve in doing so. Now, ifv ∈ Wdi

∩ Bi−1 is a guard contained inBi−1 then
once the play has reachedv it can never return toBi \Bi−1 and continues inBi−1 until it
reaches a vertex inWd. Hence, once the play has reachedv, we can determine the results
of possible strategies inBi−1 from RESULT(Bi−1, v).

This suggests the following algorithm for computing RESULT(Bi, u). For eachr ∈
RESULT(B≥di

, u) we compute a setRr of sets as follows. LetR := {(w, p) ∈ r :
w ∈ Wdi

\ Wd} be the set of outcomes inr for plays which end in vertices inBi−1.
Let (w1, p1), . . . , (ws, ps) list the elements ofR. For each tupleρ = (r1, . . . , rs) with
rj ∈ RESULT(Bi−1, wj) Let Rρ be defined as follows. For each(v, p) ∈ r \ R add(v, p)



7.3. ALGORITHMIC ASPECTS OF KELLY-WIDTH 135

to Rρ. If (v, q) ∈ rj add (v, max{pj, q}) to Rρ. Then, add the setRρ to Rr. Then,
RESULT(Bi, u) contains for eachRρ ∈ Rr the set ofE-minimal pairs inRρ.

Update and Expand:We now consider how to update the data structure to take account of paths
that include vertices enteringB≥d. The argument is similar to theExpandstep of the proof
of Theorem 6.34, so we refer the reader there for the details.

We observe that each step of the above algorithm, and hence the entire algorithm, runs in poly-
nomial time. This completes the outline of the proof of Theorem 7.23.

7.3.3 Asymmetric matrix factorization

We saw in Section 7.1.2 that the idea of vertex elimination was motivated by the practical ap-
plication of solving systems of linear equations. Such systems are more commonly represented
as matrix equations:Mx = b, with the goal being to find a solution for then × 1 vector of
variables,x, given anm × n matrix M , and anm × 1 vectorb. A straightforward solution to
such an equation is to findM−1, the inverse ofM , to obtainx = M−1b, however a more com-
mon approach is to factorizeM in such a way that solutions may be easily computed. Cholesky
decompositions and LU-factorizations are two such examples of this. IfM is anm× n matrix,
anLU-factorization(or LU-decomposition) of M is anm × m lower triangular matrixL and
anm × n upper triangular matrixU such thatM = LU . If, in additionM is symmetric and
positive definite, then there is an LU-factorization ofM whereU = LT . Such a decomposition
is called aCholesky decomposition. When a matrix has an LU-factorization we can solve the
equationMx = b as follows: first we use forward substitution to solveLy = b, and then
backward substitution to solveUx = y.

The elimination process we described in Section 7.1.2, alsoknown as Gaussian elimina-
tion, is one of the most common methods for computing an LU-factorization or a Cholesky
decomposition. More precisely, Gaussian elimination is the process of transforming a matrix
into an upper triangular matrix via row operations: adding amultiple of one row to another
(including itself), or interchanging two rows (also known as pivoting). The resulting upper
triangular matrix is theU factor of a LU-factorization, and the row operations can be repre-
sented by a sequence of transformation matrices, the product of which form theL factor of the
LU-factorization. If the original matrix was symmetric andpositive definite, this process will
generate a Cholesky decomposition.

Since Gaussian elimination can be used to compute LU-factorizations and Cholesky de-
compositions, it is not surprising that elimination orderings and two associated structures we
introduce here, elimination trees and elimination DAGs, are useful for investigating the com-
plexity of computing these matrix decompositions. We first define the particular relationship
between graphs and matrices that we are interested in.

Definition 7.24. Let M = (aij) be a squaren× n matrix. We defineGM as the directed graph
with V (GM) = {v1, . . . , vn}, and fori 6= j, (vi, vj) ∈ E(GM) if, and only if, aij 6= 0. We also
define the elimination ordering⊳M as⊳M := (v1, . . . , vn).

WhenM is a symmetric matrix, we viewGM as an undirected graph rather than a bidirected
graph.

One structure that is particularly useful for analysing symmetric matrix factorization is the
elimination tree.
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Definition 7.25(Elimination tree). LetG be an undirected graph, and⊳ an elimination ordering
for G. The elimination treedefined by⊳ is a pair(T , λ) whereT is a rooted tree andλ :
V (T ) → V (G) is a bijection such that ifs ∈ V (T ) is the parent oft ∈ V (T ), thenλ(s) =
min⊳

(
supp

⊳
(λ(t))

)
.

Liu [Liu90] observed that elimination trees can be used to investigate many aspects of
Cholesky decompositions, for example the row and column structure of the Cholesky factors
can be extracted directly from an elimination tree. Anotherobservation, from Bodlaender et
al. [BGHK95], is that the height of an elimination tree gives the parallel time required to com-
pute a Cholesky decomposition of a symmetric matrix using Gaussian elimination.

In [GL93], Gilbert and Liu introduced a generalization of elimination trees, called elimina-
tion DAGs, which can be similarly used to analyse factorizations in the asymmetric case. We
recall that atransitive reductionof a directed graph is a minimal graph with the same transitive
closure and we observe that an acyclic graph has a unique transitive closure.

Definition 7.26 (Upper and Lower elimination DAGs [GL93]). Let M be a square matrix that
can be decomposed asM = LU without pivoting. Theupper (lower) elimination DAGis the
transitive reduction of the directed graphGU (GL respectively).

Gilbert and Liu [GL93] observed that elimination DAGs enjoymany properties similar to
elimination trees. For instance, they are an efficient storage scheme for sparse matrices, and
an upper and lower pair of elimination DAGs are sufficient to capture the path structure of a
graph: if there is a directed path fromu to v in the graph, then there is a vertexw such that
there is a path fromu to w in the upper elimination DAG, and a path fromw to v in the lower
elimination DAG. They also showed that when the matrix is symmetric, the upper elimination
DAG is isomorphic to the elimination tree, as is the lower elimination DAG when its edges are
reversed.

The Kelly-decomposition constructed in the proof of Theorem 7.11 captures the upper and
lower elimination DAGs in a very direct manner.

Theorem 7.27.Let M be a square matrix that can be decomposed asM = LU without piv-
oting. Let (D,B,W) be the Kelly-decomposition ofGM obtained by applying the proof of
Theorem 7.11 with elimination order⊳M . Then

(a) (D,B) is isomorphic to the lower elimination DAG, and

(b) GU = (V (GM), {(v, w) : w ∈ Wv}), thus the upper elimination DAG is isomorphic to the
transitive reduction of the relation{(v, w) : w ∈ Wv}.

Proof. For v ∈ V (GM), let Xv = {v} ∪ {w ∈ V (GM) : w ⊳M v}. First, from Theorem 1
of [RT78]:

(E(GL))TC = {(v, w) : w ⊳M v, and there is a path fromv to w in GM [Xv]},

whereRTC denotes the transitive closure ofR. We observe that in the construction of the Kelly-
decomposition,E(D) is the transitive reduction of the right-hand side. Since, by construction,
elements ofB are singletons, we can viewB as a bijection betweenV (D) andV (G), and the
first result follows. Secondly, from Theorem 4.6 of [GL93], we have

E(GU) = {(v, w) : v ⊳M w, and there is av′ ∈ ReachXv
(v) with (v′, w) ∈ E(GM)}.
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The second result then follows from Lemma 7.5, which shows that {(v, w) : w ∈ Wv} =
{(v, w) : w ∈ supp

⊳M
(v)} is equivalent to the right-hand side. ⊓⊔

We can use the results of [GL93] to make the following observation when we construct
Kelly-decompositions on undirected graphs.

Corollary 7.28. Let G be an undirected graph,⊳ an elimination order onG and (D,B,W)
the Kelly-decomposition ofG (considered as a bidirected graph) obtained by applying theproof
of Theorem 7.11 with elimination order⊳. ThenD is a tree, and more precisely,(Dop,B) is
isomorphic to the elimination tree associated with the (undirected) elimination order⊳.

7.4 Comparing Kelly-width and DAG-width

In this section we use graph searching games to compare Kelly-width to DAG-width and di-
rected tree-width. In the undirected case, all the games we consider require the same number
of searchers, however we show that in the directed case thereare graphs on which all three
measures differ by an arbitrary amount. We show that Kelly-width bounds directed tree-width
within a constant factor, but the converse fails as there areclasses of graphs of bounded directed
tree-width and unbounded Kelly-width. We also provide evidence to suggest that Kelly-width
and DAG-width are within a constant factor of each other.

We recall from Definition 6.1 the cops and robber game used to characterize DAG-width.
For convenience, we will refer to this as the visible robber game. In Example 5.2.1 we discussed
another cops and robber game that partially characterizes directed tree-width: the strongly con-
nected visible robber game. The following theorem summarizes Theorems 6.15 and Lemma 5.41:

Theorem 7.29.LetG be a digraph.

1. G has DAG-widthk if, and only if,k cops have a monotone winning strategy in the visible
robber game onG.

2. G has directed tree-width≤ 3k + 1 or k cops do not have a winning strategy in the
strongly connected visible robber game onG.

For the undirected case, the following proposition sums up results from [DKT97] and
[ST93].

Proposition 7.30.On any undirected graphG, the following are equivalent

1. k cops have a winning strategy in the visible robber game.

2. k cops have a robber-monotone and cop-monotone winning strategy in the visible robber
game.

3. k cops have a winning strategy in the inert robber game.

4. k cops have a robber monotone winning strategy in the inert robber game.

5. The tree-width ofG is at mostk − 1.

It follows from these results that Kelly-width is a generalization of tree-width in the follow-
ing sense.
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Corollary 7.31. Let G be an undirected graph.G has tree-widthk if, and only if,
←→G has

Kelly-widthk.

On general directed graphs, the situation is more complicated. As we saw in Theorem 6.11,
monotonicity is not sufficient for the visible robber game. Kreutzer and Ordyniak [KO07] have
also recently shown that monotonicity is not sufficient for the inert robber game.

Theorem 7.32([KO07]). For anym ∈ N, there exists a graph for which6m cops can capture
an invisible, inert robber but7m cops are required to do so with a robber-monotone strategy.

Of course, as with Theorem 6.11, this does not preclude the possibility that the number of
cops required for monotonicity is bounded by some factor of the number of cops required with
any strategy.

Open problem 7.33.Does there exist a functionf : ω → ω such that for all digraphsG, if k
cops can capture an inert robber onG thenf(k) cops can capture the robber with a robber-
monotone strategy?

Before we compare Kelly-width with directed tree-width and DAG-width, we first observe
that Proposition 7.2 allows us to compare Kelly-width and directed path-width. As we men-
tioned previously, Baŕat [Bar05] observed that the directed path-width of a digraphwas one less
than the minimum number of cops required to capture an invisible robber with a cop-monotone
strategy. Thus, using the observation that a cop-monotone strategy in the cops and inert robber
game is also robber-monotone, and the example from Proposition 6.39, we obtain the following
relationship between Kelly-width and directed path-width.

Proposition 7.34.

(i) If a directed graphG has directed path-widthk, it has Kelly-width at mostk + 1.

(ii) There exists a family of graphs with arbitrarily large directed path-width and Kelly-width
2.

Our next comparison result shows that a robber-monotone winning strategy in the inert
robber game can be translated to a (not necessarily monotone) winning strategy in the visible
robber game.

Theorem 7.35.LetG be a directed graph. Ifk cops can catch an inert robber with a robber-
monotone strategy onG, then2k − 1 cops can catch a visible robber onG.

Proof. Supposek cops have a robber-monotone winning strategy in the inert robber game on a
digraphG. By Theorem 7.9 this implies that there is a directed elimination ordering⊳ onG of
width≤ k− 1. We use the elimination ordering to describe the winning strategy of2k− 1 cops
against a visible robber, thereby establishing the result.

The cops are split into two groups,k cops called theblockersandk − 1 cops called the
chasers. Similarly, the cop moves are split in two phases, a blockingmove and a chasing phase.

In the first move,k cops are placed on thek highest elements with respect to⊳. These
cops form the set of blockers. Let the robber choose some elementv. This concludes the first
(blocking) move. We observe:

If u is the⊳-smallest vertex occupied by a blocker, then every directedpath
from v to a vertex greater thanu has at least one vertex occupied by a cop.

(∗)
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This invariant is maintained by the blocking cops during theplay. Now suppose afterr rounds
have been played, the robber occupies vertexv and the blockers occupy vertices inX so that
the invariant (∗) is preserved. Letu be the⊳-smallest element inX and letC1, . . . , Cs be the
set of strongly connected components ofG[{u′ : u′ ⊳ u}]. Further, let⊏ be a linear ordering
on C := {C1, . . . , Cs} so thatCi ⊏ Cj if, and only if, the⊳-maximal element inCi is ⊳-
smaller than the⊳-maximal element ofCj. Now the cops move as follows. LetC ∈ C be the
component such thatv ∈ C and letw ∈ C be the⊳-maximal element inC. The cops place the
k − 1 cops not currently on the graph on supp

⊳
(w). These cops are the chasers. As the chasers

approach, the robber has two options. Either he stays withinC or he escapes to a vertex in a
different strongly connected componentC ′. If the robber runs to a vertexx ∈ C or x ∈ C ′

for someC ′ ⊏ C then after the chasers land onS := supp
⊳
(w) there is no path fromx to a

nodeu such thatu⊲ u′ for the⊳-minimal vertexu′ in S. Hence, the chasers become blockers
and the chasing phase is completed. Otherwise, if the robberescapes to aC ′ with C ⊏ C ′,
then the chasers repeat the procedure and move to supp

⊳
(w′) for the⊳-maximal element in

C ′. However, as the robber always escapes to a⊏-larger strongly connected component and
also can not bypass the blockers, this chasing phase must endafter finitely many steps with the
robber being on a vertexv ∈ C for some componentC and the chasers being on supp

⊳
(w)

for the⊳-maximal element inC. At this point the chasers become blockers. One of the old
blockers is now placed onw and all others are removed from the board. The cop onw makes
sure that in each such step the robber space shrinks by at least one vertex. By construction, the
invariant in (∗) is maintained. Further, as the robber space shrinks by at least one after every
chasing-phase, the robber is eventually caught by the cops. ⊓⊔

An immediate consequence of this is that the Kelly-width of agraph bounds the directed
tree-width of the graph.

Corollary 7.36. LetG be a directed graph with Kelly-widthk. ThenG has directed tree-width
≤ 6k − 2.

Since it is not known whether the number of cops required for awinning strategy in the
visible robber game bounds the number of cops required for a monotone winning strategy, we
cannot obtain a similar bound for DAG-width. We can, however, ask whether we can improve
the bound. That is, assuming thatk cops have a robber-monotone winning strategy against an
invisible, inert robber can we define a winning strategy for less than2k − 1 cops in the visible
robber game? Although it might be possible to improve the result, the next theorem shows that
we cannot do better than with4

3
k cops.

Theorem 7.37.For everym ∈ N, there is a graph such that3m cops have a robber-monotone
winning strategy in the inert robber game but no fewer than4m cops can catch a mobile visible
robber.

Proof. Consider the graphG in Figure 7.1. We show that onG, 3 cops do not have a (non-
monotone winning) strategy to catch a visible robber, however 4 cops do. Consider the par-
tition of V (G), H =

{
{v1, v2, v4}, {v3}, {v5}, {v6}

}
. The strategy for the robber against3

cops is to move to any element ofH which is not occupied by a cop. As long as the rob-
ber moves to one of{v1, v4} when the cops occupy{v3, v5, v6}, it will always be possible for
him to move to such an element when the cops move. However4 cops can capture a visi-
ble robber with a monotone strategy by occupying the following sequence of sets of vertices:
{v3, v4, v5, v6}, {v2, v3, v5, v6}, {v1, v2, v3}.
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Figure 7.1: GraphG showing the difference between DAG-width and inert robber game

On the other hand,3 cops suffice to capture an invisible, inert robber with a robber-monotone
strategy by occupying the following sequence of sets of vertices: {v4, v5, v6}, {v3, v5, v6},
{v2, v5, v6}, {v2, v3}, {v1, v2, v3}. The result follows by taking the lexicographic product of
this graph with the complete graph onm vertices. ⊓⊔

Since4 cops can capture a visible robber with a monotone strategy onthe graph in the
previous proof, we have the following:

Corollary 7.38. For all m ∈ N there are graphs of DAG-width4m and Kelly-width3m.

Despite this4
3

bound, for graphs of small Kelly-width we can do better.

Theorem 7.39.For k = 1 or 2, if G has Kelly-widthk, G has DAG-widthk.

Proof. If G has Kelly-width1, then it must be acyclic, as all guard sets are empty. Thus it has
DAG-width 1. If G has Kelly-width2, then it has an elimination ordering⊳ = (v1, v2, . . . , vn)
of width1. A cop-monotone strategy for two cops against a visible robber is as follows. Initially,
let i = n and place one cop onvi. At this point, the robber is restricted to{v1, . . . , vi−1}. Let
j < i be the maximal index such that the robber can reachvj. Place a cop onvj. After the cop
has landed, we claim that the robber is unable to reach bothvi andvj. For otherwise, letr be
the maximal index such that the robber can reachvr (with cops onvi andvj) and fromvr can
reachvi (with a cop onvj) andvj (with a cop onvi). By the maximality ofj, r < j. Let s > r
be the first index greater thanr which occurs on a path fromvr to vi that does not go through
vj, andt > r be the first index greater thanr which occurs on a path fromvr to vj that does
not go throughvi. Then from the maximality ofr, s 6= t. Furthermore,{vs, vt} ⊆ supp

⊳
(r),

so |supp
⊳
(vr)| > 1, contradicting the width of the ordering. So we can remove the cop from

whichever vertex the robber can no longer reach without changing the robber space, and either
the robber is now restricted to{v1, . . . , vj} or the maximal index which the robber can reach is
smaller. Clearly, this is a monotone winning strategy for twocops. ⊓⊔

We now turn to the converse problem, what can be said about theKelly-width of graphs
given their directed tree-width or DAG-width?

Firstly we observe the following analogue of Proposition 6.7 for Kelly-width.

Proposition 7.40.For anyj, k with2 ≤ j < k, there exists a graphT j
k such that Kelly-width(T j

k ) =
j and Kelly-width((T j

k )op) = k.
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Proof. Consider the graphT j
k from Proposition 6.7. In the proof of Proposition 6.7, the strate-

gies described for the cops and the robber are also winning strategies in the inert robber game.2

⊓⊔

It follows, using the same argument of Proposition 6.37 thatthere are families of graphs of
bounded directed tree-width and unbounded Kelly-width.

Corollary 7.41. There exist families of digraphs with directed tree-width2 and unbounded
Kelly-width.

Our final result is a step towards relating Kelly-width to DAG-width by showing how to
translate a monotone strategy in the visible robber game to a(not necessarily monotone) strategy
in the inert robber game.

Theorem 7.42. If G has DAG-width≤ k, thenk cops have a winning strategy in the inert
robber game.

Proof. Given a DAG-decomposition(D,X ) of G of width k, the strategy fork cops against an
invisible, inert robber is to follow a depth-first search on the decomposition. More precisely, we
assume the decomposition has a single rootr, and we have an empty stack of nodes ofD.

1. Initially, place the cops onXr and pushr onto the stack.

2. At this point we assumed is on the top of the stack and the cops are onXd. We next
“process” the successors ofd in turn. To process a successord′ of d, we remove all cops
not onXd ∩Xd′ , place cops onXd′ , pushd′ onto the stack, and return to step2. Note that
a node may be processed more than once.

3. Once all the successors of a node have been processed, we pop the node off the stack and
if the stack is non-empty, return to step2.

Because the depth-first search covers all nodes of the DAG and hence all vertices of the graph
are eventually occupied by a cop, the robber will be forced tomove at some point. Due to the
guarding condition for DAG-decompositions, when the robber is forced to move this strategy
will always force the robber into a smaller region and eventually capture him. ⊓⊔

Again we observe that it is unknown if, in the inert robber game, the number of cops re-
quired to capture the robber with a robber-monotone strategy is bounded by the number of cops
required to capture him with any strategy. So this result does not allow us to directly compare
Kelly-width and DAG-width. However, we strongly believe that the number of cops required
for monotone strategies is bounded in both the inert robber game and the visible robber game,
giving us the following conjecture:

Conjecture 7.43. The Kelly-width and DAG-width of a digraph lie within constant factors of
one another.

2Indeed, the winning strategy for the robber is winning even if the robber is visible and inert.



Chapter 8

Havens, Brambles and Minors for
Directed Connectivity

In this chapter we present some preliminary work towards a structure theory for directed graphs
based on directed connectivity. The aim of such a structure theory would be to obtain general-
izations of some of the significant results for undirected graphs, for example finding a directed
analogue of the Graph Minor Theorem. However, as we show, even determining some of the
basic building blocks of such a structure theory leads to some interesting open problems. We
work on the assumption that DAG-width, Kelly-width and the non-monotone versions of their
cops and robber games are all approximately the same and can therefore be used to measure
the directed connectivity of a digraph. Then, using the premise that DAG-width or Kelly-width
measures the complexity of a graph, we consider the following two questions: What structural
features are present in directed graphs which are “complex”?; and what relation on directed
graphs indicates “structural simplification”?

As we observed with Theorem 4.7 the existence of a bramble or ahaven in an undirected
graph indicates that the tree-width is not going to be small.Similarly, Theorems 4.7 and 4.11
show that the existence of the natural generalizations of havens and brambles imply that the
directed tree-width is not going to be small. So in order to address the first question, we con-
sider generalizations of havens and brambles which correspond to DAG-width and Kelly-width.
Although we are unable to show full equivalence as with Theorems 4.7 and 4.11, we can show,
via cops and robber games, that they do provide obstructionsfor DAG-width and Kelly-width.
That is, their existence in a graph places restrictions on the DAG-width or Kelly-width of that
graph.

Towards finding a relation which indicates structural simplification, we consider the prob-
lem of extending the minor relation to directed graphs. As wementioned in Chapter 4, the
minor relation is an important relation in the structural theory of undirected graphs as it indi-
cates whether one graph is structurally more simple than another. So having a minor relation
for directed graphs is the cornerstone of any digraph structure theory. We argue that the existing
definitions in the literature of minors for directed graphs are not sufficient, in the sense that a
structure theory based on them would not be able to produce similar results to those of undi-
rected graph structure theory. While it may be the case that there is no appropriate relation for
directed graphs, we provide some examples which may take theinvestigation further.

142



8.1. HAVENS AND BRAMBLES 143

8.1 Havens and brambles

The aim of this section is to define various structural properties which may lead to a minimax
theorem for DAG-width and Kelly-width, similar to Theorem 4.7. To achieve this, we introduce
some generalizations of havens and brambles and show how they relate to DAG-width and
Kelly-width. We recall from Chapter 4, the definitions and theorem that we wish to generalize:

Definition 4.5 (Haven). Let G be an undirected graph andk ∈ N. A haven of orderk in G is a
functionβ : [V (G)]<k → P(V (G)) such that for allX ⊆ V (G) with |X| < k:

(H1) β(X) is a non-empty connected component ofG \X, and

(H2) If Y ⊆ X, thenβ(Y ) ⊇ β(X).

Definition 4.6 (Bramble). LetG be an undirected graph. Abramblein G is a setB of connected
subsets ofV (G) such that for all pairsB,B′ ∈ B eitherB ∩ B′ 6= ∅, or there exists{u, v} ∈
E(G) with u ∈ B andv ∈ B′. Thewidth of a brambleB is the minimum size of a set which
has a non-empty intersection with every element ofB.

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width≥ k − 1

2. G has a haven of orderk.

3. G has a bramble of widthk.

We saw with Theorems 4.11 and 4.12, that the natural extension of these definitions to
directed graphs – replacing “connected components” with “strongly connected components” –
results in structural properties closely related to directed tree-width. In this section we introduce
some less obvious extensions that are closer to DAG-width and Kelly-width. One of the major
obstacles to finding such definitions, and the reason why the extensions we consider are less
obvious is that the definitions have to be dependent on edge direction. That is, a bramble
or haven of a graph should not necessarily be a bramble or haven of the graph obtained by
reversing the direction of the edges. The above definitions of haven and bramble do not have
obvious extensions which satisfy this property, however the definitions we introduce next are
dependent on edge direction.

Definition 8.1 (D-Haven). Let G be a directed graph andk ∈ N. A D-haven of orderk in G is
a functionβ : [V (G)]<k → P(V (G)) such that for allX ⊆ V (G) with |X| < k:

(DH1) β(X) is a non-empty subset ofV (G \X), and

(DH2) If Y ⊆ X thenβ(Y ) ⊇ β(X) and∀y ∈ β(Y ), β(X) ∩ Reachβ(Y )(y) 6= ∅.
As suggested by the nomenclature, and as we observed in Chapter 5, on undirected graphs

havens describe winning strategies for the robber in the cops and visible robber game. That
is, when the cops are onX, β(X) suggests the locations the robber should occupy to defeat
the cops. The analogous result for the game on directed graphs suggests that D-havens are the
“correct” extension of havens for DAG-width. More precisely,

Proposition 8.2. Let G be a directed graph. The robber can defeatk cops in the visible cops
and robber game onG if, and only if,G has a D-haven of orderk + 1.
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Proof. If G has a D-havenβ of orderk + 1, then the strategy for the robber is to remain in
β(X) whenever the cops are onX. The D-haven axioms guarantee that this is always possible.
More precisely, we define the following strategy for the robber: ρ(X,X ′, R) = ReachG\X′(r′)
for somer′ ∈ β(X ′) ∩ ReachG\(X∩X′)(r). We observe that at every position(X, r), r ∈ β(X)
and show that this implies that such a choice is always possible. SinceX ⊇ X ′ ∩X, it follows
from (DH2) thatr ∈ β(X ∩ X ′). Then, sinceX ′ ⊇ X ∩ X ′, β(X ′) ∩ Reachβ(X∩X′)(r) 6= ∅,
soρ is well defined. Finally, sinceρ(X,X ′, r) ∈ ReachG\(X∩X′)(r) by definition,ρ is a valid
strategy for the robber in the cops and visible robber game.

For the converse, suppose the robber has a winning strategy,ρ, againstk cops. Define, for
X ∈ [V (G)]≤k,

β(X) :=
⋃
{R : the robber wins from(X,R) playingρ}.

We show thatβ is a D-haven of orderk + 1. We observe thatρ(∅, X, V (G)) ⊆ β(X), so asρ is
a winning strategy,β(X) is non-empty for allX ∈ [V (G)]≤k. Thus (DH1) holds. For (DH2) we
observe from the definition of the cops and visible robber game that if the robber can win from
(X,R) then he can win from(Y,R) for all Y ⊆ X. Thus, ifY ⊆ X, thenβ(Y ) ⊇ β(X). ⊓⊔

Immediately from this result and Lemmas 6.18, 6.20 and 6.21,we observe that D-havens
behave as we expect under subgraphs, lexicographic product, and directed union. Also as a
consequence of Proposition 8.2, the existence of a D-haven in a digraph imposes a restriction
on the DAG-width of the graph.

Corollary 8.3. LetG be a digraph. IfG has a D-haven of widthk then the DAG-width ofG is
at leastk.

Since a D-haven corresponds to a winning strategy for the robber against any cop strategy
and DAG-width corresponds to monotone winning strategies,the converse of Corollary 8.3 is
equivalent to the monotonicity question for the cops and visible robber game: ifk cops have a
winning strategy, dok cops have a monotone winning strategy? As there are graphs where more
cops are required to capture the robber with a monotone strategy [KO07], we know that this does
not hold in general. However, a result similar to Theorem 4.11 would provide a solution to the
more general monotonicity problem posed in Open Problem 6.12.

Obdřzálek [Obd06] observed that the relaxation of connected components in (H1) to subsets
in (DH1) is necessary if we require havens to correspond to strategies for the robber. More
precisely, let us say that a D-haven,β, is connectedif it also satisfies:

(DH1′) β(X) is a non-empty weakly connected component ofG \X.

Proposition 8.4([Obd06]). There exists a directed graphG such that the robber can defeat2
cops in the cops and visible robber game onG, but there is no connected D-haven of order2 in
G.

The graph that illustrates this result is shown in Figure 8.1. It is difficult to define a notion
of haven that corresponds to the inert robber game for two reasons. First, because the motility
of the robber is dependent on the move of the cops, there may bea number of “responses” to a
given cop position in this game. So having a function defined only for sets of cop locations is not
going to be sufficient. Secondly, as we observed in Chapters 5 and 7, the cops and robber game
with an invisible robber is essentially a single player game. Thus there is only one strategy for
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Figure 8.1: Graph to show that D-havens may be disconnected

the robber and it is either winning or it is not. So having a function which dynamically suggests
a strategy for the robber is not going to be particularly interesting. A more practical approach
would be to identify the structural features which are present when the strategy for the robber
is winning. This leads us to the problem of extending the definition of brambles.

Before we introduce the extension of brambles we are interested in, we need to introduce
the concept of initial and terminal components.

Definition 8.5 (Initial and Terminal Component). Let G be a directed graph, andH a strongly
connected component ofG. H is aninitial componentif it is closed under predecessors. That
is, if v ∈ V (G) with (v, w) ∈ E(G) for somew ∈ V (H), thenv ∈ V (H). H is a terminal
componentif it is closed under successors. That is, ifv ∈ V (G) with (w, v) ∈ E(G) for some
w ∈ V (H), thenv ∈ V (H).

We denote by Init(G) the set of all vertices in initial components, and Term(G) the set of
all vertices in terminal components. For a subset of vertices B ⊆ V (G) we write Init(B) and
Term(B) for Init(G[B]) and Term(G[B]) respectively whenG is clear from the context.

Another way to view initial and terminal components are as the roots and leaves (respec-
tively) of the block graph ofG: the directed acyclic graph with the strongly connected compo-
nents ofG as vertices and an edge(C,C ′) if there is an edge inG from some vertex inC to
some vertex inC ′. With this interpretation it is straightforward to show that initial and termi-
nal components are well-behaved with respect to the structural relations for directed graphs we
consider important.

Lemma 8.6. LetG, G ′ andG ′′ be non-empty directed graphs andC ⊆ G an initial (terminal)
component ofG.

1. If G ′ is a subgraph ofG with C ∩ V (G ′) 6= ∅ then there is an initial (terminal) component
C ′ ⊆ G ′ such thatC ′ ⊆ C.

2. If G is a directed union ofG ′ andG ′′ thenC is either an initial (terminal) component of
G1 or an initial (terminal) component ofG2.

3. If G ′ is a directed union ofG andG ′′ (directed union ofG ′′ andG) thenC is an initial
(terminal) component ofG ′.

4. If either|C| ≥ 2 or G ′ is strongly connected, thenC•G ′ is an initial (terminal) component
of G • G ′.

5. If G = G ′ • G ′′ thenπ1(C) = {v : (v, w) ∈ C} is an initial (terminal) component ofG ′.

Definition 8.7 (Initial bramble). Let G be a directed graph. Aninitial bramble in G is a set
B of subsets ofV (G) such that for all pairsB,B′ ∈ B and for allx ∈ Init(B), there exists
y ∈ Init(B′) such thaty ∈ ReachB∪Init(B′)(x).
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Definition 8.8 (Terminal bramble). Let G be a directed graph. Aterminal bramblein G is a set
B of subsets ofV (G) such that for all pairsB,B′ ∈ B and for allx ∈ Term(B), there exists
y ∈ Term(B′) such thaty ∈ ReachTerm(B)∪B′(x).

Definition 8.9 (Bramble width). Let G be a directed graph andB an initial or terminal bramble
in G. Thewidth of B is the size of the smallest hitting set ofB. That is, the size of the minimal
X ⊆ V (G) such thatX ∩B 6= ∅ for all B ∈ B.

Although it would appear that initial and terminal bramblesare similar entities, we show
that there are graphs where the smallest width of an initial bramble differs from the smallest
width of a terminal bramble. It might also seem that, since aninitial component of a graphG is
a terminal component of the graphGop obtained by reversing the direction of the edges ofG, that
an initial bramble inG is a terminal bramble inGop. However, the ordering of the quantifiers
in each of the definitions means that this is not necessarily the case: an initial bramble inG
is, in Gop, a set of subsets such that for all pairsB,B′ and allx ∈ Term(Gop[B]), there exists
y ∈ Term(Gop[B′]) such thatx ∈ ReachGop[Term(B′)∪B](y). Before we show how initial and
terminal brambles differ, we show how they correspond to DAG-width and Kelly-width, and
establish some robustness results.

Lemma 8.10.LetG be a directed graph.

1. If G has an initial bramble of widthk then the robber can defeatk − 1 cops in the cops
and visible robber game.

2. If G has a terminal bramble of widthk then the robber can defeatk − 1 cops in the cops
and inert robber game.

Proof. 1: SupposeG has an initial brambleB of width k. Then, for any setX with |X| ≤ k−1
there existsBX ∈ B such thatBX ∩X = ∅. The strategy for the robber is to be on some vertex
in Init(BX) whenever the cops are located onX. It is clear from the definition of an initial
bramble that such a move is always possible. As the robber is able to do this forever, it follows
that this is a winning strategy for the visible robber against k − 1 cops.

2: Now supposeG has a terminal brambleB of width k. Again, for any setX with |X| ≤
k − 1 there existsBX ∈ B such thatBX ∩ X = ∅. The “strategy” for the robber is, when he
can move and when the cops are onX, to move to the first element of a strongly connected
component of Term(BX) that will be occupied by the cops. More precisely, we show that after
every cop move, there existsB ∈ B such that Term(B) is contaminated. Clearly this is true at
the beginning, as every vertex is contaminated. Now supposethe cops are moving fromX to
X ′ and for someB ∈ B and some terminal componentC of G[B], X ∩ C = ∅ and there exists
a contaminated vertexv ∈ X ′ ∩ C. As BX′ ∩X ′ = ∅, andC is a terminal component, the path
in Term(B) ∪BX′ from v to somew ∈ Term(BX′) is cop-free. ThusBX′ is now an element of
B such that Term(BX′) is contaminated. ⊓⊔

An immediate corollary from the game characterizations of DAG-width and Kelly-width is
that initial and terminal brambles provide obstructions for DAG-width and Kelly-width.

Corollary 8.11. LetG be a directed graph.

1. If G has an initial bramble of widthk thenG has DAG-width≥ k.
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2. If G has a terminal bramble of widthk thenG has Kelly-width≥ k.

Unfortunately, it is not known whether the converse to Lemma8.10 holds.
It is relatively straightforward to show that brambles behave manner to the cops and robber

games under various graph operations. For example a brambleof a graph is a bramble of any
supergraph, and the width of a bramble increases by an appropriate factor under lexicographic
products. This strongly suggests that the converse of Lemma8.10 does hold.

Conjecture 8.12.LetG be a directed graph.

1. If the robber can defeatk − 1 cops in the cops and visible robber game onG thenG has
an initial bramble of widthk.

2. If the robber can defeatk − 1 cops in the cops and inert robber game onG thenG has a
terminal bramble of widthk.

We observe that since monotonicity is not sufficient in either cops and robber game [KO07],
we know that the converse of Corollary 8.11 does not hold. However, as with D-havens, a result
along the lines of Theorem 4.12 would resolve Open Problems 6.12 and 7.33.

We conclude this section by combining these results with some results from Chapter 7 to
show that initial brambles and terminal brambles are different.

Proposition 8.13.For all m ∈ N, there exists a directed graph with an initial bramble of width
4m but no terminal bramble of width≥ 3m + 1.

Proof. Consider the graphG in Figure 7.1. As we observed in the proof of Theorem 7.37,3 cops
suffice to capture an inert robber onG. We also showed thatG has an initial bramble of width4:{
{v1, v2, v4}, {v3}, {v5}, {v6}

}
. The result follows by taking the lexicographic product of this

graph withKm, the complete digraph onm vertices. ⊓⊔

8.2 Directed minors

In this section we investigate the problem of finding a relation on directed graphs which rep-
resents structural simplification. Such relations are ubiquitous throughout mathematics, for
example in algebra or model theory homomorphisms describe structural simplifications, and in
geometry or topology homeomorphisms are the key structuralrelations. Graphs can be viewed
both as relational structures and as topological complexes, so there are well-defined notions of
graph homomorphisms and graph homeomorphisms. However, for undirected graphs at least,
the minor relation is arguably the most suitable relation for comparing fundamental graph struc-
tural properties such as connectivity and cyclicity. Intuitively, a graphG is a minor of a graph
H if G can be embedded inH modulo connected sets. That is, if we consider connected sets in
H as “vertices”, thenG is a subgraph of this “graph”. More precisely,

Definition 8.14(Minor). LetG andH be undirected graphs.G is aminor ofH, writtenG ≤ H,
if there exists a functionξ : V (G) → P(V (H)) which maps distinct vertices to disjoint sets
such that:

• For allv ∈ V (G),H[ξ(v)] is a connected graph, and

• For all{v, w} ∈ E(G) there exists{v′, w′} ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).
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So why is the minor relation a good indicator of structural simplification? As we observed
above, there are well-defined notions of graph homomorphisms and graph homeomorphisms.
A homomorphism preserves relational structure and a homeomorphism preserves topological
shape, so injective homomorphisms or subgraph homeomorphisms would seem to be reasonable
indicators of structural simplification. However, the minor relation subsumes these. We see
from the definition that the minor relation can be considereda generalization of injective graph
homomorphisms:G is a minor ofH if there is a homomorphic-like injective map fromV (G) to
connected sets ofH. Presently we will also show that ifG is homeomorphic to a subgraph ofH
thenG is a minor ofH. So the minor relation can be seen as a generalization of bothrelational
and topological structure simplification. We now turn to theproblem of finding an extension of
the minor relation to directed graphs which enjoys similar properties.

The definition of a minor has two obvious extensions to directed graphs: either map vertices
to weakly connected sets or map vertices to strongly connected sets. However, as we argue
below, neither of these truly reflect the notion of structural simplification that complexity mea-
sures like directed tree-width, DAG-width and Kelly-widthsuggest. In the remainder of this
section we identify the characteristics of the minor relation that make it useful and we introduce
several definitions of digraph minor relations and compare them against these criteria. First we
show how we can view the minor relation operationally, and how this implies that the minor
relation is a generalization of subgraph homeomorphism.

Definition 8.15 (Edge contraction). Let G be a graph, ande = (v, w) ∈ E(G). The graphG ′
obtained fromG by contractinge is defined as:

• V (G ′) = V (G) \ {v},

• E(G ′) =
(
E(G)∪{(u,w) : (u, v) ∈ E(G)}∪{(w, u) : (v, u) ∈ E(G)}

)
\{(u, v), (v, u) :

u ∈ V (G)}.

The following result follows easily from the definitions andis often used as an alternative
definition of the minor relation.

Lemma 8.16.LetG andH be undirected graphs. The following are equivalent:

1. G is a minor ofH,

2. G is isomorphic to a subgraph of a graph obtained by contracting edges ofH, and

3. G is isomorphic to a graph obtained by contracting edges of a subgraph ofH.

Proof. 1 ⇒ 2: SupposeG is a minor ofH and letξ : V (G) → P(V (H)) be the function
witnessing this. LetH′ be the graph obtained fromH by contracting, for eachv ∈ V (G) the
edges inH[ξ(v)]. Now ξ can be viewed as an injective mapping fromV (G) to V (H′) such that
for each{v, w} ∈ E(G), {ξ(v), ξ(w)} ∈ E(H′). That is,ξ is an embedding ofG in H′, soG is
isomorphic to a subgraph ofH′, a graph resulting from contracting edges ofH.

2 ⇔ 3: Let us view the subgraph relation as the operation of deleting edges and isolated
vertices. That is,G is a subgraph ofH if G can be obtained by deleting edges and isolated
vertices ofH. We observe that edge and isolated vertex deletion and edge contraction com-
mute, that is we obtain the same graph independent of the order of the operations. Thus if we
perform all edge contractions first and then all deletions weobtain the same graph by perform-
ing all deletions first followed by all edge contractions andvice versa. Thus any subgraph of a
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graph obtained by contracting edges is a graph obtained by contracting edges of a subgraph and
conversely.

3⇒ 1: SupposeG is isomorphic to a graph obtained by contracting edges ofH′ whereH′

is a subgraph ofH. For convenience, we will assume thatG is a graph obtained by contracting
edges ofH′. For eachv ∈ V (G) defineξ(v) as the set of verticesw ∈ V (H′) such that there is a
path fromw to v consisting of edges which are contracted to obtainG. From the definition ofξ,
H[ξ(v)] = H′[ξ(v)] is connected. Now suppose{v, w} ∈ E(G). It follows from the definition
of edge contractions that there exists{v′, w′} ∈ E(H′) such that there are paths fromv′ to v
and fromw′ to w consisting of edges which are contracted to obtainG. That isv′ ∈ ξ(v) and
w′ ∈ ξ(w). As V (H′) ⊆ V (H), h is a function fromV (G) to P(V (H)), soG is a minor of
H. ⊓⊔

Indeed, as subgraphs and edge contractions are well-definedfor directed graphs, this lemma
suggests the following natural definition of a minor relation on directed graphs.

Definition 8.17 (Minor for digraphs). Let G andH be directed graphs.G is a minor of H,
G ≤ H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions and edge contractions.

It is clear from Lemma 8.16 that this definition is equivalentto the minor relation on the
underlying undirected graphs, hence the notation. That is,

Proposition 8.18.LetG andH be digraphs.G ≤ H if, and only if,G ≤ H.

We also observe that the≤-minor relation corresponds to the weakly connected “natural”
generalization of the minor relation.

Proposition 8.19. Let G andH be digraphs.G ≤ H if, and only if, there exists a function
ξ : V (G)→ P(V (H)) such that:

• if v 6= w thenξ(v) is disjoint fromξ(w),

• for all v ∈ V (G),H[ξ(v)] is a weakly connected graph, and

• for all (v, w) ∈ E(G) there exists(v′, w′) ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).

These observations show that the minor relation has a straightforward extension to directed
graphs. However, just the simple extension of tree-width todirected graphs is not an ideal
measure of complexity, we argue below that this definition isnot restrictive enough to be a
suitable relation for structural simplification for digraphs. In particular a minor of an acyclic
digraph need not be acyclic, which goes against our tenet that acyclic graphs are structurally
the least complex graphs. However, all the minor relations we introduce in the Section 8.2.2 are
restrictions of this relation.

Lemma 8.16 also demonstrates how minors can be seen as a generalization of subgraph
homeomorphisms. First we recall the definition of a subgraphhomeomorphism.

Definition 8.20 (Subgraph homeomorphism). Let G andH be (directed) graphs. We sayG
is homeomorphic to a subgraphof H if there is an injective functionη : V (G) → V (H)
and a mappingp from edges ofG to pairwise internal-vertex-disjoint paths inH such that for
e = (v, w) ∈ E(G), p(e) is a (directed) path fromη(v) to η(w).
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Lemma 8.21. Let G andH be undirected graphs. IfG is homeomorphic to a subgraph ofH
thenG is a minor ofH.

Proof. We observe that ifG is homeomorphic to a subgraph ofH, thenG is isomorphic to a
graph obtained from a subgraph ofH by repeatedly replacing vertices of degree2 with an edge
joining its neighbours. But this operation can also be viewedas contracting edges that have at
least one endpoint with degree2. ThereforeG is isomorphic to a graph obtained by contracting
edges of a subgraph ofH, so by Lemma 8.16,G is a minor ofH. ⊓⊔

8.2.1 What makes a good minor relation?

We now consider the properties we expect a reasonable definition of a minor relation for directed
graphs to satisfy. First and foremost, the relation should respect digraph complexity. That is,
if G is a minor ofH thenG should not be more structurally complex thanH. But which
notion of digraph complexity should we use? As we mentioned at the start of the chapter we
are primarily interested in a relation corresponding to directed connectivity, so DAG-width or
Kelly-width or their associated cops and robber games wouldbe suitable. However, there is also
no known appropriate relation for strong connectivity, so we also consider directed tree-width.
In Section 8.2.3 we consider various graph properties that are preserved under the operation
“taking a minor” and use these to identify unsuitable candidates.

The second property we are interested in is being able to obtain generalizations of theorems
concerning the minor relation. In particular, we are concerned with trying to extend two results:
the Graph Minor Theorem, which asserts that the minor relation is a well-quasi order, and the
algorithmic result that for a fixed graphH, determining ifH is a minor ofG can be decided in
cubic time. The latter result implies that any class characterized by a finite set of excluded mi-
nors can be decided in polynomial time, and the former implies that any minor-closed property
can be characterized by a finite set of excluded minors. Although we show that many of our
defined relations fail to satisfy this property, the investigation raises some interesting questions.

Our final requirement for a reasonable notion of a minor relation for directed graphs is that it
should be an extension of the minor relation for undirected graphs. In particular, ifG andH are
undirected graphs such thatG is a minor ofH then

←→G should be a minor of
←→H . Furthermore, it

should also generalize subgraph homeomorphisms (for directed graphs). That is, if we replace
internal-vertex-disjoint paths with single edges we should obtain a minor of the original graph.
Although many of our defined relations do satisfy both these requirements, some interesting
relations do not, including the strongly connected “natural” generalization of the minor relation
and two relations which occur in the literature: the butterfly minor relation and the topological
minor relation.

8.2.2 Directed minor relations

In this section we define several minor relations for digraphs. We adopt the operational defini-
tion of minor implied by Lemma 8.16 and generate variations by considering different restric-
tions on the edge contraction operation. For the results we establish, it is convenient to consider
two types of edge contraction operation: one which contracts a single edge, and one which con-
tracts multiple edges simultaneously. We call the first kindedge contractionsand the second
set contractions. We observe that when a sequence of edge contractions are performed, it does
not matter in which order they are performed, the resulting graphs are all isomorphic. Thus to
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“simultaneously” contract a set of edges, we can contract them individually in some arbitrary
order. We now define the edge and set contractions we use to define our minor relations.

Definition 8.22. Let G be a directed graph ande = (u, v) ∈ E(G).

• We saye can betopologically contractedif either

– u has in-degree1 and out-degree1, or

– v has in-degree1 and out-degree1.

• We saye can bebutterfly contractedif either

– u has out-degree1, or

– v has in-degree1.

• We saye can beD-contractedunless either

– there is a directed path fromu to v edge disjoint from(u, v), or

– there exists two vertex disjoint cyclesC1, C2, each with at least two vertices, such
thatu ∈ C1 andv ∈ C2.

Before we introduce the set contractions, we observe that theabove definitions of edge
contractions are ordered from most restrictive to least restrictive. That is,

Lemma 8.23. Let G be a directed graph ande = (u, v) ∈ E(G). If e can be topologically
contracted thene can be butterfly contracted, and ife can be butterfly contracted thene can be
D-contracted.

Proof. If e can be topologically contracted then clearlye can be butterfly contracted. Now
supposee can be butterfly contracted. Ifu has out-degree1 thene is the only outgoing edge
from u so there is no path fromu to v which is edge disjoint frome and there is no cycle which
containsu and does not containv. Thuse can be D-contracted. Otherwisev has in-degree1
ande is the only incoming edge tov. Again, there can be no path fromu to v which is edge
disjoint from e and there is no cycle which containsv and does not containu. So e can be
D-contracted. ⊓⊔

Definition 8.24. Let G be a directed graph andE ⊆ E(G).

• If E = {(u, v), (v, u)} then the simultaneous contraction ofE is ananti-parallel contrac-
tion.

• If G[E] is a strongly connected graph, then the simultaneous contraction ofE is astrong
contraction.

Clearly these definitions are also ordered from most restrictive to least restrictive. We in-
clude the result for completeness.

Lemma 8.25.LetG be a directed graph andE ⊆ E(G). An anti-parallel contraction ofE is a
strong contraction ofE.
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We now combine these edge and set contractions with the subgraph relation to obtain a
number of minor relations.

Definition 8.26 (Subgraph minor). Let G andH be directed graphs.G is asubgraph minorof
H, G ⋐ H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions.G is ananti-parallel subgraph minorof H, G ⋐AP H, if G is isomorphic to
a graph obtained fromH by a sequence of edge and isolated vertex deletions and anti-parallel
contractions.G is a strong subgraph minorof H, G ⋐S H, if G is isomorphic to a graph
obtained fromH by a sequence of edge and isolated vertex deletions and strong contractions.

Definition 8.27(Topological minor). Let G andH be directed graphs.G is atopological minor
ofH, G ⊣ H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions and topological contractions.G is ananti-parallel topological minorof H,
G ⊣AP H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions, and anti-parallel and topological contractions.G is astrong topological minor
ofH, G ⊣S H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated
vertex deletions, and strong and topological contractions.

Definition 8.28(Butterfly minor). Let G andH be directed graphs.G is abutterfly minorofH,
G ≪ H, if G is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex
deletions and butterfly contractions.G is ananti-parallel butterfly minorof H, G ≪AP H, if G
is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions,
and anti-parallel and butterfly contractions.G is astrong butterfly minorof H, G ≪S H, if G
is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions,
and strong and butterfly contractions.

Definition 8.29 (D-minor). Let G andH be directed graphs.G is aD-minor ofH, G EH, if G
is isomorphic to a graph obtained fromH by a sequence of edge and isolated vertex deletions
and D-contractions.G is ananti-parallel D-minor of H, G EAP H, if G is isomorphic to a
graph obtained fromH by a sequence of edge and isolated vertex deletions, and anti-parallel
and D-contractions.G is astrong D-minorofH, GESH, if G is isomorphic to a graph obtained
fromH by a sequence of edge and isolated vertex deletions, and strong and D-contractions.

Remark.Unlike the case for the undirected minor relation, the edge and set contractions we
have defined here do not commute with edge and vertex deletion: an edge may not be edge
contractible until some other edges have been deleted, and aset of edges may no longer be
set contractible after some edges have been deleted. However, for our definitions it is the case
that the reverse holds: if an edge is edge contractible before some other edges or vertices have
been deleted, then it is still edge contractible after thosedeletions, and if a set of edges is set
contractible after some deletions then it is set contractible before those deletions. So we may
assume that to obtain a minor we perform a sequence of set contractions, followed by a sequence
of edge and isolated vertex deletions, followed by a sequence of edge contractions.

Before we establish some results, we define a useful function which captures the inverse of
edge contraction.

Definition 8.30 (Vertex expansion). Let � be a minor relation, and letG andH be directed
graphs such thatG � H. A �-vertex expansionof G toH is a functionξ : V (G) → P(V (H))
defined to beξn in the following construction. LetG0 � G1 � . . . � Gn be a sequence of
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Figure 8.2: Inclusion diagram for the introduced minor relations

graphs such thatG0 = H, Gn = G andGi+1 is obtained fromGi by a single edge deletion,
vertex deletion, or edge contraction1. For eachi ≤ n defineξi : V (Gi)→ P(V (H)) as follows.
ξ0(v) = {v}. If Gi+1 is obtained fromGi by contracting(u, v) thenξi+1(v) = ξi(v)∪ ξi(u) and
ξi+1(w) = ξi(w) for all w 6= u, v (recall thatu /∈ V (Gi+1)). Otherwise we letξi+1(w) = ξi(w)
for all w ∈ V (Gi+1).

Lemmas 8.23 and 8.25 imply that all the minor relations we have so far defined can be
arranged as in the inclusion diagram of Figure 8.2. Presently we will show that each inclusion
in Figure 8.2 is strict, however first we need to show that these minor relations are well-behaved
with respect to directed connectivity.

Theorem 8.31.LetG andH be directed graphs, withG ES H. If k cops can capture a visible
robber onH thenk cops can capture a visible robber onG.

Proof. As a consequence of Lemma 6.18, it suffices to show that the number of cops required
decreases after either a D-contraction or a strong contraction. Let ξ be aES-vertex expansion
from G to H. The idea is that if any of the vertices ofξ(w) is occupied by a cop, then we
occupyw with a cop. It is clear that ifG is obtained fromH by strong contractions only, then
this describes a winning strategy for the cops as the robber is more restricted in his movement.
So it suffices to consider the case whenG is obtained fromH by a single D-contraction of the
edge(u, v). In this case, the robber may be able to reach some vertices inG that he could not
reach inH by a directed path through the contraction ofu andv. Let U ⊆ V (H) be the set of
verticesw, not includingu, for which there is a path fromu to w edge disjoint from(u, v), and
let V ⊆ V (H) be the set of verticesw, not includingv, for which there is a path fromw to v
edge disjoint from(u, v). We observe that after(u, v) is contracted, the robber is able to move
from vertices inV to vertices inU . We argue that he can only do this once.

Since(u, v) can be D-contracted,U andV are disjoint, as otherwise there would be a path
from u to v edge disjoint from(u, v). Thus, any path fromU to V must include the edge(u, v).
For anyx ∈ V , suppose there is a directed path inG to somey ∈ U such that there is a directed
path fromy to somez ∈ V . Since such a path inH must go through(u, v), it follows that there

1We treat set contractions as sequences of single edge contractions, soGi might not necessarily be a minor of
Gi+1
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is a path fromy to u and a path fromv to z. Thusu andy are two distinct vertices in a cycle, as
arev andz, contradicting the assumption that(u, v) could be D-contracted.

The strategy for the cops is now as follows. Play as before, occupyingw ∈ V (G) if some
vertex inξ(w) is occupied. If the robber never moves fromV to U , then each move of the
robber can be simulated onH. Otherwise, if the robber does move fromV to U , he can never
return toV , so we can discard this part of the graph and continue playingthe winning strategy
on the subgraph ofH. ⊓⊔

We now have sufficient tools to demonstrate that each minor relation we have defined is
distinct from the others, and that there are no other inclusions other than those we have already
identified.

Theorem 8.32.The inclusion diagram of Figure 8.2 is strict and complete.

Proof. To prove the result, it suffices to show the following six inequations:

(I) ⊣ 6⊆ ⋐S

(II) ≪ 6⊆ ⊣S

(III) E 6⊆ ≪S

(IV) ≤ 6⊆ ES

(V) ⋐AP 6⊆ E

(VI) ⋐S 6⊆ EAP

Now consider Table 8.1. We show that for each pair of minor relations(�,�′), G2 � G1 but
G2 6�′ G1. It is easy to see that in each example,G2 � G1. We therefore show thatG2 6�′ G1.

(I) – (III) : We observe that in each example, the graphG2 has only one less edge thanG1.
It is easily checked that deleting any edge fromG1 will not result in the graphG2, thus the
only possible way forG2 �′ G1 is from edge contractions. In (I), by symmetry any edge will
suffice. But no single edge is contractible under strong contractions, thusG2 6⋐S G1. In (II)
and (III), to obtain a vertex of degree4, the only edge which can be contracted is the vertical
edge. However, in (II) both endpoints of this edge have out-degree2 and therefore it cannot be
topologically contracted, and in (III) this edge is neitherthe only outgoing edge of its tail nor
the only incoming edge of its head, thus it cannot be butterflycontracted. In both cases it cannot
be contracted using a strong contraction, thus in (II)G2 6⊣S G1, and in (III)G2 6≪S G1.

(IV): This follows directly from Theorem 8.31, asG1 is acyclic andG2 is not.
(V): We observe that it is not possible to D-contract any edge inG1. Thus ifG2 is a D-minor

of G1, G2 must be a D-minor of some subgraph ofG1 with at least one edge deleted. However,
only two cops are required to capture a robber onG1 with any edge deleted, whereas three cops
are required to capture a robber onG2. Thus, from Theorem 8.31,G2 cannot be a D-minor of
G1.

(VI): We observe that it is not possible to D-contract any edge inG1 without first deleting
some edges. As anti-parallel contractions reduce the number of anti-parallel pairs of edges,
we cannot obtainG2 from G1 through anti-parallel contractions alone. Thus ifG2 E

AP G1, to
obtainG2 from G1 we must first delete some edges. However, it is easy to check that after
any edge is deleted fromG1, three cops have a winning strategy to capture a visible robber:
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Table 8.1: Separating examples of the introduced minor relations

intuitively, removing an edge makes one of the small cycles “weaker” than the others, either by
removing one of the edges which leaves the cycle, or removingone of the edges in the cycle.
The strategy for three cops is then to chase the robber into this weaker cycle, and then use the
weakness to capture him. As four cops are required to capturethe robber onG2, it follows from
Theorem 8.31 thatG2 6 EAPG1. ⊓⊔
Remark.Example (IV), which shows that≤ 6⊆ ES, illustrates that a≤-minor of an acyclic
graph may not necessarily be acyclic. This supports our earlier claim that≤ was not restrictive
enough to be a reasonable indicator of structural simplification for directed graphs.

Before we consider some other structural properties which are preserved by the minor re-
lations we have defined, we show that the relations we have introduced include other digraph
relations that we have already considered. First we show that topological minors correspond to
directed subgraph homeomorphisms.

Proposition 8.33. LetG andH be directed graphs.G ⊣ H if, and only if,G is homeomorphic
to a subgraph ofH.

Proof. Using the proof of Lemma 8.21 we see that ifG is homeomorphic to a subgraph ofH
thenG ⊣ H, as the edge contractions used in the proof are all topological contractions. For
the converse, supposeG ⊣ H. Without loss of generality, we may assumeG is obtained by
a sequence of edge and vertex deletions followed by a sequence of topological contractions.
ThusG is obtained from a subgraphH′ of H by a sequence of topological contractions. Letξ :
V (G)→ P(V (H′)) be a⊣-vertex expansion. We show howξ can be used to define a (directed)
subgraph homeomorphism. From the definition of topologicalcontraction, we observe that for
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eachu ∈ V (G), there is at most oneu′ ∈ ξ(u) with out-degree≥ 1, as otherwise it would not
be possible to contractξ(u) to a single vertex. This means that intuitively,H′[ξ(u)] looks like
a star with one central vertex, paths radiating outwards, and a path fromu to the central vertex.
We defineη : V (G) → V (H) by settingη(u) to be either the vertex inξ(u) with more than
one successor, oru if there is no such vertex. We observe the following: if the in-degree ofu
is greater than1, thenη(u) = u; there is a directed path inξ(u) from u to η(u); and there is a
directed path inξ(u) from η(u) to all vertices inξ(u) with a successor outside ofξ(u). Now let
(u, v) ∈ E(G) be an edge inG. From the definition of edge contraction, there existsw ∈ ξ(u)
such that(w, v) ∈ E(H′). From our observations regardingη(u) andξ(u), it follows that there
exists a path fromη(u) to v. Since there is a path fromv to η(v), it follows that there is a path
from η(u) to η(v). To show this path is vertex distinct (excluding end-points) from any other,
we observe that for anyv′ 6= v such that(u, v′) ∈ E(G), the path fromη(u) to v′ is disjoint
(except forη(u)) to the path fromη(u) to v, and if u′ 6= u is a predecessor ofv in G, then
η(v) = v, so the paths fromη(u) to η(v) and fromη(u′) to η(v) are disjoint. ⊓⊔

Now we observe that the strong subset minor relation corresponds to the strongly connected
“natural” generalization of the minor relation.

Proposition 8.34. Let G andH be digraphs.G ⋐S H if, and only if, there exists an function
ξ : V (G)→ P(V (H)) which maps distinct vertices to disjoint sets such that:

• for all v ∈ V (G),H[ξ(v)] is a strongly connected graph, and

• for all (v, w) ∈ E(G) there exists(v′, w′) ∈ E(H) such thatv′ ∈ ξ(v) andw′ ∈ ξ(w).

Proof. Let ξ be a⋐S-vertex expansion ofG inH. From the definition of strong contraction and
edge contraction, it follows thatξ satisfies the requirements. ⊓⊔

Finally we observe from Lemma 8.16 that if a minor relation allows anti-parallel contrac-
tions, then on bidirected graphs the relation is equivalentto the minor relation for undirected
graphs.

Proposition 8.35. Let G andH be undirected graphs, and� a minor relation such that�
⊇⋐AP . ThenG ≤ H if, and only if

←→G � ←→H .

8.2.3 Preservation results

Theorem 8.31 showed that all the minor relations we introduced respect complexity as defined
by directed connectivity. We now consider some other structural properties that are preserved
under the operation of taking a minor. Our first result shows that the taking of butterfly mi-
nors preserves non-reachability, or equivalently, a butterfly minor vertex expansion preserves
reachability.

Proposition 8.36.LetG andH be digraphs such thatG ≪S H. Letξ be a≪S-vertex expansion
of G in H. Letu, v ∈ V (G). If there is a directed path fromu to v then there existsu′ ∈ ξ(u)
andv′ ∈ ξ(v) such that there is a directed path fromu′ to v′.
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Proof. Clearly if G is a subgraph ofH then the result holds, and similarly ifG can be obtained
from H by strong contractions. Thus it suffices to assume thatG can be obtained fromH by
butterfly contractions. Letw ∈ V (G) be a vertex ofG Sinceξ(w) butterfly contracts to a single
vertex, it follows that there exists a vertexw′ ∈ ξ(w) such that there is a path tow′ from all
vertices inξ(w) with in-degree greater than1, and there is a path fromw′ to all vertices inξ(w)
with out-degree greater than1. Furthermore, there is a path fromw to w′ and a path fromw′

to all vertices inξ(w) with a successor not inξ(w). If w0w1 · · ·wn is a path inG from u = w0

to v = wn, let w′
i be the vertex inξ(wi) which satisfies the above observation. It follows from

the definition of edge contraction, that for alli ≥ 0, there is a path inH from w′
i to w′

i+1 (in
ξ(wi) ∪ ξ(wi+1)). Thus there exists a path fromu′ = w′

0 to v′ = w′
n, as required. ⊓⊔

Example (III) in Table 8.1 shows that Proposition 8.36 does not hold for D-minors. How-
ever, D-minors do preserve a more restrictive structural property: strong connectivity.

Proposition 8.37.LetG andH be digraphs such thatG ES H. Letξ be aES-vertex expansion
of G in H. Letu, v ∈ V (G). If there are directed paths fromu to v and fromv to u then there
existsu′ ∈ ξ(u) andv′ ∈ ξ(v) such that there are directed paths fromu′ to v′ and fromu′ to v′.

Proof. As with Proposition 8.36, we observe that we can assume thatG can be obtained from
H by D-contractions. Forw ∈ V (G), we observe from the definition of D-contractions that
H[ξ(w)] takes the following form: a directed tree, rooted atw, such that ifw1w2 · · ·wn is a path
inH with w1, wn ∈ ξ(w), thenwn is an ancestor ofw1 inH[ξ(w)]. For if this were not the case,
then it would not be possible to D-contractξ(w) to a single vertex. The result now follows by
expanding the vertices in the cycle containingu andv in a similar way to Proposition 8.36.⊓⊔

8.2.4 Algorithmic results

We now consider the algorithmic aspects of the minor relations we have defined. In particular,
we are concerned with the following decision problem:

(G,�)-MINOR

Instance: A directed graphH
Problem: Is G � H?

In [RS95], it was shown that for undirected graphs and the standard minor relation,(G,≤)-
MINOR is solvable in cubic time, so it is worth investigating if anyof the minor relations we
have defined enjoy a similar property. Unfortunately, we show that this is not the case unless
NP = PTIME, as the problem is in general NP-complete for most of the relations we have
defined.

Fortune, Hopcroft and Wyllie [FHW80] showed a dichotomy result for the directed sub-
graph homeomorphism problem for a fixed pattern graphG . If G is a star, that is there is a
unique source or sink which is the tail or head (respectively) of every edge, then deciding if a
given graph with a given node mapping has a subgraph homeomorphic toG is solvable in poly-
nomial time. Otherwise it is NP-complete. Not surprisingly, from Proposition 8.33, this result
is partly applicable to(G,⊣)-MINOR. The difference is that in [FHW80] it is assumed that the
node mapping was given. That is, they were asking if given a node mapping could be extended
to a subgraph homeomorphism. The(G,⊣)-MINOR problem corresponds to the case when the
node mapping is not given. This case was discussed in [FHW80] where it was observed that
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firstly the polynomial time result carries over, as there areat most a polynomial number of node
mappings, and secondly with some additional structure in the pattern graph, the node mapping
required for NP-completeness can be forced to be the only possible node mapping, so the NP-
completeness result holds for a large class of directed graphs (but not quite the complement of
the star graphs). Summarizing their results in the terminology of this chapter gives us:

Theorem 8.38([FHW80]). If G is a directed graph which is a star then(G,⊣)-MINOR is solv-
able in polynomial time.

Theorem 8.39([FHW80]). If G is a directed graph with at least four distinct vertices{v1, v2, v3, v4}
and edges(v1, v2) and(v3, v4) such that fori ≤ 4 the degree ofvi is greater than3 and different
from the degree ofvj for j 6= i, then(G,⊣)-MINOR is NP-complete.

Corollary 8.40. Let� be a minor relation which includes⊣ and letG be a directed graph which
satisfies the requirements of Theorem 8.39. Then(G,�)-MINOR is NP-complete.

Because of the additional structure required in the pattern graph to show NP-completeness
when the node mapping is not specified, we no longer have the dichotomy result. Indeed it is
an interesting problem to investigate the complexity of theproblem whenG is neither a star
nor a directed graph satisfying the requirements of Theorem8.39, for example if the maximum
degree of any vertex inG is 3. This gives us the following problem for further investigation.

Open problem 8.41.CharacterizeG,� and the class of graphsH such that(G,�)-MINOR is
NP-complete

8.2.5 Well-quasi order results

We conclude this chapter by showing that only a few of the relations we have introduced can
be used to generalize one of the most significant theorems associated with the minor relation:
the Graph Minor Theoremof Robertson and Seymour [RS04]. Recalling the definition of a
well-quasi order from Section 1.1.1, the theorem can be stated as:

Theorem 8.42(Graph Minor Theorem [RS04]). The minor relation is a well-quasi order.

In particular this implies that for any infinite set of graphsthere is a pair of graphs such that
one is the minor of the other. From this, it follows that any family of graphs which is closed
under the minor relation can be characterized by a finite listof forbidden minors. That is, ifF
is a family of graphs such thatH ∈ F andG ≤ H impliesG ∈ F, then there exists a finite set of
graphs{G1, . . . ,Gm} such thatG ∈ F if, and only if,Gi 6≤ G for all i ≤ m. Together with the
observation that for a fixed graphG, determining ifG is a minor of a given graph can be decided
in cubic time, this we obtain the following important algorithmic consequence.

Corollary 8.43 ([RS04]). LetF be a minor-closed family of graphs. The problem of deciding if
G ∈ F can be computed in cubic time.

Thus it is an interesting problem to see if we can generalize the Graph Minor Theorem to
directed graphs. Unfortunately, for most of the minor relations we have defined, this is not the
case.

Theorem 8.44.E and≪S are not well-quasi orders.
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Figure 8.3: An infinite anti-chain for theE relation
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Figure 8.4: An infinite anti-chain for the≪S relation

Proof. Consider the sequence of bidirected cyclesC3, C4, C5, . . . pictured in Figure 8.3. Using
the same argument as in the proof of Theorem 8.32, Example (V), it is easy to see thatCi 6ECj

for i < j. ThusE is not a well-quasi order.
Now consider the sequence of graphsC⊕

4 , C⊕
6 , . . . pictured in Figure 8.4. It is easy to see

that for all eveni ≥ 4, an edge inC⊕
i can neither be butterfly contracted nor strong contracted,

and the deletion of any edge results in a graph with an acyclicunderlying graph. Thus for all
i < j, C⊕

i 6≪S C⊕
j , and so≪S is not a well-quasi order. ⊓⊔



Chapter 9

Conclusion and Future work

In this dissertation we examined the role of infinite games onfinite graphs in two aspects of
complexity: computational complexity and structural complexity. The research resolved some
unanswered questions in the literature and opened up some interesting avenues for further re-
search. We conclude this dissertation by recalling the major results established, and discussing
possible areas for future study.

9.1 Summary of results

In Chapter 1 we stated the two main goals of this dissertation:to investigate the computational
complexity of infinite games on finite graphs, and to use infinite games to define an algorith-
mically useful notion of structural complexity for directed graphs. The first of these goals was
predominantly addressed in Chapters 2, 3, 6 and 7, while the second was catered for in Chap-
ters 4 to 8. We now summarize the contribution each chapter made to each goal.

Complexity of Infinite Games

In Chapter 2 we considered the general class of infinite games on finite graphs. We intro-
duced a generalization of bisimulation calledgame simulationwhich enables us to translate
strategies from one game to another. We then introduced the notion of acondition type, which
gives us a general framework for comparing many types of games which occur in the literature,
for exampleMuller games[Mul63], Rabin games[Rab72],Streett games[Str82] andparity
games[Mos91, EJ91]. The notion oftranslatability between condition types lets us compare
the computational complexity of two games via the expressibility and succinctness of their win-
ning conditions. We considered the computational complexity of deciding the winner in Muller
games. We provided polynomial time algorithms for explicitly presented Muller games under
various restrictions on the family of sets which specified the winning condition, namely simple
games, and games where the condition is an anti-chain. We showed that deciding the winner of
win-set games was PSPACE-complete. Following our work on translatability, it follows that the
problems of deciding the winner of Muller games where the winning condition is specified as a
Muller, Zielonka DAG, Emerson-Lei, or a circuit condition are all also PSPACE-complete, thus
closing one of the open problems relating to the complexity of Muller games that we discussed
in Chapter 1. We showed that the completeness results carriesover to arenas of bounded tree-
width for games specified by a Muller condition. We also gave examples of union-closed and
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upward-closed games for which deciding the winner is co-NP-complete. We ended the chapter
by showing how the lower bounds for deciding win-set games can be used to establish that the
non-emptiness and model-checking problems for Muller automata are also PSPACE-complete,
thereby resolving an open question in the field of automata theory.

Our foray into the sticky world of parity games began in Chapter 3, where we analysed
one of the best performing algorithms for deciding parity games in an effort to establish tighter
bounds on the running time. We interpreted the algorithm from a combinatorial perspective, in
particular as a method for finding a global sink on an acyclic unique sink oriented hypercube.
Using techniques from combinatorics, we improved the upperbound for the running time. We
also provided an example which shows that the hypercube orientations resulting from parity
games are not pseudomodular.

In Chapters 6 and 7, we demonstrated how the structure of the arena affects the complexity
of deciding the winner of parity games. We used DAG-decompositions in Chapter 6 and Kelly-
decompositions in Chapter 7 to produce two dynamic programming style algorithms for solving
parity games. The upshot of such algorithms is that on a classof arenas of bounded DAG-width
or bounded Kelly-width, there is a polynomial time algorithm for deciding the winner of a parity
game. As DAG-width and Kelly-width encompass other graph parameters such as tree-width,
this gives us the largest class of graphs so far known on whichparity games can be solved in
polynomial time.

Complexity by Infinite Games

In Chapter 4 we discussed the properties that a good measure ofdigraph structural complexity
should have. We cited tree-width as an example to aspire towards, and discussed why tree-width
is not suitable as a measure for directed graphs. We also discussed why the established notion
of directed tree-width from [JRST01] is also not entirely suitable.

In Chapter 5 we introduced a framework for defining reasonablestructural complexity mea-
sures viagraph searching games, a form of the infinite games we have been considering. We
showed how these games encompass many similar games in the literature, including those that
can be used to characterize tree-width.

In Chapter 6 we used the work from Chapter 5 to define an extensionof tree-width to di-
rected graphs,DAG-width. Unlike directed tree-width and Kelly-width, the definition of a DAG-
decomposition closely resembles tree decompositions. After showing that cop-monotonicity
and robber-monotonicity coincide in this game, we showed that DAG-width is equivalent to the
number of cops required to capture a visible robber with a monotone strategy, thereby demon-
strating that it is a reasonable measure of structural complexity for directed graphs. We also
showed that DAG-width defines an algorithmically useful complexity measure by showing that
a number of problems, including deciding the winner of a parity game, can be solved in polyno-
mial time on graphs of bounded DAG-width. We concluded the chapter by demonstrating that
DAG-width is markedly different from three other measures defined in the literature: tree-width,
directed tree-width and directed path-width.

In Chapter 7 we considered the generalization to directed graphs of three characterizations
of tree-width: partialk-trees, elimination orderings and the cops and inert robbergraph search-
ing game. This results inpartial k-DAGs, directed elimination orderings, and the cops and
inert robber game for directed graphs. We showed that the graph parameters defined by these
three generalizations were all equivalent, and these, in turn, were equivalent to the width of a
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decomposition we introduced called aKelly-decomposition. As with DAG-width, we demon-
strated the algorithmic potential of Kelly-width by exhibiting polynomial time algorithms for
a number of problems, including deciding the winner of a parity game, on graphs of bounded
Kelly-width. We concluded the chapter by showing that, as with DAG-width, Kelly-width is
quite different from tree-width, directed tree-width and directed path-width. However, its rela-
tion to DAG-width is somewhat more complex. We showed that, in the graph searching games
which characterize DAG-width and Kelly-width, a monotone winning strategy for the cops in
one game implies a winning strategy in the other (with possibly twice as many cops). Without a
result in either game relating the number of cops required for a monotone strategy to the number
of cops with a winning strategy, we are unable to compare DAG-width and Kelly-width directly.
However, we do show that there are graphs on which DAG-width and Kelly-width differ (by an
arbitrary amount).

Finally, in Chapter 8 we presented preliminary results towards a directed graph structure
theory, based on the notions of structural complexity we have developed. We introduced gen-
eralizations of havens and brambles which appear to correspond with DAG-width and Kelly-
width. The brambles for DAG-width are dual to the brambles for Kelly-width, suggesting that
DAG-width and Kelly-width are very closely connected. We also considered the problem of
extending the minor relation to directed graphs. We introduced a number of distinct relations
ranging from the subgraph relation to the minor relation on the underlying undirected graphs.
We showed that these relations do not enjoy the algorithmic properties of the minor relation, as
deciding if a fixed subgraph is a minor of a given graph is, in general, NP-complete for most
of the minor relations we considered. We concluded the chapter by showing that all except two
of the minor relations we introduced contain infinite anti-chains. This implies that to consider
a generalization of the Graph Minor Theorem using the minor relations we defined, we need to
use either the anti-parallel D-minor or the strong D-minor relation.

9.2 Future work

The work we have presented in this dissertation raises a number of interesting questions and
directions for further research. We now discuss some of these, roughly in the order they arose
during the dissertation.

The exact complexity for deciding Muller games when the winning condition is explicitly
presented remains open, as does the question for union-closed games with an explicitly pre-
sented winning condition. We saw in Theorem 2.62 that if the winning condition is an anti-chain
then the game can be solved efficiently. Thus it is possible that the complexity of the former
problem can be derived from the complexity of the latter. This would also be an interesting
question to investigate.

The exact complexity for deciding parity games also remainsan interesting open problem.
Characterizing the acyclic unique sink orientations that arise from valuations in parity games
could either establish a polynomial time algorithm for parity games, or give a super-polynomial
lower bound for the strategy improvement algorithm.

Monotonicity questions frequently arise in the study of graph searching games. An in-
teresting line of research would be to characterize the properties of graph searching games
necessary for monotonicity to be sufficient. For example, extending the work of Fomin and
Thilikos [FT03]. On a more specific level, for the cops and visible robber game on directed
graphs an important open problem is finding a relation between the number of cops required
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for a monotone winning strategy and the number of cops required for a winning strategy which
is not necessarily monotone. Such a correspondence allows us to compare DAG-width with
other parameters we have considered such as D-havens and Kelly-width. Similarly, finding a
relation between the number of cops required for a robber-monotone winning strategy and the
number of cops required for a not necessarily monotone winning strategy in the inert robber
game allows us to compare Kelly-width to other measures.

Two important questions regarding the complexity of DAG-width and Kelly-width still re-
main open. First is the question of whether deciding if a digraph has DAG-width at most a given
integer is in NP. Second is the question of whether, for a fixedk if deciding whether a digraph
has Kelly-width at mostk is decidable in polynomial time. An improved bound fromO(nk) on
the size of a DAG-decomposition of a graph would benefit the first question.

Finally, the preliminary work on a structure theory based ondirected connectivity raises a
number of interesting questions. For example, determiningthe precise relationship between
DAG-width, Kelly-width, and initial and terminal brambles; characterizing the pattern graphsG
for which (G,�)-M INOR is solvable in polynomial time; determining if any of the introduced
minor relations is a well-quasi order; and characterizing classes of graphs via forbidden minors.

9.3 Conclusion

In conclusion, this dissertation has made a significant contribution towards the analysis of the
complexity of infinite games and to the development of a notion of structural complexity for
directed graphs, and opened up exciting possibilities for future research. We resolved the open
questions regarding the exact complexity of deciding Muller games and Muller automata non-
emptiness and model-checking, and we made substantial progress towards answering the ques-
tion for parity games. We introduced two similar measures ofstructural complexity for directed
graphs which appear to measure thedirected connectivityof a digraph, a metric which lies be-
tween weak connectivity and strong connectivity and is distinct from both. We demonstrated
their algorithmic benefits by providing efficient algorithms for problems not known to be decid-
able in polynomial time.
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