
Technical Report
Number 705

Computer Laboratory

UCAM-CL-TR-705
ISSN 1476-2986

Optimizing compilation with the
Value State Dependence Graph

Alan C. Lawrence

December 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Alan C. Lawrence

This technical report is based on a dissertation submitted
May 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Some figures in this document are best viewed in colour. If
you received a black-and-white copy, please consult the
online version if necessary.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Most modern compilers are based on variants of the Control Flow Graph. Developments on
this representation—specifically, SSA form and the Program Dependence Graph (PDG)—have
focused on adding and refining data dependence information, and these suggest the next step is
to use a purely data-dependence-based representation such as the VDG (Ernst et al.) or VSDG
(Johnson et al.).

This thesis studies such representations, identifying key differences in the information car-
ried by the VSDG and several restricted forms of PDG, which relate to functional programming
and continuations. We unify these representations in a new framework for specifying the shar-
ing of resources across a computation.

We study the problems posed by using the VSDG, and argue that existing techniques have
not solved the sequentialization problem of mapping VSDGs back to CFGs. We propose a new
compiler architecture breaking sequentialization into several stages which focus on different
characteristics of the input VSDG, and tend to be concerned with different properties of the
output and target machine. The stages integrate a wide variety of important optimizations,
exploit opportunities offered by the VSDG to address many common phase-order problems,
and unify many operations previously considered distinct.

Focusing on branch-intensive code, we demonstrate how effective control flow—sometimes
superior to that of the original source code, and comparable to the best CFG optimization
techniques—can be reconstructed from just the dataflow information comprising the VSDG.
Further, a wide variety of more invasive optimizations involving the duplication and specializa-
tion of program elements are eased because the VSDG relaxes the CFG’s overspecification of
instruction and branch ordering. Specifically we identify the optimization of nested branches as
generalizing the problem of minimizing boolean expressions.

We conclude that it is now practical to discard the control flow information rather than
maintain it in parallel as is done in many previous approaches (e.g. the PDG).

3

4

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Alan Mycroft, for his unending enthusi-
asm, sense of direction, encouragement, and occasional cracking-of-the-whip; and my parents,
for their support and understanding throughout. Without these people this thesis would never
have been possible. Thanks must also go to my grandmother for her help with accomodation,
which has been invaluable.

I would also like to thank my fellow members of the Cambridge Programming Research
Group, for the many discussions both on and off the subject of this thesis; and to many friends
and officemates for their help throughout in preserving my sanity, or at least the will to go on...

5

6

Contents

1 Introduction 11
1.1 Computers and Complexity . 11
1.2 Compilers and Abstraction . 11
1.3 Normalization: Many Source Programs to One Target Program 12
1.4 Abstraction Inside the Compiler . 13
1.5 Trends in Intermediate Representations . 14

1.5.1 Static Single Assignment . 15
1.5.2 The Program Dependence Graph . 15
1.5.3 The Value (State) Dependence Graph 17

1.6 Optimizations on the VSDG . 17
1.7 The Sequentialization Problem . 18

1.7.1 Sequentialization and Late Decisions 18
1.8 Chapter Summary . 19

2 The Nature of the Beast 21
2.1 The VSDG by Example . 21

2.1.1 Uniformity of Expressions . 27
2.1.2 Formal Notations . 27

2.2 The VSDG and Functional Programming . 27
2.2.1 SSA and Strict Languages . 27
2.2.2 Encoding the VSDG as a Functional Program 28
2.2.3 Evaluation Strategies . 29
2.2.4 Higher-Order Programming . 31

2.3 The VSDG and the Program Dependence Graph 32
2.4 An Architecture for VSDG Sequentialization 32

2.4.1 The VSDG and Phase-Order Problems 34
2.4.2 Three Phases or Two? . 35
2.4.3 A Fresh Perspective: Continuations 36

2.5 Definition of the PDG . 37
2.6 The VSDG: Definition and Properties . 39

2.6.1 Places, Kinds and Sorts . 39

7

8 CONTENTS

2.6.2 Transitions . 40
2.6.3 Edges . 41
2.6.4 Labels, Sets and Tuples . 41
2.6.5 Hierarchical Petri-Nets . 42
2.6.6 Loops . 43
2.6.7 Well-Formedness Requirements . 43

2.7 Semantics . 44
2.7.1 Sequentialization by Semantic Refinement 44
2.7.2 The VSDG as a Reduction System . 45
2.7.3 A Trace Semantics of the VSDG . 46

2.8 Chapter Summary . 48

3 Proceduralization 51
3.1 Choosing an Evaluation Strategy . 53
3.2 Foundations of Translation . 54

3.2.1 Naı̈ve Algorithm . 54
3.2.2 Tail Nodes—an Intuition . 55
3.2.3 Normalization of Conditional Predicates 57

3.3 An Algorithmic Framework . 57
3.3.1 Dominance and Dominator Trees . 58
3.3.2 Gating Conditions . 59
3.3.3 The Traversal Algorithm . 60

3.4 Additional Operations . 62
3.4.1 The γ-Ordering Transformation . 62
3.4.2 Coalescing of γ-Trees . 65

3.5 Worked Examples . 67
3.6 Chapter Summary . 71

4 PDG Sequentialization 73
4.1 Duplication-Freedom . 73

4.1.1 Effect on Running Examples . 74
4.2 A Special Case of PDG Sequentialization . 75

4.2.1 Bipartite Graphs and Vertex Coverings 77
4.2.2 Unweighted Solution . 78
4.2.3 Weights and Measures . 80

4.3 Comparison with VSDG Sequentialization Techniques 82
4.3.1 Johnson’s Algorithm . 82
4.3.2 Upton’s Algorithm . 84

4.4 Comparison with Classical CFG Code Motion 85
4.4.1 Suitable Program Points . 87
4.4.2 Extra Tests and Branches . 87
4.4.3 Program Points and Sequentialization Phases 87
4.4.4 Lifetime Minimization . 88
4.4.5 Variable Naming and Textually Identical Expressions 89
4.4.6 Optimal Code Motion on Running Examples 90
4.4.7 Other Algorithms . 90

CONTENTS 9

5 Intermediate Representations and Sharing 93
5.1 Shared Operators: the PDG & VSDG, Part 2 94

5.1.1 Production of Shared Operators . 97
5.2 An Explicit Specification of Sharing . 98
5.3 A Semantics of Sharing Edges . 101

5.3.1 An Alternative View of Proceduralization 103
5.4 Loops . 105

5.4.1 Proceduralization and Loops . 106
5.5 The RVSDG: a Workable PDG Alternative . 106

5.5.1 Strict Nets and γ-Nets . 109
5.5.2 Loops . 111
5.5.3 Sharing . 111
5.5.4 Explicit Representation of Register Moves 112
5.5.5 Well-Formedness Conditions . 114
5.5.6 Semantics . 116
5.5.7 Performing γ-Ordering on the RVSDG 116
5.5.8 Chapter Summary . 117

6 Node Scheduling 121
6.1 Johnson’s Algorithm . 121

6.1.1 Atomicity of γ-Regions . 125
6.1.2 Node Raising and Speculation . 126
6.1.3 Node Cloning and Dominance . 126

6.2 Reformulating Johnson’s Algorithm on the RVSDG 126
6.2.1 Hierarchy . 126
6.2.2 Tail-Sharing Regions . 128
6.2.3 Register Allocation . 129

6.3 Simple Extensions . 130
6.3.1 Heuristics for Speed over Space . 130
6.3.2 Instruction Latencies . 130
6.3.3 Movement Between Regions . 131
6.3.4 Predicated Execution . 131

6.4 Alternative Approaches . 132
6.5 The Phase-Order Problem Revisited . 134

6.5.1 Combining Proceduralization and Node Scheduling 136
6.6 Chapter Summary . 138

7 Splitting 139
7.1 Splitting, à la VSDG . 139

7.1.1 Enabling Optimizations . 140
7.1.2 Transformations on γ-Nodes . 141

7.2 Splitting in the RVSDG . 143
7.3 Splitting: a Cross-Phase Concern . 144
7.4 Optimality Criteria for Splitting . 147

7.4.1 Optimal Merge Placement . 148
7.4.2 Control Flow Preservation . 148
7.4.3 Limited Optimal Splitting . 149

10 CONTENTS

7.4.4 Exhaustive Optimal Splitting . 150
7.5 Relation to and Application of Existing Techniques 152

7.5.1 Message Splitting . 152
7.5.2 Cost-Optimal Code Motion . 154
7.5.3 Speculative Code Motion . 155
7.5.4 Use of the PDG . 155
7.5.5 Restructuring the CFG . 157

8 Conclusion 161
8.1 Open Questions . 162

A Glossary of Terms 165

B State Edges and Haskell 167
B.1 The State Monad . 167
B.2 Encoding Just the State Edges . 168
B.3 Adding Values . 170
B.4 Even the State Monad is Too Expressive . 172
B.5 Well-Formedness Conditions . 173
B.6 Derestricting State Edges . 174
B.7 A Note on Exceptions . 174

Bibliography 177

CHAPTER 1

Introduction

A modern digital computer is perhaps the most complex toy ever created by man.

The Computer Revolution in Philosophy, Aaron Sloman, 1978

1.1 Computers and Complexity
Clearly, the complexity of computer systems has only increased in the years since the quote
above. This complexity drives much of computer science, and can be seen as the composition
of two forms:

1. The inherent complexity in working out and specifying what the system must do precisely
and unambiguously. Work with formal specification languages shows that this is still
difficult, even with no allowance made for hardware or implementation concerns.

2. The incidental complexity of expressing this specification in a form which can be exe-
cuted by a computer—for example, in a particular programming language. This brings in
additional concerns of the efficiency of execution.

1.2 Compilers and Abstraction
Abstraction is a powerful tool for managing complexity, so it is no surprise that the use of
abstractions in the construction of computer systems, specifically software, has been increasing
steadily. One vital source of abstraction for overcoming incidental complexity is the compiler,
defined by Aho et al. [AU77] as:

A program that reads a program written in one language—the source language—
and translates it into an equivalent program in another language—the target lan-
guage.

We see this as providing abstraction in two distinct ways.

11

12 Chapter 1. Introduction

Firstly, the conversion between programming languages provides the abstraction(s) of the
source language: for example, features such as mnemonic instructions instead of binary op-
codes, user-declared variables in place of registers, data types over untyped memory locations,
higher-order functions, objects, garbage collection, etc...

Secondly, the translation into an equivalent program—meaning one which produces the
same results and side effects, including termination or otherwise—allows the compiler to op-
timize the result such that it is more efficient in space, time, or both. This moves concerns of
efficiency—previously in the domain of the programmer—into the domain of the compiler, such
that the programmer need think about less, and can concentrate more fully on the real-world task
to be performed1.

1.3 Normalization: Many Source Programs to One Target
Program

Thus, a maxim of compiler folklore is that:

“The most optimizing compiler is the most normalizing compiler.”

Normalization refers to where many different source programs result in the same machine code
after compilation—that is, where the same machine code is produced regardless of which form
was written by the programmer. In this thesis, we refer to the input programs being normalized
by the compiler. For the behaviour of the compiler to be considered correct, the two input code
sequences must therefore do the same thing (and the output must implement this!), i.e. they
have the same observable semantics, and so we can see them as different representations of the
same underlying idea2.

This allows the programmer to select from such representations according to which is the
easiest to comprehend or to fit his ideas or program into, and leave the compiler to select the
output according to efficiency concerns. Thus, the level of abstraction is raised.

Of course, due to decidability issues, in general the compiler cannot select the “best” output,
or even list all the possible equivalents; further, the efficiency of different possible outputs
may be incomparable, depending on contextual factors such as intended library usage or likely
program inputs that are not known at compile-time. Or, the programmer may have written his
source code using knowledge of these factors that is merely unavailable to the compiler; in
such cases, compiler attempts at “optimization” and normalization may in effect undo hours
of work by programmers in hand-optimizing their code and make the code worse. This leads
to the idea of conservative optimization: that which cannot make the program perform worse
on any execution; clearly, conservatism is a major limitation. Hence, runtime profiling is a
better solution: observe how the code is actually used at runtime, and use this information to
optimize the code with runtime recompilation. Programmers’ conceptions of how code is used
are frequently ill-founded, and profiling is more accurate. Such techniques allow the compiler
to select an appropriate output form; and where the same or equivalent program fragments

1As William Wulf [Wul72] said: “ More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason—including blind stupidity.”

2Some programming languages emphasize orthogonality—the existence of exactly one program construct for
each purpose—but even this does not rule out the possibility of combining the same structures in different ways to
achieve the same end. Others even make it a feature that “There Is More Than One Way To Do It” (TIMTOWTDI
or “Tim Toady”) [Wal00]!

1.4. Abstraction Inside the Compiler 13

Compiler
Input

(e.g. C)

Intermediate
Representation

(IR)

Compiler
Output

(e.g. ASM)

Front
End

Back
End

Optimize

Figure 1.1: Structure of an optimizing compiler. In this thesis, the intermediate representation
is the VSDG, and the compiler output can be considered a CFG of machine instructions with
physical registers.

appear in multiple different places in the input, it may even choose a different output for each
(so “normalization” may be a misleading term).

1.4 Abstraction Inside the Compiler
Because of this increasing demand for optimization, compilers are themselves becoming more
and more complex. Correspondingly, the role of abstraction inside compilers is becoming more
important.

Optimizing compilers are conventionally structured as shown in Figure 1.1: the front end
of the compiler transforms the input program (e.g. source code) into an Intermediate Repre-
sentation (IR); optimisation phases operate on the program in this form; and then the rear end
transforms the program into the desired output format (e.g. a sequence of machine code in-
structions). Construction refers to the production of the IR from the input; paralleling this, we
use the term destruction to refer to conversion of the program out of the IR to produce ma-
chine code. However, for a CFG of machine instructions with physical registers, destruction is
trivial—requiring only the placement of the basic blocks into a single list—and thus we tend to
see the output of the compiler as being such a CFG.

This thesis is concerned with the Intermediate Representation used, as representing the pro-
gram in such an IR data structure is one of the main abstractions on which the compiler is based.
In fact we can see “an Intermediate Representation” as an abstract data type (ADT), with opera-
tions of construction, destruction, and intervening optimization, much as “Priority Queue” is an
ADT with operations of adding an element and examining and removing the smallest. Different
IRs implement the ADT in different ways and are almost interchangeable, and a particular IR
should be selected according to its costs for the operations that are expected—much as selecting
a structure such as a Heap, Binomial Heap or Fibonacci Heap to implement a Priority Queue.

Specifically (and as a direct result of the increasing demands placed on compilers), the
amount of time spent on optimization increases (in both programming and running the com-
piler), whereas construction and destruction continue to occur exactly once per compilation.

In most compilers, the IR used is the CFG (Control Flow Graph), whereas in this thesis,

14 Chapter 1. Introduction

we argue for the use of the VSDG (Value State Dependence Graph—both of these are outlined
below in the next section). When we compare these two representations as to their costs, we
see:

• In the front end, the VSDG is slightly more expensive to construct, but this is generally
straightforward.

• In the optimization stage, although there are exceptions, generally optimizations are sig-
nificantly cheaper in the VSDG, as well as being easier to write; this is discussed at more
length in Section 1.6.

• In the rear end, the VSDG requires substantially more effort. Specifically, the VSDG
must first be sequentialized into a CFG, and this has not previously been seen as straight-
forward. This is discussed in Section 1.7, and much of this thesis focuses on this problem.

As time progresses and more and more optimization is performed, an IR which facilitates
optimization becomes more important, and it becomes worthwhile to spend more effort in con-
version both into an IR and out of it, as this effort can be traded against increasing cost savings.
Thus, we argue that switching to the VSDG as IR is a logical next step.

1.5 Trends in Intermediate Representations
Changes and augmentations to Intermediate Representations have followed a number of trends,
but three main themes stand out:

Assignment becoming less important

Control flow becoming more implicit

Dependencies becoming more explicit

Early compilers used the CFG, as it was simple to construct and destruct. The CFG is a
simple flow chart (familiar from process management and non-computer-science fields), with
each node labelled with a machine instruction (or optionally series of instructions); for decision
nodes (only) the final instruction is a branch instruction (hence in the CFG, such nodes are
usually referred to as branch nodes). We can see that the CFG is quite primitive and very close
to the hardware in all three themes:

Assignment is the sole means by which information is carried from any (non-branch) operation
to another, exactly as values are carried from one machine code instruction to another by
being stored in registers.

Control Flow is recorded explicitly by successor edges, thus (unnecessarily) ordering even
independent statements. We can see the program counter of a traditional CPU as pointing
to one node after another.

Dependencies are highly implicit; to identify them, one must perform Reaching Definitions
analysis to locate the other statement(s) potentially producing the value depended on.
(This is similar to the work done by the reorder buffer in a superscalar processor in order
to identify parallelizable statements.)

1.5. Trends in Intermediate Representations 15

Branches control which statements are executed; we can see this as additionally encoding
information (whether the branch was taken or not) into the PC. After paths merge together,
information remains only in the values assigned to variables by statements which the branch
caused to be executed (or not).

We now discuss some significant alternatives and refinements; these are shown in the dia-
gram on page 16.

1.5.1 Static Single Assignment
Many “dataflow” analyses were developed to operate on the CFG: for example, live variables,
available and busy expressions, reaching definitions. These eventually led to perhaps the first
major increase in abstraction: Static Single Assignment, or SSA form [CFR+91]. This adds a
restriction that for each variable appearing in the CFG, statically there is a single assignment to
it (usually requiring the use of additional variables). At merge points, φ-nodes allow merging
the variables from different incoming edges to create new variables.

SSA form makes substantial advances in two of the three themes:

Assignment Each variable has only one assignment to it, so the idea that a statement might
affect the future by having a side effect onto some variable is avoided. (Information is
still only carried by values assigned.)

Dependencies thus become much more obvious, as for any use of a variable, the unique state-
ment producing that value can easily be identified.

This greatly simplifies analysis and hence optimization, but some extra effort is required in
production (and sequentialization, although not significantly). However, the same ordering
restrictions remain.

1.5.2 The Program Dependence Graph
An independent development in IRs was the Program Dependence Graph (PDG), introduced
in 1987 as a combined representation of both control and data dependence. It has been
widely used in analysis tasks such as program slicing [HRB88, Bin99], in parallelization
and vectorization optimizations [ZSE04, BHRB89], and as a software engineering and test-
ing tool [OO84, BH93]. Many traditional optimizations operate more efficiently on the
PDG [FOW87], and we can see it makes large steps forward in two of the themes outlined
earlier:

Control Flow Ordering requirements are substantially relaxed by treating statements such as
x+=1 as atomic and allowing a group node which represents “execute all child nodes of
this node” in some order. Thus edges no longer represent control flow.

Dependencies are made more explicit than in the CFG by the use of a separate class of data
dependence edges between siblings, which restrict the possible orderings. (These are
analogous to the dependence edges between tasks used in project management to identify
critical paths.)

(In terms of assignment, values are still carried by placing them into variables, much as in the
CFG. Hence, SSA form can again be applied to simplify analysis tasks.) However, sequen-

16 Chapter 1. Introduction

V
SD

G

SS
A

C
F

G

C
F

G

in
t

f(
in

t
x)

 {

in
t

y=
7;

if

 (
P

)
x+

+
;

el

se
 x

--
;

y=

y+
x;

re

tu
rn

 y
;

}

x=
x+

1
x=

x-
1

y=
7

P?

y=
y+

x

re
tu

rn
 y

f(
x)

7
P

x

+1
-1

γ

+
x₂

=x
₀+

1
x₁

=x
₀-

1y₀
=7 P?

y₁
=y
₀+

x₃

re
tu

rn
 y
₁

f(
x₀

)

x₃
=φ

(x
₁,x
₂)

P
D

G

x=
x+

1
x=

x-
1

P?
y=

y+
x

y=
7

re
tu

rn
 y

f(
x)

E
xp

lic
it

Sp
lit

of
 C

on
tr

ol
 F

lo
w

E
xp

lic
it

M
er

ge
of

 C
on

tr
ol

 F
lo

w

E
xp

lic
it

M
er

ge
of

 D
at

a
V

al
ue

s

V
al

ue
s

St
or

ed
in

 U
se

r-
de

cl
ar

ed
V

ar
ia

bl
es

V
al

ue
s

In
di

vi
du

al
ly

Id
en

tif
ie

d
(a

s n
od

es
)

(a
s n

am
es

)

G
ro

up
 N

od
e:

``
ex

ec
ut

e
al

l c
hi

ld
re

n
in

 s
om

e
or

de
r''

In
st

ru
ct

io
ns

To
ta

lly
 O

rd
er

ed
 b

y
Su

cc
es

so
r

R
el

at
io

n

O
rd

er
in

g
on

ly
Pa

rt
ia

lly
 S

pe
ci

fi
ed

D
ep

en
de

nc
es

E
xp

lic
it

D
ep

en
de

nc
es

Im
pl

ic
it

A
ss

ig
nm

en
t

C
on

tr
ol

 F
lo

w

D
ep

en
de

nc
ie

s

(e
ve

n
ex

ec
ut

io
n

co
nd

iti
on

s
un

sp
ec

if
ie

d)

(C
on

di
tio

ns

Im
pl

ic
it)

(V
al

ue
s

in
 V

ar
ia

bl
es

M
er

ge
d

Im
pl

ic
itl

y)
(e

dg
e

in
di

ca
te

s

us
e

of
 v

al
ue

)

(e
dg

e
re

st
ri

ct
s

or
de

ri
ng

)

1.6. Optimizations on the VSDG 17

tialization of the PDG is substantially more difficult, and some PDGs cannot be sequentialized
without duplicating some of their nodes.

Some ordering restrictions—some specification of Control Flow—remain even in the PDG,
however, as the following code sequences are treated as distinct:

{ int x = a+b; if (P) y = x;}

if (P) { int x = a+b; y = x;}

While this is very suitable in a machine-oriented intermediate code (because of the different
timing effects), it is less appropriate for a general optimisation phase, as we may wish to make
late decisions on which form to use based on, for example, register pressure after optimization.

1.5.3 The Value (State) Dependence Graph
Another, more recent, IR—variously known as the Value Dependence Graph
(VDG) [WCES94], Value State Dependence Graph (VSDG) [JM03], or more generally,
as the class of Gated Data Dependence Graphs (Gated DDGs) [Upt06]—has also been
proposed, but has yet to receive widespread acceptance3.

This IR can be seen as the logical culmination of all three trends:

Assignment is entirely absent, as it replaces executable/imperative statements with functional
operations.

Control Flow is not indicated at all: the VSDG takes the viewpoint that control flow exists only
to route appropriate values to appropriate operations, and records merely which values
and operations are appropriate, not how this routing can be achieved.

Dependencies are indicated explicitly, including the conditions under which each occurs (i.e.
under which each value is selected).

1.6 Optimizations on the VSDG
Earlier, in Section 1.4, we said the VSDG makes the optimization stages—that is, many of the
analyses and transformations on which CFG compilers spend their time—much simpler and
easier.

An overview of how many traditional CFG optimizations can easily be applied to the VSDG
is given by Upton [Upt06]: we summarize that those where the main difficulty is in the dataflow
analysis (e.g. constant propagation and folding, algebraic simplification, escape analysis) be-
come much easier in the VSDG. In other cases (e.g. type-like analyses, devirtualization, scalar
replacement, loop unrolling) using the VSDG makes little difference, and we see many such
optimizations as having clear VSDG equivalents or being able to be “ported” across the IR gap
with minimal changes. Indeed, Singer [Sin05] has shown how many optimizations can be done
in an identical fashion on CFGs satisfying different restrictions on variable naming and reuse,

3The exact differences between these will be explained and reviewed later, but for now we can see the two being
based on the same principles—in particular, every VDG is a VSDG. The VSDG adds explicit state edges to link
operations which must have their ordering preserved (such as the indirect stores resulting from *x=1; *y=2;
when the aliasing of x and y is unknown).

18 Chapter 1. Introduction

including SSA and SSI [Ana99] forms, and we see the same principle as applying equally to
the selection of VSDG over CFG (the VSDG is implicitly in SSA form). In some cases (e.g.
constant propagation), the precision of the result depends on the IR that was used, but others
(e.g. dead-code elimination) work independently of the IR altogether.

Further, we argue that many optimizations can be made more effective and general by so
changing or redeveloping them to take advantage of the VSDG’s features. Where optimiza-
tions seem to occur implicitly by representation in the VSDG, this is a highly effective way
of implementing them—although in some cases it may be merely delaying the issues until the
sequentialization stage (discussed in Section 1.7.1).

1.7 The Sequentialization Problem
In Section 1.4 we also said that conversion of the VSDG to machine code was difficult. We argue
previous attempts at VSDG sequentialization fall short of making use of the VSDG practical,
and indeed, Upton suggests that the sequentialization problem is the major obstacle preventing
the widespread usage of the VSDG in real compilers. We can see several reasons for this:

• Evaluation of nodes proceeds in a wavefront, i.e. a cut across the entire VSDG. This does
not fit well with the sequential nature of execution in conventional computers, which have
only a single program counter, identifying a single point or program location.

• Evaluation proceeds nondeterministically—that is, the VSDG does not specify how the
wavefront moves, what nodes it passes over, or in what order (or even how many times).
This issue is explored in more detail in Chapter 2, but is in stark contrast to the highly
deterministic nature of conventional computers, where programs instruct the CPU exactly
what to do and in what order4.

• The VSDG is highly normalizing. Whilst we have discussed the benefits of this already, it
also implies a cost: somehow the compiler must choose the best representation to output;
this may involve some element of search.

1.7.1 Sequentialization and Late Decisions
Normalization is normally done by the compiler translating all the different source code ver-
sions into the same form in its intermediate representation, either by some kind of normalizing
transformation (which explicitly selects one of the corresponding IR versions), or because the
IR cannot distinguish between them. An example is the ordering of independent instructions:
in some IRs (e.g. the CFG), these are explicitly ordered (so a normalizing transformation would
be some kind of sort), but in other IRs (e.g. the PDG), the ordering is not specified.

The VSDG tends towards the latter: many optimizations, which would be separate passes in
a CFG compiler, seem trivial in a VSDG framework, due to the VSDG’s normalizing properties.
That is, they automatically (or implicitly) occur merely by representing a program as a VSDG.

However, this does not entirely avoid the problem: rather, it merely delays the decision
until the IR is transformed into some form which does make the distinction, namely until the
sequentialization stage. Thus, sequentialization wraps up many such optimizations together,
and concentrates their difficulty into one place. However, this approach does seem helpful in

4even if modern out-of-order CPUs may not always follow such instructions exactly!

1.8. Chapter Summary 19

addressing phase-order problems, which have been a particular problem for CFG compilers
which (historically) tend to focus on implementing many distinct optimizations each in its own
pass.

1.8 Chapter Summary
We have seen a number of trends suggesting that a switch to the VSDG would be an advanta-
geous progression in intermediate representations and perhaps the logical “next step” in compil-
ers. We also saw that this potential was being held back by of the difficulty of sequentialization:
converting instances of the VSDG, perhaps highly optimized, back into good sequential CFG
code.

Structure of this Thesis We tackle the problem of sequentialization by breaking it into three
phases; although previous attempts have used similar ideas implicitly, they have not properly
distinguished between these phases. Key to this is the use of a special form of duplication-free
PDG (df-PDG) as a midpoint between VSDG and CFG.

Chapter 2 explains our compiler architecture and the breakdown into phases by formally
defining the VSDG and PDG and reviewing the significance of duplication-freedom. Chap-
ter 3 describes how VSDGs may be converted into PDGs suitable for input to existing tech-
niques of PDG sequentialization. Chapter 4 reviews how these existing techniques produce
df-PDGs, and compares our approach with previous techniques for VSDG sequentialization
as well as classical CFG code motion. Chapter 5 reconsiders the VSDG-to-PDG conversion
process from a more theoretical standpoint, and defines a new data structure, the Regionalized
VSDG (RVSDG), as a reformulation of the PDG. This is then used in Chapter 6 which considers
how df-PDGs (df-RVSDGs) may be converted to CFGs, and critically reviews the earlier break-
down of sequentialization into phases. Chapter 7 reflects on the treatment of sequentialization
as a separate stage after optimization (as shown in Figure 1.1) and the difficulties remaining in
this structure by studying an optimization of splitting which subsumes a wide variety of more
aggressive CFG restructuring optimizations. Finally, Chapter 8 concludes and suggests further
research directions.

20 Chapter 1. Introduction

CHAPTER 2

The Nature of the Beast

What the VSDG is, and How it Makes Life Difficult

In this Chapter we will explain in detail how a program is represented as a VSDG; how this
differs from other IRs, and thus what tasks the sequentialization phase must perform; and how
we tackle this problem by breaking sequentialization apart into phases. The chapter concludes
with formal definitions of both VSDG and PDG.

2.1 The VSDG by Example
The VSDG represents programs graphically, using nodes and edges. Historically nodes have
been computations, and edges represented values. However, for this work we borrow the nota-
tion (although not the exact semantics) of Petri-Nets [Pet81]. Nodes come in two forms: places
(round, representing values) and transitions (square, representing operations such as ALU in-
structions). Such operations include constants—transitions with no predecessors:

6i 1.7114f 0x6334AD00

and computations, which have incoming edges to indicate the values on which they operate:

21

22 Chapter 2. The Nature of the Beast

15i

flt /

5.9f

i2f

int+

int div

3i

f2i

num den

mod rem

1 2

As the above example shows, operations may have multiple operands, and/or produce mul-
tiple values, and these are distinguished by edge labels. However each place is the result of its
unique producer transition (this is in contrast to regular Petri Nets). The exact set of operations
available is a compiler implementation detail and may depend upon the target architecture.

There is no need for a VSDG to be treelike: a single result may be used many times, as in
the above. However there must be no cycles; the following example is not legal:

2

int +

1 int *

Instead of containing values, some places may instead contain states, which model both the
contents of memory (seen as external to the VSDG) and termination (of both loops and function
calls), and indicate the essential sequential dependencies between operations due to these. We
draw states with dotted boundaries and connecting edges; linearity restrictions on the graph
ensure that, dynamically, each state produced must be used exactly once:

2.1. The VSDG by Example 23

producers
not shown;
assume no

information

CALL nodes indicate
calls to named
procedures or functions,
and are considered
atomic. Operands are a
state plus numbered
arguments to pass to the
function.

STORE

LOAD

6i

valaddr

1 2 3

CALL
foo

ordering
essential as

aliasing
indeterminate

Choices between values, states, or tuples thereof, are represented using γ-nodes:

if (A>B) then A-B
 else B-A

let (t1,t2)=if (A>B)
 then (A,B)
 else (B,A)
in t1-t2

if (((int*)0x4000)*>0)
 printf("Positive value");

0x4000

LOAD

γ

int >

0

CALL
printf

"Positive
value"

P
T

F

γ

int >
int - int -

1 2

1 2

2 1

P

T
F

A B

A B

γ

int >

int -

1 2

F₂
F₁

T₁
T₂

1 2

1 2

(Note how the third example differs from the first by having only a single static subtraction.)
Places may include arguments, identifiable by (uniquely) having no predecessor transitions,

and also include the results of the VSDG, drawn with double outlines. These provide a way for
values and/or state to be passed into and out of the VSDG, and may be named to distinguish be-
tween them. Note that the same place may be both argument and result, as shown in Figure 2.1.

VSDGs can also be hierarchical graphs, in which individual compound nodes, drawn with
a double outline, may contain entire graphs; the flattening operation merges such encapsulated
graphs into the outer (containing) graph, as shown in Figure 2.2.

Flattening works by quotienting places in the containing graph with those in the contained
graph, according to edge and place labels in the respective graphs. (Note that the kind—value
or state—of an edge or place is a label.) The dotted group of nodes in the result records the
extent of the contained group, allowing an inverse operation of nesting.

Figure 2.3 shows how this mechanism is used to represent loops, by using standard µ fix-
point notation to write an infinite (regular, treelike) hierarchy. As Figure 2.4 shows, this is
similar to the representation of functions.

24 Chapter 2. The Nature of the Beast

fun sub(a,b)=a-bfun fst(a,b)=a fun max(a,b)=
a>b ? a : b

a b

γ

int >

1 2

T F
P

ba

int -
1 2

a b

Figure 2.1: Argument and Result places are drawn with double outlines

G≝

unary -

G

2.0f

flt *

flt -

flt /

2 1

12

a c

flt * 4.0f

flt *

sqrt flt -

flt /

2 1

12

flatten

unary -

2.0f

flt *

flt -

flt /

2 1

12

flt *

4.0f

flt *

sqrt

flt -

flt /

2 1

12

nest

a c

Figure 2.2: VSDGs can also be hierarchical graphs.

2.1. The VSDG by Example 25

0i

G

let G≝μX.

in

int +1

10i

"Print this
ten times"

CALL
printf

X

γ

int <
12

TF
P

Figure 2.3: Loops are represented using the µ-operator. (The syntactic definition G
def= µX. . . .

can alternatively be seen as a declaration let rec G=. . .
[
G�X

]
)

26 Chapter 2. The Nature of the Beast

G

1i

int fac3(int n)
{
 int x=n,a=1;
 while (x>0)
 {
 a*=x;
 x--;
 }
 return a;
}

int fac2(int n,int a)
{
 return (n>0)
 ? fac2(n-1,a*n)
 : a;
}

With while-loopIterative

int fac1(int n)
{
 return (n>0)
 ? n*fac1(n-1)
 : 1;
}

Recursive

n a

int > 0

int -1

int *

γ

CALL fac1

1i

T P F

int > 0

int -1

int *

γ

X

n a

T P F

G≝μX.

n a

re
fe

rs
 to

 d
ef

in
iti

on

iso
m

or
ph

ic
 to

 fa
c2

Figure 2.4: Three representations of the factorial function. Here only the first uses the stack,
to make recursive function calls fac1(. . .). The second instead uses iteration, which can be
seen as a loop (à la tail calls in ML); the third wraps this loop in a procedure taking one fewer
argument. A valid alternative form of the second VSDG exists in which the complex node in the
recursive definition—shown textually as containing X—is replaced by CALL fac2; this would
also use the stack (much as an “iterative” function might if it were not subject to the tail call
optimization).

2.2. The VSDG and Functional Programming 27

2.1.1 Uniformity of Expressions
A key feature of the VSDG is that γ-nodes—which implement choice between or selection of
values (and states)—are just nodes like any other (arithmetic) operation. Thus, many transfor-
mations naturally treat expressions in the same way regardless of whether they are spread over
multiple basic blocks or just one: the basic block structure is part of the expression. This con-
trasts with the CFG’s two-level system where the shape of the graph (i.e. the structure of nodes
and edges) specifies the control-flow—which implements choice between or selection of values
(and states)—and the labelling of the nodes specifies the other (arithmetic) operations: thus,
many transformations work by moving the labels (instructions) around within and between the
nodes (basic blocks).

This ability to treat expressions uniformly is a recurring theme throughout this thesis, and is
particularly important in Chapters 6 and 7.

2.1.2 Formal Notations
We use n to range over nodes (either places or transitions) generally;

r, s, x, y for arbitrary places or results, usually values, or σ to indicate specifically a state;
t, u, v or sometimes op for operations or transitions (functions in the mathematical sense).

We tend to use foo and bar for external functions, especially those whose invocation requires
and produces a state operand, as opposed to those which have been proven side-effect-free and
always-terminating.

g ranges over γ-nodes;
P, Q range over predicates, both in the VSDG (where they are places containing value of

boolean type) and more generally (including in the CFG and PDG, where P and Q can also
identify a corresponding branch or predicate node);

G ranges over either graphs (including hierarchical VSDGs) or, according to context, PDG
group nodes.

We borrow other notations from Petri-Nets, writing •t for the set of predecessors (operands)
to a transition t, and t• for the set of successors (results) of t. We also write s• for the set of
successors (now consumers) of a place s, and by abuse of notation apply the same notation
for sets of places, thus: S ′• =

⋃
s∈S′ s•. (Hence, t•• is the set of consumers of any result of

t.) However we write ◦s for the predecessor (producer) of a place s—recall this is a single
transition not a set—and again implicitly lift this over sets of places.

2.2 The VSDG and Functional Programming
In this section we explore the connection between the VSDG and functional programming lan-
guages such as ML and Haskell. This yields some insight into the problem of sequentialising
the VSDG.

2.2.1 SSA and Strict Languages
Appel [App98] has previously noted that, because SSA effectively removes the (imperative)
notion of assignment, any program in SSA form is equivalent to a functional program; the
equivalence can be seen as follows:

1. Liveness analysis is performed, to identify the SSA variables live at entry to each basic

28 Chapter 2. The Nature of the Beast

int f(int a,int b)
{
 if (b)
 a+=b;
 else
 a*=3;
 return a+1;
}

fun bb4(a₃)=
 let res=a₃+1 in
 res;
fun bb3(a₀,b₀)=
 let a₂=a₀+b₀ in
 bb4(a₂);
fun bb2(a₀)=
 let a₁=a₀*3 in
 bb4(a₁);
fun bb1(a₀,b₀)=
 if (b₀==0) then
 bb2(a₀)
 else
 bb3(a₀,b₀);

(a) Source code (b) CFG in SSA form (c) Corresponding
functional program

a₂=a₀+b₀a₁=a₀*3

a₀=arg0
b₀=arg1
b₀==0?

res=a₃+1
a₃=φ(a₁,a₂)

EXIT

Figure 2.5: Correspondence between SSA Form and Functional Programming

block (including results of φ-functions, not their operands)

2. For each basic block, there is a corresponding named function, with parameters being the
live variables

3. Each assignment statement v1 := op(v2, v3) corresponds to a let statement let
v1=op(v2, v3)

4. Each successor edge is converted into a call to the corresponding function, passing as
arguments:

• For variables (parameters) defined in the CFG by a φ-function, the corresponding
operand to the φ-function

• For other variables, the same variable in the calling function

An example of this correspondence is given in Figure 2.5. However, particularly interesting
for us is the equivalence of evaluation behaviour. Execution of a basic block in a CFG proceeds
by evaluating the RHS, and storing the result in the LHS, of each statement in turn. This is the
same as the behaviour when evaluating the corresponding function in a strict language (such as
ML): for each let statement in turn, the expression is evaluated and assigned to the variable,
before proceeding to the body of the let (i.e. the next such statement)1. The functional program
is in fact in Administrative Normal Form (ANF) [CKZ03].

2.2.2 Encoding the VSDG as a Functional Program
Since the VSDG is implicitly in SSA form (every value has a single producer!), it is not surpris-
ing that a translation to an equivalent2 functional program exists. The translation for stateless

1Even the ordering of side effects is thus preserved.
2Having the same observable semantics—this is discussed in Section 2.7.

2.2. The VSDG and Functional Programming 29

a b

γ

int *3 int +

fun f(a,b)=
 let i3=a*3 in
 let iadd=a+b in
 let ic=if (b) then
 iadd else i3 in
 ic;

(a) VSDG (b) Corresponding
functional program

Figure 2.6: Correspondence between VSDG and Functional Programming (Source code given
in Figure 2.5(a).)

(VDG) fragments is as follows:

1. Order the transitions of the V(S)DG into any topological sort respecting their dependence
edges. (Such an order is guaranteed to exist because the VSDG is acyclic.)

2. Assign each place s a unique variable name vs

3. For each transition t in topological sort order, let −→vi be the set of variable names corre-
sponding to t’s operand places •t, and let −→vr be the set of variable names corresponding
to its results t•. Output the statement let (−→vr)=op(−→vi) in where op is the function
implementing the node’s operation. (−→vi are guaranteed to be in scope because of the
topological sort.)

An example is given in Figure 2.6. (For stateful VSDGs, the same principles apply, but the
translation is more complicated and given in Appendix B).

2.2.3 Evaluation Strategies
In Section 2.2.1 we observed that the evaluation behaviour of the CFG was the same as its cor-
responding functional program under strict language semantics. However, the semantics of the
VSDG do not specify an exact evaluation behaviour, i.e. which transitions are executed—merely
which places are used as part of the overall result. In fact stateless fragments of the VSDG, like
expressions in pure functional programming languages, are referentially transparent:

Referential Transparency An expression E is referentially transparent if any
subexpression and its value (the result of evaluating it) can be interchanged without
changing the value of E.

Definition from FOLDOC, the Free On-Line Dictionary Of Computing,
www.foldoc.org

A consequence of this is the Church-Rosser theorem:

30 Chapter 2. The Nature of the Beast

Church-Rosser Theorem A property of a reduction system that states that if an
expression can be reduced by zero or more reduction steps to either expression M
or expression N then there exists some other expression to which both M and N
can be reduced.

Such reduction systems include both the λ-calculus and the VSDG (we will use λ-calculus for
this discussion, because its properties are well-known, even though we will not use any higher-
order features until Chapter 5). From the perspective of the λ-calculus, this means that any term
has at most one normal form, or (equivalently), any sequence of reductions that terminates in a
normal form (i.e. value) will terminate in the same value. From the perspective of the VSDG,
this means that the choice of which VSDG nodes are evaluated will not affect the result. Since
the VSDG only describes the resulting value, it does not specify which nodes are evaluated.

Several evaluation strategies (or reduction strategies) have been suggested for λ-calculus
terms, and these can also be applied to the VSDG:

Call-by-Name Recompute the value each time it is needed.

Call-by-Need Compute the value if and only if it is needed; but if it is, store the value, such
that on subsequent occassions the value will not be recomputed but rather the stored value
will be returned.

Call-by-Value Compute the value immediately, whether it is needed or not, and store the result
ready for use.

We can see these strategies in a range of contexts. In the λ-calculus, call-by-value means
reducing the RHS of any application before the application itself; call-by-name the opposite
(thus, always performing the outermost reduction first); and call-by-need is as call-by-name but
requires representing the expression using a DAG rather than a tree3. In functional programming
languages, the strategies typically refer to the treatment of arguments to procedure calls; in a
call-by-value language, arguments are evaluated eagerly, before calling, so evaluation of an
expression is only avoided by it being on one arm of an if.

However, a more insightful perspective is obtained by considering let statements. These
allow the same subexpression to be referenced in multiple places, for example let x=E in
if E ′ then x else if E ′′ then x else E ′′′. In a call-by-value language (such as
ML), evaluation of such a statement first evaluates the argument to the let (E in the example
above); the body is then processed with x already containing a value. Contrastingly, in a call-
by-need language such as Haskell, the argument E of the let-expr need be evaluated only if x
is used in the body.

A great deal of work has been put into attempting to make lazy languages execute quickly.
Observing that call-by-value is more efficient on today’s sequential imperative hardware, opti-
mizations attempt to use eager evaluation selectively in order to boost performance. The key
issue in all cases is to preserve the termination semantics of the language, i.e. call-by-need.
Strictness analysis [Myc80] attempts to identify expressions which will definitely be evaluated,
and then computes their values early. Other techniques evaluate expressions speculatively, that
is, before before they are known to be needed: termination analysis [Gie95] identifies subex-
pressions which will definitely terminate, and can thus be speculated safely; optimistic eval-
uation [Enn04] may begin evaluating any expression, but aborts upon reaching a time-limit.

3Significantly, call-by-need terminates if and only if call-by-name terminates, but will do so in at most the same
number of reduction steps, often fewer.

2.2. The VSDG and Functional Programming 31

(Timeouts are then adjusted adaptively by a runtime system to avoid wasting excessive cycles
on computations whose results may be discarded). However despite these efforts the perfor-
mance of lazy languages generally lags behind that of strict ones.

In the VSDG, the situation is similar: the compiler may select a non-lazy evaluation strat-
egy to try to boost performance, so long as the termination semantics of call-by-need are
preserved. State edges explicitly distinguish operations which may not be speculated—those
with side-effects, or which may not terminate4—from all others, which may be; but just as
for functional programs, the compiler must avoid infinite speculation, as this would introduce
non-termination5. Moreover, the same choice remains, between the potential wasted effort of
speculative evaluation, and the difficulty of arranging control flow for lazy evaluation.

Thus, whereas an (SSA) CFG corresponds to a functional program in a strict language, we
see a VSDG as corresponding to its equivalent functional program in a lazy language.

2.2.4 Higher-Order Programming
Higher-order programming refers generally to the use of variables to store functions or compu-
tations, that is, to store code rather than values. Thus, a higher-order variable is one containing
a stored procedure; this can be called or invoked as any other procedure, but the actual code
that is executed depends upon the runtime value of the variable.

In the context of a programming language explicitly supporting higher-order programming,
implementation probably involves such a variable containing a function pointer—i.e. the code’s
address in memory—with invocation being an indirect jump. This might seem to have little
in common with the VSDG; the Value (State) Dependence Graph represents a computation in
terms of the values involved, with edges showing which other values computation requires. That
every node is a value, not a function, is quite clear in the Haskell translation of Section 2.2.2:
every variable is of ground type.

However, as discussed in Section 2.2.3, the evaluation model of the VSDG means that ev-
ery variable, although of ground type, implicitly stores not a value but rather the computation
required to produce it. For call-by-need rather than call-by-name, we can see the stored com-
putation as being of the form

if (!COMPUTED) {
VALUE=...;
COMPUTED=TRUE;

};
return VALUE;

In contrast to Haskell—we are using the VSDG for intraprocedural compilation and
optimization—the implementation of such stored procedures will generally be to inline a copy
of the stored procedure into each call site. (The possibility of using VSDG compilation tech-
niques for first-order Haskell program fragments remains, however.)

4Potentially also those which may raise exceptions—this is discussed in Appendix B.7.
5Thus the semantics of the VSDG, in Section 2.7.2, insist on a fairness criterion which allows only a finite

amount of speculation.

32 Chapter 2. The Nature of the Beast

2.3 The VSDG and the Program Dependence Graph
The PDG has been mentioned already, and is defined formally in Section 2.5. We previously
described the PDG as being an intermediate point between the CFG and VSDG in terms of its
representation of control flow: whereas in the CFG nodes have explicit control flow successor
edges, in the PDG there is some control flow information—roughly, “execute this under these
conditions”.

In comparison, the VSDG does not represent such details (recall its translation into a func-
tional programming language, in Section 2.2.2): it deals only with the use of values (with
each let-expr describing how each value may be computed from each other), rather than
the execution of the statements or computations (implicitly stored in each variable) produc-
ing those values—by the principle of referential transparency, these may be executed at any
time. Whereas the VSDG is functional, the PDG is imperative, with extra information in its
CDG component. This describes what to compute and when—that is, the Control Dependence
subgraph encodes an evaluation strategy.

A particular insight stems from the ill-formed PDG of Figure 2.8 on page 38. This is seen
as an incomplete specification of either of the following (semantically different—e.g. consider
S as x+=1) programs:

{if (P) S;} {if (P’) S;}

{if (P || P’) S;}

Observe that the first of these corresponds to call-by-name, and the second to call-by-need.
Hence, the graph of Figure 2.8 is not a valid PDG because it does not specify which evaluation
strategy to use, and a PDG must do so. In contrast, VSDGs of similar structure are legal6, and
the VSDG allows the choice of either strategy. (This poses problems for naı̈ve sequentialization
algorithms, considered in Section 3.2.1.)

2.4 An Architecture for VSDG Sequentialization
We tackle the sequentialization problem by breaking it into three phases, as shown in Figure 2.4:

Proceduralization: conversion from (parallel) functional to (parallel) imperative form—that
is, from referentially-transparent expressions into side-effecting statements. From the
VSDG, this produces a PDG, and requires selection of an evaluation strategy, working out
a structure for the program to implement this strategy, and encoding that structure in the
Control Dependence Graph subgraph of the PDG (missing from the VSDG). Chapter 3
covers this in detail.

PDG Sequentialization (by existing techniques): we see this as converting from a PDG to a
special form of duplication-free PDG or df-PDG, explained below. Chapter 4 reviews
these techniques and discusses related issues.

Node Scheduling: conversion from parallel (imperative) to serial (imperative) form—this
consists of putting the unordered program elements of the df-PDG (statements and
groups) into an order, producing a CFG. Chapter 6 covers this.

Key to our approach is the use of the Program Dependence Graph (PDG, defined in Sec-
tion 2.5 below), including the integration of existing techniques of PDG sequentialization.

6Except when S is stateful; in such cases linearity restrictions require that one behaviour is specified.

2.4. An Architecture for VSDG Sequentialization 33

6

4

2

3

5

KE
Y

(VSDG
-like)

(PDG-
like)

(CFG
-like)

Three Classes of IRs with different
levels of specification of ordering:

nChapter BoundaryOperations or
Transformations

7

(U
pt

on
's

A
lg

or
ith

m
)

(J
oh

ns
on

's
A

lg
or

ith
m

)
(A

rc
hi

te
ct

ur
e

of
 th

is
 T

he
si

s)

VSDG
CFG

(physical
registers)

(these result in
unnecessary evaluations)

tail nodes

"compute early"
(eager/speculative)

"duplicate everything"
(exponential growth)

Extreme "solutions":

TURNING THE VSDG INTO SEQUENTIAL CODE

Arbitrary
VSDG

CFG
(physical
registers)

Proceduralize Node Schedule

Total order on
operations

C
ha

iti
n

/C
ho

w
u-VSDG+
Partitions

Unshared
VSDG

Specify
Sharing

nodes arranged in
hierarchy by CDG

Duplication
-free PDG

(Well-
formed)

PDG
PDG
Seq'n

Control Flow may require
>1 Program Counter

register allocation,
instruction scheduling

dominator trees,
gating conditions,
γ-ordering,
tail registers

CFG
(virtual

registers)

Treelike
dPDG

Analyse demand conditions
 with BDDs, then push
 operations down into

child regions (exp. time)

arbitrary
topolog. sort

"Snowplough"
algorithm

push node upwards
with serialising edges

clone a node from
above into the cut

spill result
from above cut

VSDG with
matching split
(ς) nodes for
every γ-node

VSDG + ς's +
"enough serializing
edges...to make it
correspond to a

single CFG"

Breadth-first traversal by maximal
depth-from-root, to fit into #registers

specifies
evaluation
strategy

Lazy
Functional

Programming (equivalent to SESE
regions in Program

Structure Tree)

phase-order problems
software pipelining

no tail
nodes

operator
sharing

X

Arbitrary
VSDG

Arbitrary
VSDG

PDG

RVSDG

New IRs

RVSDG

CFGVSDG RVSDGoptimization then
sequentialization?

splitting

34 Chapter 2. The Nature of the Beast

PDG Sequentialization is usually seen as converting from PDG to CFG; since the PDG al-
ready contains imperative statements which can be placed directly onto nodes of a CFG, the
main task is in arranging the statements—specifically, ordering the children of each group
node—so that all the children execute when the group does. A key question is:

Given a node n which is a child of two group nodes G1 and G2, is it possible to
route executions of n resulting from G1 and G2 through only a single copy of n in
the CFG?

The intuition is that if n can be executed last among the children of both G1 and G2, then a single
CFG node suffices7; if not, then two copies of n—one for each parent—are required. Clearly,
no ordering of the children of a group node can put every child last(!), but in a special class
of PDGs known as duplication-free PDGs (df-PDGs), no nodes need be duplicated to make a
CFG. Intuitively, these can be characterized as having control flow which can be implemented
using only a single Program Counter (PC).

We mentioned above that PDG sequentialization is normally seen as transforming a PDG
into a CFG: the task is to exhibit a total ordering of each group node’s children, which can
be naturally encoded into the successor relation of a CFG. However, it is possible for many
different sequentializations (orderings) to exist: Ball and Horwitz [BH92] show that in any
duplication-free PDG, every pair of siblings either must be placed in a particular order in the
resulting CFG (property OrderFixed), or may be placed in either order (property OrderAr-
bitrary). That is, the OrderFixeds form the elements of a partial ordering, and every total
ordering respecting it is a valid (CFG) sequentialization.

In our compilation framework, we wish to preserve as much flexibility in ordering as pos-
sible for the node scheduler. Thus, we use existing PDG sequentialization techniques only to
identify which pairs of nodes in a df-PDG are OrderFixed or OrderArbitrary; ordering within
groups of OrderArbitrary nodes is left to the node scheduler. (That is, the node scheduler must
take into account ordering restrictions resulting from PDG sequentialization as well as data
dependence.) Instead, the main task of PDG sequentialization is to make the PDG duplication-
free. This problem has not been well-studied, but we consider it in Chapter 4.

2.4.1 The VSDG and Phase-Order Problems
The phase-order problem is a long-standing issue in optimising compilers.

On the CFG, individual optimizations—such as register allocation, instruction scheduling
for removing pipeline bubbles, or code motion—are often implemented individually, as sep-
arate passes. The phase-order problem lies in that for many pairs of these phases, each can
hinder the other if done first: register allocation prevents instruction scheduling from permuting
instructions assigned to the same physical registers, whereas instruction scheduling lengthens
variable lifetimes which makes allocation more difficult. Thus, there is no good ordering for
these phases.

The alternative approach is to try to combine phases together—leading to register-pressure-
sensitive scheduling algorithms [NP95], for example. This makes the concept of optimality

7This ordering of statements allows control flow to “fall through”, capturing the desirable possibility of using
shortcircuit evaluation and generalizing the cross-jumping optimization on CFGs.

2.4. An Architecture for VSDG Sequentialization 35

harder to identify, and much harder to reach. However this is only because the goals of opti-
mality in the individual phases are discarded; and we argue that these goals have always been
somewhat illusory: ultimately it is the quality of the final code that counts.

The VSDG leans towards the second approach. Its increased flexibility, and the lack of con-
straints to code motion it offers, have proven helpful in combining profitably some phases which
have been particularly antagonistic in the past: for example common-subexpression elimination
and register allocation (dealt with by Johnson [JM03]), and instruction scheduling (in Chap-
ter 6). Important here is the way the VSDG wraps up many normalizing transformations, which
would be discrete phases in CFG compilers, into the sequentialization stage (Section 1.7.1).

In this way, many of the phase-order problems of CFG compilers are reduced. They are
not entirely eliminated, in that the phases identified above are not perfectly separate, and so
in a truly optimising compiler8, the phases would have to be combined and/or the interactions
between them considered. Hence, our VSDG compiler will suffer similar, but different, phase-
order problems to those of CFG compilers. However we argue that these are less severe in our
case for two reasons:

1. We have fewer phases than traditional CFG compilers (as an extreme example, the Jikes
RVM optimizing compiler has over 100 phases including many repetitions).

2. The phases we use have more orthogonal concerns. Specifically, proceduralization is con-
cerned with the shape (or interval structure) of the graph (that is, nodes and subtrees are
interchangeable), and is largely machine-independent, whereas node scheduling looks at
the size or node-level structure of the graph, and deals with machine-dependent charac-
teristics such as register file width and instruction latencies.

(We discuss the vestigial problems with our division into phases further in Section 6.5, including
some possibilities for interleaving them at a fine level. However it is worth bearing in mind, in
any attempt to truly “combine” the phases of proceduralization and node scheduling, that the
task of putting unordered program elements into an order first requires knowing what program
elements must be ordered!)

2.4.2 Three Phases or Two?
The division of VSDG sequentialization into three phases leaves PDG sequentialization sitting
somewhat uncomfortably in the middle of the other two: at times it seems like the last part of
proceduralization, and at other times like the first part of node scheduling.

PDG sequentialization seems part of node scheduling because it is converting from parallel
to serial by interleaving the partial ordering of data dependences into a total ordering, tak-
ing into account tail-sharing. The data dependences are clearly a specification of “what to do
next” for each value, and the total ordering is a specification of “what to do next” with only a
single program counter. (Thus, that we need to interleave them at all, is a result of a machine-
dependent characteristic—PDG sequentialization might be omitted on multicore architectures
with lightweight fork-and-join mechanisms. Node Scheduling might then be used only to in-
terleave multiple computations with identical control conditions, for which ILP suffices and
thread-creation overhead may be avoided.)

8Practical compilers might better be described as ameliorating.

36 Chapter 2. The Nature of the Beast

However, PDG sequentialization also seems part of proceduralization, because it can be
seen as part of the conversion from functional to procedural: it concerns the duplication re-
quired to encode (into any resulting CFG) an evaluation strategy. Moreover, many of the tasks
performed by proceduralization concern themselves with the size of the output program af-
ter PDG sequentialization, and previous techniques for VSDG sequentialization have passed
through a point equivalent to the df-PDG—this is useful for comparison purposes, covered in
Chapter 4. (However, other techniques construct only restricted treelike PDGs, which are triv-
ially duplication-free, and much of the power of our architecture comes from the ability to use
more general df-PDGs.)

Thus, we find it neatest to leave PDG sequentialization as a separate phase.

2.4.3 A Fresh Perspective: Continuations
Much of the task of sequentialization relates to specifying continuations. One normally thinks
of a continuation as a record of the calling context when making a procedure call (to an explicitly
named procedure, using a direct jump, or indirectly to a function pointer), such that execution
can resume there after the procedure completes; typically, the continuation is the return address,
passed as an extra argument. However, as we saw in Section 2.2.4, each VSDG node implicitly
stores a computation; and our approach of inlining calls to such procedures stores the return
continuation in the CFG successor relation (one can see this as using the memory address of
each copy to identify the “return continuation” after that call site).

In the VSDG the nearest thing each node has to a continuation is the set of its consumers, i.e.
the operations which might be performed on its value. However, this does not even make
clear which of these consumers will ever execute in any program run.

In the PDG group nodes add an additional level of specification: the continuation of a group
node is to execute all of its children (in some order). Although still somewhat vague, this
is more precise than the VSDG.

The effect of PDG sequentialization is to specify the continuations much more precisely,
including specifying continuations for the statement nodes: when the children of a group
node are totally ordered, each sibling’s continuation is to go on to execute the next sib-
ling9.

In the CFG each statement’s continuation—“what to do next” after executing that statement—
is explicitly specified as its control flow successor10.

The perspective of continuations leads to two insights:

1. Whereas in PDG and VSDG, the (data) dependence edges specify partial orderings on
sets of nodes (these can be seen as a set of continuations to be executed in parallel), im-
posing a total ordering (specified by a single continuation for each node, forming a chain
to be executed serially) introduces the possibility that the “next” node in the ordering may
not have been related by the partial order. That is (as in the CFG), the next node may not
do anything with any value produced by the previous, but could merely perform some

9For the final sibling, this is the next sibling of the next highest ancestral group node.
10Branches have two continuations—one for true and one for false.

2.5. Definition of the PDG 37

other computation which was placed afterwards arbitrarily or for some other reason. In
this case, the two could have been interchanged in the total order, but this would have
changed the continuation for each.

2. In both PDG and VSDG, nodes can have multiple continuations: in the VSDG, these
correspond to program executions in which different subsets of the node’s consumers
will be evaluated; in the PDG, a node could have one continuation per parent group node
(potentially all different, if each group node were to order its children independently).
Contrastingly, in the CFG, each statement node stores exactly one continuation; hence,
storing i distinct continuations for a node, requires i copies of that node in the CFG. A
number of the optimization techniques we will see have the effect of reducing the number
of distinct continuations identified for each node, and thus the number of copies of the
stored procedure that are required.

The Task of PDG Sequentialization is to choose orderings such that nodes have few distinct
continuations; duplication-freedom captures the condition under which each node has exactly
one distinct continuation.

2.5 Definition of the PDG
A PDG consists of three kinds of nodes (below), and two kinds of edges: control dependence
edges and data dependence edges. The Control Dependence Graph (CDG) is the subgraph
consisting of all the nodes, and only the control dependence edges; the Data Dependence Graph
(DDG) is the subgraph of all the nodes and only the data dependence edges. It is convenient to
describe control dependence edges as pointing from parents to children, even though the CDG
is not strictly treelike in that it may contain cross-links (and back-edges, creating cycles). The
number of children depends upon the type of node:

Group Nodes G, drawn as ovals, have multiple children (n ≥ 0); execution of a group node
entails execution of all its children, but in any (or an unspecified) order that respects the
data dependence edges between them. While group nodes may have labels, these are not
significant, being used merely for comments.

Predicate Nodes P, Q, drawn as diamonds, have precisely two children: one for true and one
for false. Execution of a predicate node entails execution of exactly one of its children,
according to the runtime value of the predicate being tested, which is indicated by the
node’s label.

Statement Nodes (or Leaf Nodes) S, drawn as rectangles, have no children, but each is la-
belled with an imperative three-address statement to execute.

Values are passed between statements (and to predicates) by storing them in variables; as in the
CFG, SSA form may be used but is not generally a requirement11. Data dependence edges
are used only to restrict possible orderings among statements (e.g. potentially due to anti-
dependences as well as data dependences), and run between siblings of a group node. The
DDG is acyclic even in the presence of program loops, but there may be cycles involving DDG
as well as CDG edges in the whole PDG.

11The PDG predates SSA form.

38 Chapter 2. The Nature of the Beast

P?

Q?

S1 S2 S3

P?

Q?

S1 S2 S3

true

fa
lse

true

fa
lse

Figure 2.7: Shorthand for Children of Predicate Nodes in PDG

G

P? P'?

S

Figure 2.8: Forbidden CDG Subgraph

Note that graphically we indicate the true and false children of predicate nodes with filled
and open dots, respectively, and sometimes draw multiple outgoing true or false edges rather
than the single group node which must gather them together as a single child. These two short-
hand notations are shown in Figure 2.7.

Several well-formedness constraints must be imposed to make a valid PDG. The first of
these, which we refer to as Ferrante-sequentializability, is particularly important (and was dis-
cussed in Section 2.3): we require that the CDG part of the PDG must not contain subgraphs
like Figure 2.8.

The remaining well-formedness constraints are easily enforced via transformations; thus,
we treat these as being implicitly applied to any PDG:

Redundant Group Nodes Whenever a group node G is a child of a group node G′ but has no
other parents besides G′, it can be removed, and all its children made control dependent
directly on G′.

Postdominance of Predicate Nodes Whenever a node N is control dependent on both true
and false group nodes of a single predicate P , it is said to postdominate12 P . Ferrante
et al. forbid the existence of such nodes [FMS88]. However, any such node can instead
be made control dependent on P ’s parent, as shown in Figure 2.9(a). (If P has multiple
parents G1, . . . , Gi, then a fresh group node can first be inserted as child of all the Gi and
as unique parent of P).

Redundant Edges Whenever a node N which is a child of a group node G, is also a child
of another group node G′ descending from G, the control dependence edge G′ → N
can be removed. (The additional dependency serves no purpose, in that N will already
necessarily be executed if G′ is). This is shown in Figure 2.9(b).

12The term is used loosely as a reference to the position of the resulting node in the CFG after sequentialization.

2.6. The VSDG: Definition and Properties 39

TRUEFALSE

P?

N

TRUEFALSE

P?

N

(a) Post-dominance of predicate node (b) Redundant control edges

G'

G

N

G'

G

N

Figure 2.9: Transformations for enforcing or restoring well-formedness of PDGs

2.6 The VSDG: Definition and Properties
The VSDG is a directed labelled hierarchical Petri-net13 G = (S, T, E, Sin, Sout), where:

Transitions T represent operations, covered in Section 2.6.2. These may be complex, i.e.
containing a distinct graph G′; this hierarchy is explained in Section 2.6.5.

Places S represent the results of operations, covered in Section 2.6.1.

Edges E ⊆ S × T ∪ T × S represent dependencies on and production of results by operations

Arguments Sin ⊆ S indicates those places which, upon entry to the function, contain any
values and/or state passed in.

Results Sout ⊆ S similarly indicates the places which contain any values and/or states to be
returned from the Petri-net in question.

Note that sometimes we omit the arguments and results, writing simply G = (S, T, E),
where these are not relevant.

It is a requirement that S ∩T = ∅; this makes a petri-net a bipartite graph with nodes S ∪T
and edges E (thus we write n ∈ G to indicate n ∈ S ∪ T). Besides the restrictions this imposes
on edges, other notations of petri-nets will be useful:

t ∈ T → •t = {s ∈ S | (s, t) ∈ E}
t ∈ T → t• = {s ∈ S | (t, s) ∈ E}

The first are referred to as the transition’s operands; the second as the results of the transition
(this will be clear from context). Note that whilst a place may be operand to many transitions,
it is the result of exactly one, called its producer (it may also be a result of the net).

We now consider the various elements in more detail.

2.6.1 Places, Kinds and Sorts
Every place has a kind, either state or value. (States are drawn with dotted outlines).

A collection of kinds is referred to as a sort; specifically:
13This is purely a matter of representation; the VSDG’s semantics, covered in Section 2.7, are not those of a

Petri-net.

40 Chapter 2. The Nature of the Beast

• A value sort is an ordered collection of n values, for some n > 0;

• A state sort is a single state;

• A tuple sort is an ordered collection of n values, for some n ≥ 0, plus a single state.
(Thus, a state sort is a tuple sort).

Sorts are often written using abbreviations v, vv, s, v3s, etc. Thus, we may refer to a
transition as having “operands of sort vvs”, or “a tuple sort of results”.

Two special cases of places are those used to pass values and/or state in and out of the
function—the arguments and results. For example, each of the functions fst, sub and max in
Figure 2.1 has three arguments, of sort vvs, and two results, of sort vs. Note that a single place
may be both argument and result; this is true of the state argument in all three functions, but in
fst the first argument is also returned.

2.6.2 Transitions
Transitions come in three varieties: Complex nodes, which contain further graphs; Computa-
tions; and γ-nodes.

Complex Nodes

These may have any sort of operands and results, and are covered in detail in Section 2.6.5.

Computations

These perform operations taken from some appropriate set of low-level operations. We tend to
use RISC-like abstract machine instructions, but within this general theme, the precise set of
instructions is not important14. Computation nodes are labelled to indicate the operation, and
have some sort of inputs and outputs, depending on the operation; we can further classify these
nodes into three subcategories:

• Constant nodes have no inputs, and a value sort of outputs (they do not produce state)

• ALU operations have a value sort of inputs and a value sort of outputs

• Memory operations have a tuple sort of inputs, and a tuple sort of outputs. For example,
load (inputs: state, address; outputs: state, result) and store (inputs: state, address, value;
outputs: state). In this class we include static and virtual calls to other functions.

A simple VSDG using only computation nodes is the sub function of Figure 2.1, which has
a single computation with two operands and one result. (A similar computation node is in the
max function).

γ-Nodes

A γ-node g multiplexes between two tuples of inputs according to a predicate. It has results of
some sort R, a value operand predicate, and two further sets of operands true and false both of

14We do not address questions of instruction selection, although there is no reason such optimizations could not
be beneficially fitted into the VSDG.

2.6. The VSDG: Definition and Properties 41

sort R. (Thus, a γ-node with a state result, has two state operands; all other nodes have at most
one state operand). According to the runtime value of the predicate, either the true operands or
the false operands are passed through to the result.

Components It is sometimes helpful to see a γ-node as set E ⊂ S3 of components or triples,
where each component (strue, sfalse, sres) gathers together one of the node’s true operands strue

with the corresponding false operand sfalse and result sres. The predicate input is not considered
part of any component, but part of the γ-node itself. We call a path p componentwise if for each
γ-node g appearing on p, all edges to and from g are incident upon the same component. (Thus,
g could be replaced with that component and p would still be a path.)

An example of a VSDG using only computation and γ-nodes is the max function of Fig-
ure 2.1, with one single-component γ-node (a total of three operands, and one result).

Trees of γ-Nodes When a group of γ-nodes all of the same arity are connected only by using
results of one γ-node as true or false operands to another (without permutation), we call the
resulting structure a γ-tree. This includes where one γ-node is used by several others, forming a
DAG. (However there must be no uses of the result of any γ-node from outside the tree, except
for the distinguished root node.) Such a γ-tree generalizes the idea of a γ-node by selecting
from among potentially many different values or leaves (rather than just two) and according to
potentially many predicates, but retains the non-strict nature of a single γ-node.

2.6.3 Edges
Like places, every edge has a kind, either state or value. The kind of an edge can be inferred
from its endpoints: an edge is a state edge—indicated with a dotted line—if and only if its place
endpoint is a state.

2.6.4 Labels, Sets and Tuples
A key consideration in the VSDG is that of distinguishing between multiple operands (and/or
results) of a transition. Firstly, the order of the operands may be important: compare s1 − s2

with s2− s1. Secondly, a single place might be an operand to a transition more than once—e.g.
s + s.

Strictly, the VSDG handles these cases by labelling edges; for any given type of transition,
the set of labels on its incoming (and outgoing) edges is fixed and particular to that type of
transition. (Indeed, the kind of an edge can be seen as part of this label.) Thus, s sub s could
be unambiguously represented by labelling the edges s

1→ t and s
2→ t (where t is the transition

for sub).
In this system, •t is not a set but rather an ordered tuple of predecessors, or a map indexed

by label (the tuple of i elements can be seen as a map indexed by integers 1 . . . i), and similarly
for t•, Sin and Sout. In such cases, we write sl ∈ •t to indicate that s is in •t with label l (that is,
s

l→ t), and similarly sl ∈ Sin. Graphically, we may label the edges, as well as the operand and
result places of the graph (recall from Section 2.6.1 that in diagrams these can be identified by
having no producers and by being drawn with double outlines, respectively).

Two special cases are complex nodes, where the labels depend upon the contained graph
(covered in Section 2.6.5), and tupled γ-nodes, where the set of labels depends upon the arity

42 Chapter 2. The Nature of the Beast

of the node. Specifically, for a γ-node with components c1, . . . , cj (where ci = (strue
i , sfalse

i , sres
i)

for 1 ≤ i ≤ j), we use labels T1, . . . , Tj for the edges from the true operands (that is, we have

labelled edges strue
1

T1→ g, . . . , strue
j

Tj→ g), labels Fi for the edges from the false operands sfalse
i ,

and labels i for the results sres
i . Lastly the edge from the predicate operand is labelled P .

However, in practice this level of detail/precision often confuses the presentation and ham-
pers clarity, and thus generally we leave this labelling implicit, e.g. writing •t ⊆ S, and for
γ-nodes using labels T , F and P for the operands (only).

In particular, we may “lift” operations over these tuples or maps implicitly, and such lifting
should be taken as being performed elementwise and respecting labelling. For example, we
may write that for S1, S2 ⊆ S some relation S1 R S2 holds, where R ⊆ S × S; strictly, this
means that:

1. Both S1 and S2 are maps from the same domain (i.e. with the same set of keys or labels)—
this is usually guaranteed from context.

2. For each label l, the corresponding elements of S1 and S2 are related by R, that is:

∀l.S1[l] R S2[l]

or alternatively S1 3 sl
1 R sl

2 ∈ S2.

2.6.5 Hierarchical Petri-Nets
We have already mentioned that complex nodes t ∈ T may contain petri-nets. This allows
individual petri-nets—called net instances or just nets—to be arranged into a hierarchy to form
a VSDG. Given such a complex node t, we write t〈G′〉 ∈ G and say G′ is the contained net in
its container transition t which is a member of parent net G.

As usual, the contained net may have arguments S ′
in and results S ′

out, and these may be of
any sort. The container transition must have operands of sort at least including the sort of S ′

in,
and results of sort at most the sort of S ′

out. The correspondence between these is recorded using
the system of labels detailed in Section 2.6.4: specifically, the arguments S ′

in of the contained
net are actually a map, keyed by a set of labels Lin, and each l ∈ Lin must also appear on exactly
one edge •t → t. Dually, let Lout be the set of labels on edges from t to its results t•; the results
S ′

out must contain an element for each l ∈ Lout.

Flattening Merges a complex node t〈G′〉 ∈ G to make a new net incorporating the bodies of
both. Informally, flattening proceeds by taking the disjoint union of the two graphs, removing
the container node t, and identifying the operands •t with the arguments of the previously-
contained net and similarly for the results.

More formally, let the quotient operation on a graph G = (V, E) combine two vertices into
a fresh vertex x, as follows:

G/(u, v) =


(V \{u, v}) ∪ {x},

{(v1, v2) ∈ E | {v1, v2} ∩ {u, v} = ∅}∪
{(v′, x) | (v′, u) ∈ E}∪
{(v′, x) | (v′, v) ∈ E}∪
{(x, v′) | (u, v′) ∈ E}∪
{(x, v′) | (v, v′) ∈ E}





2.6. The VSDG: Definition and Properties 43

This is lifted over sets of pairs straightforwardly:

G/∅ = G
G/({(a, b)} ∪ P) = (G/(a, b))/P

The same principle applies to petri-nets, in which both places and transitions may be quo-
tiented (with other places, or respectively transitions, only). For VSDGs, which contain argu-
ments Sin and results Sout in addition to nodes and edges, the same substitution of [x�u] [

x�v] is
also applied to Sin and Sout.

The result of flattening t〈G′〉 ∈ G can now be obtained by the disjoint union G]G′ followed
by quotienting the operands and results (for precision, here we deal with the labels explicitly):

flatten(t〈(S ′, T ′, E ′, S ′
in, S

′
out〉 ∈ (S, T, E, Sin, Sout) =

({1} × S ′) ∪ ({2} × S),
({1} × T ′) ∪ ({2} × (T\{t})),

({((1, s′) l→ (1, t′)) | (s′ l→ t′) ∈ E ′}∪
{((1, t′) l→ (1, s′)) | (t′ l→ s′) ∈ E ′}∪
{((2, s′) l→ (2, t′)) | (s′ l→ t′) ∈ E}∪
{((2, t′) l→ (2, s′)) | (t′ l→ s′) ∈ E}),

{2} × Sin,
{2} × Sout


/

{
((1, s), (sl ∈ S ′

in ∧ (s′
l→ t) ∈ E)∨

(2, s′)) (sl ∈ S ′
out ∧ (t

l→ s′) ∈ E)

}

Observe that the restrictions on the edge and place labels above ensure that after flattening,
every place has a unique producer transition, but places may still have any number i ≥ 0 of
consumers.

2.6.6 Loops
Loops are represented as infinite VSDGs. Although we write such structures using the µ fix-
point operator (they are regular), this is merely a syntactic representation of an infinite graph
or hierarchy. By convention, we tend to µ-bind variables to net instances contained in complex
nodes, thus: t〈µX.G[X]〉. However, this is not essential, as the flattening operation may be
applied (infinitely many times) to such hierarchies, yielding a single net with an infinite set of
places and transitions. (This is used in Section 2.7.2 to define a semantics of loops.)

Loops generally both consume and produce state on every iteration; however loops which
perform no stateful operations and are known to always terminate, may be optimized to neither
consume nor produce state.

2.6.7 Well-Formedness Requirements
For a VSDG to be well-formed, we make a number of requirements, as follows (some of these
have already been mentioned above).

Acyclicity There must be no (graph-theoretic) cycles in the VSDG (loops must be represented
using infinite VSDGs).

States and Values Any edge incident upon a state place must be a state edge; all other edges
must be value edges.

44 Chapter 2. The Nature of the Beast

Node Arity Every place must have a unique producer (i.e. a single incoming edge ∈ T ×
S), with the exception of argument places Sin, which must have no incoming edges.
Transitions must have incoming and outgoing edges appropriate to their type.

Hierarchy For a compound node t〈(S ′, T ′, E ′, S ′
in, S

′
out)〉 ∈ (S, T, E), we require the sets of

labels to be consistent, thus: {l | sl ∈ S ′
in} ⊆ {l | (s l→ t) ∈ E} ∧ {l | sl ∈ S ′

out} ⊇ {l |
(t

l→ s) ∈ E}

States must be used linearly Every state dynamically produced must be consumed exactly
once. The exact requirements on the shape of the graph that ensure this are complex,
and given in Appendix B. For now recall other properties of state specified already:

• State γ-nodes have exactly two state operands, and one state output.

• Other transitions either have exactly one state operand and one state result (stateful
transitions), or have no state operands or results.

2.7 Semantics
2.7.1 Sequentialization by Semantic Refinement
In this thesis, two kinds of semantics are relevant.

The observable semantics of a program describes the action of the program in terms of a
function from its inputs to its outputs (including side effects). These must be preserved exactly,
from source code specification to machine code output, by the compiler. In some languages—
according to the language specification—such semantics are sometimes considered partially
nondeterministic; for example, in C

int x=0;
printf("%i",(x++)+(x++));

may produce output 0 or 1, according to what the compiler decides is easiest. However, we
assume that in such cases a specific choice has been made by the front-end, and that the observ-
able semantics of a given program when represented in all IRs are fully deterministic (explained
below).

However, we are also concerned with the trace semantics of the program in a particular IR.
These are a “small-step” semantics specifying the sequence or trace of operations by which the
resulting program will compute its result, indexed by the natural numbers N. The observable
semantics of the program, for any particular input values, are the homomorphic image of a trace
for those inputs counting only observable actions.

Moreover, the various IRs we consider—VSDG, PDG, CFG—include a degree of nondeter-
minism, such that their trace semantics specify a set of possible traces, but the observable image
is the same for each. (For example, the order in which + and − are performed in evaluation of
(a + b) ∗ (c − d).) Our architecture for sequentialization thus works by a process of semantic
refinement in which the range of nondeterminism is progressively narrowed. Each phase re-
duces the set of possible traces, beginning from a large set (the VSDG) to a smaller subset (the
PDG) and finally to a single element (the CFG, which can be considered deterministic), with
the observable image remaining identical throughout.

2.7. Semantics 45

Optimizations performed on the IR prior to sequentialization (as shown in Figure 1.1) are
allowed to change the program’s trace semantics, so long as the observable semantics are pre-
served.

2.7.2 The VSDG as a Reduction System
We define the observable semantics of a VSDG by treating it as a reduction system (reduction
systems were discussed in Section 2.2.3) under interpretation.

Specifically, let V be some set of values including at least true and false, and i(op) : V∗ → V
be an interpretation of the arithmetic operations15.

We allow places S to be marked with elements taken from V . A transition is a potential
redex iff all its operand places are marked and all of its result places are unmarked, except for
γ-nodes, where some operands do not need markings. A potential redex is a redex if there is
a path from it to one of the VSDG’s result places that does not go through an already-reduced
γ-node16. Each reduction step corresponds to “firing” a transition, placing a marking on each
result place (and unlike normal Petri-nets, leaving operand markings untouched) as follows:

op(v1 ∈ V , . . . , vn ∈ V) 7→ i(op)(v1, . . . , vn) ∈ V
γ(true, v ∈ V , ◦) 7→ v
γ(false, ◦, v ∈ V) 7→ v

Note that ◦ here indicates a place which may have any marking or be unmarked. For tuples of
γ-nodes, the last two rules apply, but all components of a tuple must fire together (the tuple is
only a redex if all components have appropriate markings on their operands).

Finite Nets For a finite VSDG G with no I/O operations, we define the observable semantics
under such an interpretation as the value or tuple LGM ∈ V∗ given by the uniquely-defined
marking(s) eventually placed onto the result place(s) of G.

The semantics of a hierarchical net with complex nodes are that of its flattening, thus the
division into hierarchy is not significant and serves only as a tool for structuring.

Loops and Infinite Nets For infinite nets, we use standard domain theoretic techniques of
successive approximation, as follows. Here, we must insist on a fairness criterion:

For any transition t which becomes a redex at some point in a sequence, there is
some future point in that sequence where either

• The redex is reduced, or

• The transition becomes no longer a redex.

The latter may occur if subsequent γ-node reductions mean the transition’s result will not be
needed. Specifically, fairness means any arbitrary amount of speculative evaluation (e.g. of
nodes in future loop iterations) is permitted, but only finitely; thus, such speculation may not
introduce non-termination.

15Technically, i(op) : V∗ → V∗ is more accurate, as ‖t•‖ ≥ 1.
16Thus, transitions whose results have already been determined to be unneeded, are not redexes.

46 Chapter 2. The Nature of the Beast

Now, let D be the domain consisting of values V augmented with additional element ⊥
satisfying ∀x.⊥ v x, let t defined as

x t y =


x, if y = ⊥
y, if x = ⊥
x, if x = y

Now, for a finite VSDG G with no I/O, we write [[G]] for the marking placed onto its result
place(s) under interpretation with values D and reduction rules augmented with:

∀op.op(. . . ,⊥, . . .) 7→ ⊥
γ(⊥, ◦, ◦) 7→ ⊥

The semantics of an infinite graph G are now given by lifting the above [[·]] over successive
non-hierarchical approximations:

[[G]] =
⊔
n∈N

[[Gn]]

Where Gn is obtained from G by:

1. Flattening all the complex nodes in G, n times

2. Marking every place which is the still the result of a complex node with ⊥

3. Marking every place with minDFR(s) > i with ⊥, where minDFR is the minimum
depth-from-root.

Note that this is consistent with the translation into a functional program given above in
Section 2.2.2, and that for finite nets, [[G]] = LGM

2.7.3 A Trace Semantics of the VSDG
In Section 2.7.1 we stated that the trace semantics of a VSDG were a large set. Specifically, its
nondeterminism ranges over all possible evaluation behaviours (strategies) and orders, including
where a given node may be evaluated more than once17, and where a single computation occurs
for multiple transitions if they are equivalent. (Transitions are equivalent if they compute the
same function on equivalent inputs.)

Hash-Consing The hash-consing transformation and its inverse of node cloning convert be-
tween such nets, as shown in Figure 2.10:

• Hash-consing takes transition nodes t and t′ that perform the same operation on identical
operands (that is, •t = •t′—their operand places are the same nodes), and changes all
consumers of results of t′ to use results of t instead. That is, all edges from s′ ∈ t′•

are redirected to come from the corresponding s ∈ t• instead. (Since t′ and t performed
the same operation, they have the same sort of results, as defined in Section 2.6.1.) t′ is
then dead (unreachable in the transpose) and may be deleted; thus, hash-consing yields a
smaller net.

17Except for stateful nodes, for which the number of evaluations is fixed and the operations discussed here do
not generally apply.

2.7. Semantics 47

op

...

...

...

op op

... ...

hash-consing

node cloning

} operands copied

consumers
divided}

} results copied

Figure 2.10: The hash-consing and node cloning transformations

• Node cloning thus copies a computation node t with multiple uses (edges ⊆ t• × T) to
make an additional transition node t′ and result places t′•, redirects some of the edges
outgoing from s ∈ t• to come from the corresponding s′ ∈ t′•.

For tupled γ-nodes, discussed in Section 2.6.2, hash-consing also includes combining or sepa-
rating equivalent components within a single γ-node in analogous fashion.

Full Laziness The equivalent to hash-consing in functional programming languages is full
laziness [Wad71]: a transformation replacing multiple textually identical expressions with uses
of a single extra variable. In fully lazy lambda lifting, the variable is defined by a function
abstraction; in let-floating, by a let-expression. (As noted in Section 2.2.4, the variables
bound by let-expressions implicitly store computations, for which the usual range of evalua-
tion strategies may be used, including call-by-name.)

Thus, let h(G) be the set of VSDGs which can be obtained by applying any number of hash-
consing, node-cloning, and/or flattening operations to a VSDG G (flattening operations expose
additional opportunities for hash-consing and node-cloning). The trace semantics of G are the
set of possible sequences of reduction steps18 by which any VSDG G′ ∈ h(G) can be reduced
to its observable result [[G′]] = [[G]].

Thus, for example, the VSDGs (flattened and hierarchical) of Figure 2.11 have the same
semantics (trace and observable) as those of Figure 2.2, despite differences in their arrangement
into a hierarchy and the number of nodes evaluating 2 ∗ a.

A particular consequence is that arbitrary amounts of hash-consing are permitted across loop
iterations, and so VSDGs which conceptually encode different levels of software pipelining
in fact have the same semantics—as shown in Figure 2.7.3. Thus, a loop represented in the
VSDG does not have a level of software pipelining specified, and we can see the VSDG as
normalizing between different pipelinings in the source code. The selection of an appropriate
level of software pipelining is part of sequentialization, and we revisit this issue in Chapters 5
and 6.

18The correspondence between reduction steps and program operations will remain informal in this thesis.

48 Chapter 2. The Nature of the Beast

G≝
a b

flt -

flt /

2

c

12.0f

flt *

12

unary -

2.0f

flt *

flt -

flt /

2 1

12

flt *

4.0f

flt *

sqrt

flt -

flt /

2
1

12

2.0f

flt *

flatten*2

unary -

flt *

4.0f

flt *

G

a
b

c

sqrt

G
a

b
c

Figure 2.11: Another VSDG, semantically equivalent to Figure 2.2.

2.8 Chapter Summary
We have seen how a VSDG represents a program in the manner of a lazy functional program-
ming language. Secondly, we have presented the compiler architecture which will be used in the
rest of this thesis, consisting of stages of proceduralization (VSDG→PDG conversion), PDG
sequentialization (enforcing the duplication freedom condition on PDGs) and Node Scheduling
(df-PDG→CFG conversion). These are shown diagrammatically on page 33.

2.8. Chapter Summary 49

let G≝μX.

int > 0

int -1

int *

γ

X

n a

T P F

n a

int +

in
G

n a

0ix

int > 0

int -1

int *

γ

X

n a

T P F

n a

int +

n²

n²

let G'≝μX.

G'
n a

0i
x

int *

n²
in

int n=x,n2;
while (n>0) {
 n2=n*n;
 a+=n2;
 n-=1;
}

int n=x,n2=x*x;
while (n>0) {
 a+=n2;
 n-=1;
 n2=n*n;
}

(a) Two conceptual software pipelinings of the same loop

0i

int > 0

γ

int -1 int *

int +

int -1 int *

int +

int -1 int *

int +

int > 0

γ

int > 0

γ

F
F F FP P PT TT

x

(b) The infinite unrolling common to both (after flattening)

50 Chapter 2. The Nature of the Beast

CHAPTER 3

Proceduralization

Proceduralization is the conversion from VSDG to PDG representations, including the con-
struction of a CDG encoding an evaluation strategy, and the conversion of functional nodes to
imperative statements. In this chapter, we will:

• Discuss issues relating to the choice of evaluation strategy (Section 2.2.3), resulting in
choosing the lazy strategy, in Section 3.1.

• Show how a naive translation from VSDGs to PDGs, given in Section 3.2.1, is flawed
with respect to both efficiency and correctness; and give an intuition as to how this can be
improved using tail nodes, in Section 3.2.2.

• Describe in Section 3.3 an algorithmic framework for VSDG→PDG conversion, and in
Section 3.4 explain the two additional operations performed by our algorithm which are
key to the efficiency of the resulting PDG:

1. Ordering parallel γ-nodes into a tree such that the branches precisely identify the
executions under which each node definitely is, or definitely isn’t, required. The
γ-ordering transformation which achieves this is given in Section 3.4.1.

2. Using tail nodes to reduce duplication in PDG sequentialization, paralleling the
use of cross-jumping or shortcircuit evaluation on CFGs. This is achieved by γ-
coalescing, described in Section 3.4.2.

Running Examples Throughout this chapter, illustration will be by two running examples
of VSDGs which (informally) are difficult to proceduralize well and have proved challenging
for previous techniques (this is discussed more thoroughly in Section 4.3). These are given in
Figures 3.1 and 3.2, each with two different CFG representations of the same function and corre-
sponding source codes; we refer to them as exclusive and independent redundancy, respectively.

51

52 Chapter 3. Proceduralization

P?

Q?

r=B r=t

t=A

r=t

P?

Q?

r=B r=Ar=A

(a) VSDG (b) CFG for (c) CFG for

t=A;
r=P?(Q?B:t):t;

r=P?(Q?B:A):A;

γ

A

γ

B

F

F
P

P

T

T

Q
P

r

Figure 3.1: Two programs—(b) speculating, and (c) duplicating, computation of A—informally
known as exclusive redundancy

t=A

if (P)

r1=B r1=op1(t)

if (Q)

r2=C r2=op2(t)

(a) VSDG

r1=Q ? op1(A) : B;
r2=P ? op2(A) : C;

t=A;
r1=Q ? op1(t) : B;
r2=P ? op2(t) : C;

if (P)

r1=B r1=op1(A)

if (Q)

r2=C r2=op2(A)

(b) CFG for (c) CFG for

γγ

B

P Q
A

op1 op2

C

r1 r2

FP
TTF

P

Figure 3.2: Two programs—(b) speculating, and (c) duplicating, computation of A—informally
known as independent redundancy

3.1. Choosing an Evaluation Strategy 53

Kind of redundancy Call-by-need
(optimal)

Call-by-value
(speculative)

Call-by-name
(duplicating)

Exclusive (Fig. 3.1) 0–1 1 0–1
Independent (Fig. 3.2) 0–1 1 0–n

Table 3.1: Evaluation strategies and their resulting number of evaluations

3.1 Choosing an Evaluation Strategy
In Section 2.2.3 we explained how the evaluation strategies familiar from the λ-calculus also
apply to the VSDG, and how the selection of evaluation strategy does not affect the end result1.
Further, part of the task of proceduralization is to construct a CDG, which selects and encodes
a particular evaluation strategy into the resultant PDG. The question is, which strategy should
we use?

The key consideration is the number of evaluations of any node that might result from our
choice. It turns out that the two running examples of Figure 3.1 and Figure 3.2 identify two
situations where choice of evaluation strategy is particularly important, so we summarize for
each example how many times the node A might be evaluated under each strategy in Table 3.1.

The desirable number of evaluations is captured by Upton [Upt06] in his definition of the
optimality of a sequentialization, as follows:

A sequentialization is optimal if it:

1. Is dynamically optimal—i.e. performs no redundant computation on any path

2. Is statically optimal—i.e. has the smallest size (number of nodes)—amongst
all dynamically optimal sequentializations.

Upton applied his definition to the entire sequentialization process; however, we will see
that PDG Sequentialization affects only static optimality, and Upton’s equivalent of our node
scheduling was merely to order nodes in an arbitrary topological sort, which affects neither
criterion. Thus, we consider the definition of dynamic optimality to apply to proceduralization
specifically. Upton proves that finding an optimal sequential VSDG is NP-complete2; hence,
in our work we will take the syntactic approximation that γ-nodes branch independently (their
predicates are opaque), even when their predicate inputs are the same. Improvements to this
approach are explored in Chapter 7, but this simplifying assumption is commonly used in strict-
ness analysis [Myc80] and many CFG (dataflow) analyses such as code motion [KRS94a].

Upton’s criteria strongly suggests that we should implement the lazy strategy. A further
consideration is that it is the only strategy that is safe in the presence of state edges and stateful
nodes (where call-by-name can lead to the state being mutated more than once, and call-by-
value can both lead to the same state being consumed more than once, and also prevent proper
termination of loops).

1Modulo changes to termination behaviour, and/or side-effects.
2The proof proceeds by constructing a tree of γ-nodes which demands the value of the vertex v only if an

arbitrary boolean expression holds at runtime; thus, whether a single copy of v should be computed in advance,
or a separate copy of v positioned at each usage site, depends upon whether the expression is a tautology or not,
a Co-NP-complete problem. In our framework the essence of the proof stands, but the details would have to be
modified (to perform a different function on v at each usage site) to avoid an optimal shortcircuit proceduralization
which is simply produced by our algorithm. Since Upton’s (exponential-time) algorithm does not produce such
sequentializations, it is optimal only for VSDGs corresponding to certain classes of structured program!

54 Chapter 3. Proceduralization

As noted in Section 2.2.3, a second consideration is the dynamic overhead required to im-
plementing the evaluation strategy, which tends to be greater for lazy strategies (and indeed,
can outweigh the reduction in computation). We will use the policy that, dynamically, one test-
and-branch will be performed per γ-node in the VSDG3. As noted in Section 2.2.4, the lazy
strategy can be implemented by inlining into each usage site a copy of the thunk with a check
for previous evaluation; however this produces many extra tests and branches, and so we will
find an arrangement whereby every check can have its result determined statically and thus be
eliminated. (Clearly this is possible, e.g. if the output CFG were to contain no control-flow
merges. However that would involve an exponential size increase, even for straight-line code,
and infinite for loops(!); we will see how we can do better.)

3.2 Foundations of Translation
All algorithms to translate the VSDG into a PDG have various common aspects. First, each
value (as opposed to state) place in the VSDG is associated with a temporary variable in the
PDG. It is convenient to make this a virtual register suitable for later colouring by a register
allocator, and as such generally each place will have a distinct register.

A VSDG operation node, for example +, will be translated into a PDG atomic statement
node containing (e.g.) r1 = r2 + r3 where r1 is the temporary for its result place and r2 and r3
are those for its operands. We use the convention that −→rt indicates the register(s) containing the
result(s) of transition t.

A γ-node g with predicate operand in temporary rp is translated into a PDG predicate node
testing rp and two group nodes (one for true and one for false), and statement nodes−→rg = −→rt and
−→rg = −→rf assigning to the result of the γ-node the temporaries for the true and false operands,
respectively.

3.2.1 Naı̈ve Algorithm
It remains to organize the statement nodes, and the predicate nodes, under the various group
nodes, i.e. arranging them into some sort of hierarchy. The basis of this construction is that, if
a statement S is control dependent on a group node G, then nodes producing the values used
by S should also be control dependent on G (so they will be evaluated if S is). Thus we begin
by making all VSDG nodes reachable from the return node without going along any true/false
edges of γ-nodes, be control-dependent on the PDG’s root node (a group node). Then, for
each γ-node g, the statements −→rg = −→rt and −→rg = −→rf are made control-dependent on the true
and false children, respectively, of the corresponding PDG predicate node, along with any other
nodes reachable without going along any further true or false edges4, and so on.

Dependency edges (both state and value) between VSDG nodes are then copied across to the
PDG, where they point from statement nodes consuming values to the nodes producing them;
their endpoints are then moved up the CDG hierarchy until they are between siblings.

However, these policies lead to several problems:

1. Code Size—the resulting PDG sequentializes only to an unnecessarily large CFG. For

3However, these may not correspond exactly to the tests and branches in the source code due to the possibility
of different policies for γ-node tupling in VSDG construction.

4Recalling the normalizations of Section 2.5—any nodes already control-dependent on some ancestral group
node need not be considered further.

3.2. Foundations of Translation 55

ROOT

P?

P

Q ¬Q

¬PQ?

r=r2

r2=rB

rB=B

r2=rA

rA=A r=rA

(a) PDG

rB=B
r2=rB

rA=A
r2=rA

Q?

r=r2

rA=A
r=rA

P?

(b) Resulting CFG

Figure 3.3: Naive translation of the VSDG of Figure 3.1

example, consider the running example VSDG of Figure 3.1. The naı̈ve approach results
in the PDG of Figure 3.3(a) (note that the control dependences of A cannot be combined
into a single dependence on the root node, as the value of A is not always required). As
we will see in Section 4.1.1, this PDG is not duplication-free; specifically, PDG sequen-
tialization must duplicate rA = A, producing the CFG of Figure 3.3(b).

2. Correctness Consider again the example of Figure 3.2. The naı̈ve policy includes
control dependences for rA = A on the true group nodes resulting from both γ-nodes.
However, this PDG (Figure 3.4(a)) is not well-formed (specifically, it is not Ferrante-
sequentializable, as defined in Section 2.5).

3. Execution Speed It might seem that an “obvious” fix for the previous problem is to
produce two copies of the problem statement, one for each predecessor, i.e. Figure 3.4(b).
However, this PDG admits executions (specifically, if both P and Q hold) in which more
than one statement computing the value of A is executed. Such repeated computation is
clearly redundant by Upton’s criteria (Section 3.1) and should be eliminated5.

3.2.2 Tail Nodes—an Intuition
An intuition for an improved system comes from the widespread use of shortcircuit evaluation
of boolean predicates (we can see the cross-jumping optimization on CFGs as opportunistically
applying the same transformation in other cases).

It closely parallels the tail call optimization on functional programming languages, whereby
the callee is passed the same return address as was passed to the caller (rather than pushing a
new frame onto the stack in order to return into the middle of the caller), so the callee itself
completes execution of the caller. The approach is to take any transition t whose results are
only used (i.e. consumed) as true or false operands to a γ-node g. By allocating t the same
result register(s) as g, the move instruction(s) −→rg =

−→
rt resulting from that edge can be elided

5If A has side effects it may change the observable semantics of the program.

56 Chapter 3. Proceduralization

ROOT

P Q

P? Q?

r1=t1 r2=t2rA=A

¬P

r1=rB
rB=B

¬Q

r2=rC
rC=C

t2=op2(rA)t1=op1(rA)

(illegal
subgraph)

(a) Naive PDG
(unsequentializable; no corresponding CFG)

(b-PDG) Naive "fix" (admits redundant computation of A)

ROOT

P Q

P? Q?

r1=t1 r2=t2rA=A

¬P

r1=rB
rB=B

¬Q

r2=rC
rC=C

t2=op2(rA')t1=op1(rA)

rA'=A

Q?

r2=rC

rC=C

P?

r1=rB

rB=B

r1=t1

rA=A

t1=op1(rA)

r2=t2

t2=op2(rA')

rA'=A

(b-CFG)

Figure 3.4: Two naive translations of the VSDG of Figure 3.2. ((b-CFG) is identical to CFG
Figure 3.2(c) modulo register coalescing.)

3.3. An Algorithmic Framework 57

ROOT

P?

Q?

r=B r=A

(a) PDG with tail nodes for
A and B

(b) Resulting CFG

P?

Q?

r=B
r=A

r = (P||Q) ? A : B;

Figure 3.5: “Tail node” register assignment

(as register assignment techniques might later try to do). This means the continuation of t’s
result is now the same as the continuation of g’s result.

When t is another γ-node, this technique generalizes to entire γ-trees (defined in Sec-
tion 2.6.2), forcing the same registers to be allocated to all γ-nodes in the tree. Thus, the
continuation (future uses) of every leaf is the same as that of the root of the tree.

Applying this to the VSDG of Figure 3.1, we first take t as the upper γ-node, being returned
through g the lower γ-node. This identifies both γ-nodes as being a γ-tree, sharing the same
result register. We can then take t as node A, both of whose consumers are now all part of that
tree, and then as node B, resulting in the PDG of Figure 3.5; observe that the shared PDG node
r1 = A—called a tail node6—is not duplicated by PDG sequentialization.

3.2.3 Normalization of Conditional Predicates
Another situation where naive treatment produces rather inefficient statements is where the
predicate operand to a γ-node is the result of another γ-node, as shown in Figure 3.6(a), Instead,
such γ-nodes can be rewritten, as shown in Figure 3.6(b); this is dynamically better, and will
remain statically small after PDG Sequentialization due to sharing of A and B.

3.3 An Algorithmic Framework
In this section we present our framework for VSDG→PDG conversion. Central is the pro-
cedure buildPDG, which works by a recursive, post-order traversal of the postdominator tree
of the VSDG’s transitions, using a system of gating conditions computed during traversal to
combine together the results of the recursive calls. Importantly, this algorithm supports addi-
tional operations (in Section 3.4) which allow the flaws of the naı̈ve translation (discussed in
Section 3.2.1) to be avoided.

First, Section 3.3.1 expounds the postdominator tree upon which the algorithm operates,
together with some of its properties. Then, gating conditions are defined and explained in
Section 3.3.2. Lastly, Section 3.3.3 explains the buildPDG procedure itself.

6By abuse of terminology we use the same term to refer to the VSDG node from which the PDG node or subtree
was produced.

58 Chapter 3. Proceduralization

T F

P
T F

P

γ

γ

B

R

A

Q P

T FP

T
F

P

γ

γ

B

R

A

Q

P

γF T
P

(P ? Q : R) ? A : B
P ? (Q ? A : B)
 : (R ? A : B)

(a) γ-node using another
γ-node as predicate

(b) After normalization

Figure 3.6: Transforming conditional predicates

For the purposes of this section, the places in the VSDG are not useful: a value or state s
can only be obtained by executing the unique t = •s, producing all t• together. Hence, while
we continue to use the notation ◦•t for the transitions producing a result used as operand by t,
we otherwise effectively ignore places s.

3.3.1 Dominance and Dominator Trees
Dominators are a standard concept of flowgraphs [AU77, LT79]. (A flowgraph G =
(N, E, n0, n∞) is a graph with nodes N , edges E ⊆ N × N , and distinguished entry node
n0 ∈ N and exit node n∞ ∈ N .) Briefly, node n dominates n′, written n dom∗ n′, if all paths
from the entry node n0 to n′ pass through n. Dominance is reflexive, transitive and antisym-
metric, and hence constitutes a partial order. Node n strictly dominates n′, written n dom+ n′, if
n dom∗ n′ and n 6= n′. This allows the definition of the immediate dominator idom(n) of n, as
the unique node n′ satisfying

n′ dom+ n ∧ ∀n′′ dom+ n.n′′ dom∗ n′

The dominator tree of a flowgraph G = (N, E, n0 ∈ N) is the graph with nodes N and an edge
n → n′ whenever n = idom(n′). This graph is treelike, with n0 being the root. Dominator trees
can be computed in linear [Har85] or quasi-linear time [LT79].

Postdominance is the same concept but with the edges in G reversed: that is, n postdom-
inates n′, written n pdom∗ n′, if all paths from n′ to the exit node n∞ pass through n. The
same ideas of strict postdominance, immediate postdominator ipdom(n), and postdominator
tree apply.

We adapt these concepts to the VSDG, and to the notation of Petri-Nets, as follows. Firstly,
we hypothesize the existence of a return transition r ∈ T . This merely gathers together the
results Sout of the VSDG (that is, •r = Sout ∧ r• = ∅), and moreover allows postdominance to
be defined by acting as the exit node. Specifically, n pdom n′ if all paths from n′ to r (i.e. to
any s ∈ Sout) pass through n. Secondly, we consider the concepts of dominance to apply only
to transitions, such that pdom ⊆ T × T . Thus, ipdom(t) is the unique transition t′ satisfying
t′ pdom+ t ∧ ∀t′′ pdom+ t.t′′ pdom∗ t′.

Further notation will also be useful, as follows. Write D(t) for the nodes (transitions) post-
dominated by t, i.e. {t′ | tpdom∗t′}, or (interchangeably) the subgraph of the postdominator tree

3.3. An Algorithmic Framework 59

induced by those nodes. (Thus, D(r) may stand for the entire postdominator tree.) Secondly,
let children(t) be the set {t′ | ipdom(t′) = t}.

Dominator (and postdominator) trees have many useful properties. Specifically, Tu and
Padua [TP95] prove a lemma on flowgraphs that for any node v, its predecessors are either
idom(v), or descendants of idom(v). (That is, for any edge u → v, idom(v) dom∗ u).

Thus, on the VSDG framework, an alternative characterization is that the producers ◦•t of
places used by t are necessarily children in the postdominator tree of some ancestor of t:

ipdom(◦•t) pdom∗ t (3.1)

Thus, every t′ ∈ ◦•D(t) is either a transition in D(t), or a child of some ancestor of t.
Particularly key to our algorithm, in Section 3.3.3 below, is the set of external producers

FD(t), which are the transitions not in D(t) which produce results used by transitions in D(t):

FD(t) = ◦•D(t)\D(t)

From the above, this set can be computed incrementally during traversal by Equation 3.2:

FD(t) =

◦•t ∪
⋃

t′∈children(t)

(FD(t′))

 \children(t) (3.2)

Gating Paths The postdominator tree allows paths in the VSDG to be decomposed using a
system of gating paths. Intuitively, a path from a place s to a transition t is a gating path if
all of its transitions are postdominated by t. That is, a path p = s

∗→ t is a gating path iff
∀t′ ∈ p.t pdom∗ t′.

The properties of postdominator trees ensure that if u pdom∗ v, then all paths from results v•

of v to u are gating paths, and thus do not leave the postdominator subtree of u:

v ∈ D(u) ⇒ ∀p ∈ v•
∗→ u.∀t ∈ p.t ∈ D(u)

3.3.2 Gating Conditions
Gating Conditions (GCs) are one of the key tools we use to control the action of our sequential-
ization algorithm in Section 3.3.3; they also guide the additional operations in Section 3.4.

The gating condition gcu(v) describes the set of gating paths from results v• of v to u,
expressed as the runtime conditions7 under which a result v• would be used in computing u
along one of those paths. (Recall gating paths were defined in Section 3.3.1 above.)

Gating conditions are based on the gating functions of Tu and Padua [TP95] with the addi-
tion of a disjunction constructor ⊕, and are given by the following grammar:

c ∈ C ::= Λ (always demanded)
| ∅ (not demanded)

| 〈?〉(g, ct, cf)
(pronounced “switch”) for some γ-node g (according to the run-
time value of the predicate of g, either ct applies, or cf does)

| c1 ⊕ c2 (disjunction: the node is demanded if either c1 or c2 says it is)

7In terms of the branching behaviour of γ-nodes—recall the syntactic approximation discussed in Section 3.1.
This is formalized in Figure 3.9 below.

60 Chapter 3. Proceduralization

However, note that we treat the ⊕ constructor as both associative and commutative, and see
the following normalizations as continuously applied:

c⊕ Λ ⇒ Λ
c⊕ ∅ ⇒ c

〈?〉(g, c, c) ⇒ c

These mean that in any GC of the form . . .⊕ ci ⊕ . . ., all the c’s must be 〈?〉s. Further, oper-
ations will preserve the invariant that all such 〈?〉s have different γ-nodes as their first element.

Lastly, we use two shorthand forms: g to stand for 〈?〉(g, Λ, ∅), and ḡ for 〈?〉(g, ∅, Λ).
Construction of gating conditions (in Section 3.3) makes use of three utility functions, which

are defined recursively on the structure of their GC arguments, as follows:

Catenation c1 · c2 is associative but not commutative, and is defined as follows:

∅ · c = ∅
Λ · c = c

〈?〉(g, ct, cf) · c = 〈?〉(g, ct · c, cf · c)
(c1 ⊕ c2) · c = (c1 · c)⊕ (c2 · c)

(Note that handling the common cases of c · ∅ = ∅ and c · Λ = c explicitly, computes the
same gating conditions more efficiently).

Union c1 ∪ c2 is associative and commutative. Simple cases are defined as follows:

∅ ∪ c = c ∪ ∅ = c
Λ ∪ c = c ∪ Λ = Λ

〈?〉(g, ct, cf) ∪ 〈?〉(g, c′t, c
′
f) = 〈?〉(g, ct ∪ c′t, cf ∪ c′f)

In other cases, it must be that c1 and c2 are (potentially disjunctions of) 〈?〉s. c1 ∪ c2

identifies all the γ-nodes on both sides, and combines any 〈?〉s with the same γ-node using
the final rule above. If any of these result in Λ then that is the overall result, otherwise
all the resulting 〈?〉s are then combined together using ⊕ (thus preserving the invariant
above).

Individual Edges The function cond : (S × T) → C, gives a gating condition for any s → t
edge:

cond(e) =


〈?〉(g, Λ, ∅), if e is a true edge to a γ-node g
〈?〉(g, ∅, Λ), if e is a false edge to a γ-node g
Λ, otherwise

3.3.3 The Traversal Algorithm
The algorithm is expressed as a procedure buildPDG(t) operating on a transition t, and is given
in Figure 3.7. buildPDG(t) converts into PDG form only the nodes in the postdominator subtree
D(t), producing PDG P (t).

Note that below we make extensive use of shorthand notation for edges. Specifically, given
S ′ ⊆ S and T ′ ⊆ T , we write S ′ → T ′ to indicate edges {s → t | s ∈ S ′ ∧ t ∈ T ′}, and
similarly for paths, writing S ′ ∗→ t where t ∈ T .

3.3. An Algorithmic Framework 61

Hierarchical Decomposition of Demand Conditions An essential task for the algorithm is
to ensure that whenever a result of a transition v might be demanded to evaluate transition u
(i.e. there is a path v•

∗→ u in the VSDG), control dependence edges connect P (u) to P (v),
ensuring that P (u) causes execution of P (v) if necessary. The postdominator tree allows all
paths in the VSDG to be decomposed and considered an edge at a time, as follows.

At each step of recursion, buildPDG(u) considers the edges v• → D(u) entering D(u)
from outside (thus v ∈ FD(u)); as D(u) moves from a single leaf node to D(r) being all the
nodes in the VSDG, this eventually captures all edges. For a given u, such edges v• → D(u)
may be broken down into one of two cases:

1. Edges v• → u; these are handled by buildPDG(u) itself.

2. Edges entering into D(u′) for some child u′ ∈ children(u); these are handled by the
recursive calls to buildPDG(u′).

Composition of edges into paths is recorded using gating conditions. Specifically,
buildPDG(u) maintains the gating conditions gcu(v) for all v ∈ FD(u), describing the gating
paths v•

∗→ u (recall from Section 3.3.2 these are the paths through only transitions t ∈ D(u)).
Crucially, buildPDG(u) does not need to handle non-gating paths v• → t → t•

∗→ u via other
transitions t /∈ D(u): it merely ensures that P (u) causes execution of P (t) as necessary, and
the PDG subtree P (t) will itself execute P (v) recursively.

Dominator Trees and Gating Conditions Thus, gating paths v•
∗→ u for v ∈ FD(u) can be

broken into two cases:

1. Edges e = v• → u. These cause v to be demanded exactly according to cond(e) (defined
in Section 3.3.2 above).

2. Routes from v to u via some child u′ of u (i.e. u = ipdom(u′)), where v ∈ FD(u′). Thus,
gcu′

(v) describes the routes from v to u′, and so gcu(u′) · gcu′
(v) describes the routes

from v to u that go through u′.

This allows buildPDG(u) to compute gcu(v) by taking the union of the edges v• → u and the
routes via each child u′ of u. Further, recalling the definition of FD(u) in Equation 3.2, gcu(u′),
for u′ ∈ children(u), may be computed in the same way. For these nodes u = ipdom(u′), so all
paths u′•

∗→ u are gating paths, and described by gcu(u′). (Indeed, gcu(u′) thus describes all
paths in the whole VSDG by which u′ may be demanded, as all such paths go through u.)

Connecting the PDG Fragments It is these gcu(u′), for u′ ∈ children(u), which determine
how P (u) is produced by combining the P (u′). Specifically, buildPDG(u) calls a procedure
link to add control dependence edges from P (u) to each P (u′). The link procedure is shown
in Figure 3.8; it is this procedure we modify in order to incorporate the two additional operations
of our algorithm, namely γ-ordering (Section 3.4.1) and the use of tail nodes (Section 3.4.2).

Thus, for an arbitrary VSDG edge v• → u, one of two cases applies:

1. u = ipdom(v). In this case, during execution of buildPDG(u), the call to link will
directly add an edge from P (u) to P (v) (either from the root node of P (u), or if u is a
γ-node, from the corresponding predicate node in P (u)—this is considered below).

62 Chapter 3. Proceduralization

2. v ∈ FD(u). In this case, the edge will be handled by the call to buildPDG(ipdom(v))—
from Equation 3.1 above, this call dynamically encloses buildPDG(u). That is, the edge
v• → u will (by recursive traversal) be concatenated onto all the paths u

∗→ ipdom(v),
and included in computation of gcipdom(v)(v). This GC is then passed to link, which uses
it to add a control dependence edge from the appropriate part of P (ipdom(v)) to P (v).

Return Values As buildPDG(t) traverses the postdominator tree, its return values are a triple:

• The set FD(t);

• A partial PDG P (t) computing the results of t into register(s) vt• . This PDG is partial
in that it has no edges to the PDG statements corresponding to the t′ ∈ FD(t), and these
will need to be added to make it a valid PDG. For simplicity, we assume the root node of
these PDG fragments (also written P (t)) is a group node, containing at least:

– For γ-nodes t, an appropriate PDG predicate node, with empty true and false child
group nodes

– For arithmetic nodes, a statement node vt• = op(v•t).

• For each t′ ∈ FD(t), the Gating Condition gct(t′), describing where edges to the PDG
subtree P (t′) must be added to P (t).

Topological Sorts A final key to the algorithm is how buildPDG(u) processes the children−→ui

of u in topological sort (top-sort) order. Specifically, recall from the definition of FD(ui) and
the properties of postdominator trees (Section 3.3.1), that each v ∈ FD(ui) is either another
child of u, or not postdominated by u. Since the VSDG is acyclic8, we can sort the −→ui so that
whenever ui ∈ FD(uj) then uj comes before ui. Thus, each ui comes after every uj which
is on a path from ui to u. The algorithm uses this to consider the −→ui in turn, such that when
processing each ui, all uj on paths ui

• ∗→ u have already been processed, and thus the gating
condition C(ui) (see Figure 3.7) is the correct value for gcu(ui).

3.4 Additional Operations
In this section we show how our algorithm incorporates two additional operations into the
framework of Section 3.3, called γ-ordering and γ-coalescing. These allow a correct and effi-
cient PDG to be produced, avoiding the flaws of the naive translation discussed in Section 3.2.1.

Both operations concern how PDG subtrees are connected together during traversal, a task
performed by the link procedure (shown in Figure 3.8). Thus, both operations are implemented
by modifying link.

3.4.1 The γ-Ordering Transformation
The γ-ordering transformation is used to deal with cases of independent redundancy (as exem-
plified by Figure 3.2). Recall from Section 3.2.1 two naı̈ve treatments of such a node n were
not acceptable:

8In fact, this property is assured merely by the reducibility of the VSDG.

3.4. Additional Operations 63

buildPDG(u ∈ T) =
Let C(v) = ∅ be a map from transitions v ∈ ◦•D(u) to GCs.
Let P store the initial PDG fragment for u. //see text
Let D store a set of transitions.
Let −→ui = children(u).

//1. Process edges to u

Set D = ◦•u. //The producers of operands of u

For each v ∈ D,
set C(v) =

⋃
e∈v•→u cond(e).

//2. Recurse
For each ui, let (FD(ui), P (ui), gc

ui(v ∈ FD(ui))) = buildPDG(ui).
//3. Combine subtree results

Top-sort the −→ui to respect uj ∈ FD(ui) ⇒ i < j. //see text
For each ui in topological sort order,

//C(ui) is now a correct value for gcu(ui)—see text
call link(P, C(ui), P (ui)). //link is defined in Figure 3.8
for each v ∈ FD(ui), set C(v) = C(v) ∪ C(ui) · gcui(v).
Set D = (D ∪ FD(ui))\{ui}.
Remove entry for C(ui). //Edges D(uj) → ui are inside D(u)

Normalize P (by merging group nodes with only one parent into parent).
Return (FD(u), P (u), gcu(v ∈ FD(u))) = (D, P, C).

Figure 3.7: The buildPDG algorithm. (Note mutable variables C(·), P and D.)

link(G, c, G′) adds edges from (children of) PDG group node G to G′ according to c ∈ C as
follows:

• link(G, Λ, G′) adds a control edge from G to G′. In fact it may instead use a copy of G′

modified to store its result into a different register, to enable sharing of tail nodes; this is
explained in Section 3.4.2.

• link(G, 〈?〉(g, ct, cf), G′), for γ-node g, identifies the corresponding PDG predicate node
(as a child of G) and recurses on its true child with ct and its false child with cf (passing
G′ to both).

• link(G, ∅, G′) does nothing.

• link(G, c1 ⊕ c2, G
′) causes application of the γ-ordering transform, considered in Sec-

tion 3.4.1.

Figure 3.8: The link procedure.

64 Chapter 3. Proceduralization

1. Adding control dependence edges to P (n) from both PDG predicate nodes (i.e. those
corresponding to each of the γ-nodes testing predicates P and Q in Figure 3.2) leads to
an illegal PDG, as shown in Figure 3.4(a).

2. Adding control dependences from each PDG predicate node to a different copy of P (n)
leads to a legal PDG but one in which the code for n could be dynamically executed twice
(as shown in Figure 3.4(b)).

(3. A third naı̈ve treatment would be to add a control dependence edge to P (n) from the
group node parent of both PDG predicate nodes; however, this is not acceptable either, as
it would cause the code for n to be speculatively executed, even in program executions in
which neither γ-node demanded the value for n.)

In the context of our algorithmic framework, observe that such independent redun-
dancy nodes n are identified precisely by being given gating conditions containing ⊕s.
Thus, the naı̈ve treatments above correspond to the following simplistic implementations of
link(G, 〈?〉(g1, c

t
1, c

f
1)⊕ 〈?〉(g2, c

t
2, c

f
2), P (n)):

1. Recursively calling link(G, 〈?〉(gi, c
t
i, c

f
i), P (n)) for i = 1, 2. (These calls will then iden-

tify the appropriate PDG predicate node Pi and recursively apply ct
i and cf

i to its true and
false children.)

2. Recursively calling link(G, 〈?〉(gi, c
t
i, c

f
i), P (n)) for i = 1, 2, but using distinct copies of

P (n) for each call.

(3. Adding a control edge directly from G to P (n).)

Thus, we use ⊕ to guide an alternative mechanism avoiding these flaws, as follows.
The essence of our technique is a transformation of γ-ordering9 whereby one dominant

predicate node is ordered before the other subsidiary ones, paralleling the choice of dominant
variable in construction of an Ordered Binary Decision Diagram.

In fact, gating conditions can be interpreted as boolean functions (namely, telling us whether
the annotated node is demanded or not under those conditions), as in Figure 3.9. Note that
for GCs c1 ⊕ c2 ⊕ . . . the intuitive boolean expression, of the form E1 ∨ E2 ∨ . . ., has no
a priori specification of evaluation order, but an order is required for a decision procedure
for a sequential computer with a single program counter. Repeated application of γ-ordering
effectively constructs an OBDD by choosing an ordering.

The transformation proceeds as follows. Let Pd be the dominant predicate node, and con-
sider in turn each subsidiary predicate node Ps. Remove the CDG edge G → Ps, and make
P ′

s be a clone of Ps with the same children (i.e. the same nodes, rather than copies thereof);
then add CDG edges Pd.true → Ps and Pd.false → P ′

s. Repeat for each remaining subsidiary
node. Finally, the original call to link (with gating condition 〈?〉(gd, c

t
d, c

f
d)⊕

−−−−−−−−→
〈?〉(gs, c

t
s, c

f
s)) can

be completed by two recursive calls with distinct copies10 of n, firstly to Pd.true with gating
condition ct

d ∪
−−−−−−−−→
〈?〉(gs, c

t
s, c

f
s) and secondly to Pd.false (similarly). The final effect is illustrated in

Figure 3.10(a).
9Strictly, we order PDG predicate nodes rather than the γ-nodes to which they correspond; there are issues in

performing the transformation directly on the γ-nodes themselves, which we address in Chapter 5.
10This is not strictly necessary in that PDG sequentialization will duplicate n if it is not already—discussed in

Section 4.1.

3.4. Additional Operations 65

Let V γ = {v ∈ V | v is a γ-node} be the set of γ-nodes.
Let G ⊆ V γ encode a set of runtime conditions as the subset of γ-nodes which return their true
inputs.
Now eval [[c ∈ C]] : P(V γ) → boolean interprets gating conditions as functions from such sets
of runtime conditions to booleans:

eval [[c ∈ C]] =


λG.true, if c = Λ
λG.false, if c = ∅
λG.if g ∈ G then eval [[ct]](G) else eval [[cf]](G), if c = 〈?〉(g, ct, cf)
λG.eval [[c′]](G) ∨ eval [[c′′]](G), if c = (c′ ⊕ c′′)

Figure 3.9: Interpretation of Gating Conditions as boolean functions

A complication is that there may be paths between the dominant and subsidiary predicate
nodes in the Data Dependence Graph, and untreated these lead to cycles. Instead all nodes
on such paths must be removed (as siblings of Pd) and duplicated as children of both Pd.true
and Pd.false; the DDG edges must be copied likewise, with those incident upon Pd redirected
to the appropriate child of Pd.true or Pd.false (according to the virtual register causing the
dependence). This is shown in Figure 3.10(b). Where a path exists from Pd to some Ps because
the predicate of Pd depends upon Ps, it is not possible to make Pd be the dominant predicate
node (this would requires branching according to the predicate before the predicate can be
computed); some other predicate must be made dominant instead.

3.4.2 Coalescing of γ-Trees
We also wish to use tail nodes (introduced in Section 3.2.2) to deal with cases of exclusive
redundancy (as exemplified by Figure 3.1)—recall that naı̈ve treatment lead to PDG sequential-
ization duplicating such nodes, as in Figure 3.3.

This is achieved by coalescing the result registers of trees of γ-nodes, called γ-coalescing.
Specifically, we use a modified version of the gating conditions of Section 3.3.2, in which every
Λ may optionally be labelled with a destination register into which the value described by the
GC should be placed: by making these registers correspond to the result places of γ-nodes, the
extra register moves (e.g. r = rA and r2 = rA in Figure 3.3) causing the duplication11 can be
elided, and the computations tail-shared.

Such labelled GCs are written Λr, and are used by the link procedure to modify the PDG
fragments whenever a call is made to link(G, Λr, G′). In this case, rather than adding a control
edge G → G′, a modified version of G′—shared amongst all Λs with the same destination
register—is used, in which all assignments to G′s result register are replaced by assignments to
r.

11Because the moves are shared less than the computation upon which they depend—this is explained in Sec-
tion 4.1.

66 Chapter 3. Proceduralization

A

P?

B C

Q?

D r3=r2+rN

P?

r3=-r2 r1=rN*3

Q?

r1=B

r2=r1+3

(i) Initial PDG; link called with gating condition 〈?〉(P,Λ,∅) ⊕〈?〉(Q,Λ,∅)

A

P?

B C

Q?

D

Q?

r3=r2+rN

P?

r3=-r2

r1=rN*3

Q?

r1=B

r2=r1+3

Q?

r2=r1+3

(ii) PDG after γ-ordering to make P dominant; gating condition now 〈?〉(P,Λ,〈?〉(Q,Λ,∅))

r3=r2+rN

P?

r3=-r2

r1=rN*3

Q?

r1=B

r2=r1+3

Q?

r2=r1+3
rN=N

rN=N

(iii) Final PDG after linking in n

(a) Simple case of γ-ordering (b) Complex case requiring duplication
of r2=r1+3 to break cycle

A

P?

B C

Q?

D

Q?

n n

Figure 3.10: Two examples of the γ-ordering transformation. (In both cases, P is selected as
dominant.)

3.5. Worked Examples 67

These modified GCs originate from the true/false edges of γ-nodes, thus:

cond(e) =


〈?〉(g, Λr, ∅), if e is a true edge to a γ-node g
〈?〉(g, ∅, Λr), if e is a false edge to a γ-node g

(where r is the corresponding result register of g)
Λ, otherwise

Recall the buildPDG algorithm (Figure 3.7) uses concatenation and union to compute

C(v) = C(v) ∪ C(ui) · gcui(v)

These operations depend upon the result register rv for the node v which the gating conditions
describe—specifically, concatenation c1 · c2 is extended as follows:

Λ · c = c
Λrt · c = c [rt�rv]

This captures the idea that returning the RHS (c) as a tail value from the LHS (Λrt), means that
any tail value for the RHS (Λrv ∈ c) is thus a tail value for the LHS (Λrt after substitution). This
means that the optimization c · Λ = c is valid only if c contains no tail registers; and c · Λrt = c
only if rt = rv.

For union c ∪ c′, the rule Λ ∪ c = c ∪ Λ = Λ is extended to Λr ∪ c = c ∪ Λr = Λ, for c 6= ∅.
However, if in any of these cases either side contains any Λs with tail registers, extra statements
must be added to the partial PDG: these take the place of the modified PDGs that would be added
in by the link procedure as above. Specifically, when computing Gu(n) = c∪ (Gu(v) ·Gv(n)),
consider each Λr in (Gu(v) · Gv(n)): link would have added an edge from the corresponding
part of P (u) to P (n) [r�rn]. To make the value computed by P (n) be available in the same
register, a statement node r = rn must be added in that place. (Any Λs without tail registers
indicate PDG locations where the value of n is always required in register rn, so no further
action is necessary). An example of this is in the next section.

3.5 Worked Examples
On the Exclusive Redundancy of Figure 3.1 The running example is shown again in Fig-
ure 3.11 including its postdominator tree. Note that for simplicity we label places with their
registers, and assume that the places (registers) rP and rQ are already available.

Translation proceeds by calling buildPDG on γ1 as follows:

1. A PDG fragment P (γ1) is created, initially as shown in Figure 3.12(a).

2. The edges rA
T→ γ1 and rB

F→ γ1 are processed, setting Cγ1(A) = 〈?〉(γ1, ∅, Λr1) and
Cγ1(γ2) = 〈?〉(γ1, Λ

r1, ∅). (Note the use of r1, the return register of γ1, because the edges
are true and false edges).

3. buildPDG recurses on the children of γ1, i.e. A (here first) and γ2

(a) A has no children. Thus buildPDG(A) returns P (A) as shown in Figure 3.12(b),
and the set of external producers of A, FD(A) = ∅.

4. buildPDG is called on γ2...

68 Chapter 3. Proceduralization

r₁

r₂

rArB

γ₁

A

γ₂

B

F
F

P

P

T

T

rQ
rP

Figure 3.11: Postdominator Tree for Figure 3.1. The gray edge u→v indicates that ipdom(u) =
v.

(a) PDG fragment P (γ2) is created, initially the same as P (γ1) except testing rQ instead
of rP (Figure 3.12(a)

[
rQ�rP

]
).

(b) The edges rB
T→ γ2 and rA

F→ γ2 are processed, setting D = {A, B}, Cγ2(B) =
〈?〉(γ2, Λ

r2, ∅) and Cγ2(A) = 〈?〉(γ2, ∅, Λr2).

(c) γ2’s only child is B; buildPDG(B) returns P (B) as a group node with child rB = B,
much as for node A, and FD(A) = ∅.

(d) link(P (γ2), 〈?〉(γ2, Λ
r2, ∅), P (B)) is called; recursively, this calls

link(P (γ2).true, Λr2, P (B)), where P (γ2).true is the true child of the predi-
cate node for γ2, and this adds in a modified version of P (B), using r2 instead of
rB, resulting in a new P (γ2) as shown in Figure 3.12(c).

(e) Entries for B are removed from D and Cγ2; buildPDG(γ2) thus returns P (γ2), the
set FD(γ2) = {A}, and the gating condition gcγ2(A) = 〈?〉(γ2, ∅, Λr2).

5. The children of γ1 are topologically sorted, putting γ2 before A.

6. P (γ2) is then linked into P with gating condition 〈?〉(γ1, Λ
r1, ∅); a recursive call to

link(P (γ1).true, Λr1, P (γ2)) adds in a modified of P (γ2) [r1�r2] to produce a new P (γ1)
as in Figure 3.12(d).

7. Cγ1(A) is updated to include edges A• → D(γ2), by:

Cγ1(A) ∪ = (Cγ1(γ2) · gcγ2(A))
= 〈?〉(γ1, ∅, Λr1) ∪ (〈?〉(γ1, Λ

r1, ∅) · 〈?〉(γ2, ∅, Λr2))
= 〈?〉(γ1, ∅, Λr1) ∪ (〈?〉(γ1, Λ

r1 · 〈?〉(γ2, ∅, Λr2), ∅))
= 〈?〉(γ1, ∅ ∪ 〈?〉(γ2, ∅, Λr1), Λr1 ∪ ∅)
= 〈?〉(γ1, 〈?〉(γ2, ∅, Λr1), Λr1)

8. The set D is updated by adding FD(γ2) = {A} and removing γ2 to yield {A}.

9. link is called to attach P (A) to P (γ1) with gating condition 〈?〉(γ1, 〈?〉(γ2, ∅, Λr1), Λr1.
Recursive calls add edges from P (γ1) to a modified PDG, P (A) [r1�rA] (containing a single
statement r1 = A), resulting in the final PDG P (γ1) shown in Figure 3.12(e).

3.5. Worked Examples 69

rP?

P Q

(a) Initial PDG for P(γ₁)

rA=A

(b) Simple PDG for P(A) (c) PDG for P(γ₂) after
link(P(γ₂),...,P(B))

rQ?

P ¬P

r2=B

(d) PDG for P(γ₁) after
link(P(γ₁),...,P(γ₂))

rP?

P ¬P

rQ?

P∧Q P∧¬Q

r1=B

rP?

P ¬P

rQ?

P P∧¬Q

r1=B r1=A

(e) Final PDG produced
 by buildPDG

Figure 3.12: Stages in the execution of buildPDG on the example of Figure 3.1

10. Set D is updated to include FD(A) = ∅ and A is removed, yielding FD(γ1) = ∅, which
is returned from buildPDG(γ1).

On the Independent Redundancy of Figure 3.2 To illustrate the action of our algorithm
on this example, we add a ‘+’ node to combine the results of the two γ-nodes; the VSDG
and postdominator tree is shown in Figure 3.11. The algorithm begins with buildPDG(n+) as
follows:

1. An initial PDG P (n+) is created as in Figure 3.14(a).

2. buildPDG recurses on n+’s children in arbitrary order, here A followed by γ1 and γ2...

(a) buildPDG(A) returns a single statement node rA = A and FD(A) = ∅, as in the
previous example.

3. buildPDG(γ1) is called as follows...

(a) An initial P (γ1) is created as in Figure 3.12(a).

(b) Edges t1
T→ γ1 and rB

F→ γ1 are processed, yielding D = {op1, B}, Cγ1(B) =
〈?〉(γ1, Λ

r1, ∅) and Cγ1(op1) = 〈?〉(γ1, ∅, Λr1).

(c) buildPDG(B) returns a simple P (B) and FD(B) = ∅, as in the previous example.

70 Chapter 3. Proceduralization

rA

γ₂γ₁

B

rP rQ
A

op1 op2

C

r1 r2

FP
TTF

P

+

t1 t2

r+

Figure 3.13: Running example of Figure 3.2 as a single VSDG subtree

(d) buildPDG(op1) is called; it has no children, so P (op1) is returned with only child
t1 = op1(rA), but the edge rA → op1 leads to FD(op1) = {A} and gcop1(A) = Λ.

(e) buildPDG(γ1) continues by integrating B and op1 (in either order)

(f) Here we process B first. link(P (γ1), 〈?〉(γ1, Λ
r1, ∅), P (B)) adds an edge from

P (γ1).true to a P (B) [r1�rB] (producing Figure 3.12(c)
[
rP,r1�rQ,r2

]
). Entries for B

are removed from D and C(·).
(g) The link procedure is called for P (op1) with gating condition 〈?〉(γ1, ∅, Λr1). This

results in P (γ1) as shown in Figure 3.14(b).

(h) FD(op1) is incorporated into the value returned for FD(γ1):

FD(γ1) = (D ∪ FD(op1))\{op1}
= (op1} ∪ {A})\{op1}
= {A}

(i) gcγ1(A) is returned as

gcγ1(A) = Cγ1(op1) · gcop1(A)
= 〈?〉(γ1, Λ

r1, ∅) · Λ
= 〈?〉(γ1, Λ, ∅)

4. buildPDG(γ2) proceeds in the same way modulo differences in naming, returning P (γ2)
as Figure 3.14(b)

[
r2,rQ,op2,C�r1,rP,op1,B

]
), FD(γ2) = {A} and gcγ2(A) = 〈?〉(γ2, Λ, ∅)

5. The children of n+ are topologically sorted, putting γ1 and γ2 before A.

6. Cn+
(γ1) = Λ is passed to link(P (n+),−, P (γ1)).

3.6. Chapter Summary 71

7. D is updated by inclusion of FD(γ1) and removal of γ1 to yield D = {A, γ2}. Cn+
(A)

is updated to 〈?〉(γ1, Λ, ∅).

8. Similarly Cn+
(γ2) = Λ is passed to link in P (γ2), resulting in the (temporary) P (n+)

of Figure 3.14(c).

9. D is updated by removal of γ2 to leave just {A}; Cn+
(A) is updated by union with

Cn+
(γ2) · gcγ2(A), thus:

Cn+
(A) = 〈?〉(γ1, Λ, ∅) ∪ (Λ · 〈?〉(γ2, Λ, ∅))

= 〈?〉(γ1, Λ, ∅) ∪ 〈?〉(γ2, Λ, ∅)
= 〈?〉(γ1, Λ, ∅)⊕ 〈?〉(γ2, Λ, ∅)

10. This GC is then passed to link(P (n+), 〈?〉(γ1, Λ, ∅)⊕ 〈?〉(γ2, Λ, ∅), P (A))....

• Since this GC contains an ⊕, the γ-ordering transformation must be used. Specifi-
cally, γ1 must be ordered with respect to γ2. Suppose that γ1 is made dominant; the
predicate node for γ2 (but not its children) is cloned and the copies made children
of γ1.true and γ1.false as shown in Figure 3.14(d).

• The gating condition Cn+
(A) is recomputed as 〈?〉(γ1, Λ ∪ 〈?〉(γ2, Λ, ∅), ∅ ∪

〈?〉(γ2, Λ, ∅)) to give 〈?〉(γ1, Λ, 〈?〉(γ2, Λ, ∅)).
• Recursive calls to link then use this to guide addition of control edges as shown in

Figure 3.14(e).

11. Finally buildPDG(n+) returns the PDG of the previous step along with FD(n+) = ∅.

3.6 Chapter Summary
We have seen how VSDGs may be converted into PDGs by a post-order traversal of the dom-
inator tree of the VSDG, using Gating Conditions to guide the application of both γ-ordering
and γ-coalescing. These operations result in efficient PDGs suitable for input to existing PDG
sequentialization techniques.

72 Chapter 3. Proceduralization

r1=op1(rA)

rP?

true false

r1=Br+=r1+r2

(a) Initial
PDG for P(n⁺)

(b) PDG for P(γ₁) (c) PDG for P(n⁺) prior
to γ-ordering

r⁺=r₁+r₂

r1=op1(rA)

rP?

r1=B r2=op2(rA)

rQ?

r2=C

(d) P(n⁺) after making
γ₁ dominant

r+=r1+r2

r1=op1(rA)

rP?

r1=B

r2=op2(rA)

rQ?

r2=C

rQ?

r+=r1+r2

r1=op1(rA)

rP?

r1=B

r2=op2(rA)

rQ?

r2=C

P

rQ?

rA=A

¬P∧Q

(e) Final PDG produced
by buildPDG

Figure 3.14: Stages in the execution of buildPDG on the example of Figure 3.2

CHAPTER 4

PDG Sequentialization

Structure of this Chapter This chapter has two main strands. Firstly, in Section 4.1 we
review the effect of PDG sequentialization, including a precise characterization of duplication-
freedom taken from existing literature, and in Section 4.2 give an efficient solution for a special
case. Secondly, we compare the first two phases of our approach—proceduralization of the
VSDG followed by PDG sequentialization—with existing techniques for (i) VSDG sequential-
ization in Section 4.3, and (ii) classical CFG code motion in Section 4.4.

4.1 Duplication-Freedom
The problem of PDG sequentialization was first considered by Ferrante et al. [FM85, FMS88]
and has since received attention from a number of other authors [SAF90, BH92, Ste93, ZSE04]
who have made improvements to both efficiency and generality with regards to loops.

A sequentialization (CFG) in which no PDG node is duplicated is known as concise; recall
from Section 2.4 that a PDG is described as duplication-free when a concise CFG sequential-
ization exists1. The requirements on a PDG for duplication-freedom are precisely characterized
by Ferrante et al. [FMS88], as follows:

A PDG (Program Dependence Graph) is duplication-free iff for every group node
G, with children {Ci}, a topological sort of the Ci respecting the data dependence
edges exists such that:

cc(C1) → . . . → cc(Ci)

where cc(n) are the control conditions under which node n executes, and → is
logical implication.

In particular, if all predecessors of each Ci are group nodes—a constraint trivially satisfiable by
splitting any edges from predicate nodes (to go via a fresh group node)—the above is equivalent
to:

preds(C1) ⊆ . . . ⊆ preds(Ci)

1Ball and Horwitz refer to this property as the feasibility of the CDG subgraph of the PDG [BH92].

73

74 Chapter 4. PDG Sequentialization

P?

Q?

r=B r=t

t=A

r=t

P?

Q?

r=B r=Ar=A

(a) VSDG (b) CFG for (c) CFG for

t=A;
r=P?(Q?B:t):t;

r=P?(Q?B:A):A;

γ

A

γ

B

F

F
P

P

T

T

Q
P

r

Figure 4.1: Two programs—(b) speculating, and (c) duplicating, computation of A—informally
known as exclusive redundancy (repeated from Figure 3.1)

ROOT

P?

P

Q ¬Q

¬PQ?

r=r2

r2=rB

rB=B

r2=rA

rA=A r=rA

(a) PDG

rB=B
r2=rB

rA=A
r2=rA

Q?

r=r2

rA=A
r=rA

P?

(b) Resulting CFG

Figure 4.2: Naive translation of the VSDG of Figure 4.1 (repeated from Figure 3.3)

When this condition is not satisfied, some nodes must be duplicated in order to produce a
satisfying arrangement. In such cases, the challenge is thus to produce the smallest possible
duplication-free PDG, that is, to find the smallest number (or code size) of nodes that need
to be duplicated. We see this as the main task of PDG sequentialization; however, it has not
been well-studied, and although conjectured NP-complete, this has not been proven. Ferrante et
al. [FMS88] give a number of heuristics, and a number of special cases admit polynomial-time
solutions. In Section 4.2 we will study one such, corresponding to VSDGs which are trees of
γ-nodes returning exactly two values.

4.1.1 Effect on Running Examples
We now consider the effect of PDG sequentialization on the running examples of Chapter 3.
Firstly, the PDG produced using the naı̈ve algorithm of Section 3.2.1 on the “exclusive” redun-
dancy of Figure 4.1, as shown in Figure 4.2(a).

4.2. A Special Case of PDG Sequentialization 75

rP?

P ¬P

rQ?

P∧Q P∧¬Q

r1=B r1=A

(a) PDG

rP?

rQ?

r1=B r1=A

(b) Corresponding CFG

Figure 4.3: Result of buildPDG on the running example of Figure 4.1

Observe the group nodes ¬P and ¬Q, and their children (collectively) r = rA, r2 = rA and
rA = A. Duplication-freedom requires that for ¬P (respectively ¬Q) we find an ordering C1, C2

of r = rA (respectively r2 = rA) and rA = A which both:

• respects the data dependences between them—i.e. puts rA = A before r2 = rA or r = rA.

• Satisfies preds(C1) ⊆ preds(C2), where

preds(r2 = rA) = {¬Q} ; preds(r = rA) = {¬P} ; preds(rA = A) = {¬Q,¬P}

—i.e. puts rA = A after r = rA or r2 = rA.

Thus, duplication-freedom is not satisfied—instead PDG sequentialization must duplicate
rA = A, resulting in Figure 4.2(b).

In contrast, our algorithm using tail nodes produced the PDG of Figure 4.3(a), which is
already duplication-free, and results in CFG Figure 4.3(b).

On the independent redundancy of Figure 4.4, the resulting PDG P (n+) shown in Fig-
ure 4.5 is not duplication-free, as can be seen from the group node ¬P ∧Q (also P) and its two
children: The execution conditions of r2 = op2(rA) (respectively r1 = op1(rA)) imply those of
rA = A, requiring that rA = A come second, but the data dependence edge requires the opposite
ordering. Thus rA = A must be duplicated, producing df-PDG Figure 4.5(b) or CFG (c).

We will compare these results with other techniques for VSDG sequentialization in Sec-
tion 4.3.

4.2 A Special Case of PDG Sequentialization
In this section we will study a special case of minimising the duplication required to produce a
df-PDG from a PDG, corresponding to VSDGs which are trees of γ-nodes returning exactly two
values. Thus, the PDGs consist of trees of predicate nodes, eventually terminating in leaves as-
signing values to two registers, denoted by r1 and r2. (Although these values may be computed
by arbitrary-sized subgraphs in the PDG or VSDG, we require these subgraphs to be disjoint,
and hence can consider them as single nodes.)

76 Chapter 4. PDG Sequentialization

t=A

if (P)

r1=B r1=op1(t)

if (Q)

r2=C r2=op2(t)

(a) VSDG

r1=Q ? op1(A) : B;
r2=P ? op2(A) : C;

t=A;
r1=Q ? op1(t) : B;
r2=P ? op2(t) : C;

if (P)

r1=B r1=op1(A)

if (Q)

r2=C r2=op2(A)

(b) CFG for (c) CFG for

γγ

B

P Q
A

op1 op2

C

r1 r2

FP
TTF

P

Figure 4.4: Two programs—(b) speculating, and (c) duplicating, computation of A—informally
known as independent redundancy (repeated from Figure 3.2)

if (P)

r₁=BrA=A
r₁=op1(rA)

if (Q)

r₂=Cr₂=op2(rA)

if (Q)

rA=A

(c) Resulting CFG(a) PDG produced
by buildPDG

(b) After PDG sequentialization
(a duplication-free PDG)

r⁺=r₁+r₂

r₁=op1(rA)

rP?

r₁=B

r₂=op2(rA)

rQ?

r₂=C

P

rQ?

rA=A

¬P∧Q

r⁺=r₁+r₂

r₁=op1(rA)

rP?

r₁=B

r₂=op2(rA)

rQ?

r₂=C

P

rQ?

rA=A

¬P∧QrA=A

Figure 4.5: Result of our algorithm on running example of Figure 4.4

4.2. A Special Case of PDG Sequentialization 77

Our solution proceeds by constructing a form of sharing graph from the PDG. This is a
bipartite graph G such that a vertex cover of the sharing graph identifies a set of PDG nodes
which can be duplicated to produce a sequentialization (df-PDG).

First, in Section 4.2.1 we present some graph theoretic background, defining both bipartite
graphs and vertex coverings. Then, we present our solution in two stages: first Section 4.2.2
presents a solution to a simplified “unweighted” case, and secondly Section 4.2.3 presents the
more complex solution to the weighted case, additionally allowing elements to be shared before
branches.

4.2.1 Bipartite Graphs and Vertex Coverings
Bipartite Graphs An undirected graph G = (V, E ⊂ V ×V) is called bipartite if its vertices
can be separated into two disjoint groups A and B such that every edge has exactly one endpoint
in each group:

V = A ∪B
A ∩B = ∅

E ⊆ A×B ∪B × A

For example, the two-node clique is bipartite, but no clique larger than that is.

Vertex Coverings A vertex covering of a graph is a subset V ′ ⊆ V of the vertices, such that
every edge is incident on at least one node in that subset:

∀(u, v) ∈ E.(u ∈ V ′) ∨ (v ∈ V ′)

A minimal vertex covering is one that is of least size (number of vertices) among all vertex
coverings. For general graphs, finding a minimal vertex covering is an NP-complete prob-
lem [npc, GJ79]. However, in bipartite graphs G = (V = A ∪ B, E ⊆ A × B), a minimal
vertex covering V ′ ⊆ V can be found in polynomial time, as follows.

Firstly, a maximal matching is found. A matching M ⊆ E is a subset of the edges such that
no vertex appears as endpoint of more than one edge in the matching:

(u, u′) ∈ M ∧ (v, v′) ∈ M → {u, u′} ∩ {v, v′} = ∅

A matching M is said to be maximum if there is no matching strictly containing it (@M ′ ⊃ M).
It is said to be maximal if there is no larger matching (i.e. with more edges) at all (@M ′.‖M ′‖ >
‖M‖). Maximal matchings may be found for arbitrary graphs in polynomial time [Gal86];
however, for bipartite graphs, much simpler algorithms are effective, and these are a standard
item of many textbooks [CLRS01].

Secondly, the vertex covering is obtained from the maximal matching M ⊆ E as follows:

• Let S be the smallest set of vertices satisfying the following three conditions:

a ∈ A ∧ @(a, b) ∈ M → a ∈ S
a ∈ A ∧ a ∈ S ∧ b ∈ B ∧ (a, b) ∈ E → b ∈ S
b ∈ B ∧ b ∈ S ∧ a ∈ A ∧ (a, b) ∈ M → a ∈ S

(that is, informally, S is the unmatched vertices in A together with those reachable along
all edges from A to B and edges from B to A in the matching).

78 Chapter 4. PDG Sequentialization

• Let T = V \S be the other nodes.

• Let K = (S ∩B) ∪ (T ∩ A)

• K is a minimal vertex covering

4.2.2 Unweighted Solution
In this section, we will consider a further restricted class of PDGs, composed only of predicate
nodes, leaf nodes, and group nodes with exactly two children both of which are leaf nodes.
Further, we will assume all leaf nodes are of equal size, that is, the static cost of duplicating any
one is the same.

Construction of Sharing Graph For this simple form of PDG, we construct a simple sharing
graph G = (V, E) in which:

• The nodes V are the leaf statements of the PDG

• The (undirected) edges E ⊆ V × V represent the pairings, i.e. there is an edge between
any two leaves with a common group node parent

Note that this graph is necessarily bipartite, as each leaf assigns to either r1 or r2; if the same
value is assigned to r1 in some places and r2 in others, these must be counted as distinct leaves
(and duplicated before construction of the sharing graph). Note that this is not a limitation
of our technique: no sequentialization can share computation of such a value between leaves
assigning to r1 or r2, or both, as the assignment of the value to a different register must follow
computation in each case.

For example, see Figure 4.6, where the VSDG and PDG of part (a) results in the simple
sharing graph (b).

Interpretation of the Vertex Covering Any minimal vertex covering V ′ ⊆ V of a simple
sharing graph corresponds to a minimal-sized PDG sequentialization as follows. For each group
node in the PDG, at least one of its two children must be in the vertex covering. Select c as the
child not in the covering, if possible; if both children are in the vertex cover, select c arbitrarily
(the choice is not important as all leaf statements are the same size). Make a copy c′ of c and
replace the edge G → c with an edge G → c′. Thus, c′ is specific to G and will be executed
first; its sibling (in V ′) may still shared, and will be executed last, after merging the control flow
of separate leaves/paths in the CFG.

Each group node now has at most one child shared with any other group node, hence the
PDG is duplication-free. The total size is (the number of node copies to do first) plus (the
number of nodes to do last); from the above, these are (the number of edges in the bipartite
graph) plus (the number of vertices in the covering). Since the former is fixed, the size of the
sequentialized PDG is linear in the size of the covering, hence duplication is minimized only by
a minimal covering.

For example, Figure 4.6(c) and (d) show two coverings and the PDGs and CFGs correspond-
ing to each.

4.2. A Special Case of PDG Sequentialization 79

(a) Input VSDG, Source code, PDG

(A,X) (B,X) (A,Y)

r1=B
r2=X

r2=Yr2=X

r1=A

A B

Y X

(b) Simple
Sharing Graph

(d-CFG)

A B

Y X

(either of these)

if P₁ then
 (A,X)
else if P₂ then
 (B,X)
else (A,Y);

P₂

P₁

r1=A r1=Br2=X r2=Y

A B YX

γ₂

T₁

F₁
T₁

F₁T₂

T₂ F₂

F₂

1 2

γ₁
1 2

(d) Vertex covering sharing A

(A,X) (B,X) (A,Y)

r1=B r1=A
r2=Y

r1=A

r2=X

(c-CFG)

(c) Vertex covering sharing X

A B

Y X

(either one of these)

P₂

P₁

r1=A r1=Br2=X r2=Yr1=A

(c-PDG)

P₂

P₁

r1=A r1=Br2=X r2=Yr2=X

(d-PDG)

Figure 4.6: Construction and Interpretation of Unweighted Case.
.

80 Chapter 4. PDG Sequentialization

(weight n)

(weight m)

. . .

. . .

(n vertices)

(m vertices)

(nm edges)

Figure 4.7: Reduction of Weighted Vertex Covering to Vertex Covering

4.2.3 Weights and Measures
In this section we will extend the previous solution to take into account leaf nodes (or sub-
trees) with different static sizes, and also more general PDGs in which some leaf nodes may
selected before all predicates have been tested (that is, leaf nodes may be siblings of predicate
nodes—see Figure 4.8(a) and (b) for an example). First, we explain how vertex coverings may
be computed to take into account weights assigned to the nodes of a bipartite graph. Then
we present the sharing conflict graph, and show how any covering of this identifies a PDG
sequentialization (df-PDG or CFG) whose size is linear in the total weight of the covering.

Weighted Vertex Coverings A Minimal-weight vertex cover for a graph G = (V, E) and a
weighting function w : V → N is a vertex covering V ′ ⊆ V which minimises∑

v∈V ′

w(v)

Such a minimal-weight covering can be found by transforming G into a new graph Gw:

Gw =

(⋃
v∈V {v1, . . . , vw(v)},⋃
(u,v)∈E({u1, . . . , uw(u)} × {v1, . . . , vw(v)})

)
This transformation is also shown in Figure 4.7. Note in particular that Gw is bipartite iff G
is, and further, that ‖Gw‖, the size of Gw, is bounded by a polynomial on ‖G‖ (so long as the
weights w(v) are bounded likewise). As the figure shows, the edge (u, v) ∈ G (which forces a
cover of G to include either u or v) forces any cover of Gw to include either all the ui (at cost
w(u)) or all the vi (at cost w(v)). Hence, a minimal vertex covering of Gw is a minimal-weight
vertex covering of G with weighting function w.

Construction Of Sharing Conflict Graph The sharing conflict graph is a weighted bipartite
graph G = (V, E) constructed as follows:

• The nodes in the sharing conflict graph correspond one-to-one with the nodes potentially
appearing in the resulting sequentialization. That is, for each leaf node or subtree v, of
size w, in the input PDG, the sharing conflict graph incorporates:

– A distinguished vertex vshare, with weight w; intuitively, this corresponds to a PDG
node which will compute v last, shared between multiple control dependence pre-
decessors.

4.2. A Special Case of PDG Sequentialization 81

T₁
F₁T₂

T
F

F₂

γ₂

γ₁
1 2

γ₃
1 2

T₁

T₂

X B ZYA

F₂
F₁

if (P₁) then
 if (P₃) then (A,X) else (B,Y)
else
 (B,if (P₂) then X else Z)

P₁

P₃

r2=X r1=B r2=Zr2=Yr1=A

P₂

A₁ B₁ B₂

X₁ X₂ Y₁ Z₁

shareA shareB

shareX shareY shareZ

(a) VSDG

(b)Corresponding PDG Prior to Sequentialization

(c) Sharing Conflict Graph

X₁ corresponds to
first CDG edge

incoming to r2=X

(Observe correspondences between middle
row of edges, and pairs of PDG statements

executed together, indicated in blue)

(Observe B shared across test
of P₂, highlighted in red)

(d) Source Code

Figure 4.8: Sharing conflict graph corresponds to a PDG.

– A vertex vj (for fresh j), also with weight w, for each control dependence parent of
v; intuitively, this corresponds to a copy of v particular to that parent.

• The edges are constructed to restrict possible vertex coverings, such that any PDG con-
taining only nodes corresponding to those in a vertex covering, is a valid, duplication-free,
sequentialization. Specifically, the sharing conflict graph contains:

– an edge vshare ↔ vj for each vj ∈ V ; and

– an edge uj ↔ vk for each pair of PDG leaf nodes (u, v) which could be executed
together, where uj and vk are the vertices for the control dependences causing such
an execution.

The effect of this procedure, shown in Figure 4.8(c), is to build a chain ushare ↔ uj ↔ vk ↔
vshare for each tuple (u, v), with j and k such that whenever one leaf node v may be selected
without testing all predicates required to select the other, the corresponding vj is shared between
all the tuples that may result.

Interpretation of Covering The correspondence between the nodes of the sharing conflict
graph and copies of the leaf statements or subtrees in the output PDG was explained above.
Two examples are shown in Figure 4.9. Note that in each chain ushare ↔ ui ↔ vj ↔ vshare,
the covering must include at least one copy of u (either ushare or uj), and at least one copy of

82 Chapter 4. PDG Sequentialization

v (either vshare or vj), thus specifying shared or unshared nodes for u and v; moreover, it must
include either ui or vj—that is, it may not include only ushare and vshare—thus at most one of
the leaf nodes may be shared with other tuples. (In the case where the covering includes both
uj and the corresponding vk, but neither ushare nor vshare, there is no tail-sharing.) This ensures
the result is a valid (duplication-free) sequentialized PDG.

If ui, vj and one or both share vertices are all included, multiple df-PDGs are possible using
any valid subset of the included vertices, but these will all be of equal size.

4.3 Comparison with VSDG Sequentialization Techniques
Only two techniques for sequentialization of the VSDG exist in the literature (indeed, the
VSDG was itself developed because of problems in the sequentialization of the earlier
VDG [WCES94]):

1. Johnson’s algorithm [JM03, Joh04] for combined Register Allocation and Code Motion
(RACM)

2. Upton’s algorithm [Upt06] for sequentialization of gated data dependence graphs

We compare our approach to each of these in Subsections 4.3.1 and 4.3.2.

4.3.1 Johnson’s Algorithm
Johnson and Mycroft sequentialize a VSDG by first inserting split nodes based on postdomi-
nance by the true or false operands of γ-nodes. This is followed by a combined register allo-
cation algorithm including code motion, but for the purpose of avoiding register spillage rather
than reducing node evaluation. Thus, Johnson’s technique is more relevant to the discussion
of node scheduling techniques in Chapter 6 (in fact we show how it can de adapted into our
framework as a separate pass after PDG sequentialization).

However, the VSDG with split nodes specifies an evaluation strategy in the same way as
a df-PDG, and so the two can be compared, although the two compiler’s aims and criteria for
optimality are different: whereas we aim for the smallest df-PDG that is dynamically optimal,
Johnson aims purely to reduce code size. This justifies his choice of a call-by-value strategy,
speculatively evaluating nodes in order to minimize their number of static occurrences, and his
technique tends to produce smaller and somewhat slower code than ours2. Thus, it is helpful
to recall the maxim “the most normalizing compiler is the most optimizing one” discussed in
Chapter 1. In particular we will consider the two running examples of Figure 4.1 and Figure 4.4.

If we consider the two input CFGs of Figure 4.1, we see Johnson’s algorithm normalizes
both to output CFG (b) (speculating). These is consistent with his “smallest size” goal, but the
shortcircuit version of Figure 4.3 produced by our technique is clearly superior: it is just as
small, and also faster—as fast as any other possibility and the most efficient way the program-
mer might have written it (if the language used included shortcircuit operators such as C’s ||
and &&—our technique is also effective on cases which cannot easily be expressed with such
operators.). Thus, Johnson’s algorithm loses out on (common!) programs written with such
operators (producing slower code than naı̈ve CFG techniques).

2At least ignoring cache effects.

4.3. Comparison with VSDG Sequentialization Techniques 83

A₁ B₁ B₂

X₁ X₂ Y₁ Z₁

shareA shareB

shareX shareY shareZ

A₁ B₁ B₂

X₁ X₂ Y₁ Z₁

shareA shareB

shareX shareY shareZ

P₁

P₃

r2=X r1=B r2=Zr2=Yr1=A

P₂ r1=B

P₁

P₃

P₂

r2=X r1=B r2=Zr2=Yr1=A r2=X

P₁

r2=X r2=Zr2=Y

r1=Br1=A P₂

P₃ r1=B

P₁

P₃ P₂

r1=B

r2=Yr1=A r2=Zr2=X

r2=X

(a)Vertex Covering sharing X (b)Vertex Covering sharing B

(a-PDG) Corresponding Sequentialization (b-PDG) Corresponding Sequentialization

(a-CFG)

(b-CFG)

Figure 4.9: Possible minimal-weight coverings, and corresponding sequentialized PDGs, for
Figure 4.8.
.

84 Chapter 4. PDG Sequentialization

op1 P?

Q?

r=B

r=op2(t)

t=A

r=op1(t)

P?

Q?

r=B

r=op2(A)

r=op1(A)

(a) VSDG (b) CFG for (c) CFG for

t=A;
r=P?(Q?B:op1(t))
 :op2(t);

r=P?(Q?B:op1(A))
 :op2(A);

γ

A

γ

B

F

F

P

P

T

T

Q

P

r

op2

Figure 4.10: Another exclusive redundancy, akin to Figure 4.1, but in which additional operation
are performed on the redundant node A

However, when shortcircuit evaluation is not possible due to the presence of extra
operations—for example, Figure 4.10—our algorithm produces output CFG (c), whereas John-
son’s algorithm continues to normalize both input CFGs to output CFG (b). This is effective
normalization: producing the output consistent with the compiler’s optimality criteria regardless
of the form written by the programmer.

On the two input CFGs of Figure 4.4, we again see Johnson’s algorithm normalizing both
input CFGs to the smallest output, namely CFG (b). Our algorithm produces CFG Figure 4.5;
this is both larger and faster. (However, it is hard to apply arguments of normalization as this
CFG cannot be expressed in most programming languages!)

4.3.2 Upton’s Algorithm
Upton sequentializes a VSDG by constructing a treelike, and thus trivially duplication-free,
dPDG3. The dPDG→CFG conversion is accomplished by taking an arbitrary topological sort
of the children of each group node, followed by standard register allocation techniques; whilst
this seems like a missed opportunity to apply node scheduling techniques, his dPDG construc-
tion technique can be compared directly with our proceduralization technique of VSDG→PDG
conversion followed by PDG sequentialization. The comparison is particularly pertinent be-
cause he also implements a lazy evaluation strategy, and has the same criteria of optimality
(speed first, then size) as us.

(However, in a deviation from our approach discussed in Section 3.1, he uses exponential-
time BDD-based techniques to solve the boolean equations describing demand conditions pre-
cisely, whereas we take the standard approximation that γ-nodes multiplex independently.)

Considering our running examples, on Figure 4.1, Upton’s compiler produces output of
the form of CFG (c) (duplicating). Although consistent with his “speed first” aim (it is faster

3The dPDG is a variant of the PDG with functional nodes rather than imperative statements, with the CDG
replaced by a Demand Dependence Graph

4.4. Comparison with Classical CFG Code Motion 85

if (Q)

t=A
r1=op1(t)

if (P)

r2=C r2=op2(t)

r1=B

if (P)

t=A

Figure 4.11: Sequentialization of VSDG of Figure 4.4 by Upton’s algorithm. (Performs extra
tests)

than CFG (b) (speculating)), our result (Figure 4.3) exploiting shortcircuit evaluation is clearly
superior—it is just as fast, and also smaller, and static optimality is a secondary goal for Upton
as well as us. (Indeed, Upton’s technique loses out to naı̈ve CFG techniques on such examples.)

When shortcircuit evaluation is not possible due to the presence of additional operations—
for example, Figure 4.10—both our algorithm and Upton’s produce output CFG (c); no better
possibility exists.

On both of the two input CFGs of Figure 4.4, Upton’s algorithm produces the output CFG
of Figure 4.11. If we consider Upton’s criteria for optimality (given in Section 3.1), this is
dynamically better than Figure 4.4(b) or (c): 0–1 evaluations of A as opposed to exactly once
or 0–2 times, respectively. While Upton’s output is statically larger than either because of the
presence of extra test on P , static optimality is a secondary aim. Comparing it with the CFG
produced by our algorithm (Figure 4.5), we see both perform the same (optimal) amount of
node evaluation, and are statically the same size.

However, our algorithm’s result performs fewer runtime tests and branches, making it dy-
namically more efficient, so we see it as strictly better in this case. (We consider this issue again
in Section 4.4.2 below.)

4.4 Comparison with Classical CFG Code Motion
In this section we compare the effectiveness of our algorithm with classical code motion algo-
rithms on the CFG. Code motion is a generic term for transformations that move computations
between program points (basic blocks), usually with the aim of reducing the number of compu-
tations performed. A formal definition is given by Knoop and Ruthing in their work on Partial
Redundancy Elimination:

Definition 4.1 due to Knoop and Ruthing [KRS94a]:
Code motion is a technique for improving the efficiency of a program by avoiding unneces-

sary recomputations of a value at runtime. This is achieved by replacing the original compu-
tations of a program by temporary variables (registers) that are initialized correctly at suitable
program points.

86 Chapter 4. PDG Sequentialization

However in common with Bodik, Gupta and Soffa [BGS98b] we see code motion as a trans-
formation mechanism or framework capable of being applied for many purposes, considered
further in Section 4.4.4. Nonetheless its application to reducing unused computations (Par-
tial Dead Code Elimination or PDCE) and unnecessary recomputations (Partial Redundancy
Elimination or PRE) forms an important part of the optimization stage of most CFG compilers.

In a VSDG framework we may consider more general code placement optimizations
instead—specifically, including the construction of a set of program points as well as plac-
ing computations at them. However, these may be applied to the same purposes. To paraphrase
Weise et al. [WCES94], such code placement optimizations are decided upon when the control
dependence graph (CDG) is constructed; since CDG construction, and implementation, is one
of the main challenges in the conversion from VSDG to df-PDG, we can see code placement as
one of the primary optimizations performed.

Hence, we see code motion as directly comparable in effect to df-PDG construction; at
this juncture, the representation specifies both the size of the output, and the amount of node
evaluation and predicate testing that will be performed, in an abstract (machine-independent)
3-address code form.

Moreover, the definitions of optimality given by Knoop and Rüthing for both PRE [KRS94a]
and PDCE [KRS94b] correspond closely to Upton’s definition of the optimality of VSDG se-
quentialization (given in Section 3.1). Ruthing et al. [KRS94b] write:

“Let P(s, e) be the set of all paths from CFG entry to exit node, let AP be the set
of all assignment patterns x:=e, and let G be the universe of programs that can be
produced [see below].

1. Let G′, G′′ ∈ G . Then G′ is better4 than G′′ if and only if

∀p ∈ P(s, e).∀α ∈ AP .α#(pG′) ≤ α#(pG′′)

where α#(pG′) and α#(pG′′) denote the number of occurrences of the assign-
ment pattern α on p in G′ and G′′, respectively. [A footnote states: “Remember that
the branching structure is preserved. Hence, starting from a path in G, we can easily identify
corresponding paths in G′ and G′′.”]

2. G∗ ∈ G is optimal if and only if G∗ is better than any other program in G.”

Critically, exactly the same metric is applied for both PRE and PDCE; the difference be-
tween them is G, the set of possible transformations considered:

For PDCE: Let G be the universe of programs that can be produced by any sequence
of admissible assignment sinkings and dead code eliminations to the original
program G.

For PRE: Let CMAdm be the universe of admissible (safe and correct) code motion
transformations.

The latter rests on Definition 4.1 above, of code motion being a transformation solely for
reducing unnecessary recomputation; however we can see both as instances of the same trans-
formational framework of moving computations between CFG program points.

4Both papers point out that “at least as good as” would be a more accurate, but uglier, phrasing.

4.4. Comparison with Classical CFG Code Motion 87

Thus, Upton’s criteria of not performing redundant computation subsumes both of these,
with computation of partially-dead expressions and (partially or totally) redundant computation
corresponding to speculative and repeated evaluation, and being ruled out by PDCE and PRE
respectively. However, this correspondence also highlights a number of differences, discussed
in subsections 4.4.1 to 4.4.4.

4.4.1 Suitable Program Points
These definitions of PRE and PDCE optimality interpret “suitable program points” in Defi-
nition 4.1 as meaning basic blocks existing in the input CFG5, and consider only how many
evaluations might be avoided given the set of paths in the existing CFG. Under that constraint,
Knoop and Ruthing [KRS94a] identify and reach the point of optimality, i.e. where no further
redundancy can be eliminated. However, elimination of redundancy is restricted because good
locations for placing computations do not necessarily exist: Bodik and Gupta [BG97] show
that 30-50% of (partial) redundancy in programs cannot be eliminated by classical code mo-
tion alone. In such cases, the CFG—both as input and as output—must specify one or more
locations, good or otherwise.

In contrast, in a VSDG framework, the previously existing set of program points (i.e. CFG
locations) is deliberately discarded, and optimality concerns what is possible with any set of
paths that might be created. Thus, a key challenge of sequentialization is to create a “good”
set of program points, and paths between them, which allow all redundant computation to be
avoided. Such paths may not have existed in the input CFG.

4.4.2 Extra Tests and Branches
A key result of the creation of a set of program points in a VSDG framework is that the dy-
namic overhead of tests and branches used to control flow along the created paths may vary
substantially between CFGs. We saw this in Section 4.3.2: Upton’s VSDG-based compiler can
produce output performing multiple tests and branches on the predicate of a single γ-node. In
contrast, in classical code motion the number of tests is fixed as it is a property of the input
CFG (which is unchanged), and we chose in Section 3.1 an explicit policy of dynamically per-
forming only one test per γ-node. Hence, although Upton’s definition of optimality parallels the
CFG definitions, we see the lack of account of this overhead as a significant shortcoming of his
technique. (However, due to Upton’s use of exponential time BDD techniques, his algorithm is
also capable of combining tests for multiple γ-nodes with the same predicate; we consider this
further in Chapter 7).

4.4.3 Program Points and Sequentialization Phases
A program point in the CFG embodies two properties that we see as distinct:

1. The set of conditions under which control flow reaches that point in the CFG—that is, an
encapsulation of whether to execute statements;

2. An ordering, relative to the various other computations (single statements or otherwise)
5More precisely, existing in the input CFG after augmentation with an extra node at the midpoint of any critical

edge—an edge from a node with multiple successors to a node with multiple predecessors. Some authors instead
place computations directly on CFG edges [DS93].

88 Chapter 4. PDG Sequentialization

and program points executed under the same conditions—that is, an encapsulation of
when to execute statements.

In our framework, the choice of ordering is performed entirely by the node scheduling
phase, considered in Chapter 6. However, the definitions of optimality we have seen—for PRE,
PDCE and VSDG sequentialization—do not depend on ordering, and thus such optimality is
decided entirely by df-PDG construction.

Another difference is that while many interpretations of code motion refer to motion be-
tween basic blocks, they perform local intra-block transformations (such as deleting multiple
occurrences of the same expression) as a preliminary step, passing onto the subsequent inter-
block stage only information about upward- and downward-exposed occurrences. Further, CFG
algorithms typically consider “an expression” as being the RHS of a single 3-address-code in-
struction, and thus cannot as presented deal effectively with large expressions spread over more
than one basic block, e.g. involving conditional expressions.

Contrastingly, in the VSDG, the uniformity of expressions (Section 2.1.1) means that motion
within basic blocks is presented in the same way as motion between them, and expressions
spanning multiple basic blocks are treated the same way as others, irrespective of size.

4.4.4 Lifetime Minimization
An additional consideration for CFG code motion algorithms has been the positioning of com-
putations to reduce variable lifetimes—Knoop and Steffen’s OCM [KRS94a] succeeds in pro-
ducing the shortest lifetimes such that optimal elimination of redundancy is satisfied. This
approach is continued by many other authors. We see it as simply applying the same transfor-
mational framework, but for a different purpose to that of Definition 4.1 above, even if lifetime
minimization is taken as only a tertiary aim after dynamic and static optimality.

It also forms a good example of how phase-order problems in the CFG are often addressed
(Section 2.4.1): code motion often leads to an undesirable increase in register pressure, so code
motion algorithms are modified to attempt to “help” register allocation as much as possible
subject to optimality in their own domain.

In our framework, since lifetime minimization depends only on instruction ordering (Sec-
tion 4.4.3), this is performed entirely by the node scheduling phase. We argue this is a better
separation of concerns, as the node scheduling phase can consider actual register pressure re-
sulting from placement of all expressions together (Johnson [JM03, Joh04] has already shown
that the choice of ordering has a great effect here.) In contrast, the CFG approach of minimizing
variable lifetimes is but a proxy for the actual problem, in that where register pressure is not
excessive it may simply be wasted effort, and where spilling still occurs, recomputation might
be cheaper than storing to memory and reloading.

Further Optimizations Similarly, we argue that many optimizations sometimes considered
separate are really more general applications of some form of code motion-like transformation:
these include instruction scheduling, where the distinction is already somewhat blurry due to
global scheduling techniques (such as superblock scheduling [HMC+93]) moving instructions
between basic blocks; combined register allocation techniques, where even local algorithms
sensitive to register pressure might insert recomputations to avoid spilling; and many others.

The attempt to exploit the unconstrained nature of code placement in the VSDG can be seen
as a unifying theme of this thesis.

4.4. Comparison with Classical CFG Code Motion 89

(a-VSDG)

(b-VSDG)

γ

A

op

op T
F

y

z

x₂

x₀

γ

A

op

T₁F₁
y

z

op

F₂ T₂
1 2

x₂

x₀

(a-CFG)

x=A
t=op(x)

(x=...)

P

z=t

t=op(x)
y=t

(b-CFG)

x=A

(x=...)

P

z=op(x)

y=op(x)

(a-SSA)

Before PRE

x₁=A
t₁=op(x₁)

P

z=t₂

(x₀=...)

t₂=ϕ(t₀,t₁)
x₂=ϕ(x₀,x₁)

t₀=op(x₀)
y=t₀

(b-SSA)

After PRE

x₁=A

P

z=op(x₂)

(x₀=...)

x₂=ϕ(x₀,x₁)

y=op(x₀)

Figure 4.12: Partial Redundancy Elimination on SSA form must deal with textually different
expressions, but is handled by a simple node distribution transformation in the VSDG

4.4.5 Variable Naming and Textually Identical Expressions
In the CFG, where there are multiple assignments to the same variable, textually identical 3-
address instructions at different locations might be computing entirely different values. Con-
trastingly, in SSA form (and hence also the VSDG), use of variable names (nodes) to identify
specific values means that that unrelated expressions have different textual representations (are
different nodes).

However, when a variable is assigned to on only one arm of a conditional, following the
merge point the value in that variable may be the same as before, even though in SSA form it
now has a different name. This is shown in Figure 4.12(a). These issues with variable nam-
ing cause significant complications when performing code motion directly on SSA form: the
SSAPRE algorithm [CCK+97] must trace the flow of values through φ-nodes. (The result is
shown in Figure 4.12(b).)

90 Chapter 4. PDG Sequentialization

In the VSDG, redundancy in these examples is not handled by our proceduralization tech-
nique. However, using the VDG, Weise et al. [WCES94] show how a node distribution trans-
formation captures these examples much more simply than on the CFG (in SSA form or other-
wise): operations after the merge point are “pushed” upwards through γ-nodes until they can be
hash-consed with existing nodes. This effect is shown in Figure 4.12(a-VSDG) and (b-VSDG):
note the new component (Section 2.6.2) of the γ-node, producing the same value for z but with
fewer computations on some paths.

CFG techniques additionally suffer from complications due to the interactions between ex-
pressions and assignments—known as second order effects [KRS95]. Specifically, motion of
expressions is often blocked by assignments to expression operands; if motion of the assign-
ments (i.e. x:=e for original program variables x) is allowed, rather than just computations
into introduced temporaries (i.e. t:=e, leaving x:=t alone), substantially more optimization
is possible than otherwise [KRS95]. However, the VSDG makes assignment transparent, so
the same level of optimization is naturally achieved without considering such interactions. We
conjecture a similar outcome could be achieved in SSA form by interleaving rounds of SS-
APRE [CCK+97] with copy propagation.

4.4.6 Optimal Code Motion on Running Examples
The Lazy Code Motion algorithm of Knoop, Ruthing and Steffen [KRS94a] is perhaps the
de facto standard, and develops on the Busy Code Motion algorithm of Morel and Ren-
voise [MR79]. This algorithm deals with the elimination of partial redundancies—computations
of an expression which is available on some but not all predecessors—but they separately apply
similar techniques to the elimination of partially dead expressions [KRS94b]. Here it is useful
to consider again the running examples of Figures 4.1 and 4.4.

In the first of these, OCM [KRS94a] converts or normalizes both input CFGs to output CFG
(c), the same as Upton’s algorithm6; similarly, both CFGs of Figure 4.10 are normalized to
output CFG (c), which is as good as the VSDG.

However, on the independent redundancy of Figure 4.4, these techniques are not capable of
converting between any of the CFGs shown, and certainly would not reach a CFG as efficient
as our result of Figure 4.5 as this requires the creation of new program points. (A development
of PRE known as Speculative PRE [SHK04] is capable of converting between Figure 4.4(a)
and (b) when given runtime profiling information which showed one form to involve fewer
total evaluations than another. This possibility is discussed in Chapter 7 along with competing
algorithms which restructure the CFG.)

4.4.7 Other Algorithms
A large number of other techniques for performing code motion directly on the CFG have been
described in the literature.

Chow et al. develop an algorithm equivalent to Knoop’s OCM operating directly on SSA
form [CCK+97].

Briggs and Cooper [BC94] describe a number of enabling transformations which expose
additional opportunities for PRE by global value numbering [RWZ88] and expression reasso-

6It is possible that Figure 4.1(c) could be converted to the shortcircuit version of Figure 4.3 by the CFG cross-
jumping optimization, but this is only opportunistic.

4.4. Comparison with Classical CFG Code Motion 91

ciation. Although their technique can worsen execution times by sometimes sinking code into
loops, we believe similar techniques could be straightforwardly applied to the VSDG if consid-
ered desirable.

In further work, Ruthing, Knoop and Steffen [RKS00] consider code size as an additional
criterion, on top of speed and variable lifetimes, for controlling the application of code motion
transformations. Specifically, they consider searching for the smallest transformation satisfying
computational optimality, or the fastest solution among the smallest transformations at least
preserving program performance. This allows some partial redundancy to remain in the program
if this allows a smaller solution. On the VSDG, our proceduralization technique always searches
for the smallest transformation satisfying computational optimality, but the idea of performance
preservation suggests space-conscious heuristics for controlling proceduralization as well as
PRE by node distribution (covered in Section 4.4.5).

92 Chapter 4. PDG Sequentialization

CHAPTER 5

Intermediate Representations and Sharing

Previously, we compared the PDG with the VSDG, observing that the VSDG’s non-
specification of evaluation strategy (encoded in the PDG’s Control Dependence sub-Graph)
made it both more abstract and more normalizing—desirable properties for an intermediate rep-
resentation. Implicit in this comparison, but never directly stated, was the idea that the VSDG
was “better” than the PDG. This suggestion requires that anything that can be expressed in the
PDG can also be expressed in the VSDG—but in fact we have already seen in Figure 3.10(iii)
(in Section 3.4.1) examples where this is not the case.

This Chapter focusses on refining the VSDG to accommodate these structures, and studies
the issues underpinning this, which relate to the sharing of computations. Specifically,

• Section 5.1 exhibits and explains exactly what structures can be expressed in the PDG but
not the VSDG;

• Section 5.2 shows how all specification of sharing can be separated out from the VSDG
into explicit equivalence classes or partitions, leaving behind a special case of Unshared
VSDG (u-VSDG).

– Section 5.3 shows how such a partitioning identifies a unique PDG.

– This yields new insights into how loop optimizations fit into a VSDG compiler,
discussed in Section 5.4.

• Lastly, Section 5.5 defines a variant of the VSDG called the Regionalized VSDG
(RVSDG), which is equivalent to the PDG, easing use of VSDG optimizations and tech-
niques after proceduralization.

Overview of Representations This Chapter defines several new data structures which are
new ways of representing the same information as existing IRs. These are shown in Figure 5.1.
Specifically, the u-VSDG is a special case of and equivalent to the VSDG; and both the RVSDG,
and the u-VSDG with explicit partitions, are equivalent to the PDG. (By equivalent, we mean

93

94 Chapter 5. Intermediate Representations and Sharing

VSDG

u-VSDG

⊊

PDG

u-VSDG with
explicit partitions

RVSDG

Proceduralize

Regionalize

Specify Sharing

These IRs equivalent

These IRs equivalent

These actions
equivalent

Figure 5.1: Overview of Intermediate Representations and their Relationships

as specifications of evaluation behaviour, i.e. they have the same trace semantics as discussed
in Section 2.7.1.)

5.1 Shared Operators: the PDG & VSDG, Part 2
In our review of the PDG and VSDG (Section 2.3), we observed that the VSDG describes
the values (and states) occurring in the program, and the operations required to produce them.
Operators explicitly identify their operands, with the statements required to perform said oper-
ations being somewhat implicit. In contrast, the PDG describes the program explicitly in terms
of the statements performing those operations. Operands are specified in terms of variables,
with the actual values present in said variables at the point when the statement is executed being
somewhat implicit.

This difference allows a PDG operation (statement) node, called a shared operator, to per-
form a single operation on one of multiple different arguments—where there is no unique node
or statement producing the argument value. Such PDGs are exemplified by that of Figure 5.2(a),
in which the shared operator r1 = op(t1) operates on either X or Y (potentially expressions).
The choice between X and Y is made earlier in the program; there is nothing akin to a γ-node
in the VSDG which can be identified as being the source of the value in t1. Yet a single copy of
op is all that is required in the CFG too (Figure 5.2(a-CFG)).

Even in SSA form, with a φ-function of form t1 = φ(rX, rY) (as shown in Figure 5.2(a-
SSA)), there is no equivalent to a γ-node: although the φ-function identifies the variables which
might be operated on, it is not a function in the strict mathematical sense, merely a pseudo-
function which can exist only after a control-flow merge. The choice between its operands is
made at an unidentified point earlier in the program, and the φ will need to be implemented by
two register moves attached to its predecessors.

PDGs with operator sharing are useful, as they represent programs statically smaller than
others producing the same results, such as the two larger programs shown in Figure 5.2(b) and

5.1. Shared Operators: the PDG & VSDG, Part 2 95

ROOT

P?

P Q?

Qt1=X

t1=Yr1=op(t1)

r1=Z

P?

Q?
t1=X

r1=op(t1)

t2=Y
r1=Z

r1=op(t2)

(b-CFG)

P?

Q?

t1=Xt1=Y

P?

r1=Z
r1=op(t1)

(c-CFG)

(b-PDG) With static
duplication of op (larger)

t1=X r1=op(t1)

ROOT

P?

Q?P

r1=ZQ

t2=Yr1=op(t2)

t1=X

r1=op(t1)

ROOT

P?

Q?P ∨ Q

r1=Z
P?

t1=Y

(c-PDG) With extra
dynamic tests (larger)

(a-PDG) Using
Operator Sharing

P?

Q?
t1=X

r1=op(t1)

t1=Y r1=Z

(a-CFG) (a-SSA)

P?

Q?

rX=X

rO=op(t1)

rY=Y rZ=Z

t1=φ(rX,rY)

r1=φ(rO,rZ)

Figure 5.2: Operator sharing and the alternatives

96 Chapter 5. Intermediate Representations and Sharing

(a) VSDG with
duplication of op

(b) VSDG with
extra tests

γ

γ
op

γ

F

P
T

F

T P

P

F T

γ

γ
op

op

T

P
F

F

P

T

Y

B Q P X

Y

B

Q
P X

Figure 5.3: Attempts to represent Figure 5.2(a) as a VSDG

(c). Yet there is no way to specify the structure in Figure 5.2(a) using the VSDG as presented
so far (both in Chapter 2, and by previous authors [Joh04, Upt06, WCES94]), and this is a
drawback of these formulations. Only the larger PDGs 5.2(b) and (c) have corresponding VS-
DGs, namely Figure 5.3(a) and (b), respectively. Note how the extra γ-node in Figure 5.3(b) is
effectively a translation of the SSA φ-function t1 = φ(rX, rY) shown in Figure 5.2(a-SSA), yet
sequentializes to (c-CFG) which performs extra runtime tests1.

We can see the reason for this in the Haskell translation of the VSDG introduced in Sec-
tion 2.2.2. Every variable defined by this translation is of ground (non-function) type. For
example, applying the scheme to VSDG 5.3(a), with duplication of op, we have:

let ny=Y in
let nx=X in
let nz=Z in
let oy=op(ny) in
let op=op(nx) in
let gq=if Q then oy else nz in
let gp=if P then ox else gq in
gp;

Whereas if we consider what a translation, of a VSDG in which op was somehow shared,
would look like, it would have to be something like:

let ny=Y in
let nx=X in
let nz=Z in
let o(arg)=op(arg) in //equiv: let o=\arg -> op(arg) in
let gq=if Q then o(y) else nz in
let gp=if P then o(x) else gq in
gp;

1Alternatively, sequentialization might produce Figure 5.2(b-CFG) even from this VSDG, if the extra γ-node
were duplicated—by the PDG sequentialization algorithm of Ferrante et al. (e.g. on a more complicated example)
or by deliberate application of the splitting techniques of Chapter 7.

5.1. Shared Operators: the PDG & VSDG, Part 2 97

(a) Unusual (accidental?) reuse of
temporary t1 allows cross-jumping

(c) Alternative form of (b) where
cross-jumping could be applied

(b) Cross-jumping inapplicable
due to ordering of statements

P?

Q?
t1=X

r1=op(t1)

t1=Y
r1=Z

r1=op(t1)

P?

Q?t1=X

r1=op(t1) t1=Y
r1=Z

r1=op(t1)print "P"

P?

Q?t1=X

print "P" t1=Y
r1=Z

r1=op(t1)r1=op(t1)

Figure 5.4: The CFG cross-jumping optimization is highly opportunistic

and clearly this cannot be produced from any VSDG: the variable o is of function type. Corre-
spondingly, the hypothetical single shared instance of op is being used as a function, i.e. is not
a value—and the VSDG describes programs in terms of values. So it is no surprise that this
structure cannot be represented in the VSDG.

This problem was encountered by Weise et al. in their original approach using the
VDG [WCES94]. Construction of a VDG from a CFG such as that of Figure 5.2(b) would
proceed in two stages. First, λ-nodes (effectively, separate VDGs) and explicit call nodes would
be used in order to share op by making a function call with return address passed as an extra
parameter. Second, the λ-γ transform would combine all call sites together into a single one by
using extra γ-nodes (as we have seen); the called λ would then be inlined, producing the VSDG
of Figure 5.3(b). However, no technique for sequentializing such structures was suggested; we
posit that either extra tests or duplication of op would result.

We will address this problem with an explicit sharing relation which represents both sharing
of operations (transitions) and pre-colouring of values (places).

5.1.1 Production of Shared Operators
It is worth considering at this point how such PDGs might be produced—or rather, how in
practice these are a PDG “feature” unlikely to be exploited by compilers. There is no easy
way to express the resulting CFG structure (Figure 5.2(a-CFG)) in, for example, the C or Java
languages (it requires the use of goto statements or complicated arrangements of labelled
breaks); it is likely to be produced only by a compiler optimization. One way would be by
application of the cross-jumping optimization on a CFG exemplified by Figure 5.4(a): the CFG
contains two identical nodes, both labelled with the same statement r1 = op(t1) and both with
the same successor; thus, they can be combined to give the desired CFG 5.2(b). However, this
is an opportunistic peephole optimization, for two reasons:

• It depends on the argument to both statements already being in the same register. Most
compilers use the policy of using a fresh virtual register each time a new register is re-
quired (a requirement in SSA form, even for user variables). Such would result in two dif-
ferent statements using different argument registers, as shown in Figure 5.2(b-CFG), and
cross-jumping could not optimize this CFG into the desired form of Figure 5.2(a-CFG).
Thus, most compilers perform cross-jumping after register allocation (i.e. on statements

98 Chapter 5. Intermediate Representations and Sharing

(a) Hash-consing would succeed on this PDG
(note unusual reuse of temporary t1)

ROOT

P?

Q?P

t1=X
r1=op(t1)

r1=ZQ

t1=Yr1=op(t1)

(b) Concerns with statement ordering are eliminated

ROOT

P?

Q?P

t1=X

r1=op(t1)

r1=Z
Q

t1=Yr1=op(t1)

print "P"

Figure 5.5: Cross-jumping on the PDG also seems only opportunistic

expressed using physical registers), making success dependent on the whims of the regis-
ter allocator.

• It requires both of the identical statements r1 = op(t1) to be ordered after any other (not
otherwise significant) statements that may be present. For example Figure 5.4(b) and (c)
show two equivalent CFGs with different instruction orderings; the peephole optimization
would succeed on CFG (c) but not (b).

Optimization directly on the PDG is more promising than on the CFG but still leaves much
to be desired. Problems of ordering CFG statements are eliminated: there is only one PDG
corresponding to both CFG Figure 5.4(b) and (c), shown in Figure 5.5(b). This could be op-
timized to share r1 = op(t1) by hash-consing identical statement nodes. However the same
issues of register assignment occur as in the CFG: hash-consing would not be possible on the
PDG of Figure 5.2(b-PDG), although it would on PDG 5.5(a) (equivalent to the CFG of Fig-
ure 5.4(a)) with its serendipitous reuse of argument register t1. One might conjecture a more
aggressive PDG transformation of combining identical operations with mutually-exclusive con-
trol dependences by automatically coalescing their argument registers—perhaps whenever both
could execute last among their siblings—but to the author’s knowledge no such technique has
been presented; thus, the optimization of PDGs to introduce such sharing seems limited to op-
portunistic techniques in a similar fashion to CFGs. We argue this ability to express, as PDGs,
programs that are unlikely to be produced, from PDGs, makes the PDG less suited to being the
main IR, and better as an intermediate target for translation from another IR.

5.2 An Explicit Specification of Sharing
In Section 2.7.3 we described the hash-consing and node cloning transformations on the VSDG
(shown in Figure 2.10). Recall that these preserve the semantics (trace and observable) of the
original VSDG.

Now consider a VSDG to which a maximal degree of node cloning has been applied2: every

2This first requires infinitely flattening any loops, producing an infinite net; these additional complications, and
their benefits, are considered in Section 5.4.

5.2. An Explicit Specification of Sharing 99

transition node has been cloned, to make a distinct copy for every use3, and no node has more
than one outgoing edge. (That is, s• and t•• are always singletons4.)

We call such an entirely treelike VSDG an Unshared VSDG (u-VSDG), and see it as making
explicit the maximum set of dynamic computations which might be performed by any output
program. We now show how to explicitly specify how these dynamic computations are to be
shared between the static instructions in the output program that is selected; this will include
operator sharing as in Section 5.1 above.

Representation of sharing will be as an explicit partition, depicted graphically by sharing
edges and interpreted as their reflexive symmetric transitive closure. The partition is an equiva-
lence relation !⊆ S×S∪T×T which relates u-VSDG nodes which will share the same static
representation. Specifically, t1 ! t2 means the two dynamic computations are performed by
the same static instruction; s1 ! s2 when the two values are stored in the same register (thus,
such edges act as coalescing constraints on the register allocator). We write [n] for the equiv-
alence class of n, that is {n′ | n ! n′}; observe n ! n′ ⇔ [n] = [n′]. Further, we write
HNI =

⋃
n∈N [n] to lift equivalence classes over sets. An example is given in Figure 5.6 below.

Two distinct kinds of sharing, which we call reuse sharing and tail sharing, are important,
explained below; intuitively, these represent sharing of computations with identical histories or
identical futures, respectively, as shown in Figure 5.6. Each kind of sharing is a partition in its
own right, with all sharing being the transitively-closed union of these:

• r
! indicates reuse-sharing, with equivalence classes denoted by [n]r, and depicted with
blue sharing edges;

• t
! indicates tail-sharing, with equivalence classes written [n]t and depicted with red
sharing edges.

Well-Formedness Conditions The two kinds of sharing are required to be disjoint, in that
two nodes are either reuse-shared, tail-shared, or neither:

n1
t

! n2 ∧ n1
r

! n2 ⇔ n1 = n2

They must also commute, as follows:

n1
r

! n2
t

! n3 =⇒ ∃n′2.n1
t

! n′2
r

! n3

This produces a “grid pattern” of sharing, with tail-sharing edges along one axis and reuse-
sharing along the other; thus, all sharing can be formulated row-wise or column-wise:

[n] = H[n]rIt = H[n]tIr

For transitions to be shared, we also require piecewise sharing of their operands and results:

t1 ! t2 ⇒ •t1 ! •t2 ∧ t1
• ! t2

•

3To simplify the presentation we consider only stateless V(S)DGs here.
4For transitions t with multiple results (e.g. integer division), t• can be considered a singleton by removing the

unused results and using labels (e.g. quo, rem) to identify which result t• represents. This was done for complex
nodes in Section 2.6.5.

100 Chapter 5. Intermediate Representations and Sharing

γ

reuse-
sharing

tail-
sharing

if (P) then
 f(g(h(x)))
else
 f(g'(h(x)))

P

T
F

f f

x

g g'

h h

x

P

r2=g(r1) r2=g'(r1)

P?

r1=h(x)

r3=f(r2)

Figure 5.6: Simple example of tail- and reuse-sharing.

(This restriction is the same for both types of sharing, and ensures that the static instruction,
which explicitly specifies argument and result registers, is the same for both transitions5; how-
ever, the two types have different effects on semantics, discussed in Section 5.3.)

We also impose further conditions for places, according to the kind of sharing, given below.

Reuse-Sharing As mentioned above, reuse-sharing captures sharing based on the past: of
computations whose operands are the same, and of the places they produce as these store iden-
tical values. Thus, reuse-sharing corresponds to prior notions of hash-consing on the VSDG.

This leads to the following well-formedness condition on reuse edges between places:

Two places may be reuse-shared only if they are produced by reuse-shared transi-
tions:

s1
r

! s2 ⇒ ◦s1
r

! ◦s2

Tail-Sharing Conversely, tail-sharing captures sharing based on the future: of computations
whose continuation is the same, or of places with the same consumers (uses). (Continuations
were discussed in Section 2.4.3; recall in particular that prior to PDG sequentialization, an
operation’s continuation includes only its uses, not other operations in the total order that phase
imposes.) Thus, tail-sharing captures operator sharing in the PDG.

Note that an operation’s continuation does not include the operation itself6. Thus, if two
transitions have an identical continuation, this may include neither transition, and so execution

5In fact, we must ensure that the PDG subtree corresponding to each is identical—but for operation nodes, the
subtree is just the single PDG statement node. However, for γ-nodes, the subtree consists of a PDG predicate node
and its children, and this leads to additional constraints. We defer discussion of this issue until the semantics in
Section 5.3.

6Even for loops, as each iteration contains distinct instances—considered in Section 5.4.

5.3. A Semantics of Sharing Edges 101

of the computations (also liveness of tail-shared places) must be mutually exclusive. Thus, the
transitions or places must be at different leaves of a γ-tree (defined in Section 2.6.2). This leads
to the following two well-formedness conditions on tail-sharing edges between places:

• For any γ-node g, each true or false operand s ∈ •g is tail-shared with the correspond-
ing result s′ ∈ g•. (That is, recalling the view of γ-nodes as tuples of components
(strue, sfalse, sres) as defined in Section 2.6.2, within each component strue t

! sfalse t
!

sres.) This ensures that no register move instruction r=t or r=f must be output unless it
is explicitly represented by a MOV transition.

• In other cases, places may be tail-shared if and only if they are consumed by identical
tail-shared operations:

s1
t

! s2 ⇒ s1
• t

! s2
•

An additional complication arises when considering γ-nodes. Non-γ transitions are strict
in all their arguments, and their continuation is thus the usage of the value(s) produced by the
transitions. However, we make γ-nodes non-strict, and thus they cause additional operations
to be executed according to the value of the γ-node predicate7. Thus, the continuation of (the
test-and-branch corresponding to) the γ-node must first include execution of any such control-
dependent operations, before moving onto the usage of the value(s) produced by the γ-node.
This will lead to an additional well-formedness constraint on tail-sharing γ-nodes, which we
defer until after the semantics given in Section 5.3.

5.3 A Semantics of Sharing Edges
In this section we will give meaning to the sharing partitions by defining a simple mapping from
u-VSDG to PDG8 —that is, incorporation of the sharing edges allows us to specify the same
restrictions on evaluation behaviour as the PDG. We also use this equivalence to define the
extra well-formedness constraint on tail-sharing between γ-nodes, mentioned in the previous
paragraph.

Elements of the PDG Each equivalence class [t] will correspond to a single static PDG node
N(t); each class [s] to a single virtual register vs. Thus, we insist that the number of equivalence
classes be finite (that is, we only define the meaning of u-VSDGs with finite partitionings); the
number of nodes may be finite or (as in the case of loops) infinite.

For a γ-node g, N(g) is a predicate node testing vs, where s ∈ •g is g’s predicate operand;
for any other node t, let op be the operation performed, {s1, . . . , si} = •t be its (value)
operands, and {r1, . . . , rj} = t• be its value results; then, N(t) is a statement node execut-
ing (vr1 , . . . , vrj

) := op(vs1 , . . . , vsi
)

7Even γ-nodes multiplexing between values present already, equivalent to vr = mux(P?vtrue:vfalse);.
For these, explicit vg=vtrue

g ; or vg=vfalse
g ; operations are introduced (by Chapter 3’s analysis of tail registers in

Section 3.4.2); on architectures such as ARM or Alpha, such statements might be implemented via conditional
moves rather than control flow. An alternative scheme would be to treat all γ-nodes as being multiplexers; this
would make them strict as other operations and avoid extra well-formedness conditions, but would be inefficient
in most cases.

8The mapping is largely reversible, but PDG’s may reuse temporaries in ways not expressible in the u-VSDG

102 Chapter 5. Intermediate Representations and Sharing

Control Dependences The control dependences (CDG parents) of each PDG node N(t) are
given as follows.

Recall from the commuting restriction in Section 5.2 that [t] = H[t1]r, . . . , [tj]rIt. For each
such [ti]

r, 1 ≤ i ≤ j, proceed forwards along the u-VSDG’s dependence edges, and identify
[gi]

r as the first reuse-partition of γ-nodes encountered which satisfies both:

• Each t′ ∈ [ti]
r reaches a true operand of a g′ ∈ [gi]

r or each t′ ∈ [ti]
r reaches a false

operand of a g′ ∈ [gi]
r; and

• For every [gk]
r t

! [gi]
r, there must be some [t′i]

r t
! [ti]

r that reaches [gk]
r in the same

way (i.e. by its true or false operand). We refer to this as the same-dependants rule;
intuitively, it requires that if gi is tail-shared, t must be tail-shared at least as much).

A CDG edge is then added from the predicate node N(gi) to N(t), labelled with true or
false respectively. (If no such reuse-partition is found, a CDG edge is added from the PDG’s
root node.)

Data Dependences The data dependences of each N(t) are obtained by taking the producer
transitions of t’s operands, and for each such t′ ∈ ◦•t, tracing back up the CDG from N(t′)
until a sibling n of N(t) is reached; a data dependence edge from N(t) to n is then added to the
PDG.

Comparing Tail- and Reuse-Sharing For transitions, we noted that both types of sharing
had the same well-formedness condition, whereas for places, the well-formedness conditions
differed. In an interesting duality, we see that for places, both types of sharing have the same
semantics—merely coalescing the corresponding virtual registers—whereas for transitions, the
semantics differ in terms of the control dependences which we assign to the N(t). Specifically:

For Reuse-sharing N(t) receives a single control-dependence predecessor. The single static
instruction subsumes all the t′ ∈ [t]r by computing its result early, before any such t′

would execute, and storing its result in a register which preserves it for each consumer
(use) to read (the register is live until every consumer has been, or definitely will not be,
executed).

For Tail-sharing N(t) receives multiple control-dependence predecessors. The single instruc-
tion subsumes all the t′ ∈ [t]t by computing its result late, when any such t′ would have
executed, and then executing the continuation common to all.

Thus, for [t] = H[t1]r, . . . , [tj]rIt, the PDG node N(t) has ‖[t]t‖ = j control dependence
predecessors, with each CDG edge corresponding to a reuse-partition [ti]

r for 1 ≤ i ≤ j.

Extra Well-Formedness Condition on Sharing Edges Note the effect of the same-
dependants rule above on tail-shared γ-nodes g1

t
! g2, as follows. The rule forces any N(t)

which would have been control dependent on only one N(gi) to instead be control-dependent on
some common ancestor of N(g1) = N(g2), and thus be speculated. (This ensures that the PDG
subtrees descended from the N(gi) are identical, including all CDG children, hence allowing
only a single static subtree to exist.) This speculation is the source of the extra well-formedness
constraint required. Intuitively, (trees of) γ-nodes allow multiple computations to exist which

5.3. A Semantics of Sharing Edges 103

write into the same virtual register; at runtime the γ-tree will decide which such computation
should execute. However, the speculation means that sometimes such computations can exe-
cute before the γ-tree has decided they are needed, and we must ensure that at most one such
computation speculatively writes into any register. Thus:

For each PDG group node G, with children {N(ti)}, identify the set R ⊂ {N(ti)}
for which the control dependence edge G → N(ti) was added from G (rather
than from some N(g) descending from G, where g is a γ-node) because of the
same-dependants rule (i.e. because g

t
! g′ for g′ which would not cause ti to be

executed).

We require that the sets of result places Ht•I are disjoint for each child N(t) ∈
R. (That is, no virtual register is speculatively written to by more than one PDG
subtree.)

We note this definition is deficient in that the restriction is defined ‘externally’, by reference
to the PDG produced; an ‘internal’ reformulation in terms of only the structure of the u-VSDG
is left to future work.

5.3.1 An Alternative View of Proceduralization
In Section 2.4.1 we identified proceduralization as the stage of converting a parallel, functional,
program expressed as a VSDG into a parallel, imperative, program expressed as a PDG—this
requires specifying what runtime tests will control evaluation of what nodes (thus fixing an
evaluation strategy), and specifying how values will be passed between virtual registers.

We have seen the u-VSDG is merely a special case of VSDG, to which the trace semantics
of the VSDG (defined in Section 2.7.3) can be applied (ignoring any sharing partitions9), and
a u-VSDG with sharing partitions identifies a PDG. Moreover, the (dependence) edges of the
u-VSDG are the same in both cases10; thus, the challenge for the proceduralizer is to introduce
as many sharing edges as possible, in order to produce the same result (i.e. the observable
semantics of the computation tree) but at a smaller cost (fewer dynamic evaluations and/or
smaller code size).

In some cases the proceduralization phase must choose between placing tail-sharing and
reuse-sharing edges between the same nodes (specifically, where the nodes have both the same
past and the same future); these can lead to different effects, as follows.

• Reuse-sharing yields a single control dependence, which can cause redundant (specula-
tive) evaluation.

• Tail-sharing yields multiple control dependences, avoiding redundant evaluations; how-
ever, this can cause duplication during PDG-sequentialization11.

This is a classical space-vs-time issue, exemplified by Figure 5.7: u-VSDG (b) shows a
proceduralization in which both A and X are speculated, whereas u-VSDG (c) shows a combi-
nation of reuse- and tail-sharing.

9These might be useful to record shortcircuit evaluation in the source code, for example; exhaustive detection
of opportunities for tail-sharing constitutes a form of procedural abstraction [SHKN76] and is hence likely to be
expensive (see Johnson [Joh04] for an algorithm on the VSDG).

10Modulo changes due to γ-ordering.
11Although we think of reuse-sharing as never leading to a size increase, this is not quite the case either, due to

the effect of register-pressure-sensitive node cloning in the node scheduling phase, in Chapter 6.

104 Chapter 5. Intermediate Representations and Sharing

CFG Sharing Computation of X CFG Sharing Computation of A

P₁

P₂

r1=A r1=Br2=X r2=Y

r1=B r1=A
r2=Y

r1=A

r2=X

P₁

P₂
r1=B
r2=X

r2=Yr2=X

r1=A

P₁

P₂

γ₁

γ₂

A BX YX A

T F

T
F

γ₁

γ₂

A BX YX A

T F

T
F

r1=B r2=Y

P₁

P₂

r1=A
r2=X

(c) Mixture of Reuse- and Tail-sharing
Edges, with (unshared) explicit moves

Corresponding CFG

(a) Tail-sharing Edges can lead to duplication

Corresponding PDG (not duplication-
free; two possible CFGs)

Corresponding CFG

(b)Reuse-sharing Edges can
lead to speculation

γ₁

γ₂

A

B
X

Y
X

A

T F

T

F

MOV

MOV

r1=B
r1=rA
r2=Yr2=X

P₁
P₂

rA=A

r1=rA

With this edge, PDG Sequentialization
could choose to duplicate r1=rA or
r2=X , as in (a). Without, the decision

is made early.

Figure 5.7: Effect of different sharing edges in proceduralizations of if (P1) then (A,X)

else if (P2) then (B,X) else (A,Y). Yellow result places are all tail-shared to-
gether as r1; similarly orange as r2 (neither of these occur in any of A,B, X, Y).

5.4. Loops 105

γ
P

T

F
P

(Note: for clarity, we omit tail sharing
edges for places; these match those of

their producers.)

true-
dominance

tst r_op r_op r_op

γ

tst r_op r_op r_op r_op

tst

γ

r_op r_op r_op

G

x=X;
while tst(x)

x=r_op(x);
return x;

T

F
γ

F
P

T

tst

r_op

X

G≝μX.

Figure 5.8: Sharing partitions for a simple loop. (Note the notation of a gray edge g•→ t to
indicate when the true operand places of γ-node g together postdominate [t]r. Although not an
edge in the u-VSDG, this idea is key to establishing control dependence when converting to a
PDG, described in Section 5.3.)

5.4 Loops
Viewing proceduralization as the specification of the sharing relation yields new insights as to
the effect of proceduralization on loops. A loop is represented in the u-VSDG as an infinitely
unfolded tree, as shown in Figure 5.8: note the double infinity of r ops resulting from both the
treelikeness of the u-VSDG (with a row of dynamic computations representing the work of an
early iteration, being reuse-shared between their uses as inputs to all later iterations) and the
unfolding of the loop (with the “extra” work performed by each iteration being tail-shared with
that of the previous).

The sharing edges present in such an infinitely unrolled structure now specify many common
loop optimizations, as follows:

Loop Unpeeling Loop unpeeling is an optimization whereby a static copy of the loop body is
made outside the loop, forming the first iteration. That is, it changes while(P) do C;
into if(P) {C; while(P) do C;}. In the u-VSDG, if the operations forming the
first iteration are not tail-shared with those of later iterations (merely reuse-shared along a
row), then the first iteration will be in its own partition, and separate code will be produced
for it, before the repeating loop body is entered.

Loop Unrolling If the loop body nodes are tail-shared with their equivalents at some fixed
distance of > 1 iteration, this represents an unrolled version of the loop. For example,
Figure 5.9(b) shows a version of Figure 5.8 which has been unrolled by tail-sharing each
operation with its equivalent at a distance of two iterations.

Software Pipelining Can be performed by partial unpeeling, i.e. by tail-sharing only some
operations of the initial iteration(s); the same dependents rule leads to these operations
and their equivalents in later iterations being computed earlier, with the unshared ones

106 Chapter 5. Intermediate Representations and Sharing

outside the loop. For example, Figure 5.9(a) shows a different pipelining of the loop of
Figure 5.8 in which one copy of the repeated operation r op is speculated. Note that
deciding on a level of software pipelining, including both unpeeling (speculation outside
the loop) and unrolling (e.g. resulting from modulo scheduling), is equivalent to picking
two cuts across the u-VSDG that are isomorphic: the infinite subgraph above (preceding)
each cut must be of exactly the same (regular) form.

Loop-Invariant Code Motion If copies of an invariant operation inv are tail-shared, rather
than reuse-shared, across iterations, the corresponding computation (there is still only
one statically, i.e. [inv]) will be placed in the loop and performed again in each itera-
tion12; if copies are reuse-shared, they will be computed once only. This is shown in
Figure 5.10. The same also applies after unrolling—a computation could be entirely tail-
shared (computed once per old iteration); reuse-shared within an iteration but tail-shared
across iterations (computed once per iteration); entirely reuse-shared (computed once);
or some hybrid.

5.4.1 Proceduralization and Loops
The preceding examples show that these “loop optimizations” are the same transformations as
we apply to non-loop nodes, merely applied to infinite (regular) trees. Thus, the same idea of
optimality of proceduralization—a machine-independent notion of the smallest program among
those that perform minimum evaluation—can be applied, resulting in a fully-rolled loop with
all invariants lifted and a pipelining/partial peeling which provides a safe place to compute
invariants but otherwise duplicates a minimum of nodes. However, the difference between
looping and linear or branchy code is that abandoning this notion of “optimality”, in favour of
machine-dependent targets, is perhaps more accepted practice for loops—but the VSDG gives
us an alternative perspective on relaxing these optimality requirements in which loop and non-
loop code are treated more uniformly. This is addressed more fully in the node scheduling phase
in Chapter 6.

5.5 The RVSDG: a Workable PDG Alternative
The previous section has demonstrated the advantages of the u-VSDG as a unifying framework
for proceduralization supporting many optimizations. However working with infinite data struc-
tures, and even finite ones after node cloning (which can lead to an exponential size increase),
makes implementation awkward. Hence, in this section we give a variant on the VSDG, called
the Regionalized VSDG or RVSDG, which is logically equivalent to the PDG or u-VSDG with
partitions. Specifically, the RVSDG avoids the exponential and/or infinite blowup associated
with reuse-sharing (instead represented by hash-consing) and tail-sharing between loop itera-
tions (instead bringing the µ- operator inside the object language), and is based on the following
principles:

• Each RVSDG node will represent one u-VSDG reuse-partition.

12Each (singleton) reuse-partition is now dominated by a different γ-node, but the pattern of dominance respects
tail-sharing as enforced by the same-dependants rule (pg.102)

5.5. The RVSDG: a Workable PDG Alternative 107

γ

P

T

F
P

tst r_op r_op r_op

r_op r_op r_op

T

F

γ

tst

r_op r_op r_op

r_op r_op r_op

tst

γ

x=X; y=r_op(x);
while tst(x)
 {x=y; y=r_op(y);}
return x;
(a) Software-pipelined loop, speculates one execution of r_op

(b) Unrolled Loop (the factor of two is clear in the red tail-sharing arcs)

tst

γ

r r r r r r

tst r r r r r r

γ

γ
F

P

T

F

P

γ

T

F

P

T

F

P

tst r_op r_op r_op r_op r_op r_op

tst r_op r_op r_op r_op r_op r_op

T
x=X;
while (tst(x)) {

x=r_op(x);
if (!tst(x))

break;
x=r_op(x);

}
return x;

γ

γ

tst r_op r_op r_op r_op

tst r_op r_op

r_op r_op

r_op r_op r_op r_op

Figure 5.9: Loop Optimizations are specified by the sharing relation on the u-VSDG

108 Chapter 5. Intermediate Representations and Sharing

P

γ
FP

T

F
T

X X X X X X

tst r_op r_op r_op r_op

γ

tst r_op r_op r_op r_op

γ

tst r_op r_op r_op r_op

inv inv inv

Not dominated
by true/false port

of any γ-node

(a) Invariant computed once before loop
F

γ
FP

T

F

X X X X X X

tst r_op r_op r_op r_op

inv inv

γ

tst r_op r_op r_op r_op

inv

Not dominated -
computed before loop.

(b) Invariant recomputed in loop

F

P

T

Each copy is now
true-dominated

by γ-node from a
different iteration

γ

tst r_op r_op r_op r_op

inv

Figure 5.10: Loop Invariant Code Motion in the u-VSDG. For clarity, the single space resulting
from each transition is omitted.

5.5. The RVSDG: a Workable PDG Alternative 109

• Loops will be represented by iter nodes, which explicitly identify an enclosing (ances-
tor) net. This makes the location of the µ explicit as a cut, which acts as a synchronization
point and becomes the loop header.

• The nodes will be divided up into sufficient hierarchy to indicate control dependence, with
the control dependence of each reuse-partition explicitly represented by the containing
(parent) net of each node.

• Tail-sharing will continue to be expressed by explicit partitions, but we will also allow
for more general coalescing partitions, used for modelling operations requiring usage of
particular registers, and for register allocation (in Chapter 6).

Formally, an RVSDG is a hierarchical petri-net (S, T, E, H, Sin, Sout) with places S (state
or value), transitions T (potentially including compound nodes) satisfying S ∩ T = ∅, labelled
dependence edges E ⊆ S × T ∪ T × S, sharing partition H ⊆ S↑ × S↑ ∪ T ↑ × T ↑ (this
is explained below—the ↑s refer to the fully-flattened petri-net), and input and output places
Sin ∪ Sout ⊆ S.

Dependence edges are as in the VSDG, as are operation and compound nodes, and input and
output places. However, we make extra well-formedness conditions on γ-nodes, which force a
finer-grain partitioning into hierarchical nets, and additionally use a system of names as follows.
We presume there is a set of names N , which are in 1-1 correspondence with nets contained in
the hierarchy. In particular we will identify these names with loop body names, used in iter
nodes (below), and the names of top-level nets we also identify with function names (used in
CALL operation nodes, Section 2.6.2). We discuss these new features in turn.

5.5.1 Strict Nets and γ-Nets
The RVSDG has γ-nodes identical to those of the VSDG, that is, a single γ-node may select
any number of values simultaneously. However, we require a particular structure of hierarchical
nets around each γ-node, which has the effect of identifying code which need be executed only
if the γ-node’s predicate takes the appropriate value.

Specifically, we require that any net containing a γ-node g contains exactly two other tran-
sitions, ttrue and tfalse (g ∈ T ⇒ T = {g, ttrue, tfalse}), and that these are piecewise connected as
follows:

Sin = •ttrue = •tfalse∧
g.pred ∈ Sin∧

g.true = ttrue• ∧ g.false = tfalse•∧
g• = Sout

We call such a net a γ-net; other nets are strict.
Note that if multiple nodes are conditional on the same γ-node, this forces them to be con-

tained inside a single complex node, introducing an additional level of hierarchy.
Thus, the net within the hierarchy which contains a node, completely specifies the conditions

under which the node is evaluated.
Graphically, we tend to use a simplified representation of this structure of nested regions, as

shown in Figure 5.11.

Example Our solution to the “independent” redundancy, given in PDG form in Figure 3.14(e),
is shown as an RVSDG in Figure 5.12.

110 Chapter 5. Intermediate Representations and Sharing

G1 G2

l1 ... li

l'1 ... l'j

l1 ... li

l'1 ... l'j

G1

γ

l'1 ...

l1
...
li

G2
l'1 ... l'j

l1
...

li

T1
T...
Tj F1

F...
Fj

1 ... j

l1 ... li

l'1 ... l'j

P

l'j

Figure 5.11: Simplified graphical notation for γ-nets: we draw the LHS as shorthand for the
RHS. Note the double arrowhead is part of the shorthand notation on the LHS: it identifies
which operand is used as predicate on the RHS.

P Q

r1 r2
1 2

P Q

P Q

rA

A

op1

QrA

op2

1 2

B

A

op2

Q

C

Q

12

P Q

QrA

C

Figure 5.12: The dynamically optimal solution of Figure 3.14(e) as an RVSDG

5.5. The RVSDG: a Workable PDG Alternative 111

fac2

int fac2(int n,int a)
{
 return (n>0)
 ? fac2(n-1,a*n)
 : a;
}

n a

n a

int -1

int *

ITER fac2
n a

n a
int > 0

n a

Figure 5.13: Representation of a loop in the RVSDG, using an iter node. (Equivalent VSDG
in Figure 2.4).

5.5.2 Loops
All RVSDGs are finite, with loops instead being represented using iter transitions, as follows.

Each iter node t has a loop body name which must identify a net G hierarchically con-
taining t. Further, t must have operands and results of sort matching the arguments and results
of G, and indeed, these must also have matching labels (Section 2.6.4), though these are some-
times left implicit. Graphically, we show the correspondence between iter nodes and loop
bodies by writing their names, as in Figure 5.13.

The action of the iter node can be seen as performing a recursive call to the named loop.
However, well-formedness restrictions in Section 5.5.5 ensure that this recursive call can be
implemented as a tail-call, without requiring the use of a stack; thus, execution of an iter
node is by making an unconditional jump (without link) to the entry point of the named net,
which acts as the loop header.

5.5.3 Sharing
The sharing partition in H is an equivalence relation much as in the u-VSDG (Section 5.2) for
flattened graphs, again depicted as sharing edges and interpreted as their reflexive symmetric
transitive closure. However, on hierarchical nets, we see the partition as being a property of
the entire hierarchy, rather than of individual net instances, relating nodes in the fully-flattened
graph. The relation for any contained or flattened graph G′ = (S ′, T ′, E ′, H ′) is merely that
given by restricting the partition to only nodes within S ′ ∪ T ′ and simultaneously augmenting
it to identify complex nodes whose contained graphs are shared elementwise.

112 Chapter 5. Intermediate Representations and Sharing

The edges come in two types; these are different from the u-VSDG, in order to support
requirements on the usage of particular registers (below):

Coalescing Edges run only between places, and represent a partition written with ! and [·],
drawn with green edges. This identifies places which will be assigned the same register,
regardless of use—they may identify any places that do not have to be simultaneously
live—and thus acts merely as a constraint on the register allocator. Such partitions may
be labelled with physical registers, provided the same register is not used as label more
than once.

Tail-sharing Edges are as in the u-VSDG, written t
! or [·]t and drawn with red edges. Be-

tween places, tail-sharing edges are a subset of coalescing edges (that is, ∀s ∈ S.[s]t ⊆
[s]), identifying only places with the same future uses; unlike coalescing edges, they may
also identify transitions.

Well-formedness constraints for both of these are given in Section 5.5.5 below.

5.5.4 Explicit Representation of Register Moves
The RVSDG explicitly represents how registers are used and how values are moved between
them, in order to model non-uniform instructions and platform-specific calling conventions, as
well as clashes between multiple uses of the same virtual register (e.g. arg0).

To this end, every net instance is seen as including one MOV per result to move or save the
result into an appropriate register (perhaps virtual, or e.g. that required by the target architec-
ture).

When flattening a complex node, this register move becomes represented as an explicit MOV
transition, as follows. Suppose t〈(S ′, T ′, E ′, S ′

in, S
′
out)〉 ∈ G = (S, T, E) is flattened to make a

new net G′′. Arguments nodes in S ′
in are quotiented with the corresponding operands •t as per

the VSDG. However, the result nodes S ′
out are included in the flattened graph along with the t•

as separate nodes, and connected via an explicit register move instruction for each s ∈ t•:

s′l ∈ S ′
out ∧ t

l→ s ∈ E ⇒ s′ → MOV→ s ∈ G′′

Coalescing edges allow the RVSDG to specify that some register moves t must be elided,
namely whenever s

r
! s′ for {s} = •t and {s′} = t•. Elision of other register moves is left

to the register allocator, e.g. by a preference graph mechanism or SSA techniques [HGG05,
Hacng]. (Thus, an alternative model would be to see every γ-node as containing two MOVs per
component unless these are elided.)

Platform calling conventions can now be incorporated as follows.
Firstly, for purposes of making the moves explicit, any net representing an entire function

can be considered as being contained in a complex node whose operands and results are co-
alesced in a way representing the platform’s conventions. (This is illustrated in Figure 5.14.)

Secondly, requiring each argument to (or result from) every CALL node to be coalesced with
the corresponding argument (resp. result) of the top-level net, identifies where extra MOV’s are
required (in order to satisfy the well-formedness constraints on coalescing edges, Section 5.5.5),
as illustrated in Figure 5.15.

5.5. The RVSDG: a Workable PDG Alternative 113

(a) calling convention where
first argument and result use

physical register r0

fun fst(x,y)=x(b)

f

arg0
arg1

ar
g2

res

r0

r1 r2

flatten
into (a)

arg0 arg1 MO
Vr0

r1 r2

r0 r1 r2Elide no-
op MOVs

fun snd(x,y)=y(c)

flatten
into (a)

arg0 arg1

MOV not
elidable

MOV
r0

r1 r2

(f is complex node)

Figure 5.14: Making explicit the MOVs implied by procedure calling standards

Insertion of MOV
to restore

wellformedness

inc

CALL f

int +

r0

these two places
simultaneously live

(here)

inc

CALL f

int +

r0

MOV

Figure 5.15: Coalescing required by procedure calling standards for fun g(x)=x+f(x+1);

114 Chapter 5. Intermediate Representations and Sharing

5.5.5 Well-Formedness Conditions
We must impose a number of restrictions on RVSDGs, described below. A key concept is that
of the operand group:

Operand Groups Intuitively, an operand group is a set of places whose values are demanded
at the same time. Thus, the set of operands •t to any strict transition t (i.e., any t that is not a
γ-node) is an operand group, as is the set of true operands to any γ-node g, and likewise the
false operands. Let Θ ⊆ P(S) be the set of operand groups in a net, and let θ ∈ Θ range over
them.

Having defined operand groups, the restrictions are as follows:

States and Values, Acyclicity, Node Arity These are the same as the VSDG

On Coalescing We require a node scheduling of the RVSDG to exist in which no two coa-
lesced places are simultaneously live. Node Scheduling is covered in Chapter 6, but the
following constraint ensures this:

∀s1 ! s2.before(s1, s2) ∨ before(s2, s1)

where before(s1, s2) is true if it is possible to execute all consumers of s1 before produc-
tion of s2:

before(s1, s2) = s1 6∈ Sout∧
@(θ ∈ Θ).s1 ∈ θ ⇒ ◦s2 →∗ θ

On Tail-Sharing We make three requirements; these are equivalent to those on tail-sharing
partitions on the u-VSDG, but the last replaces the commuting (grid-pattern) restriction
of Section 5.2 due to the use of hash-consing instead of reuse-sharing edges:

• For any γ-node g, each true or false operand s ∈ •g is tail-shared with the cor-
responding result s′ ∈ g•. (That is, recalling the view of γ-nodes as tuples of
components (strue, sfalse, sres) as defined in Section 2.6.2, within each component
strue t

! sfalse t
! sres.) This may result in violating the above constraint on coa-

lescing partitions; in such cases, well-formedness may be restored by insertion of
extra MOV’s.

• In other cases, places may be tail-shared if and only if all the consumers of each are
elementwise tail-shared:

s1
t

! s2 ⇒ s1
• t

! s2
•

• For tail-sharing partitions of transitions, the respective operands and results must
be piecewise tail-shared (however recall that tail-sharing is reflexive: any node is
considered shared with itself):

t1
t

! t2 ⇒ t1
• t

! t2
• ∧ •t1

t
! •t2

On Compound Nodes We require each net in the hierarchy to have distinct nodes, and addi-
tionally require the sharing and coalescing partitions to be exactly those given by applying
the following procedure to the partitions for the fully flattened graph:

5.5. The RVSDG: a Workable PDG Alternative 115

• Whenever flattening causes places s1 ∈ G and s2 ∈ G′ (where t〈G〉 ∈ G′) to be
quotiented to become node s ∈ G′′, then {s1, s2, s} ⊆ [s]t.

• Compound nodes are tail-shared whenever their contents are (piece-wise):

S
∗t

! S ′ ∧ Sin
∗t

! S ′
in ∧ Sout

∗t
! S ′

out ∧ T
∗t

! T ′ ⇒
t〈(S, T, E, Sin, Sout)〉

t
! t′〈(S ′, T ′, E ′, S ′

in, S
′
out)〉

• The sharing edges H ⊆ S × S ∪ T × T for each net instance G are then restricted
to the places S and transitions T in G.

On Loops We make three requirements on any iter node t, naming a petri-net G =
(S, T, E, H, Sin, Sout):

• The node must be within the net it names; that is, it must satisfy t A G where

t A G ⇔ t ∈ G ∨ t′〈G′〉 ∈ G ∧ t A G′

• Its operands are coalesced piecewise with G’s arguments: •t ! Sin

• Its results are tail-shared piecewise with those of G: t•
t

! Sout

Note that while the requirements on loops are new in the RVSDG, in practice VSDGs con-
structed from iterative source codes will satisfy similar restrictions (albeit meta-syntactic ones,
on the use of µ-bound variables).

Duplication-Freedom In order to use the RVSDG in place of the PDG, in particular to al-
low PDG sequentialization to be performed on the RVSDG (as discussed in Section 2.4 and
Chapter 4), it is helpful to reformulate the condition of duplication-freedom on the RVSDG.
Here the concept of operand groups (above) is again helpful. From the well-formedness con-
ditions above, observe first that for any two tail-shared transitions, their results are necessarily
tail-shared:

t1
t

! t2 ⇒ t1
• t

! t2
•

and secondly that if any place in an operand group is tail-shared with a place in another such
group, the entire group must be piecewise tail-shared:

θ1 3 s1
t

! s2 ∈ θ2 ⇒ θ1
t

! θ2

Thus, for any operand group θ written to by a transition t (i.e. θ∩ t• 6= ∅), all transitions t′
t

! t

tail-shared with t must write to the corresponding element of an operand group θ′
t

! θ. In
other words, any operand group containing a result of a transition t is tail-shared at least as
much as t.

Intuitively, an operand group corresponds to a set of PDG nodes which must be executed
together, i.e. a group node. This allows us to define a condition equivalent to duplication-
freedom, as follows:

For a transition t, let O(t) ⊆ Θ be the set of operand groups written to by t, i.e.

O(t) = {θ ∈ Θ | t• ∩ •θ 6= ∅}

116 Chapter 5. Intermediate Representations and Sharing

Duplication-freedom requires that for any operand group θ ∈ Θ, it must be possible
to order the transitions {t1, . . . , tj} = •θ producing its elements, such that

O(t1) ⊆ . . . ⊆ O(tj)

An alternative formulation is that every pair of producing transitions must write to
partitions of operand groups related by ⊆, that is:

∀θ ∈ Θ.∀t1, t2 ∈ •θ.O(t1) ⊆ O(t2) ∨ O(t2) ⊆ O(t1)

5.5.6 Semantics
Informally, the trace semantics of the RVSDG are that evaluating a strict (resp. γ-) net executes
each of its transitions (resp. the γ-node and exactly one of ttrue and tfalse) exactly once. More-
over, any compound nodes are evaluated without interleaving evaluation of contained nodes
with outside nodes (so all operands to a compound node must be evaluated before any contained
transition). Evaluation order is still partly unspecified (it must respect dependence edges), but
extra constraints may be imposed on evaluation order by introducing extra levels of hierarchy.
iter nodes are evaluated atomically much as compound nodes, by evaluating all inputs (this
synchronizes evaluation across the loop header) and then making a tail call (unconditional jump
without link) to the entry point of the named net.

More formally, we can define an equivalence between the RVSDG and PDG, as follows.
Each partition of places [s] corresponds to a virtual register vs (or a physical register, if the par-
tition was so labelled), each transition t to a CDG edge, and each partition of transitions [t]t =
{t1, . . . , tj} to a PDG subtree N(t1) = . . . = N(tj). Each strict net, containing transitions
{t1, . . . , tj}, becomes a PDG group node with CDG edges to each n ∈ {N(t1), . . . , N(tj)};
each γ-net becomes a PDG predicate node, with true/false CDG edges to ttrue/tfalse. We can
see this as turning the γ-nodes “upside down”: whereas γ-nodes are drawn as a merge of their
operands, consuming the values after their production, in the PDG instead the split of control-
flow, before operand evaluation, is represented. (This represents how the operands would be
conditionally evaluated!).

5.5.7 Performing γ-Ordering on the RVSDG
Recall from Chapter 3 that one of the key operations we performed when converting VSDGs
to PDGs was the γ-ordering transformation (Section 3.4.1), by which two intuitively parallel
γ-nodes were ordered into a tree. This was used to efficiently proceduralize VSDGs containing
independent redundancy nodes (exemplified by Figure 3.2), as the branches of the tree precisely
identified the executions under which the nodes were (or weren’t) demanded.

In Chapter 3, γ-ordering was performed on the PDG, rather than the VSDG. Although not
made clear at the time, this was because of issues relating to the VSDG’s lack of operator shar-
ing (Section 5.1). Specifically, nodes on paths from the subsidiary to the dominant γ-node lead
to cycles which in the PDG were fixed by making them into shared operators, thus avoiding
duplication. Secondly, PDGs produced after γ-ordering (for example Figure 4.5(a), showing
the result of the buildPDG algorithm on Figure 3.2) require duplication during PDG sequential-
ization, after which some nodes (in that example, r2 = op2(rA)) act as shared operators (shown
in Figure 4.5(b) and (c)).

5.5. The RVSDG: a Workable PDG Alternative 117

However, the RVSDGs tail-sharing edges allow the γ-ordering transformation to be per-
formed directly on the RVSDG, as follows. (Examples, corresponding to those of Chapter 3 on
the PDG, are shown in Figure 5.16.)

Let G = (S, T, E, . . .) be an RVSDG containing at least two complex nodes (T ⊇
{td〈Gd〉, ts〈Gs〉}), each containing a γ-net. (Recall from Section 5.5 that each γ-net contains
exactly three transitions: a γ-node gd or gs, a transition ttrue

d or ttrue
s , and another tfalsed or tfalses .)

Suppose gd and gs must be γ-ordered, because both Gd and Gs conditionally demand a value
from some independent redundancy node tir, and gd is chosen to be dominant (gs subsidiary).

Without loss of generality, let ttrue
d and tfalsed be complex nodes (if they are not, they can

trivially be made so), containing nets Gtrue
d and Gfalse

d . Transformation proceeds by adding to
gd an extra component (defined in Section 2.6.2) for each component of gs, selecting between
corresponding extra results added to ttrue

d and tfalsed (Recall the components of gd correspond
1-to-1 with the results of td). All edges outgoing from of ts are then rerouted to instead leave
the corresponding new results of td.

The subsidiary complex node ts is then cloned to make two copies; one is placed in Gtrue
d

and the other in Gfalse
d (operands of ts can be acquired by routing the necessary places through as

extra operands to td, Gtrue
d and Gfalse

d), with their result places being returned from the respective
nets. Importantly (and unlike in the VSDG), the two ttrue

s and the two tfalses may be tail-shared,
thus avoiding static duplication of nodes other than gs itself. (The gs’s may not be tail-shared,
as one will have an additional copy of n control-dependent on it, described next.)

Finally, the independent redundancy node tir is itself cloned, and moved into Gtrue
d and Gfalse

d ;
however, whereas with respect to G, tir was an independent redundancy with a gating condi-
tion13 〈?〉(gd, c

t
d, c

f
d)⊕〈?〉(gs, c

t
s, c

f
s), the two copies now have gating conditions ct

d ∪ 〈?〉(gs, c
t
s, c

f
s)

and similarly for cf
d; this simplification eventually allows one copy of tir to be further moved

into a subregion of the appropriate copy of ts.

Fixing Cycles As in the PDG, transitions t ∈ G on paths ts
• ∗→ td must be cloned along with

ts, with their final edges→ td redirected to the appropriate nodes in Gtrue
d and Gfalse

d . Intuitively,
this duplication is necessary, as such nodes correspond to later uses by Gd of values computed
earlier by Gs, yet by making gd dominant, one is testing and branching on the predicate of gd

first. However, transitions t′ ∈ G on paths td
• ∗→ ts may be handled without duplication—

specifically, although the t′ must be cloned and moved into Gtrue
d and Gfalse

d as predecessors of
the two copies made of ts, the copies of the t′ may be tail-shared as they are used by identical
computations (even though their histories are different, with one copy depending on the nodes
originally in Gtrue

d and one on those from Gfalse
d . Contrast with the t earlier, where the history

of the copies was the same, but the future different: one copy would be used by the nodes
originally in Gtrue

d and the other by those from Gfalse
d , and so tail-sharing was not possible).

5.5.8 Chapter Summary
In this Chapter, we have seen how previous formulations of the VSDG fail to represent the
sharing of operators satisfactorily. We have seen how sharing can be explicitly specified by an
equivalence relation on the nodes of an Unshared VSDG (u-VSDG), and how this technique
both captures operator sharing and unifies the VSDG and PDG, providing a new view on proce-

13Gating conditions were described in Section 3.3.2, and used in Section 3.4.1 to guide application of γ-ordering;
in particular, the ⊕ constructor precisely identifies independent redundancies.

118 Chapter 5. Intermediate Representations and Sharing

(i) Initial RVSDG; link called with gating condition 〈?〉(P,Λ,∅) ⊕〈?〉(Q,Λ,∅)

(ii) PDG after γ-ordering; gating condition now 〈?〉(P,Λ,〈?〉(Q,Λ,∅))

(iii) Final PDG after linking in n

(b) Complex case requiring duplication
of r2=r1+3 to break cycle

P Q

B*3

(t)

+3

r2

0-

(t)

+

r2

A B C D

P Q

A B

P Q

Q Q

C D C D

P Q

B*3

(t)

+3

0-

P Q

B*3

(t)(t)

+

+3

P Q

P Q

Q

B*3

t

+

+3

Q

B*3

t+3

0-
(a) Simple case of γ-ordering

A

B

P Q

Q Q

C D C D

t
t

(a) Simple case of γ-ordering

Figure 5.16: The γ-ordering transformation reformulated on the RVSDG (PDG version shown
in Figure 3.10)

5.5. The RVSDG: a Workable PDG Alternative 119

duralization. Further, we have seen how many loop optimizations are unified with optimizations
on straight-line code in this framework. Lastly, we have recast the PDG in the form of a new
data structure, the Regionalized VSDG (RVSDG).

120 Chapter 5. Intermediate Representations and Sharing

CHAPTER 6

Node Scheduling

Node Scheduling is the conversion of imperative code from parallel to serial form, that is, from
df-PDG (or df-RVSDG, as defined in Section 5.5) to CFG. Specifically, this includes both
putting a total ordering on the children of each group node, paralleling the instruction schedul-
ing optimization on the CFG, and the allocation of physical registers.

However, unlike CFG techniques, node scheduling operates uniformly on both single in-
structions and larger program fragments containing their own control flow. In contrast, CFG
techniques become substantially more complex if they are to move things between basic blocks
and/or more than a single instruction at a time [HMC+93, Swe92, Fis81, BR91].

This chapter describes how a wide range of techniques for register allocation and instruction
scheduling fit into our framework for Node Scheduling, with a particular focus on Johnson’s
algorithm for combined Register Allocation and Code Motion (RACM) [JM03, Joh04]. We
describe his original formulation in Section 6.1, and rework the algorithm onto the RVSDG in
Section 6.2. Section 6.3 discusses simple extensions to Johnson’s algorithm, and Section 6.4
considers the scope for a wider range of techniques. Lastly, Section 6.5 discusses issues of
phase-ordering (first introduced in Section 2.4.1) raised by node scheduling coming as a distinct
phase after df-PDG construction.

6.1 Johnson’s Algorithm
Johnson’s algorithm was developed as working directly on the VSDG, without the explicit hi-
erarchy of the RVSDG or (df-)PDG. While this approach was successful in exploiting the
VSDG’s lack of ordering constraints, there are problems with the exact structures used, which
we discuss throughout, and in particular in Sections 6.1.1 to 6.1.3.

Johnson also used an earlier version of the VSDG, which differed from ours in three ways
relevant here:

1. The representation of loops, which used θ-nodes;

2. Transitions and their result places were combined as single nodes using a system of
ports [Joh04], rather than our Petri-net formulation;

121

122 Chapter 6. Node Scheduling

3. Edges were drawn in the opposite direction (from value consumers to value producers).

For consistency, we will continue to use the notation of Petri-nets in the presentation in this
thesis, including drawing edges from producers to consumers. Hence, transitions t will often
treated together with their results t• as single entities, with only edges S × T considered.

A rough outline of Johnson’s algorithm is as follows:

1. Partition the nodes into a series of cuts—so that edges only go from higher cuts to lower
ones, never in the opposite direction—based on their maximum Depth From Root (DFR),
i.e. from the return node. (This means we will visit the nodes in breadth-first order).

2. Visit the cuts in order from the return node upwards through the VSDG (that is, in the
reverse order to execution), and for each cut in turn

(a) Calculate the liveness width of the cut (that is, the number of distinct registers re-
quired to store the values needed as inputs)

(b) While the liveness width is greater than the number of available registers, apply the
following transformations:

i. Raise nodes into higher cuts, by adding serializing edges.
ii. Clone nodes, such that their values are recomputed rather than being kept in

registers
iii. Add load/store nodes (memory operations), thus spilling values to memory.

Johnson uses the analogy of a snowplough—pushing excess snow forwards and deposit-
ing it where there is little snow—to describe this process; “the goal is to even out the
peaks and the troughs” [Joh04, JM03].

3. At all program points, the number of values to be stored is now less than the number of
registers; thus, a physical register can be allocated to each output port without conflict.
This completes the process.

We now consider each stage in more detail.

Cuts Based on Depth-from-Root The DFR D(t) of a transition t is the length of the longest
(acyclic1) path to the return node. Places are grouped with their producers, that is D(s) =
D(◦s)—this ensures that each transition t or place s is in a cut which will be evaluated before
any of its consumers t•• or s•.

DFR can be computed by a depth-first traversal backwards along the edges (both state and
value) of the VSDG. The set of places of depth d, {s | D(s) = d}, is written Sd, and similarly
Td for places; generalizing this notation we also write S≤d, T>d, etc.

The algorithm visits the cuts in order, and does not return to or mutate earlier cuts (those
closer to the return node) after it has seen later cuts. Thus, when considering the action of the
algorithm on a particular cut, we write d for the depth of that cut, consisting of nodes Sd ∪ Td.

1Johnson’s θ-node loop representation meant the VSDG could contain cycles (satisfying particular constraints);
these were excluded when calculating DFR.

6.1. Johnson’s Algorithm 123

Liveness Width This is the number of distinct values live at entry to a cut—including values
used (perhaps exclusively) in later cuts, closer to the return node. In the absence of γ-nodes,
liveness width can be computed as

Win(d) = ‖S>d ∩ •T≤d‖

counting only value operands.
However the presence of γ-nodes in the VSDG complicates this somewhat. In the absence

of explicit regions, let Rtrue(g) be the subgraph of the VSDG which is postdominated by the true
operands of a γ-node g, and let Rfalse(g) be likewise for the false operands. In any execution, it
will be necessary to store operands for only the nodes in Rtrue(g) or Rfalse(g) (we refer to any
such nodes as being predicated on g), not both. Thus, quoting Johnson’s thesis (we write Nd

for his Sd, as he did not distinguish between transitions and operands):

To compute the maximal Win(d) we compute the maximum width (at depth d) of
N≤d ∩ Rtrue(g) and N≤d ∩ Rfalse(g). This computation is recursively applied to all
γ-nodes, g, where N≤d ∩ Rtrue(g) 6= ∅ or N≤d ∩ Rfalse(g) 6= ∅. Thus for a set of
nested γ-nodes we compute the maximal (i.e. safe) value of Win(d).

Available Registers We write Wmax for the number of available registers; this is the num-
ber of physical registers but less any required for e.g. holding temporary values loaded from
memory, etc.

Transforming the VSDG Transformations are applied both to reduce liveness width to fit in
Wmax , and to bring the operations in each cut down to fit the issue width2 of the instruction set
architecture (ISA). The transformations follow; each is applied at all possible candidate sites
before the next transformation is considered:

Node Raising In order to reduce liveness width, additional serializing edges are added—these
express additional constraints on ordering in a similar manner to state edges3. Raising
proceeds by first selecting a base node tb ∈ Td (see below), and then, while beneficial
nodes remain, a transition t ∈ Td giving greatest benefit is arbitrarily selected and serial-
izing edges t• 99K tb added. This has the effect of pushing t up into the next higher cut
(and perhaps altering other higher—not-yet-visited—cuts).

The benefit derives from that some operands to the raised node t (namely, those unique to
t and not used by other nodes in the same or lower cuts—i.e. •t\•T≤d) are removed from
Win(d). The results t• are added to Win(d), so the benefit is thus the number of inputs

2The number of instructions which appear to execute simultaneously. For example, on x86 or PowerPC, this is
a single instruction at a time; as a consequence, the VSDG of Figure 6.1, in which each cut has a liveness width of
two, cannot be scheduled in less than three registers without spilling. Hence each cut must be transformed until it
contains only a single instruction. Contrastingly, in architectures where multiple instructions appear to be executed
at once (e.g. VLIW or EPIC architectures), Figure 6.1 could be scheduled with only two registers; however, other
restrictions on what instructions may be combined into a single word/bundle must be taken into account.

3We require state edges to satisfy a requirement of linearity, discussed in Chapter 2 and formalized in Ap-
pendix B. This means they cannot specify the partial order requirement that (A and C) come respectively before
(B and D) without specifying a total ordering of all four operations. However, in Johnson’s VSDG there was
no such requirement, and he used state edges to express arbitrary ordering constraints. Hence, it is easiest to see
serializing edges as a third kind of edge besides state and value.

124 Chapter 6. Node Scheduling

Figure 6.1: Even when liveness width is less than Wmax , architectural issue width may make
register allocation impossible.

current
cut

(a) Before node cloning:
liveness width 4

(b) After node cloning:
liveness width 3

n₁ n₂ n₃

C

ZY

X

n₄

n₁ n₂ n₃

C

ZY

X

n₄

C

Figure 6.2: Effect of node cloning in reducing liveness width. The places live at entry to the
current cut are indicated in red.

unique to t less the number of its results. The base node is chosen as a node which would
have the least benefit.

Node Cloning If liveness width cannot be sufficiently reduced by adding serializing edges, the
next transformation used is node cloning. A stateless transition t with multiple consumers
t•• is removed from above the current cut, and replaced by a copy for each consumer
(copies which end up in the same cut can later be recombined); serializing edges are
used to ensure such copies are not added below the current cut. As Figure 6.2 shows,
this can reduce liveness width by making the node’s value dead at entry to the cut (and
recomputing it in the current cut); the greatest benefit occurs then the cloned node was
used by node(s) below the current cut (node X in diagram) and itself uses other values
already live for the current cut (nodes Y , Z in diagram). Selection proceeds by finding
the set of candidate nodes whose values are passed through the current cut (i.e. {t ∈ T>d |
t• ∩ •Td = ∅ ∧ t• ∩ •T<d 6= ∅}), and picking one of those which generates the greatest

6.1. Johnson’s Algorithm 125

reduction in liveness width.

Spilling If all previous attempts to reduce liveness width have failed, lastly values are spilled—
we refer to their outgoing edges being tunnelled through memory. Since the aim is to
decrease the liveness width at entry to the current cut, only values s ∈ S ′ passed through
the current cut are considered: that is, values from higher cuts which are used in lower cuts
but not in the cut under consideration (S ′ = S>d∩•T<d\•Td). A store transition is added as
consumer of s (this node will end up in a higher cut by node raising), and a load transition
added to a lower cut (this is guaranteed to succeed since lower cuts already fit in Wmax).
Selection of the s (from candidates S ′) is decided by a heuristic; Johnson uses the static
count of memory operations required (potentially greater for values modified in a loop)
divided by the lifetime of the tunnelled value, i.e. D(s)−max ({D(t) | t ∈ s• ∩ T<d}).

In the next three subsections we consider some subtleties not mentioned by Johnson.

6.1.1 Atomicity of γ-Regions
In the final serialized output (a CFG), nodes whose execution should be conditional on the pred-
icate of a γ-node (i.e. from Rtrue(g) or Rfalse(g)) cannot be interleaved with other nodes4: the
former nodes must be placed in the arms of an if(P) then {...} else {...} whereas
the latter must be placed before the if or after the merge. Johnson’s algorithm handles this
subtlety [Joh] by:

• A split node ςg is selected5 for each γ-node g—either the node computing g’s predicate
node is used, or an artificial no-op node is added.

• Serializing edges are added from ςg to all nodes in the Rtrue(g) subgraph.

• A null (no-op) transition tg, with no value dependencies or results, is added to the VSDG,
and serializing edges added to it from all nodes in Rtrue(g)

• Further serializing edges are added from tg to all nodes in Rfalse(g), and from those to g.

• The entire ςg . . . tg . . . g complex, which results in an if(P) then {...} else
{...} sub-CFG, is then treated as atomic for code-motion operations6.

Note that this complicates the calculation of maximal depth-from-root (DFR) above, as
nodes predicated on γ-nodes are not in fact interleaved with other nodes. Furthermore, when
liveness width is exceeded in some Rtrue or Rfalse subgraph, a decision must be made as to
whether to perform node raising within the subgraph, or without it—i.e. to attempt to evaluate
the whole ςg . . . g complex at some point where there are fewer registers taken up by external
values. It is unclear exactly what happens in Johnson’s solution, but it seems reasonable that
the usual heuristics (number of unique inputs less outputs, etc.) could be used both inside and
outside the region simultaneously, and then transformations applied within and/or without in
the order suggested by the union of the metric.

4Unless predicated execution was used—discussed in Section 6.3.4.
5Johnson referred to the split node by σg; we reserve this notation for state places.
6There is no possibility of cross-jumping into this code as operator sharing (Chapter 5.1) is not expressible in

Johnson’s VSDG.

126 Chapter 6. Node Scheduling

6.1.2 Node Raising and Speculation
Node raising is capable of introducing speculation (causing a node to be evaluated under certain
circumstances in which it previously would not). Specifically, given a transition t predicated on
a γ-node g, adding a serializing edge t• 99K t′ to any transition t′ outside Rtrue(g) or Rfalse(g)
(for example, to the γ-node’s predicate), then t itself is moved out of Rtrue(g) or Rfalse(g) and
speculatively evaluated before the if corresponding to g. This is shown in Figure 6.3.

However, Johnson left it unclear whether this transformation is performed: the split nodes
ςg, whose use was described in Section 6.1.1 above, might have provided an ideal target for
such serializing edges, but the cycles ςg L9999K t created might have prevented this (the split node
reaches every predicated node because of the extra serializing edges added in Section 6.1.1).

6.1.3 Node Cloning and Dominance
Individual nodes created by the node cloning transformation may be postdominated by the true
or false operands of a γ-node g where the original was not, as in Figure 6.4. That is, the clones
might be members of Rtrue(g) or Rfalse(g), and their execution would then be predicated upon
g. (Such clones are not merged together even if at the same DFR.)

6.2 Reformulating Johnson’s Algorithm on the RVSDG
In this section, we will consider the issues that arise when using Johnson’s algorithm to perform
register allocation on the Regionalized VSDG (recall this structure was defined in Section 5.5 as
a rationalization of the PDG—however, being closer to Johnson’s original VSDG, the RVSDG
is the more natural representation).

The main issues are the adaptation to hierarchy and tail-sharing.

6.2.1 Hierarchy
Many of the subtleties of Johnson’s algorithm—particularly, the calculation of liveness width
(page 122), and the atomicity of γ-regions (Section 6.1.1)—are caused by the VSDG’s not
specifying an evaluation strategy: instead, Johnson computes the transitions to be executed
conditionally on γ-nodes (i.e. Rtrue(g) and Rfalse(g)) according to postdominance. We can see
this as performing regionalization of proceduralization somewhat implicitly, using an eager
(speculative) strategy (justified by Johnson’s goal of small code size—this was discussed in
Section 4.3.1).

Thus, much of the effect of using the RVSDG is to make explicit book-keeping operations,
to do with nodes being predicated, that were happening anyway. We argue that this improves on
the original VSDG formulation by making clear and enforcing these subtleties from the outset.

Specifically, we see Johnson’s algorithm being applied across the hierarchy one contained
net at a time, with complex nodes t〈G′〉 ∈ G being treated as single nodes (forcing their contents
G′ to be executed without interleaving execution of the containing graph G) and the contained
net G′ being processed recursively.

Thus, we associate a maximum internal liveness width wint(t) with each complex node
t〈G′〉, being the greatest number of registers required as temporaries any point within G′. An
additional check, that there are sufficient registers to evaluate all nodes in a cut even when its
inputs fit into Wmax , is then made. (However, such checks are required anyway due to ISA issue

6.2. Reformulating Johnson’s Algorithm on the RVSDG 127

(a) Without speculation: Node raising inapplicable
4 registers required, e.g.

(b) With speculation of x, followed by node raising of x. 3 registers required, e.g.

6

r1=n₁; r2=n₂; r3=n₃(r1,r2); r4=n₄(r1); r3/4=n₅(r3,r4);
if (P) {r4/3=x(r1,r2); res=f(r4/3,r3/4);}
 else res=g(r3/4);

r1=n₁; r2=n₂; r3=n₃(r1,r2); r2=x(r1,r2); r1=n₄(r1); r1/3=n₅(r3,r1);
if (P) res=f(r2,r1/3); else res=g(r1/3);

x

ς

f g

γ

n₅

n₄n₃

n₁ n₂

T
F

x

ς

f g

γ

n₅

n₄n₃

n₁ n₂

T
F

x

ς

f g

γ

n₅

n₄n₃

n₁ n₂

T
F

Node Raising
of x

Key

(here using a no-op split node, ς.
In alternative scheme, change s.t.
ς produces the γ-predicate and
ς→n₅ is a value dependency)

serializing edge
value dependency

cut based on DFR,
with |Win|=6

nodes postdominated
by true / false

Figure 6.3: Addition of serializing edges in Johnson’s algorithm can cause nodes to be specu-
lated

128 Chapter 6. Node Scheduling

current
cut

(a) Before node cloning:
maximum liveness 4
({s₁,s₂,s₃,s'} or {s'})

(b) After node cloning:
maximum liveness 3
({s₁,s₂,s₃} or {s''})

postdominated
by true

postdominated
by false

C

γ
T F

t

s₁ s₂ s₃ s'

C

γ
T

F
t

s₁ s₂ s₃ s''

C

Figure 6.4: Node cloning can make nodes be predicated when the originals were not. (Places
live at entry to the current cut indicated in red.)

width—see footnote2 on page 123.)
An additional book-keeping operation is required when the node cloning transformation

leads to individual clones being postdominated (in the flattened graph) by the true or false
operands of some γ-node where the original was not, as discussed in Section 6.1.3. Such clones
should be explicitly moved into the corresponding true or false transitions (recall each γ-node g
is in a net containing only three transitions {g, ttrue, tfalse}—ttrue and tfalse can first be made into
complex nodes if necessary).

6.2.2 Tail-Sharing Regions
Further issues arise because of the representation in the RVSDG of more complicated control
flow structures than in the VSDG—specifically, the merging of control flow caused by tail-
sharing.

Recall that after PDG sequentialization, a partial order (specified by the properties Order-
Fixed or OrderArbitrary, discussed in Section 2.4) is imposed on the children of each PDG
group node, i.e. the transitions in each net instance in an RVSDG. Intuitively, transitions which
are left unordered by this partial order (i.e. OrderArbitrary) are so because they all tail-shared
the same amount, and thus, filling out the ordering may be left to the node scheduling phase.

We somewhat loosely refer to a group of such nodes as a tail-sharing region or just a region;
although it would be possible to group the nodes together explicitly in complex nodes, this has
not been a requirement. However, we consider the true and false transitions of γ-nodes as being
regions, and describe a region as tail-shared with another if all of its elements are (piecewise)
tail-shared, in the same way as for complex nodes.

Moreover, we lift the concept of partitions over regions (i.e. a partition of regions is a max-
imal set of regions which are tail-shared). The key consideration is that every region in such a
tail-sharing partition must be scheduled identically, even though it appears in a different place in
the γ-tree. Thus, heuristics must somehow select a single transformation amongst the different
ones which might otherwise be chosen in each case. One possibility is to calculate the DFR
(maximum depth from root) for each partition of nodes, such that every node in the partition

6.2. Reformulating Johnson’s Algorithm on the RVSDG 129

has the greatest DFR that would have been assigned to any: this allows all the elements to be
considered at the same time, and the heuristic results from each to be combined.

When PDG sequentialization forces an ordering of nodes (i.e. OrderFixed), because one
transition t1 is tail-shared more than another t2—and thus t1 must execute after t2 for control
flow to merge back in—these ordering constraints can be expressed by addition of extra serial-
izing edges (that is, an edge t2

• 99K t1 can be added to force t2 to execute first). This causes
serializing edges to be added from every node in a region to every node in its successor region
(i.e. that into which control flow will merge), and this prevents the node raising transforma-
tion from raising nodes past the boundaries of these regions. (This would raise complications
considered in Section 6.3.3.)

Lastly, observe that values from regions ordered earlier will be passed through later (more-
shared) regions, right through to the γ-tree itself. This results in some interactions with the
spilling and node cloning transformations, as follows.

Spilling Such passed-through values are good candidates for spilling, as the memory access
instructions can be statically shared, reducing the code size overhead. (Additionally,
observe that values used only in highly-shared (late-executed) groups can also be spilt
cheaply, as only one static load is required for all tail-shared copies; the store can be done
at each leaf or speculatively.)

Node Cloning Such passed-through values also look like good candidates for node cloning, as
this transformation normally picks nodes, from arbitrary higher cuts, whose results are
passed through the current cut but are not used in it. However, it is not possible to clone a
node from a less-tail-shared region into a more-tail-shared one (unless some form of pro-
cedural abstraction was used; we do not consider this in this thesis), so this transformation
must be prevented unless an identical node exists in all predecessor regions.

6.2.3 Register Allocation
Another difference however is in the handling of register allocation. In Section 5.5 we defined
coalescing partitions on the RVSDG, stating these could be assigned physical registers. In
particular we allowed places to be coalesced without necessarily choosing a target physical
register and so long as some non-conflicting scheduling existed. This contrasts with Johnson’s
system in which places are coalesced only by assigning them the same physical register, and
only if they would not conflict in any possible scheduling (i.e. cut), with serializing edges used
to restrict the set of possible schedulings.

However this does not pose a problem: in the algorithm as presented, serializing edges
were used mainly to reduce the number of registers required, rather than to eliminate conflicts
involving a single register. Thus, any coalescing of places and labelling with registers required
to satisfy non-orthogonal instructions or procedure calling standards can be performed first, with
the addition of serializing edges to bring the number of simultaneously live values within Wmax

coming afterwards. Lastly, the remaining places can be assigned registers by Johnson’s system;
any further coalescing this entails in the RVSDG will not violate well-formedness because the
places will not conflict in the ordering already selected by the serializing edges.

130 Chapter 6. Node Scheduling

6.3 Simple Extensions
6.3.1 Heuristics for Speed over Space
Johnson’s heuristics for selecting the nodes to clone, raise, or spill were decided upon in order
to optimize code size, rather than speed. If speed is instead the priority, there is much scope for
change:

• Johnson’s algorithm applies node raising first, as its “cost” in code size is essentially zero.
However, in terms of execution speed, it may have an effect on instruction latencies (con-
sidered in Section 6.3.2), and further, may cause nodes to be speculated (Section 6.1.2),
which is undesirable in this setting.

• Conversely, node cloning always increases code size, but may not always increase execu-
tion time. Specifically, if the clones are postdominated by the true and false operands of
γ-nodes (Figure 6.1.3), it may be possible that no more than one will execute—indeed, if
the proceduralization were not optimal in Upton’s sense (Section 3.1) and already specu-
lated the node, execution time may be decreased. This should be taken into account when
evaluating the cost of node cloning, as it may make it cheaper than node raising.

• It may be desirable to clone even complex nodes containing γ-nodes. Johnson’s algorithm
will always choose to spill the result of a compound γ-node (at a cost of one load/store
pair) rather than clone it7), except in the case of multiplexers selecting values computed
already. However, when optimizing for speed, recomputation may be cheaper, and the
heuristics may wish to take this into account.

6.3.2 Instruction Latencies
CFG compilers often include an instruction scheduling phase which attempts to avoid pipeline
stalls due to instruction latencies. However, this optimization has been particularly antagonistic
with register allocation, as the effect of instruction scheduling is often to “spread out” compu-
tations which use each others values, and this tends to increase register pressure. Hence many
often complicated algorithms exist combining the two phases [Bra94, NP95, BGS98a, Tou02].
On the VSDG, it is simple to extend Johnson’s algorithm to take instruction latencies into ac-
count, as follows. For any slow instruction t (one whose results may take multiple CPU cycles
to compute), extra no-op transitions (which merely pass their operands through to their results)
are added inbetween t• and their consumers succt•. These naturally increase the DFR of the
slow instruction, but do not generate instructions in the output (they can be seen as MOVs whose
operands and results are coalesced, but whose elision is delayed until after node scheduling).

An alternative is to modify the computation of DFR to allow each node to have a “thickness”
(i.e. the amount added to depth varies according to the node passed through); this might allow
more flexibility in e.g. modelling the latency of memory accesses (which can be seen as “as
long as possible”).

7Including the predicated nodes—cloning only the root γ-node g would greatly increase liveness width every-
where, by ending the predication on any single γ-node of the nodes in Rtrue(g) and Rfalse(g).

6.3. Simple Extensions 131

6.3.3 Movement Between Regions
We defined the concept of regions in Section 6.2.2; they identify groups of nodes within which
node scheduling may operate freely, but at whose boundaries node scheduling is prevented by
control flow structure—specifically, control flow merges due to tail-sharing. However, we also
see regions as including the true and false sub-nets of γ-nets, where the boundary is caused by
the control flow split.

However, both register allocation and instruction scheduling could be performed more ef-
fectively if it were possible to move nodes between regions, specifically by raising a node to
before the beginning of its region. This would allow additional node raising transformations,
which may be preferable to node cloning or spilling. We see three distinct cases:

1. Raising a node out of a γ-net subregion. This causes the node to be speculated—discussed
in Section 6.1.2.

2. Raising a node out of a tail-shared region. This entails a space cost of (statically, not
dynamically) duplicating the raised node into each preceding (less-shared) region, but
may avoid the time cost which would result from node cloning.

3. Raising a node out of a loop region. This entails statically duplicating the raised node in
the enclosing region, and moving the node round to the “end” of the loop, but allows the
node scheduling phase to perform software pipelining (discussed below).

A further hint is the nondeterministic algorithm developed by Johnson to define the scope of
combined Register Allocation and Code Motion (RACM) techniques. This was a general frame-
work, encompassing both the “snowplough” algorithm we have seen as well as Chaitin/Chow-
style register allocation [Cha82, CH84]. Specifically, the framework functioned by “undoing”
code motion optimizations performed by preceding stages; in Johnson’s case, the only code
motion operation performed was hash-consing at construction time (in terms of reducing code
size, this encompasses CSE, VBE, and (sparse) PRE [RKS00]). However, in our compiler ar-
chitecture, the preceding phases of proceduralization and PDG sequentialization can perform
a greater range of code motion transformations, and by extension node scheduling should in
principle be able to undo these—which requires moving nodes between regions.

Software Pipelining Our optimality criteria for proceduralization results in all loops having
zero degree of pipelining, in order to produce the smallest size code. However case 3 above cap-
tures the transformation necessary for the node scheduling phase to perform software pipelining
in a way uniform with instruction scheduling (discussed in Section 6.3.2). This would allow use
or adaptation of of the same heuristics as for straight line code, or application of other algorithms
such as modulo scheduling [RG81, Ram92] or integer linear programming [Tou05].

6.3.4 Predicated Execution
Another simple extension is the use of predicated execution for instructions in γ-nets, rather
than testing and branching control flow. This could allow the interleaving of predicated and
other nodes so long as the predicated nodes do not include any nested γ-nodes8.

8Even this might be possible on architectures with multiple (independent) condition bits—for example, Intel’s
Itanium [Sha99], with its 64 predicate registers. This intriguing possibility is left for future work.

132 Chapter 6. Node Scheduling

6.4 Alternative Approaches
The VSDG also supports a wide variety of other approaches, which we discuss here. Our
intention is merely to show the ease of manipulation provided by the VSDG, and that this
enables consideration of issues difficult to address in a CFG-based system (doing so there would
entail constructing a global representation of the dataflow and dependencies, i.e. pretty much a
VSDG!), so we only sketch some possibilities.

Local Lookahead Generally, all of Johnson’s heuristics can be seen as having only a looka-
head of one—that is, they do not consider the cumulative effect of repeated transformations. An
obvious example is in calculating the benefit of node raising: two nodes may have no benefit
individually, but may reduce liveness if both are raised. Another is choosing between repeated
application of node raising and cloning over subexpressions: the former replaces in the current
cut the inputs of the raised node with its results, whereas the latter removes its results but adds
its inputs.

This lack of lookahead is particularly problematic when combined with the inability to
backtrack to previously-allocated cuts; Figure 6.5 shows an example where a previously-visited
cut “commits” the algorithm to having too many values held live over higher cuts.

Depth-First Traversal Consider the action of Johnson’s algorithm on a binary tree, whose
essential characteristic is having large disjoint expressions which are combined after compu-
tation of each. The DFR-based approach interleaves the nodes of the two expressions, and at
higher DFRs, early cuts (which have already been processed and are not revisited) can lead to
many values being live; this can lead to potentially many values being spilled partway through
both expressions. A small example (in which only one value is spilled) is shown in Figure 6.5.

An alternative is to use a depth-first traversal, which tends to clump together the instruc-
tions within each subexpression, with fewer values being held live (but for longer) while other
subexpressions are computed. This is shown in Figure 6.6, being the result of traversing the
same VSDG as shown in Figure 6.5 using the depth-first technique–observe spilling is avoided.
Further, the longer lifetimes before the values need be loaded again give better timing charac-
teristics when spilling does occur.

(However, the interleaving of operations which tends to result from the breadth-first algo-
rithm gives better timing characteristcs when values are not spilled—particularly when trying
to fill pipeline slots due to instruction latencies, discussed in Section 6.3.2).

An Adaptive Hybrid Thus, a more effective algorithm might be one which intelligently
switched between depth-first and breadth-first traversal techniques according to register pres-
sure, using breadth-first where possible but switching to depth-first to avoid spilling.

Graph Shape It seems intuitive that heuristics examining the shape of the graph, perhaps
attempting to find good boundaries for subexpressions which share little with the rest of the
graph, would be useful for guiding such a technique. (Or indeed as better heuristics for John-
son’s transformations). However, such analyses are left for future work.

6.4. Alternative Approaches 133

w x y z

u vf g

c

d e

b

a t

n

processed cut
liveness=4

(not revisited)

current cut
liveness=5

(a) The second cut cannot be allocated with four registers

w x

y zu

vf g

c

d e

b

a t

n

STORE

LOAD

(b) Final result after spilling and further node raising

Figure 6.5: An expression of binary tree shape for which Johnson’s algorithm unnecessarily
spills values to memory.

134 Chapter 6. Node Scheduling

w x

y zu

v

f g

c

d e

b

a

t

n

Figure 6.6: The same binary-tree-shape expression as Figure 6.5, here allocated by a depth-
first traversal without spilling.

6.5 The Phase-Order Problem Revisited
The phase-order problem was discussed in Section 2.4.1, where we broke sequentialization
apart into three distinct phases: proceduralization (aka regionalization), PDG sequentialization,
and node scheduling. In this chapter, we have seen how node scheduling can be performed by
an existing algorithm for combined Register Allocation and Code Motion (RACM).

Conceptually, we still find this break neat: proceduralization and node scheduling seem
to differ in terms of algorithm characteristics (intervals and dominance vs. individual nodes),
have separate concerns (platform-independent vs. -dependent attributes), and a well-defined
boundary (a duplication-free PDG or RVSDG).

However, any node scheduling phase capable of node cloning—or especially, cross-region
node raising (Section 6.3.3)—after proceduralization runs contrary to the principle of semantic
refinement introduced in Section 2.7.1, and suggests the separation of concerns is not complete
and the phase-order problem is not solved. (Intuitively, node cloning changes the evaluation
strategy from call-by-need or -value to call-by-name, changing the trace semantics of the input
RVSDG.)

The break also introduces problems in practice. Many of these relate to the specification, in
the input RVSDG, of the way the regions in the program are structured in a tree (or DAG—as
only one static copy exists for each tail-sharing partition of regions):

1. The tree affects the constraints with which node scheduling must deal, namely register
pressure and instruction latencies, because of the ordering of the regions decided upon
by preceding phases (values computed by earlier regions are passed through and held live
over later ones). Specifically:

6.5. The Phase-Order Problem Revisited 135

γ-ordering Given an independent redundancy, where two γ-nodes both may demand the
value of some node n, the values returned by the γ-node which is made dominant
are passed through computation of the values for the subsidiary γ-node(s).

Ordering of Tail Values Where two tail-groups are shared incomparably (neither is
shared strictly more than the other), PDG Sequentialization must duplicate one
group (making it strictly less shared); it is then executed earlier and its value held
live until after evaluation of the later group.

2. The transformations performed in constructing the tree may have offered better solutions
for the problems faced by node scheduling—specifically, the duplication they perform is
different from the node cloning transformation and may have offered additional opportu-
nities for reducing register pressure and dealing with instruction latencies.

3. Even if earlier stages performed the (likely NP-complete) searches for “optimal” solu-
tions to the problems they faced, this optimality might be destroyed by subsequent node
scheduling, especially if register pressure is high. (Besides the searches involved in γ-
ordering and PDG sequentialization, above, we can also include proceduralization more
generally here if this included searching for evaluation strategies which best trade specu-
lation against code size or number of tests and branches).

4. The structure of the tree affects the costs and possibilities of moving nodes between re-
gions (discussed in Section 6.3.3).

5. Johnson’s framework suggests node scheduling proceed by “undoing” code placement
optimizations (discussed in Section 6.3.3), but many of the optimizations our procedu-
ralization phase performs cannot be undone without changing the tree, and it is not clear
how this can be done effectively and incrementally after tree construction.

We can see a parallel here with superblock scheduling [HMC+93] on the CFG. This is
a more advanced instruction scheduling technique, capable of moving operations past the be-
ginning or end of a basic block (and thus adding a copy to each successor or predecessor,
respectively, although care must be taken where the successor (predecessor) has other predeces-
sors (successors)). However, the technique retains the CFGs “two-level” system of instructions
which label basic blocks—that is, superblock scheduling cannot change the basic blocks or
restructure the program.

It might appear that the RVSDG resolves this problem: the VSDG’s uniformity of expres-
sions (Section 2.1.1) is retained, and hence node scheduling is capable of rearranging basic
blocks by motion of entire expression subtrees relative to each other. However it only does
so by moving expressions around the existing region tree, and the tree itself is not changed9.
Whilst this constitutes an increase in flexibility compared to the CFG, the parallel suggests that
a superior system would allow building a tree of regions to be combined with the placing of
nodes in it.

The possibility of predicated execution also suggests such a system: whilst we have seen
this as part of node scheduling, it allows an (almost) “free” retesting of a predicate, and thus the
building of better region trees (PDG sequentializations) than would otherwise be possible.

9The relationship between RVSDG regions and SESE regions is substantially complicated by the former’s
iter nodes, but ignoring this issue for the sake of discussion, the Program Structure Tree [JPP94]—the structure
of the program in terms of SESE regions—is not altered by node scheduling.

136 Chapter 6. Node Scheduling

6.5.1 Combining Proceduralization and Node Scheduling
The lack of ordering restrictions in the RVSDG allow it to support incremental algorithms in
which all the transformations we have seen to be interleaved.

Beginning with an input VSDG, first a “book-keeping” stage flattens all non-µ-bound com-
plex nodes, applies hash-consing as fully as possible, and then puts each γ-node into its own
net, with trivial or no-op true/false transitions, within a complex node. The result of this stage
is a well-formed RVSDG, but one in which all nodes would be evaluated in every execution.

In the second stage, this RVSDG is incrementally refined by (nondeterministic) application
of a number of operations, which change the regionalization, add serializing edges, or anno-
tate places with registers, until eventually a unique CFG is specified. The operations are as
follows10:

1. Assign a physical register to a coalescing partition (so long as that register is not assigned
to any other partition).

2. Clone a node, redirecting some of the incoming arcs to the new copy

3. Tunnel values through memory by introducing store/load spill nodes

4. Predicate a node, i.e. move it into a γ-node subregion where the node’s only consumers
are already in that subregion

5. Speculate a node, i.e. move it out of a γ-node subregion into the containing region. (For
stateless nodes only; discussed in Section 6.1.2).

6. Add a coalescing edge between two places, so long as there exist orderings in which the
two are not simultaneously live.

7. Turn a coalescing edge into a tail-sharing edge, or add a tail-sharing edge between two
identical transitions, so long as the sharing in the resulting RVSDG can still be imple-
mented with a single program counter (see below).

8. Reroute one or more edges (s → . . .) from a place s to go via some γ-node g (by adding
to g a new component c with s as both true and false operand, and edges g

c→ . . .), so
long as s which does not reach g.predicate.

9. Add a serializing edge to order one node before another.

Tail-sharing edges must satisfy the standard RVSDG well-formedness conditions imposed
upon them by Section 5.5.5, and, in order to include the intermediate step of PDG sequential-
ization, the extra requirement therein for the RVSDG to correspond to a duplication-free PDG.

10Note that a number of these relate to Johnson’s nondeterministic algorithm, discussed in Section 6.3.3; specif-
ically, operations (1-6) parallel or generalize operations in his framework, but (7) has no equivalent, and (8) is a
significant extension on his tupling of γ-nodes (discussed below).

6.5. The Phase-Order Problem Revisited 137

(values being passed through)

A B C D

P Q

... ...

C D

...

A B

...

...

...

...

...

P Q

...
C

...

A B

...

P Q

...

P

CA B

...

P

(a) Initial RVSDG

(b) After Edge Rerouting

(c) γ-ordering completed by
Node Cloning and Predication

(shown by gray arrow)

Figure 6.7: The edge rerouting transform serves to perform γ-ordering.

Rerouting of Edges serves two purposes. Firstly, it allows the γ-ordering transformation
(Section 3.4.1) to be performed by first rerouting edges, then cloning the node for each of its
successors (now exactly two—true and false), and lastly predicating each copy into the respec-
tive true or false contained graph, as shown in Figure 6.7. Any cycles hereby created can be
removed by further rerouting, and/or cloning and predication, as discussed in Section 5.5.7 (of
course, note that any tail-sharing edges introduced must satisfy the same restrictions as above).

Secondly, it allows the tupling of γ-nodes. This is discussed in Chapter 7, but the essence
is to order two γ-nodes with the same predicate under each other; this allows each cloned γ to
be collapsed to either its true or false sub-net and potentially enables many other optimizations.

Towards a Deterministic Algorithm It remains to be seen how to construct a deterministic
algorithm which effectively interleaves all these operations, and this is not surprising: one ad-
vantage of dividing the compilation problem into small portions, or “phases”, is that (achieving
good results for) each phase may become more tractable when considered in isolation. This
is exactly what we did for proceduralization and node scheduling, and optimality for proce-
duralization seemed (relatively) straightforward to reach; however, as we have discussed, this
seeming advantage may in fact be illusory. The quality (by whatever metric) of the final output,
e.g. machine code, is what really matters, rather than the quality considering only some factors
of intermediate stages along the way.

One possibility is to retain our previous separation into phases, and perform proceduraliza-
tion according to the worst register pressure of any node scheduling, a technique similar to that
of Touati [Tou05]. However we see this as both unnecessarily pessimistic and achieving only a

138 Chapter 6. Node Scheduling

partial separation of concerns. Another possibility may be to interleave proceduralization and
node scheduling operations in a recursive traversal of the regions of the prototypical RVSDG;
however, it is not clear how predicated execution (which allows interleaving of nodes inside a
region with those outside it) would fit into this strategy. Development of such approaches is left
to future work; the architecture presented already in this thesis offers numerous opportunities
for profitably combining optimizations including many which have been seen as antagonistic.

6.6 Chapter Summary
We have seen how the node scheduling phase supports a wide variety of techniques for regis-
ter allocation, instruction scheduling, and code motion, including a previous VSDG algorithm
by Johnson, as a separate phase after proceduralization and PDG sequentialization. We also
saw how this scheme still had some vestigial phase-order problems, but that these were minor
compared to CFG compilers, and might be handled by a number of schemes (left for future
work).

CHAPTER 7

Splitting

Chapters 2 to 6 have developed an architecture for VSDG sequentialization, which operates
by progressively refining the trace semantics of the input VSDG until a CFG is reached. This
is appropriate for a compiler back-end operating on a VSDG passed to it by a preceding stage
on in-place optimization, according to the conventional structure of an optimizing compiler
discussed in Chapter 1 (and shown in Figure 7.1).

This Chapter reconsiders the boundary between in-place optimization and sequentialization.
Some optimizations do not seem to fit anywhere into this scheme, and this chapter studies in
particular the splitting transformation, which offers opportunities for enhancing many aspects
of a compiler, in particular the number of tests and branches in the output.

Section 7.1 defines the splitting transformation and considers its use as an in-place optimiza-
tion on the VSDG. Section 7.2 describes how it can also be used on the RVSDG to perform a
range of other optimizations which do not make sense in a VSDG context. This raises issues of
phase-ordering, which are discussed in Section 7.3 along with some possibilities for how they
might be overcome. Section 7.4 considers the application of splitting in more detail, includ-
ing how it generalizes the NP-complete problem of boolean minimization, and Sections 7.4.1
to 7.4.4 give a range of possible criteria for optimality. Finally Section 7.5 shows how a wide
range of existing techniques are related to splitting and might be used as guiding heuristics.

7.1 Splitting, à la VSDG
Firstly, we consider the splitting transformation on the VSDG as an in-place optimization
changing the program’s trace semantics prior to sequentialization. (This is consistent with
our architecture of semantic refinement in Section 2.7.1.) In this context, the essence of the
transformation is as shown in Figure 7.1:

• Let t be a transition and g be a γ-node;

• Make a fresh copy of t, and call this t′.

139

140 Chapter 7. Splitting

Compiler
Input

(e.g. C)

Intermediate
Representation

(IR)

Compiler
Output

(e.g. ASM)

Front
End

Back
End

Optimize

Figure 7.1: Structure of an optimizing compiler (repeated from Figure 1.1.) For the VSDG, the
main task of the back end is sequentialization of the VSDG into a CFG of machine instructions
with physical registers.

• For each result s ∈ t• and corresponding s′ ∈ t′•:

– Add to g a new component c (Section 2.6.2) choosing between s and s′ (that is, the
true and false operands of c are s and s′, respectively);

– Redirect all the original edges to s to the result place of c.

• Where there was a path from t to g or vice versa, this results in cycles; these can be fixed
by duplicating nodes on the path and/or changing uses of the results of g into uses of its
corresponding true or false operands.

We say t is split across g.
A special case of splitting, shown in Figure 7.1(b), is the node distribution transformation,

where t operates directly on g’s results (•t ∩ g• 6= ∅); here, fixing cycles results in t (resp. t′)
operating directly on the corresponding true (resp. false) operand of g. We can see t as being
“pulled” upwards through the γ-node g, and say that t is distributed across g.

This operation serves two main purposes, which we consider in Sections 7.1.1 and 7.1.2.

7.1.1 Enabling Optimizations
The duplication of t allows each copy to be specialized to either true or false, providing oppor-
tunities for a wide range of other optimizations: for example, constant propagation, algebraic
strength reduction, devirtualization (e.g. due to pre-existence [DA99], or exact type informa-
tion). These potential benefits accrue from two distinct effects:

1. Knowledge of a particular value for an argument, rather than a merge (i.e. γ-node) of
several values

2. Knowledge of control environment

The first of these occurs only in the case of node distribution, where replacement of g• by
one or both of the true or false operands to g enables optimization. Such cases can be captured

7.1. Splitting, à la VSDG 141

T
tγ

P F

1

x y

T₁

1 2

t

γ

T₂ P F₁

t

F₂

x y

(a)General case

t

γ
T P F

1

r

(b)The special case
of node distribution

γ
T P F

r

tt

Figure 7.2: The Splitting transformation on the VSDG. (Note the red and blue arrows, poten-
tially representing chains of nodes, are shown for completeness; they may not both exist in the
same VSDG because of acyclicity.)

by expressing transformations as local unconditional rewrite rules. For example, Figure 7.7(a)
shows it enabling a constant propagation transformation.

The second effect occurs where knowledge enabling optimization of t can be gleaned from
the predicate of g; for example, Figure 7.3(a). This can be captured by conditional rewrite
rules, paralleling the Sparse Conditional Constant Propagation (SCCP) optimization on the
CFG [WZ91].

Sometimes, the two effects must be combined to enable an optimization, as in Figure 7.3(b).

Tracking Dataflow to Enable Optimizations. Whilst it is straightforward to see that knowl-
edge of the predicate x = 0 would enable optimization of x + 1 = 1 to true—x + 1 would first
be optimized to 1, and then 1 = 1 to true—and a reasonable model of predicates would allow
knowledge that x > 5 to enable rewriting of x > 0 to true or x < 6 to false, gaining the full
benefit of such knowledge is not quite as easy. Firstly, information must be propagated through
nodes: x > 5 does not enable optimization of x − 1 in any way, but still implies (x − 1) > 4,
despite neither x − 1 nor 4 appearing in x > 5. Secondly, a further annoyance is that x > 5
does not imply x + 1 > 6 (because of overflow), unless you have that x < MAX INT too.

Speculation and Safety Note that the VSDG’s semantics allow “speculative” evaluation of
each copy of t even if the predicate takes the opposite value. Thus, it might appear that special-
ization according to knowledge of the predicate is unsafe. However, as long as such special-
ization does not introduce the possibility of exceptions or nontermination, this is not the case:
there is no problem in speculatively computing a value whose correctness is only guaranteed if
the value is used.

7.1.2 Transformations on γ-Nodes
Besides t being an arithmetic operation, the VSDG’s uniformity of expressions (Section 2.1.1)
means that t could equally be another γ-node to be split or distributed across g. On the VSDG,

142 Chapter 7. Splitting

((x==0 ? 11 : x-1),x+1) x==0 ? (11,1) : (x-1,x+1)

int+1

11i int -1

x

int==0?

γT F
P

11i int -1 int +1

x

int==0?

γ
T₁ F₁P

1i

T₂
F₂

1 2

(a)

int <0?

x

int >0?

γ
TF

P

y

TF

P

γ

int <0?

x

int >0?

y

false

(b)

(x>0 ? x : y) < 0 (x>0? false : y<0)

Figure 7.3: Splitting enables optimization due to knowledge of the γ-node predicate (in (b),
combined with knowledge of argument)

7.2. Splitting in the RVSDG 143

P Q

A B

P
γT F
P

C D

γT F
P

γT
F

P Q

A C

P
γT F
P

B D

γT F
P

γT
F

Figure 7.4: Reordering trees of γ-nodes by Splitting

this encompasses a range of useful optimizations, specifically:

Tupling γ-nodes Where t and g are both γ-nodes with the same predicate, specialization of t

to true or false allows it to be collapsed down to the respective operand1. This effectively
combines into a single γ-node all the components of both t and g and allows a single
reduction (or corresponding control flow merge) to select values for all of them.

Reordering γ-nodes Where t ∈ g•• is distributed across g, if t is a γ-node then this has
the effect of switching the two γ-nodes round, such that their predicates are tested in
a different order. This is shown in Figure 7.4.

Tests and Branches Both of the above forms of transformation may change the number
of (dynamic) tests and branches which will be performed on some or all computation paths.
(Specifically, tupling can only reduce this number, whereas reordering can both reduce and in-
crease it.) We have already mentioned in Sections 3.1 and Section 4.4.2 that it is desirable to
reduce the number of tests and branches in the output, and that Upton’s criteria for the optimal-
ity of a sequentialization does not take this into account; such transformations offer a number
of possibilities for enhancing his criteria to include this aspect. These are considered in Sec-
tions Section 7.4.3 and 7.4.4 below.

7.2 Splitting in the RVSDG
It is also possible to perform the splitting transformation on the RVSDG—that is, at some point
during sequentialization by semantic refinement. In this context, splitting explicitly moves the
two copies of t into the true and false subregions of g’s γ-net, as shown in Figure 7.5.

Such application generalizes two operations we have seen already:

1. The node distribution performed by the PRE algorithm of Weise et al. [WCES94], shown
in Figure 4.12(a-VSDG) and (b-VSDG) (discussed in Section 4.4.5).

1This is another case of optimization according to knowledge gleaned from the predicate of g—that is, the
predicate of g confers exact knowledge of the value of the predicate operand to t.

144 Chapter 7. Splitting

t
G1 G2 G1 t G2 t

Figure 7.5: The Splitting transformation on the RVSDG. (Note the red and blue arrows, poten-
tially representing chains of nodes, are shown for completeness; they may not both exist in the
same RVSDG because of acyclicity.)

2. The γ-ordering transformation used in Section 3.4.1 to deal with independent redundan-
cies (as shown in Figure 3.2), reformulated on the RVSDG in Section 5.5.7.

Key to both of these that the two copies of t will now only be performed if g’s predicate takes
the appropriate value. In the case of PRE, this allows one copy (say t′) to be optimized by
hash-consing it with an equivalent node already existing in the appropriate subregion (true or
false). We can see t′ as being specialized to the availability or precomputation of its own value.
In the case of γ-ordering, extension of the same idea allows each copy to be specialized to the
precomputation (or otherwise) of the independent redundancy node.

Clearly, these operations and ideas are not appropriate to the VSDG: they deal with whether
expressions are computed or not, and this is a matter of evaluation strategy.

7.3 Splitting: a Cross-Phase Concern
In the previous sections we have seen both how splitting can be used to enable a variety of
in-place optimizations on the VSDG, and how it is also useful on the RVSDG for optimizations
specific to a regionalization.

This might suggest performing two passes of splitting, at distinct stages of compilation.
However, in fact it is likely that all applications of splitting will wish to take into account the
evaluation strategy selected during regionalization: if t and g will not be executed during the
same program run, splitting t across g will introduce a test of g’s predicate into program runs
previously demanding only the value of t. This is generally not desirable—especially if the
aim of the splitting transformation was to reduce the number of dynamic tests and branches
(Section 7.1.2).

(The RVSDG’s regions capture this criterion: if the least common ancestor (LCA) to t and
g is a γ-net, one will be executed only if true, and the other false; if the LCA is a strict net, both
may be evaluated.)

This suggests that what we have seen as “in-place” optimization on the VSDG needs to be
combined with sequentialization in some way.

7.3. Splitting: a Cross-Phase Concern 145

Splitting as Part of Proceduralization Recall from Chapter 5 that proceduralization can
be seen as the specification of sharing partitions on the nodes of a special case of Unshared
VSDG (u-VSDG). A simple extension of this viewpoint naturally incorporates some selection
of splitting transformations into proceduralization, as follows. Define a Distributed VSDG or
d-VSDG as an u-VSDG in which node distribution has been applied to every (non-γ-node)
computation t across any γ-nodes g ∈ ◦•t as much as possible. By taking an appropriate view
of trace semantics2, we can see such a d-VSDG has the same trace semantics as the original
VSDG or any which can be obtained from it by reversing the application of node distribution.

Now consider the effect of tail-sharing partitions, using as example the transformed VSDG
of Figure 7.7(b) (on page 148—this is a d-VSDG as defined above):

• Where the two int+ nodes are in distinct partitions, this specifies an RVSDG containing
two int+ nodes and executing one or the other before the merge;

• Where the two int+ nodes are part of the same partition, this specifies an RVSDG con-
taining a single node which is executed after the merge.

Further, observe that this special case of tail-sharing—where the operation is always
required—never results in duplication during PDG Sequentialization, whereas the general case
of tail-sharing can. This completes the parallel between tail- and reuse-sharing mentioned in
Section 5.3.1: the equivalent special case of reuse-sharing, where the operation is always re-
quired, never results in speculative evaluation, whereas the general case can.

Further Details of how to resolve this phase-ordering problem are not considered in this
thesis, but briefly we see two possibilities:

1. The in-place optimization stage “looks ahead” to the later sequentialization stage, with
some representation in the VSDG of the RVSDG or CFG that might be constructed from
it

2. The optimization and sequentialization phases are combined, so that all in-place opti-
mizations can be moved to appropriate points in sequentialization.

Phase-Ordering in Sequentialization Any application of splitting on the RVSDG prior to a
node scheduling stage also raises phase-order problems: by forcing some computations to be
done together, splitting affects register pressure and instruction latency issues. This is shown
in Figure 7.6. Thus, we would like node scheduling to be able to choose where splitting was
applied. To this end, Johnson included a restricted form of tupling (where the γ-nodes were not
reachable from each other—capable of transforming Figure 7.6(a) into (b) or (c), only) in his
nondeterministic framework for RACM algorithms (discussed in Section 6.3.3). However, his
“snowplough” algorithm (Section 6.1) never performed this operation.

2We discussed the VSDG’s trace semantics in Section 2.7.3, leaving the correspondence between reduction
steps and program operations informal. Thus, here we consider traces as being sequences of only ALU instruc-
tions, corresponding to reductions of arithmetic transitions, omitting control-flow merges (these are not machine
operations, even if in some views they might correspond to γ-node reductions) and conditional branches (as the
VSDG does not contain corresponding split nodes).

146 Chapter 7. Splitting

(a) VSDG prior
to regionalization

(b) RVSDG in which no
VSDG nodes are duplicated

(c) Alternative
RVSDG to (b)

(d) RVSDG tupling all three
γ-nodes (requires duplication)

γ

A

γ

B

P

YX

op'

γ

op

op2

op3

T

T

T F

F

F

P

P

P

P

op2

op3

B

X

A

Y

1 2 1 2

1 2

op'op

P

op2

op3

B A

1 2

X

1 2

op

Y

1 2

op'

P

op3

B

op

op2

X

1 2

A

op'

op2

Y

1 2

1 2

Figure 7.6: A VSDG containing two γ-nodes, and three corresponding but semantically-
different RVSDGs. (d) has two copies of op2; A must be scheduled in amongst the sequence
X; op2; op; and B in amongst Y ; op2; op′;. Contrastingly, in (b) and (c), the decision as
to whether to schedule A (resp. B) together with X or op (resp. Y or op′) has already been
made.

7.4. Optimality Criteria for Splitting 147

7.4 Optimality Criteria for Splitting
In Section 7.1 and 7.2 we saw a range of uses of splitting on the VSDG, and also the RVSDG.
This section considers the problem of deciding which splitting transformations should be per-
formed.

For Enabling Optimizations (Section 7.1.1), and including the tupling of γ-nodes (Sec-
tion 7.1.2), the use of splitting generally increases code size (by duplication), but does not
increase the length of any dynamic path, and may reduce it if other optimizations are enabled.
Thus, the application of splitting represents a classical space-time tradeoff, and a number of pos-
sible criteria of (sub-)“optimality” may be defined by prioritizing dynamic benefits and static
costs, as follows:

Optimal Merge Placement, captures the point at which all possible benefit has been derived
from node distribution transformations, only (discussed in Section 7.4.1);

Control Flow Preservation captures the point of maximum benefit without changing the con-
trol flow of the program (Section 7.4.2);

Limited Optimal Splitting achieves the same level of elimination of redundancy for predi-
cate tests as classical PRE does for computations, but does so while treating branching
uniformly with computation (discussed in Section 7.4.3), and

Exhaustive Optimal Splitting extends this approach and unifies it with complete PRE (dis-
cussed in Section 7.4.4).

For Reordering γ-Nodes (Section 7.1.2), the application of splitting is not a classical trade-
off: some reorderings benefit both space and time. (However, others are incomparable even on
time alone!) Reordering can also be desirable for normalization purposes. However consider
the problem of finding the best tree of γ-nodes (in terms of both static size, and number of
runtime tests) to select between just two values: such a tree can be seen as a Free Binary Deci-
sion Diagram [SW01] selecting between true and false, and finding the best tree is equivalent to
finding the best variable ordering. Alternatively, consider a multidimensional array whose ele-
ments are the two values and whose axes are the predicates tested by the γ-nodes; this is clearly
a Karnaugh map, and finding the best tree is equivalent to the boolean minimization problem.
Both of these are well-known to be NP-complete.

General cases can be further complicated by different leaves returning different functions of
a common argument, and the use of tail-sharing. (Tail-sharing allows a single static computation
of each value iff that value is always returned from the tree without modification; the tree must
still decide to which computation a tail-call should be made.) However, reordering can still
produce benefits, such as bringing together unspecializable instances of the duplicated nodes:
this allows them to be shared after the merge of values as shown in Figure 7.7(b).

For γ-Ordering (on the RVSDG, Section 7.2), the NP-completeness (of finding the best tree
to decide whether or not to evaluate the independent redundancy) is assured by the same argu-
ment.

148 Chapter 7. Splitting

(P ? 5 : x)+1

5i

xP

int +1

6i

xP

int +1

(P ? 6 : x+1)

apply

splitting

(a) Dynamic Optimality requires transforming LHS to RHS

let (a,b)=
 P ? (3,x) : (5,y)
in a+b

(P ? 3+x : 5+y)

int +

3i

int +

5i

xP y

int +

xP y

3i 5i

apply

splitting

(b) Static Optimality requires transforming RHS to LHS

Figure 7.7: Static and Dynamic Optimality of Merge Placement

7.4.1 Optimal Merge Placement
Firstly, we consider only applying the node distribution transformation. Similar metrics of static
and dynamic optimality apply here as for the problem of VSDG sequentialization (Section 3.1)
and are shown in Figure 7.7:

• A VSDG has dynamically optimal merge placement if there is no result s ∈ t• which
is passed to t′ by a chain of γ-nodes, such that an unconditional rewrite rule could be
applied if the γ-nodes did not intervene (i.e. if s ∈ •t′). For example, Figure 7.7(a) shows
a VSDG which is not dynamically optimal, and a transformed version which is.

• A VSDG has statically optimal merge placement if there is no γ-node g whose true and
false transitions both return results from operations of the same type. For example, Fig-
ure 7.7(b) shows a VSDG which is not statically optimal, and a transformed version which
is.

However, note the RVSDG’s specification of execution conditions is important here. A
transition t ∈ G where G is (hierarchically) contained in a net G′, cannot be split across a
complex γ-node tg〈 . . .〉 ∈ G′ without first speculating t—that is, moving t outside G and
into G′. This would cause the copies of t to be executed when the original was not (even
after splitting), as shown in Figure 7.8(a) and (b). As (c) shows, this can be prevented by first
duplicating tg and predicating the copies on the γ-nodes controlling execution of t—that is, by
making tg subsidiary by γ-ordering—however this means that control flow is not preserved, and
exponential growth may result. (A particular case of this is an operation t with two different
γ-node operands, which can be optimized only in one case out of the four: pulling t through
one γ-node then leads to the situation in Figure 7.8(a)).

7.4.2 Control Flow Preservation
An alternative criteria for optimality is thus, “the best solution that does not require modifying
the control-flow structure of the program”, as encoded by the γ-nodes. That is, γ-nodes may

7.4. Optimality Criteria for Splitting 149

5i

xP yQ

int+5 int *

xP yQ

5i

10i

1 2

int+5

1

2

int *

xP yQ

int *

5i
10i int+5

(a) Initial RVSDG (b) Naive splitting causes
int+5 to be speculated

(c) After γ-ordering to make
the test on P subsidiary

Figure 7.8: Optimal Merge Placement can lead to Exponential Growth

not be duplicated, but within this restriction, any node t (potentially complex, so long as it does
not enclose a γ-node) may be split over any γ-node executable in the same program run.

For example, both dynamic and static optimality would be obtained in Figure 7.7, and split-
ting would also occur in the case of Figure 7.3. However many transformations are ruled out,
including node distribution of one γ-node across another (Figure 7.1.2), and distribution of a
transition t across a γ-node executed more frequently than t (as this requires first duplicating
the γ-node, as in Figure 7.8).

Further, some transformations allowed by this criteria can lead to γ-nodes with other γ-
nodes as predicates, and eliminating these by the rule for conditional predicates (Section 3.2.3)
would require changing the control flow. For example, if P implies Q then Q can be rewrit-
ten into γQ = γ(P, true, Q), and a node γ(γQ, A,B) would normally be transformed into
γ(P, A, γ(Q,A, B)). (However, this would not lead to code expansion if the two copies of
A can be tail-shared.)

Unlike the other definitions here, control flow preservation ensures sub-exponential (specif-
ically, quadratic) growth: for each of the O(n) non-γ nodes in the RVSDG, at most one copy
can be created for each of the O(n) γ-nodes. However note that it does not necessarily lead
to the smallest program: reordering γ-trees can allow code size to be reduced, as discussed in
Section 7.4 above.

7.4.3 Limited Optimal Splitting
If we remove the restriction of preserving control-flow and allow γ-nodes to be duplicated as
other nodes, an intuitive idea of optimality is that each transition t should be split over any

150 Chapter 7. Splitting

γ-node g which would enable optimization of t if g “must be tested”—i.e. if every execution of
t entails execution of g in the same program run3. (This is the case when either the LCA region
of t and g is the parent of the complex node containing g or all intervening ancestors of g are
strict nets.)

Because of the VSDG’s uniformity of expressions, this includes the case where t is itself a
complex node testing either the same predicate as g or some related one (i.e. implied by it), as in
such cases at least one copy of t can be collapsed down to either its true or false sub-net. This is
a nice example of the contrast with the CFG’s two-level structure of nodes and statements: the
same criteria can be applied to both computations and branching, merely by changing primitive
operation nodes into complex (γ-net) nodes.

Thus, this definition enhances Upton’s definition (given in Section 3.1) of the optimality
of a VSDG sequentialization by giving precise restrictions on the number of runtime tests and
branches a sequentialization may perform—and perhaps even completes it4.

For non-γ-nodes t, this means that t must only be split in cases producing two copies of
t—there is no requirement to pull t up to the leaves of a tree of γ-nodes if they would enable
optimization. However, if t is also a γ-node (i.e. the enabled “rewrite” is tupling of two γ-nodes
with the same predicate, or predicates related by implication), note that the rewriting works both
ways: if γ1 can be collapsed according to knowledge of the predicate of γ2, then γ2 can equally
be collapsed according to knowledge of the predicate of γ1. (Even if the predicates aren’t the
same, we have P ⇒ Q ≡ ¬Q ⇒ ¬P .)

Thus, limited optimal splitting says, if a strict net G exists as parent of one γ-net (it must test
P), and ancestor of another (it may test Q), then the two γ-nets need to be combined, eliminating
the redundant testing. An interesting comparison, shown in Figure 7.4.3, is that this removes
the same amount of redundancy in testing-and-branching, as classical PRE on the Control Flow
Graph does for assignment: observe that if the SESE regions (indicated by dotted outlines on
the CFG) performing testing-and-branching were instead single nodes, classical PRE would
remove the redundancy. However, the result can be exponentially bigger than the input source
code, in the same way as for Optimal Merge Placement (shown in Figure 7.8 and discussed in
Section 7.4.1).

7.4.4 Exhaustive Optimal Splitting
Another, stronger, intuitive criteria is that each transition t should be split over any γ-node g
which would enable optimization of t if g “may be tested”—i.e. whenever any program run
exists in which both execute (clearly, the splitting of t over g should only happen in those
program runs involving both!).

This means that splitting must be applied even if g is deeply nested within some γ-tree; in
such cases, t (along with ancestral regions specific to t and not g) must be split across the γ-net
ancestors of g until g is reached. In the case of splitting γ-nodes, this means that every time the
LCA of two γ-nets (with the same or related predicates) is a strict net, they must be combined.
This is a more symmetric requirement than Limited Optimal Splitting (in the previous section):

3A weaker criterion would be to only require splitting if, additionally, execution of g implies execution of t;
this is akin to control flow preservation but does allow the elimination of repeated (branch-and-merge) structures.

4We discussed in Section 4.4.2 that the flaw in Upton’s definition was that it took no account of the dynamic
number of tests and branches. Of course, even the restriction of Limited Optimal Splitting considers only tests of
predicates in the source code, and there are further possibilities of removing tests entirely, and introducing new
tests, not considered in this thesis.

7.4. Optimality Criteria for Splitting 151

G3

G1 G2

G4 G5

PQ

PQ

Q?

G4 G5G3

P?

Q?

G1 G2

Q?

G4 G5G3

P?

Q?

G1 G2

(Total redundancy) (Partial redundancy)

(a-CFG) Two possible CFGs; note the
redundancy of the second branch on Q

(a-VSDG) Repeated testing and branching on Q
fails to satisfy even limited optimal splitting

G3

G1 G2 G1
G4

G2
G5

PQ

PQPQ

Q?

G4 G5G3

P?

Q?

G1 G2

G1 G2

(b-VSDG) After transformation to make P
dominant; satisfies optimal splitting

(b-CFG) One corresponding CFG
(other orderings may be possible)

Figure 7.9: Limited Optimal Splitting corresponds to Classical PRE (see text pg. 150). (We
omit: an alternative to (b) in which the test on Q is dominant, also satisfying limited optimal
splitting; many alternative orderings in (b-CFG); and many possible tail-sharings of nodes in
(b), both CFG and VSDG)

152 Chapter 7. Splitting

the intuitive criteria above implies that γ-node t must be split across g if and only if g must be
split across t. (It does not specify which ordering to choose!)

As shown in Figure 7.4.4, Exhaustively Optimal Splitting thus removes all potential redun-
dancy in testing and branching, paralleling the requirement of Upton’s optimality criteria for
removing all redundant node evaluation (i.e. the greatest degree of redundancy that could be
eliminated by any set of program paths); thus, this is the intuitively cleanest way to complete
his definition. However we conjecture that the resulting code growth will be too large for it to
be practical.

7.5 Relation to and Application of Existing Techniques
In this section we will consider how a range of existing, mainly CFG-based, techniques relate
to the transformations outlined above.

Whereas the VSDG makes a wide space of optimizations easy to reach, such that the point
of optimality is hard to identify (or even define), many of these CFG techniques define and
give polynomial-time algorithms for “optimal” solutions to particular space-time tradeoffs, thus
suggesting clear parallels that could be applied to the VSDG.

7.5.1 Message Splitting
Chambers and Ungar developed a CFG-based splitting transformation which delays a control
flow merge and duplicates its would-be successors, as a technique for optimizing object-oriented
programs—long a challenge for compiler researchers, as the short method bodies and frequent
virtual method calls mean that traditional optimizations such as redundancy elimination and in-
struction scheduling have only very short blocks of code to operate on, and whilst in procedural
languages inlining could be used to ameliorate this, indirect calls make inlining very difficult.5

The splitting transformation is particularly useful on object-oriented programs because of
the interaction with guarded inlining6: each call site results in a merge point where the in-
lined body and backup call combine together, and calls (to the same receiver object) following
the merge can be distributed to before the merge, allowing further inlining without a second
guard/test. This leads to extended message splitting [CU90, CU91]—the specialization of an
entire method, protected by a single guard.

Chambers and Ungar consider a range of controlling heuristics, significantly including:

• Eager Splitting—duplicating the CFG nodes after any non-loop merge point onto both
predecessors; loop bodies can be similarly split until a fixpoint is reached (as duplicating
everything after a loop merge point indefinitely would lead to an unbounded increase in
code size!)

• Reluctant Splitting duplicates nodes after a merge point up to the point of a second call
to the same object (which can then be devirtualized), subject to the number of nodes

5Additionally polymorphic call sites are difficult for CPU branch predictors to handle correctly, although pre-
dictors using global history information to exploit branch correlation may avoid this problem in the situations
considered here.

6Where a virtual call is replaced by a test of the receiver’s class and a choice between an inlined copy of
the method body for that class and a “backup” virtual dispatch. This can be done by static heuristics such as
receiver class prediction [DS84, CUL89, CU89], or by runtime profiling, e.g. using observed call-graph edge
frequencies [HU94, GDGC95].

7.5. Relation to and Application of Existing Techniques 153

G1
G2 G3

QP

RP

G4
G5 G6

RQ

R

R?

G5 G6G4

Q?

R?

G2 G3G1

P?

(a-VSDG) Satisfies Limited but
not Exhaustive Optimal Splitting

(a-CFG)

G1

G4
G5 G6

RQ

QP R

QP R QP R

G4

G2
G5

G3
G6

RQ

(b-VSDG) Equivalent, satisfying
exhaustive optimal splitting

G2 G3

RQ

G4

Q?

R?

G2 G3

G1

P?

R?

G5 G6G4

Q?
R?

G5 G6

G2 G3

(b-CFG)

Figure 7.10: Exhaustive Optimal Splitting eliminates all redundancy in branching, as Chapter 3
does for node evaluation; compare (a) with Figure 3.2(a).

154 Chapter 7. Splitting

duplicated being less than a constant.

Comparison to splitting on the VSDG yields a number of insights:

• In the CFG, the operation to be duplicated (the second call) does not necessarily have
any value dependence on a result of the merge (the receiver): the information enabling
optimization results from the predicate (e.g. a class test). Thus, their splitting does not
necessarily correspond to node distribution.

• However, they only consider duplicating operations over earlier predicate tests, i.e. in
the forwards dataflow direction. Thus, their approach seems akin to our Dynamically
Optimal Merge Placement.

• However, in the specialized context of devirtualization (only), this is not a drawback, as
the interactions between virtual method calls (on the same object) are symmetric: each
generates a predicate over which later calls may be split, and benefits from duplication
and specialization across any test on that predicate generated by an earlier call.

• Their estimate of duplication used by reluctant splitting is somewhat unreliable, due to
CFG phase-ordering problems (solved by use of the RVSDG) with code motion opera-
tions (specifically PRE or VBE). This is discussed below in Section 7.5.5.

The same transformation was also used by Arnold and Ryder [AHR02], who developed
an alternative heuristic using feedback-directed profiling: given some space budget, repeatedly
duplicate the CFG node following whichever merge point is most-frequently-executed, until
the budget is exhausted or the frequency of execution falls below some constant. Whilst in
some sense this is more general (optimizations other than devirtualization/guard-elimination
are enabled), it does not measure whether any optimization is actually enabled, and is limited
by the overspecification of ordering in the CFG: operations can only be split over predicates
and merge points that happen to be ordered before them.

7.5.2 Cost-Optimal Code Motion
Hailperin [Hai98] used the machinery of classical PRE as a framework for enabling other trans-
formations, placing computations (at nodes of the original CFG) so as to minimize their cost
measured by a user-supplied metric. Loosely, whereas Lazy Code Motion first moves compu-
tations as early as possible, and then delays them as far as possible without reintroducing re-
dundancy (specifically, it does not delay computations past control-flow merges), Cost-Optimal
Code Motion moves computations as early as possible, but then delays them only as far as is
possible without increasing their cost.

However, in order to ensure an “optimal” solution found by the LCM algorithm exists,
Hailperin places two constraints on the cost metrics that may be used:

• When control flow paths merge, the cost of an operation must remain the same or increase
if it is placed after the merge rather than before.

• When control flow paths do not merge—this includes the case of a control-flow split—the
cost of any operation must remain the same.

7.5. Relation to and Application of Existing Techniques 155

(Both constraints apply only in the absence of assignments to the operands or uses of the result.)
The effect of these criteria is that it is not generally possible to exploit knowledge of the

predicate governing a control-flow split; instead, only optimizations based on forwards dataflow
information (which becomes less accurate following control-flow merges) may be used. Thus,
Hailperin’s framework can perform only node distribution transformations; further, being based
on classical code motion, it cannot change the control-flow structure of the program. Hence, we
see it as limited to the intersection of Optimal Merge Placement (defined in Section 7.4.1) and
Control Flow Preservation (Section 7.4.2).

7.5.3 Speculative Code Motion
Scholz, Horspool and Knoop [SHK04] consider the use of runtime profiling information to fur-
ther reduce the number of dynamic executions. They use the same classical framework of plac-
ing computations at existing CFG nodes, but abandon the previous notion of conservatism—
that is, they allow computations to be introduced onto (i.e. speculated on) paths on which they
did not previously occur. Their algorithm finds the code motion transformation minimizing a
weighted sum of static size and dynamic executions, allowing the two to be traded against each
other. This suggests VSDG heuristics for allowing speculation in both node distribution PRE
(Section 4.4.5) and the choice of evaluation strategy in proceduralization (Section 3.1), although
it is not clear how to take into account the extra benefit from changing the control flow structure
that speculation allows in the RVSDG.

Another potential application for frequency profiling is the reordering of tests, mentioned in
Sections 7.1.2 and 7.4. Many possible trees are statically incomparable even only on their time
complexity, for example the choice between the following two expressions:

if P then A else if Q then A else B

if Q then A else if P then A else B

but testing the most-frequently-true predicate would be most efficient. This may be particu-
larly effective in reordering operations which share code for handling exceptional failure cases.
Similarly if P implies Q then optimal splitting requires tupling some γ-nodes testing P and
Q; dynamically, it is more efficient to make P dominant if P holds more often than ¬Q, or Q
dominant if the reverse. Such applications are left for future work.

7.5.4 Use of the PDG
Feigen et al.’s Revival Transformation [FKCX94] performs PDCE on the Program Dependence
Graph by detaching a partially-dead expression (more precisely, a PDG subgraph, thus poten-
tially spanning multiple basic blocks) from the CDG and reattaching or “reviving” it in a new lo-
cation. Duplication-freedom is assured as the subgraph is attached to only a single parent group
node. Significantly, this technique is capable of reordering branches (shown in Figure 7.11),
but it cannot rearrange multiple uses of the detached expression to bring them together, nor
duplicate the expression (as classical code motion can [KRS94b]) when this would allow a dy-
namically better solution. Moreover, it performs only PDCE and not PRE (for example, neither
CFG Figure 4.4(b) or (c) is transformed into our solution of Figure 4.5).

156 Chapter 7. Splitting

if (Q)

r1=A

if (P)

r2=B r2=op(r1)

(b) VSDG

if (Q) r1=A;
r2=(P ? op(r1) : B);

(d) CFG produced by
Bodik and Gupta

if (Q)

r1=A

if (P)

r2=B r2=op(r1)

if (P)

if (P){
 if (Q) r1=A;
 r2=op(r1);
} else r2=B;

(a) CFG for

if (Q)

r1=A

if (P)

r2=B

r2=op(r1)

(c) CFG for

produced from VSDG
or by Feigen et al

γ

γ

Q

P

A

op B

r2

(previous
value
of r1)

T

T

P

P

F

F

Figure 7.11: Comparison of VSDG, PDG, and CFG-restructuring techniques on a PDCE ex-
ample similar to the “independent” redundancy of Figure 4.4.

7.5. Relation to and Application of Existing Techniques 157

7.5.5 Restructuring the CFG
Steffen [Ste96] achieves total PDCE by restructuring the CFG. However this is achieved by
introducing nondeterminism and backtracking, requiring a substantial overhead in additional
control flow.

Mueller and Whalley [MW95] consider applying splitting to the CFG—which they term
path separation—in order to remove conditional branches. Specifically, they identify a latest
CFG node n where the result of some future branch b is known (for example, n is the true or false
successor of another branch with the same predicate, and there are no intervening assignments
to predicate operands), such that b’s outcome is not known at n’s successor (which must be
a control flow merge). They then duplicate (split) all nodes on the path between n and b, thus
hoisting them above the merge; the copy made of b is then statically known to have only a single
successor.

This technique is applicable even when the path from n to b has other branches on it (i.e.
when b does not postdominate n), and thus is similar to our exhaustive optimal splitting (al-
though they do not consider enabling other optimizations). However, such cases highlight the
intrinsic limitation of such CFG splitting techniques (in which we include those discussed in
Section 7.5.1): the CFG’s total ordering (of both branches and statements) means that all nodes
on the path from the merge to the node to split (b above) must be split (i.e. duplicated) in
the same way first. This is shown in Figure 7.12, with the intervening nodes performing an
unrelated test, branch and merge on a second predicate Q, before the desired node—a second
test on P—is reached: Figure 7.12(a-CFG) shows the input CFG, and (b-CFG) the CFG af-
ter application of splitting. Observe that the result performs the same operations in the same
sequence as the original; transformation is limited to specializing copies of existing nodes to
better knowledge of the paths leading to them.

In contrast, the VSDG removes the artificial ordering and duplicates only those operations
which must come between the merge and the node to split. Thus, Figure 7.12(c-VSDG) shows
the result (so long as no more than one of the red and blue dependency arcs exists; if both exist,
the solution of (b-CFG) cannot be improved upon), and (c-CFG) the two possible CFGs.

Bodı́k and Gupta [BG97] apply a program slicing transformation to execute partially dead
expressions conditionally, only if their results will be used, and achieve complete PDCE
on acyclic code. This is at the cost of introducing extra conditional branches, which are
subsequently eliminated by application of Mueller and Whalley’s CFG splitting technique
above [MW95].

In further work, Bodik, Gupta and Soffa [BGS98b] apply the same CFG splitting techniques
as an enabling transformation for subsequent code motion, and—to our knowledge uniquely—
achieve complete PDCE without introducing extra runtime tests. Their approach works by iden-
tifying code-motion-preventing (CMP) regions—where the expression is partially-but-not-fully
both-anticipatable-and-available—which block code motion by classical techniques; separating
out paths where the expression is available from those where it is not allows code motion to
proceed. Further, they show how selective application guided by runtime profiling techniques
can be used to trade the resulting code growth against speculative evaluation.

In an insightful parallel with the VSDG, CMP regions correspond to the independent re-
dundancies of Chapter 3, where naı̈ve treatment of the two γ-nodes resulted in this same
branch-merge-branch structure7. Their use of CFG splitting to separate out the paths where

7This structure is shown in Figure 3.4(b) for redundant node evaluation, and Figure 7.4.4(a) for redundant

158 Chapter 7. Splitting

P?

A
B

Q
?

C
D

P?

E
F

(a
-C

FG
)

(a
-V

SD
G

)

C
D

A
B

P
Q

E
F

P?

A
B

Q
?

C
D

Q
?

C
D

E
F

(b
-C

FG
)P

Q

C
D

A
B

E
F

C
D

P
Q

P
Q

(b
-V

SD
G

)

C
D

A E
B F

P
Q

(c
-V

SD
G

)

(c
-C

FG
)T

w
o

po
ss

ib
ili

tie
s

Q
?

C
D

P?

A
B

E
F

Q
?

C
D

P?

A
B

E
F

(i
f

no
 r

ed

de
pe

nd
en

ce
)

(i
f

no
 b

lu
e

de
pe

nd
en

ce
)

ot
he

rw
ise

if both red and blue dependences exist

CFG Splitting

??
(see text)

Figure 7.12: Splitting on the CFG and VSDG: A Comparison (see Section 7.5.5)

7.5. Relation to and Application of Existing Techniques 159

the expression is available or not parallels our use of the γ-ordering transformation to separate
out the corresponding conditions. However, the conditions capture only the essential essence
of whether the computation is available, whereas the paths include both unrelated nodes and
branches which provide no useful information, yet which CFG splitting must nevertheless du-
plicate. Figure 7.11(d) shows another example where the inability to reorder branches leads to
an unnecessarily large and complex CFG.

Clearly, the two CFGs of Figure 7.12(c-CFG) can be produced by transforming (b-CFG);
perhaps by applying either the Very Busy Expressions (VBE) optimization (subsumed by PRE)
or some global restructuring form of instruction-scheduling (akin to full-brown node scheduling
on the VSDG, but for example possibly based on SESE-regions) followed by cross-jumping.
However, we are not aware of any CFG-based solution combining these two usually-distinct
phases, and it seems likely there would be substantial phase-ordering problems: leaving the
recombination to a later phase after splitting means that the “costs” (in terms of code size) used
to guide the splitting operations will be overestimates or at best inaccurate.

We conclude that restructuring the CFG is a difficult problem; it seems both simpler and
more effective to “throw away” the existing CFG structure and build a new one from scratch as
VSDG techniques do.

In fact the situation with the CFG is equivalent to operating on a special case of VSDG, in
which the (linearly-typed) state dependence chain is used to record all branching and merging
of control flow8, thus totally ordering the branches. Thus, any of these CFG techniques could
be applied to the VSDG as a guiding heuristic—that is, under the assumption of preserving the
original CFG’s branch (and perhaps statement) ordering. However, the VSDG’s usual flexibil-
ity in ordering makes this assumption seem somewhat artificial, and suggests possibilities for
relaxing the constraint partially or on a fine-grain basis. We leave this as a topic for future work.

branching; in both cases the CMP region is the branch node Q? plus the preceding join.
8Shortcircuit evaluation in the CFG can be handled by duplication of nodes until later in the compilation

process.

160 Chapter 7. Splitting

CHAPTER 8

Conclusion

The VSDG is a promising basis for the construction of new optimising compilers whose time
has now come. Previous obstacles and objections to the use of the VSDG have been compre-
hensively addressed in this thesis:

Lack of Understanding as to what the VSDG is, what its key features and differences are, are
addressed by

• Comparison and relation with the Program Dependence Graph (PDG), and unifica-
tion of the two using an explicit sharing partition (in Chapter 5).

• The relationship between the VSDG and functional (specifically, lazy) programming
languages;

• The importance of continuations and higher-order programming in sequentializing
the VSDG.

Sequentialization has been a long-standing problem for the VSDG. Specifically:

• We have addressed the question of how the VSDG may be used as the basis of a
compiler, by presenting (in Chapter 2) a framework for sequentialization based upon
semantic refinement. The VSDG→CFG sequentialization process was thus broken
into phases using the PDG as midpoint. Further, we have shown how a wide variety
of divergent CFG optimizations such as code motion and instruction scheduling fit
into this framework.

• Previous approaches have not succeeded in reconstructing effective control flow
from the VSDG, losing out to naı̈ve CFG compilers in terms of size and/or speed
on common cases such as shortcircuit boolean expressions. We have addressed
this issue (in Chapter 3) with a new technique which optimizes the control flow
structure of branch-intensive code more thoroughly and systematically than existing
techniques. Thus, the maxim of the VSDG: “the best way to optimize control flow
is to throw it away”.

161

162 Chapter 8. Conclusion

This thesis has further demonstrated advantages offered by the VSDG in:

Improving Notions of Optimality Many CFG optimizations select transformations which are
optimal only among small subsets of all possible transformations. That is, they solve the
problem of how best to apply some particular optimization or transformation framework
in isolation, and considering only some characteristics of the output. This subset is usually
limited to transformations that leave the structure of the CFG unchanged or change it only
in particular ways. By throwing away the CFG entirely, VSDG-based approaches make
it easier to consider larger universes of transformations.

Raising the Level Of Abstraction Upton [Upt06] argues that we should use the VSDG be-
cause it makes implementing an entire compiler easier, but this has not proved suf-
ficient incentive due to the ready availability of implementations of and infrastructure
the current generation of CFG techniques. However, we have argued that the VSDG’s
higher level and more abstract representation pushes outwards one of the main limits
to optimization—the ingenuity of the human designers of optimization algorithms—and
suggests new targets for optimization. (Specifically including the reordering of branches,
considered in Chapter 7.)

Solving Phase-order Problems Our breakdown of sequentialization into phases of procedu-
ralization (VSDG→PDG) and node scheduling (PDG→CFG) achieves a better separa-
tion of concerns than CFG-based approaches with many distinct optimization phases and
allows many previously-antagonistic optimizations to be profitably combined. (For ex-
ample, register allocation, code motion, and instruction scheduling—considered in Chap-
ter 6.)

We have also seen the CFG as a special case of VSDG in which extra state edges are used
to restrict the possible orderings, specifically with respect to branches. However, many of the
benefits of the VSDG seem to stem from its flexibility in ordering, and this suggests that analy-
ses which remove unnecessary ordering constraints—for example, alias and pointer analyses or
the use of linear types, allowing the state to be broken into many small portions—offer benefits
in making more optimization opportunities available and/or affordable.

Lastly, the differences between the CFG and VSDG have also demonstrated the principle,
suggested in the Introduction (Chapter 1), that more abstraction is better; and consequently for
Intermediate Representations, more normalizing IRs are better— iff it is possible to select the
best output among those corresponding to a given Intermediate Representation form.

8.1 Open Questions
We end with a number of issues that we have not addressed, but that this thesis highlights as
being of particular interest or importance for future work:

Optimal Sequentialization of the PDG Although Ferrante et al. have given a necessary and
sufficient condition for the existence of a CFG, corresponding to a PDG, without any
duplication, the question of how to minimise the duplication where this condition does
not hold is still open. In particular, this challenge has not been proven NP-complete nor
has a polynomial-time algorithm been presented.

8.1. Open Questions 163

Guiding Heuristics for γ-ordering during proceduralization; splitting, in particular reorder-
ing of γ-trees; and node scheduling—both for the various transformations performed by
Johnson and more aggressive techniques (discussed in Chapter 6).

Integrating Proceduralization and Node Scheduling on a fine-grain basis, in order to tackle
issues of phase-ordering remaining in our architecture.

Quantitative Practical Evaluation of a VSDG-based compiler. We see this in terms of two
other questions:

1. How many optimizations would need to be included in a VSDG compiler to make
it competitive with existing CFG compilers (which have substantial investments in
optimization technology);

2. How performance—of both the compiler and the generated code—would compare
between the two techniques iff all the same CFG optimizations were implemented
on the VSDG. As discussed in Chapter 1, the advantages of the VSDG as Intermedi-
ate Representation are likely to increase as increasing effort is put into optimization.

Redeveloping More CFG Optimizations on the VSDG and in our sequentialization frame-
work, to exploit the advantages of both.

164 Chapter 8. Conclusion

APPENDIX A

Glossary of Terms

CDG Control Dependence Graph. Subgraph of a PDG consisting of just nodes and control
dependence edges. These allow a notion of “all these statements are to be executed in
some order”, thus encoding an evaluation strategy but retaining some parallelism.

CFG Control Flow Graph. IR in which nodes are labelled with statements and edges explicitly
represent the flow of control from one node to the next.

Construction conversion of a program from source code into an IR

DDG Data Dependence Graph. Subgraph of a PDG consisting of the nodes and data depen-
dence edges, used to restrict possible orderings of execution.

Destruction opposite of construction: conversion of an IR into machine code. For VSDG and
PDG, this is performed by sequentialization to a CFG; for CFG, conversion to machine
code involves laying out the basic blocks into a single list of machine instructions (not
considered in this thesis).

df-PDG duplication-free PDG

df-RVSDG duplication-free RVSDG

Duplication-freedom quality of a PDG or RVSDG, that its statement and predicate nodes
(arithmetic and γ-node transitions) can be arranged into a CFG without further dupli-
cating them. That is, indicates its control flow can be implemented with a single program
counter.

IR intermediate representation. A structure for representing a program in a compiler, allowing
operations of construction, optimization and destruction. This thesis uses three distinct
IRs which contain different levels of specification of instruction ordering, namely the
VSDG, PDG and CFG.

Node Scheduling Conversion of a df-PDG to a CFG. Parallels the instruction scheduling opti-
mization on CFGs, also including register allocation. Covered in Chapter 6.

165

166 Chapter A. Glossary of Terms

Optimization Generically, any change to a program in order to improve its efficiency (in space
or time). Also refers to a stage in compilation between construction and destruction where
the representation of the program is changed whilst remaining in a particular IR.

PDG Program Dependence Graph. IR containing statement nodes, predicate nodes and group
nodes, control dependence edges and data dependence edges. See CDG, DDG. Used in
this thesis as a midpoint between VSDG and CFG. (Defined Section 2.3.)

PDG Sequentialization Conventionally seen as the conversion of a PDG into a CFG. How-
ever in our architecture we use PDG Sequentialization only to convert from a PDG into
the special case of a df-PDG, and leave df-PDG→CFG conversion to a node scheduling
phase.

Proceduralization conversion of a VSDG into a PDG

RVSDG Regionalized VSDG. Variant of VSDG equivalent to PDG by explicitly arranging
nodes into a hierarchy of regions to specify when evaluation of nodes is conditional on
γ-node predicates. Also represents loops using iter nodes. (Defined Section 5.5.)

Regionalization Equivalent to proceduralization, but specifically referring to the production of
an RVSDG by arranging the VSDG’s nodes into regions.

Reuse-sharing Where a single static computation computes a result once, which is then used
by multiple consumers.

Sequentialization generically, conversion of a VSDG or PDG into a CFG. See VSDG Sequen-
tialization; PDG Sequentialization.

Tail-sharing Where a single static computation computes one of several possible different dy-
namic values, because the subsequent use or continuation of each possible value is the
same.

u-VSDG unshared VSDG. Special case of VSDG to which a maximum degree of node cloning
(Section 2.7.3) has been applied (no transition has more than one consumer). Used in
Chapter 5 to unify the PDG and VSDG with an explicit specification of tail-sharing and
reuse-sharing.

VSDG Value State Dependence Graph. IR representing a program functionally in terms of
values and dependences between them, without representation of evaluation strategy.

VSDG Sequentialization Conversion of a VSDG into a CFG. Performed in this thesis by pro-
ceduralization followed by PDG Sequentialization followed by node scheduling.

APPENDIX B

State Edges and Haskell

In this Appendix we will show an encoding of the VSDG’s state edges into a lazy functional
language, using Haskell’s state monad. This leads neatly to a rigorous definition of the well-
formedness conditions whose static enforcement guarantees the dynamic property of state (that
every state produced is consumed exactly once) mentioned in Chapter 2 (Section 2.6.7). Lastly
we overview some ways in which the VSDG’s state edges can be generalized to model a number
of other considerations.

B.1 The State Monad
Operations with side effects are often modelled in Haskell using the state monad. States are
represented as functional values of some type state (e.g. a type parameter to the monad1),
and a stateful value of type T is a function from state to T × state—i.e. a function that takes
the initial state in which the value is computed and returns not only the value but also the state
resulting afterwards. State monads have been widely written about [has] and we refer the reader
elsewhere for further details [Mog91, JW93].

In what follows, we assume the representation of states is some abstract type state corre-
sponding to a state place in the VSDG, and that operations such as reads and writes, operating
on states, are provided.

Stateful operations are composed together by use of the monadic bind operator, >>=:

(>>=): stateful a -> (a -> stateful b) -> stateful b
let x >>= f =

\init -> let (val,st)=x init in (f val) st;

In particular, >>= (and it’s cousin >>) ensure that the state existing inbetween evaluation of
x and f is (only) used exactly once. This is the same dynamic requirement as the VSDG makes
on states, and thus >> is the basis of the translation.

1A special case is the IO monad, in which states are machine states, i.e. potentially external to the Haskell
VM. The representation of state is abstracted away and a primitive unsafePerformIO : IO t -> t exists
to allow values to be read out of the monad, but this does not behave as a pure function as it may e.g. perform disk
operations.

167

168 Chapter B. State Edges and Haskell

γ₁

γ₃γ₂

d fe g

cb

a

Node Children idom

γ₁ γ₂,γ₃,a,b,c a

γ₃ e,g a
γ₂ d,f a

b,c ∅ a

d,e ∅ b

f,g ∅ c

Key

x

y

y=idom(x)

x

y
y=ipdom(x)T

T TF

F

F

Figure B.1: A complex example in which states are still used linearly; encoded into Haskell on
page 168

B.2 Encoding Just the State Edges
First we explain a simplified version of the encoding, in which we consider just the state
subgraph—that is, state edges and stateful nodes only. Further, we will let the representation in
Haskell of each transition a or b be simply OPER ’a’ or OPER ’b’, where a or b is a unique
name given to each node2 and assume that the predicate of any γ-node γi is simply available in
a global variable Pi (as the state subgraph does not include predicates or the edges to them).
Nonetheless, this simplified encoding—suitable for e.g. representing the state as a list of actions
performed—demonstrates key issues as to how state splits and merges are handled. Values are
added in Section B.3 to make a complete encoding.

Straight line code is handled as in OPER ’a’ >> OPER ’b’ >> ..., beginning with
the predecessor of the function header, and terminating after the function’s result place with
return (). This yields an expression for the whole function of type stateful unit.

Encoding of γ-nodes is more difficult and will be explained with the example of Figure B.1.
The idea is to output a let defining a variable of type stateful unit for each node (recall
all these nodes are state-producing), including γ-nodes—these produce if statements gathering
other definitions together. The definitions use >> internally as necessary. Finally, when the last
γ-node—that is, the merge corresponding to the split—is encountered, this is output as the body
of the let-expr, and the enclosing chain of >>’s continues.

Thus, for Figure B.1, we get:

((OPER ’a’) >>
let b=(OPER ’b’) in
let c=(OPER ’c’) in
let g2=(

2In particular, we write gi for a γ-node γi.

B.2. Encoding Just the State Edges 169

let d=(b>>OPER ’d’) in
let f=(c>>OPER ’f’) in
if P2 then d else f

) in
let g3=(

let e=(b>>OPER ’e’) in
let g=(c>>OPER ’g’) in
if P3 then d else f

) in
if P1 then g2 else g3

)

Algorithmically, this can be achieved by a traversal of the postdominator tree, in a similar
fashion to the proceduralization algorithm of Chapter 3. We write the traversal algorithm as
encState(t), for a transition t; an informal description is given below.

Key to the algorithm is the immediate dominator idom(t) of each transition t, as this is the
last operation (in terms of the flow of execution in the resulting program) that either must have
executed when t does, or must be executed: execution of u = idom(t) is performed by the call
to encState(ipdom(u)).

Thus, there are three main cases when encState visits a transition t, with children C = {t′ |
ipdom(t′) = t} and immediate dominator u = idom(t):

1. u ∈ C. In this case, encState(t) must make u happen itself, so the result is (
encState(u) >> doLetExprs(C\u) code(t)), where doLetExprs simply outputs let
t′=encState(n′) in for each node t′ in its argument set, in topological sort order (this
was discussed in Chapter 3).

2. u = idom(ipdom(t)). That is, u is unchanged from t’s parent (this ensures u /∈ C).
Thus, encState(t) leaves it to the enclosing encState(ipdom(t)) to execute u (perhaps by
leaving it to a further enclosing call), and the result is just (doLetExprs(C) code(t))

3. Otherwise, u 6= idom(ipdom(t)) ∧ u 6∈ C. The former means u is not already guaranteed
to have executed; the latter means encState(t) should not output the code for u as some
dynamically enclosing call encState(t′′) (for t′′ pdom+ t) will have instead. Instead, u
is identified by name: such a variable will be in scope because encState(t′′) will have
visited u first (because of the topological sort), and defined a variable for u (because a
variable is defined for every node apart from in case 1, which cannot have applied because
u is not the immediate dominator of t’s parent). Thus, the result is (u >> doLetExprs(C)
code(n)).

Non-γ-nodes have a single predecessor which is their immediate dominator, and only pos-
sible child. If there are no branches, each node immediately postdominates said predecessor,
and case 1 applies with C\p = ∅; thus doLetExprs produces no code, and we end up with the
simple straight-line behaviour above.

However, where there are γ-nodes, transitions t which are control-flow splits are postdom-
inated only by the corresponding γ-node merges, and their successors t′ thus have no children.
Hence case 3 applies, and encState identifies idom(t′) = t by name—for example, in Fig-
ure B.2 node b has no postdominator children, thus resulting in (a >> OPER ’b’), whereas
node c postdominates idom(c) = b, resulting in ((a >> OPER ’b’) >> OPER ’c’).

170 Chapter B. State Edges and Haskell

γ₁

other
nodes
not
shown

a

b

c

T F

Figure B.2: Simple branching and merging of states—see discussion on page 169

We now consider execution on the example of Figure B.1. Traversal begins at node
γ1, where case 1 applies; the other children are b, c, γ2 and γ3, with b and c com-
ing first. Thus (encState(a) >> let b=encState(b) in let c=encState(c) in let
g2=encState(γ2) in let g3=encState(γ3) in if P1 then g2 else g3).

At node b, case 2 applies, and C = ∅, resulting in just OPER ’b’. Similarly for c.
At node γ2, case 2 applies again, but there are two children, d and f ; thus, we get (let

d=encState(d) in let f=encState(f) in if P2 then d else f). Similarly for
γ3 with e and g instead of d and f respectively.

At node d, case 3 applies: d’s parent is γ2, and idom(γ2) = a 6= idom(d) = b. That is, the
last operation which definitely has to be executed is b; hence we get (b >> OPER ’d’) (d
has no children). Similarly for node e, and for f and g with idom(f) = idom(g) = c.

B.3 Adding Values
The key to adding values to the translation is to find an equivalent to the principle of immediate
dominance for non-stateful transitions t. Specifically, for each such t, we identify the earliest
state in which t can be executed, called the state environment and written ste(t). Evaluation
of t may actually be delayed and occur in some later state (because of lazy evaluation), but
any e.g. operands to t which ste(t) produces (perhaps by reading them from memory) can
be preserved, as they are (functional) values, inside the VSDG. The function ste(t) is defined
below in Section B.5; for now, we merely assume it is uniquely defined for each non-stateful
node.

The main idea is to change every variable t in the state-only Haskell translation of Sec-
tion B.2 into a tuple of all the values Vt = {s | ste(◦s) = t}. That is, whereas previously
every variable t was of type stateful unit—recall unit is the empty tuple!—now each
t will have type stateful (s1*. . .*skt), where s1 . . . skt are the types of the places in Vt.

B.3. Adding Values 171

The entire tuple is wrapped in the state monad, so >>= must be used to unwrap the stateful
tuple and allows access to its elements:

x >>= \(n1,n2,n3) -> (* code using node values n1,n2,n3 *)

(x :: stateful (t1*t2*t3)) >>= ((t1*t2*t3) -> stateful T)
:: stateful T

Thus, only operations sequentially composed after t using >>= may access values produced by
transitions depending on t’s state.

Each stateful transition t is translated as the code for t, followed by >>= to access its results,
and then the set Vt translated as in the value-only translation of Chapter 2 (Section 2.2.2); after
all−→s = Vt are defined by let-exprs, the body is then return −→s . For example, the following
is the encoding of a read operation n with a single dependent operation adding one to the value
read:

let n=READ(addr) >>= \val -> let a=val+1 in return (val,a)

For stateful operations which do not produce a value (e.g. writes to memory), Vt = ∅
(nodes cannot have value dependencies on a node not producing a value!); hence, the type of
t will be stateful unit as in the state-only translation of Section B.2, and the same let
t=(code for t) form as in Section B.2 can be used instead of let t=(code for t) >>= \()
-> return ().

Example Consider the VSDG of Figure B.3. Translation of just the state subgraph yields:

(READ) >>
let e=(WRITE) in
let d=(READ >> WRITE) in
if (P) then e else d;

Adding values as well yields:

let f=6 in (
(READ >>= \a -> let h=odd(a) in return (a,h))

>>= \(a,h) ->
let e=(WRITE(a)) in
let d=(

(READ >>=\b -> let c=a+b in return (b,c))
>>= \(b,c) ->
WRITE(c) >> return b

) in
if h then (e >> return f)

else (d >>= \b -> return b)
);

This example shows two subtleties.

172 Chapter B. State Edges and Haskell

γ

int +
odd?

a:

b:

d:

c:

e:

h:

f:

g:

Node Children idom
g a,e,d a

e ∅ a
d b b

STATEFUL NODES:

OTHERS:

f -

Node Environment
c b
h a

T
F

WRITE

WRITE

P

READ

READ

6i

Figure B.3: Example VSDG; see translation into Haskell on page 171

• Firstly, in the treatment of γ-nodes. The code for a γ-node is if (p) then t else
f , for predicate p, and t and f being code for the true and false cases. These are most
easily produced by pretending the existence of “pseudo-nodes” which pass the values and
states for true and false, respectively, through themselves—that is, they gather together
into one node all the edges leaving the true or false ports. Thus, the false pseudo-node for
g gathers together edges to b and d; its dominator in the state subgraph is d, so it outputs
d >>= and unpacks the tuple of values returned by d, then returns value b.

• Secondly, the tuple of values returned by a stateful node n is not actually Vn = {n′ |
ste(n′) = n}; these are merely the nodes defined inside the block for n (mostly as let-
exprs). The return statement differs in two respects. Firstly, it need gather together
only those nodes that are actually required by later code, i.e. which have incoming value
edges from outside Vn. Secondly, it must also return any earlier values (i.e. unpacked
from a previous tuple by >>=, rather than defined by the block for n) that are subsequently
required. This second point is demonstrated by the code for let d= above, returning
the value from node b.

B.4 Even the State Monad is Too Expressive
The state monad has been widely criticised for “oversequentializing” operations, that is, forcing
even independent operations (for example, reads and writes to memory locations known to be
different) into an order. Whilst in our translation this applies only to stateful operations—as
value nodes are defined via lazy lets—the restriction seems the same as that we deliberately

B.5. Well-Formedness Conditions 173

apply to state edges in the VSDG (that is, in any execution, all stateful operations are totally
ordered! We consider more flexible extensions to the VSDG in Section B.6).

However, in fact the state monad is too expressive. Consider the following code, which
seems similar to that produced by the state-only translation of Section B.2:

let a=OPER ’a’ in
let b=OPER ’b’ in
if (P) then b else a>>b;

There is no VSDG which would produce this code! Upon closer inspection we see the
reason for this is that the operation b is executed in two distinct states: the state existing at the
beginning of the program fragment, and the state existing after execution of a. No single node
or variable defines the state upon which b operates. That is, b is being used as a function: it’s
type is state -> (unit*state), and it is being applied to two distinct operands; this
is the same restriction as discussed in Chapter 6 for values (it merely looks different because
application of stateful operations to states is hidden by >>).

Thus, the sequence of operations must instead be expressed as:

(let a=OPER ’a’ in
if (P) then return () else a) >> OPER ’b’;

(we can consider return () as the identity operation on states—it performs no action).
This restriction can also be expressed syntactically: a stateful variable defined by a

let-expr cannot be used on the RHS of >> or >>=.
Such variables can be used on the LHS; but the RHS can only be actual code, rather than

a variable—the problem being that variables allow to refer to the code from multiple places,
whereas the inlined code is written in only one.

B.5 Well-Formedness Conditions
The example in Section B.3 reveals three issues which are the basis of the well-formedness
requirements.

• Firstly, the definition of ste, the state environment for each node. We define ste(t), for
any transition t (the encoding only uses it for non-stateful nodes), as follows:

Let V (t) be the set of stateful transitions from which n is reachable along paths not
going through any stateful transitions. (This requirement is specifically to avoid going
through γ-nodes; the next step would remove nodes reaching t through non-γ-nodes, but
not true/false predecessors of stateful γ-nodes.)

Let V ′(t) be those nodes in V (t) which are not dominators in the state subgraph of other
nodes in V (t). (That is, remove from V (t) any node whose execution is necessarily
implied by the execution of another.)

ste(t) is now the unique node in V ′(t). The first well-formedness condition is thus that
|V ′(t)| = 1. (For nodes t that produce both state and value(s), ste(t) will be equal to t’s
unique state predecessor.)

For γ-nodes, we modify the requirement to apply separately to the true and false places
(value(s) and state, considered together, but true separate from false and from predicate—
this is the same as the pseudo-nodes mentioned in a subtlety in the previous section); it

174 Chapter B. State Edges and Haskell

does not apply to the γ-node as a whole. The second requirement then deals with the
predicate input, omitted from both true and false:

• Secondly, it must be possible to compute the predicate sp of any γ-node g before exe-
cution splits. That is, assuming ◦sp is not stateful, ste(◦sp) must dominate g in the state
subgraph. However, if ◦sp is itself stateful, then ◦sp must itself dominate g in the state
subgraph.

B.6 Derestricting State Edges
In this section, we will consider a number of ways in which the VSDG’s state edges can be
made more flexible.

As mentioned in Section B.4, the VSDGs state edges put a total ordering on stateful opera-
tions. However, clearly memory operations which do not alias can be reordered with respect to
each other3. Thus, one possibility would be to allow the state to be “split into chunks”, with ac-
cess to each chunk following similar restrictions on linearity, but operations on different chunks
could have state edges which bypassed the other. This would require significant extensions,
however, as merging and/or splitting chunks would break basic assumptions on the number
of state edges from even ordinary nodes; and “safety” restrictions would depend significantly
on alias analysis. Particularly useful however would be to allow chunks of state to be split
off somewhat dynamically, allowing modelling of accesses to separate dynamically-allocated
arrays, for example.

However, some operations do not seem to obey linearity restrictions at all. Under certain
memory semantics, multiple reads to potentially-aliasing locations may be reordered (past each
other, but not past writes). This could be modelled by an extension to the VSDG using quasi-
linear types [Kob99], as in the PacLang language [ESM04].

A third possibility is to model termination of loops and function calls separately from mem-
ory modifications. This would allow reads to be reordered past loops or function calls which
did not write to the same address—a form of speculation if reads are brought earlier; they could
also be speculated more generally.

Lastly, Johnson [JM03] allows state edges to be inserted arbitrarily between operations, so
long as they do not form cycles; this allows their use as serializing edges in node scheduling to
express arbitrary ordering decisions, discussed in Chapter 6.

B.7 A Note on Exceptions
We can also consider generalizing state edges to model other issues besides memory state and
termination. In particular, one possible scheme is to make every operation which might throw
an exception (a Potentially-Excepting Operation or PEO) stateful. The state edges then capture
the order in which these operations must be executed so that the correct exception behaviour is
produced.

We prefer a different scheme, whereby the tests as to whether an exception should be thrown
are made explicit as γ-nodes (e.g. testing for zero divisors). Exception handlers are then in-
cluded in the original VSDG. The advantage of this scheme is that it allows the techniques of

3Barring subtleties with memory protection—if any memory access might raise a protection fault, reordering
even non-aliased operations writes could result in states occuring that should have been impossible.

B.7. A Note on Exceptions 175

Chapter 7 to reorder exception tests (e.g. according to the frequency at which they fail); however
techniques for performing these tests “for free” using hardware exception support have not yet
been presented, and additional issues are raised about speculating computations (e.g. divisions)
before they are known to be safe. We also argue it is simpler: if exceptions are represented
by state edges, some additional mechanism is then required to identify the handler whenever a
PEO does raise an exception, including allowing the handler to resume execution of the original
VSDG.

176 Chapter B. State Edges and Haskell

Bibliography

[AHR02] Matthew Arnold, Michael Hind, and Barbara G. Ryder, Online feedback-directed
optimization of Java, OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications
(New York, NY, USA), ACM Press, 2002, pp. 111–129.

[Ana99] C. S. Ananian, The Static Single Information form, Tech. Report MIT-LCS-TR-
801, Massachusetts Institute of Technology, September 1999.

[App98] Andrew W. Appel, SSA is functional programming, ACM SIGPLAN Notices 33
(1998), no. 4, 17–20.

[AU77] Alfred V. Aho and Jeffrey D. Ullman, Principles of Compiler Design (Addison-
Wesley series in computer science and information processing), Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1977.

[BC94] Preston Briggs and Keith D. Cooper, Effective partial redundancy elimination,
SIGPLAN Not. 29 (1994), no. 6, 159–170.

[BG97] Rastislav Bodik and Rajiv Gupta, Partial Dead Code Elimination using Slicing
Transformations, SIGPLAN Conference on Programming Language Design and
Implementation, 1997, pp. 159–170.

[BGS98a] David A. Berson, Rajiv Gupta, and Mary Lou Soffa, Integrated Instruction
Scheduling and Register Allocation Techniques, Languages and Compilers for Par-
allel Computing, 1998, pp. 247–262.

[BGS98b] Rastislav Bodı́k, Rajiv Gupta, and Mary Lou Soffa, Complete removal of redundant
expressions, PLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation (New York, NY, USA), ACM
Press, 1998, pp. 1–14.

[BH92] Thomas J. Ball and Susan Horwitz, Constructing Control Flow From Control
Dependence, Tech. Report CS-TR-1992-1091, University of Wisconsin-Madison,
1992.

177

178 BIBLIOGRAPHY

[BH93] Samuel Bates and Susan Horwitz, Incremental program testing using program de-
pendence graphs, POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA), ACM
Press, 1993, pp. 384–396.

[BHRB89] W. Baxter and III H. R. Bauer, The program dependence graph and vectoriza-
tion, POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (New York, NY, USA), ACM Press, 1989,
pp. 1–11.

[Bin99] David Binkley, Computing amorphous program slices using dependence graphs,
SAC ’99: Proceedings of the 1999 ACM symposium on Applied computing (New
York, NY, USA), ACM Press, 1999, pp. 519–525.

[BR91] David Bernstein and Michael Rodeh, Global instruction scheduling for superscalar
machines, PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation (New York, NY, USA), ACM
Press, 1991, pp. 241–255.

[Bra94] T. Brasier, FRIGG: A New Approach to Combining Register Assignment and In-
struction Scheduling, Master’s thesis, Michigan Technological University, 1994.

[CCK+97] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and Peng
Tu, A new algorithm for partial redundancy elimination based on SSA form, PLDI
’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming lan-
guage design and implementation (New York, NY, USA), ACM Press, 1997,
pp. 273–286.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck, Efficiently Computing Static Single Assignment Form and the Control De-
pendence Graph, ACM Transactions on Programming Languages and Systems 13
(1991), no. 4, 451–490.

[CH84] Frederick Chow and John Hennessy, Register allocation by priority-based color-
ing, SIGPLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Compiler
construction (New York, NY, USA), ACM Press, 1984, pp. 222–232.

[Cha82] G. J. Chaitin, Register allocation & spilling via graph coloring, SIGPLAN ’82:
Proceedings of the 1982 SIGPLAN symposium on Compiler construction (New
York, NY, USA), ACM Press, 1982, pp. 98–105.

[CKZ03] M. Chakravarty, P. Keller, and P. Zadarnowski, A functional perspective on SSA
optimisation algorithms, Tech. Report 0217, University of New South Wales, 2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms, 2nd ed., The MIT Press, 2001.

[CU89] C. Chambers and D. Ungar, Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language, PLDI ’89:
Proceedings of the ACM SIGPLAN 1989 Conference on Programming language
design and implementation (New York, NY, USA), ACM Press, 1989, pp. 146–160.

BIBLIOGRAPHY 179

[CU90] Craig Chambers and David Ungar, Iterative Type Analysis and Extended Mes-
sage Splitting: Optimizing Dynamically-Typed Object-Oriented Programs, SIG-
PLAN Conference on Programming Language Design and Implementation, 1990,
pp. 150–164.

[CU91] , Making pure object-oriented languages practical, OOPSLA ’91: Confer-
ence proceedings on Object-oriented programming systems, languages, and appli-
cations (New York, NY, USA), ACM Press, 1991, pp. 1–15.

[CUL89] C. Chambers, D. Ungar, and E. Lee, An efficient implementation of SELF a
dynamically-typed object-oriented language based on prototypes, OOPSLA ’89:
Conference proceedings on Object-oriented programming systems, languages and
applications (New York, NY, USA), ACM Press, 1989, pp. 49–70.

[DA99] David Detlefs and Ole Agesen, Inlining of Virtual Methods, Lecture Notes in Com-
puter Science 1628 (1999), 258–277.

[DS84] L. Peter Deutsch and Allan M. Schiffman, Efficient implementation of the
Smalltalk-80 system, Conference Record of the Eleventh Annual ACM Symposium
on Principles of Programming Languages (Salt Lake City, Utah), 1984, pp. 297–
302.

[DS93] Karl-Heinz Drechsler and Manfred P. Stadel, A variation of Knoop, Rüthing, and
Steffen’s Lazy Code Motion, SIGPLAN Not. 28 (1993), no. 5, 29–38.

[Enn04] Robert J. Ennals, Adaptive evaluation of non-strict programs, Ph.D. thesis, Univer-
sity of Cambridge Computer Laboratory, Cambridge, UK, 2004.

[ESM04] Robert Ennals, Richard Sharp, and Alan Mycroft, Linear Types for Packet Process-
ing., ESOP, 2004, pp. 204–218.

[Fis81] Joseph A. Fisher, Trace Scheduling: A Technique for Global Microcode Com-
paction., IEEE Trans. Computers 30 (1981), no. 7, 478–490.

[FKCX94] Lawrence Feigen, David Klappholz, Robert Casazza, and Xing Xue, The revival
transformation, POPL ’94: Proceedings of the 21st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA), ACM
Press, 1994, pp. 421–434.

[FM85] Jeanne Ferrante and Mary Mace, On linearizing parallel code, POPL ’85: Pro-
ceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages (New York, NY, USA), ACM Press, 1985, pp. 179–190.

[FMS88] J. Ferrante, M. Mace, and B. Simons, Generating sequential code from parallel
code, ICS ’88: Proceedings of the 2nd international conference on Supercomputing
(New York, NY, USA), ACM Press, 1988, pp. 582–592.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren, The program dependence
graph and its use in optimization, ACM Trans. Program. Lang. Syst. 9 (1987),
no. 3, 319–349.

180 BIBLIOGRAPHY

[Gal86] Zvi Galil, Efficient algorithms for finding maximum matching in graphs, ACM
Comput. Surv. 18 (1986), no. 1, 23–38.

[GDGC95] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers, Profile-guided
receiver class prediction, OOPSLA ’95: Proceedings of the tenth annual confer-
ence on Object-oriented programming systems, languages, and applications (New
York, NY, USA), ACM Press, 1995, pp. 108–123.

[Gie95] Jurgen Giesl, Termination Analysis for Functional Programs using Term Order-
ings, Static Analysis Symposium, 1995, pp. 154–171.

[GJ79] Michael R. Garey and David S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
1979.

[Hacng] Sebastian Hack, Register Allocation of Programs in SSA Form, Ph.D. thesis, Uni-
versitŁt Karlsruhe, Forthcoming.

[Hai98] Max Hailperin, Cost-optimal code motion, ACM Transactions on Programming
Languages and Systems 20 (1998), no. 6, 1297–1322.

[Har85] D Harel, A linear algorithm for finding dominators in flow graphs and related
problems, STOC ’85: Proceedings of the seventeenth annual ACM symposium on
Theory of computing (New York, NY, USA), ACM Press, 1985, pp. 185–194.

[has] Monad—HaskellWiki, http://www.haskell.org/haskellwiki/
Monad.

[HGG05] Sebastian Hack, Daniel Grund, and Gerhard Goos, Towards Register Allocation for
Programs in SSA-form, Tech. report, UniversitŁt Karlsruhe, September 2005.

[HMC+93] Wen-Mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J.
Warter, Roger A. Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiy-
ohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery, The superblock: an ef-
fective technique for VLIW and superscalar compilation, J. Supercomput. 7 (1993),
no. 1-2, 229–248.

[HRB88] Susan Horwitz, Thomas Reps, and David Binkley, Interprocedural slicing us-
ing dependence graphs, Proceedings of the ACM SIGPLAN ’88 Conference on
Programming Language Design and Implementation (Atlanta, GA), vol. 23, June
1988, pp. 35–46.

[HU94] Urs Hölzle and David Ungar, Optimizing dynamically-dispatched calls with run-
time type feedback, PLDI ’94: Proceedings of the ACM SIGPLAN 1994 confer-
ence on Programming language design and implementation (New York, NY, USA),
ACM Press, 1994, pp. 326–336.

[JM03] Neil Johnson and Alan Mycroft, Combined Code Motion and Register Allocation
using the Value State Dependence Graph, Proc. 12th International Conference on
Compiler Construction (CC 2003) (Warsaw, Poland) (Görel Hedin, ed.), Lecture

BIBLIOGRAPHY 181

Notes in Computer Science, vol. LNCS 2622, Springer-Verlag, April 2003, pp. 1–
16.

[Joh] Neil E. Johnson, Private Communication.

[Joh04] , Code size optimization for embedded processors, Tech. Report UCAM-
CL-TR-607, University of Cambridge, Computer Laboratory, November 2004.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali, The Program Structure Tree:
Computing Control Regions in Linear Time, SIGPLAN Conference on Program-
ming Language Design and Implementation, 1994, pp. 171–185.

[JW93] Simon L. Peyton Jones and Philip Wadler, Imperative functional programming,
POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (New York, NY, USA), ACM Press, 1993,
pp. 71–84.

[Kob99] Naoki Kobayashi, Quasi-Linear Types, Conference Record of POPL 99: The 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, Texas (New York, NY), 1999, pp. 29–42.

[KRS94a] Jens Knoop, Oliver Rüthing, and Bernhard Steffen, Optimal Code Motion: The-
ory and Practice, ACM Transactions on Programming Languages and Systems 16
(1994), no. 4, 1117–1155.

[KRS94b] , Partial Dead Code Elimination, SIGPLAN Conference on Programming
Language Design and Implementation, 1994, pp. 147–158.

[KRS95] , The power of assignment motion, PLDI ’95: Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and implementation
(New York, NY, USA), ACM Press, 1995, pp. 233–245.

[LT79] Thomas Lengauer and Robert Endre Tarjan, A fast algorithm for finding domina-
tors in a flowgraph, ACM Trans. Program. Lang. Syst. 1 (1979), no. 1, 121–141.

[Mog91] Eugenio Moggi, Notions of Computation and Monads, Information and Computa-
tion 93 (1991), no. 1, 55–92.

[MR79] E. Morel and C. Renvoise, Global optimization by suppression of partial redun-
dancies, Commun. ACM 22 (1979), no. 2, 96–103.

[MW95] Frank Mueller and David B. Whalley, Avoiding conditional branches by code repli-
cation, SIGPLAN Not. 30 (1995), no. 6, 56–66.

[Myc80] Alan Mycroft, The theory and practice of transforming call-by-need into call-
by-value, Proc. 4th International Symposium on Programming, vol. 83, Springer-
Verlag, 1980.

[NP95] Cindy Norris and Lori L. Pollock, An experimental study of several cooperative
register allocation and instruction scheduling strategies, MICRO 28: Proceedings
of the 28th annual international symposium on Microarchitecture (Los Alamitos,
CA, USA), IEEE Computer Society Press, 1995, pp. 169–179.

182 BIBLIOGRAPHY

[npc] A Compendium of NP Optimization Problems, http://www.nada.kth.se/
∼viggo/wwwcompendium/.

[OO84] Karl J. Ottenstein and Linda M. Ottenstein, The program dependence graph in a
software development environment, SDE 1: Proceedings of the first ACM SIG-
SOFT/SIGPLAN software engineering symposium on Practical software develop-
ment environments (New York, NY, USA), ACM Press, 1984, pp. 177–184.

[Pet81] J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

[Ram92] S. Ramakrishnan, Software pipelining in PA-RISC compilers, Hewlett Packard
Journal (1992), 39–45.

[RG81] B. R. Rau and C. D. Glaeser, Some scheduling techniques and an easily schedula-
ble horizontal architecture for high performance scientific computing, MICRO 14:
Proceedings of the 14th annual workshop on Microprogramming (Piscataway, NJ,
USA), IEEE Press, 1981, pp. 183–198.

[RKS00] Oliver Rüthing, Jens Knoop, and Bernhard Steffen, Sparse code motion, POPL
’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (New York, NY, USA), ACM Press, 2000, pp. 170–183.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, Global value numbers and redun-
dant computations, Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1988, pp. 12–27.

[SAF90] B. Simons, D. Alpern, and J. Ferrante, A foundation for sequentializing parallel
code, SPAA ’90: Proceedings of the second annual ACM symposium on Parallel
algorithms and architectures (New York, NY, USA), ACM Press, 1990, pp. 350–
359.

[Sha99] H. Sharangpani, Intel Itanium processor microarchitecture overview, Proceedings
of the 1999 Microprocessor Forum, 1999.

[SHK04] Bernhard Scholz, Nigel Horspool, and Jens Knoop, Optimizing for space and time
usage with speculative partial redundancy elimination, SIGPLAN Not. 39 (2004),
no. 7, 221–230.

[SHKN76] T. A. Standish, A. Harriman, D. Kibler, and J. M. Neighbors, The Irvine Program
Transformation Catalogue, Tech. report, Dept. of Computer and Information Sci-
ences, U.C. Irvine, January 1976.

[Sin05] Jeremy Singer, Static program analysis based on virtual register renaming, Ph.D.
thesis, University of Cambridge Computer Laboratory, Cambridge, UK, March
2005.

[Ste93] Bjarne Steensgaard, Sequentializing Program Dependence Graphs for Irreducible
Programs, Tech. Report MSR-TR-93-14, Microsoft Research, Redmond, WA,
1993.

BIBLIOGRAPHY 183

[Ste96] Bernhard Steffen, Property-Oriented Expansion, SAS ’96: Proceedings of the
Third International Symposium on Static Analysis (London, UK), Springer-Verlag,
1996, pp. 22–41.

[SW01] Detlef Sieling and Ingo Wegener, A Comparison of Free BDDs and Transformed
BDDs, Form. Methods Syst. Des. 19 (2001), no. 3, 223–236.

[Swe92] Philip Hamilton Sweany, Inter-block code motion without copies, Ph.D. thesis, Col-
orado State University, Fort Collins, CO, USA, 1992.

[Tou02] Sid Touati, Register Pressure in Instruction Level Parallelisme, Ph.D. thesis, Uni-
versité de Versailles, France, June 2002.

[Tou05] Sid-Ahmed-Ali Touati, Register saturation in instruction level parallelism, Int. J.
Parallel Program. 33 (2005), no. 4, 393–449.

[TP95] Peng Tu and David A. Padua, Efficient Building and Placing of Gating Functions,
SIGPLAN Conference on Programming Language Design and Implementation,
1995, pp. 47–55.

[Upt06] Eben Upton, Compiling with Data Dependence Graphs, Ph.D. thesis, University
of Cambridge Computer Laboratory, Cambridge, UK, 2006.

[Wad71] Christopher P. Wadsworth, Semantics and pragmatics of the lambda-calculus,
Ph.D. thesis, Oxford University, 1971.

[Wal00] Larry Wall, Programming Perl, O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2000.

[WCES94] Daniel Weise, Roger F. Crew, Michael D. Ernst, and Bjarne Steensgaard, Value de-
pendence graphs: Representation without taxation, Proceedings of the 21st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Portland, OR), January 1994, pp. 297–310.

[Wul72] William A. Wulf, A case against the GOTO, ACM ’72: Proceedings of the ACM
annual conference (New York, NY, USA), ACM Press, 1972, pp. 791–797.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck, Constant propagation with conditional
branches, ACM Trans. Program. Lang. Syst. 13 (1991), no. 2, 181–210.

[ZSE04] Jia Zeng, Cristian Soviani, and Stephen A. Edwards, Generating fast code from
concurrent program dependence graphs, LCTES ’04: Proceedings of the 2004
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for em-
bedded systems (New York, NY, USA), ACM Press, 2004, pp. 175–181.

