Technical Report A

Number 72

Computer Laboratory

Logic programming and
the specification of circuits

W.E. Clocksin

May 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 W.E. Clocksin

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Logic Programming and the Specification of Circuits
W F Clocksin

Computer Laboratory
University of Cambridge
Corn Exchange Street, Cambridge CB2 3QG

Index terms: Prolog, logic programming, hardware description

Abstract

Logic programming (see Kowalski, 1979) can be used for specification and au-
tomatic reasoning about electrical circuits. Although Propositional Logic has long
been used for describing the truth functions of combinational circuits, the more pow-
erful Predicate Calculus on which logic programming is based has seen relatively
little use in design automation. Previous researchers have introduced a number
of techniques similar to logic programming, but many of the useful consequences
of the logic programming methodology have not been exploited. This paper first
reviews and compares three methods for representing circuits, which will be called
here the functional method, the extensional method, and the definitional method.
The latter method, which conveniently admits arbitrary sequential circuits, is then
treated in detail. Some useful consequences of using this method for writing di-
rectly executable specifications of circuits are described. These include the use of
quantified variables, verification of hypothetical states, and sequential simulation.

1. Review of Terminology

A circuit is composed of a set of modules and connections between modules. With

each module is associated a set of ports between which the connections are de-
fined, and which may be used for input and output. Modules can be composed
hierarchically, in which modules are specified in terms of other modules. At the
bottom of the hierarchy are primitive modules, the identity of which depends on
the technology being used. For example, a VLSI designer might take transistors
to be primitive; other digital designers might take logic gates or even individual
packages to be primitive. '

Circuits can be specified, simulated, and reasoned about by means of logic
programming. Circuits are represented using the terms and formulae of logic, and
properties of circuits can be derived by straightforward logical deductions from the
given specifications. This paper will be restricted to the use of logic to represent
the structure of circuits. '

We shall use the Edinburgh Prolog syntax for terms and formulae. An introduc-
tory account is given in Clocksin and Mellish (1981). To review, terms are constant
symbols, variables, and compound terms. Constant symbols are either integers, or
written with an initial lower-case letter, or a string of non-alphanumeric symbols.

Variables are written with an initial upper-case letter. An n-ary compound term
is written as f(t1,%2,...,tn), where f is a constant symbol called the functor, and
each ¢;, 1 <1 < n is a term called an argument. A 0-ary compound term having
functor f is considered the constant symbol f. A compound term is called ground
if all of its arguments are either constant symbols or (recursively) ground terms. It
is also permitted to nominate functors as prefix, infix, or postfix operators, so they
can be written for example as, t; f {,.

The list, a commonly used compound term, is constructed recursively in the
way usual to functional languages, and a syntactic device is employed to avoid the
awkwardness of representing the list of length N as compound terms nested N
deep. The list of length O is written as [1. The list of length N is written as
[t1,%2,...,tn]1, where term ¢, is called the head of the list, and terms t5,...,tn
are the elements of a list of length N — 1 called the tail. The list having head h and
tail £ can be written [hlZ].

Formulae are written as Horn clauses, which represent a subset of the formulae
~ of Predicate Calculus. Let P and some @; (1 <7 < g) stand for compound terms.
Let z; (1 < j < m) stand for variables appearing in P and possibly in the Q. Let
yr (1 < k < n) stand for variables appearing in the Q, and not appearing in P.
Then we write the Horn clause

P - Q11Q2)---:QQ'

which is equivalent to the Predicate Calculus formula

‘v’xl,...,mm(ﬂyl,...,yn Q, /\Qg/\.../\Qq):)P.

P is called the head, and the @; are called the body. If n = 0 then there is no body,
and the resulting clause is called a unit clause.

Clauses are used as a program to which queries (or goals) can be posed. The
strategy used by Prolog for the execution of goals is briefly summarised as the
following recursive definition. Given an ordered collection of clauses called the
database and a conjunction of goals Gy,..., Gy, we can execute the goals by means
of a simple backtracking strategy together with a pattern-matching algorithm known
as unification. To execute goal Gy, scan the database from the beginning to find the
first clause whose head matches the goal according to the unification algorithm. It
such a clause is found, the position of the matching clause in the database is marked,
and each goal in the body of the clause is executed. If all goals in the body can be
executed (or if there is no body), then goal G; is said to succeed, and goal Giy,
is executed. If a matching clause is not found, Gy is said to fail, and backtracking
occurs: any variables in G;_; instantiated by its previous success are now unbound,
and goal G;_; is executed by rescanning the database from the position after the
placemarker associated with G;_;. The result of this simple strategy is a depth-
first left-to-right exhaustive search of the database that attempts to satisfy the
conjunction of goals.

Two terms are matched according to the unification algorithm if there is a
most general substitution for the variables in the term such that the terms may be
made equal. In logic programming, unification is a general-purpose feature used
for passing input and output parameters, and for incremental construction of data
structures. Unification is used below for propagating values through a circuit.

2

2. Summary of Functional and Extensional Methods

The first two methods are summarised here only for the purpose of comparison.
They are shown to have sufficient disadvantages that we do not consider them

further.
2.1. The Functional Method

The functional method can easily represent combinational acyclic circuits in which
a single output signal is the function of several input signals. Modules are repre-
sented as ground compound terms, where a particular input port is associated with
a particular argument of the term. Constant symbols are used to denote primitive
modules which have no input (for example named input signals and power connec-
tions). The function symbol together with its arguments names the outpft of the
module. The only connection relationship between modules is purely functional: the
syntactic form of a given term determines the connections between modules. Thus,
this technique does not make use of formulae. Consider the example in Figure 1(a),
which shows a simple combinational circuit and the ground term representing it.

Insert Figure 1 Near Here

In this example, input signals are named by the constant symbols a, b, and c.
Modules are named by the 2-ary function symbols nand and nor and the 1-ary
function symbol not.

This representation permits processing of the circuit by using recursive descent
to transform a given term into another (Clocksin and Mellish, 1981), and it is used
in a number of elementary treatments (Sammut and Sammut, 1983; Wos, et al.,
1984). There are two main disadvantages to this technique. First, only acyclic
circuits can be described by ground terms, and this precludes the specification of
realistic sequential circuits. Second, a separate expression must be used to represent
each output of a circuit, as shown in Figure 1(b). By introducing equations and
metafunctional devices such as the p-operator of Sheeran (1983), it is possible to
represent sequential circuits with cyclic connections and multiple outputs, whilst
remaining within a functional programming (Henderson, 1980) context. Such a
treatment brings this method closer to the definitional method described later,
however, the usual use of the functional technique is restricted to ground terms, and
does not include formulae. The two restrictions militate aginst using the functional
technique for all but the most trivial of circuits found in practice.

2.2 The Extensional Method

The extensional method represents each module and connection as a unit clause
in which constants are used to indicate the connections between modules. In the
example shown in Figure 2, the 3-ary predicate module describes the type of a
module, a list of its input port names, and a list of its output port names. The
binary predicate connect describes connections between ports, where the named
port of a given module is represented as a ground 1-ary compound term consisting
of a function symbol naming the module type together with a argument naming the
port.

jo]

o o
R ~

c o

(a) nor(nand(nor(not(a),b),c),nand3(a,b,not(c)))

L
b D>
) >
(b) not(nand(a,b)
xor(a,b)

Figure 1

module(xor,[a,b],[c]).
module(not,[al,[b]).
module(csrff[s,c,rllq]).

connect(xor(a),z).
connect(xor(b),x). < ” >—t S
connect(xor(c),csrff(s)). c Q

connect(xor(c),not(a)).
connect(not(b),csrff(r)).

connect(clock,csrff(c)).
connect(csrff{g),z). clock

Figure 2

Insert Figure 2 Near Here

The circuit is thus described as the extension of the module and connect rela-
tions. Variations on this method are used in a number of systems (Barrow, 1984;
Horstmann, 1983; Kollaritsch and Weste, 1984). It is usual to consider the module
and connect relations as templates, and to augment their arguments with variables
that stand for any instance of the module and connection. Additional arguments
can be used to represent state variables, type information, and so forth.

The extensional method can accommodate arbitrary types of circuits such as
multiple output cyclic circuits. However, the disadvantages of this method stem
from the property that modules are not represented by a single term. The mod-
ules and connections of a circuit are represented extensionally, with no syntactic
relationship between them. The result is difficulty in efficiently carrying out certain
operations such as circuit transformations, where in this case it is necessary to make
awkward modifications to the database. On the other hand, single terms used by the
other methods are easily rewritten either by tree- or graph-rewriting. Also, there is
less opportunity for modularity, as unit clauses contain no existentially quantified
variables.

3. The Definitional Method

This method, which we shall treat in detail, represents a circuit as a formula in a

subset of first-order logic. Modules having n ports are represented as n-ary predicate
symbols. The modules in a given circuit are composed with a binary connective
(here we use an infixed comma). Ports within a given circuit that share a common
connection are represented by a like-named variable. It is convenient to write a
module as a Horn clause in which the head of the clause represents the module
to be defined, and the body of the clause is a composition of modules. The ‘:-’
operator is re-interpreted to mean ‘is defined by’. The order of modules in the body
of the clause is not important. The examples from above are shown as follows:

combo(A,B,C,D) :-
not(A,T1), nor(Ti,B,T2), nand(C,T2,T3),
not(C,T4), hand3(T4,A,B,T5), nor(T3,T5,D).

half_add(A,B,S,C) :- xor(A,B,S), nand(A,B,T1), not(Ti,C).
seq.par(X,Clock,Z) :- xor(X,Z,T1), not(T1,T2), csrff(T1,Clock,T2,Z).

A specification of each primitive module is required. For example, not (a,b) spec-
ifies an inverter, with input port ¢ and output port b; nand3(a,b,c,d) specifies a
three-input nand gate for inputs a, b, ¢, and output d; csrff(a,b,c,d) specifies a
clocked set-reset flip-flop with S input g, clock b, R input ¢, and output d.
Variations on this method are used by Batten (1983), Fujita (1983), Gordon
(1983), Moszkowski (1983), Svanes and Aas (1984), and Clocksin (1984). The
method has numerous advantages, especially when the circuits are represented as
here by Prolog clauses. First, the module name is explicitly part of the specifica-
tion. This permits easy modular decomposition. For example, consider a three-bit
subtractor, which consists of a half-subtractor and a pair of full-subtractors:

half _sub(¥i,I2,D,B0) :- xor(Ii,12,D), not(Ii,Ti), and(I2,T1i,B0).

4

full_sub(A,B,BI,D,B0) :-
xor(A,B,T1), xor(Ti,BI,D), not(T1,T2), not(A,T3),
nand(TZ,BI,T4),Vnand(T3,B,T5), nand (T4,T5,B0) .

three_sub{(A0,A1,A2,B0,B1,B2,D0,D1,D2,T2) :-
half_sub(AO,BO,DO,TO),
full_sub(A1,B1,T0,D1,T1),
full_sub(A2,B82,T1,D2,T2).

Internal connections, which are named by variables which do not appear in the head
of the clause, are effectively “hidden”. Such lexical scoping is a good engineering
practice which is not provided by the extension method described above. By inspec-
tion of the Predicate Calculus equivalent formula, hidden variables are existentially
quantified.

The second advantage is that specifications can be directly executed by a Prolog
system. We shall return to this issue below. A third advantage is the inherent
bidirectionality obtained by the use of the logical variable. Bidirectionality is an
important behaviour of some components such as pass transistors, and has not
been explored in previous treatments. Input and output rdles of ports can be
constrained by extra clauses if necessary, however,‘the method shown here permits
a representation of bidirectionality if required. Furthermore, an uninstantiated
variable is a natural representation of the “floating” or high-impedance state. These
issues will be explored in the examples that follow.

4. Direct Execution of Specifications

Consider first the direct execution of the half_sub module. Definitions of the xor,
not, and and primitives are given by the following unit clauses, which resemble the
standard truth tables for these relations:

xor(0,0,0) .
xor(0,1,1).
xor(1,0,1).
xor(1,1,0).

not (0,1) .
not(1,0).

and(0,0,0) .
and(0,1,0).
and(1,0,0).
and(1,1,1).

The constants 1 and 0 stand for logic high and logic low, respectively. Now the
Prolog goals for executing the half subtractor given above with all combinations
of inputs to obtain difference D and borrow B are as follows, with the computer’s
output given in italics:

7- half _sub(0,0,D,B).

D=0, B=20
7- half_sub(0,1,D,B).
D=1, B=1

7- half_sub(1,0,D,B).

D=1, B=0
?- half_sub(1,1,D,B).
D=1, B=0

The four goals provide a verification by exhaustive simulation. This is an unrealistic
verification method in practice, and even generation of a smaller incomplete set of
input test patterns can be unwieldy. One alternative, still confined to simulation, is
to use a method of “hypothetical states”. Test patterns corresponding to inputs or
outputs are queried, and the Prolog system computes the possible conditions (by
depth-first backtracking search of the circuit) under which the test pattern can be
obtained. The clauses specifying a module are seen as constraints on the possible
behaviour of the module. For example, this query asks for the possible input and
difference outputs for which the borrow output is 1. The only solution, computed
by the Prolog system, is given in italics:

7- half_ sub(I,J,D,1).
I: 0, J: 1} D = 1

This “backwards” analysis of the circuit is possible because of the definition of
circuits in terms of relations. Another example, which queries the conditions under
which the first input is 1, and the second input is the same as the difference output,
is as follows:

7- half sub(1,J,J,B).
no

The Prolog system correctly reports that no such state is possible for a correctly
behaving half _sub module.

Next, consider the representation and simulation of logic functions using com-
plementary transistors. We will make the simplifying but reasonable assumption
that the difference between gate-source capacitance and gate-drain capacitance is
negligible. Where G stands for gate, S stands for source, and D stands for drain,
we represent a p-type transistor as ptrans(G,S,D), and an n-type transistor as
ntrans(G,S, D). Definitions of the transistors, a complementary inverter, and a
complementary nand gate are as follows:

ntrans(1,Y,Y).
ntrans(G,X,Y).

ptrans(0,Y,Y).
ptrans(G,X,Y).

invert(In,Out) :-.ntrans(In,Out,0), ptrans(In,Out,1).

nand(I1,I2,0ut) :-
ptrans(I1,0ut,1), ptrans(I2,0ut,1),
ntrans(Ii,0ut,W), ntrans(i2,W,0).

If these specifications are directly executed as a Prolog program, the logic gates
behave correctly whether or not the inputs are instantiated. However, this transistor
model also permits transistors to be driven “backwards”: if the source and drain
are equal, then a floating n-type gate will be forced high; a floating p-type gate
will be forced low. Real transistors do not behave this way, and it is possible to
modify the model accordingly. The simplicity of the model shown here is useful
because it is not necessary to order the simulation of modules when the clause is
directly executed. Furthermore, the “backwards” behaviour is needed to implement
the method of hypothetical states. For example, the model will tell us the valid
conditions under which the source and drain are equal. For an n-type transistor,
there are two possibilities: (1) the gate is 1 (by the first clause of the definition of
ntrans), or (2) the gate is floating (by the second clause) purely coincidentally.

Our next example is a full adder constructed from complementary transistors.
The previous specifications of p- and n-transistors are used. An interesting feature of
the adder is the use of two transistors which must conduct bidirectionally depending
on the input state. Direct execution of the adder module given in Figure 3 correctly
simulates the bidirectional behaviour. It is easy to enumerate all 2% input states
of this module, so this module can be verified by exhaustive simulation. Also, the .
method of hypothetical states can be used for “spot checking” of particular states

of interest.

Insert Figure 8 Near Here

5. Sequential Simulation bjr Direct Execution

We have seen how the definitional method can be used for direct execution of
specifications. We now demonstrate how direct execution can be used for simu-
lating sequential circuits. We begin by specifying the D-type flip-flop. The term
dff(D,C,Q,Q") represents the D-type flip-flop with input D, clock C, output @,
and next state Q'. We have left out the @ output available on some devices for
convenience. The two unit clauses specifying dff are:

aff(D,0,Q,q).
daff(D,1,Q,D).
The first clause specifies behaviour on a falling clock: the next state is the same as
the current state. The second clause specifies behaviour on a rising clock: the next
state is the same as the D input. '
The simplest sequential circuit, a divide-by-2 pulse divider, can be specified as
follows (with the not module defined as above):

div(C,Q,Z) :- not(Q,D), dff(D,C,Q,Z).

Term div(C,Q,Q") has a clock input C, a current state @, and next state Q'. We
can insert this module into a “test circuit” by writing a Prolog procedure that recurs
over an input list of clock pulses. The current state can be jammed with an initial
state (say 0), and the output states are collected into an output list. The Prolog
goal divide(P,I,Q), when given a pulse list P and initial state I, will construct an
output pulse list Q. The definition of divide is:

7

sumpart(A,B,C,NCA,SUM) :-
ptrans(NCA,T1,1),
ptrans(C,1,T5),
ptrans(B,T1,T5),
J'I ptrans(A,T1,T2),

NCA -

ptrans(NCA,T5,T2),
-} UM ptrans(T2,1,SUM),

, 1 ntrans(A,T2,T3),

_! ; ntrans(NCA,T2,T6),
ntrans(T2,SUM,0),

1 ntrans(B,T83,T6),

ntrans(NCA,T3,0),

ntrans(C,T6,0).

Nea]

1 carrypart(A,B,C,NCA,CARRY) :-
A _4 jl}..B }-A ptrans(A,T1,1),
’ ptrans(B,T1,1),

3 ptrans(A,T2,1),
ptrans(C,T1,NCA),
ptrans(B,T2,NCA),
ptrans(NCA,1,CARRY),

CARRY ntrans(C,NCA,T3),
: ntrans(B,NCA,T4),
A ntrans(NCA,CARRY,0),

o

j
;] ntrans(A,T3,0),
ntrans(B,13,0),

I
LT

I— A nirans(A,T4,0).

Figdre 3

divide([1,s,[1).
divide([PIPs],18,[Q1Qs])) :- div(P,18,Q), divide(Cs,Q,Qs).

Sample executions of this test circuit follow (computer’s response in italics):

7- divide([1,1,1,1,1,11,0,Q).

Q = (1,0,1,0,1,0]

7- divide([0,1,0,0,1,1,0,0]1,0,Q).

Q= /011;1)1;0;111:1/
The next example is a sequential parity checker. On each clock pulse, the output
provides an odd-parity check on however many data bits have been received by
the serial input since the initial state of the circuit. The sequential parity checker
is specified by the term par(C,D,Q,Q") for clock input C, serial data input D,
parity output @, and next state @', by the following definition (making use of xor
as defined above):)

Par(ClD!Q!N) [xor(DinT)u dff(Tnch»N)'

We use the same technique of recurring over a list of clock pulses to form a test
circuit checker(C,S,1,Q) for clock pulse list C, serial input list S, initial state
I, and serial parity output list §:

checker([1,8,1,11).
checker([C|Cs], [SISs],IS,[NSIL]) :-
par(C,5,IS,N8),
checker(Cs,Ss,NS,L).
When the initial state is jammed to 0, an example goal together with the computer’s
reply is as follows:
?- checker([1,1,1,1,1,1],[1,0,0,1,1,0]1,0,Q).
Q = /1)1)1}0}1)1/
Note that, for the given input, odd parity is counted for the first three and last two
clock pulses.
A final example is a three-bit synchronous Gray code counter depicted in Figure

Insert Figure 4 Near Here

Here the two combinational subcircuits are specified as separate clauses for proce-

dures neta and netb. The and and dff modules are defined as above, and the or
module is easily defined in a similar way. A circuit state vector is represented by
the compound term s(Q,,Q,Q.), in which the state for each flip-flop is stored.

neta(A,B,C,Q1,Q2) :-
and (A,C,T1),
not (C,NC),
and (B,NC,T2),
not (A,NA),
and (NA,C,T3),
or(T1,T2,Q1),
or(T2,T3,Q2) .

Qa Qg

Qc

00

CLoCcK

Figure 4

netb(A,B,Q) :-
and(A,B,T1),
not (A,NA), not(B,NB), and(NA,NB,T2),
or(T1,T2,Q).

gec(C,s(Qa,Qb,Qc) ,8(Za,Zb,Zc)) :-
neta(Qa,Qb,Qc,D1,D2),
netb(Qa,qb,D3),
dff(c,D1,Qa,Za),
dff(C,D2,Qb,Zb),
dff(C,D3,Qc,Zc).

A test circuit is constructed as before:

testgec([1,5,11).

testgec([C|Cs], I, [N|Ng]) :-
gcc(C,I,N),
testgec(Cs,l,Ns) .

A query to test the circuit for nine pulses together with the result is:
?7- testge(l1,1,1,1,1,1,1,1,1]7,8(0,0,0),Q).

Q = [5(0,0,1),5(0,1,1),5(0,1,0),5(1,1,0),
s(1,1,1),5(1,0,1),5(1,0,0),5(0,0,0),5(0,0,1)]

It can be observed that the successive states represent an incrementing Gray code.

6. Conclusions

Although logic programming has been used previously in the area of design au-
tomation, many of its properties have not been exploited. We have described some
consequences of using logic programming for constructing executable specifications
of digital circuits, with examples written in Prolog. Of particular interest is the
power of unification with logical variables. Circuit structure can be specified by rep-
resenting a connection between ports as a named variable. Values are propagated
through a circuit as goal execution proceeds, and backtracking occurs whenever
module constraints cannot be satisfied. An uninstantiated variable can represent
a high-impedance state, and bidirectionality and hypothetical states can be simu-
lated. The main drawback is the over general relational model of devices. More
constrained models can be specified, but at the sacrifice of order-independent exe-
cution of goals. '

7. References
Batten, J W, 1983. Prolog: Its potential for hardware description and verification.
Department of Computation, UMIST.

Barrow, H G, 1984. VERIFY: A program for proving correctness of digital hardware
designs. Artificial Intelligence 24, 437-491.

Clocksin, W F, 1984. A greedy gate assigner. Computer Laboratory, University of
Cambridge.

Clocksin, W F, and Mellish, C S, 1981. Programming in Prolog, Springer-Verlag.

Fujita, M, 1983. Logic design assistance with temporal logic. Draft Thesis, Univer-
sity of Tokyo.

Gordon, M J C, 1983. LCF-LSM: A system for specifying and verifying hardware.
Technical Report 41, Computer Laboratory, Univerisity of Cambridge.

Henderson, P, 1980. Functional Programming, Prentice-Hall.

Horstmann, P W, 1983. Expert systems and logic programming for CAD. VLSI
Design, November 1983.

Kollaritsch, P W, and Weste, N H E, 1984. A rule-based symbolic layout expert.
VLSI Design, August, 62-66.

Kowalski, R A, 1979. Logic for Problem Solving, North-Holland.

Moszkowski, B C, 1983. A temporal logic for multi-level reasoning about hardware.
Proc IFIP 6th Int Conf Comp Hard Desc Lang and App.

Sammut, R A, and Sammut, C A, 1983. Prolog: A tutorial introduction. The
Australian Computer Journal 15(2), 42-51.

Sheeran, M, 1984. upFP, An Algebraic VLSI Design Language. D.Phil. Thesis,
University of Oxford.

Svanaes, D, and Aas, E J, 1984. Test generation through logic programming. Inte-
gration 2, 49-67.

Wos, L, Overbeek, R, Lusk, E, and Boyle, J, 1984, Automated Reasoning, Prentice
Hall.

10

