
Technical Report
Number 706

Computer Laboratory

UCAM-CL-TR-706
ISSN 1476-2986

Covert channel vulnerabilities
in anonymity systems

Steven J. Murdoch

December 2007

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2007 Steven J. Murdoch

This technical report is based on a dissertation submitted
August 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Girton College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Covert channel vulnerabilities in anonymity systems

Steven J. Murdoch

Summary

The spread of wide-scale Internet surveillance has spurred interest in ano-

nymity systems that protect users’ privacy by restricting unauthorised access

to their identity. This requirement can be considered as a flow control policy

in the well established field of multilevel secure systems. I apply previous re-

search on covert channels (unintended means to communicate in violation of

a security policy) to analyse several anonymity systems in an innovative way.

One application for anonymity systems is to prevent collusion in compe-

titions. I show how covert channels may be exploited to violate these pro-

tections and construct defences against such attacks, drawing from previous

covert channel research and collusion-resistant voting systems.

In the military context, for which multilevel secure systems were designed,

covert channels are increasingly eliminated by physical separation of intercon-

nected single-role computers. Prior work on the remaining network covert

channels has been solely based on protocol specifications. I examine some pro-

tocol implementations and show how the use of several covert channels can be

detected and how channels can be modified to resist detection.

I show how side channels (unintended information leakage) in anonymity

networks may reveal the behaviour of users. While drawing on previous re-

search on traffic analysis and covert channels, I avoid the traditional assump-

tion of an omnipotent adversary. Rather, these attacks are feasible for an

attacker with limited access to the network. The effectiveness of these tech-

niques is demonstrated by experiments on a deployed anonymity network, Tor.

Finally, I introduce novel covert and side channels which exploit thermal

effects. Changes in temperature can be remotely induced through CPU load

and measured by their effects on crystal clock skew. Experiments show this to

be an effective attack against Tor. This side channel may also be usable for

geolocation and, as a covert channel, can cross supposedly infallible air-gap

security boundaries.

This thesis demonstrates how theoretical models and generic methodolo-

gies relating to covert channels may be applied to find practical solutions to

problems in real-world anonymity systems. These findings confirm the existing

hypothesis that covert channel analysis, vulnerabilities and defences developed

for multilevel secure systems apply equally well to anonymity systems.



Acknowledgements

I would like to thank my supervisor, Markus Kuhn, for his advice and support

throughout my time at Cambridge and also Ross Anderson, for fostering an

environment which allowed me to explore a range of topics. The technical staff

at the Computer Laboratory also have been of great assistance.

I was supported by a Carnegie Scholarship, from The Carnegie Trust for

the Universities of Scotland.

I thank the members of the Security Group, both past and present, for our

interesting and fruitful discussions and particularly Richard Clayton, Markus

Kuhn and Robert Watson, for proofreading and suggesting improvements to

this thesis. I am also grateful for the comments from my examiners, Virgil

D. Gligor and Steven Hand. However, the responsibility for all the remaining

errors and omissions, of course, rests with me.

I would also like to thank my co-authors, especially those of the papers on

which this thesis is based: George Danezis, Stephen Lewis and Piotr Zieliński.

I am indebted to my family, and especially my parents, for their support

and advice throughout my education. I also thank my friends for making my

time here in Cambridge enjoyable as well as intellectually stimulating.

I would finally like to thank the anonymity community: the researchers and

developers for creating a strong foundation to build upon, the service operators

who have allowed me to evaluate and refine my ideas, and the users, whose

need for privacy has motivated this work.



Contents

1 Introduction 12

1.1 Covert channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Security policies and threat model . . . . . . . . . . . . . 13

1.1.2 Covert channel terminology . . . . . . . . . . . . . . . . 15

1.1.3 Identification of covert channels . . . . . . . . . . . . . . 17

1.2 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.1 Anonymity terminology . . . . . . . . . . . . . . . . . . 19

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Anonymity and links to covert channels . . . . . . . . . . . . . . 22

2 Local covert channels in games 25

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Competition structures . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 League tournaments . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Knockout tournaments . . . . . . . . . . . . . . . . . . . 29

2.3 Identification mechanisms . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Choice of equivalent moves . . . . . . . . . . . . . . . . . 32

2.3.3 Analysis of identification mechanisms . . . . . . . . . . . 32

2.3.4 Identification key . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Real world example . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Rules of the game . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Collusion strategy chosen . . . . . . . . . . . . . . . . . . 35

2.4.3 Game strategy . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.5 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Effects of poor players . . . . . . . . . . . . . . . . . . . 38

2.4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



2.5 Defeating collusion . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Covert channel prevention . . . . . . . . . . . . . . . . . 41

2.5.2 Detecting collusion . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Collusion resistant competitions . . . . . . . . . . . . . . 42

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Embedding covert channels into TCP/IP 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 TCP/IP-based steganography . . . . . . . . . . . . . . . . . . . 48

3.3.1 Type of service . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 IP identification . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 IP flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 IP fragment offset . . . . . . . . . . . . . . . . . . . . . . 51

3.3.5 IP options . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.6 TCP sequence number . . . . . . . . . . . . . . . . . . . 51

3.3.7 TCP timestamp . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.8 Packet order . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.9 Packet timing . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 IP ID and TCP ISN implementations . . . . . . . . . . . . . . . 53

3.4.1 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 OpenBSD . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Detection of TCP/IP steganography . . . . . . . . . . . . . . . 57

3.5.1 IP ID characteristics . . . . . . . . . . . . . . . . . . . . 57

3.5.2 TCP ISN characteristics . . . . . . . . . . . . . . . . . . 58

3.5.3 Explicit steganography detection . . . . . . . . . . . . . 59

3.5.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Detection-resistant TCP steganography . . . . . . . . . . . . . . 63

3.6.1 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.2 OpenBSD . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Low-cost traffic analysis of Tor 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Understanding Tor . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . 72



4.3 Attacking Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Traditional traffic analysis . . . . . . . . . . . . . . . . . 73

4.3.2 Traffic analysis of Tor . . . . . . . . . . . . . . . . . . . 75

4.3.3 Traffic-analysis methodology . . . . . . . . . . . . . . . . 77

4.4 Experimental setup and results . . . . . . . . . . . . . . . . . . 78

4.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Linkability attack . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Variants of the attack . . . . . . . . . . . . . . . . . . . 85

4.5.3 Attack costs . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.4 Understanding the traffic artifacts . . . . . . . . . . . . . 88

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Temperature-based channels 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Hidden services . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 Threat model . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.2 Existing attacks . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Clock skew and temperature . . . . . . . . . . . . . . . . . . . . 98

5.3.1 Background and definitions . . . . . . . . . . . . . . . . 99

5.3.2 Impact of temperature . . . . . . . . . . . . . . . . . . . 102

5.4 Attacking Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Extensions and future work . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Classical covert channels . . . . . . . . . . . . . . . . . . 110

5.5.2 Cross-computer communication . . . . . . . . . . . . . . 112

5.5.3 Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.4 Noise sources and mitigation . . . . . . . . . . . . . . . . 114

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Conclusions 118

6.1 Future research directions . . . . . . . . . . . . . . . . . . . . . 121



Published work

In the course of my studies, I have published the following papers, book chap-

ter and poster. Some discuss topics covered in this thesis but several others

are from separate threads of research. My work has been published at three of

the top four information security conferences (IEEE Symposium on Security

and Privacy, ACM Conference on Computer and Communications Security,

USENIX Security Symposium), which comprise the major outlets for research

in this field. The paper “Low-cost traffic analysis of Tor” was one of the nom-

inees for the 2006 PET Award for outstanding research in privacy enhancing

technologies, and won the 2006 University of Cambridge Computer Labora-

tory award for most notable publication. The paper “Keep your enemies close:

Distance bounding against smartcard relay attacks” was awarded the prize for

best student paper at the 2007 USENIX Security Symposium.

Operating system and network security

Tuomas Aura, Michael Roe, and Steven J. Murdoch. Securing network lo-

cation awareness with authenticated DHCP. In 3rd International Conference

on Security and Privacy in Communication Networks (SecureComm), Nice,

France, September 2007. IEEE.

Markus G. Kuhn, Steven J. Murdoch, and Piotr Zieliński. Compounds: A

next-generation hierarchical data model. Microsoft Research Academic Days,

Dublin, Ireland, April 2004. Poster presentation.

Financial security

Saar Drimer and Steven J. Murdoch. Keep your enemies close: Distance

bounding against smartcard relay attacks. In Proceedings of the 16th USENIX

Security Symposium, Boston, MA, US, August 2007. USENIX.

Ben Adida, Mike Bond, Jolyon Clulow, Amerson Lin, Steven J. Murdoch, Ross

Anderson, and Ron Rivest. Phish and chips: Traditional and new recipes for

attacking EMV. In Security Protocols, 14th International Workshop, Cam-

bridge, England, LNCS, Cambridge, UK, March 2006. Springer. (to appear).

Ross Anderson, Mike Bond, and Steven J. Murdoch. Chip and spin. Computer

Security Journal, 22(2):1–6, 2006.

8



Mike Bond, Daniel Cvrček, and Steven J. Murdoch. Unwrapping the Chrysalis.

Technical Report UCAM-CL-TR-592, University of Cambridge, Computer

Laboratory, June 2004.

Censorship resistance, anonymity and information hiding

Steven J. Murdoch and Ross Anderson. Tools and Technology of Internet

Filtering, a chapter in Ronald J. Deibert, John G. Palfrey, Rafal Rohozinski

and Jonathan Zittrain editors, Access Denied: The Practice and Policy of

Global Internet Filtering. Information Revolution and Global Politics. MIT

Press, November 2007. (to appear).

Steven J. Murdoch and Piotr Zieliński. Sampled traffic analysis by Internet-

exchange-level adversaries. In Nikita Borisov and Philippe Golle, editors, Pri-

vacy Enhancing Technologies (PET), volume 4776 of LNCS, pages 167–183,

Ottawa, Canada, June 2007. Springer.

Steven J. Murdoch. Hot or not: Revealing hidden services by their clock

skew. In CCS ’06: Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 27–36, Alexandria, VA, US, October 2006.

Richard Clayton, Steven J. Murdoch, and Robert N. M. Watson. Ignoring

the great firewall of China. In George Danezis and Philippe Golle, editors,

Privacy Enhancing Technologies (PET), volume 4258 of LNCS, pages 20–35,

Cambridge, UK, June 2006. Springer.

Steven J. Murdoch and Stephen Lewis. Embedding covert channels into TCP/

IP. In Mauro Barni, Jordi Herrera-Joancomart́ı, Stefan Katzenbeisser, and

Fernando Pérez-González, editors, Information Hiding Workshop, volume 3727

of LNCS, pages 247–261, Barcelona, Catalonia (Spain), June 2005. Springer.

Andrei Serjantov and Steven J. Murdoch. Message splitting against the partial

adversary. In George Danezis and David Martin, editors, Privacy Enhancing

Technologies (PET), volume 3856 of LNCS, pages 26–39, Cavtat, Croatia,

May/June 2005. Springer.

Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In

IEEE Symposium on Security and Privacy, pages 183–195, Oakland, CA, US,

May 2005. IEEE Computer Society.

Steven J. Murdoch and Piotr Zieliński. Covert channels for collusion in online

computer games. In Jessica Fridrich, editor, Information Hiding Workshop,

volume 3200 of LNCS, pages 355–369, Toronto, Canada, May 2004. Springer.

9



Selected talks and seminars

I have also attempted to disseminate my research through presenting talks at

venues without formal proceedings. A selection of these talks is included below.

In the case of the Chaos Communication Congress and the Inter-Disciplinary

China Studies Forum conference, talks are put through a competitive peer-

review process before acceptance. The talk “Hot or not: Fingerprinting hosts

through clock skew” was awarded 2nd prize for best talk at EuroBSDCon 2007.

Steven J. Murdoch. Hot or not: Fingerprinting hosts through clock skew.

EuroBSDCon, Copenhagen, Denmark, September 2007. (invited talk).

Steven J. Murdoch. EMV flaws and fixes: vulnerabilities in smart card pay-

ment systems. COSIC Seminar, Belgium, June 2007. K.U. Leuven.

Steven J. Murdoch. Internet censorship in China. Inter-Disciplinary China

Studies Forum Annual Conference, Cambridge, UK, April 2007.

Steven J. Murdoch. Detecting temperature through clock skew. 21st Chaos

Communication Congress, Berlin, Germany, December 2006. Chaos Computer

Club e.V.

Steven J. Murdoch. Censorship resistant technologies. Horizon seminar: Risk,

Threat & Detection, Cambridge, UK, December 2006. Research Services Divi-

sion, University of Cambridge.

Steven J. Murdoch. Out of character: Are the Chinese creating a second

Internet? Inter-Disciplinary China Studies Forum workshop: China in the

UK, Cambridge, UK, June 2006.

Steven J. Murdoch and Stephen Lewis. Covert channels in TCP/IP: attack and

defence. 22nd Chaos Communication Congress, Berlin, Germany, December

2005. Chaos Computer Club e.V.

Steven J. Murdoch and Maximillian Dornseif. Hidden data in Internet pub-

lished documents. 21st Chaos Communication Congress, Berlin, Germany,

December 2004. Chaos Computer Club e.V.

Steven J. Murdoch and Ben Laurie. The convergence of anti-counterfeiting and

computer security. 21st Chaos Communication Congress, Berlin, Germany,

December 2004. Chaos Computer Club e.V.

10



Work done in collaboration

Chapter 2 is based on the paper “Covert channels for collusion in online com-

puter games” [110]. The Connect-4 algorithm was designed and implemented

by Piotr Zieliński, and the strategy collaboratively developed between Piotr

Zieliński, Stephen Lewis and myself.

Chapter 3 is based on “Embedding covert channels into TCP/IP” [109]. In

this, Stephen Lewis worked on both the analysis of OpenBSD and the design

of the encoding mechanism for OpenBSD initial sequence numbers.

Chapter 4 is based on the paper “Low-cost traffic analysis of Tor” [108].

The initial attack idea was proposed by George Danezis, however the refine-

ment and implementation were mine.

11



Chapter 1

Introduction

Covert channels transfer information in violation of a security policy. Multi-

level secure systems (MLS) aim to protect against unauthorised flows of in-

formation, through mandatory access control, backed by covert channel pre-

vention. Similarly, anonymity systems aim to protect a user’s actions and

identity from observation by an adversary; an implicit information flow con-

trol policy. This thesis will discuss the congruence between covert channel

prevention and securing anonymity systems, showing how techniques for at-

tacking and protecting MLS can be used in the analysis and improvement of

anonymity systems.

1.1 Covert channels

The term covert channel was introduced by Butler Lampson [93], although

with a slightly different definition to later common usage. He described the

generic problem of preventing a program from leaking information it processes

but, spurred on by government imposed military standards, most following

research dealt with the problem of multilevel secure (MLS) systems. In these,

information is categorised at confidentiality levels and the system enforces a

policy that only individuals rated at that level or higher may read the item.

Another model is multilateral security, where information is placed into com-

partments and may only flow between them in approved ways. Both of these

are examples of mandatory access control systems, where the system admin-

istrator sets the policy, in contrast to discretionary access control systems,

where the owner of a data item is permitted to choose how access to that item

is restricted.



Although MLS systems are not the focus of this thesis, so much of the

covert-channel research is concerned with them and their threat model, that

to properly understand this thesis in context, it is necessary to summarise

some aspects of MLS. However, this section should not be seen as a complete

introduction to covert channels in MLS systems; for this I refer the reader to

McHugh [98] and its references.

1.1.1 Security policies and threat model

By definition, communication through covert channels violates a security pol-

icy, so the systems of interest must have an information flow policy, which

defines permitted sources and destinations for particular classes of data. More-

over, the policy must incorporate mandatory access control.

Covert channels can exist in all mandatory access control systems which

restrict information flow, so are relevant to both confidentiality and integrity

policies, as described in the US Department of Defense (DoD) requirements for

covert channel analysis [65] (the “Light-Pink Book”). In systems which aim to

preserve confidentiality, covert channels can leak information to unauthorised

individuals, while in the case of a mandatory integrity policy, covert channels

can be used to introduce unauthorised changes to protected objects. However,

the remainder of discussion will concentrate on confidentiality policies.

The Bell-LaPadula model (BLP) [16] is a formal description of the MLS

policy and is illustrated in Figure 1.1. It was motivated by government and

military requirements, where objects are labelled with security levels such as

(from low to high), Unclassified, Confidential, Secret and Top Secret. The BLP

model ensures that information may not flow “down” security levels, except

under approved circumstances. It can be summarised by two properties:

No read up: A process at a given security level may not receive information

from a higher level than its own. For example, if a file is classed at Secret,

an application at Confidential could not read the contents.

No write down: A process at a given security level may not send information

to a lower level than its own. In the same example, an application at

Top Secret could not modify the Secret file.

The first property protects against users who improperly try to read in-

formation at a security level higher than their clearance. So a malicious user

without clearance (Malory) can only read information produced by applica-

tions at the Unclassified level and will be prevented from reading restricted

13



Classification

Top Secret

object

subject object

read

write

read/writeSecret

Confidential

Unclassified

object

Figure 1.1: DoD classifications of information and legal flows in the Bell-LaPadula
model. Based on a diagram in Pfleeger and Pfleeger [122, p256]

information. If only malicious users are to be considered, then the second

property might seem unimportant – someone cleared to read Top Secret infor-

mation could leak it by simply writing it down or remembering it. However,

this property is of critical importance when applications can be compromised,

when users might unknowingly introduce malicious applications, or simply

when users may make mistakes about classification.

Malory might cause a user, Alice, cleared to Top Secret, to run a malicious

application (a Trojan horse). Alternatively Malory could insert the Trojan by

compromising an application running at Top Secret. The Trojan can read Top

Secret information but due to the “No write down” property, cannot output

this information to any application that Malory can read from. It is in this

situation that a covert channel is a threat. If the system has some way for the

Trojan to signal to the Unclassified application then Malory can receive the

leaked information.

An example of a covert channel from the Light-Pink Book assumes a MLS

system based on Unix. In these, directories inherit the classification of their

parent, but the owner may upgrade the classification, provided the directory is

empty, creating an upgraded directory, as described by Whitmore et al. [156].

Normal Unix semantics apply, so if Malory owns a directory, he can remove

empty subdirectories but not ones that contain any files. If there is an upgraded

subdirectory in Malory’s directory, labelled Top Secret, then Alice can create

files in it, but Malory cannot read its contents. However, Malory can infer

whether it contains any files by attempting to delete it. The Trojan can signal

a “1” by creating a file, and Malory receives it by observing the directory

cannot be deleted; similarly the Trojan can signal a “0” by deleting all files.

Covert channels are also relevant to integrity models, such as Clark Wil-

son [33] and Biba [21]. The latter model is the dual of BLP, protecting integrity

14



rather than secrecy. Here, applications at a particular level are prevented from

writing up or reading down. As an example, if a Trojan is inserted at a high

level, it cannot receive input from any application that Malory can write to.

However, if the Trojan can use a covert channel to receive instructions from

Malory then the security policy is violated. While integrity is clearly impor-

tant, for anonymity purposes the confidentiality of identity information is the

primary asset. For this reason, further discussion of covert channels will deal

with secrecy and, for simplicity’s sake, examples will assume the BLP model.

1.1.2 Covert channel terminology

While intuitively the definition of the term “covert channel” is clear, in the

literature the precise definition varies. For clarity, in this thesis, I will use

the following definitions, based common usage and the description by David

Wagner [154]. As the field of covert channels overlaps with other areas in

information hiding, I will also define some associated terms.

covert channel: A means of communicating on a computer system, where

both the sender and receiver collude to leak information, over a chan-

nel not intended for the communication taking place, in violation of a

mandatory access control security policy.

side channel: A communication channel which violates a security property,

but where the sender unintentionally leaks information and only the

receiver wishes the communication to succeed.

steganographic channel: A means of communication on an open channel,

where sender and receiver collude to prevent an observer being able to

reliably detect whether communication is happening.

subliminal channel: A covert channel in a cryptographic algorithm, typi-

cally provably undetectable.

The above categories are linked. An subliminal channel is special type of

steganographic channel. A steganographic channel can be used to construct a

covert channel, but not all covert channels are steganographic and there are

other uses of steganography, for example watermarking.

Note that the definition of covert channel both requires that the information

is transferred using a channel not intended for this use and that this violates

a security policy. This is largely consistent with common usage, and similar

to the Common Criteria definition [35]:

15



An enforced, illicit signalling channel that allows a user to surrepti-

tiously contravene the multi-level separation policy and unobserv-

ability requirements of the [target of evaluation].

However, there are alternate definitions. For example, when coining the

term, Lampson [93] excluded the use of existing communication mechanisms

in a way which was not intended, and McHugh [98] omits the connection to a

security policy:

A covert channel is a mechanism that can be used to transfer in-

formation from one user of a system to another using means not

intended for this purpose by the system developers.

This allows a channel to be covert despite being consistent with the security

policy, so he uses the term “innocuous covert channel” to define such channels,

and “harmful covert channel” for those which do violate the policy.

In the DoD Trusted Computer System Evaluation Criteria [25], commonly

known as the “Orange Book”, the definition used is:

A covert channel is any communication channel that can be ex-

ploited by a process to transfer information in a manner that vio-

lates the system’s security policy.

This clearly states the policy violation constraint, but does not consider

whether the communication channel was envisaged as a communication chan-

nel by the system designer.

The Light-Pink Book [65] uses a more formal variant of the definition used

in the Orange Book, as introduced by Tsai et al. [149]:

Given a nondiscretionary (e.g., mandatory) security policy model

M and its interpretation I(M) in an operating system, any poten-

tial communication between two subjects I(Sh) and I(Si) of I(M) is

covert if and only if any communication between the corresponding

subjects Sh and Si of the model M is illegal in M .

This definition is designed to be consistent with the Orange Book and so

the same comments apply. In particular, it explicitly does not differentiate

between unintentional communication channels and flaws in the implementa-

tion of security policies. As pointed out by both the Light-Pink Book and

16



McHugh, this is problematic for TCSEC certification levels B1 and below,

which do not require covert channel management, as flaws could be classed as

covert channels and thus ignored.

The Light-Pink Book therefore further divides covert channels into “Funda-

mental” channels that would exist in any interpretation of the security model,

“Specific” channels that appear only in some interpretations, and “Unjusti-

fiable” channels that appear only in some interpretations but no justifiable

reason for their existence can be demonstrated. The guidelines recommend

that while systems aiming for certification at B1 do not need to manage covert

channels, they should eliminate unjustifiable channels and manage specific

channels, but need not deal with fundamental channels.

1.1.3 Identification of covert channels

In order for a system to be granted certain forms of certification, its designers

must justify that there has been a systematic approach to identifying covert

channels and mitigating them if necessary. This goal has motivated the study

of techniques to find potential covert channels and estimate their bandwidth.

The Light-Pink Book [65] contains a summary of the most important tech-

niques, for use in TCSEC certification. Many of the approaches are specific to

multi-level secure operating systems, but the more generic ones are appropriate

for the analysis of anonymity systems.

One very general technique is Kemmerer’s shared resource matrix method-

ology [87]. It consists of identifying all objects which are accessible to more

than one process. Then, a comprehensive list of operations that may be per-

formed on the system is created. For each pair (object, operation), it is estab-

lished whether any attribute of the object may be read or modified by that

operation. Finally, the result is represented as a matrix of object attributes

versus operations. Any object attribute that may be both modified and read by

system operations is a candidate for a covert channel. Some of the candidates

could be of no concern, because either there exists no means to synchronise

the attribute modification, or where processes which may communicate are in

the same protection domain. The remainder of the candidates are a potential

risk and merit further investigation.

A similar approach may be applied to anonymity systems, by consider-

ing them as a group of processes and objects. If a covert channel exists that

permits two processes, A and B, to communicate, where A knows the iden-

tity of a system participant and B knows the pseudonym, then a potential

17



covert-channel risk exists. Should an attacker be able to cause A to modify an

attribute of a shared resource, in such a way that it can be read by B, then

the anonymity of a user may be compromised. Chapter 4 shows an example

of where the shared attribute is the network and CPU resources of a host, and

in Chapter 5 it is the temperature.

1.2 Anonymity

Anonymity, the ability to communicate without revealing your identity, has

been widely considered as a pre-requisite for the democratic process, as demon-

strated by the US Supreme Court’s protection of anonymous speech [152]:

Accordingly, an author’s decision to remain anonymous, like other

decisions concerning omissions or additions to the content of a pub-

lication, is an aspect of the freedom of speech protected by the First

Amendment.

In addition to political speech, anonymity has protected whistle-blowers,

reporting market abuse, from retribution by their employer or government.

Human rights defenders can protect the identity of their contacts working in

repressive regimes. Many more examples are possible.

As more communication has moved to the Internet, the need for anonymity

has moved from the physical to the virtual world. The Internet opens up the

opportunity for wider distribution of information than previous mechanisms,

such as anonymous leafleting or through classified adverts in newspapers. The

social, political and corporate situation across the world demonstrates that

there is still a very real need for anonymity systems.

Research into the anonymity of electronic mail began with Chaum’s paper

on the mix [31], which proposed a service to anonymise messages by hiding cor-

respondences between sender and receiver. However, initial implementations,

such as the popular anon.penet.fi “Type-0” remailer [75] did not adopt any of

cryptographic techniques that Chaum proposed. Later generations, such as the

“Type-1” Cypherpunk remailer [118] and “Type-2” Mixmaster systems [116],

were closer to Chaum’s original design.

Subsequent research developed new attacks against such systems, corre-

sponding defences, and techniques to improve usability. To validate proposed

improvements there has also been considerable effort expended on clarifying

terminology and quantifying concepts, as described in the following section.

18



1.2.1 Anonymity terminology

As defined by Pfitzmann and Hansen [119], “Anonymity is the state of being

not identifiable within a set of subjects, the anonymity set”, based on infor-

mation available to a defined attacker. The attacker is permitted to know an

item’s current state, for example in anonymous messaging whether it is send-

ing or receiving, but not the relationship between items or between an item

and an identity. For anonymous messaging, “sender anonymity” means that

the attacker does not know which sender sent a particular message; similarly

for “receiver anonymity”. A different property is “relationship anonymity”

where an attacker cannot link senders to recipients. Relationship anonymity is

weaker than sender anonymity, because in the former the attacker may know

who sent a particular message, but not the message’s recipient. Similarly,

relationship anonymity is also weaker than receiver anonymity.

A stronger concept than anonymity is “unobservability”: the state of any

item being indistinguishable from any other item in the unobservability set. In

a similar way to anonymity, “sender unobservability” means that an attacker

does not know whether a particular participant sent a message and similarly for

“receiver unobservability”. While unobservability implies anonymity, achiev-

ing the former in the general case requires expensive cover traffic.

Unlike encryption, anonymity cannot be achieved in isolation. A subject

must hide within a group of other subjects – as Reiter and Rubin say: “ano-

nymity loves company” [132]. For anonymous messaging, the most common

mechanism is the mix [31]. Conceptually a mix receives messages, re-orders

them and sends them out again, so providing relationship anonymity. Encryp-

tion is used to hide the correspondence between the content of incoming and

outgoing messages and a delay is added to hide timing characteristics. Similar

systems can be used for real-time traffic, by omitting the delay, substantially

reducing their resistance to attack. Chains of mixes are used to provide some

resistance to a partially corrupt network. There has been a great deal of re-

search on this area, and for further details I refer the reader to Serjantov [139]

and Danezis [39]. More information on the specific implementations of anony-

mity systems discussed in this thesis are provided in their respective chapters.

For anonymous messaging, “sender anonymity set” and “receiver anony-

mity set”, are the potential senders and the recipients of a message, respec-

tively. The simplest way to quantify anonymity is to calculate the cardinality

of the anonymity set, or by taking its logarithm, translate this to bits, as

19



used by Berthold et al. [20]. However, this does not take into account that

some members of the set may be more likely to be the actual sender/receiver

than others. Crowds [131], the anonymous web browsing system, proposes a

6-point scale, measuring how non-uniform is the probability of each anonymity

set member being the true sender or receiver. It ranges from “absolute pri-

vacy” (unobservability), “beyond suspicion” (all members of the set have equal

probability), “probable innocence” (the subject’s probability is at most 50%),

“possible innocence” (the anonymity set has more than 1 member), “exposed”

(the anonymity set has one member) to “provably exposed” (the attacker can

prove to a third party that a subject is the only member of the anonymity set).

Crowds’ approach does not take into account the size of the anonymity

set, but Serjantov and Danezis [140] proposed combining both the size and

probability distribution by calculating the entropy. This expresses the effective

size of the anonymity set in bits, whereas the approach taken by Dı́az et al. [44]

is to divide this value by the actual size of the anonymity set, resulting in a

value between 0 and 1, representing how skewed the probability distribution

is from uniform.

1.3 Structure of the thesis

Attacks on unobservability occur when information about an item’s state is

leaked to the attacker. Attacks on anonymity occur when a subject’s identity

or relationships are leaked. These information flows are contrary to the security

policy of anonymity systems so they may be considered covert channels or side

channels, depending on whether the sender of the information colludes with

the attacker or not.

Many existing attacks on mix networks can be seen as side channels. For

example, intersection attacks [20, 39, 88] reduce the relationship anonymity

of communication partners who are using a mix network to send multiple

messages. Each time a subject of interest sends a message, there is a finite

recipient set, which will be different for each message sent. Assuming the

sender sends to only one recipient, the effective anonymity set will be the

intersection of the anonymity sets for each message. Over time, this will reduce

to one, completely breaking the anonymity of the sender. Similar attacks exist

for receivers.

This attack works because sending a message does leak information about

the recipient, although the mixing introduces noise. This noise is not totally

20



dependent on the sent messages so can be eliminated by considering repeated

interactions. This is analogous to de-noising signals though periodic averaging

of data from the TEMPEST analysis of computer displays [91], another type

of side channel attack.

Anonymity systems need many users for any of them to achieve anonymity.

This motivates the establishment of publicly accessible anonymity networks.

By giving access to potentially malicious parties, the possibility of covert chan-

nels exists. While allowing the execution of arbitrary code on anonymity sys-

tems, even sandboxed, is unusual (Chapter 2 describes an exception), the nodes

do process untrustworthy data and so can have their behaviour altered.

The goal of this thesis is to show that by viewing an anonymity system as

enforcing information flow restrictions, previous work on covert channels can

be applied so as to develop new attacks and defend against them.

When military systems primarily used expensive mainframes, it was com-

mon for data at several classification levels to be processed on the same com-

puter. The security policy may thus prohibit local inter-process communica-

tion. Chapter 2 describes such a case, where a multilateral security policy

prevents collusion by enforcing anonymity. Opportunities for using covert

channels to break this policy are discussed and a practical example is given.

Chapter 3 describes how covert channels can be used to leak information

over a network, where an information flow policy is being enforced through

traffic monitoring or protocol cleaning. Several covert-channel techniques

have been proposed to break such policies by signalling in TCP/IP headers,

but many assume only casual observation. This chapter describes how such

schemes can be detected and proposes enhancements to prevent detection.

Chapter 4 shows how side channels can be used to attack a distributed

anonymity system – Tor [50]. In order to maintain unlinkability, Tor must

prevent one end of a communication channel from discovering the identity

of the other end, or the path that the data is taking. The attacker cannot

run arbitrary code on Tor nodes but, by sending legitimate data, can induce

and measure traffic patterns. As two connections through a Tor node share

many resources, these patterns can be used to leak information between them,

breaking the isolation property and allowing anonymity to be compromised.

These techniques are extended in Chapter 5, which shows that covert chan-

nels and side channels can extend into the hardware, not just software. In Tor,

the attacker can send arbitrary data to a hidden service, but must be prevented

from learning its identity. The load-modulation attacks of Chapter 4 could be

21



resisted through fixed response times, but during periods of increased load, the

hardware will still warm up. Chapter 5 shows how this increased temperature

has an effect on the clock crystal, which can be reliably measured remotely.

Using this technique, an attacker can create a side channel between two con-

nections, one using the anonymous channel and the other connecting directly.

An attacker can thus discover the identity of a target.

1.4 Anonymity and links to covert channels

There is a small literature on attacks against anonymity systems that can be

seen as exploiting covert channels. However, in general, previous work has not

made this connection. In particular, traffic analysis, the study of extracting

information from logs of communication patterns in the absence of knowledge

about the content, has been a fruitful source of attacks against anonymity.

The field of traffic analysis originated from the military analysing radio

traffic to infer troop location, strength or role, as discussed by Herman [76].

Information extracted from such traffic analysis is useful in its own right, but

it is especially suitable for automated analysis and selecting targets for more

laborious content analysis. Where the content is encrypted, gaining access to

the plaintext may be expensive or in some cases impossible, so traffic analysis

may be the only viable method for extracting intelligence.

Patterns of communication on the Internet, such as the duration, volume

and endpoints of connections, may also leak information about the nature of

the content, sender or receiver. Such attacks are especially relevant when the

traffic is encrypted, as while content is obscured to foil eavesdropping, the

traffic patterns are preserved. The unintentional leakage of data volume and

timing is sufficient to violate a security policy. Traffic analysis thus may be

viewed as a special case of side-channel analysis, a concept closely linked to

the covert channels discussed in this thesis.

Intersection attacks were shown earlier to be a case of a side channel which

eventually links senders to receivers. Other traffic-analysis attacks can extract

content from encrypted data streams. For example, Song et al. [145] showed

that the timing of SSH keystroke patterns, coupled with knowledge of the

keyboard layout, is adequate to extract the keys pressed. Another example is

by Sun et al. [146], who showed that the web pages browsed over an encrypted

tunnel can be inferred from pages sizes, which the encryption does not disguise.

The potency of the attack may be further improved by also taking into account

22



links between pages, as demonstrated by Danezis [38]. Even if the boundaries

between individual objects downloaded are hidden by a VPN, Bissias et al. [22]

showed that this is not adequate to defeat traffic analysis.

The distinguishing factor between side channels and covert channels is that

the latter requires collusion between sender and receiver. While traffic analy-

sis of intercepted radio transmissions is passive, on the Internet, active traffic

analysis is also possible. Pfitzmann and Pfitzmann [121] showed how streams

may be tagged by corrupting anonymised messages and observing the result-

ing effects elsewhere. In the closely related field of detecting stepping stones

(computers relaying control commands to compromised hosts), Zhang and

Paxson [161] showed how streams may be passively correlated. Wang and

Reevesbut [155] extended this attack by embedding a watermark, improving

the detection rate. The work in Chapter 4 may be viewed as a variant of

stepping-stone detection using watermarks, with one extra level of indirection.

Another active traffic-analysis attack is proposed by Juels et al. [54], who

introduce cache cookies, which are files placed on users’ machines through

normal web browser caching behaviour. Their existence can subsequently be

queried in order to link a user’s pseudonym with their real identity. Less

maliciously, Felten and Schneider [84] show that these can act as a replacement

to normal cookies, providing an additional factor in authentication protocols.

The number of packets sent by a host can be derived from observing incre-

ments in the IP ID field, for hosts which have a global counter. This fact can

be exploited in an active attack, known as idle scanning, to covertly port scan

a victim host, and is implemented in Nmap [60]. The attacker sends TCP SYN

packets to the victim, but spoofs the source address to be that of a cut-out. If

the port is open, the victim responds by sending a SYN-ACK to the cut-out,

which responds with a RST packet. If the victim sends a RST or no packet

at all, signifying the port being closed, the cut-out sends no response. The

attacker can distinguish these cases by probing the cut-out and observing the

IP ID counter. At no point does the victim being scanned see the IP address

of the attacker, and so the attack hides the source of the scan.

One defence against being used as the cut-out in such a scheme is to ran-

domise the IP ID, or at least use a different counter for each routing table entry.

This is the approach adopted by more modern operating systems, which pre-

vents the attack but also creates a covert channel. Since the IP ID is now at

least partially random, a firewall cannot predict the expected value, so a host

can undetectably embed encrypted information. This topic and related issues

23



are explored in more detail in Chapter 3, showing that defences against certain

types of traffic analysis may open additional vulnerabilities.

The link between anonymity, traffic analysis and covert channels was most

notably discussed in a series of papers by Moskowitz and Newman et al. [104,

105, 114]. These propose measuring the lack of anonymity provided by a mix

as the amount of information that can be leaked from Alice, who is sending

messages into the mix, to Eve who can only view the output.

Moskowitz and Newman’s model can be used directly for analysing a system

which explicitly implements a mandatory information flow control policy. In

one scenario they present, Alice is permitted to send messages but only through

a mix firewall shared with other users. Eve can only count messages emitted

by the mix, or in another scenario can also see their recipient. A perfect

anonymity system is defined as one where Alice cannot leak any information

to Eve over this covert channel.

The metric for anonymity of a mix firewall is different from those used in

the well studied anonymous remailer model, as in the latter Alice and Eve

are adversaries, not co-operating. However, covert channels can still be used

to analyse this case. If Alice cannot leak any information to Eve then Alice

cannot give away her identity. Thus the capacity of the covert channel can be

used as a measure of its lack of anonymity.

While closely related to the Moskowitz and Newman papers, the emphasis

of this thesis is different. In the threat model that remailers and other deployed

anonymity systems were developed under, the existence of the covert channels

described by Moskowitz and Newman does not imply a valid attack, only that

that optimal anonymity is not being provided. The goal of this thesis is to

show that even using more realistic threat models, covert channels do exist

and can be used as attacks.

24



Chapter 2

Local covert channels in games

When covert channels were first discovered, one concern was that they could be

used to transfer information between processes in a computer processing data

at multiple classification levels and enforcing a MLS policy. In this scenario,

an attacker was assumed to be capable of inserting arbitrary code, in the form

of a Trojan, at two levels and their goal was to transfer data from high to

low security levels. The trusted computing base (TCB) of the system is relied

upon to prevent such unauthorised information flows.

This chapter discusses a similar situation: the two processes may execute

arbitrary code, are running on the same computer and are subject to communi-

cation restrictions. However, there are differences; rather than leaking secrets

against a MLS policy, they are leaking identity information. The scenario is

also unusual – a programming competition, where collusion is necessary to

win, but is prevented by a special purpose anonymity system1.

2.1 Background

Contract Bridge is a game in which collusion is an well established technique.

This is a card game for two teams, each of two players. In the initial stage,

each player takes turns to make a bid of how strong the cards he has been

randomly dealt (his hand) appears to be. A player’s goal is to bid as high as

possible, while not exceeding the capabilities of his team’s combined hands.

Players cannot see their partner’s cards so there needs to be some other way

for a player to deduce the nature of his partner’s hand.

1As far as I am aware, this is the first published case of how a covert channel in a
computer system was used for profit.

25



Screen

Door

Tray

Bidding boxes

Photograph: Marie-Lan Nguyen Diagram: Jugoslav Dujić

Figure 2.1: Bidding box (left) allowing Bridge players to signal bids while preventing
unauthorised verbal communication. These may also be used with a screen (right),
additionally preventing visual communication

Systems for transmitting information between partners during the bidding

stage are legal and can provide a great advantage to the team more adept in

their use. These schemes provide a means by which one player can encode

information about his hand in the cards that he plays. For example, a bid of

1NT often means a balanced hand of intermediate strength. His partner (who

he is not allowed to communicate with through any other means) can then

make a more precise bid. However, other means of communication, such as

facial expressions, are not permitted, so physical barriers to prevent them, as

shown in Figure 2.1, are used in high-level competitions.

One complication in Bridge is that while communication is permitted by

the rules, if the partner of a player making a bid is asked what the meaning of

a bid is, then he must answer truthfully [7, 8], so the information sent through

the channel cannot be secret. However, the two members of a team do share a

secret, e.g. if one player holds all the aces then he knows that his partner holds

none, but the opposing team does not know this [157]. If this secret is used as

a key, then it is legal, in certain types of Bridge tournaments, for the recipient

of the information to announce the multiple possible meanings of the bid. He

does not need to tell his opponent what the bid means when combined with

knowledge of the player’s own hand.

In Bridge, the collusion is between two members of a team, where com-

munication, other than through bidding, is not permitted. In Section 2.2 we

discuss a different situation, where the colluding parties are considered to be

26



independent players. Here, communication is simply unexpected, since in a

competition it is normal for each player to try to optimise his own perfor-

mance, so there would be no need for communication with other opponents.

In this chapter, we examine the situation where several independent players

cannot win the competition acting by themselves, but one of them can win if

they collude. If the value of the prize can somehow be divided up between the

winner and colluders, this option is attractive for all parties. Conversely, to

ensure a “fair” competition, the organisers must enforce an anonymity policy,

since then players cannot identify when their opponent is a co-colluder.

In order for collusion to work, there must be some means of communicat-

ing. If collusion is not expected, then it may be the case that communication

is easy, but the case where it is banned is both plausible and more interesting.

In Section 2.3, we discuss how communication can be established, and in par-

ticular we show how covert channels can be used for identification. A number

of possibilities are presented and compared, including a scheme which draws

on techniques used in low-probability-of-intercept spread spectrum radio, to

increase the confidence that identification has been performed correctly.

In Section 2.4, an example is given of where these techniques were success-

fully applied. This was an online programming competition where contestants

were required to write a program to play Connect-4 against the other programs

entered. While it was in fact impossible to guarantee a win in any individ-

ual game, by developing a collusion based system it was possible to win the

contest, subject to reasonable assumptions about other contestants.

Finally, in Section 2.5, defences against such types of collusion are dis-

cussed. These include prevention, detection, and modifying the competition

so that the benefits of collusion are reduced. One option considered is to

use the similarities between elections and competitions so as to design better

tournament structures.

2.2 Competition structures

The type of competition dictates how effective collusion can be and also how

it can best be used. In this section, we introduce two simple but popular

tournament arrangements (league and knockout) and show how collusion can

be exploited in both. In Section 2.4, these two arrangements are combined to

form the hybrid structure that the techniques described in this chapter were

designed to win.

27



Table 2.1: Summary of winners in matches between Fox, Chicken and Optimal
players (“—” denotes a draw)

Fox Chicken Optimal

Fox — Fox —

Chicken Fox — —

Optimal — — —

2.2.1 League tournaments

In a league, each of the n players competes against every other player, resulting

in n(n − 1)/2 matches. The structure of a game is not important, only that

there are two participants and that it may lead to one of three outcomes: win,

lose, or draw. A win earns a player more points than a draw and a draw earns

more points than a loss.

We assume that the game is fair, that is, neither of the players has an

advantage, because any game can be made fair by playing it twice with the

roles of the players exchanged the second time. Fairness implies that a perfect

player must draw against himself, therefore, no winning strategy exists for the

player. Since the opponent has no winning strategy either, the perfect player

must have a strategy that guarantees at least a draw.

In order to calculate a lower bound for the benefit of collusion, we assume

the worst case scenario – that non-colluding, independent opponents are opti-

mal, i.e. they will win a match where possible and draw otherwise. Similarly,

we make conservative assumptions for colluding players, namely that they will

never lose, but also will never win against independent players. If every player

played optimally, then each will gain the same number of points. Where some

players collude – Chickens who aim to draw against all players except that

they lose to Foxes – then the Foxes will get more points than would be possi-

ble without collusion.

In a competition, let us assume there are x Optimal players along with c

Chickens colluding with f Foxes whom the Chickens want to win. A match

between an Optimal player and a Chicken, or between two Chickens, will result

in a draw since the Chicken will play to draw. However, a match between a Fox

and a Chicken will result in a win for the Fox, since the Chicken will recognise

that it is playing a Fox. A win gains the winner pw points, a draw pd points,

28



and a loss pl points (as noted above, pw > pd > pl). We assume each player

will also compete against himself and draw. This is summarised in Table 2.1.

In this competition, the scores for players within each class are shown

below. A Fox will hence score higher in the competition than any Optimal

player, since c ≥ 1.

Optimal pdx + pdc + pdf

Chicken pdx + pdc + plf

Fox pdx + pwc + pdf

A variant of this competition is the Axelrod Iterated Prisoner’s Dilemma Com-

petition [12]. At each move, a player can “defect” or “cooperate”, and is aware

of its opponent’s previous moves, but not the current one. If both players make

the same move, they are awarded 3 points for cooperation and 1 for defection.

If they make different moves then the player who cooperates gets 0 points and

the one who defects gets 5. Jennings and Ramchurn discovered [69], indepen-

dently of myself [110], that a similar type of collusion to that presented in this

chapter could be used to win such a tournament.

2.2.2 Knockout tournaments

The impact of collusion on knockout tournaments is much less than for league

tournaments. The result of a match must be a win for one player so as to

decide who will continue to the next round. This will require some kind of

tie-breaking system, such as the penalty shootout in soccer.

The only way for a player to win in all arrangements of initial matches is

if he can beat all other participants. Likewise, if a player can beat all other

players then he will win the competition regardless of the initial arrangement.

However, it may be advantageous for a player to influence the arrangement

of initial matches if there are cycles in the directed graph of game results, for

example Figure 2.2(a). Here, Alice and Bob are equivalent players, who both

can beat Carol but will be beaten by Dave. Also, Carol can beat Dave. As

shown in Figure 2.2(b), if Alice plays as well as possible, then while Alice will

win the first round she will be eliminated by Dave in the next round. Then

Dave will eliminate Bob and go on to win the tournament. However, if Alice

and Bob collude then the result can be as shown in Figure 2.2(c), allowing

Bob to win. Alice can deliberately lose the first match and so Carol will go

through. In the next round, Carol will eliminate Dave but in the final round

Bob can beat Carol. This example shows that there are cases where, if a player

29



B

A

C D
beats

b
e
a
ts

b
e
a
ts

(a)

D

A D

A C

D

B

(b)

C

C D

A C

B

B

(c)

Figure 2.2: Knockout tournament collusion example

is colluding with others in a knockout tournament, it may be advantageous for

a colluder to play less well than they are capable of.

Unlike the league tournament, it is clear that the result of a match between

co-colluders does not contribute to the final result, if we assume that all players

colluding with each other have equal abilities. However, in situations such as

those described above, it is useful for a colluder to lose against an opponent

who possesses an ability that the colluders do not. We do not explore this

further, and the rest of this chapter concentrates on league-like tournaments.

2.3 Identification mechanisms

To manipulate a knockout tournament, the abilities of the opponents must be

known in advance; however, in a league all that is necessary is for colluding

players to perform normally against independent opponents, but to selectively

play poorly against other colluding players.

For one player to identify a colluding player when the order of games is not

known, there must be some form of identification that occurs before or during

each game. This should be reliable and should identify the case where one

player must lose before the result of the game is decided.

It may be the case that communication is easy, for example in a face-to-face

game the players may recognise each other or be allowed to speak to each other.

If the players are computer programs (the case which the rest of this chapter

will concentrate on), a standard program-to-program identification protocol

(e.g. TLS [45] over TCP/IP [125]) may be executed.

However, there may be times when an overt channel is either not possible

because of the constraints of the competition or not permitted by the competi-

30



tion rules. In these situations, a covert channel can be used, though of course

this may also be illegal. A variety of techniques have been developed for such

communication channels; however the majority of them are described in the

literature for the analysis of multilevel secure computer systems, so while not

directly relevant, they can be modified for use within games.

Such techniques could also be used to steganographically send information

other than identification. For example two people playing an online game could

communicate an encrypted message, as implemented by Hernandez-Castro et

al. [77]. If the mechanism were designed properly, the fact that a message is

being sent could be hidden from an observer.

2.3.1 Timing

In the literature on multilevel secure systems, one frequent way to create a

covert channel is for a program to signal to another by varying some kind of

system-wide property. For example, this could be modifying the CPU load [81],

hence changing scheduling patterns, or it could be modifying timing of ac-

knowledgements to messages which may flow in only one way [85]. These

techniques could be used directly, but there are also timing based covert chan-

nels that are specific to games.

One such channel would be to use the timing of moves to carry information

by causing the sender to delay making a move and the recipient to measure

this period. Such schemes are easy to create and can have a relatively high

bandwidth i.e. can transfer a significant amount of information. However, if

the transport mechanism is affected by latency and/or jitter, then this covert

channel may be unreliable or even eliminated completely.

Covert channel encoding schemes can easily cancel out fixed latency, but

jitter is more problematic. If the jitter is sufficiently small, then it can be

removed, at the cost of reducing bitrate. If the CPU time to make a move is

limited by the competition rules rather than “wall clock time” (the amount of

time to have passed in the real world), then the maximum delay can be fairly

large, since in most operating systems the time that a program is paused is

not counted towards the CPU time.

One form of jitter specific to a competition is if the time for a move to be

sent is constant and greater than the maximum allowable time for deciding a

move. This may occur if the competition is to be shown live and the organisers

wish to slow the competition to a speed that humans can watch. If this is done,

then the move-timing channel would be eliminated.

31



2.3.2 Choice of equivalent moves

The timing based mechanisms mentioned above require careful coding in the

presence of jitter. An alternative to this is to encode the identification data in

the moves themselves. In person-to-person games, this could be, for example,

the way the pieces of a board game are held, or where a card is placed in

a card game (this is why there are complex physical arrangements in Bridge

tournaments to prevent such communication). In contrast, for the case of an

online competition, the move will likely be expressed in an unambiguous form,

hence allowing no extra information to be carried.

At a stage in the game, if there is more than one move which can be shown

to not change the outcome of the game when compared to the best move,

information can be transmitted. In order to send r ∈ {1, . . . , n}, the r-th

move is chosen from a set of n equivalent options. After receiving a move from

its opponent, a player can identify which move, out of the opponent’s possible

moves, was chosen, and hence recover r.

The order chosen for moves can be arbitrary, but often there is an obvi-

ous solution, for example in the Connect-4 situation described in Section 2.4,

ordering moves by column number would be one possibility.

2.3.3 Analysis of identification mechanisms

In order for a collusion strategy to succeed, a reliable covert channel must be

established to allow a Chicken to identify when it is playing a Fox and thus

should deliberately lose.

For the simple case of where a Chicken needs to identify whether its oppo-

nent is a Fox or not (Section 2.2.1), the purpose of the channel is to transfer

a single bit while the result of the game is still undetermined. Although the

required capacity of the channel is low, the reliability requirements are high,

since a false positive will result in a Chicken losing to an independent opponent

and so reduce the chance of the Fox winning.

Much research on bandwidth estimation of covert channels, for example

Millen [99], concentrated on finding upper bounds for the data rate of the

channels. These techniques can be used to design a coding system which

approaches these upper bounds.

In the case where timing information is used for identification, it is possible

that the communication channel will corrupt information being sent. However,

where the move itself carries the information, it is reasonable to expect that

32



the signal will be received intact. For this reason, a message sent using this

covert channel will always be received correctly.

However, this does not mean that the channel is noiseless, since the receiver

cannot differentiate between the case where information is being sent, and the

case where the moves carry no meaning (this is also true for timing channels).

The moves of independent players are analogous to noise. The situation is

similar to low-probability-of-intercept spread-spectrum [9, p327] radio in that

the “amplitude” of the signal cannot be any more than the noise (a particular

move is either made or not, there is no concept of “magnitude”).

In order to reliably transmit a single bit of information, a technique based

on frequency-hopping can be used. For each move, the number sent is chosen

according to a keyed pseudo-random number generator. The receiver shares

the key and so knows what move to expect from a colluding player. If, after a

specified number of moves, the receiver has found that the opponent has made

every move as expected, then it can assume that the opponent is colluding

with it and act accordingly. The confidence level of the decision being correct

can be improved by increasing the number of possibilities at each move or

by increasing the number of moves before a decision is made. While waiting

longer before making a decision is preferable, if the player waits too long, then

by the time a decision is made, it may be no longer possible to change the

game result.

2.3.4 Identification key

The goal of the generator is to distinguish itself from the “background noise”

of other players. Where little or nothing is known about the game strategies

of independent players, it is difficult to make any assertions about the charac-

teristics of the noise. For this reason, it may be safe to assume that at each

turn every move is equally likely – analogous to white noise. This assumption

is particularly useful since it greatly simplifies the design of the generator, and

allows a fast implementation so as to reduce CPU usage (which may be a factor

in deciding a winner).

For spread-spectrum radio, typically a cryptographically secure pseudoran-

dom number generator, such as a stream cipher, is used. In the case of spread-

spectrum radio the transmission is effectively public but in a game the moves

are typically only seen by the opponent. One threat in spread-spectrum radio

is an adaptive adversary, whereas in a game the opponents are not permitted

to be changed during the competition. When coupled with the fact that other

33



opponents are probably not aware of the collusion strategy, it is reasonable to

assume that cryptanalytic attacks are unlikely. This assumption simplifies the

design of the generator and so reduces processor time requirements.

The only goal of the generator is to appear different from a white noise

source, so a repeating constant could be used, such as always picking the first

move. However, it is plausible that an opponent could accidentally pick the

same strategy. A small change can be made where the move chosen depends

on the stage in the game. For example, r could simply be the result of a

pseudorandom number generator (PRNG) seeded by a shared secret. This

simple identification system could also be used with the timing based covert

channels. A linear congruential PRNG is very fast and simple, and with well

chosen parameters [89, Section 3.2.1] meets all the requirements (assuming no

cryptanalytic attacks).

2.4 Real world example

The above techniques were developed for and used with the 2002–2003 Cam-

bridge University Computing Society (CUCS) Winter Competition [29]. This

was a programming competition where entrants submitted one or more pro-

grams which played a variant of Connect-4. These programs then played

against each other and a winner was decided.

2.4.1 Rules of the game

As with normal Connect-4, the game is played on a 7× 6 board. Each player

takes turns to choose a column and places his token at the lowest free square.

The first player to have four tokens in a row, either horizontally, vertically or

at a 45° diagonal, wins the game. In the standard game, a player must place

exactly one token at each turn, but in the variant used in the competition, the

player also has the option to pass. This change was made so that standard

Connect-4 strategies [4] would not work and thus force entrants to invent with

their own techniques. However, an unforeseen result of the modification to the

rules was that the possibility of a guaranteed winning strategy was eliminated

since a move cannot be forced.

The competition was split into two stages, a league followed by a knock-

out tournament. The league proceeds by every entered program being played

against every other entered program. Each match consisted of six games, with

each player alternately starting first. The winner of the match was the player

34



Table 2.2: Summary of winners in matches between Fox, Chicken, Rooster, Rabbit
and Optimal players (“—” denotes a draw)

Fox Rooster Chicken Rabbit Optimal

Fox — Fox Fox — —

Rooster Fox — Rooster — —

Chicken Fox Rooster — — —

Rabbit — — — — Optimal

Optimal — — — Optimal —

with the most number of wins and was awarded two points. If both players

had an equal number of wins in the match, then each player is awarded one

point; no points are awarded for a loss.

The five programs with the highest scores in the league were selected for

the knockout tournament. Firstly, the fourth and fifth programs were played

in a match of six games as in the league. However, if this match was a draw,

then the winning program would be the one with the lower CPU usage, and if

that was equal, then memory usage and finally code size were to be considered.

Then, the remaining four programs were played in a standard knockout

tournament, with each match following the rules for the fourth/fifth playoff,

i.e. fourth/fifth vs. first, second vs. third. Finally, the winners of the previous

two matches played each other and the winner of the competition declared.

2.4.2 Collusion strategy chosen

In this competition, overt communication was not permitted in order to prevent

programs communicating with more able humans or more powerful computers.

Also, the only information that a program received from its opponent was the

move number, in ASCII, so there was no redundancy in the encoding. However,

the rules did not explicitly prohibit collusion between opponents.

For these reasons, a covert channel was required for communication, but

it would not break the rules. There were plans for the final stages of the

competition to be run live so timing information may have been jittered, even

unintentionally. Because of the advantages in reliability and simplicity of the

Choice of Move covert channel described in Section 2.3.2, we adopted this

approach for our implementation.

35



One refinement to the identification method described in Section 2.3.4 was

rather than having only two types of colluding player (the Fox and the Chicken,

where a Fox always wins against a Chicken), three were used. The additional

category, Rooster would beat a Chicken but would be beaten by a Fox (see

Table 2.2). This was because collusion is ineffective in the knockout stage,

so the only way to be certain of a win was for all five participants to be our

colluding players. This could be achieved by having five Foxes and the rest

Chickens, but there remained the risk that another independent player would

get into this stage (due to Rabbits, the category which will be introduced

in Section 2.4.6).

Since, by applying the strategy described in Section 2.4.3, our players will

never lose, CPU usage would be the decider and so this should be optimised.

Hand optimising a program is time consuming so it is preferable to minimise

the number of programs that this needs to be done on. If only one of the

five Foxes was optimised, then there is the risk that another will knock it out

of the tournament before it has a chance to play the independent player. To

mitigate this risk, two optimised Foxes were entered, along with four Roosters,

so the optimised Foxes would be guaranteed to play any remaining independent

players. Two Foxes were entered to reduce the impact of any programming

errors. This reduced the number of points given to the Roosters and Fox

slightly, but it was decided to be worthwhile.

2.4.3 Game strategy

In order for collusion to be feasible, it is necessary to have a strategy which

guaranteed a draw in every game. It is also desirable to design the strategy

such that all the outcomes of the game remain possible for as long as feasible,

so that the decision as to whether to lose or not can be delayed. Finally, so

as to optimise the bandwidth of the covert channel, the number of possible

moves at each turn should be maximised.

Piotr Zieliński developed a very efficient strategy which allowed a draw to

be forced, regardless of who made the first move. For completeness we include

its description and his associated diagrams here.

The strategy relies on finding a subset of the squares on the board, such

that every winning line must pass through at least one of the marked squares,

and preventing the opponent from occupying any of them. This is achieved by

designing a pattern of non-overlapping rectangles on the board as is illustrated

in Figure 2.3(a).

36



(a) Simple pattern (b) First player (c) Second player

Figure 2.3: Possible board patterns used for the game strategy. The different shades
of grey have no semantic meaning; they are used only to differentiate the rectangles
from each other

If the opponent plays on the bottom square, then our player

plays on the top square. Our player never plays on the

bottom square. Therefore, the opponent can never occupy

the top square.

If the opponent plays on one of the squares, then our player

plays on the other. Therefore, the opponent can never

occupy both squares.

If our player moves first, then it plays on this square,

thereby preventing the opponent from occupying it.

Three possible patterns are shown in Figure 2.3. Since the rectangles do

not overlap, the strategy forces our player to play on at most one square per

move, thereby guaranteeing at least a draw.

2.4.4 Implementation

The competition allowed ten entries per person and three people entered from

our research group. While the rules explicitly stated that it was permitted

to implement an algorithm developed by someone else, using someone else’s

code was not allowed. For this reason, each member of the group entered a

program written independently in a different language (Ada95, C and Java –

unfortunately due to the lack of a good debugger the PostScript version had

to be dropped).

As intended, no players lost other than by design, against another collud-

ing player. While there was some risk that this (false positive) could have

37



happened by accident, the design of the covert channel reduced this to an ac-

ceptable level. As shown in Figure 2.4, after ten moves (the point at which

a decision was made) the number of possible move sequences ranged between

480 and 51 840, with a mean of 6 380. Therefore, even if an opponent happened

to choose an identical game strategy, the probability of a false positive was at

least 1 in 480 (subject to previous assumptions). In contrast, the risk of a false

negative (that one colluding player, who should lose to its colluding opponent,

fails to identify in time) can be reduced to the risk of programming error.

This is because the covert channel used can be assumed to introduce no noise.

Furthermore, for deterministic players, all possible games between colluding

opponents can be (and in our case were) exhaustively tested in reasonable

time, before entry to the competition.

2.4.5 Optimisation

The final stage of the competition would take CPU usage into account, so

there was a potential advantage to optimise the Foxes. Aside from standard

code efficiency improvements, one domain-specific optimisation was to remove

all detection code from the Foxes. This simplification was possible since it

was not necessary for a Fox to identify that it is playing a colluding player, as

the responsibility for the match result can be given to the losing player. To

achieve this, a player who has identified that it must lose will continually pass

until the game has ended. Additionally, no evidence of collusion can then be

found by inspecting the source code of the Foxes.

To ensure the game will result in a win for the Fox when the Chicken

passes, the game strategy must be changed slightly. Firstly, the Chicken must

start playing losing moves sufficiently early in the game such that it is still

possible to lose. Secondly, a different pattern must be used for the player

starting first and the player starting second. This is because if both players

have the same pattern they would draw the game by default after playing four

passes before the identification could be completed. Thirdly, more flexible

patterns (Figure 2.3(b) and Figure 2.3(c)) give the players more equivalent

moves, thereby increasing the reliability of the identification procedure.

2.4.6 Effects of poor players

In the simple example of Optimal players and colluding players, it was seen

that only one Chicken was necessary for the Fox to win, however, the situation

is not so simple when not all independent players are Optimal. That additional

38



Table 2.3: Summary of results at the end of the league stage. Players are ordered in
descending order of points

No Category Won Drew Lost Points

1 Fox 58 26 0 142

2 Fox 58 26 0 142

3 Rooster 51 29 4 131

4 Rooster 49 31 4 129

5 Rooster 49 31 4 129

·················································· cut-off point ··················································

6 Rooster 48 32 4 128

7 Semi-Optimal 16 67 0 99
...

...
...

...
...

...

13 Semi-Optimal 12 64 8 88

14 Chicken 3 69 12 75
...

...
...

...
...

...

37 Chicken 0 72 12 72

38 Semi-Rabbit 4 63 17 71
...

...
...

...
...

...

43 Semi-Rabbit 1 52 31 54

worst-case category of players (so as to find a lower bound) is a Rabbit, which

will play poorly, so lose to Optimal players, but draw with everyone else.

From Table 2.2 it can be seen that an Optimal player will act as if it is colluding

with any Rabbits in the tournament. Therefore, the only way to win the

tournament is to have a greater number of Chickens than there are Rabbits,

no matter how many Optimal players exist. While it was likely that several

players entered would be approximately Optimal, our strategy assumes that

there would be a small number of contestants who would enter a player that

would play so badly that the chances of winning would be low.

2.4.7 Results

A summary of the final league table is shown in Table 2.3.

Since the algorithm used by the Fox, Rooster, and Chicken would only

win in exceptional circumstances, the actual results for colluding players in

39



P
os

si
bl

e 
m

ov
e 

se
qu

en
ce

s 
(lo

g 
sc

al
e)

Move number

1 2 3 4 5 6 7 8 9 10

   1.0

   4.7

  14.2

  41.4

 101.2

 332.9
 484.0

1399.0

4001.0
6380.0

−

− −

−

−
− −

−

−

−

−

− −

−

−

− −

−

− −

51840

480

Figure 2.4: Number of possible move sequences after a given number of moves. For
each move number, the left line is for the player making the first move and the
right line is for making the second move. Three classes of colluding players were
used (Fox, Rooster, and Chicken) so for each move number, the lower limit, first
quartile, median, third quartile and upper limit of the nine possible matches are
plotted using a boxplot variant. The mean over all classes of players, and over both
first and second players is indicated by u, and the absolute values shown as the y

axis tick-marks

the competition were very similar to the worst-case scenario estimates. Some

players appeared to play randomly, so when played against programs using

a tree-searching algorithm the tree-searching algorithm won. This behaviour

approximates the expected results from Rabbits and Optimal players, so the

random players are classed as Semi-Rabbits and the tree-searching players are

classed as Semi-Optimal. However, as expected, only six Semi-Rabbits were

entered by other participants and 28 Chicken/Roosters were entered by our

group, so we won the competition by a safe margin of 30 points.

40



2.5 Defeating collusion

In the above example, neither non-colluding participants nor the competition

management expected collusion to be used. In the case where collusion is

expected and not desired, there exist interesting possibilities for preventing

collusion from being effective. These fall into three categories. Firstly, covert

channels can be prevented, secondly, the use of collusion or a covert channel

can be detected, and finally, the competition could be designed to give no

advantage to colluding players.

2.5.1 Covert channel prevention

To prevent collusion, the game framework can enforce anonymity between play-

ers by preventing the communication of identity information through covert

channels while minimising the impact on game play. Chapter 1 and the works

it references discuss covert channels in MLS systems and similar techniques

can be used to both create and block covert channels in games. For example,

as mentioned in Section 2.3.1, adding jitter reduces the capacity of the move

timing covert channel. Non-application-specific channels, such as CPU load

modulation, can be prevented in the same way as on MLS systems.

However, the choice-of-move channel is harder to defend against, because

altering the move made would harm the integrity of the competition. One

possibility for reducing the capacity of this channel is to prohibit the program

from maintaining state. At each stage, the program would be restarted, be

given the board position, and asked for the next move. Without move history,

the signalling technique used in this chapter would not be effective. However,

the board state would allow some communication, and this restriction would

prevent legitimate strategies based on determining opponent characteristics.

2.5.2 Detecting collusion

In some games, it may not be desirable or possible to eliminate covert channels.

Here, the only alternative may be to detect collusion and disqualify players if

caught. One possible technique for identifying collusion is to watch the moves

the player makes and look for efforts to communicate. However, a PRNG is

not suspicious by itself, even if it is not cryptographically secure, since it is

arguable that every method of choosing one of several moves is equally valid.

Watching what happens when a player loses could be more revealing. In

the example given, the players would simply pass once they decided to lose.

41



If the competition rules stated that each participant must play at the same

standard with every player, then this behaviour could be identified from game

analysis. Another way of detecting this behaviour would be to examine the

source code of players, but the code responsible for losing could be hidden.

Additionally, if the optimisation described in Section 2.4.5 is used, then no

evidence of collusion can be found by inspecting the source code of the winning

players (Foxes).

To detect more subtle collusion, an expert could examine the match re-

sults [159], and in a similar way that a Bridge expert would look for play-

ers being exceptionally lucky in a tournament, an expert suspecting collusion

would look for players being exceptionally unlucky. The expert could also mon-

itor the games in progress looking for a suspicious change in apparent skill. If

a player is aware of such monitoring, then countermeasures to both techniques

could be taken, such as Chickens losing to Foxes with a probability of less than

one, and playing to lose in a manner more plausible than consistently passing.

2.5.3 Collusion resistant competitions

An alternative way to deter collusion is to design the competition such that it

provides no advantage. During discussion of the problem one observation made

was that the problem of deciding a winner in the competition is similar to that

of electing a candidate in an election2. While there are some differences, for

instance, that the number of candidates is identical to the number of voters,

there are also many similarities.

One possibility investigated was of a game tournament similar to the Single

Transferable Vote (STV) system. Here, every player plays every other player,

in a similar fashion to a league tournament. However, the winner evaluation

is more complex. At each stage, the normal league rules are applied and an

ordering established, but then the players with the lowest score are eliminated,

along with their contribution to all other players’ scores. The process is re-

peated until no more players can be eliminated.

This system has the advantage that Chickens will be eliminated before

Foxes, so the Chickens’ scores can have no effect on the final result, however,

they can control the order in which players are eliminated so it is not clear

that this system is free from manipulation. Additionally, the number of “vot-

ers” is identical to the number of “candidates” so the final stage will likely

result in more than one winner. This was confirmed by running the results of

2I thank Ian Jackson for making this contribution

42



the above example competition through this algorithm. As expected, all the

Chickens were eliminated but the final result included the Foxes and all the

Semi-Optimal players. Since all these players will draw against each other,

deciding a winner is difficult, but this scoring system has at least destroyed

the advantage of collusion.

Not only should competitions be resistant to collusion but they should be

fair and this is a very difficult quantity to measure. There are a variety of proofs

which state, given certain assumptions, that it is not possible to design an ideal

election. These include Arrow’s theorem [11], Gibbard-Satterthwaite [62, 138]

and Gärdenfors’ extension [61]. These primarily deal with manipulation by

voters, but there has been some work on manipulation by candidates, such

as a general result of Dutta et al. [52] and an analysis of the particular case

where the election is made out of a series of pair-wise comparisons, in a later

paper [53]. These state that, given certain assumptions, non-dictatorial elec-

tions3 are manipulable by candidates deciding whether or not to participate in

the election. This result is not directly applicable since it assumes that each

candidate who votes will vote himself the highest, and the stronger version

of the result also assumes that no candidates vote. However, it may still be

partially applicable. Whether these theories imply that an ideal competition is

impossible depends on a formal definition of fairness and collusion resistance,

which is outside the scope of this thesis.

2.6 Conclusion

In this chapter, we have shown that collusion can offer significant advantages

in tournaments that are based around leagues. We presented a simple algo-

rithm for acting on the basis of identification information, which will guarantee

winning a competition, assuming only one team is using a collusion strategy

and the standard of players is good. We have also introduced a covert channel

built using only redundancy in the moves of a game and show how this can be

used to identify colluding players, in spite of the game infrastructure enforcing

anonymity. We demonstrated these techniques being successfully applied in

order to win a real world competition. Finally, options for resisting and de-

tecting collusion are explored, including drawing parallels between the design

of competitions and the design of elections.

3The result of a non-dictatorial election must be decided by more than one voter

43



Chapter 3

Embedding covert channels into

TCP/IP

The previous chapter described techniques for two processes on one com-

puter to communicate, in violation of a security policy. Early interest in covert

channels focused on this scenario, as the computing environment at the time

was based around a small number of large, multi-use mainframes. There, it

would not have been feasible to buy separate computers for each security level,

but now, as computers are far cheaper, this option is available. An advantage

of this approach is that it avoids the covert channels that come about through

resource sharing (e.g. CPU, hard disk and memory).

However, as a consequence of the physical separation, now data and pro-

cessing is distributed, so a network is needed to share information. To ensure

that flow control policies are observed, enforcement must be built into the

network. The hope was that such hardware would be simpler and thus easier

to secure than the complex operating systems on mainframes. An example of

such a device is the NRL Pump [85], which enforces that data must only flow

in one direction, in compliance with the MLS policy.

As each computer only manipulates data at a particular security level,

covert channels on a host are no longer a concern, but ones over the network

are. Covert channels may be used to transmit information in a way which is

otherwise prevented by protection mechanisms, or they can hide from auditing

systems which detect violations of policy. The general-purpose covert channel

introduced in this chapter can be used in a wide-variety of situations and will

serve as an introduction to the special-purpose channels designed to break

anonymity systems, to be described in the following two chapters.



Due to the ubiquity of the protocol, covert channels in TCP/IP have been

a popular research topic. It is commonly believed that undetectable steganog-

raphy within TCP/IP is easily achieved by embedding data in header fields

seemingly filled with “random” data, such as the IP identifier, TCP initial

sequence number (ISN) or the least significant bit of the TCP timestamp. Not

only would these techniques allow information to be transferred in violation of

a security policy, but even detailed logs would not reveal the contravention.

This is not the case; these fields naturally exhibit sufficient structure and

non-uniformity to be efficiently and reliably differentiated from unmodified ci-

phertext. Previous work on TCP/IP steganography does not take this into

account and, based on TCP/IP specifications and open source implementa-

tions, this chapter provides tests to detect the use of näıve embedding. Fi-

nally, it describes reversible transforms that map block cipher output onto

TCP ISNs, indistinguishable from those generated by Linux and OpenBSD.

The techniques used can be extended to other operating systems. A mes-

sage can thus be hidden so that an attacker cannot demonstrate its existence

without knowing a secret key.

3.1 Introduction

Steganographic covert channels based on modification of network protocol

header values are best understood by considering a scenario with three ac-

tors; in keeping with the existing literature, we shall call them Alice, Bob and

Walter. Alice can make arbitrary modifications to network packets originating

from a machine within Walter’s network. Allowing Alice to generate new pack-

ets creates further opportunities [64], but we do not consider those here. She

wants to leak a message to Bob, who can only monitor packets at the egress

points of this network. Alice aims to hide the message from Walter, who can

see (but not modify) any packet leaving his network. This is analogous to a

passive warden within the threat model introduced by Simmons [142].

In a practical instantiation of this problem, Alice and Bob may well be

the same person. Consider a machine to which an attacker has unrestricted

access for only a short period of time, and which lies within a closely monitored

network. The attacker installs a key-logger on the machine, and wishes to leak

passwords or cryptographic keys to himself. Rootkit techniques can hide the

Trojan from virus-detectors, but the communication channel must additionally

ensure that the owner of the network does not observe anything untoward.

45



IP

TCP and UDP

Applications

Collision Management

Frame Trailers

IP ID/Packet Timing

Timestamp

Initial Sequence Number

HTTP

JPEG/MP3

ISO OSI TCP/IP Steganography

Topology

Application

Session

Transport

Network

Data−Link

Physical

Presentation

Figure 3.1: OSI model layers and approximate mapping to TCP/IP

Alice can choose which layer of the protocol stack she wishes to hide her

message in. Each layer has its own characteristics, which indicate the scenarios

in which it can best be used. Handel and Sandford [73], discuss opportunities

for embedding across all layers of the OSI model, as shown in Figure 3.1.

At the bottom of the stack, in the Physical and Data-Link layers (e.g.,

Ethernet), there is some opportunity for embedding data. However, it re-

quires low-level control of the hardware, which Alice may find difficult to ob-

tain. Also, if she chooses to signal to Bob at this layer, her messages will be

stripped out if they reach a device that connects networks at a higher layer

(e.g., an IP router). This requires Bob to be on the same LAN. An example

of a steganography system that relies on embedding at the Physical layer is

described by Szczypiorski [148].

Alice might also choose to embed data at the Presentation or Application

layers of the network stack (e.g., in Telnet or HTTP/FTP traffic). If, however,

she only has brief access to the machine from which she is leaking data, she

needs to anticipate which applications are likely to be used on it; she can then

modify them to carry her messages in the traffic they generate.

Similarly, the format of files sent over HTTP or FTP (such as JPEG or

PDF) may also be viewed as protocols in which steganographic data can be

embedded. These provide Alice with a high-bandwidth channel, but only if

she is confident of being able to modify these files without arousing suspicion.

46



The only remaining layers to consider in the OSI model are Network, Trans-

port and Session. TCP and IP (specified in RFC 793 [125] and RFC 791 [124])

fall within these layers, and are common to the vast majority of Internet ap-

plications. A message embedded in these protocols has the advantage that it

will survive unchanged on its journey out of Walter’s network. Here we con-

sider only IPv4-based embedding; IPv6-based covert channels are discussed by

Lucena et al. [95].

This chapter studies a number of previously proposed schemes for embed-

ding data within the TCP and IP protocol headers, thus creating a stegano-

graphic covert channel. It shows how the use of these schemes can easily be

detected by a passive warden. The algorithms used in the generation of some

TCP/IP header fields are then looked at in detail, and an alternative method

for embedding data, Lathra, is proposed. The chapter will show that a passive

warden cannot detect the use of this method without knowledge of a secret

key, subject to some realistic constraints. These results are also relevant to

the field of operating system and physical device fingerprinting.

3.2 Threat model

In the passive warden threat model, steganography can only be countered by

detection, not by attempting to remove any hidden information. An active

warden can modify traffic without needing to first establish whether it con-

travenes rules. Fisk et al. [56] and Handley et al. [74] show that an active

warden can remove most, if not all, TCP/IP level steganography, and lower

layer steganography will already have been removed by routing. He will, how-

ever, have difficulty removing steganography at higher layers (e.g. in JPEG

images) without damaging the carrier.

In many scenarios, it may be infeasible for a warden to be active: the kind

of filtering necessary to remove TCP/IP steganography can increase network

latency, and might require a filtering router that can store large amounts of

state. The warden may also wish to avoid the users being aware that the use

of steganography is suspected. Furthermore, passive wardens degrade more

gracefully when overloaded or when only partial traffic is available.

In this chapter, we assume that Alice operates in an environment with a

passive warden and an unreliable network (permitting packet loss, duplication

and reordering) and requires a TCP/IP-based covert channel giving

47



� indistinguishability : Walter (a passive warden) should be unable to de-

tect the presence of the data hidden in packets leaving Alice’s machine;

and

� reliability : she desires some indication of whether her messages to Bob

have indeed arrived, so she can retransmit them if necessary.

3.3 TCP/IP-based steganography

A common failing of previous steganography proposals is the production of

fields with values drawn from a different probability distribution to that which

would be generated by unmodified TCP/IP implementations. In some cases, it

is even outside the relevant specifications. For this reason, to design stegano-

graphic techniques or to detect their use, it is necessary to be familiar with

both the applicable standards and the details of their implementation. This

section gives an overview of the TCP/IP standards and related work from a

steganographic encoding perspective.

The basic TCP/IP protocol is specified in RFC 793 [125] and RFC 791 [124].

There are extensions to it (e.g., the TCP Extensions for High Performance, in

RFC 1323 [82]) that specify additional header options; these also give some

scope for steganographic coding.

IP itself does not aim to provide any stream reliability guarantees, but

rather allows client protocols on a host to transport blocks of data (datagrams)

from a source to a destination, both specified by fixed-length addresses. One

noteworthy feature of IP, for our purposes, is that it allows the fragmentation

and reassembly of long datagrams.

TCP, on the other hand, does aim to provide a reliable channel to its

clients. It is connection-oriented, and keeps its reliability properties even over

networks that exhibit packet loss, reordering and duplication. Its features for

implementing reliability and flow control give scope for steganographic coding.

A protocol header can serve as a carrier for a steganographic covert chan-

nel if a header field can take one of a set of values, each of which appears

plausible to our passive warden. The warden should not be able to distin-

guish whether the header was generated by an unmodified protocol stack or

by a steganographic encoding mechanism. In this section we examine which

TCP/IP header fields have more than one plausible value, and look at the

bandwidth available in each of them for use by a steganographic coding scheme.

48



0 3 4 7 8 15 16 18 19 23 24 31

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

IP


.
.
.

Source Port Destination Port

Sequence Number

Acknowledgement Number

Offset Reserved Flags Window

Checksum Urgent Pointer

Options (including timestamp) Padding

TCP


Figure 3.2: Basic TCP/IP header structure

TCP/IP steganography exploits the fact that few headers are altered in

transit. As mentioned above, IP packets can be fragmented, but (unless we

are hiding data in the fragmentation-related fields) no information is lost. The

time-to-live field in the IP header is decremented each time the packet passes

through a router, but the initial values used by IP stacks are well known, so

this field gives little scope for detection resistant steganography.

Figure 3.2 illustrates the basic TCP/IP headers. The fields shown in italics

are those that may be used to embed steganographic data. We now consider

each of the fields that are of the most interest in turn, assessing their potential

for use as steganographic carriers.

3.3.1 Type of service

The eight Type of Service (ToS) bits in the IP header indicate quality of service

parameters to routers on a packet’s path. They are now rarely used with their

original semantics (as defined in RFC 791 [124]) but have been re-used in the

implementation of DiffServ [115] in RFC 2474.

There is potential for using this field as a steganographic carrier, as de-

scribed by Handel and Sandford [73], because many networks never use them.

49



However, this would be easily detected by the warden in our threat model, as

the field is set to zero in almost all default operating-system configurations.

3.3.2 IP identification

As described in RFC 791 [124], the IP Identification field (IP ID) is “an iden-

tifying value assigned by the sender to aid in assembling the fragments of a

datagram”, and is allocated 16 bits of the IP header. Because the IP ID is

used to distinguish fragments making up one packet from fragments making

up another, it should be unique over the length of time that fragments of a

packet might reasonably remain in a network, and unpredictable.

IP IDs that are unique within a given time window are necessary to ensure

that fragments of different packets are not reassembled into one packet on

the receiving host. Unpredictability prevents idle scanning [60], discussed in

Section 1.4, whereby an attacker can portscan a host while spoofing the source

address of all packets.

A scheme for embedding data in the IP ID is described by Ahsan and

Kundur [3]. It uses a pseudorandom sequence to form a substitution cipher,

generated by a “toral automorphism” [153], to ensure that the modified field

is scrambled. Here, the sequence of (xi, yi) generated from a key (k,N, x1, y1)

is defined by:

[
xn+1

yn+1

]
=

[
1 1

k k + 1

] [
xn

yn

]
(mod N)

However, this can be detected since IP ID fields are not random, as will be

described in Section 3.5.1 below.

3.3.3 IP flags

IP packets include two flags, Do Not Fragment (DF), indicating that the packet

should be discarded if it cannot be sent without fragmentation, and More Frag-

ments (MF) which is 0 if the packet contains the last fragment or has not been

fragmented. Ahsan and Kundur propose the use of the DF bit for stegano-

graphic signalling [3]. If this is used on packets smaller than the maximum

segment size, the DF flag has no effect on the packets’ behaviour. However,

the normal state of DF can be predicted from the packet’s context, so the

warden in our threat model can detect the use of this technique.

50



3.3.4 IP fragment offset

When IP packets are fragmented, the individual fragments contain an offset

field; this allows the receiving host to reconstruct the fragments in the cor-

rect positions in its receive buffers. Information can be transmitted covertly

by modulating the size of the fragments originated by a host, and thus the

fragment offsets. As with the IP identification and ToS fields, this method of

steganographic encoding is easily detected. In environments where path MTU

discovery [102] is routinely used, fragmented packets are unusual.

3.3.5 IP options

IP packets very rarely contain “options”, so their potential for use in unde-

tectable steganography is limited. Handel and Sandford [73] describe the use

of the IP Timestamp option (not to be confused with the TCP Timestamp

discussed below), but in addition to being easily detectable, packets with this

option present can travel at most 20 hops, so it is of limited use on the Internet.

3.3.6 TCP sequence number

TCP sequence numbers support the reliability and flow control features pro-

vided by TCP. Each octet of data transmitted over a TCP stream is assigned a

sequence number. In TCP, a connection, defined by a pair of (IP, port) tuples

can be re-used, and hence the host must be able to detect whether a segment

is from a current or previous incarnation of a connection.

When a connection is established, both hosts must choose an initial se-

quence number (ISN). Careful design of the algorithm for generating these

initial sequence numbers ensures that an immediate overlap in sequence num-

ber space, between different incarnations of a connection, is prevented.

There are other properties required of the algorithm used for initial se-

quence number generation. To prevent spoofing, for a given connection, the

ISNs used must be hard to guess for those not involved in the connection [18].

To allow a connection in the TIME WAIT state to be restarted, the sequence

numbers for a given tuple pair should also be monotonically increasing.

A prototype implementation of steganography using TCP ISNs (and also

the IP ID), Covert TCP, is described by Rowland [136]. It replaces the chosen

field with the data to be sent, so can be detected by observing that fields do

not meet the required overlap and uniqueness constraints, or by comparing the

data observed with statistical patterns of suspected plaintext.

51



A passive warden using a Support Vector Machine (SVM) is presented by

Sohn et al. [144]. It is designed to detect the use of Covert TCP within the

IP ID and TCP ISN. A SVM is a machine-learning technique for automati-

cally identifying features which are not well understood. The algorithms for

generating IP IDs and ISNs are well understood and precisely described in

source code, so it is not necessary to resort to machine learning techniques.

The SVM can only identify simple features, so it cannot detect the complex

structure present in these fields, and their interdependencies.

The design and implementation of Nushu, an improvement to Covert TCP,

for Linux 2.4, is described by Rutkowska [137]. Nushu uses TCP ISNs for

encoding information and encrypts outgoing ISNs to hide the use of steganog-

raphy, however it still may be detected. Firstly, the output will not exhibit

the structure of TCP ISNs expected from Linux. Secondly, a flaw in the use

of DES for encryption allows the recovery of statistical information on the

plaintext. Following the initial publication of the work in this chapter [109],

neural networks were used to detect such patterns [150] but performance can

be improved by understanding the precise nature of the ISN field, as will be

shown in Section 3.5.3.

3.3.7 TCP timestamp

The TCP timestamp option allows a host to accurately measure the round trip

time of a path, and also mitigates problems associated with sequence number

wrap-around in links with large bitrate-delay products. For our purposes, it is

only necessary to understand the constraints on the values of TCP timestamps;

more details about the features based on them can be found in RFC 1323 [82].

The timestamp option consists of two 32 bit fields, TS Value and TS Echo

Reply. The TS Value field is set based on the timestamp clock of the sender,

and it is into this field that hidden data can be embedded. The only constraints

on the timestamp clock are that its tick frequency be between 1 Hz and 1 kHz,

and that it be strictly monotonic. The TS Echo field is filled with the TS

Value from the packet being acknowledged.

A covert channel based on modulating the least significant bit of the TCP

timestamps transmitted by a host, devcc, is proposed by Giffin et al. [63]. The

scheme works by incrementing the timestamp associated with a packet (and

delaying it accordingly) in order to transmit a “1” bit of ciphertext. The use

of TCP timestamps is not universal, but it is deployed as standard on newer

versions of Linux and other Unix-like operating systems, so the observation

52



of timestamps from an operating system which does not support them would

be suspicious. As will be described in Section 3.5.3 below, the distribution of

values in the timestamp field is modified from the expected one, in a detectable

manner, by the use of this covert channel.

3.3.8 Packet order

In addition to the content of the packet, the ordering of packets can be used

to carry information, as is described by Ahsan and Kundur [3]. This approach

relies on being used on an IPSec network to recover the original order, limiting

its applicability. Since packets are seldom reordered by the transmitting host,

a warden who is close to Alice will undoubtedly notice the unusually large

amount of re-ordering.

3.3.9 Packet timing

This chapter will concentrate on packet content (so-called storage covert chan-

nels), but in a similar manner to the “timing of move” channel in Chapter 2,

packet timing can carry information. We do not explore this avenue further,

but proposals for such schemes, along with detection mechanisms, are discussed

by Cabuk et al. [28].

3.4 IP ID and TCP ISN implementations

The passive warden considered in this chapter has knowledge of both the

TCP/IP standards and particular implementations. He can check whether

the values he observes could have been generated by an unmodified operat-

ing system, or even by the operating system he knows to be installed on the

originating host.

Two fields which are commonly used to embed steganographic data are the

IP ID and TCP ISN. It was not possible to find a sufficiently precise description

of their generation within the public literature, so details of their implemen-

tation are included here. Due to their construction, these fields contain some

structure, but as mentioned in Section 3.3, they must also be partially unpre-

dictable. This is achieved by having randomly generated, per-host, secrets and

by the use of cryptographic functions. We assume that the warden is aware of

the implementation, but does not have access to these secrets and is not able

to exploit vulnerabilities in the cryptographic primitives.

53



Random data

SHA−1

S. Port

State

D. Port

Block

Time (microseconds)

Sequence number

+

Dst IPSrc IP

Figure 3.3: Linux 2.0 ISN generator

3.4.1 Linux

The Linux 2.0 ISN generator (shown in Figure 3.3) is based on RFC 1948 [17].

It uses SHA-1 to hash a block of 16 32-bit words, with words 9–11 set to

the source and destination IP address and port, and the remaining 13 words

filled with a cryptographically secure secret, initialised on boot. Rather than

using the values defined in the SHA-1 standard for the initial state, the first

5 words of the block are used. To obtain an ISN, the second word of the

hash is selected and the current time (in microseconds) added. This technique

achieves the goals of RFC 1948, but calculation of a SHA-1 hash is slow, and

hence this algorithm causes a significant delay in connection establishment.

The algorithm used in Linux 2.2 (shown on the left in Figure 3.4) was

modified to reduce the time needed to calculate each ISN. Rather than using

SHA-1, a reduced block-size variant of MD4 was used, which reads 8 32-bit

blocks per iteration, rather than the 16 in the original, and so it also reduces

the steps per round from 16 to 8. This is used in a similar way to SHA-1 in

Linux 2.0, except it limits the re-use of random data. Since even the security

of the full size MD4 algorithm is suspect (it is now known not to be collision-

resistant [51]), the random data is rekeyed every 300 seconds (5 minutes) to

limit the impact of secret compromise. To avoid this resulting in repeated

ISNs, after the hash is calculated, the most significant byte is replaced with a

counter incremented on rekeying and initialised to the current time divided by

300 s. Finally, as with Linux 2.0, the time in microseconds is added.

54



Random data different for IP ID and ISN

Random data identical for IP ID and ISN

32 bits

Rekey counter (Late Linux 2.4/2.6)
Time /300s (Linux 2.2/Early Linux 2.4)

S. Port S. Port D. PortD. Port

(IP ID)

(ISN)

(IP ID)

(ISN)

+

State

R−MD4 Block

Initial IP ID (Linux 2.4 to 2.6)

R−MD4 Block

State

Sequence number

D. IPS. IP

D. IP

Linux 2.2 and early Linux 2.4

D. IP

S. IP D. IP

Late Linux 2.4 and Linux 2.6

Time (microseconds)

Figure 3.4: Linux 2.2–2.6 ISN generator and Linux 2.4–2.6 IP ID generator

Early versions of Linux 2.4 contained the same ISN generator as Linux 2.2.

It was also used (up to the hashing step), with a different secret, to initialise

the per-destination counters for IP IDs on packets which may be fragmented.

A global counter was previously used, but this was vulnerable to idle scan-

ning. In later versions of Linux 2.4 and Linux 2.6 the algorithm was changed

slightly, as shown on the right of Figure 3.4, mainly to improve performance

on multiprocessor systems. The difference from a detection perspective is that

the rekey counter is initialised to zero on boot. The use of MD4 is changed,

and the same secret is used for both ISN and IP ID generation. Exploiting

this for detection would require finding a pre-image attack against MD4, or the

weaker variant of being able to tell whether two hash outputs were generated

55



1024 bits

15 bits

15 bits

Random data

Block cipher

32 bits

RC4 PRNG

Counter

Rekey counter mod 2 0

Sequence number

Key

Figure 3.5: OpenBSD ISN generator

by similar, but not identical, inputs. Packets which will not be fragmented,

due to the DF bit being set, are assigned a predictable IP ID. For TCP this

is a per-socket counter initialised to the sequence number xor-ed with the jiffy

timer; for UDP a per-socket counter initialised with a timer; while for other

protocols, it is set to zero.

3.4.2 OpenBSD

The algorithm used for ISN generation in OpenBSD was introduced in De-

cember 2000; Figure 3.5 shows its operation. It is initialised by keying a block

cipher with 1 024 bits of random data and setting the most significant bit of

the generated ISNs to zero. It is rekeyed every 2 hours, or every 30 000 con-

nections, whichever is sooner. On rekeying, the MSB of the generated ISNs

is toggled: this prevents collisions between ISNs generated in adjacent rekey

intervals. When a new TCP connection is made, the ISN is generated as

follows:

� The MSB is set to either “1” or “0”, depending on whether the operating

system is in an “odd” or “even” rekey interval.

� The next 15 bits are set to the output of a custom block cipher run in

counter mode; the counter is incremented each time an ISN is generated.

� The next bit is always zero.

� The final 15 bits are generated by an RC4-based pseudorandom number

generator (PRNG).

56



The result of running the block cipher in counter mode is that a different

pseudorandom sequence is defined in each rekey interval. The 15-bit values

in this sequence are then inserted into the ISNs, followed by a zero bit: this

ensures that no two ISNs within a given rekey interval are closer together

than 215 octets. The scheme thus satisfies all of the constraints described in

Section 3.3 apart from per tuple pair monotonicity.

The IP ID algorithm in OpenBSD uses a linear congruential generator,

described by de Raadt et al. [42], rekeyed every 3 minutes (or after 30 000 IDs

have been generated, whichever is sooner). It uses the same MSB-toggling

mechanism as the sequence number generator to prevent collisions between

rekey intervals.

3.5 Detection of TCP/IP steganography

As described above, each operating system exhibits well defined characteristics

in generated TCP/IP fields. These can be used to identify any anomalies that

may indicate the use of steganography. I have therefore outlined a suite of

tests which may be applied to network traces and used to identify whether

the results are consistent with known operating systems (and in particular,

with the operating system believed to be installed on the source host). How-

ever, these are not intended as acceptance tests for proposed steganographic

schemes, because it is possible to design a steganography scheme which will

pass these tests, but still be detectable.

3.5.1 IP ID characteristics

T1. Sequential Global IP ID. Some operating systems, particularly older

ones (e.g. Linux <2.4), use a global counter for the IP ID. If connections

to different hosts have sequentially increasing IP IDs then it is likely that

this strategy is in use.

T2. Sequential Per-host IP ID. Others (e.g. Linux ≥2.4) use a per-host

counter for packets which may be fragmented. The warden can test

whether connections to different hosts use apparently unrelated IP IDs,

but connections to the same host have a sequentially increasing IP ID.

T3. IP ID MSB Toggle. OpenBSD toggles the most significant bit of the

IP ID every rekey interval (3 minutes or 30 000 IP IDs), so the MSB is

examined to check if it matches this pattern.

57



T4. IP ID Permutation. Within a rekey interval, the OpenBSD IP ID is

non-repeating; the presence of any duplicates eliminates the possibility

that this strategy is in use.

3.5.2 TCP ISN characteristics

T5. Rekey Timer. In Linux 2.2 (and early 2.4) the most significant byte of

the ISN is initialised to the system time since the epoch, divided by 300 s.

The system time in microseconds is then added. The rekey timer can

be recovered by subtracting the system time, in microseconds, from each

ISN and verifying that the top byte increases by one every 5 minutes.

This requires a clock synchronised to 8 seconds accuracy (223/1 000 000),

which seems a reasonable assumption, since many systems use NTP syn-

chronisation. The system time can even be queried directly, for example

by using the daytime service [126], or indirectly, by observing patterns

in the ISNs.

T6. Rekey Counter. In Linux 2.6 (and late 2.4) the MSB of the ISN is set

to the time since system startup divided by 300 s. The system time in

microseconds is added, as before, and hence the rekey counter can be

recovered using the same method as in Test 5.

T7. Zero bit 15. All ISNs generated by OpenBSD will have bit 15 cleared.

T8. ISN MSB Toggle. As with the IP ID, OpenBSD toggles the MSB of the

generated ISN every rekey interval (2 hours or 30 000 IP IDs).

T9. ISN Permutation. Bits 16 to 30 within OpenBSD ISNs will not repeat

within a rekey interval.

T10. Full TCP Collisions. In Linux 2.0–2.6, and other RFC 1948-inspired

systems, the hash used for ISN generation is based on the address/port

tuple pair, so collisions may be encountered. For Linux 2.0 there is no

rekeying, so all 32 bits will be identical (subject to clock skew), after

subtracting the time. This test and the following one can also be used

to estimate clock skew between Alice and the warden and hence identify

the physical device without the use of TCP timestamps [90].

T11. Partial TCP Collisions. For Linux 2.2–2.6 it would be expected that

collisions within a rekey period will have the same least significant 24

bits (subject to clock skew), after subtracting the time.

58



3.5.3 Explicit steganography detection

T12. Nushu Cryptography As covered in Section 3.3.6, Nushu encrypts data

before including it in the ISN field. This will result in a distribution

unlike that normally generated by Linux and so will be detected by the

other TCP tests. However, due to a flaw in the way that encryption

is used, Nushu also exhibits characteristics of its own which may be

exploited. The encryption operates by DES encrypting the initialisa-

tion vector (IV) (source port ⊕ destination port ‖ source IP address ⊕
destination IP address) with a shared key, then xor-ing the first 32 bits

of the resulting keystream with the hidden data. When IV collisions

occur, the ISNs can be xor-ed to remove the key-stream; the result is

the xor of two plaintexts. If these plaintexts are the same, as is the case

when data is not being sent, the result would be zero, and in other cases

redundancy in encoding would be apparent.

T13. TCP Timestamp The scheme used in devcc, described by Giffin et

al. [63], can be detected using the methods outlined by Hintz [78]. If

a low bandwidth TCP connection is being used to leak information,

a randomness test can be applied to the least significant bits of the

timestamps in the TCP packets. If “too much” randomness is detected

in the LSBs, it can be deduced that a steganographic covert channel is

in use.

For a high bandwidth TCP connection (where segment transmission rate

� timestamp update rate), a warden can merely calculate the ratio of

the number of timestamp values seen to the difference between the start

and end timestamp values. If the covert channel described by Giffin et

al. [63] is in use, this ratio will be close to 2.

T14. Other Anomalies Features which would indicate the use of steganogra-

phy include: unusual flags (e.g. DF when not expected, ToS set), exces-

sive fragmentation, use of IP options, non-zero padding, unexpected TCP

options (e.g. timestamps from operating systems which do not generate

them) and excessive re-ordering.

3.5.4 Accuracy

Table 3.1 shows which tests detect which operating systems or steganographic

techniques. All of these tests (except Test 13) are based directly on the original

59



Software Tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Linux 2.0 • •
Linux 2.2 • • •

Early Linux 2.4 • • •
Late Linux 2.4/2.6 • • •

OpenBSD • • • • •
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Covert TCP

Nushu • •
devcc • • • • •

Lathra/Linux • • •
Lathra/OpenBSD • • • • •

Table 3.1: Expected results of tests on unmodified operating systems and TCP/IP
steganography systems. A matching test is indicated by “•”. The last three columns
are tests for the presence of steganography, the others test for the absence. Nushu
and devcc were written for early Linux 2.4 and are assumed to share the characteris-
tics of all fields which are not explicitly modified. Covert TCP creates all fields itself.
Our improved TCP/IP steganography scheme, Lathra, is described in Section 3.6

implementations, and make no assumptions about probabilistic effects. Hence,

they will not suffer from false negatives. False positives are possible, so in this

section we consider the number of packets required to avoid these.

IP ID. Test 1 will reach an error probability of 1/216 after only 2 packets,

as will Test 2 for two fragmentable packets directed to the same host within

a rekey interval. Due to the prevalence of path MTU discovery, fragmentable

packets are rare, however this test will still be effective in the normal case,

where sockets are used to send several packets, because of the per-socket IP

ID counters used in TCP and UDP. The probability of error in Test 3 halves

with every packet after the first one is observed. From the “birthday paradox”,

after around 181 packets (2N/2, where N is 15, the number of bits in the PRNG

output) a collision would be expected which would match Test 4.

TCP ISN. Test 5 needs one packet to achieve a 1/28 error probability; Test

6 needs 2 packets to get the same. Test 7 halves the error probability with every

SYN packet, as does Test 8 after the first packet. As with the equivalent IP ID

check, Test 9 needs around 181 SYN packets within a rekey interval. Tests 10

60



●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

906300000 9.15e+08 9.20e+08 9.25e+08 9.30e+08

90
68

00
00

0
9.

15
e+

08
9.

20
e+

08
9.

25
e+

08
9.

30
e+

08
93

53
00

00
0

Current ISN

N
ex

t I
S

N

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1737000 1e+09 2e+09 3e+09 4.282e+09

50
61

00
0

1e
+

09
2e

+
09

3e
+

09
4.

29
4e

+
09

Current ISN

Figure 3.6: Correlation of consecutive ISNs. Packets generated by Linux are shown
on the left and Nushu on the right. Note the differing scales and distribution.
With Linux, large changes do not occur whereas with Nushu, ISNs are uniformly
distributed over the full range. The colour of points indicates packet ordinal (dark
to light), and as can be seen there is no obvious relationship. Marginal first quartile,
median and third quartile are shown by breaks on the axes; the mean is indicated
by a u

and 11 depend on the randomness of the source port selection, but on a heavily

loaded machine, my experiments show these collisions occur approximately

every 1 000 SYN packets for a fixed destination port.

Steganography. Test 12 also depends on port selection randomness, but

my experiments show collisions every 1 000 SYN packets (even with random

destination ports). Test 13 depends on the expected communication speed;

accuracy will improve the more the capacity exceeds two packets per times-

tamp. The accuracy of Test 14 depends on the steganography being used, but

for näıve implementations only one packet is needed.

3.5.5 Results

A few of the tests described above merit further explanation. Tests 5 and 6

show that in Linux, the most significant byte of ISNs in consecutive packets

will differ by at most 1, assuming at least one packet is sent per rekey. In con-

trast, Nushu and random ISN generation should show no correlation between

consecutive packets. This is illustrated in Figure 3.6.

61



●
●

●●

●

●

●

●

●●●●● ●●

●

●●
●

●●●●

●

●

●●
●

●

●

●
●●
●

●
●

●

●
●

●

●●●
●
●

●

●
●

●●

●

●●●● ●●●●●

●

●

●
●
●

●

●
●

●

●●
●

●

●
●●

●

●

●●
●●●

●

●

●● ●●● ●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●● ●

●

●

●

●
●

●

●
●

●

●
● ●●

●

●●●●
●

●

●●

●

● ●●●

●

●

●

●● ●

●

●●

●

●
●●●

●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●●●●
●
●

●

●

●

●●
●●

●

●
●
●●●
●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●
●

●

●

●
●●

●

●●●
●

●●●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●●
●

●

● ● ●

●

●

●

●

●●

●
●● ●

●
●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●● ●●
●

●

●●

●

●

●

●
●●
●●

●

●

●

●

●●
●

●

●

●

●●

●

●●
●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●●●●●
●●●
●
●●
●

●

●

●

●●

●

●●●●
●
●

●●

●

●●●●

●

●
●

●

●● ●
●●
●●
●
●

●●

●●●●
●

●●●

●

●●●●

●

●●
●
●●

●

●
●
●

●

●

●

●

●
●

●

●●●
●●●
●

●

●

●

●
●●●●●
●

●●

●

●
●

●

● ●●
● ●
●●

●

● ●

●

●

●●
●
●●
●

●

●

●

●

●

●●

1 2 3 4 5 6 7

12
03

20
00

30
00

40
00

50
00

60
00

73
39

Time difference (ms)

IS
N

 d
iff

er
en

ce
 (

m
od

 2
32

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7

31
40

00
00

1e
+

09
2e

+
09

3e
+

09
4.

29
3e

+
09

Time difference (ms)

Figure 3.7: Time dependence of consecutive ISNs. Linux is shown on the left and
random ISNs, with the same inter-packet timing, is on the right. The packets were
sent approximately every 2 milliseconds, hence the clustering on the x axis around
this point. The ISN difference is clearly correlated with inter-packet sending time for
Linux, but uniformly distributed with random ISNs. Again point colour indicates
packet ordinal

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

906400000 9.15e+08 9.20e+08 9.25e+08 9.30e+08

90
85

00
00

0
9.

15
e+

08
9.

20
e+

08
9.

25
e+

08
9.

30
e+

08
93

54
00

00
0

Current ISN

N
ex

t I
S

N
 w

ith
 s

am
e 

IV

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

204200 1e+09 2e+09 3e+09 4.292e+09

20
42

00
1e

+
09

2e
+

09
3e

+
09

4.
29

2e
+

09

Current ISN

Figure 3.8: With Linux, shown on the left, there is no significant correlation between
pairs of packets with the same Nushu ISN, other than that expected from the similar
most significant byte. In contrast, for such packets, the Nushu generated ISN, shown
on the right, is identical, assuming a constant payload

62



Test 11 implies that for Linux 2.2–2.6, during one rekey period, the dif-

ference between any pair of ISNs generated for the same source/destination

port/IP address will be the sending time difference in microseconds. Figure 3.7

shows how Linux ISNs can be differentiated from random ISNs by the appli-

cation of this technique.

Finally, Figure 3.8 shows the characteristic patterns of Nushu compared to

unmodified Linux. It is similar to Figure 3.6, except rather than comparing

consecutive packets, it compares pairs of packets for which the Nushu initiali-

sation vector would be identical.

3.6 Detection-resistant TCP steganography

Our aim in this section is to develop a robust scheme, Lathra, using the TCP

ISNs generated by OpenBSD and Linux as a steganographic carrier. We

achieve this by following the implementation of the real ISN generators, so

OpenBSD and Linux are discussed as separate cases. This discussion only

considers the content of the steganographic channel, but to be protected from

timing attacks, care must also be taken to ensure that the generation algo-

rithms have the same response time as the original implementations.

3.6.1 Linux

Simply encoding our data within the least significant 24 bits of the ISN could

be detected by the warden, because he can detect the absence of a uniform

distribution after subtraction of the time. Our generated ISN thus needs to

have the carry into the top byte set correctly. We must add one to the top byte

of our generated ISN if, and only if, the value that we place into the bottom

24 bits (our encrypted data) is strictly less than the least significant 24 bits of

the time.

To ensure reliability, Alice can check if she receives an ACK for each ISN

and resend if not, then use an internal sequence number to recover the original

order. The data must be encrypted, so that it cannot be differentiated from

random numbers. To prevent duplicated plaintexts being apparent, while al-

lowing each packet to be decrypted independently, the plaintext is xor-ed with

a hash of other header fields (not including the IP ID, which is derived from

the ISN), then encrypted with a variable length block cipher. Half of the space

of plaintexts is reserved specifically to avoid duplications in the space of ci-

phertext: if the same data is to be sent, and the hash of other header fields is

63



the same, one of these dummy values is encoded and transmitted. Due to the

RFC 1948 based design, if Alice encounters a packet with the same source and

destination IP address and port as one already used, within a rekey interval,

it must be skipped.

3.6.2 OpenBSD

The most significant bit of our output must exactly mimic the output of the

real OpenBSD TCP stack: it must toggle every 2 hours (or 30 000 connec-

tions). The next 15 bits, when extracted in turn from each ISN generated

within a rekey interval, must resemble a pseudorandom sequence. An algo-

rithm that conforms to these requirements was developed by Stephen Lewis

and for completeness it is shown in Figure 3.9.

These functions encode (and decode) the integer n as a permutation of the

sequence (0, 1, 2, . . . ,m − 1), with x-times redundancy (i.e., Bob only needs

to receive one in x ISNs transmitted by Alice). In order to remove patterns

in our permutation, Alice must choose a key, K, for each rekey interval, and

transmit it to Bob in, for example, the least significant 15 bits of the first ISN.

By using these functions we can encode the 16 MSBs of the ISN. The 17th

bit must be zero, and we encode data into the remaining 15 bits using a block

cipher. The output of the cipher is analogous to the stream cipher in the

genuine implementation. We xor a hash of other header fields with the input

data to hide duplicated plaintexts. If the hash yields the same value more than

once, we skip that packet.

3.7 Conclusion

This chapter has provided an overview of the opportunities for using TCP/IP

header fields as a carrier for a steganographic covert channel. A detailed

description of the ISN and IP ID generation schemes in Linux and OpenBSD

were presented, and a number of previously proposed schemes for TCP/IP-

based steganography were described.

We have shown that a passive warden can detect the use of these schemes

because the modified headers that they produce can easily be distinguished

from those generated by a genuine TCP/IP stack.

Finally, we have outlined two schemes for encoding data with ISNs gener-

ated by OpenBSD and Linux. Both schemes generate ISNs that are almost

indistinguishable from those generated by a genuine TCP stack, except by war-

64



dens with knowledge of a shared secret key or who can exploit vulnerabilities in

the underlying cryptography used in Lathra or the original ISN generation al-

gorithms. In particular, for the Lathra/Linux case, we assume that the warden

cannot tell that two adjacent sequence numbers could not have been generated

by an instance of MD4 with the same partial input. In Lathra/OpenBSD, we

make a similar assumption about the counter mode output of the block cipher

and the use of RC4.

65



Permutation-Code(m, n, x)

1 base← m

2 output symbols← (0, 1, 2, . . . ,m− 1)

3 while n 6= 0

4 do index← n mod base

5 n← bn/basec
6 for i← 0 to x− 1

7 do output Encipher(output symbols[index] + i×m, K)

8 output symbols← output symbols \ output symbols[index]

9 base← base− 1

Permutation-Decode(m, x)

1 base← m

2 multiplicand = 1

3 input symbols← (0, 1, 2, . . . ,m− 1)

4 n← 0

5 while input symbol

6 do symbol← Decipher(symbol,K)

7 symbol← symbol mod m

8 if seen symbol

9 then skip

10 n← n + Index-Of(symbol in input symbols)×multiplicand

11 input symbols← input symbols \ symbol

12 multiplicand← multiplicand× base

13 base← base− 1

14 return n

Figure 3.9: OpenBSD permutation coding and decoding functions

66



Chapter 4

Low-cost traffic analysis of Tor

Tor [50] is the second generation Onion Router [130], supporting the anony-

mous transport of TCP streams over the Internet. Its low latency makes

it appropriate for common tasks, such as web browsing, but vulnerable to

traffic-analysis attacks by a global passive adversary. This chapter presents

new traffic-analysis techniques, based on covert channels and side channels,

that allow adversaries with only a partial view of the network to infer which

nodes are being used to relay anonymous streams and therefore greatly re-

duce the anonymity provided by Tor. Furthermore, we show that otherwise

unrelated streams through Tor can be linked back to the same initiator. The

attack is feasible for the adversary anticipated by the Tor designers. The

theoretical attacks are backed up by experiments performed on the deployed

Tor network, and should also be applicable to any low-latency anonymisation

network. These attacks highlight the relationship between the field of traffic

analysis and more traditional computer-security issues, such as covert-channel

analysis of multilevel secure systems. This research also highlights that the

inability to directly observe network links does not prevent an attacker from

performing traffic analysis: the adversary can use the anonymising network as

an oracle to infer the traffic load on remote nodes.

4.1 Introduction

Since the development of Chaum’s mix [31], mentioned in Chapter 1, several

email anonymity systems have been based on this architecture. Most notably,

these include Babel by Gülcü and Tsudik [72], Mixmaster by Möller et al. [116]

and the newer Mixminion by Danezis et al. [41]. Their latency is tolerable

67



for email, but is unsuitable for interactive applications such as web browsing.

Other systems, based on the idea of a mix, were developed to carry low-latency

traffic. ISDN mixes [120] propose a design that allows phone conversations to

be anonymised, and the Java Anon Proxy (JAP) [19] follows the same design

pattern to anonymise web traffic.

The Onion Routing project [30] has been working on stream-level, low-

latency, high-bandwidth anonymous communications. Their latest design and

implementation, Tor, has many attractive features, including forward secrecy

and support for anonymous servers. These features, and Tor’s ease of use, have

already made it popular, and a testing network, available for public use, has

around 1 000 nodes acting as Onion Routers (as of July 2007).

While anonymous email systems are designed to resist attack despite all

communication links being monitored, Tor aims to protect the anonymity of

its users from non-global adversaries. This means that the adversary has the

ability to observe and control some part of the network, but not its totality.

Similarly, the adversary is assumed to be capable of controlling some fraction

of Tor nodes. By making these assumptions, the designers of Tor believe it

is safe to employ only minimal mixing of the stream cells that are relayed,

thereby lowering the latency overhead of the communication.

This choice of threat model, with its limitation of the adversaries’ powers,

has been a subject of controversy in the anonymity community, yet most of

the discussion has focused on assessing whether these restrictions on attackers’

capabilities are realistic. We leave this discussion aside and instead show that

traffic-analysis attacks can be successfully mounted against Tor even within

this very restricted threat model.

Our attacks are based on the notion that the timing signature of an anony-

mised stream can be used to track it in the Tor network, since the low latency

does not significantly distort it. As the adversary is not global, he cannot ob-

serve timing signatures directly in the network. Instead, the adversary sends

his own traffic streams through a node and monitors the latency. He uses

the fact that the traffic volume of one stream influences the latency of other

streams carried by the same Tor node. To assess if a target stream is carried

over a Tor node, the adversary routes a stream that he can observe, through the

same node, and measures the changes in latency. Besides tracing the route of

an anonymous communication, our traffic-analysis attacks can also link trans-

actions together. Our techniques allow any user to perform traffic analysis on

the whole network, and thereby approximate a global passive observer.

68



The results presented should be seriously considered by designers of anony-

mous communication systems. They concern a widely deployed, popular, and

well used system that represents the state of the art in both research and

implementation. Few systems of such a standard have been deployed (Free-

dom [13, 24, 66] and JAP [19] being the others), which has made practical

experimentation, to verify the effectiveness of theoretical attacks, very diffi-

cult. These attacks highlight an architectural flaw that leads to information

leakage, and this could affect other designs of anonymity systems. The paral-

lels that this problem has with covert channels in multilevel security links the

field of anonymous communications with more traditional computer-security

disciplines. The approach of performing covert-channel analysis to assess the

security of an anonymous communication system was pioneered by Moskowitz

et al. [104, 105, 114]. This chapter, and the thesis as a whole, illustrates that

theirs is not simply a theoretical model, but that techniques from the covert

channel community can be effective, in practice, in degrading the security pro-

vided by real anonymous communication systems.

Despite the link to covert channels in MLS, there is a fundamental differ-

ence: anonymous communication relies on traffic from many different sources

being mixed together. Therefore, the established solution to covert channels,

of separating the different streams to avoid timing information leakage, would

eliminate the anonymity properties of the system. For this reason, novel tech-

niques must be devised to cope with our attacks.

4.2 Understanding Tor

The Onion Router (Tor) [50] is the culmination of many years of research by the

Onion Routing project [67, 130, 147]. Not only is it a completely new design

and implementation, but it reflects a shift from the traditional threat models

anonymous communication systems have tried to protect against. We first

describe the Tor architecture and then introduce the threat model considered

in the Tor design.

4.2.1 Architecture

The Tor network can be used to transport TCP streams anonymously. It is

composed of a set of nodes that act as relays for a number of communication

streams, hopefully from different users. Each Tor node tries to ensure that the

correspondence between incoming data streams and outgoing data streams is

69



AES
CX AES

CY
AES

CZ

TLS
CX

TLS
XY

TLS
YZ

X Y Z

Data

C

Figure 4.1: Encryption performed and key usage for a Tor circuit, going from the
Onion Proxy C, through three Onion Routers: X, Y and Z. TLSab indicates the TLS
tunnel secured by keys shared between a and b. AESab indicates the CTR mode
encryption performed using a key shared between a and b

obscured from observers. Therefore, an attacker cannot be sure about which of

the originating user streams corresponds to an observed output of the network.

The Tor architecture is similar to circuit-switched networks. The connec-

tion establishment, shown in Figure 4.1, has been carefully crafted to preserve

anonymity, by not allowing observers to cryptographically link or trace the

route that the connection is using. The initiator of the stream creates a cir-

cuit by first connecting to a randomly selected Tor node, negotiating secret

keys and establishing a secure channel with it. The key establishment uses

self-signed ephemeral Diffie-Hellman key exchange [46], and Transport Layer

Security (TLS) [45] is further used to protect the connections between nodes

and provide forward secrecy.

All communications are then tunnelled through this circuit, and the ini-

tiator can connect to further Tor nodes, exchange keys and protect the com-

munication through multiple layers of encryption. Each layer is decoded by a

Tor node and the data is forwarded to the next Onion Router using standard

route labelling techniques.

Finally, after a number of Tor nodes are relaying the circuit (by default

three), the initiator can ask the last Tor node on the path, the exit node, to

connect to a particular TCP port at a remote IP address or domain name.

Application layer data, such as HTTP requests or SSH sessions, can then be

passed along the circuit as usual. Since we are not attacking the cryptographic

components of Tor, we will not go into any further details on this subject.

Interested readers should consult the Tor specification [47].

TCP streams travelling through Tor are divided and packaged into cells.

Each cell is 512 bytes long but, to cut down on latency, it can contain a shorter

70



useful payload. This is essential for supporting interactive protocols, such as

SSH, that send very small keystroke messages.

Controversially, Tor does not perform any explicit mixing. Cells are stored

in separate buffers for each stream, and are output in a round-robin fash-

ion, going round the connection buffers. This ensures that all connections are

relayed fairly, and is a common strategy for providing best effort service. Im-

portantly, when a connection buffer is empty, it is skipped, and a cell from the

next non-empty connection buffer is sent as expected.

Since one of the objectives of Tor is to provide low-latency communications,

cells are not explicitly delayed, reordered, batched or dropped, beyond the

strategy described above.

Tor has some provisions for fairness, rate limiting and traffic congestion

avoidance at particular nodes. Tor implements a token bucket strategy to

make sure that long-term traffic volumes are kept below a specified limit set

by each Tor node operator. Since the current deployment model relies on vol-

unteer operators, this was considered important. Yet this approach, on its own,

would not prevent spikes of traffic from being sent, and propagating through

a connection. These spikes of data are subject to the maximum bandwidth of

each node, and can saturate the network connection of some Tor nodes.

To avoid such congestion, a second mechanism is implemented. Each

stream has two windows associated with it, the first describes how many cells

are to be received by the initiator, while the other describes how many are

allowed to be sent out to the network. If too many cells are in transit through

the network – and have not already been accepted by the final destination –

the Tor node stops accepting any further cells until the congestion is eased.

It is important to note that this mechanism ensures that the sender does not

send more than the receiver is ready to accept, thereby overfilling the buffers at

intermediary Tor nodes. It also makes sure that each connection can only have

a certain number of cells in flight without acknowledgement, thus preventing

hosts from flooding the network. Tor does not, however, artificially limit the

rate of cells flowing in any other way.

Finally, it is worth mentioning that each Tor circuit can be used to relay

many TCP streams, all originating from the same initiator. This is a useful

feature to limit the public-key cryptography overhead when using protocols

such as HTTP, that might need many connections, even to different hosts,

as part of a single transaction. Tor circuits that have been used, but which

have become idle, are short-lived – replacements are set up every few minutes.

71



This involves picking a new route through the Tor network, performing the

key exchanges and setting up the encrypted tunnels.

4.2.2 Threat model

We consider an adversary whose principal objective in attacking an anony-

mous communication system is to link the initiators of connections with their

respective communication partners and vice versa. For example, an adversary

observing a web request coming out of the Tor network might be interested in

determining its originator. Similarly, an attacker observing a connection into

the Tor network would be interested in knowing which remote machine it is

ultimately accessing. A secondary objective of the attacker is to link trans-

actions, namely network connections, so as to establish that they are from

the same initiator. This could allow an adversary to profile the initiator, by

observing patterns in his communication habits.

Tor aims to protect against a threat model that is unusual within the anony-

mous communications community. It is conventional to attempt to guarantee

the anonymity of users against a global passive adversary, who has the ability

to observe all network links. It is also customary to assume that transiting

network messages can be injected, deleted or modified and that the attacker

controls a subset of the network nodes. This models a very powerful adversary,

hence systems that protect against it can be assumed to be secure in a very

wide range of real-world conditions.

In contrast, Tor, like some other designs, most notably MorphMix [133]

and Tarzan [57, 58], assumes a much weaker threat model. It protects against

a non-global adversary that can only observe a fraction of the network, mod-

ify the traffic only on this fraction and control only a fraction of the Tor

nodes. Furthermore, Tor does not attempt to protect against traffic confir-

mation attacks, where an adversary observes two parties that he suspects to

be communicating with each other, to either confirm or reject this suspicion.

Instead, Tor aims to make it difficult for an adversary with a very poor a priori

suspicion of who is communicating with whom, to gain more information.

It could be claimed that the weaker threat model makes Tor insecure and

incapable of protecting the anonymity of users against powerful real-world ad-

versaries. In particular, while real-world adversaries are not omnipotent they

do have the ability to be adaptive and select where to monitor the network

based on previous observations. This monitoring can be performed on deployed

TCP/IP or telephone networks using the lawful interception capabilities inte-

72



grated into most modern routing equipment [160]. Access to these capabilities

should be restricted only to authorised parties with legal permission (although

recent revelations [26, 127, 143] have shown that this may not always be true).

Prior work by Murdoch and Zieliński [111] demonstrated that even sampled

traffic logs are sufficient to perform traffic analysis.

The importance of our attacks is that an adversary can extract informa-

tion about the path of a Tor connection without stepping outside the threat

model considered by Tor, and the methods used are accessible to any Tor user.

Therefore, we show that even relatively weak adversaries can perform traffic

analysis, and get vital information out of Tor. This means that even non-law-

enforcement agencies can significantly degrade the quality of anonymity that

Tor provides, to the level of protection provided by a collection of simple proxy

servers, or even below.

4.3 Attacking Tor

An attacker aims to gain some information about who is communicating with

whom through the Tor network. This section will present an overview of the

techniques that an attacker can use to trace communications and the con-

straints introduced by the restrictive Tor threat model. These lead to the

theoretical exposition of our attacks, the practical results of which are pre-

sented in Section 4.4.

4.3.1 Traditional traffic analysis

Traffic analysis is extracting and inferring information from network meta-

data, including the volumes and timing of network packets, as well as the visible

network addresses they are originating from and destined for. In the case

of anonymous communications, an adversary would use this data to perform

traffic analysis with the aim of tracing who the originator or destination of a

connection is – therefore violating the anonymity properties that the system

is designed to provide. We assume that Tor intermediaries, through the use of

encrypted tunnels, effectively hide the bit patterns of data travelling though a

Tor connection. Therefore, an attacker cannot use any information from the

content to trace the stream and must resort to traffic analysis.

Traffic analysis can be performed at different levels of granularity. The

first class of attacks treats the anonymous network as a “black box” and only

considers the times when users are initiating connections, and connections

73



are being relayed to network services outside the Tor network. Kesdogan et

al. [88] were the first to show how repeated communications would eventually

be revealed even if the anonymous channel was otherwise perfect. A statistical

variant of these attacks, presented by Danezis [37], and validated through

simulations by Mathewson and Dingledine [97], is more general and can be

applied to a wider variety of anonymous communication channels.

Both these attack families are very powerful and would uncover repeated

patterns of communication through Tor. For example, the disclosure and sta-

tistical disclosure attacks could, in the long run, reveal if a particular user

connects, every day, to a set of web sites through Tor. An analysis of how long

this would take can be found in Mathewson et al. [97] and Agrawal et al. [2].

Yet, to effectively mount such attacks, an adversary is required to observe a

large fraction of the network in order to log who is accessing it and which

outside services are used. This attacker is outside the threat model that Tor

tries to protect against and therefore cannot be considered to break Tor1.

A second category of attacks work at a much finer granularity. They inspect

the traffic within the anonymous communication network, and further, the

actual shape (load) of the traffic on each network link. Earlier work by the

Onion Routing project drew attention to the fact that overall traffic patterns

in connections are not particularly distorted by each Onion Router that relays

them [147]. Therefore, a global observer would be able to correlate the timing

and volume of incoming and outgoing streams in order to trace the route an

onion-routed connection is taking though the network.

Danezis [40] presents these finer granularity attacks in detail, and a the-

oretical framework is developed to assess their effectiveness. In practice, an

attacker observes a stream of data that is to be traced, for example, the reply

of a web server to the initiator of a request. This stream of data can be rep-

resented as a function of traffic volume over time. The function is convolved

with an decay function that matches the delay characteristic of the mix (in

the example given, exponential): the result is a template that predicts what

the stream will like look in the anonymity network. All links of the network

1How realistic these attacks are is a completely different subject, that requires careful
consideration of the size and topology of the anonymous communication network. In the
case of Tor, a fully-connected network, an attacker would have to be able to know all the
meta-data associated with the TCP connections to and from all Tor nodes. Given their
small number (as of July 2007, approximately 1 000) this might not be such a large effort.
In the case of JAP [19], which arranges all relays in a cascade, only two nodes have to be
under surveillance when applying disclosure or statistical disclosure attacks.

74



are then compared to assess if they match (more precisely, could have been

generated by) the target template. Each network link will have a degree of

similarity to the template that can be used to classify it as being after the

first, second or third node on the path of the connection. Similar attacks have

also been presented in Fu et al. [162] and Levine et al. [94].

The obvious problem of these attacks is that, as presented, the adversary

observes all nodes, network links and is able to record traffic meta-data at

a much finer granularity than required for the disclosure attacks above. As a

result, these attacks assume a global passive adversary, which is not considered

within the Tor threat model. At the same time, it is important to highlight

that these attacks are robust [97]: when less, partial or lower resolution data

is available they will take longer, and require more evidence until they provide

the attacker with the same degree of certainty, but in the long run they will still

work. Therefore, an attacker who controls part of the network, as Tor assumes,

might still be able to trace some communications at random. However, this is

not very appealing to an attacker because of the amount of interception effort

and analysis required.

A further relevant attack has been presented by Serjantov and Sewell [141].

They notice that by doing simple packet counting on lone connections, they

can follow the anonymised streams. Their attack is appealing, since packet

counting can be performed easily and cheaply by most routing equipment.

Others have also looked at detecting stepping stones (relays) for intrusion

detection [23, 161], using similar techniques.

4.3.2 Traffic analysis of Tor

As we have seen, traditional traffic-analysis techniques rely on privileged ac-

cess to vast amounts of data. The conventional wisdom has been that such

data can only be gathered by a global passive adversary, which lies outside the

Tor threat model. The key contribution of this chapter is the realisation that

such observation capabilities are not necessary to perform these attacks. The

ability to route over the anonymous communication network, an unrestricted

privilege, can be used to estimate the traffic load on specific Tor nodes ac-

curately enough to perform traffic analysis. Therefore, adversaries with very

modest capabilities can still detect the path that target connections are taking

through the Tor network.

Mix systems rely on the fact that actions, be it relayed messages, stream

cells or connection startups, from different users, are processed by one party,

75



the mix, in such a way that they become unlinkable to their initiator. In

Tor, multiple connections from different users have to be relayed by the same

node for any of them to be provided with any anonymity at all2. Since the

relayed streams are processed and transported over a particular Tor node, they

interfere with each other. This is because they consume shared resources on a

single machine – such as processor time and network bandwidth.

Some mixing strategies try to entangle streams in order to make them

indistinguishable. The best example is the threshold-mix batching strategy

that waits until a particular number of messages have arrived and outputs them

all at once. Tor does not use any particular batching strategy, since it would

increase the latency of the communication. Instead, cells from different streams

are sent out in a round robin fashion. When a stream has no cells available,

it is skipped and the next connection with cells, waiting to be delivered, is

serviced. This means that the load on the Tor node affects the latency of

all connection streams that are routed through this node. A similar increase

in latency is introduced at all layers of the protocol stack. As expected, the

higher the load on the node, the higher the latency.

The simple observation that higher load, even due to one extra connection,

on a Tor node will result in higher latency of all other connections routed

through it can be used by an attacker. By routing a connection through specific

Tor nodes, and measuring the latency of the messages, the adversary can get

an estimate of the traffic load on the Tor node, that is, the superposition of

the traffic load resulting from all relayed connections. This, in turn, can be

compared with a known traffic pattern to assess if it is present, and therefore

relayed through the node, using conventional traffic-analysis techniques [40].

Any Tor user can perform these measurements and try to estimate the load

on a Tor server. On the other hand, a Tor node is not subject to some re-

strictions that apply to clients (e.g. bandwidth limits), therefore for generality

we consider that the attacker controls a corrupt Tor node. This is in accor-

dance with the Tor threat model, and allows us to ignore whether the node

to be measured is also an exit node or not. This corrupt Tor node creates a

connection that passes through another Tor node, whose traffic load is to be

measured. This connection is then filled with probe traffic, that measures the

latency of the connection and therefore estimates the load on the target Tor

2Acquisti et al. [1] go as far as claiming that a multitude of users that do not trust each
other have incentives to share the same anonymous network since their traffic is then all
mixed together.

76



Initiator Tor Relay 1 Tor Relay 2 Tor Relay 3 Destination

Corrupt Tor Node

(Corrupt Server)(Victim)

Probe Traffic

Figure 4.2: The attack setup

node. This should allow the detection of transient traffic signals propagating

through the measured Tor node.

The adversary could observe a connection to or from the Tor network and

use the technique outlined above to detect which nodes it is being relayed

through. We propose a more powerful variant of this attack: we assume that

the adversary controls a network server that the user to be traced is accessing.

This falls within the Tor threat model, and to some extent is its raison d’être:

users should be able to anonymously access network services that might be

interested in identifying them. This corrupt server sends to the user, through

the Tor connection, data modulated in a very specific traffic pattern. In my

experiments, I have used a pattern that consists of sequences of short (a few

seconds) bursts of data. Since the attacker knows the input pattern to the Tor

network, he can construct a template, and use it to detect whether the traffic

volume in Tor nodes is correlated with it.

Figure 4.2 illustrates the setup necessary for the attacks. In the next section

we will present the results of setting up and performing such an attack against

the operational Tor network.

4.3.3 Traffic-analysis methodology

The goal of an attacker is, based on timing data from all nodes on the network,

to identify which nodes are carrying the traffic with the pattern injected by

the corrupt server. For each node, I performed a test where the stream from

the corrupt server went through the target node, and one where the stream

did not. For the test to be considered a success, the correlation between the

traffic modulation and probe latency in the case where the victim stream did

go through the target node should be higher than the case where it did not.

Otherwise either the victim stream did not sufficiently affect the probe traffic

77



(causing false negatives), or “echos” of the victim stream propagated through

the network and affected the probe stream (causing false positives).

The correlation performed was very simple: the template formed by the

modulated traffic from the corrupt server was multiplied with the probe data

and the sum of the result was evaluated. More specifically, the template func-

tion from the corrupt server S(t) is:

S(t) =

{
1 if server is sending at sample time t

0 otherwise

The data from the probe is expressed as L(t), which is the measured latency of

the target Tor node (in microseconds) at sample time t. L′(t) is the normalised

version of the probe data, formed by dividing L(t) by the mean of all samples.

The correlation c is the sum of the product between S(t) and L′(t), divided

by the number of samples where the corrupt server was sending:

c =

∑
S(t)× L′(t)∑

S(t)

A number of improvements could be made to this technique, by using better

models of the effect of load on latency. One obvious addition is to shift the

template in time by an estimate of the latency, or to convolve it with an

exponential-decay function. Also, quantities other than simple latency could

be used, such as a moving variance measure. I have had satisfactory results

with the simple technique, and so I leave the design of efficient and optimal

transient signal detectors for traffic analysis as future work.

4.4 Experimental setup and results

In order to validate the feasibility of the traffic-analysis attacks described in

the previous section, I built and evaluated a simple version of the approach.

The probe computer used was a standard 800MHz PC running the Debian

GNU/Linux 3.0 operating-system. Tor version 0.0.9 was set up as being a

client only (in Tor terminology, an Onion Proxy) and modified to choose routes

of length one (not including itself), rather than the default of three. In addi-

tion to the modified Tor software, the corrupt Tor node consisted of a TCP

client and server, both written in C and carefully crafted to avoid the timing

properties being interfered with by runtime services such as garbage collection.

The interface between the TCP client and the Onion Proxy is achieved using

78



socat [135] to connect to the SOCKS interface of Tor. The targeted Tor node

then connected back to the TCP server running on the same machine.

At regular intervals (in my experiment, every 0.2 seconds) the probe client

sent data containing the current system time in microseconds (as reported by

gettimeofday()) and optional padding. The TCP socket used was configured

with the TCP NODELAY option to disable the Nagle algorithm, ensuring that

the data was sent immediately. Also, in the TCP stream establishment and

in each segment sent, I added a nonce value, to distinguish it from port scans

and prevent other Internet “background radiation” from interfering with the

results. The probe server recorded the time the segment was sent, and also

when the segment was received, then saved both to a file. While this approach

limits us to only probing Tor nodes that allow outgoing TCP streams (exit

nodes), it could be generalised to all nodes if the attacker controlled a Tor

server, even one which had not been vetted by the Tor network operators.

The corrupt server was simulated by a TCP server which would send pseu-

dorandomly generated data at as fast a rate as allowed by Tor, for a pseudo-

random time period (in our experiment between 10 and 25 seconds), then stop

sending for another period (between 30 and 75 seconds). The times at which

it stopped and started sending were stored in a file for later analysis. The

victim was simulated by a TCP client which would receive data and record

the time at which each buffer of data was received. These records were used

to evaluate how much the timing signature of the data was being distorted by

Tor, however this data would not be available to an attacker and so was not

used in correlation calculations.

The Tor Onion Proxy on the victim node was unmodified since it would not

be controlled by the attacker. Again, socat was used for the interface between

the victim client and Tor. The non time-critical parts of the experiment, such

as the starting and stopping of programs and the collection of results from

the remote machines, were written in Python. The probe server was hosted in

the University of Cambridge Computer Laboratory. The victim and corrupt

server were run on PlanetLab [32] nodes in two separate US institutions. The

full layout of our system is shown in Figure 4.2.

In each experimental run, targeting nodes in turn, the procedure was as

follows: the probe server would be set to monitor the target node, then after

four minutes the victim stream would be created so that its first hop would

be the node monitored (i.e., the furthest away from the corrupt server, so the

timing pattern would be the most distorted). Monitoring by the probe server

79



time (s)

la
te

nc
y 

(m
s)

0 200 400 600 800

11
6.

00
50

0
10

00
15

00
20

00

Figure 4.3: Probe results showing good correlation (Node K). The breaks in the x

axis indicate quartiles and the mean is shown as a u

would continue for another four minutes after the victim stream was closed.

In order to check for false positives, this test was then repeated, except the

victim stream was sent on a path that excluded the target node.

4.4.1 Results

Data from probing 13 Tor nodes3 was collected and processed as described in

section 4.3.3 using GNU R [128]. The correlation quality varied, however for

all but 2 nodes it correctly differentiated the case where the node was carrying

the victim traffic and the case where it flowed through other nodes.

Figure 4.3 shows a good correlation between probe data and victim traffic.

The dots indicate the latency of the probes and the pattern of the victim

stream sent is shown at the bottom. The victim stream received is overlaid to

show how the pattern is distorted by the network. In contrast, Figure 4.4(a)

shows the same node being monitored when the victim stream was being routed

elsewhere. Figure 4.5 shows a summary of the correlation over all nodes.

3Out of the 50 Tor nodes that made up the network at the time, five were not included
so as to check for false positives, and the rest did not carry the probe or victim stream due
to being down or because of exit-policy restrictions.

80



time (s)

la
te

nc
y 

(m
s)

0 200 400 600 800

11
5.

60
40

0
60

0
80

0

(a) Probe results without traffic pattern (Node K)

time (s)

la
te

nc
y 

(m
s)

0 200 400 600 800

10
5.

80
10

8
11

0
11

2
11

4
11

6
11

8

(b) False negative (Node E)

Figure 4.4: Results without positive correlation

81



A B C D E F G H I J K L M

Target Node

lo
g 2

 o
f c

or
re

la
tio

n

Pattern present
Pattern absent

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Figure 4.5: Summary of correlation. For each node, the left bar shows the correlation
when the victim stream was travelling though the node (false negative test) and
the right bar shows the correlation when it was not (false positive test). The two
incorrect results (E and M), where the correlation was higher when the traffic was
not being sent through the nodes, are highlighted with diagonal shading lines

None of the results from the false positive test show any obvious correlation

to the traffic pattern, which suggests that “echos” of load are not significantly

propagated through the network. This means that it should be possible to

increase the accuracy of the attack simply by running the test for longer than

the 6 minutes in our experiments. Other options would be to increase the

sampling frequency or to improve the correlation function as suggested in Sec-

tion 4.3.3. There appears to be significant room for improvement, as shown in

Figure 4.4(b), which was not correctly identified as being correlated, despite

showing visible similarity to the traffic pattern.

4.5 Discussion

The experiments clearly show that Tor streams retain their timing character-

istics as they travel through the anonymising network. Furthermore, these

characteristics affect other streams in such a way that it is possible to observe

82



them without direct access to the Tor nodes. This shows that, as a result, it

is possible for an attacker to discover which Tor server is being used to inject

the traffic stream, and degrade the anonymity provided into being equivalent

to a collection of simple proxy servers.

The fact that the timing characteristics of streams are not substantially

altered, and can be used to identify the Tor nodes carrying them, comes as

no surprise. The low-latency requirement of Tor does not allow it to shape

the traffic in any way, and it would require large amounts of cover traffic

for these characteristics to be hidden. Since the attack relies on the indirect

measurement of the stream’s traffic characteristics, a simple minded cover

traffic strategy – that only filled the links with cover traffic – would not work.

The cover traffic should not only fill the links, to confuse a direct observer,

but also make sure that it confuses indirect measurements as presented in this

paper. When designing such a cover traffic strategy, it is also important to keep

in mind Wei Dai’s attack [36, 14]: an adversary can fill the victim node with

their own traffic, trying to eliminate all the cover traffic. This is very similar

to the indirect measurement of traffic load that we have performed, and shows

that Tor would have to use cover traffic all the time, and not simply when

there is not enough genuine traffic to fill all the links.

The interference between the timing characteristics of different streams is

both a benefit for anonymity and at the same time, a vehicle for attack. One

would hope that streams on the same Tor node would interfere with each

other to such a degree that it is impossible to differentiate them from each

other, therefore making it difficult for an attacker to know which one to trace,

but this is not the case. This perfect interference should create “echos” of

the traced stream throughout the network and cause any traffic analysis to

produce many false positives. Nevertheless, streams relayed by the same Tor

node interfere with each other just enough to leak information to an adversary

controlled stream and thus allow the measurement of the load of the node. In

some sense, Tor exhibits the worst possible behaviour: not enough interference

to destroy individual stream characteristics, yet enough to allow the remote

measurement of the node’s load.

Two strategies could be employed to protect Tor: perfect interference and

non-interference. Perfect interference amongst all streams relayed through the

same node means that the output streams all have the same shape. Hence,

the adversary will have a very difficult time determining which output stream

corresponds to the input stream to be traced. Since Tor relies on a sequence

83



of relays, it would be interesting to study how long paths would need to be

so that streams would interfere with each other in such a way that all the

outputs of the network would have the same characteristic. Note, that since

the vehicle of this entanglement is traffic streams, one needs to assess how

many other streams have been “touched”, by being relayed through the same

node, and therefore might become indistinguishable with. A second strategy

for implementing perfect interference is to shape the stream traffic into another

arbitrary shape, either the same for all streams or different for each of them, yet

unlinkable to any particular input stream. Causality means that this shaping

can only be done by delaying the packets (you cannot send a packet received

at time t out into the network at time < t). Therefore, any traffic-shaping

strategy will inevitably increase the latency of the communication.

Non-interference between streams, through strict quality of service guar-

antees, can also be used to protect against our attacks. This would eliminate

the side channel we use to remotely infer the timing of streams on Tor nodes.

This property could be very difficult to implement in practice. All streams

share many common resources: the Tor packet scheduler, the TCP/IP stack,

the physical network and the CPU of the Tor node. There is an established

methodology for discovering and eliminating covert channels [65], and it is

recognised as a difficult problem. Even hardened systems exhibit covert chan-

nels of >1 bit/s.

These might be tolerable for multilevel secure systems, but would be devas-

tating for anonymous communication systems – in a few seconds an adversary

could distinguish the victim’s communication amongst all of the streams. This

is because there are inherently fewer actors to identify in an anonymous com-

munication system than possible cryptographic keys or possible documents in

a multilevel secure system. Even if eliminating this flaw was possible, Chap-

ter 5 will describe an additional channel which will remain, despite the above

safeguards being in place.

4.5.1 Linkability attack

A variant of our attack can also determine whether two streams coming out of

the same Tor node belong to the same initiator. Remember that Tor uses the

same connection to route many streams from the same initiator – we can use

this property to test whether two streams, coming out of the Tor network and

accessing two corrupt servers, belong to the same user. We determine, using

the main attack presented, the Tor nodes that route the two streams. While

84



the probability that two different initiators use the same exit node is 1/N

(where N is the network size), the probability that the full path of three nodes

is the same, assuming each node was chosen randomly, is only about 1/N3.

Therefore, the fact that two streams use the same path strongly indicates that

they belong to the same initiator. Testing whether a second stream belongs to

the same initiator as an already traced stream is cheaper than performing the

analysis to start with. The attacker already knows the two nodes on the path

of the first stream and can just test them to confirm that the second stream

belongs to the same connection and initiator.

This attack is especially interesting since it shows that Tor makes it easier

to link two events to the same initiator than a simple proxy. These events

exhibit a particular signature, that a simple proxy does not have, namely their

path through Tor, which can be uncovered. If the attacks presented here

are not eliminated, augmenting the length of the Tor path, which one might

assume to increase security, would make it even more vulnerable. The longer

the common chain of Tor nodes two connections share, the less likely it is that

they belong to different users. The same is true for the total number of nodes:

it is conventionally believed that more nodes is better for anonymity, but a

larger population of nodes makes common chains less common and allows for

more precise identification. The fact that idle circuits are short lived, and that

a stream can exit at any node in the path might make such attacks slightly

less reliable, but does not solve the underlying problem.

4.5.2 Variants of the attack

The attack we have presented so far relies on a probe stream being routed

through a Tor node to detect the timing of a modulated communication stream

from a corrupt server. Using the principle that timing information leaks from

one stream to the other, we can conceive quite a few variants of this attack.

Firstly, we could modulate the probe traffic that is sent to the victim Tor

node in a loop and try to detect the effects on requests sent by the initiator

of the anonymous communication. In cases where the traffic is mainly from

the victim to the server, the corrupt server does not have much opportunity to

significantly modulate the traffic load, so this variant may be the only option.

The difficulty with this approach is that the normal method of probing all Tor

nodes in the network simultaneously is problematic, since the modulation of

the victim stream will be the combination of the load induced on all three of

the Tor nodes along the path.

85



An alternative would be to probe each Tor node in turn, but for a given

stream lifetime, this would reduce the probe duration and thus accuracy. In-

stead, the attacker could probe all nodes, but using a different, “orthogonal”

pattern for each node, so the resulting combination observed can be decom-

posed into the original components. An adaptive attack could be mounted by,

for example, connecting to all nodes in the network briefly and observing the

latency of the probe streams.

While this short test will have a poor accuracy, it could be used to eliminate

some nodes known not to be on the path. The remaining nodes could be probed

again (possibly with a longer pattern) further eliminating more nodes. This

process is repeated until only three nodes remain. Another option is to probe

some fraction of the nodes at one time; if the resulting stream is affected then

at least one node on the path must be in that fraction, if not then all nodes in

that group can be eliminated from consideration. The above techniques could

be combined.

If the attacker does not have total control over the corrupt server and can

only monitor the link but not modify the load, then there are still variants

of our attack that can be used. One is to use the probe-modulation variant

above. Another is to take advantage of a known traffic pattern observed on

the corrupt server. Since this pattern cannot be optimised, the attack may

take longer to reach a result, but the traffic may still be suitable for inducing

an observable effect on the intermediate Tor nodes. One could mount attacks

without any monitoring, if the traffic being sought has known characteristics,

which can be observed on the Tor nodes it is being sent through.

If an attacker can neither directly observe nor change the traffic on the

corrupt server, it may be possible to infer the load by the attacker accessing

the server and observing the response time, in the same way as Tor nodes are

monitored. An attacker could also alter the load of the destination server by

modulating a denial of service (DoS) attack on it. When the DoS attack is

running, the load of the target connection should be decreased and so decrease

the load of the Tor nodes on the path it is taking.

Research on IP router flow-control has shown that by exploiting the TCP

back-off algorithm, it is possible to mount an effective and difficult-to-trace

denial of service attack without large resources [71]. Techniques similar to

this could also be used in the probe-modulation variant and to design better

patterns for the corrupt server to send, so that the influence on other Tor

connections through each node is maximised.

86



The above attacks allow the nodes that relay a particular stream to be

identified, which already severely degrades anonymity. In order to identify the

initiator, the attacker must look at incoming connections to all three nodes. If

resources are limited, then it would be desirable to identify the entry node, to

target monitoring. This could be done by estimating how much the induced

traffic pattern is shifted as it travels through the network. We did not perform

this because our probe sampling frequency was too low (every 0.2 seconds) to

show effects on the scale of typical Tor latency. However, once an attacker has

found the three nodes on the connection path, he could probe these at higher

frequency, to watch for the precise timing of the pattern. Another possibility

is to look at the distortion of the induced pattern. As it progresses through

the network, noise will be added, so it is likely the node showing the third-best

correlation is the entry node.

4.5.3 Attack costs

Our attack is feasible for the adversary anticipated by the Tor designers and

can be mounted without direct access to the communication links of the Tor

nodes. To reliably perform the attacks, each Tor node in the network should be

observed all the time. Assuming there are N Tor nodes, we therefore require

N probe streams going through them – a set of machines, or a single machine

connected to the Internet with a low-latency connection suffices. This means

that the cost of the attack is O(N) since it increases linearly with the number

of nodes in the Tor network.

Note that higher volumes of traffic in the Tor network would make the

quality of the observation poorer and degrade the performance of the attack.

Therefore, there is a hidden cost that has yet to be estimated, which rises with

the number of streams relayed by each node. At the same time, any increase in

latency that might hinder the attacker, by making the remote measurements

less precise, will inevitably also increase the latency of genuine Tor traffic.

Therefore, we are again confronted with the choice of increasing the security

of the system, versus keeping the latency as low as possible.

Aside from observing the nodes, an adversary is assumed to have the ability

to modulate the replies of a dishonest accessed server. The simplest way of

doing this is by deceiving anonymous users and making them access an attacker

controlled server. This way, arbitrary data streams can be sent back and forth,

and can be detected. Where Tor is used to access an HTTP [55] (web) service,

the attacks can be mounted much more simply, by including traffic-analysis

87



bugs within the page, in the same way as web bugs [5, 34] are embedded

today. These initiate a request for an invisible resource that, due to the HTTP

architecture, can have an unconstrained traffic shape and characteristic. The

attacker can then simply try to detect them, using our attack as described.

4.5.4 Understanding the traffic artifacts

As described earlier, our attack is based on the fact that the traffic character-

istics of streams are hardly affected by Tor, and that these characteristics leak

into other streams sufficiently so that they can be remotely estimated. It is

interesting to study how these processes are taking place in practice.

Streams interfere with each other at all levels. At the highest level, Tor

routers relay a set of streams using the non-blocking polling strategy whose

code is presented in Figure 4.6. Each of the relayed streams is polled to see if

any data is available to be relayed. If data is available, it is processed, otherwise

the next stream is considered. This strategy in itself ensures that a different

stream being relayed will delay the probe stream, and leak information about

the latency of the node.

Aside from the polling strategy, streams relayed by Tor share the operating-

system resources, the TCP/IP stack, the network and the hardware of the

Tor node. The operating-system scheduler could influence the timing of the

streams by allocating more resources when the node relays more traffic, or

less when the node is mostly waiting for more input. Memory management

operations could also take more time if data is being routed. The TCP protocol

would back-off if the link is congested. Finally, the network has a fixed capacity,

and has to be shared amongst connections. All of these contribute to the

latency of the probe data being influenced by the volume of data relayed by

the Tor node. Figure 4.3 illustrates this. It is clear that the probe data (top)

can be used to infer the volume of the actual traffic sent (bottom).

Other traffic patterns have been observed in the measurement data that are

not yet fully explained. These could be artifacts of the measurement technique

that, by its indirect nature, can only act as an estimate of the load, or genuine

latency introduced by the remote Tor node. We present here two examples that

could be used to perform traffic analysis, if they were linked with particular

states of the Tor nodes.

Figure 4.7(a) shows the results of probes against an exit node in the Tor

network. Again, the top graph represents the latency over time of probe traffic,

while the bottom represents the times the corrupt server was sending data.

88



/* Tor main loop */

for(;;) {

timeout = prepare_for_poll();

...

/* poll until we have an event,

or the second ends */

poll_result = tor_poll(poll_array, nfds, timeout);

...

/* do all the reads and errors first,

so we can detect closed sockets */

for(i=0;i<nfds;i++)

/* this also marks broken connections */

conn_read(i);

/* then do the writes */

for(i=0;i<nfds;i++)

conn_write(i);

/* any of the conns need to be closed now? */

for(i=0;i<nfds;i++)

conn_close_if_marked(i);

...

}

/* Read from connection */

static void conn_read(int i) {

...

if(!(poll_array[i].revents & (POLLIN|POLLHUP|POLLERR)))

if(!connection_is_reading(conn) ||

!connection_has_pending_tls_data(conn))

return; /* this conn should not read */

...

connection_handle_read(conn) < 0) {

...

}

Figure 4.6: The Tor 0.0.9 polling code

Note that the latency of the probes seems to be quantised into four or five

bands – even when a high volume of traffic is injected. This effect could

be explained by a lack of precision in the measurement process. Another

explanation is that the bands are formed by measuring the node when one,

two, three or four other streams are being served at a time. This matches

the experimental data: only four clusters are visible when the corrupt server

is not relayed, and five when the stream is present. This technique could be

developed to extract information about the number of streams relayed – and

in turn used to infer the beginning and termination of a stream.

Figure 4.7(b) illustrates a completely different type of traffic pattern. After

the last burst of traffic from the corrupt server (bottom) the latency of the

89



time (s)

la
te

nc
y 

(m
s)

0 100 200 300 400 500 600 700

15
8.

30
50

0
10

00
15

00
20

00

(a) Horizontal line artifacts

time (s)

la
te

nc
y 

(m
s)

100 200 300 400 500

10
6.

30
50

0
10

00
15

00
20

00
25

00

(b) End of session artifacts

Figure 4.7: Artifacts under investigation

90



probe traffic exhibits a very peculiar pattern, it rises six times by around 210ms

each time falling back into the average latency. This event has been observed

many times in conjunction with the closure of a Tor connection, and could

be due to time devoted in tearing down connections. If such events can be

observed, the connection tear down could be tracked through the network to

gain information about the route of a connection. I leave further investigation

of these artifacts to future work.

Aside from the precise load information extracted from the probe traffic,

these secondary traffic artifacts could also be used to perform traffic analysis

and assess which Tor server is being used to relay the target traffic. Therefore,

a strategy to eliminate information leakage into other streams should also try

to eliminate these artifacts.

4.6 Conclusion

We have presented an attack against Tor, a deployed and popular, anonymising

network. This attack can be performed by a modest adversary, using powers

comfortably within the restricted Tor threat model. In fact, we show that

the anonymising network itself can be used to route probe traffic and gather

information otherwise available only to a global passive adversary.

In November 2004, I performed extensive experiments on current Tor nodes

and found them to be susceptible to our attack. This does not give us the

ability to trace the actual originator of the communication, since we do not

have the ability to observe who is connected to a Tor node. Nevertheless, our

attacks greatly degrade the anonymity provided by Tor, by allowing adversaries

to discover the path of a Tor connection and thereby reduce the protection to

the level provided by a collection of simple proxy servers. We expect the same

attack to be applicable against other low-latency anonymising network designs,

since none of them have been specially hardened against it.

Furthermore, since Tor re-uses the same path for multiple streams within

a short time interval, our attacks allow different operations to be linked to the

same initiator with greater certainty. The observable path of each stream can

act as an identifier or identity that links streams amongst themselves and to

the initiator – a property that makes Tor weaker than a simple proxy when it

comes to protecting the unlinkability of actions.

We discussed some strategies that could be used to protect Tor against

our attacks. They all, to some degree, involve an increase in the latency of

91



the communication. They also highlight the need for a full covert-channel and

side-channel analysis of such anonymising networks, to assess whether any

information that could be used for traffic analysis is leaked to other streams

that are potentially observable to an adversary.

This attack brings the field of anonymous communications even closer to

more traditional computer-security disciplines. On one hand we show that

the literature on covert channel analysis and elimination is directly applicable

and necessary to truly secure Tor. On the other hand, our attack relies on

using Tor nodes as oracles that disclose their load – therefore not requiring

a global observer. Similar techniques have been used in the past in breaking

cryptographic protocols, by composing the services they provide. It is the first

time that such techniques have been applied in performing traffic analysis of

an anonymous communication system.

92



Chapter 5

Temperature-based channels

Location-hidden services, as offered by anonymity systems such as Tor, allow

servers to be operated under a pseudonym. As Tor is an overlay network,

servers hosting hidden services must be accessible both directly and over the

anonymous channel. The previous chapter illustrated that traffic patterns

through one channel have observable effects on the other, and that this fact

could be exploited to track user behaviour. Defences to this attack were also

discussed, such as Tor nodes providing fixed quality of service to each connec-

tion, regardless of other traffic, thus reducing network capacity but resisting

such interference attacks.

However, even if no connection influenced any other, total throughput of a

node would still affect the load on its CPU, and thus, on modern computers, the

heat output. Unfortunately for anonymity, the result of temperature on clock

skew can be remotely detected through observed timestamps. This attack

works because existing abstract models of anonymity-network nodes do not

take into account the inevitable imperfections of the hardware they run on.

Furthermore, I suggest that the same technique could be exploited as a classical

covert channel and may even provide geolocation.

5.1 Introduction

Hidden services allow access to resources without their operator’s identity be-

ing revealed. Not only does this protect the owner, but also the resource, as

observed by Needham [112, 113], because anonymity can help prevent selec-

tive denial of service attacks (DoS). Tor [50], has offered hidden services since

2004, allowing users to run a TCP server under a pseudonym. As of April

93



2007, there are around 80 publicly advertised hidden services, offering access

to resources that include chat, low and high latency anonymous email, remote

login (SSH and VNC), websites and even gopher [10]. The full list of hidden

services is only known to the three Tor hidden-service directory servers.

Systems to allow anonymous and censorship-resistant content distribution

have been desired for some time, but recently, anonymous publication has been

brought to the fore by several cases of blogs being taken down and/or their

authors being punished, whether imprisoned by the state [134] or being fired by

their employers [15]. In addition to blogs, Tor hidden websites include dissident

and anti-globalisation news, censored or otherwise controversial documents,

and a PGP keyserver. It is clear that, given the political and legal situation in

many countries, the need for anonymous publishing will remain for some time.

The credible threat faced by anonymous content-providers emphasises the

importance of evaluating the security, not only of deployed anonymous publica-

tion systems, but also of proposed changes believed to enhance their security.

As discussed in the previous chapter, guaranteed quality of service (QoS),

ensuring non-interferences between streams, is one such defence, designed to

protect against indirect traffic-analysis attacks that estimate the speed of one

flow by observing the performance of other flows through the same machine.

QoS acts as a countermeasure by preventing flows on an anonymity-network

node from interfering with each other. However, an inevitable result is that

when a flow is running at less than its reserved capacity, CPU load on the node

carrying it will fall. This reduces temperature, which affects the frequency of

the crystal oscillator driving the system clock. I measure this effect remotely

by requesting timestamps and deriving clock skew.

I have tested this vulnerability hypothesis using the current Tor implemen-

tation (0.1.1.16-rc), although – for reasons explained later – using a private

instance of the network. Tor was selected due to its popularity, but also be-

cause it is well documented and amenable to study. However, the attacks

I present here are applicable to other anonymity systems, particularly those

based on overlay networks.

In Section 5.2 we review how hidden services are implemented in Tor, dis-

cuss the threat models used in their design and summarise existing attacks.

Then, in Section 5.3 we provide some background on clock skew, the phe-

nomenon we exploit to link a hidden service pseudonym to the server’s real

identity. In Section 5.4 we present the results of experiments on Tor and dis-

cuss the potential impact of the attack and defences against it. Finally, in

94



Section 5.5 we suggest how the general technique (of creating covert channels

and side channels which cross between the digital and physical worlds) might

be applied in other scenarios.

5.2 Hidden services

The attacks presented in this chapter are independent of the underlying anony-

mity system and hidden service architecture, and should apply to any overlay

network. While there are differing proposals for anonymity systems supporting

hidden services, e.g. the PIP Network [66], Tor is a popular, deployed system,

suitable for experimentation, so initially we will focus on it. Section 5.5 will

suggest other cases where these technique can be used.

Tor hidden services are built on the connection-anonymity primitive that

Tor provides. This was discussed in the previous chapter and full details are

given in [47, 48, 49, 50]. However, neither the Tor hidden service protocol nor

our attack relies on the underlying implementation of connection anonymity

– all that is required to understand the attack is that Tor can anonymously

tunnel a TCP stream to a specified address and port number. It does this by

relaying traffic through randomly selected nodes, wrapping data in multiple

layers of encryption to maintain unlinkability. Unlike email mixes, it does not

intentionally introduce any delay: typical latencies are in the 10–100ms range.

There are three phases in accessing a hidden service. To maintain security,

all links between the participants are anonymised through the Tor network.

The full sequence is illustrated in Figure 5.1.

Service publication: When the hidden service is activated, the information

needed by clients to connect must be published. This stage is also repeated

periodically. First, the hidden service selects an introduction point (IP) and

makes a persistent connection to it (1). The address of the IP is sent to the Tor

directory servers and stored, linked with the hidden service pseudonym (2).

Connection setup: Once a client wishes to access the hidden service, know-

ing the hidden service pseudonym (a hash of the service’s public key), it first

recovers the address of the IP from the directory server (3). The client then

selects a rendezvous point (RP) and connects to it (4). The address of the RP

is sent to IP (5) which then sends it to the hidden service over the connection

established in (1) (6).

95



Hidden Service

Introduction

Point (IP)

Rendevous

Point (RP)

Directory

Server

Client

Service Publication Connection Setup Data Transfer

1

2

3

4

5

6

7

8

IP

IP

RP

RP

data

*

Figure 5.1: Tor Hidden Service setup, connection and data transfer. Thick lines in-
dicate circuits with arrows pointing away from circuit initiator. Circles indicate Tor
nodes relaying traffic. Thin arrows show the primary data flow direction. The node
marked with ∗ knows the hidden server’s IP address and is discussed in Section 5.2.2

Data transfer: Finally, the hidden service connects back to the RP (7),

which then joins this link to the connection established in (4). Now a connec-

tion has been established between the client and hidden service so application

data transfer (e.g. HTTP) can take place (8).

For clarity, some details have been omitted from this summary; a more

complete description was written by Øverlier and Syverson [117] and the full

details are covered by the Tor rendezvous specification [49]. For the remainder

of the chapter, we will deal only with an established data connection (8), from

the client to the rendezvous point and from there to the hidden server.

5.2.1 Threat model

The primary goal of our attacker is to link a pseudonym (under which a hidden

service is being offered) to the operator’s real identity, either directly or through

some intermediate step (e.g. a physical location or Internet protocol address).

For the moment, we will assume that identifying the Internet protocol address

96



is the goal, but Section 5.5.3 will discuss what else can be discovered, and

some particular cases in which an Internet protocol address is hard to link to

an identity.

Low-latency anonymity networks without dummy traffic, like Tor, cannot

defend against a global passive adversary. Such an attacker simply observes

inputs and outputs of the network and correlates their timing patterns, so

called traffic-analysis. For the same reason, such networks cannot protect

against traffic confirmation attacks, where an attacker has guessed who is

communicating with whom and can snoop individual network links in order to

validate this suspicion.

It is also common to assume that an attacker controls some of the anony-

mity network, but not all. In cases like Tor, which is run by volunteers subject

to limited vetting, this is a valid concern, and other work has made use of this,

including the previous chapter as well as Øverlier and Syverson’s attack [117].

However, the attacks presented here do not require control of any node, so will

apply even to entirely uncompromised anonymity networks.

In summary, we do not assume that our attacker is part of the anonymity

network, but can access hidden services exposed by it. We do assume that

he has a limited number of candidate hosts for the hidden service (say, a

few thousand). However, we differ from the traffic confirmation case excluded

above in that our attacker cannot observe, inject, delete or modify any network

traffic, other than that to or from his own computer.

5.2.2 Existing attacks

The first documented attack on hidden servers was by Øverlier and Syver-

son [117]. They proposed and experimentally confirmed that a hidden service

can be located within minutes or hours if the attacker controls one, or prefer-

ably two, Tor network nodes.

The attack relies on the fact that a Tor hidden server selects nodes at

random to build connections. The attacker repeatedly connects to the hidden

service, and eventually a node he controls will be the one closest to the hidden

server (marked with ∗ in Figure 5.1). Now, by correlating input and output

traffic, the attacker can confirm that this is the case, and so he has discovered

the hidden server’s Internet protocol address.

As the paper exploits the routing choices of Tor, the authors propose mod-

ifications to resist such attacks. The main defence is entry guards, based on

the concept of helper nodes [158]. Here, a small number (three is suggested)

97



of Tor nodes are semi-permanently selected as the first node in the vulner-

able circuit. If one of these is controlled by an attacker, the hidden server

is completely compromised, but if not, it should remain safe while the guard

nodes are operational. A variety of enhancements are also proposed to enhance

reliability and security against active attack.

The attack in the previous chapter could also be extended to hidden services

if the hidden server was also a Tor node. By exercising the hidden service, the

performance of all Tor nodes on the path will be affected. Many hidden servers

are also publicly advertised Tor nodes, in order to mask hidden-server traffic

with other Tor traffic, so this scenario is plausible. Even where the hidden

server is not a Tor node, if the the attacker has a limited number of candidates

for the hidden service, and some way to remotely measure load, this attack

could also reveal the hidden server’s identity.

One of the defences proposed in the previous chapter is non-interference

– where each stream going through a node is isolated from the others. Here,

each Tor node has a given capacity, which is divided into several slots. Each

circuit is assigned one slot and is given a guaranteed data rate, regardless of

the others.

This chapter’s observation, which underpins the attack presented, is that

when circuits carried by a node become idle, its CPU will be less active, and

so cool down. Temperature has a measurable effect on clock skew, and this

can be observed remotely. We will see that an attacker can thus distinguish

between a CPU in the idle state and one that is busy.

5.3 Clock skew and temperature

Kohno et al. [90] used timing information from a computer to fingerprint its

physical identity. By examining timestamps from the machine, either through

passive or active probing, they estimated its clock skew, the ratio between

actual and nominal clock frequencies.

They found that a particular machine’s clock skew deviates very little over

time, around 1–2 parts per million (ppm), depending on operating system, but

that there was a significant difference between the clock skews (up to 50 ppm)

of different machines, even identical models. This allows a host’s clock skew to

act as a fingerprint, linking repeated observations of timing information. The

paper estimates that, assuming a stability of 1 ppm, 4–6 bits of information on

the host’s identity can be extracted.

98



Two sources of timestamps were investigated by Kohno et al.: ICMP time-

stamp requests [123] and TCP timestamp options [82]. The former has the ad-

vantage of being of a fixed nominal frequency (1 kHz), but if a host is Network

Time Protocol (NTP) [101] synchronised, the ICMP timestamp was found to

be generated after skew adjustment, so defeating the fingerprinting attack.

The nominal frequency of TCP timestamps depends on the operating system,

and varies from 2Hz (OpenBSD 3.5) to 1 kHz (Linux 2.6.11). However, it

was found to be generated before NTP correction, so attacks relying on this

source will work regardless of the NTP configuration. Additionally, in the spe-

cial case of Linux, Chapter 3 of this thesis showed how the value of a host’s

NTP-disciplined clock could be derived from TCP sequence numbers.

In this chapter, we will primarily use TCP timestamps, which are enabled

by default on most modern operating systems. This feature was intended to

improve performance by providing better estimates of round-trip times and

protect against wrapped sequence numbers. Because of their utility, TCP

timestamps are commonly passed by firewalls, unlike ICMP packets and IP

options, so are widely applicable. These alternative measurement techniques

will be revisited in Section 5.5.4.

5.3.1 Background and definitions

Let T (ts) be the timestamp sent at time ts. Unless specified otherwise, all times

are relative to the receiver clock. The skew s is (hactual− h)/h, where hactual is

the sender clock’s frequency, relative to the receiver clock, and h is the sender

clock’s nominal frequency. As we are interested in changes of clock frequency,

we split the skew into two components, the constant sc and the time-varying

part s(t) with s = sc + s(t). Without loss of generality, we assume that the

time-varying component is always negative.

Before a timestamp is sent, the internal value of time is converted to a

number of ticks and rounded down. The nominal length of a tick is the clock’s

resolution and the reciprocal of this is h. The relationship between the time-

stamp and input parameters is thus:

T (ts) =
⌊
h ·

(
ts + scts +

∫ ts

0

s(t) dt
)⌋

(5.1)

Now, we sample timestamps Ti sent at times tsi
chosen uniformly at random

between consecutive ticks, for all i in [1 . . . n], with ts1 = 0. The quantisation

noise caused by the rounding can be modelled as subtracting a random variable

99



Sender clock Receiver clock

Response

Request

tsi

tri

t̃i

Ti

Figure 5.2: Time and timestamp quantities discussed. tsi and tri are relative to the
receiver clock; t̃i is relative to the sender clock. Only tri and t̃i are directly accessible
to the measurer so tsi must be inferred

c with uniform distribution over the range [0, 1). By dividing by h, we can

recover the time according to the sender in sample i:

t̃i = Ti/h = tsi
+ sctsi

+

∫ tsi

0

s(t) dt− ci/h (5.2)

These quantities are summarised in Figure 5.2.

We cannot directly measure the absolute clock skew of a remote machine,

but we can calculate the offset. This is the difference between a clock’s notion

of the time and that defined by the reference clock (receiver). The offset oi

is t̃i − tsi
. However, the receiver cannot directly observe tsi

, only the time tri

when a packet was received.

Let di be the latency of a packet, from when it is timestamped to when it

is received, then tsi
= tri

− di. Skew is typically small (< 50 ppm) so the effect

of latency to these terms will be dominated by the direct appearance of di and

is ignored otherwise. The measured offset is thus:

õi = t̃i − tri
= sctri

+

∫ tri

0

s(t) dt− ci/h− di (5.3)

Figure 5.3 shows a plot of the measured offset against packet receipt time.

Were the sampling noise c/h, latency introduced noise d, and variable skew

100



Time (mm:ss)

O
ffs

et
 (

m
s)

37:00 37:30 38:00 38:30 39:00 39:30 40:00

−
20

−
10

0
10

20

1 h = 10 ms

++ ++
++++++++++++

++++++++
++

+ +++++++++++++++
+++++

++
+++

+++++++
+
+ +

++ ++
++ +++

++++++++++++
+
++++

+++

Figure 5.3: Offset between TCP timestamps of seven machines and the measurer’s
clock over time. The bottom two lines ( ) show clocks with 100 Hz resolution and
the others are 1 kHz. The range of the quantisation noise is [0, 1/h), as indicated for
the h = 100Hz case. The time since the beginning of the experiment was subtracted
from the measurer’s clock and the first timestamp received was subtracted from
all timestamps. All machines were on the same LAN, except one (+), which was
accessed over a transatlantic link, through 14 hops

s(t) absent, the constant skew sc would be the derivative of measured offset

with respect to time. To form an estimate of the constant skew observed, ŝc,

in the presence of noise, we would like to remove these terms. Note that in

(5.3) the noise contributions, as well as s(t), are both negative.

Following the approach of Kohno et al., we remove the terms by fitting

a line above all measurements while minimising the mean distance between

each measurement and the point on the line above it. By applying the linear-

programming based algorithm described by Moon et al. [103], we derive such

a line. More formally this finds an estimate of the linear offset component

ô(t) = ŝc · t + β such that, for all samples, ô(tri
) > õi and minimises the

expression:

1

n
·

n∑
i=1

(
ô(tri

)− õi

)
(5.4)

101



The offset ô(t) is also plotted on Figure 5.3. The band of offset samples

below the line is due to the sampling noise c/h, as illustrated by the different

width depending on h. Points are outside this band because of jitter in the

network delay (any constant component will be eliminated), but latencies are

tightly clustered below a minimum which remains fixed during the test. This

is to be expected for an uncongested network where routes change rarely. The

characteristics of these noise sources will be discussed further in Section 5.5.4,

and also how techniques to limit their effect may be developed.

5.3.2 Impact of temperature

The effect of temperature on remote clock skew measurements has been well

known to the NTP community since the early 1990s [92, 96] and was mentioned

by Kohno et al. However, I believe that the paper on which this chapter was

based [107] to be the first that proposes inducing temperature change and

measuring the change in clock skew, in order to create a side channel and

attack an anonymity system.

As shown in Figure 5.4, the frequency of a clock crystal varies with its

temperature. Exactly how depends on tradeoffs made during manufacture.

The figure shows an AT-cut crystal common for PCs, whose skew is defined by

a cubic function of temperature. BT-cut is more common for sub-megahertz

crystals and is defined by a quadratic.

The angle of cut alters the temperature response and some options are

shown. It can be seen that improving accuracy in the temperature range

between the two turning points degrades performance outside these values.

Manufacturers will thus select a crystal appropriate for its environment. Over

the range of temperatures encountered in my experiments, skew response to

temperature is almost linear, so for simplicity we will treat it as such.

The linear offset fit shown in Figure 5.3 matches the data almost perfectly,

excluding noise. This indicates that although temperature varied during the

sample period, the constant skew sc dominates any temperature dependence

s(t) present.

Nevertheless, the temperature dependent term s(t) is present and is shown

in Figure 5.5. Here, ô(tri
) has been subtracted from all õi, removing our

estimate of constant skew ŝc. To estimate the variable skew component ŝ(t),

the resulting offset is differentiated, after performing a sliding window line-

fitting. We see that as the temperature in the room varied over the day, there

is a correlated change in clock skew.

102



Temperature (°C)

C
lo

ck
 s

ke
w

 (
pp

m
)

−50 0 50 100

−
20

−
10

0
10

20

(a) Full operational range of the crystal

Temperature (°C)

C
lo

ck
 s

ke
w

 (
pp

m
)

Observed
skew range

Observed temperature range

26.5 27.0 27.5 28.0 28.5 29.0 29.5

−
1.

5
−

1.
0

−
0.

5
0.

0

(b) Zoomed in area, as indicated in (a). The temperature and skew ranges found in Fig-
ure 5.7(a) are shown

Figure 5.4: AT-cut crystal clock skew over two temperature ranges [27]. As skews are
relative, the curves have been shifted vertically so that skew is zero at the minimum
observed temperature

103



Time

Fri 11:00 Fri 21:00 Sat 07:00 Sat 17:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

−
−2.0

−1.5

−1.0

−0.5

0.0

ŝc = 125, min ŝ(t) = −0.010, max ŝ(t) = 0.14 ppm

●

●

●●

●● ●

● ●

● ●

●

● ●

●● ●

●●

●

● ●

●●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●●

●●

●● ●

● ●

●

●

●●

● ● ●

●

●

● ●

●

●

●●

● ● ●

●

●

●

●

25.8

25.9

26.0

26.1

26.2

26.3

26.4

T
em

pe
ra

tu
re

 (
°C

)

●

Variable skew: − ŝ(t)

Non−linear offset: o~ − ô

De−noised

Temperature

(a) Mini-tower PC with ASUS A7M266 motherboard and 1.3 GHz AMD Athlon processor

Time

Fri 11:00 Fri 21:00 Sat 07:00 Sat 17:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

−
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ŝc = 103, min ŝ(t) = −0.046, max ŝ(t) = 0.12 ppm

●

●

●●

●● ●

● ●

● ●

●

● ●

●● ●

●●

●

● ●

●●

● ● ●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●●

●●

●● ●

● ●

●

●

●●

● ● ●

●

●

● ●

●

●

●●

● ● ●

●

●

●

●

25.8

25.9

26.0

26.1

26.2

26.3

26.4

T
em

pe
ra

tu
re

 (
°C

)

●

(b) Mini-tower with 1.7 GHz Pentium 4

Figure 5.5: Offset after removing linear component (i.e. õ− ô). The line ( ) above
is the de-noised version. The 4 show the negated slope of each piece (−ŝ(t)) and ©

show the room temperature. The maximum and minimum values of ŝ(t) are shown,
along with the constant skew ŝc

104



Attacker Tor Network Hidden Server

Measurer

Pattern measured

Pattern injected

Resulting pattern

Figure 5.6: Experimental setup with four computers

5.4 Attacking Tor

We aim to show that a hidden server will exhibit measurably different be-

haviour when a particular connection is active as compared to when it is idle. In

the previous chapter, I probed the latency of other connections going through

the same node, but now I measure clock skew. Just as latency increases with

load, we expect temperature to increase too.

This is because when a connection is idle, the host CPU will not be per-

forming as many computations and so cool down. The CPU temperature

change will affect that of the clock crystal, altering clock skew, and this can

be observed remotely by requesting timestamps. The goal of my experiment

is to verify this hypothesis.

Such an attack could be deployed in practice by an attacker using one ma-

chine to access the hidden service, varying traffic over time to cause the server

to heat up or cool down. Simultaneously, he probes all candidate machines for

timestamps. From these the attacker infers clock skew estimates and when a

correlation between skew and the induced load pattern is found, the hidden

service is de-anonymised.

The reliability and performance of the public Tor network for hidden servers

is currently quite poor and long runs of data collection would be required. In

order to simplify obtaining results, my experiments were run on a private Tor

network. I see no reason why these results would not transfer to the real Tor

network, even when it is made more reliable and resistant to attacks of the

previous chapter.

105



The computers used in each test (shown in Figure 5.6) are:

Hidden Server: Tor client and webserver, hosting a 10MB file; fitted with a

temperature sensor.

Tor Network: Two Tor directory server processes and five normal servers,

which can act as introduction and rendezvous points, all unmodified.

While all processes are on the same machine and latency between pro-

cesses has not be artificially increased, this does not invalidate our results

as only the Hidden Server is being analysed.

Attacker: Runs the Tor client, repeatedly requesting the file hosted by the

Hidden Server, through the Tor Network. For performance, this is mod-

ified to connect directly to the rendezvous point.

Measurer: Connects directly to the Hidden Server’s public Internet proto-

col address, requesting TCP timestamps, ICMP timestamps and TCP

sequence numbers, although only the results for the first are shown.

For two hours the 10MB file is repeatedly downloaded over the Tor net-

work, with up to 10 requests proceeding in parallel. Then, for another two

hours no requests are made. During both periods, timestamps are requested

directly from the server hosting the hidden service at intervals of 1 s plus a

random period between 0 s and 1 s. This is done to meet the assumption

of Section 5.3.1, that samples are taken at random points during each tick.

Otherwise, aliasing artifacts would be present in the results, perturbing the

line-fitting algorithm.

Finally, the timestamps are processed as described in Section 5.3.2. That

is, estimating the constant skew through the linear programming algorithm

and removing it, then dividing the trace into pieces and applying the linear-

programming algorithm a second time to estimate the varying skew.

Were an attacker to deploy this attack, the next step would be to compare

the clock skew measurements of all candidate servers with the load pattern in-

duced on the hidden service. To avoid false-positives, multiple measurements

are needed. The approach taken in the previous chapter is to treat the trans-

mission of the load pattern as a side channel and send a pseudorandom binary

sequence. Thus, after n bits are received, the probability of a false-positive

is 2−n. From inspection, we estimate the capacity of the side channel to be

around 2–8 bits per hour. An alternative taken by Fu et al. [59], in a related

106



context, is to induce a periodic load pattern that can be identified in the power

spectrum of the Fourier transformed clock skew measurements. With either

approach, the confidence level could be increased arbitrarily by running the

attack for longer.

5.4.1 Results

Overall throughput was limited by the CPU of the server hosting the private

Tor network, so the fastest Hidden Server tested ran at around 70% CPU usage

while requests were being made. CPU load on the Hidden Server was almost

all due to the Tor process, I suspect as a direct result of the cryptographic

operations it has to perform. A 1–1.5 ◦C temperature difference, as measured

by the temperature probe, was induced by this load modulation.

Ideally, the measuring machine would have a very accurate clock, to allow

comparison of results between different experiments over time and with differ-

ent equipment. This was not available for these experiments, but as we are

interested in relative skews, only a stable clock is needed, for which a normal

PC sufficed.

It would also be desirable to timestamp packets as near as possible to re-

ceipt, so while adding the timestamp at the network card would be preferable,

the one inserted by the Linux kernel and exposed through the pcap [83] inter-

face has proved to be adequate. Future work could make use of network cards

with on-board timestamping.

Figure 5.7 shows the results of two experimental runs, in the same style

as Figure 5.5. Note that Figure 5.7(a) shows a relationship between clock

skew and temperature opposite to expectations; namely when temperature

increases, the clock has sped up. One possible explanation is that the PC

is using a temperature compensated crystal oscillator (TCXO), but is over-

compensating; another is that the temperature curve for the crystal is different

from Figure 5.4. In both cases, there is a clear correlation between temperature

and skew, despite only a modest temperature change.

While the CPU is under load, there is increased noise present in the re-

sults. This could be due to increased latency on the network, or longer queues

in between the steps of adding a timestamp to a packet and dispatching it.

However, note that the minimum latency is unchanged (and is often reached)

so the linear programming algorithm still performs well. Were the minimum

to change, then a step in the graph would be expected, rather than the smooth

curve apparent.

107



Time (hh:mm)

09:00 13:00 17:00 21:00 01:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

− −6

−4

−2

0

ŝc = 180, min ŝ(t) = −0.059, max ŝ(t) = 0.25 ppm

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

27.0

27.5

28.0

28.5

T
em

pe
ra

tu
re

 (
°C

)

●

(a) Mini-tower PC with Dell GX1MT motherboard and Intel Pentium II 400MHz processor

Time (hh:mm)

01:00 05:00 09:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

−

−4

−3

−2

−1

0

ŝc = 95, min ŝ(t) = −0.11, max ŝ(t) = 0.22 ppm

●

●

●

●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

37.5

38.0

38.5

39.0

T
em

pe
ra

tu
re

 (
°C

)

●

(b) Mini-tower PC with ASUS A7V133 motherboard and AMD Athlon 1.2 GHz processor

Figure 5.7: Clock skew measurements for two machines. The graphs are as Figure 5.5,
but the grey bars at the top indicate when the hidden server was being exercised

108



5.4.2 Discussion

Implementing the non-interference solution described in the previous chapter

is non-trivial because the QoS guarantees must not only be met by the host

(e.g. CPU resources), but by its network too. Also, the impact on perfor-

mance would likely be substantial, as many connections spend much of their

time idle. Whereas currently the idle time would be given to other streams,

now the host carrying such a stream cannot reallocate any resources. If the

maximum number of connections is reached, further connections are refused,

thus opening a DoS vulnerability. However, there may be some suitable com-

promise, for example dynamic limits which change sufficiently slowly to leak

little information.

Even if such a defence were in place, our temperature attacks would still

be effective. While changes in one network connection will not affect any

other connections, clock skew is altered. This is because the CPU will remain

idle during the slot allocated to a connection without pending data. Unless

steps are taken to defend against our attacks, the reduced CPU load will lower

temperature and hence affect clock skew. To stabilise temperature, computers

could be modified to use expensive oven controlled crystal oscillators (OCXO),

or always run at maximum CPU load. External access to timing informa-

tion could be restricted or jittered, but unless all incoming connections were

blocked, extensive changes would be required to hide low level information,

such as packet emission triggered by timer interrupts.

While the above experiments were on Tor, I stress that the techniques apply

to any system that hides load through maintaining QoS guarantees. Also,

there is no need for the anonymity service to be the cause of the load. For

example, Dean and Stubblefield [43] show that because SSL allows the client

to force a server to perform a RSA operation before doing any substantial work

itself, DoS attacks can be successful well before the connection is saturated.

Such techniques could be used to attack hidden servers where the anonymity

network cannot sustain high throughput.

The attack works because the normal abstraction of anonymous services

does not take into account the imperfections inherent in physical devices. Pre-

vious such attacks have included Govindavajhala and Appel’s demonstration

of exploiting memory errors to violate access control in a Java VM [68] and

the work by Kohno et al. [90] on fingerprinting particular hardware through

its clock skew.

109



Inducing clock skew and remotely measuring it can be seen as a thermal

side channel because attacking a hidden server could be modelled as violat-

ing an information flow control policy in a distributed system. The client

accessing the hidden service over the anonymity network is making use of the

link between between the server’s pseudonym and its public address, which is

information at a “high” confidentiality level.

However, the client is prevented from leaking this information by the trus-

ted computing base of the anonymity network. The user accessing the hidden

server directly only has access to “low” information, the real address by itself,

however if the “high” process can leak information to the “low” process, the

server’s anonymity is violated.

5.5 Extensions and future work

The above experiments presented an example of how temperature induced

clock skew can be a security risk, but I believe that this is a more general, and

previously under-examined, technique which can be applied in other situations.

In this section we shall explore some of these cases and propose some future

directions for research.

5.5.1 Classical covert channels

The above section discussed an unconventional application of side channels,

that is, within a distributed system where users can only send data but not

execute arbitrary code. However, clock skew can also be used in conventional

covert channels, where an operating system prevents two processes commu-

nicating which are on the same computer and are permitted, by the system

security policy, to run arbitrary software.

CPU load channels have been extensively studied in the context of multi-

level secure systems. Here, two processes share CPU time but the information

flow control policy prohibits them from directly communicating. Each can still

observe how much processing time it is getting, thus inferring the CPU usage

of the other.

A process can thus signal to another by modulating load to encode infor-

mation [93]. One defence against this attack is to distort the notion of time

available to processes [79] but another is fixed scheduling and variations, en-

suring that the CPU usage of one process cannot interfere with the resources of

any other at a conflicting security rating [80]. Temperature induced clock skew

110



Time

Sun 21:00 Mon 05:00 Mon 13:00 Mon 21:00 Tue 05:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

− −25

−20

−15

−10

−5

0

ŝc = 4.4, min ŝ(t) = −1.8, max ŝ(t) = 1.4 ppm

●●

●●● ●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●

●

●

●

●

●

●

●

●
●
●
● ● ●

●

●

●

●

●

●

●

●

●

●
●
●●
● ● ●

●

●

●

●

●

●

●

●
●
●
●
●●● ●● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●●●

●
●

●

●

●

●

●

●

●

●
●
●
●● ● ●

●

●

●

●

●

●

●

●

●
●
●
●
●

●●●

●

●

●

●

●

●

●

●

●
●● ●● ●●

●

●

●

●

●

●

●

●

●
●
●
●

●● ●● ●●

●

●

●

●

●

●

●

●

●
●
●

●●● ●● ●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ● ●●

●

●

●

●

●

●

●

●
●
●
●

●●● ●●

●

●

●

●

●

●

●

●

●
●
●

●
●

● ●●●

●

●

●

●

●

●

●

●
●
●
●
●●●● ●●

●

●

●

●

●

●

●

●
●
●

●
●
●● ●●●

●

●

●

●

●

●

●

●
●
●
●

●
●● ●

●

●

●

●

●

●

●

●

●
●
●

●
●●● ● ●

●

●

●

35

36

37

38

39

40

T
em

pe
ra

tu
re

 (
°C

)

●

Figure 5.8: Clock skew measurements of a remote machine while modulating CPU
load of the measurer (mini-tower, Intel D875 motherboard, Pentium 4 3.2GHz
CPU), for which temperature is also shown. The measurer and remote machine
are separated by a transatlantic link, so the noise level is higher

can circumvent the latter countermeasure. Covert channels are also relevant

to recently deployed separation kernels such as MILS [6, 151].

Figure 5.8 shows an example of how two processes on one host could com-

municate. In our previous experiments, the temperature in the measured ma-

chine has been modulated, but now we affect the clock skew of the measurer.

This graph was plotted in the same way as before, but on the measurer ma-

chine, with NTP disabled, the CPUBurn program [129] was used to induce load

modulation, affecting the temperature as shown. Timestamps are collected

from a remote machine, to act as a time reference, and as we are calculating

relative clock skew, we see the inverse of the measurer’s clock skew, assuming

the remote clock is stable.

Note that the temperature difference is greater than before (5 ◦C vs. 1–

1.5 ◦C). This is because we are no longer constrained by the capacity of the

Tor network, and can optimise our procedure to induce the maximum temper-

ature differential. While this attack is effective, it requires fairly free access to

network resources, which may not always be the case in high-assurance systems

where covert channels are a serious concern.

Where access to a remote timing source is blocked, the skew between multi-

ple clock crystals within the same machine, due to their differing temperature

responses and proximity to the heat source, could be used. For example, in a

111



typical PC, the sound card has a separate crystal from the system clock. A

process could time how long it takes (according to the system clock), to record

a given number of samples from the sound card, thus estimating the skew be-

tween the two crystals. USB controllers and Ethernet cards also commonly

have separate crystals, but gaining access to the low-level timing results from

these may be infeasible.

5.5.2 Cross-computer communication

Physical properties of shared hardware have previously been proposed as a

method of creating covert channels. For example, hard disk seek time can be

used to infer the previous position of the disk arm, which could have been

affected by “high” processes [86]. However, with temperature, such effects can

extend across “air-gap” security boundaries.

My experiments so far have not shown evidence of one desktop computer

being able to induce a significant temperature change in another which is in

the same room, but the same may not be true of rack-mount machines. Here, a

3 ◦C temperature change in a rack-mount PC has been induced by increasing

load on a neighbouring machine [70]. Blade servers, where multiple otherwise

independent servers are mounted as cards in the same case, sharing ventilation

and power, have even more potential for thermal coupling.

If two of these cards are processing data at different security levels, the

tight environmental coupling could lead to a covert channel as above, even

without the co-operation of the “low” card. For example, if a “low” webserver

is hosted next to a “high” cryptographic co-processor which does not have

Internet access, the latter could leak information to an external adversary by

modulating temperature while the webserver clock-skew is measured. Side-

channels are also conceivable, where someone probing one card could estimate

the load of its siblings.

I simulated this case by periodically (2 hours on, 2 hours off) exposing a PC

to an external heat source while a second computer measured the clock skew.

The results showed that 3 ◦C temperature changes can be remotely received.

Additionally, this experiment confirmed that it is indeed temperature causing

the observed clock skew in the previous experiments, and not simply an OS

scheduling artifact.

The resulting graph, shown in Figure 5.9, is similar to Figure 5.7, except

there is no increased noise during heating, as would be expected from the

hypothesised interference-attack resistant anonymity system.

112



Time (hh:mm)

13:00 17:00 21:00 01:00

N
on

−
lin

ea
r 

of
fs

et
 c

om
po

ne
nt

 (
m

s)

−

−2.0

−1.5

−1.0

−0.5

0.0

ŝc == 179, min ŝ((t)) == −0.11, max ŝ((t)) == 0.075 ppm

●
●
●
●

●

●

●

●

●

●
●

●

●●
●

●
● ●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●
● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

27

28

29

30

T
em

pe
ra

tu
re

 (
°°C

)

●

Figure 5.9: Clock skew measured while inducing temperature changes by an external
heat source. Data collected from a mini-tower PC with Dell GX1MT motherboard
and Intel Pentium II 400 MHz processor

5.5.3 Geolocation

In the attacks on anonymity systems so far, we have been inducing load through

the anonymity system and measuring clock skew directly. An alternative is to

measure clock skew through the anonymity network and let the environment

alter the clock skew. This allows an attacker to observe temperature changes

of a hidden server, and so infer its location.

Clock skew does not allow the measurement of absolute temperature, only

changes. Nevertheless, this still could be sufficient for geolocation. Longitude

could simply be found by identifying sunrise or midday based on the tempera-

ture, to establish local time. To find latitude, the change in day length over a

reasonably long period could be used. The relationship between these values

and location is shown in Figure 5.10.

It was apparent in my experiments when a door to the cooler corridor was

left open, so national holidays or when daylight saving time comes into effect

might be evident. Distortion caused by air-conditioning could be removed by

inferring the temperature from the duty cycle (time on vs. time off) of 2-point

thermostatically controlled appliances.

113



Figure 5.10: How temperature could be used to derive location. Vertical lines show
time of sunrise (UTC) on 21 June 2006 (summer solstice). Horizontal lines show
length of day (hours) on the summer solstice minus the length of day on 22 December
2006 (winter solstice)

In this section we have assumed that we probe through the anonymity

network. In the case of Tor, this will introduce significant jitter, and it is

unclear how badly this will affect timing measurements. Alternatively, the

attacker could connect directly to the external address.

At first glance the utility of this attack appears questionable – often Inter-

net protocol addresses can easily be mapped to locations [106]. However, this

is not always the case. For example, anycast and satellite connections are hard

to track to a location; as are users who seek to hide by using long-distance

dialup. While latency in the last two cases is high, jitter can be very low,

lending itself to the clock skew attacks.

5.5.4 Noise sources and mitigation

In Section 5.5.3, we proposed acquiring timing information from a hidden

server through the anonymity network. Here, in addition to the problem of

increased jitter, the timing sources we have used (ICMP/TCP timestamps and

TCP sequence numbers) may not be available. For example, Tor operates at

the TCP layer so these possibilities do not exist, unlike Freedom [13, 24] which

allows the transmission of arbitrary IP packets.

One option proposed by Kohno et al. is to use a Fourier transform to extract

the frequency of a periodic event, for example, packet emission caused by a

114



timer interrupt. Another possibility is to use application level timestamps.

The most common Tor hidden service is a web server, typically using Apache,

and by default this inserts a timestamp into HTTP headers. However, this

only has a 1Hz resolution, compared to the 1 kHz used in my experiments.

To improve performance in these adverse conditions by mitigating the effect

of noise, we must first understand the source. The noise component of (5.3) is

the sum of two independent parameters: quantisation noise ci/h and latency

di, although we only care about the variable component of the latter, jitter ji.

The quantisation noise is chosen uniformly at random from [0, 1/h), and so is

trivially modelled, but ji can only be found experimentally.

Figure 5.11(a) shows the smoothed probability density for round-trip jitter

(divided by two), which can be measured directly. If we assume that forward

and return paths have independent and similar jitter, then ji would be the

same distribution. By convolving the estimated densities of the two noise

sources, we can show the probability density of the sum, which matches the

noise measurements of clock offset shown in Figure 5.11(b).

The linear programming algorithm used for skew calculations is effective

at removing ji, because values are strongly skewed towards the minimum, but

for ci/h, it is possible to do better. One obvious technique is to increase h

by selecting a higher resolution time source. We have used TCP timestamps

in this chapter, primarily with Linux 2.6, which have a nominal frequency

of 1 kHz. Linux 2.4 has a 100Hz TCP timestamp clock, so for this, ICMP

timestamps may be a better option, as they increment at a nominal 1 kHz.

Unlike TCP timestamps, I found ICMP to be affected by NTP, but initial

experiments show that while this is a problem for finding out absolute skew,

the NTP controlled feedback loop [100] in Linux intentionally does not react

quickly enough to hide the changes in skew this chapter considers. Another

option with Linux is to use TCP sequence numbers, which are the sum of a

cryptographic result and a 1MHz clock. Over short periods, the high h gives

good results, but as the cryptographic function is re-keyed every 5 minutes,

maintaining long term clock skew figures is non-trivial.

Note that to derive (5.2) from (5.1) we assumed that samples are taken

at random points between ticks. This allows the floor operation (b c) to be

modelled as uniformly distributed noise. Regular sampling introduces aliasing

artifacts which interfere with the linear programming algorithm.

However, the points which contribute to the accuracy of the skew estimate,

those near the top of the noise band, are from timestamps generated just after

115



RTT jitter / 2 (ms)

D
en

si
ty

0
1

2
3

4
5

0.00 0.5 1.0 1.5 2.0 2.5

(a) Probability density of measured round-trip time jitter (divided by two) with overlaid
kernel density estimate ( )

Noise (ms)

D
en

si
ty

0
1

2
3

4
5

0.00 0.5 1.0 1.5 2.0 2.5

Estimated jitter from RTT

Estimated quantisation noise

Sum

(b) Density of measured offset noise, overlaid with the above density, uniform quantisation
noise model ( ) and the calculated sum of the two components ( )

Figure 5.11: Noise source comparison. The breaks in the x axis indicate quartiles
and the mean is shown as u. Measurements were taken over a transatlantic link

a tick. Here, the value of ci is close to zero, and just before the tick, ci is

close to one and the timestamp is one less. An attacker could use the previous

estimate of skew to target this point and identify which side of the transition

the sample was taken. From this, he can estimate when the tick occurred and

so refine the skew estimate.

116



This approach effectively removes the quantisation error. Rather than 1/h

defining the noise band, it now only limits the sampling rate to h. Multiple

measurements would still be needed to remove jitter, most likely by using

the same linear programming algorithm as in the simple case, but perhaps

also taking into consideration the round-trip time. Adequate results can be

achieved using näıve random sampling, but the improved technique would be

particularly valuable for low resolution clocks, such as the 1Hz Apache HTTP

timestamp mentioned in Section 5.5.4.

5.6 Conclusion

I have shown that changes in clock skew, resulting from only modest changes

in temperature, can be remotely detected even over tens of router hops. My

experiments show that environmental changes, as well as CPU load, can be

inferred through these techniques. However, my primary contribution is to

introduce an attack whereby CPU load induced through one communication

channel, an anonymity network, affects clock skew measured through another.

This technique can link a pseudonym to a real identity, even against a system

that ensures perfect non-interference when considered in the abstract.

I have demonstrated how such attacks could be used against hidden ser-

vices. I validated my expectations by testing them with the deployed Tor code,

not simulations, although on a private network rather than the publicly accessi-

ble one. My results show that conjectured defences against interference attacks

using quality of service guarantees are not as effective as conventional models

might indicate. I suggest that when designing such systems, considering only

the abstract operating system behaviour is inadequate as their implementation

on real hardware can substantially decrease security.

I proposed future directions for security research using thermal covert chan-

nels. These include allowing two computers which share the same environment,

but are otherwise isolated, to communicate. Also, processes on the same com-

puter, under an information flow control policy, can send information through

temperature modulation, despite fixed scheduling preventing CPU load based

covert channels.

Finally, I discussed how localised temperature changes might aid geoloca-

tion and suggested methods to deal with low resolution clocks.

117



Chapter 6

Conclusions

Covert channels have historically been seen as being of exclusive relevance to

multi-level secure systems (MLS), typically in military scenarios. As academic

interest in MLS has waned, so has the perceived utility of covert channel

research. At the same time, anonymity systems have moved from theoretical

constructs, through research prototypes, into deployed systems with hundreds

of thousands of users with diverse backgrounds and requirements.

Although both covert channel and anonymity research deal with blocking

unauthorised flows of information, this link has not been well exploited. This

thesis has examined the connection, particularly regarding how the wealth of

practical experience in covert channel discovery can be applied to find and

exploit weaknesses in real-world anonymity systems.

I hope that, in addition to their individual contributions, the cases studies

given in this thesis demonstrate the usefulness of covert channel analysis in un-

derstanding, developing and defending against attacks on anonymity systems.

MLS operating system research originally considered the case of preventing

communication between processes on the same hardware. Chapter 2 discusses

such a case, but rather than leaking secret data, the attacker attempts to win

a competition through collusion.

Information flow control is one solution to this weakness, a fact that is

appreciated by some communities, such as Bridge players, but not all. Where

an anonymity mechanism, one type of information flow control, is in place to

inhibit cheating, or just where identity information is restricted by an accident

of design, covert channels may be used for the identification of opponents.

Techniques for exploiting covert channels, in MLS operating systems, di-

rectly apply to this scenario. However, in the example of a Connect-4 pro-



gramming competition an application specific covert channel, of encoding data

within the moves themselves, gave improved resistance to detection and elim-

ination. This channel’s reliability can be ensured through conventional er-

ror correction algorithms, but simpler authentication can be achieved with a

coding similar to that used in spread spectrum, low probability of intercept,

military radio communications.

Detection of covert channels in MLS systems has been well covered in the

literature [65, 98] and these techniques apply just as well in the game scenario.

For the new covert channel proposed in Chapter 2, defence is more difficult, but

some techniques are discussed. This problem could be side-stepped entirely

by negating the advantage of collusion so some options to achieve this are

explored, in particular exploiting the parallels between deciding the winner in

elections and games. However, results in this field are limited and suggest that

totally collusion resistant competition mechanisms are impossible.

Where individual hosts process information at a single security level, local

interprocess secrecy is of less concern, but networks become necessary for shar-

ing information. The detailed mechanisms of operating-system covert-channel

mitigation may no longer be applicable to network covert channels, but higher-

level analysis will be. This fact is relevant to anonymity systems as they are

typically distributed in order to give improved scalability and preserve user

security under partial compromise.

Prior research in this area [63, 95, 136, 137] has found covert channels in

network protocols which are not blocked by standard networking equipment

and may comply with the respective protocol specification. In some cases,

covert channel auditing may be an adequate, or even superior alternative to

preventing unauthorised flows of information. Resistance to auditing requires

indistinguishability, a property that previous proposals do not possess, since

while their output might conform to the specification they diverge from the

expected output of unmodified software.

Chapter 3 reviews existing network, in particular TCP/IP, covert chan-

nels, and compares them with the normal behaviour of Linux and OpenBSD.

A series of tests are developed to detect the use of steganography and their

effectiveness is compared. When designing schemes for detection-resistant

steganography the chosen fields should not just contain redundancy, but the

field content must also be unpredictable to the adversary. Only the TCP ini-

tial sequence number meets this requirement, because of its use in protecting

against source-address spoofing.

119



Even though this field is unpredictable, for good network engineering rea-

sons, it is not uniformally random. Prior use of this field in steganography sys-

tems [136, 137] has made this erroneous assumption and hence is detectable.

Instead, I propose the generic principle of replicating the existing generation

algorithm for encoding data to be carried by the covert channel, closely emu-

lating the expected output. Encoding and decoding algorithms for Linux and

OpenBSD are given as examples.

General purpose network covert channels such as these could be used by a

Trojan horse program to “phone home”, even through an anonymity network

which tunnels IP. However, scenarios where untrustworthy software is allowed

such free network access are rare. Chapter 4 focuses on a more practical case

where the side channel is the result of an unintended interaction between the

activities of multiple users, on a node in the Tor anonymity system.

As a Tor node must transit multiple streams for any of them to receive

anonymity, and the resources of the hardware hosting it are limited, high load

on one stream will affect the throughput and latency of others. Just as two

processes on a MLS operating system might communicate though signalling

with increased CPU load, two Tor streams can signal through modulating net-

work load. This phenomenom permits indirect traffic analysis attacks: while

a weak attacker cannot directly monitor streams, their speed can be inferred

by their effect on other streams flowing through the same node.

Where an attacker can modulate the load of a stream, but does not know

the path it takes, by probing all candidate nodes, indirect traffic analysis can

trace the stream back to the first Tor node connected to by the client. This

reduces the anonymity provided to that of a single-hop proxy, and then mun-

dane legal mechanisms might be used to discover the initiator. Furthermore,

as circuits through Tor are used for multiple, unconnected streams, the discov-

ery that two streams share the same path through the Tor network strongly

suggests that they originate from the same client, in which case the anonymity

provided is lower than a single-hop proxy.

The effectiveness of these attacks was evaluated by experiments on the

deployed Tor network, which showed that, even with näıve signal processing,

11 out of the 13 Tor nodes tested could be de-anonymised, even after the

signal passed through two Tor node hops. Variants of this attack are discussed,

such as indirectly modulating traffic through carefully crafted denial-of-service

attacks or not performing any modulation and detecting the effects of naturally

occurring traffic patterns.

120



Such attacks could be prevented by ensuring that either all streams going

through one node interfere perfectly, or not at all, but deploying these tech-

niques would be difficult and have a substantial performance penalty. This

should not be a surprise, given the experience of designers of covert channel

resistant operating systems. In fact, Chapter 5 shows that by adding yet an-

other level of indirection, an attacker can circumvent defences against indirect

traffic analysis which insulate the performance of streams from CPU load.

Whereas the previous attack used stream latency to infer CPU load, the

attack in Chapter 5 exploits the effect of CPU load on temperature and hence

clock skew. The latter can be remotely measured over a network by requesting

timestamps or as a side-effect of the TCP/IP covert-channel detection mecha-

nisms of Chapter 3. This additional level of indirection inevitably adds extra

noise, but with an adequate sample length this can be removed, even from

results collected over a transatlantic Internet link.

This attack is evaluated on Tor hidden servers on a private network. The

CPU load of the target is increased by making connections to its pseudonym

over the Tor network. Simultaneously, clock skew measurements are collected,

and from these the clock skew is derived. My results show this attack to

be effective and while unlikely to be the fastest way to de-anonymise users

of deployed anonymity networks, as systems become hardened against more

conventional attacks, this attack could become a plausible threat.

Temperature as a side channel or covert channel has not previously been

discussed in the literature and has wider applicability than attacking anony-

mity systems. Firstly, it could be used in MLS systems as a replacement to

the CPU load covert channel, even when the latter is blocked by fixed CPU

scheduling. The fact that heat can cross “air-gap” security boundaries can

be exploited to create covert channels and side channels between computers

that are electrically disconnected, but in physical proximity. Finally, even the

geolocation of computers, albeit at low accuracy, might be accomplished by

inferring the effect of weather through clock skew.

6.1 Future research directions

In each of the topics explored in this thesis there remain a number of possibil-

ities for further research. With the continuing growth of the Internet gaming

community and the pseudonymity it implies, preventing collusion is infeasible.

Therefore, the construction of collusion-resistant competition structures could

121



be of substantial benefit, but they must be perceived as fair and moreover re-

main fun. Research on voting systems appears to be a fruitful source of ideas

and although prior results show the impossibility of perfect elections, there

may be adequate approximations which are better than the existing state of

the art in games.

Although outside the remit of anonymity systems, covert channels for Tro-

jan horse communication are a growing concern as the sophistication of mal-

ware authors increases. Covert channels also have more legitimate applications,

such as bootstrapping censorship resistant publishing mechanisms. At higher

levels of the protocol stack, the bandwidth of covert channels is larger, and

the techniques presented in this thesis could be applied to exploit them. Also,

a better understanding of the semantics of unmodified systems could improve

covert channel detection. Timing characteristics remain largely unexplored in

this respect.

Indirect traffic-analysis attacks could be extended by inducing load patterns

through denial of service attacks, although legal concerns could constrain this

being tested on the open Internet. Also, enhanced signal processing could give

better recognition rates. This may be particularly relevant if the larger number

of flows through the rapidly growing Tor network becomes sufficient to mask

the induced signal. Equally, the increased capacity of the network could make

the attacks more effective. Discovering how the attack scales with the size of

the anonymity network would be a useful result in itself.

The potential of temperature covert channels remains unknown due to their

early stage of investigation. Inter-computer communication and geolocation

depend on the thermal conductivity and convection properties of computer

installations, so comprehensive testing would be a substantial undertaking, but

could be of interest to institutions with high security requirements. To explore

the limits of geolocation, the measurement techniques would likely need to be

refined to make better use of the low resolution clocks in this scenario. Here,

there are additional complications of NTP synchronisation and interference

from air-conditioning which may be removed through better signal processing.

There are a few common threads which run throughout this thesis that

bear emphasising. One is finding security weaknesses by moving outside of

conventional abstractions. The key observation of Chapter 2 was that the goal

of the competition was not to play Connect-4 well, but to win the league, a fact

not appreciated by other entrants. Chapter 3 exploited the fact that previous

steganography schemes assume that if a field is permitted to be random, it

122



actually will be random. Chapter 4 and Chapter 5 rely on the Tor schedul-

ing algorithm, and temperature dependent clock skew, respectively, which are

normally not considered security critical components and hence are excluded

from analysis.

In the process of breaking out of traditional models, there remains the risk

that research, despite being internally consistent, will ultimately be inappli-

cable to real systems. For this reason, wherever feasible, I have tested my

new techniques in situations as close to real-life as possible. Actually imple-

menting these attacks, rather than relying on their theoretical properties, had

significant beneficial side-effects.

For instance, it was only on testing the covert channel detection mecha-

nisms in Chapter 3 that I realised that clock skew could be estimated from

initial sequence numbers. Also, the idea behind Chapter 5 originated from

the experience gained in Chapter 4 and from attempting to explain unusual

patterns in noise measurements taken of clock skew estimates. These patterns

turned out to be caused by temperature changes when the computer performed

night-time maintenance tasks.

However, the phenomenon of temperature-induced clock skew is not an

attack in itself. This is where techniques for covert channel discovery, such as

shared resource matrices [87] may be applied to find flows between supposedly

unlinkable constructs (streams through Tor nodes in this case). Although, in

this example, extending the prior work on indirect traffic analysis was fairly

straightforward, the rigour of systematic covert-channel analysis techniques

was intended to detect all covert channels. These methodologies could be

applied to give some assurance that no covert channels or side channel attacks

remained, at least resisting casual lapses during analysis.

The case studies presented here have shown how covert channel analysis

techniques have discovered hitherto completely unexpected practical attacks on

anonymity systems and related infrastructure. Furthermore, the mechanisms

for exploiting, preventing and detecting covert channels can be directly applied

in situations other than the MLS scenario they were designed for. I hope this

thesis will encourage future work on exploiting the vast literature of covert

channel analysis for the advancement of anonymous communications research.

123



Bibliography

[1] A. Acquisti, R. Dingledine, and P. F. Syverson. On the economics of

anonymity. In R. N. Wright, editor, Proceedings of Financial Cryptogra-

phy (FC ’03), volume 2742 of LNCS, pages 84–102, Guadeloupe, French

West Indies, January 2003. Springer.

[2] D. Agrawal, D. Kesdogan, and S. Penz. Probabilistic treatment of mixes

to hamper traffic analysis. In IEEE Symposium on Security and Privacy,

pages 16–27, Berkeley, CA, US, May 2003. IEEE Computer Society.

[3] K. Ahsan and D. Kundur. Practical data hiding in TCP/IP. In ACM

Workshop on Multimedia and Security, Juan-les-Pins, France, Decem-

ber 2002. ACM Press. http://ee.tamu.edu/~deepa/pdf/acm02.pdf

(checked 2007-06-14).

[4] L. V. Allis. A knowledge-based approach of Connect-Four. Master’s

thesis, Vrije Universiteit, Amsterdam, The Netherlands, October 1988.

citeseer.ist.psu.edu/allis88knowledgebased.html (checked 2007-

06-14).

[5] A. Alsaid and D. Martin. Detecting web bugs with Bugnosis: Privacy

advocacy through education. In R. Dingledine and P. Syverson, editors,

Privacy Enhancing Technologies (PET), volume 2482 of LNCS, pages

27–31, San Francisco, CA, US, April 2002. Springer.

[6] J. Alves-Foss, C. Taylor, and P. Omanl. A multi-layered approach to

security in high assurance systems. In Proceedings of the 37th Hawaii

International Conference on System Sciences, HI, US, January 2004.

IEEE Computer Society.

[7] American Contract Bridge League. Laws of Contract Bridge (Rubber

Bridge Laws, American Edition), January 1993.

http://ee.tamu.edu/~deepa/pdf/acm02.pdf
citeseer.ist.psu.edu/allis88knowledgebased.html


[8] American Contract Bridge League. Laws of Duplicate Contract Bridge

(American Edition), May 1997. Law 20. Review and Explanation of

Calls.

[9] R. Anderson. Security Engineering. Wiley, 1st edition, 2001.

[10] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and

B. Alberti. The Internet gopher protocol (a distributed document search

and retrieval protocol). RFC 1436, IETF, March 1993.

[11] K. J. Arrow. Social Choice and Individual Values. Yale University Press,

second edition, October 1970.

[12] R. Axelrod. The Evolution of Cooperation. BASIC Books, NY, US, 1984.

[13] A. Back, I. Goldberg, and A. Shostack. Freedom Systems 2.1 security

issues and analysis. White paper, Zero Knowledge Systems, Inc., May

2001. http://osiris.978.org/~brianr/crypto-research/anon/

www.freedom.net/products/whitepapers/Freedom_Security2-1.

pdf (checked 2007-06-14).

[14] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and trade-offs

in anonymity providing systems. In I. S. Moskowitz, editor, Informa-

tion Hiding Workshop (IH 2001), volume 2137 of LNCS, pages 245–257,

Pittsburgh, PA, US, April 2001. Springer.

[15] BBC News. US blogger fired by her airline, November 2004. http:

//news.bbc.co.uk/1/technology/3974081.stm (checked 2007-06-14).

[16] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical

foundations. Technical Report 2547, Volume I, MITRE Corporation,

March 1973.

[17] S. Bellovin. Defending against sequence number attacks. RFC 1948,

IETF, May 1996.

[18] S. M. Bellovin. Security problems in the TCP/IP protocol suite. Com-

puter Communication Review, 19(2):32–48, April 1989.

[19] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A system for

anonymous and unobservable Internet access. In H. Federrath, editor,

Designing Privacy Enhancing Technologies, volume 2009 of LNCS, pages

115–129, Berkeley, CA, US, July 2000. Springer.

125

http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_Security2-1.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_Security2-1.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_Security2-1.pdf
http://news.bbc.co.uk/1/technology/3974081.stm
http://news.bbc.co.uk/1/technology/3974081.stm


[20] O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantages of free

MIX routes and how to overcome them. In H. Federrath, editor, De-

signing Privacy Enhancing Technologies, volume 2009 of LNCS, pages

30–45, Berkeley, CA, US, July 2000. Springer.

[21] K. J. Biba. Integrity considerations for secure computer systems. Tech-

nical Report 3153, MITRE Corporation, April 1977.

[22] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vul-

nerabilities in encrypted HTTP streams. In G. Danezis and D. Martin,

editors, Privacy Enhancing Technologies (PET), volume 3856 of LNCS,

pages 1–11, Cavtat, Croatia, May 2005. Springer.

[23] A. Blum, D. Song, and S. Venkataraman. Detection of interactive step-

ping stones: Algorithms and confidence bounds. In Recent Advances in

Intrusion Detection: 7th International Symposium, RAID 2004, Sophia

Antipolis, France, September 2004.

[24] P. Boucher, A. Shostack, and I. Goldberg. Freedom Systems 2.0 architec-

ture. White paper, Zero Knowledge Systems, Inc., December 2000. http:

//osiris.978.org/~brianr/crypto-research/anon/www.freedom.

net/products/whitepapers/Freedom_System_2_Architecture.pdf

(checked 2007-06-14).

[25] S. L. Brand. DoD 5200.28-STD Department of Defense Trusted Com-

puter System Evaluation Criteria (Orange Book). National Computer

Security Center, December 1985.

[26] C. Bryan-Low. Vodafone, Ericsson get hung up in Greece’s phone-tap

scandal. Wall Street Journal, 21 June 2006.

[27] C-MAC MicroTechnology. HC49/4H SMX crystals datasheet, Septem-

ber 2004. http://www.farnell.com/datasheets/64642.pdf (checked

2007-06-14).

[28] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing channels: De-

sign and detection. In CCS ’04: Proceedings of the 11th ACM Conference

on Computer and Communications Security, pages 178–187, Washing-

ton, DC, US, October 2004. ACM Press.

126

http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
http://osiris.978.org/~brianr/crypto-research/anon/www.freedom.net/products/whitepapers/Freedom_System_2_Architecture.pdf
http://www.farnell.com/datasheets/64642.pdf


[29] Cambridge University Computing Society. Winter programming com-

petition, December 2002. http://www.cucs.ucam.org/competition.

html (checked 2007-06-14).

[30] Center for High Assurance Computer Systems, US Naval Research

Lab. Onion routing program, 1995. http://www.onion-router.net/

(checked 2007-06-14).

[31] D. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

[32] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,

and M. Bowman. PlanetLab: An overlay testbed for broad-coverage

services. ACM SIGCOMM Computer Communication Review, 33(3),

July 2003.

[33] D. D. Clark and D. R. Wilson. A comparison of commercial and military

computer security policies. In IEEE Symposium on Security and Privacy,

pages 184–195, Oakland, CA, US, April 1987. IEEE Computer Society.

[34] R. Clayton, G. Danezis, and M. G. Kuhn. Real world patterns of failure

in anonymity systems. In I. S. Moskowitz, editor, Information Hiding

Workshop (IH 2001), volume 2137 of LNCS, pages 230–245, Pittsburgh,

PA, US, April 2001. Springer.

[35] Common Criteria Project. Common Criteria for Information Technology

Security Evaluation, version 3.1, September 2006. Part 1: Introduction

and general model (revision 1).

[36] W. Dai. Two attacks against Freedom, 2000. http://www.eskimo.com/

~weidai/freedom-attacks.txt (checked 2007-06-14).

[37] G. Danezis. Statistical disclosure attacks. In Gritzalis, Vimercati, Sama-

rati, and Katsikas, editors, Security and Privacy in the Age of Uncer-

tainty, (SEC2003), pages 421–426, Athens, Greece, May 2003. IFIP

TC11, Kluwer.

[38] G. Danezis. Traffic analysis of the HTTP protocol over TLS, 2003. http:

//homes.esat.kuleuven.be/~gdanezis/TLSanon.pdf (checked 2007-

06-14).

127

http://www.cucs.ucam.org/competition.html
http://www.cucs.ucam.org/competition.html
http://www.onion-router.net/
http://www.eskimo.com/~weidai/freedom-attacks.txt
http://www.eskimo.com/~weidai/freedom-attacks.txt
http://homes.esat.kuleuven.be/~gdanezis/TLSanon.pdf
http://homes.esat.kuleuven.be/~gdanezis/TLSanon.pdf


[39] G. Danezis. Designing and attacking anonymous communication sys-

tems. Technical Report UCAM-CL-TR-594, University of Cambridge,

Computer Laboratory, July 2004.

[40] G. Danezis. The traffic analysis of continuous-time mixes. In D. Martin

and A. Serjantov, editors, Privacy Enhancing Technologies (PET), vol-

ume 3424 of LNCS, pages 35–50, Toronto, Canada, May 2004. Springer.

[41] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a

type III anonymous remailer protocol. In IEEE Symposium on Security

and Privacy, pages 2–15, Berkeley, CA, US, May 2003. IEEE Computer

Society.

[42] T. de Raadt, N. Hallqvist, A. Grabowski, A. D. Keromytis, and

N. Provos. Cryptography in OpenBSD: An overview. In Proceedings

of the USENIX Annual Technical Conference (FREENIX Track), pages

93–102, Monterey, CA, US, June 1999. USENIX.

[43] D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In

Proceedings of the 10th USENIX Security Symposium, Washington, DC,

US, August 2001. USENIX.

[44] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring ano-

nymity. In R. Dingledine and P. Syverson, editors, Proceedings of Privacy

Enhancing Technologies Workshop (PET), volume 2482 of LNCS, pages

184–188, San Francisco, CA, US, April 2002. Springer.

[45] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) protocol

version 1.1. RFC 4346, IETF, April 2006.

[46] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[47] R. Dingledine and N. Mathewson. Tor protocol specification. Technical

report, The Free Haven Project, October 2004. http://tor.eff.org/

cvs/doc/tor-spec.txt (checked 2007-06-14).

[48] R. Dingledine and N. Mathewson. Tor path specification. Technical

report, The Free Haven Project, April 2006. http://tor.eff.org/cvs/

doc/path-spec.txt (checked 2007-06-14).

128

http://tor.eff.org/cvs/doc/tor-spec.txt
http://tor.eff.org/cvs/doc/tor-spec.txt
http://tor.eff.org/cvs/doc/path-spec.txt
http://tor.eff.org/cvs/doc/path-spec.txt


[49] R. Dingledine and N. Mathewson. Tor rendezvous specification. Techni-

cal report, The Free Haven Project, February 2006. http://tor.eff.

org/cvs/doc/rend-spec.txt (checked 2007-06-14).

[50] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th USENIX Security

Symposium, San Diego, CA, US, August 2004. USENIX.

[51] H. Dobbertin. Cryptanalysis of MD4. Journal of Cryptology, 11(4):253–

271, November 1998.

[52] B. Dutta, M. O. Jackson, and M. L. Breton. Strategic candidacy and

voting procedures. Econometrica, 69(4):1013–1038, 2001.

[53] B. Dutta, M. O. Jackson, and M. L. Breton. Voting by successive elimina-

tion and strategic candidacy. Journal of Economic Theory, 103:190–218,

2002.

[54] E. W. Felten and M. A. Schneider. Timing attacks on web privacy.

In CCS ’00: Proceedings of the 7th ACM Conference on Computer and

Communications Security, pages 25–32, Athens, Greece, November 2000.

ACM Press.

[55] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,

IETF, June 1999.

[56] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating steganogra-

phy in Internet traffic with active wardens. In F. A. P. Petitcolas, editor,

Information Hiding Workshop (IH 2002), volume 2578 of LNCS, pages

18–35, Noordwijkerhout, The Netherlands, October 2002. Springer.

[57] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing

network layer. In CCS ’02: Proceedings of the 9th ACM Conference on

Computer and Communications Security, pages 193–206, Washington,

DC, US, November 2002. ACM Press.

[58] M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing Tarzan, a

peer-to-peer anonymizing network layer. In P. Druschel, M. F. Kaashoek,

and A. I. T. Rowstron, editors, International Workshop on Peer-to-Peer

Systems (IPTPS), volume 2429 of LNCS, pages 121–129, Cambridge,

MA, US, March 2002. Springer.

129

http://tor.eff.org/cvs/doc/rend-spec.txt
http://tor.eff.org/cvs/doc/rend-spec.txt


[59] X. Fu, Y. Zhu, B. Graham, R. Bettati, and W. Zhao. On flow marking

attacks in wireless anonymous communication networks. In Proceedings

of the 25th IEEE International Conference on Distributed Computing

Systems, pages 493–503, Columbus, OH, US, June 2005. IEEE Computer

Society.

[60] Fyodor. Nmap: Idle scanning and related IPID games, July 2001. http:

//www.insecure.org/nmap/idlescan.html (checked 2007-06-14).

[61] P. Gärdenfors. Manipulations of social choice functions. Journal of

Economic Theory, 13:217–228, 1976.

[62] A. Gibbard. Manipulation of voting schemes: A general result. Econo-

metrica, 41(4):587–601, 1973.

[63] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging

in TCP. In R. Dingledine and P. Syverson, editors, Privacy Enhancing

Technologies (PET), volume 2482 of LNCS, pages 194–208, San Fran-

cisco, CA, US, April 2002. Springer.

[64] C. G. Girling. Covert channels in LAN’s. IEEE Transactions on Software

Engineering, SE-13(2):292–296, February 1987.

[65] V. D. Gligor. DoD NCSC-TG-030 A Guide to Understanding Covert

Channel Analysis of Trusted Systems (Light-Pink Book). National Com-

puter Security Center, November 1993.

[66] I. Goldberg. A Pseudonymous Communications Infrastructure for the

Internet. PhD thesis, UC Berkeley, December 2000.

[67] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing.

Communications of the ACM, 42(2):39–41, February 1999.

[68] S. Govindavajhala and A. Appel. Using memory errors to attack a virtual

machine. In IEEE Symposium on Security and Privacy, pages 154–165,

Oakland, CA, US, May 2003. IEEE Computer Society.

[69] W. M. Grossman. New tack wins prisoner’s dilemma. Wired News, Oc-

tober 2004. http://www.wired.com/culture/lifestyle/news/2004/

10/65317 (checked 2007-06-14).

[70] H. Grundy. Personal communication, August 2006.

130

http://www.insecure.org/nmap/idlescan.html
http://www.insecure.org/nmap/idlescan.html
http://www.wired.com/culture/lifestyle/news/2004/10/65317
http://www.wired.com/culture/lifestyle/news/2004/10/65317


[71] Guirguis, Mina, Bestavros, Azer, and I. Matta. Exploiting the transients

of adaptation for RoQ attacks on Internet resources. In Proceedings of

ICNP’04: The 12th IEEE International Conference on Network Proto-

cols, Berlin, Germany, October 2004.

[72] C. Gülcü and G. Tsudik. Mixing E-mail with Babel. In Proceedings

of the Network and Distributed Security Symposium – NDSS ’96, pages

2–16, San Diego, CA, US, February 1996. The Internet Society.

[73] T. Handel and M. Sandford. Hiding data in the OSI network model. In

R. Anderson, editor, Information Hiding Workshop (IH 1996), volume

1174 of LNCS, pages 23–38, Cambridge, UK, May/June 1996. Springer.

[74] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection:

Evasion, traffic normalization, and end-to-end protocol semantics. In

Proceedings of the 10th USENIX Security Symposium, Washington, DC,

US, August 2001. USENIX.

[75] S. Helmers. A brief history of anon.penet.fi – the legendary anonymous

remailer. Computer-Mediated Communication Magazine, September

1997. http://www.december.com/cmc/mag/1997/sep/helmers.html

(checked 2007-06-14).

[76] M. Herman. Intelligence Power in Peace and War. Cambridge University

Press, October 1996.

[77] J. C. Hernandez-Castro, I. Blasco-Lopez, J. M. Estevez-Tapiador, and

A. Ribagorda-Garnacho. Steganography in games: A general method-

ology and its application to the game of Go. Computers & Security,

25(1):64–71, February 2006.

[78] A. Hintz. Covert channels in TCP and IP headers. Presentation at

DEFCON 10, August 2002. http://guh.nu/projects/cc/ (checked

2007-06-14).

[79] W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE Sympo-

sium on Security and Privacy, pages 8–20, Oakland, CA, US, May 1991.

IEEE Computer Society.

[80] W.-M. Hu. Lattice scheduling and covert channels. In IEEE Symposium

on Security and Privacy, pages 52–61, Oakland, CA, US, May 1992.

IEEE Computer Society.

131

http://www.december.com/cmc/mag/1997/sep/helmers.html
http://guh.nu/projects/cc/


[81] J. C. Huskamp. Covert communication channels in timesharing systems.

Technical Report UCB-CS-78-02, University of California, Berkeley, CA,

US, 1978.

[82] V. Jacobson, R. Braden, and D. Borman. TCP extensions for high

performance. RFC 1323, IETF, May 1992.

[83] V. Jacobson, C. Leres, and S. McCanne. libpcap, March 2004. http:

//www.tcpdump.org/ (checked 2007-06-14).

[84] A. Juels, M. Jakobsson, and T. N. Jagatic. Cache cookies for browser

authentication. In IEEE Symposium on Security and Privacy, pages

301–305, Oakland, CA, US, May 2006. IEEE Computer Society.

[85] M. H. Kang and I. S. Moskowitz. A pump for rapid, reliable, secure

communication. In CCS ’93: Proceedings of the 1st ACM Conference on

Computer and Communications Security, pages 119–129, Fairfax, VA,

US, November 1993. ACM Press.

[86] P. A. Karger and J. C. Wray. Storage channels in disk arm optimization.

In IEEE Symposium on Security and Privacy, pages 52–63, Oakland,

CA, US, May 1991. IEEE Computer Society.

[87] R. A. Kemmerer. Shared resource matrix methodology: An approach

to identifying storage and timing channels. ACM Transactions on Com-

puter Systems, 1(3):256–277, 1983.

[88] D. Kesdogan, D. Agrawal, and S. Penz. Limits of anonymity in open

environments. In F. A. P. Petitcolas, editor, Information Hiding Work-

shop (IH 2002), volume 2578 of LNCS, pages 53–69, Noordwijkerhout,

The Netherlands, October 2002. Springer.

[89] D. E. Knuth. The Art of Computer Programming, volume 2, Seminu-

merical Algorithms. Addison-Wesley, third edition, 1998.

[90] T. Kohno, A. Broido, and k. claffy. Remote physical device fingerprint-

ing. In IEEE Symposium on Security and Privacy, pages 211–225, Oak-

land, CA, US, May 2005. IEEE Computer Society.

[91] M. G. Kuhn. Compromising emanations: eavesdropping risks of com-

puter displays. Technical Report UCAM-CL-TR-577, University of Cam-

bridge, Computer Laboratory, December 2003.

132

http://www.tcpdump.org/
http://www.tcpdump.org/


[92] M. G. Kuhn. Personal communication, April 2006.

[93] B. W. Lampson. A note on the confinement problem. Communications

of the ACM, 16(10):613–615, October 1973.

[94] B. N. Levine, M. K. Reiter, C. Wang, and M. K. Wright. Timing attacks

in low-latency mix-based systems. In A. Juels, editor, Proceedings of

Financial Cryptography (FC ’04), volume 3110 of LNCS, pages 251–265,

Key West, FL, US, February 2004. Springer.

[95] N. B. Lucena, G. Lewandowski, and S. J. Chapin. Covert channels in

IPv6. In G. Danezis and D. Martin, editors, Privacy Enhancing Tech-

nologies (PET), volume 3856 of LNCS, pages 147–166, Cavtat, Croatia,

May 2005. Springer.

[96] M. Martinec. Temperature dependency of a quartz oscillator. http:

//www.ijs.si/time/#temp-dependency (checked 2007-06-14).

[97] N. Mathewson and R. Dingledine. Practical traffic analysis: Extend-

ing and resisting statistical disclosure. In D. Martin and A. Serjantov,

editors, Privacy Enhancing Technologies (PET), volume 3424 of LNCS,

pages 17–34, Toronto, Canada, May 2004. Springer.

[98] J. McHugh. Covert channel analysis. Technical Memo 5540:080A, Naval

Research Laboratory, 1995. A Chapter of the Handbook for the Com-

puter Security Certification of Trusted Systems.

[99] J. K. Millen. Finite-state noiseless covert channels. In Proceedings of the

Computer Security Foundations Workshop, pages 81–85, Franconia, NH,

US, June 1989.

[100] D. Mills. A kernel model for precision timekeeping. RFC 1589, IETF,

March 1994.

[101] D. L. Mills. Network time protocol (version 3) specification, implemen-

tation and analysis. RFC 1305, IETF, March 1992.

[102] J. Mogul and S. Deering. Path MTU discovery. RFC 1191, IETF, Novem-

ber 1990.

133

http://www.ijs.si/time/#temp-dependency
http://www.ijs.si/time/#temp-dependency


[103] S. B. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock

skew from network delay measurements. Technical Report 98–43, De-

partment of Computer Science University of Massachusetts at Amherst,

October 1998.

[104] I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R. Miller. Covert

channels and anonymizing networks. In Workshop on Privacy in the

Electronic Society (WPES 2003), pages 79–88, Washington, DC, US,

October 2003. ACM Press.

[105] I. S. Moskowitz, R. E. Newman, and P. F. Syverson. Quasi-anonymous

channels. In M. Hamza, editor, IASTED Communication, Network, and

Information Security, pages 126–131, New York, NY, US, December

2003. ACTAPress.

[106] J. A. Muir and P. C. van Oorschot. Internet geolocation and evasion.

Technical Report TR-06-05, Carleton University, School of Computer

Science, April 2006.

[107] S. J. Murdoch. Hot or not: Revealing hidden services by their clock skew.

In CCS ’06: Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 27–36, Alexandria, VA, US, October

2006. ACM Press.

[108] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In IEEE

Symposium on Security and Privacy, pages 183–195, Oakland, CA, US,

May 2005. IEEE Computer Society.

[109] S. J. Murdoch and S. Lewis. Embedding covert channels into TCP/IP.

In M. Barni, J. Herrera-Joancomart́ı, S. Katzenbeisser, and F. Pérez-

González, editors, Information Hiding Workshop (IH 2005), volume

3727 of LNCS, pages 247–261, Barcelona, Catalonia (Spain), June 2005.

Springer.

[110] S. J. Murdoch and P. Zieliński. Covert channels for collusion in online

computer games. In J. Fridrich, editor, Information Hiding Workshop

(IH 2004), volume 3200 of LNCS, pages 355–369, Toronto, Canada, May

2004. Springer.

134



[111] S. J. Murdoch and P. Zieliński. Sampled traffic analysis by Internet-

exchange-level adversaries. In Privacy Enhancing Technologies (PET),

LNCS, Ottawa, Canada, June 2007. Springer. (to appear).

[112] R. M. Needham. Denial of service. In CCS ’93: Proceedings of the

1st ACM Conference on Computer and Communications Security, pages

151–153, Fairfax, VA, US, November 1993. ACM Press.

[113] R. M. Needham. Denial of service: An example. Communications of the

ACM, 37(11):42–46, November 1994.

[114] R. E. Newman, V. R. Nalla, and I. S. Moskowitz. Anonymity and covert

channels in simple timed mix-firewalls. In D. Martin and A. Serjantov,

editors, Privacy Enhancing Technologies (PET), volume 3424 of LNCS,

pages 1–16, Toronto, Canada, May 2004. Springer.

[115] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differen-

tiated services field (DS field) in the IPv4 and IPv6 headers. RFC 2474,

IETF, December 1998.

[116] A. Oram, editor. Peer-to-peer: Harnessing the Benefits of a Disruptive

Technology, chapter 7, pages 89–93. O’Reilly & Associates, March 2001.

[117] L. Øverlier and P. F. Syverson. Locating hidden servers. In IEEE Sym-

posium on Security and Privacy, pages 100–114, Oakland, CA, US, May

2006. IEEE Computer Society.

[118] S. Parekh. Prospects for remailers. First Monday, 1(2), August 1996.

http://www.firstmonday.org/issues/issue2/remailers/ (checked

2007-06-14).

[119] A. Pfitzmann and M. Hansen. Anonymity, unlinkability, unobserv-

ability, pseudonymity, and identity management – a consolidated pro-

posal for terminology. Draft, version 0.28, May 2006. Latest ver-

sion available at http://dud.inf.tu-dresden.de/Anon_Terminology.

shtml (checked 2007-06-14).

[120] A. Pfitzmann, B. Pfitzmann, and M. Waidner. ISDN-mixes: Untraceable

communication with very small bandwidth overhead. In W. Effelsberg,

H. W. Meuer, and G. Müller, editors, GI/ITG Conference on Commu-

nication in Distributed Systems, volume 267 of Informatik-Fachberichte,

pages 451–463. Springer, February 1991.

135

http://www.firstmonday.org/issues/issue2/remailers/
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml


[121] B. Pfitzmann and A. Pfitzmann. How to break the direct RSA-

implementation of MIXes. In J.-J. Quisquater and J. Vandewalle, editors,

Advances in Cryptology – EUROCRYPT ’89: Workshop on the Theory

and Application of Cryptographic Techniques, volume 434 of LNCS, pages

373–381, Houthalen, Belgium, April 1989. Springer.

[122] C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall,

4th edition, 2006.

[123] J. Postel. Internet Control Message Protocol. RFC 792, IETF, Septem-

ber 1981.

[124] J. Postel. Internet Protocol. RFC 791, IETF, September 1981.

[125] J. Postel. Transmission Control Protocol. RFC 793, IETF, September

1981.

[126] J. Postel. Daytime protocol. RFC 867, IETF, May 1983.

[127] V. Prevelakis and D. Spinellis. The Athens affair. IEEE Spectrum,

44(7):26–33, July 2007.

[128] R Development Core Team. R: A language and environment for statisti-

cal computing. R Foundation for Statistical Computing, Vienna, Austria,

2004. ISBN 3-900051-07-0 http://www.R-project.org/ (checked 2007-

06-14).

[129] R. Redelmeier. CPUBurn, June 2001. http://pages.sbcglobal.net/

redelm/ (checked 2007-06-14).

[130] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connec-

tions and onion routing. IEEE Journal on Selected Areas in Communi-

cations, 16(4):482–494, May 1998.

[131] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM

Transactions on Information and System Security, 1(1), June 1998.

[132] M. Reiter and A. Rubin. Anonymity loves company: Anonymous web

transactions with Crowds. Communications of the ACM, 42(2):32–38,

February 1999.

136

http://www.R-project.org/
http://pages.sbcglobal.net/redelm/
http://pages.sbcglobal.net/redelm/


[133] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-peer

based anonymous Internet usage with collusion detection. In Workshop

on Privacy in the Electronic Society (WPES 2002), pages 91–102, Wash-

ington, DC, US, November 2002. ACM Press.

[134] Reporters Without Borders. Blogger and documentary filmmaker held

for the past month, March 2006. http://www.rsf.org/article.php3?

id_article=16810 (checked 2007-06-14).

[135] G. Rieger et al. socat – multipurpose relay, October 2004. http://www.

dest-unreach.org/socat/ (checked 2007-06-14).

[136] C. H. Rowland. Covert channels in the TCP/IP protocol suite. First

Monday, 2(5), May 1997. http://www.firstmonday.org/issues/

issue2_5/rowland/ (checked 2007-06-14).

[137] J. Rutkowska. The implementation of passive covert channels in the

Linux kernel. In 21st Chaos Communication Congress, Berlin, Ger-

many, December 2004. Chaos Computer Club e.V. http://www.ccc.de/

congress/2004/fahrplan/event/176.en.html (checked 2007-06-14).

[138] M. Satterthwaite. Strategy-proofness and Arrow’s condition: Existence

and correspondence theorems for voting procedures and social welfare

functions. Journal of Economic Theory, 10:187–217, 1975.

[139] A. Serjantov. On the anonymity of anonymity systems. Technical Re-

port UCAM-CL-TR-604, University of Cambridge, Computer Labora-

tory, October 2004.

[140] A. Serjantov and G. Danezis. Towards an information theoretic metric

for anonymity. In R. Dingledine and P. Syverson, editors, Privacy En-

hancing Technologies (PET), volume 2482 of LNCS, pages 259–263, San

Francisco, CA, US, April 2002. Springer.

[141] A. Serjantov and P. Sewell. Passive attack analysis for connection-based

anonymity systems. In E. Snekkenes and D. Gollmann, editors, European

Symposium on Research in Computer Security (ESORICS 2003), volume

2808 of LNCS, pages 116–131, Gjovik, Norway, October 2003. Springer.

[142] G. J. Simmons. The prisoners’ problem and the subliminal channel. In

D. Chaum, editor, Crypto ’83, Advances in Cryptography, pages 51–67.

Plenum Press, August 1983.

137

http://www.rsf.org/article.php3?id_article=16810
http://www.rsf.org/article.php3?id_article=16810
http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
http://www.firstmonday.org/issues/issue2_5/rowland/
http://www.firstmonday.org/issues/issue2_5/rowland/
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html
http://www.ccc.de/congress/2004/fahrplan/event/176.en.html


[143] R. Singel. Judge halts NSA snooping. Wired News, August 2006. http:

//www.wired.com/politics/law/news/2006/08/71610 (checked 2007-

06-14).

[144] T. Sohn, J. Seo, and J. Moon. A study on the covert channel detection

of TCP/IP header using support vector machine. In P. Perner, S. Qing,

D. Gollmann, and J. Zhou, editors, Information and Communications

Security, volume 2836 of LNCS, pages 313–324. Springer, October 2003.

[145] D. X. Song, D. Wagner, and X. Tian. Timing analysis of keystrokes and

timing attacks on SSH. In Proceedings of the 10th USENIX Security

Symposium, Washington, DC, US, August 2001. USENIX.

[146] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan,

and L. Qiu. Statistical identification of encrypted web browsing traffic.

In IEEE Symposium on Security and Privacy, pages 19–30, Oakland,

CA, US, May 2002. IEEE Computer Society.

[147] P. F. Syverson, G. Tsudik, M. G. Reed, and C. E. Landwehr. Towards

an analysis of onion routing security. In H. Federrath, editor, Designing

Privacy Enhancing Technologies, volume 2009 of LNCS, pages 96–114,

Berkeley, CA, US, 25–26 July 2000. Springer.

[148] K. Szczypiorski. HICCUPS: Hidden communication system for corrupted

networks. In International Multi-Conference on Advanced Computer Sys-

tems, pages 31–40, October 2003. http://krzysiek.tele.pw.edu.pl/

pdf/acs2003-hiccups.pdf (checked 2007-06-14).

[149] C.-R. Tsai, V. D. Gligor, and C. S. Chandersekaran. A formal method

for the identification of covert storage channels in source code. In IEEE

Symposium on Security and Privacy, pages 74–87, Oakland, CA, US,

April 1987. IEEE Computer Society.

[150] E. Tumoian and M. Anikeev. Network based detection of passive covert

channels in TCP/IP. In 30th IEEE Conference on Local Computer Net-

works, pages 802–809, Sydney, Australia, November 2005. IEEE Com-

puter Society.

[151] G. Uchenick. MILS middleware for secure distributed systems.

RTC magazine, 15, June 2006. http://www.rtcmagazine.com/home/

article.php?id=100685 (checked 2007-06-14).

138

http://www.wired.com/politics/law/news/2006/08/71610
http://www.wired.com/politics/law/news/2006/08/71610
http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf
http://krzysiek.tele.pw.edu.pl/pdf/acs2003-hiccups.pdf
http://www.rtcmagazine.com/home/article.php?id=100685
http://www.rtcmagazine.com/home/article.php?id=100685


[152] U.S. Supreme Court. McIntyre v. Ohio Elections Commission. 514 U.S.

334 (1995).

[153] G. Voyatzis and I. Pitas. Applications of toral automorphisms in im-

age watermarking. In International Conference on Image Processing,

Lausanne, Switzerland, September 1996. IEEE Computer Society.

[154] D. Wagner. Re: Suggestions for the passing of passphrases. Usenet

posting to sci.crypt and alt.privacy, June 2005. <d889mp$2sah$1@agate.

berkeley.edu>.

[155] X. Wang and D. S. Reeves. Robust correlation of encrypted attack traffic

through stepping stones by manipulation of interpacket delays. In CCS

’03: Proceedings of the 10th ACM Conference on Computer and Com-

munications Security, pages 20–29, Washington, DC, US, October 2003.

ACM Press.

[156] J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and

J. Stern. Design for MULTICS security enhancements. Technical Re-

port ESD-TR-74-176, Honeywell Information Systems Inc, Electronic

Systems Division, Hanscom AFB, MA, US, December 1973.

[157] P. Winkler. The advent of cryptology in the game of Bridge. Cryptologia,

7(4):327–332, October 1983.

[158] M. Wright, M. Adler, B. N. Levine, and C. Shields. Defending anony-

mous communication against passive logging attacks. In IEEE Sympo-

sium on Security and Privacy, pages 28–41, Berkeley, CA, US, May 2003.

IEEE Computer Society.

[159] J. Yan. Security design in online games. In 19th Annual Computer

Security Applications Conference, Las Vegas, NV, US, December 2003.

IEEE Computer Society.

[160] J. Young and E. M. On obtaining “lawful interception” documents.

http://www.quintessenz.org/etsi (checked 2007-06-14), March 2002.

[161] Y. Zhang and V. Paxson. Detecting stepping stones. In Proceedings of

the 9th USENIX Security Symposium, Denver, CO, US, August 2000.

USENIX.

139

<d889mp$2sah$1@agate.berkeley.edu>
<d889mp$2sah$1@agate.berkeley.edu>
http://www.quintessenz.org/etsi


[162] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow correlation

attacks and countermeasures in mix networks. In D. Martin and A. Ser-

jantov, editors, Privacy Enhancing Technologies (PET), volume 3424 of

LNCS, pages 207–225, Toronto, Canada, May 2004. Springer.

140


	706.pdf
	Introduction
	Covert channels
	Security policies and threat model
	Covert channel terminology
	Identification of covert channels

	Anonymity
	Anonymity terminology

	Structure of the thesis
	Anonymity and links to covert channels

	Local covert channels in games
	Background
	Competition structures
	League tournaments
	Knockout tournaments

	Identification mechanisms
	Timing
	Choice of equivalent moves
	Analysis of identification mechanisms
	Identification key

	Real world example
	Rules of the game
	Collusion strategy chosen
	Game strategy
	Implementation
	Optimisation
	Effects of poor players
	Results

	Defeating collusion
	Covert channel prevention
	Detecting collusion
	Collusion resistant competitions

	Conclusion

	Embedding covert channels into TCP/IP
	Introduction
	Threat model
	TCP/IP-based steganography
	Type of service
	IP identification
	IP flags
	IP fragment offset
	IP options
	TCP sequence number
	TCP timestamp
	Packet order
	Packet timing

	IP ID and TCP ISN implementations
	Linux
	OpenBSD

	Detection of TCP/IP steganography
	IP ID characteristics
	TCP ISN characteristics
	Explicit steganography detection
	Accuracy
	Results

	Detection-resistant TCP steganography
	Linux
	OpenBSD

	Conclusion

	Low-cost traffic analysis of Tor
	Introduction
	Understanding Tor
	Architecture
	Threat model

	Attacking Tor
	Traditional traffic analysis
	Traffic analysis of Tor
	Traffic-analysis methodology

	Experimental setup and results
	Results

	Discussion
	Linkability attack
	Variants of the attack
	Attack costs
	Understanding the traffic artifacts

	Conclusion

	Temperature-based channels
	Introduction
	Hidden services
	Threat model
	Existing attacks

	Clock skew and temperature
	Background and definitions
	Impact of temperature

	Attacking Tor
	Results
	Discussion

	Extensions and future work
	Classical covert channels
	Cross-computer communication
	Geolocation
	Noise sources and mitigation

	Conclusion

	Conclusions
	Future research directions



