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Learning compound noun semantics

Diarmuid Ó Séaghdha

Summary

This thesis investigates computational approaches for analysing the semantic relations
in compound nouns and other noun-noun constructions. Compound nouns in particular
have received a great deal of attention in recent years due to the challenges they pose for
natural language processing systems. One reason for this is that the semantic relation
between the constituents of a compound is not explicitly expressed and must be retrieved
from other sources of linguistic and world knowledge.

I present a new scheme for the semantic annotation of compounds, describing in detail
the motivation for the scheme and the development process. This scheme is applied to
create an annotated dataset for use in compound interpretation experiments. The results
of a dual-annotator experiment indicate that good agreement can be obtained with this
scheme relative to previously reported results and also provide insights into the challenging
nature of the annotation task.

I describe two corpus-driven paradigms for comparing pairs of nouns: lexical similarity
and relational similarity. Lexical similarity is based on comparing each constituent of a
noun pair to the corresponding constituent of another pair. Relational similarity is based
on comparing the contexts in which both constituents of a noun pair occur together
with the corresponding contexts of another pair. Using the flexible framework of kernel
methods, I develop techniques for implementing both similarity paradigms.

A standard approach to lexical similarity represents words by their co-occurrence distri-
butions. I describe a family of kernel functions that are designed for the classification of
probability distributions. The appropriateness of these distributional kernels for semantic
tasks is suggested by their close connection to proven measures of distributional lexical
similarity. I demonstrate the effectiveness of the lexical similarity model by applying it
to two classification tasks: compound noun interpretation and the 2007 SemEval task on
classifying semantic relations between nominals.

To implement relational similarity I use kernels on strings and sets of strings. I show that
distributional set kernels based on a multinomial probability model can be computed
many times more efficiently than previously proposed kernels, while still achieving equal
or better performance. Relational similarity does not perform as well as lexical similarity
in my experiments. However, combining the two models brings an improvement over
either model alone and achieves state-of-the-art results on both the compound noun and
SemEval Task 4 datasets.
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Chapter 1

Introduction

Noun-noun compounds are familiar facts of our daily linguistic lives. To take a simple
example from my typical morning routine: each weekday morning I eat breakfast in the
living room, while catching up on email correspondence and reading news websites or (if
I’m feeling particularly diligent) some research papers. Unless my training schedule pre-
scribes a rest day, I pack some running clothes and shoes. If the weather looks threatening
I’ll fetch my rain jacket before leaving. By the time I begin my cycle commute to the
University Computer Laboratory I have already encountered a plethora of concepts that
are most conveniently denoted by combinations of nouns.

The frequency of compounding is just one reason why it is a perennially popular topic
in theoretical, computational and psychological language research.1 Compounding is also
notable for its great productivity. Almost any pair of English nouns can be combined
to produce a valid, if not always sensible, compound, and users of a language routinely
produce and comprehend compounds they have never heard before. If a friend were to
tell you he had just bought a new pineapple radio, chances are you would have some
idea of what he was referring to even though the term would most likely be new to you.2

Based on your knowledge of pineapples, radios and the possible relations that can hold
between them you might decide that a pineapple radio is probably a radio that looks
like a pineapple or a radio contained in a pineapple, rather than a radio used for eating
pineapples or a radio owned by a pineapple. Indeed, you may reach this conclusion without
much consideration or even awareness of the compound’s ambiguity.

In the context of natural language processing (NLP), an ability to unpack the seman-
tics encoded in compounds is necessary for high-recall semantic processing. Due to the
frequency and productivity of compounding, a system for semantic parsing or informa-
tion extraction cannot simply ignore compounds without compromising recall, nor can it
simply access a dictionary of known compounds as most items it encounters will not be
listed. Yet despite the relative ease with which human speakers and hearers handle novel
compounds, modelling the inferential processes involved has proven very challenging. One
difficulty that particularly affects computational approaches is that the surface form of a

1In the course of my research I have compiled a comprehensive bibliography of publications on com-
pound nouns, which can be found online at http://www.cl.cam.ac.uk/∼do242/bibsonomy.p.html. At
the time of writing this thesis, the bibliography contains 279 items, 157 of which have appeared since the
year 2000 and 33 of which appeared in 2007.

2Google currently finds 41 hits for pineapple radio (not counting “very similar” pages omitted in the
results), of which only a few instances are actual compounds referring to a kind of radio.
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compound noun does not reliably disambiguate its meaning. It is not sufficient to simply
associate particular constituent words with particular semantic relations. A cheese knife
is a knife for cutting cheese and a kitchen salesman is a salesman who sells kitchens, yet
a kitchen knife is neither a knife for cutting kitchens nor a knife that sells kitchens. Com-
putational systems for interpretation must therefore approximate the kinds of conceptual
knowledge that humans possess. In practice this is often done by extracting statistical
information from large text corpora, which may seem a poor proxy for knowledge gained
through experience of the world but actually works well for many tasks.

Reasoning about compound meaning involves working with at least two levels of seman-
tics: lexical and relational. Reasoning at the lexical level involves processing information
about the meanings of constituent words and comparing them to the constituents of other
known compounds. The relational level involves knowledge about how particular kinds of
entities tend to interact in the world and which semantic relations tend to be expressed
in language. The general concepts of lexical and relational meaning are of fundamental
importance in the broader field of computational semantics. Hence, one motivation for
studying automatic compound interpretation is that it is a challenging test of core NLP
methods, and approaches that work well on this task may be expected to be useful for a
range of other problems. In my research I have pursued this theme by transferring the
methods I develop for compound data to other semantic phenomena (Ó Séaghdha and
Copestake (2008)). In Chapters 6 and 7 below, I show that my methods can be applied
directly to the detection of general semantic noun-noun relations in sentences, attaining
state-of-the-art performance on SemEval 2007 Task 4 (Girju et al., 2007) with minimal
porting effort.

In this thesis I focus on developing computational methods for the classification of seman-
tic relations in compound nouns and other noun-noun constructs. There are a number of
interesting computational problems relating to compounds which I do not consider; these
include machine translation of compounds (Rackow et al., 1992; Baldwin and Tanaka,
2004; Nakov and Hearst, 2007a), structural disambiguation of compounds with three or
more constituents (Lauer, 1995; Nakov and Hearst, 2005), identification of constituents
in languages where compounds are written as a single orthographical unit (Koehn and
Knight, 2003), interpretation of deverbal nominalisations as a special case (Hull and
Gomez, 1996; Lapata, 2002; Nicholson and Baldwin, 2006) and the role of compound anal-
ysis in improving information retrieval systems (Hoenkamp and de Groot, 2000; Karlgren,
2005; Pedersen, 2007).

The thesis is structured in two thematic halves. The first half deals with the construction
of a semantically annotated corpus of compound nouns. Chapter 2 is a survey of prior
work in theoretical and computational linguistics on appropriate frameworks for repre-
senting compound meaning. In Chapter 3 I motivate and describe the development of a
new semantic annotation scheme for compounds, and in Chapter 4 I evaluate the repro-
ducibility of this annotation scheme through a dual-annotator experiment. The second
half of the thesis deals with computational methods for automatically classifying seman-
tic relations between nouns in compounds and in other contexts. Chapter 5 presents a
similarity-based approach to relation classification based on lexical and relational simi-
larity, and describes kernel methods for machine learning. In Chapter 6 I show how the
flexible kernel learning framework allows the implementation of classification methods
that are particularly suitable for capturing lexical similarity. In Chapter 7 I investigate
kernel methods for implementing relational similarity. I also show that techniques com-
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bining lexical and relational similarity can achieve state-of-the-art performance on two
relation classification tasks: compound noun interpretation and the SemEval 2007 task
on identifying semantic relations between nominals (Girju et al., 2007). Chapter 8 con-
tains a concluding summary and some speculation about promising directions for future
research.
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Chapter 2

Compound semantics in linguistics
and NLP

2.1 Introduction

In this chapter I describe prior work on semantic representations for compounds in the-
oretical and computational linguistics.1 The focus is on relational rather than referen-
tial semantics, so there is no discussion of questions concerning semantic headedness or
metaphorical and metonymic reference. In Section 2.2 I outline the general status of
compounding in linguistic theory and present a chronological and thematic survey of the
semantic models that have been proposed by linguists. These proposals can be grouped
into three broad classes: inventory-based theories, which posit a restricted set of gen-
eral semantic relations, pro-verb theories, which provide only an underspecified skeletal
representation of a compound’s meaning and shift the task of further interpretation to
pragmatic inference, and integrational theories, which generate structural representations
of compounds by combining aspects of the constituent nouns. In Section 2.3 I describe
the representations that have been used in prior computational work, showing that these
also follow the trends seen in linguistic theory. Finally, I describe the representational
assumptions that will be implemented in subsequent chapters of this thesis.

2.2 Linguistic perspectives on compounds

2.2.1 Compounding as a linguistic phenomenon

Compounding is used in a great variety of languages to create new words out of old.
As was observed by Grimm (1826), compounding allows us to express complex concepts

1There is also a rich psycholinguistic literature on compound semantics, which I do not discuss here
in detail. It is interesting to note that research in this field also fits the patterns observed in linguistics
and NLP. In particular, many of the the models proposed can be described as being based on a restricted
inventory of semantic relations, as in Gagné and Shoben’s (1997) CARIN model, or on integrated rep-
resentations produced by modifying or combining constituent structures (Murphy, 1990; Costello and
Keane, 2000). There is also a dual process theory (Wisniewski, 1997; Estes, 2003), which brings the
two perspectives together by proposing that some compounds are interpreted through assigning discrete
relations while others are interpreted integrationally, through mapping features between structures.

15



16 2.2. LINGUISTIC PERSPECTIVES ON COMPOUNDS

more easily and elegantly than we could otherwise achieve.2 Bauer (2001) gives a concise
definition of the phenomenon: “We can now define a compound as a lexical unit made up of
two or more elements, each of which can function as a lexeme independent of the other(s)
in other contexts, and which shows some phonological and/or grammatical isolation from
normal syntactic usage” (p. 695). Among the languages that do have compounding, not
all use it with the same frequency or flexibility. For example, noun-noun compounds
are rare in Romance languages such as French and translations of English compounds
often take the form of a postmodified noun (steel knife ⇒ couteau en acier, cheese knife
⇒ couteau à fromage). On the other hand, Classical Sanskrit surpasses even English
in its flexibility of compounding; nominalisations such as khat.vārūd. ha (?bed-climbee, one
who has climbed into bed) and copulatives such as candrasūrya (moon and sun) do not
have compound equivalents in English. English is nevertheless notable for the flexibility
and frequency of its noun-noun compounding processes. The empirical data I discuss
in Chapter 4 suggest that close to 3% of all words in the British National Corpus are
constituents of compounds. Biber and Clark (2002) observe that the use of compounding
has been increasing in recent times, especially in more formal genres such as news and
academic writing, and it is among the most common methods in the language for noun
modification.

Despite its prevalence, there is a tendency among linguists to view compounding as a
particularly ill-behaved phenomenon that does not fit into standard categories. A long-
running debate argues the existence of a putative distinction between compounds that
function as words and compounds that function as phrases (Levi, 1978; Liberman and
Sproat, 1992; Bauer, 1998). Libben (2006) writes that “compound words are structures
at the crossroads between words and sentences reflecting both the properties of linguistic
representation in the mind and grammatical processing”. In morphology, Sadock (1998)
argues that the morphological processes pertaining to compounding are separate from
other morphological mechanisms. In semantics, many authors have banished compound
meaning from the remit of their theories, and those who do give accounts of compound
semantics often propose representations that are specific to that class of linguistic data
(Section 2.2.2). The apparent idiosyncratic status of compounding has led Jackendoff
(2002) to suggest that it is a “fossil” left over from an earlier, more basic stage of language
evolution.

2.2.2 Inventories, integrated structures and pro-verbs: A survey
of representational theories

As with many other areas of linguistic enquiry, the semantics of noun compounds was
first investigated over two millennia ago by the scholars of the Sanskrit linguistic tradi-
tion (vyākaran. a).3 The famous categorisation of compounds as bahuvr̄ıhi (exocentric),
tatpurus.a (endocentric), avyaȳıbhāva (indeclinable) and dvandva (copulative) was de-
scribed by Pān. ini in his As.t.ādhyāȳı. While these categories are now usually understood
as distinguishing between compounds on the basis of their semantic heads (as in Bauer

2“Zweck der zusammensetzung scheint zu sein, daß dadurch begriffe leichter und schöner, als es sonst
geschehen kann, ausgedrückt werden.” (p. 407–408)

3The dates of the preeminent Sanskrit grammarians remain subject to debate, but Cardona (1976)
presents evidence for dating Pān. ini not later than the early to mid fourth century B.C. and Patañjali
around three hundred years later.
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(2001)), their purpose in the As. t.ādhyāȳı was to license particular morphological and
phonological operations and they were not directly related to semantics (Cardona, 1976).
Later commentators developed further the semantic themes touched on by Pān. ini’s gram-
mar; Patañjali’s Mahābhās.ya contains discussion of such topics as the semantic basis of
the compounding operation, the structural ambiguity of three-noun compounds and the
semantic distinctions between heads and modifiers (Joshi, 1968).

In the 20th century, compound noun semantics once again became a popular topic of
linguistic research. Early work tended to focus on description, taking an inventory-style
approach of documenting the variety of semantic relations observed in attested compounds
(Noreen, 1904; Jespersen, 1942; Hatcher, 1960).4 The rise of generative grammar in the
1950s and 1960s led to a greater concern with matters of representation. In a transfor-
mational (or at least multistratal) framework it made sense to analyse compound nouns
as derived from a fuller structure at a deeper representational level, but what that deeper
level should look like was the subject of much debate. Many proposals of this era can be
viewed as continuing the “relation inventory” tradition. Adopting a highly restricted set
of possible semantic relations was deemed necessary to avoid the theoretically undesirable
phenomenon of irrecoverable deletion, whereby the deeper levels of a derivation could not
be recreated from the surface form. Outside of a strict transformational framework this
can be seen as a desire to reduce the degree of ambiguity allowed to compounds in the
interests of maintaining an orderly linguistic theory. Lees (1970) describes an underlying
representation where the constituents of a compound fill the thematic role slots of one of
a small number of generalised verbs. For example, air rifle, motor car and water wheel
are all derived from triples V-Object-Instrument, where V is a generalised verb with the
meaning shared by the English verbs energise, drive, power, actuate, propel, impel,. . . ,
the Object role is assigned to the modifier noun and the Instrument role is assigned to the
head. Other inventory-style analyses of this period include Li (1971) and Warren (1978);
the latter is notable for its empirical basis and aim for comprehensive coverage, arising
from a study of a large corpus of naturally occurring compounds.

Levi (1978) presents a highly detailed analysis of complex nominals, i.e., noun-noun com-
pounds, nominalisations and nominals containing nonpredicating adjectives.5 The se-
mantics of noun-noun compounds are captured by nine Recoverably Deletable Predicates
(RDPs), which are similar in function to Lees’ generalised verbs. The RDPs proposed by
Levi are as follows:

CAUSE1 flu virus CAUSE2 snow blindness
HAVE1 college town HAVE2 company assets
MAKE1 honey bee MAKE2 daisy chains
USE water wheel
BE chocolate bar
IN mountain lodge
FOR headache pills
FROM bacon grease
ABOUT adventure story

4An even earlier inventory of semantic relations was given by Grimm (1826), who analysed compounds
in terms of prepositional, appositional or case-like meaning.

5Nonpredicating adjectives are adjectives that rarely, if ever, appear in copula (predicative) construc-
tions and are shown by Levi to function much like noun modifiers, e.g., solar (heating), automotive
(emissions), mechanical (engineer).
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A flu virus is a virus that CAUSES flu, an adventure story is a story ABOUT adventure,
and so on. The three RDPs CAUSE, HAVE and MAKE each have two variants, as either
the head or modifier of a compound can fill the first argument of these predicates, while
the other arguments are either symmetric (BE ) or restricted to taking the compound head
as first argument.6 RDPs are deleted in the derivation of compound nominals, and hence
all compounds are ambiguous in exactly 12 ways. Levi deems this degree of ambiguity
to be sufficiently restricted for a hearer to identify the relation intended by a speaker by
recourse to lexical or encyclopaedic knowledge, while still allowing for the semantic flexi-
bility that undoubtedly characterises compound nouns. In Levi’s theory, nominalisations
such as student demonstration and draft dodger are produced by a separate set of rules
and are assigned to separate categories.7 This is primarily motivated by the theoretical
framework she is working in and the assumption that the relational predicates underlying
nominalisations are related to lexical verbs rather than primitive RDPs. However, the
separation of nominalised and non-nominalised relations leads to arbitrary distinctions
(horse doctor is FOR, but horse healer would be AGENT ) and seeming inconsistencies
(Levi labels hysterical paralysis as CAUSE2 but dream analysis as ACT ).

Inventory-style analyses have been criticised from many angles. One criticism holds that
the variety of compound relations is so great that listing them is impossible. Downing
(1977), considering such idiosyncratic compounds as plate length,8 writes (p. 828): “The
existence of numerous novel compounds like these guarantees the futility of any attempt
to enumerate an absolute and finite class of compounding relationships”.9 Zimmer (1971)
proposes that it is more sensible to list the semantic relationships that cannot be encoded
in compounds rather than those that can. Zimmer’s solution is to exclude relations that
fail the test of classificatory appropriateness, a vaguely defined concept applied to relations
that are useful for distinguishing or naming entities.10 Hence it is usually inappropriate
to refer to a town far from the sea as a sea town or to a cat that happens to be in a tree
at an arbitrary time as a tree cat.

A second criticism is that the relations proposed in the inventories of Levi and others are
nevertheless too general and vague. It is often hard to say which relation should apply to
a certain compound, and there are many cases where many relations seem appropriate.
Levi recognises an amount of “analytic indeterminacy” in her model whereby particular
classes of compounds can have two analyses: made-of compounds such as copper coins
and chocolate bunny are equally analysable as BE or MAKE2, while part-whole com-
pounds such as ocean floor and brain cells can be labelled HAVE2 or IN. This kind of
indeterminacy is not limited to the cases mentioned by Levi; Lehnert (1988) gives the
example of dog collar (collar USED by a dog or collar that a dog HAS?), and I discuss

6The annotation scheme for compound semantics that I develop in Chapter 3, which is derived from
Levi’s inventory, permits all relations (except symmetric BE ) to take both possible constituent-argument
mappings. Examples of analyses not permitted in Levi’s framework are boulder field (IN1) and sitcom
character (ABOUT1).

7The relations for nominalisations are ACT, AGENT, PRODUCT and PATIENT.
8“What your hair is when it drags in your food”
9In an oft-quoted statement, Jespersen (1942) makes a similar point (p. 137–8): “On account of all

this it is difficult to find a satisfactory classification of all the logical relations that may be encountered
in compounds. In many cases the relation is hard to define accurately. . . The analysis of the possible
sense-relations can never be exhaustive.” As noted above, these sentiments did not prevent Jespersen
from proposing a non-exhaustive inventory of relations.

10Zimmer (1971), p. C15: “Anything at all can be described, but only relevant categories are given
names.”
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further examples in Section 3.3. These issues are not unique to Levi’s analysis; rather,
they must be addressed by any model that uses a restricted set of relations to describe
compound semantics. In Chapter 3 I describe how they are also relevant to computational
research and show how the amount of indeterminacy in the model can be reduced through
a rigorous characterisation of the boundaries between relations.

A third criticism of restricted inventories is that they give too impoverished a represen-
tation of compound semantics. On this view, the meaning of a compound cannot be
reduced to one of a small number of general relations. Downing (1977) cites the examples
headache pills and fertility pills, which are both analysed as FOR by Levi but have very
different relational semantics. Other examples of over-reduction given by Downing are
dinner-bath, interpreted by a subject in an experiment as a bath taken in preparation for
dinner, and oil-bowl, explained as the bowl into which the oil in the engine is drained
during an oil change. She writes: “These interpretations are at best reducible to un-
derlying relationships as suggested by Li and others, but only with the loss of much of
the semantic material considered by subjects to be relevant or essential to the definitions”
(p. 826).

Some authors have chosen to sidestep the problems of inventory approaches by eliminating
the complexities of compound meaning from the proper domain of semantic processing
(Gleitman and Gleitman, 1970; Bauer, 1979; Selkirk, 1982; Lieber, 2004). The semantics
of a compound is then simply the assertion of an unspecified relation between the referents
of its constituents, and the task of identifying what manner of relation that might be is
passed on to a combination of world knowledge, discourse context and inferential mecha-
nisms under the general term “pragmatics”. In the approaches of Gleitman and Gleitman
(1970) and Bauer (1979) this is formalised by the introduction of a minimally specific pro-
verb (as in pronoun) in the underlying representation of compounds. Hence Bauer (1979)
writes (p. 46): “The gloss given above for the abstract pro-verb of compounding can. . . be
expanded to read ‘there is a connection between lexeme A and lexeme B in a compound
of the form AB such as can be predicted by the speaker/hearer partially on the basis
of her knowledge of the semantic make-up of the lexemes involved and partially on the
basis of other pragmatic factors’.” While this fix rescues formal models from the pitfalls of
uncontrolled ambiguity and non-compositionality, it is far from pleasing as an account of
compound meaning. It relies on pragmatic mechanisms of interpretation, but the nature
of these mechanisms has rarely been specified.11 As even sceptics such as Jespersen (1942)
and Downing (1977) recognise, there are many useful generalisations that can be made
about compound semantics. It is striking that in spite of the variety of compounding the-
ories, the inventories that have been proposed are more notable for their commonalities
than their differences. There is no doubt that large classes of compound nouns describe
relations of location, possession or topichood, even if the labels used for these classes gloss
over finer details and many other compounds have idiosyncratic meanings.

While the pro-verb analysis can be viewed as the product of the inventory-makers’ reduc-
tionist tendencies taken to their natural conclusion, other linguists have proposed richly
detailed and structured representations of compound semantics. Researchers working in
the tradition of cognitive linguistics deny the existence of a divide between compositional
semantic structures and “pragmatic” kinds of conceptual and contextual knowledge. They
also reject distinctions between the productive and interpretive processes relating to com-
pounding and other combinatory processes in language. In the models of Ryder (1994)

11Notable exceptions are Hobbs et al. (1993) and Copestake and Lascarides (1997).
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and Coulson (2001), language users combine their knowledge about the constituents of a
compound to arrive at an integrated representation of its meaning. Unlike the semantic
relations posited in the inventories of Levi (1978) and others, the relations assumed by
Ryder and Coulson do not exist independently of their arguments, but rather emerge from
properties of those arguments in the process of conceptual combination or blending.

One kind of knowledge that is central to this process takes the form of event frames,
schematic representations of the events or situations in which an entity typically plays
a role. For example, to interpret the compound cheese knife, a hearer accesses his/her
knowledge about knives and cheese, which includes the information that knives by design
are strongly associated with cutting and are not infrequently used in the preparation of
food, and that cheese is a sensible thing to cut. Contextual and other factors being equal,
the resulting interpretation will represent a knife that has an associated event frame of
cutting cheese and differs from a generic knife representation in ways that reflect the
hearer’s beliefs about what makes a knife appropriate for cheese-cutting. This representa-
tion can then be further integrated into the frame corresponding to the current sentence
or discourse. If needs be, the compound meaning can be fleshed out with other relevant
beliefs, as in Downing’s (1977) example of oil-bowl where the subject extended the basic
relational semantics of containment to suggest a context in which such an object might
be used. In cognitive theories, an emphasis is placed on the creation of meaning by both
the speaker and hearer, and the analysis extends to metaphorical combinations such as
stone lion, which has some properties of lions but lacks others, and trashcan basketball,
which is introduced by Coulson (2001) as a game superficially resembling basketball in
which crumpled balls of wastepaper are thrown in a wastepaper bin.12

Regularities and patterns in compound meanings arise in cognitive models not because
they are generated by a finite set of rules, but rather because of regularities and patterns
in how language users experience and conceptualise their environment. That is, com-
pounds frequently encode locative relations because knowledge about an entity’s location
can suggest further distinctive facts about the entity (a mountain hut will usually look
quite different to a beach hut) and illuminate its relation to other entities and events in
the discourse. Likewise event frames play an important role because we have a strong
tendency to categorise entities according to the events they can or typically do partake
in. Ryder (1994) also proposes that regularities in production and interpretation are en-
forced by analogical pressures from previously encountered compounds. Beyond the sim-
ple case where a compound acquires a conventional meaning through repeated exposure,
Ryder suggests that speakers and hearers generalise more abstract templates relating con-
stituents to probable meanings. These templates vary in reliability and specificity; some
require the presence of particular lexical items (e.g., X + box = box for putting X in, sea
+ X = a metaphorical extension of X that lives in the sea), while others are very general
(Location Y + X = X typically found in Y ). The most general and reliable templates
correspond to Levi-style rules.

The great flexibility which is an undoubted advantage of cognitive theories also contributes
some disadvantages: while frame semantics can explain that trashcan basketball blends
aspects of trashcans and basketball in a metaphorical way, it is not (yet) able to predict

12The active role of the hearer in creating his/her own understanding is underlined by Coulson (p. 141):
“Because the function of language is to enable the listener to participate in the interactive frame set up
in a shared context, a noun phrase need only provide the listener with enough information about the
element in question to connect the phrase with contextual information and/or background knowledge.”
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why the compound has exactly that meaning and not another. To achieve predictive
power for even standard compositional compounds, a great deal of representational and
inferential details must be spelled out. Researchers working in Pustejovsky’s (1995) Gen-
erative Lexicon framework have attempted to produce a theory of compound meaning
that combines the structural richness of frame semantics with the tractability of more
restricted analyses (Johnston and Busa, 1996; Søgaard, 2005). In these approaches, the
lexical entry for a noun is enriched with qualia structures, which represent particularly
salient aspects of its meaning. There are four kinds of qualia structure:

Constitutive: What the entity is made of
Formal: The entity’s ontological status
Telic: The entity’s purpose or function
Agentive: How the entity was created

Thus the representation of steel knife is constructed by matching the denotation of steel
to the argument of the constitutive quale in the representation of knife, and cheese knife
is represented by matching cheese with the object of the event of cutting, which is the
value of knife’s telic quale. The restricted nature of qualia structures mean that the
combination of two concepts can be predicted with some reliability. This approach works
best for man-made artefacts which have a definite function; for many other entities it is
harder to state what the appropriate qualia values are. For example, what is the telic
quale of dog? Is it herding (sheep dog) or hunting (bird dog), or something else entirely
(gun dog, police dog)? Providing a comprehensive account of compounding relations in
this framework would seem to entail enriching the lexicon to a degree that the boundary
with full frame-semantic theories becomes unclear.

2.3 Compounds and semantic relations in NLP

2.3.1 Inventories, integrated structures and pro-verbs (again)

The kinds of semantic representations used in computational treatments of compound in-
terpretation mirror those proposed by linguistic theorists. Approaches based on relation
inventories have often been favoured due to their tractability; they can robustly anal-
yse compounds with previously unseen constituents and are well-suited to the paradigm
of statistical multiclass classification. More structured representations and “emergent”
representations that are informed by the semantics of compound constituents have also
been investigated, but these approaches face a number of challenges that have yet to be
surmounted. Extensive lexical engineering is often required, and the resulting interpreta-
tions are difficult to evaluate precisely due to their richness. Analogues of the “pro-verb”
analysis have also been proposed for broad-coverage semantic parsing systems, often with
the expectation that the underspecified output representation can be passed onto general
or domain-specific inference systems for further disambiguation. This approach was pur-
sued in early work on natural language database interfaces, e.g., by Boguraev and Spärck
Jones (1983), and is also implemented in the English Resource Grammar (Copestake and
Flickinger, 2000).
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2.3.2 Inventory approaches

Su (1969), to my knowledge the first researcher to report on compound interpretation from
a computational perspective, describes 24 semantic categories to be used for producing
paraphrase analyses of compounds.13 These categories contain many relations familiar
from linguistically motivated inventories: Use, Possessor, Spatial Location, Cause, etc.
A second early work is by Russell (1972), who implements a compound interpreter for a
small lexicon. Russell’s set of semantic relations is slightly different in that it consists of all
“semantic dependencies” expected to occur between nouns in general semantic analysis,
but the standard compound relations are all featured. Other inventories that have been
proposed for compound analysis include those of Leonard (1984) and Vanderwende (1994).
A set of domain-specific relations for biomedical noun compounds is described by Rosario
and Hearst (2001).

Lauer (1995) proposes a classification of compounds based on prepositional paraphrasing.
His relation inventory contains eight prepositions: about, at, for, from, in, of, on and
with. Hence a baby chair is a chair for a baby, reactor waste is waste from a reactor and
a war story is a story about war. The distinctive characteristic of this inventory is that
its members are lexical items, not the abstract relational concepts stipulated by other
theories. This allows the use of unsupervised statistical learning methods that require
little human engineering effort. The most probable relation for a noun-noun compound
can be estimated by simply counting preposition-noun co-occurrences in a corpus or on
the World Wide Web (Lauer, 1995; Lapata and Keller, 2004). However, the “surfacy”
nature of Lauer’s relations also brings disadvantages. Prepositions are themselves poly-
semous lexical items, and the assignment of a prepositional paraphrase to a compound
does not unambiguously identify its meaning.14 In other words: once we have identified
a compound as, say, an of -compound, we still must ask what kind of of we are dealing
with. The paraphrases school of music, theory of computation and bell of (the) church
seem to describe very different kinds of semantic relations. Furthermore, the assignment
of different categories does not necessarily entail a difference in semantic relations. The
categories in, on and at share significant overlap (if not near-synonymy), and the distinc-
tion between prayer in (the) morning, prayer at night, and prayer on (a) feastday seems
rooted in shallow lexical association rather than any interesting semantic issue. It seems
fair to conclude that while prepositional paraphrases clearly correlate with underlying
semantic relations, they do not reliably map onto those relations.15 Another problem
is that many compounds cannot be paraphrased using prepositions (woman driver, taxi
driver) and are excluded from the model, while others admit only unintuitive paraphrases
(honey bee = bee for honey?).

The relational model introduced by Nastase and Szpakowicz (2001) for general semantic
text processing and applied to noun-modifier interpretation by Nastase and Szpakowicz

13It is not clear from the technical report whether the method described by Su was actually imple-
mented.

14The disambiguation of prepositions has been studied as a difficult NLP task in its own right, for
example in a task at the 2007 SemEval competition (Litkowski and Hargraves, 2007).

15In an interesting experiment, Girju et al. (2005) investigated the predictive power of Lauer’s model
by training an SVM classifier to recognise relations from their own inventory (see below), using data
annotated with the appropriate prepositional paraphrase. They found that adding these prepositional
features increased performance by about 20 points but classification remained far from perfect, with best
scores of 66.8% and 83.9% on their two datasets.
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(2003) provides a large inventory of semantic classes. As they are not tethered to spe-
cific lexical items, Nastase and Szpakowicz’ relations do not share the problems that affect
Lauer’s prepositions. To avoid the sparsity issues that inevitably affect such a fine-grained
set of classes when performing data-driven classification with small datasets, the relations
are grouped into five supercategories: CAUSALITY, TEMPORALITY, SPATIAL, PAR-
TICIPANT and QUALITY. The 30 relations used by Nastase and Szpakowicz are as
follows:16

CAUSALITY PARTICIPANT
CAUSE flu virus AGENT student protest
EFFECT exam anxiety BENEFICIARY student discount
PURPOSE concert hall INSTRUMENT laser printer
DETRACTION headache pill OBJECT metal separator

OBJECT PROPERTY sunken ship
QUALITY PART printer tray
CONTAINER film music POSSESSOR group plan
CONTENT apple cake PROPERTY novelty item
EQUATIVE player coach PRODUCT plum tree
MATERIAL brick house SOURCE olive oil
MEASURE saturation point STATIVE cell division
TOPIC weather report WHOLE daisy chain
TYPE oak tree
TEMPORALITY SPATIAL
FREQUENCY daily exercise DIRECTION exit route
TIME AT morning exercise LOCATION home town
TIME THROUGH six-hour meeting LOCATION AT desert storm

LOCATION FROM country butter

These relations seem to be better candidates than Lauer’s for representing “deep” seman-
tic knowledge. The size of the inventory facilitates fine distinctions in meaning, e.g., be-
tween headache pill (DETRACTION ) and fertility pill (CAUSE or PURPOSE ), though
this comes at the cost of sparsity and imbalance in the distribution of relations. Nastase
and Szpakowicz’ (2003) annotated dataset has subsequently been used in numerous classi-
fication experiments (Nastase et al., 2006; Turney, 2006; Nulty, 2007a) and their relations
have been used to annotate new data by Kim and Baldwin (2005). There is arguably
a degree of incoherence in the supercategory groupings: PART/WHOLE and CON-
TAINER/CONTENT belong to separate supercategories, while QUALITY subsumes
a variety of relations, including hyponymy, containment and topichood. As observed in
Chapter 3, no annotation guidelines have been reported for this inventory and there are
many cases where more than one relation seems appropriate for a particular compound.

Girju and colleagues have developed an inventory that is similar in spirit to Nastase and
Szpakowicz’ model and shares many of its advantages. Different versions of this inventory
have appeared – Girju et al. (2005) describe 35 relations of which 21 are attested in their

16I include only those relations that were attested in Nastase and Szpakowicz’ (2003) dataset of 600
items. A sixth supercategory, CONJUNCTIVE, features in the set of 50 relations they initially considered
but was not attested. The dataset contains examples of both noun and adjective modifiers; adjectival
examples have been used only where there are no noun-noun examples for the relation in question.
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data, while Girju (2006; 2007a) describes 22 relations. The newer set of relations is as
follows:17

POSSESSION family estate KINSHIP sons of men
PROPERTY pellet diameter AGENT insect bites
TEMPORAL night club DEPICTION caressing gestures
PART-WHOLE hawk wings HYPERNYMY coyote pup
CAUSE fire shadows MAKE/PRODUCE sun light
INSTRUMENT cooking plate LOCATION staircase door
PURPOSE identity card SOURCE orange juice
TOPIC war movie MANNER performance with passion
MEANS bus service EXPERIENCER consumer confidence
MEASURE fishing production TYPE member state
THEME cab driver BENEFICIARY victim aid

2.3.3 Integrational approaches

The general semantic interpretation system of McDonald and Hayes-Roth (1978) uses a
semantic network to represent lexical knowledge. The nodes in the network correspond
to words and the links between nodes are based on information extracted from dictionary
definitions. The meaning of a noun-noun compound is processed by applying heuristics to
integrate directed paths originating in the compound constituent nodes. To interpret the
compound lawn mower, the system first adds a new node to the network, connected by
an IS-A link to mower and a MODIFIED-BY link to lawn. The network representation
of lawn is derived from the definition A lawn is a mown area or plot planted with grass or
similar plants and that of mower is derived from A mower is a machine that cuts grass,
grain or hay. Through a heuristic search procedure, links are added to lawn mower that
essentially specialise the representation of mower, yielding an integrated representation
that corresponds to the definition A lawn mower is a machine that cuts grass or similar
plants.

Another system developed around the same time was that of Finin (1980), which inter-
preted compounds in a restricted domain (naval aircraft maintenance and flight records).
Finin’s system used a frame-like representation of the attributes and typical event struc-
tures associated with nouns. Interpretation of non-lexicalised compounds proceeded
through the application of rules integrating the frame information for the two constituents
(e.g., F4 planes, woman doctor, crescent wrench) or by matching one constituent to the ar-
gument slot of the event structure associated with the other constituent (e.g., maintenance
crew, engine repair, oil pump). The systems described by McDonald and Hayes-Roth and
Finin were necessarily restricted to toy implementations or closed vocabularies. These
knowledge-rich approaches, and similar ones such as Isabelle (1984) or implementations
of the Generative Lexicon theory, suffer from the inherent difficulties of constructing ro-
bust large-scale knowledge bases and of avoiding an exponential increase in complexity as
the system grows. The first problem at least may now be tractable, with recent promising
developments in the efficient construction of very large semantic networks (Harrington

17The examples are taken from the annotated datasets of Girju (2007a) (available from http://apfel.

ai.uiuc.edu/resources.html), with the exception of the MANNER and MEANS relations which are
not attested. The data contains instances of nominal and prepositional modifiers; the former have been
used as examples wherever possible (there is no noun-noun instance of KINSHIP).
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and Clark, 2007) and the automatic extraction of qualia structures for nouns (Cimiano
and Wenderoth, 2007; Yamada et al., 2007).

A second strand of research that seeks to go beyond restricted inventories uses what can be
called emergent representations. Here the range of possible semantic relations expressed
by compounds is not determined in advance, but is generated by the data itself. Rosario
et al. (2002) report a study in which compound meanings were associated with pairs
of concepts in a domain-specific hierarchical lexical ontology. The constituents of each
compound were mapped onto the ontology’s top level and then specialised by moving
down in the hierarchy to remove relational ambiguities. For example, scalp arteries,
heel capillary and limb vein were all mapped onto the same pair of lexical concepts (Body
Regions-Cardiovascular System) and are judged to express the same relation. This method
generates thousands of concept pairs of varying frequency and specificity, and is shown
to accurately generalise to unseen concept pairs.

Another exploratory approach to compound interpretation is Nakov and Hearst’s (2006)
method for discovering verbal paraphrases for compounds through search engine queries.
By submitting queries such as N2 that|which|who * N1 to Google and extracting verbs
from the returned snippet strings, Nakov and Hearst identify the predicates most likely
to link the constituents of a compound N1 N2. For example, the top verbs returned for
the compound migraine drug are treat, be used for, prevent, work for, stop. While it is
difficult to perform intrinsic evaluation of this method, Nakov (2007) demonstrates that
the information it extracts can provide useful features for many tasks including verbal
analogy solving, identification of relations in text and machine translation of compounds.
Nakov (2008) investigates how more natural paraphrase information can be obtained from
non-expert human subjects through online experiments.

2.4 Conclusion

In this chapter I have surveyed the spectrum of representational theories that have been
proposed for compound noun relations. The experiments in compound annotation and
classification that I present in subsequent chapters assume an inventory-style represen-
tation. Using a small fixed set of relations facilitates the application of multiclass ma-
chine learning methods and of standard evaluation methods for evaluating classifier per-
formance. It also reduces the sparsity problems associated with small-to-medium-sized
datasets. Restricted inventories may not capture the finer aspects of meaning that rich
lexical structures do, but given the current state of the art success at coarse-grained com-
pound interpretation would constitute significant progress. Furthermore, the two repre-
sentational philosophies are not exclusive: coarse relations can be useful for reasoning
about generalisations over more specific compound meanings.

Looking beyond the special case of compound nouns, the general concept of semantic
relation is a fundamental one in all fields of language research. Many well-established
NLP tasks involve identifying semantic relations between words in a text (e.g., semantic
role labelling, relation classification) or between concepts (automatic ontology creation,
relation extraction). The kinds of relations that are studied vary greatly, from lexical
synonymy to protein-protein interactions, from binary predicates to complex structures.
Some of the methods that have been developed for these tasks are outlined in Chapter 5.
In Chapter 6 I will describe a problem of recognising particular relations between nouns
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in text, showing that it is not dissimilar to compound interpretation and is amenable to
the same computational approaches.



Chapter 3

Developing a relational annotation
scheme

3.1 Introduction

As outlined in Chapter 2 the past 50 years have seen a great proliferation of relation
inventories for the theoretical and computational analysis of compound nouns. Despite
this fact, it became clear to me during the initial stages of my research that it would
be of benefit to work on developing a new compound annotation scheme. One primary
motivation for this decision was the non-availability of detailed annotation guidelines,
making it extremely difficult to adopt an existing scheme for annotation of new data. A
second motivation was the low levels of agreement reported by those researchers who have
performed multiple-annotator evaluations of semantic annotation schemes (Section 4.5).

This chapter describes the new scheme I have developed for annotating compound noun
semantics and the guidelines that accompany it. In Section 3.2 I list a number of criteria
which can be used to evaluate and compare semantic annotation schemes. Section 3.3
describes the development procedure and the most significant decisions that guided the
design of the new scheme. This is followed by a summary description of the finished
relation inventory as well as the theoretical concepts that underlie it.

3.2 Desiderata for a semantic annotation scheme

In deciding on a classification scheme for compound relations, we are trying to pin down
aspects of human conceptualisation that cannot be described using clear-cut observable
distinctions such as syntactic patterns or cue phrases. However, it is important not to
choose a classification of relations on the sole basis of introspective intuition, as there is no
guarantee that two subjects will share the same intuitions and it does not give us a basis
to select one scheme among many. When dealing with semantics it is therefore crucial that
decisions are based on solid methodological concerns. That said, the literature on “best
practice” for semantic annotation schemes is rather sparse. The compound annotation
task shares some of the nature of ontology building and semantic field analysis, for which
some design guidelines have been given by Hovy (2005) and Wilson and Thomas (1997)

27
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respectively. The discussion in this section has much in common with Wilson and Thomas’
proposals.

Faced with the need to select an appropriate classification scheme for compound relations,
I identified a number of desirable criteria. They are sufficiently general to have relevance
for all semantic annotation studies. Most have an a priori theoretical motivation but they
are also informed by the experience of developing the compound annotation scheme and
became clear in the course of the development process:

1. Coverage: The inventory of informative categories should account for as
much data as possible. Semantic annotation tends to be labour-intensive and
the amount of data that can be annotated is usually restricted by the resources at
hand. It is therefore desirable to maximise the amount of annotated data that can
subsequently be used for experiments. For example, if items assigned to a “miscel-
laneous” category are to be discarded, the coverage of the other categories should
be expanded so that the proportion of data assigned “miscellaneous” is minimised.
Discarding some classes of data can also lead to arbitrary patterns of exclusion.
The compound relation inventories of Levi (1978) and Lauer (1995) do not assign
semantic relations to compounds whose head is a nominalised verb and whose mod-
ifier is an argument of that verb, leading to the unintuitive situation where history
professor is assigned a semantic relation and history teacher is assigned to a dif-
ferent, syntactically motivated category (Levi) or to no category at all. Lauer’s
scheme, which identifies semantic relations with prepositional paraphrases, also ex-
cludes appositional compounds such as woman driver as they cannot be paraphrased
prepositionally.

2. Coherence: The category boundaries should be clear and categories
should describe a coherent concept. If categories are vague or overlapping
then consistent annotation will be very difficult. Detailed annotation guidelines are
invaluable for the clarification of category boundaries, but cannot save a scheme
with bad conceptual design.

3. Generalisation: The concepts underlying the categories should gener-
alise to other linguistic phenomena. The regularities we hope to identify in
compound relations or similar phenomena are assumed to reflect more general reg-
ularities in human semantic processing. Such regularities have been studied exten-
sively by researchers in cognitive linguistics, and a categorisation scheme can be
defended on the basis that it is consistent with and supported by those researchers’
findings.

4. Annotation Guidelines: There should be detailed annotation guidelines
which make the annotation process as simple as possible. Where possi-
ble, guidelines should be made publicly available to aid comparison of annotation
schemes.

5. Utility: The categories should provide useful semantic information. The
usefulness of a classification scheme is a subjective matter, and depends on how the
annotated data will be applied. However, we can impose minimal criteria for utility.
Each label in the scheme should be unambiguous and should carry truly semantic
information. Hence Lauer’s prepositional categories do not meet this requirement,
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Figure 3.1: Log plot of annotation rules for the six categories BE, HAVE, IN, ACTOR,
INST and ABOUT in the 2,000-compound dataset described in Chapter 4

given the inherent ambiguity of prepositions (Section 2.3.2). A further concern
affecting utility is the selection of granularity level, which must be fine enough for
the intended application yet coarse enough to facilitate non-trivial generalisations
about the data.

The initial version of this list published in Ó Séaghdha (2007b) also recommended that
the distribution of categories should aim for balance, all other factors being equal. This
recommendation has proven controversial and may warrant reconsideration. One argu-
ment against balance is the assumption that semantic relations will usually have a skewed
distribution, as is known to be the case for lexical items and has also been argued for
word senses (Kilgarriff, 2004). For example, it has been observed that the distribution
of relations in Nastase and Szpakowicz’ (2003) collection of modifier-noun pairs appears
similar to a Zipfian one.1 However, given that the “true” set of compound relations is
unknown, the distribution of categories in such a dataset cannot be disentangled from the
assumptions underlying its construction. For example, lexicographers and other designers
of categorisation schemes are often classed as “lumpers” or “splitters”, depending on their
degree of willingness to tolerate heterogeneity within a single class or to create new and
finer classes, respectively (Hanks, 2000).

Where an annotation scheme is developed incrementally through examination of natu-
rally occurring data, a lumper approach would be expected to yield skewed distributions
due to a “rich get richer” pattern: new instances will tend to be added to existing cat-
egories rather than used to establish new categories. I observed such a pattern during
the development of my annotation guidelines for compounds (see Section 3.4), where the
annotation rules initially devised for each category tended to reflect more central and

1Peter Turney, personal communication.
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frequent examples of the category and rules added later tended to be more peripheral
and rare. In the annotated dataset of compounds that is described in Chapter 4, the
observed distribution of annotation rule applications within each category is skewed and
the resulting overall distribution of rules is close to Zipfian (see Figure 3.1). However,
it would have been possible to partition the space of semantic relations differently so as
to make the distribution of category labels more or less skewed, without affecting the
true underlying relations. Regarding the primary level of semantic categories, a decision
was made to strive for conceptual (as opposed to purely numerical) balance so that the
choice between categories by human or machine would entail comparing like with like.
As described below, this resulted in six main semantic categories that were felt to have
comparable conceptual granularity and provided high but not exhaustive coverage of the
space of all observed compound relations.

It is clear that the five desiderata described above can interact in different ways. A good
set of annotation guidelines will enhance category coherence. On the other hand, a more
“surfacy” set of categories may be easier to annotate with but provide less useful semantic
information. In the language of optimisation theory, it is difficult to know how to recognise
a global optimum (the best possible solution) or even whether such an optimum exists.

How then can these criteria be used to judge an annotation scheme? Generalisation can
primarily be argued with theoretical evidence, though in the context of large-scale lexicon
development the use of linguistically general building blocks could be demonstrated by
parsimony of representation. Likewise, utility is subjective, but a context-specific notion
of utility can be tested by the suitability of annotated data for particular applications.
The other criteria can be evaluated empirically through annotation experiments. Cover-
age can be directly measured from an annotated corpus as the proportion of data that
is assigned an “informative” relation, i.e. one other than OTHER, UNKNOWN, etc.
Ease of annotation can be estimated through inter-annotator agreement between multi-
ple annotators. Problems with coherence can be identified by analysis of inter-annotator
disagreements. A definitive comparison of multiple schemes would require annotation of
a single corpus with every scheme, but in practice this is rarely done.

3.3 Development procedure

The set of nine compound relations (BE, HAVE, IN, ABOUT, FOR, MAKE, CAUSE,
USE, FROM ) proposed by Levi (1978) was taken as an initial classification scheme.
As described in Section 2.2.2, Levi’s proposals are informed by linguistic theory and by
empirical observations, and they intuitively seem to comprise the right kind of relations for
capturing compound semantics. Their granularity also seems appropriate for the dataset
sizes used in NLP research on compounds, which are usually in the very low thousands.
In attempting to annotate trial data with this scheme, however, a number of problems
were identified that necessitated major revisions:

• The CAUSE relation is extremely infrequent, with only two unambiguous examples
(blaze victim and staff cost) identified in a sample of 300 compounds.

• MAKE is also a scarce relation (9 occurrences in 300). More seriously, most if not
all examples given by Levi for this relation can also be analysed as expressing other
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relations (for example, sap tree is also HAVE, music box is also FOR and sugar cube
is also BE ).

• Nominalisations are analysed with a separate set of relations. This is due to the
assumptions of Levi’s linguistic theory and not desirable under my approach.

• More generally, Levi does not provide detailed guidelines for the application of
her categories, and is not concerned with avoiding overlapping or vague category
boundaries.

The annotation scheme was refined over the course of six months through a series of anno-
tation trials followed by analysis of disagreements and changes in the scheme. Extensive
guidelines were developed to clarify the application of the categories and the boundaries
between them. The most serious and pervasive problem encountered was that most com-
pounds can be assigned multiple semantic relations even when their meanings are clear,
though only one category per compound is permitted by the desired experimental design.
For example, a car factory is plausibly a factory for producing cars (FOR), a factory
that causes cars to be created (CAUSE ), a factory in which cars are produced (IN ) and
a factory from which cars originate (FROM ). This does not reflect an ambiguity in the
semantics of car factory, as the interaction between the factory and the cars is the same
under each paraphrase. Rather, the problematic ambiguity lies in the question of which
category best fits this interaction. In the same way, an office chair can be a chair typically
used/found in an office (IN ), a chair for use in an office (FOR) and a chair belonging to
an office (HAVE ).2 This phenomenon is problematic not just for Levi’s scheme, but also
for most other relation inventories described in the literature.3 Devereux and Costello
(2005) report an experimental demonstration of this “label ambiguity” problem. In their
study, subjects were presented with compound nouns and explanatory glosses and asked
to select all appropriate relational categories from an inventory of 16. Only 28.2% of
compounds were assigned just one relation, and on average compounds were assigned 3.2
relations.

To surmount this problem, the guidelines were refined to guide category selection in cases
of doubt and the set of categories was modified. The MAKE, CAUSE and USE relations
were replaced by two more general relations ACTOR and INST(rument) which apply to
all compounds describing an event or situation in which the constituents are participants.
These new relations also account for most nominalised compounds and many compounds
typically analysed as FOR. A consequence of this change was that FOR itself became
redundant and was removed. This may seem surprising, given that FOR/PURPOSE is
traditionally an uncontroversial entry in compound taxonomies and it is of course the
case that many compounds mention the purpose of an item. However, most purpose-
expressing compounds also seem to qualify for other relations: dining room and kitchen
knife have strong locative senses, cheese knife and welding iron are good candidates for
INST and mining engineer and stamp collector seem more naturally analysed as ACTOR.

2These paraphrases of office chair are not entirely synonymous; sometimes a chair of the kind typically
used in offices will be located in a place that is not an office, and sometimes a chair in an office will not
be of the kind typically associated with offices. In the frequent scenario that a typical office chair is used
in an office, however, the paraphrase relations will overlap and problems of spurious ambiguity will arise.

3For example, in the dataset of Nastase and Szpakowicz (2003) concert hall has the label PURPOSE
but the semantically similar compound building site has the label LOCATION, while orchestral conductor
and blood donor are OBJECT but city planner and teaching professor are PURPOSE.
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I would argue that the purposive aspect of such compounds is not in opposition to what
might be called their “core semantics”. Rather, it is simply a fact that a compound
may have a particular semantics because that semantics captures a salient characteristic
of the compound’s referent, and this may be due to intentionality, habituality, contrast
with other instances of the head noun denotatum, or some other kind of “classificatory
appropriateness” in the sense of Zimmer (1971).

An alternative experimental design for annotation and classification would permit the
assignation of multiple labels to ambiguous compounds such as car factory and office
chair. This would reduce the burden involved in developing annotation guidelines and
grant annotators more freedom to follow their intuitions about multifaceted interpreta-
tions. On the other hand the annotators would then have to reason about the degree to
which a compound expresses a particular relation, and whether that degree is sufficient
to license labelling the compound with that relation. For example, a bank account could
be construed as containing information relating to the bank with which it is held, but it
is not clear whether the ABOUT should therefore be applied to this compound. Under a
multilabel experimental design, annotation evaluation and classification would most likely
be performed in a binary fashion on each relation independently, as is usually done in mul-
tilabel document classification tasks. Unless degree information is also provided by the
annotators for each relation, the resulting classification system would be unable to answer
the important question of which relation is most central to a given compound’s meaning.
One promising approach to annotation which surmounts some of these complications is
that of Nakov (2008), whereby a large set of paraphrases is collected for each compound
from non-expert annotators via the Amazon Mechanical Turk website4 and compiled to
create a ranked list of verbal paraphrases. These paraphrases are lexical in nature and not
equivalent to the generalised semantic relations considered here, but they are connected
to the “integrational representations” discussed in Section 2.3.3.

3.4 The annotation scheme

3.4.1 Overview

The finalised annotation scheme consists of six categories capturing coherent semantic
relations (BE, HAVE, IN, ACTOR, INST(rument), ABOUT ), three categories for com-
pounds to which those relations do not apply (REL, LEX, UNKNOWN ) and two cate-
gories for sequences that are not valid compounds but have been erroneously identified as
such by the automatic extraction procedure (MISTAG, NONCOMPOUND). The correct
application of these categories is set out in 12 pages of annotation guidelines, included
in this thesis as Appendix B.5 The first section of the guidelines contains a number of
general principles that are not specific to a single relation. These are followed by one
or more annotation rules for each category, the full set of which is summarised in Table
3.1. These rules can be viewed as providing a more fine-grained relational annotation; for
example, the four rules licensing the IN label distinguish between spatial and temporal
location and between objects and events as located entities. However, these subrelations

4www.mturk.com
5The guidelines are also available online at http://www.cl.cam.ac.uk/∼do242/guidelines.pdf.
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have not been formulated with the same concern for maintaining clear boundaries as the
main categories were, and there is an overlap in some cases.

With the exception of appositions, which are usually symmetric, the head and modifier
of a compound can match the arguments of a binary semantic relation in two ways. For
example, a boulder field is a field in which a boulder or boulders are located, and a field
boulder is a boulder located in a field. The underlying locative relation or situation is
the same in both cases, but the order of the constituents are reversed with regard to
the arguments of that relation. This distinction is captured in the annotation scheme by
the concept of directionality. In addition to the semantic relation it expresses and the
annotation rule licensing that relation, each compound is labelled with a marker (“1”
or “2”) that notes whether or not the order of its constituents matches the order of the
argument nouns as stated in the annotation rule. For example, boulder field belongs to
the category IN in accordance with Rule 2.1.3.1 N1/N2 is an object spatially located in
or near N2/N1 ; as the order of head and modifier matches the ordering of arguments in
the rule, the compound is annotated as IN1. Field boulder is labelled IN2 by the same
rule.

3.4.2 General principles

The first section of the annotation guidelines sets out a number of general principles
that are not specific to a single relation. These include the principle that compounds
are to be annotated according to their sentential context, and that knowledge about the
typical meaning of a compound type is to be relied on only when the context does not
disambiguate the semantic relation. There is also a description of the event-participant
framework underlying the ACTOR and INST categories (Section 3.4.6 below).

A fundamental principle of the annotation scheme is that the annotation applies to the
semantic relation between the referents of a compound’s constituents, not to the refer-
ent of the compound as a whole. One implication of this is that exocentric (bahuvr̄ıhi)
compounds have no special status in the framework – the metaphorical aspect of the com-
pound bird brain is in its metonymic application to something which is not a brain rather
than in its relational semantics. The relation between bird and brain here is precisely
the same as in a literal application of the compound (when denoting a bird’s brain), i.e.,
a part-whole relation. Exocentric compounds are therefore annotated as any other com-
pound; in the case of bird brain, the label HAVE is applied.6 This analysis also accounts
for the endocentric example apple-juice seat, which was used in a dialogue to denote a
seat in front of which a glass of apple juice had been placed (Downing, 1977) and has
often been cited as evidence for the trickiness of compound interpretation. The issues
raised by this example are denotational – how does a hearer identify the referent of such
an unusual compound? On the other hand, its relational semantics are straightforward;
apple-juice seat is a locative compound expressing a relation very similar to those of beach
house or entrance statue.

The same rationale guides the treatment of compounds that are used as proper names,
e.g., the Law Society, the Telecommunications Act, Castle Hill. Again, these have standard
compound relational semantics and are different only in the definite reference of the whole

6Levi (1978) proposes a similar analysis of exocentric compounds, while excluding them from the main
exposition of her theory (p. 6).
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Relation Rule Definition Example

BE 2.1.1.1 Identity guide dog
2.1.1.2 Substance-Form rubber wheel
2.1.1.3 Similarity cat burglar

HAVE 2.1.2.1 Possession family firm
2.1.2.2 Condition-Experiencer coma victim
2.1.2.3 Property-Object sentence structure
2.1.2.4 Part-Whole computer clock
2.1.2.5 Group-Member star cluster

IN 2.1.3.1 Spatially located object pig pen
2.1.3.2 Spatially located event air disaster
2.1.3.3 Temporally located object evening edition
2.1.3.4 Temporally located event dawn attack

ACTOR 2.1.4.1 Sentient Participant-Event army coup
2.1.4.2 Participant-Participant project organiser

(more prominent is sentient)

INST 2.1.5.1 Non-Sentient Participant-Event cereal cultivation
2.1.5.2 Participant-Participant foot imprint

(more prominent is non-sentient)

ABOUT 2.1.6.1 Topic-Object history book
2.1.6.2 Topic-Collection waterways museum
2.1.6.3 Focus-Mental Activity embryo research
2.1.6.4 Commodity-Charge house price

REL 2.1.7.1 Other non-lexicalised relation fashion essentials

LEX 2.1.8.1 Lexicalised compound life assurance

UNKNOWN 2.1.9.1 The meaning is unclear simularity crystal

MISTAG 2.2.1.1 Incorrectly tagged legalise casino

NONCOMPOUND 2.2.2.1 Not a 2-noun compound [hot water] bottle

Table 3.1: Summary of annotation rules
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compound. It is therefore appropriate to label them with the same categories applied to
“common” compounds, e.g., the Law Society is labelled ACTOR, the Telecommunications
Act is ABOUT, Castle Hill is IN. It is true that not all naming compounds express
a substantial relation between constituents. In cases such as the Beacon Theatre and
Corporation Road, the connection between head and modifier is an arbitrary “naming-
after” one. However, this is similar to the relation in common-noun compounds that
express a vague relation of association, e.g., diamond jubilee. As described in Section
3.4.8, the REL label is given to those compounds and this label is just as applicable to
proper names. In contrast, sequences where the head or modifier is in fact a proper noun
(Reagan years) are not admitted as valid compounds by the annotation scheme and are
labelled MISTAG.

3.4.3 BE

The label BE applies to all relations between nouns N1 and N2 that can be paraphrased
as N2 which is (a) N1. This includes the subcategories of appositive compounds (celebrity
winner, soya bean) and material-form compounds (rubber truncheon, ice crystal). I also
include under BE compounds describing resemblance, paraphrasable as N2 like N1 (cat
burglar, hairpin bend). These can be understood as appositive compounds if the compar-
ison noun is understood metaphorically, e.g., burglar that is a cat (Levi, 1978).

3.4.4 HAVE

Compounds expressing possession are labelled as HAVE. The concept of possession is
complex and cannot be reduced to a single simple definition. Langacker (1999) proposes
a prototypical model based on “reference point constructions”:

What all possessive locutions have in common, I suggest, is that one entity
(the one we call the possessor) is invoked as a reference point for purposes of
establishing mental contact with another (the possessed). . . And instead of as-
suming that any one concept (like ownership) necessarily constitutes a unique,
clear-cut prototype and basis for metaphorical extension, I propose that the
category clusters around several conceptual archetypes, each of which saliently
incorporates a reference point relationship: these archetypes include owner-
ship, kinship, and part/whole relations involving physical objects. (p. 176)

Similarly, Taylor (1996) models possession as an “experiential gestalt” with the following
prototypical aspects (p. 340):

1. The possessor is a specific human being.

2. The possessed is inanimate, usually a concrete physical object.

3. There is a one-to-many relation between possessor and possessed.

4. The possessor has exclusive rights of access or use regarding the possessed.

5. The possessed has value for the possessor.
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6. The possessor’s rights arise through a special transaction and remain until trans-
ferred through a further transaction.

7. Possession is long-term.

8. The possessed is in proximity to the possessor and may be a regular accompaniment.

The fundamental property shared by Langacker and Taylor’s accounts is the asymmetry
of the one-to-many relationship between possessor and possessed, and I have taken this
property as central to the definition of the HAVE category. Annotation rule 2.1.2.1 de-
fines ownership-like possession in terms of properties 3 (one-to-many) and 4 (exclusive
use). Compounds expressing mental or physical conditions (reader mood, coma victim)
and properties (grass scent, sentence structure) are characterised by a one-to-many re-
lationship and also fit intuitively under the HAVE category. Likewise, the part-whole
relation shares many aspects of possession (as observed by Langacker) and in annotation
rule 2.1.2.4 I have adopted the meronymy test of Cruse (1986): “X is a meronym of Y if
and only if sentences of the form A Y has Xs/an X and An X is part of a Y are normal
when the noun phrases an X, a Y are interpreted generically” (p. 160). The part-whole
relation is also similar to that between groups and members; hence compounds such as
committee member and star cluster are labelled with HAVE.

3.4.5 IN

The label IN stands for a unified category of spatial and temporal location. This confla-
tion of space and time is a natural one in view of the strong linguistic and psycholinguis-
tic evidence for a connection in how the two domains are conceptualised (Clark, 1973;
Boroditsky, 2000). The individual annotation rules do distinguish between spatial and
temporal properties in both the located and location entities, combining to give four
finer-grained subcategories.

3.4.6 ACTOR, INST

Many compounds express a relation that is based on an underlying event or situation,
and all standard inventories of compound relations provide categories for labelling such
compounds. However, the inventories differ as to how the set of event-based compounds is
to be subdivided. As noted in Section 3.2, the schemes of Levi (1978) and Lauer (1995) do
not assign semantic categories to nominalised compounds, instead either assigning them
to distinct categories or discarding them completely. Non-nominalised compounds with
an event-based meaning and participant-denoting constituent(s) can be labelled FOR,
MAKE, CAUSE or FROM in Levi’s scheme. Other schemes, such as those of Nastase
and Szpakowicz (2003) and Girju (2007a) provide a large number of fine-grained categories
reflecting the precise nature of the event and its participants.

The analysis I have adopted defines just two categories, ACTOR and INST(rument).
The distinction between the categories is based on the concept of sentience. Thus a
student demonstration is labelled ACTOR as the participants mentioned are sentient,
while a production line is labelled INST as lines are not sentient. The guidelines state
two sufficient conditions for sentience: membership of the animal kingdom is one, the other
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requires that an entity be a group of people or an organisation (e.g., research university,
manufacturing company). Sentience is very similar, and arguably identical, to the concept
of animacy, which is recognised as a fundamental semantic category across languages (see
Zaenen et al. (2004) and the references therein) and has been implicated as playing a role
in compound interpretation (Devereux and Costello, 2007). I have preferred to use the
term sentience to emphasise that the concept of interest also applies to organisations and
hypothetical thinking robots.

The sentience criterion is sufficient to account for compounds that mention an event and
a single participant. However, more than half of event-based compounds mention two
participants rather than explicitly mentioning the event, for example school leaver, music
group, air filter.7 A minor problem that arises with these examples is how to decide
on the directionality of ACTOR and INST instances. If this were the only problem
here, it could be solved simply but inelegantly by ignoring the asymmetry of ACTOR
and INST and thus not annotating these relations for directionality. However, a greater
problem is encountered in compounds that mention a sentient participant and a non-
sentient participant, e.g., bee honey, honey bee, infantry rifle. One solution, also simple
but inelegant, would be to label according to the sentience of the head noun, but this
distinction would not reflect the semantics of the underlying event and would introduce
a spurious asymmetry in the relational semantics of pairs such as bee honey and honey
bee. I have based my guidelines for these cases on a hierarchy of semantic roles which is
informed by Talmy (2000). The roles I assume are Agent, Instrument, Object and Result;
they are defined in terms of a flow of “energy” or “force” originating from the Agent and
culminating in the Result (if the event has a Result role). The hierarchy of roles is from
most to least agentive:

Agent > Instrument > Object > Result

The distinction between ACTOR and INST compounds is thus based on the sentience of
the more agentive participant: where the more agentive constituent is sentient ACTOR
applies and where the more agentive constituent is non-sentient INST applies. Further-
more, the same criterion is used to assign directionality: the relation expressed by beeA

honeyR is ACTOR1 while that expressed by honeyR beeA is ACTOR2. To reduce the bur-
den on annotators and the probability of confusion (it is often difficult to tell Instruments
from Objects), the annotation scheme does not require that the constituents of event-
based compounds be annotated for their thematic roles. Only a decision about relative
agentivity is necessary to assign the correct relation and directionality.

The relatively coarse granularity of these relations has the advantage of avoiding sparsity
and reducing the need to define boundaries between categories that often overlap, such
as causes, producers, agents and instruments. On the other hand, there is clearly a loss
of information in the annotations; headache pill and fertility pill receive the same label
(INST ) despite their semantic differences, and museum curator and bee sting are both
labelled ACTOR (though with different directionality markers).

7In my annotated sample of 2,000 compounds, 232 items were annotated with Rules 2.1.4.1 or 2.1.5.1
(Participant-Event) while 269 were annotated with Rules 2.1.4.2 or 2.1.5.2 (Participant-Participant).
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3.4.7 ABOUT

The inclusion of a topicality relation is uncontroversial, as it occurs in all standard com-
pound relation inventories. The prototypical instance involves an entity with descriptive,
significative or propositional content, in other words an item that is about something.
This is commonly a speech act or a physical manifestation of a speech act (unification
treaty, history book, drugs charge) but also extends to non-verbal means of communication
(wiring diagram, love scene). A special provision is made in the guidelines for entities
which may not have descriptive/significative/propositional content themselves but rather
house or contain entities with such content. This applies to museums and exhibitions
(waterways museum) and to educational courses (publishing course).8

Also falling in the ABOUT category is the class of compounds expressing the focus of
a mental state or an activity, e.g., exam practice, siege mentality, pollution problem, cup
match. These are cases where the criterion of topical content does not hold but there is
nonetheless a strong sense of “aboutness”. The final non-archetypal subclass of ABOUT
deals specifically with prices and charges, e.g., house price, recording cost, case discount.
These are held to belong to the ABOUT category because prices are abstract entities
that signify the amount of commodities that must be exchanged with regard to services or
goods, as stipulated by an entitled party such as the seller or the government. Thus there
is a fine line distinguishing prices from inherent properties of entities (HAVE, Rule 2.1.2.2)
on one side and from the physical commodities exchanged in a commercial transaction
(INST, Rule 2.1.5.2) on the other.

3.4.8 REL, LEX, UNKNOWN

Not all compound nouns can be classified with one of the six relations described above.
Some compounds seem to encode a general sense of association rather than a specific
semantic relation, for example fashion essentials (essentials associated with fashion) or
trade purposes (purposes associated with trade). Others do have relational content, but the
relation in question is distinct from the six named relations. Examples are found in the
names of chemical compounds (lithium hydroxide, calcium sulphide) and names coined
after the pattern N2 named after N1 (e.g., diamond jubilee, Beacon Theatre). These
are not necessarily lexicalised compounds, as they are generated by productive patterns.
However, it is impractical and less than fruitful to attempt to account for all possible
relations, and the use of an “other” category such as REL is unavoidable.

The label LEX is applied to lexicalised or idiomatic compounds. These are compounds
that cannot be understood by analogy or other standard strategies for compound inter-
pretation. The relation between the constituents is not clear if the compound has not
been encountered before, and it is often assumed that lexicalised compounds are listed
in a speaker’s lexicon.9 It therefore seems appropriate that they be assigned to a dis-
tinct category. Defining a general concept of lexicalisation is not straightforward, nor

8This rule (2.1.6.2) can be seen as a clarification of the previous rule (2.1.6.1), rather than as an
alternative semantic category.

9The tendency to lexicalisation is one that compounds share with other classes of multiword expressions
(MWEs; Sag et al., (2002)). Morphosyntactic idiosyncracy is a second typical property of MWEs that
can be observed in compounds: it is well-known that non-head constituents in English compounds are
in general not inflected, i.e., we say mouse trap and window cleaner but not *mice trap or *windows
cleaner (though there are many exceptions such as arms race and trades unions). On the other hand,
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is disentangling it from related concepts such as non-compositionality, opacity and con-
ventionality (Nunberg et al., 1994; Keysar and Bly, 1995). Here I describe the class
of lexicalised compounds in terms of semantic substitutability, which has proven useful
in computational research on idiomatic multiword expressions (Lin, 1999; McCarthy et
al., 2003; Fazly and Stevenson, 2006) and has been proposed as a test for compound
lexicalisation by Lehnert (1988).10 The substitutability criterion states that a lexicalised
compound is one whose semantics does not follow an analogical pattern; other compounds
formed by substituting one of its constituents with a semantically similar word do not
have a similar relational meaning. For example, the compound monkey business has an
idiomatic meaning that is not shared by the lexically similar compounds ape business or
monkey activity.

Finally, the scheme contains an UNKNOWN category for compounds which the annotator
is unable to interpret. Sometimes this occurs because the compound is a technical term;
other times the sentential context is insufficient to deduce the meaning.

3.4.9 MISTAG, NONCOMPOUND

Methods for automatically extracting compounds from corpora will not be error-free, and
the annotation scheme makes provision for labelling items that are in fact not compounds.
The MISTAG label is applied when one or more constituents should not have been tagged
as common nouns. The NONCOMPOUND label is used when the constituents have been
tagged correctly but do not constitute a true two-noun compound. This can occur when
they are part of a larger noun phrase or when they appear adjacent in the context for
reasons other than compounding. These classes of errors are described more fully in
Section 4.2.

3.5 Conclusion

The desiderata listed in Section 3.2 offer a means of evaluating the new annotation scheme
that I have introduced above. To estimate its coverage we require an annotated sample
of compound data. Table 3.2 gives the distribution of categories over the sample of 2,000
compounds used in the machine learning experiments of Chapters 6 and 7. 92% of the valid
compounds (i.e., of all those not labelled MISTAG or NONCOMPOUND) are assigned
one of those six relations, which are the ones I use in the classification experiments. This
indicates that the annotation scheme has good coverage. The generalisation criterion is
satisfied as many of the category definitions are based on general linguistic principles such

compounds seem to be unlike other kinds of MWEs in allowing the productive combination of open-class
words to express non-idiomatic semantic relations.

10Bannard et al. (2003) raise an issue that is problematic for corpus-based work relying on the substi-
tutability criterion. The fact that lexically similar neighbours of a multiword expression do not appear
in a corpus, or only appear with very different distributional properties, is not necessarily a sign of se-
mantic lexicalisation. Rather, it may be due to facts about the world (the entities described by lexically
similar terms do not exist) or about the language (previously established synonyms may block the use of
multiword expressions); the example given by Bannard et al. is frying pan. However, this phenomenon is
not problematic for the use of substitutability as an annotation criterion: an annotator does not need to
ask whether a neighbour of a given compound is likely to be used, but rather whether the neighbour, if
it were used, would have a similar relational meaning.
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Relation Distribution
BE 191 (9.55%)
HAVE 199 (9.95%)
IN 308 (15.40%)
INST 266 (13.30%)
ACTOR 236 (11.80%)
ABOUT 243 (12.15%)
REL 81 (4.05%)
LEX 35 (1.75%)
UNKNOWN 9 (0.45%)
MISTAG 220 (11.00%)
NONCOMPOUND 212 (10.60%)

Table 3.2: Class frequencies in a sample of 2,000 compounds

as thematic roles, semantic substitutability and the event/object distinction. I have made
the annotation guidelines accompanying the scheme publicly available to allow comparison
and adoption by other researchers. In the next chapter I describe a multiple-annotator
experiment that tests the coherence of the annotation categories and usability of the
guidelines.



Chapter 4

Evaluating the annotation scheme

4.1 Introduction

This chapter describes an experiment in evaluating the annotation scheme developed in
Chapter 3 on real data extracted from corpus text. I describe the construction of the
dataset in Section 4.2 and the evaluation procedure in Section 4.3. This is followed by
agreement results and analysis in Section 4.4. The raw agreement and Kappa scores
on the test set of 500 compounds are 66.2% and 0.62 respectively, which compares very
favourably to other results reported in the literature. The results underline both the
difficulty of the compound annotation task and the need for rigorous annotation scheme
development when working with semantic data.

4.2 Data

To compile a corpus of compound nouns I used the written component of the British
National Corpus (Burnard, 1995). This source contains approximately 90 million words
of text in British English, balanced across genre and type. Although the BNC may be
small in comparison with some other corpora used in NLP, it compensates by its balanced
nature, which arguably gives a more representative snapshot of the language than larger
corpora generated from web or newswire text. The BNC’s tractable size also offers the
advantage that it can be tagged and parsed without significant resource requirements. In
the compound extraction stage, I have used a version of the BNC tagged and parsed using
the RASP toolkit (Briscoe and Carroll, 2002).1 The procedure for identifying compounds
is a simple heuristic similar to those used by Lauer (1995) and Lapata and Lascarides
(2003). All sequences of two or more common nouns containing alphabetic characters
only and flanked by sentence boundaries or by tokens not tagged as common nouns were
extracted as candidate compounds. This heuristic excludes compounds written as a single
word (chairlift, bookshelf ) and compounds with hyphenated constituents (bully-boy tactic,
state decision-making) as these are difficult to identify reliably and introduce their own
particular problems. Applying the heuristic to the BNC produced a collection of almost

1This was carried out with the first release of RASP as the second release (Briscoe et al., 2006), which
I use in the experiments of Chapters 6 and 7, was not yet available.

41
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Length Token Frequency Type Frequency Tokens/Types
2 1,590,518 430,555 3.7
3 142,553 96,013 1.5
4 11,348 9,635 1.2
5 1,074 925 1.2
6 129 113 1.1
7 30 29 1.0
8 1 1 1.0
9 3 3 1.0

>9 3 3 1.0
Total 1,745,659 537,277 3.2

Table 4.1: Distribution of noun sequences in the BNC

1.75 million candidate compound instances, with 537,277 unique types;2 the distribution
of tokens and types by length is given in Table 4.1. Very few of the longest extracted
candidates are well-formed compounds; most include a mistagged word or proper name,
or are just unstructured lists of nouns. The longest sequences satisfying my working
definition of compoundhood contain six words, e.g., metal oxide semiconductor field effect
transistor and farm management microcomputer software service project.

In the case of two-noun compounds, which are the focus of the experimental work in this
thesis, there are 1,590,518 tokens and 430,555 types. The average token/type ratio is
3.7, corresponding to one appearance every 24.3 million words. However, the frequency
spectrum of compounds exhibits the Zipfian or power-law behaviour common to word
frequency distributions and many naturally occurring phenomena (Baayen, 2001; New-
man, 2005).3 The number of types observed with a certain frequency drops off rapidly for
frequencies above 1, but there is nonetheless a “long tail” of tokens with frequency much
higher than the average. In the two-noun compound data there are 296,137 types that
occur once and just 2,514 types that occur 10 times, but 81 types that occur 500 times
or more.4 Figure 4.1 is a log-log plot of the frequency spectrum for two-noun compounds;
the straight line plot that is characteristic of power laws is visible up to a point where
sparsity makes the plot rather scrambled.

The simple method I have used to extract compounds is not error-free. It has a non-
negligible false positive rate, whereby sequences are incorrectly identified as compound
nouns. This can arise due to errors in part-of-speech tagging, both when constituents
are falsely tagged as common nouns (Reagan in the Reagan years, play in what role does
the king play) and when adjacent words are falsely tagged as non-nouns (Machine in
Machine Knitting Course is tagged as a proper noun).5 These cases are accounted for in

2Even allowing for extraction error, this suggests that close to 3% of all words in the BNC are
constituents of a noun-noun compound.

3Power-law distributions are so-called because they have the form P (X = k) ∝ k−α, where the
exponent α determines the drop-off rate of the probability curve.

4The most frequent compounds are interest rate (2901), world war (2711), subject area (2325), trade
union (1843) and health service (1824). This ranking is certainly affected to some degree by the selection
of documents in the BNC (a “small sample” effect). Comparing Google counts, world war (94.5 million)
is around 2.5 times more frequent than interest rate (38.1 million). However, the general power-law
behaviour is expected to hold for larger corpora also, just as it does for unigram frequencies (Baayen,
2001).

5Briscoe and Carroll (2002) report “around 97%” tagging accuracy for RASP. This figure is comparable
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Figure 4.1: Log-log plot of the frequency spectrum for compounds of length 2

my annotation scheme by the MISTAG and NONCOMPOUND labels respectively. Even
when the tagging is correct, false positives can arise because one constituent is in fact
part of a larger noun phrase ([scene of crime] officer, [stained glass] window) or because
the two nouns occur together for reasons other than compounding (the skills people have,
However in practice deterioration of stock inevitably sets in). These are also labelled
NONCOMPOUND. Using the frequencies for the MISTAG and NONCOMPOUND labels
given in Table 3.2, we can estimate a false positive rate of 21.6% for my heuristic on the
BNC.

False negatives also arise, whereby sequences that are in fact compounds are not extracted.
For example, the modifier orange in the sequence orange juice is tagged as a common noun
44 times in the corpus but is tagged as an adjective 150 times. Most of the latter seem to
be tagging errors, thus excluding them incorrectly from the collection of compounds. It is
more difficult to estimate false negative rates than false positive rates, as the true set of
compounds in a corpus is unknown. Also, false negative errors cannot be corrected at the
manual annotation stage as false positives can. The only study I am aware of to address
the issue of false negatives is that of Lapata and Lascarides (2003) discussed below, but
they limited themselves to a sample of sequences tagged as nouns and did not consider
the mistagged-constituent factor.

Lauer (1995) reports that his version of the heuristic attained 97.9% precision on a sam-
ple of 1,068 candidate compounds extracted from the Grolier Multimedia Encyclopedia.
However, this figure was achieved by using a dictionary of words which can only be nouns
as a proxy for part-of-speech tagging, leading to a presumably large number of false neg-

to state-of-the-art results in part-of-speech tagging (Shen et al., 2007), suggesting that the choice of tagger
did not have a detrimental effect on compound extraction performance. That the RASP tagger has been
trained on general British English text should also be an advantage when tagging the BNC.
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atives. Lapata and Lascarides (2003) apply a method similar to mine to a tagged version
of the BNC and report a true positive rate of 71% and a true negative rate of 98.8%; the
latter is probably inflated due to the consideration of sequences tagged as nouns only. The
estimate of 78.4% precision for my heuristic is slightly better; this method is stricter than
that of Lapata and Lascarides due to the restriction that constituents must contain only
alphabetic characters. Lapata and Lascarides also describe how compound identification
can be improved through statistical measures, but this has not been investigated in this
work as the simpler heuristic seems sufficient.

4.3 Procedure

Two annotators were used – the present author (Annotator 1) and an annotator expe-
rienced in lexicography but without any special knowledge of compounds or any role in
the development of the annotation scheme (Annotator 2). Both are native speakers of
English. The distance of the second annotator from the development phase is important
as her judgements should be based only on the text of the annotation guidelines and a
small amount of clarificatory email correspondance, not on shared knowledge that might
have emerged during development but is not explicitly included in the guidelines. This
adds rigour to claims of reproducibility regarding our agreement results.

Each compound was presented alongside the sentence in which it was found in the corpus.
Each annotator labelled it with the appropriate semantic category, the rule licensing that
label in the annotation guidelines, and the order of compound constituents with regard to
the argument slots in that rule (directionality). The following is a representative example:

483883: air disaster

IN,2,2.1.3.2

In the country ’s fifth air disaster in four months ,

the China Southern Airlines plane crashed as it

approached to land at the city of Guilin

|In_II| |the_AT| |country_NN1| |’s+_$| |fifth_MD|

|air-disaster_QNN1| |in_II| |four_MC| |month+s_NNT2| |,_,|

|the_AT| |China_NP1| |Southern_JJ| |Airline+s_NN2|

|plane_NN1| |crash+ed_VVN| |as_CSA| |it_PPH1|

|approach+ed_VVD| |to_TO| |land_VV0| |at_II| |the_AT|

|city_NN1| |of_IO| |Guilin_NN1|

Here the annotation states that the category is IN, it is a disaster in the air not air in
a disaster and that the licensing rule is 2.1.3.2 N1/N2 is an event or activity spatially
located in N2/N1.

I used a set of 2,000 compounds for my annotation and classification experiments. These
were sampled randomly from the corpus of compounds extracted in Section 4.2, with the
constraint that no compound type could occur more than once. Two trial batches of 100
compounds each were annotated to familiarise the second annotator with the guidelines
and to confirm that adequate agreement could be reached without further revisions of
the annotation scheme. The first trial resulted in agreement of 52% and the second in
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agreement of 73%. The result of the second trial, corresponding to a Kappa beyond-chance
agreement estimate (Cohen, 1960) of 0.693, was very impressive and it was decided to
proceed to a larger-scale task.6 500 compounds not used in the trial runs were drawn
from the 2,000-item set and annotated. As the data contained many rare and technical
terms, the annotators were permitted to make use of resources including Google, the
Oxford English Dictionary and Wikipedia so that the task would not be compromised by
an inability to understand the data. The second annotator reported that the first 100
compounds took seven hours to annotate (4.2 minutes/compound), while the second trial
batch took five hours (3.0 minutes/compound) and the 500-item test set took 15.5 hours
(1.9 minutes/compound). This indicates that an initially untrained annotator can boost
his/her labelling speed quite quickly through practice.

4.4 Analysis

4.4.1 Agreement

Agreement on the 500-item test set was 66.2%. corresponding to a Kappa score of 0.62.
This is lower than the result of the second trial annotation, but may be a more accurate
estimate of the “true” population Kappa score due to the larger sample size.7 On the
other hand the larger task size may have led to a decrease in agreement, as the test set
annotation had to be done over the course of multiple days and inconsistencies may have
resulted – the second annotator has endorsed this suggestion.

The granularity of the agreement analysis can be refined by considering the directionality
and rule information included in the annotations. Agreement on category and direction-
ality (order of the compound constituents with regard to the arguments listed in the rule)
is similar to agreement on categories alone at 64% (Kappa = 0.606). Agreement on the
25 rules licensing category assignment is lower at 58.8% (Kappa = 0.562) but it should
be borne in mind that the guidelines were not developed with the intention of maximising
the distinctions between rules in the same category.

6Kappa is the most widely-used estimate of beyond-chance agreement but its correct application
remains the subject of some controversy. A number of absolute scales have been proposed for its in-
terpretation, but these scales are frequently contradictory and do not allow for task-specific factors or
sampling variation (Di Eugenio, 2000; Krenn and Evert, 2004). For example, the fact that annotators
often disagree about the basic meanings of compounds means this task will have a lower ceiling on pos-
sible agreement than tasks such as part-of-speech tagging. Rather than referring to a universal scale, it
may be more informative to compare agreement results to other work on the same problem, as I do in
Section 4.5. A second criticism of the use of Kappa in multiclass experiments is that presenting a single
agreement figure is insufficient to describe the multiple interactions between data and annotators (Byrt
et al., 1993; Kraemer et al., 2004). To address this, I present analyses of per-category and inter-category
agreement alongside raw agreement and Kappa figures, following the recommendations of Kraemer et al.

7It is possible to calculate a confidence interval for the population Kappa value using a method
described in Fleiss et al. (2003). The 95% confidence interval for the 100-item second trial set is 0.69±0.11,
while that of the 500-item test set is a narrower 0.62±0.05. The calculation of these intervals is dependent
on a large-sample normality assumption and its accuracy on small datasets is questionable; more accurate
methods have been proposed, but they are restricted to the case of binary categories (Lee and Tu, 1994;
Blackman and Koval, 2000). If sufficient resources were available, a more concrete evaluation of the
reproducibility of the agreement figure for this dataset could be provided by a repetition of the annotation
task at a subsequent time or the annotation of the data by a third annotator.
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Unlike most other studies of compound annotation, this annotation task requires the
annotator to distinguish syntactically valid compounds from non-compounds and lexi-
calised compounds from non-lexicalised ones in addition to assigning semantic relations
to non-anomalous data items. To get a rough estimate of agreement on the six “semantic”
categories that would be used in the classification experiments (BE, HAVE, IN, ACTOR,
INST, ABOUT ) and to aid comparison with studies that use cleaner pre-filtered data, an
analysis was carried out using only those items which both annotators had labelled with
one of those categories. This left 343 items with agreement of 73.6% and Kappa = 0.683.
Of course, this is not a perfect estimate of agreement on these categories as it excludes
items which one annotator labelled with a semantic category and the other did not but
may have done if the alternative “non-semantic” categories were not available.

97 of the 500 test items occur just once in the BNC. If these mainly consist of unusual
or technical terms, or novel compounds coined for a particular discourse context, we
might expect lower agreement than on more frequent compounds. On the other hand,
single-instance sequences are more likely to be extraction errors labelled with MISTAG
or NONCOMPOUND, and agreement is relatively high on these labels (Section 4.4.2).8

Splitting the test data into two sets of frequency = 1 and frequency > 1 and calculating
separate agreement scores for each yields agreement of 61.9% (Kappa = 0.557) in the
first case and 67.2% (Kappa = 0.630) in the second. When only the six “semantic”
categories are considered, agreement is 64.3% (Kappa = 0.557, sample size = 43) for
single-occurrence compounds and 74.9% (Kappa = 0.70, sample size = 291) for frequency
> 1. This evidence is not conclusive due to the small sample sizes, but it certainly suggests
that the productivity of compounding contributes to the difficulty of the annotation task.
It also indicates that annotation results will be strongly influenced by the method used
to sample data. If data is extracted from a dictionary, common compounds are likely
to be oversampled and agreement will be higher. If data is sampled from a corpus with
equal probability given to each compound type, rare compounds will be oversampled
and agreement will be low. In this study data has been sampled from the BNC with
probability proportional to corpus frequency (with a type constraint to prevent repeated
types inflating agreement), and I would argue that this leads to a realistic estimate of
agreement on the task of annotating compounds.

4.4.2 Causes of disagreement

It is interesting to investigate which categories caused the most disagreement, and which
inter-category boundaries were least clear. One simple way of identifying category-specific
differences between the annotators is to compare the number of items each annotator as-
signed to each category; this may indicate whether one annotator has a stronger preference
for a given category than the other annotator has, but it does not tell us about actual
agreement. One-against-all agreement scores and the corresponding Kappa values can
highlight agreement problems concerning a single category C by measuring agreement on
the binary task of classifying the data as either C or not-C (i.e., as belonging to one of
the other categories). These measures are given for the test data in Table 4.2. The most
striking disparities in the per-category counts show a bias for INST on the part of Anno-

8The distribution of the full 2000-item annotated dataset indicates that 40% of sequences with fre-
quency 1 are labelled MISTAG or NONCOMPOUND, in contrast to 17.7% of more frequent sequences.
This difference is confirmed to be significant by a χ2 test (p = 1.6e−10).
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Category Ann. 1 Ann. 2 Agreement Kappa
BE 52 63 0.926 0.637
HAVE 59 77 0.888 0.525
IN 69 66 0.930 0.700
INST 73 42 0.902 0.523
ACTOR 52 48 0.948 0.711
ABOUT 55 83 0.908 0.616
REL 19 20 0.930 0.066
LEX 11 8 0.974 0.303
UNKNOWN 3 3 0.988 -0.006
MISTAG 57 52 0.966 0.825
NONCOMPOUND 50 38 0.964 0.776

Table 4.2: Per-category assignments for each annotator and one-against-all agreement
measures

tator 1 and a bias for ABOUT on the part of Annotator 2; there are also smaller biases
regarding BE, HAVE and NONCOMPOUND. The raw one-against-all agreement figures
are universally high. This is not surprising as when there are many categories with a
relatively balanced distribution, for any category C the majority of items will be clear-cut
cases of the non-C category. More informative are the one-against-all Kappa values, which
show agreement above 0.7 for IN, ACTOR, MISTAG and NONCOMPOUND, agreement
close to 0.5 for HAVE and INST, and extremely low agreement (below 0.1) for REL and
UNKNOWN.

Studying agreement between pairs of categories can explain which kinds of compounds
are most difficult to label and can suggest where the annotation guidelines are in need
of further refinement. Standardised Pearson Residuals (Haberman, 1973) give a chance-
corrected estimate of between-category agreement. These residuals are defined on a con-
fusion matrix or contingency table of assignments and the residual eij for two categories
i and j is given by

eij =
nij − µ̂ij

[p̂i+p̂+j(1 − p̂i+)(1 − p̂+j)]
1
2

where nij is the observed value of cell ij and p̂i+, p̂+j are row and column marginal
probabilities estimated from the data. Intuitively, this residual compares the proportion
of data items assigned by Annotator 1 to category i and by Annotator 2 to category j
with the expected proportion given Annotator 1’s overall proportion of assignments to i
and Annotator 2’s overall proportion of assignments to j, normalised by a variance term.
The resulting table of residuals is therefore not symmetric, eij 6= eji. In the context of an
annotation experiment it is expected that the observed data will diverge strongly from
independence, giving large positive values on the same-category diagonals and negative
off-diagonal values. Problematic boundaries can be identified where this pattern is not
observed.

Residuals for the experimental results are given in Table 4.3. There are clear problems
with REL, LEX and UNKNOWN, precisely because the borders of these categories are
very difficult to pin down. In the case of UNKNOWN disagreement is unavoidable as
different annotators will bring different background knowledge to the task and some an-
notators may be more willing than others to assign a possible relation in doubtful cases.
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The only off-diagonal positive residual among the six semantic relations is between INST
and ABOUT. Inspection of the data shows that this is due to a set of items such as gas
alarm which can justifiably be interpreted as both an alarm activated by the presence of
gas (INST ) and an alarm signalling the presence of gas (ABOUT ). In these cases An-
notator 1 tended to assign INST and Annotator 2 tended to assign ABOUT. The low
one-against-all Kappa score for HAVE seems to arise mainly from an interaction with
REL; many of the problematic items here are borderline properties such as pay rate and
resource level. Adding further examples to the annotation guidelines should clarify these
cases. On the other hand, many disagreements fall into other patterns that are not com-
mon enough to show up in this analysis and thus constitute a “long tail” for which the
provision of exhaustive guidelines is not practically feasible.

A different perspective on observed disagreements can be obtained through a qualitative
analysis of the reasons why annotators give different labels to a data item. In some
cases, one annotator simply makes a mistake; in others, the annotation guidelines are
unclear; in others, there is genuine disagreement about the meaning of the compound.
The distribution of these factors can inform us of the genuine upper bound that can be
achieved even with a perfect annotation scheme and error-free annotators, and of the
degree to which agreement could be improved by further refining the guidelines. To this
end, a classification of disagreement types was produced and all disagreements in the
annotated test corpus were attributed one of these types. In many cases the reason for
disagreement was clear from the data; if not, it was identified by consultation among the
annotators. The classification used and distribution of types were as follows:

1. True disagreement about the referent of the compound (10.1%). Examples are peat
boy, which one annotator understood as a boy who works with or sells peat and
the other understood as a boy buried in peat, and school management, which was
understood both as the personnel who manage the school and as the activity of
managing the school. It is possible that the number of such disagreements could be
reduced by providing more context to the annotators, but they cannot be avoided
completely.

2. Agreement about the compound referent, but disagreement about the relation be-
tween the nouns (20.1%). This often results from disagreement about the meaning
of one of the compound’s constituents; a video phone may be interpreted as a phone
that plays video (information) (INST ) or as a phone that is also a video (player)
(BE ), though both interpretations allow the compound to denote the same set of de-
vices.9 Likewise sponsorship cash can be cash gained through sponsorship (INST ) or
sponsorship in the form of cash (BE ). Annotation practice for some recurring com-
pound classes of this type could be stipulated in the guidelines, but it is probably
impossible to produce an exhaustive listing that would eliminate all disagreements.

3. Disagreement about part of speech or bracketing, whereby both analyses are plau-
sible (11.8%). Examples are mass death (mass could be adjective or noun) and new
technology applications (applications of new technology or technology applications
which are new). These disagreements are unavoidable where noisy data is used.

9There are many phenomena in natural language which exhibit clear ambiguity but do not usually lead
to misunderstandings or breakdown in dialogue. Similar observations have been made about syntactic
sentence structure by Poesio (1996) and Sampson and Babarczy (2006) and about “sloppy” anaphoric
reference by Poesio et al. (2006).
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4. Mistakes: one annotation clearly contradicts the guidelines and no reasonable ex-
planation can be given for the annotation (8.9%). Examples found in the test data
are cat owner (annotated as ACTOR, should be HAVE ), credit facility (annotated
as ABOUT, should be INST ) and pearl brooch (annotated as BE, in context this
is part of the phrase mother of pearl brooch and should be NONCOMPOUND). As
might have been expected, the majority of mistakes (but not all) were made by the
annotator with less experience of the annotation scheme (Annotator 2).

5. Vague guidelines: there is probably agreement on the meaning of the compound
but uncertainty about category boundaries leads to disagreement (20.7%). Many
of these cases lie on the INST/ABOUT borderline discussed above. Others relate
to vagueness in the distinction between common and proper nouns; one annotator
labelled both Christmas cake and Palace player (Palace denoting Crystal Palace
football club) as MISTAG while the other assigned IN and REL respectively, and
the guidelines did not specify the correct annotation.

6. There is no evidence of disagreement about the compound’s meaning but at least one
annotator has assigned one of the categories REL, LEX and UNKNOWN (28.4%).
As observed above, these categories are especially problematic. As they apply when
no other category seems appropriate, some disagreements of this type could be
reduced by clarifying the boundaries of the other categories. For example, disagree-
ment about football enthusiast (one annotator has ACTOR, the other REL) and
about pay rate (HAVE versus REL) might be avoided by improving the definitions
of ACTOR and HAVE respectively. On the other hand, it is harder to solve the
problem of distinguishing lexicalised compounds from non-lexicalised. The substi-
tutability criterion used in the guidelines for LEX functions well much of the time,
but different annotators will have different intuitions about substitutability and dis-
agreements may be inevitable. Examples found in the test data include platform
game, rugby league and trace element. As previously noted, the UNKNOWN cat-
egory will always be likely to cause disagreements, though the overall number of
assignments to this category might be reduced by the provision of more context.

It has been argued that for part of speech annotation (Babarczy et al., 2006) and for syn-
tactic annotation of sentences (Sampson and Babarczy, 2006), the abilities of annotators
to follow guidelines contribute more to annotation disagreements than imprecision in those
guidelines does. Those studies use a highly-refined exhaustive set of annotation guidelines
and expert annotators, so their results will be more conclusive than ones drawn from the
current study. However, the breakdown of disagreement types presented here does suggest
that even with a rigorously developed annotation scheme the division of responsibility is
less clear in the case of compound semantics. If we attribute all cases of true disagreement
and all mistakes (categories 1–4) to annotator issues, 50.86% of disagreements can be thus
accounted for. Perhaps some of these could be resolved by expanding the guidelines and
providing more context around the compound to the annotators. However, there are only
a few obvious cases where a change in the guidelines would make a significant difference
to the agreement rate. All category 5 cases (20.7%) are due to the annotation guidelines.
It is less clear how to analyse the category 6 cases, which relate to the REL, LEX and
UNKNOWN categories. In many of these, the annotators may agree on the compound
semantics but be unclear whether or not it fits into one of the six semantic categories, or
whether or not it is lexicalised. This suggests that the problem lies with the guidelines,



CHAPTER 4. EVALUATING THE ANNOTATION SCHEME 51

but beyond certain common disagreement types, it will be difficult to solve. The con-
clusion drawn from this analysis is that it may not be practically feasible to develop an
annotation scheme for compound relations with the same precision as has been achieved
for syntactic annotation tasks.

4.5 Prior work and discussion

This work appears to be the first reported study of annotating compounds in context.10

This aspect is important, as in-context interpretation is closer to the way compounds
are used and understood in the real world, and compound meanings are often context-
dependent.11 It is not clear whether in-context or out-of-context interpretation is easier,
but they are indeed distinct tasks. Out-of-context interpretation relies on a compound
having a single most frequent meaning and where this holds agreement should be higher.
In-context interpretation allows even improbable interpretations to be considered (a fish
knife could be a knife that looks like a fish) and where the intended meaning is not
fully explicit in the context annotators may vary in their willingness to discard the most
frequent meaning on the basis of partial evidence.

Some authors of compound annotation schemes and compound datasets do not describe
any measurement of inter-annotator agreement, notably Lauer (1995) and Nastase and
Szpakowicz (2003). Other authors have given out-of-context agreement figures for corpus
data. Kim and Baldwin (2005) report an experiment using 2,169 compounds taken from
newspaper text and the categories of Nastase and Szpakowicz. Their annotators could
assign multiple labels in case of doubt and were judged to agree on an item if their
annotations had any label in common. This less stringent measure yielded agreement of
52.3%. Girju et al. (2005) report agreement for annotation using both Lauer’s (1995) 8
prepositional labels (Kappa = 0.8) and their own 35 semantic relations (Kappa = 0.58).
These figures are difficult to interpret as annotators were again allowed to assign multiple
labels (for the prepositions this occurred in “almost all” cases) and the multiply-labelled
items were excluded from the calculation of Kappa. This entails discarding the items
which are hardest to classify and thus most likely to cause disagreement.

Girju (2006) reports impressive agreement (Kappa = 0.66/0.67) on a noun phrase anno-
tation task, but differences in experimental design preclude direct comparison with my
results. The data used in that experiment consisted of both noun-noun (NN) and noun-
preposition-noun (NPN) phrases taken from a multilingual dictionary and thus might be
expected to contain more familiar terms than a balanced corpus containing many technical

10My results were first reported in Ó Séaghdha (2007b), which appeared at the same time as Girju’s
(2007a) paper on in-context multilingual noun phrase annotation. As described below there are important
differences between these two tasks.

11Gagné et al. (2005a) have demonstrated this phenomenon experimentally by asking subjects to judge
interpretations of compounds in contexts that either support or contradict their dominant out-of-context
meaning. For example, the compound bug spray has the dominant meaning spray for killing bugs and
a subdominant alternative meaning spray produced by bugs; the dominant meaning is supported by the
context Because it was a bad season for mosquitoes, Debbie made sure that every time she went out she
wore plenty of bug spray and the subdominant meaning is supported by As a defence mechanism against
predators, the Alaskan beetle can release a deadly bug spray. Gagné et al. found that in the case of novel
non-lexicalised compounds the meaning judged more likely in out-of-context trials could be overridden
completely by a context supporting the subdominant meaning and in the case of familiar lexicalised
compounds a subdominant-supporting context made both meanings equally competitive.
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items and context-dependent usages. Compounds judged to be lexicalised were discarded
and there was no noise in the data as it was not extracted from a corpus. Neither the
proportions of NN and NPN phrases nor separate agreement figures for the two phrase
types are reported, but the results of Girju (2007a) on other datasets suggest that NPN
phrases give better agreement than NN phrases. Furthermore, each compound was pre-
sented alongside its translation in four Romance languages. Compounding is relatively
rare in these languages and English compounds often have periphrastic translations that
disambiguate their meaning – this was in fact the primary motivation for the multilingual
experiment. On the other hand, the annotation involved a larger set of semantic cate-
gories than the six used in this work and the annotation task will therefore have been
more difficult in one aspect; the author lists 22 categories, though only 10 occur in more
than 2% of her data.

Girju (2007a) extends her multilingual annotation framework to NN and NPN phrases
presented in sentential contexts extracted from parallel corpora. Again, each phrase was
presented in English and four Romance languages, serving to clarify the meaning and aid
annotation. For her set of 22 semantic relations, agreement of Kappa = 0.61 is reported
for English NN phrases extracted from the Europarl corpus of European Parliament pro-
ceedings, and agreement of Kappa = 0.56 for English NN phrases extracted from literary
texts in the CLUVI corpus. The annotated data used to derive these results is not pub-
licly available, but the subset used in the classification experiments of Girju (2007b) has
been made available.12 Of the 437 Europarl NN compounds in this subset, 261 (59.7%)
have the label TYPE and 228 (52.2%) are of the same type (member state). This is likely
to be a major factor in the higher agreement figures on Europarl than on CLUVI, though
not necessarily the sole factor.13 Girju (2007a) also reports agreement on labelling with
Lauer’s prepositions, which is much better than with semantic relations: Europarl gives
Kappa = 0.8, CLUVI gives Kappa = 0.77. As in Girju et al. (2005), “almost all” com-
pounds were labelled with more than one preposition, but Girju (2007a) does not state
whether these were excluded from the Kappa calculation.

It is clear from the results reported here and by other authors that the compound anno-
tation task is a very difficult one. Why is this the case? A general problem in semantic
annotation of text is that the annotator does not have access to all the information avail-
able to the author and his/her intended audience. Interpreting referring expressions in
dialogue has been shown to be much harder for overhearers than for participants (Schober
and Clark, 1989). In technical or specialist genres, an annotator may lack much of the
background knowledge required to arrive at a full or correct interpretation. Even where
the source of the data is written and intended for a general readership, it is not practical
to read a large portion of the source text as may be necessary for accurate interpretation.
This difficulty is exacerbated in the case of compounds, which are often regarded as com-
pressed descriptions of their referents (Downing, 1977). To decompress the semantics of
a compound, the hearer must share certain knowledge with the speaker either through
mutual world knowledge or through common ground established in the preceding text.
The use of compounds thus reflects the tendency of speakers to use shorter referring ex-
pressions as a discourse develops (Krauss and Weinheimer, 1964; Clark and Wilkes-Gibbs,
1986; Master, 1993) and the tendency to reduce redundant syntactic structures and main-

12http://apfel.ai.uiuc.edu/resources.html
13It may also explain why Girju’s (2007b) classification results are better on the Europarl dataset than

on the CLUVI dataset.
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tain a constant information density (Levy and Jaeger, 2006). Much of the difficulty in
annotation thus arises from the very nature of compounds and compound usage.

4.6 Conclusion

This chapter has presented an empirical evaluation of the semantic annotation scheme for
compound nouns that was developed in Chapter 3. Having a measure of inter-annotator
agreement is important, as it indicates whether the annotation reliably captures the se-
mantic information shared between users of a language. The correlation of human judge-
ments can also calibrate our expectations of the performance that automatic methods
will achieve – it would be surprising if computers performed significantly better than
humans at interpreting compounds. The agreement results reported in this chapter com-
pare favourably with other results in the literature; one significant factor in this success
is the rigorous development of the annotation schemes and guidelines, which appears to
be necessary for reliable and reproducible annotation at a non-trivial semantic depth.

The dataset collected in the course of this annotation work is also used to produce a
gold standard for classification experiments in later chapters of this thesis. The data for
those experiments consist of all 2,000 compounds from which the annotation trial and
test datasets were sampled. It is therefore possible that inter-annotator agreement for the
classification data might differ from that for the subset on which agreement was evalu-
ated.14 If so, this would be a sample size effect and not a bias in the estimation of the
“true” agreement, as the data for annotation was sampled randomly. A second point to
note is that the classification dataset was labelled by a single annotator and not subject
to a reconciliation phase where disagreements between annotators could be resolved. In
this situtation the estimate of inter-annotator agreement, in addition to evaluating the
learnability of the annotation scheme, provides evidence for the reproducibility of the clas-
sification gold standard by measuring whether an independent human annotator chooses
the same labelling.

14Ideally, the entire set of 2,000 compounds would have been annotated by both annotators. However
constraints on time and resources made this impossible in practice.
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Chapter 5

Semantic similarity and kernel
methods

5.1 Introduction

This chapter presents the theoretical background for the learning methods used in Chap-
ters 6 and 7. In Section 5.2 I state the assumption underlying those methods, that
semantic relations in compounds and between nouns in text can be identified through a
process of analogical or similarity-based reasoning. Section 5.3 describes relevant prior
work on measuring semantic similarity between words and pairs of words. Section 5.4
is an introduction to kernel methods for classification, in particular support vector ma-
chines. As well as providing state-of-the-art statistical classifiers, kernel methods allow
the application of similarity measures tailored to a particular task. This flexibility will
prove very useful in later chapters.

5.2 A similarity-based approach to relational classi-

fication

An analogical hypothesis for compound interpretation holds that the relational meaning
of a given compound can be predicted, at least in part, by knowledge about the meanings
of similar compounds. Or equivalently: the more similar two compounds are, the more
likely they are to express similar semantic relations. As I described in Section 2.2.2,
analogical reasoning plays a central role in Ryder’s (1994) theory of compound semantics.
Psycholinguistic studies by Gagné and Shoben (1997; 2002), Tagalakis and Keane (2005)
and Devereux and Costello (2007) have found evidence for the reality of semantic priming
by similar compounds, though the details of this effect are still the subject of contentious
debate among researchers.1 Analogical effects have also been observed in the choice of
morphological linking elements in novel Dutch and German compounds (Krott et al.,
2002; Krott et al., 2007) and the placement of stress in English compounds (Plag, 2006;
Lappe and Plag, 2007). It is clear that the analogical hypothesis can only be of practical

1See, for example, the running debate in Estes (2003), Gagné et al. (2005b) and Estes and Jones
(2006) for a flavour of the disagreements on this issue.
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use if we possess an appropriate conception of similarity between compounds; the range
of options that are available for computational implementation is the topic of Section 5.3.

Statistical methods for classification also make a fundamental assumption of analogy:
that similar data items will be likely to belong to the same class. Here, the definition
of similarity depends both on the representation chosen for the data items and on the
method used to compare those items. A standard approach for choosing an appropriate
representation is to extract a set of features that are expected to be informative for class
prediction. The process of item comparison may be explicit, as in nearest-neighbour meth-
ods, or implicit, as in methods where a classification model is abstracted from training
data and test items are classified by referring to that model. In either scenario, if the data
violate the assumption that the class distribution correlates with the similarity between
items, it will be difficult or impossible to classify unseen test data. Thus the notion of
similarity used is of crucial importance. As will be shown in Section 5.4, kernel-based
learning offers a flexible framework for engineering task-appropriate similarity measures
in the form of kernel functions.

This insight shows that analogical models of relational semantics are not limited to the
case of noun-noun compounds. Other tasks, such as relation extraction, can be analysed
in similar terms. Relation extraction, a very prominent task in the field of information
extraction, involves identifying occurrences of specific semantic relations in text. It is
perhaps more accurate to describe it as a family of related tasks, as the same term is used
to denote identification of relation instances at the sentence level and on a global level. In
the former case, each test sentence must be classified according to whether it expresses a
relation of interest; in the latter, the evidence provided by a corpus of text that a relation
holds between pairs of entities must be evaluated. Compound noun interpretation can be
seen as a particular case of the latter task, in which the very use of a compound indicates
that some unspecified relation holds between its constituents. Just as a typical relation
extraction system may be required to answer the question what relation (if any) holds
between Google and YouTube?, a compound interpreter must answer questions such as
what relation holds between the concepts kitchen and knife?. In Section 5.3, approaches
to both tasks are outlined in a unified manner, and in Chapters 6 and 7 I show that
related methods can be used to classify relations in compound noun data and a more
typical relation extraction dataset, that used for the task on classifying relations between
nominals at the 2007 SemEval competition (Girju et al., 2007).

5.3 Methods for computing noun pair similarity

In order to implement the similarity-based approach to relation classification, it will be
necessary to define a suitable concept of similarity between pairs of words. While there is
a long tradition of NLP research on methods for calculating semantic similarity between
words, calculating similarity between pairs (or n-tuples) of words is a less well-understood
problem. In fact, the problem has rarely been stated explicitly, though it is implicitly ad-
dressed by most work on compound noun interpretation and semantic relation extraction.
This section describes two complementary approaches for calculating noun pair similar-
ity. The lexical similarity approach is based on standard lexical similarity methods and
derives a measure of similarity from pairwise similarities between constituents. Section
5.3.1 surveys some appropriate techniques for lexical similarity, with an emphasis on dis-
tributional methods that use co-occurrence information extracted from corpora. A second
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approach to pair similarity is based on the hypothesis that pairs of words that co-occur
in similar contexts will tend to partake in similar semantic relations. This paradigm can
be termed relational similarity.

These two kinds of similarity are frequently used in NLP, and they are often combined
for improved performance. Many approaches to relation extraction combine a measure of
similarity between sentences (token relational similarity) with basic semantic information
about the words that are candidate relation arguments (Miller et al., 2000; Culotta and
Sorensen, 2004; Zhao and Grishman, 2005; Zhou et al., 2005; Zhang et al., 2006). Turney
et al. (2003) combine a range of modules for solving SAT analogy questions, including
a WordNet-based module for lexical similarity and a Web-based module for type-level
relational similarity. Gliozzo et al. (2005) combine single-word analogues of word and
token relational similarity for word sense disambiguation. The distinction between word
and relational similarity for word pair comparison is recognised by Turney (2006) (he
calls the former attributional similarity), though the methods he develops use only rela-
tional similarity (see Section 5.3.2). Jiang and Zhai (2007) draw a distinction between
“properties of a single token” (e.g., unigram counts, entity types) and “relations between
tokens” (subsequences, dependency relations) as features for relation extraction, but this
distinction is orthogonal to that discussed here as it relates to a given feature’s type as
opposed to its source.

5.3.1 Constituent lexical similarity

5.3.1.1 Lexical similarity paradigms

Automatic methods for identifying semantically similar words have been studied since the
earliest period of NLP research (Masterman, 1956; Spärck Jones, 1964; Harper, 1965),
and they remain an active area of investigation. This longevity is in part due to the
fundamental importance of lexical semantics for a wide range of language processing
tasks, and furthermore because the problem of lexical similarity is a difficult one that is
far from solved – the lexical representations used in current state-of-the-art approaches to
semantics are quite impoverished in comparison to the multimodal, multirelational nature
of human semantic memory. Nonetheless, the techniques that have been developed in
this area prove very useful in many practical applications. Dagan et al. (1999) use lexical
similarity measures to smooth word probabilities in a language model; Hirst and colleagues
have investigated similarity-based techniques for spelling error detection and correction
(Hirst and St-Onge, 1998; Hirst and Budanitsky, 2005); Slonim and Tishby (2000) and
Bekkerman et al. (2003) demonstrate that word clustering produces powerful features for
document clustering and categorisation. I will discuss in turn three distinct paradigms for
computing lexical similarity: those that perform simple matching on semantic categories,
those that use structural information from hand-built resources and those that extract
distributional information from corpora. I will also describe how these paradigms have
been applied to relational semantic tasks.

Given a set of semantic categories such as {Person, Organisation, Location,. . . },
the simplest method for comparing two words is to perform binary-valued matching on
their categories, i.e., the two words have similarity 1 if they belong to the same category
and otherwise have similarity 0. This conception of similarity is often implicit in relation
classification methods which integrate context information and basic entity information.



58 5.3. METHODS FOR COMPUTING NOUN PAIR SIMILARITY

For example, the ACE 2008 Local Relation Detection and Recognition task specifies
seven entity types {Facility, Geo-Political Entity, Location, Organisation,

Person} with 31 subtypes (ACE, 2008). This task involves identifying sentences in a
test corpus that express one of a pre-defined set of relations.2 Systems for ACE-style
relation classification often make use of these entity types by adding a binary feature for
each type to a set of context features (Kambhatla, 2004; Zhou et al., 2005; Jiang and
Zhai, 2007), by defining a matching kernel that is summed with a kernel on syntactic
structures (Zhao and Grishman, 2005), or by integrating a matching component into the
calculation of a structural kernel by upweighting matching substructures that also match
in the entity types they contain (Culotta and Sorensen, 2004).

A second approach to lexical similarity exploits the semantic information in manually
constructed ontologies. Such ontologies offer many advantages; the accuracy and relevance
of the content is guaranteed and the structured nature of the data can provide very rich
information about lexical relations. These come at the cost of inflexibility in the face
of constant language change and an inevitable lack of coverage of both lexical items
and lexical relations; the time and effort required for ontology development means that
adaptation to new situations and uses is often not feasible. The ontology most widely
used for NLP research is WordNet (Fellbaum, 1998), though thesauri such as Roget’s have
been used as well.3 A wide range of lexical similarity measures have been proposed which
make use of the hypernymy (IS-A) structure of WordNet (Budanitsky and Hirst, 2006)
and these measures have been applied to an even wider range of tasks (far too many to list
here). For the compound noun interpretation task, Girju et al. (2005) and Ó Séaghdha
(2007a) use the WordNet hypernymy hierarchy to derive features for SVM classification,
while Kim and Baldwin (2005) directly employ WordNet similarity measures and a nearest
neighbour technique to classify compound semantic relations. Kim and Baldwin (2006)
use WordNet to generate new compounds from a small seed set of annotated data by
substituting constituents of seed compounds with similar words. This bootstrapping
method can increase the amount of training data available for machine learning. The
WordNet hierarchy was also used by Giuliano et al. (2007) to derive feature vectors for
the SemEval 2007 task on classifying semantic relations between nominals.4 Surprisingly
little attention has been paid to the development of kernel functions (see Section 5.4.1)
that exploit ontology knowledge; the only such work I am aware of is by Siolas and
d’Alche-Buc (2000) and Basili et al. (2006). The main complicating factor from a kernel
perspective is that the kinds of functions most frequently used for WordNet similarity are
not positive semi-definite;5 identifying how WordNet kernels could be constructed is an
important open research question.

In addition to broad-coverage thesauri, specialised term ontologies have been developed

2There are seven relations in ACE 2008 (ARTIFACT, GENERAL AFFILIATION, METONYMY,
ORG-AFFILIATION, PART-WHOLE, PER-SOC, PHYSICAL), with 18 subtypes. In addition to the
Local Relation Detection and Recognition task there is also a Global RDR task, which is a type-level
relational task in the terminology of Section 5.3.2.

3Kilgarriff and Yallop (2000) give a comparative overview of manually and automatically constructed
thesauri for NLP.

4This relation classification task is described in detail in Section 6.3.2.
5For example, many WordNet similarity measures use information about the most specific common

subsumer of two senses, which cannot be expressed in terms of an inner product between vectors. On the
other hand, measures based on the similarity between the glosses associated with each sense (such the
adapted Lesk measure of Banerjee and Pedersen (2002)) should be more amenable to a kernel approach.
One possible implementation of this idea would use string kernels to compare glosses.
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for research in fields such as biomedicine, and the hierarchy-driven measures originally
devised for WordNet are also suitable for exploiting these resources (Lord et al., 2003;
Pedersen et al., 2007). Rosario and Hearst (2001) and Rosario et al. (2002) use the MeSH
medical taxonomy to interpret noun compounds by mapping compound constituents into
the taxonomy and learning associations between taxonomy elements and semantic rela-
tions; Rosario and Hearst (2004) apply a similar approach to classifying relations between
treatments and diseases in medical texts. Structured resources other than ontologies that
have been used for computing lexical similarity include machine-readable dictionaries
(Lesk, 1985; Wilks et al., 1989; Vanderwende, 1994) and electronic encyclopaedias, most
notably Wikipedia (Strube and Ponzetto, 2006; Gabrilovich and Markovitch, 2007).

The third paradigm for lexical similarity compares words on the basis of their observed
behaviour in naturally occurring language. The core assumption underlying work in this
paradigm is often called the distributional hypothesis: that two words are semantically
similar if they have similar patterns of co-occurrence with other words in some set of
contexts. For example, when we observe the word dog in a corpus we are more likely to
observe it co-occurring with the words loyal, bark and fetch than with the words infinite,
juggle or dispute, and as the word hound displays similar behaviour, the distributional
hypothesis would predict that dog and hound are semantically similar or related. The word
table will tend to co-occur with a different set of words and will correspondingly be judged
semantically dissimilar to dog. The hypothesis was introduced as a theoretical principle
by Firth (1957) and Harris (1968), and it motivates Rubenstein and Goodenough’s (1965)
study of human similarity judgements. The thesis of Spärck Jones (1964) and the paper
of Harper (1965) were to my knowledge the first computational implementations of the
distributional approach and contain many ideas that are now commonplace in modern
data-driven NLP research, from the extraction of co-occurrence vectors from corpora to
the use of the semantic similarity measures. Distributional methods lost favour in the
mainstream linguistic community with the rise of generative grammar, though they have
been readopted by psycholinguists and neurolinguists in recent years (Burgess and Lund,
1998; McDonald and Shillcock, 2001; Huettig et al., 2006; Mitchell et al., 2008).

5.3.1.2 The distributional model

Depending on the choice of a particular interpretation of “patterns of co-occurrence” and
a particular notion of context, applying the distributional hypothesis can yield different
kinds of similarity, from a tighter relation of synonymy to a looser relation of taxonomic
similarity or just a notion of general relatedness. To retain maximal generality, we can for-
malise the measurement of distributional similarity between target words w1, w2 belonging
to a vocabulary Vt in terms of a set of co-occurrence types C, a real-valued weighting func-
tion g and a similarity function sim : R

|C| × R
|C| → R.6 Each co-occurrence type c ∈ C

can be decomposed as the pairing of a relation r from a set R of admissible relations and a
co-occurring word v from a vocabulary Vc (possibly the same as Vt), i.e., C ⊆ R×Vc. The
weighting g(w, c) is some function of the co-occurrence frequency f(w, c) (the number of
times w and c were observed co-occurring in a corpus) that may also incorporate informa-
tion about the marginal distributions of w and c. The overall similarity value sim(w1, w2)
will be defined as a combination of the values of a pointwise similarity function sim0 at

6In what follows I will unapologetically abuse notation and write sim(w1, w2) as if it were a function
on pairs of words instead of a function on pairs of vectors.
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each c ∈ C. In most cases, the overall similarity will be computed by summing over
the pointwise similarity scores and those scores will be 0 for co-occurrence types c with
g(w1, c) = g(w2, c) = 0. It follows that we need only count the co-occurrences in the
support of g(w1, ·) and g(w2, ·), typically the set of co-occurrences that were observed for
either w1 or w2 in the corpus, so even when the vocabulary of co-occurrence types is large
the computation of sim(w1, w2) can be efficient.

This general description leaves a number of important components undetermined. The
size and character of the corpus used to produce frequency estimates will fundamentally
affect the results.7 The broad notion of “co-occurrence relation” admits a large variety
of context and co-occurrence types. For example, the co-occurrence relation used may
be such that g(w1, r, w) > 0 whenever w1 and w appear in the same document. This
relation specification is often used in information retrieval and also in approaches to
lexical semantics inspired by information retrieval (Wong et al., 1985) or Latent Semantic
Analysis (Landauer and Dumais, 1997). The size of the admissible context can be reduced
so that only co-occurrences in the same paragraph are considered, or co-occurrences within
a window of n words around the target w1. It is often the case that similarity judgements
based on textual proximity retrieve word pairs that are semantically or topically related
rather than truly similar. To see why, consider the example pair referee and penalty.
Both of these words will appear in the same kinds of sentences and will therefore show a
strong association with co-occurring words such as foul, goal, blow and award. Proximity
information alone cannot identify whether two words perform similar functions in the
sentences they appear in. Window-based techniques have been used by many authors,
including Church and Hanks (1989), Schütze (1992), McDonald and Shillcock (2001) and
Widdows (2003).

An alternative approach is to identify the set R with a set of admissible syntactic re-
lations such as verb-object, verb-subject or modifier-noun. This is a stricter definition
of co-occurrence, as only words entering into a syntactic relation with the target word
contribute to its distributional profile. As a result, words that are judged similar do not
just appear in similar sentences or clauses, they also perform similar functions in those
sentences. Syntactic co-occurrences therefore yield a similarity measure that is closer to
what we intuitively think of as “similarity”. For example, verb-argument co-occurrences
were used by Pereira et al. (1993) for clustering nouns, by Grefenstette (1994) and Cur-
ran (2003) for automatic thesaurus construction and by Grishman and Sterling (1994)
for learning verbal selectional restrictions. Korhonen et al. (2003) perform semantic verb
clustering using subcategorisation frame distributions. Lin (1998a; 1998b) uses all de-
pendency relations associated with a word to calculate lexical distributional similarity.
Padó and Lapata (2003) generalise the syntactic co-occurrence framework to handle com-
binations of syntactic relations with a model based on paths in a sentence’s dependency
graph; the similarity estimates produced by their model correlate well with human prim-
ing data. Grefenstette (1993) finds that while syntactic methods generally perform better
than window-based methods in identifying semantic neighbours, the opposite behaviour
is observed for rare terms. The intuitive explanation is that syntactic co-occurrences
can be very sparse for low-frequency words and may not provide enough information to

7For example, one would not generally expect rutabaga, clock and hedgehog to be rated as similar
words. However, a distributional model derived from a corpus of biomedical articles might indeed judge
them similar, as they are all names of genes belonging to the organism Drosophila (Morgan et al., 2004).
This is a frequent and non-trivial issue in the processing of specialised sublanguages which adopt common
words for technical uses.
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be useful, whereas the amount of window-derived data for any term is typically greater.
Schulte im Walde (2008) also reports that syntactic co-occurrence features outperform
window-based features on the task of clustering similar verbs, although the former may
be more brittle in the sense that different sets of syntactic relations perform optimally on
different datasets.

Whichever co-occurrence relations are selected, the result is a representation of each word
in terms of the co-occurrence types observed for that word in the corpus. The standard
means of representing a word w is as a vector in a normed vector space where each
dimension corresponds to a particular co-occurrence type c and the coordinate value in
each dimension is the weight g(w, c).8 The function g may simply count the number of
times w co-occurs with c in the corpus (g(w, c) = f(w, c)), or it may be a binary function
with value 1 if the co-occurrence (w, c) was observed at least once and value 0 otherwise.
One problem that arises when raw frequency counts are used for computing similarity is
that the influence of the distributions of the target word and of the co-occurrence type is
not considered. A large co-occurrence count f(w, c) may not provide useful information if
c co-occurs frequently with many other target words, but its contribution to the similarity
profile of w will nonetheless dominate the contribution of less frequent but possibly more
discriminative co-occurrence types.

To avoid this problem, one of a number of more sophisticated weighting functions may be
used as an alternative; those suggested in the literature include mutual information (Hin-
dle, 1990; Lin, 1998a), the log-likelihood ratio (Dunning, 1993; Padó and Lapata, 2003),
odds ratios (Lowe and McDonald, 2000), z-scores (Weeds and Weir, 2005), t-tests and
χ2-tests (Curran, 2003). These statistical measures compare the observed co-occurrence
counts with the counts that would be expected to occur by chance.9 Calculating the
expected frequencies requires that we know the marginal frequencies f(w) (how often w
co-occurs with any type in the corpus) and f(c) (how often any target word co-occurs with
c), and usually the total number N of word-type co-occurrences in the corpus. With an
appropriate choice of processing tools, this requirement can usually be met even for very
large corpora (Curran, 2003). However, in some scenarios it is impossible or infeasible
to compute the marginals, particularly when the co-occurrence relations are syntactically
informed. This can be the case when co-occurrences are extracted only from a subset
of the corpus known to contain all co-occurrences of certain target words but not all
co-occurrences of other words, such as when a Web corpus is created by submitting tar-
geted queries to a search engine. If the co-occurrence types are derived from full syntactic
parses, as in the model of Padó and Lapata (2003), the amount of time available for
parsing will limit the size of the corpus that can be used (without the need to compute
the marginals, only those sentences containing a target word must be parsed).10

An alternative weighting strategy is to represent each target word w by its co-occurrence
probability distribution P (C|w). For a particular co-occurrence type c the value of P (c|w)
gives the conditional probability of observing c in a co-occurrence given that the target

8The condition that the space should be a normed space is equivalent to requiring that the space have
a distance function.

9Evert (2004) gives a thorough overview of measures for estimating the strength of association between
co-occurring terms, with a focus on their application in collocation extraction.

10One workaround to practical limits on corpus size is to use a sketching algorithm as in Li and Church
(2007) to estimate the marginals from a representative sample of a larger corpus. As far as I am aware,
this has not yet been tried for computing semantic similarity, but it could well be a productive direction
of enquiry.
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Dot product simdot(w1, w2) =
∑

c P (c|w1)P (c|w2)

Cosine simcos(w1, w2) =
P

c P (c|w1)P (c|w2)√
P

c P (c|w1)
√

P

c P (c|w2)

Weeds and Weir add simWWadd
(w1, w2) = β

∑

c∈S(w1∩w2)
P (c|w1) +

(1 − β)
∑

c∈S(w1∩w2)
P (c|w2)

Weeds and Weir dw simWWdw
(w1, w2) =

∑

c min(P (c|w1), P (c|w2))

Jaccard simJaccard(w1, w2) =
P

c min(P (c|w1),P (c|w2))
P

c max(P (c|w1),P (c|w2))

Lin (1998b) simLin(w1, w2) =
P

c∈S(w1)∩S(w2) IC(c)
P

c∈S(w1) IC(c)+
P

c∈S(w2) IC(c)

Table 5.1: Similarity measures for co-occurrence probability distributions. S(w) is the
support of P (C|w), P (c) is the probability of observing any target word co-occurring with
c, and IC(c) = − log2(P (c)) is the information content of that event.

word is w. The co-occurrence types for which P (c|w) is high can be called the preferred
co-occurrences of w, and it follows from the distributional hypothesis that two words
whose preferred co-occurrences overlap are likely to be semantically similar. Note that a
word cannot give a high co-occurrence probability to a large number of types, due to the
constraint that its co-occurrence probabilities must sum to 1.

The maximum likelihood estimate of the “true” population value of P (c|w) is simply
f(w,c)

P

c f(w,c)
, the number of times w and c co-occur in the corpus divided by the total number

of times w co-occurs with any co-occurrence type. Given an arbitrary ordering c1, . . . , cd

of co-occurrence types the vector pw = (P (c1|w), . . . , P (cd|w)) parameterises a multi-
nomial or categorical probability distribution. Using these parameter vectors as a data
representation guarantees a sound probabilistic interpretation for our model and allows
us to profit from methods that have been designed for the specific purpose of compar-
ing and discriminating probability distributions. With regard to the problem of chance
co-occurrences mentioned above, the conditional probability representation should not be
affected by the marginal probability of the target word as each vector must by definition
sum to 1, but it does not in itself dispel the effect of the co-occurrence type marginals.
We might hope to use similarity measures that are relatively robust to this effect, and in
practice this does seem to be possible (see Chapter 6). The use of conditional distribu-
tions is implicit in much work on semantic similarity and is explicitly treated by Pereira
et al. (1993), Dagan et al. (1999) and Lee (1999), among others.

5.3.1.3 Measures of similarity and distance

Similarities

The final component required for computing semantic similarity is the semantic similar-
ity function itself. Table 5.1 lists the best-known lexical similarity measures that are
suitable for comparing arbitrary (conditional) probability distributions over the same
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event space.11 The discussion in this section will assume that co-occurrence vectors are
weighted with an unspecified function g (Section 5.3.1.2), of which the conditional prob-
ability weighting in Table 5.1 is a particular case.

The dot product or scalar product is a fundamental concept in linear algebra but it is
rarely used as a lexical similarity measure as it is sensitive to the magnitudes (L2 norms)
of the vectors gw1 and gw2 . This is made clear by restating the dot product as

simdot(w1, w2) = ‖gw1‖‖gw2‖ cos θ (5.1)

where θ is the angle between the two vectors. However, the dot product is often used with
support vector machines for a variety of classification tasks; in that context, it is named
the linear kernel (see Section 5.4.1). The cosine similarity measure gives the cosine of the
angle between pw1 and pw2 ; as suggested by (5.1), this corresponds to the dot product
when gw1 and gw2 are normalised to have unit magnitude. The cosine measure has a long
history of use in information retrieval and is as close to a standard similarity measure as
exists in NLP.

Another class of similarity measures derives from measures originally designed for com-
paring sets or, equivalently, binary vectors. One such measure is that of Jaccard (1901),
for arbitrary sets A and B:

simSetJaccard(A, B) =
|A ∩ B|
|A ∪ B| (5.2)

There are a number of ways in which the Jaccard coefficient can be generalised to compare
vectors in R

n. The version stated in Table 5.1, used by Grefenstette (1994) and Curran
(2003), takes the min function as the real-valued analogue of set intersection and the max
function as the analogue of union. Curran also considers the formulation

simAltJaccard(w1, w2) =

∑

c g(w1, c)g(w2, c)
∑

c g(w1, c) + g(w2, c)
(5.3)

When the weighing function g is the conditional probability P (c|w), the denominator in
(5.3) will always equal 2 and simAltJaccard will reduce to 0.5 times simdot. An alternative
measure of set similarity is the Dice coefficient (Dice, 1945):

simSetDice(A, B) =
2|A ∩ B|
|A| + |B| (5.4)

simSetDice increases monotonically with simSetJaccard; the relationship between them is
given by simSetJaccard(A, B) = simSetDice(A,B)

2−simSetDice(A,B)
. For any word w, the two measures will

always give the same ranking of most similar words to w. If we generalise the Dice
coefficient by replacing the intersection in (5.4) with the min function and the denominator

11This definition excludes the mutual information measure, which computes an information-theoretic
notion of similarity between random variables by comparing their joint probability distribution to a fac-
torised distribution but is not suitable for comparing arbitrary distributions. Also excluded are similarity
measures on individual events, such as pointwise mutual information, t-test and the log likelihood ratio;
as described above, these are often applied as weighting functions prior to the calculation of lexical simi-
larity. I also omit discussion of the confusion probability measure (Essen and Steinbiss, 1992); while this
measure does compare arbitrary distributions, it has the surprising property that the most similar word
to a given w1 may not be w1 itself, and Lee (1999) finds that it performs relatively poorly at estimating
semantic similarity.
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with
∑

c P (c|w1) + P (c|w2) the resulting measure is equal to
∑

c min(P (c|w1), P (c|w2)),
which is the same as Weeds and Weir’s (2005) simWWdw

. Replacing the intersection with
a product yields twice simAltJaccard, which is equal to simdot for conditional probability
vectors.

Lin (1998a; 1998b) presents two similarity measures that can be viewed as variants of the
Dice coefficient, in that they divide a measure of the intersected support of w1 and w2

by the sum of the corresponding measures of the individual supports. Both measures are
motivated by the same information-theoretic principle, that an appropriate measure of
similarity between two items should quantify the amount of information the items share
divided by the sum of the information each item possesses individually. Lin’s (1998a) mea-
sure takes the pointwise mutual information between a target word w and co-occurrence
type c as the weighting function and replaces the set cardinality measure in (5.4) with a
sum over set member weights:

simLin98a(w1, w2) =

∑

c∈S(w1)∩S(w2) MI(w1, c) + MI(w2, c)
∑

c∈S(w1)
MI(w1, c) +

∑

c∈S(w2)
MI(w2, c)

(5.5)

Here S(w) = {c | g(w, c) > 0} is the support of g(w, ·) and S(w1) ∩ S(w2) is the inter-

section of the supports of g(w1, ·) and g(w2, ·). MI(w, c) = log f(w,c)
f(w)f(c)

is the mutual
information between w and c. If conditional probability is used instead of the mutual
information weighting, then simLin98a(w1, w2) reduces to simWWadd

with β = 0.5. The
measure of Lin (1998b), stated in Table 5.1, is similar to simLin98a(w1, w2) except that
the weighting function used is not conditioned on the words being compared. Instead,
a global information weight is assigned to each co-occurrence type such that the weight
IC(c) of each co-occurrence is the information content of the event that c co-occurs with
any target word in the corpus.

Weeds and Weir (2005) describe a general framework for deriving distributional similarity
measures. They cast the task of calculating similarities as co-occurrence retrieval and
extend the analogy with information retrieval by defining the similarity between w1 and
w2 in terms of precision (the degree to which w2 retrieves the preferred co-occurrences
of w1) and recall (the degree to which w1 retrieves the preferred co-occurrences of w2).
For one class of similarity measure, the additive models, these quantities are defined as
follows:

Padd(w1, w2) =

∑

c∈S(w1)∩S(w2) g(w1, c)
∑

c∈S(w1)
g(w1, c)

Radd(w1, w2) =

∑

c∈S(w1)∩S(w2)
g(w2, c)

∑

c∈S(w2)
g(w2, c)

(5.6)

When g(w, c) is the probability P (c|w), the denominators in both definitions will sum
to 1. A second class of measures, the difference-weighted models, have the following
definitions:12

Pdw(w1, w2) =

∑

c∈S(w1)∩S(w2) min(g(w1, c), g(w2, c))
∑

c∈S(w1)
g(w1, c)

(5.7)

Rdw(w1, w2) =

∑

c∈S(w1)∩S(w2) min(g(w1, c), g(w2, c))
∑

c∈S(w2)
g(w2, c)

(5.8)

12Weeds and Weir actually define the difference-weighted models in terms of an extent function. This
gives the same definitions as the weighting function g in all cases except the difference-weighted type-based
model. As I am not discussing this model, and in the interests of clarity, I will overlook the distinction.
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L1 distance distL1(w1, w2) =
∑

c |P (c|w1) − P (c|w2)|

L2 distance distL2(w1, w2) =
√
∑

c(P (c|w1) − P (c|w2))2

Kullback-Leibler divergence distKL(w1, w2) =
∑

c P (c|w1) log2
P (c|w1)
P (c|w2)

α-skew divergence distα(w1, w2) =
∑

c P (c|w1) log2
P (c|w1)

αP (c|w2)+(1−α)P (c|w1)

Jensen-Shannon divergence distJS(w1, w2) =
∑

c P (c|w1) log2
2P (c|w1)

P (c|w1)+P (c|w2)
+

P (c|w2) log2
2P (c|w2)

P (c|w1)+P (c|w2)

Table 5.2: Distance measures for co-occurrence distributions

Again the denominators sum to 1 when the distributional probability weighting is used.
Weeds and Weir discuss methods for combining precision and recall using a weighted
arithmetic mean, the harmonic mean (F-measure) and a weighted sum of the arithmetic
and harmonic means. The most general statement of their model is:

simWW (w1, w2) = γ

[

2P (w1, w2)R(w1, w2)

P (w1, w2) + R(w1, w2)

]

+ (1 − γ) [βP (w1, w2) + (1 − β)R(w1, w2)]

(5.9)
The definition in (5.9) is shown by Weeds and Weir to have many known similarity
measures as special cases, including simLin98a, simSetDice and a transformed distL1 (see
below). The definitions in Table 5.1 are based on the arithmetic mean (γ = 0) as this
formulation facilitates comparison with other measures.

Distances

It is also possible to arrive at a similarity measure by starting with a notion of distance or
dissimilarity. Intuitively, the more distant the representations of two words are, the less
similar the words should be. Table 5.2 lists the distance measures that have previously
been applied to co-occurrence distributions. They can be grouped in two classes: dis-
tances appropriate for R

n and distances appropriate for M1
+(C), the space of probability

measures on C. If the task at hand is one of ranking words by similarity to a given w,
a distance measure can be used as is and a ranking of most similar to least similar can
be produced by ranking from least distant to most distant. On the other hand, if the
degree of similarity between two words is to be quantified, measures of distance must be
transformed into measures of similarity. The approaches described in the literature use
heuristic transformations; in Section 5.4.1 we will see one theoretically motivated method
for deriving similarities from distances.

The L1 and L2 distances are instances of Minkowski or Lp distances. For p ≥ 1, the Lp
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distance between vectors x,y ∈ R
n is defined as:13

distLp
(x,y) =

(

n
∑

i=1

|xi − yi|p
)

1
p

(5.10)

As p increases, the distance becomes dominated by dimensions i for which |xi − yi| is
largest. The limiting distance P∞ is the maximum of all the dimension-wise differences.
Previous work on semantic similarity indicates that the L1 distance performs better than
the L2 distance (Lee, 1999). Lee suggests this difference is due to the fact that the
contribution of co-occurrence types outside of the intersected support S(w1) ∩ S(w2) is
squared in L2 compared to L1. Another factor may be that unless the co-occurrence types
are normalised for variance, the difference |P (c|w1) − P (c|w2)| will be greater for more
frequent c and higher values of p exacerbate this effect.14 To derive a similarity measure
from distL1, Lee (1999) uses

simL1(w1, w2) = 2 − distL1(w1, w2) (5.11)

Dagan et al. (1999) use the same similarity function, but raised to an parameterised
power β. The constant term 2 arises in (5.11) because 0 ≤ distL1(w1, w2) ≤ 2 when w1

and w2 are represented by probability distributions. Weeds and Weir (2005) also derive
the formula (5.11) as a special case of their difference-weighted model via the identity
distL1(w1, w2) = 2 − 2

∑

c min(P (c|w1), P (c|w2)).

The development of distance measures between probability distributions has been pursued
most energetically in the field of information theory. It is often of interest to quantify
the degree to which one distribution captures the information content of another. The
L1 distance is often known as the variational distance in this context. Probably the most
important measure of distance between probability measures on a set C is the Kullback-
Leibler divergence (Kullback and Leibler, 1951):

distKL(P, Q) =
∑

c∈C

P (c) log2

P (c)

Q(c)
(5.12)

The KL divergence can be interpreted as the expected information loss incurred by ap-
proximating a “true” distribution P with a distribution Q, or equivalently as the expected
increase in word length (in bits) when a code that is optimal for the distribution Q is
used to describe data produced by the distribution P . It is a fundamental concept in
many areas of statistical NLP. For example: it has been used for clustering by Pereira
et al. (1993); the popular maximum entropy modelling paradigm is based on minimising
the KL divergence between the model distribution and a uniform distribution subject to
empirically derived constraints (Berger et al., 1996; Della Pietra et al., 1997); the G2 log-
likelihood measure of association can be viewed as the KL divergence between observed
and expected cell values in a contingency table (Evert, 2004). The KL divergence is only
defined if Q(c) > 0 whenever P (c) > 0, i.e., P must be absolutely continuous with regard
to Q. This condition is rarely met for pairs of co-occurrence distributions. Lee (1999)
has introduced the α-skew divergence to address this problem. The α-skew divergence

13The condition p ≥ 1 is necessary for Lp to be a metric, as otherwise the triangle inequality does not
hold.

14This topic is taken up again in Section 6.8.1.
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between distributions P and Q is defined as the KL divergence between P and a mixture
αQ + (1 − α)P , with the smoothing parameter α typically set very close to 1 (Lee uses
0.99).

The KL and α-skew divergences are clearly asymmetric. This property is not necessarily
undesirable for semantic modelling, as some aspects of semantic similarity are often argued
to function asymmetrically.15 However, a symmetric distance measure is required for
many applications, including the distributional kernels derived in Chapter 6. Kullback
and Leibler (1951) describe a symmetric divergence which they call J :

distJ(P, Q) = distKL(P, Q) + distKL(Q, P ) (5.13)

=
∑

c∈C

(P (c) − Q(c)) log2

P (c)

Q(c)
(5.14)

Like the standard KL divergence, J also suffers from the problem of undefinedness when
the absolute continuity condition is not met. An alternative is the Jensen-Shannon di-
vergence (Rao, 1982; Lin, 1991):16

distJS(P, Q) =
1

2
distKL

(

P,
P + Q

2

)

+
1

2
distKL

(

Q,
P + Q

2

)

(5.15)

The information theory literature contains numerous interpretations of the Jensen-Shannon
divergence. It can be understood as the information transmission rate in a communication
channel with an equiprobable binary input and output generated half the time by P and
half the time by Q (Topsøe, 2000). It is also the expected information gain from a single
sample on the task of deciding between generating models P or Q, with priors for both hy-
potheses equal to 0.5 (Endres and Schindelin, 2003). Unlike Kullback and Leibler’s J , the
Jensen-Shannon divergence is always defined. A further property that will prove useful
later is that it is a squared metric (Endres and Schindelin, 2003; Fuglede, 2005). Jensen-
Shannon divergence has been successfully applied to many NLP tasks, including word
and document clustering (Slonim and Tishby, 2000), word sense disambiguation (Dagan
et al., 1997; Niu et al., 2005) and the analysis of statistical parsing models (Bikel, 2004).
When a quantification of similarity is required, most authors follow Dagan et al. (1999)
in using the transformation simJS = 10−βdistJS , though Lin (1999) uses 2 − distJS.

5.3.1.4 From words to word pairs

Once we have specified a model of lexical similarity, some adaptation is necessary in
order to obtain a model of word pair similarity. One possible approach for compounds
is to treat them as “words with spaces” and calculate similarity between compounds in
exactly the same way as similarity between words. As compounds tend to be far more
sparsely distributed than single words it will be very difficult to attain accurate probability
estimates even from large corpora. It might be possible to accumulate sufficient data by
submitting targeted queries to a Web search engine. However, there is also a conceptual

15For example, Tversky (1977) presents evidence that the prototypicality and discourse context of simi-
larity stimuli can affect subjects’ judgements. In comparisons of prominent and less-prominent countries,
Tversky’s subjects overwhelmingly preferred statements such as “North Korea is similar to Red China”
to the reverse statement (“Red China is similar to North Korea”).

16It is also known as capacitory discrimination in the information theory literature.



68 5.3. METHODS FOR COMPUTING NOUN PAIR SIMILARITY

problem with this approach: although the context of a compound may contain information
about the referent of the compound, it is less likely to contain information about the
implicit semantic relation. For example, the following compounds all encode different
relational meanings but are likely to appear in similar contexts:

• John cut the bread with the kitchen knife.

• John cut the bread with the steel knife.

• John cut the bread with the bread knife.

Ó Séaghdha and Copestake (2007) report that the “words with spaces” approach performs
very poorly for compound interpretation, using co-occurrence information from both the
BNC and the 2 billion-word English Gigaword Corpus (Graff et al., 2005). As a result, I
am not considering it further here.

A more fruitful approach is to calculate the similarity of two compounds from the pairwise
lexical similarities of their constituents: pairs (N1, N2) and (N3, N4) are judged similar
if N1 is similar to N3 and N2 is similar to N4. The lexical similarities sim(N1, N3) and
sim(N2, N4) can be combined linearly, i.e.:

simpair((N1, N2), (N3, N4)) = α[sim(N1, N3)] + β[sim(N2, N4)] (5.16)

Alternatively, a co-occurrence probability vector can be constructed for each compound
by appending the distributional vectors of its two constituents and, if desired, rescaling
by 0.5 to ensure that the compound vector sums to 1. Lexical similarity measures or
feature-based machine learning methods can be applied directly to the joint vector. This
second approach has given better results in preliminary experiments and is the method
adopted in the following chapters.

5.3.2 Relational similarity

5.3.2.1 The relational distributional hypothesis

Whereas measures of distributional lexical similarity consider the co-occurrences of each
constituent of a word pair separately, relational similarity is based on the contexts in
which both constituents appear together. The underlying intuition is that when nouns
N1 and N2 are mentioned in the same context, that context is likely to yield information
about the relations that hold between those nouns’ referents in the world. For example,
the sentences in 1 and 2 below provide evidence about the relations between bear and
forest and between fish and reef, respectively.

1. (a) Bears still inhabit the forests of Italy.

(b) Wandering in the forest, I encountered a bear.

2. (a) These brightly-coloured fish inhabit the coastal reefs.

(b) Diving in the reef, I saw many fish.



CHAPTER 5. SEMANTIC SIMILARITY AND KERNEL METHODS 69

Sentences 1a and 2a are similar in that they share the subject-verb-object triple N1-
inhabit-N2. Sentences 1b and 2b appear quite different lexically, but they have identical
syntactic structures and both match the lexico-syntactic pattern V-ing in the N2, Pro V
Det N1. In both cases, the shared patterns are clues that a LOCATED-IN or LIVES-IN
relation holds between each noun pair. If we knew the correct semantic relation label for
(bear, forest), we could justifiably predict the same relation for (fish, reef ).

A relational distributional hypothesis would therefore state that two word pairs are se-
mantically similar if their members appear together in similar contexts. This definition
leaves a number of free parameters. First of all, a definition of “context” is required. A
plausible starting point is to identify the context of a (N1,N2) pair with the sentence in
which the nouns co-occur. Some alternatives are to take only the substring between N1

and N2, or to take this middle context plus some number of words outside the two nouns.
These two alternatives are motivated by the hypothesis that the contexts close to and
between N1 and N2 are more likely to contain information about their relationship than
contexts that are more distant. As in the lexical case, each context fitting the chosen
definition can be represented as an unordered bag of words, as an ordered sequence or
string, or as a tree or graph structure derived from a parse of the context sentence. The
range of measures available for comparing contexts is also similar to those used for lexical
similarity, though in practice most researchers seem to use the cosine measure or, when
using support vector machines, kernels based on the L2 distance; Sections 5.3.2.2 and
5.3.2.3 describe some previously reported methods.

Given a suitable model of relational similarity, there are two kinds of questions to which it
can be applied. The first kind asks whether the relation expressed in one context is likely to
be the same as that in another; e.g. if we know that sentence 1a expresses a LOCATED-IN
relation between bear and forest, does sentence 2a also express a LOCATED-IN relation
between fish and reef ? This is a problem of token-level relational similarity, as it involves
comparing two instances or tokens of the noun pairs (bear, forest) and (fish, reef ). The
second kind of question is not specific to a pair of contexts, but asks about the general
similarity of two noun pairs; e.g. if we know that the typical relation between bear and
forest is a locative one, is the relation between fish and reef also typically locative? This
can be called a problem of type-level relational similarity. Both kinds of problems are
frequently encountered in NLP research. A token-level perspective is implicit in any task
requiring the identification of relations between constituents of a sentence, from semantic
role labelling to anaphora resolution. Turney (2006; 2008) has argued that a wide range of
semantic processing tasks, including compound interpretation, synonym/antonym identi-
fication and modelling lexical associations, can be treated as analogical problems based
on type-level relational similarity.

Although compound noun interpretation is usually treated as a type-level problem and
methods for relation classification usually take a token-level approach, both tasks combine
token-level and type-level aspects to different degrees. It is well-known that the context
in which a compound noun is used can modify its conventional type-level meaning; this
is a token-level effect. Leveraging token-level information for compound interpretation is
difficult, and to my knowledge no previous research has done so. Likewise, the relation
between two entities in a sentence is primarily indicated by the context, but prior knowl-
edge about the typical or probable relations between them can also steer interpretation.
This dynamic has not been widely adopted for biomedical or ACE-style relation extrac-
tion, but in the 2007 SemEval task on identifying semantic relations between nominals,
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a number of competitors used type-level information (Nakov and Hearst, 2007b; Nulty,
2007b).

5.3.2.2 Methods for token-level relational similarity

The notion of token-level similarity encompasses all approaches that use information about
an item’s context to classify it. A wide range of semantic classification tasks are amenable
to such an approach, including semantic role labelling (Pradhan et al., 2004; Zhang et al.,
2007) and word sense disambiguation, both supervised (Gliozzo et al., 2005) and unsu-
pervised (Mihalcea, 2005). Token-level approaches are also standard in semantic relation
classification, whereby the context in which a word pair appears is used to extract features
for supervised learning. Kambhatla (2004) uses what can be considered a standard set
of features for the ACE 2004 Relation Detection and Classification task: the pair words
themselves, all words appearing between them, the ACE entity type of the pair words,
whether they are referred to by a name, a nominal or a pronoun, the number of words and
entity mentions between them, the words with which they enter a grammatical relation,
and the path between them in the sentence parse tree. Additional features have been pro-
posed, such as word bigrams (Zhao and Grishman, 2005) and syntactic chunks (Zhou et
al., 2005). Maximum entropy classifiers and support vector machines have been the most
popular machine learning techniques for this task, but it is possible to apply any statisti-
cal classifier. Ray and Craven (2001) use hidden Markov models for protein-localisation
extraction from biomedical abstracts; Goadrich et al. (2004) apply an Inductive Logic
Programming approach to the same task. Miller et al. (2000) integrate relation detection
into a statistical parsing model, in such a way that the relation detection can inform the
syntactic parsing and vice versa. The main drawback to this interesting approach is that
it requires rich semantic annotation of parse trees to provide training data. In contrast,
Chen et al. (2006a) have investigated graph-based semi-supervised methods which can
still perform well when very little labelled data is available.

An alternative to the standard feature engineering approach is the use of kernel methods
for structured data such as strings and trees. Convolution kernels (discussed in Chapter 7)
facilitate the use of standard feature-based classification methods with non-vectorial data
by implicitly mapping each data item into a feature space whose dimensions correspond
to its substructures. Thus strings are mapped onto vectors of substring counts, and
trees are mapped onto vectors of subtree counts; however, it is not necessary to explicitly
represent these high-dimensional vectors due to the properties of kernel functions (Section
5.4.1). Bunescu and Mooney (2005b) apply string kernels to biomedical and ACE relation
extraction. Each pair instance is represented by three substrings of the context sentence:
up to four words before and between the pair words, up to four words between the pair
words, and up to four words between and after the pair words. The kernel function
used for classification is the sum of three string kernels each dedicated to one of these
substring types. The limit of four words improves the efficiency of kernel calculations and
prevents overfitting. Bunescu and Mooney demonstrate that their string kernel used with
a support vector machine outperform rule-based and other statistical classifiers. Giuliano
et al. (2007) use Bunescu and Mooney’s string kernel as one of five heterogeneous kernels
for the SemEval task on classifying relations between nominals.

While string kernels incorporate the linear structure of language, they do not capture
syntactic structure. Tree kernels, on the other hand, do make use of syntax through a
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parse tree representation of sentences. The use of tree kernels for relation classification
was first suggested by Zelenko et al. (2003), who use a representation based on shallow
parse trees to identify PERSON-AFFILIATION and ORGANISATION-LOCATION re-
lations in newspaper text. Culotta and Sorensen (2004) take a similar approach based
on feature-rich dependency parses rather than traditional constituent parse trees. Sub-
sequent research has refined the design of syntactic kernels for relation classification by
identifying more precisely which area of the sentence parse tree should be used for the
kernel calculation (Bunescu and Mooney, 2005a; Zhang et al., 2007; Zhou et al., 2007).
Using a combination of a “context-sensitive” tree kernel and Zhou et al.’s (2005) standard
feature-based linear kernel, Zhou et al. (2007) attain state-of-the-art performance on the
ACE 2003 and 2004 Relation Detection and Classification datasets.

5.3.2.3 Methods for type-level relational similarity

Type-level information can be applied to a number of related problems. One problem is
to decide whether or not a certain relation holds between two nouns N1 and N2. For many
relations REL, we can make the assumption that (N1, N2) is a positive example of REL
if any instance of the type pair provides reliable evidence that REL holds. This can be
called a multiple instance problem, by analogy to the multiple instance learning paradigm
(Dietterich et al., 1997) where this assumption is central. An example of this approach
is the hyponym identification task considered by Hearst (1992), where the goal is to find
pairs (N1, N2) such that N1 is a hyponym of N2, e.g. (carrot, vegetable), (hammer, tool).
The technique applied by Hearst is to search a corpus for lexical patterns such as N1

and other N2 and N2 such as N1. If any instance of this pattern is found for a given
pair, the hyponymy relation is assumed to hold for that pair. This pattern-matching
approach tends to achieve high precision but low recall. It seems best suited to domains
and relations which are conventionally described in a restricted number of ways, such as
are often found in scientific writing. For example, Pustejovsky et al. (2002) describe a
system that identifies pairs of proteins satisfying an INHIBITS relation, by extracting
the subject and object arguments taken by instances of the verb inhibit in biomedical
abstracts.

In general, a relation can be expressed in many different ways and it is impractical to
manually specify a sufficient set of patterns for high-recall extraction. The bootstrapping
approach introduced by Brin (1998) and Agichtein and Gravano (2000) addresses this issue
by automatically identifying reliable patterns with minimal user input.17 Bootstrapping
algorithms take a user-supplied initial seed set of positive example pairs for the relation
of interest and iteratively discover new patterns and new positive examples. A number
of authors have recently extended this method by applying it to the large amount of text
available on the World Wide Web (Feldman and Rosenfeld, 2006; Tomita et al., 2006),
and by using syntactic patterns rather than word sequences (Stevenson and Greenwood,
2005; Greenwood and Stevenson, 2006).

A further, distinct approach to multiple instance relation extraction is to classify each
instance of a word pair using token-level techniques and to then classify the pair as a
positive relation example if any of its instances is positive. Bunescu and Mooney (2007)
use a support vector machine classifier with a string kernel function to identify person-
birthplace pairs and pairs relating to corporate acquisitions. A small training set of

17Bootstrapping was suggested earlier by Hearst (1992), but not implemented.
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positive and negative example pairs is used to extract sets of training instances, each of
which is labelled with the class of its type; a test pair is classified as positive if the SVM
labels any of its instances as positive. This method is shown to work quite well, though
Bunescu and Mooney observe that care must be taken in weighting the effects of each
instance to compensate for the over-general assumption that every instance of a positive
(or negative) pair is a positive (or negative) example of the relation.

Instead of focusing on a single relation and searching for positive examples of that re-
lation, it is often of interest to take two nouns and study the distribution of possible
and probable relations between them. This is the case when interpreting noun com-
pounds. The first type-level approach to compound interpretation was Lebowitz’ (1988)
RESEARCHER system for processing patent abstracts. To understand the compound
motor spindle, RESEARCHER maps each constituent onto its conceptual definition in a
semantic dictionary (here drive-shaft# and motor#) and searches its “memory” for
prior instances of this concept pair. If RESEARCHER has previously encountered and
assigned a semantic relation to the concept pair, it assumes that the compound also ex-
presses that relation. For example, if the sentence The motor includes a spindle has been
seen and interpreted as expressing a HAS-PART relation, RESEARCHER will identify
the compound motor spindle as expressing a HAS-PART relation as well. The utility
of this approach is limited by the assumptions that at most one relation applies to any
concept pair, and that the relation will have been encountered before the compound. As
a result, it is only appropriate to closed domains such as the patent abstracts studied by
Lebowitz.

Type-level information is applied in a different way by Lauer (1995) to generate preposi-
tional paraphrases for noun compounds. As described in Section 2.3.2, Lauer uses a set
of eight prepositions as proxies for semantic relations; the compound interpretation task
thus becomes one of identifying the preposition most likely to join the two constituents.
To counter the problem of sparsity, Lauer assumes a probabilistic model with independent
contributions from each constituent; the preposition predicted for a pair (N1, N2) is that
P maximising the probability P (P |N1, N2) = P (P |N1)P (P |N2).

18 As the conditional
probabilities P (P |N1) and P (P |N2) can easily be estimated from any corpus, this model
is simple and general in its application. Furthermore, it is an unsupervised method and
does not require annotated training data. Lapata and Keller (2004) use Web counts to
estimate the model probabilities and show that this gives significantly better results than
models estimated from smaller corpora. Despite its advantages, Lauer’s model can only
be used when we are willing to identify the set of semantic relations we are interested in
with a set of lexical items. As noted in Chapter 2, this is often not desirable.

A more general model replaces the assumption that lexical items or other surface forms
map unambiguously onto semantic relations with the weaker but more realistic assump-
tions that they provide evidence for semantic relations. This model shares the advantages
of efficiency and general applicability with Lauer’s model, while deepening the kind of
semantics it can provide. Rosario and Hearst (2005) consider the task of identifying the
relation between two proteins that is supported by a biomedical article; this is not an
archetypal type-level task as it distinguishes occurrences of the same pair in different doc-

18Lauer also investigates a model based on the concepts provided for N1 and N2 by Roget’s Thesaurus.
This model performs worse than the purely lexical model; the explanation given is that the associations
between constituent nouns and prepositions are primarily ones of lexical collocation, which are certainly
influenced by semantics but are also affected by non-semantic factors.
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uments, but it shares the fundamental notion of a representation level above the token
level. In the training set of protein-protein-document triples, each document sentence
mentioning both proteins is labelled with the relation supported by the document as a
whole, whether or not the sentence itself is evidence for the relation. For the test triples,
sentence-level classifiers are used to predict the relation label of each sentence in the test
document and these predictions are combined to assign a label to the entire document.
The best-performing combination method is a majority vote strategy – the document is
labelled with the relation assigned to the most sentences. Bunescu and Mooney’s (2007)
model for extracting relational pairs is similar to that of Rosario and Heart, the main
differences being the use of binary labels, a purely type-level approach without the inter-
mediate document representation, and the combination method (predict +1 for a pair if
any sentence is labelled +1) dictated by the multiple-instance learning assumption.

Turney and Littman (2005) and Turney (2006) develop a framework based on joining
terms which can be used to construct co-occurrence vectors for each noun pair (N1, N2).
Unlike the co-occurrence types used when computing lexical similarity, these joining terms
are only counted when they co-occur between the two constituents of a pair. Turney and
Littman (2005) use 64 joining terms such as after, at, of the and like; these are used
to generate query strings N1 after N2, N2 after N1, N1 at N2, N2 at N1,. . . which are
submitted to a Web search engine. The counts returned by the search engine define a
128-dimensional co-occurrence vector which can be compared to other vectors through
standard distributional similarity measures (in this case, the cosine measure). Applying
this technique to a SAT analogy test and to Nastase and Szpakowicz’ (2003) compound
noun dataset, Turney and Littman achieve reasonable performance outperforming stan-
dard WordNet-based methods with a nearest-neighbour classifier. Nulty (2007a) has im-
plemented a co-occurrence-based model based on joining terms similar to that of Turney
and Littman, and his results on the same compound noun dataset indicate that using a
support vector machine classifier instead of the nearest-neighbour classifier is an efficient
way of boosting performance.

Turney (2006) builds on this work by introducing a method he calls Latent Relational
Analysis (LRA). In LRA, two generalisation steps are performed to extend the recall and
the richness of the co-occurrence model. Firstly, an automatically constructed semantic
thesaurus is used to generate new query pairs; secondly, the set of co-occurrence patterns
is not limited to prespecified joining terms, but is based on the contexts observed in a large
corpus for each query pair (in a manner similar to Brin (1998) and Agichtein and Gravano’s
(2000) relation extraction systems). To prevent the system overgeneralising, unreliable
pairs and patterns are filtered out after each stage. In a third processing step, the co-
occurrence matrix is mapped onto a maximally information-preserving linear subspace
spanned by its principal eigenvectors. As in Latent Semantic Analysis (Landauer and
Dumais, 1997), this dimensionality reduction step should enhance the robustness of the co-
occurrence patterns by identifying combinations of features that best explain the observed
distribution of data. The LRA method has very high space and time requirements, but it
does perform significantly better than the basic vector space model of Turney and Littman
(2005). Turney (2008) introduces a simpler method called PairClass, which is similar to
LRA but does not use thesaurus-based query expansion or dimensionality reduction and
replaces the nearest-neighbour classifier with a Gaussian-kernel support vector machine.
PairClass is more efficient than LRA but does not achieve the same level of performance.

Although SemEval Task 4 (Section 6.3.2) is formulated as a token-level problem of classify-
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ing whether or not a specified relation holds in a given sentence, a number of the task com-
petitors successfully used a type-level joining terms approach. Nulty (2007b) combines the
method used in Nulty (2007a) with additional features based on the WordNet hierarchy.
Nakov and Hearst (2007b) apply a joining terms approach based on co-occurring verbs
and prepositions. Adopting an event-based conception of relational semantics, Nakov and
Hearst generate a corpus from the snippets returned by Google for queries such as N1

that * N2, N2 that * N1, N1 * N2 and N2 * N1, where the * symbol can match up to 8
intervening words. All verbs, prepositions, verb-preposition pairs and conjunctions taking
N1 and N2 as arguments are counted and the resulting co-occurrence vectors are weighted
with the Dice measure. A nearest-neighbour classifier using this representation achieved
67.0% accuracy and 65.1% on the SemEval task, which was the best performance in the
competition achieved by a WordNet-free method. Nakov (2007) applies the same method
to Nastase and Szpakowicz’ (2003) dataset, achieving close to the accuracy of Turney’s
(2006) LRA but without the need for extensive computational resources.

A related problem that is defined in type-level terms is the task of relation discovery
(Hasegawa et al., 2004). In this unsupervised learning scenario, the goal is to discover the
distribution of relations that can obtain between two nouns of given types. A clustering
framework and ACE entity types are standardly used; a sample task is to cluster the
contexts that appear between entities of type Person and Geopolitical Entity.
Although the motivation for this task is to let the data guide the type of relations that
are discovered, it has been necessary to evaluate performance by taking the ACE relations
as a gold standard. This implies that the development of relation discovery techniques will
be biased towards those that discover a particular kind of relation. In their paper defining
the task, Hasegawa et al. use a simple bag-of-words representation and a hierarchical
clustering method. Hachey (2006) compares the effects of various distance measures and
dimensionality reduction algorithms, while Chen et al. (2006b) demonstrate that a graph-
based spectral clustering technique achieves superior performance. In view of the long-
running debate on the range of relations that can underlie compound nouns (discussed
in Chapter 2), it would be interesting to perform a relation discovery analysis of attested
compound constituent pairs. To my knowledge, this has not yet been investigated.

Davidov and Rappoport (2008) use relation clustering as part of a supervised classifica-
tion system. They extract a large set of relation-encoding lexical patterns for a randomly
sampled vocabulary and cluster these patterns to discover prototypical semantic relation-
ships. These clusters are used to generate features for word pairs based on the distribution
of patterns observed for each individual word pair; these features can then be used for
classification with standard tools such as support vector machines. Davidov and Rap-
poport show that their method works very well on the SemEval Task 4 dataset, achieving
state-of-the-art results (see Section 6.3.2).

5.4 Kernel methods and support vector machines

This section gives a brief theoretical overview of kernels and classification with kernel
machines, which are the tools used in the learning experiments of Chapters 6 and 7.
More comprehensive general treatments of these topics can be found in the tutorial by
Burges (1998) or the book by Shawe-Taylor and Cristianini (2004).
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5.4.1 Kernels

A kernel is a function k : X × X 7→ R+ which is equivalent to an inner product 〈·, ·〉 in
some inner product space F (the feature space):19

k(xi,xj) = 〈φ(xi), φ(xj)〉F (5.17)

where φ is a mapping from X to F . For example, the polynomial kernel of degree l = 3,
kP3(xi,xj) = (〈xi,xj〉 + R)3 defined on input vectors of dimension d = 2 corresponds to
an inner product in the space whose
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X = {x1,x2, . . . ,xn ∈ X} and a kernel k, the n×n matrix K with entries Kij = k(xi,xj)
is called the kernel matrix or Gram matrix. It follows from Mercer’s Theorem (Mercer,
1909) that a valid kernel on a set X is defined by any symmetric finitely positive semi-
definite function, i.e., a function for which the Gram matrix of function values calculated
on any finite set X ⊆ X satisfies

v′Kv ≥ 0, ∀v ∈ R
n (5.18)

We therefore do not need to state the feature mapping φ in order to use a kernel (though
it may sometimes be informative to do so), so long as the positive-definite property can be
proven. This will be useful when we consider derived kernels, where one kernel is defined
in terms of another and the associated feature space may be opaque.

An alternative interpretation of kernels arises through defining the feature mapping φ as
a mapping from elements of X to functions on X . Specifically, the image φ(x) of x is
defined as the function kx(·) = k(x, ·) that gives the value of the kernel function for x and
its argument. We are interested in functions inside the linear span of the images of the
items in our dataset X, as the classification function that solves the SVM optimisation
problem will be located in this space. Let f, g ∈ F be two such functions, so that

f(x) =

n
∑

i=1

αik(xi,x) (5.19)

g(x) =
n′
∑

i=1

βik(x′
i,x) (5.20)

An inner product in this space can be defined as a linear combination of kernel functions:

〈f, g〉 =

n
∑

i=1

n′
∑

j=1

αiβjk(xi,x
′
j) (5.21)

=
n
∑

i=1

αig(xi)

=
n′
∑

i=1

βif(x′
i)

19Some authors also consider complex-valued kernels, but this more general definition is not relevant
to the methods described here.
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This is a valid inner product as it by definition satisfies the conditions of symmetry and
bilinearity, and the condition 〈f, f〉 ≥ 0 ∀f ∈ F is satisfied due to the positive semi-
definiteness of the kernel function.

The class of kernels has a number of closure properties that will be useful in subsequent
sections. If kX , kS are kernels on sets X and S respectively, then all knew satisfying the
following definitions are also kernels:

knew(xi,xj) = akX (xi,xj) ∀a ∈ R+ (5.22)

knew({xi, si}, {xj, sj}) = kX (xi,xj) + kS(si, sj) (5.23)

knew({xi, si}, {xj, sj}) = kX (xi,xj)kS(si, sj) (5.24)

The notation {xi, si} in (5.23) and (5.24) reflects the fact that we may wish to combine
kernels defined on different sets, in which case the composite kernel is properly described
as a kernel on the Cartesian product X × S. (5.22) and (5.23) follow from the positive
semi-definite property v′Kv ≥ 0 ∀v ∈ R

n and standard laws of commutativity and
distributivity. Positive semi-definiteness of the kernel in (5.24) is a consequence of the
fact that the pointwise product (also called the Schur or Hadamard product) of two
positive semi-definite matrices is also positive semi-definite (Schur, 1911). Further details
of these proofs are given by Shawe-Taylor and Cristianini (2004), p. 75.20

A further piece of mathematical theory which will prove useful below concerns the class
of negative semi-definite kernels. These are symmetric functions k̃ : X ×X → R such that
for all n × n finite sets X ⊆ X and for all vectors v = (v1, . . . , vn) ∈ R

n with
∑

i vi = 0

v′K̃v ≤ 0 (5.25)

Whereas positive semi-definite kernels correspond to inner products in a Hilbert space F ,
negative semi-definite kernels correspond to squared distances. In particular, if k̃(x,x) = 0

then
√

k̃ is a semi-metric in the feature space and if also k̃(xi,xj) = 0 only when xi = xj

then
√

k̃ is a metric (Schoenberg, 1938).21 If a function k is positive semi-definite, then
−k is negative semi-definite, but the converse does not hold.22 However, Berg et al. (1984)
describe two simple methods for inducing a positive semi-definite function k from negative
semi-definite k̃:

k(xi,xj) = exp(−αk̃(xi,xj)), α > 0 (5.26a)

k(xi,xj) = k̃(xi,x0) + k̃(xj,x0) − k̃(xi,xj) − k̃(x0,x0), x0 ∈ X (5.26b)

The point x0 in (5.26b) can be viewed as providing an origin in F that is the image
of some point in the input space X (Schölkopf, 2000). When we come to using kernels

20To be precise, Shawe-Taylor and Cristianini give proofs for the cases knew(xi,xj) = k1(xi,xj) +
k2(xi,xj) and knew(xi,xj) = k1(xi,xj)k2(xi,xj), where the kernels to be combined are defined on the
same set and take the same arguments. As the closure proofs depend only on the positive semi-definiteness
property satisfied by all kernel matrices they also apply to the more general cases stated here.

21It is desirable to use a metric distance in most cases where one is available. Hein et al. (2005) observe
that kernels derived from semi-metrics assume an invariance in X , for example the kernel k(xi,xj) =
〈xi,xj〉2 treats each point and its reflection through the origin as identical. If X does not possess the
assumed invariance and points assumed identical may actually belong to different classes, then SVM
classification performance will suffer. Non-metrics may also be negative semi-definite, but as they do not
satisfy the triangle inequality their use may lead to counter-intuitive results.

22Negated negative semi-definite functions are sometimes called conditionally positive semi-definite
functions ; they constitute a superset of the positive semi-definite functions.
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derived by (5.26b) for SVM classification, the choice of x0 has no effect on the solution
found (Hein et al., 2005), and it is usually convenient to set it to the zero element (where
X has such an element). A familiar example of these transformations arises for X = R

n

if we take k̃ to be the squared Euclidean distance ‖xi − xj‖2 =
∑

l(xil − xjl)
2. Applying

(5.26a) we derive the Gaussian kernel k(xi,xj) = exp(−α‖xi − xj‖2). Applying (5.26b)
and setting x0 to be the zero vector, we obtain a quantity that is twice the linear kernel
k(xi,xj) =

∑

l xilxjl.

Kernel functions had been studied in the mathematical literature since the early 20th
century but were first applied to machine learning problems by Aizerman et al. (1964),
who combined a Gaussian kernel with a perceptron classifier. Their recent popularity is
primarily due to their very successful use in classification with maximum margin classi-
fiers (Boser et al., 1992) and subsequently in a variety of pattern recognition applications.
One advantage of kernel methods is that they allow linear classifiers to learn non-linear
classification functions through a mapping to a space of higher or even infinite dimension,
without the requirement that the higher-dimensional mappings be explicitly represented.
A further advantage is that efficient and well-understood methods for vectorial classifica-
tion can be applied to non-vectorial objects such as strings, trees and sets by defining a
kernel on those objects; the kernel function definition does not place any restrictions on
the nature of the input space X .

5.4.2 Classification with support vector machines

Given training data X = {x1, . . . ,xn} drawn identically and independently from some
set X , with corresponding labels Y = {y1, . . . , yn} belonging to a set Y , the supervised
classification task is to learn a function f(x) : X 7→ Y that best predicts the unknown
label yj for an as yet unseen data point xj ∈ X . The notion “best predicts” can be
formalised in terms of a loss function L(y, f(x)) that quantifies the penalty incurred by
assigning the label f(x) to an item which actually has the label y. A standard loss
function for classification is the zero-one loss, which as the name suggests takes value 0
in the case of misclassification (f(x) 6= y) and value 1 when the predicted label is correct
(f(x) = y). The best solution to the classification problem is the function that minimises
the generalisation error Err, the expectation of the loss function over all possible new
points in X :

Err = EX ,YL(y, f(x)) =

∫

X ,Y

p(x, y)L(y, f(x)) dx dy (5.27)

In practice, of course, finding an optimal classifier is a complicated task. Firstly, the data
density p(x, y) is generally unknown so the expectation in (5.27) cannot be calculated
exactly. A common strategy is to separate the data into a training set and a test set.
The training set is used to select the classifier function f(x). The test set is then used to
estimate the generalisation error of f(x) on unseen data. Another strategy, called k-fold
cross-validation, is to split the data in k different ways and estimate the generalisation
error from the average test error of the k splits; this can give better estimates of Err than
a single train-test split when the size of the dataset is small.

A second complication is that it is impossible to consider all functions consistent with
a finite training set (there are infinitely many), and training consistency may not be a
guarantee of generalisation performance when the function overfits the data. Typically,
the set of functions considered is restricted to a particular functional class based on its
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(a) Separable (b) Non-separable

Figure 5.1: Linearly separable and non-separable datasets

complexity, i.e., its ability to fit many different patterns of data, and on prior knowledge
about the structure of the problem. One such class is the class of linear functions:

g(x) = 〈w,x〉 + b (5.28)

Well-known classifiers with this form include the perceptron (Rosenblatt, 1958) and linear
regression of X on Y . The absolute value of g(x) is proportional to the distance from the
point x to the hyperplane b +

∑d
i=1 wixi = 0. The sign of g(x) indicates on which side of

the hyperplane it is located; hence, an appropriate classification rule is f(x) = sign(g(x))
for binary classes, i.e., when Y = {−1, 1}. The quantity yig(xi) is positive if g(xi) is
correctly classified, as yi and g(xi) then have the same sign.

Ideally, a classification algorithm should find a hyperplane that divides the training data
perfectly in accordance with their class labels. However, for many problems of interest
it is not possible to separate the classes with a linear decision boundary. Difficulties
also arise when the data is linearly separable, as there are then infinitely many separating
hyperplanes. These two scenarios are illustrated in Figure 5.1. The support vector machine
or SVM (Cortes and Vapnik, 1995) is a classifier that addresses both problems. This
classifier finds a solution for non-separable data by tolerating a number of misclassified
training examples; it therefore learns a soft decision boundary. It also finds the optimal
separating hyperplane in the sense of maximising the distance of both classes from the
hyperplane.23 The SVM solution is defined by the optimisation problem

min
w,b,γ,ξ

− γ + c

n
∑

i=1

ξi (5.29)

subject to yi(〈w, φ(xi)〉 + b) ≥ γ − ξi,

ξi ≥ 0 for i = 1, . . . , n, and ‖w‖2 = 1

The quantity γ in (5.29) is the margin, the smallest observed value of yi(〈w, φ(xi)〉+b)+ξi.
The quantities ξi are the slack variables corresponding to how far the points φ(xi) are

23This is not the only way of defining an optimal solution; for example, the Bayes point machine
classifier (Herbrich et al., 2001) estimates the average of all separating hyperplanes.
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allowed to be closer than γ to the hyperplane. ξi > γ implies that φ(xi) may be on the
“wrong” side of the decision boundary; in this way, misclassifications of the training data
are tolerated. The parameter c controls the tradeoff between maximising the margin and
tolerating errors; an increase in c entails an increase in the cost of non-zero slack variables.

The methods used to optimise (5.29) will not be detailed here, but some important points
will be noted.24 By introducing Lagrange multipliers a dual objective function W can be
obtained that has the same solution as (5.29) but is simpler to optimise. The learning
problem is to find the item weight vector α

∗ that maximise the objective W (α):

α
∗ = argmax

α

W (α) = −
n
∑

i=1

n
∑

j=1

αiαjyiyjφ(xi)φ(xj) (5.30)

subject to
n
∑

i=1

yiαi = 0,
n
∑

i=1

αi = 1,

0 ≤ αi ≤ C, for all i = 1, . . . , l

The vector of coordinate weights w is given by w =
∑n

i=1 yiα
∗
i φ(xi), a linear combination

of the training examples. The slack variables ξi have disappeared in the dual formulation,
but their effect is to limit the permitted size of the item weights through the constraint
αi ≤ c (the box constraint). The solution to (5.30) has a number of pleasing properties. It
is a convex optimisation problem, and the solution found will always be a global optimum.
Different optimisation methods and repeated runs of the same method are guaranteed to
give the same answer, modulo stopping tolerances. The vector of item weights α

∗ will be
sparse, in that many of the values will be 0. This can be seen from a necessary property
of the SVM solution:25

α∗
i [yi(〈xi,w〉 + b) − γ + ξi] = 0, for all i = 1, . . . , l (5.31)

It follows that α∗
i > 0 only when yi(〈xi,w〉+ b) = γ− ξi; points falling on the correct side

of the margin do not contribute to the solution α
∗. Those points with non-zero α∗

i are
known as the support vectors.

The dual objective function W (α) in (5.30) depends on the training examples xi only
through their inner products φ(xi)φ(xj) = 〈xi,xj〉F . This suggests that we can use
support vector machines to do classification in a kernel feature space by rewriting the
objective as

W (α) = −
n
∑

i=1

n
∑

j=1

αiαjyiyjk(xi,xj) (5.32)

24The derivation of the Lagrangian dual and the SVM objective function (5.30) is stated in many
texts, including Hastie et al. (2001) and Shawe-Taylor and Cristianini (2004). The problem is often
reformulated as that of minimising the norm of the weight vector w with the functional margin γ set to
1, yielding a dual objective slightly different to that of (5.30). However, the solutions obtained by the
two formulations are equivalent up to rescaling.
Specialised methods have been developed for solving the SVM optimisation quickly, including sequential
minimal optimisation (Platt, 1999); Bottou and Lin (2007) is a recent survey of this area.

25The equality (5.31) belongs to the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and
Tucker, 1951) for the SVM optimisation problem. The set of KKT conditions for any convex optimisation
state necessary and sufficient properties of the optimal solution. They are described in most textbooks
on optimisation, e.g. Baldick (2006).
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(a) Linear kernel (b) Gaussian kernel

Figure 5.2: Decision boundaries found by an SVM with linear kernel k(xi,xj) =
∑

l xilxjl

and non-linear Gaussian kernel k(xi,xj) = exp(−α‖xi −xj‖2). The circled points are the
support vectors.

where k is a valid kernel on X .26 The SVM optimising this objective will learn a decision
function f(x) = sign(〈w, φ(x)〉+ b) that is linear in the codomain F of φ but nonlinear in
the input space X . Figure 5.2 shows examples of SVM solutions with linear and non-linear
mappings.

Support vector machines are binary classifiers that assign one of two labels to a test point
according to which side of the decision hyperplane g(x) = 0 it lies on. However, many
classification tasks involve more than two labels. In these cases it is possible to modify
the SVM objective function (5.30) in order to obtain a true multiclass classifier (Vapnik,
1998; Crammer and Singer, 2001; Lee et al., 2004), but such solutions typically yield more
complex optimisation problems and can have very large time requirements (Hsu and Lin,
2002). A simpler and more popular approach is to train a number of standard SVM
classifiers on binary subtasks and integrate their predictions on each test example to give
a multiclass prediction. In the one-against-all approach one binary SVM is learned for
each of the K classes. The training data for the class k classifier consists of all training
examples, with examples belonging to class k given the label 1 and examples of all other
classes given the label -1. The predicted label for a test example xi is then the largest of
the k decision values:

f(xi) = argmax
k

〈wk, φ(xi)〉 + bk (5.33)

where (wk, bk) define the solution of the class-k classifier. This corresponds to assigning
the label which is predicted most confidently for xi (or in the case where none of the
classifiers give a positive prediction, the label that gives the least negative prediction).
Another popular method is one-against-one, whereby a binary SVM is trained for each
pair of labels. This involves K(K − 1)/2 binary classifiers. Each i-against-j classifier
is trained on just the subset of training examples belonging to class i or j. For a test
example the prediction of each binary classifier is counted as a vote for either i or j, and
the class with the most votes is predicted for that example.

26If k is not a kernel but rather some function which is not positive semi-definite, the SVM is not
guaranteed to converge. However, good results can sometimes be achieved with such functions and a
geometric interpretation of the resulting classifier has been provided by Haasdonk (2005).
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Both one-against-all and one-against-one methods have advantages. The one-against-
one method can be quicker to train as the training dataset for each classifier is smaller
than the entire training set for the problem, and it can learn more complex distinctions
between classes. However, the smaller training set sizes for one-against-one can be a
disadvantage when little training data is available or the number of classes is large, as
there may not be enough data for the i-against-j classifiers to learn reliable decision rules;
one-against-all classification should be more robust to the data size factor. Hsu and Lin
(2002) recommend one-against-one over one-against-all, but this is largely on the basis of
training time efficiency, as their experimental results show little difference in classification
performance. In contrast, Rifkin and Klautau (2004) mount a robust defence of one-
against-all, claiming that it is at least as accurate as other methods when comparison
experiments are carried out rigorously.

5.4.3 Combining heterogeneous information for classification

It is a common scenario that different sources of information are available for tackling a
problem, where each source captures a different aspect or “view” of the data. In such
cases, it is often useful to combine the information sources in a way that produces an
integrated view more suitable for the task than any of the individual views. For example,
combining lexical and contextual information can give improved performance on word
sense disambiguation (Gliozzo et al., 2005), and complementarily exploiting bag-of-words
and syntactic representations is an effective approach to question and answer classifica-
tion (Moschitti et al., 2007). As described above, combining different levels of syntactic
and lexical information is a standard methodology for relation classification. The idea of
combination can be realised in many ways in many classification frameworks; here I focus
on kernel methods, which provide simple and flexible tools for my purposes. Equations
(5.23) and (5.24) state that the sum or product of two positive semi-definite kernel func-
tions is itself a positive semi-definite kernel. One advantage of these kernel combination
methods is that facilitates the integration of heterogeneous data representations: we can
combine kernels on vectors, kernels on sets, kernels on strings or any other kind of kernel.
In Chapter 7 I show how combining lexical and relational information by summing lexical
and relational similarity kernels leads to improved performance on the tasks of compound
noun interpretation and relation identification.

When is kernel combination beneficial? Joachims et al. (2001) relate the effect of com-
bining kernels to the resulting change in the item margin g(xi) for each member xi of a
given training set. If the sets of support vectors induced by the two individual kernels on
the training set have a low degree of overlap, the item margins will tend to be larger for
the combined kernel than the individual kernels. So long as the individual kernels have
similar training error, classification performance should be improved. If the training error
of the individual kernels are very different, combination tends to give an intermediate
level of performance.

Cristianini et al. (2001) describe a similarity measure between kernels which they call
alignment. The true alignment A between two kernels is an inner product on functions
that is not calculable in practice, but it can be estimated by the empirical alignment Â:

Â(k1, k2) =
〈K1, K2〉F

〈K1, K1〉F 〈K2, K2〉F
(5.34)
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where 〈K1, K2〉F =
∑n

i=1

∑n
j=1 K1ijK2ij is the Frobenius inner product between the Gram

matrices K1 and K2. By considering the target matrix Ky defined as the outer product

of the label vector y, i.e., Kyij = sign(yi = yj), the empirical target alignment Â(K1, Ky)
quantifies the degree to which the representation of the data induced by k1 matches the
“true” label-derived clustering of the data. The utility of a high target alignment for
SVM learning is elucidated by its interpretation as a measure of between-class distance
with respect to the true classes y (Xiong et al., 2005). Among the applications of the
alignment measure is a criterion for optimal kernel combination; Cristianini et al. show
that the target alignment of a summed kernel k+ = k1 + k2 will be increased if k1 and
k2 are both well-aligned with the target ky but not aligned with each other. Both this
analysis and that of Joachims et al. (2001) highlight the intuition that a suitable guiding
principle for kernel combination is to seek kernels that capture distinct but discriminative
information about the data.

It follows from the property of closure under scaling (5.22) that the contributions of the
individual kernels in a sum can be weighted differentially. That is, any linear combination
of kernels is a valid kernel:

k+(xi,xj) =
∑

l

µlkl(xi,xj) (5.35)

with an appropriate extension for kernels defined on different sets as in (5.23). Joachims
et al. (2001) state that the weight parameters µl are relatively unimportant, and my own
trial experiments have also indicated that the effects of optimising these are generally
smaller than those of optimising other parameters. In order to reduce the number of
parameters to be estimated in training, the experiments with combined kernels described
in Chapter 7 will use equal weights throughout.

5.5 Conclusion

The unifying theme of this chapter has been the importance of similarity in relational
classification tasks. Consonant with the hypothesis that semantic relations can be iden-
tified through a process of analogy, I have given an overview of prior NLP research on
lexical and relational similarity that can be exploited to define measures of similarity be-
tween pairs of nouns. Positive semi-definite kernel functions can also be seen as similarity
functions whose mathematical properties ensure that they can be used for classification
with support vector machines. In the next two chapters I bring these two themes together
by introducing kernel methods that are suitable for implementing models of constituent
(Chapter 6) and relational (Chapter 7) similarity.



Chapter 6

Learning with co-occurrence vectors

6.1 Introduction

In this chapter I develop a model that uses lexical distributional similarity to perform
semantic classification. Working in a kernel framework (Section 5.4), I describe a family
of kernel functions on co-occurrence distributions whose connection to well-known lexical
similarity measures strongly suggests their appropriateness for semantic tasks. These
distributional kernels perform very well on compound noun interpretation and semantic
relation identification datasets, attaining state-of-the-art results on both. In Section 6.8 I
consider explanations for the superior performance of distributional kernels compared to
the popular linear and Gaussian kernels derived from the L2 distance. I propose that it can
be related to the distributional kernels’ robustness to large variances in co-occurrence type
marginal distributions, and demonstrate that the application of a suitable co-occurrence
reweighting function can sometimes allow the L2 kernels to approach the performance
level of the distributional kernels by emulating this robustness.

6.2 Distributional kernels for semantic similarity

Good performance with support vector machines is dependent on the choice of a suit-
able kernel. If a kernel function induces a mapping into a feature space where the data
classes are well separated, then learning a decision boundary in that space will be easy.
Conversely, if the feature space mapping of the data does not contain discriminative in-
formation, SVM classification will perform poorly. Hence if we can use a kernel function
tailored to the prior knowledge we have about our classification problem, we expect to
do better than we would with a less appropriate kernel. In NLP, the development of new
kernels has tended to focus on kernels for structured linguistic data such as strings, trees
and graphs. For classification with numerical features the standard linear, polynomial
and Gaussian kernels are almost always used. As described in Section 5.4.1, the linear
and Gaussian kernels are related to the Euclidean L2 distance, yet this distance has been
shown by Lee (1999) and others to perform relatively poorly when applied to distribu-
tional similarity. It therefore seems worthwhile to investigate other kernels for learning
with co-occurrence distributions.

The starting point I take is a parameterised family of functions on positive measures
described by Hein and Bousquet (2005). Building on work by Topsøe (2003) and Fuglede

83
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(2005), Hein and Bousquet define the function d2
α|β : R+ × R+ → R as

d2
α|β(xi, xj) =

2
1
β (xα

i + xα
j )

1
α − 2

1
α (xβ

i + xβ
j )

1
β

2
1
α − 2

1
β

(6.1)

for any α ∈ [1,∞], and any β ∈ [1
2
, α] or β ∈ [−∞,−1]. All such functions are shown to be

squared Hilbertian metrics on R+, i.e., dα|β is a metric distance that can be isometrically
embedded in a Hilbert space (which is not true of all metrics). dα|β also has the property

of 1
2
-homogeneity, meaning that dα|β(cxi, cxj) = c

1
2 dα|β(xi, xj) for all c ∈ R+. Using the

pointwise distance d2
α|β as a building block, a distance function on probability distributions

D2
α|β : M1

+(C) × M1
+(C) → R can be constructed by integrating over the event space

C.1 Where the probability distributions are discrete, as in the case of co-occurrence
distributions, this entails a simple pointwise summation:

D2
α|β(P, Q) =

∑

c∈C

d2
α|β(P (c), Q(c)) (6.2)

D2
α|β is also a squared Hilbertian metric. Due to the 1

2
-homogeneity of d2

α|β, D2
α|β is

independent of the dominating measure on the event space C and hence invariant to
bijective transformations of that space. Hein and Bousquet argue that this is a useful
property in the context of image histogram classification, where colours c ∈ C can be
represented in one of a number of colour spaces and D2

α|β is invariant to the choice of
space.

Different values for the parameters α and β give different functions d2
α|β and D2

α|β, includ-
ing some distances on distributions that are well known in the statistical and information
theoretical literature. In particular, D2

∞|1 is the L1 distance, D2
1|1 is the Jensen-Shannon

divergence and D2
1
2
|1

is the Hellinger divergence.2As these are squared Hilbertian metrics,

it follows from a theorem of Schoenberg (1938) that they are also negative semi-definite
kernel functions. Thus, equations (5.26a) and (5.26b) provide a means of deriving positive
semi-definite kernels from these distances, in the same way that the standard linear and
Gaussian kernels are derived from the squared L2 distance. Table 6.1 lists the distribu-
tional distances considered in this thesis and the positive semi-definite kernels obtained
by using (5.26b) with the origin x0 set to the zero measure. These kernels will be called
the linear kernels for the corresponding distance. The RBF kernels will be those obtained
through (5.26a), i.e., krbf (xi,xj) = exp(−αD2(xi,xj)).

3 For example, the L1 RBF kernel
is defined as:

kL1 RBF (xi,xj) = exp

(

−α
∑

c

|P (c|w1) − P (c|w2)|
)

(6.3)

1M1
+(C) is the space of positive measures summing to 1 on some set C, i.e., the space of probability

distributions on C.
2These distributional distances also belong to the family of f-divergences, whose behaviour is well-

studied in the information theory literature (Liese and Vajda, 2006), and which mutually define upper
and lower bounds on each other (Topsøe, 2000). Furthermore, they share important geometric properties;
in particular, they yield slightly different approximations to the Fisher information metric (Rao, 1987).
For these reasons, it is to be expected that kernels derived from these distances will exhibit broadly
similar performance.

3The use of α to denote both the RBF kernel width in (5.26a) and one of the parameters in Hein and
Bousquet’s function definition (6.2) may be confusing. In the remainder of this thesis, α will denote the
kernel width exclusively.
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Distance Definition Derived linear kernel

(L2 distance)2
∑

c(P (c|w1) − P (c|w2))
2

∑

c P (c|w1)P (c|w2)

L1 distance
∑

c |P (c|w1) − P (c|w2)|
∑

c min(P (c|w1), P (c|w2))

Jensen-Shannon
∑

c P (c|w1) log2(
2P (c|w1)

P (c|w1)+P (c|w2)
) + −∑c P (c|w1) log2(

P (c|w1)
P (c|w1)+P (c|w2)

) +

divergence P (c|w2) log2(
2P (c|w2)

P (c|w1)+P (c|w2)
) P (c|w2) log2(

P (c|w2)
P (c|w1)+P (c|w2)

)

Hellinger distance
∑

c

(

√

P (c|w1) −
√

P (c|w2)
)2

∑

c

√

P (c|w1)P (c|w2)

Table 6.1: Squared metric distances on co-occurrence distributions and derived linear
kernels

I will refer to the kernels derived from the L1 distance, Jensen-Shannon divergence and
Hellinger divergence as distributional kernels. For consistency I will also refer to the
standard linear and Gaussian kernels as the L2 linear and L2 RBF kernels respectively.

The suitability of these distributional kernels for semantic classification is suggested by
their connections with popular distributional similarity measures. As described in Section
5.3.1.3, the Jensen-Shannon and L1 distances have been successfully applied as distribu-
tional distance measures. The L1 linear kernel is the same as the difference-weighted
token-based similarity measure of Weeds and Weir (2005). Lin (1999) uses the transfor-
mation simJSD = 2 − distJSD to derive a similarity measure from the Jensen-Shannon
divergence; this can be shown to equal the Jensen-Shannon linear kernel. Dagan et
al. (1999) use a heuristic transformation simJSD = 10−αdistJSD ; the Jensen-Shannon RBF
kernel kJSD RBF = exp(−αdistJSD) provides a theoretically motivated alternative when
positive semi-definiteness is required. Thus these proven distributional similarity mea-
sures are also valid kernel functions that can be directly used for SVM classification.

Of the other distributional measures surveyed in Section 5.3.1.3, some can be shown to
be valid kernels and some can be shown not to be. The cosine similarity is provably
positive semi-definite, as it is the L2 linear kernel calculated between L2-normalised vec-
tors. Distributional vectors are by definition L1-normalised (they sum to 1), but there is
evidence that L2 normalisation is optimal when using L2 kernels for tasks such as text
categorisation (Leopold and Kindermann, 2002). Indeed, in the experiments described
here the L2 kernels performed better with L2-normalised feature vectors. In this case the
L2 linear kernel function then becomes identical to the cosine similarity.

It follows from the definitions of positive and negative semi-definite kernels that non-
symmetric measures cannot be kernels. This rules the confusion probability, Kullback-
Leibler divergence and α-skew divergence out of consideration.4 Other similarities, such
as that of Lin (1998b), can be shown not to be positive semi-definite by calculating
similarity matrices from real or artificial data and showing that their eigenvalues are not
all non-negative, as is required by positive semi-definite functions.

4Confusingly, Kullback and Leibler (1951) state that the KL divergence is “almost positive definite”.
However, this seems to be a different usage of the term, the intended meaning being that the value of the
divergence is always greater than or equal to zero.
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Other kernels on probability distributions or on positive measures (which can be nor-
malised to give distributions) have been proposed by researchers in machine learning.
Chapelle et al. (1999) consider kernels of the forms

k(xi,xj) =
∑

c

xa
i x

a
j (6.4a)

k(xi,xj) = exp

(

−α
∑

c

|xa
ic − xa

jc|b
)

(6.4b)

which are positive semi-definite for all a and all 0 ≤ b ≤ 2. The family defined by (6.4a)
includes the L2(a = 1) and Hellinger (a = 0.5) linear kernels, while that defined by (6.4b)
includes the L2 (a = 1, b = 2), L1 (a = 1, b = 1) and Hellinger (a = 0.5, b = 2) RBF
kernels. Chapelle et al. find that kernels with values of a less than 1 or b less than 2
significantly outperform the L2 linear and RBF kernels for histogram-based image classi-
fication. The Jensen-Shannon RBF kernel is discussed under the name entropy kernel by
Cuturi et al. (2005), who offer the interpretation that it quantifies the difference between
the average of the entropy of two distributions and the entropy of the distributions’ av-
erage. While Cuturi et al. fail to obtain good performance with the entropy kernel on a
digit classification task, they hypothesise that it will perform better when dealing with
multinomial distributions. The same authors also describe a kernel based on the inverse
generalised variance of a measure, which I study in Chapter 7. Generalisations of the
Hellinger linear kernel for parametric models, including Gaussian distributions and hid-
den Markov models, are described by Jebara et al. (2004). Another kind of distributional
kernel is introduced by Lafferty and Lebanon (2005), based on a model of heat diffusion
on statistical manifolds. This heat kernel is not always guaranteed to be positive semi-
definite, but the authors report very impressive results on text classification tasks, where
the “bag of words” representation naturally defines a multinomial distribution for each
document.

6.3 Datasets

6.3.1 1,443 Compounds

The dataset used for compound noun interpretation is derived from the sample of 2,000
BNC noun sequences described in Section 4.3. These include the 700 items that were
used in the trial and test stages of the dual-annotator experiment and an additional 1,300
items that were labelled by a single annotator. Ideally, the entire dataset would have been
annotated by two annotators, but this was not possible due to constraints on resources
and annotator availability. As the data for the dual-annotator experiment were sampled
randomly, I have no reason to believe that the agreement results observed for the test
data is unrepresentative of the dataset as a whole.

In order to focus on the task of classifying semantic relations, as opposed to identifying
non-compositional compounds or extraction errors, only those compounds annotated with
one of the six relations BE, HAVE, IN, INST, ACTOR and ABOUT were used in my
experiments. This leads to a classification dataset of 1,443 compounds with the class
distribution given in Table 6.2. Always choosing the most frequent class (IN ) gives a
baseline accuracy of 21.3%, while the random baseline is 16.7%.
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Relation Frequency Proportion
BE 191 13.2%
HAVE 199 13.8%
IN 308 21.3%
INST 266 18.4%
ACTOR 236 16.4%
ABOUT 243 16.8%

Table 6.2: Class distribution for the compounds dataset

6.3.2 SemEval Task 4

Task 4 at the 2007 SemEval Competition (Classification of Semantic Relations between
Nominals) consisted of seven relation identification subtasks (Girju et al., 2007). Each
subtask concentrated on a single semantic relation, the goal being to distinguish sen-
tences that express that relation from sentences that do not. The seven relations used
were CAUSE-EFFECT, INSTRUMENT-AGENCY, PRODUCT-PRODUCER, ORIGIN-
ENTITY, THEME-TOOL, PART-WHOLE and CONTENT-CONTAINER. Girju et al. ex-
plain that this binary classification framework was chosen over a multiclass framework in
order to avoid the inevitable complications involved in constructing a comprehensive set
of mutually exclusive semantic relations.5

A corpus of example sentences was collected for each relation by submitting targeted
queries to the Google search engine. For example, sentences for the PRODUCT-PRO-
DUCER relation were obtained through queries such as the * * produces, the * maker and
this * company ; queries for CONTENT-CONTAINER included the * contains, contents of
the * included and kept in a box. The sentences returned for these queries were annotated
by two annotators, and only sentences on which the annotators agreed were used for
the datasets.6 Average inter-annotator agreement is reported as 70.3%. Because all
examples were retrieved with these targeted queries, the negative examples tend to be
“near-misses” that narrowly fail to satisfy the definition of the relevant relation. This
ensures that the classification task is a challenging one and seems likely to have depressed
the inter-annotator agreement figure.

An example of a positive instance of the CONTENT-CONTAINER relation is:

Put <e1>tea</e1> in a <e2>heat-resistant jug</e2> and add the boiling
water.

The <e1></e1> and <e2></e2> tags denote the candidate relation arguments. A
clearcut negative example for the same relation is:

<e1>Batteries</e1> stored in <e2>contact</e2> with one another can gen-
erate heat and hydrogen gas.

It is obvious that batteries and contact do not enter into a CONTENT-CONTAINER
relation in this sentence, as contact does not refer to an object. A more involved negative
example is:

5I have given a taste of these complications in Chapter 3.
6The relation definitions, as well as the annotated datasets, are available from http://nlp.cs.

swarthmore.edu/semeval/tasks/task04/data.shtml.
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I am installing lights under the <e1>cabinets</e1> in my <e2>kitchen</e2>.

The annotation for this sentence contains the comment that “cabinets are normally af-
fixed, so this is Part-Whole”, referring to condition (3) in the definition of CONTENT-
CONTAINER: common sense dictates that X may be removed from Y without significantly
changing the nature of Y; more precisely, X is not affixed to Y, nor is it usually consid-
ered to be a component of Y. This contrasts with the following sentence, which seems very
similar but is labelled positive:

The <e1>kitchen</e1> holds a <e2>cooker</e2>, fridge, microwave oven,
in short: everything you need if you want to prepare a light meal.

Here the annotator has commented “a cooker is not attached (only plugged in), and a
kitchen without a cooker is possible, so the definition holds”. The distinction here is
very subtle, and it may be difficult for any automatic classifier to learn the appropriate
behaviour.

The data for each relation consists of 140 training examples and at least 70 test examples.
As well as the context sentence and its label, the directionality of the candidate relation
and WordNet senses for the two arguments are provided. Girju et al. describe three base-
lines for performance comparison. Labelling every test example as +1 (alltrue baseline)
gives a baseline of 48.5% accuracy, 64.8% F-score.7 Always choosing the majority class in
the test set (majority baseline) gives 57.0% accuracy, 30.8% F-score. Random guessing in
accordance with the label distribution in the test set (probmatch baseline) achieves 51.7%
accuracy and 48.5% F-score. Most of the systems competing in the SemEval task were
able to outperform these baselines, though only 8 of the 24 systems could match or exceed
the alltrue F-score baseline of 64.8%.8 Systems are categorised according to whether they
used WordNet information and whether they used Google queries.

The overall highest scores were attained by systems using WordNet; the best of these
used a variety of manually annotated resources, including WordNet, the NomLex-Plus
nominalisation database and thousands of additional annotated example sentences, and
achieved 76.3% accuracy, 72.4% F-score (Beamer et al., 2007). The best WordNet-free
approach was that of Nakov and Hearst (2007b), whose Web query-based system scored
67.0% accuracy and 65.1% F-score. Very recently, Davidov and Rappoport (2008) have
reported impressive results (Accuracy = 70.1%, F-score = 70.6%) achieved with a method
based on pattern clustering. The systems of Nakov and Hearst and of Davidov and
Rappoport are described in more detail in Section 5.3.2.3.

6.4 Co-occurrence corpora

Two very different corpora were used to extract co-occurrence information: the British
National Corpus (Burnard, 1995) and the Web 1T 5-Gram Corpus (Brants and Franz,
2006). The former is a medium-sized corpus of texts manually compiled with a concern for
balance of genre; the latter contains frequency counts for n-grams up to length 5 extracted
from Google’s index of approximately 1 trillion words of Web text. These differences entail
different co-occurrence detection methods, as detailed below.

7Definitions of the performance measures used for this task are given in Section 6.5.
8I count as separate entries those systems which use multiple sets of information sources and for which

multiple results are reported, for example results with and without WordNet information.



CHAPTER 6. LEARNING WITH CO-OCCURRENCE VECTORS 89

6.4.1 British National Corpus

As in the compound extraction experiment (Section 4.2), I use the 90 million word written
component of the BNC. The corpus was tagged, lemmatised and parsed with the RASP
toolkit (Briscoe et al., 2006). The co-occurrence relation I count to extract distributional
vectors is the conjunction relation. This relation is a high-precision indicator of semantic
similarity between its arguments, and has been successfully used in automatic thesaurus
and taxonomy construction (Roark and Charniak, 1998; Widdows and Dorow, 2002). It is
not the similarity between conjuncts that is of interest here, but rather the distributional
similarity between nouns based on the conjunction arguments observed for each noun in
the corpus, as in Caraballo (1999). I demonstrated in Ó Séaghdha (2007a) that conjunc-
tion co-occurrence information alone outperforms a number of other relations for com-
pound interpretation. Furthermore, the co-occurrence vectors extracted from conjunction
information are very sparse, leading to very quick learning and prediction performance.

Conjunctions are assigned the conj grammatical relation (GR) by RASP.9 This binary
relation holds between a conjunction and each of its arguments, rather than between the
arguments themselves. For example, the GR output for the sentence Tom and Jerry
chased the dish and the spoon is:

(|ncsubj| |chase+ed:4_VVD| |and:2_CC| _)

(|dobj| |chase+ed:4_VVD| |and:7_CC|)

(|conj| |and:7_CC| |dish:6_NN1|)

(|conj| |and:7_CC| |spoon:9_NN1|)

(|det| |spoon:9_NN1| |the:8_AT|)

(|det| |dish:6_NN1| |the:5_AT|)

(|conj| |and:2_CC| |Tom:1_NP1|)

(|conj| |and:2_CC| |Jerry:3_NP1|)

It is straightforward to distribute the dependencies of each conjunction over its conjuncts
by adding the appropriate GRs:

(|ncsubj| |chase+ed:4_VVD| |Tom:1_NP1| _)

(|ncsubj| |chase+ed:4_VVD| |Jerry:3_NP1| _)

(|dobj| |chase+ed:4_VVD| |dish:6_NN1|)

(|dobj| |chase+ed:4_VVD| |spoon:9_NN1|)

(|conj| |dish:6_NN1| |spoon:9_NN1|)

(|conj| |Tom:1_NP1| |Jerry:3_NP1|)

To extract a co-occurrence vector for a noun Ni, we count occurrences of the relation
conj(Ni, Nj) where Nj belongs to the target vocabulary and both Ni and Nj are tagged
as nouns. The target vocabulary Vc is defined as the 10,000 nouns most frequently en-
tering into a conjunction relation in the corpus; in practice, this restricts the set of

9Briscoe et al. (2006) report 72.3% F-score on identifying conj relations in the DepBank parser
evaluation corpus of 700 annotated Wall Street Journal sentences. It is possible that the quality of the
co-occurrence vectors extracted from the BNC would be improved by using a different parser; for example,
Clark and Curran (2007) report that their CCG parser attains 78.8% F-score on DepBank conj relations.
However, one advantage of RASP is that it is unlexicalised and can therefore handle text from diverse
sources, as in the BNC, without the need for retraining or other domain adaptation.



90 6.4. CO-OCCURRENCE CORPORA

admissible co-occurrence types to those occurring at least 42 times in the BNC. Each
co-occurrence vector x is normalised to have either unit L2 norm (

∑

i x
2
i = 1) or unit L1

norm (
∑

i xi = 1), for input to the L2 kernels or distributional kernels respectively. The
feature vector for each compound or word pair (N1, N2) in the dataset is constructed by
appending the normalised co-occurrence vectors of the words N1 and N2. The application
of the normalisation step before combining the constituent vectors, giving equal weight
to each vector, proves to be very important – this step alone accounts for the four-point
improvement in results with the L2 linear kernel and BNC features over those reported
in Ó Séaghdha (2007a). A further normalisation procedure is applied to the combined
vector, again using L2 or L1 normalisation as appropriate to the kernel.

6.4.2 Web 1T 5-Gram Corpus

The Google 5-Gram Corpus (Brants and Franz, 2006) consists of n-gram counts of length
up to 5 generated from Google’s index of publicly available webpages. This allows us to
use frequency data from about a trillion words of text, though we cannot access that text
directly. The corpus contains all n-grams that occur 40 times or more in the index, after
filtering to remove non-English text and rare words (words with frequency less than 200
are replaced with an <UNK> token). The following sample from the 5-gram section gives
a flavour of the data:

channel is software compatible with 47

channel is software programmable for 56

channel is somehow unable to 47

channel is sometimes referred to 67

channel is specified ) ; 71

channel is specified , a 48

channel is specified , all 40

channel is specified , that 195

channel is specified , the 194

channel is specified , then 140

Because the data do not consist of full sentences, it is not possible to extract grammatical
relations through parsing. Instead, I use a more heuristic method similar to the “joining
terms” approach of Turney and Littman (2005). This involves searching the corpus for
patterns of the form Ni J (¬N)∗ Nj ¬N , where Ni and Nj are nouns, J is a joining term
and (¬N)∗ matches some number (possibly zero) of non-nouns. Nj is not permitted to
match the last word in an n-gram, as we cannot know whether it was followed by a non-
noun in the original text. If Ni (resp., Nj) is a target word, the cell corresponding to the
co-occurrence type (J, Nj) (resp., (J, Ni)) in Ni’s co-occurrence vector is incremented by
the frequency listed for that n-gram in the corpus. The co-occurrence type representation
can be refined by indicating whether the target word comes before or after the joining
term, i.e., contexts Ni J Nj and Nj J Ni would count as distinct co-occurrence types for
a target word Ni. This is done for all joining terms except and and or, which clearly have
symmetric semantics.10 A noun dictionary automatically constructed from WordNet 2.1

10It is arguable that is and like should also be treated as symmetric, but my intuition is that they
often have an asymmetric nature (see also Tversky (1977)). Experiments indicate that it actually makes
little difference for these joining terms.
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and an electronic version of Webster’s 1913 Unabridged Dictionary determines the sets
of admissible nouns {N} and non-nouns {¬N}.11 To reduce the number of false positive
noun matches, such as in cat and sees the fish (see can be a noun), I use a stop list
adapted from van Rijsbergen (1979) that includes the most common falsely identified
terms. Webster’s dictionary also provides information about irregular plurals, enabling
a simple form of lemmatisation by mapping singular and plural forms onto the same co-
occurrence type. The following joining terms are used: and, or, about, at, by, for, from,
in, is, of, to, with, like. As in Section 6.4.1 the co-occurrence vocabulary for each joining
term is limited to the 10,000 most frequent co-occurrence types for that term.

I also consider a second kind of co-occurrence pattern based on verbal information. This is
in line with event-based theories of semantic relations, in particular frame-based theories
of compound interpretation (Section 2.2.2). It is directly inspired by the methods of
Nakov (2007) and Nakov and Hearst (2007b) that were discussed in Section 5.3.2.3. For
this technique the corpus is searched for n-grams matching Ni that|which|who V ¬N or
Ni that|which|who V (¬N)∗ Nj ¬N , where Ni or Nj is a target word. A dictionary of
verbs was created by taking all verbs listed in WordNet 2.1 and Webster’s and using the
morphg morphological generation software of Minnen et al. (2000) to generate inflected
forms. For each matching co-occurrence of a target Ni with a verb V , the co-occurrence
count for the feature V is incremented by the n-gram frequency, taking into account
whether Ni appears before V (assumed subject) or after V (assumed object). For the
transitive case where target Ni co-occurs with V and another noun Nj, the count for the
combined feature (V, Nj) is also incremented, again distinguishing between subject and
object co-occurrences.

6.5 Methodology

All classification experiments were performed with the LIBSVM support vector machine
library (Chang and Lin, 2001). The standard LIBSVM implementation was modified to
perform one-against-all multiclass classification instead of one-against-one, as the com-
pound dataset is relatively small (Section 5.4.2). For all datasets and all training-test
splits the SVM cost parameter c was optimised in the range (2−6, 2−4, . . . , 212) through
cross-validation on the training set. In addition, the width parameter α was optimised in
the same range for the RBF kernels. The features were not normalised to have the same
range, although this is sometimes recommended (e.g., by Hsu et al. (2008)); feature nor-
malisation was in fact observed to decrease performance. All kernel values were calculated
before running the SVM algorithm. This can speed up training and prediction, especially
for less efficient kernel functions, and when the dataset is small only a moderate amount
of space is required to store the kernel matrix – around 20MB for each 1443×1443 com-
pound task matrix and 500KB for the 210×210 matrix of one SemEval relation, encoded
to double precision and compressed with gzip.

Classifier performance on the two datasets is measured in terms of accuracy and macro-
averaged F-score. Accuracy measures the proportion of items that are classified correctly.
F-score complements accuracy by rewarding classifiers that perform well across all re-
lations and balancing out the effect of class distribution skew. I use the standard (F1)

11The electronic version of Webster’s is available from http://msowww.anu.edu.au/∼ralph/OPTED/.
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formulation for each class k:

F =
2 · Precision · Recall

Precision + Recall
(6.5)

The precision of a classifier on class k is given by the proportion of items for which k
was predicted that were correctly predicted. Recall is given by the proportion of items
actually belonging to class k that were correctly predicted. In the compound task, an
F-score value is calculated for each of the six classes and the average of those scores is
presented. In the SemEval task, an F-score is calculated for each of the seven relations,
precision and recall being measured in each case on the positive class only, as is standard
in retrieval-style scenarios.

As well as comparing performance on a particular dataset, we can ask what can be in-
ferred about the performance of a classifier on other similarly-sized datasets sampled from
the same source. One method for addressing variability in the training set is to use k-fold
cross-validation: each item in the dataset is assigned to one of k folds having approxi-
mately equal size. This gives k different training-testing splits; the ith split is made by
keeping the ith fold for testing and training on all other folds. The sample variance or
standard error of the classification results across folds gives an indication of the perfor-
mance range of a given method over different datasets of the same size: the smaller the
variance, the more certain that the cross-validation average is a good representation of
true performance, i.e., “performance on the compound interpretation task”, not just of
“performance on this particular dataset with these particular training-test splits”. How-
ever, using variance to compare classifiers can give misleading results. In the compound
interpretation experiments described below, the standard errors observed are frequently
quite large (1.5–2.5%) considering the inter-classifier performance differences, and confi-
dence intervals based on these errors will suggest that there is no significant difference
between classifiers.12 Yet this approach discards valuable information by ignoring the fact
that the observations for different classifiers are not independent. The results for each
classifier are obtained on the same cross-validation folds and a sound comparison should
take account of this; if classifier A consistently outperforms classifier B over all folds,
this can be taken as strong evidence for classifier A’s superiority even if the difficulty of
individual folds has high variance.

Dietterich (1998) describes a number of suitable statistical tests for dealing with variance
in the training and test data and with randomness in the classification algorithm.13 To
compare two classifiers we can take the difference pi in accuracy (or F-score) on each
cross-validation fold and calculate the paired t-test statistic:

t =
p̄
√

k
√

1
k−1

∑k
i=1(pi − p̄)2

(6.6)

where p̄ is the average of the pi differences. This statistic has a Student’s t distribution
with k−1 degrees of freedom. When k = 5 as in the compound interpretation experiments
described below, the critical values for significance are 2.776445 at the p < 0.05 level and

12This issue has been recognised as pervasive in NLP tasks (Carpenter, 2008), though I am not aware
of any detailed published analysis.

13As the SVM algorithm always converges to a unique global optimum it does not display randomness,
unlike a neural network which can be very sensitive to the initial setting of weights. However, there is
some variability in the cross-validation procedure used here for parameter optimisation.
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4.604095 at the p < 0.01 level. This test is preferable to alternative tests such as the
resampled t-test as each test set is independent; and it also has relatively high power. It
is not without its problems, however; Dietterich observes that it can sometimes have an
inflated Type I Error rate, rejecting the null hypothesis when it is in fact true.

For comparing two classifiers on a task with a fixed training-testing split, Dietterich
recommends McNemar’s test. This test involves calculating the statistic

m =
(|n01 − n10| − 1)2

n01 + n10

(6.7)

where n01 is the number of items misclassified by the first classifier and classified correctly
by the second, and n10 is the number of items classified correctly by the second classifier
and misclassified by the second. The m statistic has a χ2 distribution with 1 degree of
freedom; the null hypothesis that there is no difference between the classifiers holds with
probability p < 0.05 if m > 3.841459 and with probability p < 0.01 if m > 6.634897.
McNemar’s test is a conservative test with low error rate, but it assumes no variance in
the training set and does not permit inference about performance with new training data.
I use this test to measure significance on the SemEval Task 4 dataset where the training
and testing subsets are defined in advance; to count n01 and n10 the predictions for all
relations are pooled to create a 549-element set of predictions. This conflation of the
individual subtasks means that McNemar’s test does not take the balance of performance
across relations into account. An alternative method is to perform paired t-tests on the
accuracy and F-score differences for each relation, as in the cross-validation case.14

In the following sections I present results on the compound interpretation and SemEval
relation classification tasks in terms of accuracy, macro-averaged F-score and the ap-
propriate significance test(s). The significance test is applied to compare distributional
kernels with the corresponding standard L2 kernel; linear kernels are compared with the
L2 linear kernel and RBF kernels are compared with the L2 RBF kernel, i.e., the Gaussian
kernel. No single measure suffices to judge that one classifier is superior to another, but
by analysing the three measures across tasks, kernels and feature sets we can come to an
informed conclusion.

6.6 Compound noun experiments

Performance on the compound noun dataset was measured using 5-fold cross-validation;
for each fold the c and (where appropriate) α parameters were optimised through 10-fold

14Demšar (2006) discourages the use of paired t-tests for comparing classifiers across multiple datasets
and suggests the Wilcoxon signed-ranks test instead. His argument partly relies on the problems that
arise when datasets are not commensurable; this is not a significant concern with the SemEval subtasks.
His other concerns about non-normality and the skewing effect of outliers are salient, and with this in
mind I have applied the Wilcoxon test to the SemEval results presented in Table 6.6. The patterns of
significance and non-significance found are very similar to the t-test results. The only exceptions are
that the accuracy improvement of JSD linear kernel with BNC features is found to be significant at the
p < 0.05 level by the Wilcoxon test, but not by paired t-tests, while the accuracy improvement of the
L1 linear kernel with 5-Gram and features is found to be significant by paired t-tests but not by the
Wilcoxon test. The Wilcoxon signed-ranks test can also be applied in the cross-validation case; with
k = 5 as in the compound experiments the lowest attainable value of p is 0.0625. This significance level
was reached by all feature-kernel combinations marked significant in Table 6.3 in accuracy and F-score,
except for the accuracy improvement of the JSD linear kernel with 5-Gram all features.
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BNC 5-Gram (and) 5-Gram (all)
Linear Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 57.9 55.8 55.0 52.5 58.1 55.6
L1 59.2 56.7 58.7** 56.1** 58.3 56.0
JSD 59.9 57.8 60.2** 58.1** 59.9* 57.8**
H 59.8 57.3 59.9** 57.2** 60.6* 58.0*
RBF Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 58.0 56.2 53.5 50.8 56.1 54.0
L1 58.5 56.2 58.6** 56.5* 58.1 56.0
JSD 59.8 57.9 61.0** 58.8** 59.5* 56.9*
H 55.9 53.0 58.8** 55.7* 60.6** 58.3**

Table 6.3: Results for compound interpretation. */** indicate significant improvement
over the corresponding L2 kernel at the 0.05/0.01 level with paired t-tests.

cross-validation on the training set. Table 6.3 gives results for eight kernels and three
feature sets. The kernels are the L2, L1, Jensen-Shannon and Hellinger (H) linear and
RBF kernels described in Section 6.2. The feature sets are the BNC conjunction features
(Section 6.4.1), 5-Gram and co-occurrences and a 280,000-feature set consisting of the
features for all 5-Gram joining terms and verb co-occurrences (Section 6.4.2). The entire
optimisation, training and testing procedure for the linear kernels took between about 20
minutes for the sparsest feature set (BNC) and 45 minutes for the least sparse (5-Gram
all) on a single 2.4 GHz 64-bit processor. For the RBF kernels the procedure took longer,
between 45 minutes and three hours, as the additional α parameter had to be optimised,
and the kernel matrix was recomputed for each value of α.15

Results are presented in Table 6.3. The distributional kernels clearly outperform the L2

kernels, scoring higher on every kernel-feature combination with just one exception. The
JSD and Hellinger kernels perform best and are in general evenly matched, with the excep-
tion of the BNC features where the Hellinger RBF kernel does relatively poorly. The best
overall classifier is the the JSD RBF kernel computed on the 5-Gram and features, which
reaches 61.0% accuracy and 58.8% F-score. Significance testing endorses the superiority
of the distributional kernels for the two 5-Gram feature sets, but the difference between
distributional and L2 kernels is not significant on the BNC feature set. The reason for
this latter finding is that while the distributional kernels do much better on average, the
L2 kernels actually perform slightly better on one or two cross-validation folds. Indeed
the L2-BNC kernel-feature combinations are not confirmed to be significantly worse than
any other combination, though their consistently lower performance is suggestive at the
least.

Table 6.4 provides a detailed breakdown of performance with the JSD linear kernel across
classes and feature sets, including the individual 5-Gram joining terms. The relations
classified most successfully are IN, ACTOR, INST and ABOUT, with the BNC, 5-Gram
and and 5-Gram all features scoring well above 60% recall and F-score on each of these.
The most difficult relation to classify is HAVE, on which the 5-Gram and classifier achieves
the best results of 37.2% recall and 42.4% F-score. The reasons for this difficulty are not

15The kernel matrix recomputations were done in a space-saving but time-inefficient manner, with the
co-occurrence vector files being read and preprocessed anew for each value of α. This could be done
significantly more quickly in cases where speed is required.
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Figure 6.1: Comparison of modifier and head feature performance using the JSD linear
kernel and BNC, 5-Gram and and 5-Gram all feature sets

clear; it may be that the class of HAVE relations is semantically heterogeneous or at
least that the range of arguments for this relation is heterogeneous.16 None of the other
individual 5-Gram joining terms perform as well as and, though some do better on certain
relations. The expanded 5-Gram all feature set seems truly beneficial only on the BE
and ACTOR relations, where a number of other joining terms give superior performance
compared to and, and all reflects this.

While there is some variation in the strengths and weaknesses of the various feature sets,
it is not clear how they can be optimally combined to create improved classifiers. I have
experimented with summing combinations of the best-performing kernels, which generally
gives a slight boost in performance. The best result was obtained by summing the JSD
RBF kernel computed on the BNC features with the Hellinger linear kernel computed on
the 5-Gram and features, which gave 62.0% accuracy and 60.4% F-score. Though this
improvement over the previous best results is small, the difference in F-score is found to
be significant when compared to each of the results in Table 6.3, using both paired t-tests
and the Wilcoxon signed-ranks test.

There has been some debate among researchers in psycholinguistics regarding the relative
importance of modifier and head items in compound comprehension. For example, Gagné
and Shoben’s (1997) CARIN (Competition Among Relations In Nominals) model affords
a privileged role to modifiers in determining the range of possible interpretations, and
Gagné (2002) finds that meanings can be primed by compounds with semantically similar
modifiers but not by similar heads. However, other authors have challenged these findings,
including Devereux and Costello (2005), Estes and Jones (2006) and Raffray et al. (2007).
While not proposing that human methods of interpretation are directly comparable to
machine methods, I think it is interesting to test how informative heads or modifiers are for
classifiers when taken separately. Figure 6.1 illustrates results using the JSD linear kernel
with just head co-occurrence information or just modifier co-occurrence information. For
each feature set, the performance of the head-only classifier is about 10 points above

16Interestingly, the HAVE relation had the lowest agreement figure in my annotation experiment (Table
4.2). It did not have the lowest one-against-all Kappa score, but it was only 0.002 away.
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Modifier-only Head-only
Relation Accuracy F-Score Accuracy F-Score
BE 50.8** 49.4** 22.0 26.5
HAVE 10.1 13.1 35.7* 39.7*
IN 56.5 50.9 53.9 53.2
ACTOR 39.4 38.4 65.3** 60.5**
INST 47.0 44.9 54.1 52.4
ABOUT 28.4 29.9 65.4** 60.1**
Overall 40.1 37.7 51.0** 48.7**

Table 6.5: Compound interpretation results with the JSD linear kernel with BNC features
using modifier-only and head-only co-occurrence information. */** indicate significant
positive differences at the 0.05/0.01 level, estimated by paired t-tests.

BNC 5-Gram (and) 5-Gram (all)
Linear Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 67.6 57.1 65.4 63.3 69.8 65.8
L1 69.0 63.6 67.9 64.0 70.1 65.6
JSD 71.4 68.8 † 69.6 65.8 † 70.9 66.8
H 66.7 61.5 70.8 66.1 †† 71.2 67.9
RBF Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 66.8 60.7 65.6 62.9 69.0 65.0
L1 67.9 63.0 68.1* 64.1 69.4 65.0
JSD 69.9 66.7** 70.7 67.5 †† 72.1 68.6 ††
H 65.6 60.5 68.5 66.0 69.9 65.4

Table 6.6: Results for SemEval Task 4. */** and †/†† indicate significant improvement
over the corresponding L2 kernel at the 0.05 and 0.01 level with paired t-tests and Mc-
Nemar’s test respectively.

the modifier-only classifier in accuracy and F-score; accuracy with head-only information
breaks 50%, surprisingly close to the performance achieved by the full combined model.
Table 6.5 presents the performance of the JSD linear kernel with BNC features using
modifier-only and head-only co-occurrences. The head-only classifier outperforms the
modifier-only classifier on all relations except BE, where the former performs extremely
poorly. On the other hand, modifier information is very weak at recognising instances
of HAVE, ACTOR and ABOUT, which seem to be predominantly signalled by the head
constituent – for example, compounds headed by book, story and film are very likely to
encode a topic relation. The same patterns were observed with all other kernels and
feature sets, suggesting that knowledge about compound heads is more informative for
compound interpretation, at least when classifying with distributional information.

6.7 SemEval Task 4 experiments

The same eight kernels and three feature sets used in Section 6.6 were applied to the
SemEval Task 4 data. Due to the relatively small training set sizes (140 examples for
each relation), leave-one-out cross-validation was used to optimise the c and α parameters.
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Optimisation, training and testing are very quick, taking 1–3 minutes in total for the linear
kernels and 5–37 minutes for the RBF kernels. Results are presented in Table 6.6.

The distributional kernels outperform the corresponding L2 kernels on almost every kernel-
feature combinations, only once scoring lower in both accuracy and F-score (Hellinger RBF
kernel with BNC features). The most consistently strong results are obtained with the
Jensen-Shannon kernels, whose superiority attains statistical significance with McNemar’s
test in four out of six cases. Few kernel-feature combinations are found to be significant
by paired t-tests; this is because the L2 kernels tend to do better on one or sometimes two
relations. However, a number of kernels come close to significance: the JSD RBF kernel
with BNC features (p = 0.056) and with 5-Gram and features (p = 0.092) for accuracy,
and the JSD RBF kernel with 5-Gram all features for F-score (p = 0.062).

The highest accuracy is achieved by the JSD RBF kernel with the large 5-Gram all feature
set (accuracy = 72.1%, F-score = 68.6%). The highest F-score is achieved by the JSD
linear kernel with BNC conjunction features (accuracy = 71.4%, F-score = 68.8%). Both
of these kernel-feature combinations surpass the best WordNet-free entry in the SemEval
competition by a considerable margin (Nakov and Hearst 2007; accuracy = 67.0%, F-
score = 65.1%), and score higher than all but three of the entries that did use WordNet.
They also attain slightly better accuracy and slightly lower F-score than the best reported
WordNet-free result for this dataset (Davidov and Rappoport 2008; accuracy = 70.1%, F-
score = 70.6%). The L1 and Hellinger kernels, while also performing very well, are slightly
less consistent than the JSD kernels. Most of the kernels achieve their best results with
the 5-Gram all features, though the improvement over the other much sparser and more
efficient feature sets is not always large.

Table 6.7 gives a detailed breakdown of the results for the JSD linear kernel with each
feature set and each individual joining term. In general, the most difficult relations
to identify are ORIGIN-ENTITY and PART-WHOLE. This tallies with Girju et al.’s
(2007) report that ORIGIN-ENTITY and THEME-TOOL were most problematic for
the SemEval participants, followed by PART-WHOLE (my system does relatively well
on THEME-TOOL). The best five feature sets (and, is, of, all, BNC) exceed the base-
line for each relation, apart from the tough alltrue F-score baselines for PRODUCER-
PRODUCT, ORIGIN-ENTITY and CONTENT-CONTAINER. Interestingly, of is the
best-performing single joining term; however, with all other kernels and was superior.
There is some diversity among the optimal joining terms for each relation. In some cases,
the connection between a joining term and a relation is intuitive, as between for and
PRODUCER-PRODUCT and between with and PART-WHOLE. Other cases are less
clear, as between at and THEME-TOOL. These observations suggest that while the best
feature sets have very good overall performance, it should be possible to do even better
by selecting the most appropriate feature set for each relation. If one could automatically
select the optimal feature set for each relation from the 16 listed in Table 6.7, performance
could be improved as far as 75.2% accuracy and 73.8% F-score. However, trial experi-
ments using cross-validation on the training set to select an appropriate kernel have not
given good results; it seems that good training performance is not a guarantee of good
test performance here. The small training set sizes may be a contributing factor, as they
make overfitting more likely. A further generalisation of this approach would be to select
optimal linear combinations of kernels (rather than a single kernel) for each relation, in
the framework of multiple kernel learning (Sonnenburg et al., 2006).
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6.8 Further analysis

6.8.1 Investigating the behaviour of distributional kernels

It is clear from the preceding sections that distributional kernels perform much better than
the popular L2 kernels on the two semantic classification tasks described. It is natural
to ask why this is so. One answer might be that just as information theory provides the
“correct” notion of information for many purposes, it also provides the “correct” notion
of distance between probability distributions. Hein and Bousquet (2005) suggest that the
property of invariance to bijective transformations of the event space C is a valuable one
for image classification,17 but it is not clear that this confers an advantage in the present
setting. When transformations are performed on the space of co-occurrence types, they
are generally not information-conserving, for example lemmatisation or stemming.

A more practical explanation is that the distributional kernels and distances are less
sensitive than the (squared) L2 distance and its derived kernels to the marginal frequencies
of co-occurrence types.18 When a type c has high frequency we expect that it will have
higher variance, i.e., the differences |P (c|w1)−P (c|w2)| will tend to be greater even if c is
not a more important signifier of similarity. These differences contribute quadratically to
the L2 distance and hence also to the associated RBF kernel.19 It is also easy to see that
types c for which P (c|wi) tends to be large will dominate the value of the linear kernel. In
contrast, the differences |P (c|w1) − P (c|w2)| are not squared in the L1 distance formula,
and the minimum function in the L1 linear kernel also dampens the effect of high-variance
co-occurrence types. The square root terms in the Hellinger formulae similarly “squashes”
the range of differences. The difference terms do not directly appear in the formula for
Jensen-Shannon divergence, but we can see that while co-occurrence types with large
P (c|w1) and P (c|w2) do contribute more to the distance and kernel values, it is the
proportional size of the difference that appears in the log term rather than its magnitude.
Thus the largest contribution to the JSD kernel value is made by frequent co-occurrence
types for which large relative differences in co-occurrence frequency is observed. It is
plausible that these types are indeed the most valuable for estimating similarity, as rare
co-occurrence types may not give good estimates of relative frequency differences.

Another perspective on the behaviour of the L2 and distributional kernels is given by
tracking how their value responds to changes in the skewedness of their argument vec-
tors. The contour plots in Figure 6.2 show the kernel values over the space of binomial
distributions (i.e., 2-dimensional vectors summing to 1). As each distribution is fully pa-
rameterised by the first coordinate value p – the second coordinate is necessarily 1 − p –
only two dimensions are necessary to plot all relevant information.

Contrasting the L2 kernel contours with the Jensen-Shannon and Hellinger kernel con-
tours, the clearest difference is that the former are narrowest in the centre of the plot while
the latter are narrowest at the extremes. Intuitively, this means that the L2 kernels are

17The same authors make a stronger version of this claim in an earlier paper (Hein et al., 2004).
18Chapelle et al. (1999) offer a similar explanation for the efficacy of their distributional kernels for

histogram classification.
19As noted above, it is sometimes recommended that the range of values for each feature is normalised

before applying the Gaussian kernel. One effect of this is to make the feature variances more similar,
which smooths the effect of the feature marginals but also “over-smooths” other aspects of variance that
may be useful for discrimination.
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(b) L2 RBF kernel (α = 1)
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(e) Hellinger linear kernel
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(f) L1 linear kernel

Figure 6.2: Contour plots of kernel functions on binomial distributions with p parameters
ranging from 0 to 1. The inputs to the L2 kernels are L2-normalised.
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more likely to assign high similarity to skewed distributions and the Jensen-Shannon and
Hellinger kernels are more likely to assign high similarity to balanced distributions. The
RBF kernel contours have the same shape as the corresponding linear kernels; altering
the α parameter has the effect of changing the contour steepness. The L1 kernel does not
“bulge” at any point and seems to be invariant to the degree of skew. This behaviour
places the L1 linear kernels at a mid-point between the L2 and Jensen-Shannon/Hellinger
kernels; suggestively, the same could be said of the experimental results with this ker-
nel. It is not certain that these observations directly bear on the performance differences
between the L2 and distributional kernels, nor why a preference for balanced distribu-
tions would give better results than a preference for skewed distributions. One possibility
is that distributions where most probability mass is placed on a small number of co-
occurrence types are very often ones affected by sparsity and therefore not a reliable basis
for inference.

6.8.2 Experiments with co-occurrence weighting

As noted in Section 5.3.1.1, co-occurrence vectors are often weighted in order to better
identify significant statistical associations in the data. Weighting functions typically com-
pare the observed co-occurrence counts f(w, c) with the values that would be expected
from the target marginals f(w) and co-occurrence type marginals f(c) under an indepen-
dence assumption. Given the discussion of marginal effects in Section 6.8.1, we might
therefore expect that this effect of compensating for the effects of marginal values would
be beneficial to the linear and Gaussian kernels. A wide range of measures have been
proposed for estimating co-occurrence association; Curran (2003) and Weeds and Weir
(2005) compare weighting functions in the context of lexical similarity, while Evert (2004)
presents a comprehensive analysis of association measures for identifying collocations. I
have experimented with a number of popular association measures, including z-score,
log-likelihood ratio, mutual information and chi-squared, but the only weighting function
that gave positive results is the t-score measure, defined as:

gt(w, c) =
f(w, c)− 1

N
f(w)f(c)

√

f(w, c)
(6.8)

The t-score function can take negative values when the observed co-occurrence count
f(w, c) is less than the expected count 1

N
f(w)f(c), but the Jensen-Shannon and Hellinger

kernels are only defined on positive measures. I have observed that simply deleting all
negative entries in the weighted co-occurrence vectors is a good solution in this case, and
it is indeed highly beneficial to the L1 and L2 kernels as well. Weeds and Weir find the
t-score is the best-performing weighting function in comparative similarity and pseudo-
disambiguation experiments. Curran (2003) reports that his “t-test” measure outperforms
other measures on a semantic similarity task, but this is actually the measure called “z-
score” by Evert (2004) and Weeds and Weir (2005). This other measure did not perform as
well on my compound interpretation and SemEval Task 4 experiments, possibly because
of its unreliability when observed frequencies are low and the assumption of normality
can cause errors (Evert, 2004).

Results for the t-score reweighted vectors on the compound interpretation task and Sem-
Eval Task 4 are given in Tables 6.8 and 6.9 respectively. In the case of the L2 kernels, the
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BNC 5-Gram (and) 5-Gram (all)
Linear Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 60.2 58.0 58.6 56.0 60.6 58.6

(+2.2)* (+2.2)* (+3.6)* (+3.5)* (+2.5) (+3.0)

L1 58.6 56.2 59.2 57.0 59.1 56.7
(−0.6) (−0.5) (+0.5) (+0.9) (+0.8) (+0.7)

JSD 60.5 58.6 59.1 57.4 59.7 57.2
(+0.6) (+0.8) (−1.1) (−0.7) (−0.2) (−0.6)

H 59.9 57.8 59.4 56.9 60.0 57.2
(+0.1) (+0.5) (−0.5) (−0.3) (−0.6) (−0.8)

RBF Accuracy F-Score Accuracy F-Score Accuracy F-Score
L2 60.6 58.6 60.4 58.6 59.5 57.1

(+2.6)** (+1.4)* (+6.9)** (+8.6)** (+3.4) (+2.9)

L1 59.2 57.1 59.8 57.7 58.7 56.0
(+0.7) (+0.9) (+1.2) (+1.2) (+0.6) (0.0)

JSD 59.4 56.7 60.3 58.1 60.0 57.3
(−0.4) (−1.2) (−0.7) (−0.7) (+0.5) (+0.4)

H 55.1 52.0 56.1 53.7 59.2 56.2
(−0.8) (−1.0) (−2.7) (−2.0) (−1.4) (−2.1)*

Table 6.8: Results for compound interpretation with t-score weighting. */** denote results
that are significantly different at the 0.05/0.01 level from the corresponding unweighted
results, using paired t-tests.

effect is dramatic. For almost every feature set their performance improves by a consider-
able margin, and for the BNC and 5-Gram and features these improvements consistently
attain statistical significance. Furthermore, the performance of the reweighted L2 kernels
is comparable to that of the best distributional kernels, exceeding 60% accuracy four
times on the compound dataset and 70% accuracy five times on the SemEval dataset.
Reweighting has an inconsistent effect on the distributional kernels, improving perfor-
mance for some kernel-feature combinations and harming performance for others. The
5-Gram and features responded best to the t-score reweighting, yielding some increase
in performance with all kernels. The best-scoring kernels with these reweighted features
were the Jensen-Shannon and Hellinger linear kernels, with 72.3% accuracy, 69.7% F-score
and 72.9% accuracy, 69.3% F-score respectively.

These results strongly support the hypothesis outlined in Section 6.8.1 that the distri-
butional kernels’ robustness to marginal frequency effects plays a major role in their
superiority over L2 kernels. By compensating for marginal effects, t-score reweighting
confers the same robustness on the L2 kernels, allowing them to bridge the performance
gap. The fact that the same procedure does not usually have a significant effect on the
distributional kernels also indicates that these kernels already possess the benefits brought
by reweighting as part of their default behaviour. Nevertheless, there are a number of
reasons why a user would opt to use distributional kernels instead of L2 kernels. Firstly,
a single-step process is more parsimonious and simpler than a process requiring multi-
ple steps. More decisively, there are many circumstances where obtaining information
about marginal frequencies is impractical or impossible (Section 5.3.1.2), for example
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BNC 5-Gram (and) 5-Gram (all)
Linear Accuracy F -Score Accuracy F-Score Accuracy F-Score
L2 71.0 69.7 70.1 66.1 71.6 67.6

(+3.4) (+12.6) † (+4.7) (+2.8) † (+1.8) (+1.8)

L1 68.9 64.4 70.1 65.6 68.7 63.2
(−0.1) (+0.8) (+2.2) (+1.6) † (−1.4) (−2.4)

JSD 69.0 65.3 72.3 69.7 71.6 67.6
(−2.4)* (−3.5) † (+2.9) (+3.9) † (+0.7) (+0.8)

H 70.3 68.1 72.9 69.3 70.9 66.4
(+3.6) (+6.6) † (+2.1)* (+3.2) † (+0.3) (+1.5)

RBF Accuracy F -Score Accuracy F-Score Accuracy F-Score
L2 70.1 67.1 71.0 67.0 69.6 64.4

(+3.3)* (+6.4) *† (+5.4) (+4.1) †† (+0.6) (-0.6)

L1 69.0 65.2 70.3 65.9 69.2 64.8
(+1.1) (+2.2) (+2.2) (+1.8) (−0.2) (−0.2)

JSD 69.0 62.8 72.3 67.7 71.6 68.2
(+0.9) (−3.9) (+1.6) (+0.2) (−0.5) (−0.4)

H 63.4 59.2 70.9 68.3 68.9 63.7
(−2.2) (−1.2) (+2.4) (+2.3) (−1.0) (−1.7)

Table 6.9: Results for SemEval Task 4 with t-score weighting. */** and †/†† indicate
significant differences at the 0.05 and 0.01 level compared to the corresponding unweighted
results, using paired t-tests and McNemar’s test respectively.

when the user does not have access to the original corpus or when deep processing is
required to identify co-occurrences and the corpus is too large to process in its entirety.
Finally, the best results on the two tasks described above were obtained with distribu-
tional kernels, indicating that they maintain a narrow superiority even when reweighting
is feasible. On the other hand, the L2 linear kernel might be preferred for tasks where
speed is paramount and the dataset is very large, as specialised SVM implementations are
available for this kernel that scale linearly in the number of data items and the number
of features (Joachims, 2006).

6.9 Conclusion

In this chapter I have shown that an approach to semantic relation classification based
on lexical similarity can give very good results. I have also shown that kernels on co-
occurrence distributions offer a means of kernelising popular measures of lexical similarity
and are very effective when used for classification with support vector machines. These
distributional kernels, which have not previously been applied to semantic processing
tasks, have been shown to outperform the L2 linear and Gaussian kernels that are stan-
dardly used. On the SemEval Task 4 dataset, they achieve state-of-the-art performance,
scoring higher than the best WordNet-free entry in that competition.

It appears that one of the principal factors contributing to the superiority of distributional
kernels is that they are influenced to a lesser degree than the L2 kernels by variation in
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the marginal frequencies of co-occurrence types. This variation does not generally have
predictive value, and can be seen as a kind of noise obscuring the underlying true co-
occurrence distributions. Theoretical evidence for this analysis comes from the formulae
used to compute the kernels, while empirical evidence comes from studying the effects of
statistical association measures that compensate for the effects of marginal frequency.
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Chapter 7

Learning with strings and sets

7.1 Introduction

In Chapter 5 I described two approaches to modelling semantic similarity between noun
pairs – one based on lexical similarity, the other on relational similarity. Lexical similarity
was the subject of Chapter 6. In this chapter I develop a model of relational similarity
based on kernel methods that compare strings (Section 7.2) and sets of strings (Section
7.3). These methods implement what were called token-level and type-level relational
similarity in Section 5.3.2, and are respectively appropriate for application to SemEval
Task 4 and the compound interpretation task. While the relational models described here
do not attain the same level of performance as the lexical models of the previous chapter,
I demonstrate their value by showing that systems combining the two similarity types can
be more effective than either model alone.

7.2 String kernels for token-level relational similarity

7.2.1 Kernels on strings

Many structured objects can be viewed as being constructed out of simpler substructures:
we can decompose strings into substrings, graphs into subgraphs, trees into subtrees and
so on. Haussler (1999) uses this insight to define the class of convolution kernels on
compositional structures. The particular family of kernels that is of relevance here, called
R-convolution kernels by Haussler, is defined in terms of a relation R that holds between
an indexed set of substructures xi = (xi1 ∈ X1, . . . , xiD ∈ XD) and a composite structure
xi ∈ X if a decomposition of xi gives xi1, .., xiD, or equivalently, when xi1, . . . , xiD are the
parts of xi. The inverse function R−1 maps a structure xi ∈ X onto the set {xi|R(xi, xi)}
of all valid decompositions of xi. Assuming that kernels k1, . . . , kD are defined on each of
the part sets X1, . . . ,XD, a kernel kR can be defined on the set X as follows:

kR(xi, xj) =
∑

xi∈R−1(xi)

∑

xj∈R−1(xj)

D
∏

d=1

kd(xid, xjd) (7.1)

This very general definition accommodates kernels on a wide range of objects, including
RBF and ANOVA kernels on vectors (Haussler, 1999), trees (Collins and Duffy, 2001;
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Zelenko et al., 2003; Moschitti, 2006) and other classes of graphs (Suzuki et al., 2003;
Vishwanathan et al., 2006), sequences of images (Cao et al., 2006), as well as a variety of
different kernels on strings. The last of these, the string kernels, will be the basis of the
methods explored in this chapter.

String kernels have become popular in both natural language processing and bioinfor-
matics, two domains where data often takes the form of symbolic sequences. The most
commonly used kernels compute the similarity of two strings by counting their shared
subsequences.1 These kernels correspond to inner products in feature spaces where each
dimension indexes a single subsequence and an input string is mapped onto a vector of
subsequence counts. The space of subsequences used for this mapping can be restricted
in various ways, by only counting subsequences of a fixed length or subsequences that are
contiguous in the input string, or by limiting the number and size of permitted gaps in
discontinuous subsequences. Applying such restrictions, especially those on discontinuity,
allows the use of extremely fast algorithms for kernel computation; the resulting loss of
richness in the embedding model is tolerable in applications where discriminative patterns
are expected to be localised, e.g., in protein or DNA sequence comparisons (Vishwanathan
and Smola, 2002; Leslie and Kuang, 2004; Sonnenburg et al., 2007). For natural language
processing, however, the ability to capture long-distance relationships between words is
important and most applications in this field have used kernels that count all contiguous
and non-contiguous subsequences in a string, typically with a weighting parameter that
penalises subsequences with large gaps. The initial publications on these gap-weighted
subsequence kernels considered subsequences of characters (Lodhi et al., 2002), but sub-
sequent work has adopted a more intuitive word-based representation (Cancedda et al.,
2003). Notable applications of string kernels to semantic processing tasks include work
on word sense disambiguation (Gliozzo et al., 2005), relation extraction (Bunescu and
Mooney, 2005b) and semantic parsing (Kate and Mooney, 2006).

A string is defined as a finite sequence s = (s1, . . . , sl) of symbols belonging to an alphabet
Σ. Σl is the set of all strings of length l, and Σ∗ is set of all strings or the language.
A subsequence u of s is defined by a sequence of indices i = (i1, . . . , i|u|) such that
1 ≤ i1 < · · · < i|u| ≤ |s|, where |s| is the length of s. len(i) = i|u| − i1 + 1 is the length of
the subsequence in s. For example, if s is the string cut the bread with the knife and u is
the subsequence (cut, with) indexed by i then len(i) = 4. λ is a decay parameter between
0 and 1. The smaller the value of λ, the more the contribution of a gappy subsequence is
reduced. The gap-weighted kernel value for subsequences of length l of strings s and t is
given by

kStringl
(s, t) =

∑

u∈Σk

∑

i,j:s[i]=u=t[j]

λlen(i)+len(j) (7.2)

This kernel induces a feature embedding φStringl
: Σ∗ → R

|Σ|l that maps a string s onto
a vector of positive “counts” that are not generally integers unless λ = 0 or λ = 1.
Directly computing the function in (7.2) would be intractable, as the sum is over all
|Σ|n possible subsequences of length n; however, Lodhi et al. (2002) present an efficient
dynamic programming algorithm that can evaluate the kernel in O(l|s||t|) time and does
not require that the feature vector φStringl

(s) of all subsequence counts be represented
explicitly.

1A separate class of string kernels is based on the comparison of probabilistic sequence models such
as hidden Markov models (Jaakola and Haussler, 1998; Watkins, 2000; Jebara et al., 2004). As far as I
am aware, these methods have not gained significant traction in the NLP community.
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The λ decay parameter is set to 0.5 throughout the experiments reported in this chapter,
following the recommendation of Cancedda et al. (2003). I have observed that while
optimising λ for a particular dataset can lead to small performance improvements, the
optimal value is often difficult to find and λ = 0.5 consistently gives near-optimal results.

String kernels, and convolution kernels in general, should also be normalised so that
larger substructures are not assigned higher similarity values simply because of their
size. For example, the string s = the dog runs and the dog jumps has a higher count of
length-two subsequences shared with t = the dog runs than t does with itself and thus
kString2(s, t) > kString2(s, s); however, s also contains many subsequences that are not
shared with t. The standard method for normalising a kernel k is through the operation

k̄(s, t) =
k(s, t)

√

k(s, s)
√

k(t, t)
(7.3)

This is equivalent to normalising the substructure count vectors φ(s) and φ(t) to have
unit L2 norm. As a result, the normalised kernel k̄(s, t) has a maximal value of 1, which
is taken when s and t are identical.

7.2.2 Distributional string kernels

In Section 6.2 I showed how distributional kernels provide alternative feature space inner
products to the dot product provided by the standard L2 kernels. Distributional kernels
can also be applied to structures, by treating the feature embedding φ as a function that
maps structures to unnormalised distributions over substructures. By normalising the
feature vector φ(s) for a structure s to have unit L1 norm, we obtain a vector ps =
(P (s1|s), . . . , P (sd|s)) parameterising a multinomial probability distribution of dimension
d. Distributional kernels can then be applied to these probability vectors in the same way
as to co-occurrence probability vectors. Alternatively, L2 normalisation can be applied if
an L2-based kernel is to be used for the string comparison.2 This vector normalisation
step is sufficient to ensure the string kernel matrix is normalised: the L2, L1 and Hellinger
linear kernels, and all RBF kernels, will take values between 0 and 1, while the JSD linear
kernel will take values between 0 and 2. The JSD linear kernel can be scaled by 0.5 to
bring it into the same range as the other kernels, for example when combining kernels. In
this chapter I consider distributional kernels on strings only, but in principle the approach
sketched here is general.

In order to compute the kernel value for a pair of strings, their subsequence probability
vectors must be represented in memory. Although these vectors typically have very high
dimension, they are also very sparse and can be stored efficiently in sorted arrays or hash
tables. Storing the feature vector φStringl

(s) entails representing up to
(

|s|
l

)

subsequence
counts for each string. This is not problematic for the small SemEval dataset but can
lead to high memory loads when the dataset is very large. In Section 7.3.1 I describe how
time efficiency can be traded off for space efficiency in the special context of set learning,
leading to acceptable resource requirements even for hundreds of thousands of strings.

Computing the feature mapping φStringl
, which must be performed just once for each

string, takes O(|s|2
(

|s|
l

)

) time as each subsequence must be explicitly counted; for l ≪ s

2In fact, applying the L2 linear kernel to L2-normalised subsequence count vectors gives the standard
string kernel (7.2) after normalisation (7.3).
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this is close to O(|s|l+2). The exponential dependence on subsequence length l may look
worrying, but in practice the values of l used will be very small; in my experiments I did
not find any advantage in using values greater than l = 3. Once the feature mapping has
been performed, the distributional kernel can then be computed for each string pair (s, t)
in O(

(

max(|s|,|t|)
l

)

) time. This is not generally more efficient in the token-level relational
scenario where each string must be compared to each other string, but as I show in Section
7.3 it allows the development of very efficient kernels on sets of strings as the second kernel
calculation step must only be computed once per set.

This application of distributional kernels to convolutional mappings seems to be novel,
although there is some relevant prior work. Jebara et al. (2004) use the Hellinger lin-
ear kernel to compare hidden Markov models trained on gene sequence data. Rieck and
Laskov (2008) have recently described a general framework for comparing representa-
tions in F induced by a string kernel. Their framework accommodates my method but
they do not consider a probabilistic interpretation or the use of kernels on distributions,
which are key to facilitating the extension to set kernels introduced in Section 7.3.2. Sev-
eral authors have suggested applying distributional similarity measures to sentences and
phrases for tasks such as question answering (Lin and Pantel, 2001; Weeds et al., 2005).
Distributional kernels on strings and trees should provide a flexible implementation of
these suggestions that is compatible with SVM classification and does not require manual
feature engineering.

7.2.3 Application to SemEval Task 4

7.2.3.1 Method

In Chapter 6 I presented a model for classifying the SemEval Task 4 dataset using only
information about the lexical similarity of relation arguments. However, it seems intuitive
that ignoring the context in which the arguments appear entails discarding valuable in-
formation. For example, the sentence The <e1>patient</e1> had crushed a pencil with
this <e2>toe</e2> about 30 years previously is labelled as a positive instance of the
INSTRUMENT-AGENCY relation in the dataset; this is not because toes are inherently
tools, but rather because the sentence describes a toe being used in a tool-like manner.
An approach to this task based on comparing context sentences – in the terminology of
Section 5.3.2, a token-level relational similarity approach – can therefore complement the
efficacy of lexical approaches. String kernels offer a means of implementing this kind of
relational similarity.

As a preprocessing step, the SemEval Task 4 context sentences were tagged and lem-
matised with RASP (Briscoe et al., 2006). In order to avoid overfitting on particular
argument words and to focus on purely relational information, the candidate relation
arguments e1 and e2 were replaced with placeholder tokens tagged as nouns. All non-
alphanumeric characters were removed and punctuation tokens were discarded. As in the
previous chapter, classification was performed with LIBSVM (Chang and Lin, 2001) and
the SVM c parameter was optimised through leave-one-out cross-validation.
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Length Accuracy F-Score
1 58.3 46.2
2 63.2 59.0
3 61.2 45.2
Σ12 61.2 53.4
Σ23 64.1 59.7
Σ123 61.6 54.8

Table 7.1: Results for string kernels on SemEval Task 4

BNC 5-Gram (and) 5-Gram(all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 68.7 68.3 67.6 66.6 68.9 67.5
2 70.5 68.1 71.4 69.7 70.9 69.6
3 70.9 66.9 71.0 67.4 71.4 68.7
Σ12 69.4 68.5 70.3 68.1 70.3 68.7
Σ23 71.4 68.9 71.0 69.1 72.3 70.4
Σ123 70.3 69.2 71.0 68.2 70.9 68.6
No String 71.4 68.8 69.6 65.8 70.9 66.8

Table 7.2: Results for string and JSD linear co-occurrence kernel combination on SemEval
Task 4

7.2.3.2 Results

Results using the gap-weighted string kernel algorithm of Lodhi et al. (2002) are presented
in Table 7.1. Only subsequence lengths l up to three are considered, as longer subsequences
are extremely sparse and give very poor classification results. The l = 2 subsequence
kernel gives the best results for an individual kernel (63.2% accuracy, 59.0% F-score),
while the summed combination of the kernels with l = 2 and l = 3 (Σ23 in the table) gives
a slight improvement to 64.1% accuracy and 59.7% F-score. These figures do not compare
well with the results achieved using the lexical similarity model (Table 6.6), nor do they
reach the alltrue F-score baseline of 64.8%. It seems that the information contained in the
context sentences is insufficient or overly sparse for successful classification with current
state-of-the-art methods. Nevertheless, combining the relational information provided by
string kernels and the lexical information provided by the kernels of Chapter 6 can lead
to an improvement in performance over both individual methods, as shown in Table 7.2.
This combination method seems to benefit F-score in particular, with the most beneficial
string kernels (kString2 and kStringΣ23

) providing a boost of 0.8–4.0% over the JSD linear
kernel on all co-occurrence feature sets. However, none of these increases are statistically
significant.

SemEval Task 4 results for L1, Jensen-Shannon and Hellinger distributional string kernels
are presented in Table 7.3. I only consider the linear versions of these kernels to avoid the
complication of optimising the α width parameter for RBF kernels. As can be seen from
the table, these kernels do not perform better than the standard string kernels. One reason
for this may be the artificiality of fitting a multinomial distribution to a single observation,
which is essentially what I am doing here. Combinations of distributional kernels on
strings and co-occurrence vectors can nevertheless be quite effective, as demonstrated in
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L1 JSD H
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 59.7 44.6 60.1 47.5 60.3 44.4
2 61.6 57.5 61.0 54.8 63.4 57.7
3 64.1 55.7 61.7 45.8 61.2 48.2
Σ12 59.9 48.0 60.8 48.6 61.2 46.9
Σ23 61.4 56.1 62.1 58.8 62.5 57.7
Σ123 60.1 47.8 62.8 58.2 63.6 56.7

Table 7.3: Results for distributional string kernels on SemEval Task 4

BNC 5-Gram (and) 5-Gram(all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 69.8 68.9 69.6 68.5 71.8 70.2
2 71.2 69.2 71.0 68.8 71.9 69.1
3 71.0 68.1 71.2 68.6 71.2 68.5
Σ12 70.1 68.7 71.6 69.3 71.4 69.7
Σ23 71.6 69.3 70.5 67.5 72.3 69.2
Σ123 71.0 69.0 72.7 70.7* † 72.7 70.6
No String 71.4 68.8 69.6 65.8 70.9 66.8

Table 7.4: Results for JSD linear string and JSD linear co-occurrence kernel combination
on SemEval Task 4. * and † indicate significance at the p < 0.5 level with paired t-tests
and McNemar’s test respectively.

Tables 7.4 and 7.5. The Jensen-Shannon string kernels perform particularly well in this
context. Almost all the combinations listed in Table 7.4 outperform the corresponding co-
occurrence kernel, the best-performing being the sum of the JSD linear kernel computed
on the 5-Gram and co-occurrence features with the combined Σ123 JSD linear string kernel
which achieves 72.7% accuracy and 70.7% F-score. This is the best result yet reported
on the SemEval Task 4 dataset for a WordNet-free method, and the improvement over
the performance of the co-occurrence kernel alone is found to be statistically significant
by paired t-tests as well as McNemar’s test. The Hellinger string kernels perform slightly
less well in combination (Table 7.5), while still having a positive effect in most cases and
achieving a statistically significant (with paired t-tests) improvement using the combined
Σ123 kernel with 5-Gram and features.

Table 7.6 shows the effect of combining lexical and relational information on classify-
ing individual relations. I have used the JSD linear kernel with 5-Gram and features
and the JSD linear string kernel as representative of the lexical and relational kernels
respectively; the same patterns of behaviour are also observed with other kernel combi-
nations. Although the relational string kernel does not match the performance of the
lexical kernel on any relation, the combined kernel achieves a notable improvement on
the ORIGIN-ENTITY, THEME-TOOL, PART-WHOLE and CONTENT-CONTAINER
relations while maintaining the performance of the lexical kernel on the others. Accuracy
on PRODUCT-PRODUCER does drop slightly.
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BNC 5-Gram (and) 5-Gram(all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 67.5 66.2 67.4 65.5 70.7 69.4
2 69.9 66.7 71.2 69.1 70.1 67.5
3 71.0 68.3 71.0 67.6 72.3 69.0
Σ12 69.6 68.0 70.9 68.9 71.0 69.5
Σ23 70.9 68.7 71.2 68.4 70.7 67.6
Σ123 69.9 68.4 71.4 69.3* 71.6 69.6
No String 71.4 68.8 69.6 65.8 70.9 66.8

Table 7.5: Results for Hellinger linear string and JSD linear kernel combination on Se-
mEval Task 4. * indicates significance at the p < 0.5 level with paired t-tests.

Co-occurrence only String only Co-occurrence + String
Relation Accuracy F-Score Accuracy F-Score Accuracy F-Score
Cause 72.5 74.4 60.0 66.7 72.5 74.4
Instrument 66.7 66.7 60.3 64.4 67.9 68.4
Product 72.0 80.6 66.7 80.0 69.9 79.7
Origin 64.2 52.5 56.8 36.4 66.7 57.1
Theme 71.8 66.7 67.6 43.9 78.9 74.6
Part 70.8 53.3 70.8 58.8 79.2 66.7
Content 68.9 66.7 58.1 57.5 75.7 74.3
Overall 69.6 65.8 62.8 58.2 72.7 70.7

Table 7.6: Results on SemEval Task 4 with co-occurrence information (JSD linear kernel
with 5-Gram and features), context string information (JSD linear string kernel, length
Σ123), and the combination of both information sources (summed kernel)

7.3 Set kernels for type-level relational similarity

7.3.1 Kernels on sets

Given a basic kernel k0 on objects of a certain kind, we can derive a kernel on sets of those
objects. Informally speaking, the kernel similarity between two sets will be a function
of the basic kernel similarities between their members. Here I describe some previously
proposed kernels on sets, as well as novel kernels based on a multinomial distributional
model. In the next section I apply a range of set kernels to the compound interpretation
task, by associating each compound constituent pair with a set of context strings extracted
from a corpus. This application implements the type-level relational similarity model of
Section 5.3.2.

One natural way of defining a kernel over sets is to take the average of the pairwise basic
kernel values between members of the two sets A and B. Let k0 be a kernel on a set X ,
and let A, B ⊆ X be sets of cardinality |A| and |B| respectively. The averaged kernel is
defined as

kave(A, B) =
1

|A||B|
∑

a∈A

∑

b∈B

k0(a, b) (7.4)

This kernel was used by Gärtner et al. (2002) in the context of multiple instance learning.
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It is relatively efficient, with the computation being dominated by the |A|×|B| basic kernel
calculations. Lyu (2005b) suggests modifying the basic definition in (7.4) by raising the
summed term raised to a power k0(a, b)p. However, this modification did not improve
on the performance of the basic averaged kernel (7.4) in my experiments and will not be
discussed further.

An alternative perspective views each set as corresponding to a probability distribution,
and the members of the set as samples from that distribution. In this way a kernel on
distributions can be cast as a kernel on sets. Indeed, Smola et al. (2007) show that the
averaged kernel (7.4) is also a kernel on distributions, being the inner product between the
means of distributions in the feature space F , each of which is estimated as the sample
mean of the feature space representations of the members of each set.

Cuturi et al. (2005) propose a kernel on measures and distributions in F which can
be used to formulate a kernel on sets. Cuturi et al. suggest that the similarity of two
measures µ and µ′ corresponds to the dispersion of their sum µ+µ′

2
– if the measures are

similar then their sum will be more concentrated than if they are dissimilar. Taking
entropy as a suitable measure of dispersion, Cuturi et al. derive a kernel that is the same
as the previously discussed Jensen-Shannon RBF kernel of Hein and Bousquet (2005).
The second dispersion measure they consider is inverse generalised variance (IGV), the
determinant of a measure’s covariance matrix. The IGV kernel is defined as:

kigv(A, B) =
1

det( 1
η
K̃0∆ + I)

(7.5)

where K̃0 is the centred (|A|+ |B|)× (|A|+ |B|) basic kernel matrix between all members
of A and B, ∆ is a diagonal matrix of the same dimension with entries ∆ii = 1

|A|+|B|
and

η > 0 is a regularisation parameter that smooths the eigenspectrum of K̃0∆ and also
guarantees its invertibility. The determinant of K̃0∆ is the same as that of the covariance
matrix Σ of the measure µ+µ′

2
as these matrices have the same eigenspectrum; this allows

the calculation of the inverse generalised variance without representing the elements of F
so long as their representation is not necessary to compute the basic kernel k0. The time
requirements of the IGV kernel are dominated by the determinant calculation, which has
O((|A|+ |B|)3) time complexity.3

Kondor and Jebara (2003) also adopt a probabilistic framework for set classification,
proposing a kernel based on Bhattacharyya’s affinity (Bhattacharyya, 1943):

kbhatt(p, p
′) =

∫

√

p(x)
√

p′(x) dx

This kernel is identical to the Hellinger linear kernel of Hein and Bousquet (2005). When
that kernel was used in Chapter 6, multinomial distributions were used to model co-
occurrence probabilities. However, the set kernel used by Kondor and Jebara is based
on a different probability model, fitting multivariate normal distributions to the feature
space mappings of the sets A and B. This yields a closed-form expression for the kernel
that can be computed without explicitly representing the elements of F :

kbhatt(A, B) = det(ΣW)−
1
4 det(Σ′

W)−
1
4 det(Σ†

W)−
1
2 e−(µT Σ−1µ)/4e−(µ′T Σ′−1µ′)/4e(µ†T

Σ†−1
µ†)/2

(7.6)

3The matrix operations involved in the calculation of the IGV and Bhattacharyya kernels were carried
out using the JLAPACK library of linear algebra algorithms (Doolin et al., 1999).
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where W is the subspace spanned by the kernel mappings of the elements of A and B, µ
and ΣW are the (estimated) mean and regularised covariance matrix of the distribution
fit to the embedding of A in that space, µ′ and Σ′

W are the mean and covariance of the
distribution fit to the embedding of B, µ† = 1

2
Σ−1

W µ+ 1
2
Σ′−1

W µ′ and Σ† = (1
2
Σ−1

W + 1
2
Σ′−1

W )−1.
To calculate these means and covariances we require an orthogonal basis e1, . . . , edim(W)

for W; this can be found through the eigendecomposition of the (|A|+ |B|)× (|A|+ |B|)
basic kernel matrix K0.

4 Letting λ1, . . . , λdim(W) be the non-zero eigenvalues of K0 and
v1, . . . ,vdim(W) the corresponding eigenvalues, we obtain an orthonormal basis by setting
ei = vi/

√
λi. E is the matrix containing the basis vectors ei as columns. Then:

µ = ET K0M, Mi,j =

{ 1
|A|

if i = j ∧ xi ∈ A

0 otherwise

ΣW = ET K0SK0E + ηI, Si,j =







1
|A|

+ 1
|A|2

if i = j ∧ xi ∈ A
1

|A|2
if i 6= j ∧ xi ∈ A

0 otherwise

, η > 0

with equivalent definitions for µ′ and Σ′
W . I is the (|A|+ |B|)×(|A|+ |B|) identity matrix.

η is again a regularisation parameter. While computing (7.6) has low memory require-
ments it can be quite slow when the sets being compared are large. Using the method
described in Kondor (2005) the length of the calculation is dominated by a number of
costly matrix multiplications and LU decompositions (for finding inverses and determi-
nants), each of which has O((|A| + |B|)3) time complexity. A potentially faster method
based on dimensionality reduction of the distributions in F is outlined by Kondor and
Jebara (2003), though I have not implemented this.

7.3.2 Multinomial set kernels

The distributional model used by Kondor and Jebara (2003) has the advantage that it
allows an implicit computation of the Bhattacharyya kernel in a feature space F using
only information about inner products in that space, i.e., the combined kernel matrix for
each pair of sets. One disadvantage of this approach, and of the other set kernels that have
been proposed in the literature, is that |A||B| basic kernel evaluations must be computed
for each pair of sets A, B. When the basic kernels have a significant computational cost,
as most convolution kernels do, this can make working with large sets impractical. A
second potential disadvantage is that the restriction to multivariate normal distributions
may not be appropriate to the data. Normal distributions assign non-zero probabilities
to negative feature values, but convolution kernel embeddings only map structures onto
non-negative measures.

These concerns suggest investigating alternative probability models, such as multinomial
distributions. In Section 7.2 I described how strings can be mapped onto vectors of
subsequence counts. A multinomial distribution over a set of strings can then be estimated
by taking the sum of the count vectors of the set members, i.e.:

φSetl(A) =
∑

s∈A

φStringl
(s) (7.7)

4K0 may not have full rank, for example when A or B contain duplicate members or when A∩B 6= ∅.
In this case the eigenvalues of K0 will not all be non-zero. This is not a serious problem, but it can be
avoided altogether by adding a small amount of mass (e.g., 0.0001) to the diagonal of K0.
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where l is the subsequence length associated with the string embedding φStringl
. The

embedded vector φSetl(A) should then be normalised to have unit L1 or L2 norm, as
appropriate. Any suitable inner product can be applied to these vectors, e.g., L2 linear or
RBF kernels or the distributional kernels of Section 6.2. In fact, when the L2 linear kernel
is used, the resulting set kernel is equivalent to the averaged set kernel (7.4) without the
averaging term 1

|A||B|
. Instead of requiring |A||B| basic kernel evaluations for each pair of

sets, multinomial set kernels only require the embedding φSetl(A) once for each set and
then a single vector inner product for each pair of sets. This is generally far more efficient
than previously proposed set kernels. The significant drawback is that representing the
feature vector for each set demands a large amount of memory; each vector potentially
contains up to |A|

(

|smax|
l

)

entries, where smax is the longest string in A. In practice,
however, the vector length will be lower due to subsequences occurring more than once
and many strings being shorter than smax.

One way to reduce the memory load is to reduce the lengths of the strings used, either
by retaining just the part of each string expected to be informative or by discarding all
strings longer than an acceptable maximum. Bunescu and Mooney (2005b) use three
separate kernels to compare preceding, middle and subsequent contexts and use a linear
combination of the individual kernels to compute string similarity. Another method, which
does not reduce the representative power of the model, is to trade off time efficiency for
space efficiency by computing the set kernel matrix in a blockwise fashion. To do this,
the input data is divided into blocks of roughly equal size – the size that is relevant here
is the sum of the cardinalities of the sets in a given block. For each set, all members
should be in the same block. In order to compute the set kernel matrix, one block at a
time is selected as the active block. The feature mapping φSetl is computed for each set in
that block and the kernel values for pairs of sets in the block are calculated. Then, each
other block which has not yet been paired with the active block is selected in turn; the
sets in this block are embedded with φSetl and compared to the sets in the active block.
If m is the sum of the cardinalities of all sets in the data and b is the block size, then
the number of blocks is o = ⌈m

b
⌉. The total number of string embeddings φStringl

that
must be calculated in the course of the set kernel matrix calculation is approximately
bo
2
(o + 1), due to the symmetry of the kernel matrix.5 Larger block sizes b therefore allow

faster computation, but they require more memory. An acceptable balance can usually
be found, as shown in Section 7.3.4.

7.3.3 Related work

The above discussion is not an exhaustive account of all set kernels proposed in the
machine learning literature. However, many of the kernels I have not discussed are un-
suitable for use in the experiments that follow in Section 7.3.4, either because they can
only be applied to vectorial data or because their computational costs scale poorly with
increasing set sizes. Wolf and Shashua (2003) describe a kernel based on the principal
angles between the subspaces spanned by the feature space embeddings of two sets. This
kernel is only guaranteed to be positive semi-definite when the sets compared have equal
cardinality; furthermore, Cuturi et al. (2005) observe that this approach is only suitable
for sets of small cardinalities, as the kernel matrices produced become highly diagonal
otherwise. The set kernel of Shashua and Hazan (2004) is restricted to comparing sets of

5The term “approximately” appears because in practice the blocks will vary in size.
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vectors, and is not easily extended to work in the feature space of a convolution kernel.
The same is true of Grauman and Darrell’s (2007) pyramid match kernel. Cuturi (2007)
shows that the permanent of the basic kernel matrix is also a useful positive semi-definite
kernel on sets, but its computation is prohibitively expensive for sets of medium to large
cardinality. Lyu (2005a) describes a kernel between mixtures of Gaussian distributions.
These mixtures can be located in a kernel feature space F , in which case a kernelised
version of the EM algorithm must be applied before the kernel is computed.

Most applications of set kernels have been in visual classification experiments; for ex-
ample, representing images as unordered sets of local feature vectors provides a greater
robustness to transformations than using a single global feature vector. In NLP there
is relatively little use of set representations, and hence little need for set classification
methods. Some notable exceptions were described in Section 5.3.2.3’s overview of type-
level relational methods. Bunescu and Mooney (2007) tackle a relation extraction task
by considering the set of contexts in which the members of a candidate relation argument
pair co-occur. While this gives a set representation for each pair, Bunescu and Mooney
do not directly compare sets. Rather, they apply a string kernel SVM classifier to each
context string individually and classify a candidate pair as positive if any of the context
strings are labelled positive. This may be reasonable under the assumptions of the rela-
tion extraction task they study, but it is not appropriate for compound interpretation or
any non-binary classification task. Rosario and Hearst (2005) take a similar approach to
classifying protein-protein interactions, representing each document-protein-protein triple
in their dataset as a set of strings and classifying each sentence individually. The label
assigned to each triple is decided by a majority vote of the sentence labels. This approach
could be applied to the compound noun task, though it would not be more efficient than
the averaged set kernel, still effectively requiring |A||B| basic kernel calculations for each
pair of compounds.

As far as I am aware, none of the set kernels described above have previously been used
for natural language tasks. However, there is a close connection between the multinomial
probability model I have proposed and the pervasive bag of words (or bag of n-grams) rep-
resentation. It is common in NLP to represent documents, co-occurrence contexts or any
other collection of strings as an unordered bag of unigram or n-gram observations. This
implicitly estimates an unnormalised multinomial measure for the collection of strings,
and indeed some authors have used this insight to apply distributional kernels for docu-
ment classification (Jebara et al., 2004; Hein and Bousquet, 2005; Lafferty and Lebanon,
2005). Distributional kernels based on a gap-weighted feature embedding extend these
models by using bags of discontinuous n-grams and downweighting gappy subsequences;
when only subsequences of length 1 are used, this is equivalent to a standard bag of words
model.

Turney’s (2008) PairClass algorithm is also related to the multinomial model and can
in fact be viewed as a special case where a more restrictive embedding function is used.6

Further differences are that PairClass uses the Gaussian kernel to compare feature vectors
(though in principle any vector kernel could be used), and that in PairClass patterns falling

6PairClass considers only length-n contexts of the form [0− 1 word] N1/N2 [0− 3 words] N2/N1 [0 −
1 word] and performs a feature embedding by mapping each such context onto 2n−1 length-n “patterns”
obtained by substituting up to n− 1 context words with wildcards. These patterns are not discontinuous
in the way that those produced by φStringl

are; the PairClass pattern * knife cuts * cheese obtained from
the context the knife cuts the cheese would not match the context the knife cuts the blue cheese as each
wildcard can match only one word.
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below a certain frequency threshold in the dataset are discarded, whereas my relational
methods consider all subsequences regardless of their frequency. In future work I intend
to investigate in detail the effects of these various differences.

7.3.4 Application to compound noun interpretation

7.3.4.1 Method

In Section 5.3.2 I described the concept of type-level relational similarity between noun
pairs: two pairs are assumed to be similar if the contexts in which the members of one
pair co-occur are similar to the contexts in which the members of the other pair co-occur.
Relational similarity can be useful for identifying the semantic relations in compound
nouns, as shown by Turney (2006) for example. If we assume that the contexts where
the constituents of a compound appear together provide evidence for the compound’s
relational semantics, we can compare compounds by comparing the corresponding context
sets. One method of implementing this comparison is to use kernels on sets of strings.7

I performed classification experiments with set kernels on the same dataset of 1,443 noun-
noun compounds that was used in Chapter 6. Context strings for each compound in the
dataset were extracted from two corpora: the written component of the British National
Corpus (Burnard, 1995) and the English Gigaword Corpus, 2nd Edition (Graff et al.,
2005). As in previous chapters, the BNC was tagged and lemmatised with RASP (Briscoe
et al., 2006). However, the Gigaword Corpus, containing approximately 2.3 billion words
of newswire text and taking up 5.3 Gigabytes in compressed form, is impractical for
preprocessing. To generate a more tractable corpus, all Gigaword paragraphs containing
both constituents of at least one compound in the dataset were extracted. Extraction was
performed at the paragraph level as the corpus is not annotated for sentence boundaries.
A dictionary of plural forms and American English variants was used to expand the
coverage of the corpus trawl; this dictionary was created manually, but it could also
have been created automatically as in Section 6.4.2. This extraction procedure yielded a
much-reduced subcorpus of 187 million words. Using RASP the subcorpus was split into
sentences, tagged and lemmatised.

Combining the BNC and the Gigaword subcorpus resulted in a corpus of 277 million
words. For each compound in the dataset, the set of sentences in the combined corpus
containing both constituents of the compound was identified. As the Gigaword Corpus
contains many duplicate and near-duplicate articles, duplicate sentences were discarded;
this was observed to improve set classification performance, presumably by preventing fre-
quent context strings from dominating the similarity estimates. The compound modifier
and head were replaced with placeholder tokens M:n and H:n in each sentence to ensure
that the classifier would learn from relational information only and not from lexical in-
formation about the constituents. Punctuation and tokens containing non-alphanumeric
characters were removed. Finally, all tokens more than five words to the left of the left-
most constituent or more than five words to the right of the rightmost constituent were

7Given that the compound dataset was annotated in context (Chapter 4) and that context is known
to affect compound meaning, it might seem useful to implement a token-level relational model using
information about the BNC sentences in which the data items were found. However, experiments with
the method I applied to SemEval Task 4 in Section 7.2.3 were unsuccessful, failing even to attain chance-
level performance.
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discarded; this has the effect of speeding up the set kernel computations and should also
focus the classifier on the most informative parts of the context sentences. Examples of
the context strings extracted for the modifier-head pair (history,book) are

the:a 1957:m pulitizer:n prize-winning:j H:n describe:v event:n

in:i american:j M:n when:c elect:v official:n take:v principle:v

this:d H:n will:v appeal:v to:i lover:n of:i military:j M:n

but:c its:a characterisation:n often:r seem:v

you:p will:v enter:v the:a H:n of:i M:n as:c patriot:n

museveni:n say:v

in:i the:a past:n many:d H:n have:v be:v publish:v on:i the:a

M:n of:i mongolia:n but:c the:a new:j

subject:n no:a surprise:n be:v a:a M:n of:i the:a american:j

comic:j H:n something:p about:i which:d he:p be:v

he:p read:v constantly:r usually:r H:n about:i american:j M:n

or:c biography:n

There was significant variation in the number of context strings extracted for each com-
pound: 49 compounds were associated with 10,000 or more sentences, while 161 were
associated with 10 or fewer and no sentences were found for 33 constituent pairs. The
largest context sets were predominantly associated with political or economic topics (e.g.,
government official, oil price, government policy), reflecting the journalistic sources of the
Gigaword sentences. The total number of context strings was 2,266,943.

I applied three previously proposed set kernels – Gärtner et al.’s (2002) averaged kernel
(kave), Kondor and Jebara’s (2003) Bhattacharyya kernel (kbhatt) and Cuturi et al.’s (2005)
IGV kernel (kigv) – and three multinomial set kernels based on the L2 (kL2), Jensen-
Shannon (kjsd) and Hellinger (khell) linear inner products to the compound noun dataset.8

For each kernel I tested values in the range {1, 2, 3} for the subsequence length parameter
l, as well as summed kernels for all combinations of values in this range. Subsequence
lengths greater than 3 were not observed to contribute to the overall performance.

As in Section 7.2.3, the λ parameter for the gap-weighted substring embedding was set
to 0.5 throughout. For the IGV and Bhattacharyya kernels the covariance smoothing
parameter η must also be specified; Cuturi et al. use a value of 0.01, while Kondor and
Jebara use both 0.1 and 0.01 in different experiments. The optimal parameter value
depends on the nature of the feature space induced by the basic kernel and also on how
a particular dataset is mapped to this space. While Cuturi et al. and Kondor and Jebara
use a Gaussian basic kernel, I am using string kernels here. The computational cost of
the IGV and Bhattacharyya kernels precludes optimising η by cross-validation; I have
found that η = 0.5 gives reasonable results and use this value in all experiments. For
those kernels requiring computation of the basic kernel matrix for each set pair (kave,

8I also performed experiments with L1-based multinomial kernels, which gave very similar results to
those obtained with kL2

, kjsd and khell. I omit these results to streamline my presentation.
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q = 50 l = 1 l = 2 l = 3
kave 06h 40m 03s 12h 33m 32s 16h 46m 25s
kigv 09h 49m 13s 15h 19m 34s 19h 44m 00s
kbhatt 14h 06m 05s 1d 00h 42m 58s 1d 04h 27m 38s
kjsd 01m 57s 41m 24s 07h 27m 12s
q = 250 l = 1 l = 2 l = 3
kave 4d 03h 50m 23s 7d 03h 13m 57s 9d 20h 58m 30s
kigv 16d 14h 15m 48s 18d 05h 32m 15s 23d 01h 06m 44s
kbhatt 35d 06h 11m 13s 44d 13h 54m 41s 45d 20h 30m 02s
kjsd 08m 36s 03h 06m 50s 1d 23h 25m 40s
q = 1, 000 l = 1 l = 2 l = 3
kave 29d 11h 43m 26s 52d 00h 22m 15s 71d 07h 58m 4s
kjsd 27m 05s 10h 23m 39s 8Gb 10d 01h 57m 09s

20Gb 03d 23h 13m 16s

Table 7.7: Execution times for set kernel computations

kbhatt, kigv), a two-step normalisation process was applied: each basic kernel evaluation
was normalised using the formula in (7.3), then each set kernel evaluation was normalised
in the same way. As in Section 7.2, the multinomial kernels require only a single L1 or
L2 normalisation of the feature vector for each set. To investigate the trade-off between
performance and efficiency I ran experiments with context sets of maximal cardinality 50,
250 and 1,000. These sets were randomly sampled for each compound; for compounds
associated with fewer strings than the maximal cardinality, all associated strings were
used. It was not possible to apply the IGV and Bhattacharyya kernels to the 1,000-string
sets for computational reasons (illustrated by the timing data in Table 7.7).

7.3.4.2 Comparison of time requirements

All experiments were run on near-identical machines with 2.4 Ghz 64-bit processors.
The set kernel matrix computation is trivial to parallelise, as each cell is independent.
Spreading the computational load across multiple processors is a simple way to reduce the
real time cost of the procedure. While the kernels kave, kigv and kbhatt have no significant
memory requirements, the kL2, kjsd and khell multinomial kernels are computed faster
when more memory is available as larger block sizes b can be used. The multinomial
kernels were computed on machines with 8 Gigabytes of memory; to illustrate the speed-
ups that can be obtained by increasing the available memory even further, I also ran the
most resource-intensive calculation (kjsd with q = 1, 000, l = 3) on a machine with 20
Gigabytes. Execution times for kave, kigv, kbhatt and kjsd are shown in Table 7.7. I omit
timing results for kL2 and khell as they have the same scaling properties as kjsd.

When comparing the observed execution times, it is useful to keep in mind the theoretical
complexities of the relevant algorithms. Assuming a slight idealisation of the dataset in
which all strings have length s and all sets have cardinality q,9 and letting n be the number
of sets in the data, l be the subsequence length of the basic kernel embedding and b be
the block size for kjsd, the time requirements are as follows:

9This idealisation clarifies the exposition but does not materially affect the analysis.
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kave O(n2q2ls2)
kigv O(q3)
kbhatt O(q3)

kjsd O
((

q2s2

b
+ q
)

n2 sl

l!

)

n is constant in Table 7.7 as there are 1,443 context sets in the data. The maximum
cardinality q varies from 50 to 1,000, while the subsequence length l varies from 1 to 3.
The results show that the time taken by kave scales close to linearly as l increases, and
superlinearly as q increases; the theoretical quadratic dependence on q is not observed
because for many constituent pairs there are not enough context strings available to keep
adding as q grows large. The computation of kigv and kbhatt is dominated by the O(q3)
matrix operations, which render those kernels unusable for sets of large cardinality. The
observed scaling of kigv suggests that applying it to the q = 1, 000 dataset would take
a number of years (kbhatt would take even longer). kjsd is by far the fastest kernel on
all parameter settings considered here, often requiring just minutes or hours to achieve
what takes the other kernels days or weeks. When the block size b is greater than q the
time taken by kjsd scales linearly with q; this condition is in fact necessarily satisfied, as
the blockwise computation algorithm does not permit any set to occupy more than one
block. Most of my experiments used b = 6, 000. In practice, keeping b as large as possible
has a clear effect on efficiency. The execution time scales dramatically as l increases,
principally because of the essentially sl cost of each feature embedding but also because
larger subsequence lengths entail larger feature spaces and hence smaller block sizes. For
the q = 1, 000 dataset with l = 3, b was reduced to 3,000 on an 8Gb machine; when 20Gb
was available, a block size of 15,000 could be used.

On the basis of this analysis, it seems clear that the JSD and other multinomial set kernels
have a definite advantage over the averaged set kernel when the basic kernel embedding
φStringl

uses a small subsequence length l, tackling even very large datasets with relative
ease (the q = 1, 000 dataset contains 598,342 strings). For large l and small set cardinality
q the averaged kernel may be preferable, but in practice large values of l tend not to be
used with string kernels.10 It is unlikely that any of these kernels would be usable for
higher values of both l and q.

7.3.4.3 Results

Cross-validation performance figures are given for kave, kigv and kbhatt in Table 7.8, and
for kL2 , kjsd and khell in Table 7.9. Results with maximal set cardinality q = 50 are
averaged across five random samples to reduce sampling variation. None of the set kernels
approach the performance attained by the lexical similarity methods of Chapter 6. The
best-performing set kernels are the Jensen-Shannon multinomial kernel with maximal
cardinality q = 1, 000 and subsequence length l = 2 (52.7% accuracy, 50.3% F-score) and
the combination of the averaged set kernels with q = 1, 000 and l = 2 and l = 3 (52.6%
accuracy, 51.1% F-score). I was unable to obtain competitive results with the IGV kernel,
which performs very poorly throughout. The other five kernels all attain roughly equal
performance, with no kernel outperforming the rest on all subsequence lengths and set

10For example, Cancedda et al. (2003) obtain their best results with l = 2 and Bunescu and Mooney
(2005b) use values up to l = 4.
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q = 50 kave kigv kbhatt

Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 41.4 38.7 26.9 23.7 42.2 34.7
2 45.8 43.9 30.6 26.0 46.0 43.7
3 44.9 43.0 28.9 24.2 43.6 41.1
Σ12 46.4 44.7 27.9 25.1 45.8 43.7
Σ23 45.7 43.7 30.2 25.5 45.2 42.8
Σ123 46.9 45.1 28.2 25.0 46.3 44.1
q = 250 kave kigv kbhatt

Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 44.5 40.8 24.7 20.1 46.4 43.5
2 48.9 47.3 27.0 20.2 49.1 46.8
3 48.6 46.8 26.8 22.5 49.0 46.4
Σ12 48.8 47.0 26.5 21.2 48.6 46.8
Σ23 51.1 49.5 26.7 20.1 50.0 47.7
Σ123 50.4 48.4 26.2 20.4 49.4 47.3
q = 1, 000 kave

Length Accuracy F-Score
1 45.0 42.2
2 50.0 48.3
3 50.9 49.5
Σ12 50.6 48.8
Σ23 52.6 51.1
Σ123 52.5 50.9

Table 7.8: Results for set kernels on the compound interpretation task

sizes. As might be expected, more data helps: as the maximal cardinality q increases, so
do the performance figures.

Combining token-level relational similarity and lexical similarity was observed to im-
prove performance on SemEval Task 4 in Section 7.2.3. It seems intuitive that combining
type-level relational similarity and lexical similarity could also help compound noun in-
terpretation. Tables 7.10–7.12 show classification results for combinations of set kernels
and Jensen-Shannon linear kernels trained on constituent co-occurrence features (Section
6.6). The combined kernels almost always outperform the corresponding individual ker-
nels, except for combinations containing string kernels with subsequence length l = 1
which have varying effects. The greatest and most consistent improvements are achieved
with the multinomial kernels. The best overall result is attained by the combination of
the JSD linear kernel computed on BNC co-occurrence features with the summed JSD
set kernel with length l = Σ123: 62.7% accuracy, 61.2% F-score. This result is found to be
a statistically significant improvement over all co-occurrence-only kernels (cf., Table 6.3)
with the exception of the JSD RBF kernel with 5-Gram and features, in which case the
improvement is close to significance (p = 0.077).

Table 7.13 examines the effect of kernel combination on individual compound relations,
taking the JSD linear kernel with BNC conjunction features and the JSD multinomial
string kernel as an example pair. Kernel combination improves classification on five of six
relations, and the only decrease (on the ACTOR) relation is relatively small.
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q = 50 kL2 kjsd khell

Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 41.5 38.8 42.6 39.6 42.1 39.0
2 45.6 43.9 47.3 44.5 47.1 44.4
3 43.8 42.0 44.8 41.7 45.0 41.9
Σ12 45.8 44.1 46.4 43.9 46.1 43.8
Σ23 45.5 43.7 47.2 44.2 47.0 44.1
Σ123 46.3 44.6 47.6 45.0 47.0 44.2
q = 250 kL2 kjsd khell

Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 45.2 41.9 46.9 44.3 47.4 45.3
2 49.3 47.7 50.9 48.2 49.1 46.2
3 48.8 47.1 49.3 46.1 48.2 44.6
Σ12 50.1 48.4 51.6 49.1 50.3 47.9
Σ23 49.3 47.3 50.8 47.8 50.0 46.8
Σ123 51.5 49.8 50.9 48.4 49.4 46.9
q = 1, 000 kL2 kjsd khell

Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 44.8 41.5 49.3 47.1 49.3 47.0
2 49.2 47.4 52.7 50.3 51.4 48.8
3 50.2 48.8 50.5 47.5 48.2 45.1
Σ12 49.8 48.1 52.4 50.2 52.0 49.9
Σ23 50.7 49.1 52.1 49.6 51.1 48.5
Σ123 51.6 50.2 52.1 49.9 51.7 49.3

Table 7.9: Results for multinomial distributional set kernels on the compound interpre-
tation task

BNC 5-Gram (and) 5-Gram (all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 57.8 55.6 58.1 56.0 59.0 56.5
2 60.2 58.6 60.5 58.7 61.2 59.2
3 61.7 60.1* 61.7 60.1 61.8* 59.7*
Σ12 59.7 58.1 59.4 57.4 60.4 58.0
Σ23 61.8 60.2 60.8 59.1 61.8 59.9
Σ123 62.1* 60.4* 60.1 58.3 61.4 59.3
No String 59.9 57.8 60.2 58.1 59.9 57.8

Table 7.10: Results for averaged set kernel and JSD linear co-occurrence kernel combi-
nation on the compound interpretation task. * indicates significant improvement at the
0.05 level over the co-occurrence kernel alone, estimated by paired t-tests.
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BNC 5-Gram (and) 5-Gram (all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 59.9 58.1 59.9 57.6 61.3 59.3
2 62.2* 60.7** 61.6 59.9 61.7* 59.8**
3 62.2** 60.3** 61.9 60.0 61.5 59.3
Σ12 62.1* 60.6** 61.1 59.4 61.1* 59.0
Σ23 62.4* 60.8* 62.3 60.5 62.4** 60.5**
Σ123 62.7** 61.2** 61.8 60.1 61.7** 59.7**
No String 59.9 57.8 60.2 58.1 59.9 57.8

Table 7.11: Results for JSD linear set kernel and JSD linear co-occurrence kernel com-
bination on the compound interpretation task. */** indicate significant improvement at
the 0.05/0.01 level over the co-occurrence kernel alone, estimated by paired t-tests.

BNC 5-Gram (and) 5-Gram (all)
Length Accuracy F-Score Accuracy F-Score Accuracy F-Score
1 59.9 58.3 60.4 58.2 60.6 58.4
2 62.0* 60.5** 61.6 59.9 61.7 59.4
3 62.0** 60.2** 61.5 59.6 61.1 58.7
Σ12 61.7* 60.2** 61.5 59.8 60.5 57.9
Σ23 62.3* 60.7** 62.1 60.3* 62.2* 60.3**
Σ123 62.6* 61.1** 62.0 60.2 61.0 58.7
No String 59.9 57.8 60.2 58.1 59.9 57.8

Table 7.12: Results for Hellinger linear set kernel and JSD linear co-occurrence kernel
combination on the compound interpretation task. */** indicate significant improvement
at the 0.05/0.01 level over the co-occurrence kernel alone, estimated by paired t-tests.

Co-occurrence only String only Co-occurrence + String
Relation Accuracy F-Score Accuracy F-Score Accuracy F-Score
Be 45.0 49.4 31.9 35.0 48.7 53.0
Have 31.6 38.0 30.2 37.4 43.2** 49.4**
In 69.5 66.3 68.5 59.9 72.4* 69.5*
Actor 73.7 68.9 66.9 62.9 72.0 67.9
Inst 63.2 61.8 49.6 50.5 63.9 63.3
About 65.8 62.6 53.5 53.5 67.1 64.3
Overall 59.9 57.8 52.1 49.9 62.7** 61.2**

Table 7.13: Results for compound interpretation with co-occurrence information (JSD
linear kernel with BNC features), context string information (JSD linear string kernel,
length Σ123), and the combination of both information sources (summed kernel). */**
indicate significant improvement at the 0.05/0.01 level over the co-occurrence-only results,
estimated by paired t-tests.
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7.4 Conclusion

In this Chapter I have demonstrated how string kernels can be used to classify noun
pairs on the basis of their relational similarity, i.e., the similarity between the contexts
in which the two constituents of each pair occur together. For the SemEval Task 4
dataset the implementation of relational similarity is a token-level one, in that only the
context sentences the candidate relation arguments appear in are used for the similarity
computation. For the compound noun dataset each constituent pair is associated with a
set of sentences extracted from their co-occurrences in a large corpus.

I have described previously proposed kernel methods for comparing strings and sets, and
applied them to these two tasks. I have also described novel kernels based on fitting
multinomial distributions to the embeddings of string sets in the feature space associated
with a convolution kernel. These multinomial kernels do not consistently outperform the
previously proposed kernels, but in the context of set classification they afford impressive
gains in time efficiency.

The performance achieved with these relational similarity methods does not match that
achieved with the lexical similarity methods described in Chapter 6. However, combining
relational and lexical similarity through kernel combination brings improvements over
either method alone, attaining state-of-the-art results on both compound interpretation
and SemEval Task 4.
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Chapter 8

Conclusions and future work

8.1 Contributions of the thesis

In this thesis I have dealt with the problem of automatically classifying semantic relations
between nouns, with a particular focus on the semantics of compound nouns. This has
involved novel approaches to the linguistic annotation of compound noun data, and to
statistical learning methods for relation classification. The main contributions of the
thesis are summarised in this section.

A new relational annotation scheme for compounds: In Chapter 2, I surveyed
a variety of frameworks that have been proposed by theoretical and computational lin-
guistics for representing compound noun semantics. Numerous relation inventories have
previously been used in computational research on compound interpretation, but in gen-
eral measures of inter-annotator agreement, when reported at all, have been quite low and
annotation guidelines have not been made publicly available. In view of these factors, I
decided to develop a new scheme for annotating the relational semantics of compound
nouns. In Chapter 3 I presented a number of general desiderata for semantic annotation
schemes, which can be used to guide and evaluate design decisions. I described the process
of developing the new scheme and presented it in some detail. The annotation guidelines
that accompany the scheme are publicly available, and are included here as Appendix B.

A new annotated compound dataset: I used the annotation scheme introduced in
Chapter 3 to annotate a sample of 2,000 noun sequences extracted from the British Na-
tional Corpus. A sample of 500 items was annotated by a second annotator to estimate
the inter-annotator agreement achieved with the new scheme and guidelines. All annota-
tion took account of the compounds’ sentential context, which is an important aspect of
their semantics but had not been investigated in previous annotation studies. The Kappa
measure of agreement was 0.62, which compares very favourably to previously reported
results and attests to the importance of rigorously developed guidelines for reproducible
annotation. These results are presented in Chapter 4, alongside a detailed analysis of
observed patterns of agreement and disagreement.

Lexical and relational similarity paradigms: In Chapter 5 I discussed two ap-
proaches to comparing pairs of nouns. The lexical similarity approach is based on com-
paring each constituent of a pair to the corresponding constituent of another pair; many
techniques for estimating the similarity of single words have been applied in the NLP
literature. The relational similarity approach is based on comparing the set of contexts
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associated with each word pair. This context set can simply contain the sentence in which
the word pair was found (what I have called token-level similarity), or it can contain a
sample of all sentences in a large corpus containing both constituents of the pair (type-level
similarity). The distinction between lexical and relational similarity has been recognised
by other researchers, but the two models have not previously been applied to compound
interpretation in an integrated manner. In this thesis I have demonstrated how kernel
methods provide a flexible framework for implementing and combining different kinds of
similarity models.

Distributional kernels for semantic classification: Standard distributional measures
of lexical similarity implicitly use a probabilistic representation of a word’s co-occurrence
behaviour. In Chapter 6 I described a family of kernels on probability measures and
showed that they are closely connected to popular and proven methods for distributional
similarity. These distributional kernels, which had not previously been applied to se-
mantic classification, performed very well on datasets for compound noun interpretation
and the SemEval 2007 task on identifying semantic relations between nominals. Fur-
thermore, the distributional kernels consistently outperformed the Gaussian and linear
kernels standardly used for classification with support vector machines on such tasks. I
proposed an analysis of the superiority of distributional kernels in terms of robustness to
the marginal frequencies of co-occurrence types, and provided theoretical and empirical
evidence supporting this analysis.

Old and new methods for relational similarity: In Chapter 7 I took convolutional
string kernels, which compare strings by implicitly mapping strings to vectors of sub-
sequence counts, as a starting point for implementing relational similarity. I showed
how distributional inner products can be applied to feature space mappings of strings,
implicitly fitting multinomial distributions to these mappings. There was little differ-
ence between the resulting multinomial string kernels and standard string kernels on the
SemEval Task 4 dataset, but when implementing a type-level relational approach to com-
pound interpretation the multinomial model facilitated the development of very efficient
kernels on sets of strings. These multinomial set kernels can be computed many times
faster than other set kernels described in the literature, while achieving equal or better
classification performance.

Combining lexical and relational similarity: The classification results obtained with
the relational similarity methods of Chapter 7 were not as good as the lexical similarity
results of Chapter 6. However, integrating the two models through kernel combination
led to better performance than either method achieved alone, yielding state-of-the-art
results both for compound noun interpretation and SemEval Task 4. Performance on the
SemEval dataset was the best yet reported for any system not making use of WordNet or
other manually constructed resources (Accuracy = 72.7%, F-score = 70.7%).

8.2 Future work

Other sets of semantic relations: The classification methods I have introduced in this
thesis are not restricted to the sets of semantic relations assumed by the compound noun
and SemEval datasets. They can also be applied to similar tasks that use different relation
inventories, for example domain-specific sets of relations in biomedical texts (Rosario and
Hearst, 2001; Rosario and Hearst, 2004).
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Further applications of distributional kernels: The results presented in this thesis
show that distributional kernels are highly effective tools for capturing lexical seman-
tic information in a classification framework. It seems likely that this effectiveness will
transfer to other semantic classification tasks. Support vector machines have been widely
adopted in computational semantics for tasks ranging from word sense disambiguation
(Gliozzo et al., 2005) to semantic role labelling (Pradhan et al., 2004), and distributional
kernels could be applied to many of these. In Ó Séaghdha and Copestake (2008) I show
that distributional kernels attain state-of-the-art performance on a task of classifying
verbs into semantic categories using subcategorisation frame information. However, the
standard feature sets for semantic role labelling and many other tasks are collections of
heterogeneous features that do not correspond to probability distributions. So long as the
features are restricted to positive values, distributional kernels can still be used; it will be
interesting (and informative) to see whether they prove as successful in this setting.

Extension of the relational model to analogical reasoning tasks: Turney (2006),
having developed a model of analogical reasoning based on type-level relational similarity,
then showed that it could be used to solve both standard analogical tests and compound
noun interpretation problems. Conversely, the type-relational model I have developed
for compound interpretation could provide a promising method for SAT-style analogy
tasks. Given the connection between the two tasks that has been observed by Turney, the
combined lexical-relational method I have shown to perform successfully on compound
data may well improve further on standard relational approaches to analogy problems.

Coupling lexical and relational models: The method I have used to combine lexical
and relational methods is simple and has been shown to work quite well. However, it is
limited in that it treats lexical and relational similarity as independent and combines the
two models only after the kernel computation stage. A method for coupling the lexical
and relational similarity models, allowing each to inform the estimation of the other, could
potentially yield more powerful combined models. For example, such an approach might
be effective at tackling problems caused by polysemy. Lexical co-occurrence distributions
for polysemous words conflate information about various senses, introducing noise into the
resulting similarity models. On the other hand, relational similarity models may be more
robust to this phenomenon due to a “one sense per collocation” effect: in contexts where
one constituent of a word pair co-occurs with the other constituent, that word is likely to
be used in its appropriate sense. Furthermore, other words occurring in these contexts are
also likely to be particularly informative. The knowledge about word senses learned by
the relational model might thus be able to guide the co-occurrence distributions learned
by the lexical model. It is not obvious how dynamics of this sort can best be captured,
however. One promising direction is suggested by recent work on multitask learning in
which different classification models sharing a common pool of knowledge are trained
in parallel. Ando and Zhang (2005) and Collobert and Weston (2008) show that this
approach can work very well on natural language tasks.
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Matthias Hein, Olivier Bousquet, and Bernhard Schölkopf. 2005. Maximal margin clas-
sification for metric spaces. Journal of Computer and System Sciences, 71(3):333–354.

Ralf Herbrich, Thore Graepel, and Colin Campbell. 2001. Bayes point machines. Journal
of Machine Learning Research, 1:245–279.

Donald Hindle. 1990. Noun classification from predicate-argument structures. In Pro-
ceedings of the 28th Annual Meeting of the Association for Computational Linguistics
(ACL-90), Pittsburgh, PA.

Graeme Hirst and Alexander Budanitsky. 2005. Correcting real-world spelling errors by
restoring lexical cohesion. Natural Language Engineering, 11(1):87–111.



140 References

Graeme Hirst and David St-Onge. 1998. Lexical chains as representations of context for
the detection and correction of malapropisms. In Christiane Fellbaum, editor, WordNet:
An Electronic Lexical Database. MIT Press, Cambridge, MA.

Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. 1993. Interpretation as
abduction. Artificial Intelligence, 63(1–2):69–142.

Eduard Hoenkamp and Rob de Groot. 2000. Finding relevant passages using noun-noun
compounds: Coherence vs. proximity. In Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR-
00), pages 385–387, Athens, Greece.

Eduard Hovy. 2005. Methodologies for the reliable construction of ontological knowl-
edge. In Proceedings of the 13th Annual Conference on Conceptual Structures (ICCS-05),
Kassel, Germany.

Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2008. A practical guide to sup-
port vector classification. Technical report, Dept. of Computer Science, National Taiwan
University. Available online at http://www.csie.ntu.edu.tw/∼cjlin/papers/guide/

guide.pdf.

Falk Huettig, Philip T. Quinlan, Scott A. McDonald, and Gerry T. M. Altmann. 2006.
Models of high-dimensional semantic space predict language-mediated eye movements in
the visual world. Acta Psychologica, 121(1):65–80.

Richard D. Hull and Fernando Gomez. 1996. Semantic interpretation of nominalizations.
In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), Port-
land, OR.

Pierre Isabelle. 1984. Another look at nominal compounds. In Proceedings of the 10th
International Conference on Computational Linguistics (COLING-84), Stanford, CA.

Tommi S. Jaakola and David Haussler. 1998. Exploiting generative models in discrimina-
tive classifiers. In Proceedings of the 12th Conference on Neural Information Processing
Systems (NIPS-98), Denver, CO.

Paul Jaccard. 1901. Étude comparative de la distribution florale dans une portion des
Alpes et du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547–579.

Ray Jackendoff. 2002. Foundations of Language. Oxford University Press, Oxford.

Tony Jebara, Risi Kondor, and Andrew Howard. 2004. Probability product kernels.
Journal of Machine Learning Research, 5:819–844.

Otto Jespersen. 1942. A Modern English Grammar on Historical Principles, Part VI:
Morphology. Ejnar Munksgaard, Copenhagen.

Jing Jiang and Chengxiang Zhai. 2007. A systematic exploration of the feature space
for relation extraction. In Proceedings of the 2007 Human Language Technology Con-
ference and Annual Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL-07), Rochester, NY.



References 141

Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. 2001. Composite ker-
nels for hypertext categorisation. In Proceedings of the 18th International Conference on
Machine Learning (ICML-01), Williamstown, MA.

Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of the 12th
ACM Conference on Knowledge Discovery and Data Mining (KDD-06), Philadelphia, PA.

Michael Johnston and Frederica Busa. 1996. Qualia structure and the compositional in-
terpretation of compounds. In Proceedings of the ACL-96 SIGLEX Workshop on Breadth
and Depth of Semantic Lexicons, Santa Cruz, CA.
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Appendix A

Notational conventions

I have attempted to be as consistent as possible in my use of mathematical notation while
also retaining consistency with standard conventions in the literature. The table below
covers the notation most frequently used in this thesis. I hope that any ambiguous cases
in the text are made clear by their contexts.

x, xi, . . . Vectors or ordered sets

s, t Strings

xi, xil, si Elements of the vectors/ordered sets/strings
x, xi and s respectively

a, b, c, . . . Scalars

A, B, C, . . . Matrices or sets

K Kernel matrix

X Data input space

F Feature space associated with a kernel

k(·, ·) Kernel function

f(·), g(·), . . . Other functions

φ(·) Feature space embedding associated with a kernel

p(·) Probability density function

P (·) Probability of an event
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Appendix B

Annotation guidelines for compound
nouns

1 General Guidelines

The task is to annotate each compound noun N1 N2 with regard to the semantic relation
that holds between the constituent nouns N1 and N2. It is assumed that compounds are
copulative or semantically right-headed.

Rule 1.1 The general annotation format is <relation,direction,rule>.

relation is one of the 10 relation labels defined in section 2. direction specifies the
order of the constituent nouns in the chosen relation’s argument structure – in particular,
direction will have the value 1 if the first noun in the compound (N1) fits in the first
noun slot mentioned in the rule licensing the chosen relation, and will have value 2 if the
second noun in the compound (N2) fits in the rule’s first noun slot. rule is the number
of the rule licensing the relation. For example:

429759: water fern

IN,2,2.1.3.1

This aquatic water fern is a rosette plant which has dense ,

fibrous roots

147862: enemy provocation

ACTOR,1,2.1.4.1

The army said at the weekend that troops had reacted to enemy

provocations and intervened to protect local citizens

In the case of water fern the IN relation is licensed by Rule 2.1.3.1 N1/N2 is an object
spatially located in or near N2/N1. Mapping the compound’s constituent nouns onto the
rule definition, we see that the first slot (N1/N2 is. . . ) is filled by N2 fern and hence the
direction is 2. For the categories BE, REL, LEX, MISTAG and NONCOMPOUND
there is no salient sense of directionality, so it need not be annotated:

157



158

120214: cedar tree

BE,2.1.1.1

On rising ground at the western end of the churchyard

of St Mary ’s at Morpeth in Northumberland stands ,

sheltered by cedar trees , a funerary monument

Rule 1.2 Each compound is presented with its sentential context and should be interpreted
within that context. Knowledge of other instances of the compound type are irrelevant.

A given compound type can have different meanings in different contexts. A school book
is frequently a book read IN school, but it could also be a book ABOUT school. A wood
table might be a table that IS wood, but it might also be a table for chopping wood on (IN).
The intended meaning of a compound token is often clarified by the sentence it appears
in.

Rule 1.3 Where a compound is ambiguous and is not clarified by the sentential context,
the most typical meaning of the compound is favoured.

Compound interpretation must sometimes rely on world knowledge. The compound school
book is not clarified by a sentence such as This is a school book. In this case, book read
IN school is the most typical interpretation. If the compound’s ambiguity arises from
the polysemy of a constituent, the same consideration applies. University can refer to an
institution or its physical location, but in the case of university degree the institutional
meaning must be correct as locations cannot award degrees, and the compound is labelled
ACTOR.

Rule 1.4 The referent of the compound is of interest only insofar as it elucidates the
relation between the constituent nouns. Whether the compound is used metaphorically or
not is irrelevant.

For example: the compound bird brain is often used to refer to someone stupid, not to
an actual brain, but in both cases the relation (HAVE1) between the constituents is the
same; the phrase in the dog house contains a metaphorical use of a standard locative
compound (IN).

Rule 1.5 Where a compound consisting of two common nouns is used as a proper noun,
and its meaning only differs from its use as a common noun insofar as it denotes a definite
entity, it may be annotated as if it were used as a common noun.

For example: the Telecommunications Act (ABOUT), The Old Tea Shop (IN), Castle
Hill (IN). Many names, while constructed from two common nouns, do not seem to
encode the same kind of semantics as non-name compounds, e.g. Penguin Books, Sky
Television, Dolphin Close, Coronation Street. These names encode only a sense of non-
specific association between the constituents, and should be classified as REL.

Rule 1.6 The semantic relation in many compounds involves a characteristic situation
or event. Whether such a situation exists for a given compound, and the roles played by
its constituents in the situation, will determine which relation labels are available.

For example, the meaning of cheese knife seems to involve an event of cutting, in which
cheese and knife take object and instrument roles respectively. Similarly, taxi driver



APPENDIX B. ANNOTATION GUIDELINES FOR COMPOUND NOUNS 159

evokes an event of driving and night watchman evokes an event of watching or guarding.
The INST and ACTOR relations apply only where such a situation or event is present
and where the compound identifies its participant(s). The application of HAVE assumes
that the most salient aspect of the underlying situation is possession. It is not strictly
necessary to identify the precise nature of the situation or event, only to identify the
general roles played by the participants (see the discussion under Rule 2.1.5.1).

Rule 1.7 Where there is a characteristic situation or event, it is necessary to identify
which constituents of the compound are participants and which roles they play. Partici-
pants are entities that can be described as Agent, Instrument, Object or Result:

Agent The instigator of the event, the primary source of energy

Instrument An intermediate entity that is used/acted on by the Agent and in turn
exerts force on or changes the Object; more generally, an item which is used to
facilitate the event but which is not the Object

Object The entity on which a force is applied or which is changed by the event and which
does not exert force on any participant other than the Result. Recipients (e.g. of
money or gifts, but not outcomes) also count as Objects.

Result An entity which was not present before and comes into being through the event

For example: cheeseO knifeI , taxiO driverA, sneezingR powderI . It follows from the above
that locations and topics do not count as participants – compounds encoding such roles
receive IN and ABOUT labels instead of the ACTOR and INST labels reserved for par-
ticipants.

The participant role types are listed in order of descending agentivity. We thus have an
agentivity hierarchy Agent>Instrument>Object>Result. This ordering plays an impor-
tant role in distinguishing ACTOR compounds from INST compounds (see Rules 2.1.4
and 2.1.5). It is not necessary to annotate this information, and it is not always necessary
to identify the exact participant role of a constituent, so long as the hierarchical order of
the constituents can be identified. Identifying participants is only needed to distinguish
between relations (ACTOR vs INST) and directionalities.
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2 Semantic Relations

Main Relations
BE X is N1 and X is N2
HAVE N1/N2 has N2/N1
IN N1/N2 is located in N2/N1
ACTOR N1/N2 is a sentient participant in the event

N2/N1
N1/N2 is sentient and is the more agentive par-
ticipant of N1 and N2 in an associated event

INST N1/N2 is a non-sentient participant in the event
N2/N1
N1/N2 is non-sentient and is the more agentive
participant of N1 and N2 in an associated event

ABOUT N1/N2 is about N2/N1
REL The relation is not described by any of the spe-

cific relations but seems productive
LEX The relation is idiosyncratic and not productive
UNKNOWN The compound’s meaning is unclear
Noncompounds
MISTAG N1 and/or N2 have been mistagged and are not

common nouns
NONCOMPOUND The sequence N1 N2 is not a 2-noun compound

2.1 Main Relations

2.1.1 BE

Rule 2.1.1.1 X is N1 and X is N2.

For example: woman driver, elm tree, distillation process, human being. This rule does
not admit sequences such as deputy chairman, fellow man or chief executive, where it is
not correct to state that an [N1 N2] is an N1 (a chief executive is not a chief). Such
sequences are not to be considered compounds, and their modifiers are to be considered
(mistagged) adjectives – see Rule 2.2.1.1.

Rule 2.1.1.2 N2 is a form/shape taken by the substance N1.

For example: stone obelisk, chalk circle, plastic box, steel knife.

Rule 2.1.1.3 N2 is ascribed significant properties of N1 without the ascription of identity.
The compound roughly denotes “an N2 like N1”.

For example: father figure, angler fish, chain reaction, pie chart.
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2.1.2 HAVE

Rule 2.1.2.1 N1/N2 owns N2/N1 or has exclusive rights or the exclusive ability to access
or to use N2/N1 or has a one-to-one possessive association with N2/N1.

For example: army base, customer account, government power. The term one-to-one pos-
sessive association is intended to cover cases where it seems strange to speak of ownership,
for example in the case of inanimate objects (street name, planet atmosphere).

Rule 2.1.2.2 N1/N2 is a physical condition, a mental state or a mentally salient entity
experienced by N2/N1.

For example: polio sufferer, cat instinct, student problem (problem which students have),
union concern.

Rule 2.1.2.3 N1/N2 has the property denoted by N2/N1.

For example: water volume, human kindness. A “property” is something that is not an
entity or a substance but which an entity/substance can be described as having. Redness,
temperature, dignity, legibility are all examples of properties. Property nouns are often
derived from adjectives but this need not be the case.

Rule 2.1.2.4 N1/N2 has N2/N1 as a part or constituent.

For example: car door, motor boat, cat fur, chicken curry, pie ingredient, tree sap. The
test for the presence of a part-whole relation is whether it seems natural and accurate in
the context to say The N1/N2 has/have N2/N1 and The N1/N2 is/are part of N2/N1.
Furthermore, substances which play a functional role in a biological organism are classed
as parts: human blood, tree sap, whale blubber. This is the case even when the substance
has been extracted, as in olive oil.

A part is often located in its whole, but in these cases the part-whole relation is to be
considered as prior to the co-location, and HAVE is preferred to IN. Complications arise
with cases such as sea chemical, where both HAVE and IN seem acceptable. One principle
that can be used tests whether the candidate part is readily separated (perceptually or
physically) from the candidate whole. Chemicals in sea water (HAVE) are not typically
separable in this way and can be viewed as parts of a whole. On the other hand, a sea
stone or a sea (oil) slick are perceptually distinct and physically separable from the sea
and are therefore IN.

Rule 2.1.2.5 N1/N2 is a group/society/set/collection of entities N2/N1

For example: stamp collection, character set, lecture series, series lecture, committee
member, infantry soldier.

2.1.3 IN

In the following rules, an opposition is drawn between events/activities and objects. The
class of events includes temporal entities such as times and durations. Objects are per-
ceived as non-temporal and may be participants in an event (the term participant is used
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as defined under Rule 1.7). To assign the correct rule, the annotator must decide whether
the located thing is an event or an object, and whether the location is temporal or spatial.
Events may also sometimes be participants (in the sense of Rule 1.7 and in these cases
the rules dealing with objects and participants will apply – a nursing college is a college
where nursing is taught as a subject, but not necessarily one where the activity of nursing
takes place, so Rule 2.1.3.1 applies. In contrast a nursing home, being a home where the
event of nursing takes place, would come under Rule 2.1.3.2, analogous to dining room.
Some nouns are polysemous and can refer to both objects (play as a written work, harvest
as harvested crops) and events (play as performance, harvest as activity). The annotator
must decide whether the temporal or physical aspect is primary in a given context.

Rule 2.1.3.1 N1/N2 is an object spatially located in or near N2/N1.

For example: forest hut, shoe box, side street, top player, crossword page, hospital doctor,
sweet shop. Where the location is due to part-whole constituency or possession, HAVE is
preferred (as in car door, sea salt). Source-denoting compounds such as country boy and
spring water are classed as IN as the underlying relation is one of location at a (past)
point in time.

Rule 2.1.3.2 N1/N2 is an event or activity spatially located in N2/N1.

For example: dining room, hospital visit, sea farming, football stadium.

Rule 2.1.3.3 N1/N2 is an object temporally located in or near N2/N1, or is a participant
in an event/activity located there.

For example: night watchman, coffee morning.

Rule 2.1.3.4 N1/N2 is an event/activity temporally located in or near N2/N1.

For example: ballroom dancing, future event, midnight mass.

2.1.4 ACTOR

The distinction between ACTOR and INST is based on sentience. Only certain classes of
entities may be actors:

1. Sentient animate lifeforms: membership of the animal kingdom (regnum animalia)
is a sufficient condition. Bacteria and viruses are not sentient enough (flu virus is
annotated INST).

2. Organisations or groups of people: for example finance committee, consultancy firm,
manufacturing company, council employee. Some words referring to institutions are
polysemous in that they can denote its physical aspect or its social/organisational
aspect – university often denotes a physical location, but in the compounds univer-
sity degree and university decision it is functioning as an organisation and count
as agents (granting a degree and making a decision are actions only humans or or-
ganisations can carry out). On the other hand, in research university it is not clear
whether we have a university that does research (agentive) or a university in which
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research is done (non-agentive). In such cases, the physical denotation should be
considered the primary meaning of the word, and the organisational denotation is
derived through metonymy – the non-agentive interpretation of these compounds
is favoured unless the underlying event requires the institution to act as an agent.
Such events often involve the institution acting as a legal entity. Hence university
degree (degree awarded by a university, school decision (decision made by a school),
shop employee (employee employed by a shop) are ACTOR; research university,
community school, school homework and sweet shop are IN.

A compound can be labelled ACTOR only if the underlying semantic relation involves a
characteristic situation or event. In the following definitions, the term participant is used
in the sense of Rule 1.7.

Rule 2.1.4.1 N1/N2 is a sentient participant in the event N2/N1.

For example: student demonstration, government interference, infantry assault. That
N2/N1 denote an event is not sufficient for this rule – it must be the characteristic event
associated with the compound. Hence this rule would not apply to a singing teacher, as
the characteristic event is teaching, not singing. Instead, Rule 2.1.4.2 would apply. As
only one participant is mentioned in the current rule 2.1.4.1, there is no need to establish
its degree of agentivity.

Rule 2.1.4.2 N1/N2 is a sentient participant in an event in which N2/N1 is also a
participant, and N1/N2 is more agentive than N2/N1.

For example: honey bee, bee honey, company president, history professor, taxi driver, stu-
dent nominee (nominee nominated by students), expressionist poem. Relative agentivity is
determined by the hierarchy given under Rule 1.7. The underlying event cannot be one of
possession (car owner = HAVE) or location (city inhabitant = IN). Profession-denoting
compounds often have a modifier which is a location – street cleaner, school principal,
restaurant waitress, school teacher. A distinction can be drawn between those where the
profession involves managing or changing the state of the location, i.e. the location is an
object (school principal, street cleaner = ACTOR), and those where the profession sim-
ply involves work located there (school teacher, restaurant waitress = IN by Rule 2.1.3.1).
Note that modifiers in -ist such as expressionist, modernist, socialist, atheist are treated
as nouns, so that an expressionist poem is analysed as a poem such as an expressionist
would characteristically write.

2.1.5 INST

The name INST(rument) is used to distinguish this category from ACTOR, though the
scope of the category is far broader than traditional definitions of instrumentality. Again,
the term participant is used in the sense of Rule 1.7.

Rule 2.1.5.1 N1/N2 is a participant in an activity or event N2/N1, and N1/N2 is not
an ACTOR.

For example: skimming stone, gun attack, gas explosion, combustion engine, drug traf-
ficking, rugby tactics, machine translation. Compounds identifying the location of an
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event (such as street demonstration) should be labelled IN by Rule 2.1.3.2 or 2.1.3.4, and
compounds identifying the focus of or general motivation for a human activity or mental
process (such as crime investigation), but not its direct cause, should be labelled ABOUT
by Rule 2.1.6.3.

As only one participant is mentioned, there is no need to establish its degree of agentivity.

Rule 2.1.5.2 The compound is associated with a characteristic event in which N1/N2
and N2/N1 are participants, N1/N2 is more agentive than N2/N1, and N1/N2 is not an
ACTOR.

For example: rice cooker (cooker that cooks rice), tear gas (gas that causes tears), blaze
victim (a blaze injures/kills a victim). The directionality of the relation is determined by
the more agentive participant in the hierarchy given in Rule 1.7: cheeseO knifeI (INST2),
wineO vinegarR (INST1), windA damageR (INST1), humanO virusA (INST1). Sometimes
it may be difficult to distinguish Agents from Instruments (gun wound) or Objects from
Results (blaze victim) – this is not important so long as it is possible to identify which
participant is more agentive.

In some cases, it may not be clear what the exact underlying event is, but the more
agentive participant may still be identified – a transport system is a system that in some
way provides or manages transport, but it is nonetheless clear that the appropriate label
is INST2. In other cases, where both participants affect each other, it may be less clear
which is more agentive – motor oil can be construed as oil that lubricates/enables the
function of the engine or as oil the engine uses. Likewise petrol motor, computer software,
electron microscope. At least where the relation is between a system or machine and
some entity it uses to perform its function, the former should be chosen as more agentive.
Hence motor oil is INST1, petrol motor is INST2, and so on.

As in Rule 2.1.5.1, where one of the constituents is the location of the associated event,
then IN is the appropriate label by Rule 2.1.3.1 or 2.1.3.3. If the more agentive participant
meets the criteria for ACTOR status (2.1.4), then that label should be applied instead.
If the interaction between the constituents is due to one being a part of the other (as in
car engine), HAVE is the appropriate label by Rule 2.1.2.4. A border with ABOUT must
be drawn in the case of psychological states and human activities whose cause or focus is
N1. As described further under Rules 2.1.6.3, the criterion adopted is based on whether
there is a direct causal link between N1 and N2 in the underlying event – a bomb can by
itself cause bomb terror (INST1), but a spider phobia is not a reaction to any particular
spider and is classed as ABOUT.

2.1.6 ABOUT

Rule 2.1.6.1 N1/N2’s descriptive, significative or propositional content relates to N2/N1.

For example: fairy tale, flower picture, tax law, exclamation mark, film character, life
principles. Most speech acts belong to this category. Properties and attributes that seem
to have a descriptive or subjective nature are still to be labelled HAVE by Rule 2.1.2.3 –
street name and music loudness are HAVE1.
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Rule 2.1.6.2 N1/N2 is a collection of items whose descriptive, significative or proposi-
tional content relates to N2/N1 or an event that describes or conveys information about
N2/N1.

For example: history exhibition, war archive, science lesson.

Rule 2.1.6.3 N1/N2 is a mental process or mental activity focused on N2/N1, or an
activity resulting from such.

For example: crime investigation, science research, research topic, exercise obsession,
election campaign, football violence, holiday plan. In the case of activities, N1/N2 cannot
belong to any of the participant categories given under Rule 1.7; rather it is the topic
of or motivation for N2/N1. The sense of causation in, for example, oil dispute is not
direct enough to admit an INST classification – the state of the oil supply will not lead
to an oil dispute without the involved parties taking salient enabling action. In the case
of emotions, there is also a risk of overlapping with INST; bomb terror is INST and bomb
dislike is classed as ABOUT, but examples such as bomb fear are less clearcut. A line
can be drawn whereby immediate emotional reactions to a stimulus are annotated INST,
but more permanent dispositions are ABOUT. In the case of bomb fear, the relation must
be identified from context. Problems (debt problem) and crises (oil crisis) also belong to
this category, as they are created by mental processes.

Rule 2.1.6.4 N1/N2 is an amount of money or some other commodity given in exchange
for N2/N1 or to satisfy a debt arising from N2/N1.

For example: share price, printing charge, income tax. N2/N1 is not the giver or recipient
of N1/N2 – an agency fee would be INST under the interpretation feeI paid to an agencyO,
but the thing exchanged or the reason for the transaction.

2.1.7 REL

Rule 2.1.7.1 The relation between N1 and N2 is not described by any of the above relations
but seems to be produced by a productive pattern.

A compound can be associated with a productive pattern if it displays substitutability.
If both of the constituents can be replaced by an open or large set of other words to
produce a compound encoding the same semantic relation, then a REL annotation is
admissible. For example, the compound reading skill (in the sense of degree of skill at
reading) is not covered by any of the foregoing categories, but the semantic relation of
the compound (something like ABILITY-AT) is the same as that in football skill, reading
ability and learning capacity. This contrasts with an idiosyncratic lexicalised compound
such as home secretary (= LEX), where the only opportunities for substitution come
from a restricted class and most substitutions with similar words will not yield the same
semantic relation. Another class of compounds that should be labelled REL are names
of chemical compounds such as carbon dioxide and sodium carbonate, as they are formed
according to productive patterns. Proper names composed of two common nouns with
no semantic connection also belong to this class (e.g. Penguin Books, see Rule 1.5).
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2.1.8 LEX

Rule 2.1.8.1 The meaning of the compound is not described by any of the above relations
and it does not seem to be produced by a productive pattern.

For example: turf accountant, monkey business. These are noncompositional in the sense
that their meanings must be learned on a case-by-case basis and cannot be identified
through knowledge of other compounds. This is because they do not have the property
of substitutability - the hypothetical compounds horse business or monkey activity are
unlikely to have a similar meaning to monkey business. LEX also applies where a single
constituent has been idiosyncratically lexicalised as a modifier or head such as X secretary
meaning minister responsible for X.

2.1.9 UNKNOWN

Rule 2.1.9.1 The meaning of the compound is too unclear to classify.

Some compounds are simply uninterpretable, even in context. This label should be
avoided as much as possible but is sometimes unavoidable.

2.2 Noncompounds

2.2.1 MISTAG

Rule 2.2.1.1 One or both of N1 and N2 have been mistagged and should not be counted
as (a) common noun(s).

For example: fruity bouquet (N1 is an adjective), London town (N1 is a proper noun). In
the case of blazing fire, N1 is a verb, so this is also a case of mistagging; in superficially
similar cases such as dancing teacher or swimming pool, however, the -ing form can and
should be treated as a noun. The annotator must decide which analysis is correct in each
case – a dancing teacher might be a teacher who is dancing (MISTAG) in one context,
but a teacher who teaches dancing (ACTOR) in another context. Certain modifiers might
be argued to be nouns but for the purposes of annotation are stipulated to be adjectives.
Where one of assistant, key, favourite, deputy, head, chief or fellow appears as the modifier
of a compound in the data, it is to be considered mistagged. This only applies when these
modifiers are used in adjective-like senses – key chain or head louse are clearly valid
compounds and should be annotated as such.

2.2.2 NONCOMPOUND

Rule 2.2.2.1 The extracted sequence, while correctly tagged, is not a 2-noun compound.

There are various reasons why two adjacent nouns may not constitute a compound:
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1. An adjacent word should have been tagged as a noun, but was not.

2. The modifier is itself modified by an adjacent word, corresponding to a bracketing
[[X N1] N2]. For example: [[real tennis] club], [[Liberal Democrat ] candidate], [[five
dollar ] bill ]. However compounds with conjoined modifiers such as land and sea
warfare and fruit and vegetable seller can be treated as valid compounds so long
as the conjunction is elliptical (land and sea warfare has the same meaning as land
warfare and sea warfare). Not all conjoined modifiers satisfy this condition – a salt
and pepper beard does not mean a beard which is a salt beard and a pepper beard,
and the sequence pepper beard is a NONCOMPOUND.

3. The two words are adjacent for other reasons. For example: the question politicians
need to answer, structureless lists of words.

4. The modifier is not found as a noun on its own. For example: multiparty election,
smalltown atmosphere.


