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Abstract

This dissertation investigates the interplay between dexity, infinite games, and finite graphs.
We present a general framework for considering two-plagengs on finite graphs which may
have an infinite number of moves and we consider the compuattcomplexity of important
related problems. Such games are becoming increasinglgrteng in the field of theoreti-
cal computer science, particularly as a tool for formal fieation of non-terminating systems.
The framework introduced enables us to simultaneouslyidenproblems on many types of
games easily, and this is demonstrated by establishingougly unknown complexity bounds
on several types of games.

We also present a general framework which uses infinite gamesfine notions of struc-
tural complexity for directed graphs. Many important grg@rameters, from both a graph
theoretic and algorithmic perspective, can be defined m shistem. By considering natural
generalizations of these games to directed graphs, wenodtaovel feature of digraph com-
plexity: directed connectivity. We show that directed cectivity is an algorithmically impor-
tant measure of complexity by showing that when it is limjtedny intractable problems can
be efficiently solved. Whether it is structurally an impottareasure is yet to be seen, however
this dissertation makes a preliminary investigation i tfirection.

We conclude that infinite games on finite graphs play an ingmontole in the area of com-
plexity in theoretical computer science.
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Chapter 1

Introduction

The aim of this dissertation is to investigate the interfgdagween infinite games, finite graphs,
and complexity. In particular, we focus on two facets: thenpatational complexity of infinite
games on finite graphs, and the use of infinite games to defsrtinctural complexity of finite
graphs. To present the motivation behind this investigatice consider the three fundamental
concepts of games, graphs and complexity.

What is a game?

Ask anyone what a game is and most people will respond withxample: chess, bridge,
cricket, and so on. Almost everyommderstandsvhat a game is, but few people can imme-
diately give a precise definition. Loosely speaking, a gamvelves interactions between a
number of players (possibly only one) with some possibleaues, though the outcome is
not always the primary concern. The importance of games imyrsaientific fields arises from
their usefulness as an informal description of systems @othplex interactions; as most peo-
ple understand games, a description in terms of a game cammibvide a good intuition of the
system. The prevalence of this application motivates tha#b study of games, which results
in the use of games to provide formal definitions. Such défimitcan sometimes provide inter-
pretations of concepts where traditional approaches anbetsome or less than adequate. For
example, the semantics of Hintikka’s Independence Frigloglic [HS96] are readily expressed
using games of imperfect information, but the traditioraiski-style approaches are unwieldy.

Games in computer science

Mathematical games are playing an increasingly importalat in computer science, both as
informal descriptions and formal definitions. For exampiee-width, an algorithmically im-
portant graph parameter which we see frequently in thigdigson, can be intuitively presented
as a game in which a number of cops attempt to capture a robkeegoaph. Examples where
games can provide formal definitions include interactivetg@erols and game semantics. An
important example of an application of games, which motisdhe games we consider, is the
following game that arises when verifying if a system sasstiertain requirements.

Starting with the simple case of checking if a formula of meitional logic is satisfied by
a truth assignment, consider the following game played ly flayers, Verifier and Falsifier,
“on” the formula. The players recursively choose subfommswith Verifier choosing disjuncts
and Falsifier choosing conjuncts until a literal is reachédhe truth value of that literal is

8
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true then Verifier wins, otherwise Falsifier wins. The formula &isfiable if, and only if,
Verifier has a strategy to always win. This game is easilyreded to the verification of first
order formulas, with Verifier choosing elements boundedxigtential quantifiers and Falsifier
choosing elements bounded by universal quantifiers. \fagfa first order logic formula is
very useful for checking properties of a static system, ftgnoin computer science we are
also interested in formally verifying propertiesrefctive systemsystems which interact with
the environment and change over time. Requirements for sigthras are often specified in
richer logics such as Linear Time Logic (LTL), Computatiomé&iLogic (CTL) or the modatl-
calculus. This motivates the following extension of theifier-Falsifier game for verifying if a
reactive system satisfies a given set of requirements. Trhe gaplayed by two players, System
and Environment, on the state space of the reactive systdma.cirrent state of the system
changes, either as a consequence of some move effected ibgritngnt, or some response by
System. System takes the role of Verifier, trying to keep #stesn in a state which satisfies
the requirements to be verified. Environment endeavour&mootistrate the system does not
satisfy the requirements by trying to move the system inttate svhich does not satisfy the
requirements.

The natural abstraction of these games is a game where twerplenove a token around
a finite directed graph for a possibly infinite number of mowegth the winner determined by
some pre-defined condition. This abstraction encompasagayg two-player, turn-based, zero-
sum games of perfect information, and such games are fowadghout computer science: in
addition to the games associated with formal verificatioreattive systems, examples of games
which can be specified in this manner include Ehrenfeuctis& games and the cops and
robber game which characterizes tree-width. Unsurprigititese games have been extensively
researched, particularly in the area of formal verificateee for example [BL69, Mul63, EJ88,
Mos91, EJ91, IKO2, DIJW97]. Two important questions regaydie complexity of such games
are left unresolved in the literature. These are the exaoptexity of decidingMuller games
and the exact complexity of decidinmarity games One of the goals of this dissertation is to
address these questions with an investigation of the catipoal complexity of deciding the
winner of these types of games.

What is a graph?

Graphs are some of the most important structures in diseratieematics. Their ubiquity can be
attributed to two observations. First, from a theoreticaispective, graphs are mathematically
elegant. Even though a graph is a simple structure, comgistily of a set of vertices and a
relation between pairs of vertices, graph theory is a riah\aried subject. This is partly due
the fact that, in addition to being relational structuraspips can also be seen as topological
spaces, combinatorial objects, and many other matherhstticpatures. This leads to the second
observation regarding the importance of graphs: many gis@an be abstractly represented
by graphs, making them very useful from a practical viewpoiRrom an algorithmic point
of view, many problems can be abstracted to problems on grapaking the study of graph
algorithms a particularly fruitful line of research.

In computer science, many structures are more readily septed bydirected graphsfor
example: transition systems, communications networkiheformal verification game we saw
above. This means that the study of directed graphs andithlignsr for directed graphs is par-
ticularly important to computer science. However, the @ased descriptive power of directed
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graphs comes at a cost: the loss of symmetry makes the méatbahttaeory more intricate. In
this dissertation we explore both the algorithmic and mathtecal aspects of directed graphs.

What is complexity?

Just as the definition of a game is difficult to pin down, theligpaf “being complex” is
best described by examples and synonyms. From an algocitherspective, a problem is
more complex than another problem if the latter is easietapute than the former. From
a structural point of view, one structure is more complexhthaother if the first structure
contains more intricacies. These are the two kinds of coxitgleelevant to this dissertation:
computational complexitgndstructural complexity

In the theory of algorithms, the notion of computational @bexity is well defined. In
model theory however, being structurally complex is verychha subjective notion, depending
largely on the application one has in mind. For example, plgweith a large number of edges
could be considered more complex than a graph with fewersdge the other hand, a graph
with a small automorphism group could be considered moreptaxrthan a graph with a large
automorphism group, as the second graph (which may well imre edges) contains a lot of
repetition. As we are primarily interested in algorithmpécations in this dissertation, we
focus on the structural aspects of graphs which influencditfieulty of solving problems. In
Section 1.1.2 below, we loosely define this notion of graphcstire by describing the funda-
mental concepts important in such a theory.

Having established what constitutes “structure”, we turhie problem of defining struc-
tural complexity. The most natural way is to define some sbm@asure which gives an intu-
ition for how “complex” a structure is. In Chapter 4, we dissulsose properties that a good
measure of structural complexity should have. But how do we $uch measures in the first
place? Also in Chapter 4 we present the notion of tree-widtheaigue that it is a good measure
of complexity for undirected graphs. As we remarked abaee-width has a characterization in
terms of a two-player game, so it seems that investigatmdasi games would yield useful mea-
sures for structural complexity. Indeed this has been aneaatea of research for the past few
years, for example: [KP86, LaP93, ST93, DKT97, JRSTO01, FRE3O05, BDHK06, HKO7].
This line of research has recently started to trend away 8bawing game-theoretic charac-
terizations of established structural complexity meastoelefining important parameters from
the definition of the game, an example of the transition fromuse of games as an informal
description to their use as a formal definition. Despite #8uisvity, very little research has con-
sidered games on directed graphs. This is perhaps partlyodine lack, for some time, of a
reasonable measure of structural complexity for directaglus.

The second major goal of this dissertation is to use infirata@s to define a notion of structural
complexity for directed graphs which is algorithmicallyefisl.

Organization of the thesis

In the remainder of this chapter we define the conventionssedhroughout. Chapters 2 and 3
are primarily concerned with the analysis of the complegityleciding the winner of infinite
games on finite graphs. From Chapter 4 to Chapter 8 we investigaph complexity measures
defined by infinite games.

In Chapter 2 we formally define the games we are interested m.intkbduce the notion



11

of awinning condition typend we establish a framework in which the expressivenessuaid
cinctness of different types of winning conditions can bmpared. We show that the problem
of deciding the winner in Muller games issSPACEcomplete, and use this to show the non-
emptiness and model-checking problems for Muller treeraata are also $PACEcomplete.

In Chapter 3 we analyse an algorithm for deciding parity garnhesstrategy improvement
algorithm of [VJOOa]. We present the algorithm from a conalbamial perspective, showing
how it relates to finding a global minimum on an acyclic unigigk oriented hypercube. We
combine this with results from combinatorics to improve Itleeinds on the running time of the
algorithm.

In Chapter 4 we discuss the problem of finding a reasonablemofi complexity for di-
rected graphs. We present the definitiortree-width arguably one of the most practical mea-
sures of complexity for undirected graphs, and we discuesprbblem of extending the concept
to directed graphs.

Building on the games defined in Chapter 2, in Chapter 5 we defimgriph searching
game We show how we can use graph searching games to define robastires of complexity
for both undirected and directed graphs. This frameworkeisegal enough to include many
examples from the literature, including tree-width.

In Chapters 6 and 7 we introduce two new measures of compléxitdirected graphs:
DAG-widthandKelly-width Both arise from the work in Chapter 5, and both are generalizsit
of tree-width to directed graphs. While DAG-width is arguatiie more natural generalization
of the definition of tree-width, Kelly-width is equivalert batural generalizations of other graph
parameters equivalent to tree-width on undirected graphish we also introduce in Chapter 7.
We show each measure is useful algorithmically by providinglgorithm for deciding parity
games which runs in polynomial time on the class of directeghlgs of bounded complexity.
We compare both measures with other parameters defined litettedure such as tree-width,
directed tree-width and directed path-width and show tieedé measures are markedly different
to those already defined. Finally, in Chapter 7 we compareyKeidith and DAG-width. We
show that the two measures are closely related, but we atswotblat there are graphs on which
the two measures differ.

In Chapter 8 we present some preliminary work towards a gréapictare theory for di-
rected graphs based on DAG-width and Kelly-width. We defiaeegalizations of havens and
brambles which seem to be appropriate structural featuesept in graphs of high complexity
and absent in graphs of low complexity. We also consider tbblpm of generalizing the minor
relation to directed graphs.

We conclude the dissertation in Chapter 9 by summarizingedbelts presented. We dis-
cuss the contribution made towards the stated research, goal consider directions of future
research arising from this body of work.

Notation and Conventions

We assume the reader is familiar with basic complexity thegnaph theory and discrete math-
ematics. We generally adopt the following conventions fommg objects.

e For elementary objects, or objects we wish to consider eiang for example vertices
or variablesa, b, c, . ..

e For sets of elementary objectd; B, C, . ..
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For structures comprising several sets, including grapddamilies of setsA, B,C, . ..

For more complex structured, B, C, . ..

For sequences and simple functionsy, v, . ..

For more complex functionst, 8. ¢, . ..

1.1.1 Sets and sequences

All sets and sequences we consider in this dissertationcanetable. We use botN andw to
denote the natural numbers, using the latter when we retherénear order. We also assume
that0 is a natural number.

Let A be a set. We denote B(A) the set of subsets of. For a natural numbek, [A]*
denotes the set of subsets4bf sizek, and[A]=* denotes the set of subsetsAbf size< k.
Given two setsA and B, AUB denotes theidisjoint unionandA A B denotes theisymmetric
difference That is,

AN B:=(A\B)U(B\A).

For readability, we generally drop innermost parenthesbsackets when the intention is clear,
particularly with functions. For example if : P(A) — B, anda € A, we write f(a) for
f({a}).

We write sequences as wor@s, - - -, using0 as the first index when the first element of the
sequence is especially significant. For a sequen¢e| denotes the length of (|7| = w if 7 is
infinite). We denote sequence concatenation fyhat is, ifr = aqas - - - a,, IS a finite sequence
andr’ = b1b, - - - is a (possibly infinite) sequence, thent’ is the sequence as - - - a,b1by - - - .

If 7 = ajas---a, is afinite sequence; is the infinite sequence- 7 -7 - - -. Given a set4, the
setA* denotes the set of all finite sequences of element§ aihd the sedl“ denotes the set of
all infinite sequences. We say a reflexive and transitivaiogla< on A is awell-quasi ordering
if for any infinite sequence; a; - - - € A“, there exists indices< j such thats; < z;.

Letm = ajay--- andn’ = b1by - - - be sequences of elementsAfWe writer < ' if 7 is
aprefixof 7/, that is, if there exists a sequencésuch that’ = = - 7#”. We writer < =’ if 7
is asubsequencef 7', that is, there exists a sequence of natural numhbgks n, < --- such
thata; = b, forall i < |r|.

1.1.2 Graphs

The notation we use for the graph theoretical aspects oflibsertation generally follow Dies-

tel [Die05], however rather than regarding directed gragghandirected graphs with two maps
Head andTail from edges to vertices, we view directed graphs as reldtginectures. Thatis, a
directed graphor digraph G consists of a set ofertices denoted/ (G), and anedge relation
E(G) CV(G) x V(G). We use the definition in [Die05] for amndirected graphthat isE(G)

is a subset ofV/(G)]?. For an edge = (u,v) in a directed graph, thiegeadof ¢ is v and thetail

is u, and we say goesfromu to v. To avoid ambiguities, we assume that the vertex and edge
sets are disjoint. Thelement®f a graphg, is the set defined as

Elts(G) := V() U B(G).
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We note that we could either adopt the policy of Diestel aredwa directed graph as an
undirected graph with some additional structural infoioygtor alternatively we could view
an undirected graph as a directed graph where the edgeoreiatsymmetric and irreflexive.
We reserve those interpretations for the following two mbgsveen directed and undirected
graphs. LetD be a directed graph. Thenderlying undirected graph dP is the undirected
graphD where:

e V(D) =V (D), and
e E(D) = {{u,v}: (u,v) € E(D)}.

Let G be an undirected graph. Thelirected graph of; is the directed grapf?) where:

>

e V(G )=V(G),and

° E(?) = {(u,v), (v,u) : {u,v} € E(G)}.

We extend the definition of bidirection to parts of undirelctgaphs. For exampleladirected
cycleis a subgraph of a directed graph which is a bidirected grépltgcle. Regarding the pair
of edges{(u,v), (v,u)} arising from bidirecting an undirected edge, we call suclaia anti-
parallel. For clarity when illustrating directed graphs, we use wxied edges to represent
pairs of anti-parallel edges. For the remaining definitjome use ordered pairs to describe
edges in undirected graphs.

Let G be an undirected (directed) graph. (directed) pathin G is a sequence of vertices
T = v1ve - -+ such that for alk, 1 <i < |x|, (v;,v41) € E(G). Forasubsek C V(G), the set
of verticesreachablefrom X is defined as:

Reacly(X) := {w € V(G) : thereis a (directed) path to from somev € X}.

For a subseX C V(G) of the vertices, the subgraph gfinducedby X is the undirected
(directed) graplt[ X | defined as:

e V(G[X]) =X, and
e E(G[X]) ={(u,v) € E(G):u,v e X}.

For convenience we writé \ X for the induced subgrapfi[V'(G) \ X]. Similarly, for a set?
of edges@|FE] is the subgraph of with vertex set equal to the set of endpointdhfand edge
set equal tav.

Letv € V(D) be a vertex of a directed gragh. Thesuccessors of are the vertices
such that(v, w) € E(D). Thepredecessors af are the vertices such that(u,v) € E(D).
The successors and predecessors afe the verticeadjacent tov. We sayw is aroot (of D)
if it has no predecessors, andeaf (of D) if it has no successors. Thaitgoing edges of
are all the edges from to some successor of and theincoming edges aof are all the edges
from a predecessor ofto v. Theoutdegree ob, doy(v) is the number of outgoing edges ©of
and theindegree ofv, di,(v) is the number of incoming edges @f Given a subset” C V(G)
of vertices, theout-neighbourhood of’, No(V') is the set of successors of verticeslohot
contained inV/.
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If D is a directed acyclic graph (DAG), we writep for the reflexive, transitive closure of
the edge relation. That is <p w if, and only if, w € Reach(v). If v <p w, we sayv is a
ancestorof w andw is adescendantf v.

We denote byD°P the directed graph obtained by reversing the directione@étiges oD.
That is,D is the directed graph defined as:

e V(D) =V(D), and
o E(D®) = (E(D)) ' ={(v,u): (u,v) € E(D)}.

In this dissertation we considéransition systemsvith a number of transition relations.
That is, a transition system is a tudlg, s;, £, E» . ..) whereS is the set ofstates s; € S is
theinitial state andE; C S x S are the transition relations. We observe that a transitystesn
with one transition relation is equivalent to a directedpdravith an identified vertex.

Structural relations

As we indicated earlier, the notion gfaph structuras very much a qualitative concept. Just as
the “structure” of universal algebra is best characterizggdubalgebras, homomorphisms and
products, the particular graph structure theory we areasted in is perhaps best characterized
by the following “fundamental” relations: subgraphs, ceated components and graph compo-
sition. As these concepts are frequently referenced, wadedheir definitions. First we have
the subgraph relation.

Definition 1.1 (Subgraph) Let G andG’ be directed (undirected) graphs. We sajs a sub-
graphof G' if V(G) C V(G') andE(G) C E(G').

The next definition describes the building blocks of a grapbconnected components

Definition 1.2 (Connected componentd)et G be an undirected graph. We s@ys connected
if for all v,w € V(G), w € Reaclg(v). A connected component gfis a maximal connected
subgraph.

It is easy to see that an undirected graph is the union of ne@cted components. That
is, if Gi,...,G,, are the connected componentsgfthenV (G) = (J;*, V(G;) and E(G) =
Ui~ E(G;). From the maximality of a connected component, it followe t connected com-
ponent is an induced subgraph. Thus we often view a conneotegonent as a set of vertices
rather than a graph.

The final fundamental relation iexicographic produgtalso known agraph composition

Definition 1.3 (Lexicographic product)Let G andH be directed (undirected) graphs. The
lexicographic product off andH is the directed (undirected) grapghe H, defined as follows:

e V(GoeH)=V(G) x V(H), and

e ((v,w),(v,w')) € E(GeH)if, and only if, (v,v") € E(G) orv = v and (w,w’) €
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g H GeH
Figure 1.1: The lexicographic product of graghandH

Intuitively, the graphy e H arises from replacing vertices ¢hwith copies ofH, hence the
name graph composition. Figure 1.1 illustrates an exanfleedexicographic product of two
graphs.

For directed graphs we have three more basic structurakpdsicweakly connected com-
ponents, strongly connected components and directed .umfoa first two are a refinement of
connected components.

Definition 1.4 (Weakly/Strongly connected componentsgt G be a directed graph. We sgy
is weakly connected G is connected. We say is strongly connected for all v, w € V(G),

w € Reacl(v) andv € Reacly(w). A weakly (strongly) connected componentdofs a
maximal weakly (strongly) connected subgraph.

We observe that a directed graph is the union of its weaklyneoted components. The
union of the strongly connected components may not incliidbeaxedges of the graph. How-
ever, it is easy to see that if there is an edge from one styaaginected component to another,
then there are no edges in the reverse direction. This leals third structural relation specific
to directed graphs.

Definition 1.5 (Directed union) Let G, G;, andG, be directed graphs. We sgyis adirected
union ofG; and g, if:

o V(G)=V(G:)UV(G), and
e E(G) C E(G1) UE(G) U(V(G1) x V(Ga)).

It follows that a directed graph is a directed union of it®sgly connected components.

1.1.3 Complexity

The computational complexity definitions of this disseaafollow [GJ79]. We consider poly-
nomial time algorithms efficient, so we are primarily comes with polynomial time reduc-
tions. We use standatig-O notationto describe asymptotically bounded classes of functions,
particularly for describing complexity bounds.
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Collaborations

The work in several chapters of this dissertation aroseutiiiacollaborative work with others
and we conclude this introduction by acknowledging theserdmutions. The work regarding
winning conditions in Chapter 2 was joint work with Anuj Davaard was presented at the 30th
International Symposium on Mathematical Foundations of Quater Science [HD0O5]. Chap-
ter 6 arose through collaboration with Dietmar BerwangenjAbawar and Stephan Kreutzer,
and was presented at the 23rd International Symposium oar&teal Aspects of Computer
Science [BDHKO06]. The concept and nadAG-width were also independently developed
by Jan Obdtalek [Obd06]. Finally, the work in Chapter 7 arose througHadmiration with
Stephan Kreutzer and was presented at the 18th ACM-SIAM Sgmpoon Discrete Algo-
rithms [HKO7].



Chapter 2

Infinite games

In this chapter we formally define the games we use througthasidissertation. The games
we are interested in are played on finite or infinite graphso&ehvertices represent a state
space) with two players moving a token along the edges of thehg The (possibly) infinite
sequence of vertices that is visited constitutes a playsoféme, with the winner of a play being
defined by some predetermined condition. As we discussérbiprevious chapter, such games
are becoming increasingly important in computer scienca agans for modelling reactive
systems; providing essential tools for the analysis, sgithand verification of such systems.

It is known [Mar75] that under some fairly general assumpgiothese games are deter-
mined. That is, for any game one player has a winning stratéggthermore, under the con-
ditions we consider below, the games we consider are ddeidahichever player wins can be
computed in finite time [BL69]. We are particularly interesta the computational complexity
of deciding which player wins in these games. Indeed, thim$one of the underlying research
themes of this dissertation.

As we are interested in the algorithmic aspects of these game need to restrict our
attention to games that can be described in a finite fashibis does not mean that the graph
on which the game is played is necessarily finite as it is ptes$o finitely describe an infinite
graph. Nor does having a finite game graph by itself guarahiztethe game can be finitely
described. Even with two nodes in a graph, the number ofndisplays can be uncountable
and there are more possible winning conditions than onedqmessibly describe. Throughout
this dissertation, we are concerned wWiMiller gamegplayed on finite graphs. These are games
in which the graph is finite and the winner of a play is deteediby the set of vertices of the
graph that are visited infinitely often in the play (see SmtR.1 for formal definitions). This
category of games is wide enough to include most kinds of gameing conditions that are
considered in the literature, including Streett, Rabia¢c and parity games.

Since the complexity of a problem is measured as a functitimeoiength of the description,
the complexity of deciding which player wins a game depend$iov exactly the game is
described. In general, a Muller game is defined by a direataphg4, and a winning condition
F C P(V(A)) consisting of a set of subsets B{.4). One could specifyF by listing all its
elements explicitly (we call this aexplicit presentation) but one could also adopt a formalism
which allows one to specifyy more succinctly. In this chapter we investigate the role the
specification of the winning condition has in determining tomplexity of deciding regular
games. Examples of this line of research can be found thmughe literature, for instance
the complexity of deciding Rabin games is known to be NP-cetedEJ88], for Streett games

17
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it is known to be co-NP-complete. The complexity of decidpagity games is a central open
guestion in the theory of regular games. It is known to be imNB-NP [EJ91] and conjectured
by some to be in PME. In Chapters 3, 6 and 7 we explore this problem in more detait. F
Muller games, the exact complexity has not been fully ingaséd. In Section 2.3 we show that
the complexity of deciding Muller games isPACEcomplete for many types of presentation.

We also establish a framework in which the expressivenedssaccinctness of different
types of winning conditions can be compared. We introduceti@n of polynomial timdrans-
latability between formalisms which gives rise to a notion of game cerifyl stronger than
that implied by polynomial time reductions of the corresgiog decision problems. Infor-
mally, a specification is translatable into another if theresentation of a game in the first can
be transformed into a representatmfithe same gamia the second.

The complexity results we establish for Muller games all@taishow two important prob-
lems related to Mulleautomataare also BPACEcomplete: the non-emptiness problem and
the model-checking problem on regular trees.

The chapter is organised as follows. In Section 2.1 we ptabenformal definitions of
arenas, games and strategies that we use throughout thendemef the dissertation. In Sec-
tion 2.2 we introduce the notion of winning condition typea formalization for specifying
winning conditions. We provide examples from the literatand we consider the notion of
translatability between condition types. In Section 2.3present some results regarding the
complexity of deciding the games we consider here, inclyidive BSPACECOmpleteness re-
sult for Muller games, and a co-NP-completeness resulworgames we introduce. Finally,
in Section 2.4 we show that the non-emptiness and model siepkoblems for Muller tree
automata are alsoFPACEcomplete.

2.1 Preliminaries

In this section we present the definitions of arenas, gamstaategies that we use throughout
the dissertation. The definitions we use follow [GTWO02]. Irctsan 2.1.4 we introduce a
generalization of bisimulation appropriate for arenasgardesgame simulationand we show
how it can be used to translate plays and strategies fromrena & another.

2.1.1 Arenas

Our first definition is a generalization of a transition syste@here two entities gslayerscontrol
the transitions.

Definition 2.1 (Arena) An arenais a tupleA := (V, V,, Vi, E, v;) where:
e (V, F)is adirected graph,

e 1}, the set oPlayer O verticesandV/, the set oPlayer 1 verticesform a partition ofl/,
and

e y; € V is theinitial vertex

Viewing arenas as directed graphs with some additionatsire, we define the notions
of subarenaandinduced subarenan the obvious way. Figure 2.1 illustrates an arehavith
Vo(A) = {vs,vs,v6} andVi(A) = {v1, v2, vs, v7, 08, Vg }.
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Figure 2.1: An example of an arena

Given an arenaA, we consider the following set of interactions between tiayers:
Player 0 and Player 1.A token, or pebble, is placed an(A). Whenever the pebble is on
avertexv € V;(A), Player 0 chooses a successor @ind moves the pebble to that vertex, and
similarly when the pebble is on a vertexc V;(.A), Player 1 chooses the move. This results in
a (possibly infinite) sequence of vertices visited by thebpebWe call such a sequencelay.
More formally,

Definition 2.2 (Play). Given an arenad andv € V' (A), aplay in A (fromv) is a (possibly
infinite) sequence of verticesv, - - - such thaty = v and for alli > 1, (v;,v;11) € E(A). If

v is not specified, we assume the play is fromi4). The set of all plays ind from v;(.A) is

denoted by PlaysA).

We observe that ifd’ is a subarena oft then Play§A’) C Playg.A).

As an example, the infinite sequenge,v;vsvsvgugvsv7(v502)” IS @ play in the arena pic-
tured in Figure 2.1, as is the finite sequengce,v;v5v3v6U9V 4.

When one of the players has no choice of move, we may assuntadiais only one player
as there is no meaningful interaction between the players.

Definition 2.3 (Single-player arena)Let A = (V, Vy, V4, E,v;) be an arena. We say is a
single-player arendf for somei € {0, 1} and every € V;, dou(v) < 1.

An important concept relating to arenas and the games wedmoris the notion ofluality.
In the dual situation, we interchange the roles of Player @ Rlayer 1. This gives us the
following definition of adual arena

Definition 2.4 (DuNaI arena)Let A = (V, Vi, V4, E, v7) be an arena. Theual arena ofA is the
arena defined byl := (V, V3, Vg, E, vp).

We observe that for each aredaPlays.4) = Plays.A).

2.1.2 Games

Arenas and plays establish the interactions that we areecned with. We now use these to
define games by imposing outcomes for plays. The games weatarested in are zero-sum
games, that is, if one player wins then the other player I0a&scan therefore define a winning
condition as a set of plays that are winning for one playgrPayer 0, working on the premise
that if a play is not in that set then it is winning for Player 1.

1For convenience we use the feminine pronoun for Player Ol@dasculine pronoun for Player 1
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Definition 2.5 (Game) A gameis a pairG := (A, Win) where A4 is an arena andVin C
Plays.A). Form € Plays.A) if # € Win, we sayr is winning for Player Q otherwiser is
winning for Player 1 A single-player gamés a game(.A, Win) where A is a single player
arena.

As we mentioned earlier, to consider algorithmic aspectbege games we need to assume
that they can be finitely presented. Muller games are an itapbexample of a class of finitely
presentable games. With a Muller game, if a player cannoertieen he or she loses, otherwise
the outcome of an infinite play is dependent on the set ofeestvisited infinitely often.

Definition 2.6 (Muller game) A gameG = (A, Win) is aMuller gameif A is finite and there
existsF C P(V(A)) such that for allr € Playg.A):

7 is finite and ends with a vertex froir (A), or

m € Win <= e e .
7 is infinite and{v : v occurs infinitely often int} € F.

If G is a Muller game, witnessed sy C P(V'(A)), we writeG = (A, F).

As an example, consider the aredapictured in Figure 2.1. LeF = {{UQ,U5}}. Then
G = (A, F) is a Muller game. The play, v4v7v508v6v9v4v7 (v502)“ iS Winning for Player 0, but
the playv, v,v7(vsvgvgugv4v7)* IS Winning for Player 1.

The games used in the literature in the study of logics andnaatta are generally Muller
games. In these games, the $ets often not explicitly given but is specified by means of a
condition Different types of condition lead to various different &gof games. We explore this
in more detail in Section 2.2.

An important subclass of Muller games are the games whene @mm player wins any
infinite play. Games such as Ehrenfeuchtif®#& games (on finite structures) [EF99] and the
graph searching games we consider in Chapter 5 are examplesseftypes of games.

Definition 2.7 (Simple game) A Muller gameG = (A, F) is asimple gaméf either F = 0,
orF =P(V(A)).

Two other important subclasses of Muller games which we idensn this chapter are
union-closed and upward-closed games.

Definition 2.8 (Union-closed and Upward-closed gamesMuller gameG = (A, F) isunion-
closedif forall X,Y € F, X UY € F. G is upward-closedf for all X € F andY D X,
YeF.

Remark.Union-closed games are often called Streett-Rabin gambes iité¢rature, as Player O's
winning set can be specified by a set of Streett pairs (seeib&fii2.38 below) and Player 1's
winning set can be specified by a set of Rabin pairs (see Defirfiti37). However, to minimize
confusion, we reserve the tei®treett gaméor union-closed games with a condition presented
as a set of Streett pairs, and the teRabin gamdor the dual of a union-closed game (see
below) with a condition presented as a set of Rabin pairs.

We conclude this section by considering dual games and sudxgaln Definition 2.4 we
defined the dual of an arena. The dual game is played on theadera, but we have to com-
plement the winning condition in order to fully interchartge roles of the players. That is,
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Definition 2.9 (Dual game) Let G = (A, Win) be a game. The gante := (A, Win) where
Ais the dual arena oft andWin = Playg.4) \ Win is thedual game of5.

Given a game on an arepawe can define a restricted game on a subariay restricting
the winning condition to valid plays in the subarena.

Definition 2.10 (Subgame) Let G = (.4, Win) be a game, ant!’ a subarena ofA. The
subgame induced by’ is the gameG’ = (A, Win') whereWin’ = Win N Playg.A’).

2.1.3 Strategies

As with most games we are less interested in outcomes ofespigys in the game and more
interested in the existence of strategies that ensure agemlvins against any choice of moves
from the other player.

Definition 2.11 (Strategy) Let A = (V,V,, Vi, E,v;) be an arena. Atrategy (for Player)
in A is a partial functioro : V*V; — V such that ifo(v,v5 - - - v,) = ¢’ then(v,,v’) € E.
A play 7 = wvvy--- is consistentwith a strategyo if for all j < || such thatv; € V;,
o(vivg - - v;) = Vjy1.

Given a sequence of vertices visited, ending with a vertax,ia strategy for Playergives
the vertex that Playershould then play to. We observe that given a stratefgyr Player 0 and
a strategyr for Player 1 from any vertex there is a uniqgue maximal play from v consistent
with o andr in the sense that any play consistent with both strategi@prefix of7?. We call
this play theplay (fromv) defined by strategies and .

A useful class of strategies are those that can be defineddraxed number of previously
visited vertices.

Definition 2.12 (Strategy memory)If a strategyo has the property that for some fixed,
o(w) = o(w') if wandw’ agree on their last: letters, then we say that the strategy requires
finite memoryof sizem — 1). If m = 1, we say the strategy memorylessr positional

Strategies extend to games in the obvious way.

Definition 2.13 (Game strategies)Given a gamés = (A, Win), astrategy for Playeti in G
is a strategy for Playerin A. A strategyo for Playeri is winningif all plays consistent witlar
are winning for Playei. Playeri winsG if Playeri has a winning strategy frony (.A).

We observe that for any play = v,v, - - - v,, in @ Muller game, consistent with a winning
strategyo for Playeri, if v,, € V;(A) theno () is defined.
Earlier we alluded to the following important result ofiéhi and Landweber [BL69].

Theorem 2.14([BL69]). LetG = (A, F) be a Muller game. One player has a winning strategy
on G with finite memory of size at mds$t(.A)|!.

An immediate corollary of this is that Muller games are dabie: we can check all possi-
ble strategies for both players that use at most4)|! memory, and see if the corresponding
defined plays are winning. However, the complexity boundswch an algorithm are enor-
mous. In [McN93] McNaughton provided an algorithm with ciesably better space and
time bounds.
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Theorem 2.15([McN93]). LetG = (A, F) be a Muller game withd = (V,V;, Vi, E, vg).
Whether Player 0 has a winning strategy fremcan be decided in tim&(|V'|?|E||V|!) and
spaceO(|V]?).

For union-closed games and their duals we can reduce the meetuirement for a win-
ning strategy.

Theorem 2.16([Kla94]). LetG = (A, F) be a Muller game. IfF is closed under unions and
Player 1 has a winning strategy, then Player 1 has a memoryl@ssing strategy. Dually, if
the complement of is closed under union and Player 0 has a winning strategy, flager O
has a memoryless winning strategy.

Two useful tools for constructing decidability algorithmeeforce-setsaandavoid-sets

Definition 2.17 (Force-set and Avoid-set) et A be an arena, and,Y C V(A). The set

Forcel (Y) is the set of vertices from which Playehas a strategy such that any play con-
sistent withc reaches some vertex i without leavingX. The setAvoids (Y) is the set of

vertices from which Playerhas a strategy such that any play consistent withthat remains

in X avoids all vertices irY'.

We observe from the definitions thiadrce (V) = X \ Avoid; “(Y)). We also observe that
we may assume the strategieare memoryless: if Playeércan force the play from to some
vertex ofY’, the play tov is irrelevant.

Computing a force-set is an instance of the well-known adteng reachability problem,
and in Algorithm 2.1 we present the standard algorithm fanpoting a force-set. Nerode,
Remmel and Yakhnis [NRY96] provide an implementation of #igorithm which runs in time
O(|E(.A)|), giving us the following:

Lemma 2.18. Let A be an arena. For any set¥, Y C V(A), Force)(Y) can be computed in
timeO(|E(A)|)

Algorithm 2.1 FORCEY (Y)
Returns: The set of vertices € V' (.A) such that Player 0 has a strategy to force a play foom
to some element df” without visiting a vertex outsid& .
let R = {v e Vo(A)N X : there existsv € Y with (v, w) € E(A)}.
let S = {v e Vi(A)n X : forall wwith (v,w) € E(A), w € Y}.
if RUS CY then
return Y
else
return FORCEy(RUSUY).

2.1.4 Simulations

One of the most important concepts in transition systemBdsbtion of bisimulation. Two
transition systems are bisimilar if each system can sirauta other. That is,

Definition 2.19 (Bisimulation) Let7 = (S, s¢, £) and7’ = (5, sy, E') be transition systems.
We say7 and7’ arebisimilar if there exists a relatior-C S x S’ such that:
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e If (s,t) € EF ands ~ ¢ then there exists € S’ such tha{s’,t') € E’ andt ~ ¢/, and
e If (s',¢') € " ands ~ ¢’ then there exists € S such thats,t) € E andt ~ t'.
We now consider a generalization of bisimulation apprdpriar arenas.

Definition 2.20 (Game simulation)Let . A and. A’ be arenas. Ayame simulation frord to A’
is arelationSC (V5(A) x Vo(A')) U (Vi(A) x Vi(A')) such that:

(SIM-1) v;(A) S v (A),

(SIM-2) If (u,v) € E(A), u € Vo(A) andu S o/, then there exists’ € V(. A’) such that
(u',v") € E(A")andv S ¢/, and

(SIM-3) If (v/,v") € E(A), v € Vi(A') andu S «’, then there exists € V(A) such that
(u,v) € E(A)andv S v'.

We write A <X A’ if there exists a game simulation fradhto A’

We observe thag is reflexive and transitive andJt < A’ thenA’ < A. In Proposition 2.28
we show that it is also antisymmetric (up to bisimulation).

If A =3 A, then Player 0 can simulate plays @t as plays ond: every move made by
Player 1 onA’ can be translated to a move gh and for every response of Player Qdn there
is a corresponding response dh Dually, Player 1 can simulate a play ghas a play on4'.
More precisely,

Lemma 2.21.Let A and A’ be arenas, and |8 be a simulation fron to A’. For any strategy
o for Player 0 inA, and any strategy’ for Player 1 inA’, there exists a strategy for Player O
in A’ and a strategy- for Player 1 in.A such that ifr = vyv; --- € Playg.A) is a play from
vo = v;(A) consistent withr andr and#’ = v{v] - - - € Playg.A’) is a play fromv), = v;(A")
consistent witty’ and7’, thenv; S v} for all 7, 0 < i < min{|~x|, |7’|}.

Proof. We defines’ andr as follows. Letr = vyvyvs - - - v, andn’ = vjvy - - - v, and suppose
v; S v} forall i, 0 < i < n. Suppose first that, € V;(A) (sov), € Vo(A')) ando(m) = v,41.
Since (v, v,41) € E(A) andv, S v}, from Condition (SIM-2) there exists],; such that
(v),,v,41) € E(A) andv,4q S v),,,. Defined’(n’) := v], ;. Now suppose),, € V;(A) (so
v, € Vi(A')). Let7'(n') = v/, and letv,, be the successor of,, such that,; S v,
guaranteed by Condition (SIM-3). Definér) = v,,;. We observe that although andr
are only defined for some plays, this definition is sufficiesv, S v;, it follows by induction
that for every playr’ = vyv; - - - v}, consistent witho’ and 7’ there is a playr = vov; - - - v,
(consistent withr) such thaw; S v} for all i, 0 < i < n. Thusifv), € Vj(A'), o(x’) is well-
defined. O

We observe that the strategi@sandr are independently derivable from ando respec-
tively. That is, we can interchange thie’ anddo’ (or theVo and37) quantifications to obtain:
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Corollary 2.22. Let A and A’ be arenas, and le§ be a game simulation fromd to A’. For
every strategy for Player 0 inA there exists a strategy for Player 0 inA’ such that for every
play vjv; - - - consistent withy’ there exists a playyv; - - -, consistent witlr such thatv; S v;
for all 2. Dually, for every strategy’ for Player 1 in A’ there exists a strategy for Player 1
in A such that for every playyv; - - - consistent with- there exists a playyv; - - -, consistent
with 7" such that; S v; for all .

We call the strategies which we can derive in such a masinaulated strategies

Definition 2.23 (Simulated search strategyet A, A, S, o, ¢/, 7 and7’ be as above. We call
o’ aS-simulated strategy af, andr a S-simulated strategy of'.

We can use game simulations to translate winning stratégias one game into winning
strategies in another. However, we require that a simulaggpects the winning condition in
some sense.

Definition 2.24 (Faithful simulation) Let G = (A, Win) andG’ = (A’, Win') be games. Let
S be a game simulation from to A’, and letS also denote the pointwise extension of the
relation to plays:w S «’ if || = |#/| andv; S ¢} for all v; € 7 andv, € n’. We sayS is
(Win, Win')-faithful if for all = € Playg.4) and allx’ € Playg.4’) such thatr S «":

7 € Win = 7’ € Win'.
The next result follows immediately from the definitions.

Proposition 2.25.LetG = (A, Win) andG’ = (A’, Win’) be games. Le$ be a(Win, Win')-
faithful game simulation frord to A’. If o is a winning strategy for Player O it then any
S-simulated strategy is a winning strategy for Player @Gh Dually, if 7’ is a winning strategy
for Player 1 inG’ then anyS-simulated strategy is a winning strategy for Player 1Gn

For simple games checking if a game simulation is faithfuglatively easy. It follows from
the definition of a game simulation that all finite plays auétically satisfy the criterion. Thus
it suffices to check the infinite plays. But for simple gameséhare vacuously satisfied in two
cases:

Lemma 2.26.LetG = (A, F) andG’ = (A’, F') be Muller games and led be a simulation
from Ato A'. If either F = () or 7/ = P(V(A")) thenS is faithful.

Corollary 2.27. LetG = (A, F) andG’ = (A, F') be Muller games such thak = () or
F =PV(A)). If A3 A and Player 0 wings, then Player O win&’. Dually, if A 3 A’
and Player 1 wingy/, then Player 1 wings.

We conclude this section by showing how game simulatiorsgea¢b bisimulation.

Proposition 2.28. Let A = (V, Vo, V4, E,v;) and A" = (V' V{, V], E',v}) be arenas. 1f4 =
A"and A" = A then the transition systenf¥’, v;, E') and (V' v}, E') are bisimilar.

Proof. Let S be a game simulation fromd to .4’ and letS’ be a game simulation fromd’ to
A. It follows from the definitions that the relatichuU(S’)~! is a bisimulation between the two
transition systems. O
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2.2 Winning condition presentations

As we discussed above, if we are interested in investigahegcomplexity of the problem
of deciding Muller games, we need to consider the manner ichwifie winning condition is
presented. As we see in Section 2.2.1, for many games that octhe literature relating to
logics and automata the winning condition can be expressednore efficient manner than
simply listing the elements af. To formally describe such specifications, we introduce the
concept of aondition type

Definition 2.29 (Condition type) A condition typds a function?l which maps an arend to a
pair (ZA, =4) whereZ# is a set and="C Playg.A) x 7+ is theacceptance relationwe call
elements off# condition typegor simply,conditiong. A regular condition typanaps an arena
Ato a pair(Z#, =*) whereZ4 is a set of conditions ang-AC P(V(A)) x T4

Remark.In the sequel we will generally regard the relatiprf as intrinsically defined, and
associat@((.A) with the setZ+. That is, we will us&? € 2(.A) to indicate € Z4.

A (regular) condition type defines a family of (Muller) gameshe following manner. Le®(

be a condition typed an arena, anél(A) = (Z#, =*). ForQ) € Z#, the gamg A, Q) is the
game(A, Win) whereWin = {7 € Playg.A) : 7 =" Q}. We generally call a game where the
winning condition is specified by a condition of typean2(-game for example garity game

is a game where the winning condition is specified ljyaaty condition(see Definition 2.41
below). We can now state precisely the decision problem weénderested in.

A-GAME
Instance: A gameG = (A4, Q) whereQ2 € A(A).
Problem: Does Player 0 have a winning strategyGf

The exploration of the complexity of this problem is one & thain research problems that
this dissertation addresses.

Research aim.Investigate the complexity of decidiRdgGAME for various (regular) condition
types2l.

2.2.1 Examples

We now give some examples of regular condition types thatioiccthe literature. First we
observe that an instan€ec 2((.A4) of a regular condition typ@l defines a family of subsets of
V(A):

Fo={ICV(A I=*Q}

We call this theset specified by the conditidgl In the examples below, we describe the set
specified by a condition to define the acceptance relatidn

General purpose condition types

The first examples we consider are general purpose formalisrthat they may be used to
specify any family of sets.

The most straightforward presentation of the winning cbadiof a Muller gamg.A, F) is
given by explicitly listing all elements af. We call this arexplicit presentationWe can view
such a formalism in our framework as follows:



26 CHAPTER 2. INFINITE GAMES

Definition 2.30 (Explicit condition type) An instance of the=xplicit condition typds a set
F CP(V(A)). The set specified by an instance is the set which defines stanice.

In the literature an explicit presentation is sometimegedah Muller condition However,
we reserve that term for the more commonly used presenttdraduller games in terms of
colours given next.

Definition 2.31 (Muller condition type) An instance of theMuller condition typeis a pair
(x,C) where, for some set', x : V(A) — C andC C P(C). The setF, ) specified by a
Muller condition(x,C) is the sef{/ C V(A) : x(I) € C}.

To distinguish Muller games from games with a winning coioditspecified by a Muller
condition, we explicitly state the nature of the presentabf the winning condition if it is
critical.

From a more practical perspective, when considering agipdies of these types of games
it may be the case that there are vertices whose appearaaeg iinfinite run is irrelevant. This
leads to the definition of win-set condition

Definition 2.32 (Win-set condition type) An instance of thevin-set condition typés a pair
(W, W) wherelV C V(A) andWW C P(IW). The setFw,) specified by a win-set condition
(W,W)isthese{I CV(A): WnNIeW}.

Another way to describe a winning condition is as a booleaméda. Such a formalism
Is somewhat closer in nature than the specifications we hafarsconsidered to the moti-
vating problem of verifying reactive systems: requirersanit such systems are more readily
expressed as logical formulas. Winning conditions of thiglkvere considered by Emerson
and Lei [EL85].

Definition 2.33 (Emerson-Lei condition type)An instance of th&amerson-Lei condition type
is a boolean formula with variables from the sét (A). The setF,, specified by an Emerson-
Lei conditiony is the collection of setg C V/(.A) such that the truth assignment that maps
each element of to true and each element &f(.A) \ I to false satisfiesp.

A boolean formula can contain a lot of repetition, so it mayni@e efficient to consider
boolean circuitgather than formulas. This motivates one of the most suttmpes of winning
condition we consider.

Definition 2.34 (Circuit condition type) An instance of theircuit condition typds a boolean
circuit C' with input nodes from the sét(.4) and one output node. The s&t specified by a
circuit conditionC' is the collection of set§ C V' (A) such thatC outputstrue when each input
corresponding to a vertex ihis set totrue and all other inputs are set false.

The final general purpose formalisms we consider are sontewbige exotic. In [Zie98],
Zielonka introduced a representation for a family of subsét set’, 7 C P(V), in terms of
a labelled tree where the labels on the nodes are subsgts of

Definition 2.35 (Zielonka tree and Zielonka DAG)Let V' be a set andF C P(V). The
Zielonka treg(also called aplit treeof the setF, Zr v, is defined inductively as:

1. If V ¢ FthenZzy = 2z, whereF = P(V) \ F.
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2. If V € F then t_he root ofZxy is labelled withV'. Let M, Ms, ..., M), be theC-
maximal sets inF, and letF|,, = F N P(M;). The successors of the root are the
subtreesZr,, v, forl <i <k.

A Zielonka DAGis constructed as a Zielonka tree except nodes labelledebgdme set are
identified, making it a directed acyclic graph. Nodes®f, labelled by elements of are
calledO-level nodesand other nodes adelevel nodes

Zielonka trees are intimately related to Muller games. Iriipalar they identify the size of
memory required for a winning strategy: the “amount” of lmaing of 0-level nodes indicates
the maximum amount of memory required for a winning strategyPlayer 0, and similarly
for 1-level nodes and Player 1 [DJW97]. For example, the #lirvdes of a Zielonka tree of a
union-closed family of sets have at most one successocatdg that if Player 1 has a winning
strategy then he has a memoryless winning strategy. Thudseecansider games where the
winning condition is specified as a Zielonka tree (or the nsurecinct Zielonka DAG).

Definition 2.36(Zielonka tree and Zielonka DAG condition type#)n instance of th&ielonka
tree (DAG) condition typés a Zielonka tree (DAGE v (4) for someF C P(V(A)). The set
specified by an instance is the $éused to define the instance.

Other condition types

We now consider formalisms that can only specify restridgedilies of sets such as union-
closed or upward-closed families. The first formalism wesider is a well-known specifica-
tion, introduced by Rabin in [Rab72] as an acceptance comditioinfinite automata.

Definition 2.37 (Rabin condition type)An instance of th&abin condition typés a set of pairs
Q={(L;,R;) : 1 <i < m}. The setF, specified by a Rabin conditiof is the collection of
setsl C V(.A) such that there exists anl < i < m, suchthat N L; # § andl N R; = .

The remaining formalisms we consider can only be used tafydamilies of sets that are
closed under union. The first of these, the Streett condiyipa, introduced in [Str82], is similar
to the Rabin condition type.

Definition 2.38(Streett condition type)An instance of th&treett condition typis a set of pairs
Q= {(L;, R;) : 1 <i < m}. The setF specified by a Streett conditidnis the collection of
sets] C V(A) suchthatforali, 1 <i <m,eitheriNL; #DorlNR;=0.

The Streett condition type is useful for describing faisiesnditions such as those consid-
ered in [EL85]. An example of a fairness condition for infendomputations is: “every process
enabled infinitely often is executed infinitely often”. Viewg vertices of an arena as states of
an infinite computation system where some processes arategdend some are enabled, this
is equivalent to saying “for every process, either the sedtaes which enable the process is
visited finitely often or the set of states which execute tharess is visited infinitely often”,
which we see is easily interpreted as a Streett condition.

The Streett and Rabin condition types are dual in the follgnsanse: for any sef C
P(V(.A)) which can be specified by a Streett condition, there is a Raiidition which speci-
fiesP(V(A))\ F, and conversely. Indeed,if = {(L;, R;) : 1 <i < m} is a Streett condition,
then for the Rabin conditioft = {(R;, L;) : 1 < i < m} we haveF; = P(V(A)) \ Fo. This
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implies that the dual of a Streett game can be expressed asima gRabe, and conversely the
dual of a Rabin game can be expressed as a Streett game.

If we are interested in specifying union-closed familiesefs efficiently, we can consider
the closure under union of a given set. This motivates tHeviahg definition:

Definition 2.39 (Basis condition type)An instance of théasis condition typés a set3 C
P(V(A)). The setF; specified by a basis conditidhis the collection of set§ C V(. A) such
that there ard3,,..., B, € Bwith [ = UISZ.S” B;.

In a similar manner to the basis condition type, if we arerggeed in efficiently specifying
an upward-closed family of sets, we can explicitly list theminimal elements of the family.
This gives us theuperset condition typalso called auperset Muller conditiom [LTMNO2].

Definition 2.40 (Superset condition type)An instance of thesuperset condition typis a set
M C P(V(A)). The setF,, specified by a superset conditign is the sef{ 7 C V(A) : M C
I for someM € M}.

The final formalism we consider is one of the most importauwk iateresting Muller condi-
tion types, theparity condition type

Definition 2.41 (Parity condition type) An instance of thearity condition typds a function
x : V(A) — P whereP C w is a set ofpriorities. The setF, specified by a parity conditiog
is the collection of set§ C V' (.A) such thatmax{x(v) : v € I} is even.

Remark.We have technically defined here thex-parity condition There is an equivalent
formalism sometimes considered where the parity ofrtheimumpriority visited infinitely
often determines the winner, called then-parity condition Throughout this dissertation we
only consider the max-parity condition.

It is not difficult to show that the set specified by a parity divion is closed under union as
is the complement of the set specified. Therefore, from Tdrad.16 we have the following:

Theorem 2.42(Memoryless determinacy of parity games [EJ91, MosA§ G = (A, x) be
a parity game. The player with a winning strategy has a winningtegjyy which is memoryless.

Indeed, any union-closed set with a union-closed comple¢icembe specified by a parity
condition, implying that the parity condition is one of thesh expressive conditions where
memoryless strategies are sufficient for both players. f@salt is very useful in the study of
infinite games and automata: one approach to showing thdeMautomata are closed under
complementation is to reduce the problem to a parity gane usihse the fact that if Player 1
has a winning strategy then he has a memoryless strategyngirgot an automaton which
accepts the complementary language [EJ91].

One of the reasons why parity games are an interesting clagmtes to study is that the
exact complexity of the problem of deciding the winner remsaglusive. In Chapter 3 we
discuss this and other reasons why parity games are impantarore detail.

2.2.2 Translations

We now present a framework in which we can compare the expeeess and succinctness of
condition types by considering transformations betweenagawhich keep the arena the same.
More precisely, we define what it means for a condition typéddranslatableto another
condition type as follows.
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Definition 2.43 (Translatable) Given two condition type8l and®B, we say thal is polyno-
mially translatableto 98 if for any arenad, with A(A) = (Zz', =4) andB(A) = (Zg, =4),
there is a functiory : Zy' — Tz such that for all2 € Zj:

e f(€)is computed in time polynomial ip4| + |€2|, and
e Forallr € PlaysA), m 5 Q < 7 =3 f(Q).

As we are only interested in polynomial translations, wepdynsay2l is translatableto 5
to mean that it is polynomially translatable. Clearly, if ddion type®l is translatable t&8
then the problem of deciding the winner for games of t9fis reducible in polynomial time to
the corresponding problem for games of tyBeThat is,

Lemma 2.44. Let2 and®B be condition types such th#tis translatable td3. Then there is a
polynomial time reduction fro®-GAME to B-GAME.

If condition type®l is not translatable t& this may be for one of three reasons. EitRer
is more expressive thab in that there are set8 that can be expressed using conditions from
2 but no condition fronts can specifyF; or there are some sets for which the representation
of type %l is necessarily more succinct; or the translation, whilesig-increasing, can not be
computed in polynomial time. We are primarily interestedha second situation. Formally,
we say

Definition 2.45(Succinctness)2l is more succincthan®s if %5 is translatable t@( but2l is not
translatable té8.

We now consider translations between some of the conditipast we defined in Sec-
tion 2.2.1.

Translations between general purpose condition types

It is straightforward to show that win-set conditions arerensuccinct than explicit presen-
tations. To translate an explicitly presented gaide ) to a win-set condition, simply take
W = V(A) andW = F. To show that win-set conditions are not translatable tdiekpre-
sentations, consider a game whére= () andW = {0}. The setF,, specified by this
condition consists of all subsets Bf.4) and thus an explicit presentation must be exponential
in length.

Proposition 2.46. The win-set condition type is more succinct than an explreis@ntation.

Similarly, there is a trivial translation from the Emersbei condition type to the circuit
condition type. However, the question of whether there rmadiation in the other direction is
an important open problem in the field of circuit complexi®ap95].

Open problem 2.47.1s the circuit condition type more succinct than the Emefsksencondition
type?

We now show, through the next theorems, that circuit presems are more succinct than
Zielonka DAG presentations, which, along with Emerson4ireisentations, are more succinct
than Muller presentations, which are in turn more succimantwin-set presentations.
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Theorem 2.48.The Muller condition type is more succinct than the win-seidton type.

Proof. Given a win-set gamé.A, (W, V)), we construct a Muller condition describing the
same set of subsets @¢,)V). For the set of colours we ugé = W U {c}, wherec is distinct
from any element ofV’. The colouring functiory : V' (A) — C'is then defined as:

e x(w)=wforweW,
e x(v)=cforvé¢gW.

The familyC of subsets of” is the set{ X, X U {c} : X € W}. Forl C V,if I C W, then
x(I) = I otherwisex(I) = {c} U I. Either way, N W isin W if, and only if, x () € C.

To show that there is no translation in the other directi@msieder a Muller game om,
where half ofV/(.A), V,, is coloured red, the other half coloured blue, and the faofisets of
colours isC = {{red} }. The family 7 described by this condition consists of tHEI/2 — 1
non-empty subsets &f.. Now consider trying to describe this family using a win-sadition.
In general, for the s’ specified by the win-set conditidhl’, W), anyv ¢ W, andX C V(A)
we have{v} U X € F' < X € F'. Observe that in our game no vertex has this latter property:
if v eV, then{v} € F, buth ¢ F;andifv ¢ V, then{v} UV, ¢ F, butV, € F. Thus our
win-set,IW must be equal t&" (A), andV is the explicit listing of the!V(I/2 — 1 subsets of
V.. Thus(W, W) cannot be produced in polynomial time. O

Theorem 2.49.The Zielonka DAG condition type is more succinct than theléiaondition
type.

Proof. Given a Muller game consisting of an areda= (V, 1y, V4, E, v;), a colouringy : V —
C'and a familyC of subsets of’, we construct a Zielonka DAG ~  which describes the same
set of subsets df (4) as the Muller conditiorty, C). Consider the Zielonka DA&. ¢, whose
nodes are labelled by sets of colours. If we replace a labél C' in this tree with the set
{v eV : x(v) € L} then we obtain a Zielonka DAG ;; over the set of vertices. We argue
thatF is, in fact, the set specified by the Muller condition C) and then show tha; - can be
constructed in polynomial time. Since the translation fr8py- to Zx involves an increase
in size by at most a factor ¢¥/|, this establishes that Muller games are translatable tozke
DAGs.

Let I C V be a set of vertices. If € F then, by the definition of Zielonka DAGS,is a
subset of a labek of a O-level node of Zxy and is not contained in any of the labels of the
1-level successors @f That is, for each 1-level successopf ¢, there is a vertex € I such
that x(v) & x(L.) whereL, is the label ofu. Moreover,x(I) C x(X). Now x(X) is, by
construction, the label of a 0-level node &f - and we have established thgt/) is contained
in this label and is not contained in any of the labels of tHevkl successors of that node.
Therefore,x(I) € C. Similarly, by interchanging O-level and 1-level nodgs]) ¢ Cif I ¢ F.

To show that we can construéi; - in polynomial time, observe first that every subset
X C C has at mostC| maximal subsets. Note further that the label of any nod&dg is
eitherC', some element af or a maximal (proper) subset of an elemen€ofThus,Z; ¢ is no
larger thanl + |C| + |C||C|. This bound on the size of the DAG is easily turned into a boamd
the time required to construct it, using the inductive dé&bniof Zielonka trees. Thus, we have
shown that the Muller condition type is translatable inte Zhelonka DAG condition type.

To show there is no translation in the other direction, cdesthe familyF of subsets of
V(A) which consist of2 or more elements. The Zielonka DAG which describes this iami
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consists of V(. A)| + 1 nodes — one 0-level node labelled by.4), and|V(.A)| 1-level nodes
labelled by the singleton subsetsiof.4). However, to express this as a Muller condition, each
vertex must have a distinct colour since for any pair of vegithere is a set it that contains
one but not the other. Thug]| = |F| = 2V —|V(A)| — 1. It follows that the translation
from Zielonka DAGs to Muller conditions cannot be done inypmmial time. O

To show the remaining results, we use the following obsemat

Lemma 2.50. There is no translation from the Emerson-Lei condition tigptine Zielonka DAG
condition type.

Proof. Let V(A) = V = {x,..., x5}, and consider the family of setg described by the

formula
Y= \/ (T2i—1 A X9;).

1<i<k

Clearly |¢| = O(]V(A)|). Now consider the Zielonka DA@r,, describingF. AsV € F,
the root of Z+ ;- is a O-level node labelled bly. The maximal subsets &f not in F are the2*
subsets containing exactly one{ofy;_1, zo; } for 1 < i < k. ThusZ,,, must have at least this
number of nodes, and is therefore not constructible in potyial time. O

Theorem 2.51. The Emerson-Lei condition type is more succinct than thelévlgbndition
type.

Proof. Given a Muller game consisting of an aredaa colouringy : V(A) — C and a family
C of subsets of”, let ¢ be the boolean formula defined as:

= VALV Dn ACA =)

XeC ceX x(v)=c c¢X x(v)=c

It is easy to see that a subgetC V/(A) satisfiesy if, and only if, there is some setf € C
such that for all colours € X there is some < [ such thaty(v) = ¢ and for all colours
¢ ¢ X there is nov € I such thaty(v) = ¢’. Sincey can clearly be constructed in time
polynomial in|C| + [V (A)], it follows that there is a translation from the Muller cotial type
to the Emerson-Lei condition type.

For the reverse direction, we observe that as there is ddtamsfrom the Muller condition
type to the Zielonka DAG condition type, if there were a ttatisn from the Emerson-Lei con-
dition type to the Muller condition type, this would contreid_emma 2.50 as “translatability”
Is transitive. O

Theorem 2.52. The circuit condition type is more succinct than the ZielE¥\G condition
type.

Proof. Given a Zielonka DAG gaméA, Zr ) wherel = V(A), we define, for each node
t in Zzy a boolean circuilC;. This circuit is defined by induction on the height of For
convenience, we associate each circuit with its output n&igpose the label afis X. We
have the following cases:

() tisaO-level X € F) leaf: Inthis case, lef; = A, —w.
(i) tisal-level (¢ ¢ F) leaf: Inthis case, lef; =V 4 2.
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Figure 2.2: Summary of the succinctness results

(i) tis a O-level node with: successors, . .., 1. In this case, leC; = /\mgx =z A\ /\f:1 Cl..
(iv) tis a 1-level node witlt successors,, . .., t;: In this case, leC; = \/m¢X xV \/f:1 Ch,.

We claim that the conditiotF is specified by the circuit’. wherer is the root ofZ- .. This
formula has size at mog$v' (A)||Z#v| and is constructed in polynomial time. To show its
correctness we argue by induction on the height of any nedéh label X thatC,; defines the
restriction of F to X. We consider the following cases:

(i) tis a O-level leaf. In this case any subsetois in 7. I C V(.A) satisfies”; if, and only
if, no variable that is not inX appears in, thatis/ C X.

(i) tis a 1-level leaf. In this case any subsetofs not inF. Herel C V(A) satisfies; if,
and only if, there is some elementirwhich is not inX, thatis/ Z X.

(i) tis a O-level node witlk successors labelled by, . .., X}. In this case any subset af
isin F unlessitis a subset of,; for somei, in which case whether it is ifF is determined
by nodes lower in the DAG. HereC V (A) satisfies”; if, and only if, I is a subset o
and! satisfie”;, for all successors.

(iv) tis a 1-level node witlt successors labelled by, ..., X,. In this case any subset af
Is not in F unless it is a subset of; for some:. Herel C V satisfies”; if, and only if,
either/ is not contained inX, or there is some successpsuch that/ satisfies”;..

We observe that as there is a translation from the Emersooeloglition type to the circuit
condition type, Lemma 2.50 implies there is no translatromfthe circuit condition type to the
Zielonka DAG condition type. O

Figure 2.2 summarizes the succinctness results we havestwofan, with the more succinct
types towards the top. The dashed edge indicates that tharganslation but it is not known
whether there is a translation in the opposite direction.

Translations between union-closed condition types

Turning to union-closed condition types, we observe thatihsis condition type is a succinct
way of describing union-closed sets. It is not even knowrt i§ itranslatable to the circuit

condition type, the most succinct type considered aboveSection 2.3.2 we show that the
problem of deciding basis games is co-NP-complete. It¥alérom the NP-completeness of



2.2. WINNING CONDITION PRESENTATIONS 33

Rabin games [EJ88], and duality that the problem of decidinge® games is co-NP-complete.
The following result implies that we cannot use transldigitio obtain upper or lower bounds
on the complexity of basis games based on the known boun@&rieett games.

Theorem 2.53. The basis and Streett condition types are incomparable \egpect to trans-
latability. That is, neither is translatable to the other.

Proof. To show there is no translation from Streett games to basiegdet (A) = {z1, ...,z },
and consider the Streett game with winning condition describy the pairg (L;,0) : 1 <

i <k}, whereL; = {x9;_1,x9;}. Note that the family of sets described by this condition is
F={XCV(A):ViX g V(A)\ L;}. Any basis for7 must include the minimal elements
of F. However, the minimal elements include

M = {{Uh LUkt € {in—thi}}a

and| M| = 2%, ThusF cannot be represented by a basis constructible in polyrdimia.
To show there is no translation in the other directioniéid) = {z1, ...,z }, and con-
sider the familyF of sets formed by closing

B = {{za1,20:} : 1 <i <k}

under union. Note that this is the same construction as éopthof of Theorem 2.52. Observe
thatF contain®2* — 1 sets, each with an even number of elements. Any Streettomaihich
describes the same family must contain at least this nunflpais in order to exclude the sets
of odd cardinality. ThusF cannot be represented by a Streett condition which is aocigite
in polynomial time. O

It should be clear that the superset condition type is teaaBle to the basis condition type.
We include the result for completeness.

Proposition 2.54. The superset condition type is translatable to the basislitimm type.

We conclude these results with the following two observetioegarding translations be-
tween explicit presentations and the basis and supersditicomtypes.

Proposition 2.55. The superset condition type is more succinct than an expliesentation of
an upward-closed set.

Proof. Given an explicitly presented upward-closed gdmeF ), the setF, viewed as a super-
set condition, clearly describes the same set of subsét§.4f. Conversely, for the superset
game(A, {{v}:ve V(A)}), the set described by the winning condition is of size*)! —1,
and therefore cannot be explicitly presented in polynotmae. O

Corollary 2.56. The basis condition type is more succinct than an expli@sentation of a
union-closed set.

Proof. The fact that the basis condition type is not translatablentexplicit presentation fol-
lows from Proposition 2.55 and Proposition 2.54 as “trataslie” is transitive. The other direc-
tion is straightforward, the explicit presentation itsslffices as a basis. O
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2.2.3 Extendibility

We now introduce a property of condition types that allowsoumake simplifying assumptions
about the arena. We say a regular condition typextendiblef it can “ignore” a set of added
vertices. More precisely,

Definition 2.57 (Extendible condition type)Let 2 be a regular condition type. We sayis

extendibldf for any arenas4 and.A’ such that’(A) C V(A’), and any instanc@ € (A),

there is an instanc@’ € 2((.A"), computable in time polynomial iff2| + [V (A")|, such that
Fo={ICV(A): INV(A) € Fo}.

We observe that ifi’ (A’)| — |V (A)| = m, then|Fq/ | = 2™|Fq/|, S0 in particular, an explicit
presentation is not extendible. However, all the other dardtypes we have so far considered
are extendible.

Proposition 2.58. The following condition types are extendible: Muller, citciEmerson-Lei,
Zielonka tree/DAG, win-set, parity, Rabin, Streett, basig] superset.

Proof. Let us fix arenasd and. A’ such that’(A) C V(A’). We show for each condition type
above how to compute the required instaftdrom a given(2. It follows from the definitions
that for the circuit, Emerson-Lei, win-set, Rabin, Street guperset conditions takiigf = €2
suffices. So let us consider the other condition types.

Suppose2 = (x,C) is a Muller condition instance witly : V(A) — C. We define
Q' = (,C') as follows. LetC” = C' U {c} wherec is not an element of'. We define

V(o) {X(U) if ve V(A)

c otherwise

and we defin€’ :=CU{IU{c}: I € C}. (x/,C’) is clearly computable in time polynomial in
1] + |V (A")|, and for everyl C V(. A") we havey'(I) € C'if, and only if, y(I NV (A)) € C.
Thus(Y' is as required.

Similarly, if @ = (x,P) is a parity condition, we leP’ = P U {p} for some oddp <
min{y(v) : v € V(A)} and definey’(v) = p forv ¢ V(A), andyx(v) = v otherwise. For any
setl] CV(A),if INV(A) # 0 thenmax{x'(v) : v € I} = max{x(v) :v € INV(A)}, so
I € Fo if,and only if, I N V(A) € Fq. Otherwise, iff N V(A) = 0, thenmin{x'(v) : v €
I} = p,and ad) ¢ Fq andp is odd, we havd ¢ Fo andI NV (A) ¢ Fq. ThusQ' is as
required.

Given a Zielonka structur€r whereV = V(. A), consider the Zielonka structuf =
Zp v, WhereV’ = V(A'), defined by addind’(A") \ V' (A) to each label. That s, fis a node
in Zx v, labelled byX C V, thent is a node inZx - labelled byX U (V(A’) \ V(.A)). Now
consider] € F'. From the definition of a Zielonka structurkis a subset of a label of a O-level
nodet and not a subset of a label of any of the successarsSiippose is labelled, inZx y, by
X,s0l C XU ((V'\V). ThusINnV(A) C X. Now supposd NV (.A) is a subset o, a label
(in Zx ) of a successor af It follows that/ C YU (V'\ V), and sal is a subset of a label (in
Z 5 ) of a successor af contradicting the choice af So/ NV (A) € F. Interchanging the
roles of O-level nodes and 1-level nodes establishes tliag ifF’ thenI NV (A) ¢ F. ThusQ’
is as required.



2.3. COMPLEXITY RESULTS 35
Finally, given an instance of a basis condition type- B, we define?’ = B’ as follows:
B =BU{{v}:veV(A)\V(A}.

Suppose = |J;, B; for setsB;, ..., B, € B, where for somen < n, B; € Bfori < m.
From the definition of3', it follows that/ NV (A) = J" |, B;, soINV (A) € Fq. Conversely, if
INV(A) € Fo,letINV(A) = |2, B;. From the definition of8’, there exist$3,,1, ..., B, €

B'such that’ \ V/(A) = U._,,,, Bi- Sol = J;_, Bifor By,..., B, € B and hencd € Fy .
O

Given a game with a winning condition specified by an exteleddiondition type, we can
add vertices to the arena without significantly changingsthe of the instance. This enables us
to assume that the arena has a very simple structure.

Theorem 2.59.Let 2 be an extendible regular condition type afid= (A4, 2) be a Muller
game withQ2 € 2A(.A). Then there exists a Muller gangel’, Q') with ' € 2(.A’), computable
in time polynomial in |G|/, such that:

(i) A’"is a bipartite graph withZ(A") C (V5(A") x V1(A")) U (Vi(A') x Vo(A))),
(i) All vertices inV;(.A") have out-degree at most 2, and
(iii) Player 0 winsG if, and only if, she win&'.

Proof. We constructd’ from A in a series of stages by adding vertices and adding and reglac
edges, sd/(A4) C V(A’). We observe that the resulting arena has size polynomiad|jinso

it can be constructed in polynomial time. We then use the tieimof extendible condition
type to obtain the winning conditiof’ from 2. Since the size of{’ is polynomial in the size
of A, we can computé)’ in time polynomial in|2| + |A]. It is clear from the definition of
extendible condition types that in the resulting game Rl@ywins fromuv,(.A) if, and only if,
she wins fromv;(A’). Thus it remains to show the first two conditions may be met aitmost

a polynomial increase in the size of the arena.

First we ensure all vertices iry (.A") have out-degree at most 2.0fe ;(.A) has out-degree
m > 2, we replace then outgoing edges from with a binary branching tree, rooted«@gtwith
m leaves — the successorsofWe observe that this requires adding at mastertices andn
edges. Each of the newly added vertices are addeéd 1d). After repeating this for all vertices
in V5(A), the resulting arenal’ has at mosfV/(A)| + | E(A)| vertices, an@|E(.A)| edges, and
every vertex invy(A’) has out-degree at most 2.

Now suppose all vertices id have out-degree at most 2. For each edge(u,v) € E(A)
such thatu,v € V5(A) (u,v € V1(A)), add a vertex, to V1(A) (Vo(.A)) and replace the edge
e with edges(u, v.) and(v., v). After repeating this for all edges ifi(.A4), the resulting arena
A’ has at mostV (A)| + |E(A)| vertices, an®|E(.A)| edges, and’(A") C Vp(A') x Vi(A")U
Vi(A') x Vo(A). 0

2.3 Complexity results

In this section we consider the complexity of deciding wieetRlayer 0 has a winning strategy
in a Muller game when the winning condition is specified ussogne of the formalisms we
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have considered. We show that the problem of deciding Mglienes in which the winning
condition is specified by a win-set condition iSPACEcomplete. It follows from our results on
translatability that the decision problems for Muller gaméth winning condition specified by
a Muller condition, Zielonka DAG or an Emerson-Lei conditiare all also BPACEcomplete.
We also show that the decision problems for basis and supgsees are co-NP-complete.

We first consider some upper bounds. A well-known result & #imple games can be
decided in linear time.

Theorem 2.60.LetG = (A, F) be a simple game. Whether Player O wihgan be decided in
timeO(|E(A)|).

Proof. SupposeF = (), the case whetF = P(V(A)) is dual. LetiV C V;(A) be the set
of vertices inV;(A) with no outgoing edges. We observe that Player 0 wins frp(W) if,
and only if, Player O can force the play to a vertexc . Thus, Player 0 has a winning
strategy if, and only ifp;(A) € Force)(W). The required complexity bound then follows from
Lemma 2.18. O

In [IKO2], Ishihara and Khoussainov considered the follogviestriction on explicitly pre-
sented Muller games:

Definition 2.61 (Fully Separated game)et G = (A, F) be an explicitly presented Muller
game. We says is fully separatedf for each X € F there existax € X such thatyx ¢ Y
forallY e F,Y # X.

Khoussainov showed that the winner of a fully separated geamebe decided in time
O(|V(A)|?|E(A)|). We now prove a generalization of this result by showing thatlicitly
presented Muller games can be decided in polynomial tinteeiftinning condition is an anti-
chain with respect to the subset relation.

Theorem 2.62.LetG = (A, F) be an explicitly presented Muller game such tlfais an anti-
chain, that is,X ¢ Y for all X,Y € F. Whether Player O win& can be decided in time
O(IFIIV(A)PIE(A)).

Proof. Consider the algorithm RTICHAIN (A, F) in Algorithm 2.2. We show that it is correct
and returns in im@® (| F ||V (A)]?|E(A)]).

We first show that ATICHAIN (A, F) returnstrue if, and only if, Player O has a winning
strategy inG = (A, F). Let us suppos&V has been computed as above. We consider three
cases:

(i) v;(A) € N. From the definition ofV, there existw € V(A) and X € F such that
Player 0 can force the play to from v;(.A) and Player 0O has a winning strategy from
v which visits every vertex inX, and only vertices inX, infinitely often. The winning
strategy for Player O is then to force the playwtand play this strategy. Sincg € F,
this is a winning strategy.

(i) N = 0. Inthis case, for everX € F, Player 1 has a strategy from every vertex in4
which can ensure either not all verticesXfare visited infinitely often, or some vertices
not in X are visited infinitely often. The strategy for Player 1 #, F) is as follows.
Play anything until the play enters some< F, then play the strategyy until the play
leavesX. Clearly if there is naX € F such that the play remains foreverin Player 1
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Algorithm 2.2 ANTICHAIN (A, F)
Returns: true if, and only if, Player O has a winning strategy fran(.A) in (A, ) whenF is
an anti-chain.
foreach X € F do
let Nx = {v : Player 0 has a winning strategy framn the game A, { X })}
let N = Force% (U Nx)
if v;(A) € N then
return true
else if N = () then
return false
else
let 7/ ={XeF: XNN=0}
return ANTICHAIN(A\ N, F’)

wins the play. So let us suppose the play remains indefinitekyfor someX € F. From
the definition ofry, the setl of vertices visited infinitely often is properly contained i
X. SinceF is an anti-chain, it follows that ¢ F. Thus Player 1 wins the play.

(i) N # 0 andv;(A) ¢ N. Inthis case, Player 1 can force the play to remaidin NV and it
follows from case (i) above that Player O has a winning stsateom every vertex inV.
Clearly, if Player 0 has a winning strategy(id \ N, F’) then she has a winning strategy
in the larger game: if Player 1 chooses to keep the plag inN then Player O can play
her winning strategy on the subgame, otherwise if Playerobsés to move to a vertex in
N, Player 0 can play her winning strategy fravh Conversely, if Player 1 has a winning
strategy in(A \ N, F’) then, as he can force the play to remaindn N, he can play his
winning strategy on the subgame.

Thus, ANTICHAIN (A, F) returnstrue if, and only if, Player O has a winning strategy@h =
(A, F).

To show the algorithm returns in tin@(|F ||V (A)|*| E(A)|), we require the following re-
sult from [IKO2]:

Lemma 2.63([IK02]). LetG = (A, F) be an explicitly presented Muller game with= { X }.
Whether Player 0 has a winning strategy from a vertex V(A) can be decided in time
O([V(AIIECA)).

It follows that at each stage of the recursion, it tak§$7 ||V (A)||E(.A)|) time to com-
pute N. Furthermore, sincéN| > 1 whenever AITICHAIN (A, F) is recursively called, it
follows that the algorithm has recursion depth at most4)|. Thus the algorithm runs in time
O(|F||[V(A)]’|E(A)|) as required. O

2.3.1 PspAcEeEcompleteness

As we saw in Theorem 2.15, McNaughton [McN93] presented gordghm for deciding Muller
games in spac@(|V(A)|?). In fact, the games he considered were win-set games. Howeve
the algorithm is easily adapted to the case where the wirzongition is presented explicitly,

or as a Muller condition, a Zielonka DAG, an Emerson-Lei dbad, or a circuit condition
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without significant increase in the space requirementss;Teach of these classes of games is
decidable in BPACE

We now show corresponding lower bounds. By the results of té@qus section, it suffices
to establish the hardness result for the win-set conditipa.t

Theorem 2.64.Deciding win-set games BsPACEcomplete.

Proof. By the above comments, we only need to shaswACEhardness. For this, we reduce
the problem of QSAT (satisfiability of a quantified booleamfiala [QBF]) to the problem of
deciding the winner of a win-set game.

We assume, without loss of generality a QBF= Q1741 . .. V1) IS given in which
guantifiers are strictly alternating ands in disjunctive normal form with 3 literals per clause.
We then define a win-set ganti, = (A, 2), whereQ2 = (W, V), as follows:

o Vo(A) = {p} U{z,—z : forall variablesr},

Vi(A) ={Cy,...,Cn_1}, the set of clauses ip,

E(A) given by:
- (p,C;) € E(A)for0 < j <m;
- If Cj = (lo Aly A lg), then(Cj, l()), (Cj, ll), (Cj, lg) S E(A),
— (25, 2_1), (25, "wi_1) € E(A) for0 < i < k;

(=24, 2-1), (—x3, ~w_1) € BE(A) for0 < i < k; and

(l’g, Qp), (_'5607 90> € E(A);

o vi(A) =,

W =Vo(A)\ {p}, andWis

W = {5, S U{z;}, S U{~a;}: 0 <i <k, ieven

whereS, = 0 and fori > 0, S; = {z;,~z; : 0 < j < i}.

Figure 2.3 illustrates how the arena®§ would look if ¢ contained the clausésyAx;_; A
—xy) and(—xg A xp_1 A Tg).

Note that as this is a win-set game, we are only interestedritices ofll/ that are visited
infinitely often. Observe that the winning condition ensutigat Player O can win if, and only
if, the minimum< such that at most one of and—z; is visited infinitely often is even. The
idea behind the strategy for Player O is to perpetually yefif The choice of strategies by both
players then dictates the choices of the truth values fan e&the variables, and the winning
condition guarantees a winning strategy for Player O if, @amig if,  is true. To formally show
that Player 0 has a winning strategy if, and onlydifis true, we proceed by induction @nthe
number of quantifiers ob.

Base case:k = 1 By the idempotence ofi andV and assumingp is closed,® is logically
equivalent to one of the following forms.

e & = dzq.x¢ Or 3x¢.—zp. In this case the arena consists of four vertides,Co, zo, 2o}
Player 0 wins by always returning tofrom whichever ofr, and—x, Player 1 is forced
to play to, andb is clearly true.
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=g N\ Tp_1 N\ Tp

Figure 2.3: Arena ofz¢ for ¢ = (29 A k1 A =) V...V (0o A 1 A T)

e & = Jzq.(xgV—zy). Hered is also true. The arena consists of five vertigesCy, C1, xo, 720}
and Player 0 has the only choice adndz,). A winning strategy is to always play from
¢ to Cy, and to return immediately tp from .

e & = dzg.(zg Axp). Hered is false. The arena consists of four verti§¢es Cy, xo, 7o}
and Player 1 can force the play to visit bath and —z infinitely often by alternately
choosing each fronf’,. Note that this strategy requires memory to remember which
vertex was visited last time.

Note that ifz, does not appear ip, we can add the clause, A —zy) without changing the
truth value of®.

Inductive case: The inductive hypothesis asserts thabihask — 1 quantifiers and is closed,
then Player 0 has a winning strategy if, and onlydifjs true. To show that this implies the
case fork quantifiers, we use the following lemma which shows how saiEgcorrespond to
restricted subformulas. First we introduce some notatibn.is free inp andv is eithertrue

or false, we write p[z — V] to denote the formula obtained by substitutindor = in ¢ and
simplifying. Note that ifp[x — true| simplifies totrue theny must have at least one clause
containing the single literat, and if it simplifies tofalse, then all clauses containz. The
crucial lemma can now be stated as

Lemma 2.65.1f & = Qz¢ (Q € {3,V}) andp|z — true] does not simplify torue or false, then
G yjztrue IS iISOMorphic to the subgame G = (A, Q2) induced by the set Avoj\q,idg(ﬂx) (x).
Dually, if o[z +— false] does not simplify tarue or false, thenG.,[,.risq is isomorphic to the
subgame ofs4 induced by the set Avojg)idg(m)(ﬁx).

Proof. ¢[z +— true| consists of the clauses @fthat do not contairz, with all occurrences
of x removed. The assumption thaltz — true|] does not simplify tarue or false implies that
there is at least one such clause. The arena for the Game... thus consists of vertices for
¢|x — truel, the clauses, and the variables (and their negations) etcludingz and—x. The
edges are the same as thoselgrrestricted to this vertex set. We show that the subarefta,of
induced byAvoidjvoidg(ﬁx)(x) is identical. As the winning condition only depends on \e&$
corresponding to variables, it follows that the winning dbions are also identical.

In Gy = (A, Q), the setAvoid) (—x) consists of the vertices from which Player 0 can avoid
—x. As Player 1 chooses the play from vertices correspondirgjaigses, the set of vertices
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from which Player 1 can reachr is {—z} U{C : =z € C}. As there is at least one clause that
does not contairz, Player O can play to that clause to aveid from . The only other vertex
from which it is possible to reachz is x (asx is the outermost variable i), and from there
Player 0 can play to either(for the next outermost variablg or ¢ (if no such variable exists).
Thus

Avoidy(—z) = V(A) \ ({-z} U{C : =z € C}).

Next we consideAvoid, (x) for V/ = Avoid}(—x). As ¢ does not contain a clause containing
x by itself, Player O cannot force the playtdrom ¢, as Player 1 can always choose to play to
another literal. Furthermore, asis the outermost variable i, the only edges ta are from
vertices associated with clauses. Thuis the only vertex from which Player 0 can force the
play to visitz, so

Avoid!, (z) = V' \ {z}.
ThusAvoidjvoidg(ﬁw)(x) =V(A)\ ({z, 72} U{C : -2 € C}), which is precisely the vertex set
of G .—true)- The edges for both arenas are thosé&efrestricted to these vertices, as are the
winning conditions. Thus the two games are identical. -

To complete the inductive step, we consider two cases.

o & = dx;_;.p. If @ is true, then there is a truth valwesuch thatp[z;_; — V] is true.
Assume thav = true, the case for = false being similar. The winning strategy for
Player O is then to avoiehz,_; and try to play tor,_,, playing through each vertex in
Sk_1 when the latter vertex is reached. Note that to play throwgth evertex inSj_;
requires at least two visits tg,_; — Player O must remember (the parity of) the number
of times she has visited that vertex.dfr,_; — v] simplifies totrue, then Player O can
force the play to visitr;,_;, by playing to the clause that only contains ;. Otherwise
Player 1 can play to avoid,_,, restricting the play td\void/ivoid%(ﬁxkil)(x,H). From
the above lemma, this subgame is equivalenttg,, ..., and from the inductive
hypothesis, Player 0 has a winning strategy on this games Theistrategy of Player 0
is to play her winning strategy on the smaller game? i false, then Player 1 plays a
strategy similar to the strategy of Player 0 in the case helow

e & = Vr;,_41.0. In this case, if® is true, then for both choices of truth valwe
{true, false}, p[zx_1 +— V] is true. The winning strategy for Player O is to alternately
attempt to play to each af,_; and—x;_; (and then through all vertices 1)._;), avoid-
ing the other at the same time. If, at any point, Player 1 plays/oid the vertex Player O
Is attempting to reach, Player 0 plays her winning strategthe reduced game (which
exists from the lemma and the inductive hypothesis). Agéai,is false, Player 1 plays
a strategy similar to the strategy of Player O in the previcase. Note that in this case
Player 0 cannot force the play to visit bath ; and—x_;.

O

From our work on translatability in Section 2.2 and our oleagon regarding the $PACE
solvability of these games, we obtain completeness refaultduller games when the winning
condition is presented as a Muller condition, Zielonka DAB&erson-Lei condition or a circuit
condition.
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Corollary 2.66. The following problems ar®spAacecomplete: Deciding Muller games with
winning condition specified by a Muller condition, decidinglanka DAG games, deciding
Emerson-Lei games, and deciding circuit games.

It can be verified that an explicit presentation of the wiignaondition constructed in the
proof of Theorem 2.64 would be exponentially larger than ghesentation using a win-set.
Thus, the proof cannot be used to provideseRCEhardness result for the explicitly presented
games. The exact complexity of deciding the winner of suchegaremains open. Indeed, it is
conceivable (though it appears unlikely) that the problem iPTIME.

Open problem 2.67.Determine the precise complexity of deciding explicitggemted Muller
games.

Bounded tree-width arenas

In Chapter 4 we present a graph parameter knowreaswidth Tree-width is a measure of how
closely a graph resembles a tree. It has proved useful ingbigil of algorithms as many prob-
lems that are intractable on general graphs are known top@yaomial time solutions when
restricted to graphs of bounded tree-width. In the contéMuler games, Obdialek [Obd03]
exhibited a polynomial-time algorithm for deciding the wer in parity games on arenas of
bounded tree-width. We show that this is not the case for &lgiames (and neither, therefore,
for Zielonka DAG games, Emerson-Lei games, and circuit ggnmgnhe proof of Theorem 2.64
can be modified so that the arenas constructed all have idtb-two provided we allow our-
selves to specify the winning condition as a Muller conditrather than a win-set.

Theorem 2.68.Deciding Muller games specified by a Muller condition on @a®of tree-width
2 is PspPACEcOomplete.

Proof. Membership of BPACEfollows from the fact that deciding general Muller gamescspe
ified by a Muller condition is in BPACE

The construction to showdPAcEhardness is similar to that of Theorem 2.64. The reduc-
tion is also from QSAT, and the proof that it is in fact a redugctis similar. Given a QBF
O = Qr_171_1 ... Vr1dzo0 Wherep is in DNF with three literals per clause, the Muller game
we construct is:

e Vi(A) = D whereD is the set of clauses.
o Vo(A) ={p} U (D x{1,2,3} x {z,~z : zis avariablg).

e We have the following edges ifi(.A) for all ¢ € D:

¢, (c,n,1)) if Lis then-th literal inc,
- ((¢,n, z;), (¢, n, z;_1)) if the n-th literal of c is z; (i > 0)

— ((¢,n, ), ) if the n-th literal of ¢ is

— ((¢,n,2;), (¢, n, ~x;)) for all i less than the index of the-th literal of ¢

- ((e,n,—xy), (¢, n, xi,l)) for all 7 less than or equal to the index of theh literal of
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Figure 2.4: Arena with bounded tree-width

— ((¢,n, ~g), @) for all n.,
o O ={p}U{zx,~x: xisavariablé is the set of colours,
e \:V(A) — C defined as:

— x(p) =x(c) =¢forallce D
- X((c,n, l)) =1

o C = {Si,Si U{z;},S;uf{—x}:0<i<k, z'even} whereS, = {¢} and fori > 0,
Si = {QO}U{.TJ',_'ZE]' :0 S] <Z}

Figure 2.4 illustrates how this arena differs from that oédrem 2.64.
The resulting arena has tree-width 2, and the proof thatdPl@yhas a winning strategy if,
and only if,® is true is similar to that of Theorem 2.64. O

2.3.2 Complexity of union-closed games

We now turn our attention to Muller games where the winningditton F is a union-closed
set. Among games studied in the literature, Streett gamegparity games are examples of
condition types that can only specify union-closed gamesotJclosed games were also stud-
led as a class in [IK02]. One consideration that makes themtaresting case to study is that
they admit memoryless strategies for Player 1 [Kla94]. T§iadn a game with a union-closed
winning condition, if Player 1 has a winning strategy therhhe a strategy which is a function
only of the current position. One consequence of this faitidas for explicitly presented union-
closed games, the problem of deciding whether Player O wios a game is in co-NP. This
Is because once a memoryless strategy for Player 1 is fixeqyrdblem of deciding whether
Player 0 wins against that fixed strategy is m¥E. Indeed, it is a version of a simple game.
Thus, to decide whether Player 1 has a winning strategy waaadeterministically guess such
a strategy and then verify that Player O cannot defeat it.celedetermining whether Player 1
wins is in NP and therefore deciding whether Player O wingisd-NP. In this section, we
aim to establish a corresponding lower bound for two coaditypes that can only represent
union-closed games, namely the basis and superset cantjigies.

We saw with Theorem 2.53 that we cannot use the known contplbrunds on Streett
games to easily establish similar bounds for basis gamegeriiheless, deciding basis games is
still in co-NP.
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Proposition 2.69. Deciding basis games is to-NP.

Proof. From the comments above, it suffices to show that if we fix a mglass strategy for
Player 1 then we can decide the resulting single player lgasige in polynomial time.

The algorithm is as follows. LeB be the basis for the winning condition. Initially let
By = B, and repeat the following:

1. LetX; = Upep, B-
2. PartitionX; into strongly connected components (SCCs).
3. Remove any element & which is not wholly contained in a SCC to obtd#, ;,

until B; = B,_;, at which point, letX = X;. This takes at mos®? (|B|(|V (A)| + |E(A)])) time
using a standard SCC-partitioning algorithm. At this poimgrg SCC ofX is a union of basis
elements — alk in X are members of basis elements, and any basis elements aineahin
any SCC ofX is removed at step 3. Furthermore, any strongly connecteaf $§.4) which is

a union of basis elements is a subset (of an SCCY pbecause the algorithm preserves such
sets. Thus, Player 0 can win from any node from which she cacht® (play to X and then
visit every node within an SCC of forever); and Player 0 cannot win if she cannot reach
(there is no union of basis elements for which Player O caih every vertex infinitely often).
Thus the set of nodes from which Player 0 wins can be computéex([iB|(|V| + |E|) + |E|)
time. O

We now obtain the lower bounds we seek on superset games.
Theorem 2.70.Deciding superset gamesas-NRcomplete.

Proof. Membership of co-NP follows from Propositions 2.54 and 2.B9show co-NP-hardness,
we use a reduction from validity of DNF formulas.
Given a formulap(xg, x1, . . ., zx_1) in DNF, consider the superset game defined as follows:

e for every variabler; we include three vertices;, ~z; € Vj(A) andz} € Vi(A);

o for eachi we have the edges;, z;), (v}, ~x;), (24, 2, ,), (x4, 2, ), where addition is
taken moduld;

e v/(A) =z, and
¢ the winning condition is specified by the set

M = {{l; € Vo(A) : |; is aliteral ofC'} for every clause& of o},

As the superset condition is closed under union, if Playead dawinning strategy he has
a memoryless winning strategy. Note that any memorylessesty for Player 1 effectively
chooses a truth value for each variable. The set of vertis#ed infinitely often is a superset
of an element oM if, and only if, the truth assignment chosen by Player 1 makesclause of
v (and hence) true. Thus Player 0 wins this game if, and only if, there igmith assignment
which makesp false. O

Corollary 2.71. Deciding basis games -NRPcomplete.
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We note in conclusion that the exact complexity of decidingpn-closed games when they
are explicitly presented remains an open problem. It islgl@aco-NP but the above arguments
do not establish lower bounds for it.

Open problem 2.72.Determine the precise complexity of deciding explicitggented union-
closed games.

2.4 Infinite tree automata

One of the original motivations for studying Muller and teld games was to establish de-
cidability results for problems such as non-emptiness aadaihchecking for infinite tree au-
tomata [McN66]. A reduction to non-emptiness of infiniteet@utomata is used in some of
the most effective algorithms for deciding satisfiabilifyformulas in logics such as25, -
calculus, CTL, and other logics useful for reasoning about non-termmgatiranching compu-
tation. Furthermore, determining if a structure satisfi&saula in any of these logics reduces
to determining if a certain automaton accepts a particuke. t In this section we show that
the non-emptiness and model-checking problems (for regudas) are BPACEcomplete for
Muller automata. We first present the definitions of infiniees and infinite tree automata.

Definition 2.73(Infinite tree) Fork € N, let[k] = {1,2,...,k}. Aninfinite, k-ary branching
tree labelled by elements &f is a functiont : [k]* — . Nodesof an infinite tree are elements
of its domain, theoot of an infinite tree is the empty string.

Definition 2.74 (Regular tree) A subtreeof treet rooted atu € [k]* is the treef, defined as
tu(v) = t(u-v) forallv € [k]*. A treet isregularif it has finitely many distinct subtrees, or
equivalently, if there are finitely many equivalence classeder the equivalence relation

u~v = tu-w)=tv -w) Ywe k]

Note that if a tree is regular it can be represented by a fingtesttion system, with the
equivalence classes of the above equivalence relatiomi@s sthe equivalence class containing
the root as the initial vertex, ariddistinct transition relations.

Definition 2.75 (Infinite tree automaton)An infinite (Muller) (k-ary) tree automaton is a tuple
A=(Q,%,06,q,F)where

e () is afinite set of states

e Y is a finite alphabet

e 5 C Q x Y x Q" is atransition relation
e ¢ is the initial state

e F C P(Q) is the acceptance condition.

Given an infinite k-ary branching tree labelled by elements of, a run ofA ont is an in-
finite, k-ary branching tree labelled by elements @ satisfying the following two conditions.

e The root ofr is labelled byg, (r(€) = qo).
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e Forallw € [k]*, if r(w) = ¢, r(w-1) = q, r(w-2) = g, ..., r(w- k) = q, and
t(w) = a, then(q,a,qi,q,...,qx) € 0.

We say a rum is successful if for every (infinite) path, the detf states visited infinitely often
is an element ofF. We sayA acceptg if there is a successful run éf ont. Given an automaton
A, thelanguageof A is the set of trees

L(A) :={t: A acceptg}.

Two important decision problems in automata theory areerptiness and model-checking.

NON-EMPTINESS OFMULLER TREE AUTOMATA
Instance: A Muller automatonA
Problem: Is L(A) # (?

MODEL-CHECKING FORMULLER TREE AUTOMATA
Instance: A Muller automatond, and a regular infinite tree
Problem: Ist € L(A)?

The close connection between automata and games can bésésialby considering the
game where the moves of Player O consist of choosing a ti@mgité to make from a current
state, and the moves of Player 1 consist of choosing whiatchraf the tree to descend. With
this translation in mind, the non-emptiness problem redtéhe problem of finding the winner
in the win-set gaméA, (W, W)) with

o H(A) =W =0Q,
o Vi(A) = Q"
o W =1F,

e edges fromi/;(A) to V4 (.A) determined by: an edge frong to (¢4, ¢o, - - -, qi) if there is
a € Y suchthatq,a,q,...q) € d,and

e edges froml;(A) to V;(A) being projections: an edge frofg, ..., g) to ¢; for all
i € [k].

Clearly if Player 0 has a winning strategy in this game, it isgble to construct a tree which
the automaton accepts. Conversely, if Player 1 has a wintiatggy, no such tree exists.

By adapting the proof of Theorem 2.64 we are able to show tieatdim-emptiness problem
for Muller automata as well as the problem of determining thbea given automaton accepts
a given regular tree are botlsPACEcomplete.

Theorem 2.76.The non-emptiness problem for Muller tree automat8sgACEcomplete.

Proof. Membership in BPACEIs established by the above polynomial time reduction frben t
non-emptiness problem of Muller automata to win-set garkHlese we show BPACEhardness
through a reduction from QSAT (satisfiability of a quantiflaablean formula [QBF]).

Given a QBF® = Q) _1xx_1 ... Vxidxgp, Whereyp is in disjunctive normal form with 3
literals per clause, we construct the following Muller anionAs = (Q, 3, q1,0, F) that
accepts infinite ternary trees:
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Q ={¢y} U {qs, ¢, : for all variablesr}
Y ={a}?

® 4r =dy

5 C Q x Q3 given by:

— for each claus€ly A1 Als) € @, (9p, Gy, @1y Q1) € 6;
— (Quis Quyys Gy yy Gz y) €0 FOr0 < i <k;

— (Qowi> i1+ Qs 1> Qi) €6 TOr0 <i <k;

— (920> 99, 94, 9,) € 0; and

= (¢-20» 4pr Gp: Q) € 0.

o F=1{5,8U{g},SU{qw}:0<i<k, ieven} whereS; = {q¢,} U{q,, ¢, :
0<j<i}.

Now by using the reduction to win-set games outlined abosking if Ag accepts any tree is
equivalent to asking if Player 0 has a winning strategy (feghon the win-set game used in
Theorem 2.64. O

The model checking problem also reduces to deciding whiaheplwins an infinite game.
However, depending on how the tree is presented, the neguatena may be of infinite size. If
the tree is presented as a finite transition system, a garhefinite arena can be constructed,
and we can apply Theorem 2.76 to obtain the following corglla

Corollary 2.77. Given a regular, infinitek-ary branching tree (represented as a transition sys-
tem) and a Muller automatoA = (Q, %, 6, qr, F), asking ifA accepts is PsPACEcomplete.

Proof. PspAcEhardness follows from the proof of Theorem 2.76, as the aatammonstructed
there accept at most one tree — the ternary branching treealitodes labelled by.

To show that the problem is indPACE we reduce it to the problem of deciding a Muller
game. Let(S, so,t1,...,t;) denote the transition system representing thetréiéhe required
Muller game, (A, (x,C)), is given by the following.

o (A =QxS.
. Vi(4) = Q x 5 x Q.

Thereis an edge froffy, s) € Vo(A)to(q, s, q1,- .- qx) € Vi(A)whenevelq,a, g1, ..., q) €
0 wherea is the label ofs.

There is an edge frorty, s, q1, ..., qx) € Vi(A) to (¢;,ti(s)) € Vo(A) forl <i < k.
e vr(A) = (qr, S0),
e () is the set of colours,

e \:V(A) — Q is defined by taking the first component of the vertex.

2asY. is a singleton, for ease of reading we omirom the description of
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o C=F.

It is clear from the definitions that Player 0 has a winningtgigy from(q;, so) in this game if,
and only if, A accepts. O



Chapter 3

Strategy Improvement for Parity Games

In Chapter 2 we introduced parity games and briefly remarketti@significance of determin-
ing the complexity of deciding them. One factor contribgtto the importance of the analysis
of parity games is that deciding the winner of a parity ganpolgnomial-time equivalent to the
model-checking problem of modatcalculus, a highly expressive fragment of monadic second
order logic [EJSO01]. Indeed, the modaicalculus is the bisimulation invariant fragment of
monadic second order logic, and therefore includes logsesull for verification such as the
branching time temporal logic CTLDam94].

Another interesting aspect of parity games is that the cenityl of deciding the winner
remains tantalizingly elusive. In Section 2.3 we observed twvhen we can restrict one player
to memoryless strategies we can nondeterministicallygthesstrategy and if we can check in
polynomial time if that strategy is winning, we have demaaigtd an NP algorithm (if Player O
has a memoryless winning strategy) or a co-NP algorithml@y&r 1 has a memoryless strat-
egy). So, from Theorem 2.42 we obtain the following corgfiar

Corollary 3.1. Deciding the winner of a parity game is NP N co-NP.

It is believed by some that parity games are decidable inruotyal time, however the
problem has so far resisted attempts to find tractable aktgosi, giving us the following well-
researched open problem:

Open problem 3.2. Determine the exact complexity of deciding parity games.

In this chapter, we analyse one of the best candidates facgatile algorithm for parity
games: the strategy improvement algorithm. In Chapters @ aveldefine a large class (indeed,
the largest class so far known) of graphs on which parity gaca@ be solved in polynomial
time.

Currently, the best known algorithm for deciding a parity gaom general arenas runs in

time n°(v"/1°em) wheren is the number of vertices of the arena [JPZ06]. If the numiber o
priorities, p, is small compared to the size of the arena, say o(,/n/logn), we can slightly

improve on this with an algorithm that runs in tirﬁﬁ(dm . <Lp72J ) Lp/QJ) wherem is the num-

ber of edges of the arena [Jur00]. However, in [VJ00a)g¥® and Jurdaiski introduced a
strategy improvement algorithm which appears to do quit# wepractice, even when the
number of priorities is large. To date, the best known uppmembl for its running time is
O(mn Mocvo) dout(v)), which is in general exponential in the number of verticeswilver,

no family of examples has yet been found that runs in worse linaar time. In this chapter

48
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we analyse the structure of this algorithm and use comhit@sults to improve the known
upper and lower bounds. The analysis we use is primarilyntéicen [VJOOD].

3.1 The strategy improvement algorithm

The idea behind the strategy improvement algorithm is tondedi measure dependent on the
strategy of Player 0. Then, starting with an arbitrary sggtfor Player O, to make local ad-
justments based on this measure to obtain a new strategyhwhio some sense improved.
This process is then repeated until no further improvemeautsbe made. At this point, with
a judicious choice of measure, the strategy is the optinayf for Player 0, and the winning
sets for each player can easily be computed. This procedusadily extended to any strat-
egy that requires finite memory, so from Theorem 2.14 we sagittitan be used for games
other than parity games. However, with parity games we csiniceourselves to memoryless
strategies and then at each stage both the measure andahielpmvements can be efficiently
computed.

In order to fully describe the algorithm, we need to intraelsome concepts. Using the no-
tation of Chapter 2, let us fix a parity garfie= (A, x) wherey : V(.A) — P. For convenience
we assume no vertex id has out-degre@. For the remainder of this chapter, we assume all
strategies are positional.

To be able to evaluate strategies, we first identify the atarstics of a play which are
important. Aplay profileis a triple(, P,e) wherel € P, P C P ande € w. Given an infinite
play 7 = vve--- in G, we associate withr a play profile,©(7) := (I, P,e), as follows.
We definel to be the maximum priority occurring infinitely often (=), so the parity of
determines the winner of the play. We defiReto be the set of priorities greater thamhat
occur iny(m), ande to be the minimal index such thgtv.) = [ andx(v.) < [ forall ¢’ > e.

A valuationis a mapping from each vertexc V(. A) to a play profile of an infinite play from
V.

We next define an ordering that compares play profiles by howefimal they are to each
player. We begin by defining a useful linear order on the setiofities. Thereward order C,
is defined as follows: fot, j € P, i C j if either

(i) 7is odd andj is even, or
(i) 7 andyj are even and < j, or
(i) ¢andj are odd and > j.

Intuitively, : C j if j is “better” for Player O tharn. We extend= to play profiles by defining
(I, Pye) C (m,Q, f) if either

(i) = m;or
(i) I =m andmax<(P A @) is odd and inP, or even and ir; or
(i) I =m, P =@, and eitheri is odd anct < f, orlis even and > f.

The measure we use to implement the strategy improvementtithign is a valuation that
gives theC-minimal play profile amongst all plays consistent with therent strategy for
Player 0. More precisely, let be a strategy for Player 0, and fore V(A) let Plays (v)
be the set of all infinite plays starting fromconsistent withy. We define the valuatioa,, by:

0o (v) :=min {O(7) : 7 € Plays,(v)}.
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The next proposition, taken from [VJOOb], helps give an iinte understanding ofp,.
Given a strategy for Player 0 and a strategy for Player 1, we observe there is precisely
one infinite playr,.(v) consistent withy andr from each vertex € V' (A). We write©®,,, for
the valuation defined by:

Opr(v) := O(mor(v)).

If we further extend= to a partial order on valuations, in a pointwise manner then Proposi-
tion 5.1 of [VJOOb] can be stated as:

Proposition 3.3. The set{©,, : 7 is a strategy for Player 1 has a<-minimal element and it
Is equal toy, .

Intuitively, this means thap, is equivalent to the valuation defined byand the best counter-
strategy for Player 1 against Consequentlyy, can be efficiently computed by fixing the
strategy of Player O and considering the strategies of Plahyia the resulting single player
game.

After computingp,, the algorithm makes locahprovementto the strategy by switching
(if necessaryy (v) to the successor of with the C-maximaly, value. The resulting strategy
o’ is improved in the sense that < ¢,.. This is then repeated until no further improvements
can be made. At this point the strategys optimal for Player 0, that is, Player O can win from
a vertexv € V(A) against any strategy for Player 1 if, and only if, she can wayipg o
from v against any strategy. We can then compute the winning sdisibyg Player 0’s strategy
and finding the winning sets for Player 1 in the single plays@ng. Algorithm 3.1 provides a
detailed description of the critical part of the strategypiovement algorithm.

Algorithm 3.1 Strategy optimization
Returns: An optimal strategy for Player O
selecta strategy for Player O at random

repeat
leto = o’ {Store current strategy
Computep,
for eachv € 1 do {Improveo locally according tap, }

selectw such that{v, w) € E(A) and
o) = maxc{on (V) : (v,0) € E(A)}
if 0, (0(v)) C ¢ (w) then
leto'(v) = w
until o = o’
return o

As an example, let us consider the parity game pictured inr€i§.1. Letr be the strategy
for Player O defined by (a) = ag, o(b) = by ando(c) = ¢;. We will computey, for the
verticesag, by andb,. Againsto, Player 1 has a choice of strategies:igt either he can play
to ¢, resulting in an infinite play with maximum priority, or he can play ta, resulting in
an infinite play with maximum priority. As 1 C 4, the latter is thé_-minimal choice and so
o (ag) = (1,0,0). At by, Player 1's choice appears to depend on the strategy dthe plays to
a and the strategy at, is to play toa then the resulting play has maximum priorityotherwise
if the strategy ati is to play toc the resulting play has maximum priority However3 1,
so theC-minimal play in either case is going to be to playbtaesulting inp, (by) = (3,0,0).
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Figure 3.1: A parity game

Cok

o il pelw) | et | ele) | o |vD
000 (1] <3(3{8}2;l) (37(?:5%(})?4) (S;{féfé) 011| 011
001 (1] ggg; (1’(?;&?4) 8%2;; 011| 010
w0, | Eégis (1(6,{3,}5)2) (1(6{2}0)2) 110/ 100
o (1) (1{(;?12)}6) (?1;{?23755}),}25) “&4{2}6;6) 010/ 001
100 (1) 882 (3,(?:,)%(;? " g S&i; 010/ 110
101 (1) 88;1; (3’(?;&(})? . 8 gﬁi; 000| 101
110 ? Eggi; Eggg; Eggg; 110| 000
w00 | Bn | G o]

Table 3.1: Table of valuations, next strategy and improveanaectors for all strategies

The valuation ab, is only dependent on the choice of strategy@atsoy, (b1) = (1,{4,5},4).
Turning to the subsequent, improved strategywe have(3,(,0) = (1,{4,5},4). Therefore,

switchingo atb will be an improvement for Player 0, and henrcé) = b,.

Usingijk as shorthand for the strategy which mags a;, b to b;, andc to ¢, the full table
of relevant valuations and subsequent strategies for égatb@y is presented in Table 3.1. Also
included in this table is theector of improving directions (VID)ndicating which elements of
o had improvements. Not only does this help identify0as the optimal strategy, but it is worth
observing that each entry in the VID column is unique. As weisghe next section, this is not

a coincidence.
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NEEREN

Figure 3.2: AUSOs of the-cube (I) and the orientations which are not AUSOSs (r)

3.2 A combinatorial perspective

In this section we show how the strategy improvement algoritan be viewed as an opti-
mization problem on a well-studied combinatorial struetiVe will introduce the concepts of
acyclic unique sink oriented hypercubasd thebottom-antipodal sink-finding algorithraind
we will prove the following result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodiak-§inding algo-
rithm on an acyclic unique sink orientation of the strategpércube.

Although this result appears in [BSV03], we present an adtiva proof that utilises results
from [VJOOb].

First we recall some definitions relating to hypercubesd-dimensional hypercubis an
undirected grapltt; such that’(H,) = {0, 1}%, and there is an edge between, .. ., a,) and
(by,...,bq) if for somei < d, a; # b; anda; = b; for all j # i. We calla; thei-th componenof
avertex(aq, ..., aq) in ad-dimensional hypercube. subcubas a subgraph induced by a set of
vertices which agree on some set of components. We obseatva slubcube of &dimensional
hypercube is a’-dimensional hypercube for somg < d, and we can specify a subcube by
a single vertex together with a set of adjacent edges. GivestA C {1,...,d} of natural
numbers and a vertex= (aq, . .., aq) Of ad-dimensional hypercube, we denote by Switet)
the vertexo’ = (b4, ..., b,) obtained by switching the components/iof v. That is,b; = q; if,
and only if,i ¢ I. Given a vertex in ad-dimensional hypercube, the vertawtipodalto v is

Given a parity gaméA, ), we assume that every vertexiif(.4) has out-degree two. From
Theorem 2.59, we can always transform a parity game intoanetiich every vertex i (.A)
has out-degree at most two. We can assume there are no sestioait-degred), as we can
use force-sets to determine if either player can force thg fd one of these vertices. We can
also change any vertex iy (.A) with out-degreel to be a vertex in;(A) as this does not
affect the outcome of the game. As this can all be done in pohyal time, this assumption
is not too restrictive. If we fix an order ovh(A) = {v1,...,v4}, and writev) andw; for the
two successors af; € V;(.A), then each vectofby, ..., by) € {0,1}" defines a strategy for
Player 0 by mapping; to vf and conversely each strategy defines a unique vector. fohere
the space of all Player O’s strategies is equivalent to xex#¢ of thed-dimensional hypercube.
For convenience, we will simply refer to the strategy spacthastrategy hypercubéNe now
introduce some additional concepts to help establish Eme&.4.

An orientationof a d-dimensional hypercube is a directed graph witfrdimensional hy-
percube as an underlying undirected graph and at most orebetigyeen any pair of vertices.
We say an orientation is aacyclic unique sink orientation (AUS@)it is acyclic and every
subgraph induced by a subcube has a unique sink (or, equilyake unique source). Figure 3.2
shows the two AUSOs for th2-cube (left), together with the two orientations of theube
which are not AUSOs (right).
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Acyclic unigue sink orientations of hypercubes are veryomgnt combinatorial structures,
particularly as a generalization of linear programmingroation problems. For example, a
pseudo-boolean function (PBI a function from a hypercube #®, and a common optimiza-
tion problem is to find the vertex which attains the maximumr{enimum) value of a PBF.
In [HSLAW88], a hierarchy of classes of PBFs was introduced, @re of these classes was
the completely unimodal pseudo-boolean functiohsictions such that every subcube has a
unique local minimum. Clearly, a completely unimodal PBF icelian AUSO, and conversely
any function toR which respects an AUSO will be completely unimodal.

One useful concept associated with AUSOs isvbetor of improving directiond_et VID :
{0,1}™ — {0,1}" be the function that maps each vertex of a hypercube with aB@tb the
vector which indicates which edges are outgoing from thakexe That is, if there is an edge
from v to o' wherev andv’ differ in thei-th component, then thieth component of VIDv) is
1 and thei-th component of VID') is 0.

An important class of problems for AUSOs and similar stroesuarepolynomial local
searchproblems (PLS). These are optimization problems where tis¢ af a solution and
“neighbouring” solutions can be efficiently computed, witie overall goal being to find a
locally optimal solution — one which is better than all itsgidours. For example, if computing
the directions of edges incident with a vertex can be don®iynemial time, then finding the
unique global sink of an acyclic unique sink oriented hypbecis a problem in PLS. Clearly,
given a hypercube we could iterate through all vertices ttfire sink, but as is usually the case
for interesting problems in PLS, iterating through all pbkessolutions is considered infeasible.
For the sink-finding problem a more interesting questionaan we find the global sink in
time polynomial in the dimension of the hypercube? In fagt,dcyclic unique sink oriented
hypercubes, this is an important open problem.

Open problem 3.5. Given ann-dimensional hypercube with an AUSO, is there a polynopmial
such that the global sink can be found with at mast) vertex queries?

One reason for the importance of this question is that thexargeresting structural re-
sults for AUSOs that suggest this question can be answertdiaffirmative. Firstly, am-
dimensional hypercube with an AUSO satisfies the Hirscheminje [WH88], which means
that from each vertex there is a directed path of length at maos the global sink. Secondly,
we have the following observation from Williamson Hoke [WH8&&ich shows that the vector
of improving direction takes a very special form:

Theorem 3.6([WH88]). VID is a bijection.

However, despite these results, an efficient sink-findiggrthm on hypercubes with AUSOs
remains elusive.

The connection between AUSOs and the strategy improvenigarithm is summarized in
the following theorem:

Theorem 3.7. The valuationp, induces an AUSO on the strategy hypercube.

In order to prove this, we must first indicate hgw induces an orientation. Let be any
linear ordering on the set of Player O’s strategies. We ektemo a partial order on strategies
by sayingo < ¢’ if either

(i) p, < @y, 0OrF
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(i) vy =, ando < o’.
This gives us an orientation on the strategy hypercube, aeweavith the following result:

Lemma 3.8. Let 0 and ¢’ be strategies for Player 0 such thatv) = o’(v) for all but one
v € Vo(A). Then eithew < ¢/, or o’ < 0.

The proof of this result follows directly from the followintgvo results from [VJOODb].

Lemma5.7 of [VJOODb]. Let/ C {1,...,d} be a set of natural numbers, and tebe a strategy
for Player 0. If, for each € I, ¢, (o (v;)) T ¢, (v]) wherev] is the successor af not equal to
o(v;), theno < Switch (o).

Claim 7.2 of [VJOODb]. Let/ C {1,...,d} be a set of natural numbers, and tebe a strategy
for Player 0. If, for each € I, ¢, (o (v;)) Z ¢, (v)) wherev] is the successor af not equal to
o(v;), then Switch(o) < o.

The orientation is then obtained by adding an edge fsoimo’ if o(v) = ¢’(v) for all but one
v e Vp(A)ando < ¢o'. We now need to show that this orientation is an AUSO. To ds thie
use the fact that the strategy improvement algorithm teatem

Theorem 3.1 of [VJOOb]. The strategy improvement algorithm correctly computesatinaer
of a parity game.

Since< is a partial order it is clear that this orientation is acycln order to show that it is
an AUSO, we use the following result about unique sink oagahs.

Proposition 3.9(JWH88]). A hypercube orientation is a unique sink orientation if, amdy if,
every2-dimensional subcube has a unique sink.

Next we observe that every subcube of the strategy hyperagees a subgame of the
original parity game: by definition, there is a $&tC 14(.4) on which all strategies of the sub-
cube agree. The induced subgame is obtained by fixing Pl&yeiices ori/ to agree with all
the strategies of the subcube. Furthermore, in these sigsganiakes the same values as in the
original parity game. Thus the resulting strategy hypeecofthe subgame is a subcube of the
strategy hypercube of the original game. Therefore, if zZsaymensional subcube of the strat-
egy hypercube does not have a unique sink, we can producéyagsane with &-dimensional
strategy hypercube with the same orientation. The onlylacgdentation of a2-cube with-
out a unique sink is one with antipodal sinks and sourcesKggpee 3.2). In Lemma 3.10 we
describe how the strategy improvement algorithm works ooréanted hypercube, and from
this we see that if the algorithm begins at a source of 2kilsmensional hypercube, then the
subsequent strategy will always be the other source. Thu#his orientation, the algorithm
never terminates. Since Theorem 3.1 of [VJOOb] ensureshiattrategy improvement algo-
rithm always terminates, evepydimensional subcube has a unique sink, and we have therefor
shown that the orientation defined kyis an AUSO. This completes the proof of Theorem 3.7.

Returning to the example parity game from the previous sectve can read the orientation
of the strategy hypercube directly from Table 3.1. For examponsider the strategy =
{001}. Sincep,(a1) C ¢, (ao), it follows that101 < 001, thus there is an edge froi®1 to
001. Figure 3.3 shows the resulting oriented strategy hypercub

Having established that the set of strategies for Playerfisa hypercube oriented by,
we can investigate how the strategy improvement algoritperates on this cube. From Algo-
rithm 3.1, we see that a strategyswitches at each point whete, (a(v)) is not C-maximal.
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Figure 3.3: Oriented strategy hypercube for the parity gamkégure 3.1

If this is adjusted so that when there is a choice of strasegigh C-maximal ¢, values, we
choose the<-largest strategy, then from Lemma 3.8 we see that we arelswgf o at the
vertices corresponding to the outgoing edges in the stydtggercube. That is,

Lemma 3.10. Leto be a strategy for Player O and, be the subcube of the oriented strategy
hypercube defined by and the outgoing edges from Then the subsequent strategyin the
strategy improvement algorithm is the vertex antipodat tin C,.

This is a well-known sink-finding procedure for AUSO hypdres called BTTOM-ANTIPODAL [SS05],
described in Algorithm 3.2. It is clear that on an AUSO hyjpiae, BOTTOM-ANTIPODAL ter-

Algorithm 3.2 BOTTOM-ANTIPODAL
Returns: Global sink of an AUSO hypercube
selecta vertexv at random
repeat
Compute VIOv)
letv =v @ VID (v) {XOR v and VID(v) }
until VID(v) =0
return v

minates with the global sink: at each stage we are jumping ftee unique source of the sub-
cube defined by the improving directions to some other ventéxat subcube, so we are always
reducing the minimal distance to the global sink. Combinimgnima 3.10 with Theorem 3.7

gives us the main result:

Theorem 3.4. The strategy improvement algorithm is a bottom-antipodak-§inding algo-
rithm on an acyclic unique sink orientation of the strategpércube.

3.3 Improving the known complexity bounds

The upper bound of) (mn [],cy, dou(v)) for the running time of the strategy improvement
algorithm arises from the observations that it takésnn) time to computep, and there are
(HUGVO(A) dout(v)) different strategies for Player 0 [VJ00a]. The results aft®a 3.2 enable us

to improve the trivial upper bound obtained byively running through all possible strategies.
Mansour and Singh [MS99] showed that @BromM-ANTIPODAL sink-finding algorithm will
visit at mostO(%) vertices of al-dimensional hypercube. However, we can improve this upper
bound further by using results from combinatorics. Instefagsing the BEOTTOM-ANTIPODAL
algorithm, we can use other sink-finding algorithms suclhasitBONACCI SEE-SAW of Szald
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and Welzl [SWO01], described in Algorithm 3.3. This algorithmilises structural results of
AUSOs such as Theorem 3.6 and has the best-known runningugimper bound(1.61¢),
amongst sink-finding algorithms.

Algorithm 3.3 FIBONACCI SEE-SAW
Returns: Global sink of an AUSO hypercube
selecta vertexm at random
let w be the vertex antipodal ta
let C,, = {m} andC,, = {w} {Antipodali-dimensional subcubés
for i = 0 ton do
Compute VIOm) = (mg, mq, ...) and VID(w) = (wg, wy, .. .)
letd = min{j : m; # w;}
let C/, be thei-dimensional subcube parallel €, in directiond from m
let C!, be thei-dimensional subcube parallel €4, in directiond from w

if my = 1then {m is the minimal vertex of afi + 1)-dimensional subculje
Computew = FIBONACCI SEE-SAW(C!,)
else {w is the minimal vertex of afi + 1)-dimensional subculje

Computemn = FIBONACCI SEE-SAW(C! )
letC,, =C, UC/ andC, = C,UC),
return m

These results give us the following improved upper boundsHe strategy improvement
algorithm:

Proposition 3.11. Assuming each vertex i (.A) has out-degree two:

(i) The strategy improvement algorithm runs in ti@émn - 2™ /ny).

(i) The Fibonacci strategy improvement algorithm runsime& O (mn - 1.61™0).
Wherem = |E(A)|,n = |V (A)| andng = |Vp(A)].

Turning to lower bounds, natural questions to consider arepteteness results. In par-
ticular, is strategy improvement or finding the sink of an A8ypercube PLS-complete?
Bjorklund et al. [BSVO03] show that this is not the case.

Theorem 3.12([BSV03]). The problem of finding optimal strategies in parity gamesas n
PLS-complete with respect to tigltL S-reductions.

Because PLS-complete problems have exponentially longowepnent paths [Yan97], the fact
that strategy improvement is not PLS-complete gives furslupport to the hypothesis that it
may only require polynomially many iterations.

However, we can also ask if there are examples of parity gammgsh require an expo-
nential number of strategies to be considered by the strategrovement algorithm. As a
first step towards this, Schurr and SagBS05] generated a family of oriented hypercubes for
which BOTTOM-ANTIPODAL visits 2¢/2 vertices. It remains an open problem whether there is
a family of parity games with these hypercubes as theireggalypercubes. In fact, this can be
generalized to a more interesting open problem:
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Open problem 3.13. Given a hypercube with an AUSO, can a parity game be consttucte
polynomial time with that hypercube as its strategy hypeséub

A positive answer to this question would not only give an exgxdial worst case for the strategy
improvement algorithm, but it would also relate Open Profde3.2 and 3.5: a polynomial time
algorithm for finding the sink on an AUSO would give a polynaitime algorithm for solving
parity games and vice versa. On the other hand a negativeeams\his question would give
a smaller class of AUSOs for which finding a polynomial timeksfinding procedure is an
interesting and important problem.

This leads to another interesting question: Can we clagsgfyAtJSO hypercubes that cor-
respond to parity games? As we mentioned previously, Hanetredr [HSLdW88] introduced
a hierarchy of pseudo-boolean functions including congbyetinimodal functions. It seems
plausible that the class of PBFs corresponding to parity gameght lie within one of the more
restrictive families they considered. For example, viepéni-dimensional hypercub®&, as a
polytope inR¢, a PBFy on H, is linearly separabléf for all » € R there exists a hyperplane
separating the verticeswith o (v) > r from the vertices’ with ¢(v') < r. Itis easily seen that
a divide-and-conquer algorithm can find the sink of a lineadparable hypercube in time lin-
ear in the dimension, so if the hypercube orientations aatsatwith parity games are linearly
separable then the strategy improvement algorithm wouldrrgpolynomial time. However, as
the next result shows, the hierarchy of [HSLdW88] is not finewgyh to separate parity games
and completely unimodal functions. We say a pseudo-bodigaction f : {0,1}" — R is
pseudomodulaif for all v, w € {0,1}":

(i) min{f(v), f(w)} < max{f(vAw), f(vVw)}, and
(i) min{f(vAw), f(oVw)} < max{f{v), f(w)}.

In [HSLAW88], the class of pseudomodular functions was tlastleestrictive class of PBFs
included in completely unimodal functions. However,

Proposition 3.14. There exists a parity game with an oriented strategy hyper¢bbt cannot
be induced by a pseudomodular function.

Proof. Consider the parity game from Figure 3.1. Its oriented sgsatgypercube can be seen
in Figure 3.3. We see that
111 < 000< 001 < 110

Now takingv = 001landw = 110we see that there is no functigh: {0,1}* — R that can
simultaneously respeet and satisfy both pseudomodular axioms above. O

This result is not surprising, there is no obvious reason thbyoins and meets of strategies
should satisfy the pseudomodular conditions. Howevenetsdmply for instance that there are
strategy hypercubes which are not linearly separable.



Chapter 4

Complexity measures for digraphs

In the last few chapters we examined the computational cexitglof some graph-based games.
We saw how the winning condition influences the difficulty lné problem of finding a winner
of such games. We now turn our attention to the other aspectabf games, the arena. The aim
of the next few chapters is to investigate measures of grapipexity, in particular measures
for directed graphs. As we will see, such metrics give inssigto the structure theory of graphs
and help identify those characteristics that act as a baorfending efficient solutions of various
important problems (for example, finding the winner of afyagame, or finding a Hamiltonian
path). Consistent with the overall theme of this dissentatibe complexity measures we define
will be based on games.

So what makes a good complexity measure? First we have taleonghat it is we are aim-
ing to measure. This of course depends largely on the apiplcane has in mind. For instance,
a group theorist may be interested in graph automorphisohs@a useful measure might reflect
the size of the automorphism group. A topologist might beregted in a measure that indicates
how many edges must cross in a drawing of the graph on a sudiakhew many paths there are
between any pair of vertices. We are interested in algorglaspects, so a practical measure
might indicate the difference between tractable and itdiae instances of many NP-complete
problems. A good measure of complexity may even encompass than one such aim. So
one desirable property sbundnesshe measure can be defined in equivalent ways for different
applications. Another desirable propertyabustnessthe measure should be “well-behaved”.
For example, if we simplify the graph, then the measure shoat increase. Again, the concept
of simplification is dependent on the application. For theugrtheorist, a simple graph is one
in which all vertices have similar structure, for exampleligue. For the topologist a simple
graph might be an acyclic graph. From the algorithmic pestige simplifying would include
operations that likely reduce the complexity of many praidefor instance taking subgraphs.
In this case simple graphs would be a class on which many Miplete problems have poly-
nomial time solutions — again, acyclic graphs are a good pl@nbually, if we complicate the
graph the measure should not decrease, and if this comphciatin some way uniform, we
would expect the measure to increase uniformly. One findlatage feature, particularly for
algorithmic purposes, is that the measure should somehoangrass large classes of graphs.
For example, acyclicity is a sound and robust measure, lartlyt takes two values, a graph
is either acyclic or it is not. So although acyclicity proggda boundary between tractable and
intractable instances of many NP-complete problems, wadatarse it to find larger classes of
graphs which may admit efficient solutions. This suggests dhgeneralization of acyclicity,
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perhaps indicating how acyclic a graph is, would be an idaatidlate for a good complexity
measure. This is precisely the type of measure we considbisiand the following chapters.
In this chapter we introduce an important and well-known soea for undirected graphs
called tree-width. We show how it matches the criteria oeti above, and we discuss the
problem with its extension to directed graphs, providingivation for subsequent chapters.

4.1 Tree-width

Tree-width can be seen as a measure of graph complexity thrtbpological and algorithmic
purposes. That it serves both purposes is not surprisingiaften the complexity of the
structure of the graph that makes problems difficult to salwvany NP-complete problems can
be solved in polynomial time on the topologically simplessaf acyclic graphs. As the name
suggests, the tree-width of a graph indicates how closgthat is to being a tree. For example,
trees have tree-width, simple cycles have tree-width and highly connected graphs such as
cligues have tree-width one less than the number of vericéee graph.

Although Robertson and Seymour coined the name tree-widtB4R$he parameter had
been around for many years prior to this, testament to the@itapce of tree-width as a mea-
sure of graph complexity. Rose and Tarjan [RT75] considedrebolic approach to Gaussian
elimination on matrices which amounts to vertex eliminatom graphs. They introduced sev-
eral parameters which reflect how “difficult” it is to perforansequence of eliminations: for
example thewidth of an elimination reflects the maximum number of operaticrtuired at
any stage of the elimination. The minimum width over all e&greliminations is a graph mea-
sure equivalent to tree-width. Halin [Hal76] considerefluBetions: mappings from graphs
to integers satisfying certain formal conditions, a clas&inctions which includes graph pa-
rameters such as the chromatic number, the vertex-comitgetnd the homomorphism-degree.
Halin showed that there is a maximal S-function under thenaapoint-wise partial ordering
of S-functions, and this function turns out to be the tredtiviof the graph. Arnborg [Arn85]
was one of the first to show the algorithmic importance of-tkédth, by finding efficient solu-
tions to many NP-complete problems on partidtees, a characterization of the class of graphs
with tree-width bounded by. We will revisit some of these alternative characterizatiof
tree-width in Chapter 7.

To formally define tree-width, we must first introduce theiootof a tree decomposition. A
tree decomposition of a graghis an arrangement of subgraphstbin a tree-like manner so
that all paths in the graph respect this arrangement. Mae gely,

Definition 4.1 (Tree decompositions and tree-width)et G be an undirected graph. t#ee
decompositiorof G is a pair(7,X') whereT is a tree and¥’ = (X;)cv (1) is a family of
subsets oi/(G) such that:

(T1) X is acover oft/(G), thatis,Jy. X = V(G),

(T2) For each vertex € V(G) the subgraph off induced by the seft : v € X} is a
connected subtree, and

(T3) For each edgéu,v} € E(G) there exists € V(7T ) such that{u,v} C X,.

Thewidth of a decompositioni7, X') is max{|X;| : t € V(7)} — 1. Thetree-widthof a graph
G, Tree-widthG) is the minimum width over all tree decompositiongof
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To see how this definition corresponds with our informal deson above, letG be an
undirected graph an@Z", X') be a pair such thal is a tree andt = (X;).cy(7) is a cover
of V(G). Foran arte = {s,t} € E(T), we observe that the removal efrom 7 gives two
subtrees: on€l,, containing the node, the otherZ; containing the node LetV, = Ut,eTs Xy
andV, = Ut’e?} Xy. We define the following condition:

(T4) For each ards,t} € E(7), every path fromV; to V; contains at least one vertex in
XN Xy

Condition (T4) can be used as an alternative to condition3 &hd (T3) as we see in the fol-
lowing lemma.

Lemma 4.2. Let G be an undirected graph, and@, X') a pair such that7 is a tree and¥ =
(Xi)iev(T) is @ cover ofl’(G). Then (T4) holds if, and only if, both (T2) and (T3) hold.

Proof. Suppose (T4) holds. For each vertex V(G), let 7 [v] be the subgraph df induced
by the set{t € V(7)) : v € X;}. Suppos€ [v] is not connected. Let; andC;, be two distinct
components off [v]. Since7 is a tree, there is a unique pathInfrom C; to Cs. Let (s, s’)
be the first arc in that path. Sin€g andC; are distinct components, we haves C; and
s ¢ V(Tv]), sov € X; C V,, butv ¢ X, sov ¢ X, N Xy. However,Cy C 7y, S0v € V.
As the path (of length) from v to itself does not go througK; N X, we have a contradiction.
Thus (T2) holds. Now let = {u, v} be an edge of and suppos& [u] and7 [v] have no nodes
in common. Let(s, ") be the first arc in the unique path frof«| to 7 [v] in 7. We observe
thatu € 7;,u ¢ 7y, v ¢ 7, andv € 7. But then no vertex on the (length path fromu to v
alonge is contained inX, N X/, a contradiction. Therefore, (T3) holds.

Now suppose (T2) and (T3) hold. L&t, s’} be an arc of. Let(vy,...,v,) be a path from
v, € Vitow, € Vy. We show that there must be soirmuch that;, € X, N Xy. If v, € V,NVy
foranyi, 1 < ¢ < n, then it follows from (T2) that; € X, N X, and we are done. So assume
that there is n@ such that,; € V;NV,. Sincev, € V; andv,, € Vy, it follows that there is some
J,1 <j <nsuchthaw, € V;forall1 <i < j, andv; € V. But there is an edge fromj_, to
v; so from (T3) there existse V(7)) such thafv;_1,v,;} C X;. NowV(7,)uV(Zy) = V(T),
so eithert € V(7;) ort € V(7y). In the first case it follows that; € V, and in the second it
follows thatv,_; € Vy, both of which are contradictions. Therefore (T4) holds. O

Path-width

Path-width, also introduced by Robertson and Seymour [R$&88]measure of complexity for
undirected graphs closely related to tree-width. Justesswidth indicates how close a graph
is to being a tree, path-width indicates how close a grapb iseing a path. Indeed, a path
decomposition is a tree decomposition in which the undeglyiee is a path. More precisely,

Definition 4.3 (Path decomposition and path-width)et G be an undirected graph. path
decompositiorf G is a sequencd(, . .., X,, of subsets ot/ (G) such that:

(Pl) U?:l Xz' = V(g),

To assist with descriptions, we use the termslesandarcswhen referring taZ’, and the termserticesand
edgedor G.
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(P3) Foreach = {u,v} € E(G), there exists < n such thafu,v} C X;.

Thewidth of a path decompositiody, . . ., X,,, ismax{| X;| : 1 <i < k} — 1. Thepath-width
of G is the smallest width of any path decompositiorgof

It is worth observing that ifXy,..., X, is a path decomposition of a gragh then so
Is X,,,...,X;. Thus a path decomposition is not completely dependent erirtear order
imposed by the fact that it is a sequence.

Because a path decomposition is also a tree decomposititmwpdih is a weaker notion
of graph complexity than tree-width. That is, if a graph hathpwidth &, then the graph has
tree-width< k. The difference between the two can be arbitrarily large: dlass of trees has
tree-widthl, but unbounded path-width. However, as argued in [DKOSheédth can be seen
as a first approximation of tree-width, and many interessiingctural results can be established
with the measure. For example, we have the following resienstock, Robertson, Seymour
and Thomas:

Theorem 4.4([BRST91]). For every forestl, every graph of path-widtkr |V (7)| — 1 has a
minor isomorphic tal .

4.1.1 Structural importance of tree-width

Lemma 4.2 gives us a good insight into what graph propentgsswidth measures. If we take
the given definition of a tree decomposition, we see thatwigh is essentially a measure in-
dicating how much structure we need to ignore before thelgb@ogomes acyclic. In this way,
tree-width measures the cyclicity of a graph. On the othadh#d we define tree decomposi-
tions using (T1) and (T4) we see that tree-width measuresvieihseparate parts of the graph
are linked. In other words, tree-width also measures the@tedness of a graph. Lemma 4.2
asserts that on undirected graphs cyclicity and conneetsdgeneralize to the same measure.
As we will see, this distinction is important, because oreclied graphs cyclicity and connect-
edness are significantly different, giving us a variety ahptexity measures to consider.

In Chapter 1, we indicated that the concept of “graph strectilmat we are interested in in-
vestigating is algorithmically motivated. As we have suglgd, cyclicity and connectedness are
important algorithmic structural properties, so this sgjg that tree-width is a useful measure
for graph structure.

An important relation for the theory of graph structure tivatare investigating is thainor
relation. Intuitively the minor relation relates two graphs if onesisucturally “more complex”
than the other. We formally define the concept in Chapter & ot surprising that tree-width
and the minor relation are closely connected. Indeed,wid#: was an important tool in the
proof by Robertson and Seymour [RS04] of the Graph Minor Thadige Theorem 8.42),
described by Diestel as “among the deepest results mattosrhas to offer” [Die05]. In addi-
tion many other structural measures have been shown toibetely related to tree-width. For
instance deedback vertex s& a set of vertices whose removal result in an acyclic gréps.
easy to show that if a graph has a feedback vertex set ofsiteen it has tree-width at most
k 4+ 1. Two other important structural measures are havens amobbes.

Definition 4.5 (Haven) Let G be an undirected graph aide N. A haven of ordefk in G is a
function3 : [V(G)]<F — P(V(G)) such that for allX C V(G) with | X| < k:

(H1) 5(X) is a non-empty connected componentiof X, and
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(H2) If Y C X, thenB(Y) 2 B(X).

Definition 4.6 (Bramble) LetG be an undirected graph. Bxamblein G is a sei3 of connected
subsets o}/ (G) such that for all pair3, B’ € B eitherB N B’ # (), or there exist{u, v} €
E(G) with v € B andv € B’. Thewidth of a bramble5 is the minimum size of a set which
has a non-empty intersection with every elemens of

Seymour and Thomas [ST93] demonstrated the relation bathaeens, brambles and tree-
width with the following theorem:

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width> k£ — 1
2. G has a haven of ordet.
3. G has a bramble of widt.

This theorem asserts that the smallest width of all treem@ositions is always equal to the
largest width of all brambles. Since the width of tree decosifjions is a maximizing measure
and the width of brambles is a minimizing measure, Theorefrista minimax theorem. We
explore this aspect of tree-width further in Chapter 8.

The importance of tree-width as a measure of structural textp suggests that tree-width
is robust under various structural transformations, paldrly those, such as taking subgraphs,
which may affect the complexity of problems. Indeed, thia be verified by examining the
definition of tree decompositions, but is perhaps besttithied by Theorem 5.37, which we
present in the next chapter.

4.1.2 Algorithmic importance of tree-width

The nature of tree decompositions further supports theigthgaic significance of tree-width, as
the structure of a decomposition lends itself well to dyraprogramming techniques [Bod88].
When we restrict to a class of graphs of bounded tree-widthbewend the size of the tree
decompositions and many algorithms based on dynamic prognag will run in polynomial
time. Thus restricting to classes of graphs of boundedwieéx can provide large classes
of tractable instances for many NP-complete problems. WMais best illustrated by Arnborg
and Proskurowski [AP89], when they provided efficient aidyons for many well-known NP-
complete problems on graphs of bounded tree-width. Thisfwéser extended by Courcelle’s
elegant characterization of a large class of problems wtagchbe efficiently solved with dy-
namic programming:

Theorem 4.8([Cou90]). Any problem which can be formulated in Monadic Second Ordgclo
can be solved in linear time on any class of graphs of bounasdwidth.

Of course the applicability of these results depends lgrgelthe complexity of the follow-
ing decision problem:

TREE-WIDTH
Instance: An undirected grapky, and a natural numbeér
Problem: Is the tree-width ofj at mostk?
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While this problem is NP-complete [ACP87], for a fixed valbeetermining if a graph
has tree-widtht and indeed, computing a tree decomposition of widihone exists, can be
performed in linear time [Bod96]. This means that finding tleetwidth of a graph is fixed
parameter tractable, and so it is not surprising that treithvhas also played a major role in
advancing the field of parameterized complexity.

As we mentioned earlier many important graph parameterslasely related to tree-width,
so a common technique for finding fixed parameter tractaglaéhms for parameterized prob-
lems is to use tree-width to separate instances into thosdwhn be trivially solved and those
which can be solved using bounded tree-width techniquese¥xample, consider the param-
eterized problem of finding a feedback vertex set of ¢izeNe can use the fixed parameter
tractable algorithm for computing tree-width to computeese tdecomposition of width + 1.

If no such decomposition exists then there cannot be a fekdiEtex set of sizé. Other-
wise, since the feedback vertex set problem can be forntlat®&SO, Courcelle’s theorem
implies there exists an algorithm to solve the problem iadintime, giving us a fixed parameter
tractable algorithm for finding a feedback vertex set of gize

4.1.3 Extending tree-width to other structures

The above discussion indicates that tree-width is a pr¢gound and robust complexity mea-
sure for undirected graphs. We now consider other strustueh as directed graphs or hyper-
graphs. One key to the success of tree-width is that treentigasitions are readily extendable
to arbitrary relational structures. If, in Definition 4.1eweplace “vertices” with “elements of
the universe”, and condition (T3) with:

(T3) For each relationkR and each tupléay, as, ...) in the interpretation ofR there exists
t € V(7T)suchthafay,as,...} C X,

then we obtain a definition of tree-width for general relasibstructures. Consequently, we
can benefit from the algorithmic advantages of tree-widtithsas a structure well-suited to
dynamic programming, and obtain large classes of tractabilences of problems outside graph
problems. But how good is tree-width as a measure of complerithese structures? Itis easy
to see that the tree-width of a structure is precisely thewlth of the Gaifman graph of that
structure: the graph with vertex set equal to the univerdbestructure and an edge between
any two elements that occur in a tuple of a relation. The meawlack of this approach is that
by considering the Gaifman graph, we lose information altioeistructure, and in some cases
this information loss may be crucial. For example, the Gaiingraph of a directed graph is
the undirected graph obtained by ignoring the orientatibthe edges, so the tree-width of a
directed graph is the tree-width of the underlying undedograph. This means that directed
acyclic graphs (DAGs) can have arbitrary tree-width as aaplg can be the underlying graph
of a DAG. However, many interesting problems based on dickgtaphs are greatly simplified
when restricted to DAGs, so we would expect DAGs to have lommexity. This suggests
that tree-width is not a good complexity measure of diregiegbhs, especially for algorithmic
purposes.

This leads to the following research problem, the invesitigaof which forms the core of
the remaining chapters.

Research aim.Find a complexity measure for directed graphs which geneesltree-width.
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Before we give an overview of the current status of this pnohlee discuss what exactly
“generalizes tree-width” entails. First, we are interdste measures which generalize tree-
width as a measure. This has two aspects. As tree-width isedefor directed graphs, we
are not interested in measures that may be “worse than'wid# In other words, we are
searching for measures that are bounded above by tree-\v@dtthe other hand, we can view
undirected graphs as directed graphs by interpreting ainagteld edge as a pair of anti-parallel
edges — recall the definition of bidirection in Section 1.58 we can look for a measure which
matches tree-width on undirected graphs by using thisfivamstion to directed graphs.

The second property of tree-width we are interested in gdizerg is the structural aspect.
Many structural properties of graphs have natural extessio directed graphs, for example
acyclicity or connectivity. A good generalization of tregdth to directed graphs would reflect
the behaviour of tree-width with regard to these properfieparticular we expect structurally
simple directed graphs such as DAGs and directed cyclesvi® lbav complexity, but struc-
turally complex directed graphs such as cliques to havedogtplexity, just as trees and cycles
have small tree-width and cliques have large tree-widtmil&ily, we expect that a reasonable
measure would be robust under the structural relationsifecied graphs we considered in
Section 1.1.2. For example, we expect that the measure wotliicrease under the taking of
subgraphs, or that it would be possible to compute the measua graph from its strongly or
weakly connected components, or more generally from a paulographs which comprise a
directed union. This last property was considered in [JR$A6n important property for the
generalization of tree-width to directed graphs.

Finally, we are also interested in generalizing tree-widtthe algorithmic sense. We are
particularly interested in being able to find efficient aigans for interesting problems on
directed graphs of bounded complexity. Having some soreobchposition which generalizes
tree decompositions might be one way to achieve this.

4.2 Directed tree-width

In [JRSTO1], Johnson, Robertson, Seymour and Thomas inteoldat extension of tree-width
to directed graphs known as directed tree-width. Inforynalirected tree-width is based on a
decomposition, known as an arboreal decomposition, wisiclefined by generalizing Condi-
tion (T4). Formally, to define directed tree-width, we reguthe following definition:

Definition 4.9 (Z-normal) Given two disjoint subset& and S of vertices of a digraply, we
saysS is Z-normal if for every directed pathy, - - - v,,, in G such that,, v, € S, eitherv; € S
forall 1 <i <n, or there existg < n such thav; € Z.

Also, given a directed tre@ with edges oriented away from a unique vertex V(7)
(called theroot), we writet > e fort € V(7)) ande € E(T) if e occurs on the unique directed
path fromr to ¢, ande ~ t if e is incident with¢. The following concepts were introduced
in [JRSTO1].

Definition 4.10 (Arboreal decompositions [JRSTO02)n arboreal decompositionf a digraph
G is a tuple(7, B, W) whereT is a directed tree with a unique root, alid= (B;).cv () and
W = (W.)cer(r) are families of subsets f (G) that satisfy:

(R1) Bis a partition of\/(G) into non-empty sets, and
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(R2) Ife € E(T), thenBs, := |J{B:|t > e} is W,.-normal.

Thewidthof an arboreal decompositid’, 5,)V) is the minimumk such that for alt € V(7),
|By U, We| < k+ 1. Thedirected tree-widthof a digraphgG, dtw(G), is the minimal width
of all its arboreal decompositions.

It follows from this definition that directed tree-width dogeneralize tree-width as a mea-
sure in the sense described above.

Towards showing that directed tree-width is also a strattgeneralization, Johnson et al.
considered the natural generalization of havens (usimngly connected components rather
than connected components) and proved the following analoffTheorem 4.7:

Theorem 4.11([JRSTO1]) LetG be a directed graph.
1. If G has a haven of order thenG has directed tree-width & — 1.
2. If G has no haven of ordéef thenG has directed tree-widtkl 3k — 2.

Johnson et al. conjectured that the bound in the second ibeid be reduced ted k& — 1,
showing an equivalence between havens and directed tata-wilowever Adler [AdIO5] has
shown that this is not the case. Safari [Saf05] showed thatraageneralization of brambles
(using strongly connected sets rather than connected sats)lso be related to havens and
directed tree-width.

Theorem 4.12([Saf05]). For a directed graphy let H(G) be the largest order of a haven ¢h
and B(G) the largest width of any bramble . Then

H(G) <2B(G) <2H(G),
and there exist graphs for which equality holds in either uedy.

Johnson et al. also demonstrated the algorithmic poterftidirected tree-width, firstly by
providing a general algorithm scheme for finding efficiergoaithms on digraphs of bounded
directed tree-width, and secondly by using this schemeddyme an algorithm which solves
the following problem in polynomial time on graphs of bouddgrected tree-width:

k-DISJOINT PATHS
Instance: A directed graphg, and a set of pairs of (not necessarily
disjoint) vertices{(s1,t1), ... (Sg, tx)}
Problem: Are therek vertex disjoint pathg, ..., P, in G such that for
eachi, P; is a path froms; to ¢;?

A corollary of this result is that many other important NRyquete problems, such as the
Hamiltonian path and cycle problems, can be solved effiliemt graphs of bounded directed
tree-width.

Theorem 4.13([JRSTO01]) The following problems can be solved in polynomial time on any
class of directed graphs with bounded directed tree-widthmi@nian cycle, Hamiltonian
path, k-Disjoint paths, Hamiltonian path with prescribed endpsiriEven cycle through a given
vertex.
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In terms of parameterized complexity, directed tree-widtlalso quite useful. Although
there is no known algorithm for computing the exact dired¢ted-width of a graph apart from
a brute-force search, generalizing the approach used tpuentree-width in fixed parameter
linear time gives us a fixed parameter tractable algorithncéonputing an approximation of
directed tree-width. This means that we can use directedwirdth in a similar role as tree-
width for finding fixed parameter tractable algorithms foolems on directed graphs.

Johnson et al. conclude their paper by observing that desttrer more natural extensions
of tree decompositions to directed graphs are not appite@sthey are not robust under simple
graph operations. They highlight that one of the major protd with defining a notion of tree-
width for directed graphs is that on directed graphs mangragkructural measures are not as
closely linked as they are in the undirected case, as we saWvaarem 4.12.

4.3 Beyond directed tree-width

So with a seemingly appropriate complexity measure defwwbgl,is the generalization of tree-
width to directed graphs still an interesting research lgmol? The answer is that directed
tree-width does not seem to complete the whole picture. Btarg unlike with tree-width the
definition is awkward, as is the given algorithm scheme, aisddifficult to gain an intuitive un-
derstanding. The structure of arboreal decompositionstiasflexible as tree decompositions,
which means we cannot provide alternative forms of the dgomsmtion which may be useful
algorithmically (see, for example, Theorem 6.28). This asait challenging to develop algo-
rithms outside of those provided in [JRSTO01], suggestingaléd tree-width is not as practical
as it first appears.

In addition, contrary to the claims made in [JRSTO1], dirdd¢tee-width is not robust under
some very simple graph operations. Adler [AdIO5] has showat tirected tree-width may
increase under the taking of butterfly minors (see Definil@®8), and it appears that this can
be extended to showing that directed tree-width may ineremsler the taking of subgraphs.
However, it follows from Theorem 4.11, that this increase oaly be by a constant factor, as
havens are robust under these operations. While this meanalgforithmically directed tree-
width is still a useful measure of complexity, it lessensithportance of directed tree-width as
a structural measure. This was further shown by Adler, withfollowing result which shows
that havens are distinct from directed tree-width.

Theorem 4.14([AdI05]). There exists a directed graghwith no haven of ordet and directed
tree-width4.

This implies that we cannot reduce the bound in the secortdpaheorem 4.11 to obtain
an equivalence between havens and directed tree-width.

Nevertheless, in the next chapter we show that Theorem #plieis that directed tree-
width at least approximates a good complexity measure fectiéd graphs. But the picture is
still not complete. The problem is that on directed graplesehs a difference between con-
nectivity and reachability — if there is a path framto v it does not necessarily follow that
andv are in the same strongly connected component, and simitaelyandv are in the same
weakly connected component, there may not be a path framv. The tree-width of a di-
rected graph can be seen as a measure of its weak conneets/itge-width is a connectivity
measure that, on directed graphs, ignores edge directiewlise, the definitions of directed
tree-width and its alternative characterizations sugtiegtdirected tree-width is a measure of



4.3. BEYOND DIRECTED TREE-WIDTH 67

the strong connectivity of a graph. So the question can bedaskVhat, if anything, measures
the reachability, odirected connectivityof a directed graph?” In Chapters 6 and 7 we address
this question, introducing two distinct, but closely rethtmeasures which seem to indicate
directed connectivity. As strong connectedness impliashability, and reachability implies
weak connectedness, it is not surprising that these mesalseiteetween tree-width and directed
tree-width. We argue that as these measures are closeetwitléh than directed tree-width

is, they are more practical as a complexity measure for @idegraphs. In Chapter 8 we con-
sider the structural implications of the question, endeawg to find generalizations of havens,
brambles and minors that correspond to our measures.

An interesting follow-up question is “Should a good comtiereasure for directed graphs
be invariant under edge reversal?” As many important strattfeatures such as cycles or
strongly connected sets are preserved under reversing,atigeuld seem that a good structural
measure would be invariant under this operation. Howevem fan algorithmic point of view
edge direction is much more critical. Consider the probletnyafig to find a path between two
vertices when it is not easy to compute the edge relationit lisirelatively easy to compute
the successors of a vertex. Such a problem might arise ftanos if we were considering
the computations of a Turing machine. On a tree where all ®dge oriented away from
a single vertex, finding such a path could involve a lot of baekking, but with all edges
oriented towards a single vertex, the problem becomesfiignily easier. Unlike directed tree-
width, the measures we introduce in Chapters 6 and 7 are raviam under the edge reversal
operation, providing further evidence that they are mor@ble extensions of tree-width from
a practical point of view.



Chapter 5

Graph searching games

With a view to finding good complexity measures for directespips, we now turn our attention
to a means of developing robust measures of graph compléiiyintroduce a game played
between two players, one controlling a fugitive locatedlmndraph, and the other controlling
a set of searchers whose purpose is to locate the fugitiveh §Games are useful for describing
problems such as trying to locate a virus in a network, ort®c@meone in a cave system.
They can also be used to define measures of graph complexatybtain various complexity
measures by considering variants of the game and the resotequired by the searchers to
locate the fugitive. Indeed, the tree-width of a graph carclheracterized by the minimum
number of searchers required to locate the fugitive in sohtiesovariants we consider.

We first define a very general form of the game which encompassay games consid-
ered in the literature, for example [ST93, KP86, BG04, DKTRFNO5, GLS01, GMO06]. This
enables us to define some important concepts we use throuthieoniext few chapters: plays,
searches, strategies and monotonicity. After demonstraw this game includes other games
considered in the literature, we introduce a general fraonkevor developing measures of graph
complexity. In Section 5.4, we show how these measures @estander some basic graph
operations such as taking subgraphs. Finally, we concheletiapter by considering the com-
plexity of the problem of determining these graph paranseter

5.1 Definitions

The definitions we present in this chapter are applicabletb directed and undirected graphs,
though it is often necessary to assume we are working withiy one of these classes. Thus
we use the terngraphto refer to a structure with a single, binary edge relationcivimay or
may not be symmetric.

We recall from Definition 2.7, the definition ofsample gameThe game we are interested
in is a simple game played on an arena defined by the graph wabeh®d. That is,

Definition 5.1 (Graph searching gamej graph searching game typs a functionI” which
maps a graply to a triple(L,, L, A) whereL, and L are sets of subsets of El¢) and.A is
an arena which satisfy:

o ) e L,

e ) ¢ L, andL; has a uniqu&-maximal element,;,.x,

68



5.1. DEFINITIONS 69
e Vo(A) C L, x L; consists of pair$X, R) whereX N R = 0),
e Vi(A) C L, x L, x Ly consists of triples of the forriX, X', R) whereX N R = 0,
o v;(A) = (0, Ryax),
o If (X,R),(X',X",R)) € E(A) thenX = X"andR = R/,

o If (X,X",R),(X",R)) € E(A) thenX’ = X" and for all’ € R’ there isr € R such
thatr andr’ are in the same (weakly) connected componeist o X N X’), and

e If S C R, then for allS” such that((X, X", S), (X', S")) € E(A), there exists®’ D 5’
such that((X, X', R), (X', R)) € E(A).

Given a graph searching game typeand a graply, with I'(G) = (L, L, A) thegraph
searching game og (defined byl'(G)) is the simple gam&. := (A, F), whereF = 0, so
Player 1 wins all infinite plays. In a graph searching gameneles ofl;(A) are calledposi-
tions (of the game)elements ol (A) are calledntermediate positionsand we call Player 0
thesearchersand Player 1 théugitive

Intuitively, the game works as follows. A graph searchingigaong is a game played by a
number of co-operating searchers against an omniscieitivigAll entities occupy elements
of G, however, while the locations of the searchers are knowweoyene, the location of the
fugitive is not necessarily known, so the fugitive “occigiia set of potential locations. When
the game is at the positidiX, R), X € L, represents the location of the searchers,&r@ L
represents the set of potential fugitive locations. Theahposition, (0, R....), thus indicates
that at the beginning there are no searcherg @md the fugitive may be anywhere @i),,.
The searchers and fugitive move aroundout, as indicated by the edge relation of the arena,
only the fugitive is necessarily constrained by the topglofG.

From position(X, R), the searchers, if possible, choose a new set of locafidndf this
is not possible then the fugitive has escaped and he winer@ige, the game proceeds to the
intermediate positio(X, X', R). For ease of later descriptions, we say the searcheis oA’
have beememovedvhile the searchers aki N X’ remainstationaryand the searchers ofy\ X
will be placedafter the fugitive has completed his move.

The fugitive responds to the move of the searchers at eacls gfdtential locations, but
he is not permitted to pass through any stationary searcltéwaever, he is omniscient and
is aware of the impending occupation &f \ X by the searchers that will be placed, and can
modify his response accordingly. The final condition in tledéimtion of the arena of a graph
searching game asserts that the responses of the fugitaachtof his potential locations are
somewhat independent: if the set of potential locationsicseiased, then so are the sets of
his potential responses. Some information about the regpohthe fugitive may be available
to the searchers, resulting in a (visible) choice for thdtiug about the next set®’, of his
potential locations. If he has no such choice and no poskibkion to move to & = (),
then he has been captured and the searchers win. Othefgsggrne proceeds to the position
(X', R"). This whole process is represented in the graph searching & moving the token
from (X, R) to the vertex(X, X', R), and then ta X', R'). If the fugitive can avoid capture
forever, then again he has escaped and he wins.
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From this we can see that an arena of a graph searching gaifiecan be described by
defining the set of positions and a set of legal transitionw®en positions, essentially “ignor-
ing” non-terminal intermediate positions. It follows that plays ending with a move from the
fugitive can be fully described as a sequence of positions:

(Xo, Ro) (X1, Ry) - (X, Rn)

where(Xy, Ro) = (0, Rmax) @and for0 < ¢ < n and for all’ € R;,; there isr € R; such that
r andr’ are in the same connected componeng of (X; N X;.1). We extend this to include
plays that are winning for the searchers by usityg = () to indicate that the play ended at
(Xn_1, Xn, R,—1). This motivates the following definition:

Definition 5.2 (Search) Let G; be a graph searching game Grdefined by(Z,, £, A), and
let (X1, Ry) € Vy(A). A proper search fron{Xy, R,) in G, is a (possibly infinite) sequence,
(X1, R1)(X2, Ry) - - -, such that for alf > 1:

o (X, R;) € Vo(A),
o (X;,R),(X;, X;11, R;)) € E(A), and

o (X, Xis1, Ri), (Xit1, Riy1)) € E(A).
A complete search froiX;, R,) in Gy is a finite sequenceX;, R, ) - - - (X, R,) such that
e (X1,Ry) - (X,_1,R,_1)is aproper search froiX, R;) in Gg,

L4 ((Xn—h Rn—l)a (Xn—la Xny Rn—l)) € E(A),
o (X, 1,X,, Rn_l)) € V1(A) has no outgoing edges, and

o R, =10.

A searchin Gg is a sequence which is either a proper or a complete searchartsr can be
extendedo a search’, if 7 is a prefix ofr’. A search fromv;(.A) is winning for the searchers
if it can be extended to a complete search, otherwisewinging for the fugitive

In the sequel we will generally adopt this representatioplafs as we are primarily con-
cerned with the game from the perspective of the searchers.

Variants of graph searching games are obtained by restyithie moves available to the
searchers and the fugitive, in other words, by placing iegins on the arena on which the
game is played. Before we consider some examples, we inteaghroe definitions and results
relating to strategies.

5.1.1 Strategies

Since a graph searching game is a simple game, it followsthgatvinner is determined by
reachability, and therefore if either the fugitive or theusders have a winning strategy, they
have a memoryless strategy. However, in this chapter wenéeeested irresource bounded
winning strategies, and in this case memoryless strateigidsed, even finite memory strate-
gies may no longer be sufficient. However, to ensure that cdimgp such strategies remains
decidable, we impose restrictions on the resource measgesnsider so that searches con-
sistent with strategies are only ever simple paths in theaar€his motivates the definition of a
history-dependent strategy
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Definition 5.3 (History-dependent strategyllet G be a graph, an@;, a graph searching game
on @ defined by(L,, L, A). Given a set, ahistory-dependent strategy for the searchiera
partial functiono : £* x £, x L; — ¥ x L, such that:

e (¢, Xo, Ro) is defined for the empty word and(Xo, Ro) = v;(A),
o If o(w, X, R) = (a,X’) for (X, R) € V;(A), then

- (X, X" R) € V1(A),
— thereis an edge id'(.A) from (X, R) to (X, X', R), and

— ifthereis anedgeif(A) from (X, X', R)to (X', R') € V,(A) theno(w-a, X', R')
is defined.

We say a search = (X, Ry)(Xy, Ry)--- is consistentwith o if there exists a wordv =
ajay - -+ € ¥*U XY suchthatforall > 0, X;11 = o(a;---a;, X;, R;). We callw thehistory
consistentwith .

Remark.In the sequel we will usually define history-dependent sgigts inductively, often
omitting the associated history when it is clear from thetegtwhat the play to a given position
should be.

Nevertheless, we show in Section 5.3 that the resource leolstdategies we are primarily
concerned with are equivalent to winning strategies in alyseearching game. For this reason,
we reserve the definition strategiedor positional strategies.

Definition 5.4 (Strategy) Let G be a graph, ands; a graph searching game ¢hdefined
by (Ls,Ls, A). A strategy for the searcheiis a partial functiong : £, x Ly — L, such
that if (X, R) is defined there is an edge (.A) from (X, R) to (X,0(X,R),R). If 7 =

(Xo, Ro)(X1, Ry) - - - is a search iz, we sayr is consistenwith o if for all ¢ > 0, X, =

o(X;, R;). We sayo is winning (for the searchersj every search fromv;(.4) consistent with
o is winning for the searchers.

A strategy for the fugitivés a partial functiorp : £, x £, x Ly such that if(X, X', R) €
Vi(A), thereisan edge iB(A) from (X, X', R)to (X', p(X, X", R)). If m = (X, Ro)(X1, Ry) - - -
is a search IG5, we sayr is consistentwith p if for all i > 0, R, = o(X;, X1, R;). We
sayp is winning (for the fugitive)f every search fromv;(.A) consistent withp is winning for
the fugitive.

Given a strategy for the searchers and a strategyor the fugitive, the unique maximal
search consistent witth andp is thesearch defined by andp

We now use strategies to define a structure that will provutisethe next few chapters.
Given a strategy for the searchers in a graph searching g@gedefined by(L,, £, A), we
see that induces a subgraph of in the following way. Letl” C V' (.A) be the set of positions
and intermediate positions reached by some play fop(rl) consistent withr. Considering
for the moment positional strategies, it follows that froaclke position(X, R) € V there is
precisely one success@k, X', R) € V, namely the element df; (A) with X’ = o(X, R).
The structure we are interested in is a slight variation ©f sibgraph where, just as with our
policy for describing searches, the intermediate possteme ignored.
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Definition 5.5 (Strategy digraph)LetG be a graph an@, a graph searching game Grdefined
by (L, Ly, A). Leto be a strategy for the searchers. Btetegy digraph defined by, D, is
the directed graph defined as:

e V(D,) is the set of all pair§ X, R), including “positions” of the form X, (}), such that
there is some search @, (Xo, R)(X1, R1) - - -, fromov;(A) = (Xy, Ro) and consistent
with o, with (X, R) = (X}, R;) for some;.

e There is an edge froriX, R) to (X', R') in E(D,) if X’ = (X, R) and either there is
an edge from( X, X', R) to (X', R') in E(A), or there are no edges froX, X’, R) in
E(A)andR' = 0.

Remark.Sometimes it may be convenient to assume that nodes of timg fot, () of a strategy
digraph are duplicated so that each such position actuathgsponds to a verteéXX', X', R) in
Vi(A). When this is the case, we see that every leaf of the fofnf)) has a unique predecessor:
if (X’,0) is associated withX, X', R) then(X, R) is the unique predecessor @X’, ). We
observe that after these duplications, we still ha¥€D, )| < [V (A)|.

An observation that will prove useful concerns the form ttnategy digraph takes for win-
ning strategies.

Lemma 5.6. LetG be a graph andsj, a graph searching game andefined by(L,, £, A). If
o IS a winning strategy for the searchers thBy is a directed acyclic graph and all leaves of
D, are of the form X, 0).

Proof. We observe that from the definition, there is a path frahd) = (Xo, Ro) to every
node(X,R) € V(D,). We also observe that every pathy, Ry)(Xi, Ry)--- in D, from
vr(A) corresponds to a search@, consistent withr, and if (X, R) is a leaf then there is no
search consistent with extending any consistent search which end§atR). Sinceo is a
winning strategy for the searchers, all searches consisiine can be extended to a complete
search. Thus, ifX, R) is a leaf, it follows that all searches frofiX,, R,) which end a{ X, R)
must be complete, sB = (). To show acyclicity, it suffices to show thatlif, is not acyclic, then
o is not a winning strategy for the searchers. Supg®dseS; ) - - - (Y., S,,) is a cycle inD,.. By
our earlier observationy = (Y1, 51) -+ - (Y, Sm) (Y1, S1) is a search frongY;, S;) consistent
with o. Now from the definition oft’ (D, ), there exists a searet = (X, Ro) - - - (X, Rk),
where(Xy, Ry) = (Y1, 51) consistent withr from (X, Ry) = v;(A). Therefore, the infinite
search

m e =(Xo, Ro) - (Y1, 51) -+ (Yim, Sin), (Y1, 51) « -

is a search from;(.A) consistent witho. As this cannot possibly be extended to a finite
search and the fugitive wins all infinite plays, it followsatly is not a winning strategy for
the searchers. O

Definition 5.7 (Strategy DAG) Let G be a graph andf, a graph searching game gn If o is
a winning strategy for the searchers then we Eglithe strategy DAGdefined byo.

One important property of plays, searches and strategasate are interested in is the
concept of monotonicity. In particular, we concentratewa types of monotonicity: fugitive-
monotonicity, where the set of potential fugitive locasas always non-increasing, and searcher-
monotonicity, where no location vacated by a searcher isreveccupied.



5.1. DEFINITIONS 73

Definition 5.8 (Fugitive and Searcher MonotonicityetG be a graph and let = (X, Ro) (X1, Ry) - - -

be a search in a graph searching game¢ owe sayr is
¢ fugitive-monoton& R; O R, foralli > 0, and
e searcher-monotoné X; N X; C X, for0 <:¢<j <k.

A strategyo, for the searchers in a graph searching gamég @fugitive-monotonésearcher-
monotongif every search consistent withis fugitive-monotone (searcher-monotone).

Our next result concerning strategies in the general grapihching game is a useful ob-
servation regarding monotone strategies. We show thagrusmime simple assumptions, a
searcher-monotone winning strategy must also be fugitieeotone. Let us say that a graph
searching gampermits idlingif the fugitive is able to remain at any location which is nboat
to be occupied by a searcher. Furthermore, let us say thaph grearching game isacat-
ing sensitivaf, whenever some location becomes available to the fugitivere must be some
location, previously occupied by a searcher, that the iitegitan now occupy. More precisely,

Definition 5.9 (Permits idling) Let G be a graph an@y, a graph searching game grdefined
by (L, Ly, A). We sayGy, permits idlingif for all (X, X", R) € Vi(A) and allr € R\ X',
there existsk’ C EIts(G) such that- € R’ and there is an edge if(A) from (X, X', R) to
(X", R).

Definition 5.10 (Vacating sensitive)Let G be a graph andj a graph searching game ¢nh
defined by(Z,, Ly, A). We say thafGy, is vacating sensitivéf, whenever there is an edge in
E(A) from (X, X', R) to (X', R') with R’ € R, thenX N R’ # 0.

Lemma 5.11.LetG be a graph andsy; a graph searching game @nwhich permits idling and
is vacating sensitive. If is a searcher-monotone winning strategy for the searcher&pn
theno is fugitive-monotone.

Proof. Supposer = (Xy, Ry)(X1, Ry1) - - - is a search consistent withwhich is not fugitive-
monotone. Let be the least index such that;, 2 R;,;. SinceGg is vacating sensitive,
there exists € X; N R,;,. But then, asG; permits idling, the fugitive can always choose a
response which includesuntil it is occupied by a searcher. That is, there is a seafch
(X§, Ry) (X1, Ry) - -+, consistent withs, which agrees withr up to (X1, R;+1) and either
there is somé such that- € R/ for all j withi +1 < j < kandr € Xy, orr € R; for all

j =i+ 1. In the first case, we havec X/ N X; butasr € R;, ,, we also have ¢ X/,
contradicting the fact that is searcher-monotone. In the second case, sitjcg  for all j,

it follows that=’ is an infinite search, contradicting the fact that a winning strategy for the
searchers. O

Remark.Earlier, we asserted that variations of graph searchingegare obtained by imposing
restrictions on the arena. In this way, we see that questeasng to fugitive-monotone strate-
gies can be viewed as questions in a restricted version gitime: the game defined in the same
way with the restriction that we do not allow the searcheraéie any move which enables the
fugitive to make a non-monotone move (a move for which th@gpbtential fugitive locations

is not non-increasing). That is, A is the arena of a graph searching game Aebe the arena
obtained by removing edges frofX, R) to (X, X', R) if there is an edge fromi.X, X', R) to
(X', R") whereR' Z R. Now a strategy for the searchers dhis a fugitive-monotone strategy
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for the searchers ad. On the other hand, searcher-monotonicity is a more dynesstcction

— the moves available to the searchers are dependent onayé¢opthat point. Lemma 5.11
illustrates how, in some cases, the strategy restrictimposed by searcher-monotonicity can
also be interpreted as restrictions on the game.

5.1.2 Simulations

In Definition 2.20, we saw the idea ofgame simulation We now introduce a refinement of
this suitable for graph searching games.

Definition 5.12 (Searching simulation)Let G be a graph searching game Grdefined by
(Ls, Ly, A), anngﬁ be a graph searching game ghdefined by(L;, £, A'). A searching
simulationfrom G{, to G, is a pair of relation§R,, R ;) such that:

e ReC L, x L, Ry C Ly x L, and
e The relationS onV(A) x V(A’) defined by

— (X,R)S (Y,R)if (X,Y) € R,and(R, R') € Ry, and
— (X, X",R)S (Y,Y'.R)if (X,Y),(X',Y") € R, and(R, R') € Ry,

is a game simulation from to A’.

As a searching simulation is a restricted game simulatiod sgarches correspond to plays
in the arena, the next result follows immediately from Lenfvizl.

Lemma 5.13. Let G be a graph searching game ghdefined by(L,, £y, A), anngﬁ be a
graph searching game o@' defined by(L{, £, A'). Let(R;, R;) be a searching simulation
from G§ to GL, with (0, 0) € R;. For all searcher strategies on G}, and all fugitive strategies
P on Ggﬁ, there exists a searcher strategy on GL, and a fugitive strategy on Gy such
that if 7, ) = (X1, R1)(Xo, Ry)--- is the search irtGg defined byr and p, and 7,/ ) =
(X1, R)) (X}, RY) - -+ is the search inGy, defined bys’ and o/, then|n(, )| = |7(,,)|, and
(Xi, X)) € Ryand(R;, R)) € Ry forall ¢ < |7,

As with game simulations, we observe that the definition efgtrategy’ is independent
of the choice ofp. This gives us the following analogue to Corollary 2.22:

Corollary 5.14. LetGg be a graph searching game ¢h anngﬁ be a graph searching game
ong'. Let(R,, R;) be a searching simulation fro®, to G5, with (0,0) € Ry, and leto
be a strategy for the searchers @,. Then there exists a strategy for the searchers on
G, such that for every searchX|, R})(X}, R})--- consistent withy’ there exists a search
(X1, R1)(Xs, Ry) - - - consistent witly with (X;, X!) € Ry and(R;, R,) € Ry forall i > 1.

As with game simulations, we call the strategies which we aarve from a simulation
simulated strategies

Definition 5.15 (Simulated search strategy)he strategy’ in Corollary 5.14 is called atrat-
egy(Rs, Ry)-simulated by.

This enables us to state the following consequence of Coydla7.



5.1. DEFINITIONS 75

Lemma 5.16. LetG}, be a graph searching game ¢handG, a graph searching game .
Let(R,, Ry) be a searching simulation frofif; to Ggﬁ, and leto be a strategy for the searchers
onGy. If o' is a strategy( R,, Ry)-simulated byr on G, then:

1. If o is a winning strategy, thes’ is a winning strategy, and
2. If (X, X') € Ryand (R, R') € Ry, then(o(X, R),d'(X', R)) € R,.

With some straightforward assumptions about the relatidrish comprise a searching sim-
ulation, we can show that strategies simulated by monottvategies are also monotone. First
we recall two definitions regarding relations of sets.

Definition 5.17 (Monotone and)-compatible relation)Let X andY be sets, and leR C
P(X) x P(Y) be arelation between subsetsXfand subsets of . We sayR is monotonef
forall (A, A"), (B, B’) € Rwith A C B, we haved’ C B’. We sayR is N-compatiblef for all
(A,A"),(B,B")e R,(AnB,A'NnB') € R.

Lemma 5.18. LetG}, be a graph searching game ¢handG}, a graph searching game .
Let(R,, Ry) be a searching simulation frofif, to Ggﬁ, and leto is a strategy for the searchers
onGy. If o’ is a strategy( R,, Ry)-simulated byr on G, then:

1. If Ry is monotone and is fugitive-monotone, thes is fugitive-monotone, and

2. If R, is monotone and-compatible andr is searcher-monotone, ther is searcher-
monotone.

Proof. Let 7' = (X], R))(X}, R,)--- be a search consistent with. By the definition of
simulated strategies, there exists a sedfch R,) - - - consistent withr such that X, X/) €
R,and(R;, R) € Ry foralli > 1.

1. If o is fugitive-monotone, the®; O R, forall i > 1, so if R; is monotone, it follows
that R; © R;,, foralli > 1. Thusn' is fugitive monotone, and as was arbitrary, it follows
thato’ is fugitive-monotone.

2. If o is searcher-monotone, then for alK j < k, we haveX; N X, C X;. If R,isN-
compatible, ther X; N X, X; N X}) € R, and so ifR; is also monotone, thel; N X; C X7,
Thus~' is searcher-monotone, andzsvas arbitrary, it follows that’ is searcher-monotone.

O

We now introduce some concepts that will prove useful lateemwe establish robustness
results for graph searching games.

Definition 5.19 (Quasi-simulation family) A quasi-simulation familys a partial functiort?
which assigns to a pair of grap@, ') a pair of relationg 12, i) with R;, R, C P(Elts(G)) x
P(Elts(G")).

Often it is easier to define a quasi-simulation family as a pipartial functiongR,, %),
each of which takes a pair of grapftg, G’) to a relation frontP(Elts(G)) to P(Elts(G'))

Definition 5.20 (R-closure) Let R be a quasi-simulation family, adda graph searching type.
We sayl' is R-closedif for any pair of graphgj andg’ with R(G,G') = (R;, R}), T'(G) =
(L, Ly, A) andT(G') = (L, L}, A); (Rs, Ry) is a searching simulation frorfig, to Gg,
whereR, = R, N (L, x L) and Ry = R N (L} x Ly).
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To help gain an intuition, we provide an examplef®fclosure. Consider the following
property of graph searching game types.

Definition 5.21 (Respects restriction)etI' be a graph searching game type. WeKSagspects
restrictionif for any graphsj andg’ such thatj is a subgraph of’, if I'(G) = (L, L, A) and
(G = (£, L}, A'), then

o If Ry istheC-maximal elementof s, and iz, is theC-maximal element of’,, then
Ruax = R, .. NEItS(G).

max

e If there is an edge front.X, R) to (X, X', R) in E(A’) andv = (X N Elts(G), R N
Elts(G)) € V(A), then there is an edge fronto (X NElts(G), X' NEIts(G), RNEIts(G))
in £(A), and

e If there is an edge fronfY,Y”,S) to (Y’,5’) in E(A) then for all X, X, R such that
(X, X" R) e i(A"),Y = X NEIts(G), Y = X' NEIts(G), andS = RN Elts(G), there
existsR’ such thatS’ = R’ N Elts(G) and there is an edge frofX, X', R) to (X', R') in
E(A).

Intuitively, if a graph searching game type respects resin, then ifG is a subgraph of/’,
a strategy for the searchersd@his also a strategy i¢ when we disregard the elements@f
which are not part of. In other words, a restriction of a search strategy is a besirategy of a
restriction. In Section 5.4 we introduce the dual notiostnietion reflection, in which a search
strategy of a graph can be viewed as a search strategy in @&y graph. We now show that
this property corresponds to &-closure for a quasi-simulation famifit of relations similar
to the superset relation.

Definition 5.22 (). For each pair of graph&/’, G), with G a subgraph of’, we defineag'g
P(Elts(G")) x P(Elts(G)) as follows. ForA C Elts(G’) and B C Elts(G) we sayA Dg' B if
B = ANEIts(G). Let > denote the function which assigns to each pair of graghgy), with
G a subgraph o', the pair of relationg>J , 7).

Lemma 5.23. LetI" be a graph searching game type. THérespects restriction if, and only if,
I'is ©-closed.

Proof. Let G and G’ be graphs. We observe that if neithgris a subgraph off’ nor G’ is

a subgraph ofj then nothing can be said about whethierespects restriction or whether
I' is ®-closed. Thus we assume without loss of generality ¢had a subgraph off’. Let
[(G) = (Ls, Ly, A) andT'(G) = (L}, L, A’). For convenience we will drop the subscript and
superscript and use to denote the relatiomg'.

First let us assumeé respects restriction. From the definition ®f we have EIt&G’) >
Elts(G), thus we must show thdt, ©) is a searching simulation frorty, to G§. In the
definition of R-closure, we assume is restricted to be a relation on the appropriate sets, so
it suffices to show that the relation defined by pointwise @ggibn of © is a game simulation
from A’ to A. For convenience we will also denote the pointwise relabiprn. Clearly, since
0 N Elts(G) = 0, we have) > (. Furthermore, ifR,,. is the C-maximal element of; and
R},ax Is theC-maximal element of’;, then ad” respects restriction? .. = Ry, N Elts(G).

max max

ThusR! .. D Ruax, and(D, R, . ) D (0, Ruax)- Thus(D, D) satisfies (SIM-1). Now suppose

max max

there is an edge froriX, R) to (X, X', R) in A" and (X, R) ® (Y,S). From the definition
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of ©, Y = X NEIts(G) andS = RN Elts(G), so by the definition of respecting restriction,
there is an edge frortl, S) to (Y, X’ N Elts(G), S) in A. Since clearlyX’ > (X’ N EIts(G)),

it follows that (SIM-2) is satisfied. Finally suppose thesean edge ind from (Y,Y’, S) to
(Y, S and(Y,Y’,S) ® (X, X’, R). From the definition of>, we haveY = X N Elts(G),
Y’ = X'"NEs(G) andS = RN Elts(G). Thus, ad" respects restriction, there exists € L,
such thatS” = R’ N Elts(G) and there is an edge id from (X, X', R) to (X', R'). Since
X'>Y andR > ¢, it follows that( X', R') ® (Y, 5"), thus (SIM-3) is satisfied. Therefore,
(2, ) is a searching simulation frofl;, to Gg. SinceG andg’ were arbitrary, it follows that
I'is ©-closed.

Now supposd’ is D-closed. Since the relation defined by pointwise applicatib> is a
game simulation from4’ to A, v;(A) = (0, Ryax), andv(A) = (0, R,,,.), it follows from
(SIM-1) thatd > ) and R, . D Ruax. From the definition of, it follows that Ry, = R, N
Elts(G). Now suppose there is an edge fréii, R) to (X, X', R) in A, and(Y,S) € V(A)
whereY = X NEIlts(G) andS = RN Elts(G). From the definition of, it follows thatX > Y
andR o S, thus ag>, O) is a game simulation, it follows from (SIM-2) that there ¢gis such
that there is an edge frofiy, S) to v’ andv’ is related tq X, X', R) by the pointwise application
of ©. By the definition of graph searching games~= (Y,Y”,S) for someY’ € L, and by
the definition of searching simulatiok’ > Y’. ThusY’ = X’ N Elts(G). Finally suppose
there is an edge fronlY,Y”,S) to (Y’,S’) and X, X', R are such that” = X N Elts(g),
Y’ = X'NnElts(G) andS = R N Elts(G). From the definition of>, X > Y, X’ » Y’ and
R © S. Thus, from (SIM-3), there existse V;(A’) such that there is an edge frqi¥, X', R)
to v andv is related to(Y’, S"). From the definition of graph searching gamess (X', R')
for someR’, and by the definition of searching simulatid®l, © S’. ThusS’ = R’ N EIts(G).
Therefore, all conditions necessary for respecting i&girn are satisfied. Singg andg’ were
arbitrary, it follows thatl” respects restriction. O

5.2 Examples

We now look at some examples of graph searching game typehwlbcur in the literature.
Many of these examples were introduced to provide an intuitnderstanding of some of the
graph parameters we discussed in the previous chapter. WVe lsbw each of these games
can be described using the framework we have introducergliignotivating the use of graph
searching games to formally define measures of graph coitplex

5.2.1 Cops and visible robber

The cops and visible robber gameas introduced in [ST93] to provide a characterization of
tree-width. We can define it as a graph searching game playechaindirected grapé, as
follows.

Definition 5.24 (Cops and visible robber gamd)et G be an undirected graph. Tleeps and
visible robber game o is a graph searching game ¢hdefined by the triplgL,, £, A)
where:

o L, =P(V(G)),L; ={RCV(G): Risnon-empty and connectpd {V'(G)},
e (X,R) € Vu(A)if Ris aconnected component@f\ X,
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e (X, X' R)eVi(A)if (X,R) € Vo(A) andX’ € L,,
e (X,R),(X,X'" R)) € E(A)forall (X,R) € Vy(A),

e (X,X" R),(X',R)) € E(A) if RU R is contained in a connected component of
G\ (XnX).

Intuitively, the cops (searchers) and robber (fugitivedugquy vertices of the graph. There is
no constraint on the cops, they can be removed and placedyaetaof vertices. The robber is
constrained to move along paths of any length in the gramgviged he does not pass through
a stationary cop. The robber’s location in the graph is kntevthe cops, but because he is
able to move infinitely fast, we view his set of potential lboas as a connected component
of the subgraph obtained by removing vertices occupied Ipg.c& move consists of some
cops being removed from the graph, and announcing vertisare about to be occupied.
The robber is then able to move to any vertex he can reach,hemdcops are placed on the
announced vertices. If the robber is located on a vertexiwhas become occupied, then he is
captured and the cops win. If he can avoid capture foreven ltie wins.

We observe that the cops and visible robber game permitsgidigiven an intermediate
position (X, X', R) andr € R\ X', let R’ be the connected component @\ X’ which
contains-. ThenR U R’ is contained in a connected component as they are connexttedish
a non-empty intersection. Thus there is an edge ff@mX’, R) to (X', R’). Furthermore, the
game is vacating sensitive: if it is possible to move frokh X', R) to (X', R') whereR' Z R
then there exists € R’ \ R such thatr is adjacent to some vertex iR. Now R U {r} is
connected, so if ¢ X, thenR is not a connected component®f\ X. Hencer € X, so
X N R’ # (. Thus we can apply Lemma 5.11 to obtain:

Lemma 5.25. A cop-monotone winning strategy in the cops and visible roghme is robber-
monotone.

There are some interesting variants of the cops and visiblear game obtained by restrict-
ing the movements of the cops. For example, cops are eithewved or placed s@X, X', R)
is an intermediate position only if eithéd’ C X, or X C X’; at most one cop is moved, so
(X, X', R) is an intermediate position only jX’ A X| < 1; or at most one cop is placed, so
(X, X', R) is an intermediate position only jX’ \ X| < 1. Another variation is the follow-
ing parameterized class of games, in which we bound the nuaiflb®ps trying to capture the
robber:

Definition 5.26 (k-cops and visible robber gamd)et G be an undirected graph. Tlecops
and visible robber game o6 is defined as the cops and visible robber game, exCept
[V(G)=".

In Section 5.3 we show that strategies in these games areagenti to resource-bounded
strategies in the unrestricted game, where the resourceeneacerned with is the maximum
number of cops occupying the graph at any stage. While thisseam obvious, the observation
Is quite useful when we consider the complexity of the probdé determining the existence of
resource-bounded winning strategies.

We also show in Section 5.3 how this game, particularly #ssVariant, is closely connected
to tree-width. So it would seem that extending this game ttectied graphs would be a useful
way to generalize tree-width to directed graphs. Therewocedbvious ways to extend this
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game: we could extend the informal description, constngitihe robber to move along directed
paths of any length; or we could extend the formal descripti@aving position$.X, R) where

R is a strongly connected componentdf X, and a transition fronlX, R) to (X', R') if RUR'

is contained in a strongly connected componen §f(X N X’). The game corresponding to
the latter extension seems less intuitive: it correspoadsdtricting the robber to being able to
move along directed paths to any vertex from which he hasezidid cop-free path back to his
starting vertex. This game, which we call thiigongly connected visible robber gayme more
simply thestrong visible robber gameavas considered in [JRSTO01], and later in this chapter
we discuss its relationship with directed tree-width. Weestigate the other, arguably more
natural, generalization in Chapter 6.

5.2.2 Cops and invisible robber

The cops and invisible robber gamalso known as thaode searching gamer vertex decon-
taminationhas been well-studied in the context of graph theory [KP8&®B&aP93]. In our
framework, the definition is as follows.

Definition 5.27 (Cops and invisible robber gamed)et G be an undirected graph. Tleps and
invisible robber game og is a graph searching game gndefined by the tripldL,, L, A)
where:

o Li=PV(9)), Ly =P(V(9) \ {0},

e (X, R) € Vi(A) if Ris aunion of non-empty connected component§ §fX,
e (X,X',R) € Vi(A)if (X,R) € Vo(A) andX’ € L,,

e (X,R),(X,X'"|R)) € E(A)forall (X,R) € Vy(A),

e ((X,X',R),(X',R)) € E(A) if R' = Reachy xnx»(R) \ X,

The game is played on an undirected grapim the same way as the cops and visible
robber: the cops are free to move anywhergjoand the robber can run at great speed along
cop-free paths in the graph. In this game however, the locaif the robber is not known to
the cops — they are only aware of the vertices the robber ¢dreat: either because those
vertices are currently occupied by cops, or there is no pdgithat the robber could not have
reached those vertices from when they were vacated by cogsositions in this game are pairs
(X, R) whereX, R C V(G) and R is a union of connected component3pf X, and a search
in this game ending atX, R) can be extended to a search ending’at, R') if, and only if,

R' = Reach xnx(R). We observe that sinck’ is uniquely determined fronX, X’ andR,
the robber has no choice from the intermediate posit®nX’, R), so this game is effectively
a single player game.

In the literature, this game is often viewed as the problemnyirfig to clean a contaminated
graph. Vertices where the robber could be are “contamifiatedices where the robber cannot
be are “cleared”, and occupation of a vertex by a cop “cletat vertex.
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5.2.3 Cave searching

The next game we consider is an example of a searching gannatedtby a real-life problem.
In [Bre67], in a publication for the spelunking community, Bieh considered the problem of
finding a lost person in a cave system. In response to a qugsteed by some cavers about
whether existing search techniques could be improvedpRai#ar78] reformulated the prob-
lem as a graph-theoretical problem and investigated gamasrk asgraph sweeping games
These can be defined as graph searching games as follows.

Definition 5.28 (Graph sweeping gamelet G be an undirected graph. Tlyeaph sweeping
game org is the graph searching game Gruefined by the tripl¢ Z,, £, A), where:

e X € L if,and only if, X = V U E, whereV C V(G), E C E(G), |[E| <1, and if
E ={e}thenenV # 0,

o L;=P(Elts(G))\ {0},
e (X,R) € Vy(A)if,and only if, X N R = 0,

o (X, X' R)eVi(A)if,andonlyif, X =V UE, X'=V'UE withV, V' C V(G)and
E,E' C E(G), and eithett’ = P andV’ \ V = 0, orif E/ = {{u,v}} withv € V' then
ueV.

e If (X,R) € Vo(A) and(X, X', R) € V1(A) then((X, R), (X, X', R)) € E(A), and

e There is an edge froriX, X', R) to (X', R') if, and only if, R’ consists of all elements
z € Elts(G) \ X’ such that ifC' is the connected component@f\ (X' N (X U E(G)))
which containse, thenC N R # 0.

In this game, the graph represents the cave system, withsed@geesenting traversable
paths. The fugitive, or lost caver, is located somewherdéndave system — represented in
this game by having sets of elementgjofior the locations of the fugitive. The searchers move
through the graph by moving from one vertex to an adjaceriexexlong an edge connecting
them.

5.2.4 Detectives and robber

The next game was introduced by Berwanger angéidél [BG04] to define a measure of com-
plexity for directed graphs known antanglementWe can present their definition in terms of
graph searching games as follows.

Definition 5.29 (Detectives and robber gamd)et G be a directed graph. Thaetectives and
robber game o1y is a graph searching game defined by the triglg £, A) where:

o Li=PV(G)),L;y={{r}:r e V(G)}U{V(G)},

o Vo(A) ={0,V(9))t u{(X,{r}) :r & X},

o Vi(A) ={(0,0,V(9)} U{(X, X' {r}) : (X, {r}) € Vo(A) andX’ C X U {r}},
o If (X,R) € Vo(A) and(X, X', R) € Vi(A) then((X, R), (X, X', R)) € E(A),
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e There is an edge frorfd, 0, V(G)) to (0, {r}) for all r € V(G),

e Forall(r,7") € E(G) and(X, X', {r}) € Vi(A) with " ¢ X', there is an edge i#'(.A)
from (X, X’ {r}) to (X’,»’), and

e There are no other edgesfi{ A).

In this game, the detectives and robber occupy verticeigtaph. The robber has to move
to a successor of his current location and the detectivesmignmove to the last position of the
robber or remain where they are.

5.2.5 Cops and inert robber

As with the cops and visible robber game defined in Definiti@45the final game we consider
is also a game played on an undirected graph closely relat&cbé-width. Introduced by

Dendris, Kirousis and Thilikos [DKT97], theops and inert robber ganmmsan also be viewed as
a graph searching game in the following manner.

Definition 5.30 (Cops and inert robber)let G be an undirected graph. Th®ps and inert
robber game o1y is the graph searching game Grdefined by the tripl¢ L, £, A), where:

o L, =P(V(9)), Ly =P(V(9) \ {0},

e (X, R) € Vy(A) if Ris a union of non-empty connected component§ §fX,
o (X,X',R) € Vi(A)if (X,R) € Vp(A) andX’ € L,,

e (X,R),(X,X'" R)) € E(A)forall (X,R) € Vy(A),

e ((X,X",R),(X",R)) € E(A)if R =(RUReacly xnx)(RNX"))\ X"

As with the cops and invisible robber game defined in Definisd7, in this game the cops
and robber occupy vertices of the graph, the cops are fre@we mnywhere in the graph, and
the robber may run at great speed along paths in the graphhéfonore, the location of the
robber is unknown to the cops. However we impose the resinithat he is only able to move
from his position if it is about to be occupied by a cop. Thupagition (X, R), X represents
the location of the cops anfl represents the set of potential locations. Now if the copgemo
to X', then the resulting potential locations for the robber @in his current set of locations
together with any vertex for which there is a path from a vertex N X’ to v, excluding any
vertex now occupied by a cop. Thi, the new set of potential locations, can be defined as:

R =<R U Reaci@\(xmx/)(R N X’)) \ X'

In the next section we see that this game is also closely abedi¢o tree-width, suggesting
that the generalization of this game to directed graphs avbel a practical way to develop
complexity measures which extend tree-width. In Chapter tavesider such a generalization.
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5.2.6 Cops and robber games

Examples 5.2.1, 5.2.2, and 5.2.5 highlight one of the mopbmtant and simple variants of the
graph searching game, the cops and robber game. In this deme®ps (searchers) and the
robber (fugitive) only occupy vertices of graph, with théber being able to start at any vertex
of the graph.

Definition 5.31 (Cops and robber gamel.et G be a graph anéy, be a graph searching game

on g defined by a triplé L., £,, A). We sayGyg is acops and robber gamié £, C P(V(G)),

L, C P(V(G)) andV(G) € L,. We call the searchers of a cops and robber gamedpes

and the fugitive is called thebber. Likewise, searcher-monotone searches and strategies are
cop-monotonand fugitive-monotone searches and strategiesaieer-monotone A graph
searching game typE is acops and robber game typefor all graphsg, Gy is a cops and
robber game.

One advantage of the restriction of the searchers andvyaddaivertices of the graph is that
the resulting games are less dependent on the edges of fhte draparticular, it is often the
case that the presence of multiple edges or loops does mat #fie game — the arena is the
same as the arena for the graph searching game on the grdphlWdops removed and all
multiple edges replaced with a single edge. In the sequebkanae all cops and robber games
are played on simple graphs, unless otherwise stated.

5.3 Complexity measures

Unlike the games we considered in Chapter 2, we are not sabelgecned with which player
wins a graph searching game. In most of the examples abase;léar that the searchers can
always find the fugitive by (eventually) occupying all of theph, so as it stands the question
is not interesting — the searchers always have a winningegiyaOne exception to this is the
parameterized class of games, theops and visible robber games defined in Definition 5.24.
This suggests that it may be more fruitful to consider resedounded strategies. For instance,
for a cops and robber game, we can ask “Given N, can the cops capture the robber while at
any time occupying at mogtvertices?”. Consistent with viewing the cops as physicatiest
this can be viewed as asking if there is a winning strategy fwrps, defined more precisely as:

Definition 5.32 (Winning strategy foi: cops) Let G be a cops and robber gamea strategy
for the cops, and € N. We say that is awinning strategy fok copsif ¢ is a winning strategy,
and for any searchXy, Ry) (X1, Ry) - - - consistent withr, | X;| < k for all .

From this we can derive a complexity measure, in this pdeiatase, the minimum number
of cops required to capture the robber. In the following ¢Bepthis is the measure we are
interested in, but for the remainder of this chapter we a@rsh more general framework which
encompasses many other important graph parameters. Bowehintroduce the concept of a
resource measurthat can be used to restrict plays and, by associationggtest in a graph
searching game. First, we introduce two partial orders erclaiss of sequences of sets.

Definition 5.33. Letm = X; X, --- andn’ = Y1Y5 --- be two (possibly infinite) sequences of
sets. We writer’ < 7 if 7’ is a subsequence of That is, there exists an increasing sequence of
indicesn; < ny < --- < |r| such that; = X, for all i < |7’|. We writen’ C = if |7/| < |n|

and for alli < |7'],Y; C X,.
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Definition 5.34(Resource measurel resource measuiis a functiony which maps sequences
of finite sets to elements of U {w}, with p(7) = w only if 7 is infinite. We sayy is order-
preserving (order-reversingj for all =, 7" € dom(y), 7’ < 7© = (') < (7) (7' < 7 =
o(m") > p(m)). We sayyp is monotone (anti-monotoné)for all =, 7' € dom(p), 7’ C 7 =
p(') < p(m) (7' S ™= (') = ¢(T)).

The resource measure which motivated the above discussamexample of a monotone,
order-preserving resource measure:

Definition 5.35 (pmax). The resource measueg, ., is defined as follows. Ifr = X X5 --- is
a sequence of finite sets, then

@max(ﬂ) - rgalx{ |Xl‘}

A resource measure defines a measure on a search= (X, Ry)(X1, Ry)--- in the
following way: letm; = X, X; --- be the sequence of first components of elements, @ind
definep(w) := ¢(m). We only consider the sequence of searcher locations becveeigre
primarily interested in the resource usage of the searcligialows that requiring a resource
measure to be bounded imposes a restriction on the seaattespnsequently, the strategies
available in a graph searching game. So asking if the se@rtlage a winning strategy is no
longer a trivial problem. Indeed, it would seem that intéresmetrics for graphs could be
derived from the “optimal” bounds of resource measures foictv the searchers still have a
winning strategy. This leads to the following definition ofvary general measure of graph
complexity defined by graph searching games.

Definition 5.36 (Graph searching width)Let I" be a graph searching game type, an@n
order-preserving (order-reversing) resource measureg be a graph. Thel', ¢)-width of G,
w(r,,)(G), is the minimum (maximum}) such that inG{ there exists a winning strategy for
the searcherss, so that for any search;,, consistent withr, we havep(r) < k (p(7) > k).
Likewise, if we restrict to fugitive-monotone or searcimeonotone winning strategies &%,
we obtain thdugitive-monotoner searcher-monotoné’, p)-width of G.

Remark.As we are interested in minimizing (maximizing) an ordeeg@rving (order-reversing)
measure, it suffices to consider searches that are simpis jathe arena — any loops are only
going to increase (decrease) the resource requirementseQaently, we only need to consider
strategies that require finite memory to determine if thecteas have a resource bounded win-
ning strategy. Thus, the requirement that the resource une#s order-preserving (or order-
reversing) ensures that the restriction of searches aatdiy bounding the resource measure
does not affect the decidability of determining if the séars have a winning strategy. In par-
ticular, the requirement maintains our maxim that straegvith finite memory are sufficient,
especially for the resource bounded game.

Many practical measures of graph complexity can be defingdjubis framework, as we
see with the following examples.

5.3.1 Example: Cops and visible robber

We recall the cops and visible robber game defined in Exam@d. 5 In [ST93] when this
game was first considered, Seymour and Thomas showed tfwatld be used to characterize
tree-width by observing that the number of cops requiredfiure the robber was equal to one
more than the tree-width of the graph being searched. M@e&g®ly, they proved:
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Theorem 5.37([ST93]). LetG be an undirected graph. The following are equivalent:

1. G has tree-width< k£ — 1.

2. k cops have a cop-monotone winning strategy in the cops arfule/isibber game.

3. k cops have a robber-monotone winning strategy in the cops @iftlesrobber game.

4. k cops have a winning strategy in the cops and visible robberegam
Recalling the definition of,,., in Definition 5.35, we can rephrase this theorem as:

Corollary 5.38. LetI" be the cops and visible robber game type defined in Definitia, and
let G be an undirected graph. Then

Tree-widthG) = wr .. (G).

We remarked in Example 5.2.1 that there were several var@rthe cops and visible rob-
ber depending on various restrictions placed on the movepfethe cops. It is easy to see
informally that the number of cops required to catch the ssbb each of these games is the
same. We now provide a formal proof of this often glossed-paint.

Proposition 5.39. Let 'y be the cops and visible robber game type defined in Definitidd.5
LetI'; be the cops and visible robber game type where cops are eitheeg or removed. Let
I'; be the cops and visible robber game type where at most one qupdsd, and lef's be
the cops and visible robber game type where at most one copvedvad a time. Leg be an
undirected graph. Then the following are equivalent:

(i) % cops have a winning strategy @lgo.
(i) % cops have a winning strategy (mgl.
(i) k cops have a winning strategy @152.
(iv) k cops have a winning strategy @153.

Proof. From the definitions provided in Example 5.2.1, it followsigathat a strategy for the
searchers ilﬁ}g‘"’ is a strategy irGg2 and also a strategy i@gl; a strategy for the searchers in
Gg is a strategy irG;’; and a strategy ;! is also a strategy ifs;°. Thus (iv)=(iii) = (i)
and (iv)=(ii) =(i). We now show that (i(iv).

Supposek cops have a winning strategyin Ggo. LetI'((G) = (L., L, A), andl'5(G) =
(L., L, A"). Note that by the definition ofs, £, = L., £ = L,, Vi(A) = Vu(A') and
Vi(A) D Vi(A’). We show how to define a strategy for k& cops such that for allX, R) €
Vo(A"), |0/(X,R) A X| < 1. The idea is that we replace each movesofvhich involves
moving more than one cop with a sequence of moves: removiegop at a time fronk’ until
cops remain orX N o(X, R), and then adding cops one at a time until they occuy, R).
More formally, let¥ = V4(A). We define a history-dependent strategyas follows. Let
o' (e, Xo, Ro) = ((Xo, Ro),0) where(Xo, Ry) = v;(A). Now supposes € X*, w # ¢, and the
last symbol ofw is (X, R) € Vy(A). Defineo’(w, X', R') as follows. IfX No(X,R) C X' C
X, letX” = X'\ {v} for somev € X'\ ¢(X, R), and defines’(w, X', R') := ((X, R), X").
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Otherwise, ifX No(X,R) C X' C o(X, R), let X" = X’ U {v} for somev € (X, R) \ X’,
and defineo’(w, X', R') := ((X,R),X”). Finally, if X' = o(X, R) defines’(w, X', R') =
((X’, R, X’). Clearlyo’ is a strategy for at mogt cops which involves placing or removing
at most one cop at each step. We now show that it is a winniatgegly.

Let 7 = (X{, R()(X], R})--- be a search consistent witti. Letw’ € ¥* U X“ be the
history consistent withr, and letw be the word obtained by replacing repeated symbols’in
with single occurrences. We observe that these repetitinss where we have replaced a single
multiple-cop move with a finite sequence of single-cop maas is infinite if, and only if,w’
is infinite. We also observe that by the definitionodf w is a subsequence af We make the
following claim:

Claim. The search defined hy is a search consistent with

Proof of claim. Let w = (X1, Ry)(Xs, Ry) ---. From the definition o’ we haveX; ; =
o(X;, R;) for all i > 1, so it suffices to show that for all > 1 there is an edge il from
(Xi, Xiy1, R;) to (X414, Ri11). That is, each possible set of locations for the robber alsl
after the sequence of single-cop moves is available aftengdesmultiple-cop move. Letn
andn be such thatX;, R;) = (X}, R, ..) and(X,1, R;11) = (X, R!) and letg be such that
m < ¢ < nandX; = X; N X;,;. We prove by induction that for all, with m < j < n,
R; U R, is contained in a connected componentjof (X;, N X7). Clearly this is true for

. = m. Now suppose for somg > m, R; U R, is contained in a connected component

of G\ (X], N X7), and consider?;, ;. By the definition of the cops and visible robber game,
R;UR;, is contained in a connected componengafi XN X ;). We consider the following
two cases. Ifi < ¢, thenX;,; C X; C X,, andR; O R.x. Thus the connected component
R of G\ X},, which containsi,,.. is the only component contained in the same connected
component ofj \ (X7, N X}) asRk;. ThusRk,, = R. SinceRU R, = Ris a connected
componentofi\ X7, , = G\ (X}, UX] ), our hypothesis holds fgr+ 1. Now supposg > q.
ThenX, NX; = X;NX, 1, andef+1 D Xj’.. Thus ifR}+1 is in the same connected component
of G\ (X;NX},,) =G\ XjasR,, it follows thatR; © R, ,. By the inductive hypothesis,

R is in the same connected componentiof (X;, N X7}) ask, .. Butasg \ (X], N X}) =

G\ (XinXi1) =G\ (X, NX,,),itfollows thatR}, , is in the same connected component
of G\ (X, N X},,)ash,,,. This completes the inductive step and the proof of the clairn

max*

Next we observe that as there is always a move available toape  is winning for the
robber if, and only if, it is infinite. But this is the case if,donly if, w is infinite. Aso is
a winning strategy, there are no infinite searches consistiéin o, thus7 must be finite and
therefore winning for the searchers. O

Our final observation regarding the cops and visible roblaengyand the number of cops
required to capture the robber is a straightforward reshitkvrelates the game and the resource
measure with the parameterized class of games we alsolicieddn Example 5.2.1.

Lemma 5.40. Let G be an undirected graph. The cops have a winning strategy itibeps
and visible robber game if, and only ¥,cops have a winning strategy in the cops and visible
robber game.

Proof. Clearly a winning strategy for k£ cops in the cops and visible robber game is a winning
strategy for the cops in the-cops and robber game: singg( X, R)| < k for all positions
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(X, R) in the cops and visible robber game, it follows thék, R) € [V (G)]=* for all positions
(X, R) in the k-cops and visible robber game.

For the converse, let be a winning strategy for the cops in thecops and robber game.
Let us extendr to a strategy in the cops and visible robber game by defin{dg R) = () for
all X C V(G) with | X| > k. Then, sinces (X, R)| < k for all positions(.X, R), o is a strategy
for k£ cops. Since any search in the cops and visible robber gansstem witho is also a
search in the:-cops and visible robber game consistent witht follows thato is a winning
strategy in the cops and visible robber game. O

Remark.This example shows that with the resource meaguirge we can view resource bounded
strategies as winning strategies in a parameterized favhigyaph searching games. As such
games are simple, if either the fugitive or the searchers hawinning strategy, then they have
a memoryless winning strategy. This justifies our use oftfpygl strategies in subsequent
chapters.

Theorem 5.37 motivates the nomenclature used for Theorémadhaven is, as the name
suggests, a characterization of a winning strategy for dider. Carrying this reasoning to
the definition of haven used in [JRSTO1], we see that Theordrh dan be restated as the
following characterization of directed tree-width in texwf graph searching games. We recall
the strongly connected visible robber game defined in Exarm. 1.

Lemma 5.41.LetG be a digraph. Eitheg has directed tree-widtkl 3k + 1 or k& cops do not
have a winning strategy in the strong visible robber gam&on

5.3.2 Example: Cops and invisible robber

We now consider the resource measurg, applied to the cops and invisible robber game.
Kirousis and Papadimitriou [KP86] showed that the numbecags required to capture the
robber in this game is equivalent to one more than the padiivaf the graph.

Theorem 5.42([KP86]). LetG be an undirected graph. The following are equivalent:
1. G has path-width< k& — 1.
2. k cops have a cop-monotone winning strategy in the cops ansiliterirobber game.
3. k cops have a robber-monotone winning strategy in the copsransilble robber game.
4. k cops have a winning strategy in the cops and invisible roblaeney

Together with Theorem 5.37, this theorem shows how we camtie relationship between
path-width and tree-width via graph searching games. Asxample of the consequence of
this, Fomin, Fraigniaud and Nisse [FFNO5] considered armaterized family of cops and
robber games where the robber is invisible, but the copsleneed ¢ queries of the location
of the robber during a search. The resulting family of measwaorresponding to the number
of cops required in each game gives a parameterization iegbetween path-widthy(= 0)
and tree-width{ = o). Because such parameterized measures can be seen as &zggioera
of both path-width and tree-width, they are particularlefus$ for investigating the structural
complexity of graphs.
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5.3.3 Example: Cops and inert robber

We again consider the,,.,. resource measure, but this time with the cops and inert rajzbee.
Dendris, Kirousis and Thilikos [DKT97] showed that the nienbf cops required to capture an
invisible, inert robber is another measure equivalent ®mre than tree-width.

Theorem 5.43([DKT97]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width< k& — 1.
2. k cops have a robber-monotone winning strategy in the copsraantl iobber game.
3. k cops have a winning strategy in the cops and inert robber game.

Combining this with Theorem 5.37, we see that the number of cequired to capture a
robber in the cops and visible robber game is equal to the ruwitzops required to capture a
robber in the cops and inert robber game. In Chapter 7, whereow&der the generalization
of the cops and inert robber game to directed graphs, we dhmaihis is not the case for the
generalizations of the games to digraphs.

Dendris et al. also showed that the cop-monotone versidmeatdps and inert robber game
may require more cops than the robber-monotone version. apt€h 7, we show that the
number of cops required in the cop-monotone version of tharabextension of this game to
directed graphs is equivalent to the extension of pathiwtioldigraphs.

5.3.4 Example: Other resource measures

We now consider some graph parameters which can be chazadtéy the invisible and inert
robber games, but with other resource measures. In [FGO@jjriFand Golovach considered
the following resource measure which intuitively reprasehe “cost” of a search.

Definition 5.44 (o). The resource measugg,g is defined as follows. Ifr = X1 X,--- isa
sequence of finite sets, then

Peosl(T) = Z | Xl

i>1

In [FGOO] it was shown that the minimum cost of a search in ascmd invisible robber
game on a grap$ is equivalent to the@rofile of G: the minimal number of edges of an interval
supergraph of. In [FHTO04] it was shown that the minimum cost of a search inscand inert
robber game og is equivalent to the fill-in ofj: the minimum number of edges which need to
be added to maké chordal. Summarizing these results in our framework:

Theorem 5.45([FG00, FHTO04]) LetI'y be the cops and invisible robber game type defined in
Definition 5.27 and let’; be the cops and inert robber game type defined in Definitiof.5.3
LetG be an undirected graph. Then

1. The profile ot is equal tow 1y (G)-

2. The fill-in ofG is equal tow(r, .. (G)-
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In [RS82] Rosenberg and Sudborough considered a pebblingwhitle Fomin et al. [FHTO04]
observed can be seen as a version of the cops and invisilidlerrgame. Rosenberg and Sud-
borough showed that minimizing the resource measure defipgde maximum life-time of
a pebble on the graph is equivalent to finding the bandwidthefraph: the minimum, over
all linear layouts of the vertices of the graph, of the maximdistance between any pair of
adjacent vertices. Fomin et al. [FHTO04] viewed this reseureasure in the setting of graph
searching games, to define the following measure which atelgcthe “occupation time” of a
search.

Definition 5.46 (¢q). Letm = X1 X5 --- be a sequence of finite subsets of algetFor each
i>1lety, : V — {0,1} be the characteristic function &f;, so thaty,(v) = 1 if, and only if,
v € X;. Thenyy is defined as follows:

Por() = max ; xi(v).

Remark.In order for this measure to be non-trivial, we assume thaangevorking with version
of the cops and robber game where at most one cop is moveda a ti

The result of Rosenberg and Sudborough can then be summ#rized

Theorem 5.47([RS82]). LetI" be the cops and invisible robber game type defined in Defini-
tion 5.27 where at most one cop is moved at a time, and ket an undirected graph. Then the
bandwidth ofG is equal tow(r ) (G).

Fomin et al. [FHTO04] used Theorem 5.47 to generate a gematign of bandwidth, called
treespanby considering the resource measugeon the cops and inert robber game.

Theorem 5.48([FHTO04]). LetI" be the cops and inert robber game type defined in Defini-
tion 5.30 where at most one cop is moved at a time, and k&t an undirected graph. Then the
treespan ofj is equal towr .. (G).

5.3.5 Monotonicity

Theorems 5.37, 5.42 and 5.43 all indicate an interestinggstg of some of the graph search-
ing games we have considered: the restriction imposed bgdiong the resources supercedes
the restriction imposed by monotonicity. This provides aplanation as to why measures like
tree-width are good complexity measures from a practicdlsructural perspective: winning
strategies which are not necessarily monotone indicatexis¢ence of various structural prop-
erties such as havens or brambles (as we see in Chapter 8§ ottédr hand, monotone winning
strategies are very useful algorithmically. As we saw wigmima 5.11, monotone strategies
can be represented as restrictions on the arena, so it isedger to compute monotone win-
ning strategies. Furthermore, as we see in the next few efsgphonotone strategies often lend
themselves to decompositions with properties that makma tregy useful for practical purposes.
Thus it is important to identify games where monotonicitpad too great a restriction, as these
games will provide measures that are good indicators ofrélfgoic and structural complexity.
This leads to the question, “For which graph searching gaqpestand resource measures is
monotonicity sufficient?” More precisely,
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Open problem 5.49. For which graph searching game typEsand resource measuresdoes
(T, p)-width give a bound on fugitive-monotone or searcher-mama(t, »)-width?

Remark.Allowing approximate equivalence gives some flexibilitythre above question: while
it may not be the case that a winning strategy implies thetext® of a monotone winning
strategy with the same resource bounds, it might still beiptesthat the resource requirements
for a monotone strategy can be deduced from those of a wirstiategy.

5.4 Robustness results

We now use the framework we have developed to show that thplegity measures we have
defined are well-behaved under some simple graph operatiarssindicating their significance
as a robust measure of graph complexity. In particular wevghat, under some reasonable
assumptions, the width measure defined by a graph searching gnd a resource measure
does not increase under the simplification operation ohtakubgraphs. We also show that the
complexity measure we have defined can be determined frogotimeected components of the
graph. Finally, we consider the cops and robber game. We #athe restriction of having
the searchers and the fugitive located on vertices enallés show that the width measure
defined by the number of cops required in a cops and robber gaitably increases under a
graph operation which can be seen as a uniform complicateomely graph composition.

For convenience, we only consider width measures defineddsr-@reserving resource
measures. Thus for each of the following results, there isa esult obtained by replacing
order-preserving with order-reversing, monotone with-ardanotone, anc< with >.

5.4.1 Subgraphs

In Definition 5.21 we introduced a restriction on graph skexg game typesiespecting re-
striction, which asserted that searching strategies in a gagdin be restricted to be searching
strategies in subgraphs Gf It turns out that imposing this restriction on the graphreleiag
game type and the monotonicity restriction on the resoureasure is sufficient to show that
graph searching width is well-behaved with respect to sajiius.

Theorem 5.50.Let I" be a graph searching game type which respects restriction. yLiee
a monotone, order-preserving resource measure. For any t@phg G, G’ such thatg’ is a
subgraph of:

wre)(G') < wrp)(9).

Proof. Let G§; andGy, be the graph searching games®and¢’ defined byl'(G) andT'(G’)
respectively. Sinc€ respects restriction, it follows from Lemma 5.23 that o) is a searching
simulation fromGg, to G,,. Leto be a winning searcher strategy(@, such that for any search

m consistent withr, (1) < wr)(G). Leto’ be a searching strategy @, (o, ®)-simulated

by o. It follows from Lemma 5.16 that’ is a winning strategy for the searchers. Furthermore,
by the definition ofs’, for any search’ = (X{, R;,)(X{, R}) - - - consistent withv’ there exists

a searchr = (X, Ry)(X1, Ry) - - - consistent withr such thatX; » X/ for all i. Thus,X| =

X; NEIts(G’') C X;. Sincey is monotone, it follows thap(7') < ¢(7) < wr,(G), and this
holds for any search’. Thus, from the definition o .,y (G’), we havewr ) (G') < wr ) (G)

as required. O
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In Lemma 5.18 we observed properties sufficient for a sinarlato respect fugitive and
searcher-monotonicity. We now show thatsatisfies these properties, implying that Theo-
rem 5.50 can be extended to fugitive-monotone and searcbeotone width.

Lemma 5.51.LetG and G’ be graphs withG a subgraph ofj’. The relationag’ IS monotone
andnN-compatible.

Proof. Take X', Y’ C Elts(¢’) and X,Y C Elts(G) such thatX’ ¢ X andY’ ¢ Y.
From the definition ofo, it follows that X = X’ N Elts(G) andY = Y’ N Elts(G). Thus,
if X’ CY', X = X'NnEIs(G) C Y NEIs(G) =Y, so Dg' is monotone. Furthermore,
(X'NY)NERSG) = (X' NEIRSG))N (Y NEIS(G)) =X NY,so(X' NY’) ag’ (XNY),
and thereforeag’ Is N-compatible. O

Corollary 5.52. LetI" be a graph searching game type which respects restrictiorn.olge
a monotone, order-preserving resource measure. For any taphg G, G’ such thatg’ is a
subgraph oty:

1. The fugitive-monoton@’, ¢)-width of G is at most the fugitive-monototig, ¢)-width of
Gg’, and

2. The searcher-monoton€, ¢)-width ofG is at most the searcher-monotofig )-width
of G'.

5.4.2 Connected components

We now show how the widths of the connected components ofghgran be used to compute
the width of the graph. First we need to introduce a notiorcivig dual to restriction respecting.

Definition 5.53 (Reflects restriction)Let I' be a graph searching game type. We Bagflects
restrictionif for any graphsi andg’ such thag is a subgraph of’, I'(G) = (L, Ly, A), and
(G = (£, L}, A'), then

o If R,y is theC-maximal element of s, andR, . is theC-maximal element ot}, then
Ruyax = R, NEItS(G).

max

e If there is an edge fronfY, S) to (Y,Y’,S) in E(A) then for all(X, R) € V;(A") and
(X, X', R) € Vj(A’) suchthat” = XNEIts(G), S = RNEIts(G) andY’ = X'NEIts(G),
there is an edge i’ (A’) from (X, R) to (X, X', R), and

e If there is an edge front.X, X', R) to (X', R’) in E(A’) and (YY", S) € V(A) for
Y = X NEIts(G),Y’ = X' NEIlts(G) andS = RN Elts(G), then eitheR’ N Elts(G) =
or there is an edge froifY, Y’, S) to (Y, R" N EIts(G)) in E(A).

Just as respecting restriction can be viewedadosure, it would appear that restriction
reflection should also be equivalentfclosure for some quasi-simulation famiy similar
to ©. However, the last condition in the definition is problerodtr the game simulation: the
fugitive may be able to move in the larger graghi & (), but becaus&’ N Elts(G) = 0, there
is no response on the smaller graph. Nevertheless, we adabbtain a result, similar to
Lemma 5.13, sufficient for our purposes.
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Lemma 5.54. LetI" be a graph searching game type which reflects restriction anhg land
G’ be graphs such thaj is a subgraph off’. LetT'(G) = (L, Ly, A), I'(G') = (L, L}, A'),
and take(X}, R;) € V(A') such thatX| N Elts(G) = 0 and R, N Elts(G) is either( or the
C-maximal element of ;. If ¢ is a winning strategy for the searchers@};, then there exists
a strategyo for the searchers oftsf;, such that any search frofX}, R)) consistent with can
be extended to a sear¢X/, R;)(X], R}) --- consistent witly so that there exists > 0 with
R/ NEIts(G) = 0,andforalli, 1 <i <n, X =0(X;_1,R;_1) forsomegX; 1, R;_1) € Vi(A).

Proof. For (X', R') € V(A') with (X, R) € V(A) whereX = X' NElts(G) andR = R' N
Elts(G), defines (X', R') := o(X, R). From the second condition of restriction reflection, this
is a well-defined (partial) strategyX’, o (X', R’), R') is a successor ¢fX’, R’). We now show
thato is sufficiently defined to satisfy the requirements of thertean

Let 7" = (X{, Ry) (X1, R}) --- (X, R),) be a search fronl.X(, R{,) consistent withr. For
i >0,letX; = X/NElts(G) andR; = R;NEIts(G). By the definition oz, X! = o(X,_1, Ri—1)
for all 7 such thatR;_; # (). Thus if we taken to be the minimum index such th&t, = (), we
are done. So suppose there isrnsuch thatR,, = (). We claim:

Claim. 7 = (X, Ro)(X1, Ry) - - - is a search from;(.A) consistent with.

Proof of claim. We prove this by induction on the length ofr consistent witho. From the
definition of (X{, R{,), and sinceRr}, N Elts(G) # 0, (Xo, Ry) = v;(A), so the claim is true
for i = 0. Now supposé Xy, Ry) - - - (X;, R;) is consistent withe. From the definition ot’,
Xiyn = X[ = o(X;,R;). As (X{, Ry)---(X/,4,R,,) is consistent withy, and R, N
Elts(G) # 0, it follows that there is an edge iB(A’) from (X, X/, |, R}) to (X/,,, R, ).
Thus, from the third condition of restriction reflectionetk is an edge frorlX;, X, R;) to
(Xit1, Riv1). Therefore,(Xo, Ry) - -+ (Xi41, Rit1) is consistent withr as X, 11 = o(X;, R;)
and there is an edge fro(X;, X1, R;) t0 (X;11, Riy1). .

Now, sinceo is a winning strategy for the searchers, every search frgid) consistent
with o can be extended to a complete search. Howelker# () for all i > 0, sor cannot
be extended to a complete search. Thus there existsch thatR,, = (), contradicting the
assumption that there is no sueh O

We also need to assume that our graph searching games saédtjlowing property: if
the searchers have a winning strategy frioX R) then the searchers can play the same strategy
and win from(X, S) for any .S C R. To be more precise, we require the graph searching game
type to be(id, O)-closed where id is the quasi-simulation family which assitp each pair of
graphs(Gg, G’) with G = G’ the identity relation, and is the quasi-simulation family which
assigns to each pair of grapf@, G') with G = G’ the superset relation. Given such a graph
searching game type, we can apply Lemma 5.13 to obtain tleaviol:

Lemma 5.55. LetI" be a graph searching type which (&, DO)-closed, and lety be a graph
with I'(G) = (Ls, L, A). Forany(Xy, Ry), (X1, R}) € V(A) with X; = X] and R, O R}
and any strategy for the searchers oz, there exists a strategy for the searchetson
Gg such that for every searchX7, R})(X}, R,)--- consistent withy’, there exists a search
(X1, R1)(X2, Ry) - - - consistent witly with X; = X! and R; O R, for all 7.

To compute the width of a graph from the widths of its conngéctmponents, we need to be
able to combine the widths of the components. To do this weiregome sort of operatioss,
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onw which reflects how our resource measure is computed. Forgraihwe are interested in
the number of searchers required to capture a fugitive, tieefunctionmax is the combining
operation we are interested in, the number of searchers&reelgn the whole graph is at most
the maximum number of any of its components. In fact, we canamy operatiorm for which
our resource measure is “well-behaved”, in the followingsse

Definition 5.56 (&-morphism) Let o be a resource measure abd w x w — w an operation
onw. We sayy is a®-morphismif (7 - 7') = ¢(7) @ ¢(x') for all sequences andr’.

Remark.We note that ifp is a®-morphism, then (on the image @j the operatiorb is uniquely
defined. That is, for any resource measyrahere is at most one possible operatirsuch
thaty is a®-morphism. However, we also observe that given any monoigtstre(id, ©) on
w and a functionf from finite sets tav, we can define a&-morphismypg, as follows:

9069(6) = |d7
pa(X1- X)) = f(Xy) & & f(X,), and
vo(r) = wif «isinfinite.

We also note that ip is a®-morphism, then, due to the associativity of concatenatiois
necessarily associative. That isqit= ¢(7,), b = p(m), andc = ¢(r.), then we have:

(a@b)dec = (p(ra) ® o(m)) ® ()
= o((mq - m) - )
= (T (m 7))
= (m,) ® ( (m) @ () =a® (b c).

Our next observation is that if we combine the restrictioeshave just introduced, then the
combination of the widths of the components of a graph pewigh upper bound on the width
of the graph.

Lemma 5.57. LetI" be a graph searching game type which reflects restriction arjlj O)-
closed. Letp be an order-preservingg-morphism. IfG is a graph with (weakly) connected
component§j;, Gs, ..., G,, then:

g) < @w(r,@)(gj)
i=1

Proof. LetI'(G) = (L., Ly, A) and forl < j < n, letI'(G;) = (£, £}, A7). For convenience,
for each setX C Elts(G), let X/ = X N Elts(G;). Note that sincd" reflects restriction, if
Ryax 1s theC-maximal element of ¢, thenR? _is theC-maximal element otjc. For eacly,

1 < j < n, leto; be a winning strategy for the searchers such that for evemcke; in ng
consistent withr;, (7;) < wr ) (G;). The idea is that the strategy defined by playing each of
the strategies; sequentially is a winning strategy which has a resourceireaent of at most

@D_, wr)(G;). Before we formally define the strategy, we make the followshgervation.

Claim. Let (X, Ry)(Xs, Rs) - - - be a search i@g. For anyj, 1 < j < n, if there exists: > 0
such that?/, = (), thenR} = @ for all i > n.
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Proof of claim. Fix j, and suppose is such that?/ = (). Suppose there exists> n such that
R} # (). Letk be the minimal index such thadt] # (), and take”’ € R}. From the definition
of a graph searching game, there exists R;_; such that- and+’ are in the same (weakly)
connected component 6f\ (X;_; N X}). Thus, ag’ € Elts(G;), it follows thatr € Elts(g;).
Thusr € R]_,, contradicting the minimality of. Thereforer! = () for all i > n. .

We defines inductively as follows. IfG has one connected componentdet ;. Clearly
o is awinning strategy og, and for any search consistent withr we havep(7) < wr ) (G1).
Now consider the subgraght = J;_, G;. LetI'(¢") = (L, L}, A'). Suppose there exists a
winning strategyo, on G., such that for any search consistent withoy we havep(r) <
@;‘:Q w(r,4)(G;). Using the notation from Lemma 5.54, t&f be the strategy oft; defined by
0y, and lets; be the strategy of; defined byo,. The strategy is as follows: from(0, Ry,
play o7 until a position(X, R) is reached wher& NV (G;) = (). Thatis, untilR’ NV (G’) = 0,
let o(X', R') = 01(X', R'). From Lemma 5.54, we haw& C V(G,), soX N V(G") = 0,
and sincel C V(G'), RNV (G') C R, WhereR . is theC-maximal element of,. Thus

(X, R....) is (id, D)-related to( X, R). SinceX NV (G') = 0, it follows thatay (X, R, ..) iS
defined. Let, be a(id, D)-simulated strategy afy, which, from Lemma , plays froniX, R)
whenay plays from(X, R,,.x). For all subsequent positioQX”, k') reached, includingX, R),
definec (X', R') = o, (X', R'). From the earlier claim, a8’ NV (G,) = 0, it follows from the
definition of simulated strategies thais well-defined for all subsequent positions. Asand
o’ are winning strategies, it also follows thats a winning strategy.

Let us now consider the resources requiredbyetm = (X, Ry) (X1, Ry) - - - be a search
consistent witho. From the definition o, it follows thatm = 7, - #’ wherer; is a search
consistent withy; andr’ is a search consistent witfy. Therefore, from Lemmas 5.54 and 5.55,
it follows that the sequence = X, X, --- is equal tor; - ¥ wherem is the sequence of first
components of a search consistent witland7’ is the sequence of first components of a search
consistent withv’. Thus

p(m) = @(m - 7') = @(m) © p(r')

n

< W) (G1) © @ wr,p)(9;) = @ w(r,z)(G;)-

7=2 7=1

As this holds for any play consistent with, and o is a winning strategy, it follows that
wrp)(G) < Do wre)(G))- 0

If we impose some further restrictions on the operatigand suitable restrictions dhand
v, we can use Theorem 5.50 to obtain equality in the abovetresul

Definition 5.58. Let ® : w x w — w be an operation ow. We say® is monotondf for all
a,b,c,d € wwitha < bandc < d,a @ c < b d. We sayd is deflationaryif for all a € w,
a>a®a.

Theorem 5.59.LetI" be a graph searching game type which respects and reflectictest
and is (id, D)-closed. Letd : w x w — w be an associative, monotone, and deflationary
operation onw. Lety be a monotone, order-preservirmg-morphism. IfG is a graph and



94 CHAPTER 5. GRAPH SEARCHING GAMES

G1,Gs, ..., G, are the (weakly) connected componentg othen,
wire)(G) = P wir e (G))-
7=1

Proof. From Lemma 5.57, we hawer ) (G) < Dj_, wir)(G;). For the reverse inequality,
we observe that a§; is a subgraph of for all j, we have from Theorem 5.5y ,)(G;) <
wr,,)(G) forall j. Thus, asp is deflationary and monotone:

wrg)(9) > P wig)(G) > @ wiry)(G)).
=1 j=1

5.4.3 Lexicographic product

We now consider the cops and robber game with the resourceumgetinat indicates the maxi-
mum number of cops used by a strategy... We show that, under some simple assumptions,
if we replace vertices in a graph with copies of a complet@lgnaith n vertices, the number
of cops required to capture the robber increases by a fattor We recall from Section 1.1.2
the definition of the lexicographic product. We now introdsome useful relations between a
graph and its lexicographic factors. Although these deding are quite technical, later in the
section we introduce some more intuitive properties whiehsivow are sufficient to establish
the robustness results we are interested in.

Definition 5.60 (M,,, D,, andP,,). Let G and’H be graphs and le&¥’ = G e H. We define
Mf{ C P(V(G)) x P(V(G')) andD3,, P§,C P(V(G")) x P(V(G)) as follows. IfA C V(G)
andB C V(G'), then

e AMY, Bif B=AxV(H),
e BDY, Aif A= {u: (u,v) € Bforallv e V(H)},
o BP§, Aif A= {u: (u,v) € Bforsomev € V(H)}.

The following results follow immediately from Lemma 5.16daprovide an idea of the
results we are interested in.

Lemma 5.61.LetG andH be graphs and le§’ = G ¢ H. LetGy be a cops and robber game
ong and Ggﬁ be a cops and robber game ¢i. If (M%, M%) is a searching simulation from

G} to G, anclzl k cops have a winning strategy d@#;, thenk - [V (H)| cops have a winning

strategy onGL,.

Proof. Let o be a winning strategy for the cops @&}, which uses at most cops. Lets’ be
a strategy for the cops d@L, (M%, M%)-simulated byr. From Lemma 5.167" is a winning
strategy for the cops. From the definitionf{,, for each position( X', R') of G, we have
o'(X',R') = o(X, R) x V(H) for some position( X, R) of Gg. So|o’(X', R')| < k- |V(H)],
and therefore’ is a winning strategy for at most- |V ()| cops. 0
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Lemma 5.62. LetG andH be graphs and le§’ = G e H. LetGg, be a cops and robber game
on G andG., be a cops and robber game ¢h. If (D$,, P%,) is a searching simulation from
G}, to Gf and the robber can defeat— 1 cops onG}, then the robber can defeat |V (H)|— 1
cops onGL,.

Proof. We consider the contrapositive: suppéseV (H)| — 1 cops have a winning strategy
onGL,. We show that: — 1 cops have a winning strategy @;. Leto be a strategyD$,, P )-
simulated by’. From Lemma 5.167 is a winning strategy for the cops. SuppdséX, R)| >
k for some position( X, R). From the definition o, there exists a positionX’, i’) of G,
such thato’ (X', ') D§, o(X,R). Butthen, ajo(X,R)| > k, |o/(X",R))| > k- |[V(H)|,
contradicting the assumption thdtwas a strategy fot - |V (H)| — 1 cops. Thug' is a winning
strategy fork — 1 cops. O

With these two results in mind, we introduce two quasi-satioh families which we use
to define the restriction on graph searching game types teaequire for games to be well-
behaved under lexicographic product.

Definition 5.63(Composition-expanding)et 91 be the quasi-simulation family which assigns
to each pair of graph&7, G’), whereG’ = Ge K for some complete graphi, the pair of relations
(M{, M?). Let® be the quasi-simulation family which assigns to each pagraphs(G’, G),
whereG’ = G o K for some complete graphi, the pair of relationgD{, P{.). Let T be a cops
and robber game type. We sBys composition-expandingit is 9Jt-closed andD-closed.

Using Lemmas 5.61 and 5.62, we obtain:

Theorem 5.64.Let I' be a composition-expanding cops and robber game type.Glst a
graph, and letlC,, be the complete graph onvertices. Then

n- w(Fv¢max)(g) = w(F,gomax) (g o ICn)

Proof. Letwr ... (G) = kandwr ...\ (GeK,) = m. FromLemma5.61, we have < n-k,
so supposer = n -k —r. Butif r > 1, then by Lemma 5.62yr .. 1(G) < k—1. Thusr =0
and the result follows. O

To help identify cops and robber game types which are cortipnsexpanding, we now
present an alternative characterization of compositigarding, similar to the definition of
restriction respecting in Definition 5.21. Just as with Lemn23, the proof follows directly
from the definitions, and is therefore omitted.

Lemma 5.65.LetI" be a cops and robber game type such that for all graplasd all complete
graphsiC, wherel'(G) = (L., L, A),I'(Ge K) = (L., L., A’) and:

() If there is an edge inE(A) from (Y, S) to (Y,Y’,S) and (X, R) € Vy(A') for X =
Y xV(K)andR = S x V(K), then there is an edge ii(.A’) from (X, R) to (X, X', R)
whereX’ =Y’ x V(K);

(1) If there is an edge iE(A’) from (X, R) € V;(A') to (X, X', R) and (Y, S) € V,(A) for
Y ={u: (u,v) € Xforallve V(K)} andS = {u : (u,v) € Rforsomev € V(K)}
, then there is an edge iA(A) from (Y, S) to (Y,Y’,S) whereY’ = {u : (u,v) €
X' forallv e V(K)};
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(1) If there is an edge inE(A’) from (X, X', R) to (X', R') and (Y,Y",S) € Vi(A) where
X=YxV(K),X =Y xV(K),andR = S x V(K); and thenR' = 5" x V(K) for
someS’ and there is an edge iB'(.A) from (Y, Y, S) to (Y, 5")

(IV) If there is an edge irE(.A) from (Y,Y”,S) to (Y, S") and (X, X', R) € V;(A’) where
Y ={u: (u,v) € Xforallv e V(K)}, Y = {u: (u,v) € X'forallv € V(K)},
and S = {u : (u,v) € Rforsomev € V(K)}, then there is an edge i&(A’) from
(X, X', R) to (X', R") for someR’ such thatS’ = {u : (u,v) € R for somev € V(K)},

thenI' is composition-expanding.

We observed in Lemma 5.51 that therelation satisfied the necessary conditions(for»
)-simulation to respect fugitive and searcher-monotoyithfe now show that the relationd,
D, andP also satisfy similar conditions implying that Theorem S@dds for robber-monotone
and cop-monotone width.

Lemma 5.66. LetG be a graph andC a complete graph.
1. The relationM{. is monotone and-compatible.
2. The relationD{. is monotone anc-compatible.
3. The relationP{ is monotone.

Proof. 1: TakeX,Y C V(G) andX’,Y’ C V(G e K) such thatY M{ X’ andY MY Y". By
the definition ofM7,, it follows thatX’ = X x V(K) andY’ =Y x V(K). Soif X C Y, X' C
Y’, and saMI{. is monotone. Furthermore, sintg&NY) x V(K) = (X x V(K))N(Y x V(K)),
it follows that MY is N-compatible.

2: TakeX,Y C V(G)andX' Y’ C V(G e K) such thatX’ D{ X andY’ D{ Y. By the
definition of DY, it follows thatX = {u : (u,v) € X' forallv € V(K)} andY = {u : (u,v) €
Y'forallv € V(K)}. Now if X’ C Y7, it follows that X = {u : (u,v) € X'forallv €
V(K)} € {u: (u,v) € Y'forallv € V(K)} = Y. ThusD{ is monotone. Furthermore,
{u: (u,v) e X'NnY ' forallv e V(K)} = {u: (u,v) € X' forallv e V(K)} N {u: (u,v) €
Y'forallv € V(K)},so(X'nY’") DY X NY, and henc®y. is N-compatible.

3 TakeX,Y C V(G) and X',Y’ C V(G eK) such thatX’ P{ X andY’ P} Y.
By the definition of P{, it follows that X = {u : (u,v) € X'forsomev € V(K)} and

= {u : (u,v) € Y'forsomev € V(K)}. Now if X’ C Y’, it follows that X = {u :
(u,v) € X' forsomev € V(K)} C {u: (u,v) € Y'forsomev € V(K)} = Y. ThusP{ is
monotone. O

Corollary 5.67. LetI" be a composition-expanding cops and robber game type.Glist a
graph, and letC,, be the complete graph onvertices. Then:

1. The robber-monoton@’, p.,.x)-width ofGe/C,, isn times the robber-monoton€, ¢,,.y )-
width ofg.

2. The cop-monoton@’, ,,.. )-width ofGe C,, isn times the cop-monotort€, ... )-width
of G.
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5.5 Complexity results

To conclude this chapter we consider the complexity of tlblem of determining thél™, )-
width of a graph. More precisely, for a graph searching gaype I and an order-preserving
resource measute, we are interested in the complexity of the following prable

(T', )-WIDTH
Instance: A graphG andk € w
Problem: Isthe(T", ¢)-width of G at mostk?

Of course, the complexity of this problem is dependent on difficult it is to compute the
arena ofGg and the resource function. To have a sensible analysis, we assume that we can
compute these in amortized constant time, that is, we carpotara path of length in the
arena, or theo-value of a sequence of sets in timeD(n). In practice computing edges of the
arena and values qgf are more likely to require time polynomial in the size of thiaggh, but as
the bounds we obtain are generally exponential in the sizleeo§raph, this assumption is not
going to significantly affect the overall complexity.

From Definition 5.1, we know that a graph searching g@jedefined by(L,, L;, A) is a
simple game, so it might appear at first that determiningafdbarchers have a winning strategy
can be decided in time linear in the size of the arena, as peor€m 2.60. However, for an
arbitrary resource measuge whether a vertex of the arena is winning for the searchetisen
resource-bounded game is dependent on the play to thakv&aat could be the case that for
any strategy, all possible consistent plays have to be eukettkensure the resource measure is
bounded. Hence it may not be possible to do better than tt@énrough all possible strategies
and all consistent searches, or equivalently, all posgilags in the arena. However, as we
observed after Definition 5.36, we need only consider plags @re simple paths in the arena,
so this is at least decidable. Since every play can be cleaized by a search, and a search is a
sequence of positions, there are at m@§t/;(.A)|!) plays that might have to be checked. Now
Vo(A) consists of pairs of subsets of Elfg, thus|V;,(A)| = O(4/ES91) = O(4l9]), giving us
the following bound:

Proposition 5.68. LetI" be a graph searching game type apdn order-preserving resource
measure(I’, ¢)-WIDTH can be decided in tim@(4"!).

We can do considerably better by considering specific regomeasures, in particular the
measurep,... In Lemma 5.40, we saw how the existence of a resource bouvidetdng
strategy is equivalent to the existence of a winning stsatle@ game with a smaller arena: the
parameterized game defined in Definition 5.26. We can user&he®.60 to decide if the cops
have a winning strategy in this parameterized game in litiese, and therefore determine if
the cops have a resource bounded winning strategy in thmakigame. More precisely,

Proposition 5.69. LetI" be the cops and visible robber game type defined in Definiti2#.5
Then(T, Ymax)-WIDTH can be decided in tim@ (n2++4).

Proof. Suppose&/, an undirected graph, aride w are given. Lefl” be thek-cops and vis-
ible robber game type defined in Definition 5.26, and supddsg) = (L., L., A). From
Lemma 5.40, we have thatcops have a winning strategy @, if, and only if, the cops have

a winning strategy irGg. From Theorem 2.60, we can determine if the cops have a wgnnin
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strategy inGf in time O(|E(A)]|), so it suffices to find an upper bound ¢B(A)|. From
the definition of the game, we observe that for edchX’ € L. there are at mosti/(G)|
setsR such that(X, R) € Vy(A) and (X, X', R) € Vi(A). Therefore, from the defini-
tion of A we see that each elemefiX, X', R) of Vi(.A) has a unique incoming edge (from
(X, R)) and at mostV (G)| outgoing edges (t6X', R')). Thus the number of edges is at most
(JV(G)] + 1)|Vi(A)|. From the definition ofZ., we have|L.| < |V (G)|*!, thus|Vi(A)] is

at most|L.||L.||V(G)| < |[V(G)|*F3. Therefore, the number of edges 4fis bounded by
O(|V(G)|****), and the result follows. O

The parameterized class of games we defined in DefinitioniS.2&sily extended to other
graph searching game types, so we can use a similar argusenbee to decid@’, ¢;ax)-WIDTH
more efficiently than Proposition 5.68. In the more geneaakc we may not be able to bound
the size ofl/(.A) as efficiently, nor the number of outgoing edges from element/; (A).
However, we observe thaf (A) C £, x L, x L, so|Vi(A)| < |G|F - |G]* - 2191, and there
are at mostL ;| < 219l outgoing edges from any elementigf(A). This gives us the following
improvement for decidingl’, . )-WIDTH:

Proposition 5.70. LetI" be a graph searching game typ@’, vm.x)-WIDTH can be decided in
time O (n?*+24m),

We observe that all the algorithms we have so far consideeedanstructive: if the algo-
rithm returns a positive answer, then it is possible to &@avinning strategy for the searchers.

We conclude the section by considering the complexity céiaeining the fugitive-monotone
and searcher-monotone widths of a graph. As we observediiol Lemma 5.11, the re-
striction to fugitive-monotone strategies can be enforogdemoving edges from the arena.
It therefore follows that the bounds we obtained for the galingames are applicable to the
fugitive-monotone case.

Proposition 5.71. LetI" be a graph searching game type.
(i) FUGITIVE-MONOTONE (T, ouax)-WIDTH can be decided in tim@(n2*+24"), and

(ii) If ['isthe cops and visible robber game type defined in DefinitidA.5TherFUGITIVE-MONOTONE (T, ¢
can be decided in tim@(n?+4).

Unfortunately, for searcher-monotone strategies thasdn is not as straightforward. In-
deed, just as with arbitrary resource measures, the digoot Theorem 2.60 cannot, in general,
be used as the set of successors available ftonR) is dependent on the play (&, R). Thus
in the searcher-monotone case, we can in general do no thettethe bounds obtained for an
arbitrary resource measure.

Proposition 5.72.LetI" be a graph searching game ty@8e ARCHER-MONOTONE (I, ¢ 1ax ) -WIDTH
can be decided in tim@(4"!).



Chapter 6

Digraph measures: DAG-width

In Chapter 4 we discussed the problem of finding a measure oplesity for digraphs. We
reviewed the definition of tree-width, arguably one of thestrguitable measures of complexity
for undirected graphs, and we considered the problem ofrindisuitable generalization of
tree-width for directed graphs. In Chapter 5 we introducegbgrsearching games, a useful tool
for developing robust measures of graph complexity, andtbaivseveral such games can be
used to characterize tree-width. In this chapter we intcecaiicomplexity measure for directed
graphs which we argue is a more natural generalization efureth than directed tree-width.
We introduce a decomposition which, unlike arboreal deamsitjpns, is defined in a similar
manner to tree decompositions. Just as tree decomposiiertiecompositions based on trees,
our decompositions are based on directed, acyclic grapA&$) so we use the nani2AG-
decompositionsAnd just as tree decompositions give rise to tree-widthGEdecompositions
give rise to a graph parameter which we &¥G-width

We show that DAG-decompositions and DAG-width enjoy margperties similar to tree
decompositions and tree-width. For example, in Theorer8, 2 show that we may assume
a DAG-decomposition satisfies certain conditions simitethibse of nice tree decompositions,
introduced in [Bod97]. This normalized form is particuladgeful for designing dynamic pro-
gramming algorithms which run efficiently on classes of clied graphs of bounded DAG-
width. We see this in Section 6.3.3 when we present such amitn for parity games. But
perhaps the strongest point in favour of DAG-width being aen@tural generalization of tree-
width is that it can be characterized by a natural genettabizaf the cops and visible robber
game, a graph searching game which we saw in Chapter 5 ch@estgee-width. As the
generalized game is particularly dependent on directelspatthe graph, this suggests that
DAG-width is a good indicator of the directed connectivifyacdigraph, a notion we discussed
in Chapter 4.

The game characterization of DAG-width also provides suffpo the argument that DAG-
width is a good measure of digraph complexity. For example,straightforward to show that
DAG-width does not increase under the taking of subgrapitsiteat the DAG-width of a graph
can be computed from the DAG-width of its strongly conneceshponents.

After we introduce DAG-width and its associated graph d@ag-game, we consider the
algorithmic benefits of DAG-width. As a digraph measure, Dalth lies between tree-width
and directed tree-width. That is, classes of graphs of bedimcte-width have bounded DAG-
width and graphs of bounded DAG-width have bounded diretsstwidth. In particular this
implies that algorithms which are efficient on graphs of edhdirected tree-width are effi-

99
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cient on graphs of bounded DAG-width, so in particular Tleeo.13 applies also to graphs
of bounded DAG-width. In this chapter we extend this aldomic result and show that parity
games can be decided in polynomial time on arenas of bound€dwidth, something which is
not currently known for graphs of bounded directed treetwidlVe also show that DAG-width,
tree-width and directed tree-width are different meashyesxhibiting a class of digraphs with
bounded DAG-width and unbounded tree-width and a classgrédhs with bounded directed
tree-width and unbounded DAG-width. This suggests thakvweanectivity, directed connec-
tivity and strong connectivity are three very different pedties of directed graphs.

The chapter is arranged as follows. In Section 6.1 we inttedbie cops and visible robber
game for directed graphs and we establish some results pogagt an understanding of the
game. We then define DAG-decompositions in Section 6.2, hod she equivalence between
DAG-width and the number of cops required to capture thetifitegivith a monotone strategy.
In Section 6.3 we discuss some algorithmic aspects of DA@hwviWe also prove the existence
of a polynomial time algorithm for solving parity games ormas of bounded DAG-width,
and in Section 6.4 we relate DAG-width to other measures &plgiconnectivity, in particular
tree-width, directed tree-width and directed path-width.

6.1 Cops and visible robber game

We recall from Chapter 5 the cops and visible robber game fraamiple 5.2.1. In this game
a number of cops and a robber occupy vertices of an undirgetgzh and the objective of the
cops is to capture the robber. The cops move by removing sbtheionumber from the graph
and announcing a set of vertices to be occupied. Followiigj the robber can move at great
speed along paths in the graph to avoid capture, however & igermitted to pass through
any cop which remains on the graph. The cops then occupy tiieegthat were announced,
and if the robber is located on one of these vertices then baptired. The location of the
robber in the graph is always known to the cops. In Theorem W& saw that the minimum
number of cops required to capture a robber on an undirectgzhds equal to one more than
the tree-width of the graph.

We now consider the natural extension of this game to didegtaphs, where the robber is
constrained to move along directed cop-free paths. Moresely,

Definition 6.1 (Cops and visible robber gamd)et G be a directed graph. Tlemps and visible
robber game o1 is the cops and robber game defined By, £,., A), where

o L.=P(V(G))andL, = P(V(G)) \ {0},

e V5(A) consists of(),V(G)) together with pair§ X, R) € L. x L, such thatR =
Reacly, x (r) for somer € V(G),

e Vi (A) consists of tripleg X, X', R) € V1 (A) forall (X, R) € Vi(A) and allX’ € L,

e For all (X,R) € V,(A) and all X’ € L. there is an edge i(A) from (X, R) to
(X,X',R),and

e If R’ = Reacly x/(r’) then there is an edge i(.A) from (X, X', R) to (X', R') if, and
only if, " € Reacly (xnx)(R).
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Remark.In the sequel, it may be more convenient to view (non-irjigedsitions of the game
as pairs(X,r) with X C V(G) andr € V(G) to represent the positiopX, R) whereR =
Reacly, x (r).

We recall from Chapter 5 the definitions ofsearchand astrategy As with the game
characterizing tree-width, we are interested in the mimmmumber of cops required to capture
the robber. Because of this, and from the definition of the génfalows that we may assume
the first move of the cops is to not place any cops on the graghaait and see” where the
robber moves: if the robber can win froffl, ;) for somer; € V(G) then he can win from
(0,V(G)), and conversely, if the cops have a winning strategyhich uses at mogt cops from
(0,r) for all » € V(G), then the strategy defined by playifigt (0, V(G)) ando otherwise is
also a winning strategy which uses at mbsiops. In view of this, and the above remark, we
introduce a more practical definition of a strategy wheresthetegy is only defined for positions
(X,r)whereX C V(G), |X| < k,andr € V(G).

Definition 6.2 (k-cop strategy) Let G be a directed graph, and consider the cops and visible
robber game or;. A (k-cop) strategyfor the cops is a functiomr : [V (G)]=F x V(G) —
[(V(G)]=F. A search(Xy,r)(Xa,19) - - is consistenwith a strategy if X;,, = o(X;,r;) for

all i. A strategyo is awinning strategyif every search consistent withis finite.

In a similar way, we can define a strategy for the robber ag&insps.

Definition 6.3 (Strategy against cops) Let G be a directed graph, and consider the cops and
visible robber game off. A strategy against copsis a functionp : [V (G)]=F x [V(G)]=F x
V(G) — V(G)suchthatforallX, X’ C V(G)andr € V(G)\X, p(X, X', r) € Reach xnx(r).

A search( Xy, )(Xs,79) - - - IS consistenwith a strategy if ;.1 = p(X;, X;11, ;) for all 4.

We observe that, similar to the game on undirected graplisnta of the cops and visible
robber game where only one cop can be moved at a time, or ttearedifted and placed in
separate moves are all equivalent in that the number of empsred to capture the robber on a
graph does not depend on the variant.

We call the graph searching width (recall Definition 5.3&axsated with this game and the
resource we are interested in bounding,¢bp numbef the graph. That is,

Definition 6.4 (Cop number) The cop numbeof a directed graphg is the least such that:
cops have a strategy to win the cops and visible robber gange on

Before we introduce the technical aspects of this game neadatér sections, we present
a couple of results that illustrate some of its properties.

Lemma 6.5. Let G be a (finite) non-empty directed graph. At least one cop isiired to
capture a visible robber og and exactly one cop is required if, and onlygfjs acyclic.

Proof. As we have no requirement that the robber moves, as long es ithene vertex, the
robber can defeat zero cops by remaining at that vertex. iShiétv € V(G), then functionp
defined byp((), 0, v) = v is clearly a winning strategy againstops.

If G is acyclic, then one cop can catch the robber by always plagithe current position of
the robber. Eventually, the robber will not be able to mowve e cops will capture him. More
precisely, define (X, r) = {r}. Then for any searchXy, ro)(X;,7) - - - consistent withr, we
observe that for all, r; # r;; and there is a directed path framto r;, ;. Sinceg is finite and
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acyclic, it follows that every search consistent witimust be finite and therefore winning for
the cops.

Conversely, ifG has a cyclév,, v, . .., v,,), then the robber can defeat one cop by forever
staying in the cycle. That s, foralle V(G) andX € [V(G)]=! let p(X, X', r) = v, for all X’
such that; ¢ X’ andp(X, {vi},r) = ve. This is clearly a strategy for the robber against one
cop, and as any search consistent wittan be extended to an infinite search, it is winning for
the robber. O

The cops and visible robber games we have already seen Chaghiaracterizing tree-width
and directed tree-width have the property that they arerismwaunder edge reversal. That is,
the number of cops required to catch the robber does not ehbtig directions of all the edges
of the graph are reversed. As we see below, this is not thefoatiee game we consider here.
One exception is graphs of cop numbethat is, acyclic graphs. We recall from Section 1.1.2,
the definition ofG°P.

Proposition 6.6. The cop number of a directed graghis 1 if, and only if, the cop number of
Gis 1.

Proof. This follows from Lemma 6.5 by observing thats acyclic if, and only if G°P is acyclic.
O

Proposition 6.7. For any j, k with 2 < j < k, there exists a grapﬁ,j with cop numbey such
that the cop number af7/)Pis k.

Proof. Informally, 7}3 is a binary branching tree of heightsuch that every vertex has edges
to all its descendants, and edges back tg its1 nearest ancestotsMore preciselyZ is the
directed graph defined as follows:

o V(T7) = {w € {0,1}* : |w| < k}, and

o (wy,wsy) € E(T,j) if, and only if, eitherw; < wy Orwy < wy and|w, | — |ws| < 7, where
< is the prefix ordering 00, 1}*.

We now show that the cop numberﬁf is j and the cop number chT,j)Op is k. First we see
that j cops have a winning strategy dﬁj by initially playing on the root then following the
robber down, in a leap-frogging manner, whichever subteeg@lays in. More precisely, we
inductively define the strategy as follows. Initially,o(0,V(G)) = {e}. We observe that from
the definition of the edge relation, if the robber choosestpond by moving to a vertex
with first symbol0, then he is unable to reach any vertekwith first symbol1. Similarly if
the robber chooses to move to a vertex with first symbdie cannot reach any vertex in the
0-subtree. Now suppose the cops are)omand the robber is omw, and X andw, satisfy the
following:

There existSwyi, and wp., such thatX = {w : wpn X W < wWhpat and
Reacf}kj\x(wr) ={w : Wpax 2 w}. (+)

To aid informal descriptions we view this graph as a diredted with additional structure. Thus we use
descendants, ancestors, root and leaves to refer to varotices in the graph as they would be in the underlying
directed tree.
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Thenw,,.x is the next vertex to be occupied by a cop|Xf| < j, theno (X, w,) = X U{wmax }»
otherwise if| X| = j, o(X,w,) = X \ {Wmin} U {wmax}. Letw. be the next location of the
robber after the cops move froid to X' = o(X,w,). We show that the resulting position
(X', w!) satisfies £). Clearly from the definition ofr, we have eitheX’ = {w : Wy, = w <
Wiax  OF X' = {w : wpin < w < wnax }, SO the first part of«) is true. Next we show that
w! € Reacr}g\X(X)wr \ {wmax}. Clearly, if X’ O X this is true, so we need only consider the

case whenX | = j. But this implies|w.x| — |wmin| = 7, thus there are no edges fram,. to
wmin- AS Wi, 1S the only vertex vacated and every vertex reachable frpns reachable from
Wmax, the set of vertices reachable by the robber must decreaseldth’ be the shortest word
which is a prefix ofw!. and for whichw,., is a proper prefix. It follows from the definition of
the edge relation that every vertex which the robber carhreacst havew’ as a prefix. Thus
Reacl:hj\X(X’)w; = {w : w' < w}. Clearly the strategy is a strategy forj cops, we now
show that it is winning. We observe that for every search istest with o, the sequence of
Wmax IS @ Sequence of words of increasing length. So afteroves there will be no vertex
available for the robber to move to. Thaigs a winning strategy fof cops. A winning strategy
for k cops on(7/)° can be similarly defined, replacirjgwith % in the above definition. Note
that when| X | = k there is no vertex available for the robber, so the cops rfeses to make a
“leap-frog” move.

We now show that the robber can defgat 1 cops onTkj andk — 1 cops on(T,j)Op. The
strategy for the robber involves choosing some leaf. Wharsegep moves to that leaf, a simple
counting argument shows that there must be at least one wpieccancestor which the robber
can reach with at least one clear path to a leaf below. Thearablen plays to that ancestor and
along that path to the leaf. More precisely, let= {w € V(7)) : |w| = k — 1}. For each
X, X' e [V(G)]¥ andw, € V(G), letp(X, X', w,) = w’ for somew’ € (LﬂReacI}kj\X((Xm
X"))r)\ X'. Clearly if p is well defined, it describes a winning strategy for the roldmainst
j — 1 cops. We now show that there always exists some sucBince|L| = 2*~! > j — 1, the
robber can always choose an element afitially, so we may assume that. € L. If w, ¢ X’
then choosingy’ = w, suffices, so suppose, € X’'. Sincew, ¢ X and|X]|,|X'| < j, it
follows that|X N X’| < j — 1. Thus there exista”” < w, such thatjw,| — |w"| < j and
{w:w" < wandw. A w}N X" = () wherew!. is the shortest word which is a prefix of and
for whichw"” is a proper prefix. Thus for every € L such thaty” is a prefix ofw, there is a
path fromw, tow in 7,/ \ (X N X’). Thus choosing’ € L such thatv” is a prefix ofw gives a
well-defined strategy. A winning strategy for the robberiag: — 1 cops on(7,/)° is defined
similarly, replacing; with £ in the above definition. O

6.1.1 Monotonicity

For the remainder of this chapter, we are primarily conagnvgh monotone strategies. We
recall from Definition 5.8 the definitions of fugitive-mormuwte (robber-monotone) and searcher-
monotone (cop-monotone) searches and strategies. Wevelbsat, as with the cops and visible
robber game on undirected graphs, the cops and visible rgiloee for directed graphs permits
idling and is vacating sensitive. Thus from Lemma 5.11, weeha

Lemma 6.8. A cop-monotone winning strategy fbrcops is robber-monotone.

We saw in Theorem 5.37 that for the cops and visible robberegamundirected graphs,
the converse to this holds: i cops have a robber-monotone winning strategy therops
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have a cop-monotone winning strategy. In [JRSTO1] it was shitat this is not the case for
the strongly connected visible robber game. The next rehuitvs that as with the game on
undirected graphs, for the game we are considering, the étons of monotonicity coincide.

Lemma 6.9. If & cops have a cop-monotone or robber-monotone winning styategn they
have a winning strategy that is both cop-monotone and rolbhb@notone.

Proof. From Lemma 6.8, it suffices to show thatkifcops have a robber-monotone winning
strategy therk cops have a cop-monotone winning strategy. Suppose thehawgsa robber-
monotone winning strategy, and [et,, 7o) (X1, 1) - - - be a search consistent with that strategy.
From this we construct a sequence which can be used to defop manotone strategy in the
obvious way. Suppos&; Z X;,; and letv € X; \ X;,1. Asv € X;, the robber is unable to
reachv when the cops are oN;. As the strategy is robber-monotone, the robber is unable to
reachv at any further stage, in particular, he cannot reag¥hen the cops are oN;,;. Thus,

Nno cop needs to revisitin order to prevent the robber from reachingThus, we can remove

v from all X;, j > . Proceeding in this way results in a seque(&®, ro)(X{,r1)---. The
strategy which takesX/, ;) to X/, is cop-monotone for this search. Repeating this for all
plays (that is, every choice for robber) results in a cop-otone strategy. Hence, whenever the
cops have a robber-monotone winning strategy they also bag-anonotone strategy. O

With this lemma in mind we definermonotone winning strategg the obvious way. Note that
we have actually proved a slightly stronger assertion:

Corollary 6.10. If £ cops have a monotone winning strategy in the cops and vigsiblear game
on a digraphg, thenk cops have a winning strategysuch thato (X, r) C X U Reacly x (r)
forall X C V(G)andr € V(G) \ X.

In Theorem 5.37, we also saw that in the visible robber gamendirected graphs, & cops
have a winning strategy théncops have a monotone winning strategy. An interesting gurest
is whether this extends to the game on directed graphs. aeand Ordyniak [KOO07] have
recently shown that this is not the case.

Theorem 6.11([KOO07]). For anym € N, there exists a digraph for whichn cops can capture
a visible robber butm cops are required to do so with a monotone strategy.

Of course, this result does not preclude the possibility, tewith the strong visible robber
game, the number of cops required for a monotone captureuisdaal by some function of the
number of cops required for a winning strategy which is natessarily monotone. This gives
us the following interesting open problem:

Open problem 6.12.Does there exist a functiofi: w — w such that for all digraphgy, if k
cops can capture a visible robber ghthen f (k) cops can capture the robber with a monotone
strategy?

6.2 DAG-decompositions and DAG-width

In this section, we present a decomposition of directedlggdipat is somewhat similar in style
to tree decompositions of undirected graphs. This leadsetaléfinition of DAG-width, which
can be seen as a measure of how close a given graph is to bgiiig.atVe show then that a
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graph has DAG-width if, and only if, £ cops have a monotone winning strategy in the cops
and robber game played on that graph. We conclude with sogoethimic properties enjoyed
by DAG-width.

Definition 6.13(Guarding) LetG be a directed graph. As#t C V(G) guardsasetl” C V(G)
if W NV = () and whenever there is an edgev) € E(G) such that. € V andv ¢ V, then
veW.

Definition 6.14 (DAG-decomposition) Let G be a digraph. ADAG-decompositionf G is a
pair (D, X') whereD is a directed, acyclic graph amd = (Xg)4cv (p) is a family of subsets of
V(G) such that

(D1) UdeV(D) Xa=V(G).
(D2) For all vertices! <p d' <p d", XyN Xg» C Xy.

(D3) For alledgegd, d') € E(D), XaN Xy guardsXsq \ Xq, whereXsqp == Jyo g0 Xar.
For any rootd, X, is guarded by.

The width of a DAG-decompositio(D, X) is defined asnax{|X,| : d € V(D)}. TheDAG-
width of a graph is defined as the minimal width of any of its DAG-dapositions.

The main result of this section is an equivalence betweenotooe strategies for the cop
player and DAG-decompositions.

Theorem 6.15.For any directed graply, there is a DAG-decomposition gfof width % if, and
only if, k cops have a monotone winning strategy in the cops and visibleer game o1y .

To prove this, we first need some simple observations abartqng.
Lemma 6.16. LetG be a directed graph, ant’, X, Y, Z C V(G).
(i) X guards Reach x(Y).
(i) If W guardsY, X guardsZ, then(IW U X) \ (Y U Z) guardsY U Z.
(iii) If X guardsY,Z D X andZNY = (), thenZ guardsY'.
(iv) If X guardsY thenX U Z guardsY \ Z

Proof. (i) Clearly X N Reacly x(Y) = (. Now supposév, w) € E(G), v € Reacl x(Y)
andw ¢ Reacly x(Y). It follows from the definition oReacly, x(Y') thatw € X. Therefore
X guardsReacly x (Y).

(i): Supposgv,w) € E(G),v e YU Zandw ¢ YU Z. If v € Y, thenw € W, asW
guardsy’. Similarly, if v € Z thenw € X asX guards”Z. Hencew € (W U X) \ (Y U Z), and
(WuUX)\ (YUZ)guardsY U Z.

(iii): Suppos€v,w) € E(G),v € Y andw ¢ Y. As X guardsY,w € X. AsZ D X,
w € Z. ThereforeZ guardsy'.

(iv): SinceXNY =0andZnN (Y \ Z) =0, itfollows that(X UZ)N (Y \ Z) = 0. Now
suppose€v,w) € E(G),v € Y\ Zandw ¢ Y \ Z. Thus,w ¢ Y orw € Z. For the first case,
w € X asX guardsY. Hencew € X U Z. O
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We now turn to the proof of Theorem 6.15.

Proof of Theorem 6.15Suppose: cops have a monotone winning strategyn the cops and
visible robber game on a directed gra@h As ¢ is monotone, from Corollary 6.10 it follows
that we may assume that cops are only ever placed on vefttigeare reachable by the robber.
That is,

o(X,r) € X UReach x(r). (6.1)

We recall the definition of a strategy DA®,,, from Definition 5.7. Since the nodes B,
are positions in the cops and robber game, the funetisnwell defined for ald € V (D, ). We
claim that(D,, X'), with X defined byX,; = o(d) for all d € V(D,), is a DAG-decomposition
of G of width < k. To support our claim, we first observe the following simpets. For
d=(X,r) e V(D,),

Reacl x(r) € | ] o(d) € X UReach x(r). (6.2)

d=p,d

The first inclusion follows from the fact that is a winning strategy for the cop player: at
position (X, r) every vertex reachable by the robbBe@aclhy, x (r)) will be occupied by a cop
at some point in the future. The second inclusion followsrfnepeated application of (6.1).
Further, ford = (X,r) € V(D,),

Reacl@\X(r) = Reacl@\(xmg(xm))(r). (63)

As X No(X,r) C X, Reacly x(r) € Reach\ xn-x, (r). The reverse inclusion follows
from the fact that is a robber-monotone strategy.
Equations (6.2) and (6.3) together imply foe= (X, 7):

(| old))\ X = Reach (xno(x.)(r). (6.4)

d=3p,d’

We now show thatD,, X) is indeed a DAG-decomposition of width k. For (D1), if there
wasav € V(G) \ UdeV(Da) X4, then the robber could defeatby playing tov at the beginning
and staying there indefinitely. Hentg, ., X4 = V(G). (D2) follows immediately from the
(cop-)monotonicity of the winning strategy Towards establishing (D3), let us first consider a
rootd = (X, r) of D,. From the definition ofD,, this root is unique, thu&-, = V(G) and is
therefore guarded bf§. Now supposéd, d’) € E(D,). If d = (X',r’) thenX,; = o(d) = X".

So by (6.4),

Xsa \ Xa=( |J o(d))\ X' = Reachxnax(r)-

dlj'Dg dl/

Therefore, from Lemma 6.16(i)f; N X = X' No(X’,r’") guardsXsy \ X,. It follows that
(D,, X) is a DAG-decomposition. To see that it has widthk, note thatmax{|X,| : d €
V(D,)} = max{|o(d)| : d € V(D,)} < k.

Conversely, letD, X') be a DAG-decomposition of width. A strategy fork cops can then
be defined as:
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(1) Let the robber choose a vertexc V(G). From (D1), there existd, € V(D) such that
v € Xy,. Letd be aroot ofD which lies abovel,.

(2) Place cops 0X .

(3) From (D3) and Lemma 6.16(iii)X, guardsX-,\ X,. Therefore, the robber can only move
to vertices inX-, \ X4. Suppose the robber movesitoc X,-. Letd’ be a successor af
which lies abovel”.

(4) Remove cops oX,; \ X (leaving cops onX; N Xy)

(5) As X, N Xy guardsXsq \ X4, the robber can only move to verticesif., — that is, the
robber must remain in the sub-DAG rootediat

(6) Return to step 2 with’ asd.

As D is a DAG, at some point the robber will not be able to move bseais,; \ X, is empty
whend is a leaf. Hence, this is a winning strategy focops. To show that it is monotone,
observe that (D2) ensures that at no point does a cop retarndoated vertex. This concludes
the proof of Theorem 6.15. O

We observe that as a strategy DAG is the underlying DAG in #eothposition(D, X')
constructed in this proof, and a strategy DAG has a unigug vamhave the following:

Corollary 6.17. If a digraph G has a DAG-decomposition of width thenG has a DAG-
decompositionD, X') of width < k such thatD has a unique root.

In the sequel we show that we can make further simplifyingiaggions about the structure
of DAG-decompositions.

The remainder of this section looks at some properties of I&Gompositions motivated
by similar results for tree-width and tree decompositiol¢e first observe that the winning
strategies for the cop player in Lemma 6.5 and Propositi@raée monotone. These results
therefore imply that a graph has DAG-widtlif, and only if, itis acyclic (indeed, the graph itself
will suffice as a decomposition) and that the DAG-width of agir may change by an arbitrary
amount if its edges are reversed. This last observationrigpkarly useful when searching for
alternative characterizations of DAG-width, such as thesentroduce in Chapter 8.

We further observe that, as with the game on undirected grépé cops and visible robber
game enjoys the properties of graph searching games irteddn Section 5.4. In particular this
means that DAG-width decreases when taking subgraphs,atathly increases when taking
lexicographic products.

Lemma 6.18.Let (D, X') be a DAG-decomposition of a digragh and letG’ be a subgraph of

G. (D, X|g') whereX|g := (XN V(g’))dev(p) is a DAG-decomposition &F .

Proof. Clearly, (D1) and (D2) still hold fotD, X|g). For (D3), we observe that, X guardsy’
ingG, thenX NV (G’) guardsy NV (G') in G'. Thisis because, if ¢ YNV (G'),w € V(G")\Y
and(v,w) € E(G') C E(G), thenw € X (asX guardsY’), hencew € X NV (G’). Then, (D3)
follows immediately from (D3) for the original decompositi(D, X'). O

Corollary 6.19. Let G and G’ be directed graphs such th&' is a subgraph ofG. Then
DAG-width ') < DAG-width(G).
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Lemma 6.20.LetG be a directed graph anif,, the complete graph omvertices. DAG-widtfGe
K.) = n - DAG-width(G).

Proof. From Theorem 5.64, it suffices to show that the cops and eisdtiber game is composition-
expanding. We show that it satisfies conditions (I)—(IV) @hma 5.65. Clearly as the cops
are free to make any move, conditions (I) and (ll) are satisfieor condition (lll), suppose
on G as the cops move fronX to X', the robber can move fromto /. It follows by the
definitions of Reachand lexicographic product that if the cops move fromx V(K,,) to

X' x V(K,) in G e IC,, the robber can move frorfr,v) to (+',w’) for all v,w € V(K,).
Thus there is an edge in the arena (of the gamé oit,,) from (X x V(K,,), X’ x V(K,,), R x
V(K,)) to (X' x V(K,), R x V(K,)) where R = Reacly x(r) and R’ = Reacl x(r').
Finally, to show condition (IV), we observe that far C V(G e KC,,) and(r,v) € V(G e K,,),
Reackg.x, ) x (r, v) consists of those verticds’, v') ¢ X such that’ inReaclyy () where

Y ={x e V(G : (z,w) € Xforallv e V(K,)}. Thus, if there is an edge in the arena (for
the game orgy) from (Y, Y”, S) to (Y’, S), then there is an edge in the arena (for the game on
G e ,) from (X, X' R) to (X', R') whereX, X', Y,Y’, R, R/, S andS’ are as defined in
condition (IV) of Lemma 5.65. O

We also show that the DAG-width of graphs is closed undercti unions, which, as
we discussed in Chapter 4, is an important property of a reddemlecomposition of directed
graphs.

Lemma 6.21. LetG be a directed union of the digrapldgs andG,. Then
DAG-width G) = max{DAG-width G, ), DAG-width(G,)}.

Proof. For DAG-decomposition$D!, X'!) and (D?, X?) of G, andG, respectively, the DAG
D obtained by adding an edge from every leafTf to every root of D?. together with
X = (X])aevonU(X])aev(p2) forms a DAG-decomposition af. Conversely, any DAG-
decompositionD, X') of G can be restricted tg, and g, yielding DAG-decompositions for
these graphs, according to Lemma 6.18. O

We observe that it follows that the DAG-width of a directe@dgin is the maximum DAG-
width of all its strongly connected components.

For algorithmic purposes, it is often useful to have a normah for decompositions. The
following is similar to one for tree decompositions as pregsd in [Bod97].

Definition 6.22. [Nice DAG-decompositions] A DAG-decompositig®, X') is niceif
(N1) D has a unique root.

(N2) Everyd € V(D) has at most two successors.

(N3) If dy, d, are two successors df, thenX,;, = X4, = Xg,.

(N4) If d; is the unique successor @f, then| X, A X4, | < 1.

The final result we establish in this section is that everplnaith DAG-width k£ has a nice
decomposition with widthk. For this, we transform a DAG-decomposition into one whigh i
nice that has the same width. To do this we formalize the toamstions we use, and show that
executing them (possibly subject to some constraints) dogesiolate any of the properties of
a DAG-decomposition. First we require the following usefbkervation.
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Figure 6.1: Splitting atly

Lemma 6.23.Let (D, X') be a DAG-decomposition. For altl, d') € E(D),
XZd/ \ Xd - de/ \ (Xd N Xd’)-

Proof. As X; N Xy C Xy, XZd/ \Xd - XZd/ \ (Xd N Xd/). Conversely, suppose c XZd”

that is,v € Xy for somed” =p d'. We will show thatv € X; N Xy, orv ¢ X,;. Suppose
ve Xy Thenasd <p d Zp d’",v e XgNnXpy C Xp. Hencev € X; N Xy, Thus,
Xow \ Xa 2 Xoa \ (Xa N Xa). O

Definition 6.24 (Splitting). Let (D, X') be a DAG-decomposition, and suppage € V(D)

hasm > 1 successorg,,ds,...,d,. The decompositiofD’, X’) obtained from(D, X') by

splitting d;, is defined as follows:

(i) V(D) =V (D)UW{d,d,},
(i) E(D) = (EMD)\{(do,di):1<i<m})
U {(d(]? dl)7 (d07 d?‘)7 (dl7 dl)}
U{(dr,d;):2 <i<m}, and
(i) X = Xy, foralld € V(D), andX), = X = Xy,.
Figure 6.1 gives a visual representation of this transfdiona

Lemma 6.25. Let (D, X') be a DAG-decomposition of a digragh of width k£, and suppose
dy € V(D) hasm > 1 successorgl,ds,...,d,. Then(D', X’) obtained from(D, X') by
splitting d, is a DAG-decomposition ¢f of width k.

Proof. First we observe that, ag is the unique predecessor @fandd,., for anyd € V(D)
such that! <p/ d; ord <p d,., it must be the case thdt=p dy. Thus, for alld € V (D),

Xlzd: U X/, = U Xo = X>q,

d=prd d=pd’

since if X4, or X, is included in the union on the left, then soXs,, and so neitheX, nor
X, contribute to the overall union.

Also, for alli such thatl < i < m, itisthe case thak;,N.X,, guardsX-,, \ X4,. Therefore,
by Lemma 6.16(iii),

X, guardsXsg, \ Xg,- (6.5)
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It is easily seen that the edges added do not create any cgdé&¥ is a DAG. Further,
Udevon Xa = Uaevp) Xa = V(G). To prove the connectivity condition (D2), létd’,d” €
V(D'), be suchthad <p d' <p d". If d = d ord” then trivially X, N X/, C X/,, so suppose
d <p d <p d”. We consider four cases:

e If none ofd,d',d" is d; or d,, thend,d',d” € D, and (D2) follows from the fact that
(D, X) is a DAG-decomposition.

e If disd, ord, then since all descendantsdére inV (D), andd, € V(D) is the unique
predecessor af, we obtain the following chain of nodes B: dy <p d <p d’. So
X(,i m Xé// - XdO m Xd// g Xd/ - X&/.

e If d" is d; or d, then from the comments at the beginning of the prdokp d' <p d.
ThUS,X(/i N X/// == Xd N Xdo g Xd/ = thi/'

e Finally, if &' is d; or d, then by the same reasoning as the previous two cdses,d, <p
d’. SOX& N X(/i// = XN Xy C Xdo = Xcll/

Thus, in all casesX N X/, C X/,, showing that (D2) holds. To see that condition (D3) also
holds, observe first that every root Df is a root of D too. Sol) guardsX>, = X.,. Now let
(d,d") € E(D'). We consider three cases:

e d € V(D) (i.e,d #d,d,). If d=d ord,, thenX), = X,,. Otherwise(d,d') € E(D).
In both casesX, N X, guardsX? , \ Xj.

o d' =d; (sod = dy). Here X, , = Xy, U X>q,, SOXL, \ X = Xog, \ Xy, Hence, by
(6.5),Xd0 = Xcll N X¢Ii’ gua.rdSXVZd1 \ Xdo = X/Zd' \ Xcll

o d' =d, (sod = dy). HereXL , = Xy, UUycicp X5, @nd s0XL , \ X7 = (U Xzq,) \
Xay = UX>4, \ X4,), Where the unions are taken ovefor 2 < i < m. From
Lemma 6.16(ii) and (6.5)X;; N X}, = Xg, guardsJ,,,,, (X>a, \ Xa,) = XL \ Xy

As X; = X = Xg4,, we have
max{|X}|:d € V(D')} = max{|Xy| : d € V(D)} = k.

Consequently, the decompositioR’, X’) has widthk. O

By the decomposition resulting from splittingm — 1 timeswe mean the decomposition
resulting from splittingd, and then recursively splitting,. until d,. has only one successor. A
complete splibf (D, X) is the decompositio(iD’, X’) obtained by recursively splitting every
node with more than two successors.

Definition 6.26 (Adding). Let (D, X') be a DAG-decomposition of a digragh If (dy,d;) €
E(D)andX C V(G) thedecomposition resulting from adding to (do, d, ) is the pair(D’, X”)
with

() V(D) = V(D)U{dx}
(i) E(D') = (E(D)\{(do,d1)}) U {(do, dx), (dx,d1)}
(i) X3, = X,andforalld € V(D), X = Xq.
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() ()
HORINO
() ()

Figure 6.2: AddingX to (dy, d;)

See Figure 6.2 for a visual interpretation.

Lemma 6.27.Let (D, X') be a DAG-decomposition of a digraghof width k£ and let(D’, X”)
be the decomposition resulting from addiNgC V' (G) to (do, d;). If either

(I) Xdo N Xd1 CXC Xdo, or
(i) XgNXy CX C Xy,
then(D’, X’) is a DAG-decomposition @f of width k.

Proof. We observe that for all € V(D), if d <p dx, then, asdy, € V(D) is the unique
predecessor ofx, we haved <p dy, and ifdx <p d, then asd; € V(D) is the unique
successor of y, we haved; <p d. This implies, for alld € V(D)

X, = U Xl = U Xa = X>a,

d=prd’ d=pd’

since if X, is included in the union on the left, then bakf, and X/, are, and so in either
case of the lemma&’; = X does not contribute to the overall union.

Further, Xy, N X4, guardsXsq, \ Xg, = X>a, \ (X4, N X4, ) from Lemma 6.23.

Clearly, D' is a DAG. We now show thatD’, x”) satisfies the properties (D1) to (D3).
It is easily seen that) . p) Xq = X U Uy p) Xa = V(G). This shows (D1). Towards
establishing condition (D2), suppoge=<p d' =<p d”. If d = d ord = d” then trivially
X;NnXl, C X, sosupposé <p d' <p d’. We consider four cases:

e Ifnone ofd,d’,d" is dx thend, d’, andd” are all inV (D), so (D2) follows from the fact
that(D, X') is a DAG-decomposition.

e Supposel = dx. From the observations made at the beginning of the proofjet¢he
following chain of nodes iD: dy <p d; <p d' <p d”. Soin cas€i) of the lemma, we
haveX C X,,. SoX,NX/), = XNXy C X4,NXar € Xg = X, by condition (D2) of
(D, X) Otherwise, ifX C Xdp thenXé N Xé,, =XNXyg C Xd1 NXy CXy = X(/i,

e The other cases are similar. df = dx then we obtaind <p d <p dy <p d;. So if
X C Xy, thenX) N X, = XgNX C XygNXy CXg =X If X C Xy, then

e Finally, assumel’ = dx. Thend <p dy <p d; =p d". HenceX,; N Xy C X, and
XaNXg C Xdl- ThUS,X& NX, = XaN Xy C Xdo N Xd1 CX= XCII/
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Finally, towards (D3), ifd is a root of D', thend is a root of D. Hencel) guardsX s, = X>4.
Now let (d,d’) € E(D’). We consider three cases:

o dx ¢ {d,d'},i.e.,(d,d') € E(D). In this case, (D3) follows from the fact theP, X) is
a DAG-decomposition.

e Now suppose = dx (sod = dy). If X4, N Xy € X C X, SOWe are in casg) of the
lemma, then

X2d1 \ (Xdo N Xdl) 2 X2d1 \X 2 X2d1 \Xd()'

Further, by Lemma 6.23X>4, \ (X4, N X4,) = X5a, \ X4,- ThereforeXs,, \ X =
Xsa, \ X4y As (D, X) is a DAG-decompositionX,, N X, guardsXs, \ Xg4,, and
as Xy, N Xy C X N Xy, Lemma 6.16(ii) implies thak; N X; = X N Xy guards
Xoay \ Xag = X, \ X5

Otherwise we are in cagéi) and we haveX,;, N X, C X C X,,. LetZ = X \ (X4 N
Xg,). We know(Xy, N Xy, ) guardsXsg, \ (X4, N X4, ), due to Lemma 6.23. Hence, by
Lemma 6.16(iv) X; N X} = X = (X4, N Xg4,) U Z guards

(XZdl \ (Xdo N Xdl)) \ Z = XZdl \ ((Xdo N Xdl) U Z)

e Finally, supposel’ = dy (sod = dp). Here we claimXi, \ X; = X>4 \ Xg,. If
X C Xdoi thenX/ZdX \Xz/io = (XUXZCh)\Xdo = (X\Xdo)U(XZdl \Xdo) = XZdl\Xdo'
If X C Xy, then sincelx =p/ di, XL, = XL,; = X4, NOW X D Xy N Xy, SO by

Lemma 6.16(iii),X;, = X guardsX>,, \ Xq, = XLy, \ XG, -

Note that sinceX’ € X, or Xy, max{|Xy| : d € V(D')} = max{|X,| : d € V(D)} = k. S0
(D', (X)) dev(p) has widthk, 5

If X1, Xo,...,X,isasequence of subsetsiofG), thedecomposition resulting from adding
Xy, Xo, ..., X, to(dy,d;) is the decomposition resulting from adding to (dy, d;) and then
recursively addingX;; to (dx,, d;).

We can now describe how to transform a DAG-decompositiom amte which is nice and
has the same width.

Theorem 6.28.1f G has a DAG-decomposition of widththenG has a nice DAG-decomposition
of width k.

Proof. Let (D, X) be a DAG-decomposition of width. From Corollary 6.17, we may assume
thatD has a unique root. We carry out each of the following steps.

1. We apply a complete split @, X') to obtain a DAG-decomposition such that every node
has at most two successors, and Iifas two successods andds, thenX,; = X, = Xg,.
This establishes (N2) and (N3).

2. To satisfy (N4), we require two stages. First, for eathd,) € E(D) with X, # X,
we addX,, N X, to (dy, d;) to obtain a DAG-decomposition such that for evetyd’) €
E(D'), X, is either a subset or a supersetqf.
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3. Secondly, for each, d’) € E(D) with | X,| — | Xg| =m > 1 (or | Xg| — | X4 = m >
1), let Xy = X4, X1,...,X,, = Xy be a strictly decreasing (increasing) sequence of
subsets. Such a sequence exists because at the previowgestigjshed with a DAG-
decomposition such that; C X, or X; O Xy. Add X, Xo, ..., X,,_1 to (d,d’). At
this point we have a decomposition which satisfies (N1) to)(lAd is therefore nice.

Finally, from Lemmas 6.25 and 6.27, at each step we have a Bé¢@mposition of widtl.
0

6.3 Algorithmic aspects of DAG-width

We now consider algorithmic applications of DAG-width adlvas the complexity of deciding
the DAG-width of a graph and computing a DAG-decomposition.

6.3.1 Computing DAG-width and decompositions

Because deciding if the tree-width of a graph is at most a gintager is NP-complete, it is
no surprise that deciding if the DAG-width of a graph is at trepgiven integer is intractable.
Indeed, the following is a direct consequence of the NP-detapess of the REE-WIDTH
decision problem and Proposition 6.36.

Theorem 6.29.Given a digraphg and a natural numbetk;, deciding if the DAG-width of; is
at mostk is NP-hard.

Despite the similarity to tree-width, it is currently unkmo whether deciding if the DAG-
width of a graph is bounded by a given value is in NP. Howeverstirongly believe that this is
the case, giving us the following:

Conjecture 6.30. Given a digraphg and a natural numbek;, deciding if the DAG-width of/
Is at mostk is NP-complete.

However, for any fixed, it is possible, in polynomial time, to decide if a graph ha&@®
width at mostk and to compute a DAG-decomposition of this width if it has.isTollows in
a similar manner to Proposition 5.71, so for the proof of teetmesult we refer the reader to
Section 5.5.

Theorem 6.31.LetG be a directed graph and lét < w. Deciding ifk cops have a monotone
winning strategy in the cops and visible robber game&zand computing such a strategy if it
exists can be executed in tirog|V (G) |2 +4).

Note also that the translation of strategies into decontiposiis computationally easy, that
IS, it can be done in polynomial time. Since winning stragsgian be computed in polynomial
time in the size of the graph, we get the following.

Proposition 6.32. Given a graphy of DAG-widthk, a DAG-decomposition @f of width i can
be computed in tim&(|G|°®).
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6.3.2 Algorithms on graphs of bounded DAG-width

We can use DAG-decompositions, particularly nice DAG-ahepositions, to define dynamic
programming algorithms similar to those used with tree dgmusitions. Working bottom-up
from the leaves of the underlying DA®, for each nodel € V(D) we compute a data set
containing information for the subgraph induced ¥y, := ;. _,Xa. The general pattern
is described in Algorithm 6.1. We observe that if the startilecomposition is nice, then the
combineand expandsteps become significantly simplified. Indeed, tdeenbinestep can be

seen as applying to inner nodes with two successors angptitetesteps apply to inner nodes
with only one successor.

Algorithm 6.1 Dynamic programming using a DAG-decomposition
Given a DAG-decompositio(D, X'):

Leaves: Compute the data set fof,; for all leavesd.

Combine:If d € V(D) is an inner node with successats ..., d,,, combine the data sets
computed forX >, ..., X4, to a data set for the unidn;” ; X>.

Expand: Finally, expand the data set to includg.

As the directed tree-width of a graph is bounded above by staathfactor of its DAG-width
(see Proposition 6.37), any graph property that can be dédidpolynomial time on classes of
graphs of bounded directed tree-width can be decided osedasf graphs of bounded DAG-
width also. This implies that properties such as Hamiltiyithat are known to be polynomial
time on graphs of bounded directed tree-width can be solffexeatly on graphs of bounded
DAG-width too. We give a nontrivial application of DAG-widin Section 6.3.3 where we show
that parity games can be solved efficiently on arena of badiufeG-width, something which
is not known for directed tree-width.

We observe that the arena used in the proof of Theorem 2.6BDA@swidth 2: place one
cop on vertexg, and the remaining graph is acyclic and can be searched muiptwith
one cop. This implies that, unlike parity games, win-set gartand, consequently, Muller
games, Zielonka DAG games, Emerson-Lei games and circuieégpremain hard on arenas of
bounded DAG-width.

Proposition 6.33. Deciding win-set games on arenas of DAG-widtils PSPACEhard.

As for the relation to undirected tree-width, it is cleartthat all graph properties that can
be decided in polynomial time on graphs of bounded treelwidn also be decided efficiently
on graphs of bounded DAG-width. For instance, the 3-coloilitg problem is known to be
decidable in polynomial time on graphs of bounded treedwiddowever, the problem does
not depend on the direction of edges. For any given (undid@araph, we can simply direct
the edges in such a way that it becomes acyclic. Thus, anpitiatances are polynomial-time
reducible to instances of DAG-width 1. As 3-colourabilityen arbitrary graphs is NP-hard,
it follows that the problem cannot be solved in polynomiaidion graphs of bounded DAG-
width, unless PIME = NP.
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6.3.3 Parity Games on Graphs of Bounded DAG-Width

Using the algorithm scheme of Algorithm 6.1, we now outlindyaamic programming algo-
rithm for solving parity games. The advantage of such anrdlgu is that on any class of
arenas of bounded DAG-width it runs in polynomial time, giyius a large class of graphs for
which there exists a tractable algorithm for solving pagames. Full details of the algorithm
can be found in [BDHKOG].

Given an arenad, a DAG-decomposition ofd is a DAG-decomposition of the underlying
directed graphiiV (A), E(A)).

Theorem 6.34.For anyk, given a parity gaméA, y) where the DAG-width afl is at mostk,
determining if Player 0 has a winning strategy can be decidggablynomial time.

Let us fix a parity gaméA, x) wherey : V(A) — P, and letn = |V (A)|. We assume that
every vertex in4 has out-degree at mo3t It is easy to see that the arena resulting from the
transformation described in Theorem 2.59, replacing eestthat have out-degree more ti2an
with binary branching trees, requires at most one more ca@pbure a visible robber. Thus
such a transformation results in an arena with DAG-widthasth+ 1. Let (D, X') be a DAG-
decomposition of4 of width k£ which we assume is nice. For technical reasons, we also assum
that for the rootl of D, X,; = (). From Proposition 6.32 we can compute such a decomposition
in polynomial time. The idea is that we utilise the restdos imposed by a DAG-decomposition
to bound the number of strategies we need to consider. Adthonemoryless strategies are
sufficient for parity games, we do not assume the strategeesonsider are memoryless.

ConsiderU C V(.A) and a setV that guardd/. Fix a pair of strategies andr. For any
v € U, there is exactly one play = vyv; - - - that is consistent with Player O playirgand
Player 1 playingr. Let 7’ be the maximal prefix of that is contained ii/. The outcomeof
the pair of strategie&s, 7) (givenU andv) is defined as follows.

wing if 7/ = = andr is winning for Even;
out, . (U,v) := { winy if 7’ = 7 and~ is winning for Odd;
(Vig1,p) f 7 =wg---v; andp = max{x(v;) : j <i+ 1}.

That is to say that, if the play consistent with Player O pigyr and Player 1 playing leads

to a cycle contained entirely withiti, then the outcome simply records which player wins the
game. However, if the winner is not determined entirely witty, the outcome records the
vertexw in W in which the play emerges frobi and the largest priority that is seen in the play
7 starting inv and ending inw, including the end points.

By construction, if ouf, (U, v) = (w, p) thenw € W. More generally, for any sét” C V/,
define the set of potential outcomeslin, written pot-outl’), to be the sefwing, winy} U
{(w,p) : w e W andp € P}.

We recall from Chapter 3, the definition of theward orderC. We now define a partial
order < on pot-outiV') which orders potential outcomes according to how good thmeyfa
Player 1. It is the least partial order satisfying the follegvconditions:

(i) win; <o for all outcomes;
(i) o < wing for all outcomes;
(i) (w,p) < (w,p)if p Cp' forallw e W.
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In particular,(w, p) and (v, p’) are incomparable ifv # w'. The idea is that ifr andr’ are
strategies such that ut(U, v) < out, (U, v) then Player 1 is better off playing strategy
rather thanr’ in response to Player 0 playing accordingrto

A single outcome is the result of fixing the strategies plaggdoth players in the sub-
game induced by a set of vertices If we fix the strategy of Player O to be but consider
all possible strategies that Player 1 may play, we can otdeset strategies according to their
outcome. If one strategy achieves outcomand anothep’ with o < ¢/, there is no reason
for Player 1 to consider the latter strategy. Thus, we defselt (U, v) to be the set of out-
comes that are achieved by the best strategies that Playay foffow, in response to Player O
playing according ter. More formally, resulf(U, v) is the set of<d-minimal elements in the
set{o : o = out, (U, v) for somer}. Thus, resulf(U,v) is an anti-chain in the partial order
(pot-ou{ W), <), wherelV is a set of guards fav. Finally, we write RESULT(U, v) for the set
{result,(U,v) : o is a strategy for Player}0

The data structure which we wish to compute is defined aswWslid-or anyd € V' (D), let
Vg = XZd \ X, Let

FRONTIER(d) = {(v,7) : v € Vy andr € RESULT(V,,v)}.

We show how to compute in polynomial tim&k&NTIER(d) for all d € V(D). It follows from
the definitions that ifving € RESULT(V (A), v), then Player O has a winning strategy frem
Thus, asXs, = V(A) whenr is the root ofD, it follows thatwing € RESULT(X>,, vr(.A)) if,
and only if, Player O wins the game.

We observe that Sinc& -, \ X, is guarded byX,, | X,| < k and|V;| < n, the number of
distinct values of resultV,, v) asc ranges over all possible strategies is at nfost 1)* + 2.
This bound on the number of possible values of re$ult v) guarantees thafFRONTIER(d)| <
n((n+ 1)k +2).

We now outline how we computeRONTIER(d) for each stage of the dynamic programming
scheme presented earlier.

Leaves If d € V(D) is a leaf, then a§l/;| < k, itis clear that for alb € V,;, RESULT(V,, v),
and hence RONTIER(d), can be computed in constant time.

Combine If d € V(D) is a node with two successals andds, then asX; = X, = Xg,, it
follows thatV,; = V;, U Vg,. In this case, a¥x; guardsV,, andV,, there is no path from
a vertex inV,, to a vertex inV,, except throughX,. It is straightforward to show that
FRONTIER(d) = FRONTIER(d;) U FRONTIER(d2).

Expand If d € V(D) is a node with one successdr we consider three cases.
Case 1:X,; = Xy. Inthis case, RONTIER(d) = FRONTIER(d').

Case 2:X;\ Xy = {u}. Then, by (D2)u & V. Also, by the definition oi/;, u ¢ V;. We
conclude that; = V. Moreover, sinceX; guardsV, (by Lemma 6.16(iii)), there is no
path from any element df; to u except throughX ;. Thus, if(w, p) € result,(V;, v) for
somev ando, it must be the case that € X,. Hence, RONTIER(d) = FRONTIER(d).

Case 3: Xy \ Xy = {u}. This is the critical case. Herg;, = V; U {u} and in order
to construct RONTIER(d) we must determine the results of all plays beginning.alf
u has one successor, then this is trivial, so let us assuhmes2 successors; andus.
We observe that foi € {1,2} eitheru; € X ;orwu; € Vy. If u; € Xy, let R, =
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{(u;, max{p, q})}, wherep = x(u) andq = x(u;). Otherwise let?; = RESULT(Vy, u;).
ThusR; is the set of outcomes obtained if the play proceeds fudmu;.

Consider a play from € V. Ifitdoes not reach, then we can read, fromeEsuLT(V,,v) €
FRONTIER(d'), the outcome of the play. Otherwise, if the play reachds continues to
eitheru; or u,. If both u; andu, are inVy then either the play returns tq in which
case we know the winner of the play, or the play reaches axert&,. This latter case
also occurs if either ofi; or usy is in X;. Thus to compute RsuLT(V,, v), and hence
FRONTIER(d), we proceed as follows.

For eachr € RESULT(Vy,v), we do the following. If there is n@ € P such that
(u,p) € r addr to RESULT(V,,v). Otherwise, let(u,p) € r for somep. We now
consider two cases. if € V;(A) then for each; € Ry andry € Ry, let R = ry U rs.
Replace eactw, ¢) € R with (w, max{p, ¢}). LetR' = RU(r\{(u,p)}). If (u,q) € R’
for some oddy then Player 1 wins the play for the chosen strategies, sacept, q)
with win;. Similarly, replaceu, q) € R’ for ¢ even withwing. Finally, we remove the
elements of?’ which are notd-minimal and addr’ to RESULT(V;, v).

Now suppose: € V;(A) for eachr’ € Ry U Ry, if (u, ¢) € v andmax p, ¢ is odd, replace
r’ with win; and add it to RsuLT(V,,v). Otherwise, leR = (r\ {(u,p)}) U {(w,q) :
(w,q") € r"andg = max{p, q’}}. If R contains a paifu, ¢) theng must be even and
we replace this pair iR by wing. Finally, we add thed-minimal elements of to
RESULT(V,, v).

In a similar way, we can also compute the setsRLT(V,, u).

It is clear from the bounds on the size oRENTIER(d) that at each stage RONTIER(d) can
be computed in polynomial time. Since the DAG-decompasitias size at mogd (n?+4), it
follows that this algorithm runs in polynomial time. Thismpletes the outline of the proof of
Theorem 6.34.

6.4 Relation to other graph connectivity measures

As a structural measure for undirected graphs, the conéé@eswidth is of unrivalled robust-
ness. On the realm of directed graphs, however, its hergagms to be split among several
different concepts. In the sequel we compare DAG-width \wéteral other connectivity mea-
sures for directed graphs, namely tree-width, directeghiviglth, and directed path-width. We
show that, despite their similar nature, the measures bs@alficantly different.

6.4.1 Undirected tree-width

First we formalize the relationship between DAG-width andivected tree-width alluded to in
previous sections. We recall from Chapter 4, the definitiomes-width. We also recall that the
tree-width of a directed grapi is defined as the tree-width of the undirected graph obtained
from G by forgetting the orientation of the edges.

Proposition 6.35.

() If adirected graphG has tree-width, it has DAG-width at most + 1.
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(i) There exists a family of directed graphs with arbitrgriarge tree-width and DAG-width

Proof. (i): Suppos€7,WV) is a tree decomposition &f of width k, with W = (W}),cv (7).
Choose some € V(7') and orient the edges @f away fromr. Thatis, if{s,t} € E(7) ands
is on the unique path fromto ¢, then changés, ¢t} to (s, t). SinceT is a tree, every edge has a
unique orientation in this manner. LBtbe the resulting DAG. For all € V (D), setX, := W,
wheret is the node off corresponding tal. We claim that(D, X') with X' = (Xg)4cv(p) is a
DAG-decomposition off of width £ + 1. The condition (D1) is trivial from (T1); (D2) follows
from (T2). The orientation ensuréshas one root, so X, = V(G). Condition (D3) is hence
satisfied at the root. For the other nodes, (D3) follows framima 4.2. Letd, d') € E(D) and
suppose € X>q \ X, Suppose also thét, w) € E(G) andw ¢ X4 \ X4. As there is a path
(of length1) from v to w, it follows from Lemma 4.2 that eithere X,N Xy orw € X;N Xy .
Sincev ¢ Xy, w € X, N Xy and (D3) holds.

(i): For any integem € N, let IC,, be the (undirected) complete graph withvertices
V1,09, ..., U,. Orient the edges of,, such that(v;,v;) is an edge if and only if < j. The
resulting directed graph is acyclic and therefore has DAGHwL, but the underlying undirected
graph is a complete graph ofvertices and therefore has tree-width- 1. O

We now observe that DAG-width is equivalent to tree-widthuodirected graphs if we view
an undirected graph as a directed graph in the natural wayre@él from Section 1.1.2, the
directed grapﬁ? obtained from an undirected graghby replacing each edde:, v} with two
anti-parallel edgegu, v) and (v, u).

Proposition 6.36. LetG be an undirected graply has tree-width: — 1 if, and only if,? has
DAG-widthk.

Proof. It is easily seen that the-cops and robber game for undirected graphg/as equiv-

alent to thek-cops and robber game for directed graphs@n The result follows from the
correspondence between the measures and existence ofamemdghning strategies. O

6.4.2 Directed tree-width

In Chapter 4 we saw directed tree-width from [JRSTO1] and in @repwe discussed how it
was characterized by the strong visible robber game. We sartthis game characterization to
relate directed tree-width and DAG-width: as the strongblesrobber game is defined similarly
to the cops and visible robber game with added restrictionmovement of the robber, we see
that a (robber-monotone) winning strategy focops in the cops and visible robber game is a
(robber-monotone) winning strategy fbicops in the strong visible robber game. Thus, we can
use Lemma 5.41 to obtain a bound on the directed tree-widitvaiids a converse to this, we
show that directed tree-width and DAG-width are very ddfermeasures by exhibiting a class
of graphs with small directed tree-width and arbitrarilsgla DAG-width.

Proposition 6.37.
(i) If a directed graphG has DAG-width, it has directed tree-width at mo3k + 1.

(i) There exists a family of graphs with arbitrarily large BAwidth and directed tree-width
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Proof. (i): If G has DAG-widthk thenk cops can win the cops and visible robber gam&jon
Thus, % cops can win the strongly visible robber gameras the robber is more restricted in
this game. From Lemma 5.41, it follows thahas directed tree-width at mast + 1.

(ii): Consider the family{(7,2)°° : k& > 2} of graphs defined in Proposition 6.7. Note
that (7,2)°P is a binary branching tree of heightwith back-edges from every vertex to each
of its ancestors. We have shown tii@f*)°" has cop numbek, and it is clear that the strategy
described for cops is monotone, s(7;?)°° has DAG-widthk. On the other hand, consider
the directed tre€ obtained from(7;?)°P by removing back-edges. For eathe V(T), let
By := {t, s} wheret is the vertex inV/((7,2)°?) corresponding t&’ ands is the predecessor of
t (if ¢’ is not the root off"), and letiV, ) := {s} for all (s',t') € E(T). Then, it is easy to
see thatT, (B))vev (1), (We)ecr(1)) is a directed tree decomposition @F?)°P of width 1. For
k > 2, (T?)°Pis not acyclic and therefore has directed tree-width eydctl O

6.4.3 Directed path-width

We saw in Chapter 4 the definition pfath-width According to Baat [Bar05], Reed, Sey-

mour and Thomas defined a natural extension of path-widthrextéd around 1995, how-
ever [Tho02] seems to be the first occurrence of the definitidhe literature. The definition

mirrors the definition of path-width, however the directmiithe edges is accounted for by fully
utilising the linear ordering present in a sequence.

Definition 6.38 (Directed path decompositions and directed path-width(BRr Let G be a
directed graph. Adirected path decompositioof G is a sequence, ..., X, of subsets of
V(@) such that:

(DP1) Ui, Xi = V(9),
(DP2) Ifi < j < kthenX,; N X, C X;, and
(DP3) For eacle = (u,v) € E(G), there exists < j such that: € X; andv € X.

Thewidth of a directed path decompositio,, . .., X, ismax{|X;| : 1 <i < k} — 1. The
directed path-widthof G is the smallest width of any directed path decompositiog.of

Just as tree-width can be characterized by the cops andevigibber game, we saw in
Chapter 5 that path-width can also be characterized by a capsobber game: the cops and
invisible robber game of Example 5.2.2. In [Bar05] Baconsidered the natural extension of
this cops and robber game to directed graphs and showed thatnumber of cops required
to capture an invisible robber lies within one of the diregbath-width of the graph. He also
observed that the number of cops required to capture anbie/iobber with a cop-monotone
strategy is equal to one more than the directed path-widtheograph.

It is therefore not surprising that directed path-widthrismately related to DAG-width.
From the game characterizations, it appears that directddwidth is to DAG-width as path-
width is to tree-width. Indeed, as we see from the definititthvestwo are closely connected.
In fact, a DAG-decomposition can be seen as a generalizatiamdirected path decomposition
where we replace the linear order of the subsets(@f) with a partial order. This means that a
directed path decomposition is a DAG-decomposition whiseeunhderlying DAG is a directed
path. It is therefore not surprising that DAG-width boundgcted path-width below and there
are families of graphs of bounded DAG-width and unboundeekctiéd path-width. Just as the
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class of binary trees is a class of graphs with bounded trddéhand unbounded directed path-
width, we now show that the class of bidirected binary trees ¢lass of graphs with bounded
DAG-width and unbounded directed path-width.

Proposition 6.39.
(i) If a directed graphg has directed path-width, it has DAG-width at most + 1.

(i) There exists a family of graphs with arbitrarily largerdcted path-width and DAG-width
2.

Proof. (i) LetW7,..., W, be a directed path decomposition®bf width k. Let D,, be the
directed path wit vertices. Thatid/(D,,) = {d,...,d,} and(d;,d;) € E(D,) if, and only
if, j = ¢+ 1. SetXy, := W, forall d; € V(D,). We claim(D,,, (X4)4ev(p,)) iS a DAG-
decomposition of of width £ + 1. Condition (D1) follows from (DP1) and (D2) follows from
(DP2). To show (D3) forl < i < n, suppose € X4, \ Xq and(v,w) € E(G). From
(DP3) there exist’ < j' such that € W, andw € Wj.. If 7/ <4, then by (DP2p € Xg,,
contradicting the choice af. Thus,i < ¢ < j'andw € Xxq,,,. f w ¢ X5q4,, \ Xy, then
w € Xy, and thereforev € X, ., by (DP2). Thus Xy, N Xy, , guardsX>q,,, \ Xg,.

(ii): Let 7, be the (undirected) binary tree of height> 2. From Proposition 6.36?;6 has
DAG-width 2. It is easy to see that oﬁ, an invisible robber can defelat— 1 cops, butk cops
have a winning strategy. Therefore, from [Baroﬁ must have directed path-width at least
k — 2. Thus, the family{?c : k > 2} satisfies the proposition. O



Chapter 7

Digraph measures: Kelly-width

In Chapter 4 we introduced the concept of tree-width as a meadugraph complexity. We
remarked on its usefulness for algorithmic purposes, asclidsed the importance of the prob-
lem of extending tree-width to directed graphs. In this ¢bgpve continue investigating this
extension by considering other characterizations of wikth and their natural generalizations
to digraphs.

Part of the reason why tree-width is such a good measure phgramplexity is that many
other measures arising from different areas of graph theanybe shown to be equivalent to
tree-width. For instance, we saw in Chapter 5 that the numiisaps required to capture a visi-
ble robber in a graph-searching game is equivalent to teewrdth of that graph. In this chapter
we consider three other characterizations of tree-widéntig k-trees, elimination orders and
a graph searching game in which an invisible robber attengp#s/oid capture by a number
of cops, subject to the restriction that he may only move ibp is about to occupy his posi-
tion. Partialk-trees are the historical forerunner of tree-width and laeedfore associated with
graph structure theory [Ros70]. In fact, many of the origedgbrithmic results for tree-width
were formulated in terms of partiattrees (see, for example [AP89]). Elimination orderings
are particularly useful in the analysis of (symmetric) mxatactorizations such as Cholesky
decompositions [Liu90]. For example, elimination ordems be used to determine the parallel
time required to factorize a symmetric matrix with Gausstmination [BGHK95]. Finally,
as we saw in Chapter 5 (and also [DKT97, FHTO04]), graph seagames have recently been
used to explore and generate robust measures of graph cotynpWe generalize all these to
directed graphs, resulting in parti@lDAGs, directed elimination orderings, and an inert robber
game on digraphs. We show that all these generalizationscangalent on digraphs and are
also equivalent to the width-measure associated to a nedvdfidecomposition we introduce.
As the game is reminiscent of capturing hideout-based watlave propose the name Kelly-
decompositions, after the infamous Australian bushrahiget Kelly. The fact that all these
notions are equivalent on digraphs as they are on undirgctgihs suggests that this might be
a robust measure of complexity and connectivity of digraphs

As with tree-decompositions and DAG-decompositions, ydkcompositions have a struc-
ture that is well suited for designing dynamic programmifgpathms that will run in poly-
nomial time when the width of these decompositions is bodndelowever, unlike DAG-
decompositions (as far as is currently known), the size difykillecompositions can be made
linear in the size of the graph it decomposes, significargtjucing the space complexity of
such algorithms. As with the previous chapter, we will idinoe a general scheme for produc-
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ing dynamic programming algorithms that use the additistralctural information provided by
Kelly-decompositions. We illustrate its use by producitgpathms for solving NP-complete
problems such as Hamiltonian cycle, and computing the wioha parity game. Both these
algorithms run in polynomial time on graphs of bounded Keligth.

The chapter is organised as follows. In the first section wen#dly define inert robber
games, elimination orders, and partiatrees and:-DAGs. We show that on digraphs the as-
sociated width measures are all equivalent. In Sectionwedntroduce Kelly-decompositions
and Kelly-width and show that it also coincides with the meas defined in Section 7.1. In
Section 7.3, we present applications: Algorithms for Haonilan cycle, weighted disjoint paths
and parity games that all run in polynomial time on graphsafrided Kelly-width, and detalil
a connection between Kelly-decompositions and asymmietaicix factorization. Finally, we
compare Kelly-width to some of the other directed graph messwe have already seen such
directed tree-width and DAG-width, showing that it is a uregmeasure of complexity. How-
ever, we also provide evidence to suggest that Kelly-widith RAG-width are measuring the
same fundamental property of digraphs.

7.1 Inert robber games, elimination orderings, and partial
k-DAGs

7.1.1 Inert robber game

The cops and robber game we consider for this chapter is fieamd inert robber game from
Example 5.2.5. This game consists of an invisible robber istable to run from his position
along any path which does not pass through a cop, however Wemhamove if a cop is about
to land on his position. For convenience, we say that lieed. The natural generalization of
this game to directed graphs is defined as followed.

Definition 7.1 (Cops and inert robber gamé)et G be a directed graph. Theops and inert
robber game org is the cops and robber game defined By, £,., A), where

o L =P(V(9)) andL, =P(V(G)) \ {0},
e V;(A) consists of pair$ X, R) € L. x L, such thatX N R = 0,
e Vi(A) consists of tripleg X, X', R) € V1(A) forall (X, R) € Vj(A) and allX’ € L,

e Forall (X,R) € Vy(A) and all X’ € L, there is an edge i (.A) from (X, R) to
(X,X',R),and

e Thereis an edge ifV(.A) from (X, X', R) to (X', R') if, and only if,

R = (RUReachy(xnx)(X'NR)) \ X'.

We recall from Chapter 5 the definitions okaarch monotonicityand astrategy As with
the game characterizing tree-width, we are interestedamtimimum number of cops required
to capture the robber, so we also recall the definition sfrategy fork copsfrom Defini-
tion 5.32. Since?’ is uniquely defined fronk’, R and X', the inert robber game is in actuality a
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single player game. As we mentioned earlier, this is tyfimagames with an invisible robber.
One consequence is that given a strategy for the cops, theremmique play consistent with
that strategy. We call this the plagsociatedvith the strategy. In the remainder of this chap-
ter we are primarily concerned with robber-monotone stiate However, we first show that
the added constraint on the movement of the invisible robdbes not affect the existence of a
cop-monotone winning strategy fércops.

Proposition 7.2. Let G be a digraph. Ther cops have a cop-monotone winning strategy in
the cops and invisible robber game gnif, and only if,k cops have a cop-monotone winning
strategy in the cops and inert robber game®n

Proof. Since the cops and inert robber game is more restrictive endhber than the cops
and invisible robber game, a winning strategy in the latgeax winning strategy in the former.
We now show how a cop-monotone winning strategyfor £ cops in the cops and inert rob-
ber game is also a cop-monotone winning strategy:foops in the cops and invisible robber
game. Let(Xy, Ry)(X1, Ry)--- (X,, R,) be the unique search associated witin the cops
and inert robber game. We defing:a&op cop-monotone strategy,, for the cops and invis-
ible robber game as follows. Defing, inductively as: Ry = V(G), and forl < i < n,

R; = Reach x,nx, ,)(Ri_;) \ X;. Then defineo’(X;, R}) = X1, soo’ is essentially
the strategy resulting from playing in the cops and invisible robber game. By definition,
(Xo, Ry) (X4, RY) - - - is the search associated with and it is clearly a cop-monotone strategy
for k cops. We now show that it is winning. In particular, we proweitduction on: that
R, = R;for0 <i<n.

SinceRy, = V(G) = Rj our claim is clearly true for = 0. Now supposeR;, = R;
for somei > 0. SinceR; U Reachy x;nx,,,)(R: N Xiy1) € Reach x,nx,.,)(R;), we have
Ri11 € R;,,. So suppos&r; .1 2 R,,,. Then there exists) € Reacly x,nx,.,)(R:) \ Xit1
such thatw ¢ R; U Reach x,nx,,,)(Ri N Xit1) \ Xip1. Thusw ¢ X; U R;. Note that since
w ¢ R;, we havei > 1. Furthermore, there exisis € R; \ X,;; such that there is a path
fromvtowin G\ (X; N X;;1). Letv’ be the last element ak; on this path, and let’ ¢ R;
be the successor of on this path. Since the path is i\ (X; N X;11), v’ ¢ X; N X;41.
Supposer’ ¢ X;. Then sinceX; N R; = (), there is a path from tow’ in G \ X;. Therefore, as
v € R; = R, = Reacly (x, ,nx,)(Ri—1) \ X; we havew’ € R;, contradicting the definition of
w'. Thus

w' S Xz \ Xi—i—l'

Now letj > i+ 1 be suchthat’ € R, \ R;;. Sinceo is winning, and’ € R, .4, there is such
aj. By the definition of the cops and inert robber game, it mustlagd € X, \ X;. We
claimthatw’ € R; ;. Sincei <i+1 < j+1, andw € X, \ X,11, by the cop-monotonicity of
o,w' ¢ X;i1. Therefore, agv’, w') € E(G),

w' € ReaC@\(ijXjH)(Rj N Xj+1) = Rj;1.

Now let! > j + 1 be such that’ € R; \ R;;;. Sinceo is winning andw’ € R;;, such anl
exists. By the definition of the cops and inert robber gameugtbe thaty’ € X;,;. But since
i<i+1<Il+1,andw’ € X;, bythe cop-monotonicity of, w’ € X, ,; — contradiction. Thus
R; O R}, and therefore?; = R.. O
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7.1.2 Elimination orderings

Our next definition extends the idea of vertex eliminatiomigraphs. Vertex elimination, for
undirected and directed graphs, has been researched fgrymars in the study of linear pro-
gramming [RT75]. One technique for solving a system of eiguatis to combine equations so
that the value of some variables can easily be determinedgltly eliminating those variables
and reducing the system to a simpler one. This eliminationgss may introduce new relations
between the remaining variables, and capturing this psices more general setting is the mo-
tivation behind vertex elimination of graphs. We can reprneés system of equations as a graph
with a vertex for each variable occurring in the system, amnddge between variables that are
related by some equation in the system. Vertex eliminasdhen a symbolic representation of
variable elimination.

More precisely, leg be an undirected graph ande V(G). To eliminatev from G, we
removev, but add edges (if necessary) between any two verticesadjtaxv. In this way, we
see that vertex elimination is the process of removing eestirom a graph but adding edges to
preserve reachability. It is this concept that we extendrected graphs.

Definition 7.3 (Directed elimination) Let G be a digraph and € V (G). The graph resulting
from directed elimination ob from G is the graphy’ obtained fronG by deletingv and adding
new edgesu, w) (if necessary) ifu, v) and(v, w) € E(G).

We can use vertex elimination to define a complexity measoranalirected graphs. Let
G be an undirected graph. A linear order= (vy,vs,...,v,) on V(G) defines a sequence
of eliminations whereby the vertices Gfare successively eliminated in the order specified by
<. For convenience we call anelimination orderingand this sequence of eliminations, the
elimination defined by1. We define thewvidth of < to be the maximum of the degrees of the
vertices when they are eliminated. These definitions essihslate to directed graphs, but the
complexity measure we are interested in is the maximum egteg of eliminated vertices.

Definition 7.4 ((Partial) Directed elimination ordering).et G be a digraph and léf C V(G)

be a subset of vertices. partial directed elimination ordering o is a linear orderinga =
(v1,v9,...,v,) Of V. A directed elimination orderings a partial directed elimination ordering
onV(G). The(partial) directed elimination defined by is the following sequence of directed
graphs. We defing;' := G, and letG;], be the graph resulting from directed elimination of
v;11 from G2 Thewidth of < is the maximum over all of the out-degree of; in G=. For
convenience we also define thepport ofv; with respect tog as supp,(v;) := {v; : (vs;,v;) €

E(G7)}-

We observe that the width of a directed elimination ordergigne maximum cardinality of
all its supports.

Immediately from the definitions, we have this simple lemrmakting the support of an
element in an elimination ordering to the set of verticeshehle from that vertex.

Lemma 7.5. Let < be a directed elimination ordering of a graghand letv € V(G). Let
R = {u : v<u}. Thensupp(v) = {u : v <uandthereis’ € Reacl r(v) such that
(v, u) € E(G)}.
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7.1.3 Partial k-trees and partial £-DAGs

The class ofk-trees and, more generally, chordal graphs are importashtwadely studied
classes of undirected graphs. A grapfcierdal if any cycle of four or more vertices con-
tains a chord — an edge between a pair of vertices not adjactrd cycle, and a chordal graph
is ak-treeif it contains no(k + 2)-clique as a subgraph. These structural restrictions gee al
rithmically beneficial: for example, chordal graphs havénadr number of maximal cliques,
so problems such as finding a clique of a given size, whichregemneral NP-complete, can be
efficiently solved on chordal graphs ahdrees.

An equivalent way to characterize the clasgdfees is as a class of graphs generated by a
generalization of how one might construct a tree.

Definition 7.6 ((Partial) k-trees) The class of-trees is defined recursively as follows:
e The complete graph ohvertices is &-tree.

e A k-tree withn+ 1 vertices is obtained from/atree’H with n vertices by adding a vertex
and making it adjacent to/aclique in’H.

A partial k-treeis a subgraphof a k-tree.

The last concept we define in this section is a generalizatipartial k-trees, called partial
k-DAGs. Just ag-trees are a generalization of treed)AGs are a class of digraphs generated
by a generalization of how one might construct a directegglacgraph in a top-down manner.

Definition 7.7 ((Partial) k.-DAG). The class of.-DAGsis defined recursively as follows:
e A complete digraph witlt vertices is &-DAG.

e A k-DAG with n + 1 vertices is obtained from &DAG H with n vertices by adding a
vertexv and edges satisfying the following:

— Edges fromv to X C V(H) where| X | < k
— An edge fromu € V(H) towv if (u,w) € E(H) forallw € X \ {u}.

A partial £-DAG s a subgraph of &-DAG.

The second condition on the edges provides a method to adcag @dges as possible
going to the new vertex without introducing cycles. NotetihaX = (), the antecedent of this
condition is true for al. € V (’H), so a digraph is a partial 0-DAG if, and only if, it is a diredte
acyclic graph.

We also observe that this definition generalizesees, for if the verticesX) adjacent to
the new vertex«) induce a clique, we will add edges back froxnto v, effectively creating
bidirected edges betweerand X (and possibly some additional edges frétn, X tov). The
following result shows thak-DAGs generalize the alternative characterizatiork-dfees we
presented initially.

Lemma 7.8. Let§ be ak-DAG. Then:

Technically a partial graph is a spanning subgraph, thaisgraph with the same vertex set. However, for
the results we establish the distinction is not significant.
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(i) G contains nak + 2)-clique as a subgraph,
(i) Any cycle inG with at least three vertices contains a chord, and

(i) Any bidirected cycle with at least four vertices comtsia bidirected chord.

Proof. (i) LetWW C V(G) be a set of + 2 vertices. Suppose € W was the last vertex of
W to be added in the construction 6f Since all other vertices dfi” were added before,
all edges fromv to W were added as part of the first condition on the added edgesefbne,
there must be at mostoutgoing edges from to vertices inl¥/, and sal/ cannot be the vertex
set of a(k + 2)-clique.

(i): LetC = (vy,vq,...,v,) be a cycle of lengtm > 3 in G. Without loss of generality,
assumey, was the last vertex af' to be added in the construction @f Since there is an edge
from v, to vy, it follows that there must be an edge framto all successors af; added before
v1, in particular tov,. Thus(v,, v») is a chord ofC.

(iii): LetC = (vy,v9,...,v,) be a bidirected cycle of length > 4. Again we assume,
was the last vertex af’ to be added in the construction @f From the proof ofii), there is an
edge(v,, v2) € E(G). Since(vy, vy, ..., vs) is also a cycle, the same argument implies there is
also an edgé¢uv,, v,,) € E(G). These two edges make up a bidirected chor@ of O

Lemma 7.8 does not provide an equivalent characterizativh-DAGs because the given
properties are invariant under edge-reversal. We see ipoBition 7.40 that the class &f
DAGs is not closed under this operation.

7.1.4 Equivalence results

We have introduced three notions that can be used to defineothelexity of digraphs, all
of which naturally extend measures for undirected graphs. u@directed graphs, the three
measures are equivalent to each other, and also to treb-jlaH{T97]. Our main result of this
section is that the three measures introduced are equivaiatigraphs.

Theorem 7.9. LetG be a digraph. The following are equivalent:
1. k£ + 1 cops have a robber-monotone winning strategy to capture art robber ong.
2. G has a directed elimination ordering of width &.
3. G is a partial k-DAG.

Proof. 1 = 2: Supposé& + 1 cops have a robber-monotone winning strategyVithout loss
of generality, we assume that only one cop is placed at a tieig X, Ry) (X, Ry) - - - be the
(unique) search consistent with For eactw € V(G), letz, = min{i : v € X;}. Sinceo
involves placing one cop at a time, for distinctw € V(G), x, # . Let< = (v, va,...,v,)
be the order defined as; <v; if, and only if, z,, < x,,. For convenience, I8t = {vy, ..., v;},
andz; = z,, for all i. We observe that from the definition of, V; N X,, = {v;}.

We claim < has width< k. If this were not the case, there must existsuch that
|supp,(v;)| > &+ 1. As [supp,(v;)] > k+ 1 and|X,,| < k it follows that there exists
v; € supp,(v;) \ Xg,. From the definition of supg(v;), we havey; < v;, sox; < z;. Further-
more, from Lemma 7.5; € Reacly, ., (v:). Therefore, sincé; N X,,_; N X,, = () and
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v; € X,, it follows thatv; € R,,. Butsincev; ¢ R,,, the robber-monotonicity of implies
v; ¢ R, foralll > x;, contradicting the fact that; € R,,. Thus there exists no sueh with
|supp,(v;)| > k + 1, and<t has width< k.

2 = 3. Let< = (vy,v,...,v,) be a directed elimination ordering ¢f of width k. For
ease of notation, defink, := supp,(v;), and letm = n — k. Let I, be the complete graph on
the vertices{v,, 11, Um+2, . .., v, }, and letkC; (j > 1) be thek-DAG formed by adding,,,— ;1
to K,;_1, and edges from,,,_,, to X,,_;, (together with the other edges added fr&im ; to
Un——j11 N the definition ofi-DAGs). We claim that for ald < j < m, G, is a subgraph of
KC;. The result then follows by taking = m. We prove our claim by induction on For the
base casej(= 0) the result is trivial adC; is a complete graph. Now assume the result is true
for j > 0, and consider the grapﬂﬁjfjfl. For simplicity leti = m — j. By the definition of
directed elimination, for every edde, v) € E(GY,) either:

(a) V; ¢ {u>v}’
(b) u=w;, or
() v=n;.

In the first case(u, v) € E(G;") and therefore irE(K;) C E(K;;1) by the induction hypothe-
sis. For the second cade, v) is added during the construction kf_,. For the final case, for
anyw € X;, (v;,w) is an edge ofY , so(u,w) is an edge of~ (for u # w), and therefore
of K; by the induction hypothesis. Thys, v;) is added during the construction &f_ ;, and
E(GZ,) C E(K;4+1) as required.

3 = 1. Let G be a partialk-DAG. Suppose; is a subgraph of thé-DAG, K, formed
from a complete graph on the vertic&s := {vy,v9, ..., v}, and then by adding the vertices
Va1, Vs, -+, Up. FOr1 < i <n—Fklet X;; C {vy,..., v, 1} denote the set of successors
of v,;. Thatis, wheny,; is added during the construction kf edges are added from.; to
each vertex inX;,. Note that for alli, |.X;| < k. We define a (history dependent) strategy
for the cops inductively as follows. For all, o(0, R) = X. If X = X for some;,

k <i<nthenforallR,o(X,R) =X, U {v}. If X =X,U{v} forsomei, k <i<mn,
then for allR, o(X, R) = X;.;. We claim that this defines a monotone winning strategy for
k + 1 cops. LetR; = {v, : j > i}, then from the definition of-DAGs and theX;, it is easy to
see that the search associated with the strategy is:

(0, V(G) (X, Bie) (X1, Bie) (Xir1 U{ v}, Riga) - (X U {n}, 0).

As R; O R;,, for all i, the strategy is monotone and winning as required. O

7.2 Kelly-decompositions and Kelly-width

Theorem 7.9 shows that the concepts introduced in the prewection define a sound measure
of digraph complexity which naturally generalizes treetii We now turn to the problem of
finding a closely related digraph decomposition. The deasition we introduce is a partition
of the vertices, arranged as a directed acyclic graph, hegetith sets of vertices which guard
against paths in the graph that do not respect this arrangeive have an additional restriction
to avoid trivial decompositions: vertices in the guard setst appear either to the left or earlier
in the decomposition. Before we present the formal definjtwom recall from Definition 6.13,
the definition ofguarding
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Definition 7.10(Kelly-decomposition and Kelly-width)A Kelly-decompositionf a digraphg
is a tripleD := (D, B,W) whereD is a DAG andB = (Bg)acvp) andW = (Wy)acv (p) are
families of subsets of’(G) such that

(K1) Bis a partition ofl/(G),
(K2) foralld € V(D), Wy guardsBsq := Uy py Bar, and

(K3) for all d € V(D) there is a linear order on its successdrs . ., d, so that for alll <i <
p, Wa, € BaU WU, B>q,. Similarly, there is a linear order on the roots such that
W, © Uj<i BZTJ"

Thewidth of D is max{|B; U Wy| : d € V(D)}. TheKelly-widthof G is the minimal width of
any of its Kelly-decompositions.

j<i

Our main result of this section is that Kelly-decompositi@o in fact correspond with the
complexity measure defined at the end of the previous section

Theorem 7.11.LetG be a digraph. The following are equivalent:
1. k cops have a robber-monotone winning strategy to capture art mbber ong.
2. G has Kelly-width< k.

Proof. 2 = 1: Let (D, B,W) a Kelly-decomposition of; of width k. Let 7 be the spanning
tree of D obtained from the depth-first traversal Bfwhich always chooses the greatest suc-
cessor according to the ordering on successors guaranye@®Bp Let (t1,1s,...,t,) be the
order ofV(7") (and henceV/ (D)) visited in the depth-first traversal @f which always chooses
the least successor according to the orderingt; Sull always be the root o which is first

in the linear order on the roots, will be the least successor of which is not a descendant of
any greater root, or the next root ®f in the ordering if no such successor exists, and so on.
We observe that by the construction of this ordering, evescdndant; of ¢, in D is either a
descendant of; in 7, ort;, andt; have a common ancestor from whiths a descendant of a
lesser successor than In both caseg > ¢ from the depth-first traversal @f. It follows that

B, B, =0. (7.1)

Jj<i

We now define the strategy. For< i < n, let Xy,_y = W;, and Xy, = W;, U B;,. We
define a (history dependent) strategyinductively aso (), R) = X; ando(X;,R) = X;1
for all R C V(G). We claim thats is a robber-monotone winning strategy florcops. Let
(Xo, Ro) - - - (Xan, Ray,) be the search associated with the strategy. We show by induar
that for0 < i < n, Rgj_9 = Roj_1 = U].>i Bs,. It follows immediately that the strategy must
be monotone and winning. Sincé = W,, = (), we haveR; = Ry, = V(G) = UjZl By,
Now let us assumey;,_, = Ry 1 = szi B, for some: > 1. From (K2), we observe that
Reac@\wti (Btl) - BZti C Ryi_1. Thus

= (Rgifl U ReaCI@\Wti (Btl)) \ Bti

= UjZi thj \ By,
= U511 B>y, (from Equation 7.1).
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SincelV,N B>, = O forall d € V(D), it follows from (K3) and the construction of the ordering
thatW,,,, € U,, Bi;. Therefore, from Equation 7.1, we have; N W,,,, C U,.; B>, N
U,<; By; = 0. Hence,
Roiv1 = (Roi UReach (xyinxs. 1) (R N Xoit1)) \ Xoia
= RQia

i+1

completing the inductive step.

1 = 2: It follows from Theorem 7.9 that it suffices to show thatGfhas a directed
elimination ordering of widthk — 1 theng has Kelly-width< k. Let < = (vq,va,...,v,) be a
directed elimination ordering @ of width £ — 1. We define(D, B, W) as follows.V (D) :=
V(G). Foralld € V(D) let B; := {d} andW, := supp,(d) and defineB3 := (B;)qcv () and
W = (Wa)aev(p). Towards defining the edge relation Df let d € V(D) be a node. For
convenience we writ§, for the induced subgrapfi[{w : w < d} U {d}]. LetCy,...,C, be
the strongly connected componentsdif\ d. Letd,...,d, be the<-maximal elements of
C,...,C,, respectively. We put an eddé, d;) betweend andd; if d; is reachable frond in
Gq and there is nd; with d; < d; <1 d such thati; is reachable fromd in G, andd; is reachable
fromd; in G, \ d.

We claim that(D, B, W) is a Kelly-decomposition of width< £. Clearly, D is a DAG,
as all the edges i’(D) are oriented following the orderingi. Further, the width of the
decomposition is clearly at most one more than the width.of

To establish (K2), we first show the following claim.

Claim. For alld € V(D), Reacly,(d) = Bxg.

Proof of claim. We first show by induction on the indexof d in < thatReacly,(d) C Bx,.
Fori = 1 there is nothing to show. Suppose the claim has been proveallfp < i. Let
v € Reacly,(d). LetC, ..., C,, be the strongly connected components:gf\ d. Without loss
of generality we assume thate C;. Let s be the<-maximal element of’; and letd’ be the
<-maximal element such that

e d' is the<-maximal element of some;
e there is a directed path fromto d’' in G,
e there is a directed path fromito s in G, \ d.

By construction, there is an edgé d') € E(D). If d = v, orin fact if & is the <-maximal
element ofC, then there is nothing more to show. Otherwise/ iandv are not in the same
strongly connected component@f \ d, thens, and hence, must be reachable frori in G,.
For, by constructions is reachable from’ in G, \ d andd' is the<t-maximal element reachable
from d in G; and from whichs can be reached ig; \ d. Thus, if s was not reachable from
d' in Gy then the only path fromd’ to s in G, \ d must include an element < d such that
d' < w, contradicting the maximality of’. Hence, is reachable frond’ in G, and therefore,
by induction hypothesis; € B>y C Bs;.

A simple induction on the height of the nodeslrestablishes the converse. -
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It remains to show that for al € V(D) there is a linear ordering: of the successors
d satisfying the ordering condition required by the defimtiof Kelly-decompositions. For
successors # v’ of d definev C o' if v/ < v, that is,C is the inverse ordering cfi.

Letd,,...,d,, be the successors dfordered by—. We claim that for ali € {1,...,m},

Wa, € BaUWaU | Bsa,.

Jj<i

If v € By there is nothing to show. i < v thenv € W, asd; < d is reachable fronal and
thereforeWy, N{x : d <a} = supp,(d;) N{z : d <} Csupp,(d)N{z:d<Lz} = Wyn{z:
d < z}. Finally, suppose < d. But then,v € B>, and hence € B4, for somel < j < m.
By definition of support sets; ¢ B4, andd; <tv. Butthen,v ¢ B4, for all j 34, that is,
J <, as thend; < v and by constructiony <1 d; for allw € B>4,. Hencep € B, for some
d, > d;. This completes the proof of the theorem. a

The proof of Theorem 7.11 is constructive in that given amglation ordering of width
k — 1 we construct a Kelly-decomposition of width and conversely. In fact, the proofs
establish a slightly stronger statement.

Corollary 7.12. Every digraphG of Kelly-width% has a Kelly-decompositio = (D, B, W)
of width £ such that for alld € V' (D):

e |Byl =1,

e W, is the minimal set which guards-,, and

e Every vertexw € B, is reachable ing \ W, from the uniquev € B,.
Further, if G is strongly connected, theld has only one root.

We call such a decompositi@pecial

Just as with the cops and visible robber game, it is easy tthaeéhe cops and inert robber
game satisfies the properties introduced in Section 5.4 chhgacterization of Kelly-width by
such graph searching games implies that Kelly-width is ivefflaved under important structural
relations. The proofs of the following results are similathose presented in Section 6.3.

Lemma 7.13.Let(D, B,V) be a Kelly-decomposition of a digragh and letG’ be a subgraph
of G. (D,B|g/, W|g/) WhereB‘g/ = (Bd N V(g,))dev(p) andW\g: = (Wd N V(g,))dev(p) is
a Kelly-decomposition aj’.

Corollary 7.14. Let G and G’ be directed graphs such th&t' is a subgraph ofG. Then
Kelly-width(G’) < Kelly-width(G).

Lemma 7.15.LetG be a directed graph antl,, the complete graph omvertices. Kelly-widthGe
K.) = n - Kelly-width(G).

Lemma 7.16. LetG be a directed union of the digrapldgs andG,. Then
Kelly-width(G) = max{Kelly-width(G, ), Kelly-width(G)}.

We observe that from this last result it follows that the I¢edlidth of a directed graph is the
maximum Kelly-width of all its strongly connected compotgen
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7.3 Algorithmic aspects of Kelly-width

7.3.1 Computing Kelly-decompositions

In this section we mention several algorithms for compukefy-width and Kelly-decompositions.
The proofs of Theorems 7.9 and 7.11 show that Kelly-decoitipos can efficiently be con-
structed from directed elimination orderings or monotoriening strategies, so we concern
ourselves with the problem of finding any of the equivalerarelsterizations.

In a recent paper Bodlaender et al. [BFBG] study exact algorithms for computing the
(undirected) tree-width of a graph. Their algorithms arsdahaon dynamic programming to
compute an elimination ordering of the graph. The algorghranslate easily to directed elim-
ination orderings and can therefore be used to compute Hetlth, giving us the following
theorem:

Theorem 7.17.The Kelly-width of a graph witl vertices andn edges can be determined in
e O((n+m)-2") time andO(n - 2") space, or
e O((n+m)-4") time andO(n?) space.

Proof. The algorithms we require for these bounds are presentedgasithm 7.1 and Al-
gorithm 7.2 respectively. Lemmas 7.18 and 7.20 prove theddtalgorithms are correct, and
Lemmas 7.19 and 7.21 establish the running times and spqoiaments. O

Algorithm 7.1 KELLY-WIDTH-DP(G)
let KW () =0
for k=1to|V(G)| do
foreach S € [V (G)]* do
for eachv € S do
Compute supp(v) := Nouw(Reachk(v)) U {v}
let KW (S) = min,es max{ KW (S \ {v}), |supp(v)|}
return KW (V(G))

Lemma 7.18. For any digraphg, KELLY-WIDTH-DP(G) outputs the Kelly-width of.

Proof. We observe that for a directed elimination orderiag= (v, ..., v,), Supp,(v;) is not
dependent on the order of the vertides, ..., v;_1}. The algorithm uses this observation to
reduce the number of possible orderings which need to bedamesl fromn! to 2. It is easily
seen thafsupp,;(v)| is v together with the support set ofin any directed elimination ordering
wherev is preceded by some ordering of the remaining elements oFhusmax{ KW (S \
{v}), |suppy(v)|} is one more than the minimal width of a partial directed etfiation ordering
on S wherev is the last vertex eliminated. It follows thaf11/(S) returns one more than the
minimal width of a partial directed elimination ordering Snand thusk W (V' (G)) returns the
Kelly-width of G. O

Lemma 7.19.LetG be a digraph with: vertices andn edgesKELLY-WIDTH-DP(G) requires
at mostO((n + m) - 2") time andO (n - 2") space.
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Proof. For a setS C V(G) and a vertexwo € V(G), it is readily seen thaReach(v) can

be computed with a depth-first search fram Since such a search can be executed in time
O(n+m) [CLR96], it follows that supp(v) can be computed in tim@(n+m). The innermost

for loop is executed once for eashC V' (G), and loopgS| times. So if each value fak W (.S)

Is stored as it is computed so that its value can be found istaaohtime, the total running time
for the algorithm isO(n +m) Y- gy () O(IS]) = O((n +m) - 27). O

Algorithm 7.2 KELLY-WIDTH-REC(G, L, S)

if S = {v} for somev then
return supp (v)

let Opt = oo

for each S’ C S with |S’| = ||S]/2] do
Computew; = KELLY-WIDTH-REC(G, L, S")
Computew; = KELLY-WIDTH-REC(G, LU S, S\ 5)
let Opt = min{Opt, max{w;, wy} }

return Opt

Lemma 7.20. For any digraphg, KELLY-WIDTH-REC(G, 0, V(G)) outputs the Kelly-width of
g.

Proof. We prove by induction ofnS| that KELLY-WIDTH-REC(G, L, S) returns one more than
the minimal width of a partial directed elimination ordegion L U S where the first| vertices
are elements of.. From our observations regarding sypp) in the proof of Lemma 7.18, we
see this is true fofS| = 1. Now suppose it is true fgtS| < s, we show that it is true for all
S with | S| < 2s. Consider a single execution of tf& loop. SinceS’| = ||S]/2], it follows

by the induction hypothesis that; is one more than the minimal width of a partial directed
elimination ordering o U S’ where the first| elements are fronk andw is one more than
the minimal width of a partial directed elimination ordegion L. U S where the firstL| + |.5|
elements are frond U S’. Thus, the maximum ofy; andw, is one more than the minimal
width of a partial directed elimination ordering dnJ S where the firstL| elements are from
L, and the nextS’| elements are frony’. Opt stores the minimum of all these maxima, over all
subsetss” with |.S’| = []S]/2]. As the minimal width of a partial directed elimination orithey

of L U S where the firstL| elements are fronh must be the minimal width of a partial directed
elimination ordering ofL U S where the firsiL| elements are fronL and the next |S|/2]
elements are frony’ for someS’ C S, it follows that Opt stores the required value. Thus
KELLY-WIDTH-REC(G, (), V(G)) returns the Kelly-width off. 0

Lemma 7.21.LetG be a directed graph with vertices andn edges. TheKELLY-WIDTH-REC(G, D, V(G))
runs inO((n + m) - 47) time andO(n?) space.

Proof. Let T'(s) be the time required to computeeKLY-WIDTH-REC(G, L, S) when|S| = s.
We prove by induction oms that7'(s) = O((n + m) - 4%) time. If s = 1, as we saw in
Lemma 7.21, supgv) can be computed i0)(n + m) time, so the assumption holds for this
case. For > 1, the algorithm runs in timé(sz)T(s/2). Using asymptotic approximations
of Catalan numbers [GKP98[") € O(4"), soT(s) = O(4*/*)T(s/2) = O((n +m) - 4°).
The space requirement follows from the observation thaael stage of the recursion we need
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O(n) space to store the current subsétof S and the values we have computed. Since the
recursion tree has maximum heigltg |S|] < n, we obtain the space bound ©fn?). O

For a givenk, the problem whether a digraghhas Kelly-width< £ is decided in exponen-
tial time with the above algorithms. As the minimization Iplem is NP-complete (it generalizes
the NP-complete problem of deciding the tree-width of aningated graph), we cannot expect
polynomial time algorithms to exist. However, the exact ptexity of determining if a digraph
has Kelly-width< £ for fixed £ is currently unknown. Clearly a digraph has Kelly-width elqua
to 1 if, and only if, it is acyclic, and recently Meister, Tellec&Watshelle [MTVO07] exhibited
a polynomial time algorithm for determining if a digraph h&ally-width 2. So fork < 2 the
problem can be solved in polynomial time. For- 2 it is an open problem.

Open problem 7.22.For a fixedk > 2, what is the complexity of the following problem: Given
a digraphg doesg have Kelly-width< £?

It seems plausible that, as in the case of DAG-width, stugliginategies in the inert robber
game will lead to a polynomial time algorithm whéns fixed.

7.3.2 Algorithms on graphs of small Kelly-width

In this section we present algorithmic applications of i@lecompositions, including a general
scheme that can be used to construct algorithms based ormmpesition. We assume that a
Kelly-decomposition (or even an elimination ordering) baen provided or pre-computed. We
give an example algorithm based on this to compute the wioh&parity game, which runs in
polynomial time on graphs of bounded Kelly-width. As thealthm is similar to the algorithm
of the previous chapter, we outline the major differencevieen the two.

Dynamic programming algorithms using Kelly-decomposisidollow a pattern similar to
algorithms that use tree-decompositions and DAG-decoitipos. Starting with a special
Kelly-decomposition(D, B,V) and then working bottom up to compute for each ndde
V(D) a data set containing information on the #&t; := (J,., Ba. The general pattern is
described in Algorithm 7.3. -

Algorithm 7.3 Dynamic programming using a Kelly-decomposition
Given a special Kelly-decompositid®, B, W):

Leaves: Compute the data set f@#, for all leavesd.

Combine:If d € V(D) is an inner node with successafs,...,d,, ordered by the or-
dering guaranteed by the Kelly-decomposition (we obseeg $uch an ordering can
be computed easily with a greedy algorithm), combine the da&ts computed for
Bsa,, ..., B>g, to adata set for the unidg;” , B>g,.

Update: Update the data set computed in the previous step so thaetheartexu with By =
{u} is taken into account. Usually, the vertexvill have been part of at least some guard
setsiVy, .

Expand: Finally, expand the data set to include guard$lin\ | J, Wy, and also paths starting
atu.
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We illustrate this pattern by briefly presenting an alganitfor computing the winner of
a parity game. The full algorithm can be found in [HKO7]. THegamithm is similar to
the algorithm based on DAG-decompositions, however tharsgipn of guard sets in Kelly-
decompositions makes the presentation more straightfdrwas with DAG-decompositions,
we define a Kelly-decomposition of an aredaas a Kelly-decomposition of the underlying
directed graphiV (A), E(A)).

Theorem 7.23.For anyk, given a parity gaméA, x) and a Kelly-decomposition of of width
< k, determining if Player O has a winning strategy frenf.4) can be computed in polynomial
time.

To prove the theorem, we first need some preparation. Foethef this section fix a parity
game(A, x) wherey : V(A) — P. We assume that the maximal out-degree of any vertex in
V(A) is 2. Using the inert robber game, it is straightforward to shbet the graph resulting
from the modification described in Theorem 2.59 has Kellgttviat most one more than the
original graph.

We recall from the proof of Theorem 6.34 the definitions otitegU, v) and RESULT(U, v)
for a (not necessarily memoryless) strategyor Player 0, a subset of verticés C V(A)
and a vertew € V(. A). We show how, for a fixe& and given a special Kelly-decomposition
(D, B,W) of A of width k, to compute RSULT(B>,4,v) for eachd € V(D) andv € Bx,in
polynomial time. As with Theorem 6.34 we observe thatiag has at mosk guards (1),
|IRESULT(B>4,v)| < (n+ 1)k + 2.

The dynamic programming algorithm can then be presenteallas/t.

Leaves:It follows with the same argument as theavesstep in the proof of Theorem 6.34,
that for any leail € (D), and vertexw € B, the set RSULT(B,, v) can be computed
In constant time.

Combine: Let d be an inner node ob with successord;,...,d,, ordered according to the
ordering guaranteed by (K3). For< i <m, let B, := | J;., B>4, and letB := B, =
U <i<,, B>a;- We aim to compute the setHRULT(B, u) for eachu € B. We observe
thatifi < j andu € B4, then every path from to a vertexv € B4, \ B>4, must go
throughW,. Hence, ifu € B>, then RESULT(B,u) = RESULT(B;, u). We compute
for eachi < m andu € B, the set RSULT(B;,u) by induction oni. Fori = 1,
RESULT(By,u) = RESULT(d;,u). Leti > 1 and letu € B; \ B;_;.

To compute RSULT(B;, u), we do the following. Let = result,(Bsg4,, u) € RESULT(B>g4,, u)
be a set of results against a strategfor Player0. The result set gives us the set of
verticesv € Wy, to which Playerl can force the play againstand also the best priority

he can achieve in doing so. Now,ife W, N B,;_; is a guard contained i;_; then
once the play has reachedt can never return ta@; \ B;_; and continues itB;_; until it
reaches a vertex iW,;. Hence, once the play has reacheave can determine the results
of possible strategies iB;_; from RESULT(B;_1,v).

This suggests the following algorithm for computing®ULT(B;,w). For eachr €
RESULT(B>q4,,u) We compute a seR, of sets as follows. LeR := {(w,p) € r :
w € Wy, \ Wy} be the set of outcomes infor plays which end in vertices im;_;.
Let (wy,p1),- .., (ws, ps) list the elements oRk. For each tuplep = (r4,...,7s) with
r; € RESULT(B,_1,w,) Let R, be defined as follows. For ea¢h, p) € r \ R add(v, p)
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to R,. If (v,q) € r; add (v, max{p,,q}) to R,. Then, add the sek, to R,. Then,
RESULT(B;, u) contains for eacl?, € R, the set ofd-minimal pairs inR,.

Update and ExpandWe now consider how to update the data structure to take atobpaths
that include vertices entering- ;. The argument is similar to tHexpandstep of the proof
of Theorem 6.34, so we refer the reader there for the details.

We observe that each step of the above algorithm, and hea@nthe algorithm, runs in poly-
nomial time. This completes the outline of the proof of Theenr7.23.

7.3.3 Asymmetric matrix factorization

We saw in Section 7.1.2 that the idea of vertex eliminatios wativated by the practical ap-
plication of solving systems of linear equations. Suchaystare more commonly represented
as matrix equationsMx = b, with the goal being to find a solution for thex 1 vector of
variablesx, given anm x n matrix M, and anm x 1 vectorb. A straightforward solution to
such an equation is to fint/ —*, the inverse of\/, to obtainx = A/ ~'b, however a more com-
mon approach is to factorize in such a way that solutions may be easily computed. Cholesky
decompositions and LU-factorizations are two such exasngi¢his. If M/ is anm x n matrix,

an LU-factorization(or LU-decompositionof M is anm x m lower triangular matrix, and
anm x n upper triangular matriX/ such that\/ = LU. If, in addition M is symmetric and
positive definite, then there is an LU-factorization\dfwhereU = L. Such a decomposition
is called aCholesky decompositioWwhen a matrix has an LU-factorization we can solve the
equationMx = b as follows: first we use forward substitution to solug = b, and then
backward substitution to solvéx = y.

The elimination process we described in Section 7.1.2, lalsovn as Gaussian elimina-
tion, is one of the most common methods for computing an Ldfefdzation or a Cholesky
decomposition. More precisely, Gaussian elimination esghocess of transforming a matrix
into an upper triangular matrix via row operations: addingnatiple of one row to another
(including itself), or interchanging two rows (also knows @voting). The resulting upper
triangular matrix is thdJ factor of a LU-factorization, and the row operations can &gre-
sented by a sequence of transformation matrices, the protluhich form theL factor of the
LU-factorization. If the original matrix was symmetric apdsitive definite, this process will
generate a Cholesky decomposition.

Since Gaussian elimination can be used to compute LU-faetozns and Cholesky de-
compositions, it is not surprising that elimination oragis and two associated structures we
introduce here, elimination trees and elimination DAGE, aseful for investigating the com-
plexity of computing these matrix decompositions. We firstie the particular relationship
between graphs and matrices that we are interested in.

Definition 7.24. Let M = (a;;) be a square x n matrix. We defingj,, as the directed graph
with V(Grr) = {v1,..., v}, and fori # j, (v;,v;) € E(Gy) if, and only if, a;; # 0. We also
define the elimination ordering,; as<iy; := (v1,..., V).

When M is a symmetric matrix, we view,, as an undirected graph rather than a bidirected
graph.

One structure that is particularly useful for analysing syetric matrix factorization is the
elimination tree
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Definition 7.25(Elimination tree) Let G be an undirected graph, ardan elimination ordering
for G. Theelimination treedefined by< is a pair(7,\) where7 is a rooted tree and :
V(T) — V(G) is a bijection such that if € V(7) is the parent of € V(7), then\(s) =
ming (Supp,(A(t))).

Liu [Liu90] observed that elimination trees can be used tegtigate many aspects of
Cholesky decompositions, for example the row and columrcttre of the Cholesky factors
can be extracted directly from an elimination tree. Anothleservation, from Bodlaender et
al. [BGHK95], is that the height of an elimination tree givas parallel time required to com-
pute a Cholesky decomposition of a symmetric matrix usingsSian elimination.

In [GL93], Gilbert and Liu introduced a generalization ohahation trees, called elimina-
tion DAGs, which can be similarly used to analyse factororat in the asymmetric case. We
recall that aransitive reductiorof a directed graph is a minimal graph with the same trargsitiv
closure and we observe that an acyclic graph has a uniqustivarclosure.

Definition 7.26 (Upper and Lower elimination DAGs [GL93])Let M be a square matrix that
can be decomposed a¢ = LU without pivoting. Theupper (lower) elimination DAGs the
transitive reduction of the directed gragh (G, respectively).

Gilbert and Liu [GL93] observed that elimination DAGs enjmany properties similar to
elimination trees. For instance, they are an efficient g@ischeme for sparse matrices, and
an upper and lower pair of elimination DAGs are sufficient aptare the path structure of a
graph: if there is a directed path fromto v in the graph, then there is a vertexsuch that
there is a path from to w in the upper elimination DAG, and a path framto v in the lower
elimination DAG. They also showed that when the matrix is sygtric, the upper elimination
DAG is isomorphic to the elimination tree, as is the lowemaghiation DAG when its edges are
reversed.

The Kelly-decomposition constructed in the proof of Theerg11 captures the upper and
lower elimination DAGs in a very direct manner.

Theorem 7.27.Let M be a square matrix that can be decomposed/as= LU without piv-
oting. Let(D,B, W) be the Kelly-decomposition &f,, obtained by applying the proof of
Theorem 7.11 with elimination ordet,;. Then

(@) (D, B) is isomorphic to the lower elimination DAG, and

(b) Gu = (V(Gum),{(v,w) : w € W,}), thus the upper elimination DAG is isomorphic to the
transitive reduction of the relatiofi(v, w) : w € W, }.

Proof. Forv € V(Gy), let X, = {v} U {w € V(Gun) : w <y v}. First, from Theorem 1
of [RT78]:

(E(G:)T¢ = {(v,w) : w <5 v, and there is a path fromto w in Gy [X,]},

whereR?¢ denotes the transitive closure Bf We observe that in the construction of the Kelly-
decomposition£ (D) is the transitive reduction of the right-hand side. Singe¢tnstruction,
elements of5 are singletons, we can vief§ as a bijection betweel (D) andV (G), and the
first result follows. Secondly, from Theorem 4.6 of [GL93} Wwave

E(Gy) = {(v,w) : v<y w, and there is @’ € Reach, (v) with (v',w) € E(Gy)}-
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The second result then follows from Lemma 7.5, which shoves ffw, w) : w € W,} =
{(v,w) : w € supp,, (v)} is equivalent to the right-hand side. 0

We can use the results of [GL93] to make the following obsrwawhen we construct
Kelly-decompositions on undirected graphs.

Corollary 7.28. Let G be an undirected graphg an elimination order org and (D, B, W)
the Kelly-decomposition @f (considered as a bidirected graph) obtained by applyingatoef
of Theorem 7.11 with elimination ordet. ThenD is a tree, and more preciselyP, B) is
isomorphic to the elimination tree associated with the (texted) elimination ordek.

7.4 Comparing Kelly-width and DAG-width

In this section we use graph searching games to compare-Welhh to DAG-width and di-
rected tree-width. In the undirected case, all the gamesonsider require the same number
of searchers, however we show that in the directed case #nergraphs on which all three
measures differ by an arbitrary amount. We show that Kellgtwbounds directed tree-width
within a constant factor, but the converse fails as therelasses of graphs of bounded directed
tree-width and unbounded Kelly-width. We also provide evice to suggest that Kelly-width
and DAG-width are within a constant factor of each other.

We recall from Definition 6.1 the cops and robber game usedhawacterize DAG-width.
For convenience, we will refer to this as the visible robkaang. In Example 5.2.1 we discussed
another cops and robber game that partially characterimesteld tree-width: the strongly con-
nected visible robber game. The following theorem summeariheorems 6.15 and Lemma 5.41:

Theorem 7.29.LetG be a digraph.

1. G has DAG-width if, and only if,k cops have a monotone winning strategy in the visible
robber game org;.

2. G has directed tree-widtk< 3k + 1 or k£ cops do not have a winning strategy in the
strongly connected visible robber game®n

For the undirected case, the following proposition sums egults from [DKT97] and
[STO3].

Proposition 7.30. On any undirected grap#, the following are equivalent
1. k cops have a winning strategy in the visible robber game.

2. k cops have a robber-monotone and cop-monotone winning giratethe visible robber
game.

3. k cops have a winning strategy in the inert robber game.
4. k cops have a robber monotone winning strategy in the inerteolgame.
5. The tree-width of is at mostt — 1.

It follows from these results that Kelly-width is a genezalion of tree-width in the follow-
ing sense.
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Corollary 7.31. Let G be an undirected graphG has tree-widthx if, and only if, ? has
Kelly-width k.

On general directed graphs, the situation is more complicais we saw in Theorem 6.11,
monotonicity is not sufficient for the visible robber gameaeltzer and Ordyniak [KOO7] have
also recently shown that monotonicity is not sufficient fog tnert robber game.

Theorem 7.32([KOO07]). For anym € N, there exists a graph for whidhm cops can capture
an invisible, inert robber butm cops are required to do so with a robber-monotone strategy.

Of course, as with Theorem 6.11, this does not preclude thsilpibty that the number of
cops required for monotonicity is bounded by some factohefrtumber of cops required with
any strategy.

Open problem 7.33.Does there exist a functiofi: w — w such that for all digraphgj, if k
cops can capture an inert robber ghthen f(k) cops can capture the robber with a robber-
monotone strategy?

Before we compare Kelly-width with directed tree-width and®width, we first observe
that Proposition 7.2 allows us to compare Kelly-width anckcied path-width. As we men-
tioned previously, Baat [Bar05] observed that the directed path-width of a dignaph one less
than the minimum number of cops required to capture an ioleisobber with a cop-monotone
strategy. Thus, using the observation that a cop-monotoategy in the cops and inert robber
game is also robber-monotone, and the example from Prapo$i39, we obtain the following
relationship between Kelly-width and directed path-width

Proposition 7.34.
(i) If a directed graphg has directed path-width, it has Kelly-width at most + 1.

(i) There exists a family of graphs with arbitrarily largerdcted path-width and Kelly-width
2.

Our next comparison result shows that a robber-monotonaimgnstrategy in the inert
robber game can be translated to a (not necessarily monotoneing strategy in the visible
robber game.

Theorem 7.35.Let G be a directed graph. Ik cops can catch an inert robber with a robber-
monotone strategy of, then2k — 1 cops can catch a visible robber ¢h

Proof. Supposé: cops have a robber-monotone winning strategy in the inbligngame on a
digraphG. By Theorem 7.9 this implies that there is a directed elimamabrdering<t on G of
width < k£ — 1. We use the elimination ordering to describe the winningtsetry of2k — 1 cops
against a visible robber, thereby establishing the result.

The cops are split into two groups,cops called thélockersandk — 1 cops called the
chasers Similarly, the cop moves are split in two phases, a blockimaye and a chasing phase.

In the first move,k cops are placed on the highest elements with respect o These
cops form the set of blockers. Let the robber choose someesliam This concludes the first
(blocking) move. We observe:

If v is the<-smallest vertex occupied by a blocker, then every direptg )
from v to a vertex greater thamhas at least one vertex occupied by a cop.
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This invariant is maintained by the blocking cops during phey. Now suppose afterrounds
have been played, the robber occupies vertaxd the blockers occupy vertices ; so that
the invariant ¢) is preserved. Let be the<-smallest element itX” and letC1, . .., C, be the
set of strongly connected componentsifu’ : v < u}|. Further, let— be a linear ordering
onC := {C},...,Cs} so thatC; C Cj if, and only if, the <-maximal element irC; is <-
smaller than theg-maximal element of;. Now the cops move as follows. Lét € C be the
component such thate C and letw € C' be the<-maximal element ir”’. The cops place the

k — 1 cops not currently on the graph on sypp). These cops are the chasers. As the chasers
approach, the robber has two options. Either he stays witham he escapes to a vertex in a
different strongly connected componefit. If the robber runs to a vertex € C orx € '

for someC’ C C then after the chasers land 6n:= supp,(w) there is no path from: to a
nodeu such that: > v’ for the <-minimal vertexw’ in S. Hence, the chasers become blockers
and the chasing phase is completed. Otherwise, if the roddmapes to 8" with C' C ',
then the chasers repeat the procedure and move to gufjpfor the <-maximal element in
C’. However, as the robber always escapes to-larger strongly connected component and
also can not bypass the blockers, this chasing phase musaftendinitely many steps with the
robber being on a vertex € C for some component’ and the chasers being on syjp)

for the <-maximal element irC'. At this point the chasers become blockers. One of the old
blockers is now placed om and all others are removed from the board. The copanakes
sure that in each such step the robber space shrinks by tbleasertex. By construction, the
invariant in ) is maintained. Further, as the robber space shrinks byaat ;e after every
chasing-phase, the robber is eventually caught by the cops. O

An immediate consequence of this is that the Kelly-width g@fraph bounds the directed
tree-width of the graph.

Corollary 7.36. LetG be a directed graph with Kelly-width. ThengG has directed tree-width
< 6k — 2.

Since it is not known whether the number of cops required fasiraning strategy in the
visible robber game bounds the number of cops required foor@otone winning strategy, we
cannot obtain a similar bound for DAG-width. We can, howeask whether we can improve
the bound. That is, assuming thatops have a robber-monotone winning strategy against an
invisible, inert robber can we define a winning strategy &sslthar2k — 1 cops in the visible
robber game? Although it might be possible to improve thaltegthe next theorem shows that
we cannot do better than wi@k cops.

Theorem 7.37.For everym € N, there is a graph such th&tn cops have a robber-monotone
winning strategy in the inert robber game but no fewer thancops can catch a mobile visible
robber.

Proof. Consider the graply in Figure 7.1. We show that ofi, 3 cops do not have a (non-
monotone winning) strategy to catch a visible robber, haxdvcops do. Consider the par-
tition of V(G), H = {{v1,va,va},{vs},{vs}, {vs}}. The strategy for the robber agairsst
cops is to move to any element ®&f which is not occupied by a cop. As long as the rob-
ber moves to one ofv,, vy} when the cops occuplus, vs, vs }, it will always be possible for
him to move to such an element when the cops move. Howéwaps can capture a visi-
ble robber with a monotone strategy by occupying the follmwsequence of sets of vertices:

{U3, V4, Vs, U6}7 {U2, U3, Us, U6}7 {Uh V2, U3}-
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Figure 7.1: Grapl§y showing the difference between DAG-width and inert roblsng

On the other hand, cops suffice to capture an invisible, inert robber with a eraimonotone
strategy by occupying the following sequence of sets ofiasest {v,, vs, vs}, {vs,vs,v6},
{va, v5,v6}, {v2,v3}, {v1,v2,v3}. The result follows by taking the lexicographic product of
this graph with the complete graph envertices. O

Since4 cops can capture a visible robber with a monotone strateghemraph in the
previous proof, we have the following:

Corollary 7.38. For all m € N there are graphs of DAG-widtfvn and Kelly-width3m.
Despite this; bound, for graphs of small Kelly-width we can do better.
Theorem 7.39.For k = 1 or 2, if G has Kelly-widthk, G has DAG-width.

Proof. If G has Kelly-width1, then it must be acyclic, as all guard sets are empty. Thussit h
DAG-width 1. If G has Kelly-width2, then it has an elimination ordering = (vq, v, ..., v,)

of width 1. A cop-monotone strategy for two cops against a visible eoligas follows. Initially,
leti = n and place one cop om. At this point, the robber is restricted {@,...,v;_1}. Let

j < i be the maximal index such that the robber can regclrlace a cop on;. After the cop
has landed, we claim that the robber is unable to reachdahdv;. For otherwise, let be
the maximal index such that the robber can reacfwith cops onv;, andv;) and fromv, can
reachw; (with a cop onw;) andv, (with a cop onv;). By the maximality ofj, » < j. Lets > r

be the first index greater tharnwhich occurs on a path from. to v; that does not go through
v;, andt > r be the first index greater thanwhich occurs on a path from, to v; that does
not go throughy;. Then from the maximality of, s # ¢. Furthermore{v,,v,} C supp,(r),
so|supp,(v,)| > 1, contradicting the width of the ordering. So we can remowedbp from
whichever vertex the robber can no longer reach without gimgthe robber space, and either
the robber is now restricted {0y, . . ., v;} or the maximal index which the robber can reach is
smaller. Clearly, this is a monotone winning strategy for teps. O

We now turn to the converse problem, what can be said aboutehg-width of graphs
given their directed tree-width or DAG-width?
Firstly we observe the following analogue of Proposition for Kelly-width.

Proposition 7.40.For anyj, k with2 < j < k, there exists agrapﬁﬁj such that KeIIy—width]}j) =
j and Kelly-width{ (7,7 )?) = k.
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Proof. Consider the grapf# from Proposition 6.7. In the proof of Proposition 6.7, theat-
gies described for the cops and the robber are also winniagggtes in the inert robber garfe.
0

It follows, using the same argument of Proposition 6.37 thate are families of graphs of
bounded directed tree-width and unbounded Kelly-width.

Corollary 7.41. There exist families of digraphs with directed tree-widtland unbounded
Kelly-width.

Our final result is a step towards relating Kelly-width to DA@dth by showing how to
translate a monotone strategy in the visible robber gamétotanecessarily monotone) strategy
in the inert robber game.

Theorem 7.42.1f G has DAG-width< k, thenk cops have a winning strategy in the inert
robber game.

Proof. Given a DAG-decompositiofD, X') of G of width &, the strategy fok cops against an
invisible, inert robber is to follow a depth-first search be tiecomposition. More precisely, we
assume the decomposition has a single roand we have an empty stack of nodegof

1. Initially, place the cops oX, and push- onto the stack.

2. At this point we assumeé is on the top of the stack and the cops areXgn We next
“process” the successors &fn turn. To process a successbiof d, we remove all cops
not onX,; N Xy, place cops oX , pushd’ onto the stack, and return to stepNote that
a node may be processed more than once.

3. Once all the successors of a node have been processedpweepwde off the stack and
if the stack is non-empty, return to step

Because the depth-first search covers all nodes of the DAG emzElall vertices of the graph
are eventually occupied by a cop, the robber will be forceshtwe at some point. Due to the
guarding condition for DAG-decompositions, when the rotibdorced to move this strategy
will always force the robber into a smaller region and evaliyucapture him. O

Again we observe that it is unknown if, in the inert robber garthe number of cops re-
quired to capture the robber with a robber-monotone styassigounded by the number of cops
required to capture him with any strategy. So this resulsdu# allow us to directly compare
Kelly-width and DAG-width. However, we strongly believeatithe number of cops required
for monotone strategies is bounded in both the inert robberegand the visible robber game,
giving us the following conjecture:

Conjecture 7.43. The Kelly-width and DAG-width of a digraph lie within constaattors of
one another.

2Indeed, the winning strategy for the robber is winning eehe robber is visible and inert.



Chapter 8

Havens, Brambles and Minors for
Directed Connectivity

In this chapter we present some preliminary work towardsuetire theory for directed graphs
based on directed connectivity. The aim of such a strucheery would be to obtain general-
izations of some of the significant results for undirecteapiis, for example finding a directed
analogue of the Graph Minor Theorem. However, as we showm dggermining some of the
basic building blocks of such a structure theory leads toesonteresting open problems. We
work on the assumption that DAG-width, Kelly-width and th@enrmonotone versions of their
cops and robber games are all approximately the same andhegeidre be used to measure
the directed connectivity of a digraph. Then, using the pserthat DAG-width or Kelly-width
measures the complexity of a graph, we consider the follgwivo questions: What structural
features are present in directed graphs which are “compjextid what relation on directed
graphs indicates “structural simplification”?

As we observed with Theorem 4.7 the existence of a bramblehavan in an undirected
graph indicates that the tree-width is not going to be sn&ilarly, Theorems 4.7 and 4.11
show that the existence of the natural generalizations wérmand brambles imply that the
directed tree-width is not going to be small. So in order tdrads the first question, we con-
sider generalizations of havens and brambles which carresip DAG-width and Kelly-width.
Although we are unable to show full equivalence as with Teew 4.7 and 4.11, we can show,
via cops and robber games, that they do provide obstructorri3AG-width and Kelly-width.
That is, their existence in a graph places restrictions erDAG-width or Kelly-width of that
graph.

Towards finding a relation which indicates structural sifigation, we consider the prob-
lem of extending the minor relation to directed graphs. Asmentioned in Chapter 4, the
minor relation is an important relation in the structuraddhy of undirected graphs as it indi-
cates whether one graph is structurally more simple thathanoSo having a minor relation
for directed graphs is the cornerstone of any digraph strag¢heory. We argue that the existing
definitions in the literature of minors for directed grapine aot sufficient, in the sense that a
structure theory based on them would not be able to produeiasiresults to those of undi-
rected graph structure theory. While it may be the case tea¢tis no appropriate relation for
directed graphs, we provide some examples which may takievhastigation further.

142
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8.1 Havens and brambles

The aim of this section is to define various structural progemhich may lead to a minimax
theorem for DAG-width and Kelly-width, similar to Theorenv4 To achieve this, we introduce
some generalizations of havens and brambles and show hgweélee to DAG-width and

Kelly-width. We recall from Chapter 4, the definitions anddhem that we wish to generalize:

Definition 4.5 (Haven) Let G be an undirected graph akd= N. A haven of ordek in G is a
function3 : [V(G)]<F — P(V(G)) such that for allX C V(G) with | X| < k:

(H1) 5(X) is a non-empty connected componentiof X, and
(H2) If Y C X, then3(Y) 2 B(X).

Definition 4.6 (Bramble) LetG be an undirected graph. Bxamblein G is a set3 of connected
subsets o/ (G) such that for all pairs3, B’ € B eitherB N B’ # (), or there existdu, v} €
E(G) with v € B andv € B’. Thewidth of a bramble5 is the minimum size of a set which
has a non-empty intersection with every elemens of

Theorem 4.7([ST93]). LetG be an undirected graph. The following are equivalent:
1. G has tree-width> k£ — 1
2. G has a haven of ordet.
3. G has a bramble of widtk.

We saw with Theorems 4.11 and 4.12, that the natural extersficghese definitions to
directed graphs — replacing “connected components” witfofgly connected components” —
results in structural properties closely related to deddtee-width. In this section we introduce
some less obvious extensions that are closer to DAG-widihKatly-width. One of the major
obstacles to finding such definitions, and the reason whyttensions we consider are less
obvious is that the definitions have to be dependent on edgetidin. That is, a bramble
or haven of a graph should not necessarily be a bramble onhaivthe graph obtained by
reversing the direction of the edges. The above definitidrieeen and bramble do not have
obvious extensions which satisfy this property, howeverdgfinitions we introduce next are
dependent on edge direction.

Definition 8.1 (D-Haven) Let G be a directed graph aride N. A D-haven of ordet in G is
a functiong : [V (G)]<F — P(V(G)) such that for allX C V(G) with | X| < k:

(DH1) B(X) is a non-empty subset &f(G \ X), and
(DH2) If Y C X thens(Y) D B(X) andVy € 5(Y), 5(X) N Reachy(y) # 0.

As suggested by the nomenclature, and as we observed in €bapteundirected graphs
havens describe winning strategies for the robber in thes emyal visible robber game. That
is, when the cops are oi, 3(X) suggests the locations the robber should occupy to defeat
the cops. The analogous result for the game on directed gamgests that D-havens are the
“correct” extension of havens for DAG-width. More precigel

Proposition 8.2. Let G be a directed graph. The robber can deféatops in the visible cops
and robber game og if, and only if,G has a D-haven of ordef + 1.
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Proof. If G has a D-havers of orderk + 1, then the strategy for the robber is to remain in
B(X) whenever the cops are dn. The D-haven axioms guarantee that this is always possible.
More precisely, we define the following strategy for the reblp(X, X', R) = Reacl, x (')
for somer’ € 3(X') N Reachy (xnx/)(r). We observe that at every positioX, r), r € 5(X)
and show that this implies that such a choice is always pless#inceX O X' N X, it follows
from (DH2) thatr € 5(X N X’). Then, sinceX’ O X N X', B(X’) N Reachxnxn(r) # 0,
sop is well defined. Finally, since(X, X' ) € Reacl, xnx(r) by definition, p is a valid
strategy for the robber in the cops and visible robber game.

For the converse, suppose the robber has a winning strateggainstc cops. Define, for
X e [V(9),

B(X) = U{R : the robber wins front X, R) playingp}.

We show that? is a D-haven of ordek + 1. We observe thgi(, X,V (G)) C 5(X), so ap is
awinning strategy3(X) is non-empty for allX € [V (G)]=*. Thus (DH1) holds. For (DH2) we
observe from the definition of the cops and visible robberg#mat if the robber can win from
(X, R) then he can win frontY, R) forall Y C X. Thus, ifY C X, theng(Y) 2 5(X). O

Immediately from this result and Lemmas 6.18, 6.20 and &@Xnbserve that D-havens
behave as we expect under subgraphs, lexicographic proahattdirected union. Also as a
consequence of Proposition 8.2, the existence of a D-hawardigraph imposes a restriction
on the DAG-width of the graph.

Corollary 8.3. LetG be a digraph. IfG has a D-haven of width then the DAG-width of; is
at leastk.

Since a D-haven corresponds to a winning strategy for thieeioagainst any cop strategy
and DAG-width corresponds to monotone winning stratedles converse of Corollary 8.3 is
equivalent to the monotonicity question for the cops aniblesobber game: it cops have a
winning strategy, dé& cops have a monotone winning strategy? As there are grapérewiore
cops are required to capture the robber with a monotonegirfO07], we know that this does
not hold in general. However, a result similar to Theoreni4vbuld provide a solution to the
more general monotonicity problem posed in Open Probler2.6.1

Obdrzalek [Obd06] observed that the relaxation of connected corapts in (H1) to subsets
in (DH1) is necessary if we require havens to correspondraiegfies for the robber. More
precisely, let us say that a D-haveh,is connectedf it also satisfies:

(DHY) B(X) is a non-empty weakly connected componeng af X .

Proposition 8.4 ([Obd06]). There exists a directed gragh such that the robber can defeat
cops in the cops and visible robber game@rbut there is no connected D-haven of orden
g.

The graph that illustrates this result is shown in Figure &.Is difficult to define a notion
of haven that corresponds to the inert robber game for twsorea First, because the motility
of the robber is dependent on the move of the cops, there mayhbenber of “responses” to a
given cop position in this game. So having a function defingg for sets of cop locations is not
going to be sufficient. Secondly, as we observed in Chaptensl 5 athe cops and robber game
with an invisible robber is essentially a single player gaiieus there is only one strategy for
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Figure 8.1: Graph to show that D-havens may be disconnected

the robber and it is either winning or it is not. So having aciom which dynamically suggests
a strategy for the robber is not going to be particularlyreséing. A more practical approach
would be to identify the structural features which are pnésehen the strategy for the robber
IS winning. This leads us to the problem of extending the defimof brambles.

Before we introduce the extension of brambles we are intdldst we need to introduce
the concept of initial and terminal components.

Definition 8.5 (Initial and Terminal Component) et G be a directed graph, arfd a strongly
connected component gf. H is aninitial componentf it is closed under predecessors. That
is, if v € V(G) with (v,w) € E(G) for somew € V(H), thenv € V(H). H is aterminal
componentf it is closed under successors. That isyiE V(G) with (w,v) € E(G) for some
w € V(H), thenv € V(H).

We denote by In{tG) the set of all vertices in initial components, and Tégmthe set of
all vertices in terminal components. For a subset of vestige_ V' (G) we write Init(B) and
Term(B) for Init(G[B]) and TerniG[B]) respectively whe is clear from the context.

Another way to view initial and terminal components are asribots and leaves (respec-
tively) of the block graph ofj: the directed acyclic graph with the strongly connected mom
nents ofG as vertices and an edgé€’, C’) if there is an edge iy from some vertex irC' to
some vertex irC’. With this interpretation it is straightforward to show thaitial and termi-
nal components are well-behaved with respect to the stalateiations for directed graphs we
consider important.

Lemma 8.6. LetG, G’ andG” be non-empty directed graphs antdC G an initial (terminal)
component of;.

1. If @' is a subgraph o§ with C NV (G’) # () then there is an initial (terminal) component
C" C G’ such that”’ C C.

2. If G is a directed union of/’ andG” thenC' is either an initial (terminal) component of
G, or an initial (terminal) component af,.

3. If G’ is a directed union off and G” (directed union ofG” and G) thenC is an initial
(terminal) component @j’.

4. If either|C| > 2 or G’ is strongly connected, therie G’ is an initial (terminal) component
ofGed'.

5 IfG =G eG"thenm (C) = {v: (v,w) € C}is an initial (terminal) component @’.

Definition 8.7 (Initial bramble) Let G be a directed graph. Amitial bramblein G is a set
B of subsets of/(G) such that for all pairs3, B’ € B and for allx € Init(B), there exists
y € Init(B’) such thaty € Reachkuniys) ().
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Definition 8.8 (Terminal bramble) Let G be a directed graph. ferminal bramblen G is a set
B of subsets o/ (G) such that for all pair$3, B’ € B and for allz € Term(B), there exists
y € Term(B’) such thaty € Reachempyup (7).

Definition 8.9 (Bramble width) Let G be a directed graph arf8lan initial or terminal bramble
in G. Thewidth of B is the size of the smallest hitting set6f That is, the size of the minimal
X CV(G)suchthatX N B # () for all B € B.

Although it would appear that initial and terminal brambés similar entities, we show
that there are graphs where the smallest width of an init@iible differs from the smallest
width of a terminal bramble. It might also seem that, sincenéral component of a grap$ is
a terminal component of the graphi® obtained by reversing the direction of the edge§ ahat
an initial bramble inG is a terminal bramble iiG°P. However, the ordering of the quantifiers
in each of the definitions means that this is not necessdrdyctaise: an initial bramble iG
is, in G°, a set of subsets such that for all pal#sB’ and allz € Term(G°?[B]), there exists
y € Term(G°P[B']) such thatr € ReacRorermsyup(y). Before we show how initial and
terminal brambles differ, we show how they correspond to BRGth and Kelly-width, and
establish some robustness results.

Lemma 8.10. LetG be a directed graph.

1. If G has an initial bramble of widtl: then the robber can defeat— 1 cops in the cops
and visible robber game.

2. If G has a terminal bramble of width then the robber can defe&t— 1 cops in the cops
and inert robber game.

Proof. 1 Supposé& has an initial brambl# of width k. Then, for any sek with | X| < £ —1
there exist®3x € B such thatBx N X = (). The strategy for the robber is to be on some vertex
in Init(Bx) whenever the cops are located &n It is clear from the definition of an initial
bramble that such a move is always possible. As the robbétesta do this forever, it follows
that this is a winning strategy for the visible robber agains 1 cops.

2: Now supposé has a terminal bramblB of width £. Again, for any sefX’ with |.X| <
k — 1 there existsBx € B such thatBy N X = (). The “strategy” for the robber is, when he
can move and when the cops are &nto move to the first element of a strongly connected
component of TerfBy ) that will be occupied by the cops. More precisely, we show #lfter
every cop move, there exist$ € B such that TerrfiB) is contaminated. Clearly this is true at
the beginning, as every vertex is contaminated. Now supit@seops are moving fronX to
X’ and for someB € B and some terminal componefitof G[B], X N C' = () and there exists
a contaminated vertexe X' N C. As By, N X’ = (), andC'is a terminal component, the path
in Term(B) U Bx: from v to somew € Term(Bx) is cop-free. ThusBx- is now an element of
B such that TerriBy-) is contaminated. O

An immediate corollary from the game characterizations AEBwidth and Kelly-width is
that initial and terminal brambles provide obstructionsB&G-width and Kelly-width.

Corollary 8.11. LetG be a directed graph.
1. If G has an initial bramble of widtlk thenG has DAG-width> k.



8.2. DIRECTED MINORS 147

2. If G has a terminal bramble of width theng has Kelly-width> .

Unfortunately, it is not known whether the converse to Len@81i® holds.

It is relatively straightforward to show that brambles behmanner to the cops and robber
games under various graph operations. For example a brarhbalgraph is a bramble of any
supergraph, and the width of a bramble increases by an apgie@factor under lexicographic
products. This strongly suggests that the converse of Letfitadoes hold.

Conjecture 8.12. LetG be a directed graph.

1. If the robber can defedt — 1 cops in the cops and visible robber game®theng has
an initial bramble of widthk.

2. If the robber can defedt — 1 cops in the cops and inert robber game @itheng has a
terminal bramble of widttt.

We observe that since monotonicity is not sufficient in gittegs and robber game [KOO07],
we know that the converse of Corollary 8.11 does not hold. Hewes with D-havens, a result
along the lines of Theorem 4.12 would resolve Open Probletd&nd 7.33.

We conclude this section by combining these results withesogsults from Chapter 7 to
show that initial brambles and terminal brambles are dsffier

Proposition 8.13. For all m € N, there exists a directed graph with an initial bramble of width
4m but no terminal bramble of widtlk 3m + 1.

Proof. Consider the grap@ in Figure 7.1. As we observed in the proof of Theorem 733ps
suffice to capture an inert robber gn We also showed th&t has an initial bramble of width:
{{v1,va,v4}, {vs}, {vs}, {vs} }. The result follows by taking the lexicographic product loit
graph with/C,,,, the complete digraph om vertices. O

8.2 Directed minors

In this section we investigate the problem of finding a relatbn directed graphs which rep-
resents structural simplification. Such relations are wibogs throughout mathematics, for
example in algebra or model theory homomorphisms desctibetgral simplifications, and in
geometry or topology homeomorphisms are the key structalations. Graphs can be viewed
both as relational structures and as topological comp|escethere are well-defined notions of
graph homomorphisms and graph homeomorphisms. Howevaintbrected graphs at least,
the minor relation is arguably the most suitable relatiarcfamparing fundamental graph struc-
tural properties such as connectivity and cyclicity. Itiialy, a graphG is a minor of a graph
H if G can be embedded iH modulo connected sets. That is, if we consider connectedrset
‘H as “vertices”, therj is a subgraph of this “graph”. More precisely,

Definition 8.14 (Minor). Let G andH be undirected graphg. is aminor of H, writtenG < H,
if there exists a functiog : V(G) — P(V(H)) which maps distinct vertices to disjoint sets
such that:

e Forallv € V(G), H[¢(v)] is a connected graph, and
e Forall{v,w} € E(G) there exist{v',w'} € E(H) such that' € £(v) andw’ € {(w).
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So why is the minor relation a good indicator of structuraigiification? As we observed
above, there are well-defined notions of graph homomorphena graph homeomorphisms.
A homomorphism preserves relational structure and a horogansm preserves topological
shape, so injective homomorphisms or subgraph homeonsongtwould seem to be reasonable
indicators of structural simplification. However, the mirrelation subsumes these. We see
from the definition that the minor relation can be considexg@neralization of injective graph
homomorphismsg is a minor ofH if there is a homomorphic-like injective map frov(G) to
connected sets @f. Presently we will also show thatd@ is homeomorphic to a subgraph&f
theng is a minor ofH. So the minor relation can be seen as a generalization ofrblattional
and topological structure simplification. We now turn to gineblem of finding an extension of
the minor relation to directed graphs which enjoys similaperties.

The definition of a minor has two obvious extensions to degdgraphs: either map vertices
to weakly connected sets or map vertices to strongly coedestts. However, as we argue
below, neither of these truly reflect the notion of structsranplification that complexity mea-
sures like directed tree-width, DAG-width and Kelly-widthiggest. In the remainder of this
section we identify the characteristics of the minor relatihat make it useful and we introduce
several definitions of digraph minor relations and complaeat against these criteria. First we
show how we can view the minor relation operationally, and liois implies that the minor
relation is a generalization of subgraph homeomorphism.

Definition 8.15 (Edge contraction)Let G be a graph, and = (v, w) € E(G). The graphg’
obtained from7 by contractinge is defined as:

o V(G") =V(9)\{v},

o E(G) = (E(G)U{(u,w): (u,v) € E(G)}U{(w,u): (v,u) € E(G)}) \{(u,), (v,u) :
ueV(g)}.

The following result follows easily from the definitions arsdoften used as an alternative
definition of the minor relation.

Lemma 8.16. LetG and’H be undirected graphs. The following are equivalent:
1. G is a minor ofH,
2. G is isomorphic to a subgraph of a graph obtained by contragtdges of{, and
3. G is isomorphic to a graph obtained by contracting edges oftagsaph ofH.

Proof. 1 = 2: Supposej is a minor of H and let : V(G) — P(V(H)) be the function
witnessing this. Le#{’ be the graph obtained frofit by contracting, for each € V(G) the
edges inH[¢(v)]. Now ¢ can be viewed as an injective mapping fréf(G) to V(H’) such that
for each{v,w} € E(G), {{(v).&(w)} € E(H'). Thatis, is an embedding of in H’, sog is
isomorphic to a subgraph @{’, a graph resulting from contracting edges-of

2 & 3. Let us view the subgraph relation as the operation of dejetdges and isolated
vertices. That isg is a subgraph of{ if G can be obtained by deleting edges and isolated
vertices of H. We observe that edge and isolated vertex deletion and emgeaction com-
mute, that is we obtain the same graph independent of the ofdlee operations. Thus if we
perform all edge contractions first and then all deletion®iain the same graph by perform-
ing all deletions first followed by all edge contractions amxk versa. Thus any subgraph of a
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graph obtained by contracting edges is a graph obtainedriyamting edges of a subgraph and
conversely.

3 = 1. Suppos€j is isomorphic to a graph obtained by contracting edgelg’ovhere’H’
Is a subgraph of{. For convenience, we will assume tltats a graph obtained by contracting
edges ofH{’. For eachy € V(G) defineé(v) as the set of vertices € V(H’) such that there is a
path fromw to v consisting of edges which are contracted to obgaifrom the definition of,
H[E(v)] = H'[€(v)] is connected. Now suppoge, w} € E(G). It follows from the definition
of edge contractions that there exigts, w’'} € E(H’) such that there are paths frarhto v
and fromw’ to w consisting of edges which are contracted to obgiThat isv’ € £(v) and
w' € &(w). AsV(H') € V(H), his a function fromV(G) to P(V(H)), sogG is a minor of
H. O

Indeed, as subgraphs and edge contractions are well-dédingidected graphs, this lemma
suggests the following natural definition of a minor relatan directed graphs.

Definition 8.17 (Minor for digraphs) Let G and’H be directed graphsg is a minor of H,
G < H, if G is isomorphic to a graph obtained froki by a sequence of edge and isolated
vertex deletions and edge contractions.

It is clear from Lemma 8.16 that this definition is equivalémthe minor relation on the
underlying undirected graphs, hence the notation. That is,

Proposition 8.18. LetG andH be digraphsG < H if, and only if,G < H.

We also observe that th€-minor relation corresponds to the weakly connected “raditur
generalization of the minor relation.

Proposition 8.19. Let G and ‘H be digraphs.G < 'H if, and only if, there exists a function
¢€:V(G) — P(V(H)) such that:

o if v # wthen¢(v) is disjoint from¢ (w),
e forall v e V(G), H[{(v)] is a weakly connected graph, and
e forall (v,w) € E(G) there existgv’, w’) € E('H) such that' € {(v) andw’ € {(w).

These observations show that the minor relation has a ktfaigvard extension to directed
graphs. However, just the simple extension of tree-widtlditected graphs is not an ideal
measure of complexity, we argue below that this definitionas restrictive enough to be a
suitable relation for structural simplification for digtegp In particular a minor of an acyclic
digraph need not be acyclic, which goes against our tenetthalic graphs are structurally
the least complex graphs. However, all the minor relatioasntroduce in the Section 8.2.2 are
restrictions of this relation.

Lemma 8.16 also demonstrates how minors can be seen as algeatem of subgraph
homeomorphisms. First we recall the definition of a subgfagheomorphism.

Definition 8.20 (Subgraph homeomorphismiet G and’H be (directed) graphs. We s&y
is homeomorphic to a subgraphf H if there is an injective functiom : V(G) — V(H)

and a mapping from edges ofj to pairwise internal-vertex-disjoint paths s such that for
e = (v,w) € E(G), p(e) is a (directed) path from(v) to n(w).
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Lemma 8.21. Let G and’H be undirected graphs. ¥ is homeomorphic to a subgraph &f
theng is a minor ofH.

Proof. We observe that i; is homeomorphic to a subgraph &f, theng is isomorphic to a
graph obtained from a subgraph’fby repeatedly replacing vertices of degPewith an edge
joining its neighbours. But this operation can also be vieagdontracting edges that have at
least one endpoint with degréeThereforeg is isomorphic to a graph obtained by contracting
edges of a subgraph &f, so by Lemma 8.167 is a minor ofH. O

8.2.1 What makes a good minor relation?

We now consider the properties we expect a reasonable d&finfta minor relation for directed
graphs to satisfy. First and foremost, the relation shoesphect digraph complexity. That is,
if G is a minor of’H then G should not be more structurally complex thafh But which
notion of digraph complexity should we use? As we mentionetie start of the chapter we
are primarily interested in a relation corresponding t@cted connectivity, so DAG-width or
Kelly-width or their associated cops and robber games wbelsuitable. However, there is also
no known appropriate relation for strong connectivity, smalso consider directed tree-width.
In Section 8.2.3 we consider various graph properties ttapeeserved under the operation
“taking a minor” and use these to identify unsuitable caatid.

The second property we are interested in is being able taroimeralizations of theorems
concerning the minor relation. In particular, we are conedrwith trying to extend two results:
the Graph Minor Theorem, which asserts that the minor mias a well-quasi order, and the
algorithmic result that for a fixed gragti, determining if{ is a minor ofG can be decided in
cubic time. The latter result implies that any class charazd by a finite set of excluded mi-
nors can be decided in polynomial time, and the former insggl@t any minor-closed property
can be characterized by a finite set of excluded minors. Afjhove show that many of our
defined relations fail to satisfy this property, the invgation raises some interesting questions.

Our final requirement for a reasonable notion of a minor i@hefor directed graphs is that it
should be an extension of the minor relation for undirectegblys. In particular, if and’H are
undirected graphs such thais a minor ofH then? should be a minor of . Furthermore, it
should also generalize subgraph homeomorphisms (fortdaegraphs). That is, if we replace
internal-vertex-disjoint paths with single edges we sti@ldtain a minor of the original graph.
Although many of our defined relations do satisfy both thespiirements, some interesting
relations do not, including the strongly connected “ndtuganeralization of the minor relation
and two relations which occur in the literature: the butyeniinor relation and the topological
minor relation.

8.2.2 Directed minor relations

In this section we define several minor relations for digeaplVe adopt the operational defini-
tion of minor implied by Lemma 8.16 and generate variatiopstnsidering different restric-
tions on the edge contraction operation. For the resultsstabish, it is convenient to consider
two types of edge contraction operation: one which cordrasingle edge, and one which con-
tracts multiple edges simultaneously. We call the first kedige contractionsind the second
set contractionsWe observe that when a sequence of edge contractions &oenped, it does
not matter in which order they are performed, the resultiraplgs are all isomorphic. Thus to
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“simultaneously” contract a set of edges, we can contraantindividually in some arbitrary
order. We now define the edge and set contractions we use t@aefi minor relations.

Definition 8.22. Let G be a directed graph and= (u,v) € E(G).
e We saye can betopologically contractedif either

— u has in-degreé and out-degree, or
— v has in-degreé and out-degreé.

e We saye can bebutterfly contractedf either

— u has out-degreg, or
— v has in-degreé.

¢ We saye can beD-contractedunless either

— there is a directed path fromto v edge disjoint from(u, v), or

— there exists two vertex disjoint cyclés, C,, each with at least two vertices, such
thatu € C; andv € Cs.

Before we introduce the set contractions, we observe thaaltoge definitions of edge
contractions are ordered from most restrictive to leagtiotive. That is,

Lemma 8.23. Let G be a directed graph and = (u,v) € E(G). If e can be topologically
contracted themr can be butterfly contracted, anddican be butterfly contracted thercan be
D-contracted.

Proof. If e can be topologically contracted then cleatlgan be butterfly contracted. Now
suppose: can be butterfly contracted. if has out-degree thene is the only outgoing edge
from u so there is no path fromato v which is edge disjoint frona and there is no cycle which
containsu and does not contain. Thuse can be D-contracted. Otherwisehas in-degreé
ande is the only incoming edge to. Again, there can be no path fromto v which is edge
disjoint from e and there is no cycle which containsand does not contain. Soe can be
D-contracted. O

Definition 8.24. Let G be a directed graph anfd C E(G).

o If £ = {(u,v),(v,u)} then the simultaneous contractionfs ananti-parallel contrac-
tion.

e If G[E] is a strongly connected graph, then the simultaneous aiitineof £ is astrong
contraction

Clearly these definitions are also ordered from most restitd least restrictive. We in-
clude the result for completeness.

Lemma 8.25. LetG be a directed graph and’ C E(G). An anti-parallel contraction of is a
strong contraction of.
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We now combine these edge and set contractions with the apibbgelation to obtain a
number of minor relations.

Definition 8.26 (Subgraph minor)Let G and’H be directed graphg; is asubgraph minoiof

H, G € H, if Gisisomorphic to a graph obtained from by a sequence of edge and isolated
vertex deletionsg is ananti-parallel subgraph minoof H, G €4 H, if G is isomorphic to

a graph obtained frorit by a sequence of edge and isolated vertex deletions anganatiel
contractions. G is a strong subgraph minoof H, G € H, if G is isomorphic to a graph
obtained fronf?{ by a sequence of edge and isolated vertex deletions andystoorractions.

Definition 8.27 (Topological minor) Let G andH be directed graphg; is atopological minor

of H, G 4 H, if G isisomorphic to a graph obtained froby a sequence of edge and isolated
vertex deletions and topological contractiorn.is ananti-parallel topological minorof H,

G +44F H, if G is isomorphic to a graph obtained fragh by a sequence of edge and isolated
vertex deletions, and anti-parallel and topological cactions.G is astrong topological minor
of H, G 4° H, if G is isomorphic to a graph obtained frakhby a sequence of edge and isolated
vertex deletions, and strong and topological contractions

Definition 8.28 (Butterfly minor) Let G and’H be directed graphg; is abutterfly minorof H,

G < 'H, if Gisisomorphic to a graph obtained frathby a sequence of edge and isolated vertex
deletions and butterfly contractiong.is ananti-parallel butterfly minowof , G <4* H, if G

is isomorphic to a graph obtained frolhby a sequence of edge and isolated vertex deletions,
and anti-parallel and butterfly contractior.is astrong butterfly minoof H, G <° H, if G

Is isomorphic to a graph obtained fromby a sequence of edge and isolated vertex deletions,
and strong and butterfly contractions.

Definition 8.29 (D-minor). Let G and’H be directed graphs; is aD-minorof H, G < H, if G

Is isomorphic to a graph obtained frol by a sequence of edge and isolated vertex deletions
and D-contractions G is ananti-parallel D-minorof H, G <47 H, if G is isomorphic to a
graph obtained fronH by a sequence of edge and isolated vertex deletions, angauatiel

and D-contractionss is astrong D-minorof H, G < H, if G is isomorphic to a graph obtained
from H by a sequence of edge and isolated vertex deletions, antysiral D-contractions.

Remark.Unlike the case for the undirected minor relation, the edge® set contractions we
have defined here do not commute with edge and vertex deletioredge may not be edge
contractible until some other edges have been deleted, @etl @ edges may no longer be
set contractible after some edges have been deleted. Ho@veur definitions it is the case
that the reverse holds: if an edge is edge contractible besiome other edges or vertices have
been deleted, then it is still edge contractible after thaetions, and if a set of edges is set
contractible after some deletions then it is set contréctiefore those deletions. So we may
assume that to obtain a minor we perform a sequence of seactiahs, followed by a sequence
of edge and isolated vertex deletions, followed by a seqriehedge contractions.

Before we establish some results, we define a useful functiochicaptures the inverse of
edge contraction.

Definition 8.30 (Vertex expansion)Let < be a minor relation, and l&f andH be directed
graphs such thai < H. A <-vertex expansionf G to H is a function¢ : V(G) — P(V(H))
defined to b&™ in the following construction. Le§, = G; = ... = G, be a sequence of
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Figure 8.2: Inclusion diagram for the introduced minor tielas

graphs such thaf, = H, G, = G andg,, is obtained fromg; by a single edge deletion,
vertex deletion, or edge contractforror each < n define¢’ : V(G;) — P(V(H)) as follows.
&%(v) = {v}. If G;1, is obtained frong; by contracting'u, v) then&™! (v) = & (v) U &' (u) and
& (w) = ¢ (w) for all w # u, v (recall thatu ¢ V(G,,1)). Otherwise we let" (w) = £ (w)
forallw € V(G;i1).

Lemmas 8.23 and 8.25 imply that all the minor relations weehsw far defined can be
arranged as in the inclusion diagram of Figure 8.2. Pregarglwill show that each inclusion
in Figure 8.2 is strict, however first we need to show thatehmasor relations are well-behaved
with respect to directed connectivity.

Theorem 8.31.LetG andH be directed graphs, wit < H. If £ cops can capture a visible
robber onH thenk cops can capture a visible robber ¢h

Proof. As a consequence of Lemma 6.18, it suffices to show that thdeuof cops required
decreases after either a D-contraction or a strong coitradtet¢ be a<t-vertex expansion
from G to H. The idea is that if any of the vertices 6fw) is occupied by a cop, then we
occupyw with a cop. Itis clear that ifj is obtained fronfH by strong contractions only, then
this describes a winning strategy for the cops as the rolsh@ore restricted in his movement.
So it suffices to consider the case whgrs obtained fron?{ by a single D-contraction of the
edge(u,v). In this case, the robber may be able to reach some vertiggshat he could not
reach inH by a directed path through the contractiorucdindv. Let U C V(H) be the set of
verticesw, not includingu, for which there is a path from to w edge disjoint from(u, v), and
let V' C V(H) be the set of vertices, not includingv, for which there is a path from to v
edge disjoint from(u, v). We observe that aftér, v) is contracted, the robber is able to move
from vertices inV to vertices inU. We argue that he can only do this once.

Since(u, v) can be D-contracted]/ andV are disjoint, as otherwise there would be a path
from u to v edge disjoint from(u, v). Thus, any path fron to V- must include the edge:, v).
For anyx € V, suppose there is a directed patlgito somey € U such that there is a directed
path fromy to somez € V. Since such a path i must go througltiu, v), it follows that there

L\We treat set contractions as sequences of single edge ciimisy S0G; might not necessarily be a minor of
gi+1
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is a path fromy to v and a path from to z. Thusu andy are two distinct vertices in a cycle, as
arev andz, contradicting the assumption that v) could be D-contracted.

The strategy for the cops is now as follows. Play as beforeymgngw € V(G) if some
vertex in¢(w) is occupied. If the robber never moves frdmto U, then each move of the
robber can be simulated di. Otherwise, if the robber does move frdmto U, he can never
return tol/, so we can discard this part of the graph and continue playiagvinning strategy
on the subgraph dff. O

We now have sufficient tools to demonstrate that each mirlatioa we have defined is
distinct from the others, and that there are no other inghssother than those we have already
identified.

Theorem 8.32.The inclusion diagram of Figure 8.2 is strict and complete.
Proof. To prove the result, it suffices to show the following six inatjons:
N4z e
I < g +*
(I < <
(V) <¢ <
(V) e’ ¢ <
(VI) €5 ¢ <4P

Now consider Table 8.1. We show that for each pair of minaatiehs(=<, <’), G» < G; but
G, 2" G;. ltis easy to see that in each examgle < G,. We therefore show thal, £’ G;.

(D = (1) : We observe that in each example, the grgplinas only one less edge thgn.

It is easily checked that deleting any edge frgmwill not result in the graplg,, thus the
only possible way fo, <’ G; is from edge contractions. In (I), by symmetry any edge will
suffice. But no single edge is contractible under strong eatibns, thusz, &° G;. In (ll)

and (lll), to obtain a vertex of degrek the only edge which can be contracted is the vertical
edge. However, in (I) both endpoints of this edge have @agfrele2 and therefore it cannot be
topologically contracted, and in (lll) this edge is neitliee only outgoing edge of its tail nor
the only incoming edge of its head, thus it cannot be buttedtiracted. In both cases it cannot
be contracted using a strong contraction, thus ing31y#° G, and in (lll) G, < G,.

(IV): This follows directly from Theorem 8.31, & is acyclic and’, is not.

(V): We observe that it is not possible to D-contract any eddg imhus ifG, is a D-minor
of G1, G, must be a D-minor of some subgraph&fwith at least one edge deleted. However,
only two cops are required to capture a robbegemith any edge deleted, whereas three cops
are required to capture a robber @n Thus, from Theorem 8.31;, cannot be a D-minor of
Gi.

(V1): We observe that it is not possible to D-contract any edgg iwithout first deleting
some edges. As anti-parallel contractions reduce the nuoftenti-parallel pairs of edges,
we cannot obtairg, from G, through anti-parallel contractions alone. Thugif<4” G, to
obtain G, from G; we must first delete some edges. However, it is easy to chetkafter
any edge is deleted fro,, three cops have a winning strategy to capture a visibleeobb
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Table 8.1: Separating examples of the introduced minotioela

intuitively, removing an edge makes one of the small cyclesdker” than the others, either by
removing one of the edges which leaves the cycle, or remasregof the edges in the cycle.
The strategy for three cops is then to chase the robber irdavibaker cycle, and then use the
weakness to capture him. As four cops are required to cafitan®bber org,, it follows from
Theorem 8.31 thaf, A47G,. O

Remark.Example (IV), which shows that ¢ <, illustrates that a<-minor of an acyclic
graph may not necessarily be acyclic. This supports oureeathim that< was not restrictive
enough to be a reasonable indicator of structural simpliindor directed graphs.

Before we consider some other structural properties whielpegserved by the minor re-
lations we have defined, we show that the relations we haveduted include other digraph
relations that we have already considered. First we shointdbpalogical minors correspond to
directed subgraph homeomorphisms.

Proposition 8.33. LetG and’H be directed graphsg - ‘H if, and only if,G is homeomorphic
to a subgraph of+.

Proof. Using the proof of Lemma 8.21 we see thagiis homeomorphic to a subgraph &f
thenG -4 H, as the edge contractions used in the proof are all topa@bgmntractions. For
the converse, supposk 4 H. Without loss of generality, we may assuigias obtained by
a sequence of edge and vertex deletions followed by a segu#ropological contractions.
Thusg is obtained from a subgrapti’ of H by a sequence of topological contractions. £et
V(G) — P(V(H')) be a--vertex expansion. We show harcan be used to define a (directed)
subgraph homeomorphism. From the definition of topologtoaltraction, we observe that for
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eachu € V(G), there is at most ong < &(u) with out-degree> 1, as otherwise it would not
be possible to contragi«) to a single vertex. This means that intuitively; ¢ ()] looks like
a star with one central vertex, paths radiating outwards agpath fromu to the central vertex.
We definen : V(G) — V(H) by settingn(u) to be either the vertex i6(«) with more than
one successor, ar if there is no such vertex. We observe the following: if thedegree ofu
is greater than, thenn(u) = u; there is a directed path §(u) from u to n(u); and there is a
directed path irf(u) from n(u) to all vertices in{(u) with a successor outside §fu). Now let
(u,v) € E(G) be an edge igy. From the definition of edge contraction, there exists &(u)
such that{w, v) € E(H'). From our observations regardingu) and¢(u), it follows that there
exists a path fromy(u) to v. Since there is a path fromto n(v), it follows that there is a path
from n(u) to n(v). To show this path is vertex distinct (excluding end-pQifitsm any other,
we observe that for any’ # v such that(u,v") € E(G), the path fromy(u) to v is disjoint
(except forn(u)) to the path fromy(u) to v, and ifu’ # w is a predecessor of in G, then
n(v) = v, so the paths from(u) to n(v) and fromn(u') to n(v) are disjoint. O

Now we observe that the strong subset minor relation cooredpto the strongly connected
“natural” generalization of the minor relation.

Proposition 8.34. Let G and H be digraphs.G €° H if, and only if, there exists an function
¢ :V(G) — P(V(H)) which maps distinct vertices to disjoint sets such that:

e forall v € V(G), H[¢(v)] is a strongly connected graph, and
o forall (v,w) € E(G) there existgv', w’) € E(H) such thaw’ € £(v) andw’ € &(w).

Proof. Let¢ be ae®-vertex expansion of in 4. From the definition of strong contraction and
edge contraction, it follows thatsatisfies the requirements. O

Finally we observe from Lemma 8.16 that if a minor relatiolowb anti-parallel contrac-
tions, then on bidirected graphs the relation is equivaierthe minor relation for undirected
graphs.

Proposition 8.35. Let G and H b(e_t}mdi(ﬁcted graphs, ang a minor relation such thats
De“”. ThenGg < Hif,andonlyif G < H.

8.2.3 Preservation results

Theorem 8.31 showed that all the minor relations we intreduespect complexity as defined
by directed connectivity. We now consider some other stmatiproperties that are preserved
under the operation of taking a minor. Our first result shdved the taking of butterfly mi-
nors preserves non-reachability, or equivalently, a bilfteninor vertex expansion preserves
reachability.

Proposition 8.36.LetG andH be digraphs such thal < H. Let¢ be a<®-vertex expansion
of Gin 'H. Letu,v € V(G). If there is a directed path from to v then there exists’ € £(u)
andv’ € £(v) such that there is a directed path frazhto v'.
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Proof. Clearly if G is a subgraph of{ then the result holds, and similarlydgf can be obtained
from H by strong contractions. Thus it suffices to assume ¢hean be obtained frorf{ by
butterfly contractions. Let € V(G) be a vertex off Since¢(w) butterfly contracts to a single
vertex, it follows that there exists a vertex € £(w) such that there is a path tg' from alll
vertices in¢(w) with in-degree greater than and there is a path from’ to all vertices inf(w)
with out-degree greater than Furthermore, there is a path fromto «’ and a path fromv’

to all vertices in{(w) with a successor not if(w). If wow; - - - w, is a path inG from u = wy
tov = w,, letw, be the vertex irg(w;) which satisfies the above observation. It follows from
the definition of edge contraction, that for al>> 0, there is a path il from w; to w;_; (in
&(w;) U &(w;41)). Thus there exists a path from = w{ to v = w],, as required. O

Example (I11) in Table 8.1 shows that Proposition 8.36 doetshold for D-minors. How-
ever, D-minors do preserve a more restrictive structur@berty: strong connectivity.

Proposition 8.37. LetG and’H be digraphs such thaf < H. Let¢ be a<®-vertex expansion
of Gin 'H. Letu,v € V(G). If there are directed paths from to v and fromv to « then there
existsu’ € ¢(u) andv’ € ¢(v) such that there are directed paths frarfito v and fromu’ to v'.

Proof. As with Proposition 8.36, we observe that we can assumeititain be obtained from
H by D-contractions. Forw € V(G), we observe from the definition of D-contractions that
H[¢(w)] takes the following form: a directed tree, rootediasuch that ifw;w, - - - w,, is a path

in H with wy, w, € &(w), thenw, is an ancestor ab; in H[{(w)]. For if this were not the case,
then it would not be possible to D-contragto) to a single vertex. The result now follows by
expanding the vertices in the cycle containingndv in a similar way to Proposition 8.36.0

8.2.4 Algorithmic results

We now consider the algorithmic aspects of the minor refatiwe have defined. In particular,
we are concerned with the following decision problem:

(G, <X)-MINOR
Instance: A directed grapt
Problem: 1sG < 'H?

In [RS95], it was shown that for undirected graphs and thedstahminor relation(gG, <)-
MINOR is solvable in cubic time, so it is worth investigating if aofthe minor relations we
have defined enjoy a similar property. Unfortunately, wevskiat this is not the case unless
NP = PTIME, as the problem is in general NP-complete for most of thetiogla we have
defined.

Fortune, Hopcroft and Wyllie [FHW80] showed a dichotomy te$or the directed sub-
graph homeomorphism problem for a fixed pattern gr@phlf G is a star, that is there is a
unique source or sink which is the tail or head (respect)velyevery edge, then deciding if a
given graph with a given node mapping has a subgraph homemdog is solvable in poly-
nomial time. Otherwise it is NP-complete. Not surprisingipm Proposition 8.33, this result
is partly applicable t@aG, )-MINOR. The difference is that in [FHW80Q] it is assumed that the
node mapping was given. That is, they were asking if givendemoapping could be extended
to a subgraph homeomorphism. T{t& —)-MINOR problem corresponds to the case when the
node mapping is not given. This case was discussed in [FHW&@}eanit was observed that
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firstly the polynomial time result carries over, as therean@most a polynomial number of node
mappings, and secondly with some additional structureerptttern graph, the node mapping
required for NP-completeness can be forced to be the onlsiljesnode mapping, so the NP-
completeness result holds for a large class of directechgréqut not quite the complement of
the star graphs). Summarizing their results in the termignpbf this chapter gives us:

Theorem 8.38([FHW80]). If G is a directed graph which is a star thég, 4)-MINOR is solv-
able in polynomial time.

Theorem 8.39([FHW8Q]). If G is a directed graph with at least four distinct verticRs , v, v3, v4 }
and edgesv,, v9) and(vs, v4) such that fori < 4 the degree of; is greater thar8 and different
from the degree af; for j # ¢, then(G, 4)-MINOR is NP-complete.

Corollary 8.40. Let < be a minor relation which includesand letG be a directed graph which
satisfies the requirements of Theorem 8.39. Tlger)-MINOR is NP-complete.

Because of the additional structure required in the patteaptgto show NP-completeness
when the node mapping is not specified, we no longer have theuaimy result. Indeed it is
an interesting problem to investigate the complexity of pneblem wheng is neither a star
nor a directed graph satisfying the requirements of The@@&®9, for example if the maximum
degree of any vertex ig is 3. This gives us the following problem for further investigat

Open problem 8.41.Characterizej, < and the class of graph such that(G, <)-MINOR is
NP-complete

8.2.5 Well-quasi order results

We conclude this chapter by showing that only a few of thetie@ia we have introduced can
be used to generalize one of the most significant theorenogiatsd with the minor relation:
the Graph Minor Theorenof Robertson and Seymour [RS04]. Recalling the definition of a
well-quasi order from Section 1.1.1, the theorem can bedias:

Theorem 8.42(Graph Minor Theorem [RS04])The minor relation is a well-quasi order.

In particular this implies that for any infinite set of gragihere is a pair of graphs such that
one is the minor of the other. From this, it follows that angnfly of graphs which is closed
under the minor relation can be characterized by a finitefi$brbidden minors That is, if F
is a family of graphs such th&t € F andG < ‘H impliesG € F, then there exists a finite set of
graphs{Gi, ..., G} such thaig € F if, and only if, G, £ G for all i < m. Together with the
observation that for a fixed gragh determining ifG is a minor of a given graph can be decided
in cubic time, this we obtain the following important algbrnic consequence.

Corollary 8.43 ([RS04]). LetFF be a minor-closed family of graphs. The problem of deciding i
G € F can be computed in cubic time.

Thus it is an interesting problem to see if we can generalizeGraph Minor Theorem to
directed graphs. Unfortunately, for most of the minor rielag¢ we have defined, this is not the
case.

Theorem 8.44.< and < are not well-quasi orders.
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Figure 8.3: An infinite anti-chain for the relation
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Figure 8.4: An infinite anti-chain for the® relation

Proof. Consider the sequence of bidirected cydgsCy, Cs, . . . pictured in Figure 8.3. Using
the same argument as in the proof of Theorem 8.32, Examplét(¥)easy to see that; AC;
fori < j. Thus<is not a well-quasi order.

Now consider the sequence of gragis, C¢, . .. pictured in Figure 8.4. It is easy to see
that for all eveni > 4, an edge irC;® can neither be butterfly contracted nor strong contracted,
and the deletion of any edge results in a graph with an acwyaliterlying graph. Thus for all
i < j,CP 5 CF, and so<* is not a well-quasi order. O



Chapter 9

Conclusion and Future work

In this dissertation we examined the role of infinite gamediwite graphs in two aspects of
complexity: computational complexity and structural cdexty. The research resolved some
unanswered questions in the literature and opened up sdaresting avenues for further re-
search. We conclude this dissertation by recalling the nragults established, and discussing
possible areas for future study.

9.1 Summary of results

In Chapter 1 we stated the two main goals of this dissertatmmvestigate the computational

complexity of infinite games on finite graphs, and to use itdigames to define an algorith-

mically useful notion of structural complexity for diredigraphs. The first of these goals was
predominantly addressed in Chapters 2, 3, 6 and 7, while tandevas catered for in Chap-

ters 4 to 8. We now summarize the contribution each chaptdertaeach goal.

Complexity of Infinite Games

In Chapter 2 we considered the general class of infinite gamefnibe graphs. We intro-
duced a generalization of bisimulation callgdme simulatiorwhich enables us to translate
strategies from one game to another. We then introducedatiennof acondition typewhich
gives us a general framework for comparing many types of gamgch occur in the literature,
for exampleMuller games[Mul63], Rabin gameg$Rab72], Streett game§Str82] andparity
gamegMos91, EJ91]. The notion dfanslatability between condition types lets us compare
the computational complexity of two games via the exprélgyiand succinctness of their win-
ning conditions. We considered the computational comple{ideciding the winner in Muller
games. We provided polynomial time algorithms for explcgresented Muller games under
various restrictions on the family of sets which specifieglwhnning condition, namely simple
games, and games where the condition is an anti-chain. Weeshihat deciding the winner of
win-set games wasdPACEcomplete. Following our work on translatability, it folls that the
problems of deciding the winner of Muller games where thenivig condition is specified as a
Muller, Zielonka DAG, Emerson-Lei, or a circuit conditioneaall also BPACEcomplete, thus
closing one of the open problems relating to the compleXityioller games that we discussed
in Chapter 1. We showed that the completeness results caugego arenas of bounded tree-
width for games specified by a Muller condition. We also gaxeneples of union-closed and
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upward-closed games for which deciding the winner is coedyplete. We ended the chapter
by showing how the lower bounds for deciding win-set gameshzaused to establish that the
non-emptiness and model-checking problems for Muller raata are also $PACEcomplete,
thereby resolving an open question in the field of automagargh

Our foray into the sticky world of parity games began in Cha@tewhere we analysed
one of the best performing algorithms for deciding paritynga in an effort to establish tighter
bounds on the running time. We interpreted the algorithmmfeocombinatorial perspective, in
particular as a method for finding a global sink on an acyadtigjue sink oriented hypercube.
Using techniques from combinatorics, we improved the upeeind for the running time. We
also provided an example which shows that the hypercubatatiens resulting from parity
games are not pseudomodular.

In Chapters 6 and 7, we demonstrated how the structure of émaaffects the complexity
of deciding the winner of parity games. We used DAG-decortipos in Chapter 6 and Kelly-
decompositions in Chapter 7 to produce two dynamic prograngistyle algorithms for solving
parity games. The upshot of such algorithms is that on a olee®nas of bounded DAG-width
or bounded Kelly-width, there is a polynomial time algonitifior deciding the winner of a parity
game. As DAG-width and Kelly-width encompass other graptapeeters such as tree-width,
this gives us the largest class of graphs so far known on wtacity games can be solved in
polynomial time.

Complexity by Infinite Games

In Chapter 4 we discussed the properties that a good measdigraph structural complexity
should have. We cited tree-width as an example to aspiretisyand discussed why tree-width
is not suitable as a measure for directed graphs. We alsossisd why the established notion
of directed tree-width from [JRSTO01] is also not entirelytahle.

In Chapter 5 we introduced a framework for defining reasonstibletural complexity mea-
sures viagraph searching games form of the infinite games we have been considering. We
showed how these games encompass many similar games itetiaéulie, including those that
can be used to characterize tree-width.

In Chapter 6 we used the work from Chapter 5 to define an exten$itee-width to di-
rected graph€DAG-width Unlike directed tree-width and Kelly-width, the definitiof a DAG-
decomposition closely resembles tree decompositionser Athowing that cop-monotonicity
and robber-monotonicity coincide in this game, we showatl IIAG-width is equivalent to the
number of cops required to capture a visible robber with aotmre strategy, thereby demon-
strating that it is a reasonable measure of structural cexitglfor directed graphs. We also
showed that DAG-width defines an algorithmically useful pberity measure by showing that
a number of problems, including deciding the winner of atgayame, can be solved in polyno-
mial time on graphs of bounded DAG-width. We concluded thegptdr by demonstrating that
DAG-width is markedly different from three other measure8rted in the literature: tree-width,
directed tree-width and directed path-width.

In Chapter 7 we considered the generalization to directeghgraf three characterizations
of tree-width: partiak-trees, elimination orderings and the cops and inert roglkagsh search-
ing game. This results ipartial k-DAGS directed elimination orderingsand the cops and
inert robber game for directed graphs. We showed that thehgparameters defined by these
three generalizations were all equivalent, and these,rim tuere equivalent to the width of a
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decomposition we introduced calledKally-decomposition As with DAG-width, we demon-
strated the algorithmic potential of Kelly-width by exHhibg polynomial time algorithms for
a number of problems, including deciding the winner of atgagame, on graphs of bounded
Kelly-width. We concluded the chapter by showing that, ahvdAG-width, Kelly-width is
quite different from tree-width, directed tree-width ancedted path-width. However, its rela-
tion to DAG-width is somewhat more complex. We showed thathe graph searching games
which characterize DAG-width and Kelly-width, a monotoneming strategy for the cops in
one game implies a winning strategy in the other (with pdgs$waice as many cops). Without a
result in either game relating the number of cops required foonotone strategy to the number
of cops with a winning strategy, we are unable to compare DAGHh and Kelly-width directly.
However, we do show that there are graphs on which DAG-widthkelly-width differ (by an
arbitrary amount).

Finally, in Chapter 8 we presented preliminary results tasa directed graph structure
theory, based on the notions of structural complexity weet@sveloped. We introduced gen-
eralizations of havens and brambles which appear to canespith DAG-width and Kelly-
width. The brambles for DAG-width are dual to the bramblesKelly-width, suggesting that
DAG-width and Kelly-width are very closely connected. Weaktonsidered the problem of
extending the minor relation to directed graphs. We intoedbia number of distinct relations
ranging from the subgraph relation to the minor relationtmanderlying undirected graphs.
We showed that these relations do not enjoy the algorithmupgaties of the minor relation, as
deciding if a fixed subgraph is a minor of a given graph is, inagal, NP-complete for most
of the minor relations we considered. We concluded the endyyt showing that all except two
of the minor relations we introduced contain infinite aritams. This implies that to consider
a generalization of the Graph Minor Theorem using the mietations we defined, we need to
use either the anti-parallel D-minor or the strong D-miredation.

9.2 Future work

The work we have presented in this dissertation raises a aeuoflinteresting questions and
directions for further research. We now discuss some okthesighly in the order they arose
during the dissertation.

The exact complexity for deciding Muller games when the wigrcondition is explicitly
presented remains open, as does the question for unioadctgmmes with an explicitly pre-
sented winning condition. We saw in Theorem 2.62 that if tirewmg condition is an anti-chain
then the game can be solved efficiently. Thus it is possildettre complexity of the former
problem can be derived from the complexity of the latter. sThould also be an interesting
guestion to investigate.

The exact complexity for deciding parity games also remamgteresting open problem.
Characterizing the acyclic unique sink orientations theteafrom valuations in parity games
could either establish a polynomial time algorithm for pagames, or give a super-polynomial
lower bound for the strategy improvement algorithm.

Monotonicity questions frequently arise in the study ofpirasearching games. An in-
teresting line of research would be to characterize the gotigs of graph searching games
necessary for monotonicity to be sufficient. For exampléerding the work of Fomin and
Thilikos [FT03]. On a more specific level, for the cops andble robber game on directed
graphs an important open problem is finding a relation betviee number of cops required
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for a monotone winning strategy and the number of cops reddor a winning strategy which
is not necessarily monotone. Such a correspondence allswes ecompare DAG-width with
other parameters we have considered such as D-havens dgenidth. Similarly, finding a
relation between the number of cops required for a robberatome winning strategy and the
number of cops required for a not necessarily monotone wgstrategy in the inert robber
game allows us to compare Kelly-width to other measures.

Two important questions regarding the complexity of DAGdkiand Kelly-width still re-
main open. Firstis the question of whether deciding if aayprhas DAG-width at most a given
integer is in NP. Second is the question of whether, for a fixédleciding whether a digraph
has Kelly-width at most is decidable in polynomial time. An improved bound frénn*) on
the size of a DAG-decomposition of a graph would benefit tist guestion.

Finally, the preliminary work on a structure theory baseddorcted connectivity raises a
number of interesting questions. For example, determittiegprecise relationship between
DAG-width, Kelly-width, and initial and terminal bramblesharacterizing the pattern grapfis
for which (G, <)-MINOR is solvable in polynomial time; determining if any of therioduced
minor relations is a well-quasi order; and characteriziagges of graphs via forbidden minors.

9.3 Conclusion

In conclusion, this dissertation has made a significantrdmnton towards the analysis of the
complexity of infinite games and to the development of a motib structural complexity for
directed graphs, and opened up exciting possibilitiesuture research. We resolved the open
questions regarding the exact complexity of deciding Mull@mes and Muller automata non-
emptiness and model-checking, and we made substantialgsotpwards answering the ques-
tion for parity games. We introduced two similar measurestiofctural complexity for directed
graphs which appear to measure thected connectivitpf a digraph, a metric which lies be-
tween weak connectivity and strong connectivity and isiistfrom both. We demonstrated
their algorithmic benefits by providing efficient algoriterior problems not known to be decid-
able in polynomial time.
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