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Abstract 3

Abstract

Bayes’ theorem is the cornerstone of statistical inference. It provides the tools for dealing with
knowledge in an uncertain world, allowing us to explain observed phenomena through the re-
finement of belief in model parameters. At the heart of this elegant framework lie intractable
integrals, whether in computing an average over some posterior distribution, or in determin-
ing the normalizing constant of a distribution. This thesis examines both deterministic and
stochastic methods in which these integrals can be treated. Of particular interest shall be para-
metric models where the parameter space can be extended with additional latent variables to
get distributions that are easier to handle algorithmically.

Deterministic methods approximate the posterior distribution with a simpler distribution
over which the required integrals become tractable. We derive and examine a new generic
α-divergence message passing scheme for a multivariate mixture of Gaussians, a particular mod-
eling problem requiring latent variables. This algorithm minimizes local α-divergences over a
chosen posterior factorization, and includes variational Bayes and expectation propagation as
special cases.

Stochastic (or Monte Carlo) methods rely on a sample from the posterior to simplify the
integration tasks, giving exact estimates in the limit of an infinite sample. Parallel temper-
ing and thermodynamic integration are introduced as ‘gold standard’ methods to sample from
multimodal posterior distributions and determine normalizing constants. A parallel tempered
approach to sampling from a mixture of Gaussians posterior through Gibbs sampling is de-
rived, and novel methods are introduced to improve the numerical stability of thermodynamic
integration. A full comparison with parallel tempering and thermodynamic integration shows
variational Bayes, expectation propagation, and message passing with the Hellinger distance
α = 1

2 to be perfectly suitable for model selection, and for approximating the predictive distri-
bution with high accuracy.

Variational and stochastic methods are combined in a novel way to design Markov chain
Monte Carlo (MCMC) transition densities, giving a variational transition kernel, which lower
bounds an exact transition kernel. We highlight the general need to mix variational methods
with other MCMC moves, by proving that the variational kernel does not necessarily give a
geometrically ergodic chain.
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Chapter 1

Introduction

1.1 Learning from data

Bayesian theory provides a general and consistent framework for dealing with uncertainty. In
everyday life uncertainty often permeates our choices, and when choices need to be made, past
experience frequently proves a helpful aid.

This very same principle is applicable when machines are faced with the task of learning
and dealing with uncertainty. Learning from past experience may take many guises, of which
classification, regression and density estimation are but a few. As a practical example, we may
care about the automatic classification of handwritten digits. When given an image of a written
digit, we wish to predict whether it is a number from zero to nine. This task is simpler if
we actually know how typical examples are classified, and a helpful aid in this case is a set of
example classifications, or a data set of labeled images of handwritten digits. Uncertainty can
then be dealt with in a crisp manner: what is the probability that an image corresponds to a
nine, say, given that we know how a few other images should be classified?

It is impractical to enumerate and store every possible variation of a written digit. There-
fore the approach forwarded by machine learning is to assume that some parametric model is
responsible for generating the labels for written digits. This model can be used for prediction
of previously unseen digits by tuning its parameters to predict the observed examples well, and
we effectively learn a functional mapping (or model) from an input to an output space. At the
core, we hope to make good predictions in the future by fitting a model to known predictions.
As an aside, nothing confines us to use a single model, as the rules of probability advocate an
averaging of predictions over a set of plausible models or possible parameter settings.

In the above example, and also in regression, we are concerned with the probability distribu-
tion of an output variable; given some input variable, the output is treated as a random variable.
In the same manner the input variable can be treated with uncertainty. In density estimation,
we are interested in the unknown distribution from which some data points have been gener-
ated. Continuing the same example, we may be presented with an unlabeled set of images of
written characters, and asked to infer the probability density of an image of a character, given
the observations. Again, we would assume some underlying model with tunable parameters to
describe the density well.
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1.2 Bayes’ theorem

The problem of learning from data can be cast into a formal Bayesian framework. Say we
observe data x = {xn}Nn=1, or equally say that some observations from a random variable have
been made. To ‘learn’ from the observed data, or use it for inference, it is necessary to assume
that it was generated by some model M, possibly with parameters θ. A common assumption
is that the data are independent and identically distributed and drawn from some likelihood
p(xn|θ,M). This sets the scene for parametric inference. It is not always necessary to explicitly
work with our model parameters; non-parametric methods can provide for an equally elegant
example of Bayesian inference. Although the methods discussed here are general, all examples
in this thesis come from the parametric camp.

Bayes’ theorem forces us to make our model assumptionsM explicit; in other words, we are
asked to specify the model that we believe in. This opens the door for sensibly comparing models,
which will be explored later. From Bayes’ theorem the posterior distribution over the parameters
is equal to the likelihood of observing that data, given a particular parameter setting, multiplied
by our prior belief about the parameter values. This is scaled by a normalizing constant that is
known as the evidence or marginal likelihood,

p(θ|x,M) =
p(x,θ|M)

∫
p(x,θ|M) dθ

=
p(x|θ,M)p(θ|M)

p(x|M)
. (1.1)

Under the assumption of independent and identically distributed data, the likelihood is a product
over individual example likelihoods, p(x|θ,M) =

∏N
n=1 p(xn|θ,M).

Three common tasks of interest are: 1) the prediction of unseen data conditioned on the
observed data, or more generally determining expectations over the posterior distribution; 2)
integrating away parameters we are not interested in, also called marginalization; 3) the evalua-
tion of the validity of our assumed model, which includes the task of computing the normalizing
constant in Bayes’ theorem.

1.2.1 Prediction

The first question is that of prediction—determining the distribution of a new data point given
the observed data—and is answered by averaging over the posterior distribution,

p(xnew|x,M) =

∫

p(xnew|θ,M)p(θ|x,M) dθ . (1.2)

This is often a difficult and analytically intractable integration problem, as the posterior may
have a very convoluted form, often being high-dimensional with many modes. Even more gen-
erally we may want to average functions over the posterior with

Φ = 〈φ(θ)〉 =

∫

φ(θ)p(θ|x,M) dθ , (1.3)

which may include determining the posterior mean, with φ(θ) = θ, for example.

1.2.2 Marginalization

If we have a joint distribution over variables θ and z, we may only be interested in the marginal
distribution over θ, and average over the other variables

p(θ|x,M) =

∫

p(θ, z|x,M) dz . (1.4)
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1.2.3 Model selection

The task of estimating the normalizing constant in Bayes’ theorem is related to another question
that we may ask, namely how well our assumed model supports the data. There is no guarantee
that a specific modelM provides a preferable description of the data, and the road of inference
diverges into two paths—

1. We make the assumption that each model in a set of models {Mi} has some possibility
of generating the data, and make predictions by averaging over the respective posterior
distributions of each Mi.

2. We prefer one model from {Mi}, and base our choice on the marginal likelihood as a
natural embodiment of Ockham’s razor.

Both these paths are discussed below.

Averaging over a set of models

Prediction may rely on higher levels of inference, where we average the predictive distribution
of equation (1.2) over the posterior distribution of a set of plausible models {Mi}, with

p(xnew|x) =
∑

Mi

p(xnew|x,Mi)p(Mi|x) . (1.5)

In each case p(xnew|x,Mi) will involve integration over a set of parameters specific to Mi.
For model averaging to be possible, we have to define a prior distribution p(Mi) over the

set of models, and again rely on Bayes’ theorem for the posterior,

p(Mi|x) =
p(x|Mi)p(Mi)

p(x)
. (1.6)

The term ‘marginal likelihood’—the normalizer or evidence from equation (1.1)—is the likelihood
term in equation (1.6). The likelihood is marginal, as the model parameters are integrated (or
marginalized) out.

Ockham’s razor

In the context of Bayes’ theorem, the question of how well our assumed model supports the
data is answered by the marginal likelihood. This is the question of model selection: we may
want to know how many clusters would be sufficient to model the data well, what the intrinsic
dimensionality of the data is, whether an input is relevant to predicting an output, and so forth.

When comparing models M1 and M2 on seeing data x, we consider the probability ratio
between the posterior probabilities of the two models. From equation (1.6) we have

p(M1|x)

p(M2|x)
=
p(x|M1)

p(x|M2)

p(M1)

p(M2)
. (1.7)

When determining the posterior ratio, two ratios are taken into account. A prior ratio p(M1)/p(M2)
encodes how much our initial beliefs favor one model over the other. The ratio of marginal like-
lihoods p(x|M1)/p(x|M2) gives an indication of how much better one model is in explaining
the data, compared to the other. We may let the prior ratio prefer a simpler model to a more
complex one, but the beautiful consequence of dealing with uncertainty using Bayesian theory
is that Ockham’s razor is automatically expressed (MacKay, 1992).

The English Franciscan friar William of Ockham is known in the scientific community by his
famous razor,



12 1. Introduction

p(X|Mi)

p(X|M1)

x X

p(X|M2)

p(X|M3)

Figure 1.1: A schematic illustration of Ockham’s razor. We imagine that all data sets, which we call X ,
are projected onto the one-dimensional horizontal axis. X is a random variable, and therefore p(X|Mi)
should integrate to one for each model. As a complex model M3 can explain many data sets, it should
also spread its probability mass over a large ‘area’ of data sets. Consequently, if a specific data set x is
observed, the most probable model is the model with largest marginal likelihood, i.e. a model that is
neither too simple nor too complex for x. This figure is adapted from (MacKay, 1995).

entia non sunt multiplicanda praeter necessitatem,

which translates to “entities should not be multiplied beyond necessity”. It advocates the
simplest possible explanation for the data that we have observed, but no simpler explanation
than that. Figure 1.1 gives a cartoon, illustrating how a simple modelM2 may give a reasonable
explanation to a few data sets, while a complex modelM3 with more parameters may explain a
wider variety of data sets.1 The probability mass p(X|M3) of the a more complexM3 should be
spread over a larger ‘area’ of data sets X . Hence, when a particular data set x can be explained
well by both models, we observe a higher marginal likelihood for the simpler model. The higher
the marginal likelihood, the better the model supports the data. If we follow the same argument
for figure 1.1, it is clear why a ‘too simple’ model M1 would also not be preferred. Bayes’
theorem provides a natural way of penalizing models with superfluous power of explanation
through the marginal likelihood.

In both the case of model averaging and model selection through Ockham’s razor, we need to
determine the marginal likelihood. As in the case of prediction, this is often a difficult problem,
as evaluation of the integral

∫
p(x,θ|M) dθ can be analytically intractable.

1.3 Practical approaches

Many problems in Bayesian inference therefore leave us with intractable questions: we cannot
simply write down the answer in a closed form solution. The posterior or joint distribution
that we are interested in is often of high dimensionality, and in cases like mixture models can
exhibit an exponentially increasing number of modes. We are faced with resorting to either
deterministic or stochastic (Monte Carlo) methods to perform inference. Deterministic methods
aim to simplify the problem to an analytically tractable one by finding approximations to the
joint or posterior distribution. Monte Carlo methods, on the other hand, rely on large samples
from the distribution in question to provide asymptotically correct answers.

1This does in no way imply that we can equate the predictive power of a model with its number of parameters.
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1.3.1 Deterministic methods

Many high dimensional integration problems in machine learning can be simplified through an
analytically tractable approximation to the joint distribution,

p(θ,x|M) = p(x|M)p(θ|x,M) ≈ sq(θ) . (1.8)

The problem of prediction and model selection becomes greatly simplified when we have an
approximation that summarizes the important features of the joint distribution. The joint
distribution p(θ,x) is approximated by an ‘easier’ normalized distribution q(θ), appropriately
scaled by s. The posterior will then be approximated by q, allowing us to use it as a surrogate
to the posterior to make predictions (as integrating over q in (1.2) should be a simpler task).
The scale s gives an approximation to the marginal likelihood, needed for model comparison
and selection.

We have effectively replaced an integration problem by an optimization problem: how to
best fit sq(θ) to the joint distribution. We are left with a few unanswered questions, namely
how to choose a parameterized q, and how to measure the goodness of fit.

Maximum a posteriori

At the very simplest level, we can replace the posterior distribution with a point mass at its
maximum, so that q(θ) = δ(θ − θMP). Here δ(·) denotes the Dirac delta function, which is
infinite when its argument is zero, and zero otherwise, and is defined to have unit mass . The
maximum a posteriori (MAP) parameter estimate θMP would be the mode,

θMP = arg max
θ

p(x|θ,M)p(θ|M) . (1.9)

This often gives over-confident predictions, as areas of mass of the posterior, critical in evaluat-
ing integrals like equation (1.2), are not taken into account. In this case the task of prediction
simplifies as p(xnew|x,M) ≈ p(xnew|θMP,M). The MAP estimate can be seen as a penal-
ized version of the maximum likelihood (ML) estimate, θML = arg maxθ p(x|θ,M), where the
‘penalty’ for big, finely-tuned parameter values is given by the prior. A common interpretation
and link with learning theory views the log prior as a regularizer on a set of functions (the log
likelihood).

Laplace’s method

A common way of including probability mass in a MAP estimate is the method of Laplace. The
approximation relies on the curvature of the joint distribution at θMP. By taking the Taylor
series of the log joint distribution around its mode, truncating it after the quadratic term and
exponentiating, we obtain a Gaussian approximation to the posterior, and scale to approximate
the marginal likelihood. Let the negative log joint distribution, as a function of the model
parameters, be

M(θ) = − ln p(x|θ,M)− ln p(θ|M) = −
N∑

n=1

ln p(xn|θ,M)− ln p(θ|M) , (1.10)

so that p(x,θ|M) = e−M(θ). Were we interested a single parameter setting for classification or
regression, M(θ) could be viewed as an error function that is minimized (to find θMP). The
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error of a single prediction would then have been given by − ln p(xn|θ,M), while − ln p(θ|M)
would be used for ‘weight decay’, or act as a regularizer.

However, we are rather interested in posterior mass, and for that purpose Taylor-expand
M(θ) around its most probable parameter value,

M(θ) = M(θMP) +
1

2
(θ − θMP)⊤A(θ − θMP) + · · · . (1.11)

The first derivative term is excluded from the expansion, as ∂M(θ)/∂θ evaluates to zero at
θ = θMP. Matrix A is the Hessian, the matrix of second derivatives,

A = −∂
2 ln p(x,θ|M)

∂θ∂θ⊤

∣
∣
∣
θ=θMP

=
∂2M(θ)

∂θ∂θ⊤

∣
∣
∣
θ=θMP

. (1.12)

Finding an approximation sq(θ) to the joint distribution then simply involves re-exponentiating
the truncated Taylor approximation around the mode, i.e.

sq(θ) = e−M(θMP)− 1
2
(θ−θMP)⊤A(θ−θMP)

= e−M(θMP)(2π)d/2|A|−1/2N (θ | θMP,A
−1) . (1.13)

The result is a Gaussian approximation q(θ) to the posterior distribution, with covariance matrix
given by the inverse Hessian. The log marginal likelihood will be approximated with ln s =
ln p(x|θMP,M) + ln p(θMP|M) + d

2 ln(2π) − 1
2 ln |A|. The dimensionality of θ, or size of A, is

indicated by d.
The approximation may suffer from a few drawbacks, most notably when the log joint is not

approximately quadratic. This may for example occur in the case of smaller datasets, where
the advantage of a closer approximation to the probability mass becomes more evident. The
Gaussian approximation should work well in the large data limit. In the case where parameters
are constrained to be positive, for example, we have to rely on a change of basis to make the
approximation work (MacKay, 1998). When the posterior is multimodal with well separated
modes, the approximation will be local to a particular mode.

Methods relying on divergence measures

A sensible way to find a suitably scaled approximation to the joint distribution is to precisely
define the ‘distance’ between them. We can them aim to minimize this measure of divergence
to the best of our abilities: in some cases an exact minimization may be possible, and in
others we have to be content with minimizing some surrogate to the chosen measure. Two
popular methods to achieve this goal are variational Bayes (Hinton & van Camp, 1993) and
expectation propagation (Minka, 2001c). Both minimize, or approximately minimize, some
form of α-divergence (Amari, 1985), indexed by a continuous parameter α ∈ R:

Dα

(
p(x,θ|M)

∥
∥ sq(θ)

)
=

∫
αp(x,θ|M) + (1− α)sq(θ)− p(x,θ|M)α[sq(θ)]1−αdθ

α(1 − α)
. (1.14)

This approach holds a number of advantages. Variational Bayes always gives a scale s that is
a lower bound to the marginal likelihood, allowing informed choices about model selection to
be made. If we write the joint distribution as a product of factors, expectation propagation
performs termwise moment-matching, and in solving these smaller subproblems aims to match
the scale and moments of the full joint distribution.

Chapter 2 presents a detailed introductory account of these methods through a toy example,
and we shall not delve into the same level of detail here.
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1.3.2 Stochastic (Monte Carlo) methods

Another approach to estimating integrals like equation (1.2) is to use Monte Carlo methods to
draw a sample from the posterior distribution, and rely on the law of large numbers to estimate
these integrals using the sample (Robert & Casella, 2004).

If we have some random sample {θ(t)}Tt=1 from a distribution of interest at our disposal—say
it is the posterior distribution p(θ|x,M)—we can estimate expectations under this distribution.
The expectation of some scalar functional φ(θ) under the posterior distribution, Φ = 〈φ(θ)〉
from equation (1.3), can be empirically estimated with the ergodic average

Φ̂T =
1

T

T∑

t=1

φ(θ(t)) . (1.15)

The estimate Φ̂T is unbiased and will almost surely converge to Φ, as T →∞, by the strong law
of large numbers. The distribution of interest is typically referred to as the target distribution,
which we assume can be evaluated anywhere up to a normalizing constant. Therefore let p∗(θ) ≡
p(x|θ)p(θ) be the unnormalized posterior distribution (or joint distribution).

Monte Carlo methods come in many guises, but for our purposes we shall restrict ourselves to
two methods, Importance Sampling and Markov chain Monte Carlo (MCMC) (MacKay, 2003;
Neal, 1993; Robert & Casella, 2004).

Importance sampling

When p∗(θ) is sufficiently complex so that we cannot sample from it directly, we may opt
for sampling from a distribution q(θ) from which we can generate samples. It may also only
be needed to evaluate q up to a normalizing constant, such that q(θ) = q∗(θ)/

∫
q∗(θ)dθ.

We generate T samples from q∗, and can determine the estimator given in equation (1.15) if
we appropriately reweigh the samples. Samples where p(θ) is greater than q(θ) are under-
represented, and need to have a greater influence in the estimator; the reverse applies for where
samples are over-represented. Importance weights

w(t) =
p∗(θ(t))

q∗(θ(t))
(1.16)

are then used to compensate for sampling from the wrong distribution, and the empirical ex-
pectation (1.15) becomes

Φ̂T =

∑T
t=1 w

(t)φ(θ(t))
∑T

t=1 w
(t)

. (1.17)

This estimator is consistent and biased when q is unnormalized as well. Although simple to
implement, importance sampling typically becomes impractical when higher-dimensional dis-
tributions are involved. It is possible to show that even for simple cases the variance of the
importance weights can be infinite (MacKay, 2003). Some of these subtleties are highlighted
in chapter 5, where importance sampling and its cousin, the ‘independent Metropolis-Hastings
sampler’, are reviewed in relation to approximate distributions q(θ) of the sort found in section
1.3.1.

Markov chain Monte Carlo

An indirect method of sampling from p(θ|x) (with θ ∈ Θ) is to construct a Markov chain with
state space Θ and p(θ|x) as stationary or invariant distribution. If this chain is then run for long
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enough, the simulated values can be treated as coming from the required target distribution,
and again used in obtaining empirical estimates.

A Markov chain is generated by sampling for a new state of the chain based on the present
state of the chain, independent of other past states. If the current state is θ(t), a new state is
generated from a transition density that is only dependent upon θ(t),2

θ(t+1) ∼ K(θ|θ(t)) . (1.18)

Density K may also be referred to as the transition kernel for the chain, and uniquely describes
the dynamics of the chain.

In general we shall be interested in Markov chains over continuous state spaces. Under
certain conditions that shall be expanded in chapter 5 (the Markov chain must be both periodic
and irreducible), convergence of the chain will be to its stationary distribution,

P(θ(t) ∈ A)→
∫

A
p(θ|x) dθ ∀A ∈ Θ, as t→∞ . (1.19)

The stationary distribution is unique when the entire state space can reasonably be explored;
formally if any set of states can be reached from any other set of states within a finite number
of transitions. Such a chain is irreducible, and if it has a stationary distribution p(θ|x), we
can assert the ergodic theorem, which states that the ergodic average from equation (1.15) will
converge to the true expectation.

The stationary distribution is known, and MCMC methods require the construction of an
appropriate transition kernel. A possible way to find such a kernel is to construct one that
satisfies detailed balance,

p∗(θ(t))K(θ(t+1)|θ(t)) = p∗(θ(t+1))K(θ(t)|θ(t+1)) (1.20)

Under the stationary distribution, we want the probability of ‘moving forward from θ(t) to θ(t+1)’
to match the probability of ‘moving back again’. Two methods for construcing Markov chains
are described here.

Metropolis-Hastings. The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hast-
ings, 1970) samples from a Markov chain with p(x|θ) as invariant distribution by making
use of a proposal density q(θ|θ(t)) that depends on θ(t), the current state of the chain. A
possible new state is generated from the proposal density, i.e. θnew ∼ q(θ|θ(t)). To decide
whether to accept the new state, we determine a ratio of importance weights, and accept
the new state and set θ(t+1) = θnew with probability

α(θ(t),θnew) = min

(

1,
p∗(θnew)q(θ(t)|θnew)

p∗(θ(t))q(θnew|θ(t))

)

(1.21)

and reject it (i.e. keep the current state with θ(t+1) = θ(t)) otherwise. When the support
of q includes Θ, the resulting transition kernel

K(θ|θ(t)) = α(θ(t),θ)q(θ|θ(t)) + [1− acc(θ(t))]δ(θ = θ(t)) (1.22)

satisfies the detailed balance condition (1.20) with p∗, and p∗ (or rather its normalized
version p(θ|x)) is a stationary distribution of the chain. The transition kernel consists

2For the sake of clarity in the spirit of Bayesian theory, we choose this ‘conditional’ notation for K, rather than
the more usual K(θ(t), θ).
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of two terms, the first is the probability of generating a new point multiplied by the
probability of accepting it, and the second is the probability of repeating the previous
sample θ(t). Notation acc(θ(t)) =

∫
α(θ(t),θ)q(θ|θ(t))dθ indicates the average probability

of accepting a new point, while δ(· = θ(t)) indicates the Dirac delta mass at θ(t).

Gibbs sampling. Gibbs sampling is a powerful tool when we cannot sample directly from the
joint distribution, but when sampling from the conditional distributions of each variable,
or set of variables, is possible (Geman & Geman, 1984). If our parameters of interest are
of multiple dimensions and can be divided as θ = (θ1, . . . ,θK), the Gibbs sampler uses
the conditional distributions p(θk|{θj}j 6=k) (if they can be sampled from directly) to draw
a sample from the target distribution. Gibbs sampling may be interpreted as a Metropolis
method with a sequence of always-accept proposal densities, all defined in terms of the
conditional distributions of the target. Given θ(t), an iteration

θ
(t+1)
1 ∼ p(θ1|θ(t)

2 ,θ
(t)
3 , . . . ,θ

(t)
K )

θ
(t+1)
2 ∼ p(θ2|θ(t+1)

1 ,θ
(t)
3 , . . . ,θ

(t)
K )

θ
(t+1)
3 ∼ p(θ3|θ(t+1)

1 ,θ
(t+1)
2 , . . . ,θ

(t)
K ), etc. (1.23)

samples a new state θ(t+1) in the chain.

A very large body of knowledge exits around Monte Carlo methods, and an introduction to
its application to Machine Learning is given by Andrieu et al. (2003). The basis of the MH
algorithm has been adapted into many variants. One algorithm that is particularly relevant to
model averaging is the Reversible Jump MCMC—it is an extension to standard MH method to
average over parameter spaces of different sizes, so that the Markov chain is run over different
models M (Green, 1995).

A number of methods extend the parameter space so that a sample is taken from a joint
distribution p∗(θ,u), where the parameter space is extended with some additional auxiliary vari-
ables u. Marginal samples θ(t) can then be obtained from sampling over (θ(t),u(t)), and ignoring
the additional samples u(t). Gibbs sampling for latent variable models, discussed in greater de-
tail in section 1.4.2, also falls in this class of methods. The hybrid Monte Carlo algorithm, or
Hamiltonian Monte Carlo algorithm, tries to avoid random walk behaviour by incorporating in-
formation about the gradient of the target distribution into the proposals through the auxiliary
or “momentum” variables (Duane et al., 1987; MacKay, 2003). Slice sampling (Neal, 2003) uses
auxiliary variables to draw uniform samples from the volume under p∗(θ), such that the pair
(θ(t), u(t)) defines a parameter sample and a height 0 < u(t) < p∗(θ(t)).

The methods discussed above all relate to drawing samples from the posterior distribution,
from which we can determine the expectations given in (1.3). When faced with estimating the
marginal likelihood, we can simulate parallel chains at different temperatures, and use ther-
modynamic integration to estimate the log marginal likelihood. Chapter 4 discusses parallel
tempering and thermodynamic integration, as well as a related method called annealed impor-
tance sampling, in greater depth.

1.4 Latent variable models

A key property of some complex posterior distributions over visible parameters θ is that the
addition of some hidden or latent parameters z can turn the distribution into an analytically
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tractable form. The joint distribution p(θ, z|x) is first decomposed into the marginal distribu-
tion of the latent variables p(z) and the conditional distribution p(θ|x, z). The latent variable
marginal does not depend on the observed data, and can be referred to as some prior over the
latent variables. (For the sake of clarity the dependence on the model assumptionsM is dropped
in the notation.) With this expansion of the parameter space to a joint distribution of visible
and latent parameters, the corresponding distribution over the visible parameters can again be
obtained by marginalization. The required marginal distribution—or parameter posterior—is
then determined with

p(θ|x) =

∫

p(θ|x, z)p(z) dz . (1.24)

Except for very specific forms of the distributions p(θ|x, z) and p(z), this marginalization is
in general not analytically tractable, as it may involve, for example, an exponential number of
terms.

The goal of latent variables in this thesis is to extend the parameter space to allow for in-
tractable distributions to be tractably treated. This is by no means their only use; dimensional-
ity reduction, where the latent variables capture some underlying smaller-dimensional manifold,
relies on similar methods, albeit with continuous latent variables (Bishop, 1999).

1.4.1 Mixtures of distributions

A mixture of distributions is a general framework for density modeling. It removes the restriction
of fitting only unimodal distributions to data by allowing an arbitrary number of densities (or
mixture components) to be scattered across the observed data, such that properties like the
clustering of the data can be described well. Mixture models allow for a typical use of latent
variables, where the latent variables capture the discrete component labels.

Let xn come from a density model of the form

p(xn|θ) =
J∑

j=1

πjp(xn|θj) , (1.25)

which is a mixture of J simpler parametric distributions. Our model choice M can specify the
number of component distributions, their parametric form, etc. Parameters θ can encompass
all unknowns in the model: the parameters θj of each of the component distributions, and
possibly even the mixing coefficients πj. The mixing coefficients are nonnegative and sum to

one,
∑J

j=1 πj = 1. Hence p(xn|θ) is nonnegative and integrates to unity if each of the individual
components does.

The likelihood, which considers all possible partitions of the sample x into the J components
and consequently expands exponentially into JN terms, is

p(x|θ) =

N∏

n=1

[ J∑

j=1

πjp(xn|θj)
]

. (1.26)

Hidden latent variables z = {znj}, where znj = 1 if component j was responsible for generat-
ing data point xn, and zero otherwise, naturally augment the data. This gives a much more
manageable complete-data likelihood,

p(x, z|θ) =

N∏

n=1

J∏

j=1

[

πjp(xn|θj)
]znj

. (1.27)
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1.4.2 Gibbs sampling and latent variable models

The complete-data likelihood allows the conditional distributions p(θ|x, z) and p(z|x,θ) to both
be analytically tractable, giving rise to a classic two-stage Gibbs sampler that draws a sample
{θ(t), z(t)} from p(θ, z|x). Given (θ(t), z(t)), an iteration

θ(t+1) ∼ p(θ|x, z(t)),

z(t+1) ∼ p(z|x,θ(t+1)) (1.28)

samples a new state (θ(t+1), z(t+1)) in the chain.

The idea of sampling with data augmentation was originally introduced by Tanner & Wong
(1987). For mixtures of Gaussian distributions, this was extended by Diebolt & Robert (1994)
and others.

1.4.3 Variational Bayes and latent variable models

Variational inference—also called ensemble learning—is an alternative deterministic approxima-
tion scheme when exact inference for the posterior is intractable. As was discussed in section
1.3.1, the method arises from a particular case of α-divergence, by taking the limit α → 0
in (1.14). The method relies on a choice of a tractable family of distributions that are suffi-
ciently flexible to give a good approximation to the posterior distribution; this approximation is
achieved by minimizing the Kullback-Leibler (KL) divergence between the true and approximate
posterior (Waterhouse et al., 1996). Although not confined to latent variable models, we shall
restrict this section to the latent variable case, for which variational methods through an ex-
pectation maximization (EM) algorithm have proved to be extremely popular (see ). A broader
introduction to variational methods in graphical models is given by Jordan et al. (1999).

As the joint distribution is completed with latent variables, we restrict the approximations
to p(x, z,θ) to be of factorized form, sq(θ)q(z). In the spirit of minimizing a divergence measure
between a scaled approximating distribution and a joint distribution, the standard variational
Bayesian framework will be approached from a slightly different angle. Following section 1.3.1,
the KL divergence between the approximation and joint can be written as

KL
(
sq(θ)q(z)

∥
∥ p(x, z,θ)

)
=

∫

sq(θ)q(z) ln
sq(θ)q(z)

p(θ, z|x)p(x)
dθdz +

∫

p(x, z,θ) dθdz− s

= s

∫

q(θ)q(z) ln
q(θ)q(z)

p(θ, z|x)
dθdz + s ln s− s ln p(x) + p(x)− s .

(1.29)

If we now set the partial derivative of the divergence with respect to scale s to zero and rearrange,
we arrive at the usual free energy formulation (Feynman, 1972),

ln s = −KL
(
q(θ)q(z)

∥
∥ p(θ, z|x)

)
+ ln p(x) . (1.30)

From the nonnegativity of the KL divergence, ln s lower bounds the true evidence. In statistical
physics, the negative − ln s would be equivalent to the variational free energy of a system that
would be minimized, and − ln p(x) would be equivalent to the true free energy of the system. In
fact, as we care about minimizing the free energy (or equivalently maximizing a lower bound on
the evidence) we can write ln s as a function of q(θ) and q(z). The objective function therefore
measures the relative entropy between the approximating ensemble and the true distribution.
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A popular algorithm for minimizing the free energy is the “variational Bayesian EM algo-
rithm” (VBEM), which can be traced back to Hinton & van Camp (1993) and Neal & Hinton
(1998)’s observation that EM algorithms can be viewed as variational free energy minimization
methods. We can perform a free-form optimization over the two distributions q(θ) and q(z) to
give an expectation and maximization step, which is iteratively repeated until convergence,

q(t+1)(z) ∝ exp
{∫

q(t)(θ) ln p(x, z|θ) dθ
}

(1.31)

q(t+1)(θ) ∝ p(θ) exp
{∫

q(t+1)(z) ln p(x, z|θ) dz
}

. (1.32)

The algorithm follows from using calculus of variations to take the functional derivatives of ln s
with respect to q(θ) and q(z), while holding the other distribution fixed. The exact details of
such a derivation follows in sections 2.5 and 2.9.3 in chapter 2.

Lower-bounding an integrand

A complementary interpretation of variational inference is to lower bound the integrand with a
function that depends on some additional variational parameters (Saul et al., 1996; Jordan et al.,
1999; Minka, 2001b). In other words, if we are interested in evaluating an intractable integral
of the form p(x) =

∫
p(θ,x) dθ, an approximate solution can be found by lower-bounding the

integrand p(θ,x) with some function g(θ,φ), i.e.

g(θ,φ) ≤ p(θ,x) for all φ , (1.33)

where φ are additional parameters chosen to make the integral G =
∫
g(θ,φ) dθ tractable. In

the process of making integral G—which is a lower bound on p(x), the quantity of interest—as
big as possible, a difficult integration problem has been turned into an optimization problem
over parameters φ. We shall now use a distribution q(z) instead of merely some variational
parameters φ. Start by writing the integrand as a function of some latent variables, in this case
p(θ,x) =

∫
p(x, z,θ) dz. From Jensen’s inequality we therefore have

p(θ,x) = exp

{

ln

∫

q(z)
p(x, z,θ)

q(z)
dz

}

≥ exp

{
∫

q(z) ln
p(x, z,θ)

q(z)
dz

}

≡ g[θ, q(z)] . (1.34)

The function that is integrated to find p(x) is being bounded. The biggest lower boundG ≤ p(x)
can be found by choosing some distribution q(z) such that the integral G =

∫
g[θ, q(z)] dθ is

maximized. By writing

q(θ) ≡ g[θ, q(z)]
∫
g[θ, q(z)] dθ

=
g[θ, q(z)]

G
, (1.35)

and substituting this distribution into the right hand side of (1.30), we find that lnG gives the
usual free energy,

ln s = lnG , (1.36)

and the EM algorithm given by (1.31) and (1.32) is again applicable.

1.5 Conclusion and summary of the remaining chapters

Problems of inference can be elegantly addressed with Bayes’ theorem, but it typically requires
the evaluation of large sums (often with an exponential number of terms) or intractable integrals.
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There are various ways to practically address these difficulties, which include approximating the
distribution in question with a simpler one, or using a MCMC sample to estimate unknown
quantities.

This thesis investigates both these approaches in a latent variable setting. We give here a
short summary of the rest of the thesis, with emphasis on new contributions made to the field
of machine learning:

Chapter 2 introduces methods of approximate inference that rely on divergence measures. A
simple mixture of Gaussians with unknown means is taken as a running toy example to
fully illustrate Minka (2005)’s generic message passing algorithm with α-divergences over
a factor graph. Both EP and VB can be seen as specific cases of this generic algorithm.
The treatment of the illustrative example with VB or EP is well known, but

• we add the treatment of the illustrative example with α-divergences to the pool
of knowledge, allowing us to interpolate between VB and EP and beyond. This
particular algorithm is presented in sections 2.6 and 2.7.

In chapter 3 we use this as a base from which to compare deterministic and MCMC
approaches to inference on real world problems.

• We proceed to give some new intuition on the effect of the width of the prior distri-
bution to model pruning and local minima in VB (section 2.8) and why EP is not
prone to the same behaviour.

In chapter 3 we extrapolate from these model-pruning results to increase the robustness
of the message passing algorithm for VB.

We proceed to give a review of the various objective functions that are minimized for
various choices of α, and discuss EP in terms of the expectation consistent framework for
inference in section 2.9.

• Section 2.9.3 presents new analysis on VB message passing schemes over a factor
graph, where updates are over separate factors, and not an entire distribution. We
show that the algorithm behaves like the standard VBEM algorithm, where a lower
bound on the marginal likelihood is always increased, only when the factors all obey
a certain proportionality ratio.

Chapter 3 takes the ideas from chapter 2, and expands the toy example into a higher-dimensional
mixture of Gaussians.

• This chapter contributes two new approaches to inference for a mixture of Gaussians,
namely EP and the more general α-divergence message passing scheme. These algo-
rithms are derived and combined in sections 3.3 to 3.6 into a single framework that
is governed by a choice of α ≥ 0. The well known VB algorithm and the new mixture
of Gaussians EP algorithm are both special cases at α = 0 and α = 1.

To investigate the merits of these approximate methods for prediction and model selec-
tion, experimental results are presented on a number of real life data sets, showing the
approximate predictive distributions and log marginal likelihoods. As a benchmark, a
comparison is also done with the results obtained with parallel tempering, a state of the
art MCMC method presented in chapter 4. With EP we generally find closer log marginal
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likelihood estimates than VB (which is based on a lower bound), and slightly better pre-
dictive distributions. It is shown empirically that the approximate methods tested here
(message passing with α = 0, 1

2 , 1) are well suited for model selection, and approximating
the predictive distribution with high accuracy.

• In this chapter it is also practically shown that EP need not have a unique fixed
point; if the fixed points are not unique, they depend on both the initialization and
the random order in which factor refinements take place. Both these questions were
posed by Minka (2001a).

Other points underlined empirically are: the log marginal likelihood estimates increase
with α; the number of local solutions depends on the prior width; the discrepancy between
the approximate and true log marginal likelihoods increase with model size; the marginal
likelihoods give a characteristic ‘Ockham hill’ over increasing model size, thus providing a
useful tool for model selection.

Chapter 4 presents parallel tempering and thermodynamic integration as methods to sam-
ple from multimodal posterior distributions, and determine normalizing constants. This
chapter presents three main contributions to the field of inference.

• The first of these is a parallel tempered approach to sampling from a mixture of
Gaussians posterior through Gibbs sampling (section 4.4.1).

The success of thermodynamic integration—from which we can estimate normalizing con-
stants—depends on the effectiveness of a numerical interpolation of log likelihood averages.
The interpolation is sensitive in regions of high temperature averages and around phase
transitions.

• A suitable method of interpolation is proposed in section 4.2.1 to get numerically
stable estimates for temperatures near infinity (or near-zero inverse temperatures).

Parallel tempering, as used in a Bayesian framework, is based on a careful interpolation
between two distributions, slowly ranging from the prior distribution (at zero inverse tem-
perature) to the full posterior distribution (at temperature of one).

• The third contribution made by chapter 4 is to change the interpolation between two
distributions to be from a distribution with lower variance at zero inverse temper-
ature, to the posterior. For reasons that follow in section 4.3, this change makes
thermodynamic integration easier.

Chapter 5 takes some ideas from variational inference and applies them to the design of MCMC
transition densities. We try to address a very basic question: armed with so many elegant
methods of deterministic approximate inference, is it possible to build any into Monte
Carlo samplers?

• A novel combination of deterministic and stochastic methods is made, and the result
is a variational transition kernel for the MH algorithm.

The new kernel is a variational lower bound to an exact transition kernel. Unlike previous
variational approaches to MCMC (de Freitas et al., 2001), the kernel is adaptive, and
depends on a previous sample in a MH algorithm. Although theoretically pleasing, we
highlight the apparent dangers of such a variational approach through an investigation
into its effectiveness.
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• It is finally shown with a discussion and proof in section 5.4.1 that the method need
not be geometrically ergodic. This provides theoretical insight into why variational
methods haven’t made further inroads into Monte Carlo methods.

Chapter 6 provides a summary of contributions made by this thesis, and looks into future
directions of research.





Chapter 2

Deterministic Approximate Inference

2.1 Introduction

This chapter focuses on finding an analytically tractable approximation to the joint distribution.
Omitting the extra M for brevity (but knowing that we are still working with a chosen model,
maybe from a set of models), the task at hand can be summarized with

p(θ,x) = p(x)p(θ|x) ≈ sq(θ) . (2.1)

In words, we would like to approximate the joint distribution p(θ,x)—a distribution that we
cannot typically integrate over—with an easier distribution q(θ), appropriately scaled by s. (As
x is observed, the joint distribution is unnormalized.) The posterior will then be approximated
by q, allowing us to use it to make predictions or compute averages (as integrating over q
should be an easier task). The scale s gives an approximation to the marginal likelihood, needed
for model comparison and selection. We have effectively replaced an integration problem by
an optimization problem: how to best fit sq(θ) to the joint distribution. A few unanswered
questions remain, namely how to choose a parameterized q(θ), how to measure the goodness of
fit, and finally how to find such a q.

This chapter approaches the problem from the viewpoint of a generic message-passing algo-
rithm, which is an intuitively appealing way of finding such a q (Minka, 2005). After choosing
the functional form of q and an objective function, we are by no means restricted to the scheme
presented here. Depending on the objective function, variational Bayes or more sophisticated
double loop algorithms (Opper & Winther, 2005a) can also be implemented. Such a discussion
is best left to section 2.9.

A mixture of Gaussian distributions is chosen as a running example to first illustrate how one
data point likelihood (or factor) can be exactly approximated, and finally how this approach can
be extended to many observations, or a general factor graph. The illustrative model is the sim-
plest non-trivial latent variable model, for example giving multimodal posteriors. The approach
to latent variable modeling taken here can be traced back to Dempster et al. (1977)’s seminal
paper on expectation maximization (EM), which has stimulated many further developments in
latent variable modeling. Through data completion, a parameter estimate is found that (locally)
maximizes the likelihood. The EM algorithm can be generalized to a variational Bayes (VB) EM
algorithm (Neal & Hinton, 1998), allowing us to work with posterior parameter distributions
rather than parameter point estimates, and overcoming some possible singularities present in
EM. By choosing delta functions as posterior approximating distributions, EM for maximum a
posteriori learning can be recovered. A mixture of Gaussians was typically taken as example
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implementation (Attias, 1999). The chapter emphasizes VBEM as again being a specific case of
the larger class of approximate methods, and we can recover the VB objective in the limiting
case α→ 0, where the role of α is left to discussion in section 2.2.

The rest of the chapter follows with a review of divergence measures, focussing on the α-
divergence. A simple illustration of a one-dimensional mixture of Gaussians (section 2.3), with
all parameters but the means known, is taken as running example. By focusing on only one
observation, we can derive an exact solution for s and q(θ) for different measures of divergence
in sections 2.4 to 2.6. The results for tackling this toy problem with VB and EP are both well
known, but the use of α-divergences is new in this arena. Except for VB, and exact solution
for s and q(θ) cannot typically be found if we are faced with an abundance of data (in the
case of mixture models we are faced with an exponential number of terms)—in other words the
‘global’ divergence cannot be minimized directly. By again focussing on single observations,
we can still minimize ‘local’ divergences. We can therefore add more data to the tractable
‘single observation’ case, and derive a general optimization scheme over a factor graph. This is
illustrated in section 2.7, with variational Bayes and expectation propagation included as special
cases. Unwanted model pruning is discussed in section 2.8, while section 2.9 concludes with a
discussion on the objective functions of all these algorithms.

2.2 Divergence measures

A divergence measure quantifies the goodness of fit of one distribution to another. The family
of divergence measures used here is the α-divergence (Amari, 1985; Minka, 2005), indexed by a
continuous parameter α ∈ R. The global α-divergence is

Dα

(
p(x,θ)

∥
∥ sq(θ)

)
=

∫
αp(x,θ) + (1− α)sq(θ)− p(x,θ)α[sq(θ)]1−αdθ

α(1 − α)
. (2.2)

Notice that neither p nor sq is normalized; for our purposes we let q remain normalized, so that
we can easily read off an approximate posterior and marginal likelihood estimate. A special case
of the α-divergence is the Kullback-Leibler (KL) divergence,

KL
(
p(x,θ)

∥
∥ sq(θ)

)
=

∫

p(x,θ) ln
p(x,θ)

sq(θ)
dθ +

∫ (

sq(θ)− p(x,θ)
)

dθ, (2.3)

which is asymmetric with respect to p and sq. The correction factor added to the usual KL
divergence follows from its application here to unnormalized distributions as well. The divergence
follows from taking the limit,

lim
α→1

Dα

(
p(x,θ)

∥
∥ sq(θ)

)
= KL

(
p(x,θ)

∥
∥ sq(θ)

)
(2.4)

lim
α→0

Dα

(
p(x,θ)

∥
∥ sq(θ)

)
= KL

(
sq(θ)

∥
∥ p(x,θ)

)
, (2.5)

which we formally show in appendix A.1. The divergence measure used in EP, sometimes referred
to as the ‘inclusive’ KL divergence (Frey et al., 2000), is given by (2.4). Taking the limit to zero
gives the ‘exclusive’ KL divergence in (2.5), which is used in VB.

The α-divergence is convex with respect to p(x,θ) and sq(θ), zero if and only if p(x,θ) =
sq(θ), and positive otherwise. Sections 2.4, 2.5, and 2.6 describe how to obtain an exact minimum
for a single observation, illustrated with a mixture of Gaussians problem. We preview how
such a solution will look in figure 2.1: The joint distribution is fitted with with a product
of two Gaussians with adjustable mean, precision (inverse variance) and scale. The unknown
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(a) Variational Bayes, or α = 0.
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(b) α = 0.5.
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(c) Expectation propagation, or α = 1.
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(d) α = 10.

Figure 2.1: With one data point xn = 0, the figures illustrate a simple mixture of two Gaussians
with unknown means µ = {µ1, µ2}, as given in (2.9). The complete joint p(xn,µ, zn) from (2.25) was
approximated with sq(µ)q(zn). The marginal of interest, p(xn,µ), is plotted in red, and its approximation
sq(µ) is plotted in black. The mixing weights were fixed to πj = 1

2 , and the precisions to λj = 1, for
components j ∈ {1, 2}. The prior hyperparameter values were set to v0j = 0.1 and m0j = 0.
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(a) ln s, the log marginal likelihood estimate. This il-
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Figure 2.2: The log scale ln s and the standard deviation of the product of two Gaussians that minimize
the α-divergence to p(x,θ). This figure follows the same example of figure 2.1.

parameters in the joint distribution were the two component means in (2.9). From figure 2.2
we observe that α = 0, and indeed all α < 1, lower bounds the marginal likelihood when an
exact minimization is possible. When the minimization of an objective function is performed on
a factor graph, α = 0 (VB) still provides a bound.

For the case of α = 0 in figure 2.1, the approximation sq(θ) also lower bounds the function
p(x,θ). It is not a property of the KL divergence, but here comes as a result of explicitly
constructing a lower bound that relies on an extra ‘variational’ distribution q(z). Section 1.4.3
describes the lower bound, and how it relates to VB and the EM algorithm in particular.

A divergence with α ≤ 0 is referred to a zero-forcing divergence, for when the joint distri-
bution is zero, the scaled approximation is forced to be zero too. Consequently some non-zero
parts of the joint distribution may be excluded, hence the name ‘exclusive’ KL divergence. From
figure 2.2 it is evident that zero-forcing divergences tend to underestimate the true variance. As
α grows1, the scaled approximating Gaussian smoothly expands until it covers the entire joint
distribution for α→∞. As the approximation expands as much of the joint distribution as pos-
sible is included; α ≥ 1 requires the approximation to be nonzero whenever the joint is nonzero,
hence the KL divergence is ‘inclusive’. Varying α between zero and one blends the properties of
the inclusive and exclusive KL divergences.

Figure 2.2 illustrates the approximate log marginal likelihood ln s as a function of α for
the two-mean joint distribution of figure 2.1. The scale s monotonically increases with α, with
α = 1 giving the true marginal likelihood. This result applies only when an exact minimization
is possible (for many observations we shall later do an approximate minimization over a factor
graph). The following result, given without proof, confirms this observation.

Theorem 1. (Minka, 2005). When sq(θ) minimizes Dα(p(x,θ)‖sq(θ)), then s is monotonically
increasing as a function of α. Consequently

s ≤ p(x) if α < 1 (2.6)

1Section 2.6’s optimization routine is only valid for nonnegative α, as it includes
√

α. Therefore, for the
mixtures problem we are concerned with, only nonnegative αs are illustrated. This does not preclude the use of
α < 0 to other problems.
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s = p(x) if α = 1 (2.7)

s ≥ p(x) if α > 1 (2.8)

Our attention shall now be turned to figure 2.1 as an illustrative case, and the following
sections shall use it as a toy example in aid of explaining methods to minimizeDα(p(x,θ)‖sq(θ)).

2.3 A simple mixture of Gaussians

As a simple illustration of different divergence measures, consider a one-dimensional Gaussian
mixture with unknown means, so that θ ≡ µ,

p(xn|µ) =
J∑

j=1

πjN (xn|µj , λ
−1
j ) , (2.9)

where

N (xn|µj , λ
−1
j ) =

(λj

2π

)1/2
e−

1
2
λj(xn−µj)

2
=

1

ZN (λj)
e−

1
2
λj(xn−µj)

2
. (2.10)

In the above mixture of J Gaussians, we let each precision (inverse variance) λj, as well as
the mixing weights π, be known. The unknown parameters θ are therefore the set of means
µ = {µj}Jj=1. Let the prior on the means be conjugate and hence Gaussian,

p(µ) =
J∏

j=1

p(µj) =
J∏

j=1

N (µj |m0j , v
−1
0j ) . (2.11)

For q we choose a product of Gaussians, one each to model the mean of a component in the
mixture,

q(µ) =

J∏

j=1

q(µj) =

J∏

j=1

N (µj |mj, v
−1
j ) . (2.12)

In many cases our choice of approximating distribution will be restricted by the model. For
one observation (let it be xn, for instance) our task is to match sq(µ) ≈ p(xn|µ)p(µ) We can
directly minimize both KL divergences, but need to resort to an iterative method to minimize
other α-divergences. As the cases of α = 1 and α = 0 ultimately expand respectively into
expectation propagation and variational Bayes, the sections that follow here are appropriately
headed.

As an interlude, it is worthwhile to visualize the joint distribution in a graphical represen-
tation, given in figure 2.3. The following two equations are illustrated, where the first gives the
parameter dependencies, while the second gives a chosen factorization,

p(x, z,µ) =

N∏

n=1

p(xn|µ, z)p(z)p(µ) =

N∏

n=1

J∏

j=1

N
(
xn|µj, λ

−1
j

)znj × πznj

j ×N
(
µj |m0j , v

−1
0j

)

=

N∏

n=1

fn(µ, zn)× f0(µ) . (2.13)

Each of the factors in the factor graph will ultimately be approximated.



30 2. Deterministic Approximate Inference

N

zn

π

µ λxn

m0, v0

N

π

f0(µ) µ λ

xn

zn

fn(µ, zn)

m0, v0

Figure 2.3: The structure of a probabilistic model can be made lucid through a graphical representation.
On the left we have an acyclic graph or Bayesian network, illustrating the parameter dependencies in the
joint p(x, z,θ) in (2.13). The box is called a plate, and indicates N replicates of the random variables
xn and zn. Nodes that are coloured indicate observed random variables, and uncoloured nodes indicate
variables that we want to average over, marginalize away, etc. The manner in which the factors in our
chosen factorization of the joint distribution depend on the parameters can be equally illustrated through
a factor graph, shown on the right. In this case the square indicates a factor that is dependent on a
number of observed and hidden variables.

The direction forward. At this point it is useful to draw an outline of what we are trying to
achieve. As we have seen in figure 2.2, we can find an exact solution for sq(θ) for a ‘single
observation’ case, as the partition function (scale) is tractable for α = 1. We can exactly
minimize Dα, as will be explained in sections 2.4 to 2.6. In section 2.7 we shall motive an
algorithm that repeatedly performs these minimizations over a factor graph. When faced
with a factor graph, the global Dα (i.e. with many observations in the likelihood) will not
be minimized, but rather a related objective function given in section 2.9 (the exception to
this rule is VB). As a result we are still left with useful algorithms, although convergence
cannot always be guaranteed (VB with α = 0 is again an exception).

We could have turned the order presented here on its head, and motivated an objective
function, for which algorithms can be derived. In section 2.9 we show solid reason behind
the α = 1 objective function, giving the expectation consistent framework. From this per-
spective EP is but one algorithm to minimize the objective function, and other algorithms
(for example double loop, which comes with a convergence guarantee) can be derived with
the same objective in mind.

First, though, we concern ourselves with a prior and one likelihood factor.

2.4 Expectation propagation: a single observation

The KL divergence, as a function of s and {mj , vj}Jj=1, the parameters of q(µ), is

KL
(
p(xn,µ)

∥
∥ sq(µ)

)
= s−

∫

p(xn,µ) ln[sq(µ)] dµ + const . (2.14)

For completeness, detailed derivations to minimize the KL divergence are presented here and in
appendix A.2. Chapter 3’s results, for which full derivations are not given, follow exactly the
same style.
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2.4.1 The scale

Taking derivatives of (2.14) with respect to s, and equating to zero, gives s =
∫
p(xn,µ) dµ.

From observing one example, we can directly write down the marginal likelihood as a function
of the prior parameter values,

s = s(m0, v0) =

J∑

j=1

πj

∫

p(xn|µj)p(µj) dµj =

J∑

j=1

πjN (xn|m0j , λ
−1
0j + v−1

0j ) . (2.15)

2.4.2 Parameter updates for the components

The parameter updates of each approximate distributions q(µj) will take the form of a weighted
sum of the prior and component-posterior moments, which has an intuitively pleasing expla-
nation: The moments of q(µj) are calculated by determining the probability of component j
generating xn, multiplied by the moment of including xn into component j, plus the probabil-
ity of component j not generating xn, multiplied by the prior moment of component j. The
moment-matching equations can be determined with

∂KL
(
p(xn,µ)

∥
∥ sq(µ)

)
/∂mj = 0 , (2.16)

which we derive in appendix A.2. In this vein, define the responsibilities as

rnj =
πj

∫
p(µj)p(xn|µj) dµj

∑

k πk

∫
p(µk)p(xn|µk) dµk

=
πjN (xn|m0j , λ

−1
j + v−1

0j )
∑

k πkN (xn|m0k, λ
−1
k + v−1

0k )
, (2.17)

so that the mean of the approximation is therefore a responsibility-weighted sum of the prior
and component-posterior means, or a weighted sum of moments,

mj = (1− rnj)

∫

µjp(µj) dµj + rnj

∫

µjp(µj|xn) dµj

= (1− rnj)〈µj〉+ rnj〈µj |xn〉 . (2.18)

Exactly the same can be done for the precision parameters. Differentiating the KL divergence
with respect to vj gives (following the same type of arrangement of terms as we have done for
the means),

1

vj
= (1− rnj)

∫

(µj −mj)
2p(µj) dµj + rnj

∫

(µj −mj)
2p(µj|xn) dµj . (2.19)

By substituting the value ofmj , we arrive at the second of the elegant weighted moment-matching
equations,

1

vj
= (1− rnj)〈µ2

j 〉+ rnj〈µ2
j |xn〉 −m2

j . (2.20)

The following expectations are used in the update to get an approximation q(µj) = N (µj|mj , v
−1
j ),

〈µj〉 = m0j (2.21)

〈µj|xn〉 =
λjxn + v0jm0j

λj + v0j
(2.22)

〈µ2
j〉 = var(µj) + 〈µj〉2 =

1

v0j
+m2

0j (2.23)

〈µ2
j |xn〉 = var(µj |xn) + 〈µj|xn〉2 =

1

λj + v0j
+
(λ0jxn + v0jm0j

λj + v0j

)2
. (2.24)
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2.5 Variational Bayes: a single observation

For VB we introduce latent allocation variables, so that the sum in the joint distribution becomes
a product. Let zn ∈ {0, 1}J be a binary latent variable, with

∑J
j=1 znj = 1, indicating which

component in the mixture generated the data point. Therefore

p(xn,µ, zn) = p(xn|µ, zn)p(zn)p(µ) =
J∏

j=1

p(xn|µj)
znj ×

J∏

j=1

π
znj

j × p(µ) . (2.25)

For the α-divergence minimization in section 2.6, this method of data completion is also used.
We could equally have done it for EP as well: the result will be exactly the same, as substituting
α = 1 in section 2.6’s fixed point scheme clearly shows.

The joint distribution will be approximated with sq(µ)q(zn), where q(zn) is multinomial,

q(zn) =

J∏

j=1

γ
znj

nj (2.26)

with γnj ≥ 0 and
∑

j γnj = 1.

A mean field approximation to our simple posterior can be found by ‘reversing the KL
divergence’ to its ‘exclusive’ form. Again, we write the KL divergence as a function of s and the
parameters of q(µ) and q(zn):

KL
(
sq(µ)q(zn)

∥
∥ p(xn,µ, zn)

)
=

∫
∑

zn

sq(µ)q(zn) ln
sq(µ)q(zn)

p(xn,µ, zn)
dµ− s+ const

= s ln s+ s〈ln q(µ)〉+ s〈ln q(zn)〉
− s〈ln p(xn,µ, zn)〉 − s+ const . (2.27)

2.5.1 Parameter updates

To optimize over distributions q(µ) and q(zn), take the functional derivative of the KL diver-
gence (2.27) with respect to q(µ) and q(zn), in each case equating to zero and solving. It is
shown below that we arrive at an iterative optimization procedure, which is a single-observation
implementation of VBEM. In essence we are doing an iterative coordinate descent procedure over
functions (distributions) q, which will converge to a local minimum as each of the subproblems
is convex. The following E- and M-steps are repeated until convergence.

E-step. For the expectation step, we keep q(µ) fixed. Zeroing the functional derivative of (2.27)
with respect to q(zn) gives

q(zn) ∝ exp
{∫

q(µ) ln p(xn,µ, zn) dµ
}

. (2.28)

Because we can rewrite ln p(xn, zn,µ) as ln p(xn, zn|µ) + ln p(µ), the above equation can
be simplified as q(zn) ∝ exp{

∫
q(µ) ln p(xn, zn|µ) dµ}. If mj and vj are the present

parameters of q(µj) (we can start with a guess, e.g. set to the prior), then

∫

q(µ) ln p(xn, zn|µ)dµ =
J∑

j=1

znj

∫ [

lnπj− lnZ
N

(λj)−
λj

2
(xn−µj)

2
]

q(µj)dµj , (2.29)
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and hence the responsibilities, characterizing q(zn), will be

γnj =
πj

√
λj exp{−λj

2 (v−1
j + (mj − xn)2)}

∑

k πk

√
λk exp{−λk

2 (v−1
k + (mk − xn)2)}

. (2.30)

M-step. For the maximization step, the derivation of the E-step is repeated, only with q(µ)
and q(zn) swapping roles,

q(µ) ∝ exp
{∑

zn

q(zn) ln p(xn,µ, zn)
}

. (2.31)

To update the parameters, note that

∑

zn

q(zn) ln
[
p(xn, zn|µ)p(µ)

]
= −

∑

zn

J∏

i=1

γzni
ni

J∑

j=1

znj
λj

2
(xn − µj)

2 −
J∑

j=1

v0j

2
(µj −m0j)

2 + const

= −
J∑

j=1

1

2
(v0j + γnjλj)

(

µj −
v0jm0j + γnjλjxn

v0j + γnjλj

)2
+ const .

(2.32)

This is in the form of an unnormalized q(µ), and hence the parameter updates are

vj = v0j + γnjλj (2.33)

mj =
v0jm0j + γnjλjxn

v0j + γnjλj
. (2.34)

2.5.2 The scale

After optimizing for the parameters of q, we find the matching scale s by taking the partial
derivative of (2.27) with respect to s and equating it to zero. In this case log scale ln s also
corresponds to the negative variational free energy from mean field methods or statistical physics.
The approximation to the log marginal likelihood is therefore

ln s = 〈ln p(xn,µ, zn)〉 − 〈ln q(µ)〉 − 〈ln q(zn)〉 . (2.35)

This we determine from the following equations:

〈ln p(xn,µ, zn)〉 =
〈 J∑

j=1

znj ln p(xn|µj)
〉

+
〈 J∑

j=1

znj lnπj

〉

+
〈 J∑

j=1

ln p(µj)
〉

=

J∑

j=1

γnj

[

− lnZN (λj)−
λj

2

( 1

vj
+ (mj − xn)2

)]

+

J∑

j=1

γnj lnπj +

J∑

j=1

[

− lnZ
N

(v0j)−
v0j

2

( 1

vj
+ (mj −m0j)

2
)]

(2.36)

〈ln q(µ)〉 =
J∑

j=1

〈ln q(µj)〉 = −
J∑

j=1

lnZ
N

(vj)−
J

2
(2.37)

〈ln q(zn)〉 =

J∑

j=1

γnj ln γnj . (2.38)
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2.6 α-divergence: a single observation

More generally we seek a sq(θ) that minimizes Dα(p(x,θ) ‖ sq(θ)), and this section presents a
review on how an α-divergence can be minimized by repeatedly minimizing a KL divergence.
The review is followed by a new contribution in section 2.6.1 on minimizing Dα for a simple
mixtures problem. This contribution is reworked in section 3.5 to provide a key step for a new
factor graph algorithm for full-blown mixture of Gaussians.

We let sq(θ) be a member of some scaled exponential family F , for example the family of
scaled Gaussians. The following theorem provides a key to finding the minimum:

Theorem 2. (Minka, 2005). If α 6= 0 then sq(θ) is a stationary point of

Dα(p(x,θ) ‖ sq(θ)) (2.39)

if and only if sq(θ) is a stationary point of

arg min
sq(θ)∈F

KL

(

p(x,θ)α[sq(θ)]1−α
∥
∥ sq(θ)

)

. (2.40)

Proof. We show that the derivatives match at sq(θ) = s∗q∗(θ), i.e.

∂KL(p(x,θ)α[s∗q∗(θ)]1−α ‖ sq(θ))

∂[sq(θ)]

∣
∣
∣
∣
∣
sq(θ)=s∗q∗(θ)

∝ ∂Dα(p(x,θ) ‖ sq(θ))

∂[sq(θ)]

∣
∣
∣
∣
∣
sq(θ)=s∗q∗(θ)

, (2.41)

which we show by taking functional derivatives with respect to sq(θ), and substituting sq(θ) =
s∗q∗(θ),

∂Dα(p(x,θ) ‖ sq(θ))

∂[sq(θ)]
=

1

α

[

1−
∫ (p(x,θ)

sq(θ)

)α
dθ
]

(2.42)

∂KL(p(x,θ)α[s∗q∗(θ)]1−α ‖ sq(θ))

∂[sq(θ)]
= 1−

∫
p(x,θ)α[s∗q∗(θ)]1−α

sq(θ)
dθ . (2.43)

Consequently when s∗q∗(θ) is a stationary point of Dα (derivative = 0), it is also a stationary
point of KL, as its derivative must also be zero.

The proof given above is equivalent to, but marginally different from that given by Minka
(2005), where derivatives with respect to the parameters of q were used. To find such a stationary
point, we turn to a fixed point scheme. Define

f(s∗q∗(θ)) = arg min
sq(θ)∈F

KL

(

p(x,θ)α[s∗q∗(θ)]1−α
∥
∥ sq(θ)

)

(2.44)

so that we need to solve for
f(s∗q∗(θ)) = s∗q∗(θ) . (2.45)

This can be done with a typical fixed point algorithm to give

s(t+1)q(t+1)(θ) = f(s(t)q(t)(θ)) (2.46)

which we repeat until convergence. Minka (2005) suggests the addition of damping to the fixed
point iterations, as the scheme is heuristic and not guaranteed to converge, but it is often
successful with enough damping. We have the following fixed point scheme, which is illustrated
in figure 2.4. We start with a guess of an initial s(0)q(0)(θ), where q(0)(θ) is normalized, and
typically take s(0) = 1. Starting with t= 0, the following two steps are iterated until convergence.
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F

p(x, θ)α[s(t)q(t)(θ)]1−α

s(t)q(t)(θ)
s(t′)q(t′)(θ)

p(x, θ)

min Dα

(
p(x, θ)‖sq(θ)

)

sq(θ)

min KL
(
p(x, θ)α[s(t)q(t)(θ)]1−α ‖ s(t′)q(t′)(θ)

)

s(t+1)q(t+1)(θ) = [s(t)q(t)(θ)]ǫ[s(t′)q(t′)(θ)]1−ǫ

p(x, θ)α[s(t+1)q(t+1)(θ)]1−α

F

Figure 2.4: An α-divergence can be minimized by iteratively minimizing a KL divergence. Our aim,
shown on the right, is to find an element sq(θ) ∈ F that is closest to p(x,θ) (which we assume is not
in a chosen scaled exponential family F) with respect to divergence Dα. This is solved through the
iterative method on the left. For some s(t)q(t)(θ) ∈ F , a function p(x,θ)α[s(t)q(t)(θ)]1−α that is not in F
is created, and now an element in F closest to it with respect to the KL divergence is found. After some
possible damping, this process is repeated.

Step 1. We find s(t′)q(t′)(θ),

s(t′)q(t′)(θ) = arg min
sq(θ)

KL
(
p(x,θ)α[s(t)q(t)(θ)]1−α

∥
∥ sq(θ)

)
, (2.47)

by first computing the new scale

s(t′) =

∫

p(x,θ)α[s(t)q(t)(θ)]1−αdθ = s1−α
(t)

∫

p(x,θ)αq(t)(θ)1−αdθ . (2.48)

Now use p(x,θ)αq(t)(θ)1−α as the ‘joint’ distribution, and find a normalized q(t′)(θ) that
minimizes KL

(
p(x,θ)αq(t)(θ)1−α

∥
∥ q(t′)(θ)

)
by matching moments, as we have done in

section 2.4. (The scale is excluded for simplicity, as we have already found it.)

Step 2. We now have s(t′)q(t′)(θ). If we had α = 1, this would have been perfectly sufficient.
We damp it with

s(t+1)q(t+1)(θ) = [s(t)q(t)(θ)]ǫ[s(t′)q(t′)(θ)]1−ǫ . (2.49)

After implementing the above damping equation, we rearrange the product to keep q(t+1)

as a normalized distribution. Therefore set

q(t+1)(θ) = Z−1q(t)(θ)ǫq(t′)(θ)1−ǫ (2.50)

with Z =

∫

q(t)(θ)ǫq(t′)(θ)1−ǫdθ , (2.51)

and then set s(t+1) = sǫ
(t)s

1−ǫ
(t′) Z . (2.52)

This heuristic scheme is iterated until convergence, and the final s(t+1) and q(t+1) are taken as
minimizers of α-divergence. Convergence of the heuristic scheme depends on the amount of
damping ǫ, and α.

2.6.1 Fixed point iterations

The fixed point scheme involves the ‘prior’ p(µ)αq(t)(µ)1−α, for which we define the following
shorthand parameters:

v̂i = αv0i + (1− α)vi(t) (2.53)
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m̂i =
αv0im0i + (1− α)vi(t)mi(t)

αv0i + (1− α)vi(t)
. (2.54)

To run the fixed point scheme, start with an initial s(0)q(0)(zn)q(0)(µ), where s(0) is set to one,
and the parameters γnj of q(0)(zn) possibly set to 1/J . q(0)(µ) can be set to the prior. Starting
with t = 0, the following steps are repeated until convergence, or until some maximum number
of iterations is reached.

Step 1. Determine the scale, which follows from appendix A.4.1 as

s(t′) =

∫
∑

zn

p(xn,µ, zn)α[s(t)q(t)(zn)q(t)(µ)]1−αdµ

= s1−α
(t)

J∏

i=1

Z
N

(v̂i)

Z
N

(v0i)αZN
(vi(t))1−α

exp
{

− 1

2

αv0i(1− α)vi(t)

v̂i

[
m0i −mi(t)

]2
}

× α−1/2
J∑

k=1

πα
k γ

1−α
nk(t)ZN

(λk)
1−αN

(

xn

∣
∣
∣ m̂k,

1

αλk
+

1

v̂k

)

. (2.55)

Following the scale, we find a normalized distribution q(t′)(zn)q(t′)(µ) that will minimize
the KL divergence to p(xn,µ, zn)α[q(t)(zn)q(t)(µ)]1−α. We have already solved for the scale
and only need to match moments, for which the following expectations are used:

〈µj〉 = m̂j (2.56)

〈µj|xn〉 =
v̂jm̂j + αλjxn

v̂j + αλj
(2.57)

〈µ2
j 〉 =

1

v̂j
+ 〈µj〉2 (2.58)

〈µ2
j |xn〉 =

1

v̂j + αλj
+ 〈µj|xn〉2 . (2.59)

Define

rnj =
πα

j γ
1−α
nj(t)N (xn | m̂j , (αλj)

−1 + v̂−1
j )

∑

k π
α
k γ

1−α
nk(t)N (xn | m̂k, (αλk)−1 + v̂−1

k )
, (2.60)

so that the updates again involve matching weighed moments,

mj(t′) = (1− rnj)〈µj〉+ rnj〈µj|xn〉 (2.61)

1

vj(t′)
= (1− rnj)〈µ2

j 〉+ rnj〈µ2
j |xn〉 −m2

j(t′) (2.62)

γnj(t′) = rnj . (2.63)

The only difference from the standard EP update is that an exponentiated likelihood was
used; the mean and precision follows the same type of derivation as before. The derivation
for γnj(t′) follows in appendix A.5.

Step 2. We have s(t′)q(t′)(zn)q(t′)(µ), and for the damping step need to do a derivation similar
to the first step to find a normalized q(t+1). Define the mean and precision of the new
(unscaled) Gaussian q(t)(µ)ǫq(t′)(µ)1−ǫ as

vj(t+1) = ǫvj(t) + (1− ǫ)vj(t′) (2.64)
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mj(t+1) =
ǫvj(t)mj(t) + (1− ǫ)vj(t′)mj(t′)

ǫvj(t) + (1− ǫ)vj(t′)
(2.65)

for each component j. Then damping gives

q(t)(µ)ǫq(t′)(µ)1−ǫ =
J∏

j=1

1

Z
N

(vj(t))ǫ
1

Z
N

(vj(t′))1−ǫ
exp

{

− 1

2

ǫvj(t)(1− ǫ)vj(t′)

vj(t+1)
(mj(t) −mj(t′))

2
}

× exp
{

− 1

2
vj(t+1)(µj −mj(t+1))

2
}

(2.66)

q(t)(zn)ǫq(t′)(zn)1−ǫ =

J∏

j=1

[γǫ
nj(t)γ

1−ǫ
nj(t′)]

znj . (2.67)

We would like to keep q(t+1) as a normalized distribution, and hence set

q(t+1)(µ) = Z−1
1 q(t)(µ)ǫq(t′)(µ)1−ǫ . (2.68)

The means and precisions will not change, but we have to keep track of the scale that we
have to divide with to ensure that q(t+1)(µ) remains normalized. That scale is

Z1 =

J∏

j=1

Z
N

(vj(t+1))

Z
N

(vj(t))ǫZN
(vj(t′))1−ǫ

exp
{

− 1

2

ǫvj(t)(1− ǫ)vj(t′)

vj(t+1)
(mj(t) −mj(t′))

2
}

. (2.69)

Similarly, set the parameters of q(t+1)(zn) as

γnj(t+1) = Z−1
2 γǫ

nj(t)γ
1−ǫ
nj(t′) , (2.70)

where the multinomial was normalized with

Z2 =
J∑

k=1

γǫ
nk(t)γ

1−ǫ
nk(t′)

. (2.71)

Finally adjust the scale, remembering that we had to divide by Z1 and Z2 to keep q
normalized. Add the appropriate log normalizers to get the updated log marginal likelihood
estimate,

ln s(t+1) = ǫ ln s(t) + (1− ǫ) ln s(t′) + lnZ1 + lnZ2 . (2.72)

2.7 Minimizing over a factor graph

So far we have a general method of approximating a joint distribution, consisting of a prior and
one observation, with a simpler distribution. On a factor graph, as in figure 2.3, this corresponds
to approximating a ‘prior’ and ‘data’ factor. The approximation scheme can be extended over
a full factor graph or full joint distribution. In this section we want to find a scaled distribution
sq(θ) to match a full joint,

sq(θ) ≈ p(x,θ) =
N∏

n=1

p(xn|θ)p(θ) =
N∏

n=0

fn(θ) , (2.73)

and we hope to again find this by minimizing Dα. We have written the joint distribution as a
product of factors, and the way that we choose the factorization need not be unique. In this
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chapter a single data likelihood is chosen as a factor. In the full mixture of Gaussians that
follows in chapter 3, we could equally have split the data likelihood into a mixture weight factor
and a factor modeling the component parameters.

Let sq(θ) be a member of a scaled exponential family F . Our choice is motivated as only a
finite number of moments need to be propagated through the factor graph. The family is closed
under multiplication, as the product of any number of distributions in F is also in F . (When
speaking about sq(θ), we have previously restricted F to normalizable exponential functions,
for example in the iterative optimization scheme of section 2.6. Here we extend the exponentials
to include factor approximations, which aren’t necessarily normalizable, as well.) Each factor
will be approximated by a member of F ,

f̃n(θ) = s̃n exp
{∑

m

φm(θ)ηnm

}

= s̃n exp
{

η⊤
n φ(θ)

}

= s̃nf̃
′
n(θ) , (2.74)

where η is some natural parameter vector, and φ(θ) is the vector of sufficient statistics or features
of the distribution, e.g. φ(θ) = (θ2, θ, 1) for a one dimensional Gaussian, and η = (−1

2v, vm, c).
The factor definition has been made deliberately loosely; ‘1’ has been added as a feature, to allow
a choice for extra constant terms c in the exponential. This addition is possible as the exponential
is again rescaled by some constant s̃n, which we are free to choose. In the continuation of the
mixtures example, we choose c = −1

2vm
2, for example, so that η⊤φ(θ) factorizes over θ with

the usual −v
2(θ −m)2.

The factor approximations need not be normalizable; however, their product must be, and
equal to sq(θ) ∈ F ,

sq(θ) =

N∏

n=0

f̃n(θ) . (2.75)

The following section describes how the above approximation can be found by considering single
factors at a time.

2.7.1 A generic message passing algorithm

Assume that we have an approximation for all factors, except for a factor n, and that we want
to include fn in the approximation. Now define two distributions, the joint without factor fn’s
inclusion,

p\n(x,θ) =
∏

i6=n

fi(θ) , (2.76)

and the approximation excluding approximate factor f̃n,

s\nq\n(θ) = sq(θ)/f̃n(θ) =
∏

i6=n

f̃i(θ) . (2.77)

In ideal circumstances factor f̃n should minimize

Dα

(
p\n(x,θ)fn(θ)

∥
∥ s\nq\n(θ)f̃n(θ)

)
, (2.78)

which gives rise to an intractable minimization problem. A tractable road forward exists, and
that is to assume that the approximation made to the rest of the factor graph is a good one, so
that

p\n(x,θ) ≈ s\nq\n(θ) . (2.79)



2.7. Minimizing over a factor graph 39

Algorithm 1 Generic message passing algorithm

1: initialize: f̃n(θ) for all n.
2: repeat
3: pick a factor n.
4: compute s\nq\n(θ).
5: update the factor approximation f̃n(θ) by getting the new approximation to the joint

snewq(θ)new with equation (2.81), and solve for the updated term contribution f̃n with
(2.83).

6: until all f̃n(θ) converge.

It may be helpful to interpret this assumption in the following way (specific to the examples in
this chapter, although the method is much more general): If single data likelihoods are taken as
factors, this simply means that all the data that we have already included in the approximation
can be summarized in some form of scaled prior distribution s\nq\n(θ), which needs to be
multiplied by the data term factor fn (or likelihood p(xn|θ)), to get a new approximation to the
joint distribution.

The problem simplifies to that of finding a f̃n that minimizes

Dα

(
s\nq\n(θ)fn(θ)

∥
∥ s\nq\n(θ)f̃n(θ)

)
. (2.80)

In light of the methods presented in sections 2.4 to 2.6, where some sq(θ) is matched to a prior
times a likelihood, we find f̃n by finding a new scaled approximation snewq(θ)new, with

snewq(θ)new = arg min
sq(θ)

Dα

(
s\nq\n(θ)fn(θ)

∥
∥ sq(θ)

)
, (2.81)

and then using snewq(θ)new and s\nq\n(θ) to find f̃n(θ). This is purely a matter of division, as
we are using the exponential family of distributions. We have

s\nq\n(θ)f̃n(θ) = snewq(θ)new , (2.82)

and hence

f̃n(θ) =
snew

s\n
q(θ)new

q\n(θ)
. (2.83)

The resulting message passing algorithm is summarized in algorithm 1.

2.7.2 Minimizing the mixtures example over a factor graph

For our practical implementation it is not necessary to determine s\n when we want to update
the scale contribution s̃n, as

Sq(θ)new = arg min
s′q(θ)

Dα

(
q\n(θ)fn(θ)

∥
∥ s′q(θ)

)
(2.84)

gives the same minimum as equation (2.81), with snew = Ss\n, and equation (2.83) therefore
gives f̃n(θ) = Sq(θ)new/q\n(θ). This slightly simplified restatement will be used in the mini-
mization routine that follows.

We choose term definitions f̃n, for Gaussian components with unknown means, as

f̃n = s̃n

J∏

j=1

e−
1
2
ṽnj(µj−m̃nj )2 . (2.85)

The message passing algorithm is:
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• Start by initializing, for n = 1, . . . ,N ,

s̃n = 1, m̃nj = 0, and ṽnj = 0 , (2.86)

so that all the factor approximations are one. Initialize the prior as

s̃0 =
J∏

j=1

1

ZN (ṽ0j)
=

J∏

j=1

(ṽ0j/2π)1/2, m̃0j = m0j , and ṽ0j = v0j . (2.87)

• Repeat until all f̃n converge:

1. Pick a factor n. This can be done by looping over different random permutations of
1, . . . , N .

2. Compute q\n(µ) (for reasons stated above we need not concern ourselves with s\n).
We take the convention of identifying the parameters of q\n(µ) with a subscript
o for ‘old’, where ‘old’ refers to our approximation before including term n. This
convention is also followed because here q\n(µ) takes the role of a prior, allowing a
straight-forward implementation of the optimization routines of sections 2.4 to 2.6.
Recovering the old distribution—also referred to as the cavity distribution—follows
from reversing equations (2.91) and (2.92),

voj = vj − ṽnj (2.88)

moj =
vjmj − ṽnjm̃nj

voj
. (2.89)

If a non-normalizable distribution is recovered, the update for factor f̃n can be
skipped, and we continue again from step 1.

3. Similar to sections 2.4 to 2.6, let S, mj and vj be the parameters of q(µ)new that
minimizes equation (2.84). After finding the new approximation, we have to set the
factor contribution. After a rearrangement so that a single exponential depends on
µj, we get

f̃n = S
q(µ)new

q\n(µ)

= S

J∏

j=1

ZN (voj)

Z
N

(vj)
exp

{

+
1

2

vjvoj

vj − voj
(mj −moj)

2
}

· · ·
J∏

j=1

exp
{

− 1

2
(vj − voj)

[
µj −

vjmj − vojmoj

vj − voj

]2
}

. (2.90)

According to our term definition (2.85), we get the substitution for ṽnj and m̃nj for
j = 1, . . . , J , and for the change of scale s̃n, as

ṽnj = vj − voj (2.91)

m̃nj =
vjmj − vojmoj

ṽnj
(2.92)

s̃n = S

J∏

j=1

ZN (voj)

Z
N

(vj)
exp

{

+
1

2

vjvoj

vj − voj
(mj −moj)

2
}

. (2.93)
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• Finally the approximation to the evidence p(x) is determined with

p(x) ≈
∫ N∏

n=0

f̃n(µ) dµ =
( N∏

n=0

s̃n

) J∏

j=1

e
1
2
[vjm2

j−
PN

n=0 ṽnjm̃2
nj ]ZN (vj) . (2.94)

Starting with another prior contribution

We need not start by initializing the prior contribution s̃0, m̃0j and ṽ0j ∀j to the prior hyper-
parameter values; sometimes we may wish to break symmetry so that the iterative algorithm
converges to one solution rather than another. This may be necessary when the prior is sym-
metric around zero, causing the responsibilities to always remain equal, stifling any progress. A
typical example may be when the posterior has more than one equivalent mode (as often hap-
pens in mixtures models, which are invariant with respect to permutations of the component
labeling). When the modes are well separated we may want to approximate one of them, i.e.
break symmetry and not find a solution with small mass balanced between them.

To break symmetry we start with the ‘wrong’ prior, and can always go back after the first
loop over factors to correct the prior contributions to the correct prior hyperparameter values.
(In practice, if m0j = 0 ∀j, for example, we may start with m̃0j = ǫj where ǫj represents some
added symmetry-breaking noise.)

If we did choose to start with the wrong prior contributions, the prior is treated like any
other factor. The hyperparameter values need not to be set in any optimization routine, as they
are prespecified and fixed. We find q(µ)new with

vj = voj + v0j and mj = (vojmoj + v0jm0j)/(voj + v0j) , (2.95)

and update the prior contribution to the correct hyperparameters,

s̃0 =

J∏

j=1

1

Z
N

(ṽ0j)
, m̃0j = m0j, and ṽ0j = v0j . (2.96)

2.8 Model pruning

The aim of this discussion is to look at the behavior of VB and EP on very simple examples.
This will mostly be in light of chapter 3, for when we understand the behavior of the algorithms
under different settings, we can intuitively explain certain higher-dimensional phenomena.

A problem that may arise when a free energy is minimized in variational Bayes (α = 0), is
that the degrees of freedom in the parameter space may be pruned, perhaps even inappropriately
(MacKay, 2001). A mixture model, as is the example in this chapter, may self-prune. If we add
more components to the model we believe in, the extra components and parameters may not
be used at all. This is contrary to our expectation, where we expect all the parameters to be
included in the posterior, maybe with big error bars on them.

Let’s first reflect back on a well-behaved example. For figure 2.1(a) we had J = 2 components,
and found an approximation sq(µ) that gave equal weight to each mixture component. In the
approximation q(µ1) and q(µ2) are equal, and γn1 = γn2 = 1

2 (with one observation, N = 1).
This is what we would expect, as we have no motivation to prefer one component over the other.
(All precisions were set to λj = 1, the mixing weights were fixed at πj = 1

2 , and v0j = 0.1 and
m0j = 0 were taken as prior parameter values.)

A typical example of unwanted pruning is found in figure 2.5(a), which is similar to an ex-
ample encountered before in figure 2.1(a), but with a broader prior value v0j = 0.01. Apart from
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µ
2

µ1

(a) A possible approximate solution for the fixed
point equation (2.97), showing one component
being pruned.
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(b) Possible solutions to equation (2.97), at the
intersections of the functions γ and g(γ) = 1/(1+
exp{ 1

2
( 1

v1
− 1

v2
)}). There are in fact five intersec-

tions, at γ ≈ 0, 0.38, 0.5, 0.62 and 1.

Figure 2.5: Local solutions with a broader prior v0j = 0.01. With J = 2 components, the other prior

parameter values we set to πj = 1
2 , m0j = 0 and λj = 1.

γn1 = 0.5, there are four other local maxima in the free energy, − ln s, with γn1 ≈ 0, 0.38, 0.62
and 1. With γn1 ≈ 1, and its converse, one of the mixture components is lost, with its approxi-
mation effectively being equal to the prior. (The values of γnj are not strictly at zero and one,
but asymptotically close as v0j shrinks to give a broader prior.) There would be no reason for
us to favor any model, as the single xn = 0 could have been generated by the first or second
component, but yet that is what the local minima in the free energy would lead us to believe.

As we have only one data point and two components, let γ ≡ γn1. From equations (2.30)
and (2.33) we have

γ =
1

1 + exp
{

1
2 ( 1

v1
− 1

v2
)
} , where v1 = v01 + γλ1 and v2 = v02 + (1− γ)λ2 , (2.97)

with the values of λj fixed at 1. To solve for the extrema, we need to find a value of γ such that
equation (2.97) holds. With function g(γ) = 1/(1 + exp{1

2 ( 1
v1
− 1

v2
)}), this can be solved with a

fixed point equation

γnew ← g(γ) , (2.98)

which is merely the VBEM algorithm in another form. Figure 2.5(b) shows a plot of γ and g(γ)
with a broader prior v0j = 0.01. The free energy minima occur at the intersection of these two
functions.

If we narrow the prior and make v0j bigger, the symmetry-breaking solutions are lost. Figure
2.6 illustrates this phenomena. There is a critical value of v0j ≈ 0.97 that separates our notion
of symmetry-breaking and symmetry preserving priors in this example, where bigger precisions
(smaller variances) preserve the symmetry. This gives some bifurcation, as there is a very sudden
split between many possible solutions and only one.

The relevance of this discussion finds form in section 3.7, where VB is run over a factor
graph. As factors (or data points) are included one at a time, this differs from conventional VB,
where all data points are treated together in an EM algorithm. MacKay (2001) illustrates that
unwanted model pruning becomes less of a problem with more data present in standard VB.
By including one data point at a time, or optimizing on a factor by factor basis, it has been
found in practice (section 3.7) that components can be lost on the inclusion of the first data
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Figure 2.6: If the prior from figure 2.5 is narrowed, the symmetry-breaking solutions are lost, so that
the only solution to the fixed point equation (2.97) would be a spherical Gaussian centered at zero. The
figure also illustrates a critical value v0j ≈ 0.97 where a bifurcation occurs, as we see a very sudden split
between many possible solutions (intersections) and only one.

point to a broad prior. This puts us in a situation where some components are almost zero-
weighted after the addition of the first factor, and the inclusion of subsequent factors cannot
recover these components. As we will see next, EP doesn’t suffer from this drawback, and the
solution adopted in section 3.7 is to run one or two EP loops over all factors to give a sensible
initialization of approximate factors before the VB loops are run.

Model pruning and expectation propagation

An approximation scheme like EP will not suffer under the same component-pruning behaviour,
as the parameter updates take a on a very different form.

• For VB we solved using the EM fixed point equations, and iterated an expectation and
maximization step. The E-step determined responsibilities that depend on the present
parameter settings and not the prior. The M-step then depended on the responsibilities
and prior. Equations (2.30), (2.33) and (2.34) give an example of these dependencies.

• EP relied on two steps as well, but they are not iterated. The first was a responsibility
update that depends on the prior and not any present parameter values. It was followed by
a moment matching step that depends on the responsibility-weighed prior and component-
posterior moments. Equations (2.17), (2.18) and (2.20) can be taken as an example.

2.9 The objective function

Under a set of constrains, the generic message passing algorithm would attempt to find the
largest scale s for a given normalized distribution q(θ) and an associated joint distribution
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p(x,θ). In other words, given a factorized approximation, we can determine the scale, and
therefore need to maximize some objective function over the approximate factors such that the
scale is as big as possible. This was clearly seen in the case of variational Bayes, for example,
where s was always a lower bound to the true marginal likelihood p(x), and we had to adjust the
approximating distribution so that the scale (as a function of the approximating distribution)
could be as big as possible.

We will show here, following (Minka, 2005), that the generic message passing iterations from
algorithm 1 always have a fixed point when the approximations are in the exponential family.
This does not mean that the fixed point will necessarily be found, even though its objective
function is well defined. It is a single loop algorithm, and longer double-loop algorithms, which
come with a convergence guarantee, can be created to minimize the same objective function
Opper & Winther (2005a).

The scale that will be computed by message-passing can be written as

s =

∫

sq(θ) dθ =

∫ N∏

n=0

f̃n(θ) dθ =
( N∏

n=0

s̃n

)∫ N∏

n=0

f̃ ′n(θ) dθ =
( N∏

n=0

s̃n

)∫

q′(θ) dθ (2.99)

where we have defined the shortcut q′(θ) =
∏

n f̃
′
n(θ). The final approximation has the form

q(θ) ∝ q′(θ) =

N∏

n=0

f̃ ′n(θ) =

N∏

n=0

exp
{

η⊤
n φ(θ)

}

= exp
{ N∑

n=0

η⊤
n φ(θ)

}

(2.100)

for some η ≡ {ηn}Nn=0. Each leave-one-out (cavity) distribution has the form

q\n(θ) ∝
∏

i6=n

f̃ ′i(θ) = exp
{∑

i6=n

η⊤
i φ(θ)

}

. (2.101)

The following two sections treat α 6= 0 and α = 0 as two separate cases, and the objective
function is derived for each.

2.9.1 The objective function for α 6= 0

At each step in algorithm 1’s main loop, the α-divergence

arg min
f̃n(θ)

Dα

(

s\nq\n(θ)fn(θ)
∥
∥
∥ s\nq\n(θ)f̃n(θ)

)

(2.102)

is minimized. To determine the scale from (2.99), we are interested in the different scales s̃n

that will be computed. The approximate factors divide into f̃n(θ) = s̃nf̃
′
n(θ), and we can write

the leave-one-out estimates or cavity distributions as

s\nq\n(θ) =
∏

i6=n

s̃if̃
′
i(θ) . (2.103)

To determine each individual scale s̃n, take the derivative of the α-divergence with respect to
s̃n,

∂Dα

∂s̃n
=

∂

∂s̃n

1

α(1− α)

[
∫

αfn(θ)
∏

i6=n

s̃if̃
′
i(θ) + (1− α)s̃nf̃

′
n(θ)

∏

i6=n

s̃if̃
′
i(θ)
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−
(

fn(θ)
∏

i6=n

s̃if̃
′
i(θ)

)α(

s̃nf̃
′
n(θ)

∏

i6=n

s̃if̃
′
i(θ)

)1−α

︸ ︷︷ ︸

=s̃1−α
n

(
Q

i6=n s̃i

)
q′(θ)

(
fn(θ)/f̃ ′

n(θ)
)α

dθ

]

=
1

α

(∏

i6=n

s̃i

) ∫

q′(θ) dθ − s−α
n

1

α

(∏

i6=n

s̃i

)∫

q′(θ)

(

fn(θ)

f̃ ′n(θ)

)α

dθ , (2.104)

and equating the partial derivative to zero gives, for α 6= 0,

s̃n =

(∫
q′(θ)

(
fn(θ)

f̃ ′
n(θ)

)α
dθ

∫
q′(θ) dθ

)1/α

. (2.105)

Let N + 1 be the number of terms fn(θ), as we conventionally count n from zero. If we now
substitute s̃n back into the equation (2.99) we get a mass estimate

s =

(
∫

q′(θ) dθ

)1−(N+1)/α N∏

n=0

(
∫

q′(θ)
(fn(θ)

f̃ ′n(θ)

)α
dθ

)1/α

. (2.106)

From the approximate and leave-one-out distributions of equations (2.100) and (2.101), the
negative log scale gives an objective function or free energy to be minimized,

− ln s =
(N + 1

α
− 1
)

ln

∫

exp
{∑

n

η⊤
n φ(θ)

}

dθ

−
N∑

n=0

1

α
ln

∫

fn(θ)α exp
{(∑

i6=n

ηi + (1− α)ηn

)⊤
φ(θ)

}

dθ . (2.107)

The generic message passing scheme from algorithm 1 comes with no guarantee that the mini-
mum of the objective function in (2.107) will be found. It is a single-loop algorithm, which will
converge fast in many practical cases. We now turn our discussion to double loop algorithms,
which come with a guarantee of convergence.

Expectation consistent inference and double loop algorithms

Expectation consistent (EC) inference (Opper & Winther, 2005a,b) provides an alternative view
of the local-consistency approximations made by EP, and generalizes Adaptive TAP (Opper
& Winther, 2001a,b), which is used for inference in densely connected graphical models. This
section presents a short review, emphasizing that other algorithms can be derived to minimize
(2.107).

Taking two terms from (2.107), with α = 1, we can write the objective function as the EC
approximation to the free energy,

− lnZEC = − ln s = ln

∫

exp
{

(η0 + η1)
⊤φ(θ)

}

dθ

− ln

∫

f0(θ) exp
{

η⊤
1 φ(θ)

}

dθ − ln

∫

f1(θ) exp
{

η⊤
0 φ(θ)

}

dθ , (2.108)

which we write as the sum of three partition functions:

− lnZEC(η0,η1) = lnZq(η0 + η1)− lnZ0(η1)− lnZ1(η0) . (2.109)
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This can naturally be extended to a higher number of terms. By writing three distributions,

q(θ) =
1

Zq(η0 + η1)
exp

{

(η0 + η1)
⊤φ(θ)

}

(2.110)

q0(θ) =
1

Z0(η1)
f0(θ) exp

{

η⊤
1 φ(θ)

}

(2.111)

q1(θ) =
1

Z1(η0)
f1(θ) exp

{

η⊤
0 φ(θ)

}

, (2.112)

the objective function in (2.109) is maximized by solving a nonlinear set of equations such that
the moments match,

〈
φ(θ)

〉

q
=
〈
φ(θ)

〉

q0
=
〈
φ(θ)

〉

q1
. (2.113)

In this case we can view EP as a particular algorithm, and compare it to a double loop algorithm,
for example given below.

To examine the stationary points of (2.109), notice that the log partition functions, for
example lnZ0, are the cumulant generating function of the random variables φ(θ),

H0 =
∂2 lnZ0(η1)

∂η1∂η⊤
1

=
〈
φ(θ)φ(θ)⊤

〉
−
〈
φ(θ)

〉〈
φ(θ)

〉⊤
, (2.114)

where the expectations are taken under distribution q0(θ). The log partition functions are
differentiable and convex functions of their domains. We can similarly define Hessian matrices
Hq and H1, all of which will be positive semi-definite. By considering η = (η0,η1), we can
conclude that the EC objective function is a non-convex combination of convex functions, and
has a Hessian that is not necessarily positive semi-definite,

HEC =
∂2 lnZEC(η)

∂η∂η⊤ = −
(

Hq −H1 Hq

Hq Hq −H0

)

. (2.115)

There may therefore be more than one stationary point.
The double loop algorithm (Yuille, 2002; Opper & Winther, 2005a) is guaranteed to converge

to a stationary point, assuming that a certain cost function is bounded from below. Define
ηsum = η0 + η1, so that (2.109) is restated as

− lnZEC(ηsum,η1) = lnZq(ηsum)− lnZ0(η1)− lnZ1(ηsum − η1) . (2.116)

The double loop algorithm iterates two steps:

Step 1. When ηsum is held fixed, (2.116) is concave in η1, and can be uniquely maximized with

η1(t) = arg max
η1

[

− lnZEC(ηsum(t−1),η1)
]

. (2.117)

As a result the moments of q0(t)(θ) and q1(t)(θ) are set to be equal,

〈
φ(θ)

〉

q0(t)
=
〈
φ(θ)

〉

q1(t)
. (2.118)

Step 2. When η1 is held fixed, (2.116) is a sum of a concave and a convex function of ηsum,
and cannot be directly minimized. What we can do, however, is to update ηsum given the
moments at a fixed η1. This is essentially an EP step, saying

q(t)(θ) = arg min
q(θ)

KL(q0(t)(θ) ‖ q(θ)) , (2.119)
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which will update ηsum(t) such that the moments of q(t)(θ) and q0(t)(θ) match:

〈
φ(θ)

〉

q(t)
=
〈
φ(θ)

〉

q0(t)
. (2.120)

Although not necessary, the value of η0(t) can be determined with η0(t) = ηsum(t) − η1(t).

Our aim here is merely to present an overview of the double loop algorithm and gain insight
into the nature of the objective function, and not to provide a detailed description. A thorough
account, with convergence proof, is provided by Opper & Winther (2005a).

Finally, we note that the first step differentiates the double loop algorithm from the single
loop algorithm that is EP, which is summarized here for comparison:

Step 1 (EP). Update ηsum given the moments at a fixed η0. This is equivalent to minimizing

q(t)(θ) = arg min
q(θ)

KL(q1(t−1)(θ) ‖ q(θ)) , (2.121)

which will update ηsum(t) such that the moments of q(t)(θ) and q1(t−1)(θ) match:

〈
φ(θ)

〉

q(t)
= 〈φ(θ)〉q1(t−1)

. (2.122)

On obtaining ηsum(t), the value of η1(t)—to be kept fixed in step 2—is determined with
η1(t) = ηsum(t) − η0(t−1).

Step 2 (EP). The double loop algorithm’s step 2, or step 1 (EP) with the roles of η0 and η1

exchanged.

As the objective function may have more than one stationary point, a small example follows for
further insight.

One mode or both? A toy example

The purpose of this small example is to show that when two well-separated modes exist in the
joint distribution, expectation propagation may lock to one of them, as the objective function
has more than one local minimum. The mode need not be the biggest mode, as the results in
section 3.7 will indicate.

For figure 2.7, a data set with twenty examples was created so that the joint distribution
has two closely-connected modes. The objective is minimized by a unique solution that includes
both modes. When some of the data points are slightly adjusted to separate the modes, the EP
loops converge to one of the modes.

2.9.2 The VB objective function

From the same construction as section 2.9.1 we can determine the objective function that is
minimized on local divergences with α = 0. The message passing fixed points is in this case
(uniquely for α = 0) equal to the stationary points of the global KL divergence, as the objective
functions can be shown to be identical. At each step the KL divergence

KL

(

s\nq\n(θ)f̃n(θ)
∥
∥
∥ s\nq\n(θ)fn(θ)

)

(2.123)
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(a) A joint distribution with two
closely connected modes, created
from a data set with N = 20 exam-
ples, is shown in red. In black is the
EP solution, including both modes.
Note: this is not the global KL so-
lution.

µ1

µ
2

(b) The joint distribution from the
same data set as figure 2.7(a) is shown
here, except that four of the data
points (and hence likelihood terms)
were slightly adjusted to allow EP to
settle on one mode and break symme-
try.

Figure 2.7: One mode or both? As the modes in the joint (or posterior) distribution become more
separated, EP here chooses one of them.

is minimized over f̃n(θ). With the cavity distribution defined as s\nq\n(θ) =
∏

i6=n s̃if̃
′
i(θ), and

shorthand q′(θ) =
∏

n f̃
′
n(θ), and can write the derivative with respect to an individual scale as

∂KL

∂s̃n
=

∂

∂s̃n

[

s̃n

(∏

i6=n

s̃i

)∫

q′(θ) ln
s̃nf̃

′
n(θ)

fn(θ)
dθ

− s̃n

(∏

i6=n

s̃i

) ∫

q′(θ) dθ +

∫

fn(θ)
∏

i6=n

s̃if̃i(θ) dθ

]

= ln s̃n

(∏

i6=n

s̃i

)∫

q′(θ) dθ +
(∏

i6=n

s̃i

)∫

q′(θ) ln
f̃ ′n(θ)

fn(θ)
dθ . (2.124)

If the above expression is set to zero we find

s̃n = exp

{∫
q′(θ) ln fn(θ)

f̃ ′
n(θ)

dθ
∫
q′(θ) dθ

}

. (2.125)

If s̃n is now substituted back into the equation (2.99), and the chosen factorizations p(x,θ) =
∏

n fn(θ) and q′(θ) =
∏

n f̃
′
n(θ) used, we get a mass estimate

s = exp

{∫
q′(θ)

∑

n ln fn(θ)

f̃ ′
n(θ)

dθ
∫
q′(θ) dθ

}
∫

q′(θ) dθ = exp

{∫
q′(θ) ln p(x,θ)

q′(θ) dθ
∫
q′(θ) dθ

}
∫

q′(θ) dθ . (2.126)

The objective function, as a function of the parameters of the exponential term approximations,
is therefore

− ln s = −
∫

exp
{ N∑

n=0

η⊤
n φ(θ)

} N∑

n=0

ln
fn(θ)

exp{ηnφ(θ)} dθ
/
∫

exp
{ N∑

n=0

η⊤
n φ(θ)

}

dθ
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− ln

∫

exp
{ N∑

n=0

η⊤
n φ(θ)

}

dθ . (2.127)

To see that the objective function is equivalent to that of the global KL divergence, all we
need to do is notice that q′(θ) = cq(θ) for some constant c, such that q(θ) is a normalized
distribution (in particular, from (2.99) the scale is s/

∏

n s̃n). Substituting q′(θ) = cq(θ) into
(2.126) gives

s = exp

{
∫

q(θ) ln
p(x,θ)

q(θ)
dθ

}

, (2.128)

which is exactly the scale or negative exponentiated free energy that we get when minimizing
the KL with VB.

2.9.3 Message passing with α = 0 as an EM algorithm

The generic message passing algorithm used to minimize local divergences over a factor graph
relies on a specific factorization of the joint distribution of interest. Uniquely for α = 0, the
objective function of message passing with local divergences and the global divergence objective
function will match, and the same stationary points will be reached. Using Jensen’s inequality
we find a lower bound to the marginal likelihood in the usual way,

ln p(x) ≥
∫

q(θ)q(z) ln
p(x, z|θ)p(θ)

q(θ)q(z)
dθdz

=

∫

q(θ)q(z) ln
p(x, z|θ)

q(z)
+

∫

q(θ) ln
p(θ)

q(θ)
dθ = F [q(θ), q(z)] . (2.129)

From the assumption that the observations are independent and identically distributed, the
factorization q(z) =

∏

n q(zn) can be made. In this case it is well known (Neal & Hinton,
1998) that an incremental algorithm that updates one q(zn) at a time should increase F (their
algorithm 7). In all their algorithms, the entire vector θ is updated in the M step.

EM and generic message passing routines

When the E-step updates a single q(zn), and the M-step updates q(θ), then F increases, as we
are doing gradient ascent over functions (distributions). We may ask,

will the increase still hold if we factorize q(θ) into a product of functions over θ, and
update only one of them in the M-step?

It turns out that this is indeed true, provided each factor i in the product can be defined as

f̃i(θ) ∝ exp
{∫

q(zi) ln p(xi, zi|θ) dzi

}

. (2.130)

which only depends on q(zi).

Before presenting a formal argument of this result, a practical example is presented: Figure
2.8 illustrates this behaviour in practice on the galaxy data set from section 3.7. An assumed
density filtering (ADF) loop—essentially the first EP loop, which includes factors one by one
into the approximation—was run to initialize all terms f̃n(θ). On initialization, the condition
given in (2.130) doesn’t hold for any of the factors, and ln s doesn’t show a monotonic increase.
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Figure 2.8: The galaxy data set from section 3.7 is used to illustrate that the objective function F
only increases monotonically when (2.130) holds for all factors. The figure also indicates: A, the end of
the ADF loop to get an initialization; B, the factor refinements with α = 0 where (2.130) holds.

As soon as (2.139) holds for all factors—which can be seen in the figure after one α = 0 loop—
the objective function monotonically increases, even with partial updates to q(θ). If we solve
for ln s separately in each case, using the present q(θ)q(z) in

ln s = −KL
(
q(θ)q(z)

∥
∥ p(θ, z|x)

)
+ ln p(x) , (2.131)

we are still not guaranteed a monotonic increase until (2.130) holds, as figure 2.9 illustrates for
the same problem.

To determine formally when F will always increase, write

q(θ) =
M∏

m=1

t̃m(θ) , (2.132)

for some factorization of the approximation, and assume q(θ) integrates to one. Let this be
any factorization—we subscript it with m to indicate that it needn’t be over individual data
likelihoods.

Now write F [q] as (from i.i.d. assumption)

F [q] =

N∑

n=1

∫ M∏

m=1

t̃m(θ)q(zn) ln
p(xn, zn|θ)

q(zn)
dθdzn +

∫ M∏

m=1

t̃m(θ) ln
p(θ)

∏M
m=1 t̃m(θ)

dθ . (2.133)

If we set ∂F/∂q(zn) to zero, we arrive at the familiar expression

q(zn) ∝ exp
{∫

q(θ) ln p(xn, zn|θ) dθ
}

, (2.134)

where Lagrange multipliers would give the correct normalization (there is an integration con-
straint to keep q(zn) as a distribution). This is the particular E-step in the subproblem that is
solved by the message passing scheme. The present factorized approximation

∏

m t̃m(θ) is used,
and we find that the objective function increases.

Now take the functional derivative with respect to one of the m terms, with an added
integration constraint through a Lagrange multiplier ℓ,

∂F
∂t̃i(θ)

=
∂

∂t̃i(θ)

[
∫ M∏

m=1

t̃m(θ)q(z) ln
p(x, z|θ)

q(z)
dθdz +

∫ M∏

m=1

t̃m(θ) ln p(θ) dθ
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Figure 2.9: This graph zooms out on figure 2.8 to show the approximation ln s as the lower line, if the
present q(θ) is used in (2.131). The large difference in the first α = 0 loop (an ADF loop was used to
initialize the approximation) is due to the fact that (2.131) ensures a lower bound to the joint p(x,θ).
If the present approximation is relatively wide, a small scale is needed to ensure that the bound holds.
As soon as (2.130) holds at the end of the first α = 0 loop, the message passing scale and the scale
determined from (2.131) match.

−
M∑

k=1

∫ M∏

m=1

t̃m(θ) ln t̃k(θ) dθ

]

+ ℓ
∂

∂t̃i(θ)

[
∫ M∏

m=1

t̃m(θ) dθ − 1

]

=
∏

m6=i

t̃m(θ)

[
∫

q(z) ln
p(x, z|θ)

q(z)
dz + ln p(θ)− ln t̃i(θ)− ln

∏

m6=i

t̃m(θ) + (ℓ− 1)

]

.

(2.135)

The above derivative is equated to zero and solved, hence

t̃i(θ)
∏

m6=i

t̃m(θ) = p(θ) exp
{∫

q(z) ln p(x, z|θ) dz
}

exp
{

−
∫

q(z) ln q(z) dz
}

exp{ℓ− 1} .

(2.136)
Integrating on both sides (the left hand side is one), taking logs, solving for ℓ, and substituting
back, gives

t̃i(θ)
∏

m6=i

t̃m(θ) = p(θ)
exp{

∫
q(z) ln p(x, z|θ) dz}

∫
exp{

∫
q(z) ln p(x, z|θ) dz} dθ . (2.137)

We are again on familiar territory, as the left hand side equals q(θ). But now only one factor
t̃i(θ) is updated, and the rest is left fixed. The update will still give coordinate ascent, but we
need to show an equivalence with the message passing formulation.

To see an equivalence with the generic message passing algotihm, let m ≡ n, so that the
approximate factors are therefore f̃n(θ) ∝ t̃n(θ)q(zn). From the i.i.d. assumption we have,

t̃i(θ)
∏

n 6=i

t̃n(θ) =
1

Zz

p(θ)
∏

n 6=i

exp
{∫

q(zn) ln p(xn, zn|θ) dzn

}

exp
{∫

q(zi) ln p(xi, zi|θ) dzi

}

.

(2.138)
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If we choose t̃0(θ) ∝ p(θ) and t̃n(θ) ∝ exp{
∫
q(zn) ln p(xn, zn|θ) dzn} for n 6= i, the product

∏

n 6=i t̃n(θ) divides away on both sides, and the update simplifies to

t̃i(θ)
∏

n 6=i

t̃n(θ) ∝ t̃0(θ)
∏

n 6=i

t̃n(θ) exp
{∫

q(zi) ln p(xi, zi|θ) dzi

}

t̃i(θ) ∝ exp
{∫

q(zi) ln p(xi, zi|θ) dzi

}

, (2.139)

which only depends on q(zi). This is the key, as the full derivative simplifies as

dF
dt̃i(θ)

=
∂F
∂t̃i(θ)

+

N∑

n=1

∂F
∂q(zn)

∂q(zn)

∂t̃i(θ)

=
∂F
∂t̃i(θ)

+
∂F
∂q(zi)

∂q(zi)

∂t̃i(θ)
. (2.140)

In the E-step ∂F/∂q(zi) was set to zero (and hence the derivative ∂q(zi)/∂t̃i(θ) need not be de-
termined). Setting the partial derivative with respect to t̃i(θ) to zero should ensure a monotonic
increase of F .

Similar algorithms

We are not forced to choose m to match n, but can choose each t̃i(θ) to match any set of
data items Ai, on the condition that the E-step sets ∂F/∂q(zn) = 0 for all n ∈ Ai. For the
variational Bayes EM algorithm the choice Ai = {1, . . . ,N} was made, with only one term t̃i.
For the generalized message passing algorithm above the choice Ai = {i} was implemented,
and we had N terms t̃i. Any grouping of data items to terms is therefore possible. All these
algorithms are possible because the use of the exclusive KL divergence allows them to have
identical objective functions.

Finding θML through message passing

In relation to the generic message passing algorithm, Neal & Hinton (1998)’s EM algorithm 9 is
of particular interest, and it is briefly described here. It is used to find the maximum likelihood
parameter setting.

When the complete data likelihood p(x, z|θ) falls in the exponential family, its sufficient
statistics can be summarized as a sum of ‘sufficient statistics contributions’ from the individ-
ual likelihoods p(xn, zn|θ) ∝ exp{η⊤

n φ(xn, zn)}, for n = 1, . . . ,N . Notice that the sufficient
statistics are for the complete likelihoods, and will include responsibilities for each example.
Therefore, if p(x, z|θ) ∝ exp{η⊤φ(x, z)}, where η =

∑N
n=1 ηn, the maximum likelihood param-

eters θML can be found by iteratively updating data contributions until the parameter estimate
converges, akin to what we have done in the generic message passing algorithm. This is done as
follows:

In looping over all data points, assume that we are updating data point n at time t. For data

point n, we automatically copy η
(t−1)
i to η

(t)
i , for all i 6= n. Given the parameter value θ(t−1)

from the previous iteration, set η
(t)
n to the sufficient statistics of p(xn, zn|θ(t−1)). The sufficient

statistics of the complete data likelihood is updated with η(t) = η(t−1) − η
(t−1)
n + η

(t)
n . Finally

we set θ(t) to the θ of maximum likelihood given η(t).
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2.10 Summary

This chapter introduced the α-divergence as a measure of distance between two possibly un-
normalized probability distributions. This divergence is typically not tractable, but can be
approximately minimized if a particular factorization (or factor graph) of the distribution is
considered, and the minimization restricted to local computations on the factor graph. This
distributed algorithm is not guaranteed to converge, although it often does and performs well
in practice.

A simple mixture of Gaussians was taken as a illustrative running example, and its full
multivariate case is taken next as a practical case in chapter 3.





Chapter 3

Approximate inference for
multivariate mixtures

3.1 Introduction

The message passing algorithms for approximate inference, as discussed in chapter 2, can be
directly extended to a multivariate mixture of Gaussians. Many of the algorithms and derivations
presented here directly follow from those in chapter 2, and this chapter is meant to be read in
conjunction with its predecessor.

Variational methods (α = 0) for mixtures of Gaussians have proved to be worth their salt
to the machine learning community, with the work of Attias (2000) leading a wealth of ap-
plications. The way has been paved for expectation propagation (α = 1) by Minka (2001a)’s
‘clutter problem’ and treatment of mixtures with unknown weights. Subsequent work included
an application of EP to infinite mixtures with known variances (Minka & Ghahramani, 2003).
Chang et al. (2005) used EP for Gaussian mixtures with independent dimensions, with added
parameters to determine whether a dimension was relevant to the clustering of the data.

New algorithms for mixture modeling

This chapter adds two new approaches to inference for a full multivariate mixture of Gaussians,
namely EP and the more general α-divergence message passing scheme. We present a convincing
argument for why and when EP should be favoured above VB, but also illustrate when there
is little to choose between the two algorithms, leaving a practitioner to his personal preference.
This is followed in section 3.7 with a presentation of experimental results on a number of data
sets, comparing the approximate predictive distributions and log marginal likelihoods with the
results obtained from VB and parallel tempering. Parallel tempering is a state of the art MCMC
method, and will be further discussed in chapter 4. From this comparison we can gather that
the approximate methods are perfectly suitable for model selection, and approximating the
predictive distribution with high accuracy. It is also practically shown that the EP fixed points
are not necessarily unique, and a fixed point may depend on both the initialization and the
random order in which factor refinements take place. Both these questions were posed by Minka
(2001a). Other points underlined empirically are: the log marginal likelihood estimates increase
with α; the number of local solutions depends on the prior width; the discrepancy between the
approximate and true log marginal likelihoods increase with model size; the marginal likelihoods
give a characteristic ‘Ockham hill’ as model size increase, providing a useful tool for model
selection.
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3.2 Mixture of Gaussians

Deterministic approximate inference for a multivariate mixture of Gaussians— where the mixing
weights, means, and precision matrices are unknown—naturally arises as an extension of the
example in chapter 2. The unknown parameters are θ ≡ {π,µ,Λ} ≡ {πj ,µj ,Λj}Jj=1, with the
mixing weights πj summing to one. The likelihood of observing a single data point is

p(xn|µ,Λ,π) =

J∑

j=1

πjN (xn|µj ,Λ
−1
j ) , (3.1)

and under an assumption that the data is independent and identically distributed, the likelihood
of the data set is the product of the individual likelihoods.

For the likelihood, we choose conjugate priors, meaning that the posterior distribution will be
in the same family as our choice of prior. Therefore, let the prior on the mixing weights and com-
ponent parameters be Dirichlet and Normal-Wishart respectively. The choice of approximating
distribution q will also match the form of the prior distribution.

The Dirichlet distribution is defined, for nonnegative δj , as

D(π|δ) =
Γ(
∑J

j=1 δj)
∏J

j=1 Γ(δj)

J∏

j=1

π
δj−1
j =

1

Z
D
(δ)

J∏

j=1

π
δj−1
j . (3.2)

The Normal and Wishart distributions, where we keep the notation to that of Normal-Wishart
to follow in (3.5), are defined as

N
(
µj|mj , (vjΛj)

−1
)

=
( vj

2π

) d
2 |Λj |

1
2 exp

{

− 1

2
tr[(µj −mj)(µj −mj)

⊤vjΛj ]
}

(3.3)

W(Λj |aj ,Bj) =
|Bj |aj

∏d
i=1 Γ(aj + 1−i

2 )
π

−d(d−1)
4 |Λj |aj− d+1

2 exp
{

− tr[BjΛj]
}

. (3.4)

The Wishart’s parameterization here is slightly unorthodox, but is chosen so that the one-
dimensional case will exactly reduce to the Gamma distribution, G(λj |aj , bj) = b

aj

j /Γ(aj) ·
λ

aj−1
j e−bjλj . The Normal-Wishart distribution is defined as

NW(µj ,Λj |mj , vj , aj ,Bj) = N
(
µj |mj , (vjΛj)

−1
)
W(Λj |aj ,Bj)

=
1

ZNW (vj , aj ,Bj)
exp

{

− 1

2
vjµ

⊤
j Λjµj + vjm

⊤
j Λjµj

− tr[(Bj +
1

2
vjmjm

⊤
j )Λj ] + (aj −

d

2
) ln |Λj |

}

(3.5)

Z
NW

(vj , aj ,Bj) =
(2π

vj

) d
2
π

d(d−1)
4

∏d
i=1 Γ(aj + 1−i

2 )

|Bj |aj
. (3.6)

Let the prior for the components, as well as the approximating distribution, be factorized
Normal-Wisharts,

p(µ,Λ) =
J∏

j=1

NW(µj ,Λj |m0j , v0j , a0j ,B0j) and q(µ,Λ) =
J∏

j=1

NW(µj ,Λj |mj , vj , aj ,Bj) .

(3.7)
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Figure 3.1: The Bayesian network, illustrating the parameter dependencies for a mixture of Gaussians,
is shown on the left. The joint distribution was in this case completed with latent variables zn. From
the Bayesian network we can choose a particular factorization, as illustrated in the factor graph on the
right. The factor graph clarifies the dependence of the factors on the different variables.

For a convenient notation, the parameters of the prior distribution are subscripted with an
additional ‘0’, and we assume that these hyperparameters are fixed, as illustrated in figure 3.1.
The parameters of the approximating distribution are given without an additional subscript ‘0’,
and it is these parameters that we will adjust to find a good approximating distribution q. The
prior for the mixing weights, as well as the relevant approximating distribution, is chosen to be
Dirichlet,

p(π) = D(π|δ0) and q(π) = D(π|δ) . (3.8)

We will therefore approximate the joint distribution p(x,θ) ≡ p(x,π,µ,Λ) by sq(µ,Λ)q(π).
When a divergence measure other than setting α to one is chosen, say for example in variational
Bayes, the likelihood is completed with latent variables z, and the joint distribution p(x, z,θ)
will be approximated with sq(µ,Λ)q(π)q(z).

3.3 Expectation propagation: a single observation

We embark on the EP road in exactly the same way as we have done in the simple case
with unknown means in chapter 2, by computing the exact marginal for the scale, and using
responsibility-weighted moment-matching equations to find the parameter updates.

If we know which component generated the data point in question, the following integral will
prove to be extremely useful. It is the normalizer on observing a data point, or the likelihood
averaged over a specific Normal-Wishart prior,

pj(xn) =

∫

W(Λj |a0j ,B0j)

∫

N (µ|m0j , (v0jΛ0j)
−1)N (xn|µj ,Λ

−1
j ) dµj dΛj

= T
(

xn

∣
∣
∣m0j ,

v0j + 1

v0j

2B0j

2a0j − d+ 1
, 2a0j − d+ 1

)

. (3.9)

The full derivation of this integral is given in appendix A.6. Two more relations will prove useful
in later derivations in this section:

Γ(δ + 1) = δΓ(δ) (3.10)

Ψ(δ + 1) =
d

dδ
ln Γ(δ + 1) =

d

dδ
[ln δ + ln Γ(δ)] =

1

δ
+ Ψ(δ) . (3.11)

The gamma function Γ(δ) is defined as Γ(δ) =
∫∞
0 tδ−1e−tdt, and Ψ(δ) is the digamma function,
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given by the logarithmic derivative of the gamma function,

Ψ(δ) =
d

dδ
ln Γ(δ) =

Γ′(δ)
Γ(δ)

. (3.12)

The following exposition gives the scale and parameters for matching sq(θ) to a prior multiplied
by a likelihood for one data point.

3.3.1 The scale

The scale is determined with s =
∫
p(xn,µ,Λ,π) dµ dΛ dπ, and the result

s =
1

∑J
j=1 δ0j

J∑

k=1

δ0kpk(xn) , (3.13)

is derived in appendix A.3. Define the responsibilities to be used in sections 3.3.2 and 3.3.3 as

rnj =
δ0jpj(xn)

∑J
k=1 δ0kpk(xn)

=

δ0jT
(

xn

∣
∣
∣m0j ,

v0j + 1

v0j

2B0j

2a0j − d+ 1
, 2a0j − d+ 1

)

J∑

k=1

δ0kT
(

xn

∣
∣
∣m0k,

v0k + 1

v0k

2B0k

2a0k − d+ 1
, 2a0k − d+ 1

)
. (3.14)

3.3.2 Parameter updates for the components

To get the weighed parameter updates for q(µ,Λ), the following expectations under a Normal-
Wishart distribution are needed. In each case the ‘prior’ expectation (the expectation if we
know that component j has not generated observation xn), and the ‘posterior’ expectation (the
expectation if we do know that component j was responsible for generating observation xn), is
given. The responsibilities (3.14) will blend these expectations when we match moments. The
expectations, derived in appendix A.6, are

〈Λj〉 = a0jB
−1
0j (3.15)

〈Λj |xn〉 =
(

a0j +
1

2

)[

B0j +
1

2

v0j

v0j + 1
(xn −m0j)(xn −m0j)

⊤
]−1

(3.16)

〈ln |Λj |〉 =

d∑

i=1

Ψ
(

a0j +
1− i

2

)

− ln |B0j | (3.17)

〈ln |Λj | |xn〉 =
d∑

i=1

Ψ
(

a0j +
1

2
+

1− i
2

)

− ln
∣
∣
∣B0j +

1

2

v0j

v0j + 1
(xn −m0j)(xn −m0j)

⊤
∣
∣
∣ (3.18)

〈Λjµj〉 = 〈Λj〉m0j (3.19)

〈Λjµj |xn〉 = 〈Λj |xn〉
v0jm0j + xn

v0j + 1
(3.20)

〈µ⊤
j Λjµj〉 =

d

v0j
+ m⊤

0j〈Λj〉m0j (3.21)

〈µ⊤
j Λjµj |xn〉 =

d

v0j + 1
+
(v0jm0j + xn

v0j + 1

)⊤
〈Λj |xn〉

(v0jm0j + xn

v0j + 1

)

. (3.22)

In the same way as we have done for the one-dimensional component means in chapter 2, we
can derive the parameter updates by again minimizing the KL-divergence with respect to the
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different parameters of q(µ,Λ). The parameters {mj , vj , aj ,Bj}Jj=1 of q(µ,Λ) that minimizes
KL(p(xn,µ,Λ,π)‖sq(µ,Λ)q(π)) are

mj = Λ̃−1
j

[
(1− rnj)〈Λjµj〉+ rnj〈Λjµj |xn〉

]
(3.23)

d

vj
= (1− rnj)〈µ⊤

j Λjµj〉+ rnj〈µ⊤
j Λjµj |xn〉 −m⊤

j Λ̃jmj (3.24)

d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj | = (1− rnj)〈ln |Λj |〉+ rnj〈ln |Λj ||xn〉 ≡ c2 (3.25)

ajB
−1
j = Λ̃j = (1− rnj)〈Λj〉+ rnj〈Λj |xn〉 ≡ C1 . (3.26)

(Both C1 and c2 are merely shorthands to keep the Newton method that follows below concise.)

Solving for aj and Bj in equations (3.25) and (3.26)

We have, for constants C1 and c2, ajB
−1
j = C1 and

∑d
i=1 Ψ(aj + (1 − i)/2) − ln |Bj | = c2.

Furthermore, ln |ajI|− ln |Bj | = ln |C1|, and hence − ln |Bj | = ln |C1|−d ln aj. We can therefore
solve for aj with Newton’s method by writing (3.25) as

d∑

i=1

Ψ
(

aj +
1− i

2

)

− d ln aj + ln |C1| − c2 = 0 . (3.27)

As another shorthand, define constant c = c2 − ln |C1|, and let

g(aj) =

d∑

i=1

Ψ
(

aj +
1− i

2

)

− d ln aj − c (3.28)

g′(aj) =

d∑

i=1

Ψ′
(

aj +
1− i

2

)

− d

aj
, (3.29)

where Ψ′(aj) is called the trigamma function, the first derivative of the digamma function. For
Newton’s method we choose an initial aj , and update it until convergence with

anew
j = aj −

g(aj)

g′(aj)
= aj

[

1−
∑d

i=1 Ψ(aj + (1− i)/2) − d ln aj − c
aj
∑d

i=1 Ψ′(aj + (1− i)/2) − d

]

. (3.30)

The Wishart distribution is only defined for aj > (d − 1)/2, and there is no guarantee that
our update equations will satisfy this constraint, because the gradient in the Newton-Raphson
method is taken only locally. The choice of a0j as an initial value of aj may be good, but
comes without guarantee: As the digamma function is concave and monotonically increasing for
positive arguments, a choice of an initial value larger than the solution may cause a negative
argument to be passed to the digamma function in the following iteration, causing havoc in the
iterative scheme.

We can reparameterize the fixed point equation to only allow for permissible values with
aj = exp{a′j}+ (d− 1)/2, and solve for a′j . Write equation (3.28) as a function of a′j, and divide
by the derivative with respect to a′j to get an update for a′j

new. For brevity, define k = (d−1)/2.
Some rearrangement allows the update in terms of aj to be multiplicative,

anew
j = (aj − k) exp

{

−
∑d

i=1 Ψ(aj + (1− i)/2) − d ln aj − c
(aj − k)

∑d
i=1 Ψ′(aj + (1− i)/2) − d(aj − k)/aj

}

+ k . (3.31)

On convergence of the Newton-Raphson method, aj is used to solve for Bj in equation (3.26).
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3.3.3 Parameter updates for the mixing weights

To update the mixing parameters, we find the parameter setting δ of q(π) that minimizes
KL(p(xn,µ,Λ,π)‖sq(µ,Λ)q(π)). Equating the derivative of the KL divergence with respect to
each δj to zero, we find that

〈lnπj〉q = 〈lnπj |xn〉

Ψ(δj)−Ψ
( J∑

i=1

δi

)

= Ψ(δ0j)−Ψ
( J∑

i=1

δ0i

)

− 1
∑J

i=1 δ0i

+
rnj

δ0j
. (3.32)

This gives a set of J coupled update equations that we need to solve to find δ. The second
expectation is taken given that we observed xn, i.e. over the posterior distribution, and its
moments are derived in appendix A.2. Appendix A.2 also shows that the right hand side of
(3.32), when not shown in the simple form given here, also contains a responsibility-weighted
sum that often occurs when dealing with mixture model moments.

Solving for δ in equation (3.32)

Parameter vector δ can again be solved for using Newton’s method. Two implementations of
Newton’s method are presented here; the first requires a matrix inversion, while the second
removes the need for a matrix inversion1.

Method 1. For (3.32) we define a constant cj with Ψ(δ0j)−Ψ(
∑J

i=1 δ0i)−1/
∑J

i=1 δ0i+rnj/δ0j =
cj . For Newton’s method we need to solve a system of equations, g(δ) = 0, and therefore
we let g be a column vector containing the different function evaluations,

g(δ)j = Ψ(δj)−Ψ(∆)− cj , (3.33)

where ∆ =
∑J

i=1 δi. Define the Jacobian J to be a matrix with entries

g′(δ)ji = Jji =
∂g(δ)j
∂δi

= IjiΨ
′(δj)−Ψ′(∆) , (3.34)

where Ψ′(a) is the trigamma function, and Iji = 1 if j = i and zero otherwise. With
Newton’s method we choose an initial δ (e.g. the present approximation’s δ with the
responsibility vector rn added, may be a good choice), and update it until convergence
with

δnew = δ − J−1g = δ − J(δ)−1g(δ) . (3.35)

As shown by Minka (2000), the matrix need not be inverted explicitly. As J = D +
11⊤Ψ′(∆), where D is a diagonal matrix with Dii = Ψ′(δi), and 1 is an all-one column
vector, the matrix inversion lemma (see appendix A.7) can be used to obtain

J−1 = D−1 − D−111⊤D−1

1/Ψ′(∆) + 1⊤D−11
(3.36)

(J−1g)j =
1

Djj

[

gj −
∑J

i=1 gi/Dii

1/Ψ′(∆) + 1⊤D−11

]

=
1

Djj

[

gj −
∑J

i=1 gi/Dii

1/Ψ′(∆) +
∑J

i=1 1/Dii

]

.

(3.37)

1Thanks to Ole Winther for pointing this out.
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Method 2. Instead of solving for each δj in (3.32), we can solve for the digamma function of
their sum, and from that recover each of the vector components. Define ∆ as the sum
∑J

i=1 δi, so that we now have, for each j, Ψ(δj)− Ψ(∆) = cj . A unique expression for δj
arises after taking the inverse of the digamma function,

δj = Ψ−1(cj + Ψ(∆)) . (3.38)

If we now sum over j in (3.38), and take both sides as arguments to the digamma function,
the equation

Ψ(∆) = Ψ
( J∑

j=1

Ψ−1(cj + Ψ(∆))
)

(3.39)

can be used in Newton’s method to solve for Ψ(∆) in the usual way. Notice that a solution
is obtained for the digamma evaluation of ∆, and not ∆ itself, so that the solution can be
directly substituted into (3.38). Let

g
(
Ψ(∆)

)
= Ψ(∆)−Ψ

( J∑

j=1

Ψ−1(cj + Ψ(∆))
)

(3.40)

g′
(
Ψ(∆)

)
= 1−Ψ′

( J∑

j=1

Ψ−1(cj + Ψ(∆))
)
[

J∑

j=1

Ψ−1′(cj + Ψ(∆))
)
]

, (3.41)

so that

Ψ(∆)new = Ψ(∆)− g(Ψ(∆))

g′(Ψ(∆))
. (3.42)

On solving for Ψ(∆), each δj can be recovered from (3.38).

3.4 Variational Bayes: a single observation

The introduction of latent allocation variables—turning the joint distribution into a product—
allows the exclusive KL divergence KL(p(x, z,θ)‖sq(θ)q(z)) to be minimized with a well-known
EM algorithm. The joint distribution becomes a product with

p(xn,µ,Λ,π, zn) = p(xn|µ,Λ, zn)p(zn|π)p(π)p(µ,Λ)

=
J∏

j=1

[
πjp(xn|µj ,Λj)

]znjp(π)p(µ,Λ) . (3.43)

The joint can now be approximated with the factorized distribution sq(µ,Λ)q(π)q(zn), where
q(zn) is a multinomial distribution, q(zn) =

∏J
j=1 γ

znj

nj , with γnj ≥ 1 and
∑

j γnj = 1.

3.4.1 Parameter updates

In a similar fashion to section 2.5, we get an iterative optimization scheme comprising of an
expectation and a maximization step.

E-step. For the expectation step the present approximation q(µ,Λ)q(π) in the loop is used,
and the following holds:

∫

q(µ,Λ)q(π) ln p(xn, zn|µ,Λ,π) dµ dΛ dπ



62 3. Approximate inference for multivariate mixtures

=

J∑

j=1

znj

[

Ψ(δj)−Ψ
( J∑

i=1

δi

)

+
1

2

( d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj |
)

− 1

2
(xn −mj)

⊤ajB
−1
j (xn −mj)−

1

2

d

vj
− d

2
ln 2π

]

. (3.44)

Equation (3.44) is used in updating the approximation q(zn) with

γ̃nj = exp

{

Ψ(δj)−Ψ
( J∑

i=1

δi

)

+
1

2

( d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj |
)

− 1

2
(xn −mj)

⊤ajB
−1
j (xn −mj)−

1

2

d

vj

}

, (3.45)

and finally γnj = γ̃nj/
∑

k γ̃nk.

M-step. For the maximization step, we update the component parameters, for which we use
the prior, the data point xn, and the present approximation q(zn) (or γnj). Note that

∑

zn

q(zn) ln
[
p(xn, zn|µ,Λ,π)p(µ,Λ)p(π)

]

=

J∑

j=1

[

− 1

2

(

µj −
v0jm0j + γnjxn

v0j + γnj

)⊤
(v0j + γnj)Λj

(

µj −
v0jm0j + γnjxn

v0j + γnj

)

− tr
[
(B0j +

1

2

v0jγnj

v0j + γnj
(m0j − xn)(m0j − xn)⊤)Λj

]
+
(
a0j +

γnj

2
− d

2

)
ln |Λj |

]

+
J∑

j=1

(δ0j + γnj − 1) lnπj + const , (3.46)

and as this is in the Dirichlet and Normal-Wishart forms of (3.2) and (3.5) we can read
off the parameter updates as

vj = v0j + γnj (3.47)

mj =
v0jm0j + γnjxn

v0j + γnj
(3.48)

Bj = B0j +
1

2

v0jγnj

v0j + γnj
(m0j − xn)(m0j − xn)⊤ (3.49)

aj = a0j +
γnj

2
(3.50)

δj = δ0j + γnj . (3.51)

The iterations between the E and M steps are repeated until convergence, and convergence (at
least to a local minimum) is guaranteed because both steps are convex.

3.4.2 The scale

The approximate log marginal likelihood ln s—or the negative variational free energy—is com-
puted after the iterative EM method has converged. As we can write ln p(xn,µ,Λ,π, zn) =
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ln p(xn|µ,Λ, zn) + ln p(zn|π) + ln p(π) + ln p(µ,Λ) we have

ln s = 〈ln p(xn|µ,Λ, zn)〉+ 〈ln p(zn|π)〉+ 〈ln p(π)〉+ 〈ln p(µ,Λ)〉
− 〈ln q(µ,Λ)〉 − 〈ln q(π)〉 − 〈ln q(zn)〉 (3.52)

where the expectation is taken over the resulting approximation from the EM steps, q(µ,Λ)q(π)q(zn).
To get ln s, an approximation to the log marginal likelihood, we simply determine these expec-
tations. Notice the difference between prior parameters (starting with a subscript ‘0’), and the
parameters of q, which go without the ‘0’ subscript. The expectations needed in (3.52) are

〈ln p(xn|µ,Λ, zn)〉 =
〈 J∑

j=1

znj ln p(xn|µj ,Λj)
〉

=
1

2

J∑

j=1

γnj

[

− d ln(2π) +
d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj |

− (xn −mj)
⊤ajB

−1
j (xn −mj)−

d

vj

]

(3.53)

〈ln p(zn|π)〉 =
〈 J∑

j=1

znj lnπj

〉

=
J∑

j=1

γnj

[

Ψ(δj)−Ψ
( J∑

i=1

δi

)]

(3.54)

〈ln p(π)〉 = lnZ
D
(δ0) +

J∑

j=1

(δ0j − 1)
[

Ψ(δj)−Ψ
( J∑

i=1

δi

)]

(3.55)

〈ln p(µ,Λ)〉 =

J∑

j=1

[

− lnZ
NW

(v0j , a0j ,B0j)−
d

2

v0j

vj
− 1

2
v0j(mj −m0j)

⊤ajB
−1
j (mj −m0j)

− ajtr
[
B0jB

−1
j

]
+
(

a0j −
d

2

)( d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj |
)]

(3.56)

〈ln q(µ,Λ)〉 =

J∑

j=1

[

− lnZ
NW

(vj , aj ,Bj)−
d

2

− daj +
(

aj −
d

2

)( d∑

i=1

Ψ
(

aj +
1− i

2

)

− ln |Bj |
)]

(3.57)

〈ln q(π)〉 = − lnZ
D
(δ) +

J∑

j=1

(δj − 1)
[

Ψ(δj)−Ψ
( J∑

i=1

δi

)]

(3.58)

〈ln q(zn)〉 =

J∑

j=1

γnj ln γnj . (3.59)

3.5 α-divergence: a single observation

To minimize an α-divergence, we follow the fixed point framework from section 2.6. The ‘prior’ in
each step is the product [p(π)p(µ,Λ)]α [q(t)(π)q(t)(µ,Λ)]1−α, for which we define the shorthand
parameters

v̂i = αv0i + (1− α)vi(t) (3.60)
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m̂i =
αv0im0i + (1− α)vi(t)mi(t)

αv0i + (1− α)vi(t)
(3.61)

B̂i = αB0i + (1− α)Bi(t) +
1

2

α(1− α)v0ivi(t)

αv0i + (1− α)vi(t)
(m0i −mi(t))(m0i −mi(t))

⊤ (3.62)

âi = αa0i + (1− α)ai(t) (3.63)

δ̂j = αδ0j + (1− α)δj(t) . (3.64)

By examining the above parameters and the scale given in (3.66), we see that the scale may not
be finite, and we suddenly find ourselves with a set of practical constrains when α is outside
the interval [0, 1]. Some of the parameter constraints needed to ensure that the approximating
distribution is normalizable, might be violated:

• from (3.60), we require v̂i > 0;

• from (3.62), we require |B̂k| > 0;

• from (3.63) and the Gamma functions in (3.65), we require both âk > (d − 1)/2 and
âk > (d− α)/2;

• from (3.64), we require δ̂j ≥ 0.

The experimental results given in section 3.7 only consider α = 1
2 , the Hellinger distance, giving

approximations ‘between’ those arising from variational Bayes and expectation propagation. For
values of α > 1, the fixed point iterations often failed on account of the constraints given above.

3.5.1 Fixed point iterations

The iterative scheme outlined in section 2.6 is now implemented on a larger scale. We start
with an initial s(0)q(0)(zn)q(0)(π)q(0)(µ,Λ). The prior distribution may provide a good starting
point, with the parameters γnj(0) of q(0)(zn) all set to 1/J , and s(0) set to one. Starting with
t = 0, the following steps are repeated until convergence, or until some maximum number of
iterations is reached.

Step 1. Determine the scale, for which we define the unscaled responsibilities rnj as

Rnj = γ1−α
nj(t)

Γ(δ̂j + α)

Γ(δ̂j)
|B̂j |(1−α)/2 Γ(

[2âj+α−d]
2 )

Γ(
[2âj+α−d]+d

2 )

d∏

l=1

Γ(
2âj+α+1−l

2 )

Γ(
2âj+1−l

2 )

× T
(

xn

∣
∣
∣ m̂j ,

v̂j + α

v̂jα

2B̂j

2âj + α− d, 2âj + α− d
)

, (3.65)

to get the scale,

s(t′) = s1−α
(t)

1

ZD(δ0)α
1

ZD(δ(t))1−α

( ∏

j Γ(δ̂j)

Γ(α+
∑J

j=1 δ̂j)

)

×
J∏

j=1

ZNW (v̂j , âj , B̂j)

Z
NW

(v0j , a0j ,B0j)αZNW
(vj(t), aj(t),Bj(t))1−α

× (2π)(1−α)d/2α−d/2
J∑

k=1

Rnk . (3.66)
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The derivation of the scale is given in appendix A.4.2; to check the correctness of the
derivation, substituting α = 1 in the above scale again gives us the scale (3.13) derived for
expectation propagation.

Now we find a normalized distribution q(t′)(zn)q(t′)(π)q(t′)(µ,Λ) that minimizes the KL
divergence to

p(xn,µ,Λ,π, zn)α[q(t)(zn)q(t)(π)q(t)(µ,Λ)]1−α . (3.67)

Again, we have already solved for the scale and only need to match moments. The following
expectations are derived in appendix A.6, will be used in the (responsibility-weighted)
moment matching update equations:

〈Λj〉 = âjB̂
−1
j (3.68)

〈Λj |xn〉 =
(

âj +
α

2

)[

B̂j +
1

2

αv̂j

v̂j + α
(xn − m̂j)(xn − m̂j)

⊤
]−1

(3.69)

〈ln |Λj |〉 =

d∑

i=1

Ψ
(

âj +
1− i

2

)

− ln |B̂j | (3.70)

〈ln |Λj | |xn〉 =

d∑

i=1

Ψ
(

âj +
α

2
+

1− i
2

)

− ln
∣
∣
∣B̂j +

1

2

αv̂j

v̂j + α
(xn − m̂j)(xn − m̂j)

⊤
∣
∣
∣

(3.71)

〈Λjµj〉 = 〈Λj〉m̂j (3.72)

〈Λjµj |xn〉 = 〈Λj |xn〉
v̂jm̂j + αxn

v̂j + α
(3.73)

〈µ⊤
j Λjµj〉 =

d

v̂j
+ m̂⊤

j 〈Λj〉m̂j (3.74)

〈µ⊤
j Λjµj |xn〉 =

d

v̂j + α
+
( v̂jm̂j + αxn

v̂j + α

)⊤
〈Λj |xn〉

( v̂jm̂j + αxn

v̂j + α

)

. (3.75)

For the responsibilities, define

rnj =
Rnj

∑J
k=1Rnk

. (3.76)

Exactly the same weighted sum of moments as equations (3.23) to (3.26) will be used to
update mj(t′), vj(t′), aj(t′) and Bj(t′) for all components j, and we do not repeat them here.
The only difference lies in the computation of the expectations and responsibilities being
used.

By taking a similar route as that taken to derive the mixing weight updates in section
3.3.3, we arrive at a set of update equations,

Ψ(δj(t′))−Ψ
( J∑

i=1

δi(t′)

)

= (1− rnj)Ψ(δ̂j) + rnjΨ
(

δ̂j + α
)

−Ψ
(

α+
J∑

i=1

δ̂i

)

= cj . (3.77)

The parameter values can be solved for with Newton’s method, following the method laid
out in section 3.3.3, only with different values for cj .

Finally, the parameters of q(t′)(zn) are set as γnj(t
′) = rnj .
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Step 2. We have a scaled distribution s(t′)q(t′)(zn)q(t′)(π)q(t′)(µ,Λ), which we damp towards
the previous approximation, s(t)q(t), to find an updated s(t+1)q(t+1), where q(t+1) is nor-
malized. Define the parameters of the (unscaled) damped approximating distributions
q(t)(π)ǫq(t′)(π)1−ǫ and q(t)(µ,Λ)ǫq(t′)(µ,Λ)1−ǫ as

vj(t+1) = ǫvj(t) + (1− ǫ)vj(t′) (3.78)

mj(t+1) =
ǫvj(t)mj(t) + (1− ǫ)vj(t′)mj(t′)

ǫvj(t) + (1− ǫ)vj(t′)
(3.79)

Bj(t+1) = ǫBj(t) + (1− ǫ)Bj(t′) (3.80)

+
1

2

ǫvj(t)(1− ǫ)vj(t′)

ǫvj(t) + (1− ǫ)vj(t′)
(mj(t) −mj(t′))(mj(t) −mj(t′))

⊤ (3.81)

aj(t+1) = ǫaj(t) + (1− ǫ)aj(t′) (3.82)

δ(t+1) = ǫδ(t) + (1− ǫ)δ(t′) , (3.83)

for the mixing weights and each of the mixture components j. Then damping gives

q(t)(π)ǫq(t′)(π)1−ǫ =
1

ZD(δ(t))ǫ
1

ZD(δ(t′))1−ǫ

J∏

j=1

π
δj(t+1)−1

j (3.84)

q(t)(µ,Λ)ǫq(t′)(µ,Λ)1−ǫ =

J∏

j=1

1

Z
NW

(v(t), aj(t),Bj(t))ǫ
1

Z
NW

(v(t′), aj(t′),Bj(t′))1−ǫ

× exp
{

− 1

2
(µj −mj(t+1))

⊤(vj(t+1)Λj)(µj −mj(t+1))

− tr[Bj(t+1)Λj] +
(
aj(t+1) −

d

2

)
ln |Λj |

}

(3.85)

q(t)(zn)ǫq(t′)(zn)1−ǫ =

J∏

j=1

[γǫ
nj(t)γ

1−ǫ
nj(t′)]

znj . (3.86)

We would like to keep q(t+1) as a normalized distribution, for which we need to divide it
by some scale, and multiply s(t+1) by the same scale. The required scales are

Z1 =

∫

q(t)(π)ǫq(t′)(π)1−ǫ dπ =
Z

D
(δ(t+1))

ZD(δ(t))ǫZD(δ(t′))1−ǫ
(3.87)

Z2 =

∫

q(t)(µ,Λ)ǫq(t′)(µ,Λ)1−ǫ dµ dΛ

=
J∏

j=1

Z
NW

(vj(t+1), aj(t+1),Bj(t+1))

ZNW (vj(t), aj(t),Bj(t))ǫZNW (vj(t′), aj(t′),Bj(t′))1−ǫ
. (3.88)

Finally the parameters of q(t+1)(zn) are set as

γnj(t+1) = Z−1
3 γǫ

nj(t)γ
1−ǫ
nj(t′) , where Z3 =

J∑

k=1

γǫ
nk(t)γ

1−ǫ
nk(t′) (3.89)

To keep q(t+1) as a normalized distribution, a division by Z1, Z2, and Z3 has to be made;
therefore their logs are added to ln s(t+1) with

ln s(t+1) = ǫ ln s(t) + (1− ǫ) ln s(t′) + lnZ1 + lnZ2 + lnZ3 . (3.90)
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3.6 Minimizing over a factor graph

For full multivariate mixtures we have chosen to work with Dirichlets (for the mixing weights)
and Normal-Wisharts (for the component parameters) as approximating distributions. We let
the factor approximations f̃n be of exactly the same form,

f̃n(π,µ,Λ) = s̃n

J∏

j=1

exp
{

(δ̃nj − 1) ln πj −
1

2
ṽnjµ

⊤
j Λjµj + ṽnjm̃

⊤
njΛjµj

− tr[(B̃nj +
1

2
ṽnjm̃njm̃

⊤
nj)Λj ] + (ãnj −

d

2
) ln |Λj |

}

. (3.91)

This choice of f̃n also takes the same form as the prior. The message passing algorithm is:

• Start by initializing, for n = 1, . . . ,N , and all components j,

δ̃nj = 1 m̃nj = 0 ãnj =
d

2

ṽnj = 0 B̃nj = 0 s̃n = 1 . (3.92)

so that all the factor approximations are one. Initialize the prior, for all j, as

δ̃0j = δ0j B̃0j = B0j

ṽ0j = ṽ0j ã0j = a0j

m̃0j = m0j s̃0 =
1

Z
D
(δ̃0)

J∏

j=1

1

Z
NW

(ṽ0j , ã0j , B̃0j)
. (3.93)

• Repeat until all f̃n converge:

1. Pick a factor n. This can be done by looping over random permutations of 1, · · · ,N .

2. Compute the ‘old’ approximation q\n(π)q\n(µ,Λ), with parameters indexed by an
additional ‘o’, from reversing equations (3.101) to (3.105), hence subtracting the
factor contributions from the present approximation,

voj = vj − ṽnj (3.94)

moj =
vjmj − ṽnjm̃nj

voj
(3.95)

Boj = Bj − B̃j +
1

2
vjmjm

⊤
j −

1

2
vojmojm

⊤
oj −

1

2
ṽnjm̃njm̃

⊤
nj (3.96)

aoj = aj − ãnj +
d

2
(3.97)

δoj = δj − δ̃nj + 1 . (3.98)

If the cavity distribution q\n is not proper (normalizable), a robust heuristic would
be to skip the update and continue with the next factor in step 1. Figure 3.5 shows
the effect of these update skips.

3. Again let S, and for all j, δj , vj, j , aj , Bj be the parameters of q(π)newq(µ,Λ)new

that minimizes (2.84), in this particular case

Sq(π)newq(µ,Λ)new = arg min
s′q(π)q(µ,Λ)

Dα

(
q\n(π)q\n(µ,Λ)fn(π,µ,Λ)

∥
∥ s′q(π)q(µ,Λ)

)
.

(3.99)
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The new approximation can be found with the methods discussed in sections 3.3,
3.4 and 3.5. Depending on the value of α, latent variables may need to be added
to the joint distribution for tractability, and q(zn) added to the approximation. As
the parameters γnj of q(zn) are related to a specific term fn and its approximation
f̃n, it is not necessary to keep track of any ‘leave-one-out’ distributions for the latent
variables, and they are merely used as a means to an end.

After solving for the new approximation, we have to set the factor contribution, and
hence

f̃n = S
q(π)newq(µ,Λ)new

q\n(π)q\n(µ,Λ)

= S
Z

D
(δo)

Z
D
(δ)

J∏

j=1

Z
NW

(voj , aoj ,Boj)

Z
NW

(vj , aj ,Bj)

exp
{

(δj − δoj) ln πj −
1

2
(vj − voj)µ

⊤
j Λjµj + (vjmj − vojmoj)

⊤Λjµj

− tr[(Bj −Boj +
1

2
vjmjm

⊤
j −

1

2
vojmojm

⊤
oj)Λj ] + (aj − aoj) ln |Λj |

}

. (3.100)

According to factor definition (3.91), we get the following substitutions for the dif-
ferent parameter contributions,

ṽnj = vj − voj (3.101)

m̃nj =
vjmj − vojmoj

ṽnj
(3.102)

B̃j = Bj −Boj +
1

2
vjmjm

⊤
j −

1

2
vojmojm

⊤
oj −

1

2
ṽnjm̃njm̃

⊤
nj (3.103)

ãnj = aj − aoj +
d

2
(3.104)

δ̃nj = δj − δoj + 1 (3.105)

s̃n = S
Z

D
(δo)

Z
D
(δ)

J∏

j=1

Z
NW

(voj , aoj ,Boj)

Z
NW

(vj , aj ,Bj)
. (3.106)

• Finally we determine the approximation to the evidence p(x) with

p(x) ≈
∫ N∏

n=0

f̃n(π,µ,Λ) dπ dµ dΛ

=
( N∏

n=0

s̃n

) ∫ J∏

j=1

π
PN

n=0 δ̃nj−1
j e−

1
2
[
PN

n=0 ṽnj ]µ
⊤
j Λjµj+[

PN
n=0 ṽnjm̃

⊤
nj ]Λjµj

× e−tr[
PN

n=0(B̃nj+
1
2
ṽnjm̃njm̃

⊤
nj)Λj ]+

PN
n=0(ãnj− d

2
) ln |Λj| dπ dµ dΛ

=
( N∏

n=0

s̃n

) ∫ J∏

j=1

π
δj−1
j e−

1
2
vjµ⊤

j Λjµj+vjm
⊤
j Λjµj

× e−tr[(Bj+
1
2
vjmjm

⊤
j )Λj ]+(aj− d

2
) ln |Λj | dπ dµ dΛ

=
( N∏

n=0

s̃n

)

ZD(δ)

J∏

j=1

ZNW (vj , aj,Bj) . (3.107)
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Figure 3.2: For the galaxy data set, this plot shows the progress of the log marginal likelihood estimate
over time. The first loop over N = 82 data points is the ‘assumed density filtering’ (ADF) loop, where
observations are included one by one in the approximation. Further loops over random permutations
of the data cause the approximation to stabilize to ln s = −232.4. With three components, the prior
parameter settings were δ0j = 1, m0j = 0, v0j = 10−2, a0j = 1 and B0j = 0.11.

Starting with another prior contribution

In the case of mixtures discussed here, a symmetric prior (i.e. the prior is identical for each
term in the product over j) leaves the algorithm in a stationary point making no real progress,
as all responsibilities rnj remain equal. We may wish to break symmetry by, for example,
starting with a random factor initialization. Symmetry is broken here by starting with the
‘wrong’ prior, and correcting the prior factor contributions to the true prior after a loop over
the data. After removing the (wrong) prior’s contribution to the approximation, we find the
new approximation’s parameters by including the (true) prior with

vj = voj + v0j (3.108)

mj =
vojmoj + v0jm0j

vj
(3.109)

Bj = Boj + B0j +
1

2
vojmojm

⊤
oj +

1

2
v0jm0jm

⊤
0j −

1

2
vjmjm

⊤
j (3.110)

aj = aoj + a0j −
d

2
(3.111)

δj = δoj + δ0j − 1 , (3.112)

and hence the prior contributions are corrected to ṽ0j = v0j , m̃0j = m0j , B̃0j = B0j , ã0j =
a0j , δ̃0j = δ0j . Lastly, the prior’s contribution to the scale or approximate marginal likelihood is

s̃0 =
1

Z
D
(δ0)

J∏

j=1

1

Z
NW

(v0j , a0j ,B0j)
. (3.113)
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3.7 Experimental results

This section examines the approximate predictive distributions and log marginal likelihoods
found by minimizing the VB, EP, and α = 1

2 energy (objective) functions over a factor graph,
and the results are compared to the ‘gold standard’ predictions and marginal likelihoods obtained
from thermodynamic integration through parallel tempering. Parallel tempering is a Markov
chain Monte Carlo method, discussed in greater detail in chapter 4.

Two methods for approximate inference that we discussed in chapter 1 are not included in the
comparison. The maximum a posteriori estimate is omitted, for it doesn’t provide an estimate
of the probability mass and cannot be used for model selection. A Laplace approximation can
be used for model selection, as was done with flat priors by Roberts et al. (1998). It is excluded
as the Hessian matrix couples the component means and variances into a joint covariance matrix
of a Gaussian q(µj ,Λj), making the approximate predictive distribution intractable.

3.7.1 A toy example

Before turning to larger real-life data sets, we illustrate the difference between EP and VB on a
toy example: EP generally gives better predictive distributions than VB on small data sets. As
more data is observed, the scale of this improvement is expected to decrease.

Here a data set with N = 7 examples were generated from a two-component mixture of
Gaussians, and by default we therefore know the correct model class. We have used prior
parameter settings δ0j = 1, m0j = 0, v0j = 10−2, a0j = 1 and B0j = 0.11.

In figures 3.3(a) and 3.3(c) we show a marked difference between the VB and EP predictive
distributions on this small data set, both with an incorrect and correct choice of J . Notice that
EP gives a broader estimate of q(θ), and hence also broader predictive densities. This difference
is most noticeable around the peaks of the distributions, with EP generally giving a closer fit.

As a next illustration the size of the data set was doubled to N = 14 by duplicating each
example. We expect less of a difference in predictive density as the posterior has more concen-
trated (peaked) modes when there is a greater abundance of data. Figures 3.3(b) and 3.3(d)
show a smaller—or even indistinguishable—discrepancy between the EP and VB predictive dis-
tributions. In figure 3.3(b) we can still mark EP’s slight improvement around the peaks of the
density.

EP gives a better approximation than VB to the log marginal likelihood. This can be
expected from the nature of the EP updates; also bear in mind that VB provides a lower bound
to the true lnZ. This is illustrated in figure 3.4 for each of the problems in figure 3.3.

3.7.2 Experimental observations

A number of observations from the experiments presented here will confirm the theoretic results
given in chapter 2:

• The log marginal likelihood estimates increase with α. The respective objective functions
are continuously related through parameter α (see for example equation (2.107)) and
therefore we expect related local minima for many data sets. This relation can be observed,
with the evaluation of ln s increasing with α over a local minimum.

• The number of local solutions is influenced by the width of the prior distribution, with
more local minima arising in broader priors.
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(c) J = 2, N = 7
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Figure 3.3: The predictive densities p(xnew|x,MJ) given by expectation consistent inference (the ex-
pectation propagation algorithm) and variational Bayes. In figures 3.3(a) and 3.3(c) a two-component
toy data set was used. For figures 3.3(b) and 3.3(d) the data set size was doubled by duplicating each
example. With less data EC/P gives a predictive density that is closer to the truth than VB. With in-
creasing data set size (and hence also more sharply peaked posteriors) this difference becomes less marked
to almost indistinguishable.
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Figure 3.4: The log marginal likelihood estimates for the problems shown in figures 3.3(a) to 3.3(d).
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• The EP fixed points are not unique, and the fixed point depends on both the initialization
and the random order in which factor refinements take place. Both these questions were
posed by Minka at the end of his thesis (Minka, 2001a).

• The growth of ln s, as a function of model size, gives a characteristic ‘Ockham hill’, where
the ‘peak’ of the hill indicates the model with highest approximate ln p(x). This graph
can be used for model comparison or selection, as its form closely matches the MCMC
evaluation of ln p(x).

• The discrepancy between ln s and the true ln p(x) grows as the model size is increased. This
is mainly due to mixtures being invariant under component relabelling, with the number
of permutations increasing as J !, with J being the number of components. The true
log marginal likelihood will take all such permutations—mostly giving different posterior
modes—into account. Provided the modes are well separated, the approximate distribution
q(θ) is only able to capture a single.

• As component relabelling gives the same predictive distribution under a symmetric prior,
we do not expect a pronounced difference between the true predictive distribution and the
predictive distribution obtained from an average over a single-mode q(θ).

• the EC/EP approximation gives a predictive distribution that is closer to the truth than
that given by VB.

The message passing algorithm was run for α = 0 (VB) , α = 1
2 (Hellinger distance), and

α = 1 (EC/EP). The data sets under investigation have been well studied, e.g. by Richardson &
Green (1997) for a reversible jump MCMC, and by Corduneanu & Bishop (2001) for variational
Bayesian model selection:

galaxy. The galaxy data set contains the velocities (in 1000s of km/second) of 82 galaxies,
diverging from our own, in the Corona Borealis region. Multimodal velocity densities
provides evidence for clustering of the galaxies into superclusters which are surrounded by
large voids, with clusters corresponding to modes in the velocity density (Roeder (1990)
provides more detail).

acidity. The acidity data set contains the log measured acid neutralizing capacity indices for
155 lakes in North-central Wisconsin (USA). Identifying groups of lakes at different envi-
ronmental risk can be useful in determining if any characteristics of a lake can be used to
predict higher acidification.

enzyme. The enzyme data set contains enzymatic activity measurements, for an enzyme in-
volved in the metabolism of carcinogenic substances, taken from 245 unrelated individuals.
Of interest here is the identification of subgroups of slow or fast metabolisers as a marker
of genetic polymorphism in a general population.

old faithful. The data set used contains 222 observations from the Old Faithful Geyser in the
Yellowstone National Park. Two measurements—the duration of an eruption, rounded to
the nearest 0.1 minutes, and the waiting time to the next eruption, rounded to the nearest
minute—constitute a single observation. Although not the largest or most regular, it is the
most frequent of the big geysers in the park. The geyser’s name comes from the consistency
(and predictability) of its eruptions; it was named by the Washburn Expedition in 1870,
and is presently still erupting with the same regularity.
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Figure 3.5: The convergence need not be fast; this plot is for the better galaxy approximation on
the right in figure 3.7. With three components, the prior parameter settings were δ0j = 1, m0j = 0,
v0j = 10−2, a0j = 1 and B0j = 0.11. The figure also indicates: A, the ADF loop; B, the refinement
loops; C, cases where a factor approximation was skipped because constraint-violating parameters (e.g.
a negative variance) were recovered for the cavity (leave-one-out) distributions q\n(θ). The dotted lines
in each case show the end of one loop of factor refinements.

Discussion

There are a few algorithmic details that are worth considering, and figures 3.2 and 3.5 aim to
illucidate the message passing scheme over time.

The progress of ln s, from an algorithmic point of view, is shown in figure 3.2. The algorithm
starts with ln s being equal to the prior distributions’s normalizing constant, and it decreases
as more factors are included in the ADF loop. The following loops over factors all involve
refinements. The figure is given for EP, with ln s both increasing and decreasing over the
refinement loops. In contrast the refinements of VB should, by virtue of the EM algorithm used,
give a monotonic increase of ln s. Section 2.9.3 gives greater detail to this statement.

In the practical implementation presented here, a factor approximation f̃n’s update is skipped
if ‘illegal’ parameters are recovered for the ‘leave-one-out’ distribution q\n(θ), leaving q\n(θ)
unnormalizable. In that case we choose to move on to the next factor, hoping that the problem
will have self-alleviated when we return to the particular factor n in the next refinement loop.
Figure 3.5’s purpose is twofold: it serves as an illustration that the convergence times of EP
need not be fast, and it also shows that convergence is sometimes possible when updates are
skipped.

EP is a single loop algorithm that aims to minimize a free energy. It comes with no guarantee
of convergence, and it was often found that some parameters in figures similar to figure 3.5 (with
a larger number of mixture components) never reached a stable solution. A particular example
can be seen for a six component mixture under a narrow prior in figure 3.10. More sophisticated
double loop algorithms can be implemented to minimize the free energy, and the interested
reader is referred to Opper & Winther (2005a)’s detailed discussion on Expectation Consistent
(EC) approximate inference (EP can be seen as a particular algorithm minimizing the EC free
energy). Alternatively, one may argue, as is done by Minka (2001c), that the approximating
distribution is probably not a good choice if EP doesn’t converge.
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3.7.3 The predictive distribution

For a specific model M, in this case indexed by the number J of Gaussians, the predictive
distribution can be approximated by using q(θ) as an approximation to the posterior p(θ|x,M).
After running the generic message passing scheme, be it for VB or EP or some other divergence
measure that was minimized, we have a set of parameters δ, {mj , vj , aj ,Bj}Jj=1 governing the
shape of the approximation. The approximate predictive distribution is determined by the
integral, with shorthands µ = {µj}Jj=1 and Λ = {Λj}Jj=1,

p(xnew|x,M) =

∫

p(xnew|θ,M)p(θ|x,M) dθ (3.114)

≈
∫

p(xnew|θ,M)q(θ) dθ

=

∫ J∑

j=1

πjN (xnew|µj ,Λ
−1
j )D(π|δ)

J∏

j=1

NW(µj ,Λj |mj , vj , aj ,Bj) dπdµdΛ

=

J∑

j=1

δj
∑J

k=1 δk
T
(

xnew

∣
∣
∣mj ,

vj + 1

vj

2Bj

2aj − d+ 1
, 2aj − d+ 1

)

. (3.115)

The exact details of the simplification of an integral similar to the one above follows in appendix
A.6.

The predictive distributions for each of the one dimensional data sets in question can be
found in figures 3.6 and 3.7. The final predictive distribution strongly depends on whether or
not a local minimum in the objective function has been found, as is clear from figure 3.7.

Through the eyes of the predictive distribution, we are averaging over many equivalent modes
of the posterior distribution in (3.114), as the likelihood is invariant under permutations of
the mixture component labels. If the unimodal approximation q(θ) fits one of these modes,
we can still expect the predictive distribution to match the truth. To illustrate how much the
predictive distribution from (3.115) differs from the true predictive distribution, the figures show
the average in (3.114) obtained through a MCMC method. We shall leave the exact details of
MCMC used (here the zero-temperature samples from a parallel tempered chain) to chapter 4.

It is interesting to note the difference in predictive distributions given by VB and EP/C,
which we compare to the true predictive distribution in figure 3.8. The ‘truth’ is taken as average
over 10,000 samples from a parallel tempered chain (see chapter 4). Expectation consistent
inference works on the principle of finding a q(θ) that matches the moments of the predictive
distributions for all xn under the cavity distributions q\n(θ). We can therefore expect a better
predictive distribution than that given by VB, which is based on a lower bound to the posterior.

3.7.4 Ockham hills and the approximate log marginal likelihood

Some insight into the difference between various divergence measures can be gained by examining
their Ockham hills. The term ‘Ockham hill’ is here used loosely as a plot of the log marginal
likelihood for a varying number of models. (Rasmussen & Ghahramani (2001) give an insightful
account of Ockham’s razor, showing that ‘plateaus’, where the log marginal likelihood flattens
with increasing complexity, are also possible.) Each plot is complemented with an estimate of
ln p(x|MJ ) for different model sizes J . In each case the estimate was obtained form an average
over ten MCMC simulations, using 10,000 samples, with two standard deviation error bars also
being shown. The exact details of the MCMC method used is presented in chapter 4, where
section 4.5 in particular relates to these results.



3.7. Experimental results 75

3 4 5 6 7
0

5

10

15

20

25

30

xnew

∝
p
(x

n
e
w
|x

)

0 1 2 3
0

20

40

60

80

100

xnew

∝
p
(x

n
e
w
|x

)

Figure 3.6: The predictive distribution p(xnew|x,MJ) for the acidity data set (left) and the enzyme
data set (right). The chosen model MJ was the one giving the highest log marginal likelihood estimate
in figures 3.11 and 3.12, with J = 2 and J = 3 components respectively. The two log marginal likelihood
approximations were ln s = −200.3 (left) and ln s = −82.4 (right). The prior parameter settings were
δ0j = 1, m0j = 0, v0j = 10−2, a0j = 1 and B0j = 0.11. The true predictive distribution, obtained from
an average over a MCMC sample, is shown with a dotted line.
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Figure 3.7: The predictive distribution p(xnew|x,M3), from two different approximations found by EP
for the galaxy dataset. This clearly illustrates the non-uniqueness of the EP fixed points. The chosen
model was the one giving the highest log marginal likelihood estimate in figure 3.10, for three components.
The approximation on the left gave ln s = −243.8, whereas the approximation on the right gave a much
higher ln s = −232.4. The prior parameter settings were δ0j = 1, m0j = 0, v0j = 10−2, a0j = 1 and
B0j = 0.11. The true predictive distribution, obtained from an average over a MCMC sample, is shown
with a dotted line.
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Figure 3.8: A comparison between the EP, VB and MCMC log predictive distributions p(xnew|x,M3)
for the galaxy data set from figure 3.7. With N being large, the approximate predictive distribution from
EP is marginally closer to the truth than the approximate predictive distribution given by VB. Especially
notice the gain where data is sparse. We’ve taken the true predictive distribution as an average over a
sample of 10,000 points from a parallel tempered Markov chain. The EP and VB approximations with
the highest marginal likelihoods were used here, and the parameter settings matched that of figure 3.7.
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Figure 3.9: The log predictive distribution p(xnew|x,M2) for the old faithful data set. The prior
parameter settings were δ0j = 1, m0j = 0, v0j = 10−2, a0j = 1 and B0j = [0.11, 0.01; 0.01, 0.11]. The
true predictive distribution, obtained from an average over a parallel tempered MCMC sample, is shown
in coloured contours. The EP estimate is shown in white contours, and the VB estimate is overlaid in
black contours. The posterior has two sharply peaked modes (as there are two permutations of component
labeling), and the difference between the EP and VB predictive densities are virtually indistinguishable
under this large data set.
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Figure 3.10: Ockham hill for the galaxy data set, for two different prior settings. For the left figure
a broad prior with v0j = 10−6 was used, for the right figure a much narrower prior with v0j = 10−2

was used. The other prior hyperparameters were δ0j = 1, m0j = 0, a0j = 1 and B0j = 0.11. VB
(α = 0) is shown in red; α = 1

2 is shown in blue; EP (α = 1) is shown in green. For each model
MJ containing J mixture components, the figure shows twenty runs over different starting values of the
means, or different starting ‘priors’ (later corrected). The colour intensity of the plot corresponds to
the frequency of reaching different solutions. Also shown are the values of ln p(x|MJ ) found by parallel
tempering and thermodynamic integration, averaged for each J over 10 MCMC simulations, with two
standard deviation error bars. For the left figure with the much broader prior, a generalized version of
parallel tempering (see section 4.3) was used.

Model selection and averaging

In the case of VB, the approximation ln s provides a lower bound to the marginal likelihood
p(x|M), and this quantity is often used for model selection (Beal & Ghahramani, 2003; Bishop
& Svensén, 2003; Corduneanu & Bishop, 2001). The model with the largest bound is typically
kept, although the bound can also be used for model averaging. In the case of averaging over
models {Mi},

p(xnew|x) =
∑

Mi

p(xnew|x,Mi)p(Mi|x) , (3.116)

the approximation given in (3.115) can be used as a substitute for p(xnew|x,Mi). There are
usually many local minima in the objective function, and for each modelMi the resulting model
with the largest approximation ln si can be kept. The posterior model distribution p(Mi|x) =
p(x|Mi)p(Mi)/p(x) can then be approximated with q(Mi) ∝ sip(Mi). Regardless of our choice
of divergence measure, poor local minima in the objective function have to avoided in order to
obtain meaningful results.

Practical results

Figures 3.10, 3.11 and 3.12 illustrate different values for the approximate evidence for mixture
models with a growing number of components for the galaxy, acidity and enzyme data sets.
The results for different α-divergences with α = 0, 1

2 , 1 are shown. For VB there are many local
maxima in the evidence lower bound, many of which are clearly in some correspondence with
the solutions given by α = 1

2 and EP.

All results obtained here used an initialization of the prior factor to the true prior, except
for the prior factor mean being initialized to the mean of the data, plus some additive Gaussian
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Figure 3.11: Ockham hill for the acidity dataset, for two different prior settings. For the left figure a
broad prior with v0j = 10−6 was used, for the right figure a much narrower prior with v0j = 10−2 was
used. VB (α = 0) is shown in red; α = 1

2 is shown in blue; EP (α = 1) is shown in green. The rest of
the experimental setup matched that of figure 3.10. For the left figure a generalized version of parallel
tempering was again needed to obtain a numerically stable solution.

noise to break symmetry in the following factor updates. The prior factor was corrected to the
true prior after the first loop over the data. With these slightly random initializations we find
convergence of the message passing scheme to different local minima in the objective function.
The random data ordering from the refinement loops may also play a role in convergence to one
solution or another. A simple test, by comparing a number of EP runs with the same prior
factor initialization, showed that all local minima for J = 3 in figure 3.10 (narrow prior) could
indeed be reached purely based on the random presentation of the factors.

The largest value of ln s for each model forms the classical ‘Ockham hill’, with a peak for
the optimal model. As models become less complex, the hill falls steeply due to a poorer
explanation of the data. For more complex models the plots show a slower downward trend,
as an improvement in data fit is counterbalanced by a penalty from a larger parameter space
in Bayesian marginalization. The downward trend for more complex models is even slower
when the true log marginal is considered; this is mainly due to the number of modes in the
true posterior increasing with the number of components, with an approximation possibly only
capturing one of them.

As expected, and as is also visible from the plots, the value for ln s increases with α, with
the difference being greater with increased model size. For all figures, results were obtained by
doing factor refinements for a maximum of twenty loops over random orderings of the data set
(or factors). This usually proved more than sufficient for convergence. For larger models, EP
(and indeed α = 1

2) may not converge to a stable solution, but iterate around the EP fixed point.
This has been observed in practice (Minka, 2001c): when canonical EP does not converge, the
reason can be traced back to the approximating family being a poor match to the exact posterior
distribution. Intuitively we may think of it this way: EP approximates one of a number of well
separated modes in a posterior; when the modes become highly overlapping, as may be the case
when using too many mixture components, the approximation may not ‘settle down’.
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Figure 3.12: Ockham hill for the enzyme data set, for two different prior settings. For the left figure
a broad prior with v0j = 10−6 was used, for the right figure a much narrower prior with v0j = 10−2 was
used. VB (α = 0) is shown in red; α = 1

2 is shown in blue; EP (α = 1) is shown in green. The rest of the
experimental setup matched that of figure 3.10.
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Figure 3.13: Ockham hill for the old faithful data set, for two different prior settings. For the left
figure a broad prior with v0j = 10−6 was used, for the right figure a much narrower prior with v0j = 10−2

was used. VB (α = 0) is shown in red; α = 1
2 is shown in blue; EP (α = 1) is shown in green. Apart

from B0j = [0.11, 0.01; 0.01, 0.11], the rest of the experimental setup matched that of figure 3.10.
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Variational Bayes and symmetry breaking

An observation in section 2.8 was made that under a ‘broad enough’ prior distribution, the fixed
point scheme that is used to minimize the VB objective function contains ‘symmetry-breaking’
local minima, where a component weight is forced to a near-zero value, and the component in
question collapses to a distribution close to its prior. This happened in practice when the ADF
loop was implemented with α = 0 (VB): as the data points (and hence factors) are included one-
by-one into the approximation, it often happens that one of the first inclusions will unnecessarily
break symmetry. Some mixture components will be pronounced, while others are allocated a
near-zero weight, causing them to never recover their part in the approximation. The ADF loop
contrasts with traditional VB, where all the data points are presented together in the same EM
algorithm.

The message passing algorithm can be altered in a number of ways to bypass this effect.
One approach is to randomly initialize all the factor approximations before any updates take
place. Another solution, more coherent with the algorithms presented in this chapter, is to
run the ADF loop and possibly the first refinement loop using α = 1 (EP). This should give a
reasonable starting position, after which the value of α can be flipped back to the desired value,
and factor refinements continue as normal. The second solution is the one adopted here, and
proved successful in preventing undesired initial model pruning.

3.8 Summary and outlook

Multivariate Gaussian mixtures were put under the microscope in this chapter, and three ap-
proximate methods of inference, variational Bayes, expectation propagation, and α = 1

2 message
passing, were compared. Both the predictive densities and marginal likelihoods were compared
to the results obtained from parallel tempering, which is discussed in chapter 4. This chapter has
mostly been practical, involving the derivation of message passing algorithms for α-divergence.
Examples were seen where these algorithms run into trouble, where unnormalizable distribu-
tions can be recovered, and updates skipped and possibly recovered from. We have seen how
approximate methods can be a useful tool in model selection, and give accurate results if we are
interested in the predictive distribution.

The algorithm implemented was a single loop algorithm, and it is not guaranteed to converge.
Double loop algorithms, as mentioned in section 2.9.1, can provide a guarantee, but were not
implemented for this thesis.

The techniques and derivations presented here can be readily extended to other models that
use latent variables, provided that moment-matching is a tractable operation, or that we can
analytically write down the partition function or predictive density. We shall here look at a
simple extension, and extensions that may need even further approximations:

3.8.1 Hidden Markov models

We can view each component in this chapter’s mixture of Gaussians as a particular state. Having
chosen state j, observation xn is then ‘emitted’ from the state with probability p(xn|θj). Our
choice of the particular state is independent of its predecessors, giving a zeroth-order Markov
model. We can extend this to a first-order Markov model by choosing the present state to be
dependent on the previous state. Let zn again be a variable that indicates the unobserved state.
The joint probability of a sequence of states and observations—which can be similarly extended
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to be higher-order Markov—is

p(x, z|θ,π) = p(x1|z1,θ)p(z1|π)
N∏

n=2

p(xn|zn,θ)p(zn|zn−1,π) . (3.117)

In the case of a hidden Markov model (Rabiner & Juang, 1986), the states are discrete. Similar
to the mixture model, a hidden state can be modeled with a binary latent variable zn ∈ {0, 1}J
that sums to one. The transition probabilities p(zn|zn−1) can be modeled by a transition matrix
with entries (i, j) representing p(znj = 1|zn−1,i = 1), although we can equally represent the joint
distribution p(znj = 1, zn−1,i = 1) with a J × J matrix π, and place a prior on the initial state.

With reference to the mixture model addressed in this chapter, we can imagine a temporal
component correlating the frequency and length between eruptions of the Old Faithful Geyser
(see section 3.7), and the emission distributions p(xn|zn,θ) may be modeled as Gaussian. Other
models are possible: A more traditional view is to let a state emit one of K discrete symbols,
which we can again model with a binary variable xn ∈ {0, 1}K with entries summing to one.
The probabilities p(xn|zn,θ) can be described by a J ×K symbol emission matrix, with entries
(j, k) being p(xnk = 1|znj = 1).

The joint distribution of a data point and its associated hidden state variables is

p(xn|zn,θ)p(zn, zn−1|π) =

J∏

i=1

J∏

j=1

[πijp(xn|θj)]
znj×zn−1,i , (3.118)

such that
∑J

i=1

∑J
j=1 πij = 1. In the simplest example we can choose the prior p(π) and q(π)

to be Dirichlet. If for example q(π) = D(π|δ), where δ now has J2 terms, the partition function
and predictive density

p(xn) =

∫ J∑

i=1

J∑

j=1

πijp(xn|θj)q(π)q(θ) dπ dθ

=
1

∑J
i=1

∑J
j=1 δij

J∑

j=1

(
J∑

i=1

δij

)

pj(xn) , (3.119)

is tractable. In first line of (3.119) we have already summed (3.118) over zn and zn−1, and as a
result get a mixture of distributions. Moment matching is possible, and EP/C updates can be
derived.

3.8.2 Latent variable models requiring further approximations

A large number of latent variable models give rise to intractable predictive distributions. A
simple example is a factor analysis, which models high dimensional data xn in terms of a
smaller number of latent factors zn:

xn = Λzn + ǫn and p(zn) = N (zn|0, I) , p(ǫn) = N (ǫn|0,Γ) , (3.120)

with the noise covariance Γ constrained to be diagonal. We therefore have

p(xn|zn,Λ) = N (xn|Λzn,Γ) and p(xn|Λ) = N (xn|0,ΛΛ⊤ + Γ) . (3.121)
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Figure 3.14: Following figure 3.4, the log marginal likelihood estimates for the problems shown in figures
3.3(a) to 3.3(d) are shown here. A second order perturbative correction was made to the EC estimate of
lnZ, and is indicated by EC+R. There is a clear gain in computing the correction; note in (d) that it is
not always big.

A Gaussian prior is typically placed on the rows of Λ (Ghahramani & Beal, 2000), but this ren-
ders the derivation of EP updates impossible, as the partition function or predictive distribution

p(xn) =

∫

N (xn|0,ΛΛ⊤ + Γ)p(Λ) dΛ (3.122)

is not analytically tractable. Further approximations are therefore necessary, but given the ease
in which a Gibbs sampler can be derived for the same problem, it is not immediately clear if a
venture into the land of more approximations will be fruitful.

We find ourselves in a similar situation with a Gaussian linear state space model, where zn

is a k-dimensional real valued hidden state variable, and the sequence of zns follow a first-order
Markov process like equation (3.117). With linear state- and observation equations,

zn = Azn−1 + vn , p(vn) = N (vn|0,Γ) ,

xn = Bzn + wn , p(wn) = N (wn|0,Σ) , (3.123)

and possibly a Gaussian prior on the rows of the observation matrix B or the state dynamics
matrix A, the moments are, very similar to (3.122), analytically intractable. In systems where
these matrices are known, or where both zn−1 and zn are passed through known nonlinear
transformations, EP has proved to be a successful engine for approximate inference (Heskes &
Zoeter, 2002; Ypma & Heskes, 2003).

3.8.3 Perturbative corrections

Opper (2006) showed how perturbative corrections can be used to improve expectation consistent
(EC) approximations. This involves writing the true log partition function (marginal likelihood)
as a sum of the EC partition function and a log difference, i.e.

lnZ = lnZEC + lnR , (3.124)

where the difference R, with density qn(θ) = p(xn|θ)q\n(θ)
/ ∫

p(xn|θ′)q\n(θ′)dθ′, is

R =

∫

q(θ)
N∏

n=1

(

qn(θ)

q(θ)

)

dθ . (3.125)
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The difference can be expanded as a series of small parameters, e.g. ǫn(θ) = 1 − qn(θ)/q(θ).
We therefore have a product

∏

n(1 − ǫn(θ)) in equation (3.125); when this is expanded we can
drop higher order terms and compute a tractable correction.

The expansion can be computed up to any order for the mixture model examined in this
thesis. We do not present the full derivation and justification here, but show in figure 3.14 the
second-order corrections for figure 3.4. The corrections to EC give better log evidence estimates
than both EC/P and VB. This is without doubt an exciting area of research to pursue.





Chapter 4

Parallel Tempering

4.1 Introduction

Parallel tempering, or replica exchange, is an efficient method of combining separate Monte
Carlo simulations to sample across different modes of a target distribution. As a by-product the
normalizing constant of the distribution can also be estimated.

This simulation technique has independently been rediscovered in the 1990s by different
authors, and has consequently been referred to by a number of names: the exchange MC-
algorithm, the Metropolis-coupled chain algorithm, time-homogeneous parallel annealing, and
the multiple Markov chain algorithm (Ferkinghoff-Borg, 2002). Its origins can be traced back to
the work of Swendsen & Wang (1986), where a method was introduced where replicas of a system
of interest were simulated at a series of temperatures, and replicas at adjacent temperatures
allowed to exchange partial configuration information. We can also consider parallel tempering
as a descendant of the simulated annealing algorithm. Annealing here means that the search
for the minimum of some function is conducted from a high to a low temperature, with a
temperature parameter gradually being decreased to zero. The use of parallel tempering was
initially restricted to problems in statistical physics, but has since found its way into many fields.
For an overview of diverse applications of parallel tempering to polymeric systems, proteins and
biological molecules, crystalline structures, spin glasses and quantum level systems, see (Earl &
Deem, 2005).

4.1.1 Replicas at temperatures

A single Markov chain Monte Carlo simulation may run into difficulties if the target distribution
is multi-modal. The chain may get stuck in a local mode, and fail to fully explore other areas of
parameter space that have significant probability. One conceptual solution to this problem is to
create a series of progressively flatter distributions using some temperature parameter. Systems
at higher temperatures, with flatter distributions, should be able to sample from a greater range
of parameter space. At lower temperature systems may have precise sampling in local ranges
of parameter space, but may become trapped in modes that are difficult to escape from within
the run time taken by a typical simulation. We include a temperature parameter through its
inverse β, where β ranges from zero to one. With the inverse temperature set to one we can
write the posterior distribution—implicitly giving modelM, of course—in the usual way,

p(θ|x, β) =
1

Z(β)
p(x|θ)βp(θ) , (4.1)
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where the partition function is

Z(β) =

∫

p(x|θ)βp(θ) dθ . (4.2)

The prior is recaptured with an infinite temperature β = 0, and the log marginal likelihood that
we are interested in is given by p(x) = Z(1). If the likelihood is flattened with β, the data is
effectively gradually introduced from complete absence at β = 0, to complete presence at β = 1.
The correspondence between (4.1) and a Gibbs distribution comes from defining an ‘energy’ as
E(θ) = − ln p(x|θ), and then

p(θ|x, β) =
1

Z(β)
exp

{
− βE(θ)

}
p(θ) and Z(β) =

∫

exp
{
− βE(θ)

}
dp(θ) . (4.3)

We now simulate K replicas of the original system of interest (4.1), each at a different
temperature. A set of reciprocal temperatures {βk}Kk=1 are chosen, and we let the set be ordered
as a ladder of increasing inverse temperature distributions with βk < βk+1. Here we choose
β1 = 0, corresponding to the prior, and βK = 1, corresponding to the posterior distribution.

As the simulation of K replicas instead of just one requires K times the computational effort,
there must be some solid reasoning for expending this effort. Firstly, an estimate of the marginal
likelihood Z(1) can be found. Secondly, it has been observed in practice that a parallel tempering
simulation is more than 1/K times more efficient than a standard, single-temperature Monte
Carlo simulation (Earl & Deem, 2005). This is because the replicas allow sampling from low
temperature systems, for example the true posterior with β = 1, to reach regions of parameter
space that would not otherwise have been practically accessible had we run a single chain at
β = 1 for K times as long.

The key to parallel tempering is that chains at different temperatures are allowed to exchange
complete configurations or states. Through these exchanges low temperature systems access
different modes or regions of parameter space via the higher temperature systems.

4.1.2 Extended ensembles and replica exchange

As multiple copies of the simulation are run in parallel, each at different temperatures, we there-
fore have an extended ensemble, where the parameter space is replicated K times to {θk}Kk=1.
With β ∈ {βk}Kk=1 we run K systems in parallel, and the full target distribution that is being
sampled from is

p({θk}Kk=1) =
K∏

k=1

1

Z(βk)
exp

{

βk ln p(x|θk)
}

p(θk) . (4.4)

We run the K chains independently to sample from distributions p(θ|x, βk), and add an addi-
tional Metropolis Hastings move to swap two βs between chains, or equivalently swap parameters
between chains. This is the replica-exchange move. Parallel tempering can be done complemen-
tary to any Monte Carlo method at a single temperature, as long as the exchanges satisfy
detailed balance. Having chosen two chains i and j for which we want to swap parameters, let
{θk}new be the parameter set with parameters θi and θj swapped. The acceptance probability
for the move is

α({θk}new|{θk}) = min

(

1,
p({θk}new)

p({θk})

)

. (4.5)
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Figure 4.1: These plots show a selection of reciprocal temperatures for the galaxy data set with J = 3
components, a prior v0j = 0.01, and all other prior parameters following section 3.7. The averages
〈ln p(x|θ)〉βk

for this particular problem and temperature set is illustrated in figure 4.2(a).

As the prior distributions cancel, the ratio between the distributions is

p({θk}new)

p({θk})
=

exp{∑k 6=i,j βk ln p(x|θk) + βi ln p(x|θj) + βj ln p(x|θi)}
exp{∑k 6=i,j βk ln p(x|θk) + βi ln p(x|θi) + βj ln p(x|θj)}

, (4.6)

which simplifies as

p({θk}new)

p({θk})
= exp

{

(βi − βj)
(
ln p(x|θj)− ln p(x|θi)

)}

. (4.7)

To fully satisfy detailed balance, the swap moves must be performed with a certain probability.
Equally, swap moves can be proposed after a fixed number of single temperature Monte Carlo
moves. The temperatures of the two replica i and j have to be close to each other to ensure
non-negligible acceptance rates, and in practice only neighbouring temperature pairs are taken
as candidates for replica exchanges. For detailed balance a pair {k, k + 1} can be chosen by
uniformly choosing a k from between 1 and K − 1.

With this formulation the states of the replicas are effectively propagated from high to lower
temperatures, and the mixing of the Markov chain is facilitated by the fast relaxation at higher
temperatures.

4.1.3 Choosing a temperature set

A good choice of {βk}Kk=1 is according to a geometric progression, which we first motivate
intuitively. Consider a replica exchange between chains k and k + 1. From equation (4.7), the
acceptance probability depends on the difference between ln p(x|θk) and ln p(x|θk+1), and for



88 4. Parallel Tempering

some swaps to be accepted this difference should not be ‘too big’. For a simulation at in inverse
temperature β, define the mean evaluation of the log likelihood as

〈
ln p(x|θ)

〉

β
=

∫

ln p(x|θ)p(θ|x, β) dθ . (4.8)

The entire distribution of ln p(x|θ) needs to be considered, and there should be an overlap of
some of the log likelihood evaluations given by samples for adjacent chains, as shown by figure
4.1. The distribution of − ln p(x|θ) under different temperatures is shown in figure 4.1, and we
consider the distribution of the negative log likelihood evaluations for an analogy with an energy
function in a Gibbs distribution. The variance in chain β is

σ2
β = var[ln p(x|θ)]β =

〈
[ln p(x|θ)]2

〉

β
−
〈
ln p(x|θ)

〉2

β
, (4.9)

and for the distributions between adjacent temperatures to have a ‘meaningful’ overlap, Iba
(2001) has shown that the temperature points should be chosen according to the density

Q(β) ∝ σβ . (4.10)

We give (4.10) in the simplest form amenable to applications in Bayesian inference; in (Ferkinghoff-
Borg, 2002) and (Iba, 2001) this density is given in terms of the heat capacity, which also includes
the system size. The following thought experiment should motivate an increase in replicas as the
system size increases: it may be noted that with more data the likelihoods become increasingly
peaked, and the ‘energy’ distributions become narrower and farther apart, and may lose their
overlap. The number of replicas needed should therefore increase, at rate O(

√
N), with the data

set size N (the width of the distributions of energies sampled increases as the square root of the
system size).

An obvious difficulty arises, as the variance of the log likelihood as a function of β is not
known in advance, and must be estimated. The minimum required number K and the distribu-
tion of temperatures can therefore not be known a priori.

In practice a set of temperatures {βk}Kk=1 can be chosen according to a geometric series,
and the average acceptance rate tracked over a short simulation. A rough plot of the estimated
log likelihood averages and distributions can also give intuition on whether the chain will mix
well over replicas. From (4.10), a larger number of replicas is needed in the region where the
variance of the energy σ2

β takes larger values. Kofke (2002) notes that if the heat capacity is
assumed to be constant, the average acceptance probability of a swap depends on temperatures
only through their ratio, and that a geometric progression with βk/βk+1 = const across all
temperatures should result in equal acceptance ratios (see also (Kofke, 2004)).

4.2 Thermodynamic integration and the marginal likelihood

The samples from parallel tempering can be used for model comparison (Gregory, 2005; Skilling,
1998), as the marginal likelihood can be obtained from tempering. Firstly, notice that the
integral

∫ 1

0
d lnZ(β) =

∫ 1

0

d lnZ(β)

dβ
dβ = lnZ(1)− lnZ(0) = lnZ(1) = ln p(x) (4.11)

is equal to the marginal likelihood, as β = 0 gives the prior, which integrates to one. We
therefore have to determine the derivative d

dβ lnZ(β), and it evaluates as an average over the
posterior. Recall that

Z(β) =

∫

p(x|θ)βp(θ) dθ . (4.12)
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By taking the derivative of the log of the partition function,

d lnZ(β)

dβ
=

1

Z(β)

∫

ln p(x|θ)× p(x|θ)βp(θ) dθ

=

∫

ln p(x|θ)p(θ|x, β) dθ =
〈
ln p(x|θ)

〉

β
, (4.13)

the log marginal likelihood can be evaluated with

ln p(x) =

∫ 1

0

〈
ln p(x|θ)

〉

β
dβ . (4.14)

The integral in (4.14) can be numerically estimated from the Markov chain samples. Let {θ(t)
k }

represent the samples for tempering parameter βk, so that the expectation is approximated with

〈
ln p(x|θ)

〉

βk
≈ 1

T

T∑

t=1

ln p(x|θ(t)
k ) . (4.15)

We assume that a burn-in sample has been discarded in the sum over t. As we have run a set
of chains in parallel at different inverse temperatures 0 = β1 < · · · < βK = 1, the integral can
be evaluated numerically by interpolating the K expectations between zero and one (say with a
piecewise cubic Hermite interpolation, available as part of matlab and other standard software
packages), and using for example the trapesium rule to obtain the desired result.

4.2.1 The correct interpolation, or glitches at β ≈ 0

To find a numeric approximation to (4.14), a set of log likelihood estimates are interpolated. In
practice it may happen that we mark a huge factor of difference between the expectations at β1

and β2
1. As an example, for the galaxy data set (with v0j = 0.01 and J = 3 components) in

sections 3.7 and 4.4.1, β1 = 0 and β2 = 0.001 gave log likelihood averages of −1.72 × 105 and
−1.71 × 103 respectively—roughly a difference of a factor of a hundred for a very small change
in β.2 If the variance of the prior is increased to v0j = 10−6, this factor grows to roughly 300,
giving a large average slope of 3× 105 between 〈ln p(x|θ)〉β=0 and 〈ln p(x|θ)〉β=0.001. Figure 4.3
shows the latter log likelihood estimations.

This will differ from problem to problem, and at β = 0 it depends on how likely the data is
under the prior. In this case the log likelihood averages close to zero plays a crucial role in the
integral evaluation, as the tail close to zero can grow like −1/β, which has an infinite integral
between zero and one.

This problem can be either addressed by simulating at a much finer grid of temperatures in
this interval, or by interpolating the tail with a guess of the exact functional form. The solution
proposed here to interpolating correctly between zero and β2 is to define a function of the form

f(β) = − 1

aβ + b
+ c , (4.16)

1The term ‘glitches at β ≈ 0’ is taken from a talk by David MacKay, presented at a Recent Advances in Monte

Carlo Based Inference workshop at the Isaac Newton Institute, Cambridge, 2006.
2With Gibbs sampling, described in section 4.4.1, the averages were determined from 9000 samples, after a

1000 sample burn-in. With Gibbs sampling the averages 〈ln p(x|θ)〉β are determined over latent variables z as
well. For brevity here we assume θ includes these extra variables that are averaged over.
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Figure 4.2: The log likelihood averages 〈ln p(x|θ)〉βk
are estimated from each of the MCMC simulations

at temperatures {βk}Kk=1, and interpolated so that the integral (4.14) can be evaluated numerically. In
the problems (see section 4.5) evaluated here, the tail of the interpolation at β ≈ 0 can have a marked
difference in the evaluation of the integral, as it grows like −1/β. A good interpolation can be found with
an increasingly fine temperature ladder close to zero. The alternative solution proposed here considers
interpolating the tail with a 1/β-like function. The specific problem illustrated here is again the galaxy
data set, with J = 3 components, and v0j = 0.01, and all other prior values set as usual.
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Figure 4.3: Motivation for using (4.16) to determine the value of the integral in (4.14) between β0 = 0
and β1. An interpolation with f(β) from (4.16) is shown, passing through β1, β2, and a small βk. The
value β1 ≈ −4 × 10−7 is outside the range of the figure. The interpolation is only used to evaluate the
integral between β1 = 0 and β2. The rest of the integral is determined numerically from a piecewise cubic
Hermite interpolation and trapezium rule. The specific problem illustrated here is again the galaxy data
set, with J = 3 components, and v0j = 10−6, and all other prior values set as usual.
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and take three values to define the interpolation, β1 = 0, β2, and a βk close to zero. Let the
corresponding log likelihood expectations be L1, L2 and Lk. The coefficients are found by taking
the log likelihood average of chain βk an initial value for c, and then repeatedly solving

a =
( 1

c− L1
− 1

c− L2

)/

(β1 − β2) , (4.17)

b =
1

c− L2
− aβ2 , (4.18)

and c = Lk +
1

aβk + b
. (4.19)

With β1 = 0 and βK = 1, integral (4.14) can in practice be written as

ln p(x) =

∫ β2

β1

〈
ln p(x|θ)

〉

β
dβ +

∫ βK

β2

〈
ln p(x|θ)

〉

β
dβ

≈
∫ β2

β1

f(β) dβ +

∫ βK

β2

〈
ln p(x|θ)

〉

β
dβ

=
1

a

(

ln(aβ1 + b)− ln(aβ2 + b)
)

+ c(β2 − β1) +

∫ βK

β2

〈
ln p(x|θ)

〉

β
dβ . (4.20)

The second integral does not include averages around zero, and lends itself to a numerically
stable solution.

4.3 A practical generalization of parallel tempering

The success of the interpolation obtaining 〈log p(x|θ)〉β, illustrated in figure 2, is dependent on
the slope

d〈log p(x|θ)〉β
dβ

=
d2 logZ(β)

dβ2
= σ2

β (4.21)

at β ≈ 0. Consider the following thought exercise: Imagine a non-informative (infinitely wide)
prior at β = 0. Samples from this prior will strictly speaking have an infinite variance σ2

0 . With
β ≈ 0 we introduce the likelihood, practically infinitely decreasing the variance of our samples,
causing 〈log p(x|θ)〉β to asymptotically diverge at zero. As we narrow our prior the change in
this mean should be less rapid, and this motivates a generalization of parallel tempering and
thermodynamic integration such that we get a more stable interpolation.

An ingenious idea proposed by Winther (2007) is to introduce a new distribution q(θ), which
might be a narrower version of the prior, so that equation (4.1) can be modified to

p(θ|x, β) =
1

Z(β)

[

p(x|θ)
p(θ)

q(θ)

]β

q(θ) . (4.22)

At β = 0 we are therefore substituting the prior with q(θ). As our ‘effective prior’ is p(θ)βq(θ)1−β ,
the prior’s influence is gradually increased, while q’s role is decreased until only the posterior
remains at β = 1. With an informed choice of q, which should be closer than the prior to the true
posterior, we hope to decrease σ2

β. The log marginal likelihood can, as before, be determined
with

ln p(x) =

∫ 1

0

〈

ln p(x|θ) + ln
p(θ)

q(θ)

〉

β

dβ . (4.23)
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It does not escape our attention that setting q(θ) = p(θ|x) gives ln p(x) =
∫ 1
0 〈ln p(x)〉β dβ.

This suggests a wealth of possibilities of approximating p(θ|x) with q(θ) to effectively combine
deterministic methods of inference with Markov chains. This comes with a cautionary note
as Variational Bayes, for example, may give a q(θ) that captures (lower-bounds) a mode of a
possibly multimodal posterior, causing PT to lose its pleasing property of fast relaxation at high
temperatures. In the results presented in section 3.7, setting q to a narrower version of the prior,
where necessary, was found to give adequate results.

In section 4.4.2 a short generalization is given to sample from (4.22) for the mixture of
Gaussians problem.

4.4 Gibbs sampling for parallel tempering

Parallel tempering of a mixure of Gaussian distributions p(xn|µ,Λ,π) =
∑J

j=1 πjN (xn|µj ,Λ
−1
j )

require a Monte Carlo simulation at inverse temperature β. As the results obtained here com-
plements that of chapter 3, let the mixing weights and component priors again be Dirichlet and
Normal-Wishart, with

p(π) = D(π|δ0) =
Γ(
∑J

j=1 δ0j)
∏

j Γ(δ0j)

∏

j

π
δ0j−1
j (4.24)

p(µ,Λ) =

J∏

j=1

N
(
µj |m0j , (v0jΛj)

−1
)
W(Λj |a0j ,B0j) , (4.25)

where

N
(
µj |m0j , (v0jΛj)

−1
)

=
(v0j

2π

) d
2 |Λj |

1
2 exp

{

− 1

2
tr[(µj −m0j)(µj −m0j)

⊤v0jΛj]
}

(4.26)

W(Λj |a0j ,B0j) =
|B0j |a0j

∏d
i=1 Γ(aj + 1−i

2 )
π

−d(d−1)
4 |Λj |a0j− d+1

2 exp
{

− tr[B0jΛj ]
}

. (4.27)

In the following two sections describe an implementation of Gibbs sampling to sample from firstly
p(θ|x, β) ∝ p(x|θ)βp(θ), and then from the tempered posterior p(θ|x, β) ∝ p(x|θ)βp(θ)βq(θ)1−β

needed for the generalized version of parallel tempering.

4.4.1 Gibbs sampling at β

To implement a Gibbs sampler, we extend the parameter space to include latent allocation
variables zn for each data point n, to indicate which mixture component was responsible for
generating it (Diebolt & Robert, 1994). Consequently znj ∈ {0, 1}, and

∑J
j=1 znj = 1. The

complete joint distribution is therefore

p(x, z|θ)p(θ) =
N∏

n=1

J∏

j=1

[

πjN (xn|µj ,Λ
−1
j )
]znj

p(θ) , (4.28)

where θ = {π,µ,Λ}. We can write the complete data likelihood as p(x, z|θ) = p(x|θ, z)p(z|θ),
and in this form the likelihood, to the power β, is

p(x|θ, z)β =
N∏

n=1

J∏

j=1

N (xn|µj ,Λ
−1
j )βznj (4.29)
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with the prior over θ, z being

p(θ, z) =
N∏

n=1

J∏

j=1

π
znj

j p(θ) . (4.30)

With inverse temperature parameter β the tempered posterior distribution is

p(θ, z|x, β) ∝ p(x|θ, z)βp(θ, z) =

N∏

n=1

J∏

j=1

N (xn|µj ,Λ
−1
j )βznjπ

znj

j p(θ) , (4.31)

and can be treated as any missing-value Gibbs sampling problem. The allocation variables are
sampled with

znj |π,µ,Λ ∼
πjN (xn|µj ,Λ

−1
j )β

∑J
k=1 πkN (xn|µk,Λ

−1
k )β

. (4.32)

Given the allocation variables, we define

γnj = βznj x̄j =
1

Nj

N∑

n=1

γnjxn

Nj =

N∑

n=1

γnj Σj =
1

Nj

N∑

n=1

γnj(xn − x̄j)(xn − x̄j)
⊤ . (4.33)

to give the conditional distributions needed for sampling the mixture parameters as

π|z ∼ D
(
δ01 +

1

β
N1, . . . , δ0J +

1

β
NJ

)
(4.34)

µj ,Λj |z ∼ NW
(
vj,mj , aj ,Bj

)
, (4.35)

with

vj = v0j +Nj (4.36)

mj =
v0jm0j +Njx̄j

v0j +Nj
(4.37)

aj = a0j +
Nj

2
(4.38)

Bj = B0j +
1

2
NjΣj +

1

2

Njv0j(x̄j −m0j)(x̄j −m0j)
⊤

v0j +Nj
. (4.39)

As p(x) =
∫
p(x,θ, z) dθdz, we use the samples over θ and z to estimate the average log

likelihood. If {π(t)
k , {µ(t)

j,k,Λ
(t)
j,k}Jj=1, {z

(t)
n,k}Nn=1}Tt=1 indicates the samples of chain k (after a burn-

in period), then

〈
ln p(x|θ, z)

〉

βk
≈ 1

T

T∑

t=1

N∑

n=1

J∑

j=1

z
(t)
nj,k lnN

(
xn|µ(t)

j,k,Λ
(t)
j,k

−1)
. (4.40)

Notice that the samples of the mixing weights π
(t)
k are not used in estimating the log likelihood

average over the posterior, but occur in the prior.
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Algorithm 2 Parallel tempering

1: initialize: π
(0)
k and {µ(0)

j,k ,Λ
(0)
j,k}Jj=1 for all chains k; tempering sequence {βk}Kk=1 according

to section 4.1.3; t = 0.
2: repeat
3: for k = 1 to K do
4: for n = 1 to N do
5: sample z

(t+1)
n,k |π

(t)
k , {µ(t)

j,k,Λ
(t)
j,k}Jj=1 according to (4.32).

6: end for
7: sample π

(t+1)
k |z(t+1)

k according to (4.34).
8: for j = 1 to J do

9: sample µ
(t+1)
j,k ,Λ

(t+1)
j,k |z(t+1)

k according to (4.35).
10: end for
11: end for
12: uniformly choose a chain i ∈ {1, . . . ,K − 1}.
13: sample a uniform random variable u ∼ U(0, 1) .

14: if u ≤ α({θnew
k }|{θ(t+1)

k }) (see (4.5)) then

15: swap {z(t+1)
i ,θ

(t+1)
i } and {z(t+1)

i+1 ,θ
(t+1)
i+1 }

16: end if
17: t← t+ 1
18: until t = tmax

19: for k = 1 to K do
20: estimate

〈
ln p(x|θ, z)

〉

βk
with (4.40), using samples after some burn-in period (this step

can be included in the main loop over t).
21: end for
22: interpolate {

〈
ln p(x|θ, z)

〉

βk
}Kk=1 between 0 and 1, possibly following section 4.2.1.

23: numerically estimate ln p(x) as the volume under the interpolation.

4.4.2 Gibbs sampling at β for generalized parallel tempering

We have a prior distribution p(θ) = p(π)
∏J

j=1 p(µj ,Λj), and to implement a Gibbs sampler for
generalized parallel tempering, we choose q(θ) to be of the same form as the prior. As in (4.30),
both the prior and q(θ) are extended to include latent allocation variables z. The tempered
posterior distribution is

p(θ, z|x, β) =
1

Z(β)

[

p(x|θ, z)p(θ, z)
q(θ, z)

]β
q(θ, z)

∝
N∏

n=1

J∏

j=1

[

N (xn|µj ,Λ
−1
j )znj

π
znj

j

π
znj

j

p(θ)

q(θ)

]β
× πznj

j q(θ)

=

N∏

n=1

J∏

j=1

N (xn|µj ,Λ
−1
j )βznjπ

znj

j p(θ)βq(θ)1−β . (4.41)

The tempered posterior can be factorized into a ‘likelihood’ and a prior:

p(θ, z|x, β) =
1

Z(β)

[ N∏

n=1

J∏

j=1

N (xn|µj ,Λ
−1
j )znj

p(π)p(µ,Λ)

q(π)q(µ,Λ)

]β
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×
N∏

n=1

J∏

j=1

π
znj

j q(π)q(µ,Λ) . (4.42)

To implement a Gibbs sampling as before, we have to determine the parameters of the ‘effective’
prior p(θ, z)βq(θ, z)1−β . To differentiate between the parameters of p and q, superscripts p and
q will be used. The ‘prior’ parameters, to be used in equations (4.34) to (4.39), are

δ0 = βδ
p
0 + (1− β)δq

0 (4.43)

v0j = βvp
0j + (1− β)vq

0j (4.44)

m0j =
βvp

0jm
p
0j + (1− β)vq

0jm
q
0j

βvp
0j + (1− β)vq

0j

(4.45)

a0j = βap
0j + (1− β)aq

0j (4.46)

B0j = βBp
0j + (1− β)Bq

0j (4.47)

+
1

2

βvp
0j(1− β)vq

0j

βvp
0j + (1− β)vq

0j

(mp
0j −mq

0j)(m
p
0j −mq

0j)
⊤ . (4.48)

The empirical expectation given in (4.40) should be generalized to

〈

ln p(x|θ, z) + ln
p(θ)

q(θ)

〉

βk

≈ 1

T

T∑

t=1

[

ln p(π
(t)
k )− ln q(π

(t)
k ) +

J∑

j=1

[

ln p(µ
(t)
j,k,Λ

(t)
j,k)

− ln q(µ
(t)
j,k,Λ

(t)
j,k) +

N∑

n=1

z
(t)
nj,k lnN

(
xn|µ(t)

j,k,Λ
(t)
j,k

−1)]
]

. (4.49)

4.5 Experimental results

For a practical evaluation of tempered Gibbs sampling, the reader is asked to return to section
3.7, where the marginal likelihoods of parallel tempering was compared to that of different
deterministic methods. This section gives the details of the method in algorithm 2, together
with a discussion on some practicalities.

The parameter values were initialized by randomly drawing π
(0)
k from the prior p(π) for each

chain k. To initialize the means, a k-means algorithm was run for each chain k, and the means

found assigned to the means in the set {µ(0)
j,k}Jj=1. The ordering of the assignment of means is

random, and hence different chains should start in different areas of the parameter space, or
different modes (we want the chains to be in different modes for good mixing, as we want all

modes to be equally visited). The precision matrices {Λ(0)
j,k}Jj=1 were all initialized to the inverse

covariance matrix of the entire data set.

One of the biggest difficulties encountered was to reasonably interpolate 〈ln p(x|θ)〉β around
β ≈ 0. For the broad prior used in the experimental section 3.7, there is a factor of around
300 difference between β1 = 0 and β2 = 0.001. This gives an average slope of ∆〈ln p(x|θ)〉β
as 300,000 for β close to zero. This slope is dependent on the prior width, and decreases as
the prior gets narrower. The final estimate to ln p(x) is very sensitive to the numerical method
around zero and form of interpolation used to evaluate the integral; where MCMC in section
3.7 gives less desirable results, this is usually the cause, and not the chain not mixing well.
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4.6 Discussion: annealed importance sampling

Annealed importance sampling (AIS) (Neal, 2001) is a method closely related to PT. It was
previously used by Beal & Ghahramani (2003) in a very similar context as section 3.7, namely
as a sampling standard in scoring different marginal likelihood likelihood approximations. We
therefore aim to present a brief overview, following the introduction given in section 1.3.2. If we
are presented with a sample {θ(t)}Tt=1 from some distribution with at least the same support as
the posterior, with associated importance weights {ω(t)}Tt=1, we can approximate the expected
value of a function with

〈φ(θ)〉 =
∫

φ(θ)p(θ|x) dθ ≈
∑T

t=1 ω
(t)φ(θ(t))

∑T
t=1 ω

(t)
. (4.50)

The accuracy of this estimate depends on the variability of the importance weights, and for the
method to work well, we are faced with the difficult task of finding an importance sampling
distribution that approximates the posterior well. (See section 5.4.2 for a practical discussion.)

AIS works by constructing a series of distributions that progressively approximates the pos-
terior well. As in PT, we create a series of distributions p(θ|x, β), which we only need to know
up to a normalizing constant. In this setting we shall call it

p∗β(θ) = p∗(θ|x, β) = p(x|θ)βp(θ) . (4.51)

A temperature ladder {βk}Kk=1, with βk < βk+1, is again constructed. We let β1 = 0 recapture
the prior and βK = 1 recapture the posterior. AIS produces a sample {θ(t)}Tt=1 with associated
importance weights {ω(t)}Tt=1 as follows: For each distribution k = 2, . . . ,K − 1 at inverse
temperature βk (therefore excluding the prior at β1 = 0 and the posterior at βK = 1) we define
a transition kernel Kk(θ|θ′). This can be a standard Metropolis-Hastings transition kernel or a
Gibbs sampling update.

To generate a sample θ(t) and its associated weight ω(t) we first generate a sequence of
points, walking down the ladder of distributions from an ‘infinite’ temperature (the prior) to
the posterior:

Generate θ2 from p(θ|x, β1) = p(θ) .

Generate θ3 from K2(θ3|θ2) .

· · ·
Generate θK−1 from KK−2(θK−1|θK−2) .

Generate θK from KK−1(θK |θK−1) . (4.52)

Finally set θ(t) = θK , and let its associated weight be

ω(t) =
p∗2(θ2)

p∗1(θ2)

p∗3(θ3)

p∗2(θ3)
· · · p

∗
K−1(θK−1)

p∗K−2(θK−1)

p∗K(θK)

p∗K−1(θK)
. (4.53)

The marginal likelihood can be estimated from the importance weights, as the average of the
weights converges to the ratio of normalizers,

1

T

T∑

t=1

ω(t) →
∫
p∗K(θ) dθ
∫
p∗1(θ) dθ

as T →∞ . (4.54)

In a Bayesian setting this ratio will be
∫
p(x|θ)p(θ)dθ/

∫
p(θ)dθ, which is equal to the marginal

likelihood. Here we do not even require that the prior is normalized, as all constant factors will
cancel in this ratio. For the marginal likelihood to be correct, though, the likelihood has to
include constant factors.
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4.7 Summary and outlook

We have seen how parallel tempering can be an effective tool to both sample from multimodal
posterior distributions, and estimate the log marginal likelihood.

4.7.1 Other MCMC schemes

A practical problem arises at near-infinite temperatures, or β ≈ 0, as the log likelihood estimates
grow rapidly as a function of β. This problem is aggrevated by the fact that we have increased
the dimensionality that we are averaging over with the inclusion of latent variables. A MH
method could have been used instead, with

p(θ|x, β) =
1

Z(β)
p(x|θ)βp(θ) =

1

Z(β)

N∏

n=1

[ J∑

j=1

πjN (xn|µj ,Λ
−1
j )
]β
p(θ) , (4.55)

as we do not have to increase the space that we have to average over. However, the β power
makes the problem ideally suited to Gibbs sampling, as we can formulate the problem such that
all the conditional distributions are tractable.

It would have been equally possible to integrate out θ, and sample over p(z|x, β), where MH
proposals could be ‘bit flips’ on the discrete indicator vectors {zn}Nn=1. Each zn would still be
constrained to have one non-zero bit, indicating to which of the mixture components an observed
xn belong. The density that we would sample from in this case would be

p(z|x, β) =
1

Z(β)
p(x|z)βp(z)

=
1

Z(β)

J∏

j=1

(2π)−dNj/2Z
NW

(vj , aj ,Bj)

Z
NW

(v0j , a0j ,B0j)
×
Z

D
(δ01 + 1

βN1, . . . , δ0J + 1
βNJ)

Z
D
(δ01, . . . , δ0J )

, (4.56)

where vj , aj and Bj are defined in equations (4.36) to (4.39), with dependance on z through
equation (4.33).

4.7.2 Choices for q(θ)

The choice of surrogate prior q(θ) has an effect on the performance of PT, and was originally
introduced to reduce σ2

β at small values of β. In section 4.3 we argued that q(θ) should match
the posterior p(θ|x) as closely as possible.

One choice of q(θ) might be a narrower version of the prior. As the posterior is typically
multimodal, we have to ensure that in some way all the possible posterior modes are still ‘well
covered’ by q(θ). We can make an intelligent choice based on knowledge of the scale of the data
set.

Another possibility3 is to take a small subset of data points, and analytically evaluate the
posterior using the chosen subset. This can in turn be taken as choice for q(θ). With more
data points included, we can expect better performance of PT. There is a trade-off in including
more data points into the surrogate prior, though, as the problem’s original difficulty lay in the
fact that the number of posterior terms grew as JN . We do not give an explicit derivation of
q(θ) here—it is a mixture of Dirichlet-Normal-Wishart products, which can again be effectively
sampled from using Gibbs sampling and further latent variables. An energy histogram obtained
by this improved scheme is shown in figure 4.4(b).

3Thanks to Zoubin Ghahramani for this idea.
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The energy histograms for PT and generalized PT are shown in figures 4.4(a) and 4.4(b).
It is possible to observe phase transitions, with largely disconnected energy densities under
various inverse temperatures β. In figure 4.4(a) the maximum attainable energy would be the
log maximum likelihood evaluation; notice that this is not true any more with the introduction
of a surrogate prior. Notice also the ‘better connection’ between the two energy peaks in figure
4.4(b). A further step to achieve better sampling across the energy spectrum is multicanonical
sampling (Berg, 2000). This leaves us with a starting point for venturing into the vast fields of
statistical physics, in the hope of deriving even better algorithms.
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(a) Energy histograms without the introduction of a surrogate prior.
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(b) Energy histograms with the introduction of a surrogate prior q(θ). The surrogate prior was chosen as the
analytic posterior q(θ) = p(θ|xn1

,xn3
,xn3

) on seeing three (out of 82) data points.

Figure 4.4: This figure follows figure 4.1(a), which shows an approximation to the distributions of
E(θ) = − ln p(x|θ) under replicas at different temperatures, p(θ|x, β), using the means and standard
deviations from samples obtained from different temperature chains. By rather binning evaluations of
ln p(x|θ), or ln{p(x|θ)p(θ)/q(θ)}, we obtain more accurate energy histograms. These plots show the
energy histograms for a selection of reciprocal temperatures β (on a coloured scale) for the galaxy data
set with J = 3 components, a prior v0j = 0.01, and all other prior parameters following section 3.7.





Chapter 5

Variational Transition Kernels

5.1 Introduction

In this chapter, variational methods are incorporated into the design of Markov chain Monte
Carlo (MCMC) transition kernels. We introduce a new Monte Carlo algorithm, based on a
variational approximation to the transition kernel of a Markov chain that has the parameter
posterior as invariant distribution, for performing inference with latent variable models.

The idea of combining variational and Monte Carlo methods is by no means new. A mixture
of two MCMC kernels—a sample from the (static) variational approximation to the posterior
mixed with a random-walk Metropolis step—was used by de Freitas et al. (2001). The variational
approximation is used as proposal distribution so that regions of high probability are efficiently
located; as the approximation underestimates the true variance, a Metropolis kernel is used
to sample from these regions. Ghahramani & Beal (2000) have previously used a variational
approximation for mixtures of factor analyzers as the proposal density for an importance sampler.
In this chapter the variational proposal is not static but adaptive, as it depends on the previous
state of the chain. This also allows for greater exploration of the parameter space. No iterative
method is needed to find the optimal variational distribution: a closed-form solution for the
optimal kernel, based on the previous state of the chain, exists. The variational transition
kernel will also allow us to circumvent the explicit latent variable sample that is common to
Gibbs sampling for latent variable models.

This chapter started out as an attempt at a new idea, which finally proved to be less effective
than expected. What we will illustrate here are the inherent shortcomings of variational methods
in MCMC, giving further insight into why de Freitas et al. (2001), for example, found it necessary
to mix random-walk steps into their MCMC algorithm. The shortcomings mostly pertain to
problems with the variance of estimates obtained from the samples. (The cause of this behavior
can be traced back to section 2.2 in chapter 2, where it was illustrated how VB underestimates
the true variance of the density it approximates.) For Metropolis-Hastings, the resulting chain
cannot be shown to be geometrically ergodic, and we cannot show the existence of a central
limit theorem for our estimate. We will show how importance sampling can suffer from a similar
problem of possibly infinite variance of the importance weights.

The rest of the chapter takes a short theoretical tour through the world of general state
space Markov chains and Monte Carlo integration in section 5.2, presenting some theory needed
to show different forms of convergence later in the chapter. The Metropolis Hastings algorithm
is introduced as a practical method of constructing a Markov chain with a particular predefined
distribution as its stationary distribution. We then introduce variational methods into MCMC
transition kernels in section 5.3. We give a detailed analysis on a small toy example in section
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5.4, to see what the shortcoming of such an approach is.

5.2 Monte Carlo methods

The principle of drawing samples from a distribution, and using sample averages to approximate
expectations, lies at the heart of Monte Carlo integration. This forms a flexible method with
great scope in statistical modeling. The exposition presented here assumes that some posterior
distribution is the distribution of interest, but the underlying principles can readily be applied
to any distribution.

5.2.1 Monte Carlo integration

Many tasks in Bayesian inference require the evaluation of an expectation of some function,
say φ(θ), over a distribution of interest. Our interest generally lies in the posterior distribu-
tion p(θ|x,M), for which we implicitly condition on the model assumptions M to write the
expectation as

Φ = 〈φ(θ)〉 =

∫

φ(θ)p(θ|x) dθ . (5.1)

The principle behind Monte Carlo integration is to approximate such an integral with an em-
pirical average; if we are able to draw independent and identically distributed samples {θ(t)}Tt=1

from the target distribution p(θ|x), then Φ can be approximated with the unbiased estimate

Φ̂T =
1

T

T∑

t=1

φ(θ(t))→ Φ . (5.2)

By the law of large numbers the estimate will converge almost surely to Φ, P(Φ̂T = Φ) = 1
as T → ∞. Crucially, the variance of the estimate will be well behaved: If the variance of
φ(θ) is finite, σ2

φ ≡ 〈φ2(θ)〉 − 〈φ(θ)〉2 < +∞, then the variance of the estimate is equal to

var(Φ̂T ) = σ2
φ/T , and a central limit theorem yields convergence in distribution of the error√

T (Φ̂T − Φ) → N (0, σ2
φ) as T → ∞ (Andrieu et al., 2003). The central limit theorem result

holds if we are able to draw i.i.d. samples.

It is generally not possible to draw independent samples from p(θ|x). However, the samples
{θ(t)} need not be independent, but can loosely speaking be simulated using any process that
draws samples from the support of p(θ|x) in the correct proportions. One possible such process
is a Markov chain that has p(θ|x) as its stationary distribution; the chain can be simulated
and the resulting series of states taken as samples. For brevity, we let p∗(θ) indicate the target
distribution.

5.2.2 Markov chains

A Markov chain generates a sequence of random variables {θ(0),θ(1), . . .} where the next state of
the chain θ(t+1) is sampled from a transition kernel K(θ|θ(t))1, a conditional probability density
that only depends on the current state of the chain. The next state of the chain is therefore
independent of the history of the chain. Markov chain Monte Carlo methods are constructed
from a time homogeneous chain, that is, the transition kernel is independent of t.

1Instead of K(θ(t); θ), we use the less common notation K(θ|θ(t)) in the Bayesian sense, as the distribution of
θ(t+1) is conditional on the present value of θ(t).
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The distribution of a time-homogeneous Markov chain {θ(t)} is affected by the transition
kernel and the initial state (or distribution of the initial state). Of key importance is that the
distribution of the sampler’s state converges to the correct invariant distribution, regardless of
the starting state θ(0). The influence of the starting state θ(0) on θ(t) affects the ergodicity
of the chain, and our hope is that the initial state will gradually be forgotten. If the chain
is ergodic the invariant distribution should be reachable from any initial distribution. The
distribution K(t)(θ|θ(0))—the distribution of θ(t) given the starting value θ(0)—should converge
to the stationary distribution as t→∞. The tth iterate of transition kernel is recursively defined
as

K(t)(θ|θ(0)) =

∫

K(θ|θ′)K(t−1)(θ′|θ(0)) dθ′ . (5.3)

Under certain regularity conditions the initial state will have no effect on the long-term outcome
of the chain, and K(t)(θ|θ(0)) will converge to a stationary or invariant distribution, independent
of the initial state or t. A brief overview of these conditions is given below.

After a period of, say, m samples, the samples {θ(t)}Tt=m+1 will be a set of dependent samples
that approximately come from the target density. This initial set of samples is called the burn-in,
and is usually discarded when estimators are determined, i.e. Φ̂T = 1

T−m

∑T
t=m+1 φ(θ(t)).

Conditions guaranteeing convergence to a stationary distribution

A few conditions are sufficient to ensure that the distribution of the state of a Markov chain
converges to the invariant distribution. These conditions are needed for the law of large numbers
to hold for sample path averages, such that the empirical estimate Φ̂ converges to the true
expectation Φ. As we will later see with a toy example in section 5.4.1, we may need additional
conditions to ensure a central limit theorem and say something meaningful about the variance
of the estimate.

We first define the ‘distance’ between two probability distributions p1 and p2 with the total
variation norm,

‖p1 − p2‖ = 2 sup
A∈Θ
|p1(A)− p2(A)| , (5.4)

where we use notation p(A) =
∫

A p(θ)dθ. We also need the concept of the first return time of

the Markov chain to set A, indicated by τA, and properly defined as τA = inf{t ≥ 1 : θ(t) ∈ A},
with τA =∞ if the chain never returns to A.

For the Markov chain to converge to its stationary distribution the chain must be:

Irreducible. Given any initial state, the chain has to be able to reach any other state with a
positive probability in a finite number of steps. For general state-space Markov chains,
the definition of irreducibility is with respect to a distribution (Gilks et al., 1996):

Definition 1. A Markov chain is ϕ-irreducible for a probability distribution ϕ on Θ if
ϕ(A) > 0 for a set A ⊂ Θ implies that

P(τA <∞ | θ(0)) > 0 (5.5)

for all θ(0) ∈ Θ. A chain is irreducible if it is ϕ-irreducible for some probability distribution
ϕ. If a chain is ϕ-irreducible, then ϕ is called an irreducibility distribution for the chain.

An irreducible chain has many irreducibility distributions, all of which are absolutely
continuous with respect to some maximal irreducibility distribution ψ. (Saying that p1 is
absolutely continuous with respect to p2 here means that if p2(A) > 0, then p1(A) > 0, for
any A ∈ Θ.)
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Aperiodic. The chain must not by cyclic, so that an oscillation between two states, or sets of
states, is for example not possible.

Recurrent. If a chain is irreducible then all interesting sets can be reached. Recurrence implies
that all such sets can be reached infinitely often, from all starting positions. A distinction
is made between positive recurrent chains, where the average return time to all states is
finite, and null recurrent chains, where the average time to return to some state can be
infinite. For discrete chains positive recurrence is needed, and follows from the existence of
an invariant distribution. For general state-space chains we have the following definition
(Gilks et al., 1996):

Definition 2. An irreducible Markov chain with maximal irreducibility distribution ψ is
recurrent if for any set A ⊂ Θ with ψ(A) > 0

1. P(θ ∈ A infinitely often | θ(0)) > 0 for all θ(0), and

2. P(θ ∈ A infinitely often | θ(0)) = 1 for ψ-almost all θ(0).

An irreducible recurrent chain is positive recurrent if it has an invariant distribution,
otherwise it is null recurrent.

As the chain is started from any initial θ(0), we need to be sure that the chain has the same
limiting behaviour for every starting value instead of almost every starting value. This is
ensured by Harris recurrence, a stronger condition which requires P(θ ∈ A infinitely often
| θ(0)) = 1 for all θ(0).

If we can show that the Markov chain {θ(t)} is irreducible and has invariant distribution p∗(θ),
then the chain is p∗-irreducible, p∗(θ) is a maximal irreducibility distribution, p∗(θ) is the unique
invariant distribution of the chain, and the chain is positive recurrent. Recurrence is sufficient
to imply convergence of averages of probabilities, and to let a strong law of large numbers hold
(Gilks et al., 1996):

Theorem 3. If {θ(t)} is an irreducible Markov chain with transition kernel K and invariant
distribution p∗, and φ(θ) a real-valued function such that

∫
|φ(θ)|p∗(θ) dθ <∞. Then P(Φ̂T →

Φ | θ(0)) = 1 for p∗-almost all θ(0), where Φ̂T and Φ are defined in (5.2) and (5.1).

Whether a Markov chain will converge to its invariant distribution is given by the following
result:

Theorem 4. Suppose {θ(t)} is an irreducible, aperiodic Markov chain with transition kernel K
and invariant distribution p∗. Then

‖K(t)(·|θ)− p∗(·)‖ → 0 (5.6)

for p∗-almost all θ.

This convergence result will hold for all θ if and only if we can guarantee that the chain
is positive Harris recurrent as well. (Harris recurrence will hold for the samplers that we are
concerned with in this chaper.) For a positive Harris recurrent chain, asymptotic results, such
as laws of large numbers and central limit theorems, that do not depend on any initial portion
of a sample path can be shown to hold for all initial distributions if they hold for any.
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Central Limit Theorems

Thus far we have seen that positive recurrence alone is sufficient to ensure that a law of large
numbers holds for a Markov chain, and hence that ergodic averages converge to their expectations
under the stationary distribution. Ergodic averages Φ̂T , and the asymptotic properties of these
averages, are clearly very important. The ergodic theorem 3 does however not specify (a) how
long we need to run the chain for, and (b) it gives no estimate of the size of error that the
estimate Φ̂T makes.

We need stronger conditions for theorem 4 besides recurrence to provide a central limit
theorem. A condition that is often used, also in this chapter, is that of geometric convergence
for ergodic chains, that is, chains that are irreducible, aperiodic and positive Harris recurrent.

Definition 3. An ergodic Markov chain with invariant distribution p∗(θ) is geometrically ergodic
if there exists a non-negative extended real-valued function M such that

∫
M(θ)p∗(θ) dθ < ∞

and a positive constant r < 1 such that

‖K(t)(·|θ) − p∗(·)‖ ≤M(θ)rt (5.7)

for all θ and all t.

If function M does not depend on θ in the above definition, i.e., it is constant, then the
stronger condition gives uniform convergence. Importantly, a Markov chain that is geometrically
or uniformly ergodic satisfies a central limit theorem (Gilks et al., 1996):

Theorem 5. Suppose an ergodic Markov chain {θ(t)} with invariant distribution p∗ and a real
valued function φ satisfy one of the following conditions:

1. The chain is geometrically ergodic and
∫
|φ(θ)|2+ǫp∗(θ) dθ <∞ for some ǫ < 0.

2. The chain is uniformly ergodic and
∫
φ(θ)2p∗(θ) dθ <∞.

Then

σ2
φ = Ep∗[(φ(θ(0))− Φ)2] + 2

T∑

t=1

Ep∗ [(φ(θ(0))−Φ)(φ(θ(t))− Φ)] (5.8)

is well defined, non-negative and finite, and
√
T (Φ̂T −Φ) converges in distribution to a N (0, σ2

φ)
random variable.

(In the above theorem the esimator Φ̂T = 1
T+1

∑T
t=0 φ(θ(t)) counts from zero).

The notion of geometric convergence will reoccur in section 5.4.1, when we observe that the
variational kernel, that will later be introduced, gives ‘sticky tails’. Geometric convergence will
be the key to showing that simply sampling with a variational proposal cannot, in a simple
case examined, give a Central Limit Theorem. Before considering variational approximations to
transition kernels, a short overview of the Metropolis Hastings algorithm is given.

5.2.3 Metropolis-Hastings

Markov chain Monte Carlo methods are constructed such that the stationary condition of de-
tailed balance holds,

p∗(θ(t))K(θ(t+1)|θ(t)) = p∗(θ(t+1))K(θ(t)|θ(t+1)) . (5.9)

As usual we let p∗(θ) be a (possibly unnormalised) shorthand for p(θ|x).
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Constructing a Markov chain with p∗(θ) as stationary distribution is very easy with the
method of Metropolis et al. (1953), later generalized by Hastings (1970). At each time t, a new
state θnew is generated from a proposal distribution q(θ|θ(t)). This new state is a candidate
that is being accepted with probability

α(θ(t),θnew) = min

(

1,
p∗(θnew)q(θ(t)|θnew)

p∗(θ(t))q(θnew|θ(t))

)

. (5.10)

If the proposed state is accepted the next state in the chain becomes θ(t+1) = θnew, otherwise
the state of the chain does not change with θ(t+1) = θ(t). An overview is given in algorithm 3.

When the support of q includes the support of p∗(θ), the resulting transition kernel

K(θ|θ(t)) = α(θ(t),θ)q(θ|θ(t)) + [1− acc(θ(t))]δ(θ = θ(t)) (5.11)

satisfies the detailed balance condition and the stationary distribution of the chain will be p∗(θ).
The transition kernel consists of two terms, the first is the probability of generating a new point
multiplied by the probability of accepting it, and the second is the probability of repeating the
previous sample θ(t). Notation acc(θ(t)) =

∫
α(θ(t),θ)q(θ|θ(t))dθ indicates the probability of

accepting a new point, while δ(· = θ(t)) indicates the Dirac delta mass at θ(t).
From (5.10) we have

p∗(θ(t))q(θ(t+1)|θ(t))α(θ(t),θ(t+1)) = p∗(θ(t+1))q(θ(t)|θ(t+1))α(θ(t+1),θ(t)) , (5.12)

from which we obtain the detailed balance equation

p∗(θ(t))K(θ(t+1)|θ(t)) = p∗(θ(t+1))K(θ(t)|θ(t+1)) . (5.13)

When we integrate both sides of this equation with respect to θ(t) we get the stationary distri-
bution condition ∫

p∗(θ(t))K(θ(t+1)|θ(t)) dθ(t) = p∗(θ(t+1)) , (5.14)

and K is the correct transition kernel. Therefore, the equation says that if θ(t) comes from
p∗(θ(t)), then θ(t+1) will come from the same stationary distribution. Once we have a sample
from the stationary distribution, all subsequent samples will also be from that distribution. To
fully justify the MH algorithm we need more than just a stationary distribution, we also need
a guarantee that K(t)(θ|θ(0)) will converge to the stationary distribution. From construction
of the MH method, we already have a stationary distribution, while aperiodicity follows from
the fact that the MH algorithm allows for rejection. Finally, for irreducibility we only need to
ensure that q(θ|θ(t)) > 0 over the entire space.

Whether the algorithm succeeds in exploring all modes of parameter space often depends on
the choice of proposal distribution. If the proposal is too narrow, the chain may only explore
one mode, while if on the other hand it is too wide, the rejection rate can be very high. We have
seen in chapter 4 how parallel tempering, with fast relaxation at high temperature simulations,
can be used to ensure that the chain mixes well and all modes be visited with high acceptance
probability.

We will now explore a new route, leading from the cross roads of approximate inference
from chapters 2 and 3, and MCMC methods discussed earlier in this chapter. In the spirit
of variational methods, an approximation to a ‘good’ transition kernel will be made, and a
detailed discussion and proof given illustrating why such an approximation may lead to failure
of a MCMC method.
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Algorithm 3 Metropolis-Hastings

1: initialize: θ(0), t = 0.
2: repeat
3: sample θnew from q(θ|θ(t)).
4: sample a uniform random variable u ∼ U(0, 1) .
5: if u ≤ α(θ(t),θnew) then
6: set θ(t+1) = θnew

7: else
8: set θ(t+1) = θ(t)

9: end if
10: t← t+ 1
11: until t = tmax

5.3 Variational transition kernel

A natural setting for variational transition kernel sampling arises when the posterior can be
completed with latent variables z into a joint distribution p(θ, z|x), such that the completed
posterior distribution p(θ|x, z) becomes easy to evaluate (Robert & Casella, 2004).

For completeness the familiar example of chapters 2, 3 and 4 is repeated here. In mixture
of distributions, we assume that the examples in x = {xn}Nn=1 are independent and identically
drawn from p(xn|θ) =

∑J
j=1 πjp(xn|θj). Let θ encompass all unknown parameters in the model:

the parameters of the J component distributions p(·|θj) and the component weights πj that sum
to one. Hidden latent variables z = {znj}, where znj is equal to 1 if xn was generated from
component j in the mixture, and zero otherwise, naturally augment the data. The likelihood,
which considers all possible partitions of the sample and expands into JN terms, and the ‘easier’
complete-data likelihood are

p(x|θ) =

N∏

n=1

[ J∑

j=1

πjp(xn|θj)
]

and p(x, z|θ) =

N∏

n=1

J∏

j=1

[

πjp(xn|θj)
]znj

. (5.15)

5.3.1 An exact transition kernel

We can draw samples from the posterior distribution over θ if we can construct a transition
kernel K(θ|θ′) that has the parameter posterior as correct invariant distribution,

∫

K(θ|θ′)p(θ′|x) dθ′ = p(θ|x) , (5.16)

and that marginalizes out the latent variables. Samples from K are then coming from the
posterior distribution p(θ|x), and we can create such a sample {θ(t)} by defining K with:

1. Given θ′ (i.e. θ(t−1)), determine p(z|x,θ′).

2. Given p(z|x,θ′), sample θ (i.e. θ(t)) from

K(θ|θ′) =

∫

p(θ|x, z)p(z|x,θ′) dz . (5.17)
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This kernel is exact as we can show that p(θ|x) is the invariant distribution with a rearrangement,

∫

K(θ|θ′)p(θ′|x) dθ′ =

∫
{
∫

p(θ|x, z)p(z|x,θ′) dz

}

p(θ′|x) dθ′

=

∫
{
∫
p(x, z|θ)p(θ)

p(x, z)

p(x, z|θ′)
p(x|θ′)

dz

}

p(x|θ′)p(θ′)
p(x)

dθ′

=

∫
p(x, z|θ)p(θ)

p(x, z)

∫
p(x, z|θ′)
p(x|θ′)

p(x|θ′)p(θ′)
p(x)

dθ′ dz

=
1

p(x)

∫

p(x, z|θ)p(θ) dz =
p(x|θ)p(θ)

p(x)
= p(θ|x) , (5.18)

and therefore if the kernel is used as proposal density in a MH algorithm, the acceptance ratio
in (5.10) will always be unity.

This construction is similar to doing Gibbs sampling with z ∼ p(z|x,θ′) and θ ∼ p(θ|x, z).
We arrive at an alternative sampling scheme, as choosing K in this way to average over the latent
variable space allows a derivation of a transition kernel that replaces discrete or categorical model
changes with continuous ones.

5.3.2 A tractable approximation

The required transition kernel is, however, in general not analytically tractable and impossible
to sample from directly. The kernel can be approximated by finding a proposal density q(θ|θ′)
that is close to K(θ|θ′) (remembering that sampling with K automatically gives the required
invariant distribution and can in theory be used as a proposal density, although in practice it is
not analytically tractable) by minimizing the Kullback-Leibler divergence between the defined
proposal and the kernel (exact proposal),

KL(q‖K) =

∫

q(θ|θ′) ln
q(θ|θ′)
K(θ|θ′)

dθ . (5.19)

The problem that we face is that K is not in a product form (unlike p(θ, z|x), for example).
This means that even if a specific factorization of q is assumed, a tractable solution will not be
found. However, Jensen’s inequality can be used to construct an upper bound to KL(q‖K), and
this bound can in turn be minimized to give an analytical solution:

lnK(θ|θ′) ≥
∫

p(z|x,θ′) ln p(θ|x, z) dz . (5.20)

It is important to note that this is a bound for the distribution in z, so the equality only
holds in the extreme cases of deterministic relation or independence: p(z|x,θ′) = δ(z − z0) or
p(θ|x, z) = p(θ|x). We now have an upper bound:

KL(q‖K) ≤
∫

q(θ|θ′)
[

ln q(θ|θ′)−
∫

p(z|x,θ′) ln p(θ|x, z) dz
]

dθ ≡ F [q(θ|θ′)] . (5.21)

The minimum of KL(q‖K), which is q = K, is of course not attained by minimizing the upper
bound F (apart from the trivial case discussed above). The solution can, as we see in the
following, still serve as a useful approximation to the transition kernel.
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The usual free form optimization, typical of variational methods, can be used to find an
appropriate q. A Lagrange multiplier ℓ is added to the functional such that q is constrained to
integrate to one, with

F̃ [q(θ|θ′)] = F [q(θ|θ′)] + ℓ
[ ∫

q(θ|θ′) dθ − 1
]

. (5.22)

By using elementary calculus of variations, we take the functional derivative of F [q] with respect
to q under the integral constraint to make q a density,

∂F̃ [q(θ|θ′)]
∂q(θ|θ′)

=

∫

p(z|x,θ′)
[ ∂

∂q(θ|θ′)

∫

q(θ|θ′) ln
p(θ|x, z)
q(θ|θ′)

dθ
]

dz

· · ·+ ∂

∂q(θ|θ′)
ℓ
[ ∫

q(θ|θ′) dθ − 1
]

(5.23)

=

∫

p(z|x,θ′)[ln p(θ|x, z) − ln q(θ|θ′)− 1] dz + ℓ ,

and set it to zero:

ln q(θ|θ′) =

∫

p(z|x,θ′) ln p(θ|x, z) dz− 1 + ℓ . (5.24)

By exponentiating and integrating over θ on both sides, keeping the integral constraint in mind,
we can solve for ℓ to correctly normalize the distribution. The upper bound on the divergence
is therefore minimized with

q(θ|θ′) = exp
{∫

p(z|x,θ′) ln p(θ|x, z) dz
}
/
∫

exp
{∫

p(z|x,θ′) ln p(θ|x, z) dz
}

dθ . (5.25)

Using Bayes’ theorem we get the variational approximation to the transition kernel,

q(θ|θ′) ∝ p(θ) exp
{∫

p(z|x,θ′) ln p(x, z|θ) dz
}

. (5.26)

This form is instantly recognizable from the Variational Bayesian EM algorithm, as discussed
in section 1.4.3.

5.3.3 Illustrative example: Mixture of distributions

As an illustrative example, consider the mixture of distributions discussion from the start of
Section 5.3. Let p(zn|xn,θ

′) = γn = (γn1, . . . , γnJ) be the probability that xn was generated
by each of the J components (the component’s responsibility), thus defining a distribution over
each binary vector zn. Then the responsibilities are

γnj = p(znj = 1|xn,θ
′) =

πjp(xn|θ′
j)

∑J
k=1 πkp(xn|θ′

k)
. (5.27)

Using the log of the complete-data likelihood from equation (5.15) and p(z|x,θ′) determined
above, we get

∑

z
ln p(x, z|θ)p(z|x,θ′) =

∑N
n=1

∑J
j=1 γnj ln[πjp(xn|θj)], and from equation

(5.26),

q(θ|θ′) ∝ p(θ)
J∏

j=1

N∏

n=1

[

πjp(xn|θj)
]γnj

. (5.28)
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Figure 5.1: A toy example of a two-dimensional Gaussian over θ and z, centered at zero, with covariance
matrix Σ = [1, 0.98; 0.98, 1]. The variational Bayes approximation qθ(θ)qz(z) to p(θ, z) is shown on the
left. The marginal p(θ) and the factor qθ(θ) from the variational approximation to p(θ, z) is on the right.
With θ′ = 1.3, K(θ|θ′) and q(θ|θ′), both with mean rθ′, are also shown. (The densities are not normalised
in the figure.)

The kernel simply raises the likelihood terms to its respective responsibility powers, and if p(·|θj)
comes from an exponential family of distributions the result will be a weighted contribution of
data points to each mixture component. Notice that if γnj is discrete, we fall back directly to
two-stage Gibbs sampling, where a discrete sample znj ∈ {0, 1} is used instead of γnj ∈ [0, 1].
Effectively we have replaced categorical labels with continuous variables. When γ is strictly
binary the kernel approximation is of course exact.

A potential difficulty surfacing here is that the true kernel may be multimodal, but we
attempt to approximate it with a distribution of single mode, as was seen in examples in chapter
2. As is true for variational methods where a factorization qθ(θ)qz(z) is assumed, the variance
of the approximation—similar to the variance of qθ(θ) from a variational lower bound—is an
underestimation of the true variance of the kernel. In approximate methods this is acceptable,
but it may be ruinous when we are concerned with creating a practical MCMC method (see
section 5.4.1 for a formal discussion).

5.4 Using the proposal in Monte Carlo methods

Although the main idea of taking a Markov chain with an intractable transition kernel K(θ|θ′)
and correct invariant distribution, and approximating K with q(θ|θ′) as a MH proposal, sounds
appealing, some questions on convergence can be raised. It turns out that simply using q as
proposal is not enough, and the method needs to be supplemented with additional standard
moves (symmetric proposal densities, for instance), or dropped altogether in favour of more
orthodox samplers (the Gibbs sampler of chapter 4 being a good example). The following toy
example is insightful.

5.4.1 Toy example

As an informal illustration to compareK(θ|θ′), the approximation q(θ|θ′) as MH proposal density,
and the variational approximation qθ(θ), consider a two-dimensional Gaussian, where ρij indicate
the elements of the inverse covariance matrix,

p(θ, z) ∝ exp
{
− 1

2 [ρ11θ
2 + (ρ12 + ρ21)θz + ρ22z

2]
}
. (5.29)
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Figure 5.2: Continuing Figure 5.1’s toy example. The average acceptance probability E[α(θ|θ′)] is
shown as a function of θ′. Averaging E[α(θ|θ′)] numerically over p(θ′) gives 0.939 as average acceptance
over the target distribution.

Let

r ≡ (ρ12 + ρ21)
2

4ρ11ρ22
, (5.30)

with r ∈ [0, 1). The example is chosen such that K(θ|θ′) from (5.17) is analytically tractable,
and also such that the required marginal p(θ)—that we would like to draw samples from—can
be analytically normalized. The marginal and conditional distributions for θ are

p(θ) = N
(
θ
∣
∣ 0, [ρ11(1− r)]−1

)
(5.31)

and p(θ|z) = N
(

θ
∣
∣
∣ − (ρ12 + ρ21)

2ρ11
z, ρ−1

11

)

. (5.32)

The marginal p(z) and conditional p(z|θ) are the same as above, except that occurrences of ρ11,
ρ22 and z are respectively swapped with ρ22, ρ11 and θ. Here both K(θ|θ′) =

∫
p(θ|z)p(z|θ′) dz

and the approximation q(θ|θ′) = 1
Z exp{ln p(θ|z)p(z|θ′) dz} are analytically tractable,

K(θ|θ′) = N
(
θ
∣
∣ rθ′, ρ−1

11 (1 + r)
)

(5.33)

q(θ|θ′) = N
(
θ
∣
∣ rθ′, ρ−1

11

)
. (5.34)

A further possible approximation to note is that given by Variational Bayes, where p(θ, z) is
approximated with a factorized Gaussian qθ(θ)qz(z), the minimizer of KL(qθ(θ)qz(z) ‖ p(θ, z)).
The factor involving θ is

qθ(θ) = N
(
θ
∣
∣ 0, ρ−1

11

)
, (5.35)

which can naively be taken as a proposal density. Figure 5.1 plots all of these densities, showing
that an adaptive proposal q(θ|θ′) appears more sensible (in terms of exploration) than using
qθ(θ) as proposal. The variational (approximate) kernel q(θ|θ′) illustrates the potential under-
estimation of the variance of K(θ|θ′): here by a factor of (1 + r). How much the variance is
underestimated depends on the strength of coupling between θ and z, with q = K when r = 0.
When the q(θ|θ′) is used as a MH proposal density, E[α(θ|θ′)] is in practice close to one in areas
of high density and good approximation (see Figure 5.2 with regard to this example). However,
due to the underestimation of the variance by the variational approximation, the variational
proposal may fail to produce adequate results at the tails of a distribution. A similar effect
occurs when the exact kernel is multimodal, and is approximated with a distribution with single
mode. This problem is discussed in more detail in the following section.
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Figure 5.3: An illustration of why the approximation q(θ|θ′) may not give a geometrically ergodic
chain. Different chains are started further down the tails of the target distribution p(θ), and the average
acceptance probability can be made arbitrarily small by choosing a θ(t) far enough down the tail of the
distribution. In this example the covariance matrix Σ = [1, 0.98; 0.98, 1] was used, giving ρ11 = ρ22 =
25.2525 and ρ12 = ρ21 = −24.7475. The standard deviation of the target density p(θ) is 1; the chains
were started at least 10 standard deviations away from p(θ)’s mean.

Geometric ergodicity

To provide for a central limit theorem on the estimate Φ̂T , i.e. to have
√
T (Φ̂T − Φ) converge

in distribution to a Gaussian zero-mean random variable with finite, well-defined variance, a
condition on the convergence rate of {θ(t)} is typically needed. An often-considered convergence
rate condition is geometric ergodicity.

Continuing the toy example, figure 5.3 illustrates the use of q(θ|θ′) as proposal, with different
chains starting further down the tails of the target distribution p(θ). It will be shown later that
the tails become ‘sticky’, with arbitrarily small average acceptance probability—this forms the
core of showing that the chain is not geometrically ergodic. Section 5.4.3 presents a simple
method for addressing this problem.

Preliminary theory

We want to be able to show that a chain is geometrically ergodic, or not, and here only the
necessary theory for the proof is given. For general state-space chains, we need the notion of
a small set. A small set will play a role similar to individual states in a discrete chain, and in
many problems under consideration compact sets are small.

Definition 4. A set C ⊂ Θ is small for an irreducible transition kernel K with maximal
irreducibility distribution ψ if ψ(C) > 0 and there exists a probability distribution ν on Θ, a
non-negative integer t, and a constant β > 0 such that K(t)(A|θ) ≥ βν(A) for all θ ∈ Θ and all
A ⊂ Θ.

The following theorem is adapted from (Mengersen & Tweedie, 1996) and will be used in showing
geometric ergodicity.

Theorem 6. Suppose that {θ(t)} is ϕ-irreducible and aperiodic. Then the following is an equiv-
alent definition for a geometrically ergodic chain:
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• For some small set C with ϕ(C) > 0, there exists a κ > 1 such that

sup
θ∈C

Eθ[κτC ] = sup
θ∈C

∞∑

k=0

P[τC ≥ k]κk <∞ . (5.36)

(The notation Eθ indicates the expectation for a Markov chain started in state θ(0) = θ ∈ C.)

We are now in the position to pinpoint where the use of the variational approximation to
the kernel may fail, and the proof merely gives a formal description of figure 5.3.

Proposition 1. Provided that r > 0, the toy example’s proposal density q(θ|θ′) does not give
rise to a geometrically ergodic Metropolis Hastings chain.

Proof. Consider some θ′. The acceptance ratio, as a function of θ′, is an exponential that is
symmetric around zero, the mean of p(θ),

A = exp{1
2ρ11r(1− r)(θ2 − θ′2)} , (5.37)

with ρ11r(1−r) being nonnegative. Given θ′, a proposed θ is accepted with probability α(θ′, θ) =
min(1, A). The average acceptance probability, as a function of θ′, is

a(θ′) ≡ E[α(θ′, θ)] =

∫

|θ|<|θ′|
AN (θ | rθ′, ρ−1

11 ) dθ +

∫

|θ|≥|θ′|
1N (θ | rθ′, ρ−1

11 ) dθ , (5.38)

and we can show that it can be made arbitrarily small by choosing θ′ further away from zero.
Evaluating a(θ′) for θ′ > 0 gives

a(θ′) =
(ρ11

2π

)1/2
exp

{

− 1

2
ρ11r

(
1− r

r2 − r + 1

)
θ′2
}

· · · ×
∫

|θ|<|θ′|
exp

{

− 1

2
ρ11[r

2 − r + 1]
(
θ − rθ′

r2 − r + 1

)2
}

dθ

︸ ︷︷ ︸

≤(2π/ρ11[r2−r+1])1/2

· · ·+ Φ
(

− θ′(1 + r)
√
ρ11

)

+
[

1− Φ
(

θ′(1− r)√ρ11

)]

, (5.39)

where Φ(·) is the N (0, 1) cumulative density function, and arises from integrating the two tails
given by the second term in (5.38). Simplifying further, we get

a(θ′) ≤ [r2 − r + 1]−1/2

︸ ︷︷ ︸

1≤·≤
√

4/3

exp
{

− 1

2
ρ11r

(
1− r

r2 − r + 1

)
θ′2
}

· · ·+ Φ
(

− θ′(1 + r)
√
ρ11

)

+
[

1− Φ
(

θ′(1− r)√ρ11

)]

→ 0 as θ′ →∞ . (5.40)

We can construct a similar upper bound on a(θ′) when θ′ < 0, and show that a(θ′) → 0 as
θ′ → −∞.

Now suppose that {θ(t)} is geometrically ergodic. Then for some small set C, there exists a
κ > 1 such that

sup
θ(0)∈C

Eθ(0) [κτC ] = sup
θ(0)∈C

∞∑

k=0

P(τC ≥ k)κk <∞ , (5.41)
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where τC denotes the return time to C. Define a set of states from which the probability of
accepting a proposal is smaller than 1− 1/κ,

Dκ = {θ′ : a(θ′) < 1− 1/κ} , (5.42)

which has positive measure for any given κ > 1 because a(θ′)→ 0 as θ′ →∞. The proof hinges
on this: we can choose θ′ such that the average chance of accepting a proposed θ is arbitrarily
small.

Define θκ as the element in Dκ that gives rise to the largest probability of accepting a
proposed sample, θκ = arg maxθ′{a(θ′) : θ′ ∈ Dκ}. Let C be a small set such that (5.41) holds.
Because the chain is irreducible under p by construction, we can find for any Dκ at least one
θ(0) ∈ C and some m such that

P(θ(m) ∈ Dκ, τC > m) > 0 . (5.43)

As θ(m) ∈ Dκ, we have P(θ(m+1) = θ(m)) ≥ 1− a(θκ), and therefore

P(τC ≥ m+ k | θ(m) ∈ Dκ) ≥ (1− a(θκ))k . (5.44)

For a given κ > 1, expectation (5.41) can be lower bounded in the following way:

Eθ(0) [κτC ] =
∞∑

k=0

P(τC ≥ k, θ(m) /∈ Dκ)κk +
∞∑

k=0

P(τC ≥ k, θ(m) ∈ Dκ)κk

≥
∞∑

k=m

P(τC ≥ k | θ(m) ∈ Dκ)P(θ(m) ∈ Dκ)κk

= P(θ(m) ∈ Dκ)κm
∞∑

k=0

P(τC ≥ m+ k | θ(m) ∈ Dκ)κk

≥ P(θ(m) ∈ Dκ)κm
∞∑

k=0

[

(1− a(θκ))κ
]k
. (5.45)

From (5.42) we have (1 − a(θκ))κ > 1, and therefore the sum
∑∞

k=0[(1 − a(θκ))κ]k will diverge
to infinity with our choice of Dκ, thus giving a contradiction to our assumption in (5.41).

We have now seen through a toy example why MH moves with the variational proposal
density q(θ|θ′) can fail. Another attempt is to use so-called importance weights in conjunction
with samples drawn directly from the chain q(θ|θ′), which we discuss next.

5.4.2 Importance sampling

Another possibility to consider might be to run a Markov chain with q(θ|θ′) as transition kernel,
as it is an approximation to a kernel with target density p∗(θ) as stationary distribution. As
the former chain doesn’t exactly do a random walk proportional to p∗(θ), the samples from
the chain q(θ|θ′) can be reweighted to the correct proportions with importance weights. As we
will soon see, the practical problems arising are intimately related to the fact that using q as
MH proposal does not allow for a central limit theorem. Although ergodic estimates (averages)
should converge to true averages, not much can again be said about the variance of the estimate,
as the variance of the importance weights used can be infinite. In this sense, using the chain
with kernel q as instrumental densities in importance sampling is an impractical idea. For
completeness, a full justification is given below.
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Importance weights

We are sampling from q(θ|θ′), which is an approximation of the required kernel that has the
posterior as invariant distribution. Say we want to determine the expectation of some function
φ(θ) under the posterior distribution, Φ = 〈φ(θ)〉.

Let p∗(θ) again be a shorthand for the (possibly unnormalized) target density, and assume
that it, or the posterior p(θ|x), can be evaluated up to a normalizing constant. To estimate Φ,
an importance weight ω(t) is added to each sample θ(t) coming from the kernel q(θ(t)|θ(t−1)),

ω(t) ≡ ω(θ(t)|θ(t−1)) =
p∗(θ(t))

q(θ(t)|θ(t−1))
. (5.46)

We require that q(θ|θ′) > 0 wherever p∗(θ) > 0; hence the approximate kernel must at least
have the same support as the required posterior distribution. Notice that in normal importance
sampling we need not add the restriction that q is normalized, as the sampling distribution q (also
known as an instrumental distribution) does not change and hence the normalizing constants
will cancel out when we take the expectation of a function using our weights and sample. But
now the sampling distribution changes and we can expect different normalizing factors for each
q(θ|θ′). We use

Φ̂I
T =

∑T
t=1 ω

(t)φ(θ(t))
∑T

t=1 ω
(t)

(5.47)

as an estimate for Φ. Superscript I, for ‘importance’, is merely to differentiate between (5.2)
and (5.47).

The correct estimate

In a similar argument used for a fixed instrumental distribution in MacKay (2003, chapter 29),
it can be shown that Φ̂I

T should converge to Φ, provided that the ratio ω(t) does not give rise to
infinite variance.

Say the random variables θ and θ′ have a joint distribution q(θ|θ′)π(θ′), such that the
transition kernel q(θ|θ′) has unknown invariant distribution

π(θ) =

∫

q(θ|θ′)π(θ′) dθ′ . (5.48)

(We hope that this invariant distribution will be close to p∗(θ), but have no guarantee.) A
sample {θ(t)}Tt=1 is taken using q(θ(t)|θ(t−1)), and we need to determine the average weights
under it. We average over π(θ′), the probability of seeing θ′ as a conditional argument; we then
average over q(θ|θ′), the probability of θ given θ′.

〈ω〉 =

∫∫

ω(θ|θ′)q(θ|θ′)π(θ′) dθ′dθ

=

∫∫
p∗(θ)

q(θ|θ′)
q(θ|θ′)π(θ′) dθ′dθ

=

∫∫

p∗(θ)π(θ′) dθ′dθ =

∫

p∗(θ) dθ = Zp . (5.49)

Hence 〈∑T
t=1 ω

(t)〉 = TZp. We similarly show that 〈∑T
t=1 ω

(t)φ(θ(t))〉 = TZpΦ:

〈
ωφ(θ)

〉
=

∫∫
p∗(θ)

q(θ|θ′)
φ(θ)q(θ|θ′)π(θ′) dθ′ dθ
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=

∫

φ(θ)p∗(θ) dθ = ZpΦ . (5.50)

Finally 〈Φ̂I
T 〉 = TZpΦ/TZp = Φ, and Φ̂I

T → Φ as T → ∞. As only p∗ is not normalized, the
estimator is consistent and unbiased.

Where importance sampling fails

Consider again the toy example of section 5.4.1. We shall assume here without loss of generality
that p∗(θ) is normalized. The average importance weight is one,

〈ω〉 =

∫∫ [ p∗(θ)
q(θ|θ′)

]

q(θ|θ′)π(θ) dθ′dθ =

∫∫

p∗(θ)π(θ′) dθ′dθ = 1 . (5.51)

The variance of the importance weight is determined as

var(ω) =

∫∫ [ p∗(θ)
q(θ|θ′) − 1

]2
q(θ|θ′)π(θ′) dθ′dθ

=

∫∫
p∗(θ)2

q(θ|θ′)π(θ) dθ′dθ − 2

∫∫

p∗(θ)π(θ′) dθ′dθ +

∫∫

q(θ|θ′)π(θ′) dθ′dθ

=

∫∫
p∗(θ)2

q(θ|θ′)π(θ′) dθ′dθ − 1 . (5.52)

We return to the toy example. To keep the notation simple, let ρ ≡ ρ11. As q(θ|θ′) is Gaussian,
we can analytically solve for the stationary distribution π(θ′). Substituting the toy example’s
distributions into (5.52) (with Z indicating the appropriate normalizing constants) we have

var(ω) =
Zq

Z2
pZπ

∫∫ (

e−
1
2
ρ(1−r)θ2

)2(

e
1
2
ρ(θ−rθ′)2

)(

e−
1
2
ρ(1−r2)θ′2

)

dθ′dθ − 1

=
Zq

Z2
pZπ

∫

exp
{

− ρ

2

[

1− 2r − r2

1− 2r2

]

θ2
}

. . .

∫

exp
{

− ρ
2 (1− 2r2)

[
θ′ +

rθ

1− 2r2
]2
}

dθ′dθ − 1 . (5.53)

The integral will diverge if 1− 2r2 ≤ 0, hence if r ≥ 1√
2
. Assume that r < 1√

2
, so that the inner

integral over θ′ is finite:

var(ω) =
Zq

Z2
pZπ

√

2π

ρ(1− 2r2)

∫

exp
{

− ρ

2

[

1− 2r − r2

1− 2r2

]

θ2
}

dθ − 1 . (5.54)

The last integral over θ is finite if and only if (remember the assumption that r < 1√
2
)

1− 2r − r2

1− 2r2
> 0

⇒ (r − 1)(4r2 + r − 1) > 0 , (5.55)

and this is true when r < 1 (which is trivially true already) and 4r2 + r−1 < 0. The variance of
the importance weights will only be finite for values of r (recalling that r is nonnegative) that
satisfy2

r <

√
17− 1

8
. (5.56)

2Changing the order of integration gives the same result.
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Even though the chain with q(θ|θ′) explores a greater part of parameter space, the failure of
importance sampling can be ascribed to the variance of q being too small; this is also a clear
motivation for using heavy-tailed distributions (e.g. the Student t-distribution) as instrumental
densities.

For the sake of interest, using K(θ|θ′) instead of q(θ|θ′) in the above derivation gives a
finite weight variance only if r < 1

2 . Although the kernel K(θ|θ′) is the transition kernel of a
Markov chain with p∗(θ) as invariant distribution (no importance weights needed), the addition
of importance weights (if we did not know that K was correct) can still give an infinite variance!

Having shown a lack of geometric ergodicity, and also potential failure of importance sam-
pling, in the toy example, we turn our attention to a practical fix.

5.4.3 Mixing kernels

When using q in practice, we often have an acceptance ratio A (in α(θ|θ′) = min(1, A)) close to
one in areas of high density (e.g. a posterior mode), as q approximates K well. Despite this, we
have no guarantee of geometric ergodicity, as we have just seen in section 5.4.1. This is because
we have minimized a bound on the KL-divergence between the true kernel and q, and not the
KL-divergence itself. The bound is not necessarily good, and q typically underestimates the
variance of K. For for θ′ in the extreme tails of the posterior we often find that A is small, and
in fact can be made arbitrarily small by choosing θ′ to be far enough out in the tail.

This does not pose a serious difficulty, and a path similar to (de Freitas et al., 2001) can be
taken. We can proceed by allowing a mixture between a proposal that is biased towards and
performs well in high density areas, and a symmetric random walk that improves acceptance in
the tails. An elegant property of detailed balance is that a set of Markov kernels K1 and K2, each
with invariant distribution p∗(θ), can be combined in a cycle K1K2 or mixture αK1 +(1−α)K2,
with 0 < α < 1, in order to improve convergence. We can therefore adopt a mixture by sampling
θ from q(θ|θ′) with probability α, and use a symmetric proposal density with probability 1−α.

5.5 Concluding remarks

We have seen how a variational kernel, despite its elegant derivation and possible good per-
formance in areas of high density, has a potential weakness, as we have no guarantee that the
variance of estimates Φ̂T or Φ̂I

T are finite. The kernel can be combined with other methods
with well-established convergence results. As an example, Gibbs sampling from p(θ, z|x) in a
mixture modelling problem comes with a central limit theorem and geometric convergence guar-
antee (Tierney, 1994). Such a combination therefore seems akin to flogging a dead horse; from
the other side, we may argue that if we have a method with proven convergence properties, it is
hard to justify augmenting it with a variational kernel that comes without the same guarantees.

In section 2.2 we illustrated that other divergence measures may not suffer from the same
problem of underestimating the variance of a target density. The variational kernel that was
derived in this chapter didn’t rely on any optimization routines, but came in a closed-form solu-
tion. On the other hand, the expectation propagation algorithm relies on continually updating
individual factors. If we keep in mind that a transition kernel should ideally be fast to compute,
it therefore remains to be seen how these deterministic approximate methods can be successfully
incorporated into MCMC samplers.





Chapter 6

Conclusion

6.1 Summary of contributions

This thesis presented practical methods for evaluating the large sums (often with an exponential
number of terms) or intractable integrals that are often required in Bayesian inference.

Chapter 2 introduced Minka (2005)’s generic α-divergence message passing scheme, which
allowed us to interpolate between VB and EP and beyond. A simple mixture of Gaussians with
unknown means was taken as a running toy example, for which a new generic algorithm was
derived. The main purpose of chapter 2 was to give a broad overview of the behavior of such
algorithms. New intuition was given on the effect of the width of the prior distribution to model
pruning and local minima in VB, and why EP is not prone to the same behavior. These findings
were used to increase the robustness of the VB message passing algorithm for multivariate
mixtures. We also showed under which conditions the VB message passing algorithm over a
factor graph behaves like the standard VBEM algorithm, where a lower bound on the marginal
likelihood is always increased.

Two new approaches to inference for a multivariate mixture of Gaussians, namely EP and
the more general α-divergence message passing scheme, were contributed by chapter 3. A
benchmark comparison with parallel tempering and thermodynamic integration showed that
VB, EP, and α = 1

2 message passing are suitable for model selection, and approximating the
predictive distribution with high accuracy. It was practically shown that EP need not have a
unique fixed point, and if the fixed points are not unique, they depend on both the initialization
and the random order in which factor refinements take place. A number of other points were
empirically illustrated: the log marginal likelihood estimates increase with α; the number of
local solutions depends on the prior width; the discrepancy between the approximate and true
log marginal likelihoods increase with model size; the marginal likelihoods give a characteristic
‘Ockham hill’ as the model size increases, providing a useful tool for model selection.

Parallel tempering and thermodynamic integration, with a new parallel tempered approach
to sampling from a mixture of Gaussians posterior through Gibbs sampling, were introduced in
chapter 4. We have also made thermodynamic integration numerically stabler with a principled
method of interpolation over high-temperature averages. The numerical stability was further
addressed by generalizing parallel tempering to include a surrogate prior. With a carefully
chosen surrogate prior the variance of the samples in the chain, especially at high temperatures,
can be meaningfully reduced.

In chapter 5 we have also attempted to introduce variational methods into the design of
MCMC transition densities. A detailed proof was given why such methods may not give a
geometrically ergodic chain. In essence the mean of our MCMC estimate converges to the
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correct mean by the law of large numbers, but unfortunately we cannot say anything useful
about the variance of the estimate, as a central limit theorem cannot be shown to hold. This
rendered the use of the variational kernel impractical as a stand-alone MCMC algorithm, and
therefore further layers of MH proposals need to be introduced.

6.2 Future work

There are many directions for future research, both fundamental and practical.

Convergence of EP. EP is an effective method for minimizing the EC/EP free energy, but
does not come with a convergence guarantee. Minka (2001a) made the initial empirical
observation that EP converged on unimodal posteriors, but failed to converge on strongly
multimodal posteriors. In this thesis we have seen where EP converges even when the
posterior is multimodal, provided the modes are ‘well enough’ separated. Furthermore, L.
Csató has conjectured (but not proven) that EP is guaranteed to converge if the likelihood
is log concave (Rasmussen & Williams, 2006). A formal study on these questions will be
a valuable contribution to the field of machine learning.

Double loop algorithms. When EP does not converge, we may switch to double loop algo-
rithms. None of the algorithms in this thesis were extended to double loop algorithms,
and it provides a basis for further improvements.

Perturbative corrections. Opper (2006) showed how perturbative corrections can be used
to improve expectation consistent (EC) approximations. A convincing example, showing
the improvement on a toy example, was given as a conclusion to chapter 3 (section 3.8.3).
This is clearly a promising direction for future work.

Approximate moments. We have also seen in section 3.8 that intractable partition functions
often arise for the product of a prior and one likelihood term, even for simple models.
For EP/C (α = 1), we will not be able to do moment matching, and it begs the question
whether it is worthwhile to find approximations to the moments, and how accurate such
approximations in an approximate algorithm is. The models mentioned in section 3.8 rely
on inner products between two random vectors, where the elements are neither independent
nor identically distributed. Under certain conditions we can rely on Lyapunov’s central
limit theorem to show that the inner product is still approximately Gaussian, therefore
both approximating and simplifying the problem to an integral over the inner product.
Then again, we may bypass all these difficulties by choosing another divergence measure,
namely α = 0 (VB).

Extensions. In section 3.8 it was mentioned that extensions of EP/C to higher-order mixtures,
namely HMMs, are also possible. How will these extensions compare to existing algorithms
for treating HMMs?

Infinite models. If we prefer a non-parametric approach to mixture modeling, we can always
implement an infinite mixture. Minka & Ghahramani (2003) implemented an infinite
mixture of Gaussians (with fixed variance) through a Dirichlet process, but concluded
that Gibbs sampling remains, in that case, the method of choice. It remains an open
question whether the accuracy of EP can be improved in this particular case.

Surrogate distributions in parallel tempering. As argued in section 4.3, the nature of par-
allel tempering can be radically changed with the introduction of a distribution other than
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the prior at β = 0. Can we use the fact that we can find approximations to the posterior to
our advantage, i.e. can we choose a surrogate prior such that the variance of the MCMC
estimate is minimized? This is a fruitful direction of questioning, as we know that when
we choose the posterior as surrogate prior, the log likelihood expectations have a zero
variance.

Can this technique be applicable elsewhere? For example, parallel tempering cannot treat
first order phase transitions, where there is a point of no energy overlap in a figure like
figure 4.1(a). May a clever introduction of an additional distribution change that?

Approximations and MH kernels. We have seen the dangers of incorporating variational
methods in the construction of MH proposal densities. However, we would be wrong to
conclude that methods from approximate inference cannot greatly enhance Monte Carlo
methods: One way may be their introduction into parallel tempering algorithms. Effective
geometrically ergodic kernels, built around fast approximations, are still to be found.





Appendix A

Useful results

A.1 Kullback-Leibler as special cases of an α-divergence

In section 2.2 an α-divergence was introduced for unnormalized distributions. We shall formally
show here that the two Kullback-Leibler (KL) divergences are special cases of an α-divergence.
Take the limit α→ 1,

lim
α→1

Dα

(
p(x,θ)

∥
∥ sq(θ)

)
= lim

α→1

∫
αp(x,θ) + (1− α)sq(θ)− p(x,θ)α[sq(θ)]1−αdθ

α(1 − α)

= lim
α→1

(
∫

p(x,θ)− sq(θ)− ln[p(x,θ)]p(x,θ)α[sq(θ)]1−α

· · ·+ ln[sq(θ)]p(x,θ)α[sq(θ)]1−αdθ

)

/(1 − 2α)

=

∫

p(x,θ) ln
p(x,θ)

sq(θ)
dθ +

∫ (

sq(θ)− p(x,θ)
)

dθ

= KL
(
p(x,θ)

∥
∥ sq(θ)

)
, (A.1)

where the second line follows from l’Hôpital’s rule (taking the derivative of the numerator and
denumerator with respect to α). With a very similar argument we can show that

lim
α→0

Dα

(
p(x,θ)

∥
∥ sq(θ)

)
= KL

(
sq(θ)

∥
∥ p(x,θ)

)
. (A.2)

A.2 Responsibility-weighted moment matching: two derivations

This section aims to give two example derivations of weighed moment-matching equations. The
first derivation comes from chapter 2 forms a skeleton for finding moments for more complex
distributions in a mixture model, most notably for the Normal-Wishart distributions following
in chapter 3. The second derivation is for the moments of a Dirichlet distribution.

A.2.1 A Gaussian derivation

In section 2.4 we had a choice of approximating distribution q(µj) = N (µj |mj , v
−1
j ), and would

like to solve for mj in

∂KL
(
p(xn,µ)

∥
∥ sq(µ)

)/
∂mj = 0 . (A.3)
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To update the parameter mj of each approximate distribution q(µj), write the KL divergence
as a function of mj . This gives

KL
(
p(xn,µ)

∥
∥ sq(µ)

)
= −

∫

p(xn,µ) ln q(µ) dµ + const

= −
∫ [ J∑

i=1

ln q(µj)
][

p(µ)

J∑

k=1

πkp(xn|µk)
]

dµ + const

= −
J∑

k=1

πk

∫

p(µ)p(xn|µk) ln q(µj) dµ + const . (A.4)

The absence of components i 6= j in the last line follows merely from the independence of q(µi)
and q(µj), and are included in the constant. Take the derivative with respect to mj :

∂KL

∂mj
= −

J∑

k=1

πk

∫
∂

∂mj
ln q(µj |mj, v

−1
j )

J∏

i=1

p(µi)× p(xn|µk) dµ

= −
∑

k 6=j

πk

∫

vj(µj −mj)p(µj)p(µk)p(xn|µk) dµj dµk

· · · − πj

∫

vj(µj −mj)p(µj)p(xn|µj) dµj

= −vj

[(∫

µjp(µj) dµj

)∑

k 6=j

πk

∫

p(µk)p(xn|µk) dµk

· · · + πj

∫

µjp(µj)p(xn|µj) dµj − smj

]

. (A.5)

Define the responsibilities as

rnj =
πj

∫
p(µj)p(xn|µj) dµj

∑

k πk

∫
p(µk)p(xn|µk) dµk

=
πjN (xn|m0j , λ

−1
j + v−1

0j )
∑

k πkN (xn|m0k, λ
−1
k + v−1

0k )
, (A.6)

so that when we equate the above expression in (A.5) to zero, we get

mj = (1− rnj)

∫

µjp(µj) dµj + rnj

∫

µjp(µj|xn) dµj

= (1− rnj)〈µj〉+ rnj〈µj |xn〉 . (A.7)

We can use a similar derivation to derive an update equation for each vj, or more generally the
parameters in other mixtures of exponential distributions (see for example chapter 3).

A.2.2 A Dirichlet derivation

In section 3.3.3 we had a choice of approximating distribution q(π) = D(π|δ), and would like
to solve for δj in

∂KL
(
p(xn,µ,Λ,π)‖sq(µ,Λ)q(π)

)/
∂δj = 0 . (A.8)

This gives 〈lnπj〉q = 〈lnπj |xn〉, where the second expectation is taken given that we observed
xn, i.e. over the posterior distribution. As pk(xn), given by (3.9), already defines the likelihood
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integrated over µj and Λj of each respective component prior, the expectation of lnπj under
the posterior distribution p(µ,Λ,π|xn) is shortened with

〈lnπj|xn〉 =
1

s

∫

lnπj p(π)p(xn|π) dπ (A.9)

=
1

s

J∑

k=1

pk(xn)
Z

D
(δ0, δ0k + 1)

Z
D
(δ0)

∫

lnπj D(π|δ0, δ0k + 1) dπ

=
1

s

∑

k 6=j

δ0k
∑J

i=1 δ0i

pk(xn)

[

Ψ(δ0j)−Ψ
( J∑

i=1

δ0i + 1
)
]

+
1

s

δ0j
∑J

i=1 δ0i

pj(xn)

[

Ψ(δ0j + 1)−Ψ
( J∑

i=1

δ0i + 1
)
]

= −Ψ
( J∑

i=1

δ0i + 1
)

+ (1− rnj)Ψ(δ0j) + rnjΨ(δ0j + 1)

= Ψ(δ0j)−Ψ
( J∑

i=1

δ0i

)

− 1
∑J

i=1 δ0i

+
rnj

δ0j
. (A.10)

In the second last line we again see a responsibility-weighed sum, in this case given by rnj defined
in (3.14).

A.3 The scale for multivariate mixtures

A short derivation of the scale (or partition function) needed in section 3.3 is presented here.
The scale is determined with s =

∫
p(xn,µ,Λ,π) dµ dΛ dπ, and as pj(xn) from equation (3.9)

already summarizes the integral over µ and Λ, we have

s =

∫

D(π|δ)
J∑

k=1

πkpk(xn) dπ

=

J∑

k=1

pk(xn)
1

Z
D
(δ0)

∫

πδ0k
k

∏

j 6=k

π
δ0j−1
j dπ

=
J∑

k=1

pk(xn)
Z

D
(δ0, δ0k + 1)

Z
D
(δ0)

=
1

∑J
j=1 δ0j

J∑

k=1

δ0kpk(xn) , (A.11)

where the notation in ZD(δ0, δ0k + 1) implies using parameter vector δ0, except that the value
of component δ0k is incremented by one.

A.4 α-divergence scales

The fixed point iterations that are used to minimize an α-diverge require the evaluation the
partition function (or scale) of a distribution. The scales needed for the fixed point algorithms
in sections 2.6 and 3.5 are presented here.
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A.4.1 For section 2.6: a simple mixture

For the fixed point scheme in section 2.6.1, the following integral needs to be evaluated:

s(t′) =

∫
∑

zn

p(xn,µ, zn)α[s(t)q(t)(zn)q(t)(µ)]1−αdµ

= s1−α
(t)

J∑

k=1

πα
k γ

1−α
nk(t)

∫

p(µ)αq(t)(µ)1−αp(xn|µk)
αdµ

= s1−α
(t)

J∑

k=1

πα
k γ

1−α
nk(t)Ik . (A.12)

We shall set about evaluating integral Ik. For a shorthand define

v̂i = αv0i + (1− α)vi(t) (A.13)

m̂i =
αv0im0i + (1− α)vi(t)mi(t)

αv0i + (1− α)vi(t)
, (A.14)

so that a specific component i from p(µ)αq(t)(µ)1−α can be rearranged as

p(µi)
αq(t)(µi)

1−α = N (µi|m0i, v
−1
0i )αN (µi|mi(t), v

−1
i(t))

1−α

=
Z

N
(v̂i)

Z
N

(v0i)αZN
(vi(t))1−α

exp
{

− 1

2

αv0i(1− α)vi(t)

v̂i

[
m0i −mi(t)

]2
}

×N (µi |m̂i, v̂
−1
i ) . (A.15)

In the above rearrangement we only have one N (µi |m̂i, v̂
−1
i ). When we evaluate integral Ik

all of these component distributions i 6= k integrate to one. The last integration needed is to
determine the evidence, with a likelihood raised to the power α, for component k:
∫

N (µk|m̂k, v̂
−1
k )N (xn|µk, λ

−1
k )α dµk =

1

Z
N

(v̂k)

1

Z
N

(λk)α
exp

{

− 1

2

v̂kαλk

v̂k + αλk
(xn − m̂k)

2
}

×
∫

exp
{

− 1

2
(v̂k + αλk)

(

µk −
v̂km̂k + αλkxn

v̂k + αλk

)2}

︸ ︷︷ ︸

∝N (µk|xn)

dµk

= α−1/2Z
N

(λk)
1−αN

(

xn

∣
∣
∣ m̂k,

1

αλk
+

1

v̂k

)

. (A.16)

We therefore get a scale evaluation

s(t′) = s1−α
(t)

J∏

i=1

Z
N

(v̂i)

Z
N

(v0i)αZN
(vi(t))1−α

exp
{

− 1

2

αv0i(1− α)vi(t)

v̂i

[
m0i −mi(t)

]2
}

× α−1/2
J∑

k=1

πα
k γ

1−α
nk(t)ZN

(λk)
1−αN

(

xn

∣
∣
∣ m̂k,

1

αλk
+

1

v̂k

)

. (A.17)

A.4.2 For section 3.5: a multivariate mixture

For the fixed point scheme in section 3.5, the following integral needs to be evaluated:

s(t′) =

∫
∑

zn

p(xn,µ,Λ,π, zn)α[s(t)q(t)(zn)q(t)(π)q(t)(µ,Λ)]1−α dµ dΛ dπ
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= s1−α
(t)

∫

p(π)αq(t)(π)1−αp(µ,Λ)αq(t)(µ,Λ)1−α
∑

zn

J∏

k=1

[πα
k p(xn|µk,Λk)

αγ1−α
nk(t)]

znkdµ dΛ dπ

= s1−α
(t)

J∑

k=1

γ1−α
nk(t)

∫

πα
k p(π)αq(t)(π)1−αp(µ,Λ)αq(t)(µ,Λ)1−αp(xn|µk,Λk)

αdµ dΛ dπ

= s1−α
(t)

J∑

k=1

γ1−α
nk(t)Ik . (A.18)

The integral Ik contains p(µ,Λ)αq(t)(µ,Λ)1−α =
∏J

i=1 p(µi,Λi)
αq(t)(µi,Λi)

1−α, and we shall
first evaluate Ik over µ and Λ. Define as a shorthand,

v̂i = αv0i + (1− α)vi(t) (A.19)

m̂i =
αv0im0i + (1− α)vi(t)mi(t)

αv0i + (1− α)vi(t)
(A.20)

B̂i = αB0i + (1− α)Bi(t) +
1

2

α(1 − α)v0ivi(t)

αv0i + (1− α)vi(t)
(m0i −mi(t))(m0i −mi(t))

⊤ (A.21)

âi = αa0i + (1 − α)ai(t) , (A.22)

so that a specific component i from p(µ,Λ)αq(t)(µ,Λ)1−α can be rearranged as

p(µi,Λi)
αq(t)(µi,Λi)

1−α =
Z

NW
(v̂i, âi, B̂i)

Z
NW

(v0i, a0i,B0i)αZNW
(vi(t), ai(t),Bi(t))1−α

×NW
(
µi,Λi

∣
∣ m̂i, v̂

−1, âi, B̂i

)
. (A.23)

This rearrangement now contains one distribution over µi,Λi, namely NW(µi,Λi |m̂i, v̂i, âi, B̂i),
and we shall treat this Normal-Wishart as a prior distribution.

The integral Ik in (A.18) contains an exponentiated likelihood term corresponding to com-
ponent k, so that all the component distributions i 6= k—where a component distribution i
is the Normal-Wishart given in (A.23)—will integrate to one. Component k remains, and the
next integration needed (fully evaluated in appendix A.6) is to determine the evidence, with a
likelihood raised to the power α, for component k:

∫

NW(µk,Λk|m̂k, v̂k, âk, B̂k)N (xn|µk,Λ
−1
k )α dµk dΛk

= (2π)(1−α)d/2α−d/2|B̂k|(1−α)/2 Γ( [2âk+α−d]
2 )

Γ( [2âk+α−d]+d
2 )

d∏

l=1

Γ(2âk+α+1−l
2 )

Γ(2âk+1−l
2 )

× T
(

xn

∣
∣
∣ m̂k,

v̂k + α

v̂kα

2B̂k

2âk + α− d, 2âk + α− d
)

. (A.24)

After integrating Ik over µ and Λ, we also integrate over π. Under the definition

δ̂j = αδ0j + (1− α)δj(t) (A.25)

we have

∫

πα
k p(π)αq(t)(π)1−α dπ =

1

ZD(δ0)α
1

ZD(δ(t))1−α

∫

πα
k

J∏

j=1

π
αδ0j+(1−α)δj(t)−1

j dπ
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=
1

ZD(δ0)α
1

ZD(δ(t))1−α

( ∏J
j=1 Γ(δ̂j)

Γ(α+
∑J

j=1 δ̂j)

)

Γ(δ̂k + α)

Γ(δ̂k)
. (A.26)

By collating the results from (A.23), (A.24), and (A.26), Ik from (A.18) is evaluated to give the
scale s(t′) as

s(t′) = s1−α
(t)

1

Z
D
(δ0)α

1

Z
D
(δ(t))1−α

( ∏

j Γ(δ̂j)

Γ(α+
∑J

j=1 δ̂j)

)

×
J∏

j=1

Z
NW

(v̂j , âj, B̂j)

ZNW (v0j , a0j ,B0j)αZNW (vj(t), aj(t),Bj(t))1−α

× (2π)(1−α)d/2α−d/2
J∑

k=1

Rnk . (A.27)

The unscaled responsibilities used in (A.27) are:

Rnj = γ1−α
nj(t)

Γ(δ̂j + α)

Γ(δ̂j)
|B̂j |(1−α)/2 Γ(

[2âj+α−d]
2 )

Γ(
[2âj+α−d]+d

2 )

d∏

l=1

Γ(
2âj+α+1−l

2 )

Γ(
2âj+1−l

2 )

× T
(

xn

∣
∣
∣ m̂j,

v̂j + α

v̂jα

2B̂j

2âj + α− d, 2âj + α− d
)

. (A.28)

Note that the scale may not be finite, and we suddenly find ourselves with a set of practical
constrains when α is outside the interval [0, 1]. These constrains are discussed in greater detail
in section 3.5.

A.5 Multinomial updates for a fixed point scheme

In the fixed point scheme described in section 2.6.1, we had to continually update the parameters
of the approximating multinomial distribution q(t′)(zn). As described in section 2.6, this can be
done by minimizing the KL divergence

KL

(

p(xn,µ,xn)α[q(t)(zn)q(t)(µ)]1−α
∥
∥ q(t′)(zn)q(t′)(µ)

)

(A.29)

with respect to γnj(t′), the parameters of q(t′)(zn). Here it is necessary to add a Lagrange
multiplier ℓ to enforce

∑

j γnj(t′) = 1. Taking the partial derivative with respect to γnj(t′) gives

∂KL

∂γnj(t′)
= −

∫
∑

zn

∂

∂γnj(t′)

[ J∑

i=1

zni ln γni(t′) + ln q(t′)(µ)
]

× p(xn,µ, zn)α[s(t)q(t)(zn)q(t)(µ)]1−αdµ +
∂

∂γnj(t′)
ℓ
[ J∑

i=1

γni(t′) − 1
]

= −s1−α
(t)

∫

p(µ)αq(t)(µ)1−α
∑

zn

znj

γnj(t′)

J∏

k=1

[πα
k γ

1−α
nk(t)p(xn|µk)

α]znk dµ + ℓ

= −s1−α
(t)

1

γnj(t′)
πα

j γ
1−α
nj(t)

∫

p(µ)αq(t)(µ)1−αp(xn|µj)
αdµ + ℓ , (A.30)
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where the last line follows as all terms in the sum over zn are zero, except for when j = k. When
the above derivative is set to zero, we can solve to find a unique expression for γnj(t′),

γnj(t′) =

[

s1−α
(t) πα

j γ
1−α
nj(t)

∫

p(µ)αq(t)(µ)1−αp(xn|µj)
αdµ

]
/

ℓ , (A.31)

and we do that for every j. When all these unique expressions are added, and the constraint
∑

j γnj(t′) = 1 kept in mind, the Lagrange multiplier is solved for as

ℓ = s1−α
(t)

J∑

k=1

πα
k γ

1−α
nk(t)

∫

p(µ)αq(t)(µ)1−αp(xn|µk)
αdµ . (A.32)

Substituting ℓ back into equation (A.31) gives

γnj(t′) = rnj , (A.33)

as was used in the iterative method in (2.63). Notice that this derivation also works for α =
1, and hence we can determine an approximate q(zn) for EP as well, if we so wish. The
approximation for q(zn) can be directly read from the responsibilities.

A.6 Normal-Wishart integrals

In chapter 3 a number of integrals, incorporating a Normal-Wishart distribution, need to be
evaluated. For brevity, subscripts j and n are dropped, so that x implies a single observation
xn. The Normal and Wishart distributions are

N (µ|m, (vΛ)−1) =
( v

2π

) d
2 |Λ| 12 exp

{

− 1

2
tr[(µ−m)(µ −m)⊤vΛ]

}

(A.34)

W(Λ|a,B) =
|B|a

∏d
i=1 Γ(a+ 1−i

2 )
π

−d(d−1)
4 |Λ|a− d+1

2 exp
{

− tr[BΛ]
}

. (A.35)

The Normal-Wishart is the product of the above two distributions, where the Normal distribu-
tion is conditional on Λ, the random variable on which a Wishart distribution is placed.

For dealing with the more general α-divergence, we evaluate moments under a ‘power-
posterior’, i.e. a posterior with the likelihood term raised to some power, N (x|µ,Λ−1)α. Setting
α = 1 gives the true posterior. Let Z be the normalizer of the power posterior,

Z =

∫

W(Λ|a,B)

∫

N (µ|m, (vΛ)−1)N (x|µ,Λ−1)α dµ dΛ

=

∫

W(Λ|a,B)
( v

v + α

)d/2
|Λ|α/2(2π)−αd/2e−tr[ 1

2
αv

v+α
(x−m)(x−m)⊤Λ]

×
∫

N
(

µ
∣
∣
∣
vm + αx

v + α
,Λ−1(v + α)−1

)

dµ dΛ (A.36)

=
( v

v + α

)d/2
(2π)−αd/2 |B|a

∏d
i=1 Γ(a+ 1−i

2 )

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

|B + 1
2

αv
α+v (x−m)(x−m)⊤|a+α/2

×
∫

W
(

Λ
∣
∣
∣a+

α

2
,B +

1

2

αv

α+ v
(x−m)(x−m)⊤

)

dΛ . (A.37)



130 A. Useful results

Equations (A.36) and (A.37) rely on factorizing the integrand such that factors dependent on
µ and Λ occur in known distributions. Both integrals evaluate to one, but will be crucial in
determining the power-posterior moments. Continuing,

Z =
( v

v + α

)d/2
(2π)−αd/2

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

∏d
i=1 Γ(a+ 1−i

2 )

× |B|a
[

|B|
(

1 +
1

2

αv

α+ v
(x−m)⊤B−1(x−m)

)
]−a−α/2

,

where |A + xy⊤| = |A|(1 + y⊤A−1x) was used. Now rearrange the exponent to be in the right
form for a Student-t distribution.

Z =
( αv

v + α

)d/2
α−d/2(2π)−αd/2

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

∏d
i=1 Γ(a+ 1−i

2 )
|B|−α/2

×
(

1 +
1

2
(x−m)⊤

[v + α

αv
B
]−1

(x−m)

)−(2a−d+α+d)/2

= α−d/2(2π)−αd/2

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

∏d
i=1 Γ(a+ 1−i

2 )

(2a− d+ α

2

)−d/2
|B|(1−α)/2

∣
∣
∣
v + α

αv

2B

2a− d+ α

∣
∣
∣

−1/2

×
(

1 +
1

2a− d+ α
(x−m)⊤

[v + α

αv

2B

2a− d+ α

]−1
(x−m)

)−(2a−d+α+d)/2

= α−d/2(2π)(1−α)d/2 |B|(1−α)/2

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

∏d
i=1 Γ(a+ 1−i

2 )

Γ(2a−d+α
2 )

Γ( [2a−d+α]+d
2 )

× [(2a − d+ α)π]−d/2
∣
∣
∣
v + α

αv

2B

2a− d+ α

∣
∣
∣

−1/2 Γ( [2a−d+α]+d
2 )

Γ(2a−d+α
2 )

×
(

1 +
1

2a− d+ α
(x−m)⊤

[v + α

αv

2B

2a− d+ α

]−1
(x−m)

)−(2a−d+α+d)/2

= α−d/2(2π)(1−α)d/2 |B|(1−α)/2

∏d
i=1 Γ(a+ α

2 + 1−i
2 )

∏d
i=1 Γ(a+ 1−i

2 )

Γ(2a−d+α
2 )

Γ( [2a−d+α]+d
2 )

× T
(

x
∣
∣
∣m,

v + α

αv

2B

2a− d+ α
, 2a− d+ α

)

. (A.38)

Substituting α = 1 will give us an unscaled Student-t distribution, as the prefactor is one.

Moments

The moments of the power-posterior can be read from the Normal and Wishart distributions
that occur respectively in equations (A.36) and (A.37). Notation 〈·|x〉 is used to indicate the
moment under the ‘power posterior’ distribution, i.e. on including some likelihood term raised
to the power α.

〈Λ|x〉 =
1

Z

∫

ΛW(Λ|a,B)

∫

N (µ|m, (vΛ)−1)N (x|µ,Λ−1)α dµ dΛ



A.7. The matrix inversion lemma 131

=

∫

ΛW
(

Λ
∣
∣
∣a+

α

2
,B +

1

2

αv

α+ v
(x−m)(x−m)⊤

)

dΛ

= (a+
α

2
)
[

B +
1

2

αv

α+ v
(x−m)(x −m)⊤

]−1
, (A.39)

similarly,

〈ln |Λ| |x〉 =

∫

ln |Λ| W
(

Λ
∣
∣
∣a+

α

2
,B +

1

2

αv

α+ v
(x−m)(x−m)⊤

)

dΛ

=

d∑

i=1

Ψ
(

a+
α

2
+

1− i
2

)

− ln
∣
∣
∣B +

1

2

αv

α+ v
(x−m)(x−m)⊤

∣
∣
∣ , (A.40)

〈Λµ|x〉 =
1

Z

∫

ΛW(Λ|a,B)
( v

v + α

)d/2
|Λ|α/2(2π)−αd/2e−tr[ 1

2
αv

v+α
(x−m)(x−m)⊤Λ]

×
∫

µN
(

µ
∣
∣
∣
vm + αx

v + α
,Λ−1(v + α)−1

)

dµ dΛ

= 〈Λ|x〉vm + αx

v + α
, (A.41)

〈µ⊤Λµ|x〉 =
1

Z

∫∫

tr[Λµµ⊤]W(Λ|a,B)
( v

v + α

)d/2
|Λ|α/2(2π)−αd/2e−tr[ 1

2
αv

v+α
(x−m)(x−m)⊤Λ]

×N
(

µ
∣
∣
∣
vm + αx

v + α
,Λ−1(v + α)−1

)

dµ dΛ

=

∫

tr

[

Λ
[

Λ−1(v + α)−1 +
(vm + αx

v + α

)(vm + αx

v + α

)⊤]
]

×W
(

Λ
∣
∣
∣a+

α

2
,B +

1

2

αv

α+ v
(x−m)(x−m)⊤

)

dΛ

=
d

v + α
+
(vm + αx

v + α

)⊤
〈Λ|x〉

(vm + αx

v + α

)

. (A.42)

A.7 The matrix inversion lemma

The matrix inversion lemma is also known as the Woodbury-Sherman-Morrison formula, and
states that

(Z + UWV⊤)−1 = Z−1 − Z−1U(W−1 + V⊤Z−1U)−1V⊤Z−1 , (A.43)

if all the relevant inverses exist. Here Z is an n×n matrix, W has size m×m, and both U and
V are n ×m. If m < n and a low rank perturbation is made to Z, as we see in the left hand
size of (A.43), then the computation of the inverse can be accelerated if Z−1 is known.
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