
Technical Report
Number 739

Computer Laboratory

UCAM-CL-TR-739
ISSN 1476-2986

State-based Publish/Subscribe
for sensor systems

Salman Taherian

January 2009

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Salman Taherian

This technical report is based on a dissertation submitted
June 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St John’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Recent technological advances have enabled the creation of networks of sensor devices. These de-

vices are typically equipped with basic computational and communication capabilities. Systems

based on these devices can deduce high-level, meaningful information about the environment

that may be useful to applications. Due to their scale, distributed nature, and the limited re-

sources available to sensor devices, these systems are inherently complex. Shielding applications

from this complexity is a challenging problem.

To address this challenge, I present a middleware called SPS (State-based Publish/Subscribe).

It is based on a combination of a State-Centric data model and a Publish/Subscribe (Pub/Sub)

communication paradigm. I argue that a state-centric data model allows applications to specify

environmental situations of interest in a more natural way than existing solutions. In addi-

tion, Pub/Sub enables scalable many-to-many communication between sensors, actuators, and

applications.

This dissertation initially focuses on Resource-constrained Sensor Networks (RSNs) and pro-

poses State Filters (SFs), which are lightweight, stateful, event filtering components. Their

design is motivated by the redundancy and correlation observed in sensor readings produced

close together in space and time. By performing context-based data processing, SFs increase

Pub/Sub expressiveness and improve communication efficiency.

Secondly, I propose State Maintenance Components (SMCs) for capturing more expressive

conditions in heterogeneous sensor networks containing more resourceful devices. SMCs extend

SFs with data fusion and temporal and spatial data manipulation capabilities. They can also be

composed together (in a DAG) to deduce higher level information. SMCs operate independently

from each other and can therefore be decomposed for distributed processing within the network.

Finally, I present a Pub/Sub protocol called QPS (Quad-PubSub) for location-aware Wire-

less Sensor Networks (WSNs). QPS is central to the design of my framework as it facilitates

messaging between state-based components, applications, sensors, and actuators. In contrast

to existing data dissemination protocols, QPS has a layered architecture. This allows for the

transparent operation of routing protocols that meet different Quality of Service (QoS) require-

ments.

3

4

To my home: my parents and my siblings

5

6

Acknowledgement

First of all, I would like to thank Jean Bacon, my supervisor, who has provided tremendous

advice and support during the time of my PhD. Her insight helped my work go in the right

direction, and she taught me the principles of research work. I am also grateful to Jon Crowcroft,

my PhD advisor, who provided great guidance and feedback for my work.

I have had the pleasure of being a member of the Opera Group. In particular, I enjoyed

discussing research with Daniel O’Keeffe, Sriram Srinivasan, David Evans, David Eyers, and

Pedro Brandao. Many ideas stem from (often hour-long) coffee-breaks with colleagues that

included Dan, David Evans, David Eyers, David Ingram, Eiko, Jat, Luis, Pedro, and Sriram.

I would also like to thank Daniel O’Keeffe, David Evans, David Eyers, and Pedro Brandao for

proof-reading parts of my thesis and suggesting improvements.

My research was funded by Microsoft Research (MSR) in Cambridge. I am also thankful to

Helen Watson, my college tutor, Audrey Lanfear, Wendy Redgewell, and Melanie Prior (college

secretaries) for supporting my studies at St. John’s and providing endless letters for my stay,

travel, accommodation, and research grants. Finally, I would like to thank my parents for their

support and encouragement throughout the years, which made it all possible.

7

8

List of Publications

[TOB04] Taherian, S., O’Keeffe, D. & Bacon, J. (2004). Event dissemination in mo-
bile wireless sensor networks. In Proceedings of the IEEE International Conference
on Mobile Ad-hoc and Sensor Systems (MASS), pages 573–575, Fort Lauderdale,
FL, USA, October 2004.

[TB07c] Taherian, S. & Bacon, J. (2007). State-filters for enhanced filtering in sensor-
based publish/subscribe systems. In Proceedings of the International Conference
on Mobile Data Management (MDM), pages 346–350, Mannheim, Germany, May
2007. IEEE Computer Society.

[TB07a] Taherian, S. & Bacon, J. (2007). A publish/subscribe protocol for resource-
awareness in wireless sensor networks. In J. Aspnes, C. Scheideler, A. Arora &
S. Madden, eds., Proceedings of the International Workshop on Localized Algo-
rithms and Protocols for Wireless Sensor Networks (LOCALGOS), volume 4549
of Lecture Notes in Computer Science (LNCS), pages 27–38, Santa Fe, NM, USA,
June 2007. IEEE Computer Society, Springer-Verlag.

[TB07b] Taherian, S. & Bacon, J. (2007). SPS: A middleware for multi-user sensor sys-
tems. In Proceedings of the International Workshop on Middleware for Pervasive
and Ad-Hoc Computing (MPAC), pages 19–24, New York, NY, USA, November
2007. ACM.

[TB08] Taherian, S. & Bacon, J. (2008). Capturing High-Level Conditions, using
a Publish/Subscribe Middleware, in Sensor Systems. In Proceedings of the IET
International Conference on Intelligent Environments (IE), Seattle, WA, USA,
July 2008. IET. To Appear.

9

10

Contents

1 Introduction 25

1.1 Sensor Systems . 25

1.1.1 Application Areas . 26

1.2 High-level Application Support . 27

1.2.1 Sensor Network Challenges . 28

1.2.2 Publish/Subscribe Paradigm . 29

1.2.3 Assumptions . 29

1.3 Thesis Contribution . 31

1.4 Thesis Outline . 34

2 Background & Related Work 35

2.1 Sensor Networks . 35

2.1.1 Design Space . 36

2.1.1.1 Deployment . 38

2.1.1.2 Network Size . 38

2.1.1.3 Heterogeneity (of platforms) . 38

2.1.1.4 Mobility . 38

2.1.1.5 Communication modality . 39

2.1.1.6 Infrastructure . 39

2.1.1.7 Connectivity . 39

2.1.1.8 Device Roles . 39

2.1.2 Applications . 40

2.1.3 Communication Protocols . 42

2.2 Programming Models . 42

2.2.1 Node-level Programming . 43

2.2.2 Group-level Programming . 43

2.2.3 Network-level Programming . 44

2.3 Data Delivery . 45

2.3.1 Active Delivery . 45

2.3.1.1 Publish/Subscribe . 48

2.3.2 Passive Delivery . 50

11

CONTENTS CONTENTS

2.4 Data Processing . 51

2.4.1 Database Abstraction . 51

2.4.1.1 DBMS for WSNs . 52

2.4.1.2 Data Stream Management System 55

2.4.2 Event Abstraction . 58

3 State Filters 63

3.1 Resource-constrained Sensor Networks . 63

3.1.1 Characteristics . 64

3.1.2 Application Scenarios . 65

3.2 Publish/Subscribe . 66

3.2.1 Subscription Model . 66

3.3 State Filters . 69

3.3.1 State . 70

3.3.1.1 Predicate Language . 71

3.3.2 Subscription Model . 72

3.4 Distributed Filtering . 72

3.4.1 Detection Policies . 73

3.4.2 Detection Scoping . 74

3.4.2.1 Placement Policies . 75

3.4.2.2 Nested Scoping . 76

3.4.3 Fault-Tolerance . 77

3.4.3.1 Redundant SFs . 78

3.5 Evaluation . 78

3.5.1 Expressiveness . 79

3.5.1.1 Detecting Hazardous Conditions in Mines 79

3.5.1.2 Regulating Office Temperature 80

3.5.2 Event Filtering . 81

3.5.2.1 Simulation Environment . 82

3.5.2.2 Experimental Setup . 83

3.5.2.3 Performance Results . 83

3.6 Related Work . 84

3.7 Summary . 85

4 Quad-PubSub 87

4.1 Location-aware WSNs . 88

4.1.1 Location-based Routing . 89

4.1.2 Potential Applications . 89

4.2 Cross-layer Pub/Sub Protocols . 90

4.2.1 Path sharing vs Path freedom . 92

4.3 Quad-PubSub . 94

12

CONTENTS CONTENTS

4.3.1 The Event Model . 94

4.3.1.1 Publications . 94

4.3.1.2 Advertisements . 95

4.3.1.3 Subscriptions . 95

4.3.2 Architecture . 96

4.3.2.1 Pub/Sub components . 98

4.3.3 Dissemination Model . 101

4.3.3.1 Path sharing vs Path freedom 102

4.3.3.2 Dissemination Policies . 103

4.3.4 Event Service . 105

4.3.4.1 Logical layer . 105

4.3.4.2 Physical layer . 107

4.3.4.3 Notation . 108

4.3.5 Routing . 109

4.3.5.1 Message Types . 109

4.3.5.2 Data Structures . 111

4.3.5.3 Advertisement Messages . 113

4.3.5.4 Subscription Messages . 114

4.3.5.5 Coverage Fulfillment Messages 118

4.3.5.6 Publication Messages . 119

4.3.6 Resource-Awareness Model . 120

4.3.6.1 On-demand Mapping . 121

4.3.6.2 Proactive Hand-Over . 122

4.3.7 Reliability Model . 123

4.3.7.1 Network Dynamics . 123

4.3.7.2 Component Dynamics . 124

4.4 Evaluation . 125

4.4.1 Evaluation Metrics . 125

4.4.2 Simulation Environment . 126

4.4.3 Experimental Setup . 128

4.4.4 Experiments . 130

4.4.4.1 Number of subscribers . 130

4.4.4.2 Number of nodes . 132

4.4.4.3 Epsilon value . 134

4.5 Related Work . 138

4.6 Summary . 140

13

CONTENTS CONTENTS

5 State-based Publish/Subscribe 141

5.1 Application Scenarios . 142

5.1.1 Requirements . 145

5.2 Architecture . 146

5.3 Component Model . 148

5.3.1 Pub/Sub Component . 149

5.3.2 SMC Manager Component . 150

5.3.3 InfoS Component . 152

5.4 Condition Specification . 154

5.4.1 SMC Query Expressions (QEs) (Q) . 156

5.4.2 SMC Transition Predicates (Pn/x) . 158

5.4.3 Condition Attributes (An/x) . 159

5.5 Data Model . 159

5.5.1 Events . 159

5.5.2 Knowledge Points . 160

5.5.3 Query Expressions . 161

5.5.4 SMC Manager Data Structures . 162

5.6 Detection Model . 163

5.6.1 Example: traffic congestion detection . 163

5.6.2 Setup Phase . 166

5.6.3 Knowledge Update . 167

5.6.4 Knowledge Selection . 168

5.6.5 Knowledge Examination . 170

5.6.6 Knowledge Encapsulation . 171

5.6.7 Knowledge Transformation . 172

5.6.8 Knowledge Discarding . 173

5.7 Distributed Detection . 174

5.7.1 Distribution Policy . 174

5.7.2 Distributed Processing . 175

5.7.2.1 Predicate Decomposition . 175

5.7.2.2 QE Decomposition . 177

5.8 Reliability Model . 180

5.8.1 InfoS Consistency . 181

5.8.1.1 Initial Consistency . 182

5.8.1.2 Run-time Consistency . 183

5.8.2 SMC Replication . 186

5.9 Evaluation . 187

5.9.1 Expressiveness . 187

5.9.2 Simulation Environment . 188

5.9.3 Experiment: Journey Planner Application 190

5.9.3.1 Operational setup . 191

14

CONTENTS CONTENTS

5.9.3.2 Processing . 192

5.9.3.3 Storage . 193

5.9.3.4 Communication . 196

5.10 Related Work . 197

5.11 Summary . 199

6 Conclusions 201

6.1 Further Work . 202

A Replica SFs Theorem 205

B SPS QEs 207

B.1 QE selection operators . 207

B.1.1 Input relation (X) . 207

B.1.2 Output relation (Y) . 207

B.1.3 Nearest-index operator (closest) . 208

B.1.4 Aggregation operator (aggregate) . 208

B.1.5 Range operator (multiple) . 209

B.2 Joining decomposed SMCs . 209

B.2.1 multiple : one sub-operator . 210

B.2.2 multiple : any sub-operator . 210

B.2.3 multiple : all sub-operator . 211

B.2.4 multiple : separate sub-operator . 211

Bibliography 213

15

CONTENTS CONTENTS

16

List of Figures

1.1 SPS components . 30

2.1 Communications protocol stack . 42

2.2 Schematic diagram for Directed Diffusion . 47

3.1 Ad hoc WSN topology . 64

3.2 Temperature sensor readings (14400 minutes) . 68

3.3 Capturing temperature below 0 ◦C condition . 69

3.4 FSA representation of an SF . 70

3.5 An EDT (involving six publishers and three subscribers) 73

3.6 SF placement on the EDT . 76

3.7 Nested Scoping . 76

3.8 Redundant SFs . 78

4.1 A comparison of four event forwarding techniques 92

4.2 QPS Architecture . 96

4.3 QPS Layers . 97

4.4 QPS Components . 98

4.5 QPS’s EDT . 101

4.6 Impact of the number of forwarding EBs on the EDT 102

4.7 Subscriber-specified ǫ factor . 103

4.8 Geographical Scopes . 106

4.9 Advertisement Messages . 113

4.10 Resolved Subscription . 116

4.11 Register vs Relay distances . 117

4.12 Event Publication Messages . 120

4.13 Varying the number of subscribers (2. . . 200) . 131

4.14 Varying the number of nodes (150. . . 1000) . 133

4.15 Varying the subscription ǫ value . 135

4.16 QPS EDTs with varying ǫ value . 136

5.1 Thames water supply coverage (taken from [Rob06]) 143

5.2 SPS architecture . 147

17

LIST OF FIGURES LIST OF FIGURES

5.3 SPS components . 148

5.4 Network view of SPS components . 149

5.5 Component view of information flow . 150

5.6 InfoS cube representation (excludes the status attribute) 152

5.7 Traffic congestion information flow . 155

5.8 SPS process timelines . 164

5.9 Traffic congestion detection . 165

5.10 Knowledge (KPs) selection . 169

5.11 Decomposed traffic congestion information flow 177

5.12 Decomposed fire detection information flow . 180

5.13 Conflict of information (due to dynamic subscriptions) 182

5.14 Reliable traffic congestion detection . 184

5.15 Application scenario overview . 190

18

List of Tables

1.1 Thesis contributions (in terms of components) . 32

2.1 WSNs vs Wireless Ad Hoc Networks . 36

2.2 Sensor network design space . 37

2.3 Classification of device roles . 40

2.4 Some sensor network applications (partially from [GHIGGHPD07]) 41

2.5 Classification of routing protocols for active delivery 46

2.6 DBMS Queries . 52

2.7 DBMSs for WSNs . 54

2.8 DBMS vs DSMS . 55

2.9 Continuous query processors and DSMSs . 56

2.10 CE operators . 58

2.11 CE-related projects (part 1) . 60

2.12 CE-related projects (part 2) . 61

2.13 Event selection parameters . 62

3.1 Simulation Results . 84

4.1 The routing protocol’s API . 99

4.2 The QPS EB callback API . 99

4.3 The QPS EB’s API . 100

4.4 The QPS event subscriber callback API . 100

4.5 Wireless Radio Parameters . 127

4.6 Simulation parameters . 128

4.7 Altered simulation parameters . 134

5.1 SPS Pub/Sub component’s API . 150

5.2 SMC manager component’s API . 151

5.3 InfoS component’s API . 152

5.4 TrafficCongestion SMC structure (definition 5.1) 156

5.5 Fixed Event Attributes . 159

5.6 Relational algebra operators . 162

5.7 QE selection operation translations . 162

19

LIST OF TABLES LIST OF TABLES

5.8 QE selection operators . 163

5.9 SMC Event Attribute Assignments . 173

5.10 Decomposed TrafficCongestion SMC . 176

5.11 Fire SMC (singular and decomposed) . 179

5.12 Non-deterministic factors and their treatments 180

5.13 Component failure resolutions . 181

5.14 Reliable TrafficCongestion SMC . 185

5.15 Filtering SMCs . 188

5.16 TrafficCongestionNear SMC . 192

5.17 Experiment parameters . 193

5.18 SPS operational performance . 194

5.19 SPS computational performance . 195

5.20 SPS storage performance . 195

5.21 SPS communication performance . 196

20

List of Acronyms

ACK Acknowledgment

ADT Abstract Data Type

ANPR Automatic Number Plate Recognition

AOA Angle of Arrival

API Application Programming Interface

CE Composite Event

CODD Cross-layer Opportunistic-sharing Data Dissemination

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CTS Clear to Send

DAG Directed Acyclic Graph

DBMS Database Management System

DCF Distributed Coordination Function

DCS Data-Centric Storage

DHT Distributed Hash Table

DK Detected Knowledge

DSMS Data Stream Management System

EA Event-Action

EB Event Broker

EC Event Client

EAI Electronic Application Integration

ECA Event-Condition-Action

21

LIST OF ACRONYMS LIST OF ACRONYMS

ECG Electrocardiogram

EDT Event Dissemination Tree

FSA Finite State Automata

FSM Finite State Machine

FSMD Finite State Machine with Datapath

GHT Geographic Hash Table

GHTD GHT Dissemination

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GS Geographical Scope

IEF Interval-based Event Filter

InfoS Information Space

JiST Java in Simulation Time

KP Knowledge Point

MAC Media Access Control

MANET Mobile Ad Hoc Network

NFA Non-deterministic Finite Automata

OSI Open System Interconnection

OSM Object State Model

P2P Peer-to-peer

Pub/Sub Publish/Subscribe

QE Query Expression

QPS Quad-PubSub

QT Quad-Tree

QoS Quality of Service

RFID Radio Frequency Identification

22

LIST OF ACRONYMS LIST OF ACRONYMS

RSN Resource-constrained Sensor Network

RTS Request to Send

SF State Filter

SK Satisfying Knowledge

SMC State Maintenance Component

SPS State-based Publish/Subscribe

SQL Structured Query Language

SQTL Sensor Query and Tasking Language

SWANS Scalable Wireless Ad hoc Network Simulator

TDOA Time Difference of Arrival

WSN Wireless Sensor Network

23

LIST OF ACRONYMS LIST OF ACRONYMS

24

Chapter 1

Introduction

This dissertation concerns support for high-level applications above sensor networks. I believe

that large-scale sensor networks (with many users and diverse applications) demand suitable

middleware solutions, and (as part of this thesis) investigate the development of an expressive

Publish/Subscribe (Pub/Sub)-based middleware framework. This thesis concludes that a combi-

nation of Pub/Sub for scalability, abstraction, and openness, with state-centric data processing

for expressiveness, can offer a suitable middleware framework for a large class of sensor network

applications that are described as smart environments.

1.1 Sensor Systems

Sensor networks are composed of devices that are capable of measuring physical phenomena

in a target environment. Recent technological improvements have enabled the production of

advanced devices that are equipped with sensing, processing, and communication capabilities. In

their most popular form, they are composed of low-power sensing components, a micro-controller,

some limited amount of memory, a low-power radio, and a finite power supply. Although a single

device has limited capability, when networked together, they can provide dense and accurate

sensing about their environment.

Sensor networks, combining measurements with computation and communication, emerge

as a promising technology that can be applied in a wide variety of application domains, for

instance in the domain of control, actuation and maintenance of complex systems, fine-grained

monitoring of indoor and outdoor environments, logistics, health care, and transportation. They

are a reusable asset: they can be deployed for substantial periods of time, during which they can

be used for various applications. Multiple users can share the infrastructure and run multiple

applications concurrently - some of these applications may not even be known beforehand. In this

dissertation, the term “sensor system” refers to the collection of sensor network infrastructure,

the employed protocols and services, users and their applications. The next section describes

the class of sensor network applications that are the focus of this dissertation.

25

1.1 Sensor Systems CHAPTER 1. INTRODUCTION

1.1.1 Application Areas

Motivated by the increased availability of sensors and the accelerating trend toward ubiquitous

environments, I envision many potentially complex applications that manipulate information

derived from a large collection of heterogeneous sensors spread across a large geographical area.

These applications can be classified according to their prior knowledge about the environment,

as this knowledge often plays a key role in the type of interest in and manipulation of the sensor

data by applications. I introduce three classes of pre-existing knowledge, and in each case detail

the most likely form of data manipulation:

Zero Knowledge These applications often aim to understand an unknown or foreign territory

(e.g. sensors deployed over Mars, sensors deployed to observe animal behavior). Their

corresponding systems are strongly application-focused and often emerge as a result of

application-driven deployment. Applications in this class are likely to receive all data that

becomes available and store this for future analysis and/or processing. Frameworks that

aim to assist these applications often explore data compression and efficient extraction

methods that reduce the cost of data retrieval and prolong the duration of data collection.

Partial Knowledge This term, perhaps, defines the most common class of sensor network

applications. Such applications have sufficient knowledge about the environment to per-

form data-driven operations with the received sensor data (e.g. automatic regulation of

temperature, responses to forest fires, crop management, and traffic control in urban en-

vironments). Applications in this class often have specific interest in the data that can

aid their operation. This often takes the form of detecting certain conditions, contexts, or

situations from the sensor data. Frameworks that wish to assist these applications often

abstract the sensor network complexities and provide high-level interfaces for easy and

compact specification of interesting data and/or the programming of sensor devices.

Full Knowledge Where full knowledge about the environment (often a man-made structure

or a machine like an airplane, an automobile, or a nuclear power plant) exists, applications

often relate to safety, crisis monitoring, fault detection, or rescue. Sensed data are exam-

ined against known patterns and behavioral policies for deviations and anomalies that may

indicate failures and/or unknown or uncommon phenomena in the environment. Frame-

works that support these applications are often application-specific as they should allow

for full specification of desired data behavior and should commonly process (or analyse)

data with real-time guarantees.

This dissertation focuses on the second class of applications described above. Sensor networks

underlying these applications are less application-specific and can often serve many users and

applications with diverse interests. These applications often relate to smart spaces or smart

environments. For example, a smart transportation system, comprised of many sensor and

actuator devices (such as inductive loops, speed cameras, Automatic Number Plate Recognitions

(ANPRs), Global Positioning System (GPS) devices, and traffic light signals) can serve many

26

CHAPTER 1. INTRODUCTION 1.2 High-level Application Support

(potentially independent) users ranging from local traffic officers to individuals in possession of

vehicles in the system. The type of interest in data may also be diverse, ranging from congestion

and accident reports to information on bus arrival times or nearby taxi ranks. Supporting these

applications over a large-scale sensor network is challenging.

1.2 High-level Application Support

In order to support the highlighted applications, a suitable middleware framework is needed that

frees the application developer from the underlying (device-related or network-related) complex-

ities and offers data (or information) through a high-level interface, providing simple processing

and data manipulation capabilities. Such a framework needs to support many features, but this

work confines itself to four key features that closely relate to data processing:

Abstraction Infrastructural details, consisting of sensing/actuation devices, network proper-

ties, and topological configurations, are heterogeneous and can change over time. These

details describe the very low-level dynamics of the network and are often of little interest to

the users. Users can instead benefit from higher level, data-centric abstractions that closely

match their interests. Abstraction, in sensor systems, shifts the application/sensor net-

work interaction from a fragile address-based communication to more robust data-centric

communication.

Scalability Managing any large-scale network with many independent or collaborative devices

and users is difficult. Managing a sensor network is more difficult as it contains a large

volume of data that is produced by many networked devices (notably the sensors). A

framework should support these devices and users without sacrificing efficiency or relia-

bility. In most sensor networks using wireless (radio-based) communications, scalability

implies support for efficient communications and managing client dynamics with low over-

head.

Openness Openness in sensor systems allows users, devices, and applications to dynamically

join or leave the system without centralized coordination or central management. It also

supports the equal treatment of users and devices so that they can select one or more

roles flexibly to suit their applications. For example, a user may operate as a consumer

and receive sensor messages (data) in one application and simultaneously operate as a

producer and send messages (commands) to actuators in another. Inter-device and inter-

user interactions are also supported in an open system.

Expressiveness Data plays a key role in sensor systems. Thus, the expressiveness of a frame-

work (in terms of the expressible interest in data) can strongly influence its usability. A

framework is considered expressive if it can support a variety of interests that are useful to

sensor network applications in a precise fashion so that irrelevant data are not delivered.

In this dissertation, concrete application examples have been given at the start of each

chapter in order to motivate and direct my design decisions.

27

1.2 High-level Application Support CHAPTER 1. INTRODUCTION

Although many of the highlighted features have been investigated in past research, several

sensor network characteristics prevent the re-use or easy migration to sensor systems of solutions

that are developed in other contexts. I briefly touch upon these characteristics and their resulting

challenges in the next section, and then proceed to describe a communication paradigm that is

well suited to large-scale sensor networks.

1.2.1 Sensor Network Challenges

Sensor networks exhibit different characteristics from traditional networks. These characteristics

divide into three classes:

Data. Data are often produced by the embedded sensing components. These components

collectively observe an external shared entity called the “environment”. As a result of this

collaborative observation, sensor data are often correlated or even redundant in the information

that it conveys to the user. This correlation and redundancy is useful when devices happen to

fail or malfunction, but during normal operation it could be eliminated to reduce messaging.

Sensor data are also primitive, meaning that it observes a simple phenomenon such as the

temperature, light, sound, or humidity in the environment; it is primitive when the employed

sensing components are small and low-powered. Data are thus typically too low-level to be

meaningful to applications and often requires further internal processing in the framework.

Switching our attention from the data to the observing entity, the environment also has temporal

and spatial characteristics that need to be considered. The environment is continuous whereas

sensor observations are discrete, i.e. are taken at discrete time points. This difference affects the

capture of lasting and continuous conditions over the sensor data and leads to some correlation

and redundancy (of observations) even at the level of a node. Environmental data has unique

type, time, and space attributes which, if captured, can augment the meaning of the data.

However, this challenges the internal data processing mechanism in the framework.

Scale. The scale of sensor networks relates to the number of devices and users that are in

the network and their dynamic behavior. As the number of devices and users increases, the use

of centralized solutions and algorithms becomes increasingly difficult and expensive. The scale

of sensor networks calls for distributed solutions that can perform efficiently in the presence of

large and changing numbers of clients (devices and users). The dynamic behavior includes two

types of change in the set of clients: the intentional change (e.g. devices are added, removed, or

replaced), and the unintentional change (e.g. nodes fail, are lost, or run out of power).

Resources. Resources that are available to the networked devices play a key part in deter-

mining the complexity of the code that can be executed over these devices. Without imposing

numerical restrictions, a system developer must acknowledge that these resources are often lim-

ited and heterogeneous. The heterogeneity of resources not only corresponds to their types (e.g.

power, processing, communication, and memory) but also to their amounts and to their costs

of usage. For example, the communication resource in wireless (radio-based) sensor networks

is considered far more expensive than the computational (processing) resource. On the other

hand, user-specified policies can define Quality of Service (QoS) restrictions over the local and

28

CHAPTER 1. INTRODUCTION 1.2 High-level Application Support

global expenditure of these resources. For example, one user may be interested in the reliability

and accuracy of information and thus demand more frequent observations and data processing,

while another could be interested in prolonged operation of the network and longer network

lifetime. Since these QoS restrictions may be conflicting, I limit my focus to systems whose

users have reached a common agreement over the cost and value of resources.

In the next section, I describe a communication paradigm whose implementation can offer

many desired features and can address some of the discussed challenges.

1.2.2 Publish/Subscribe Paradigm

Publish/Subscribe is an asynchronous communication paradigm that supports many-to-many

interactions between a set of Event Clients (ECs). An EC can be an information producer

(publisher), an information consumer (subscriber), or both. EC interactions are data-centric:

publishers describe their publishable events, subscribers express their interest in events, and

the Pub/Sub protocol (also called the event service) delivers the published events to their corre-

sponding event subscribers. This loose coupling of ECs aids scalability in dynamic environments

where ECs and their roles can change frequently.

In this thesis I argue that Pub/Sub is a suitable communication paradigm for sensor networks;

this paradigm is used to design a framework that exhibits suitable abstraction, openness and

scalability for my target sensor systems. Because this communication paradigm primarily focuses

on messaging, a set of complementary components have also been introduced which seamlessly

interact with the Pub/Sub system and process data based on application-level requirements.

These contributions are more comprehensively discussed in the next section.

1.2.3 Assumptions

The work presented in this dissertation assumes the following.

1. Sensor data are introduced to and processed within the middleware as a set of attributed

tuples which have basic data type (e.g. numerical) values for processing. Thus, the internal

manipulation of Abstract Data Types (ADTs) (e.g. image data) is not supported.

2. Sensor data are inclusive of environmental noise, whose distribution (model) is known to

the applications and transparent to the middleware. Treatment of sensor noise depends

strongly on the application semantics, which if modeled in a generic and accurate fashion

could lead to significant operational and performance complexities at the middleware.

Sensor noise can be treated as follows.

• Application-defined components, like Virtual Devices [JAF+05] in HiFi [FJK+05]

and data aggregation services in MIRES [SGV+04], can manipulate this noise in an

accurate and efficient manner, independently. I support these components and label

them as services in Figure 1.1. Nevertheless, since these components are external to

the middleware, they can not benefit from the supported features and optimizations.

29

1.3 Thesis Contribution CHAPTER 1. INTRODUCTION

Publish/Subscribe

Applications

InfoS

SMC Manager

Sensors

Actuators Services
high-levelSM

C
s

events events

events events

events

aggregated
events

events

low-level

Figure 1.1: SPS components

• Expressive middleware interfaces can be used to perform simple sensor noise manip-

ulations, internally. In the lightest component of my middleware, I confined this to

attribute-based computations, where published data can have fields (meta-data), re-

flecting the accuracy and certainty of measurements, and can be manipulated as part

of a Boolean expression. This manipulation induces little memory and computational

overheads for resource-constrained devices. In the more expressive component of my

middleware, I support data aggregation functions {max ,min, sum, avg}. Although

still limited in expressiveness, these functions are widely used (e.g. in DBMSs for

WSNs, Section 2.4.1.1) for two reasons: (a) they are believed to suit a wide range of

sensor network applications, (b) they can be implemented and processed efficiently.

3. Primitive data processing is possible within sensor networks. On resource-constrained

sensor platforms, I limit this to data filtering, and on other sensor platforms, I bound the

computational overhead by assuming basic data types (Assumption 1).

4. Where applications have high-level interests, low-level sensor data can be permanently

discarded in favor of the high-level data. This assumption is necessary for the reduction

of communication costs by in-network processing.

5. The network and the clients are co-operative and trustworthy. This work does not address

any malicious behaviors and/or security concerns that may arise in real-world deployments.

30

Introduction/Figs/EPS/compmsg.eps

CHAPTER 1. INTRODUCTION 1.3 Thesis Contribution

1.3 Thesis Contribution

In this dissertation, I develop a State-based Publish/Subscribe (SPS) framework that is a

generic middleware for high-level sensor network applications. SPS was designed to support the

features discussed in Section 1.2, given the challenges discussed in Section 1.2.1. It consists of

numerous cooperative components, where each distinct type of component provides unique func-

tionality such as data processing, data dissemination, or data storage. Figure 1.1 shows a typical

set of components that may reside on a node with SPS functionality. A Pub/Sub component

centers the implementation and provides network-wide messaging. It also serves all the client

components, which include sensors, actuators, applications, and services. These components

may produce events as publishers, consume events as subscribers, or both. The Information

Space (InfoS) and SMC Manager components are also clients of the Pub/Sub component, but

implemented as part of the SPS framework. Low-level data are delivered to the InfoS com-

ponent, processed and aggregated for the SMC Manager component, and finally examined for

high-level interests (conditions) by the SMCs. If detected, high-level events are generated and

published by the SMC Manager component for related subscribers. Components of the same

type (homogeneous components) provide their functionality in a decentralized manner (e.g. by

replication, by localized interactions, or by decomposition and distribution).

In developing the components of the SPS framework, I also had modularity and re-usability

in mind. Sensor networks, as we shall see in Section 2.1.1, adhere to a wide design space, but

also have some strong commonalities. Thus reusable components that can be used standalone or

in conjunction with other protocols are valuable. I feel my contributions can be best described in

terms of each component. Table 1.1 summarizes my contributions with respect to the required

features and sensor network challenges.

The first two components in the table, SFs and SMCs, are data processing components,

which process and evaluate data according to user-specified expressions, thereby providing ex-

pressiveness. InfoS components are closely related to SMCs: they allow data to be pre-processed

and re-used for improved expressiveness in the SPS framework. Finally, a messaging compo-

nent, QPS, implements the Pub/Sub communication paradigm that was motivated earlier in

Section 1.2.2. These components are further described below.

State Filter (SF) SFs are lightweight event filtering components that are designed for RSNs.

They extend the expressiveness of content-based Pub/Sub protocols by means of an en-

hanced subscription language. In SFs, the notion of state is used to capture lasting condi-

tions over a set of discrete events. They also enhance the scalability of Pub/Sub protocols

by filtering events that contain correlated or redundant information about the condition

being observed. This filtering is achieved through context-based event processing, in which

events are examined according to the current context of the condition being observed. SFs

subsume the content-based filters of many content-based Pub/Sub protocols.

State Maintenance Component (SMC) SMCs are an advanced form of SF that are de-

signed for more resourceful and heterogeneous sensor systems. The expressiveness of SFs

31

1.3 Thesis Contribution CHAPTER 1. INTRODUCTION

Table 1.1: Thesis contributions (in terms of components)

(a) Features list

Identification Feature

f1 abstraction

f2 scalability

f3 openness

f4 expressiveness

(b) Challenges list

Identification Challenge

c1 data are often correlated or redundant

c2 data are often primitive

c3 data are a discrete observation from a con-

tinuous environment

c4 data has type, time, and space attributes

c5 there exists a large number of clients

c6 clients are dynamic

c7 devices often have limited resources

c8 resources are heterogeneous

c9 user defines QoS restrictions over resources

(c) Designed components

Com. Features Challenges Design Space

Data Scale Resource

f1 f2 f3 f4 c1 c2 c3 c4 c5 c6 c7 c8 c9

SF

√ √ √ √
constrained devices

SMC

√ √ √ √ √ √ √ √
part of SPS

InfoS

√ √ √ √ √
part of SPS

QPS

√ √ √ √ √ √ √ √
location-aware WSNs

32

CHAPTER 1. INTRODUCTION 1.3 Thesis Contribution

is extended to allow the fusion of heterogeneous types of information into new (higher level

and richer) types of information. They acknowledge the importance of the type, time, and

space attributes of data and provide temporal and spatial features that allow fine-grained

specification of high-level conditions. For additional state storage, these components can

support greater expressiveness by allowing memory-based condition detection. Scalability

concerns have also been considered in the design of SMCs: they operate independently, can

be placed flexibly in the network, and are decomposable for distributed processing. SMCs

are the data processing elements of SPS, which contribute towards its expressiveness and

aid its scalability.

Information Space (InfoS) InfoS is a knowledge container for the SPS framework. It main-

tains data as in a relational Database table and performs basic operations that prepare

data for processing by the SMCs. Notably, InfoS complements the SMC event processing

capabilities with contextual (time and space) awareness and aggregation; it compacts a

series of homogeneous data into a single data item of the same type that is more mean-

ingful to the SMC. It also updates the stored data with knowledge that is received from

a series of discrete events. As a result, InfoS can offer richer data (consisting of historic,

continuous, contextual and/or aggregated data) to the SMCs for processing. As I shall

describe later, the InfoS component and the SMC manager component, which hosts SMCs,

are closely related in the SPS framework.

Quad-PubSub (QPS) QPS is a distributed Pub/Sub protocol for location-aware WSNs. It

supports its clients through a unified Pub/Sub interface, and supports type, time, and

space data attributes by implementing topic- and location-based event filtering capabilities.

QPS addresses the dynamic behavior of ECs, and provides complete time and location

decoupling. More important, however, is the layered architecture of QPS (which SPS

also benefits from) that results in a modular and flexible system. In QPS, the layered

architecture allows for the transparent operation of any location-based routing protocol

that satisfies the user-defined QoS requirements. A common requirement, for example, is

to prolong the lifetime of the network. As my evaluation confirms, this design decision

does not result in performance losses and, in fact, reduces the number of nodes that

must cooperate to provide Pub/Sub functionality. A dedicated layer in QPS ensures that

the selected nodes have sufficient resources to perform their tasks whilst also providing

resource-awareness. This functional layer actively relieves nodes from their tasks when

their resources become depleted and finds suitable alternatives when nodes happen to fail.

QPS can be used as a standalone Pub/Sub protocol in any location-aware WSN that has

an underlying location-based routing protocol.

The SPS framework is a composition of the SMC, QPS, and InfoS components. Together,

they provide all the desired features and address all the described challenges for supporting

high-level sensor network applications.

33

1.4 Thesis Outline CHAPTER 1. INTRODUCTION

1.4 Thesis Outline

The remainder of this dissertation is organised as follows:

Chapter 2 provides a survey of the background and related work.

Chapter 3 presents the State Filter (SF) component.

Chapter 4 describes the Quad-PubSub (QPS) Pub/Sub protocol.

Chapter 5 presents the State-based Publish/Subscribe (SPS) framework with emphasis on

the State Maintenance Components (SMCs) and the Information Space (InfoS) components.

Chapter 6 gives a brief conclusion, summarising the work described in this thesis and out-

lining future work.

34

Chapter 2

Background & Related Work

In this chapter I provide an overview of previous research efforts to support high-level applica-

tions for sensor networks. I begin by describing sensor networks and their design space. I then

explore three areas of work related to this dissertation. The first area, Programming models,

empowers application developers with a series of tools that abstract the underlying network

complexities and enable complete application development. The second and third areas provide

higher level abstractions with a direct focus on sensor data. Data delivery is the second area

and addresses challenges that arise when data needs to be relocated from sensors to applica-

tion clients. Data processing, the third area, enables data processing according to application

requirements.

2.1 Sensor Networks

Sensor networks are composed of devices that are capable of measuring physical phenomena

in a target environment. Recent technological improvements have enabled the production of

devices that are equipped with sensing, processing and communication capabilities. In their

most popular form, they are composed of low-power sensing components, a micro-controller,

some limited amount of memory, a low-power radio, and a finite power supply (battery).

Although a single sensor has limited capability, when deployed in large numbers, they pro-

vide dense sensing and have the ability to observe a given environment in great detail. They

are intelligent compared with traditional sensors because they can process and communicate

sensed information, and coordinate actions within the network. Technological advances have

also improved the range of phenomena that can be captured by the small and low-power sensing

components. Examples of these phenomena include vision, audio, ultra-sound, infra-red, tem-

perature, humidity, noise, pressure, and vibration; [BKZD04] surveys a number of commonly

used sensors and their application areas.

Sensor networks, combining measurements with computation and communication, are a

promising emerging technology that can be applied in a wide variety of application domains, for

instance in the domain of control, actuation and maintenance of complex systems, fine-grained

monitoring of indoor and outdoor environments, logistics, health care and many more that are

35

2.1 Sensor Networks CHAPTER 2. BACKGROUND & RELATED WORK

briefly touched upon in Section 2.1.2. They are a reusable asset; they can be deployed for

substantial periods of time, during which they can be used for various applications. Multiple

users could share the infrastructure and run multiple applications concurrently - some of these

applications may not even be known beforehand.

Wireless Sensor Networks vs Wireless Ad Hoc Networks

hundreds to thousands of devices tens to hundreds of devices

high network density low network density

low communication bandwidth high communication bandwidth

low (device) duty cycle high (device) duty cycle

small and cheap devices expensive and large devices

high device failure rate low device failure rate

high data redundancy low data redundancy

data centric interaction address centric interaction

non-rechargeable and non-replaceable devices rechargeable or replaceable devices

Table 2.1: WSNs vs Wireless Ad Hoc Networks

Wireless Sensor Networks (WSNs), which use radio-based communication, are one of the

most common kinds of sensor networks. They can be deployed flexibly and maintained easily.

The cost of installing, terminating, testing, maintaining, trouble-shooting, and upgrading a

wired network has made wireless systems increasingly attractive for general scenarios. Research

on WSNs is closely related to that on wireless ad hoc networks as almost all WSNs use ad hoc

infrastructures and depend on organizing techniques (for establishing communication routes)

that have been previously studied in the context of wireless ad hoc networks. However, there

are some differences that must be considered when supporting applications on WSNs [IMK04].

Table 2.1 shows the main characteristics that often differentiate them.

There has been significant research attention on WSNs, much of which is directed towards

power consumption issues because of nodes’ power constraints. Other issues that have received

relatively little attention in the past and are further explored in this dissertation are the external

observation of sensor devices and temporal and spatial significance of sensed data. Sensor

networks are different from traditional information-based networks, because sensors observe a

common (shared) external entity, the physical environment. As a result, sensors may capture

information that is correlated or redundant across time and/or space. In this dissertation, I

develop a set of tools that aid the application developer in dealing with these correlation and

redundancy issues. In the next section, I describe the sensor network design space.

2.1.1 Design Space

With the emergence of small sensor devices and WSNs, the quest for sensor network applications

also began. Discussions at related conferences and workshops [RM04a] indicated that sensor net-

36

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Sensor Networks

works have made their way into a wide range of applications with different requirements and

characteristics. This not only complicates the classification of research on sensor networks, but

also means that no single solution can benefit all sensor network applications. In an effort to

scope and structure sensor network research, it was suggested [RM04a] that a sensor network

design space be created that identifies the various dimensions of sensor networks. These dimen-

sions not only characterize the properties of sensor networks, but also provide a coarse-grained

classification of sensor network applications.

In the following sections I describe and discuss a number of design dimensions that are

relevant to this dissertation. The aims of these discussions are two-fold; firstly to describe the

range of sensor network systems that are of interest to me (and that can, therefore, benefit from

this dissertation), and secondly to provide a global and comparative view of my contribution

relative to the field of sensor networks.

Dimension Classes

Deployment random vs manual

installed vs ad hoc

one-time vs iterative

Network Size small (10s) vs medium (100s) vs large (1000s)

sparse vs covered vs dense (redundant)

Heterogeneity homogeneous vs heterogeneous

brick vs matchbox vs grain

Mobility immobile vs partly vs all

occasional vs continuous

active vs passive

Communication radio vs light vs inductive vs capacitive vs sound

Infrastructure infrastructure vs ad hoc

Connectivity connected vs intermittent vs sporadic

Role sensor vs actuator vs relay vs user

Table 2.2: Sensor network design space

Table 2.2 lists the sensor network design dimensions and their classes. These dimensions

closely relate to those considered by [RM04a], but have been slightly modified to reflect my

personal view - [RM04a] has solely focused on sensor devices, yet I believe that sensor networks

could embed other infrastructures such as actuators and relay nodes (explained shortly). For

each dimension (or sub-dimension), the class that is most relevant to my work or contribution is

highlighted in italics; sensor networks that occupy these design points can significantly benefit

from this dissertation. On the contrary, items (classes) in bold have not been considered in this

dissertation.

37

2.1 Sensor Networks CHAPTER 2. BACKGROUND & RELATED WORK

2.1.1.1 Deployment

The deployment of nodes may take several forms. Nodes may be scattered randomly or placed

at chosen spots (manual). They may be individually set up (installed) or left in a global startup

state (ad hoc) after their placement. Finally, deployment may be a one-time activity or a

continuous process (iterative) where nodes are gradually added over time.

2.1.1.2 Network Size

Network size is often determined by the required coverage and connectivity. Coverage describes

the geographical area of interest, as well as the degree of monitoring that is desired in the

environment. If failures are frequent and sensor readings are imprecise, then a dense (redundant)

coverage is preferred, otherwise a partial coverage (sparse) or full coverage (covered), depending

on the desired Quality of Service (QoS), may suffice.

2.1.1.3 Heterogeneity (of platforms)

Networked nodes can have identical hardware (homogeneous) or different hardware (heteroge-

neous). Homogeneous networks are motivated by the low cost of manufacturing large quantities

of identical hardware, but most prototype and deployed systems to date have consisted of a va-

riety of hardware devices. A multi-tier (heterogeneous) network is favored due to its scalability

and low per node scalability costs.

In relation to physical size of the devices, they may be as large as bricks or as small as grains;

the size usually depends on the application environment where sensors are to be deployed. The

size also affects the level of resources that could be available to a node. Thus, heterogeneous

networks are often seen to have nodes of different sizes. To date, many hardware platforms have

been developed that differ in hardware resources, size, reliability, and robustness. Some of these

are BEAN, Particles, BTnode, Rene, COTS, ScatterWeb, Dot, Sensinode, Ember, SHIMMER,

Eyes, SquidBee, FireFly, SunSPOT, Fleck, Telos, IMote, TinyNode 584, Imote2, T-Mote Sky,

KMote, T-Nodes, Mica, WeBee, Mica2, weC, Mica2Dot, XYZ, MicaZ, WINS, Mulle, WiseNet,

and Nymph - please refer to surveys [BBB+06; SNMa; MHS] for more details on these platforms.

2.1.1.4 Mobility

Sensors may change their location after initial deployment. Mobility can be active (i.e. auto-

motive) or passive (i.e. as result of environmental influences like wind or water). It may apply

to all, a subset, or none of the nodes in the network. The degree of mobility may also vary from

occasional to constant (continuous) in time. Mobile Ad Hoc Networks (MANETs) are typically

described by the active, all, and continuous mobility classes in this dimension. Sensor networks,

however, are often passive and immobile.

38

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Sensor Networks

2.1.1.5 Communication modality

The most common communication modality is radio, mainly because it does not require a

free line of sight. Other communication modalities are light, sound, inductive, and capacitive.

These may apply some restrictions, but have different characteristics that may suit alternative

environments such as under water or underground. It is worth noting that most passive Radio

Frequency Identification (RFID) systems use inductive coupling.

2.1.1.6 Infrastructure

Two common forms of constructing an actual communication network are infrastructure-based

and ad hoc. In infrastructure-based networks, nodes can only directly communicate with so-

called base station devices. Deployment and installation of these base stations, however, is

expensive and often not feasible in target environments. Therefore, the alternative (ad hoc

network) is preferred, where nodes can directly communicate with each other without an in-

frastructure. A combination of the two is also used sometimes, where clusters of nodes are

interconnected by a wide area infrastructure-based network.

2.1.1.7 Connectivity

The connectivity of a network is defined by the physical location of sensor nodes and their

communication ranges. If there is always a network connection (perhaps through multiple hops)

between any two nodes, the network is said to be connected. Intermittent connectivity is where

occasional network partitioning may exist, and sporadic is where nodes are isolated most of the

time.

2.1.1.8 Device Roles

The majority of nodes in a sensor network are sensor devices (i.e. are equipped with sensing

components). However, not all must be sensor devices. Some nodes may be attached to user

applications, and reflect the user in the network. Others may be deployed to perform actuation

(actuators) or just to ensure network connectivity (and prolong the network lifetime) by relaying

packets (relay nodes). These roles (except relay) have their own sub-classifications which are

shown in Table 2.3 and discussed below.

Sensors. These devices are identified by having a piece of hardware that monitors or ob-

serves the immediate environment. The phenomenon that is observed by these devices may be

unique (homogeneous) or different (heterogeneous). The sensor may also be scalar or discrete,

depending on the phenomenon that it observes. Scalar sensors observe a context that is contin-

uously available for sampling such as temperature, humidity, light, and sound. The challenge

here is to sample the environment so frequently that no important event is missed, but that

also not much energy is dissipated over time. Discrete sensors, on the other hand, observe their

phenomenon at discrete time points that are signalled by an external event such as user-entered

information, a door-opened event, or a tag-read event.

39

2.1 Sensor Networks CHAPTER 2. BACKGROUND & RELATED WORK

Table 2.3: Classification of device roles
(a) Sensors

homogeneous

heterogeneous

scalar

discrete

(b) Actuators

internal

external

(c) Users

internal

external

one

many

collaborative

independent

learning

monitoring

checking

Actuators. Actuators can turn a passive sensor network into an active one; the network can

react to changes that it senses from the environment. Actuation may manipulate the external

environment or the internal sensor system.

Users. Users are often assumed to connect to the sensor network externally (via base sta-

tions), but in ad hoc networks it is more convenient to connect internally (i.e. via a chosen

node in the network). There may be only one user, in which case the sensor network becomes

strongly application-focused, or many users, in which case the sensor network is shared. If there

are many users, they can operate collaboratively or independently; opportunities for resource

sharing (sharing computations, data, and communications) may be lost if users operate inde-

pendently. Finally, users either learn about, monitor, or check the environment, depending on

their prior knowledge of the environment. Where the environment is foreign and unknown to

the user, the user is mostly interested in observing and learning about the environment. Where

some (partial) prior knowledge is available, the user may be keen to detect and monitor inter-

esting events and/or situations. Where the user has full knowledge about the environment (as

in man-made structures), then the user may be interested in checking and ensuring that the

environment behaves (operates) as desired or designed.

2.1.2 Applications

As mentioned, sensor networks have found their ways into a wide range of applications. These

applications occupy different points in the sensor network design space, and [RM04a] has illus-

trated this for a set of applications with dimensions that closely match those outlined in the

previous section. In this section, I do not provide a classification and refer the reader to [RM04a];

instead, I list a number of areas and applications that have been considered for sensor networks

in the literature. Table 2.4 provides a list of these applications, some of which may extend

beyond the scope of this dissertation. Nevertheless, the technical chapters in this dissertation

start with concrete and related application examples.

40

CHAPTER 2. BACKGROUND & RELATED WORK 2.1 Sensor Networks

Area Applications

industrial monitoring/control of industrial equipment (LR-WPAN [GNC+01]). factory

process control and automation [SSJ01]. manufacturing monitoring [SP04].

monitoring underground structures [LL07]. smart energy [RAF+01].

military military and civilian surveillance [EGHK99]. military situation aware-

ness [SSJ01]. sensing intruders on bases, detection of enemy units movements

on land/sea, chemical/biological threats and offering logistics in urban war-

fare [DA02]. battlefield surveillance [SP04]. command, control, communi-

cations, computing, intelligence, surveillance, reconnaissance, and targeting

systems [ASSC02]. target tracking [ZSR02].

location location awareness (Bluetooth [GNC+01]). Person locator [SP04].

public

safety

sensing and location determination at disaster sites [GNC+01; CGH+02].

automotive tire pressure monitoring [GNC+01; CGH+02]. active mobility [RM04a]. co-

ordinated vehicle tracking [SSJ01].

airports smart badges and tags [GNC+01; CGH+02]. wireless luggage tags [GNC+01].

passive mobility (e.g., attached to a moving object not under the control of

the sensor node) [RM04a].

agriculture sensing of soil moisture, pesticide, herbicide, pH levels [GNC+01; CGH+02;

BBB04].

emergency

situations

hazardous chemical levels and fires (petroleum sector) [GNC+01]. fire/water

detectors [DA02]. monitoring disaster areas [ASSC02].

rotating

machinery

monitoring and maintenance (electric sector) [GNC+01].

seismic

commer-

cial

warning systems [DA02]. managing inventory, monitoring product qual-

ity [SP04; ASSC02].

medical/

health

monitoring peoples locations and health conditions [SP04]. sensors for: blood

flow, respiratory rate, Electrocardiogram (ECG), pulse oxymeter, blood pres-

sure, and oxygen measurement [HMCP04]. monitor patients and assist dis-

abled patients [ASSC02].

ocean monitoring fish [SP04].

others monitoring in-building energy usage [BBC]. fine-grain monitoring of nat-

ural habitats [CEH+01]. instrumented learning environments for chil-

dren [SMP01]. measuring variations in local salinity levels in riparian en-

vironments [SBM+00].

Table 2.4: Some sensor network applications (partially from [GHIGGHPD07])

41

2.2 Programming Models CHAPTER 2. BACKGROUND & RELATED WORK

Physical

Data Link (MAC)

Addressing

Time Synchronization

Localization

Topology Control

Routing

Transport

Figure 2.1: Communications protocol stack

2.1.3 Communication Protocols

Like traditional computer networks, sensor networks can also be analyzed in terms of Open

System Interconnection (OSI) layers. The communications protocol stack, for sensor networks,

can be described using eight layers [KW03; ASSC02]. These layers are physical layer, data link

(Media Access Control (MAC)) layer, addressing layer, time synchronization layer, localization

layer, topology control layer, routing layer, and transport layer (shown in Figure 2.1). These

layers closely correspond to the physical, data link, network, and transport ISO OSI layers. Each

layer may have zero or more protocols, depending on the sensor network design and application

requirements, to support its functionality. In this dissertation, the communication layers below

the routing layer are often referred to as the network layer for brevity. For a description of

these layers and a survey of protocols that have been developed to support their functionality

see [KW03; ASSC02]. Where directly related, a concise definition of the layers and discussion

of their related protocols is presented within the technical chapters. In the next few sections,

I discuss the related work on supporting high-level applications in sensor networks. This work

either implements (parts of) the highlighted protocol stack and/or relies on it to support higher

level application semantics.

2.2 Programming Models

Programming models are the foundations of sensor network middleware. They provide high-

level programming interfaces to the application programmer and can be classified [SG08] into

node-level programming, group-level programming, and network-level programming. Node-level

42

Chapter1/Figs/EPS/stack.eps

CHAPTER 2. BACKGROUND & RELATED WORK 2.2 Programming Models

programming takes a platform-centric view of the sensor network, and focuses on abstracting

hardware and allowing flexible control of the nodes. The latter two models take an application-

centric view and address how easily application logics can be programmed over a group or the

entire network of nodes in the system. These classes are further described below.

2.2.1 Node-level Programming

One of the earliest node-level programming models, which has also become the de facto standard

software platform (together with NesC [GLvB+03] programming language), is TinyOS [HSW+00a].

TinyOS is a component-based Operating System with modular programming that focuses on

resource constrained devices; it offers a limited set of services, disallows dynamic allocation, and

provides a simple concurrency model. Application programming at this low level is often very

difficult. One way to tackle this complexity is to extend the event model.

Object State Model (OSM) [KR05] is a programming model that allows developers to specify

their applications as Finite State Machines (FSMs). It extends the event paradigm with state

and transitions, making actions a function of both the event and the program state. The

authors claim that relaxing the tight coupling between events and actions in this way can ease

application programming and support a more efficient style of programming. Once specified in

terms of FSMs, the application can be transformed into native code through the OSM compiler.

OSM borrows the concepts of hierarchical and parallel composition of state machines from

Statecharts [Har87], and adopts the concept of concurrent events from SyncCharts [And96].

It also introduces state attributes that allow information sharing among actions. Finite State

Machine with Datapath (FSMD) [GR94] had earlier introduced similar attributes to FSMs. This

reduced the number of states that had to be declared explicitly, but attributes had global scope

and lifetime. In OSM state attributes are local and bound to a state hierarchy.

Another interesting node-level programming approach is to run a virtual machine on each

node. Examples of this approach are frameworks like Maté [LC02], ASVM [LGC05], Melete [YRBL06],

VMStar [KP05], Impala [LM03], and SensorWare [BHS03]. The main advantage of this approach

is that programs can be expressed in smaller virtual machine byte code than native code; thus,

program updates after deployment (re-programmability) can be performed more efficiently. The

trade-off cost here is the interpretation of the virtual machine byte code that leads to some

execution overhead. Please visit [SG08] for a survey of virtual machine frameworks for sensor

networks.

2.2.2 Group-level Programming

Group-level programming aims to handle a collection of nodes and provide a set of language

constructs that can be used to specify a desired group behavior. These models can be used

to facilitate collaboration among a group of nodes. The groups can be formed according to

topological connectivity or logical attributes; the former is called a neighborhood-based group

and the latter is called a logical group.

43

2.2 Programming Models CHAPTER 2. BACKGROUND & RELATED WORK

Neighborhood-based Groups. The underlying motivation for this model is that sensor

network algorithms often process data within a localized neighborhood [SG08]. This neighbor-

hood can be specified according to the topology (n-hop neighbors) or the geographical distance

(k-nearest neighbors), and is often assumed to remain static. Abstract regions [WM04] and

Hood [WSBC04] are examples of this programming model, with the distinction that the latter is

restricted to 1-hop neighbors as the sole group definition. This work supports a number of prim-

itive operations, such as neighborhood discovery, variable sharing via a Linda-like tuple space

and MPI-like data reduction. Although operations over groups can be efficiently implemented

in these models, the translation of application logic into a network-dependent protocol may be

difficult. In fact, in these models the network topology is not abstracted from the application

developer but provided as the basis of collaboration between application nodes.

Logical Groups. This model is more expressive than the previous model and can even

subsume the neighborhood abstraction by definition. Logical groups, however, are often defined

at a higher level relating to sensor types, inputs and/or outputs. EnviroTrack [ABE+04] is a

programming abstraction specifically designed for target-tracking applications. It differentiates

itself from traditional localization systems in that it does not assume cooperation from the

tracked entity (e.g. a user does not wear a beaconing device to aid localization and tracking). It

assigns addresses to physical events in the environment, and defines groups that observe the same

events. It provides similar services to the previously discussed programming abstractions, but as

the group membership is more dynamic, it has a more sophisticated group management protocol.

Another programming model proposes the SPIDEY [MP06] language, in which the static and

dynamic attributes of nodes are exported and grouping predicates (conditions over attribute

values) are specified to define the logical groups. Finally, PARC’s PIECES framework presents

a state-centric programming abstraction [LCRZ03] that eases the programming of collaborative

signal and information processing applications. They employ the notion of “collaboration group”

that is defined by a “scope” (which restricts the group membership) and a “structure” (which

defines the member roles). They do not provide a rich set of communication operations, but

provide sufficient expressiveness to allow for the implementation of high-level abstractions.

2.2.3 Network-level Programming

Network-level programming sees the sensor network as a whole and considers it as a single

abstract machine. Its goal is to perform programming from a macroscopic viewpoint so that

every node and data item can be accessed without considering low-level communications among

nodes [SG08]. Regiment [NW04; NMW07] and Kairos [GGG05] are two programming models

that allow global behavioral specifications. Regiment is a functional language with a syntax

similar to Haskell; it hides the direct manipulation of program states, thereby providing flexibil-

ity for the compiler. Regiment programs are initially compiled into TML [NAW05] and then to

NesC. Unlike Regiment, Kairos is language-independent and can be implemented as an extension

to existing programming languages. Kairos focuses on providing a small set of constructs: read-

ing and writing variables at nodes, iterating through 1-hop neighbors, and addressing arbitrary

44

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Data Delivery

nodes. Furthermore, to reduce communication overhead, Kairos employs a weak consistency

model (called “eventual consistency”) for shared (remote) data access. Additional details, or

other work related to this class of programming models can be found in [SG08].

2.3 Data Delivery

Data is the most important element in any sensor network; sensors are, after all, deployed to

collect environmental data. I call the process of transferring data from sensors (i.e. producers)

to users (i.e. consumers) data delivery. Data delivery may be active or passive. In the former,

data is almost immediately routed and delivered to the user, while in the latter data is stored

(either at the sensor node, at an intermediate node, or at the user node) and delivered only

upon a subsequent pull request from the user. Note that data routing, which is an element of

data delivery, is only required if the data producer and the data consumer do not co-exist on a

node1.

The distinction between active and passive delivery is also related to the timeliness require-

ments for data delivery; applications that favor timeliness and operate in a data-driven manner

prefer active delivery, while others may prefer passive delivery. Passive delivery allows for some

performance optimizations such as data aggregation and batched data routing. In the following

sections, I confine myself to surveying data delivery for WSNs, and survey the suite of routing

protocols that have been developed to support each type of data delivery.

2.3.1 Active Delivery

Most sensor network applications require some level of timeliness, therefore developing routing

protocols for active data delivery has been a popular research topic. In this dissertation, unless

otherwise specified, data routing generally refers to data routing for active data delivery.

Data routing in WSNs is challenging for three reasons. Firstly, communication over wireless

media is unreliable and failure-prone. Secondly, wireless communication is expensive - sub-

stantially more expensive than other resources such as processing [PK00]. Thirdly, routing is

performed by devices which are themselves unreliable, primitive, and failure-prone. This has

led researchers to investigate a whole range of wireless routing protocols that are optimized for

different network and application settings.

Routing protocols can be broadly categorized into four classes: data-centric, hierarchical,

geographical (location-based), and QoS-based. Apart from data routing, some protocols also

support primitive data aggregation (e.g. filtering of duplicate data that is observed by different

sensors). This form of aggregation (called in-network aggregation) has been shown [KEW02]

to reduce the size of data that is communicated in the network, and therefore can reduce the

overall communication cost. Table 2.5 shows the classification of some popular routing protocols,

and support for data aggregation. I do not discuss these protocols here, but refer the reader

to [AY05; AKK04] surveys for more information on them and their classifications. Instead, I

1They often don’t!

45

2.3 Data Delivery CHAPTER 2. BACKGROUND & RELATED WORK

Routing protocol Data-centric Hierarchical Geographical QoS Aggregation

SPIN [HKB99]
√ √

Directed Diff. [IGE00]
√ √

Rumor routing [BE02]
√ √

GRAB [YZLZ05]
√ √

GBR [SS01]
√ √

MIRES [SGV+04]
√ √

COUGAR [BGS00]
√ √

CADR [CHZ02]
√

ACQUIRE [SKA03]
√

SAFE [KSS+03]
√ √ √

TTDD [YLC+02]
√ √

GAF [XHE01]
√ √

(AP)TEEN [MA01]
√ √ √

LEACH [HCB00]
√ √

PEGASIS [LR02]
√ √

(S)MECN [RM99]
√ √

GEAR [YGE01]
√

SPEED [HSLA03]
√ √

SAR [SGAP00]
√

[TOB04]
√

[CPR05]
√

[HCRW04]
√

[SR02]
√ √

[LHZ04]
√ √

[YYA02]
√ √

[SK00]
√ √

[AY03]
√ √

Table 2.5: Classification of routing protocols for active delivery

46

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Data Delivery

(a) Interest propagation (b) Initial gradients set up

(c) Data delivery along reinforced path

Figure 2.2: Schematic diagram for Directed Diffusion

present a short description of one of the most popular routing protocols in WSNs, the Directed

Diffusion protocol, and then present a communication paradigm that can serve future generations

of sensor network applications.

Directed Diffusion [IGE00; IGE+03; HSE03]. Directed Diffusion is a data-centric

routing protocol in which data generated by the nodes is named by attribute-value pairs. It

is a destination-initiated reactive protocol in which routes are established when requested. An

interest message is propagated throughout the network for named data (by a node) and data

which matches this interest is then sent towards this node. The interest message and the data

which is sent as a response to the interest contain a list of attribute-value pairs. The main

Directed Diffusion protocol [IGE00; IGE+03] (also referred to as the two-phase pull protocol)

operates as follows.

The sink (destination) requests data by broadcasting interests. An interest diffuses through

the network hop by hop, and is broadcast by each node to its neighbors (see Figure 2.2(a)). As

the interest propagates, gradients are set up to draw data towards the sink. Each node that

receives the interest sets up gradients toward the nodes from which it receives the interest (see

Figure 2.2(b)). When an interest arrives at a data producer, that source begins producing data.

The first message sent from the source is marked as exploratory and is sent to all neighbors that

have matching gradients. The exploratory data can reach the sink via one or more paths. The

sink subsequently reinforces its preferred neighbor (this is defined by the application semantics)

to establish a single reinforced path towards itself; the process is iterated (i.e. the reinforced

47

Chapter1/Figs/EPS/dd1.ps
Chapter1/Figs/EPS/dd2.ps
Chapter1/Figs/EPS/dd3.ps

2.3 Data Delivery CHAPTER 2. BACKGROUND & RELATED WORK

neighbor reinforces its own preferred neighbor and so on) until the data source or sources are

reached. Subsequent data messages are not marked exploratory, and are sent only on reinforced

gradients (see Figure 2.2(c)). These gradients, however, are managed as soft-state; thus, both

interests and exploratory data occur periodically to refresh this state. In addition, negative

reinforcements are supported to eliminate erroneously reinforced gradients. Figure 2.2, taken

from [IGE00], summarizes the protocol’s basic operation.

In later work, [HSE03], the Directed Diffusion developers introduced two variants of the

protocol, one-phase pull and push diffusion, that operate more efficiently than the two-phase pull

protocol by eliminating one of the two broadcast stages. The one-phase pull protocol eliminates

the propagation of exploratory data and implicitly reinforces gradients on the lowest latency

paths. End-to-end flow identifications (flow-id) are used to ensure unique reinforced paths, and

negative reinforcements are used to eliminate duplicates and/or path loops. The second variant,

the push diffusion protocol, targets a rare application scenario in which sensors produce very

little data and there are many sinks. It eliminates the interest message propagation, and uses

exploratory data (by each source) to deliver initial data from sources to sinks. Sinks can then

reinforce paths (as in the two-phase pull protocol) to receive non-exploratory messages.

2.3.1.1 Publish/Subscribe

Pub/Sub is a many-to-many asynchronous communication paradigm that loosely couples the

data producers (publishers) and the data consumers (subscribers). It is data-centric in that the

relationship between the publishers and the subscribers is solely defined by the data (events).

Publishers actively introduce events (e) by means of invoking a publish operation, publish(e); and

subscribers independently describe their interests (s) through a subscribe operation, subscribe(s).

The structure of events is described by an event model and often constitutes a set of attribute-

value pairs. Subscriptions are filters that examine portions (or the entire contents) of events.

They consist of a set of constraints that conform to a subscription language defined by a subscrip-

tion model. An event e is said to match a subscription s if it satisfies all its declared constraints,

e ⊑ s. The expressiveness of the Pub/Sub system is determined by its subscription model. The

most popular subscription models are topic-based, content-based, and type-based ; readers are ad-

vised to consider [EFGK03] for more details about these subscription models. The remainder of

this section deals with Pub/Sub in the context of WSNs, please consider [EFGK03; LP03; BV06]

surveys for Pub/Sub systems in other contexts (e.g. wide-area networks and Internet-based en-

vironments).

WSN routing protocols as Pub/Sub. The importance of data in sensor networks has

bridged the gap between the WSN routing protocols and the Pub/Sub communication paradigm.

The data-centric routing protocols closely fit the description of a Pub/Sub protocol. The rein-

forced paths constructed by the Directed Diffusion protocol are equivalent to an Event Dissem-

ination Tree (EDT) that directs events from publishers (sensors) to subscribers (sinks). A few

differences, however, exist that are worthwhile discussing here.

48

CHAPTER 2. BACKGROUND & RELATED WORK 2.3 Data Delivery

Firstly, existing WSN routing protocols mainly focus on one-to-one or many-to-one commu-

nications where the consumer is often a fixed and known base station device. It is not clear

if WSN routing protocols are suited (in terms of scalability) for a many-to-many communica-

tion environment, where there are many consumer nodes with dynamic behavior in the sensor

network. Secondly, although in a Pub/Sub communication paradigm Event Clients (ECs) can

flexibly adopt roles (e.g. base stations can become publishers and actuators can become sub-

scribers to support a reversed flow of data), most WSN routing protocols to date have tightly

coupled the role of the network nodes to that of a publisher and the gateway (or base station)

to that of a subscriber. A Pub/Sub protocol can support actuation as noted earlier, and even

provide inter-application messaging for collaboration and resource sharing.

Thirdly, the common Pub/Sub communication paradigm assumes publishers to be active

(i.e. publishers invoke the publish operation independently of the subscriptions), whereas the

WSN routing protocols prefer an initial pull style interaction where publishers are not required

to publish any data until queried for - this allows for some energy saving as sensors may be

turned off when there are no subscribers. Fourthly, data aggregation in Pub/Sub has not been

supported to the same level as WSN routing protocols. MIRES [SGV+04], however, has shown

how equivalent data aggregation can be achieved in Pub/Sub by introducing data aggregation

services that subscribe to raw events and publish aggregated events. Finally, complete location

and time decoupling in WSN routing protocols is not supported; this is further discussed below.

Decoupling in Pub/Sub. Pub/Sub supports many forms of decoupling between publishers

and subscribers, two of which are time and location decoupling. Time decoupling means that

interacting parties do not need to be active at the same time. More specifically, publishers do

not need to be active when subscribers subscribe, and subscribers need not to be active when

publishers publish to take part in the interaction. Many WSN routing protocols fail to update

the EDT when a publisher joins the network after a subscription; thereby partially violating this

time decoupling requirement. Soft-state subscriptions are a simplistic solution to this problem

that may lead to event misses.

Location decoupling means that publishers and subscribers do not need to know about each

other’s location, and that the interaction between the two is independent of their location.

This decoupling results in location-based filters over the data as opposed to the publisher’s

location. For example, the subscription “temperature events from sensors located in room A”

imposes a constraint over the publisher’s location (i.e. the publisher sensor needs to be located

in room A) as opposed to the data values. I argue that a subscription of the form “temperature

events with a location attribute value equal to room A” is preferable; in this case the constraint

is imposed over the data and the publisher (sensor) may be located anywhere. A Pub/Sub

protocol with complete location decoupling has numerous advantages over location-based WSN

routing protocols that support location-based constraints over the publishers. For example, the

following application settings can be supported by the Pub/Sub protocol but not the location-

based routing protocols.

49

2.3 Data Delivery CHAPTER 2. BACKGROUND & RELATED WORK

1. Sensors (e.g. camera) that observe a non-local environment remotely (i.e. remote sensing).

The location attribute of the data does not match that of the publisher’s.

2. Mobile sensors that publish data relating to a location visited in the past (i.e. mobile

sensing). The location attribute of the data and the present location of the publisher may

not match.

3. Aggregation of events at a node that is located outside the region of interest (i.e. external

aggregation). In this case, the aggregated data is published by a node that is external to

the area of interest.

Of course, Pub/Sub’s main requirement is the decoupling of EC identities (i.e. publish-

ers need not know about the subscribers, and vice-versa). In this dissertation, WSN routing

protocols that are data-centric and satisfy this requirement are labelled as Pub/Sub protocols

following the terminology of the research community. These protocols can operate and support

a Pub/Sub-like interface. The term “proper Pub/Sub protocol”, however, is used for a Pub/Sub

protocol that provides a complete time and location decoupling. This dissertation presents QPS,

a proper Pub/Sub protocol for WSNs, in Chapter 4.

2.3.2 Passive Delivery

Passive data delivery suits the class of applications that do not need to respond to sensed data

immediately. These applications often benefit from a query-based communication paradigm.

Sensed data, however, needs to be stored until queried for. In [REG+02], three storage mech-

anisms (source-side, consumer-side, and rendezvous-based) are compared and the rendezvous-

based storage (also referred to as Data-Centric Storage (DCS)) has been shown to be more

scalable than others. Following that analysis, significant research has focused on how to store

data in a predetermined way so that queries can efficiently find their corresponding information.

The initial work, Geographic Hash Table (GHT) [RKY+02], only supported named data (i.e.

users could only query a name), but later efforts, DIMS [LKGH03], DIFS [GER+03], DIMEN-

SIONS [GEH03], and [GGHZ04], support more expressive querying, allowing for range queries

(over attribute values) or searching for features in sensor networks.

The highlighted work relies on location-awareness to build structured overlays (much like

CAN-[RFH+01] or Chord [SMK+01]) in sensor networks. These overlays allow DCS points to

be efficiently defined and located by independent entities (sensors and sinks) in the network.

Furthermore, correlated data may be aggregated at the DCS points to reduce the size of data

that is sent in response to a query. More recently, Seada and Helmy proposed rendezvous

regions [SH04], a structured overlay in which each key is not mapped to a single node but to

a region that contains multiple nodes. Nodes within each region collaboratively maintain their

corresponding DCS point. The authors claim that this collaboration allows a higher level of

reliability to be reached when nodes are failure-prone or mobile.

50

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

2.4 Data Processing

As sensor networks are made of large numbers of sensor nodes, data delivery from producers to

consumers can easily congest the network. One solution to data congestion is to use the nodes’

computational power and reduce the size of the data that is transmitted to the consumers.

This mechanism, data processing, can also reduce the amount of energy that is consumed in the

network, especially if radio-based communication is involved.

The advantages of data processing are two-fold. Firstly, the size of data is reduced, therefore

a costly resource (communication) is partially traded with a cheaper resource (computation).

Secondly, the meaning of data is improved. If user-guided data processing is performed, then

the result is more meaningful and richer to the user. In this dissertation, I identify two classes

of data processing: data aggregation and data fusion. Data aggregation is a process by which

a homogeneous class of data (i.e. data of one type) is processed and reduced in size. The

output data is of the same type as the input. This dissertation focuses on standard aggregation

operations (similar to those found in the Structured Query Language (SQL)); there also exists a

large body of work on approximate aggregates and operator-specific aggregation algorithms that

is beyond the scope of this dissertation. An introduction can be found in [NLF07].

The second class of data processing, data fusion, is where heterogeneous data (i.e. data of

different types) are processed into a new (and often more complex) type of data. This class of

data processing is almost always user-defined and explored in two separate fields of study: the

Database-oriented abstraction and the event-based abstraction. Compared to the discussed pro-

gramming models (Section 2.2), these abstractions free the application developer from low-level

coding which could significantly complicate the development of complex and correct programs.

They provide suitable services (e.g. automated optimization, operator placement and ordering)

with desirable guarantees (e.g. safety) at the expense of limiting the application developer to a

restricted language semantics through a high-level (often declarative) interface. These abstrac-

tions are often an easy and compact way for end-users to write programs for sensor networks.

2.4.1 Database Abstraction

The Database is one of the earliest high-level abstractions proposed for sensor networks. Two

approaches are typical in active treatment1 of data produced by sensors. The first consists of

viewing the sensor network as a distributed Database where data resides on spatially spread

sensor devices and queries are pushed all the way down to the sensors from one or a few base

stations. In the second form, the sensor network is seen as a non-interruptible source of data

(data stream) whose data is archived and processed (according to user-expressed queries) at base

stations. The first approach results in much less energy consumption if query-specific in-network

aggregation can be used, while the second approach is useful for when applications do not know

a priori what data processing to perform or if in-network processing is not possible. However,

it does introduce the congestion problem noted earlier.

1Passive data treatment was discussed in conjunction with passive data delivery in Section 2.3.2

51

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

Realisation time Longevity

ad hoc one-time (transient)

pre-defined continuous (persistent)

Table 2.6: DBMS Queries

Database queries can be broadly partitioned across two dimensions of specification time and

longevity (see Table 2.6). Starting with the specification time, pre-defined queries are those

which are known before any data is received or added to the Database table. This a priori

knowledge allows a wide range of query optimizations and planning before data is processed. In

contrast, ad hoc queries are specified at run-time and provide little opportunity for optimizations

unless reconfiguration is possible. In order to avoid unnecessary complexities, most Database

Management Systems (DBMSs) only allow ad hoc queries to examine the current state of the

Database (i.e. ad hoc queries over the past data are not allowed).

Once a query is specified, the query may merely examine a snapshot of the Database; this

query is referred to as a one-time or transient query, or examine the Database in a continuous or

periodic fashion; this query is referred to as a continuous or persistent [TGN+92] one. Although

traditional DBMSs focused on one-time queries, researchers feel that most emerging sensor net-

work applications will demand continuous queries. This demand plus the unique characteristics

of sensor networks have inspired a new body of research, surveyed below.

2.4.1.1 DBMS for WSNs

Since the emergence of WSNs, researchers have begun exploring potential applications for these

networks, and have found many, some of which were listed in Table 2.4. They also discovered

that the expected usage of sensor networks is that users will query the network and obtain one or

more responses. With sensors producing data and users posing queries, a top-down architectural

view resembling distributed Databases emerged quickly [GHH+02].

Studies, however, showed [YG03] that sensor networks are different from traditional dis-

tributed Databases. Firstly, sensor networks have communication and computation constraints

that are very different from regular desktop computers or dedicated equipment in data centers;

query processors have to be aware of these constraints. Secondly, the notion of the cost of a

query plan is different as the critical resource in a sensor network is power, and query optimiza-

tion and query processing have to be adapted to take this optimization criterion into account.

Proposed solutions (e.g. COUGAR [BGS00; BGS01], TinyDB [MFHH03], SINA [SSJ01; SJS00],

and ACQUIRE [SKA03]) have implemented a similar approach to this problem, but have pur-

sued different enhancements and optimizations about the data model, the query model, and the

processing model. Below, I provide a generic view of these frameworks’ operations, with some

emphasis on their distinctions and enhancements where appropriate.

52

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

At the high level, the operation of DBMSs for WSNs can be described in terms of their

data model, query model, and query processing. The data model describes a single append-only

Database for the entire sensor network. The sensor network is viewed as a Database table, whose

columns contain all attributes of sensor devices in the network and rows specify the individual

sensor data. This table provides a conceptual view of the sensor network for posing queries, as

(in reality) data is not there at the query time - data is distributed among the sensor nodes

and may not persist (be stored) forever. In TinyDB [MFHH03], the query itself drives the data

acquisition, thereby unnecessary data sampling is avoided in order to conserve energy.

The query model describes the supported interface for endpoint users. These users spec-

ify declarative queries (written in SQL-like languages) that reflect their data processing needs.

Most languages have support for periodic and continuous queries as sensor network applica-

tions are expected to operate over longer periods of time. Aggregate operators, event processing

capabilities, storage points, and lifetime queries are also considered useful and implemented in

TinyDB [MFHH03].

TAG [MFHH02] discusses the aggregation operators, and suggests how they may be evaluated

(in a decentralized manner) in WSNs. Events are used as a mechanism for initiating data

collection in response to some external stimulus. They are generated explicitly, either by another

query, by some software in the operating system, or by specialized hardware on the nodes. Since

in-network storage is limited, DBMSs for WSNs do not store data after processing; instead, users

can explicitly store data by creating storage points (that accumulate a small buffer of data) and

referencing this data in other queries.

In proposed DBMSs, a special type of node (called a gateway node) is distinguished to

intermediate the connection between users and the sensor network. Queries are posed strictly

at these gateway nodes. Queries are then planned, optimized and parsed into simple binary

representations for distribution by the gateway node. The gateway node is a centralized entity

that has accurate information about the network through meta-data. The meta-data, which is

collected periodically from the nodes, consists of many attribute values such as the available

sensor types (e.g. light, temperature, sound), acquirable values (the range of possible readings),

cost of acquisition (in terms of power and time), change characteristics, triggering event types,

extensible aggregate systems, and operating energy levels. The gateway node uses the meta-data

to plan and optimize queries; the result is query fragments that can be evaluated on individual

sensor nodes. The query processing goes as follows.

The gateway disseminates query fragments throughout the network. As the query propagates

through the network, sensors organize into a routing tree1 that allows data to be processed up

the tree and towards the gateway. In every period (called an epoch), sensor nodes evaluate their

query fragments and send their results up the tree, where the gateway node (as the root) then

delivers the final result to the user. The epoch duration refers to the amount of time between

successive data samples (sensor readings). Query processing, at individual sensor nodes, is

1Essentially, every node maintains a parent node that is one step closer to the root (the gateway) on the

routing tree.

53

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

performed in two steps: sampling with local operator execution and data propagation. Every

sensor node has its own query processor that processes and aggregates the sensor data; it then

forwards its results to its parent (on the routing tree) which in turn does the same until the

gateway node is reached. For some aggregate operators, partial aggregation is possible where

parent nodes combine their results with those received from their children. This significantly

reduces the cost of communications as well as the size of the data that is received at the gateway

node. Table 2.7 highlights some DBMSs, that are developed for WSNs.

Project Main features

SINA [SSJ01] supports explicit tasking by implementing SQTL (an impera-

tive language which allows users to embed scripts in SQL)

COUGAR [BGS00] models sensors as ADTs and their output as time series

ACQUIRE [SKA03] developed for one-time, complex queries for replicated data

TinyDB [MFHH03] acquisitional query processor that focuses on efficient data ac-

quisition and optimizes the routing tree

REED [AML05] extends TinyDB with a static join operator (sensor data is

joined with static tables)

Table 2.7: DBMSs for WSNs

The Database abstraction, provided by this body of work, is a powerful programing ab-

straction for sensor networks. The language is some form of SQL-like language, and mostly

supports extensible aggregation functions. These efforts, however, are centered around a single

design point: globally scoped queries issued from outside the network. Research in this area

largely focuses on efficient query optimizations and evaluations, and overlooks issues concerning

adaptation and reconfiguration. The gateway node is central to their operation, and leads to a

centralized architecture.

In addition, DBMSs for WSNs have only considered relatively homogeneous sensor networks

in which all nodes are equally powerful; the Berkeley MICA motes [HC02b] are often used to

motivate and justify design decisions. Future sensor networks are likely to have several tiers

of nodes with different performance characteristics. It is unclear how these DBMSs can take

advantage of this heterogeneity. Such platform-driven research has also led to some shortcom-

ings when implementations have been considered in the context of real-world applications. For

example, TinyDB [MFHH03] developers realised the importance of the relational join oper-

ation only after they communicated with Intel engineers, who intended to deploy WSNs for

condition based maintenance in their chip fabrication plants. This realisation led to the devel-

opment of REED [AML05] that extends TinyDB with a static join operator. Free from such

platform-driven constraints are Data Stream Management Systems (DSMSs) that will be dis-

cussed shortly. Finally, although actuation is supported by some of these DBMSs’ languages,

54

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

it is not immediately clear if a query-specification interface is best suited for actuation. Event-

based architectures (discussed in Section 2.4.2) could perhaps provide a more suitable solution

for applications’ inter-communication and actuation.

2.4.1.2 Data Stream Management System

Recently DBMS researchers have recognized a new class of data-intensive applications (called

stream processing applications), where data is best modeled as transient data streams - not

persistent relations. These applications require continuous and low-latency processing of large

volumes of data that may arrive at high rates. Examples of these applications include financial

tickers [CDTW00; ZS02], network monitoring [GKMS01; SH98], on-line auctions [ABW02],

security, manufacturing, and sensor data [BGS00; MF02]. The continuous arrival of data in

multiple, rapid, time-varying, unbounded streams has yielded some new research problems.

These applications have motivated a new class of Database-oriented systems, called Data Stream

Management Systems (DSMSs) that differ significantly from traditional DBMS in terms of

data model, query model, semantics, and implementation. Table 2.8 highlights some of these

differences, and Table 2.9 provides a summary of main DSMS projects and their contributions.

DBMS vs DSMS

persistent relations transient streams

one-time queries continuous queries

random access sequential access

only current state includes historic data

low update rate high data arrival rate

pull-based query plan push-based query plan

unbounded disk space bounded main memory

data at any granularity imprecise/stale data

mostly exact answer mostly approximate answer

no real-time requirements real-time requirements

Table 2.8: DBMS vs DSMS

A stream is an infinite sequence of (tuple, timestamp) pairs, that arrive in append-only

manner and may only be seen once [HRR99]. Each tuple is similar to a row in a Database table,

consisting of a set of attributes that conform to a pre-defined stream schema. These tuples may

be relation-based (as in STREAM [MWA+03], TelegraphCQ [CCD+03], and Borealis [AAB+05])

or object-based (as in COUGAR [BGS00] and Tribeca [SH98]). The timestamp defines a total

order over the tuples in a stream. It may be implicit (set by DSMS when tuple arrives) or explicit

(set by the source of data). Explicit timestamps are used when each tuple corresponds to a real-

world event at a particular time. The distinction (between implicit and explicit timestamps) is

similar to that between transaction and valid times in temporal DBMSs [SA85].

55

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

Project Main features

Tapestry [TGN+92] incremental evaluation of continuous (monotonic) queries for

append-only Databases

Tribeca [SH98] dataflow oriented query language in an Internet traffic moni-

toring tool

NiagaraCQ [CDTW00] continuous queries over XML documents with dynamic group-

ing and shared execution of queries that are similar

OpenCQ [LPT99] similar to NiagaraCQ (continuous queries over distributed per-

sistent data). query processing is based on incremental view

maintenance

TelegraphCQ [CCD+03] considers a stream of data and a stream of queries, supports

adaptive query processing and historical data processing

STREAM [MWA+03] relation-based system with emphasis on memory management,

and approximate query answering

Aurora [CcC+02] workflow-oriented system in which users build query plans us-

ing boxes and arrows. uses timestamps to optimize the QoS.

Borealis [AAB+05] distributed DSMS based on Aurora and Medusa [CBB+03],

supports integration with sensor networks

Gigascop [CJSS03] two-tiered architecture (low-level queries on source nodes,

high-level queries on servers), compiles queries into C/C++

modules, and is designed for network monitoring applications

StatStream [ZS02] computes on-line statistics across multiple streams

SMILE [JS03; SDBL07] declarative monotonic continuous queries over

Gryphon [SBC+98], supports fault-tolerance [Str04]

HiFi [FJK+05] supports high fan-in infrastructures, proposes Virtual De-

vices [JAF+05] to clean filter and aggregate data

Table 2.9: Continuous query processors and DSMSs

DSMSs do not have powerful support for time-based operations, yet the time of observation

is important in sensor networks. Timestamps, in DSMSs, are used for ordering more than timing

purposes. Use of explicit timestamps give rise to total ordering issues and timestamp assignment

problems when generating streams from a binary operator. Thus, DSMSs largely use implicit

timestamps and devise simplistic solutions in the case of explicit timestamps. For example, they

may assume bounded disorder or drop out-of-order tuples, and in the case of output streams

have users specify the timestamps explicitly [BBD+02].

DSMSs use main memory, and cannot assume that the entire stream fits in the memory. They

continuously receive new data and drop old data. This has serious implications on the query

models and the operators as investigated in [LWWZ04], and discussed here briefly. To date, three

56

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

querying paradigms have been proposed [GO03]: Relation-based languages (e.g. CQL [ABW06],

StreaQuel [CCD+03; CKM+03], and Aquery [LS03]) that use SQL-like languages to query time-

stamped relations, Object-based languages (e.g. COUGAR [BGS00]) that resemble SQL but

include support for streaming Abstract Data Types (ADTs) and associated signal processing

methods, and Procedural languages (e.g. Aurora [CcC+02]) that construct queries by defining

data flow through various operators. Many of the operators are inspired by relational operators

such as Select, Join, Project, Union, and Aggregates. These operators, however, assume and

have been designed for data sets that are bounded in size. This creates a mismatch between

DSMS requirements and operator capabilities which is formally studied in [LWWZ04]. Below, I

have briefly categorized operators into three classes based on their execution semantics.

Monotonic Operators such as Select and Project are the simplest and most suited to data

streams. They are monotonic as they can evaluate one element at a time, do not need to

hold any state, and can produce results incrementally.

Blocking For some relational operators (e.g. Aggregates) one needs to process the entire input

stream before producing a result. These operators are blocking because they are unable to

produce the first tuple of the output before seeing the entire input stream. To address this

shortcoming, most DSMSs propose the use of some type of window specification as a way

to process tuples in groups. A window is a set of ordered tuples that at any evaluation

time is bounded in size. Three types of window can be defined depending on the variability

of window endpoints. A fixed window has only fixed endpoints, a sliding window has only

variable endpoints, and a landmark window has one fixed and one variable endpoint. The

width of a window can be described by a time interval (time-based), by the number of

tuples (tuple-based), or by explicit punctuation tuples [TMSF03], which specify the end of

a subset of data.

Stateful Other relational operators (such as Join) accumulate state that grows with the size

of their inputs. Such state management is inappropriate as the input can be potentially

unbounded in size. Windowed computations and approximations are used to reduce the

memory requirement.

Processing and optimization of queries in DSMS is also different from DBMS. For a survey

of related issues, please consider [BBD+02; GO03]. One area where strong differences emerge is

the query and evaluation plans. Relational operators (in DBMSs) are pull-based: an operator

requests data from its children in the plan tree only when needed. In contrast, stream operators

consume data pushed to the system by the sources. Fjords [MF02] and STREAM [MWA+03]

have proposed queues to reconcile these differences: sources push data into the queue and oper-

ators pull data as needed; but such approaches create new problems such as operator schedul-

ing [BBMD03] and QoS maintenance [CcC+02]. This encouraged me to study a different class

of system that is naturally push-based. The following section discusses data processing using an

event-based abstraction.

57

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

2.4.2 Event Abstraction

There has been substantial research about event processing. In this section I focus on Composite

Event (CE) frameworks, a branch of work that is closely related to my work. CEs first appeared

in the context of active Database rules (or triggers) [WC94], but soon evolved beyond the

context of Databases - [PSB04] proposes “Composite Event Detection as a Generic Middleware

Extension”.

Active DBMSs and CEs. Active DBMSs enhance traditional DBMSs with powerful rule

processing (or trigger) capabilities [WC94]. This capability provides a uniform and efficient

mechanism for many Database features and applications, including integrity constraints, views

and derived data, authorization, statistics gathering, monitoring and alerting, knowledge bases

and expert systems, and workflow management. Rules, in active DBMSs, specify the desired

active behavior; they are defined by users, applications, or Database administrators. The most

general form of a rule is an Event-Condition-Action (ECA), also called an ECA rule. The event

causes the rule to be triggered, the condition is checked when the rule is triggered, and an action

follows if the condition is true.

Operator Semantic Condition

conjunction A, B A and B occur in any order

disjunction A|B A or B occurs

sequence A; B A occurs before B

negation ¬A A does not occur (usually within a time interval)

iteration A∗ any number of A occurrences

selection An the nth occurrence of A

Table 2.10: CE operators

In active DBMSs, sources [PD99] of events could be structure operations (e.g. insert, update,

access tuple), behavior invocations (e.g. execution of some operation), transactions (e.g. abort,

commit, begin), abstract (e.g. information entered by user), exceptions (e.g. unauthorized

data access), clocks (e.g. day event), or externals (e.g. some pressed a button). An event is

considered primitive when it is raised by a single low-level occurrence belonging to the described

categories; otherwise, it is composite, raised by some combination of primitive or CEs using a

range of operators that constitute the event algebra. The set of primitive or CEs that raise a

CE are referred to as its constituent events. Some of the most common operators supported

in active DBMSs are shown in Table 2.10. As evident, these operations examine patterns or

sequences of event occurrences; therefore events almost always need to have timestamps. The

timestamp is assigned either when the event arrives at the system (implicitly), or when it is

generated at its source (explicitly). The type of the event is determined by its source, and if the

event is attributed (contains values) then its attributes may be examined by the rule’s condition

58

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

or action. It is important to note that primitive and CEs only reflect the event component of

an ECA rule.

Early efforts, in the context of CEs, focused on expressive event algebras and efficient

CE detection models. Some of the detection models proposed to date are based on event

graphs [CM94], Finite State Automata (FSA) [LGA96], Petri-Nets [GD93], λ-calculus [Cou02],

and rules [FJLM05]. These models offer various formalisms, and attain performance gains

through incremental CE detection (e.g. as in Snoop [CM94], ODE [LGA96], SAMOS [GD93]),

and/or sharing of partial CE detection (e.g. as in EPS [ME01] and PADRES [FJLM05]). With

the advance of networking technologies, however, the domain of applications that could benefit

from events and active behavior grew beyond the scope of centralized active DBMSs. This led to

the development of CE frameworks in a number of directions, which I will survey under system

environment, parameterization, and selection & consumption policies.

System environment. With the separation of event component from the ECA rule, the

context also moved from centralized active Databases. In particular, the shift from centralized

systems to distributed systems led to research on timing issues (that addressed the lack of a

global time in distributed systems) and spontaneous events (that were not possible in centralized

systems). A common approach to assigning time and order to distributed events is the creation

of virtual clocks at each site using the local hardware clocks [LLCB99]. Virtual clocks count

real-time units (e.g. seconds) and map the reference time (a granular representation of dense

physical time) to a clock-time that has a granularity by which its counter is incremented (e.g.

seconds). An external clock synchronization aims at bounding the maximal time deviation

between the virtual clocks and the reference time, and an internal clock synchronization aims

at reaching a consistency between the virtual clocks. Several real-time mechanisms have been

proposed to date; three widely used ones are: network time protocol [Mil89], 2g-precedence

model [KFG+93; Sch96], and interval-based time systems [LLCB99; PSB03].

Furthermore, event-based messaging paradigms (such as Pub/Sub) became increasingly pop-

ular as the infrastructural context for CE frameworks; their support for distributed event dis-

semination naturally suits CE frameworks in delivering primitive and CEs to corresponding CE

detectors. Examples of projects that support CEs in the context of Pub/Sub middleware are

REBECA [M0̈1; FMG02; UMWG04], PADRES [FJLM05], and CEA [PSB03]. CE frameworks

have also been studied in the context of sensor networks, though with limited expressiveness.

DSWare [LSS03] supports local CEs by combining primitive events by the conjunction operator;

the emphasis has been put mainly on timeliness and reliable detection of CEs over uncertain

primitive events. COMiS [KVJ05] extends DSWare for detecting global CEs but retains its

limited expressiveness to the conjunction operator. Finally, Mark Kranz (SENSID [Kra05]) has

explored the feasibility of porting Amit [AE04], an expressive situation detector, over networks

of Berkeley MICA motes [HC02b]. SENSID [Kra05] can detect expressive situations at the level

of local nodes (i.e. detects local CEs). Tables 2.11 and 2.12 outline the main contribution of a

number of CE-related projects.

Parameterization. With the evolution of events (from ECA rules) into model-independent

CE frameworks, the need for condition specification became increasingly apparent. Condition

59

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

Project Main features

Alert [SPAM91] supports ECA rules in conventional Databases by means

of continuous queries over append-only active tables

HiPAC [DBB+88] active object-oriented DBMS with time-constrained data

management

ODE [LGA96; GJ96] CEs can be expressed as regular expressions (detection

model uses FSA), condition can be examined as part of

the event expression (supports Event-Action (EA) rather

than ECA)

SAMOS [GD93; GD94] the detection model uses colored Petri-Nets

Snoop [CM94; CKAK94] model-independent event specification language, supports

parameter contexts, the detection model uses an event

tree

GEM [MSS97] generic event monitor for distributed systems, rule-based

language, detection model uses tree

EVE [GT96] combines characteristics of active Databases and event-

based architectures to execute event driven workflow

EPS [ME01] implements a shared subscription tree for CE detection

[Cou02] CE specification based on λ-calculus

CEA [PSB03; PSB04] distributed CE detectors, extends a Pub/Sub middleware,

language compiles into FSAs

REBECA [M0̈1; FMG02] provides programming abstractions for Pub/Sub middle-

ware in object oriented languages, addresses distributed

timing [LLCB99], CE language maps to the core language

in CEA [PSB03]

Table 2.11: CE-related projects (part 1)

specification over the attribute values of individual or multiple events (that constitute the CE)

is referred to as parameterization. Parameterization is often supported at the pre-CE and/or

post-CE detection phase; this enables the re-use of efficient CE detection models that were pre-

viously developed in active DBMSs. Pre-CE detection parameterization is either encapsulated

as part of the CE definition (e.g. as in Amit [AE04]) or defined as part of the type system (e.g.

as in DSWare [LSS03], GENAS [HV02], and CEA [PSB03]). Pre-CE detection parameterization

fits naturally in the context of content-based Pub/Sub systems, where candidate constituent

events are received as a result of content-based subscriptions. On its own, however, pre-CE

detection parameterization delivers limited expressiveness; for example, inter-event parameter-

ization (cross-examination of constituent event attributes) is not possible. Post-CE detection

parameterization provides higher expressiveness (at the expense of late event filtering) and is

60

CHAPTER 2. BACKGROUND & RELATED WORK 2.4 Data Processing

Project Main features

PADRES [FJLM05; LJ05] integrates CE detection with content-based Pub/Sub, de-

tection model uses event graphs that are mapped to rules,

allows access to historic data [LCH+07]

GENAS [HV02] supports flexible event selection and consumption for CE

detection

Amit [AE04] introduces lifespan (temporal context) during which situ-

ation detection becomes relevant, exhaustive support for

lifespan definition, event instance override, selection, and

consumption policies, and parameterization

SASE [WDR06; GC+07] combines sequencing and declarative SQL, supports win-

dows and negation, uses an event Database to support

queries over history [GC+07], evaluates sequences using

Non-deterministic Finite Automata (NFA)

Cayuga [DGH+06; DGP+07] augments an SQL-like language with FILTER (unary),

NEXT (binary), and FOLD (binary) constructs that sup-

port sequencing, supports multi-query optimization, de-

tection model uses stateful NFA

DSWare [LSS03] detects local CEs in sensor networks, support conjunction

operator, addresses events’ uncertainty by confidence val-

ues

COMiS [KVJ05] detects global CEs in sensor networks, supports conjunc-

tion operator with restricted parameterization

[KBM04] proposes an abstract event specification language based

on temporal first order logic, abstract states are deduced

using knowledge-base

Table 2.12: CE-related projects (part 2)

only implemented in a limited number of CE frameworks (e.g. Amit [AE04], SASE [WDR06],

and Cayuga [DGH+06; DGP+07; BDG+07]). Interestingly, some CE frameworks that have ap-

proached expressive inter-event parameterization have resulted to the integration of declarative

SQL-like languages (e.g. as in SASE [WDR06] and Cayuga [DGH+06]) into the event algebra.

Selection & Consumption Policies. Typically, when all constituent event types of a

CE have occurred, there are many instances of a constituent event type that can be examined

for event composition. Event selection and consumption policies define how these instances

are treated in the scope of present and future CE detections. Event selection describes which

qualifying events are taken into account for CE detection, and how duplicate events (events

with matching type and timestamp) are handled. In order to reduce complexity and ease

61

2.4 Data Processing CHAPTER 2. BACKGROUND & RELATED WORK

CE specifications, most frameworks adopt a fixed event selection policy that either suits their

application environment (e.g. EVE [GT96] selects a fixed (chronicle) policy that suits workflow

management), or suits their detection model (e.g. Cayuga [DGH+06] has operator-dependent

selection policies). Others, to achieve generality, either compute the most general case (e.g.

as in PADRES [FJLM05]) or introduce parameters that can be set by the user (e.g. as in

GENAS [HV02] and Amit [AE04]). Amit [AE04] supports one of the most expressive selection

policies to date; it provides a separate override policy (for received events) and offers a number

of event selection parameters that are detailed in Table 2.13. Table 2.13 also shows the four

selection parameters that Snoop [CM94] considers to be most useful across a wide range of

applications - most frameworks (with fixed policies) describe their selection policy in terms of

these four. Note that the continuous and cumulative Snoop contexts have the same selection

policy but differ in the consumption policy, discussed next.

Selection Description Snoop’s contexts

first selects the first instance that satisfies the conditions chronicle

strict first selects the first instance if it satisfies the conditions

last selects the last instance that satisfies the conditions recent

strict last selects the last instance if it satisfies the conditions

each selects all the instances that satisfy the conditions continuous,cumulative

Table 2.13: Event selection parameters

Event consumption defines whether an event can be shared by multiple CEs (of the same

type) or not (i.e. should be exclusively assigned to just one CE or not). In the former case the

event is not consumed, while in the latter it is consumed; [ZU99] provides an overview of the

selection and consumption policies for some of the earlier CE frameworks. The downside of this

level of expressiveness, pursued in some CE frameworks like GENAS [HV02] and Amit [AE04],

is that (for an ordinary application developer) it is difficult to predict how the choice of parame-

ters can impact the system performance or resource usage, and yet some combinations (such as

the each selection policy combined with the shared consumption policy) can be very unforgiv-

ing (resulting in a linear increase in memory usage and exponential increase in CE detections).

Amit [AE04] introduces the notion of lifespan that confines the scope of CE detections to a

window (of events) that is defined by an initiator and a terminator. This reduces the conse-

quences of sloppy mistakes but also makes the CE specification language more complex. In

fact, in Amit [AE04] many of the language construct values are redundant. This violates the

minimality of language constructs that is a requirement of good language design [Cod71]. As an

alternative, I believe that time and location attributes of data (in sensor networks) can provide

an expressive and safe means of selecting and consuming events (data) for high-level informa-

tion deduction. In this dissertation, I explore temporal and spatial selection and consumption

policies beyond what has been proposed to date for sensor networks.

62

Chapter 3

State Filters

In this chapter I present State Filters (SFs) [TB07c] for capturing user interests in Resource-

constrained Sensor Networks (RSNs). SFs aim to substitute the content-based filters used in

Pub/Sub protocols (Section 2.3.1.1) for more expressive conditions and improved communication

efficiency. They reduce the communication costs by exploiting the redundancy and correlation

that is inherent in the sensor readings, reflecting a shared external environment. They also cap-

ture lasting conditions, mirroring lasting phenomena in a continuous environment, over a series

of discrete events (data that is captured at discrete time points). The operational semantics

of SFs are often coded as part of the application-level logic over sensor devices (Section 2.2),

but in this chapter I formalize this operation as a component which lies within the Pub/Sub

middleware and is independent of the clients layer (e.g. applications). In the design of SFs,

compatibility with existing content-based filters has been considered, and the result has been a

set of components that can subsume content-based filters and integrate well with the available

Pub/Sub implementations that support attributed content-based subscription model. My eval-

uation, using real sensor data, demonstrates that SFs improve expressiveness and event filtering

for RSN applications compared with the content-based filters.

This chapter opens with an introduction to RSNs, their characteristics and potential appli-

cation areas. This is followed (in Section 3.2) by a discussion of Pub/Sub and its most widely

used form of subscription language in RSNs. The review highlights some shortcomings of the

content-based subscription model, due to data challenges in RSNs (Section 1.2.1) and motivates

my work on SFs whose semantics are described in Section 3.3. Section 3.4 describes the distri-

bution of SFs, and Section 3.5 evaluates the overall approach for expressiveness and effective

event filtering. Related work is discussed in Section 3.6, and concluding remarks are made in

Section 3.7.

3.1 Resource-constrained Sensor Networks

As sensor technology matures, wider ranges of platforms and sensor types have become available.

A unique sensor type may have different hardware implementations, each of which offers a

different level of reliability and accuracy in its readings. Platforms also vary as they adapt to

63

3.1 Resource-constrained Sensor Networks CHAPTER 3. STATE FILTERS

User Device

Sensor Device

Figure 3.1: Ad hoc WSN topology

different sensor requirements: they may house small sensors such as temperature sensors, or large

ones like inductive loops beneath roads. This diversification extends the range of applications

that can be developed for sensor systems, and complicates general solutions. In this chapter, I

focus on a group of sensor networks called RSNs.

RSNs are a subclass of sensor networks, where resource shortages prevent costly operations

and protocol executions within the network. By costly operations I mean extensive memory

usage, frequent communication, and/or complex computations. Such operations are often shifted

to network boundaries, where devices with more resources (e.g. gateways or application nodes)

are present.

The use of RSNs is motivated by low manufacturing costs and the small size of devices. They

may be deployed in inaccessible areas where size matters and robust deployment is not possible.

Habitat monitoring [CEH+01], for example, is not possible with large sensor devices, and robust

wide-area deployment of temperature sensors, for example in a forest, is expensive (instead,

primitive devices are used). In these networks, failures are anticipated and robustness is in-

creased through redundancy. The next section takes a closer look at the common characteristics

of RSNs.

3.1.1 Characteristics

Nodes in RSNs largely communicate over wireless media to benefit from low-cost deployment

and ad hoc network formation; therefore RSNs can be considered as a special case of WSNs.

64

Chapter2/Figs/EPS/motesnet.eps

CHAPTER 3. STATE FILTERS 3.1 Resource-constrained Sensor Networks

Low cost and ad hoc deployment requirements often result in nodes being small and battery

powered, which in the case of unmanned operations and infrequent maintenance implies that

they have limited lifetime. This reinforces the need for primitive resources (sensing, processing,

storage, and communication components) that consume little energy. For example, nodes might

only communicate within short ranges and form a mesh-based network topology with nearby

nodes (see Figure 3.1). In addition, only low-power sensing is used, and the option of high-power

sensing hardware that can provide more useful information is generally not available. Nodes are

often stationary, unless moved by the environment (passive mobility in Section 2.1.1.4).

Size also takes a dominant role in restricting capabilities and yielding shared characteristics.

Smaller devices are more vulnerable to environmental effects, and thus more failure-prone. On-

board size limitations result in small memory space and basic processing core. These restrict

code space, and available dynamic memory, for protocol operations. In most instances, basic

functionality focuses on communicating results toward a user or a base station; filtering and

processing is done if practical. The next section highlights two application scenarios that can

benefit from this class of sensor networks.

3.1.2 Application Scenarios

Applications for RSNs aim to exploit some of the more useful characteristics outlined above.

Small size and low-cost production features allow environments to be monitored with ease and

little cost. The application scenarios that I have selected to discuss here are monitoring hazardous

conditions in underground mines and monitoring office environments.

Monitoring Hazardous Conditions in Underground Mines. When underground mine

accidents occur, knowledge about the environmental conditions (along the rescue path) can

significantly aid the rescue efforts. This knowledge may include the temperature, level of carbon

monoxide, and presence of methane or other dangerous gases in the air. WSNs can be used to

monitor these conditions when rescue operations are taking place. Prior knowledge about these

conditions may also be used to prevent accidents.

In this scenario, sensor devices are scattered around the mines with sufficient density to

ensure wireless connectivity. Base stations, located outside the mine, operate as gateways in-

between the sensor network and external applications. Constraints over the observed data are

defined by applications and partially injected into the network for in-network processing. In-

network processing is basic, often confined to primitive filtering.

Monitoring Temperature and Humidity in Office Environments. Indoor tempera-

ture and humidity levels can have a direct effect on people’s comfort, productivity, respiratory

health, and well being. RSNs scattered within office environments can monitor the tempera-

ture and humidity levels in a ubiquitous way. These sensors report to base stations that are

connected to user clients as well as related actuation devices (e.g. air conditioners). Significant

temperature and humidity changes or deviations from the desired levels are reported to the base

stations, which may notify the user or automatically trigger the appropriate actuators. The

65

3.2 Publish/Subscribe CHAPTER 3. STATE FILTERS

small and primitive nature of devices mean that numerous sensors may be deployed (per office

environment) for increased robustness.

3.2 Publish/Subscribe

Pub/Sub provides data-centric communication between publishers and subscribers. Sensor de-

vices are viewed as event publishers and sinks (user client or base station nodes) as event

subscribers. Pub/Sub’s loose-coupling means that sensors and sinks can interact without direct

knowledge of each other. Instead, they relate to each other by data structures and values.

Data in Pub/Sub is represented by Events. An event model describes how an event is

represented in the system. For RSNs, described above, I assume a flat, unstructured event

space, E.

Definition 3.1 (Event). An event e consists of a tuple τ and belongs to the event space E,

e ∈ E. (3.1)

The tuple τ contains a number of attributes, τ = (a1, · · · , an), where each ai is a name-value

pair, (ni, vi), with name ni and value vi. Attribute names are unique, i.e. i 6= j ⇒ ni 6= nj.

Event dissemination in RSNs is challenging. Power constraints demand communication ef-

ficiency, while wireless (radio) communications pose serious unreliability and failure-proneness.

Researchers have developed numerous routing and event dissemination protocols (see Section 2.3.1

or [HCRW04; CPR05] for Pub/Sub implementations) that target this goal under various net-

work settings and environmental assumptions. The question as to which events match which

subscribers relates to the subscription model, described next.

3.2.1 Subscription Model

Events are matched to subscribers according to their subscription expressions. These expres-

sions, described by a subscription model, reflect the set of events that subscribers are interested

to receive. The expressiveness of the subscription model determines the usability and the compu-

tational overhead of the Pub/Sub protocol. While usability is desired, computational overhead,

in RSNs, must be restricted. Topic-based and content-based subscription models are the two

most widely used subscription languages in RSNs.

A topic-based subscription model is suitable because event publishers are often typed ac-

cording to their local sensing hardware. Use of topics alone, however, leads to the delivery of

all events that are published under a certain topic by the corresponding sensors. A content-

based subscription model can improve on this, allowing subscribers to more finely describe their

data interests. In its simplest form, content-based subscriptions can examine event attributes

individually. In a more general model, cross-examination of event attributes is also allowed.

66

CHAPTER 3. STATE FILTERS 3.2 Publish/Subscribe

Definition 3.2 (Event Subscription). An event subscription s consists of a filter F , that is a

stateless Boolean function.

s = F : E→ B. (3.2)

The filter F can be applied to an event e ∈ E to give a boolean value, F (e) 7→ x ∈ {true, false}.
In its simple form, the filter F consists of attribute predicates pi that are combined using the

conjunctive operator,

F = p1 ∧ p2 ∧ . . . ∧ pk. (3.3)

An attribute predicate p is a tuple, p = (np, op, vp), where np is an attribute name, op is a boolean

test operator, and vp is an attribute value.

An event matches a subscription if it satisfies its filter F .

Definition 3.3 (Subscription Coverage). An event e is covered by (or matches) a subscription

s,

e ⊑ s, (3.4)

if and only if

F (e) = true. (3.5)

If F = p1 ∧ p2 ∧ . . . ∧ pk, then the above holds if and only if

∀p ∈ F. ∃a ∈ e. a ⊑ p (3.6)

holds. An event attribute a = (na, va) is covered by (or matches) an attribute predicate p =

(np, op, vp),

a ⊑ p, (3.7)

if and only if

(np = na) ∧ op(vp, va) (3.8)

holds.

The above (content-based) subscription model can support topic-based subscriptions if the

first attribute is set to topic name, n1 = topic. The content-based subscription model provides

four notable features:

Expressiveness Users can accurately describe their interests using attribute predicates.

Computational efficiency Events are examined once and in isolation (individually) against

the attribute predicates.

Messaging efficiency Irrelevant (uncovered) events are filtered out.

Preservability Event operations are filter-only processes that leave the event structure intact.

67

3.2 Publish/Subscribe CHAPTER 3. STATE FILTERS

-6

-4

-2

0

2

4

6

8

10

12

14

1 1441 2881 4321 5761 7201 8641 10081 11521 12961

Time (minutes)

T
e

m
p

e
ra

tu
re

 (
d

e
g

 C
)

Figure 3.2: Temperature sensor readings (14400 minutes)

Discussion. Sensors observe a shared and continuous environment, where lasting phenom-

ena are present. These observations are instantaneous and often periodic (see Scalar Sensors

in Section 2.1.1.8). As a result, high correlation and redundancy is observed among the set of

events that are published by one or more sensors that observe the same phenomena. Figure 3.2

shows a plot of temperature readings (by one sensor) for 10 days.

Content-based subscriptions filter those events that do not match subscribers’ interests, but

pass all events that match the subscription. These passed events include the correlated and

redundant observations that match the subscription. Therefore, following a subscription match,

subscribers may receive many more events that indicate much the same information as others

(e.g. many events may indicate that the temperature is now below 0 ◦C). These events impose

an O(n) communication overhead in theory1, and vary in numbers according to the sampling

granularity (event publishing rate) and deployed sensor redundancy. The performance of the

content-based subscription model could be significantly improved if redundant and correlated

events were also to be filtered.

Another weakness of the content-based subscription model is that it does not provide an

accurate knowledge about the duration of conditions or phenomena of interest to the subscribers.

Every event that is delivered to the subscriber signals the continuation and persistence of the

related phenomena, but not its termination (ending). The time that follows every event delivery

represents an uncertainty period where the lack of event publication or the filtering of events can

not be distinguished at the subscriber. The subscriber is continuously doubtful as to whether

he/she will receive the next observed data (event) or not. In fact, the subscriber can benefit

1The run-time overhead may be even higher due to network interference and congestion.

68

Chapter2/Figs/EPS/temp_scalar.eps

CHAPTER 3. STATE FILTERS 3.3 State Filters

Redundant eventsCondition capturing events

Sensor (hourly) readings

Temperature trend

T
em

pe
ra

tu
re

 (
de

g
C

)

+2

+4

0

-2

-4

Time

F
ir

st
 in

it
ia

ti
on

F
ir

st
 t

er
m

in
at

io
n

Figure 3.3: Capturing temperature below 0 ◦C condition

from some knowledge that indicates the definite termination of its phenomenon of interest (e.g.

an event that indicates that the temperature is no longer below 0 ◦C). This incomplete capture

of lasting conditions and the inability to filter correlated and redundant events are concerns that

I address by introducing State Filters in this chapter.

3.3 State Filters

State Filters (SFs) are stateful content-based filters that extend the content-based subscription

model in expressiveness and filtering efficiency. The extension comes with minimal state storage

and maintenance costs that are detailed in Section 3.3.1. I call these components State Filters as

opposed to State Detectors because the output event type is always the same as the input event

type. This property distinguishes SFs from detectors (such as Composite Events) that produce

events of different type than the input events. SFs examine events individually and according to

some subscriber-specified expression that matches the content-based subscription filters. They

match content-based filters in simplicity and implementation, and can replace content-based

filters in Pub/Sub implementations that are developed for RSNs.

The SF subscription model is designed to capture lasting conditions over discrete events.

A lasting condition is defined as an environmental phenomenon, whose observation (through

sensors) corresponds to a set of sequential events that all match a user’s subscription. Lasting

conditions are captured using a pair of events, that signal the start and the end of the condition,

respectively. For example, consider Figure 3.3 where the temperature trend is shown and hourly

sensor readings are marked by arrows. Let’s assume that the user is interested in being notified

when the temperature is below 0 ◦C. This is a lasting condition. I say that a lasting condition is

69

Chapter2/Figs/EPS/temp.eps

3.3 State Filters CHAPTER 3. STATE FILTERS

entrance predicate

exit predicate

10

Figure 3.4: FSA representation of an SF

captured accurately, if one can isolate the first instance of an observation (event), that suggests

the condition, and the first instance of an event that disproves the condition (see Figure 3.3).

The accuracy of capture is dependent on the sampling rate.

Events that fall in-between the start and the end of the capture deliver little new information

(about the occurrence of the condition) and are regarded as redundant. These events may

be realised across one or more sensors, and often originate from periodic sampling in scalar

sensors, and dense deployments in sensor networks (Section 2.1.1). SFs use the notion of state

to maintain persistent knowledge about the condition being observed, and to filter out events that

are irrelevant or redundant. Events that pass through SFs are highly informative, containing

unique and transitive knowledge about the conditions. These events deliver knowledge more

efficiently and effectively than their counterpart events that pass through a simple content-

based filter. The next sections describe my SF model, and explain how lasting conditions are

specified and captured using SFs.

3.3.1 State

SFs use the notion of state, borrowed from FSM and event calculus, to maintain knowledge

about the observing phenomenon. This knowledge indicates whether the condition of interest

has been detected or not. With this persistent knowledge, SFs can examine the observed data

(events) more effectively.

Every SF defines two states: a state of null, which is the initial state and reflects the

unknown, or absence of the condition, and a state of detection, which reflects knowledge about

the existence or occurrence of the desired condition. A status bit is used to maintain information

about the current active state - zero for null and one for detection. Every SF also has a pair of

boolean predicates that govern the state transitions (see Figure 3.4).

Definition 3.4 (State Filter). An SF, s, consists of a tuple,

s = (Pn, P x, b), (3.9)

where Pn and P x are the entrance and exit predicates, respectively, and b is the status bit.

The predicates guard transitions between two states of null and detection, and b maintains

information about the current active state (b = 0 when active state is null, and b = 1 when

active state is detection).

70

Chapter2/Figs/EPS/automata.eps

CHAPTER 3. STATE FILTERS 3.3 State Filters

Events are examined against entrance and exit predicates to accurately capture lasting con-

ditions. Initially, the entrance predicate is examined for condition initiation, and then the exit

predicate is examined for condition termination. A SF can only detect conditions that are sep-

arated in time, i.e. two conditions cannot overlap in time or start one-another1. A SF can also

be formally described using Event Calculus [KS86].

Let us label the SF’s null state as fluent S0 , the SF’s detection state as fluent S1 , the set of

events that satisfy the SF’s entrance predicate (Pn) as E0 , and the set of events that satisfy the

SF’s exit predicate (P x) as E1 . The status of the condition being observed, denoted by fluents

S0 and S1 , can thus be determined by deductive event calculus using the following predicates

that describe the effects of events E0 and E1 . In the following predicates, t denotes the time

points and notation has been borrowed from [Sha97].

InitiallyP(S0) ∧ InitiallyN (S1) (3.10)

∀t Happens(E0 , t) ∧HoldsAt(S0 , t)→ Terminates(E0 ,S0 , t) ∧ Initiates(E0 ,S1 , t) (3.11)

∀t Happens(E1 , t) ∧HoldsAt(S1 , t)→ Terminates(E1 ,S1 , t) ∧ Initiates(E1 ,S0 , t) (3.12)

In addition, at every time point t at most only one event can happen in the system. This

is because a SF cannot examine multiple events simultaneously. The next section describes the

expressiveness of the predicate language, used to describe condition occurrence and termination

constraints.

3.3.1.1 Predicate Language

Predicates are boolean expressions that can have either a true or a false value. Event attribute

names and data values are used as operands, and a set of operators are used to process and

constrain the event attribute values.

The set of supported operators are divided into three classes:

Mathematical These operators (symbols: +,−, ∗, /, ||(ABS)) join event attribute values and/or

data values.

Comparative These operators (symbols: >, <,≥,≤, ==, ! =) form boolean values from or-

dered data type comparisons.

Logical These operators (symbols: && (AND), || (OR), ! (NOT)) combine several boolean ex-

pressions to form a single compound expression. The unary operator NOT is an exception

to the above, and negates a boolean expression.

A predicate may be examined against an event, in which case the event attribute names are

substituted with their associated attribute values, and the entire expression is evaluated as a

boolean function to output either true or false. A predicate is said to have been satisfied if its

value is true.
1An SMC, introduced in Chapter 5, can detect concurrent conditions.

71

3.4 Distributed Filtering CHAPTER 3. STATE FILTERS

3.3.2 Subscription Model

Subscribers define their conditions of interest using SF subscriptions.

Definition 3.5 (Event Subscription). An event subscription, s, of class State Filters, consists

of two boolean predicates Pn and P x, and a set of scopes S,

s = {Pn, P x, S}. (3.13)

Each scope Si ∈ S = {S1, S2, . . . , Sn} indicates a group of event publishers that may observe

a condition independently (discussed later in Section 3.4.2). The predicates define an SF, and

may be examined against events e to give boolean values, P (e) 7→ x ∈ {true, false}.

Definition 3.6 (Subscription Coverage). An event e, from an event publisher ep, is covered by

(or matches) a subscription s,

e ⊑ s, (3.14)

if and only if

∃u ∈ S. ep ∈ u. (b = 0 ∧ Pn(e) = true) ∨ (b = 1 ∧ P x(e) = true), (3.15)

where b is the status bit of the associated SF. If e is covered by s, e ⊑ s, then the status bit b is

toggled,

e ⊑ s⇒ b =

{

1 for b = 0

0 for b = 1
(3.16)

When the condition is not detected, events are examined for condition detection (the Pn

predicate is evaluated), and when it is detected, events are examined for condition termination

(the P x predicate is evaluated). This introduces context-based data processing, where events are

examined against different predicates according to the current status of the condition.

A subscriber receives a pair of events per captured condition. The first event signals the

detection of the condition, and the second event signals its termination. Other events are

filtered, as they convey either irrelevant or redundant knowledge about the condition. Using

SFs and assuming reliable event services, a user can hold firm knowledge about a condition’s

continuous presence for a period that is bounded by a pair of capturing event notifications.

Not all conditions of interest may be lasting though. Some may be momentary, and the

content-based subscription model captures these best. The SF subscription model can accom-

modate these filters as follows. Let us label a content-based filter expression as F , then the

equivalent SF subscription is one that has both predicates set to F , i.e. Pn = P x = F .

3.4 Distributed Filtering

So far, the placement of SFs has not been discussed. This section investigates the consequences

of shifting SFs into the network, away from the subscribers and towards the publishers.

72

CHAPTER 3. STATE FILTERS 3.4 Distributed Filtering

Publisher-hosting EB

S

P

S

S
S

P

P

P

P

P

P

Subscriber-hosting EB

Figure 3.5: An EDT (involving six publishers and three subscribers)

The lightweight design of SFs allows them to operate over most resource-constrained sensor

devices. Distribution of SFs results in load-balancing, where the storage and computational

costs of SFs are spread across many devices. Where this distribution is applied strategically,

communication costs in the network may also be reduced. An added functionality, condition

scoping, may also be achieved if SFs are distributed over Event Dissemination Trees (EDTs).

Many Pub/Sub protocols, developed for RSNs, construct an EDT for event dissemination.

Publisher-hosting Event Brokers (EBs) define the roots of the EDT and subscriber-hosting EBs

define the leaves. The EDT then disseminates events, which are published by the publishers,

from the roots to the leaves (see Figure 3.5). The arrows in Figure 3.5 indicate the event

forwarding paths in the network. I continue my discussions with reference to an EDT Pub/Sub

model, that is commonly used in stationary sensor networks.

An SF may be hosted at an event forwarding node (forwarding EB) that is part of the

EDT. The forwarding node would then examine events that are received on the EDT, against

the hosting SF, and only forwards the events if they pass through the SF. The next section

discusses event ordering that becomes important when SFs are distributed in the network.

3.4.1 Detection Policies

The proposed SF model is order sensitive. This means that the order in which events are pro-

cessed (filtered) has impact on results (matched events), and the accuracy of captured conditions

(i.e. whether the first instances of detection and termination are captured or not).

This ordering concern is negligible when SFs are hosted on publisher nodes, but becomes

substantial when filtering is performed in conjunction with event forwarding in the network.

73

Chapter2/Figs/EPS/edt.eps

3.4 Distributed Filtering CHAPTER 3. STATE FILTERS

Even if I assume that the network does not re-order events, events may arrive out-of-order

at the SF-hosting nodes due to different network delays that are involved in routing events

from different publishers to an SF-hosting node. Resolving this concern introduces a trade-off

between the event delivery latency and the accuracy of condition capture. In this trade-off,

the application requirements become important. I thus propose different detection policies that

provide alternative trade-offs.

Best-Effort Detection Policy The best-effort detection policy states that events are pro-

cessed (at forwarding nodes) as they arrive, without delay. It targets timeliness, where

events are processed and delivered as quickly as possible to the subscribers. This policy

may result in missed detections when conditions occurring over short durations follow one-

another. The accuracy of condition capture may also be reduced as delivered events may

not reflect the first instances of condition initiation and termination. The loss of accuracy

may not be important for applications where causality is not an issue. As discussed before,

subsequently occurring events convey the same information, albeit with slightly inaccurate

timestamps. The receipt of any of these events that initiate or terminate the condition

may be sufficient.

Guaranteed Detection Policy In guaranteed detection policy I process events in total order.

This ensures that the first instances of condition initiation and termination, are identified

and delivered to the subscribers. This policy is usually expensive to achieve in RSNs. A

lightweight approach that can offer acceptable performances is to buffer events for a time

interval, t, and then re-order them according to their timestamps1. The time interval t is

adjustable, but initially set to the maximum network round-trip period. This approach is

vulnerable to the distributed clock drift problem, as well as abrupt changes in the network

delay (due to link failures or network partitions). A time synchronization protocol (see

Sections 2.1.3 and 2.4.2) may be used to reduce clock drift to acceptable levels.

3.4.2 Detection Scoping

Subscription SFs may be replicated and distributed within a network. The subscription’s de-

tection scopes set indicates the set of events that are examined by each SF.

Definition 3.7 (Detection Scope). A scope S, for an SF F , is the set of publishers, whose

events are examined by F ,

S = {ep|F (e)}, (3.17)

where ep is the publisher of event e.

A detection scope S is expressed by the subscriber (as part of its subscription) and indicates

the scope of data correlation and redundancy across multiple sensors (publishers) with respect

to its condition of interest. Publishers that belong to the same detection scope are believed to

1Events are timestamped at their publisher-hosting EBs.

74

CHAPTER 3. STATE FILTERS 3.4 Distributed Filtering

capture a unique condition in the environment; thus events that are published by these sensors

can at most signal the presence of a single condition in the environment. For example, consider

the use of outdoor light sensors to capture a lasting condition known as the “night time”. For this

specific condition, many sensors are believed to report correlated or redundant values because

they observe the same condition.

Where multiple independent conditions can occur concurrently, the user should define multi-

ple detection scopes accordingly. For example, each (closed) room in a building could separately

and independently satisfy a “brightness” condition (a lasting condition that is detected by indoor

light sensors when the lights are on). Multiple detection scopes (belonging to the same detec-

tion scopes set) are often disjoint and capture concurrent conditions independently, but they

can also contain one-another (i.e. S1 ⊆ S2) in which case nested scoping (discussed shortly)

is achieved. Partial overlap (without containment) between detection scopes is prohibited, i.e.

S1 ∩ S2 6= ∅ ⇒ (S1 ⊆ S2) ∨ (S2 ⊆ S1).

Subscribers do not need to specify detection scopes by individual publisher identities. In-

stead, they may use a high-level abstraction to indicate these publishers indirectly. In this

thesis, I support regional abstractions, but other abstractions (e.g. type-based, energy-based,

reference-based, etc.) may equally be implemented (see [SFCB04]). With regional abstractions,

subscribers may specify detection scopes by closed spatial regions. When a spatial region r is

specified, then any publisher that falls within the region is considered to be a member of the

detection scope. The region r may be specified using location coordinates or a location name

that is meaningful to a location service. Chapter 4 discusses a Pub/Sub protocol that supports

regions defined by absolute location coordinates.

3.4.2.1 Placement Policies

The problem as to how SFs are distributed to cover their detection scopes relates to the EDT. If

one considers the EDT upside-down (such that the subscriber is at the root and the publishers

are at the leaves), then every SF is placed on a branch whose leaves strictly cover the set of

publishers that fall within its detection scope. Figure 3.6 shows an example, where an SF is

replicated and placed on the EDT to cover three distinct detection scopes: x, u, and v. The

arrows indicate the event forwarding paths (on the EDT), the P indicates the publisher-hosting

EB, and the S indicates the subscriber-hosting EB.

Of course, knowledge of detection scopes must be taken into account when constructing the

EDT, otherwise this SF placement policy may not be applicable. When a detection scope relates

to a single publisher, the SF may be shifted down as far as the publisher-hosting EB. This results

in source-side filtering, where events are filtered with zero messaging cost. Source-side filtering

also ensures totally ordered events, as only one source is involved. If subscriptions happen to

overlap, SFs may be shared1. In this case an event that passes through one SF may be delivered

to multiple subscribers, and the overall computation is reduced.

1This may need some coordination functionality at the event service

75

3.4 Distributed Filtering CHAPTER 3. STATE FILTERS

P
PP

P

PPP

PP

S

x

u

v

State Filter

Figure 3.6: SF placement on the EDT

P
PP

P

PPP

PP

S

x

yu

v

State Filter

Figure 3.7: Nested Scoping

3.4.2.2 Nested Scoping

In some cases, the monitored phenomenon (or condition) can be detected by examining data

from only one or a few sensors that are included in a single detection scope. Recalling an earlier

example, the “night time” condition can be accurately detected by examining data from only a

single outdoor light sensor; yet data from multiple sensors is also highly correlated and redundant

for this condition. Another example is the detection of the “high temperature” condition in a

room where redundant temperature sensors are deployed. In fact, these cases almost always

appear when redundant sensors are deployed in an environment. Nested scopes can be used to

deal with these cases effectively and efficiently.

When using nested scopes, the subscriber includes all of the smaller detection scopes (e.g.

x, u, and v in Figure 3.7), as well as the larger detection scope (e.g. y in Figure 3.7) in the

76

Chapter2/Figs/EPS/placement.eps
Chapter2/Figs/EPS/nested.eps

CHAPTER 3. STATE FILTERS 3.4 Distributed Filtering

detection scopes set. SFs that correspond to the small detection scopes can capture the same

condition independently. This provides reliable detection, such that if sensors belonging to one

scope happen to fail, sensors in another scope can still capture the same condition. These SFs

can also be more effectively pushed towards the publishers to attain earlier event filtering.

The larger detection scope (scope y) describes a larger detection area, which the condition

is likely to span (i.e. sensors in this area produce correlated and redundant data about the

condition). This larger detection scope filters (redundant) events that emerge from nested

detection scopes. The combination is effective because the condition is independently monitored

by multiple SFs (related to the x, u, and v detection scopes), and is efficient because events are

processed close to their source, and further processed at a higher SF that eliminates redundant

events across multiple nested detection scopes.

3.4.3 Fault-Tolerance

Failures are frequent in RSNs. The unreliable nature of wireless communications and primitive-

ness of sensor devices (see Section 3.1.1) are common sources of failure. Such failures affect the

operation of system protocols, and demand robust solutions. I discuss these failures under two

categories: link failures and node failures.

Link Failures. The unreliable nature of wireless communication often results in packet

losses, and link-layer disconnections. For example, events at the Pub/Sub layer may be lost

during event routing. This can significantly impact the system reliability as events often deliver

unique and important information to the subscribers. This concern is amplified with SFs, where

fewer, more informative, and unique events are delivered to the subscribers.

Link failures are most efficiently detected and resolved at the lower communication layers.

MAC protocols can ensure reliable delivery on hop-level basis, and network layer or Pub/Sub

protocols can ensure reliable delivery at an end-to-end level. Link failure detection at the

Pub/Sub layer results in formation of new event dissemination links that repair the existing

EDT. This may result in SF misses, which are discussed later in Section 3.4.3.1.

Hop-by-hop and end-to-end reliable delivery operations may assert high communication costs

when link failures are frequent. This cost, however, is justified by the assurance that the data

(event) is eventually delivered. Alternatively, one may rely on the correlation and redudancy

of sensor data to opportunistically increase chances of data delivery to the user. This option

results in (a) high communication costs even when link failures are rare, and (b) no assurance

of eventual data delivery. If one decides to select this option, either due to design simplicity or

low operational overhead, then SFs could be used to control the degree of data redundancy.

Node Failures. Sensor devices are subject to frequent failures, either due to environmental

conditions or loss of resources (e.g. power depletion). These failures can affect the Pub/Sub

protocol if EBs that are part of the EDT happen to fail; this may also result in SF losses, if

SFs were hosted at these failing EBs. Pub/Sub protocols can have persistent storage of EB

data to resume operation and repair the EDT using an alternative EB. SFs, however, may not

77

3.5 Evaluation CHAPTER 3. STATE FILTERS

P
PP

P

PPP

PP

S

x

yu

v

R
R

Redundant SFR

Figure 3.8: Redundant SFs

be protected as part of this persistent storage; thus I propose an alternative and independent

solution (for SFs) as follows.

3.4.3.1 Redundant SFs

In this section, I propose the operation of redundant SFs that can minimize the impact of link

and node failure on SF operations. This approach increases computation but does not affect the

communication cost — recall that computation is a significantly cheaper resource in WSNs than

the communication resource [PK00]. Redundant placement of SFs increases the chance of event

filtering when a link or node fails and the EDT is repaired locally. This mechanism presents a

trade-off between computation cost and SF reliability.

The redundant SF approach exploits the fact that events from a detection scope may be

subject to multiple independent SF replicas without affecting the end result. A formal proof

for this is presented in Appendix A. Thus, multiple SFs may be placed on nodes that are part

of the same EDT branch without affecting the end result (see Figure 3.8). The only restriction

here is that the SFs’ status bits must be synchronized prior to operation. This can be ensured

if placements are performed prior to event delivery (with initial status bits reflecting the null

state). Note that once an SF is removed from an EDT, it can not resume operation at any time

in the future. Since a transactional status bit synchronization process can introduce substantial

complexity and overhead, it is best to resort to a soft-state subscription model where SFs are

renewed periodically as a result of subscription refreshments.

3.5 Evaluation

In this section I evaluate the proposed SFs for expressiveness and effective event filtering. These

evaluations are with respect to the motivated application scenarios at the beginning, and include

78

Chapter2/Figs/EPS/redundantsf.eps

CHAPTER 3. STATE FILTERS 3.5 Evaluation

use-cases that might emerge in those systems. At first, I evaluate the expressiveness of SFs by

discussing a few conditions that are easily described and captured using SFs, but are found to

be tedious and complex when described in a content-based subscription model. Following this,

I will examine the performance of SFs, using real sensor data, and study the impact of SFs on

events, communication costs, and subscribers’ experience.

3.5.1 Expressiveness

The expressiveness of a subscription model is determined by its ease of use in describing con-

ditions in sensor systems, and the set of expressible interests in the language. In the following

two sections, I highlight example use-cases for each of the motivated application scenarios, and

discuss the use of SFs against the content-based subscription model.

3.5.1.1 Detecting Hazardous Conditions in Mines

RSNs may be deployed in underground mines to detect and monitor hazardous conditions, as

described in Section 3.1.2. The following describes a condition that needs to be monitored when

accidents occur in mines. I first describe the condition of interest and then attempt to efficiently

capture it using the described subscription models.

C-to-CO Reaction.1 The presence of methane gas (above 500ppm) operates as a catalyst

for the transformation of carbon to carbon monoxide (a toxic gas) when the temperature is

above 20 ◦C. Rescuers need to know if this reaction is present as it may affect the available

rescue time.

I assume the presence of the following sensor devices in the environment.

Temperature Sensor publishes events containing a single attribute name temp and a single

attribute value v that indicates the measured temperature value (in degrees Celsius).

Methane Sensor publishes events indicating the level of methane gas in the environment (at-

tribute name: methane, attribute value: v - sampled methane concentration (in ppm)).

As one may notice, carbon monoxide sensors are not used. This is because carbon monoxide

sensing hardware is expensive (i.e. low-power carbon monoxide sensors do not exist). Thus,

one must use the knowledge of methane gas and temperature to deduce information about the

C-to-CO reactions. This condition is difficult to capture reliably, because it involves two distinct

event types and therefore requires data fusion. Data fusion is often not supported on resource-

constrained platforms because it increases the code complexity, slows the data filtering process,

and requires dynamic memory allocation. Nonetheless, the following SF subscription can be

used to capture this condition efficiently.

s = {methane > 500, (methane < 500) || (temp < 20), U} (3.18)

1In reality, this reaction may be monitored in different ways. Here, I present an artificial version for the sake

of discussion.

79

3.5 Evaluation CHAPTER 3. STATE FILTERS

The entrance predicate, methane > 500, detects the presence of methane gas that can

accelerate the C-to-CO reaction. It should ideally be expressed as (methane > 500)&&(temp >

20), but since SFs can neither store events nor fuse events, only one of the two conditions may

be specified. In this example, the first expression is used as one expects it to be less frequently

matched by an event. Events, published by the methane sensor, may satisfy this predicate.

The exit predicate, (methane < 500) || (temp < 20), detects the disappearance of methane gas

or the low temperature value that restricts C-to-CO reactions. The predicate may be satisfied

by events from the methane sensor or the temperature sensor. The detection scopes set, U,

describes a single universal set that covers all publishers (sensor devices) in the mine. A finer

detection scope may be used if the accident is confined to a limited area.

The content-based subscription model requires two filters to support the same condition.

s1 = methane > 500 (3.19)

s2 = (methane < 500) || (temp < 20) (3.20)

The first detects the presence of methane gas and the second detects the absence of methane

or low temperature value, much like the discussed SF predicates.

Discussion. The SF and the content-based filter expressions are very similar. The described

condition is captured using a single SF, or two content-based filters. Results, however, differ

widely.

The independent, but complementary semantics of the two content-based filters means that

almost all published events (by the methane sensor) are delivered to the subscriber, ∀e ∈ E. e =

((n1, v1)). n1 = methane ∧ v1 6= 500 ⇒ e ⊑ s1 ∨ e ⊑ s2. This renders the content-based

subscription model ineffective for events published by the methane sensor, as almost all events

match either of the two content-based filters. The SF subscription model, however, delivers an

event only when the presence of methane gas is detected, and suppresses all subsequent methane

gas readings until its concentration is lowered or the temperature value falls below 20 ◦C.

Both subscription models operate poorly when the temperature value is less than 20 ◦C. The

content-based subscription model performs worse as s2 is continuously satisfied and events are

delivered to the subscriber. The SF subscription model cycles through states when methane gas

is present and the temperature is below 20 ◦C. This problem arises because neither subscription

model can fuse data. Chapter 5 presents SMCs that can overcome this and other limitations.

3.5.1.2 Regulating Office Temperature

Office environments may be equipped with RSNs to monitor working environments and the air

quality (see Section 3.1.2). Sensors may be used to capture user interests and drive actions

automatically. One such example may be the regulation of heat in office environments during

the summer season. Let’s describe our condition of interest as follows.

Automated Temperature Regulation. Users may specify desired temperature ranges for

their office environments. A low temperature value Tl defines the lowest acceptable temperature

value, while Th defines the highest. A preferred temperature value Tp that falls between the

80

CHAPTER 3. STATE FILTERS 3.5 Evaluation

highest and lowest values, Tl < Tp < Th, may also be specified - otherwise Tp = avg(Tl, Th).

When the office temperature t rises above Th, the air conditioning unit must be activated and

the office air is cooled until t reaches Tp. The temperature t must reach Tp < Th, otherwise the

two counter forces (environmental heat and the air conditioner) would cause the temperature

value t to oscillate about the Th value.

I assume the presence of the following sensor devices in the environment.

Temperature Sensor publishes events containing a single attribute name temp and a single

attribute value v indicating the measured temperature value (in degrees Celsius).

The following SF subscription would capture this condition as desired.

s = {temp > Th, temp ≤ Tp, {region : office1}} (3.21)

The entrance predicate, temp > Th, detects undesirable (high) temperature in the office. The

matched event may be delivered to an air conditioning unit to signal start. The exit predicate,

temp ≤ Tp, detects when the temperature is lowered to a preferred value Tp. The event that

satisfies this predicate may also be delivered to the air conditioning unit to signal stop. The

detection scopes set, {region : office1}, describes a single detection scope that relates to the

user’s office (office1).

Again, the content-based subscription model requires two filters to support the same condi-

tion.

s1 = temp > Th (3.22)

s2 = temp ≤ Tp (3.23)

Discussion. The SF subscription model results in the delivery of event pairs to the sub-

scriber (e.g. air conditioning unit). These events relate to the start and the end of the desired

condition, making automatic reactions easy and efficient. Although the content-based subscrip-

tion model captures the condition, the received set of events still need to be processed. Repetitive

events after the detection of rising temperature need to be suppressed, and redundant events

with temperature values below Tp should be ignored. In summary, the content-based subscrip-

tion model is only effective in respect of a small set of events, whose temperature values fall

in-between the preferred and high threshold value, Tp < temp ≤ Th. These events are filtered

by the content-based subscription, otherwise all events are passed through the filter.

3.5.2 Event Filtering

In this section, I investigate the performance of SFs with respect to condition capturing accuracy

and incurred communication costs. Reducing communications in RSNs is desirable, as wireless

communications are considered the main source of power consumption in these networks. In

order to compare the effectiveness of SFs against the content-based subscription model, I describe

a simple condition that can be equivalently described in both subscription models. I use the

following two metrics for evaluation.

81

3.5 Evaluation CHAPTER 3. STATE FILTERS

Capture Accuracy Capture accuracy is the level of knowledge that is conveyed to the sub-

scriber about a condition’s start and ending.

Messaging Efficiency The number of events that are suppressed by a filter. This has a strong

impact on the resulting communication costs.

The next section describes my simulation environment, in which I have implemented and

examined subscription models with respect to the outlined evaluation metrics.

3.5.2.1 Simulation Environment

I adopted the Scalable Wireless Ad hoc Network Simulator (SWANS), built on top of Java in

Simulation Time (JiST), as my base simulation environment. A multi-hop WSN was modeled

as my test platform, over which the subscription models were implemented for evaluation.

The radio model was configured according to the CC1000 radio parameters [CC1] that is in

use on the BTnode platform [BT], on Mica motes [MIC], and several other platforms. The MAC

layer implements Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) by a sequence

of Request to Send (RTS)-Clear to Send (CTS)-Data-Acknowledgment (ACK) messages. The

network layer addresses nodes according to their location in the simulation environment.

Two Pub/Sub protocols were implemented to support the SF and the Interval-based Event

Filter (IEF) subscription models, respectively. They share significant code, as they use a common

EDT model for event dissemination. I implemented the Directed Diffusion [IGE00; IGE+03]

protocol as my underlying Pub/Sub scheme. Directed Diffusion is designed to operate over multi-

hop WSNs, supports a Pub/Sub-like interface, and constrains subscriptions using rectangles

that are similar to detection scopes for SFs. The following two subscription models where

implemented over Directed Diffusion for evaluation.

Interval-based Event Filters IEFs are content-based filters, whose matched events have pre-

defined validity intervals (proposed by DSWARE [LSS03]) to represent lasting condi-

tions. Validity intervals are assigned according to the underlying environment and the

known characteristics of the observing phenomenon. An IEF filters all events that fol-

low a matched event during its predefined validity interval, T , i.e. if e1 ⊑ s then

∀e2 ∈ E. et
2 − et

1 ≤ T ⇒ F (e) = false. This was implemented by accompanying ev-

ery IEF with a timer, that starts after an event matches the subscription and filters all

subsequent events until the matched event’s validity interval times out.

State Filters SFs were implemented as described in Section 3.3. SF predicates were stored

as two independent filters, and a single status bit (stored in the memory) was used to

determine which filter needs to be applied over the received event. The detection scopes

were supported through the notion of regions, and mapped to the underlying Pub/Sub

(subscription) rectangles.

82

CHAPTER 3. STATE FILTERS 3.5 Evaluation

3.5.2.2 Experimental Setup

A two-dimensional outdoor environment was simulated, comprising sixteen equisize regions.

Each region was allocated one to three temperature sensors that monitored the local region’s

temperature. Temperature sensor devices were programmed to report regional temperature

values (in the form of events) every three minutes. Published events contained a single attribute

name temp and a single attribute value v indicating the measured temperature value (in degrees

Celsius). The number of temperature sensors totalled 35 devices (an average of just over 2 sensors

per region). These sensors were supported by 55 additional wireless nodes in the simulation

environment to ensure wireless network connectivity.

Real sensor data, collected from the Cambridge Weather Station, were used to model temper-

ature in each simulated outdoor region. When temperature sensors sampled their regions, these

values were provided by the underlying simulation engine (I assumed a uniform temperature

distribution across each simulated outdoor region).

Ten distributed subscribers, S = {S1, S2, . . . , S10}, were simulated in the environment, with

similar (but non-identical) interests over temperature changes. Subscribers wished to be notified

when a certain threshold temperature value Tx∈S had been exceeded in their chosen regions, i.e.

the subscription predicate was temp > Tx. All threshold values were in the vicinity of 10 ◦C,

but different for each subscriber, ∀x ∈ S, |Tx − 10| < ǫ. ∀y ∈ S x 6= y ⇒ Tx 6= Ty.

After analysing the environment and the condition of interest I decided to set the event

validity interval to thirty minutes in the IEF model. Subscribers’ regions of interest were defined

as detection scopes in the SF model and subscription rectangles in the IEF model. Nested

detection scopes were also used in the SF model to place SFs over individual publishers in each

region.

3.5.2.3 Performance Results

Simulation results, excluding sensor failures and relating to thirty hours of real data, are shown

in Table 3.1. In Table 3.1, the publisher-scoped filters refer to the SFs/IEFs placed on individual

temperature sensors (also referred to as the source-side filters). Region-scoped filters refer to SF

detection scopes where SFs were imposed over events emerging from individual outdoor regions.

From a total of 21000 published events in the system, only 6600 events related to the sub-

scribers’ regions of interest. A condition capturing resolution of three minutes (in the case of

SFs) against the thirty minutes interval period of the IEF1 demonstrated the increased cap-

turing accuracy of SFs against IEFs. With the IEF subscription model, a trade-off is realised

between efficiency and accuracy of condition capture, such that a larger validity interval increases

efficiency but also compromises the accuracy by an even larger value.

Only 22 events were passed through the publisher-scoped SFs (from a total of 6600 events),

contributing to a filter ratio of 0.9966. This figure compares to the 0.9672, that corresponds to

1the largest observed inaccuracy with IEFs in this experiment was 18 minutes.

83

3.6 Related Work CHAPTER 3. STATE FILTERS

Statistics SF IEF

publishers 35 35

subscribers 10 10

subscriptions 10 10

covered publishers 11 11

publisher-scoped filters 27 27

region-scoped filters 10 N/A

published events 21000 21000

covered events 6600 6600

publisher-scoped filter’s filter ratio 0.9966 (22#) 0.9672 (216#)

shared events before duplicate suppressions 16 192

duplicates suppressed 14 0

shared events after duplicate suppressions 6 192

delivered events 20 620

capturing resolution 3mins 30mins

Table 3.1: Simulation Results

the publisher-scoped IEFs. With higher source-side filtering and delivery of 600 fewer events to

(the subscribers), SFs demonstrate high messaging efficiency in comparison to IEFs.

Table 3.1 shows that out of the 22 events (which passed through the publisher-scoped filters),

14 events were further filtered at the region-scoped SFs. These 14 events were redundant. The

remaining 8 events were those which were delivered to the ten distributed subscribers in the

system — 20 events were disseminated to the subscribers in total (i.e. some events were delivered

to multiple subscribers). In comparison, IEFs had a lower source-side filtering and (without

filtering redundant events over each region) delivered a total of 620 events to the subscribers.

In this experiment, SF failure was not considered as it does not lead to erronous or missed

events, but simply overwhelms the user with all the data that is generated by the sensors. If SF

replication is used (as discussed in Section 3.4.3.1), then results corresponding to the number

of published and delivered events remain the same and the number of filters increases by the

degree of replication. Finally, it should be noted that only a single set of data (collected from

the Cambridge Weather Station) was used in this experiment, and although temperature data

from other sensor platforms is expected to demonstrate similar trends, the discussed results are

confined to this unique experiment.

3.6 Related Work

Content-based Pub/Sub is more expressive than topic-based Pub/Sub, and can result in higher

communication efficiency (due to more effective event filtering) in sensor systems. An extensive

84

CHAPTER 3. STATE FILTERS 3.7 Summary

comparison between the content-based and the introduced SF subscription models is presented

throughout this chapter. I therefore extend my comparison, in this section, to two other classes

of related work: CE frameworks and Database-oriented approaches.

Composite Event Frameworks. CE frameworks (discussed in Section 2.4.2) are related to

this work, as they can support similar features through complex event patterns and operators.

Although they are designed around heavy-weight components where processing and memory

resources are not a concern, e.g. active DBMSs and Electronic Application Integration (EAI)

brokers, the basic principle can be compared in the context of a sensor system. The proposed SFs

can be closely implemented, using the sequence operator [CM94], in CE frameworks. Essentially

two event types, A and B, are defined to reflect the events that match the (entrance and exit)

predicates of an SF, respectively. Two subscriptions of the form B; A (B followed by A) and

A; B (A followed by B) are also expressed (with the recent consumption policy) to capture the

condition initiation and termination events, respectively. This CE-based implementation can be

compared against the state-based design (of SFs).

The preservability feature of SFs means that the filter preserves the input event type at

the output. This contrasts with the CE-based implementation, where output event types are

different to the input event types. In terms of reliable detection, the proposed CE-based im-

plementation cannot detect the first condition initiation — alternative expressions can be more

complex and result in higher operational complexity. Finally, the shared context of entrance

and exit predicates in an SF can yield different results than the two independent contexts for

the CE expressions stated earlier. I believe SFs provide a more natural way of expressing lasting

conditions than multiple independent CE expressions.

Database-oriented Approaches. The Database is one of the earliest examples of high-

level abstractions for sensor network programming. COUGAR [BGS00] and TinyDB [MFHH03]

fall within this category. They allow users to issue queries in a declarative SQL-like language.

To achieve energy efficiency, COUGAR pushes selection operations to the sensor nodes so that

they can reduce the amount of data to be collected. For the same objective, TinyDB focuses

on the acquisitional issues: where, when and how often to sample and deliver data. Although

these support more expressive computations than are achievable by SFs, they fail to support

context-based data processing. Since user queries can not change (independently) according

to the output data, cf. SFs, the application programmer needs to express its context-based

data processing requirements in a single non-trivial and complex query expression. Although

TinyDB’s data storage points can store data, much as how context is maintained in SF’s status

bit, it is unclear if this can be used to implement context-based data processing (as in SFs)

within these frameworks.

3.7 Summary

In this chapter, I presented SFs [TB07c] that extend content-based filters with capabilities

to capture lasting conditions, and to filter correlated and redundant events that emerge from

one or more sensor devices. These contributions were motivated by the continuous nature of

85

3.7 Summary CHAPTER 3. STATE FILTERS

the observed environment and the realisation that many interesting phenomena have temporal

continuity. Aside from expressiveness, the proposed SFs also reduce significant communications

overhead by filtering those events that deliver correlated and redundant information about the

monitored conditions. Detection scopes were also introduced to allow fine-grained specification

of data correlation and redundancy boundaries (about a condition) over many sensor devices.

These contributions have come with negligible state storage, and high compatibility. SFs can

subsume existing content-based filters, and even substitute them in relevant Pub/Sub protocols

that are designed for sensor systems.

86

Chapter 4

Quad-PubSub

In this chapter I present Quad-PubSub (QPS) [TB07a], a topic- and location-based Pub/Sub

protocol for location-aware Wireless Sensor Networks (WSNs). QPS is a distributed Pub/Sub

protocol that supports its Event Clients (ECs) through a unified Pub/Sub interface, and provides

complete time and location decoupling (Section 2.3.1.1). The interaction between the publishers

and the subscribers is defined by events that have topic and location attributes. Since the

majority of sensor network applications can benefit from location coordinates defined in 2-D

space, QPS focuses on 2-D geographical space and partitions it into hierarchical quadrants

which form Quad-Trees (QTs) - hence the name Quad-PubSub.

QPS uses Event Broker (EB) functionality at different nodes to disseminate events globally.

It selects a limited number of nodes (EBs), using a localized subscription resolving algorithm,

and uses these to disseminate events corresponding to certain topic and location values across

the network. A dedicated layer in QPS provides resource-awareness: it ensures that the selected

nodes have sufficient resources to perform their tasks and actively relieves them from their duties

when their resources become depleted.

Key to the design of QPS is a layered architecture. This allows for the transparent op-

eration of location-based routing protocols that satisfy user-defined Quality of Service (QoS)

requirements (e.g. prolonged network lifetime, resource-aware routing, timely data delivery,

near-optimal routing, etc). I motivated this design decision by observing [SR02] how dynamic

and probabilistic routing can extend network lifetime when compared to data dissemination pro-

tocols such as Directed Diffusion [IGE00; IGE+03] that use fixed optimal paths. To allow such

dynamic routing, the event dissemination and the event routing operations must be separated.

This separation, however, can prevent some performance optimizations such as the formation of

shared event forwarding paths that are key to scalability. QPS exploits location-awareness to

achieve mutual separation of operations and path sharing. In its design, an ǫ factor is used to

manipulate a trade-off between the two.

In this chapter I initially discuss the location-aware WSNs that form the basis of this work.

A discussion of cross-layer data-dissemination protocols, and Pub/Sub protocols in particular,

is presented in Section 4.2. The discussion motivates QPS, which is formally presented in

Section 4.3. In Section 4.4 I evaluate the performance and contributions of the proposed protocol.

87

4.1 Location-aware WSNs CHAPTER 4. QUAD-PUBSUB

I follow this with a review of the related work in Section 4.5 and a summary of the chapter in

Section 4.6.

4.1 Location-aware WSNs

The notion of location is often used to describe the geographical relation of objects or entities

in a system. In location-aware WSNs, devices are augmented with a notion of location that

describes their geographical position within the network (and the environment). A coordinate

system is defined, and locations are described in absolute terms using the coordinate system. The

notion of location enhances the meaning of data, which is observed or captured by the sensing

devices, and aids the subsequent operations (aggregation or fusion) that are performed over this

data. It also provides an added dimension for indexing data, such that spatial constraints can

be imposed by end-users. As we shall describe shortly, location can also benefit some system

operations such as data routing.

The problem of identifying nodes’ spatial coordinates in some coordinate system is referred

to as localization. Extensive research has been done on localization; a general survey can be

found in [HB01]. Localization approaches mostly differ in their assumptions about the net-

work deployment and hardware capabilities. Distributed localization methods, which do not

require centralized computations, can be divided into range-based and range-free methods.

The former uses distance or angle estimations in calculating locations, while the latter just

uses the received message contents from nodes that know their locations (called anchors).

Time of arrival [HWLC97; Dan97], received signal strength [PI03; BP00], Time Difference

of Arrival (TDOA) [SHS01], and Angle of Arrival (AOA) [NN03a] have been used for range-

based localizations, and single-hop (e.g. Centroid method [BHE00]) and multi-hop (e.g. DV-

HOP [NN03b]) beaconing (from anchors) have been used in range-free localizations [HHB+03].

A quantitative comparison [LR03] shows that no single algorithm performs best, and perfor-

mance depends on many conditions such as the range errors, network connectivity, and anchor

fraction.

A location coordinate is sufficient for describing the location of a sensing device, but not

for the data that describes a spatially continuous environment. The observed data often has a

meaning beyond a single location coordinate (point), and could reflect a region that encompasses

the point of sensing. This region mirrors a sensing coverage that depends on the monitoring

context and environmental physiography, the latter of which is often variable and difficult to

evaluate. As a result, a conservative approach is often adopted where the location of data is

strongly tied to the location (point) of sensing, and increased coverage is pursued by increased

spatial sampling (i.e. higher WSN density). The following two sections describe how the location

information affects system operations and impacts the range of WSN applications.

88

CHAPTER 4. QUAD-PUBSUB 4.1 Location-aware WSNs

4.1.1 Location-based Routing

Event dissemination in large-scale ad hoc networks is difficult. The problem demands a global

search that identifies the matching publishers and subscribers, and needs some state storage

(at the appropriate nodes) to intermediate the connection. Additional costs may be incurred if

topology-based routing is used in location-free WSNs. Where location information is available,

however, routing performance can be improved.

Location-based routing protocols require nodes to know their own location, the location of

their one-hop neighbors, and the location of the destination. These protocols conserve memory

and bandwidth since discovery floods and state propagation are not required beyond a single

hop; thus they perform better than topology-based routing protocols.

Location-based routing protocols can be divided into three classes [MWH01]: restricted

flooding, geographic forwarding, and hierarchical routing. The first class of protocols set up

a region (using the location information of the source and the destination), and then flood

the region with the packet that is intended for the destination. Examples of this class are

DREAM [BCSW98] and LAR [KV00]. Although reliable and simple in operation, these protocols

consume much bandwidth and can result in serious network congestion, thus they are most

commonly used for route discovery rather than route forwarding.

The second class of protocols are more efficient as they only forward packets to one neigh-

bor (lying in the general direction of the destination) at a time. For a fixed transmission

range, MFR [TK84] (also known as greedy forwarding) is an efficient protocol that sends a

packet to the neighbor that is closest to the destination. When the transmission range is ad-

justable other strategies have been shown [HL86] to perform better. Greedy Perimeter Stateless

Routing (GPSR) [KK00] is a popular protocol, that uses a combination of greedy forwarding

and planar graph traversal to overcome the local maxima (hole) problem. WSN protocols, such

as GAF [XHE01] and GEAR [YGE01], extend these strategies with energy awareness.

Finally, the third class of protocols (e.g. Terminodes [BBC+01] and Grid [GRI]) use a

combination of strategies for different stages of the forwarding. For example, proactive distance

vector routing is used at the local level and geographic forwarding is used at the global level.

For more details please consider the [MWH01] survey.

4.1.2 Potential Applications

The use of location information strengthens two classes of applications that are otherwise con-

strained or infeasible. The first class relates to the set of applications where location aids data.

In this class, it is imperative to tag data with location to enable meaningful processing, data cor-

relation, and subsequent actuation. This class of applications often considers the environment’s

physiography to be unique and expresses a homogeneous interest across the sensor network. For

example, in target tracking, identification of the target is the only interest across the sensor

network.

The second class is where location aids query (or task). In this class, applications do not

consider the environment’s physiography to be unique, and exploit location-awareness to finely

89

4.2 Cross-layer Pub/Sub Protocols CHAPTER 4. QUAD-PUBSUB

express their interests with respect to various parts of the sensing environment. For example, in a

smart transportation environment, different speed limits may be imposed on different monitoring

roads and highways (identified by their location). The majority of location-based applications,

however, relate to both as they utilize features from both classes. The design and implementation

concerns that follow each class though, are different. Below, I have highlighted two examples

that reflect each class individually.

Forest Fire Detection WSNs can be deployed to detect forest fires in their early stages, or

monitor their progress thereafter [YWM05; Hef07]. A large number of sensing devices is

deployed, each of which monitors a certain context such as the temperature or humidity

of its local environment. Sensor readings are then reported to a base station if alarming

values or patterns are detected. The base station examines the data, received from multiple

sensors, and determines the likelihood of a real fire. This analysis and the subsequent action

strongly depends on the location of observations: data location is needed to accurately

aggregate data and to direct dispatched teams to the right location in the forest. In this

application, location aids data.

Crop Management WSNs can be used to monitor climatic conditions, weather and crop data

in agricultural fields [WCS+07; Bag05; HFH+05]. These networks may span multiple

indoor/outdoor environments with different fruits and vegetables. Farmers monitor for

different conditions or diseases at each crop field, and aim to minimise the use of chemical

treatments in each field. These conditions may be monitored through observation of the

humidity, temperature, and moisture on the leaves. Location information is vital for mon-

itoring the appropriate condition at each field. For example, potato fields are monitored

for phytophtora (a fungal disease) and, if necessary, treated with fungicide in the affected

areas, while in rice fields, similar data is used to predict rice blast (a rice disease).

4.2 Cross-layer Pub/Sub Protocols

Data routing and data dissemination are different communication paradigms. The former sup-

ports a one-to-one communication model, where a packet (or a message) is routed from a source

to a destination, while the latter describes a many-to-many communication model, where data

is disseminated from many information producers to many information consumers. In Pub/Sub,

the relationship between the information producers (publishers) and consumers (subscribers) is

determined by the structure and contents of the data (events) itself, and thus Pub/Sub is also a

data-centric communication paradigm. Traditionally, data dissemination protocols (e.g. multi-

cast and Pub/Sub) focused on end-to-end level interactions and used primitive communication

models, such as that provided by the data routing protocols, for low-level node-to-node level

interactions. The close relationship between the two communication paradigms, however, has

encouraged many researchers to explore cross-layer designs, where data dissemination and data

routing are performed as part of a unified protocol.

90

CHAPTER 4. QUAD-PUBSUB 4.2 Cross-layer Pub/Sub Protocols

Cross-layering is the practice of accessing other layers’ protocol stacks or, at its extreme, the

practice of unifying their implementations into one larger (more complex) protocol [CCMT04].

In the case of data dissemination and data routing, cross-layering enables the data dissemination

service to examine the routing tables, which are maintained by the data routing protocol for

node-to-node level packet forwarding. Cross-layer implementations are often more compact and

efficient. For example, common concerns (such as node failures and topological changes) can be

jointly addressed rather than separately. Disadvantages mainly relate to the reduced flexibility

in the system architecture, tight-coupling, and mutual dependencies in operations.

One optimization that is commonly pursued in cross-layer data dissemination protocols is

the formation of shared data (event) forwarding paths. Shared paths are common data routes

that multiple event forwarding paths (for different subscribers) use in the network. Forwarding

a single event along the shared path can benefit multiple event subscribers. These routes can be

identified in cross-layer designs, where knowledge about the overlapping routes and destinations

(subscribers) are apparent to the protocol.

In decentralized Pub/Sub protocols, shared paths are formed at the subscription resolution

stage. Existing event forwarding paths are detected and shared paths are formed when sub-

scriber interests happen to match. Shared paths offer numerous advantages, two most notable

of which are increased communication savings, and synchronized forwarding. Communication

costs are reduced when an event is shared over a communication route for multiple subscribers.

The alternative (event replication and forwarding along multiple routes) has a communication

cost that is at best linear to the number of subscribers. Shared paths also offer synchronized

forwarding, where data for multiple subscribers is forwarded in synchronization. This narrows

the time window in which different subscribers receive the data.

Although shared paths reduce communication costs, they result in in-network state storage

and fixed paths, both of which (if neglected) can reduce the WSN lifetime.

In-network States Cross-layer data dissemination protocols store in-network states to guide

data from publishers to subscribers. These states pose storage costs that if neglected can

exceed nodal resources in the case of a large number of subscriptions. Where localized

interactions are used [IGE00; IGE+03], these states are stored on a per-hop basis, guiding

data from every node to the next until subscribers are reached. Where globally unique

addresses (e.g. location-based addresses) are available, these states still need to be stored

to reflect knowledge about the existing event forwarding paths.

Fixed Paths The formation of a shared path entails a merge between an existing event for-

warding path and a new one. Where decentralised solutions are used, this merge happens

within the network and relies on fixed event forwarding paths that can be used without

further resolving a subscription. Sometimes, however, these fixed paths are not wanted.

For example, [SR02] shows that dynamic routing performs better than fixed path routing,

even if optimal routes are used, when prolonged network lifetime is desired. They have

shown that a dynamic routing approach can extend the energy savings by 21.5% and the

91

4.2 Cross-layer Pub/Sub Protocols CHAPTER 4. QUAD-PUBSUB

S

S
P

(a) Network Topology

S

S
P

(b) Direct Unicast

S

S
P

(c) Opportunistic

S

S
P

(d) Greedy Sharing

R

S

S
P

(e) GHT-based

Figure 4.1: A comparison of four event forwarding techniques

network lifetime by 44%, when compared to the optimal paths used in Directed Diffu-

sion [IGE00; IGE+03]; they maintain a set of sub-optimal paths, chosen by means of a

probability function, from which they select a single path randomly to deliver data.

In order to allow dynamic routing, forwarding paths must be relaxed and path freedom

(the opposite of fixed paths) should be allowed. Path freedom allows data to take arbitrary

routes from sources to destinations. The semantics of this freedom can be subject to resource-

awareness, timeliness, near-optimal routing, or other user-specified QoS policies. Examples of

routing protocols that can benefit from this path freedom are [SR02; GTS06; TGS06; SZHK04;

HHKV01; KRKI04]. The next section explores the relationship between shared paths and path

freedom in WSNs with reference to an example. In Section 4.3 I present a Pub/Sub protocol

that supports a combination of shared paths and path freedom. This combination is achieved

by controlling the level of in-network state storage and the fixed paths that are formed in the

network.

4.2.1 Path sharing vs Path freedom

Let’s consider Figure 4.1 as a case study, where event forwarding paths for two subscribers and

a single publisher are shown; the solid arrows are Pub/Sub links, and the dashed arrows are

shortest forwarding routes. The subscribers, denoted by S, have a common data interest. This

interest is fulfilled by the single publisher, denoted by P. If we abstract the link-layer functionality,

the communication cost of disseminating events from the publisher P to the subscribers S can

be examined by the number of communication hops that is taken by an event to reach the

subscribers (Figure 4.1(a) shows the network topology). In this regard, I examine four known

techniques for setting up the event forwarding paths from P to S. These techniques are discussed

with emphasis on the achieved shared event forwarding paths, support for path freedom, and the

overall communication that is induced for delivering an event notification.

92

Chapter3/Figs/EPS/topology.eps
Chapter3/Figs/EPS/shortest.eps
Chapter3/Figs/EPS/oppor.eps
Chapter3/Figs/EPS/greedy.eps
Chapter3/Figs/EPS/ght.eps

CHAPTER 4. QUAD-PUBSUB 4.2 Cross-layer Pub/Sub Protocols

Direct Unicast When resolving subscriptions, direct unicast links can be set up at the pub-

lisher P that point to each subscriber, see Figure 4.1(b). In this, maximum support for

path freedom is achieved; event notifications can take any route from the publisher to

the subscribers, guided by the routing protocol. No paths are shared, as events are repli-

cated at the publisher and forwarded independently towards the subscribers. The lowest

notification delivery cost is 6 hops, and a total of 2 states are stored in the network (at P).

Opportunistic Sharing When a cross-layer data dissemination protocol is used in location-

aware WSNs, opportunistic shared paths [IEGH02] can be formed as in Figure 4.1(c).

States are stored at every intermediate hop, and used to merge overlapping lowest latency

paths. The event delivery cost is now reduced to 5 hops - interestingly the savings are

made at the publisher’s region, which help to extend the lifetime of the publisher and

its surrounding nodes. Path freedom in this setup has been diminished, as events must

propagate through the selected set of intermediate nodes that reflect a fixed path. These

fixed paths direct events on a hop-level basis from the publisher to the subscribers. A

total of 5 states are now stored in the network.

Greedy Sharing At the expense of higher communication costs (e.g. network broadcast), more

effective shared paths [IEGH02] can be formed, see Figure 4.1(d). Greedy sharing involves

a search for existing event forwarding paths, of which the most suitable path is selected

for optimal results. The notification delivery cost is now reduced to 4 hops, but subscrip-

tion resolutions now have a communication cost that is proportional to that of network

broadcast. Like opportunistic sharing, path freedom is lost and fixed paths are formed

that guide events on a hop-level basis; a total of 4 states are stored in the network.

GHT-based Using Geographic Hash Table (GHT) [RKY+02] (a Distributed Hash Table (DHT)-

like protocol for location-aware WSNs), one can construct shared paths while also attaining

some path freedom. In this setup, subscriptions are joined and shared paths are set up at

some defined rendezvous nodes, denoted by R in Figure 4.1(e). Support for path freedom

exceeds the previous two approaches, but is still lower than the direct unicast approach

as events still need to route through the rendezvous node. A total of 3 states are stored

in the network (one state at the P, and two states at the R). This approach has a number

of disadvantages that outweigh its benefits. Firstly, the rendezvous nodes are selected

statically (predefined) according to some location coordinates as opposed to their level

of resources. Secondly, they are subject to high event handling and dissemination costs

that can deplete their resources (e.g. battery power) and lead to their failure. Thirdly,

the resultant event dissemination paths (even in the case of shortest-distance routing) are

often quite expensive; the cost of event dissemination, in Figure 4.1(e), is 8 hops.

93

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

4.3 Quad-PubSub

QPS is a topic-based Pub/Sub protocol that supports shared paths as well as path freedom in

location-aware WSNs. It separates event dissemination from event routing, and implements

the former as a functional layer. An underlying routing protocol is required, which may be

customized according to the characteristics of the deployed sensor network, and may satisfy

user-defined QoS requirements. The amount of path freedom that QPS provides for forwarding

events from publishers to subscribers determines how much flexibility the routing layer has for

meeting its QoS requirements. This amount is tunable by an ǫ factor that users provide as part

of their subscriptions.

QPS uses the location-awareness property of the network to build an overlay of logical EBs

(in the form of QTs), over which it constructs Event Dissemination Trees (EDTs) to interconnect

the publishers and the subscribers. The ǫ factor manipulates a trade-off between shared paths

and path freedom in the construction of EDTs at this overlay. A localized subscription resolving

algorithm is used (at each of the logical EBs on the overlay) to form event forwarding paths,

which constitute the EDTs, according to the user-specified ǫ factors and in a decentralized

manner.

In the next section I outline my event model that defines how data is represented in QPS.

Section 4.3.2 outlines the system architecture, and discusses the components and operational

layers of QPS. The QPS dissemination model is presented in Section 4.3.3. This model is exe-

cuted by a set of routing algorithms that is outlined in Section 4.3.5. A resource-awareness model

(Section 4.3.6) and a reliability model (Section 4.3.7) complement these operational features,

and address changing levels of nodal resources and nodes’ failure-proneness in WSNs.

4.3.1 The Event Model

In general, data in Pub/Sub is represented as event publications (or events). Event publications

are manifested for routing and processing as event publication messages (or event notifications).

These are asynchronous messages that are transfered from the event publishers to the event sub-

scribers. Prior to event publication, however, publishers need to advertise their set of publishable

events via event advertisements. This provides prior knowledge about the event publications,

which QPS uses to operate more efficiently and fulfill event subscriptions. The interconnection

between publishers and subscribers is drawn when subscribers express their interests via event

subscriptions. The next three sections describe event publications, subscriptions, and advertise-

ments, as used in QPS.

4.3.1.1 Publications

In location-aware WSNs, supported by QPS, events are assumed to have notions of topic and

location assigned to them. The topic describes the type of information that is contained in

the event, and the location maps the information to a certain (point-based) location coordinate

within the geographical space. The use of topics leads to a structured event space E that is easier

94

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

to manage, and more naturally suited to sensor systems where sensor hardwares and readings

are often typed.

Definition 4.1 (Event Notification). An event notification e consists of a tuple τ and belongs

to the event space E,

e ∈ E. (4.1)

The tuple τ contains an event topic, te, a location, le, and a set of attributes,

τ = (te, le, {a1, · · · , an}). (4.2)

An event topic t is a member of a pre-defined set of event topics T , t ∈ T = {t1, · · · , tk}. Event

location le is also a member of the geographical space S, le ∈ S. Each attribute, ai, is a name-

value pair, (ni, vi), with name ni and value vi. Attribute names are unique, i.e. i 6= j ⇒ ni 6= nj.

Every event e corresponds to a unique combination of a publisher, ep, and a timestamp, et, in

the system, i.e. ∀e1, e2 ∈ E if ep
1 = ep

2 ∧ et
1 = et

2 then e1 = e2.

4.3.1.2 Advertisements

Event advertisements are pre-announcements that indicate what events, from the event space E,

are likely to be observed in the system. Event publishers (such as sensors) advertise their events

prior to event publications. This increases QPS’ knowledge about the granularity of events that

may be realised about the event space, and helps to fulfill event subscriptions (described later

in Section 4.3.3.2).

Definition 4.2 (Event Advertisement). An event advertisement d consists of a tuple τd,

d = τd, (4.3)

that contains an advertisement topic td and an advertisement region rd ⊆ S,

τd = (td, rd). (4.4)

The tuple describes a set of events, Ed, whose event topic match td and location fall within the

region rd,

Ed = {e ∈ E | te = td ∧ le ∈ rd}. (4.5)

The set Ed describes the set of publishable events from the event space E.

4.3.1.3 Subscriptions

Event consumers describe their event interests through subscriptions. Event subscriptions, like

advertisements, govern a subset of the event space E that consumers hold interests over. Simi-

larly, subscriptions have associated event topics and regions of interest.

95

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

Network Layer

Location-based Routing Layer

Clients Layer

Pub/Sub Layer

Logical Pub/Sub Layer

Physical Pub/Sub Layer

Figure 4.2: QPS Architecture

Definition 4.3 (Event Subscription). An event subscription s consists of a tuple τs,

s = τs, (4.6)

that contains a subscription topic ts, a subscription region rs ⊆ S, and a subscription epsilon

factor ǫs,

τs = (ts, rs, ǫs). (4.7)

The tuple described a set of events, Es, whose event topic match ts and location fall within the

region rs,

Es = {e ∈ E | te = ts ∧ le ∈ rs}. (4.8)

The subscription ǫ factor relates to the event forwarding path and is discussed later in

Section 4.3.3. An event notification e may be examined against a consumer’s subscription s to

determine if the subscriber is interested in the event or not.

Definition 4.4 (Subscription Coverage). An event notification e = (te, le, {a1, · · · , an}) matches

a subscription s = (ts, rs, ǫs),

e ⊑ s, (4.9)

if and only if

e ∈ Es. (4.10)

The above can only hold true if and only if

te = ts ∧ le ∈ rs. (4.11)

4.3.2 Architecture

The architecture of a sensor system that employs QPS is shown in Figure 4.2. Each layer

builds on top of the functionality provided by the layer underneath and exports a clearly defined

interface to the layer above. Apart from that, the layers are independent of each other. A layered

96

Chapter3/Figs/EPS/arch.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

QPS Event Dissemination Tree

Location-based Event Routing

P
S

S

S

S
P

Physical Pub/Sub Layer

Logical Pub/Sub Layer

Figure 4.3: QPS Layers

architecture has the advantage that each layer may have its own independent implementation,

which can easily be replaced by a different implementation that supports the same interface. This

extends the use of QPS, such that different (customized and/or efficient) networking and routing

protocols can be (transparently) used in different implementations of QPS to suit different

sensor network deployments or target environments. I have described the role of each layer with

reference to an example (see Figure 4.3) below.

Clients Layer The highest layer in the architecture is the clients layer. It consists of inde-

pendent components, who produce and/or consume events in the system. Components

in this layer benefit from the underlying data-centric messaging that is provided by the

Pub/Sub layer. Figure 4.3 shows two subscribers (denoted by S) which are served by a

single publisher (denoted by P).

Logical Pub/Sub Layer This layer provides the core functionality of the Pub/Sub. It ben-

efits from the reliability and abstraction that is provided by the physical Pub/Sub layer,

and focuses on the interconnection of related information producers and consumers in the

network. The top layer in Figure 4.3 shows the operation of this layer, which constructs

an EDT via some abstract (logical) EBs (denoted by dashed ovals). The EDT directs

event notifications from publishers (P) to subscribers (S). A balance between path shar-

ing and path freedom is controlled at this layer (according to the subscribers’ ǫ factor

specifications).

Physical Pub/Sub Layer The physical Pub/Sub layer reflects the resource- and network-

aware operations of the Pub/Sub layer. It does not implement any Pub/Sub functionality,

but only addresses the network and nodal concerns. This layer ensures the selection

and involvement of a suitable set of nodes for Pub/Sub functionality, and provides three

services, resource-aware mapping, proactive hand-over, and fault-tolerance. The resource-

aware mapping service selects nodes that have sufficient resources for participation on the

EDT. Figure 4.3 shows two filled ovals which have been selected to operate as the selected

97

Chapter3/Figs/EPS/qpubsub.eps

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

C

C

C

C
B

B

B
B B

Event ClientCEvent BrokerB

Figure 4.4: QPS Components

EBs at the logical layer. The hand-over service actively monitors these selected nodes for

sufficient resources, and relieves them from their operations when their resources fall short.

Finally, fault-tolerance is supported to combat abrupt node failures. QPS replicates its

data structures across nearby nodes to independently recover from these failures.

Location-based Routing Layer The location-based routing layer implements a reliable uni-

cast messaging service that delivers a message from a source node to a destination node

whose location-based address is known. Figure 4.3 illustrates the operation of this layer by

a series a dashed arrows which forward the event notifications on hop-by-hop basis along

the constructed EDT. When the destination address is set to ANY, the routing protocol

is assumed to deliver the packet to all one-hop neighbors either by a localized broadcast

or by series of unicast messages. The implementation may follow some user-defined QoS

requirement such as increased network lifetime or timely event delivery.

Network Layer The network layer ensures globally unique addresses for nodes in the sensor

system. It uses nodal locations to assign location-based addresses, and provides addresses

when nodes join the network.

4.3.2.1 Pub/Sub components

A Pub/Sub protocol needs to be decentralized to support scalability and fault-tolerance. A

distributed implementation entails the operation of many components that operate together to

achieve Pub/Sub functionality. These components reside on different nodes, and have different

roles that define their purpose and operation. These roles and operations are described by a

component model.

In my component model, I introduce two kinds of components, Event Brokers (EBs) and

Event Clients (ECs). EBs implement the entire functionality of the Pub/Sub layer and provide

a service to the ECs. To use the Pub/Sub, ECs must connect to at least one EB. ECs come in

98

Chapter3/Figs/EPS/components.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Returns API Call Parameters

void send (Destination destination, MessageType type,

Message message)

void register handler (MessageType type, Boolean peek, Callback

callback)

Table 4.1: The routing protocol’s API

Returns API Call Parameters

void receive (Message message)

Message message peek (Message message)

Table 4.2: The QPS EB callback API

two flavours, event publishers that publish events and event subscribers that subscribe to events.

A Pub/Sub protocol with EBs and ECs is shown in Figure 4.4.

Event Brokers. EBs are the main components of the QPS. A single EB constitutes

a complete implementation of the Pub/Sub, but usually multiple EBs are deployed together.

These components reside on every node that wishes to support Pub/Sub functionality, and

cooperate with each other to form an EDT. EBs use the interface that is exported by the

underlying location-based routing protocol to achieve their functionality. The exported routing

protocol interface is shown in Table 4.1. The interface allows EBs to send messages and register

handlers for Pub/Sub messages in the system. Subsequently, EBs receive messages that are

either addressed to them or addressed to some location-based address that is closest to them.

In addition, EBs may peek and modify contents of related messages that are handled by the

routing protocol. The exported interface for message handling by the EBs is shown in Table 4.2.

An EB that has one or more event publishers connected locally (at the same node) is called

a publisher-hosting EB. Similarly, an EB becomes a subscriber-hosting EB if it is maintaining

a local connection to one or more event subscribers. An EB that is situated on the EDT and

intermediates the connection is called a forwarding EB. An EB may be all, some, or none of the

above.

Definition 4.5 (Event Broker (EB)). An EB b ∈ B from the set of all EBs B maintains a tuple,

b = (CP , CS), (4.12)

where CP is a set of locally connected event publishers and CS is a set of locally connected event

subscribers.

99

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

Returns API Call Parameters

void advertise (Publisher pub, EventTopic topic, EventRegion

region)

void publish (Publisher pub, Event event)

void subscribe (Subscriber sub, EventTopic topic,

EventRegion region, EpsilonFactor epsilon,

Boolean guaranteed coverage fulfillment,

Callback callback)

void unadvertise (Publisher pub, EventTopic topic, EventRegion

region)

void unsubscribe (Subscriber sub, EventTopic topic, EventRegion

region)

Table 4.3: The QPS EB’s API

Returns API Call Parameters

void notify (Event event)

void failed coverage fulfillment (EventTopic topic, EventRegion region)

Table 4.4: The QPS event subscriber callback API

Event Clients. ECs are components that reside on the clients layer of the architecture.

They maintain a connection to their local EBs, and do not possess any Pub/Sub functionality

themselves. An EC uses the interface that is exported by its local EB to request Pub/Sub

functionality, such as publishing or subscribing to events. Since this interface only handles the

communication of the EC with its local EB, it may be synchronous or asynchronous. This

interface conforms to the standard Pub/Sub interface and is listed in Table 4.3.

ECs are tied to the application components of a sensor system, such as sensors, actuators,

services, and users. An event publisher is a client component that produces event publications

and passes them to the Pub/Sub protocol for dissemination. An event subscriber subscribes to

events and consumes event publications. These events are subsequently passed to the attached

clients (e.g. users or actuators). Unlike event publishers, event subscribers receive asynchronous

notifications from their local EBs whenever an event is published that matches one of their

subscriptions. They may also receive failure reports regarding their guaranteed subscription

coverage request. For this they export an asynchronous callback interface, shown in Table 4.4,

to the local EB.

100

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Forwarding EBFPublisher-hosting EBP

S

S

S

F

F

F

P

P

P

Subscriber-hosting EBS

Figure 4.5: QPS’s EDT

Definition 4.6 (Event Client (EC)). An EC c ∈ C from the set of all ECs C maintains a tuple,

c = (bc, tc, rc, ǫc), (4.13)

where bc ∈ B is the local EB that c is connected to, tc ∈ T and rc ⊆ S are the related event

topic and event region that c has advertised/subscribed, and ǫc is the desired event forwarding

path-length ratio when c is a subscriber, otherwise ǫc = ∅.

4.3.3 Dissemination Model

The dissemination model describes the QPS EDT that disseminates events from publisher-

hosting EBs to subscriber-hosting EBs. The EDT interconnects publishers and subscribers,

whose advertisements and subscriptions overlap, and examines subscription coverages over event

notifications that propagate through the tree. Publisher-hosting and subscriber-hosting EBs are

interconnected through a set of one or more intermediate EBs, referred to as the forwarding

EBs, see Figure 4.5 (the EDT is shown by solid arrows). QPS actively maintains this EDT as

ECs join and leave the system.

An event forwarding path between any publisher-hosting EB and any subscriber-hosting

EB is always intermediated by at least one forwarding EB. This is to ensure correct Pub/Sub

functionality, and impose minimal load on publisher-hosting and subscriber-hosting EBs when

they are not co-located. Forwarding EBs are dynamically selected from a pool of potential

forwarding EBs (defined by the logical Pub/Sub layer).

The interconnection between any neighboring (pair of) EBs on the EDT is defined by a

publish-subscribe link (the solid arrows). In effect, an EDT is composed of many publish-

subscribe links that operate independently but achieve an overall goal of disseminating events

from publishers to subscribers. Each link delivers event notifications from one EB to the next

EB that is closer to the subscriber-hosting EBs on the EDT. These links are noted by the

subscription entries that reside at the downstream EBs (tails of the arrows) and point to their

101

Chapter3/Figs/EPS/diss_sub.eps

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

S

S

F

S

P

(a) EDT with fewer forwarding EBs (small ǫ)

S

S

S

F

FP

F

F

(b) EDT with more forwarding EBs (large ǫ)

Figure 4.6: Impact of the number of forwarding EBs on the EDT

upstream EBs (heads of the arrows). The EB at the head of a link, whose tail is at a publisher-

hosting EB, is an “immediate forwarding EB to the publisher-hosting EB”; and the EB at a

tail of a link, whose head is at a subscriber-hosting EB, is an “immediate forwarding EB to the

subscriber-hosting EB”.

Publish-subscribe links are formed as part of constructing event forwarding paths in the

network. The EDT shown in Figure 4.5 is a composition of three event forwarding paths,

each of which relates to a single subscriber-hosting EB in the diagram. Subscription messages,

reflecting event subscribers’ interests, propagate through the network from each subscriber-

hosting EB (dashed arrows in Figure 4.5 show this for one) and construct (reversed) event

forwarding paths that resemble tree structures with subscriber-hosting EBs rooted at their tops.

These subscription messages are handled by a localized subscription resolving algorithm at the

receiving EBs. The algorithm impacts a trade-off between path sharing and path freedom as

follows.

4.3.3.1 Path sharing vs Path freedom

Publish-subscribe links are formed at the logical Pub/Sub layer. These links may be shared

among multiple event forwarding paths, in which case they help to achieve path sharing within

the EDT. The location-based routing protocol governs how events are routed along these links,

and benefits from path freedom, such that it may employ arbitrary routing policies when deliv-

ering events from the tails of the publish-subscribe links to their heads.

The number of publish-subscribe links, used in an EDT, impacts the achieved path freedom.

As the number of links increases so does the number of forwarding EBs that events need to

pass through, see Figure 4.6. This reduces path freedom and often leads to segmented, winding

event forwarding paths that are composed of many short publish-subscribe links. In addition,

the involvement of many forwarding EBs that each reside on a separate network node increases

the vulnerability of an EDT to node failures. On a positive note, however, an increased number

102

Chapter3/Figs/EPS/compare1.eps
Chapter3/Figs/EPS/compare2.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

d1 + d2 + d3 + d4

D
ε ≥

d1

d2

D

theoretical direct path
P

S

F

F

F

d3

d4

Figure 4.7: Subscriber-specified ǫ factor

of publish-subscribe links increases chances of link selection and path sharing among multiple

event forwarding paths.

The subscriber-given ǫ ∈ R : ǫ ≥ 1 factor indicates the desirable event forwarding path length

relative to a theoretical direct path. In other words it is the ratio of the longest permissible

path length to the theoretically shortest (direct) path length, see Figure 4.7. The ǫ factor

indirectly manipulates the number of forwarding EBs that intermediate the connection between

a publisher-hosting EB and a subscriber-hosting EB. It empowers subscribers to control the

following attributes of the formed event forwarding path.

Path Freedom A lower ǫ value would decrease the number of selected EBs, thus increases path

freedom.

Event Delivery Latency A lower ǫ value would shorten the event forwarding path, such that

the lower bound of the event delivery latency is reduced.

Path Sharing In contrast to the previous two attributes, path sharing can only be promoted

by higher ǫ values that allow event forwarding paths to be stretched for more overlap and

path sharing.

In most cases, the subscriber sets the ǫ factor according to its desired event delivery latency

or path freedom if a specialized routing protocol is involved. If the subscriber has no interest

of the event delivery latency or the path freedom, then he/she can specify an arbitrary ǫ value

- my evaluations (in Section 4.4.4.3) show that a larger ǫ value is preferred, though beyond a

certain threshold value performance is unaffected.

4.3.3.2 Dissemination Policies

QPS conforms to two event dissemination policies that enhance its usability and reliability in

sensor systems.

Real-time Coverage This policy extends the standard subscription coverage with time de-

coupling (Section 2.3.1.1). It states that an event publication e ∈ E, published by an

EC, ep ∈ C, is delivered to every subscriber, whose subscription s matches the event

103

Chapter3/Figs/EPS/epsilon2.eps

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

publication, e ⊑ s, including when ep advertised its events after the time of the event

subscription.

Single Delivery This policy asserts that events are unique in QPS, and that every event

publication can be delivered at most once to any subscriber. It formally states that an

event publication e ∈ E, published by ep at time et, can be at most delivered once to any

subscriber u ∈ C : if notifyu(e) denotes a distinct event delivery operation (event e is

delivered to an event subscriber u), then ∀e1, e2 ∈ E if notifyu(e1) ∧ notifyu(e2) ⇒
e1 6= e2 ⇒ (ep

1 6= ep
2) ∨ (et

1 6= et
2).

In addition to the above policies, QPS introduces a number of operational policies that

impact the formation of EDTs and event subscribers’ experience in the system. The first policy

determines the importance (weight) of the subscription ǫ factor in constructing event forwarding

paths, and the second provides a QoS for ECs’ interests (subscriptions).

Epsilon Compliance. Subscription ǫ factors impact the formation of event forwarding

paths, but also pose a communication overhead if they are to be enforced over shared paths.

QPS empowers the system designer to select a global policy that influences a trade-off between

ǫ factor compliance and increased communication savings.

Guaranteed ǫ Compliance Guaranteed ǫ compliance dictates that the subscriber-given ǫ fac-

tors must be asserted over all event forwarding paths. When subscription trees merge, this

policy enforces the examination of all ǫ factors over the shared path. The shared path is

reconstructed if it is not in compliance with the smallest ǫ factor.

Best-effort ǫ Compliance When subscription trees merge, this policy prioritises communica-

tion savings over the ǫ compliance. It neglects to assert the ǫ factors over the shared paths,

and leads to best-effort ǫ compliance, where event forwarding path formations comply to

ǫ factors only until shared paths are reached.

Coverage Fulfillment. Event subscribers are limited to receiving events that are published

by the event publishers in the system. The relation between a subscriber’s interests and event

publishers’ publishable events can be described by a subscription coverage fulfillment policy in

QPS. The level of subscription coverage that may be attained for a given subscription, s, against

a set of realised event advertisements, A, determines the coverage. A choice of two policies are

available, on per subscription basis, as follows.

Best-effort Coverage Fulfillment The best-effort coverage fulfillment policy asserts no more

conditions than what the real-time coverage policy already asserts in QPS. With this

policy, there may be zero or more event publishers at any time that serve (can publish

events for) an event subscriber.

104

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Guaranteed Coverage Fulfillment This policy asserts that complete subscription coverage

should be achieved. In other words, all events that the event subscriber has interests over

must be publishable by some set of event publishers at all times. This requires a complete

coverage of the event subscription by the set of event advertisements, Es ⊆
⋃

d∈A Ed, where

Es is the set of interested events (by a subscriber s), and Ed is the set of publishable events

that is described by an advertisement d from the set of all advertisements A. In sensor

systems, the guaranteed coverage fulfillment policy is useful for applications that wish to

have their phenomenon (or condition) of interest under continuous and complete surveil-

lance by one or more sensors (event publishers). Under this policy, event subscribers are

notified about any changes (e.g. publisher failure) that affect their subscription coverage

by the failed coverage fulfillment callback function.

4.3.4 Event Service

QPS event service is decentralized for scalability, fault-tolerance, and increased load balancing.

Every node in the network is assumed to possess Pub/Sub functionality, and hosts an EB

component. The EDT, discussed above, is formed in a decentralized manner and by some

localized operations at these EBs.

Every forwarding EB is assigned a role that is defined at the logical Pub/Sub layer. The

logical layer defines a pool of distinct roles, that can serve any subscription request either

individually or in combination. While distinct roles promote the distribution and involvement

of many EBs on the EDT, a localized subscription resolving algorithm and the physical Pub/Sub

layer control this distribution. The former restricts the selection of EBs for participation on the

EDT, and the latter ensures that only resourceful EBs are involved in the EDT.

The two Pub/Sub layers have separate, but related, views and operations about the EB com-

ponents. The following sections describe these layers separately, and present a set of notations

that are used in subsequent sections for describing their correspondence in attaining Pub/Sub

functionality.

4.3.4.1 Logical layer

The logical layer has a network-independent view of QPS EBs. I call these components, logical

EBs, because they are defined at an abstract level. The logical Pub/Sub layer provides complete

Pub/Sub functionality at this abstract level, as it constructs and maintains EDTs over the logical

EBs.

The logical layer defines a graph, GT,L = (GT,LV , GT,LE), whose vertices GT,LV define the set

of logical EBs and directed edges GT,LE describe the EBs’ parent-child relationships (discussed

shortly) for the set of all event topics T . This graph is known globally; EBs can locally compute

the graph using a single hash function and the set of all event topics T . Each logical EB can only

forward a subset of the event space E on an EDT. The logical layer systematically partitions

the event space and assigns subsets to these logical EBs. These subsets define the roles that are

associated with the logical EBs.

105

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

N

Vertex

Edge

Figure 4.8: Geographical Scopes

In order to determine the subsets, the event space E is partitioned across two domains:

the event topics and the event location. The set of event topics T is a discrete set which is

partitioned along every topic member. The event location, however, is a much larger set that

needs a partitioning policy; I assume a two dimensional (2-D) geographical space1 and describe

my partitioning policy as follows.

The logical layer encloses the entire sensor network’s coverage area in a region, referred to as

the network space, S. The location attribute of all publishable events is assumed to fall within

this network space, ∀e ∈ E le ∈ S. Although sensor network coverage may be dynamic and

dependent on nodes’ join or leave operations, the network space is assumed to be static and

can be arbitrarily defined larger than the network’s coverage area. The logical layer partitions

S into a hierarchy of Geographical Scopes (GSs), in which the number of hierarchy levels N is

pre-defined by the system designer. Since the location-based routing protocol is responsible for

geographically broadcasting messaging within the lowest level GSs, it is sensible to select N such

that nodes contained in the lowest level GSs are within direct transmission range of one-another.

In this partitioning, the first (highest) hierarchical level constitutes the entire network space S

as a single GS. Subsequent partitions divide every GS on the top level into four (six if 3-D space

is used) equisized GSs to form a hierarchical structure. This partitioning is iterated until N

hierarchical levels are achieved, see Figure 4.8. The GSs are fixed, and total 4N−1
3 scopes.

For every combination of an event topic t ∈ T , and a GS g ⊆ S, a logical EB u ∈ Gt,LV is

defined that is responsible for events matching the event topic t and holding a location attribute

parameter l ∈ g. If one interconnects the EBs related to an event topic t ∈ T , from the highest

GS to the lowest GSs, a Quad-Tree (QT) is formed (see Figure 4.8). The parent-child relationship

on this tree is described by the directed edges of the logical layer graph, GT,LE . The lowest level

vertices, that have no children, are referred to as the leaf vertices (or leaf EBs) of the QT. The

operation of the logical layer QT is independent for each event topic. Hence, I study this layer

1The Pub/Sub mechanism presented for QPS can similarly be applied for 3-D space with the notable differ-

ences that Oct-Trees and an Oct-PubSub would be realised.

106

Chapter3/Figs/EPS/geo-scopes.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

(for the remainder of this chapter) from the perspective of a single event topic, t ∈ T , and its

corresponding QT, Gt∈T,L ≡ GL = (GLV , GLE).

Decentralized EDT maintenance. The main function of the logical layer is to maintain

interaction between the publishers and the subscribers through an EDT. Logical EBs are the

only EBs that can become forwarding EBs (i.e. form the EDT). They can join (cover) subscrip-

tions if they overlap, decompose and relay them to child EBs (on the QT) for more direct event

forwarding paths, or register them and serve their corresponding (subscriber-hosting) EBs as

immediate forwarding EBs. A localized subscription resolving algorithm directs each logical EB

to perform one or more of the above actions when it receives a subscription request. Actions

are either driven by messages or by local state changes.

At the global level, operations are often subscriber-initiated, and go as follows. A subscriber-

hosting EB, in order to receive events for its subscriber, dispatches a request to the nearest logical

EB that is responsible for the events of interest. The request is handled by the addressed logical

EB (as described above) and resolved over the QT. This subscription resolution connects the

subscriber (at one or more points) to the EDT. At the other end of the EDT, advertisements

are used to connect publishers to the EDT. Publisher-hosting EBs are almost always connected

to the EDT via leaf EBs, i.e. the leaf vertices of the QT. Although the EDT’s forwarding EBs

are selected from the QT, the EDT itself may have a structure different from the QT.

4.3.4.2 Physical layer

The physical Pub/Sub layer maps the EDT, that is constructed by the logical layer, on to

the real network. It describes the real network by a physical layer graph GP = (GPV , GPE),

whose vertices GPV represent the deployed network nodes, and directed edges GPE describe the

asymmetric link-layer connections between them. Since every node is assumed to house an EB

component, the vertices could also be considered as real EBs, i.e. GPV ≡ B.

Resource-awareness and network maintenance. The physical layer is responsible for

mapping logical EBs (Pub/Sub roles) to physical (real) EBs. It initially maps the logical EBs

to real EBs on demand basis. The initial interaction with a logical EB is always message-based,

and the physical layer exploits this plus the multi-hop nature of the routing process to search

for a suitable EB at the routing stage. At the end, it directs the message to the most resourceful

EB that is found during the search process. Subsequent mappings are performed proactively,

when the EB’s resources fall short or drop rapidly.

A useful feature of the physical layer is that its operations are entirely based on message

contents and/or local states. This, assuming a trusted environment, allows EBs to invoke

operations for other EBs. For example, when an EB fails, another EB can unsubscribe the failed

EB from the EDT to save some messaging; this is achieved by issuing an unsubscribe message

with the failed EB’s address as its source field1. QPS EBs use this feature to transparently

maintain the EDT through standard Pub/Sub operations.

1Note that this and other fields, described later, are independent of those introduced by the routing or network

layer protocols.

107

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

4.3.4.3 Notation

In line with my earlier discussion, the notation that is presented in this section is for a single

event topic t ∈ T .

• GL = (GLV , GLE) and GP = (GPV , GPE) denote the logical and physical Pub/Sub graphs,

respectively.

• u ∈ GLV denotes a vertex on the logical graph, that represents a logical EB on the QT.

• u ∈ GPV denotes a vertex on the physical graph, that represents a real node in the network.

The node houses one EB and zero or more EC components.

• (u, v) ∈ GLE denotes a directed edge that represents the parent-child relationship between

u and v on the QT (see Figure 4.8).

• (u, v) ∈ GPE denotes a directed edge that represents an asymmetric link-layer connection

from u to v. A connection is symmetric if and only if (u, v) ∈ GPE ⇔ (v, u) ∈ GPE .

• loc(u ∈ (GLV ∪ GPV)) 7→ p ∈ S is a function that maps a vertex u to a point, p, on

the network space, S. Let l(u ∈ GLV) ≡ loc(u) and p(v ∈ GPV) ≡ loc(v) be short-hand

notations. p(v ∈ GPV) reflects the location of a node that is determined by the network

layer (localization algorithm), and l(u ∈ GLV) = hash(s(u)) statically defines the location

mapping of any logical EB u on to S (the hash function and its parameter, s(u), are

defined shortly).

• hasht∈T (r ⊆ S) 7→ p ∈ r ⊆ S denotes a geographical hash function, that when given a

key (event topic t) and a region r, outputs a unique location p within the given region r.

Since p is bounded by r, the vertices of a QT probabilistically converge towards their GS

centroids as GSs shrink from the top to the bottom.

• covu∈GPV (v ∈ GPV) 7→ r ⊆ S is a function that returns the subscription region r, for

which v has u registered in its subscription routing table (routing tables are discussed

later in Section 4.3.5.2). Also, cov(v ∈ GPV) denotes the stable Pub/Sub subscription

coverage that is registered at v’s subscription routing table (explained in Section 4.3.5.2).

Logical layer notations

• c(u ∈ GLV) = {v ∈ GLV |(u, v) ∈ GLE} denotes the children of u on the QT; c(u) = ∅ if

and only if u is a leaf vertex.

• s(u ∈ GLV) 7→ s ⊆ S is an inverse function that returns the GS of vertex u. Also,

si∈{1,···,4}(u ∈ GLV) ≡ s(ci(u)) denotes the GS of u’s children.

• ci∈{1,···,4}(u ∈ GLV) denotes the ith child of u, that is located in the ith sub-GS of s(u),

starting from the quadrant with the minimum coordinate values and counting clockwise.

108

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

• K(c ∈ C, s = (ts, rs, ǫs)) 7→ {u ∈ GLV |
⋃

x∈K(c,s) cov b(x) = rs, ∀v ∈ K(c, s), u 6= v ⇒
cov b(u) ∩ cov b(v) = ∅} describes the overall operation of the logical layer, in which an

event subscription s from an event subscriber c that is connected to its local EB b ∈ GPV

is resolved over the QT. An EB u ∈ GLV is an immediate forwarding EB if and only if

u ∈ K(c, s). The asserted conditions
⋃

x∈K(c,s) cov b(x) = rs and cov b(u) ∩ cov b(v) = ∅
describe the QPS’s real-time coverage and single delivery policies.

• R (u ∈ GLV , v ∈ GPV , rv ⊆ S, ǫv ∈ R) 7→ {(y ∈ GLV , ry ⊆ S, ǫy ∈ R)|y ∈ c(u) ∪ {u}, ry ⊆
s(y)} is a Localized Subscription Resolving Algorithm that the logical Pub/Sub layer im-

plements to handle incoming subscription messages (detailed later in Section 4.3.5.4).

Physical layer notations

• map(u ∈ GLV) 7→ v ∈ GPV denotes a one-way mapping function, that maps every vertex

on the logical layer on to a vertex on the physical layer. The function is a resource-aware

mapping function, implemented by the physical Pub/Sub layer.

• suit(u ∈ GPV , v ∈ GLV) 7→ y ∈ R is a suitability function that indicates how suitable a

physical node u is for operating in the role of a logical EB v. The physical Pub/Sub layer

uses this function to perform resource-aware mapping.

• compare(x ∈ R, y ∈ R) 7→ h ∈ {true, false} is a suitability compare function that indicates

whether a node’s workload should be reduced following the change of suitability value from

x to y. This function is used by the physical Pub/Sub layer to perform active hand-overs.

4.3.5 Routing

Routing algorithms govern the inter-EB messaging that occurs in QPS. They direct actions

following receipt of messages and designate destinations for messages that are generated by the

EBs. These actions and destinations are largely based on the message types, and messaging

end-points. I first discuss the message types in QPS, then outline the data structures that are

maintained at the EBs, and finally present the routing algorithms that control the propagation

of each message type in the system. Induced operations at the senders and receivers are also

explained as part of this presentation.

4.3.5.1 Message Types

Four types of messages are realised at the Pub/Sub layer in QPS: advertisement messages,

subscription messages, coverage fulfillment messages, and event publication messages. The first

type distributes information about possible event publications in QPS. The second type dis-

tributes requests for events that are of interest to an event subscriber. These messages result

in the formation of publish-subscribe links and selection of a set of forwarding EBs. The third

type transfers knowledge about covered and uncovered subscription regions. It is only used

when guaranteed coverage fulfillment is requested. Finally, event publication messages envelope

109

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

published events, that need to be disseminated across the network to reach the corresponding

subscribers.

In addition to these message types, there are unadvertisement and unsubscription messages,

which are inverses of the corresponding messages described above. The routing algorithms use

them to remove state from EBs, but for all practical purposes they behave in the same manner

as their positive counterparts. Next I will explain the structure of each message type.

Advertisement Messages. An event publisher that is willing to publish events may cause

its hosting EB to send advertisement messages. Advertisement messages are routed to corre-

sponding EBs that do not know about the publisher. These messages create states in EBs’

advertisement routing tables, that may be used later to form publish-subscribe links. Messages

contain an eventTopic and an eventRegion, which define the set of publishable events Ed ⊆ E

for an advertisement d. The source reflects the publisher-hosting EB, and the destination

contains the address of the target logical EB. Three fields (candidateEB, suitabilityFactor,

and handoverEB) relate to the physical Pub/Sub layer functionality that is discussed later in

Section 4.3.6.

source destination eventTopic eventRegion

candidateEB suitabilityFactor handoverEB

Subscription Messages. A subscription message may be sent, by a subscriber-hosting EB,

when an event subscriber makes a subscription call. These messages are routed to one or more

EBs that can serve subscribers’ requests. Where these requests are met, new entries are added to

the subscription routing tables of some EBs, which denote active publish-subscribe links. These

links direct subscription matching events to the subscriber-hosting EB. Subscription messages

contain an eventTopic, an eventRegion, and an epsilonFactor field, that define the set of

desirable events Es ⊆ E for a subscription s. The source indicates the subscribing EB, and the

destination points to an EB that can serve the subscription. The Qbit (quadBit field) is used

to indicate whether the source (subscriber) is on the QT or not, and the fulfillBit reflects

subscriber’s preference about the coverage fulfillment.

source destination eventTopic eventRegion epsilonFactor

quadBit fulfillBit candidateEB suitabilityFactor handoverEB

Coverage Fulfillment Messages. A coverage fulfillment message is sent by a publisher-

hosting EB to indicate a covered subscription region, or by a forwarding EB to indicate an uncov-

ered subscription region. A fulfillBit indicates which of the two is implied, and eventTopic

and eventRegion fields highlight the details of the (un)covered subscription. These messages

are only produced if the guaranteed coverage fulfillment policy is requested.

source destination eventTopic eventRegion fulfillBit

110

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Event Publication Messages. An event publication message is generated by a publisher-

hosting EB, when an event is received from a publisher. They are routed to one or more

forwarding EBs that further disseminate the event to the related subscribers. The forwarding of

event publication messages is controlled by subscription routing tables that reside at the EBs.

These messages contain an eventTopic, an eventLocation, and a series of event attributes

eventAttribute (name-value pairs) that reflect the event. In addition, a Qbit (quadBit field)

is used to prevent cyclic message forwarding along the EDT.

source destination quadBit eventTopic

eventLocation eventAttribute1 eventAttribute2 · · ·

4.3.5.2 Data Structures

QPS functionality depends on three data structures that are maintained at all EBs. Two routing

tables implement the Pub/Sub functionality, and an EB mapping table maintains information

about the EBs that have taken the role of one or more logical EBs. These data structures are

managed locally and contain information that is received via Pub/Sub messages or from the

local ECs.

Routing Tables. An advertisement routing table records information about advertisements

and a subscription routing table does the same for subscriptions. The routing tables have a

similar form and are thus sub-instances of the same data structure. Their purpose is to maintain

information about the set of publishers and subscribers whose advertisement and subscription

messages have been registered at the EB. These registrations (and de-registrations) mirror

publish-subscribe link formations (and eliminations) in QPS. Insertion or deletion of entries to

and from these routing tables trigger handlers that assess the impact of these link formations

or eliminations on the EDT, and may lead to subsequent independent subscribe, unsubscribe,

or coverage fulfillment message generations by the EBs.

Definition 4.7 (Subscription Routing Table). A subscription routing table RT sub contains a

set of routing table entries, RTE,

RTE ∈ RT sub . (4.14)

A subscription routing table entry RTE is a tuple,

RTE = (sub, q, f, b), (4.15)

where sub is a subscription, q is the Qbit that was contained in the received subscription message,

f is the fulfillBit, and b ∈ GPV is the broker that sent the subscription (the source field of

the received subscription message).

The coverage function covu∈GPV (v ∈ GPV) (introduced earlier) is a short-hand notation for

u’s registered subscription region in v’s subscription routing table, covu∈GPV (v ∈ GPV) = rs,

where rs ∈ sub ∈ RTE = (sub, q, f, b) ∈ RT sub : b = u. Also, the ‘stable Pub/Sub subscription

111

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

coverage’ at v ∈ GPV , cov(v ∈ GPV), is the accumulated subscription region of all subscription

routing table entries that have been fully resolved in the network, and have subscription ǫ

factor non-equal to zero, cov(v ∈ GPV) =
⋃

r∈R r, where R = {rs|∃sub = (ts, rs, ǫs) ∈ RTE =

(sub, q, f, b) ∈ RT sub . ǫs 6= 0}.
The action that follows a subscription insertion or deletion (to or from an EB’s, u’s, sub-

scription routing table) depends on the change in the EB’s accumulate subscription coverage,

cov(u). I label the coverage prior to change as covbefore(u), and the one after as covafter(u). The

two may then be compared as follows.

covafter(u) > covbefore(u) u independently subscribes to the added subscription region covafter(u)−
covbefore(u) to compensate for the change. The source fields of the newly generated sub-

scription messages are set to u.

covafter(u) = covbefore(u) No action is necessary.

covafter(u) < covbefore(u) u independently unsubscribes the region covbefore(u)−covafter(u). The

source fields of the generated unsubscription messages are set to u.

Definition 4.8 (Advertisement Routing Table). An advertisement routing table RT adv contains

a set of routing table entries, RTE,

RTE ∈ RT adv . (4.16)

An advertisement/subscription routing table entry RTE is a tuple,

RTE = (adv , b), (4.17)

where adv is an advertisement and b ∈ GPV is the broker that sent the advertisement (the source

field of the received advertisement message).

When an advertisement d = (td, rd) is registered or removed (to or from the table), the

registered subscriptions {s = (ts, rs, ǫs)|s = sub ∈ RTE ∈ RT sub} are examined. For insertion,

those with overlapping regions, {s|rs ∩ rd 6= ∅}, are forwarded to the advertisement sender

b ∈ GPV ; this action connects the newly found publisher to the EDT. For deletion, i.e. when

a publisher leaves, the set of subscribers who requested guaranteed coverage fulfillments are

notified if their subscription region is affected, i.e. if rs * covafter(u). Coverage fulfillment

messages are generated and dispatched to these subscribers, as instructed in Section 4.3.5.5.

EB Mapping Table. An EB mapping table records information about logical EBs mapped

to the physical EBs. This information is used to direct messages that are addressed to the logical

EBs to their corresponding physical EBs.

Definition 4.9 (EB Mapping Table). An EB mapping table MT contains a set of mapping

entries, MTE,

MTE ∈ MT . (4.18)

112

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Publisher-hosting EBPuLogical EBL

rd

L
L

L
LvPu

Figure 4.9: Advertisement Messages

A mapping entry MTE is a tuple,

MTE = (u, v) : map(u) = v, (4.19)

where u ∈ GLV indicates a logical EB and v ∈ GPV indicates its corresponding real EB (from

the set of brokers B).

Entries in the EB mapping table are soft-state and need to be refreshed periodically by

mapped EBs v ∈ GPV : v ∈ MTE .

4.3.5.3 Advertisement Messages

Apart from a local EB, an event publisher also has an associated local logical EB. These local

logical EBs are leaf EBs, whose GSs cover the publisher-hosting (local) EBs’ locations. If

u ∈ GPV is a publisher-hosting EB (shown as Pu in Figure 4.9), then v ∈ GLV : c(v) =

∅ ∧ p(u) ∈ s(v) is the local logical EB to u and all the publisher ECs that are connected to u

(see Lv in Figure 4.9).

A publisher-hosting EB u ∈ GPV generates advertisement messages if and only if the event

region of an advertisement rd exceeds its local logical EB’s GS, i.e. if rd * s(v), where v ∈ GLV

is u’s local logical EB. The generated advertisement messages are dispatched to all non-local leaf

EBs, whose GSs overlap with the event region rd, see Figure 4.9. The purpose of these messages

is to inform addressed EBs about the event publishers that are not located within their GSs,

but publish events that relate to their GSs. This set of related logical EBs can be expressed

as {y ∈ GLV |y 6= v, c(y) = ∅, s(y) ∩ rd 6= ∅}. Advertisement messages that are dispatched to

each y reflect an overlapping advertisement region, rd ∩ s(y). These messages register passive

publish-subscribe links at the addressed logical EBs, which may be activated later, upon the

realisation of a corresponding subscription.

More direct (and thus efficient) publish-subscribe links can be formed if advertisement states

are stored at more logical EBs. This can be achieved by sending advertisement messages to

nearby EBs. More precisely, advertisement messages may be sent to all non-local logical EBs

whose GSs overlap with the advertisement region and location fall within a circle, that is centered

113

Chapter3/Figs/EPS/advertise.eps

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

at the publisher-hosting EB’s location with a radius that reaches the non-local leaf EBs. This

set of logical EBs, for a publisher-hosting EB u ∈ GPV and advertised event region rd can be

described by {y ∈ GLV |s(y) ∩ rd 6= ∅. ∃z ∈ GLV . |p(u)− l(y)| ≤ |p(u)− l(z)|}, where z is a leaf

EB and a descendant of y, i.e. c(z) = ∅, s(z) ∩ s(y) ∩ rd 6= ∅.
Note that advertisement messages are directed to the location-based addresses of logical EBs,

i.e. destination address is {l(y)}. The physical Pub/Sub layer will map these addresses to real

nodes, as explained later in Section 4.3.6.1.

4.3.5.4 Subscription Messages

An EB, u ∈ GPV , generates subscription messages when it realises subscriptions, s = (ts, rs, ǫs),

from its connected ECs that are not covered by its subscription routing table entries, i.e. rs *

cov(u). The subscription message contains the eventTopic value ts, the eventRegion value

(rs − cov(u)), and the epsilonFactor value ǫs, and is dispatched to one or more EBs who can

serve the subscription request. The values of other fields in the subscription message, and the

set of destination EBs are determined according to the role of u. I first discuss the destination

EBs (according to various roles of u), and then describe the actions that are taken upon receipt

of such subscription message at the EBs.

Sending Subscription Messages. An EB that has generated a subscription message, can

have one of the following roles.

Subscriber-hosting EB A subscriber-hosting EB generates subscription messages that reflect

its local ECs’ subscription requests. These subscription messages hold a quadBit field that

is set to zero, and are dispatched to the geographically nearest logical EB, v ∈ GLV , that

can serve the subscription, i.e. ∃v ∈ GLV : rs ⊆ s(v)∧∀y ∈ GLV , rs ⊆ s(y). |p(u)− l(v)| ≤
|p(u)− l(y)|, where u ∈ GPV is the subscriber-hosting EB.

Forwarding (non-leaf) EB A subscription message may be generated by a forwarding EB

who has registered a subscription entry, that is not covered by other entries in the sub-

scription routing table (Section 4.3.5.2). In this case, u is already assigned the role of

a logical EB, i.e. ∃v ∈ GLV : u = map(v). The quadBit field is set to one, and the

subscription region is decomposed and forwarded to the set of child EBs, c(v).

Forwarding leaf EB A leaf EB has no child EBs; thus, when u is a forwarding leaf EB,

i.e. ∃v ∈ GLV : u = map(v), c(v) = ∅, the subscription message’s epsilonFactor and

quadBit fields are set to zero, and the message is geographically broadcast to all EBs who

are within v’s GS, i.e. to {y ∈ GPV |p(y) ∈ s(v)}. The subscription message is also sent

to publisher-hosting EBs that have advertised corresponding event publishers, registered

at u’s advertisement routing table; this activates the passive publish-subscribe links that

were noted earlier in Section 4.3.5.3.

114

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Note that, like advertisement messages, subscription messages are mostly addressed to logical

EBs.

Receiving Subscription Messages. Subscription messages, that are received by EBs,

are also handled according to the role of the receiving EB, u ∈ GPV , with respect to the

message. The destination field of the subscription message indirectly highlights this role, and

can be either a wild-card destination (ANY), a location address that corresponds to a real node

(physical EB address), or a location address that reflects a logical EB (logical EB address). The

EB u handles the subscription message, according to the destination field as follows.

ANY Subscription messages that are addressed to ANY have been geographically broadcast by

a forwarding leaf EB. The purpose of the broadcast is to search for corresponding event

publishers in the forwarding leaf EB’s GS. The EB u, upon receiving such a message,

examines its ECs for matching event publishers. If found, ∃v ∈ CP : rv ∩ rs 6= ∅ (where

rv is the advertisement region of v), then the subscription is registered at u’s subscription

routing table with a partial event region reflecting the overlap rv ∩ rs. If guaranteed

coverage fulfillment is requested, then a coverage fulfillment message is also generated

(with matching event topic and overlapping event region) and dispatched to the leaf EB

(indicated by the source field of the subscription message).

Physical EB address Subscription messages are addressed to physical EB addresses when a

corresponding advertisement entry is seen at the sender’s advertisement routing table.

The addressed EB, u, ought to have a related event publisher, in which case it operates

as described above.

Logical EB address The most common case is where the destination of a subscription message

is the location-based address of a logical EB v ∈ GLV . In this case the recipient, u, notices

a mismatch between its own location-based address and the destination field of the

subscription message. This indicates that a logical EB v has been mapped to u, i.e.

∃v ∈ GLV : u = map(v); u can examine the QT to identify v. A localized subscription

resolving algorithm handles these subscription messages.

Localized Subscription Resolving Algorithm. The localized subscription resolving

algorithm is called when a subscription message, with destination field relating to a logical

EB v ∈ GLV , is received at an EB u ∈ GPV . This instance holds u responsible to the role of

v, and to the subscription request, s, contained in the message. The addressed logical EB v,

however, is most likely not the only EB that can serve s. A QT, with N GS levels, can offer at

lease 2N − 1 different EB combinations that can serve any subscription.

The localized algorithm determines if and how much u should be involved in forwarding

events to the subscriber, q ∈ GPV . If it determines that the subscription should be partially or

fully resolved, then the subscription is registered at u’s subscription routing table and u becomes

involved as a forwarding EB.

115

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

Event
Brokers

Region
RegisteredSubscriber

region (r)
Subscription

Figure 4.10: Resolved Subscription

The algorithm is iterated over the QT until the subscription is fully resolved. In Figure 4.10,

a subscriber’s subscription is forwarded to the root of the QT (shown at the top layer). The

subscription region, r ⊆ S, is partially registered at the top level EB (shown as a shaded

region), and partially decomposed and relayed to the children EBs. The process is iterated until

the subscription coverage domain, r, is completely resolved over the QT. Immediate forwarding

EBs are those which are responsible for the registered (shaded) regions. In this example, six

EBs are selected (one at the top layer, one at the middle layer, and four at the bottom layer)

as the immediate forwarding EBs to the subscriber-hosting EB.

Definition 4.10 (Localized Subscription Resolving Algorithm). A localized subscription resolv-

ing algorithm R is a function that maps an extended subscription tuple τ to a set of subscription

resolved tuples Θ,

R : τ → Θ. (4.20)

The tuple τ describes an addressed logical EB v, subscriber q, subscription event region rq, and

subscription epsilon ǫq, and Θ describes a set of subscription resolved tuples that each indicate

a new target logical EB y, subscription event region ry, and subscription epsilon ǫy,

R (v ∈ GLV , q ∈ GPV , rq ⊆ S, ǫq ∈ R) 7→ {(y ∈ GLV , ry ⊆ S, ǫy ∈ R)}. (4.21)

The algorithm R is localized, such that new target logical EBs are selected without inter-broker

collaboration, and it is optimistic, as it aims to form a publish-subscribe link (from u to q) where

allowed for future path sharing.

A publish-subscribe link is created (from u to q) if the resulting event forwarding path is

in compliance with the subscription epsilon ǫq. The following describes how this compliance is

evaluated, and the resulting Θ is produced.

The addressed logical EB v compares approximate event forwarding paths, for the options of

registering or relaying the subscription request, with respect to each of its children’s GSs, si(v).

u registers the subscription, if the ratio equals or falls below ǫq. Let {rg i ∈ R|i ∈ {1, · · · , 4}} and

{rl i ∈ R|i ∈ {1, · · · , 4}} denote the sets of distances for the options of registering or relaying a

116

Chapter3/Figs/EPS/geo-qpubsub.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

cen2

cen3cen4

cen1

u

q

forwrding path for the option of registeration (rgi)

forwrding path for the option of relay (rli)

u Mapped logical EB ceni Centroid pointq Subscriber (EB)

Figure 4.11: Register vs Relay distances

subscription request for each of the quadrants si(v), see Figure 4.11. Three sets of coordinates

are needed to approximate the event forwarding path lengths as shown in Figure 4.11.

Subscriber’s location The subscriber’s location, p(q), is known from the source address that

is included in the subscription message.

Addressed EB’s location The addressed target logical EB v is mapped to a real EB, u =

map(v), whose location, p(u), is known locally.

Publishers’ locations If u’s advertisement routing table holds relevant entries, then the lo-

cation of those (publisher-hosting) EBs is used. In addition, four virtual publisher coor-

dinates are computed that correspond to the publishers that reside in v’s children GSs.

These coordinates are defined as centroid points, {ceni ∈ S|i ∈ {1, · · · , 4}}, of overlapping

subscription regions {ri∈{1,···,4} ⊆ S|ri = si(v) ∩ (rq − cov(u))}.

Using these coordinates, the {rg i∈{1,···,4}} and {rl i∈{1,···,4}} distances may be computed as

follows.

{rl i ∈ R|rl i = |p(q)− ceni|} (4.22)

{rg i ∈ R| if ri = ∅ and best-effort ǫ compliance, then (4.23)

rg i = |p(q)− p(u)|, otherwise rg i = |p(q)− p(u)|+ |p(u)− ceni|}. (4.24)

The first expression reflects the case where a subscription is relayed to the child EBs. This

can potentially result in the formation of more direct (and shorter) event forwarding paths from

117

Chapter3/Figs/EPS/reg_rel.eps

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

the publishers to the subscriber q. The path is estimated as a straight line from the publishers to

q (see the dashed lines in Figure 4.11). The second and third expressions capture the situation

when the subscription is registered, and the events go through the addressed EB u to reach the

subscriber q. This lengthens the event forwarding path such that events need to go through

the EB u to reach the subscriber q, i.e. u intermediates the connection (see the solid lines in

Figure 4.11).

For every i ∈ {1, · · · , 4}, if rgi

rli
≤ ǫ then the resulting event forwarding path is sufficiently

short and the subscription is registered, Θ = Θ ∪ {(v, rq ∩ si(v), ǫi)|ǫi = ǫ.|p(q)−ceni|−|p(q)−p(u)|
|p(u)−ceni|

}.
Otherwise, the subscription is relayed to the child EBs c(u), Θ = Θ ∪ {(ci(v), rq ∩ si(v), ǫq)}.
If v is a leaf vertex on the QT (i.e. c(v) = ∅), then the subscription is involuntarily registered,

Θ = {(v, rq, 0)}.
When guaranteed ǫ compliance is requested, shared paths are examined to ensure all re-

lated ǫ factors are satisfied. If the EB u registers the subscription (from subscriber q), then it

must determine the permissible event forwarding path length (that is allowed by ǫq) from the

publishers to itself. This path length is compared with the permissible path lengths that were

previously granted by other subscribers in u’s subscription routing table. If the permissible path

length by ǫq is shorter than the previously granted path lengths by the registered subscriptions,

then the covered subscription (whose forwarding path is shared) is renewed (un-subscribed and

re-subscribed) with ǫq. This renewal reconstructs the shared path in a way that ǫq and hence all

ǫ factors are satisfied. The permissible path length by ǫq (from the publishers to u) is computed

as ǫq.|cen−p(q)|−|p(u)−p(q)|, where cen is the centroid point of the covered region rq∩cov(u).

Localized Unsubscription Resolving Algorithm. The localized unsubscription resolv-

ing algorithm R′ handles unsubscription messages at the addressed logical EBs. It is like R

in principle, but computes the Θ set differently. The epsilon factor ǫq is ignored and the un-

subscription requests are resolved according to the entries in the addressed EB’s subscription

routing table. The algorithm unsubscribes the overlapping event region rq ∩ cov q(v) and relays

the remainder, rq − cov q(v), to the child EBs c(v). It is formally expressed below.

R′ (v ∈ GLV , q ∈ GPV , rq ⊆ S, ǫq ∈ R) 7→ (4.25)

{(v, rq ∩ cov q(v), ǫq)} ∪ {(y ∈ c(v), (rq − cov q(v)) ∩ s(y), ǫq)}. (4.26)

4.3.5.5 Coverage Fulfillment Messages

When guaranteed coverage fulfillment is requested, coverage fulfillment messages are used to

communicate the covered and uncovered subscription regions in QPS. Coverage fulfillment

messages are initially produced by the publisher-hosting EBs, who register a subscription request

(as discussed in the previous section). A coverage fulfillment message, generated by a publisher-

hosting EB u ∈ GPV about a received subscription message (with subscription region rv) from

a subscriber v ∈ GPV , contains the overlapping covered region rv ∩ covv(u) and is sent to the

subscriber, v. Coverage fulfillment messages, generated by the publisher-hosting EBs, reflect

the covered subscription region; thus have the fulfillBit set to 1.

118

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

EBs that receive coverage fulfillment messages are divided into two groups: those that re-

ceive coverage fulfillment messages reflecting covered regions, and those that receive coverage

fulfillment messages reflecting uncovered regions.

Receiving covered regions This group of EBs, v ∈ GPV , have related advertisement entries

in their advertisement routing tables, or are forwarding leaf EBs. They receive coverage

fulfillment messages from the addressed publisher-hosting EBs, and aggregate these to ob-

tain an accumulate covered region, R. This is compared against the registered subscription

region for a subscriber y ∈ GPV . If the accumulate region matches the registered region,

R = covy(v), then the subscription region is fulfilled and the operation is terminated.

Otherwise, a new coverage fulfillment message is generated to reflect the uncovered region,

covy(v)−R, and dispatched to the affected subscriber y, with the fulfillBit set to zero.

The registered coverage region is also reduced to reflect the accumulate covered region, i.e.

covy(v) ← R. EBs, v ∈ GPV , usually set a timeout for examining subscription coverage

after a registeration.

Receiving uncovered regions Coverage fulfillment messages that reflect uncovered regions

are generated when event publishers fail or when there is not sufficient coverage for re-

quested subscription regions. An EB v ∈ GPV , who has received a coverage fulfillment

message reflecting an uncovered region r ⊆ S, examines its subscription routing table

and informs the affected subscribers about their unfulfilled subscriptions. The generated

messages contain overlapping uncovered regions, i.e. r ∩ covy(v) where y ∈ GPV is a

subscriber in v’s subscription routing table. The fulfillBit is set to zero to indicate

that the contained region is uncovered, and the message is directly dispatched to y. The

registered coverage region for y is also reduced to reflect the covered subscription region,

i.e. covy(v)← (covy(v)− r).

If a subscription region is not fully covered, then a coverage fulfillment message, reflecting

this lack of coverage, arrives at the subscriber-hosting EB. The subscriber-hosting EB informs

the event subscriber about the uncovered region r, using the failed coverage fulfillment

callback function.

4.3.5.6 Publication Messages

Event publishers introduce events using the exported publish operation. The publisher-hosting

EB wraps the event publication into an event publication message and dispatches it for dissem-

ination over the EDT. The routing of publication messages is only controlled by the state in

subscription routing tables. In contrast to the advertisement and subscription messages, where

most target addresses related to logical EBs, event publications are addressed to real EBs. A

Qbit field controls the propagation of event publications along the EDT. I set Qbit = 1 when

the message is addressed to a forwarding EB, and Qbit = 0 when it is addressed to a subscriber-

hosting EB. This simple mechanism prevents cyclic event forwarding loops when forwarding

EBs and subscriber-hosting EBs happen to be co-located on a single node, see Figure 4.12.

119

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

P
P

P

P

F

F

F

F

S

S

S

forwarding with Qbit=0forwarding with Qbit=1

Figure 4.12: Event Publication Messages

More precisely, an event publication message (from a publisher-hosting EB u ∈ GPV , re-

flecting an event e with location attribute value le) is initially dispatched, with Qbit = 1, to

all subscribers v ∈ GPV , who have a matching subscription region, le ∈ covv(u), and hold

(Qbit = 0, ǫ = 0) in u’s subscription routing table - these entries are forwarding leaf EBs on the

EDT.

A forwarding EB y ∈ GPV that receives an event publication, with Qbit = 1, forwards

the event to related subscribers, {z ∈ GPV |le ∈ covz(y)}, with Qbit settings that match their

subscription entries (i.e. Qbit = 1 for entries with Qbit = 1 and Qbit = 0 for entries with

Qbit = 0). An EB y ∈ GPV that receives an event publication, with Qbit = 0, only forwards

it to the local subscribers. Subscriber-hosting EBs deliver the events (to the locally connected

event subscribers) using the notify callback function.

4.3.6 Resource-Awareness Model

The operation of a Pub/Sub protocol, in WSNs, can not be independent of nodal resources.

Pub/Sub functionality has great impact on induced communication costs, which have been

shown to greatly affect power consumption in WSNs (Section 2.3.1). The physical Pub/Sub

layer, in QPS, supports a resource-awareness model that considers real-time nodal resources.

The resource-awareness model implements two services in QPS: on-demand EB mapping

and proactive hand-over. When a logical EB v ∈ GLV is addressed (by its location address l(v)),

the physical Pub/Sub layer performs a “search and map” operation that identifies a suitable EB

u ∈ GPV for accepting the role of v, i.e. map(v) = u. Nodal resources, however, change over

time; the proactive hand-over service acknowledges this by relieving overloaded or low-resourced

EBs from their assigned roles, and initiating a fresh mapping for the logical EBs. The notion

of suitability, at the physical Pub/Sub layer, describes the resourcefulness of an EB and its

appropriateness for taking on the role of a logical EB.

120

Chapter3/Figs/EPS/publication.eps

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

Definition 4.11 (Suitability Function). A suitability function, suit, returns a real number,

o ∈ R, that reflects the suitability of an EB u ∈ GPV for taking on the role of a logical EB

v ∈ GLV ,

suit(u, v) 7→ o ∈ R. (4.27)

A larger o value means that u is more suited to taking on the role of v. This function is

implemented by the system designer, and is assumed to take account of nodal resources, as well

as u’s closeness to the location-based address of v, i.e. o ∝ 1
|p(u)−l(v)| .

4.3.6.1 On-demand Mapping

Logical EBs are mapped to real EBs on demand basis. References to logical EBs are realised

when publisher- or subscriber-hosting EBs dispatch advertisement or subscription messages as

discussed in Section 4.3.5. These messages are destined for the location-based addresses of

logical EBs, l(v ∈ GLV), which are unique and often do not relate to any real node addresses,

i.e. ∀v ∈ GLV .∄u ∈ GPV : l(v) = p(u).

The on-demand mapping service operates in two steps: search and assignment. The first

step aims to identify a previously mapped EB or a suitable EB that can adopt the role of the

addressed logical EB. If a previously mapped EB is not found, then the EB with the highest

suitability value (found in the process) is selected for mapping. The latter step ends the search

process and routes the message to the mapped EB.

Search. The search process exploits the multi-hop nature of the routing process in WSNs.

The service also uses the peek callback function to see and modify any Pub/Sub messages that

are intercepted by the routing protocol. A candidateEB field, that piggybacks the advertisement

and subscription messages, contains the last most suitable EB u ∈ GPV that is found for taking

the role of the addressed logical EB v ∈ GLV . The suitability value of u, ou = suit(u, v), is

reflected in the suitabilityFactor field.

Every EB y ∈ GPV that encounters the message, examines its own suitability value, oy =

suit(y, v), and compares this against ou (the suitabilityFactor field in the message). If

higher, oy > ou, then y replaces the candidateEB and suitabilityFactor fields with y and oy;

otherwise, the message is intact. The EB y then returns the message to the routing protocol

for continued routing towards the destination address. An encountered EB is excluded from the

search if it is already assigned the role of another logical EB from the same QT (i.e. it excludes

itself by skipping the comparison).

Since the destination (logical EB) address most likely does not relate to any real node,

l(v) 6= p(w ∈ GPV), most routing protocols perform an extended search operation to ensure

the absence of voids or local maxima. This procedure further enhances the search results for a

suitable EB, as the message passes through some nodes in the vicinity of the destination address.

Assignment. The assignment process follows or interrupts the search process. The search

process is interrupted if a previously mapped EB u ∈ GPV for v ∈ GLV is found at an encoun-

tered EB’s (y’s) EB mapping table. The only exception to this is when the handoverEB field

is set to u (explained later in Section 4.3.6.2). Alternatively, the search process continues until

121

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

the message is routed and finally delivered to what is often the geographically nearest node,

y ∈ GPV , to the destination address, l(v), i.e. ∀w ∈ GPV |p(y)− l(v)| ≤ |p(w)− l(v)|.
If an already mapped EB for v is not found, then the most suitable EB, u, indicated by

the candidateEB field of the message is assigned the role, i.e. u = map(v). This mapping is

registered in y’s EB mapping table, and the message is dispatched to u’s address, p(u).

4.3.6.2 Proactive Hand-Over

Forwarding EBs are subject to more communication and storage costs than other EBs. For

example, these brokers maintain advertisement and subscription entries in their routing tables,

receive, replicate, and forward events from publishers to subscribers. Prolonged operation of

these EBs can lead to their early failure. Resource consumption must be balanced across the

EBs, and in order to achieve this an active policy is required to relieve mapped EBs from their

duties and utilize other available EBs in the network. The physical Pub/Sub layer implements

a proactive hand-over service that achieves this functionality.

The hand-over service is independent of the Pub/Sub functionality, periodically compares

the current suitability value of the EB against its original value (when it was appointed as the

forwarding EB), and shifts the role to another EB if the compare function returns true. If the

function returns false, then a heart-beat signal is sent to the logical EB’s address to refresh the

EB mapping tables along the path - a similar approach is used in GHT [RKY+02] to maintain

DCSs points.

Definition 4.12 (Suitability Compare Function). A suitability compare function, compare,

takes the original suitability value ooriginal (at the time of logical to physical EB mapping) and

the present suitability value opresent, and determines if a hand-over operation should be performed,

compare(ooriginal, opresent) 7→ h ∈ {true, false}. (4.28)

If the function returns true, then a hand-over operation is deemed necessary, otherwise it is not.

The hand-over service uses the discussed on-demand mapping service to achieve its function-

ality. It envelopes the assigned operations into original messages, and triggers a new mapping

for the logical EB. The operation can be described in three steps: role transfer, parallel sub-

scribe/unsubscribe, and clean-up.

Role transfer. An EB u ∈ GPV has sufficient information in its advertisement and sub-

scription routing tables to re-generate the original messages intended for the logical EB v ∈ GLV .

These messages reflect the operations that u was assigned to perform in the role of v. By re-

leasing these messages into the network, u triggers a fresh mapping of the logical EB v to some

other EB. These messages differ from their originals, in that the handoverEB field is set to u.

This signals any EB that encounters the messages to remove u from its EB mapping table. The

role transfer is complete when a new mapped EB y ∈ GPV for logical EB v is found.

Parallel subscribe/unsubscribe. Advertisement and subscription messages, received at

the newly mapped EB y are treated as explained in Section 4.3.5. While advertisement messages

122

CHAPTER 4. QUAD-PUBSUB 4.3 Quad-PubSub

are simply inserted in y’s advertisement routing table, the subscription messages trigger publish-

subscribe link formations that connect y to the higher and lower EBs on the EDT. Subscription

messages are generated to register y at lower EBs. In this phase, they are also accompanied by

unsubscribe messages that remove u (the previously mapped EB) from the lower EBs’ subscrip-

tion routing tables. The unsubscribe messages are generated by y on behalf of u and sent with

the subscription messages for parallel processing. A parallel (atomic) subscribe/unsubscribe

operation is necessary for transactional hand-over, i.e. to ensure that no events are missed or

duplicated during the hand-over process. The event service aims to transparently shift the re-

sponsibilities of u to the newly mapped EB y. This step is completed when the subscribe and

unsubscribe messages are resolved over the QT.

Clean-up. The previously mapped EB u may erase advertisement entries, immediately

after dispatching the re-generated advertisement and subscription messages. The subscription

entries, however, may only be removed after the parallel subscribe/unsubscribe process. u may

remove these entries after a timeout period (best-effort approach) or wait for a confirmation

message from the newly appointed EB y.

4.3.7 Reliability Model

WSNs exhibit moderate network and nodal dynamics. A reliable Pub/Sub protocol should

maintain correct functionality in the view of these dynamics, which can be categorized into:

network dynamics and component dynamics. Network dynamics affect other architectural lay-

ers in QPS, while component dynamics directly affect the Pub/Sub functionality. These are

discussed separately below.

4.3.7.1 Network Dynamics

Sensor systems are subject to high network topology changes. The primitiveness of devices not

only means that nodes can fail, but also suggests that re-deployments are very likely. These

introduce frequent node join and leave operations that are handled by the network layer. The

network layer maintains unique addresses for nodes in the system at all times. In addition,

the unreliable nature of wireless communications impacts link-layer connectivity, and can lead

to disconnections or packet losses during transmissions. The location-based routing layer takes

charge in repairing failed routes and retransmitting failed packets. The routing layer is assumed

to maintain a reliable operation, where dispatched messages are not permanently lost, and

all dispatched messages are eventually delivered. Combined reliability, at the networking and

routing layers, ensures a reliable Pub/Sub operation in the face of these network dynamics.

QPS neither supports extended periods of network disconnectivity (network partitions) nor

does it support frequent node mobility (MANETs). Irregular node mobility or shift in nodal

positions, however, may be imitated by a sequence of component leave and join operations that

are discussed in the next section. This work-around becomes costly when the rate of mobility

increases in the network.

123

4.3 Quad-PubSub CHAPTER 4. QUAD-PUBSUB

4.3.7.2 Component Dynamics

Node failures, join or leave operations also affect the components in QPS. The physical Pub/Sub

layer ensures that reliable Pub/Sub functionality is achieved at the logical Pub/Sub layer despite

moderate component dynamics. I examine component dynamics separately and discuss their

impacts on the EDT.

EC Component Dynamics. Publisher-hosting EBs manage event publisher dynamics,

and subscriber-hosting EBs manage the event subscriber’s. In both instances, a join operation

is covered by the standard Pub/Sub functionality: an event publisher calls the advertisement

function, and an event subscriber calls the subscription function.

Their leave operation is also catered for by the unadvertise and unsubscribe functions,

but uncalled leaves (e.g. EC failures) must be treated differently. The publisher-hosting EB

unadvertises on behalf of the event publisher and the subscriber-hosting EB unsubscribes on

behalf of the event subscriber, when ECs leave without calling the unadvertise or unsubscribe

functions. Uncalled leaves may be detected through periodic interactions between the EBs and

their local ECs.

EB Component Dynamics. Node failures, join or leave operations directly affect the EB

dynamics. EB joins are simple: they require no operation because they operate on demand

basis. EB failures and leaves, however, are complex and in fact indistinguishable in QPS.

Thus, studying EB dynamics can be summarized into analysing EB failures. These failures are

best discussed in relation to the EB roles: publisher-hosting EB, subscriber-hosting EB, and

forwarding EB.

Publisher-hosting EB Publisher-hosting EB failures are assumed to entail the failure of con-

nected event publishers as well. The failure removes publishers, along with their publish-

subscribe links (stored at the publisher-hosting EBs’ routing tables), from the EDT. The

failure may be neglected if best-effort fulfillment policy is active, otherwise the failure must

be detected by the immediate forwarding EBs on the EDT. For this, periodic heartbeat

signals can be used from the publisher-hosting EBs to the immediate forwarding EBs.

The failure may be intermittent, but if it persists then the forwarding EB removes the

region (covered by the failed EB) and re-examines the subscription coverages as detailed

in Section 4.3.5.5.

Subscriber-hosting EB If a subscriber-hosting EB fails, then I similarly assume that the

corresponding event subscribers have also failed. This failure is detected when the routing

protocol can not reach the failed EB, to deliver an event notification (with Qbit = 0).

Instead, the routing protocol delivers it to a non-destined EB. The recipient (EB) stores

the notification and aims to forward it to the intended EB in the future, but if failure

persists then it can dispatch an unsubscription message on behalf of the failed subscriber-

hosting EB to the immediate forwarding EB.

124

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

Forwarding EB Forwarding EB failures greatly affect the EDT and compromise Pub/Sub

functionality. Failures are noticed when Pub/Sub messages are delivered to non-destined

EBs. The recipients are often the nearest nodes (to the failed EBs), where the routing

protocol realises that no closer node to the destination address can be found. These

recipients can operate in place of the failed EBs, if the routing tables of the forwarding

EBs were replicated at the nearby nodes. QPS replicates the forwarding EBs’ routing

tables at nearby EBs, and synchronizes them on demand or periodic basis, whichever is

less frequent. Nearby nodes can operate temporarily in the role of the forwarding EB,

when the intended forwarding EB has intermittently failed; but if the failure persists, then

the nearby EB can initiate a hand-over operation (discussed in Section 4.3.6.2) on behalf

of the failed forwarding EB. The hand-over operation removes the failed EB from the

EDT and replaces it with a new forwarding EB.

4.4 Evaluation

QPS can be evaluated with performance measurements using a real, deployed sensor system

or with experiments in a simulator. Although an actual deployment results in a more realistic

evaluation, it is more difficult to instrument since a large-scale distributed system has substan-

tial resource requirements. Instead, I decided to set up experiments in a distributed systems

simulator that support simulations with large number of nodes and QPS EBs. The goal of this

evaluation is to quantify and assess the contributions of QPS against cross-layer data dissem-

ination protocols that are widely used in sensor systems. An adaptation of GHT is also used

for examining simple DHT-based data dissemination in sensor networks. In the next section I

describe the metrics that were used to evaluate QPS against the other protocols.

4.4.1 Evaluation Metrics

The metrics used for evaluation were selected according to the stated claims and objective of

the protocols. Attained path freedom and path sharing in Pub/Sub protocols were compared,

and other metrics were introduced to examine the performance of the protocols. Three metrics

were used to quantify the evaluations.

Path freedom Path freedom quantifies the freedom that a message has in taking a route from

publishers to subscribers. This freedom is measured by the level of restriction that is

imposed on event routing by the formed EDT. These restrictions are the intermediate

forwarding EBs that are neither publisher-hosting nor subscriber-hosting, but events need

to pass through them to support Pub/Sub functionality or path sharing. The number

of publish-subscribe links in an EDT is a representative of these restrictions, which limit

path freedom. Where the total numbers of links are similar, the number of links between

publisher and subscriber pairs can be studied for more accurate quantification.

125

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

Path sharing Path sharing was motivated, due to its positive impact on communication sav-

ings and messaging performance. Quantifying path sharing on its own reveals very little

about the overall efficiency and performance of the Pub/Sub protocol; thus I decided

to measure this by examining the overall messaging cost. The overall messaging cost is

inclusive of path sharing effects, and presents a more meaningful information about the

efficiency and performance of the Pub/Sub protocol.

Maximum load (per node) Distribution of event dissemination loads across nodes is key to

network survival in sensor systems. Pub/Sub protocols need to distribute this load to avoid

early node failures. The load may be measured by the number of subscribers that each

EB supports; and may be accurately quantified by the number of publish-subscribe links

that are registered at the EB’s subscription routing table. These links induce a messaging

cost that is nearly proportional to the number of registered publish-subscribe links in the

table.

4.4.2 Simulation Environment

I used the discrete event simulator JiST/SWANS [BHvR05] as my simulation testbed. SWANS,

developed at Cornell university, is a scalable wireless network simulator built on top of the

JiST platform. It implements a data structure, called hierarchical binning, for computation

of signal propagation, which is more efficient than linear searches, used in ns-2 [NS2] and

GloMoSim [ZBG98]. SWANS is organized as independent software components that can be

composed to form complete wireless network or sensor network configurations. The following

describes the software components that were used to set up the simulation environment.

Physical Topology. Every experiment had a unique physical topology that described the

placement of nodes on to a two dimensional square grid environment. The nodes were randomly

placed, using a uniform distribution function, and corresponded to a unique experiment num-

ber. A network connectivity test was used to discard physical topologies that led to network

partitions. The connectivity tests were based on radio parameters that were adopted from the

existing platforms, described next.

Radio Configuration. I adopted wireless parameters from the CC1000 radio [CC1], that is

in use on the BTnode [BT] platform, on Mica motes [MIC], and many other platforms. Table 4.5

provides the details. These parameters affect the link-layer connectivity, packet transmissions

and receptions in the simulation environment.

Link layer protocol. A contention-based MAC protocol was used for link-layer commu-

nication. CSMA/CA was implemented by a sequence of RTS-CTS-Data-ACK messages, as in

the standardized IEEE 802.11 Distributed Coordination Function (DCF) [LAN97]. This design

originated from the MACAW protocol [BDSZ94], and is widely used among the WSN MAC

protocols (e.g. S-MAC [YHE02; YHE04] and PAMAS [SR98]) due to its simplicity, reliability,

and robustness.

Network Layer. The network layer assigned location-based addresses to the nodes. Mirror-

ing the grid environment, a 2-D location coordinate system was used and nodes were assigned

126

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

Parameter Value Unit

frequency 868 Mhz

bandwidth 38.4 kbit/s

transmit power 5 dBm

antenna gain 0 dB

sensitivity -96 dBm

rcv. threshold -84 dBm

interference limit -96 dBm

Table 4.5: Wireless Radio Parameters

locations based on their placement within the grid environment. These location coordinates

were fixed and independent of the network topology.

Location-based routing protocol. A GPSR-like routing protocol was implemented to

provide location-based routing functionality as described in Section 4.3.2. The routing protocol

used greedy forwarding combined with perimeter routing to reach destination nodes. The greedy

forwarding policy is most commonly used in location-based routing protocols, and yields the

shortest communication path between sources and destinations.

Event Dissemination (Pub/Sub) Protocols. QPS was compared against two event

dissemination protocols: a cross-layer event dissemination protocol and a GHT-based event

dissemination protocol. These protocols are described below.

Cross-layer Opportunistic-sharing Data Dissemination (CODD) I selected the

SAFE [KSS+03] data dissemination protocol as my cross-layer Pub/Sub protocol. It op-

erates like a Pub/Sub protocol, in that it distributes requests like event subscriptions,

forms data dissemination paths like an EDT, and forwards data like event dissemination

in Pub/Sub. It is designed for location-aware WSNs and supports opportunistic path shar-

ing along the lowest latency links. Essentially, queries are dispatched into the network,

which might reach the existing data dissemination paths or the publisher at multiple points.

Acknowledgements are then forwarded back to the upstream node, containing information

about the communication cost of the intercepted link. These links are analyzed by the

subscriber to re-enforce the path that leads to the least communication cost (minimum

number of messaging hops) for event delivery. SAFE [KSS+03], however, assumes that

only a single source (publisher) corresponds to every subscription, and requires the em-

ployment of a geographical broadcast protocol like GEAR [YGE01] to support subscription

regions. I implemented the combination as the CODD Pub/Sub protocol. The protocol

also resembles the one-phase pull diffusion protocol [HSE03] (discussed in Section 2.3.1),

but with the advantage of not needing negative re-enforcements. CODD may be consid-

ered equivalent to the combination of one-phase pull diffusion protocol, opportunistic path

sharing, positive re-enforcements, and the GEAR protocol.

127

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

Parameter Description Value

i number of experimental runs 30

g simulation grid size 256 × 256

n number of physical nodes in the grid 500

nP number of event publishers n (one per node)

nT number of event topics 1

nE number of event publications 50

nS number of event subscribers 75

ns number of event subscriptions nS (one per subscriber)

rs event subscription region (64,64)–(128,128)

ts time interval between event subscriptions 3000 ticks

nB number of QPS EBs n (one per node)

N number of QPS hierarchical GS levels 4

ǫs QPS event subscription ǫ value 1.5

fH QPS and GHT hash function algorithms ELF hash function

Table 4.6: Simulation parameters

GHT Dissemination (GHTD) GHTD is an event dissemination protocol, implemented over

GHT. GHT was originally proposed for DCS points [REG+02] in sensor networks. These

storage points are identified according to hash values, similar to how the logical Pub/Sub

layer defines logical EBs in QPS. I implemented GHTD by means of using the DCS

points as rendezvous points for interconnecting event publishers and event subscribers.

Essentially, event advertisements and event subscriptions meet at the rendezvous point

and set up an EDT that forwards events from publishers to the rendezvous node and then

to the subscribers. Event subscriptions that overlap are joined at the rendezvous points.

4.4.3 Experimental Setup

All experiments that will be described in the next section were carried out in the discussed sim-

ulation environment. Each event dissemination protocol was studied in isolation, with identical

physical topologies and Pub/Sub clients. Experiments examined the impact of different physical

topologies and changing Pub/Sub demands, with reference to the highlighted evaluation metrics.

My experimental strategy was to keep parameters fixed, and vary one parameter at a time

to study its impact on the overall EDT formation and Pub/Sub performance. Table 4.6 lists

all the simulation parameters. Each experiment was repeated i = 30 times to obtain a con-

verged arithmetic mean value and 95% confidence interval. Where confidence intervals were

negligible, error bars are eliminated from the diagrams to avoid cluttering. Network sizes of 300

and 350 nodes are frequently used to evaluate performances in related work (e.g. in Directed

Diffusion [IGE00; IGE+03]). I chose a slightly larger network size, n = 500 nodes, to represent

128

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

a sensor network that can be shared by many applications – sensor networks supported by Di-

rected Diffusion are application-specific and thus expected to be smaller. This size, however,

was later varied from 150 to 1000 nodes to examine the effects of density on performance. A

grid size of 256 × 256 ensured sufficient node density to prevent network disconnections.

Each experiment was concluded when nE = 50 events were successfully delivered to nS = 75

event subscribers in the network. These numbers resulted in converged arithmetic mean values

for each experiment. The event subscription region, rs, was defined away from the grid corners,

the grid boundaries, and the center of the grid. This decision was made to eliminate unrep-

resentative performance measurements that could be due to the grid structure or boundaries.

Finally, a non-zero time interval, ts, between the event subscriptions simulated a real-world set-

ting in which users expressed their interests at different times and yet their subscriptions could

be resolved concurrently over the network. The parameters listed in Table 4.6 were kept fixed,

unless stated otherwise in the experiments.

In order to compare equivalent functionality between the Pub/Sub protocols, event publishers

were assumed to publish events about their locality (as commonly assumed in related work), i.e.

∀e ∈ E le = lep where le is the location attribute of the event publication and lep is the location

of the event publisher. Furthermore, since this work focuses on the EDTs, which are constructed

at a higher level than the physical network, the performance of the examined Pub/Sub protocols

were compared under optimal conditions. These conditions were defined by no node failures,

and sufficient resources at all nodes to participate in the EDT. This means that the physical

Pub/Sub layer (in QPS) was not used.

I did not compare the performance of QPS with physical Pub/Sub layer functionality against

CODD and GHTD, because neither SAFE [KSS+03], nor one-phase pull diffusion [HSE03], nor

GHT [RKY+02] support resource-awareness. Nonetheless, since the operational semantics of the

QPS physical Pub/Sub layer is similar to that of “home node” and “perimeter refresh protocol”

in GHT, the performance evaluations of GHT can be taken as indicative of physical Pub/Sub

layer’s performance in QPS. Briefly, those evaluations indicate that the on-demand EB mapping

service induces no additional communication costs than what is incurred by the routing protocol

for delivering event subscriptions and event notifications, the communication cost of the hand-

over service linearly grows with an increase in the frequency of suitability value comparisons

until successive comparisons overlap, and that success rates1 of about 94.7% can be achieved

when nodes undergo cycling failures on the order of every 6 minutes.

Experiments began by the random placement of nodes in the simulation grid, and address

assignments by the network layer. The routing protocol updated its tables using local (HELLO)

messaging, and Pub/Sub functionality was only initiated after 10,000 simulation clock ticks.

Subscribers invoked their event subscriptions independently and in turn, with ts delay in-between

them to emulate dynamic and distributed subscriptions. Events were generated randomly (with

uniform distribution across time and space) and were published independently by the event

publishers in the system. The next section describes the experiments and their observed results.

1Success rates indicate chances of events reaching replica routing tables when forwarding EBs have failed.

129

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

4.4.4 Experiments

The experiments aimed to study the operation and performance of the Pub/Sub protocols under

different conditions. Specifically, I was interested in factors that affected the path sharing and

the EDT construction in a non-linear manner. Factors such as the number of event topics,

number of event publications, size of the network (grid size), and the size of the subscription

region affect the EDTs and the Pub/Sub performance in an independent or near linear manner.

These factors were maintained fixed, and normalised when studying the evaluation metrics. The

number of subscriptions, however, had a strong impact on EDTs and path sharing. I studied

the Pub/Sub protocols under varying numbers of event subscriptions (from 2 to 200, accounting

for almost half of the nodes in the network). I also realised that the number of nodes (hence

the density of the network) has a strong impact on some Pub/Sub protocols, therefore Pub/Sub

protocols were also examined under varying network density (from 150 nodes to 1000 nodes in

the grid). Finally, the impact of varying the ǫ factor alone was studied in QPS.

4.4.4.1 Number of subscribers

In my first set of experiments, I varied the number of event subscribers from 2 to 200 while

keeping other parameters fixed (see Table 4.6). As the number of subscribers increased, the

event forwarding paths could be shared among a larger number of event subscribers, therefore

allowing for greater communication savings. These savings were partly balanced against losses

that were inherent in the non-optimal nature of shared paths. An optimal static EDT requires

knowledge about all subscribers and the network topology, neither of which are usually known

in advance.

Experiments were repeated i times with different physical topologies, and statistics were

gathered after successfully delivering nE event publications from publishers to subscribers. The

average number of publish-subscribe links that was observed in EDTs, constructed by each

Pub/Sub protocol, is shown in Figure 4.13(a). These measurements also include links from

subscriber-hosting EBs to their local event subscribers. We see that the number of publish-

subscribe links in QPS and GHTD demonstrate a strong linear relationship with the number

of subscribers. They resolve subscriptions at a set of designated nodes, which are independent

of the subscribers. These nodes are the rendezvous nodes in GHTD and logical EBs in QPS.

Following the resolution of the first subscription in QPS and GHTD, subsequent subscriptions

often resulted in just two additional publish-subscribe links; one at the subscriber-hosting EB

and the other at the rendezvous or logical EB. The number of publish-subscribe links in QPS

always exceeded that of the GHTD by a small amount - the difference related to the operation

of the localized subscription resolving algorithm, which decomposed and relayed subscriptions

when the addressed logical EBs were not deemed suitable for participation on the EDT.

The publish-subscribe links constructed by the CODD protocol, however, showed a different

trend to the previous two protocols. The initial value started higher than that of QPS’s and

GHTD’s, due to subscription registration and link formation at every intermediate node. The

number of links increased rapidly with an increase in the number of subscribers, demonstrating a

130

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

(a) Publish-subscribe links

(b) Maximum publish-subscribe links

(c) Dissemination complexity

Figure 4.13: Varying the number of subscribers (2. . . 200)

131

Chapter3/Figs/EPS/subs_ect2.eps
Chapter3/Figs/EPS/subs_maxect2.eps
Chapter3/Figs/EPS/subs_msg2.eps

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

near linear relationship and hinting about few subscription intersections and joins in the network.

But as the number of publish-subscribe links increased so did the chances of subscription joins

- this was noticed by the reduced rate of increase in the number of publish-subscribe links when

the number of subscribers exceeded 50. The large number of publish-subscribe links that were

formed by CODD, compared to QPS and GHTD, significantly diminished path freedom.

When examining dissemination complexity, the GHTD protocol demonstrated low perfor-

mance with significant variability. Figure 4.13(c) shows the normalized costs (i.e. messaging cost

per event publication per subscriber) that exclude messaging overheads induced by the lower

communication layers (the routing, the network, and the link-layer protocols). All protocols

demonstrated significant variability for lower numbers of subscribers. This is due to the random

distribution of subscribers, which at higher numbers converge to a uniform distribution but at

lower numbers show significant variability depending on the placement. In comparison, the QPS

protocol performed remarkably better and with lesser variation than GHTD. This was largely

due to the QPS localized subscription resolving algorithm, which eliminates inappropriate EBs

from the EDT.

The CODD protocol constructed more direct paths but benefited little from path sharing.

At the start, the small number of subscribers meant that there were fewer chances for path

intersection and subsequent path sharing. Later, as the number of subscribers and subsequently

the number of publish-subscribe links were increased, path intersection and path sharing became

more frequent and the gap between the CODD and QPS performances were closed. One key

area where the CODD protocol is a clear winner is load balancing. The opportunistic nature

of the protocol results in a more uniform distribution of Pub/Sub load across the network. In

contrast, the GHTD and QPS protocols impose high loads on few nodes (rendezvous nodes

in GHTD, and logical EBs in QPS). Figure 4.13(b) shows this with a plot of the maximum

publish-subscribe links that were registered at any one node in each of the Pub/Sub protocols.

QPS still performs half as good as GHTD due to load distribution across a wider set of logical

EBs. This diagram motivates the need for resource-awareness at the Pub/Sub, which has been

developed as the physical Pub/Sub layer in QPS.

4.4.4.2 Number of nodes

Varying the number of nodes, thereby the network topology and density, impacts the routing

protocol functionality and performance, but should have little impact on Pub/Sub functionality.

Due to the strong correlation between the routing performance and the Pub/Sub performance,

the impact of the node density on the routing performance is partially realised when examining

the Pub/Sub dissemination complexity.

I varied the number of nodes from 150 to 1000 in another set of experiments, while keeping

other parameters fixed as in Table 4.6. This affected the node density and the network topology,

such that the average number of neighbors for any single node varied from 3 to 33 nodes.

We can see in Figure 4.14(c) that increased density has had a positive impact on the event

dissemination performance of QPS and GHTD. As the number of nodes increased, shorter

132

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

0

500

1000

1500

2000

2500

3000

150 200 300 400 500 600 700 800 900 1000

nodes

p
u

b
-s

u
b

 l
in

k
s

QPS CODD GHTD

(a) Publish-subscribe links

0

10

20

30

40

50

60

70

80

150 200 300 400 500 600 700 800 900 1000

nodes

m
a
x
 l
in

k
s
 (

p
e
r

n
o

d
e
)

QPS CODD GHTD

(b) Maximum publish-subscribe links

0

1

2

3

4

5

6

7

8

9

10

150 200 300 400 500 600 700 800 900 1000

nodes

m
e
s
s
a
g
e
s

QPS CODD GHTD

(c) Dissemination complexity

Figure 4.14: Varying the number of nodes (150. . . 1000)

133

Chapter3/Figs/EPS/dens_ect.eps
Chapter3/Figs/EPS/dens_maxect.eps
Chapter3/Figs/EPS/dens_msg.eps

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

Parameter Description Value

i number of experimental runs 10

g simulation grid size 512 × 512

n number of physical nodes in the grid 2000

nS number of event subscribers 100

rs event subscription region (16,16)-(32,32)

ǫs QPS event subscription ǫ value {1.0, 1.2, · · · , 2.8}

Table 4.7: Altered simulation parameters

and straighter routing paths became available, and the theoretical estimations about the event

forwarding paths in QPS became more realistic. The performance of CODD, however, decreased

with an increase in the number of nodes in the network. A study of the publish-subscribe links

indicated the reason.

With an increase in the network density, the number of publish-subscribe links rapidly in-

creased in CODD, while other Pub/Sub protocols were unaffected. This susceptibility was

because of CODD’s reliance on the routing protocol to create shared paths. Opportunistic shar-

ing requires two or more event forwarding paths to intersect prior to reaching the publishers’

nodes. With lower density, the routing protocol was restricted in the set of forwarding nodes,

and hence there was a great chance of intersection if subscribers were geographically close to one-

another. As the network density increased, so did the number of nodes that could route events

from publishers to subscribers. Thus, the event forwarding paths had lower chances of intersec-

tion as subscription messages could be routed on alternative paths from the subscribers to the

publishers. This reduced path sharing in CODD, and increased the cost of event dissemination

as shown in Figure 4.14(c). These findings are consistent with results presented in [IEGH02].

The opportunistic sharing scheme is evaluated against a greedy sharing mechanism in [IEGH02],

and results indicated that the performance was roughly the same in low-density networks, but

differed significantly (in favor of the greedy mechanism) at higher densities.

This set of experiments indicated that CODD performs better in sparse networks and QPS

performs better in moderately dense to strongly dense WSNs. Path freedom is best achieved

by GHTD and QPS, as before, and GHTD’s maximum load (per node) is higher than QPS’s

as in the previous set of experiments. In these experiments, the increase in the maximum load

in CODD indicated the many subscription messages that did not intersect prior to reaching the

publishers’ nodes.

4.4.4.3 Epsilon value

In the last set of experiments, I varied the subscription ǫ factor in QPS to observe its impact

on the EDT and Pub/Sub performance. To observe this impact in great detail, I scaled the

network size to n = 2000 nodes and enlargened the grid size to 512 × 512, maintaining a fixed

134

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

200

201

202

203

204

205

206

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

epsilon

p
u

b
-s

u
b

 l
in

k
s

(a) Publish-subscribe links

0

20

40

60

80

100

120

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

epsilon

m
a

x
 l

in
k

s
 (

p
e

r
n

o
d

e
)

(b) Maximum publish-subscribe links

0

5

10

15

20

25

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

epsilon

m
e
s
s
a
g
e
s

(c) Dissemination complexity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

epsilon

la
n

te
c
y
 (

c
lo

c
k
 t

ic
k
s
)

(d) Event delivery latency

0

50

100

150

200

250

300

350

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

epsilon

s
u

b
s

c
ri

p
ti

o
n

 m
e

s
s

a
g

e
s

(e) Subscription complexity

Figure 4.15: Varying the subscription ǫ value

135

Chapter3/Figs/EPS/eps_ect.eps
Chapter3/Figs/EPS/eps_maxect.eps
Chapter3/Figs/EPS/eps_msg.eps
Chapter3/Figs/EPS/eps_latency.eps
Chapter3/Figs/EPS/eps_subs.eps

4.4 Evaluation CHAPTER 4. QUAD-PUBSUB

n510_38

n23_4

n441_80

n217_152

n492_170

n226_497

n254_138

n395_475n265_477

n486_481

n160_250

n206_442

n22_414

n180_409

n136_270

n261_171

n412_503

n59_245

n155_371

n93_388

n354_133

n74_183

n184_306

n213_33

n139_242

n246_440

n429_370n23_371

n123_325

n200_414

n157_347

n306_356

n2_123

n471_257

n116_8

n174_41

n452_379

n18_121

n69_461

n416_219

n116_58

n443_496

n13_165

n116_377

n410_147

n209_73

n315_287

n475_504

n464_72

n176_149

n449_446

n17_304

n50_363

n77_429

n196_111

n3_344

n401_105

n447_372

n29_118

n295_482

n331_270

n145_451

n219_250

n5_161

n330_448

n27_118

n413_310

n29_349

n135_125

n432_507

n319_326

n191_31

n418_334

n458_106

n417_387

n209_259

n439_16

n375_34

n145_103

n458_123

n92_505

n97_158

n199_13

n104_167

n225_366

n373_134

n471_162

n379_408

n109_344

n232_149

n92_61

n245_315

n68_417

n425_118

n357_239

n255_500

n425_266

n143_138

n268_316

n45_235

n305_324

n185_510

n131_403

n287_141

n18_220

n58_439

n381_204

n241_220

n249_335

n263_31

n450_108

n146_429

n345_125

n397_510

n510_201

n467_332

n443_386

n119_365

n110_17

n361_414

n400_2

n144_258

n237_206

n351_308

n352_499

n333_339

n509_355

n390_175

n160_253

n379_332

n15_454

n352_298

n400_447

n249_204

n237_447

n155_129

n138_105

n209_124

n368_476

n214_439

n478_356

n37_507

n249_100

n163_265

n251_45

n94_37

n259_421

n217_450

n8_444

n485_83

n269_55

n95_60

n323_378

n44_362

n167_489

n293_85

n134_295

n93_449

n485_392

n453_469

n47_444

n278_479

n186_483

n393_362

n52_226

n455_400

n193_497

n212_302

n473_114

n267_200

n487_114

n491_483

n108_261

n276_107

n19_254

n482_401

n504_157

n409_76

n342_251

n304_375

n326_56

n44_322

n160_180

n189_2

n432_279

n478_172

n236_382

n415_434

n101_152

n506_369

n487_419

n176_486

n124_386

n380_6

n444_431

n35_449

n247_459

n326_239

n332_158

n480_133

n38_39

n161_453

n357_370

n511_322

n81_208

n408_475

n485_185

n246_463

n114_374

n455_325

n364_427

n334_194

n228_131

n21_320

n351_189

n147_348

n366_112

n59_453

n90_180

n239_282

n463_93

n160_345

n211_416

n141_284

n2_443

n274_50

n179_107

n296_358

n490_367

n34_36

n263_55

n360_411

n186_419

n154_480

n113_37

n185_447

n378_25

n334_424

n507_177

n263_94

n358_461

n233_451

n61_384

n136_368

n120_386

n447_426

n45_268

n14_318

n139_467

n161_62

n0_358

n189_464

n404_86

n456_303

n131_31

n507_51

n58_157

n383_16

n249_290

n106_388

n218_192

n464_164

n60_349

n84_394

n74_166

n219_377

n10_504

n397_65

n304_46

n147_483

n222_496

n8_239

n146_509

n165_301

n348_16

n415_475

n129_478

n35_13

n128_83

n91_68

n21_317

n511_279

n266_36

n363_444

n217_435

n7_362

n350_8

n372_430

n195_318

n275_400

n252_457

n355_140

n324_341

n331_47

n35_398

n239_215

n451_456

n53_12

n155_190

n55_32 n430_33

n475_389

n212_319

n383_455

n227_511

n242_228

n391_22

n478_129

n412_231

n270_137

n191_42

n269_85

n40_467

n41_53

n252_180

n458_291

n505_250

n427_439

n90_152

n345_411

n271_49

n185_119

n15_224

n401_11

n212_148

n82_376

n138_88

n399_345

n400_58

n239_480

n363_369

n431_280

n65_273

n405_306

n293_375

n457_459

n349_69

n330_20

n441_348

n172_21

n63_2

n417_167

n293_129

n4_206

n117_476

n419_76

n94_275

n341_214

n473_147

n473_511

n383_503

n117_468

n144_152

n100_108

n187_399

n332_255

n91_345

n297_314

n501_264

n440_152

n363_503

n477_50

n145_369

n414_447

n480_242

n133_115

n472_78

n480_257

n133_267

n86_510

n189_276

n421_22

n247_142

n338_187

n295_399

n470_287

n334_312

n496_333

n497_244

n226_237

n453_465

n44_475

n234_65

n260_202

n347_453

n511_382

n401_74

n280_173

n334_33

n213_468

n64_220

n456_184

n162_128

n488_483

n356_69

n86_123

n67_469

n165_371

n510_429

n420_403

n79_56

n29_196

n322_189

n303_480

n287_77

n357_444

n337_68

n176_501

n305_86

n97_340

n98_452

n477_504

n462_117

n214_150

n75_286

n59_197

n346_329

n219_311

n128_498 n387_496

n444_430

n475_366

n450_433

n281_471

n228_19

n29_164

n371_476

n329_244

n390_432

n133_314

n109_381

n160_342

n132_435

n181_187

n106_384

n401_70

n26_80

n240_419

n431_312

n452_220

n210_435

n358_18

n124_291

n508_180

n413_190

n315_422

n240_460

n77_425

n498_405

n412_37

n166_372

n372_276

n206_55

n384_138

n240_312

n171_502

n396_359

n62_162

n497_333

n510_7

n58_170

n294_109

n261_503

n338_464

n432_58

n365_46

n225_19

n138_416

n273_88

n343_70

n169_28

n296_99

n420_460

n86_185

n472_495

n374_61

n468_490

n272_427

n64_437

n243_314

n49_269

n169_488n159_486

n262_39

n442_262

n391_297

n129_160

n71_350

n363_479

n463_177

n429_25

n395_64

n8_478

n89_134

n118_121

n238_184

n140_190

n127_437

n107_282

n360_103

n300_199

n330_183

n106_430

n65_194

n231_409

n453_110

n22_443

n442_202

n487_326

n508_491

n191_379

n111_486

n372_417

n282_447

n349_304

n223_461

n326_171

n110_101

n12_206

n38_384

n271_71

n421_252

n384_487

n135_201

n196_170

n417_404

n125_207

n423_252

n487_55

n318_248

n508_4

n411_65

n74_259

n69_287

n193_35

n169_254

n303_392

n77_301

n135_213

n165_215

n115_432

n437_77

n403_140

n279_511

n150_234

n40_402

n376_292

n1_151

n445_413

n44_140

n304_261

n284_92

n405_11

n501_49

n323_203

n385_225

n12_111

n398_119

n168_266

n376_74

n272_1n195_3

n67_113

n464_414

n64_96

n141_281

n386_29

n405_143

n111_241

n481_316

n103_197

n57_228

n30_420

n155_470

n135_304

n346_394

n408_189

n281_386

n254_291

n40_213

n361_359

n372_446

n304_31

n313_105

n491_238

n224_296

n320_1

n508_467

n355_228

n412_409

n411_463

n357_269

n196_177

n284_270

n195_12

n389_452

n142_392

n431_143

n363_22

n441_384

n135_17

n405_279

n394_333

n212_416

n237_448

n223_424

n136_282

n69_125

n459_70

n431_497

n458_61

n155_237

n401_79

n368_265

n286_57

n241_243

n163_326

n389_281

n35_305

n477_356

n200_212

n147_50

n210_293

n324_247

n149_369

n253_202

n356_241

n289_364

n160_102

n384_284

n391_89

n436_280

n74_132

n500_472

n402_490

n483_166

n32_465

n24_124 n173_123

n138_391

n125_417

n281_19

n84_466

n388_45

n499_380

n509_5

n116_226

n197_261

n54_177

n396_63

n368_46

n361_205

n468_368

n356_506

n222_456

n6_5

n214_469

n490_304

n130_139

n136_464

n131_139

n409_478

n269_361

n242_254

n267_55

n458_40

n417_467

n286_426

n143_92

n361_157

n440_399

n8_338

n34_496

n350_248

n260_175

n457_33

n187_419

n111_244

n63_463

n358_200

n466_334

n313_266

n114_310

n440_45

n338_15

n138_368

n50_249

n122_511

n262_53

n233_203

n389_242

n52_66

n34_25

n344_477

n452_247

n276_217

n167_236

n371_425

n137_127

n58_52

n383_159

n25_106

n24_175

n464_73

n508_505

n334_282

n5_179

n350_103

n257_46

n205_343

n188_11

n94_366

n165_376

n500_459

n433_435

n426_128

n346_125

n483_143

n89_206

n149_131

n184_135

n432_133

n495_211

n202_66

n257_297

n91_224

n232_340

n470_125

n14_37

n172_230

n385_157

n291_463

n3_291

n185_331

n106_226

n173_219

n75_311

n240_104

n404_236

n30_260

n451_224

n400_277

n380_422

n310_401

n422_509

n352_223

n223_381

n354_16

n493_447

n276_15

n452_258

n312_388

n257_436

n82_502

n241_457

n307_14

n116_438

n387_207

n138_347

n374_133

n81_423

n219_443

n344_411

n175_194 n208_191

n186_308

n127_237

n40_66

n244_375

n111_210

n218_60

n290_311

n348_7

n478_11

n8_484

n282_28

n482_213

n224_349

n339_152

n56_364

n15_352

n104_287

n4_71

n119_84

n96_371

n366_43

n379_320

n302_445

n96_7

n112_394

n370_231

n411_385

n42_110

n488_66

n37_420

n469_321

n157_34

n147_160

n220_226

n16_454

n170_242

n395_343

n310_114

n152_209

n79_53

n257_499

n261_426

n321_94

n430_64

n243_374

n307_220

n351_309

n40_418

n147_23

n94_289

n297_163

n224_247

n211_471

n105_204

n109_400

n382_331

n386_451

n187_405

n5_37

n385_68

n379_33

n361_292

n251_473

n91_266

n189_53

n131_128

n158_224

n388_404

n21_500

n28_29

n458_486

n37_66

n452_22

n98_113

n472_271

n356_24

n509_83

n52_424

n128_236

n15_256 n59_257

n113_31

n235_193

n418_318

n27_58

n458_100

n71_381

n156_279

n0_159

n144_290 n240_290

n283_187

n75_26

n431_220

n234_494

n151_70

n111_418

n163_151

n399_456

n324_471

n374_444

n134_61

n272_179

n140_344

n53_160

n428_440

n267_304

n349_362

n91_490

n57_127

n475_255

n6_379

n98_115

n374_26

n491_203

n395_154

n276_279 n351_280

n160_32

n510_349

n432_219 n445_217

n355_63

n40_214

n32_94

n140_403

n373_66

n285_375

n156_312

n476_285

n443_364

n448_132

n36_116

n94_18

n361_376

n279_444

n192_330

n260_51

n175_66

n89_205n33_204

n387_40

n448_70

n303_312

n113_99

n396_503

n131_1

n315_354

n86_410

n140_299

n20_411

n42_206

n22_9

n86_217

n194_499

n215_410

n139_493

n466_354

n430_118

n190_187

n309_368

n487_327

n103_54

n266_217

n255_391

n61_42

n240_12

n451_239

n429_452

n301_162

n357_414

n72_143

n430_177

n48_380

n52_466

n51_238

n29_430

n133_159

n73_71

n251_191

n47_182

n99_497

n490_292

n327_85

n227_270

n0_69

n248_242

n164_107

n227_53

n258_173

n99_235

n429_421

n455_91

n134_77

n48_426

n250_453

n169_260

n459_323

n15_18

n310_373

n177_400

n456_293

n480_215

n420_140

n220_465

n125_12

n405_24

n237_176

n113_299

n412_352

n249_70

n455_369

n459_49

n354_507

n412_404

n0_253

n280_31

n458_457

n450_60

n259_496

n100_83

n62_354

n156_248n94_249

n464_50

n459_226

n90_294

n16_111

n93_9

n106_442

n403_114

n124_93

n178_186

n147_17

n381_243

n422_275

n123_341

n357_233

n253_44

n46_186

n412_42

n228_315

n31_435

n217_44

n331_305

n429_255

n475_197

n238_484

n366_350

n309_18

n255_390

n145_401

n237_445

n32_4

n312_93

n141_446

n447_30

n192_208

n453_108

n73_208

n328_399

n174_440

n238_243

n431_368

n371_197

n438_173

n465_275

n190_164

n69_81

n440_488

n281_380

n508_192

n305_379

n299_200

n329_34

n452_121

n94_346

n459_65

n10_372

n113_170

n310_3

n448_205

n383_41

n203_372

n51_382

n21_306

n271_327

n189_205

n125_378

n147_272

n87_181

n110_217

n97_454

n94_470

n244_90

n276_480

n434_8

n136_102

n185_420

n386_49

n342_308

n442_370

n400_16

n89_453

n241_244

n105_134

n177_81

n253_23

n342_91

n475_378

n61_406

n283_98

n457_0

n241_24

n80_144

n61_262

n374_489

n315_429

n396_199

n63_227

n374_405

n66_94

n237_52

n490_16

n187_484

n228_72

n282_261

n191_381

n471_408

n226_140

n232_8

n32_477

n290_447

n309_198

n221_325

n130_99

n18_369

n172_438

n114_495

n248_220

n190_7

n342_65

n443_313

n143_257

n102_36

n225_127

n140_32

n307_499

n443_202

n438_229

n464_469

n429_302

n282_507

n196_88

n457_43

n283_433

n94_124

n83_131

n310_9

n185_96

n276_425

n224_132

n245_196

n81_63

n234_377

n31_197

n172_264

n179_418

n259_350

n382_438

n49_497

n434_274

n323_503

n502_480

n225_339

n157_194

n327_370

n427_424

n242_427

n127_31

n141_509

n76_195

n501_98

n488_312

n433_273

n384_371

n35_336

n415_83

n215_363

n441_206

n413_287

n272_115

n308_136

n233_44

n463_31

n439_162

n427_312

n189_404

n106_69

n436_440

n466_470

n334_345

n200_93

n308_335

n246_41

n17_93

n125_356

n307_209

n255_65

n77_76

n354_352

n241_328

n8_345

n229_325

n471_72

n500_27

n114_301

n103_394

n61_503

n243_434

n183_500

n116_297

n447_382

n11_408

n490_218

n80_399

n320_187

n202_426

n487_156

n62_433

n297_158

n91_400

n111_436

n400_131

n6_282

n450_245

n326_382

n215_307

n136_377

n397_407

n25_398

n395_243

n328_138

n421_194

n131_159

n397_226

n487_461

n233_379

n487_120

n134_31

n398_459

n327_62

n204_80

n463_510

n203_412

n388_9

n439_382

n196_229

n434_133

n153_292

n471_102

n429_361

n440_218

n190_22

n218_17

n88_243

n127_58

n111_256

n76_287

n320_363

n447_379

n401_200

n96_334

n197_50

n244_485

n205_83

n465_327

n355_506

n272_402

n152_126

n147_254

n1_285

n376_39

n218_329

n381_407

n144_86

n493_422

n354_102

n447_117

n254_252

n133_97

n64_58

n15_465

n310_333

n488_469

n503_279

n77_417

n25_426

n56_164

n412_155

n364_503

n480_230

n14_299

n103_315

n497_184

n373_242

n240_455

n269_415

n86_317

n410_257

n501_346

n327_166

n11_316

n365_64

n140_170

n56_493

n17_257

n106_9

n409_490

n485_113

n101_33

n483_364

n379_420

n462_289

n398_45

n212_103

n185_2

n478_404

n392_453

n422_304

n89_46

n253_84

n34_394

n390_322

n423_452

n273_463

n104_60

n76_501

n256_85

n316_426

n166_472

n164_155

n77_326

n81_264

n64_68

n444_13

n367_299

n261_174

n206_30

n81_455

n402_17

n281_336

n432_311

n284_281

n152_367

n341_340

n423_314

n26_370

n116_144

n70_37

n369_459

n360_160

n424_103

n206_249

n146_264

n49_368

n415_444

n56_234

n411_123

n419_322

n239_126

n118_264

n56_61

n254_234

n271_322

n237_114

n505_251

n154_205

n270_11

n178_140

n133_350

n138_272

n255_409

n134_478

n252_135

n0_326

n79_241

n246_327

n220_278

n215_301

n37_230

n23_222

n81_405

n231_449

n510_18

n2_17

n262_284

n163_273

n55_484

n492_333

n222_86

n77_64

n0_33

n270_231

n434_335

n151_331

n69_158

n206_217

n40_488

n255_68

n378_458

n180_354

n2_276

n328_286

n110_425

n503_155

n135_65

n464_447

n256_256

n0_433

n282_170

n361_318

n393_437

n322_34

n346_180

n455_415

n114_252

n110_186

n373_47

n240_468

n227_191

n23_287

n270_503

n271_318

n82_28

n220_50

n322_489

n161_153

n173_409

n179_491

n452_160

n267_88

n310_304

n354_135

n306_113

n340_375

n124_448

n102_232

n138_127

n13_291

n265_427

n501_259

n197_22

n370_247

n89_225

n366_353

n227_265

n231_203

n113_22

n449_484

n395_27

n347_185

n22_81

n390_56

n64_79

n266_343

n502_184

n357_421

n158_341

n499_456

n119_278

n304_91

n151_60

n3_251

n438_325

n395_433

n193_23

n356_261

n79_403

n141_346 n422_346

n267_225

n437_277

n50_473

n157_127

n32_87

n199_255

n83_88

n158_432

n502_76

n446_86

n409_408

n147_219

n365_59

n470_327

n345_492

n457_375

n179_141

n228_13

n21_78

n219_170

n319_75

n178_174

n82_366

n269_378

n64_229

n468_109

n223_398

n409_479

n10_157

n172_278

n265_428

n260_479

n322_360

n407_80

n383_154

n341_46

n389_408

n278_66

n195_76

n319_44

n275_507

n473_247

n10_251

n447_404

n396_456

n284_100

n365_189

n353_34

n348_13

n360_4

n238_197

n425_211

n26_152

n467_224

n51_452

n302_93

n33_40

n18_300

n287_460

n356_148

n235_441

n318_244

n246_54

n140_107

n268_80

n80_448

n387_413

n487_508

n397_112

n427_322

n108_457

n247_73

n402_452

n360_210

n291_457

n29_449

n160_474

n89_244

n57_355

n154_55

n63_397

n434_218

n354_57

n217_373

n242_166

n336_99

n93_25

n356_163

n394_15

n32_257

n51_270

n304_16

n460_282

n462_410

n455_306

n327_315

n228_306

n27_128

n120_380

n397_384

n221_427

n374_342

n464_41

n366_259

n96_73

n320_266

n424_228

n165_348

n350_410

n281_434

n233_69

n213_443

n493_340

n243_433

n60_481

n487_312

n180_358

n49_67

n328_438

n275_370

n381_453

n57_61

n238_403

n375_445

n291_392

n222_448

n222_188

n173_392

n19_359

n232_341

n340_496

n85_19

n451_82

n155_505

n90_490

n220_250

n17_138

n396_141

n232_74

n462_421

n362_77

n94_324

n401_239

n266_78

n444_272

n15_422

n500_480

n453_228

n168_258

n353_286

n3_502

n243_488

n351_140

n409_274

n139_182

n506_5

n386_143

n87_30 n209_32n182_30

n241_2

n157_15

n501_360

n229_350

n33_228

n308_7

n502_18

n190_223

n426_118

n149_367

n437_340

n313_366

n13_10

n82_275

n246_29

n458_314

n119_494

n349_90

n422_197

n435_281

n45_356

n43_51

n487_1

n5_416

n176_254

n176_283

n312_366

n329_316

n49_51

n341_122

n9_209

n119_36

n251_394

n193_81

n92_500

n83_280

n139_92

n271_93

n458_501

n167_158

n204_473

n350_396

n296_458

n455_441

n168_180

n259_1

n103_203

n224_240

n351_420

n424_181

n439_283

n45_214

n401_212

n395_62

n19_243

n464_79

n426_310

n205_65

n91_271

n79_77

n413_181

n35_157

n468_437

n250_214

n282_331

n196_154

n159_290

n90_460

n93_279

n77_233

n237_415

n449_318

n407_205

n134_433

n41_216

n112_167

n111_506

n406_410

n24_443

n370_262

n435_7

n438_43

n260_390

n88_133

n353_282

n9_199

n360_130

n286_483

n59_28

n352_125

n96_489

n74_209

n175_456

n5_235

n165_450

n96_294

n198_453

n332_83

n6_40

n74_50

n113_65

n422_188

n199_313

n267_164

n436_317

n377_138

n391_224

n151_468 n511_462

n0_381

n155_178

n173_279

n81_129

n137_347

n496_395

n62_287

n11_504

n255_42

n317_284

n141_414

n242_476

n256_488

n454_47

n74_126

n384_164

n265_21

n275_388

n336_479

n219_274

n89_404

n225_201

n372_360

n507_439

n290_0

n137_350

n490_355

n375_71

n62_448

n146_390

n265_394

n310_289

n303_245

n143_455

n7_403

n204_17

n398_438

n443_82

n301_265

n175_242

n298_211

n444_171

n340_80

n438_168

n273_258

n212_218

n299_49

n303_444

n138_287

n373_263

n412_498

n214_165

n137_248

n163_137

n249_373

n125_497

n435_274

n231_39

n30_425

n434_66

n269_171

n148_155

n405_302

n498_353

n427_106

n51_50

n253_6

n8_143

n80_277

n112_214

n105_228

n289_160

n232_250

n171_206

n71_427

n450_137

n203_439

n368_496

n107_156

n90_112

n130_393

n366_313

n107_224

n138_146

n350_111

n354_329

n8_250

n306_503

n390_241

n77_411

n150_293n128_292

n373_452

n219_499

n419_418

n472_219

n199_264

n320_501

n463_92

n510_76

n301_369

n44_433

n186_443

n112_270

n482_347

n343_364

n87_438

n234_458

n403_362

n292_238

n106_240

n31_103

n214_48

n118_335

n281_258

n149_91

n381_30

n62_320

n115_469

n18_204

n480_222

n443_424

n429_389

n412_263

n8_323

n79_156

n105_275

n313_15

n4_237

n226_422

n454_495

n450_508

n77_212

n95_426

n323_314

n486_316

n233_23

n395_176

n385_417

n70_221

n76_167

n428_111

n479_409

n269_390

n373_405

n434_382

n121_471

n420_247

n410_315

n143_199

n450_265

n365_386

n217_453

n310_257

n11_484

n67_78

n229_280

n323_205

n411_0

n324_483

n101_431

n210_361

n435_23

n12_251

n460_114

n55_445

n468_465

n475_370

n234_95

n334_41

n241_370

n344_192

n279_353

n3_96

n455_387

n160_100

n240_164

n88_57

n156_215

n58_341

n485_353

n408_162

n197_283

n510_460

n404_37

n213_118

n7_193

n418_76

n200_358

n448_83

n155_179

n189_91

n78_356

n250_110

n243_318

n61_15

n103_69

n403_427

n450_339

n275_21

n109_154

n287_101

n419_57

n429_484

n424_425

n501_168

n474_476

n308_317

n403_0

n140_492

n269_192

n249_358

n498_107

n176_211

n424_244

n387_279

n253_121

n50_216

n395_103 n437_102

n140_378

n86_380

n50_329

n308_459

n476_46

n399_236

n243_110

n485_175

n163_287

n113_264

n306_22

n140_253

n400_273n183_267

n389_189

n268_396

n8_227

n41_87

n378_77

n124_361

n259_459

n190_313

n410_363

n355_408

n293_204

n499_479

n129_320

n466_26
n256_31

n114_334

n117_486

n179_442

n317_319

n189_44

n191_139

n448_64

n434_161

n305_353

n204_199

n125_330

n215_193

n244_149

n475_327

n124_275

n70_380

n286_174

n21_439

n486_389

n178_336

n300_451

n121_334

n83_491

n392_438

n400_25

n293_228

n409_103

n370_161

n105_79

n114_237

n70_196

n192_56

n377_123

n241_320n157_321

n255_380

Grid (1 , 1)

(a) EDT with ǫ = 1

n510_38

n28_29

n441_80

n217_152

n492_170

n219_250

n226_497

n254_138

n395_475

n397_407

n265_477

n486_481

n160_250

n206_442

n22_414

n180_409

n136_270

n261_171

n412_503

n59_245

n155_371

n93_388

n354_133

n74_183

n184_306

n213_33

n139_242

n246_440

n429_370n23_371

n123_325

n200_414

n157_347

n306_356

n2_123

n471_257

n116_8

n23_4

n174_41

n452_379

n18_121

n69_461

n416_219

n116_58

n443_496

n13_165

n116_377

n410_147

n209_73

n315_287

n475_504

n464_72

n176_149

n449_446

n17_304

n50_363

n77_429

n196_111

n3_344

n401_105

n447_372

n29_118

n295_482

n331_270

n145_451

n5_161

n330_448

n27_118

n413_310

n29_349

n135_125

n432_507

n319_326

n191_31

n418_334

n458_106

n417_387

n209_259

n439_16

n375_34

n145_103

n458_123

n92_505

n97_158

n199_13

n104_167

n225_366

n373_134

n471_162

n379_408

n109_344

n232_149

n92_61

n245_315

n68_417

n425_118

n357_239

n255_500

n425_266

n143_138

n268_316

n45_235

n305_324

n185_510

n131_403

n287_141

n18_220

n58_439

n381_204

n241_220

n249_335

n263_31

n450_108

n146_429

n345_125

n397_510

n510_201

n467_332

n443_386

n119_365

n110_17

n361_414

n400_2

n144_258

n237_206

n351_308

n352_499

n333_339

n509_355

n390_175

n160_253

n379_332

n15_454

n352_298

n400_447

n249_204

n237_447

n155_129

n138_105

n209_124

n368_476

n214_439

n478_356

n37_507

n249_100

n163_265

n251_45

n94_37

n259_421

n217_450

n8_444

n485_83

n269_55

n95_60

n323_378

n44_362

n167_489

n293_85

n134_295

n93_449

n485_392

n453_469

n47_444

n278_479

n186_483

n393_362

n52_226

n455_400

n193_497

n212_302

n473_114

n267_200

n487_114

n491_483

n108_261

n276_107

n19_254

n482_401

n504_157

n409_76

n342_251

n304_375

n326_56

n44_322

n160_180

n189_2

n432_279

n478_172

n236_382

n415_434

n101_152

n506_369

n487_419

n176_486

n124_386

n380_6

n444_431

n35_449

n247_459

n326_239

n332_158

n480_133

n38_39

n161_453

n357_370

n511_322

n81_208

n408_475

n485_185

n246_463

n114_374

n455_325

n364_427

n334_194

n228_131

n21_320

n351_189

n147_348

n366_112

n59_453

n90_180

n239_282

n463_93

n160_345

n211_416

n141_284

n2_443

n274_50

n179_107

n296_358

n490_367

n34_36

n263_55

n360_411

n186_419

n154_480

n113_37

n185_447

n378_25

n334_424

n507_177

n263_94

n358_461

n233_451

n61_384

n136_368

n120_386

n447_426

n45_268

n14_318

n139_467

n161_62

n0_358

n189_464

n404_86

n456_303

n131_31

n507_51

n58_157

n383_16

n249_290

n106_388

n218_192

n464_164

n60_349

n84_394

n74_166

n219_377

n10_504

n397_65

n304_46

n147_483

n222_496

n8_239

n146_509

n165_301

n348_16

n415_475

n129_478

n35_13

n128_83

n91_68

n21_317

n511_279

n266_36

n363_444

n217_435

n7_362

n350_8

n372_430

n195_318

n275_400

n252_457

n355_140

n324_341

n331_47

n35_398

n239_215

n451_456

n53_12

n155_190

n55_32 n430_33

n475_389

n212_319

n383_455

n227_511

n242_228

n391_22

n478_129

n412_231

n270_137

n191_42

n269_85

n40_467

n41_53

n252_180

n458_291

n505_250

n427_439

n90_152

n345_411

n271_49

n185_119

n15_224

n401_11

n212_148

n82_376

n138_88

n399_345

n400_58

n239_480

n363_369

n431_280

n65_273

n405_306

n293_375

n457_459

n349_69

n330_20

n441_348

n172_21

n63_2

n417_167

n293_129

n4_206

n117_476

n419_76

n94_275

n341_214

n473_147

n473_511

n383_503

n117_468

n144_152

n100_108

n187_399

n332_255

n91_345

n297_314

n501_264

n440_152

n363_503

n477_50

n145_369

n414_447

n480_242

n133_115

n472_78

n480_257

n133_267

n86_510

n189_276

n421_22

n247_142

n338_187

n295_399

n470_287

n334_312

n496_333

n497_244

n226_237

n453_465

n44_475

n234_65

n260_202

n347_453

n511_382

n401_74

n280_173

n334_33

n213_468

n64_220

n456_184

n162_128

n488_483

n356_69

n86_123

n67_469

n165_371

n510_429

n420_403

n79_56

n29_196

n322_189

n303_480

n287_77

n357_444

n337_68

n176_501

n305_86

n97_340

n98_452

n477_504

n462_117

n214_150

n75_286

n59_197

n346_329

n219_311

n128_498 n387_496

n444_430

n475_366

n450_433

n281_471

n228_19

n29_164

n371_476

n329_244

n390_432

n133_314

n109_381

n160_342

n132_435

n181_187

n106_384

n401_70

n26_80

n240_419

n431_312

n452_220

n210_435

n358_18

n124_291

n508_180

n413_190

n315_422

n240_460

n77_425

n498_405

n412_37

n166_372

n372_276

n206_55

n384_138

n240_312

n171_502

n396_359

n62_162

n497_333

n510_7

n58_170

n294_109

n261_503

n338_464

n432_58

n365_46

n225_19

n138_416

n273_88

n343_70

n169_28

n296_99

n420_460

n86_185

n472_495

n374_61

n468_490

n272_427

n64_437

n243_314

n49_269

n169_488n159_486

n262_39

n442_262

n391_297

n129_160

n71_350

n363_479

n463_177

n429_25

n395_64

n8_478

n89_134

n118_121

n238_184

n140_190

n127_437

n107_282

n360_103

n300_199

n330_183

n106_430

n65_194

n231_409

n453_110

n22_443

n442_202

n487_326

n508_491

n191_379

n111_486

n372_417

n282_447

n349_304

n223_461

n326_171

n110_101

n12_206

n38_384

n271_71

n421_252

n384_487

n135_201

n196_170

n417_404

n125_207

n423_252

n487_55

n318_248

n508_4

n411_65

n74_259

n69_287

n193_35

n169_254

n303_392

n77_301

n135_213

n165_215

n115_432

n437_77

n403_140

n279_511

n150_234

n40_402

n376_292

n1_151

n445_413

n44_140

n304_261

n284_92

n405_11

n501_49

n323_203

n385_225

n12_111

n398_119

n168_266

n376_74

n272_1n195_3

n67_113

n464_414

n64_96

n141_281

n386_29

n405_143

n111_241

n481_316

n103_197

n57_228

n30_420

n155_470

n135_304

n346_394

n408_189

n281_386

n254_291

n40_213

n361_359

n372_446

n304_31

n313_105

n491_238

n224_296

n320_1

n508_467

n355_228

n412_409

n411_463

n357_269

n196_177

n284_270

n195_12

n389_452

n142_392

n431_143

n363_22

n441_384

n135_17

n405_279

n394_333

n212_416

n237_448

n223_424

n136_282

n69_125

n459_70

n431_497

n458_61

n155_237

n401_79

n368_265

n286_57

n241_243

n163_326

n389_281

n35_305

n477_356

n200_212

n147_50

n210_293

n324_247

n149_369

n253_202

n356_241

n289_364

n160_102

n384_284

n391_89

n436_280

n74_132

n500_472

n402_490

n483_166

n32_465

n24_124 n173_123

n138_391

n125_417

n281_19

n84_466

n388_45

n499_380

n509_5

n116_226

n197_261

n54_177

n396_63

n368_46

n361_205

n468_368

n356_506

n222_456

n6_5

n214_469

n490_304

n130_139

n136_464

n131_139

n409_478

n269_361

n242_254

n267_55

n458_40

n417_467

n286_426

n143_92

n361_157

n440_399

n8_338

n34_496

n350_248

n260_175

n457_33

n187_419

n111_244

n63_463

n358_200

n466_334

n313_266

n114_310

n440_45

n338_15

n138_368

n50_249

n122_511

n262_53

n233_203

n389_242

n52_66

n34_25

n344_477

n452_247

n276_217

n167_236

n371_425

n137_127

n58_52

n383_159

n25_106

n24_175

n464_73

n508_505

n334_282

n5_179

n350_103

n257_46

n205_343

n188_11

n94_366

n165_376

n500_459

n433_435

n426_128

n346_125

n483_143

n89_206

n149_131

n184_135

n432_133

n495_211

n202_66

n257_297

n91_224

n232_340

n470_125

n14_37

n172_230

n385_157

n291_463

n3_291

n185_331

n106_226

n173_219

n75_311

n240_104

n404_236

n30_260

n451_224

n400_277

n380_422

n310_401

n422_509

n352_223

n223_381

n354_16

n493_447

n276_15

n452_258

n312_388

n257_436

n82_502

n241_457

n307_14

n116_438

n387_207

n138_347

n374_133

n81_423

n219_443

n344_411

n175_194 n208_191

n186_308

n127_237

n40_66

n244_375

n111_210

n218_60

n290_311

n348_7

n478_11

n8_484

n282_28

n482_213

n224_349

n339_152

n56_364

n15_352

n104_287

n4_71

n119_84

n96_371

n366_43

n379_320

n302_445

n96_7

n112_394

n370_231

n411_385

n42_110

n488_66

n37_420

n469_321

n157_34

n147_160

n220_226

n16_454

n170_242

n395_343

n310_114

n152_209

n79_53

n257_499

n261_426

n321_94

n430_64

n243_374

n307_220

n351_309

n40_418

n147_23

n94_289

n297_163

n224_247

n211_471

n105_204

n109_400

n382_331

n386_451

n187_405

n5_37

n385_68

n379_33

n361_292

n251_473

n91_266

n189_53

n131_128

n158_224

n388_404

n21_500

n458_486

n37_66

n452_22

n98_113

n472_271

n356_24

n509_83

n52_424

n128_236

n15_256 n59_257

n113_31

n235_193

n418_318

n27_58

n458_100

n71_381

n156_279

n0_159

n144_290 n240_290

n283_187

n75_26

n431_220

n234_494

n151_70

n111_418

n163_151

n399_456

n324_471

n374_444

n134_61

n272_179

n140_344

n53_160

n428_440

n267_304

n349_362

n91_490

n57_127

n475_255

n6_379

n98_115

n374_26

n491_203

n395_154

n276_279 n351_280

n160_32

n510_349

n432_219 n445_217

n355_63

n40_214

n32_94

n140_403

n373_66

n285_375

n156_312

n476_285

n443_364

n448_132

n36_116

n94_18

n361_376

n279_444

n192_330

n260_51

n175_66

n89_205n33_204

n387_40

n448_70

n303_312

n113_99

n396_503

n131_1

n315_354

n86_410

n140_299

n20_411

n42_206

n22_9

n86_217

n194_499

n215_410

n139_493

n466_354

n430_118

n190_187

n309_368

n487_327

n103_54

n266_217

n255_391

n61_42

n240_12

n451_239

n429_452

n301_162

n357_414

n72_143

n430_177

n48_380

n52_466

n51_238

n29_430

n133_159

n73_71

n251_191

n47_182

n99_497

n490_292

n327_85

n227_270

n0_69

n248_242

n164_107

n227_53

n258_173

n99_235

n429_421

n455_91

n134_77

n48_426

n250_453

n169_260

n459_323

n15_18

n310_373

n177_400

n456_293

n480_215

n420_140

n220_465

n125_12

n405_24

n237_176

n113_299

n412_352

n249_70

n455_369

n459_49

n354_507

n412_404

n0_253

n280_31

n458_457

n450_60

n259_496

n100_83

n62_354

n156_248n94_249

n464_50

n459_226

n90_294

n16_111

n93_9

n106_442

n403_114

n124_93

n178_186

n147_17

n381_243

n422_275

n123_341

n357_233

n253_44

n46_186

n412_42

n228_315

n31_435

n217_44

n331_305

n429_255

n475_197

n238_484

n366_350

n309_18

n255_390

n145_401

n237_445

n32_4

n312_93

n141_446

n447_30

n192_208

n453_108

n73_208

n328_399

n174_440

n238_243

n431_368

n371_197

n438_173

n465_275

n190_164

n69_81

n440_488

n281_380

n508_192

n305_379

n299_200

n329_34

n452_121

n94_346

n459_65

n10_372

n113_170

n310_3

n448_205

n383_41

n203_372

n51_382

n21_306

n271_327

n189_205

n125_378

n147_272

n87_181

n110_217

n97_454

n94_470

n244_90

n276_480

n434_8

n136_102

n185_420

n386_49

n342_308

n442_370

n400_16

n89_453

n241_244

n105_134

n177_81

n253_23

n342_91

n475_378

n61_406

n283_98

n457_0

n241_24

n80_144

n61_262

n374_489

n315_429

n396_199

n63_227

n374_405

n66_94

n237_52

n490_16

n187_484

n228_72

n282_261

n191_381

n471_408

n226_140

n232_8

n32_477

n290_447

n309_198

n221_325

n130_99

n18_369

n172_438

n114_495

n248_220

n190_7

n342_65

n443_313

n143_257

n102_36

n225_127

n140_32

n307_499

n443_202

n438_229

n464_469

n429_302

n282_507

n196_88

n457_43

n283_433

n94_124

n83_131

n310_9

n185_96

n276_425

n224_132

n245_196

n81_63

n234_377

n31_197

n172_264

n179_418

n259_350

n382_438

n49_497

n434_274

n323_503

n502_480

n225_339

n157_194

n327_370

n427_424

n242_427

n127_31

n141_509

n76_195

n501_98

n488_312

n433_273

n384_371

n35_336

n415_83

n215_363

n441_206

n413_287

n272_115

n308_136

n233_44

n463_31

n439_162

n427_312

n189_404

n106_69

n436_440

n466_470

n334_345

n200_93

n308_335

n246_41

n17_93

n125_356

n307_209

n255_65

n77_76

n354_352

n241_328

n8_345

n229_325

n471_72

n500_27

n114_301

n103_394

n61_503

n243_434

n183_500

n116_297

n447_382

n11_408

n490_218

n80_399

n320_187

n202_426

n487_156

n62_433

n297_158

n91_400

n111_436

n400_131

n6_282

n450_245

n326_382

n215_307

n136_377

n25_398

n395_243

n328_138

n421_194

n131_159

n397_226

n487_461

n233_379

n487_120

n134_31

n398_459

n327_62

n204_80

n463_510

n203_412

n388_9

n439_382

n196_229

n434_133

n153_292

n471_102

n429_361

n440_218

n190_22

n218_17

n88_243

n127_58

n111_256

n76_287

n320_363

n447_379

n401_200

n96_334

n197_50

n244_485

n205_83

n465_327

n355_506

n272_402

n152_126

n147_254

n1_285

n376_39

n218_329

n381_407

n144_86

n493_422

n354_102

n447_117

n254_252

n133_97

n64_58

n15_465

n310_333

n488_469

n503_279

n77_417

n25_426

n56_164

n412_155

n364_503

n480_230

n14_299

n103_315

n497_184

n373_242

n240_455

n269_415

n86_317

n410_257

n501_346

n327_166

n11_316

n365_64

n140_170

n56_493

n17_257

n106_9

n409_490

n485_113

n101_33

n483_364

n379_420

n462_289

n398_45

n212_103

n185_2

n478_404

n392_453

n422_304

n89_46

n253_84

n34_394

n390_322

n423_452

n273_463

n104_60

n76_501

n256_85

n316_426

n166_472

n164_155

n77_326

n81_264

n64_68

n444_13

n367_299

n261_174

n206_30

n81_455

n402_17

n281_336

n432_311

n284_281

n152_367

n341_340

n423_314

n26_370

n116_144

n70_37

n369_459

n360_160

n424_103

n206_249

n146_264

n49_368

n415_444

n56_234

n411_123

n419_322

n239_126

n118_264

n56_61

n254_234

n271_322

n237_114

n505_251

n154_205

n270_11

n178_140

n133_350

n138_272

n255_409

n134_478

n252_135

n0_326

n79_241

n246_327

n220_278

n215_301

n37_230

n23_222

n81_405

n231_449

n510_18

n2_17

n262_284

n163_273

n55_484

n492_333

n222_86

n77_64

n0_33

n270_231

n434_335

n151_331

n69_158

n206_217

n40_488

n255_68

n378_458

n180_354

n2_276

n328_286

n110_425

n503_155

n135_65

n464_447

n256_256

n0_433

n282_170

n361_318

n393_437

n322_34

n346_180

n455_415

n114_252

n110_186

n373_47

n240_468

n227_191

n23_287

n270_503

n271_318

n82_28

n220_50

n322_489

n161_153

n173_409

n179_491

n452_160

n267_88

n310_304

n354_135

n306_113

n340_375

n124_448

n102_232

n138_127

n13_291

n265_427

n501_259

n197_22

n370_247

n89_225

n366_353

n227_265

n231_203

n113_22

n449_484

n395_27

n347_185

n22_81

n390_56

n64_79

n266_343

n502_184

n357_421

n158_341

n499_456

n119_278

n304_91

n151_60

n3_251

n438_325

n395_433

n193_23

n356_261

n79_403

n141_346 n422_346

n267_225

n437_277

n50_473

n157_127

n32_87

n199_255

n83_88

n158_432

n502_76

n446_86

n409_408

n147_219

n365_59

n470_327

n345_492

n457_375

n179_141

n228_13

n21_78

n219_170

n319_75

n178_174

n82_366

n269_378

n64_229

n468_109

n223_398

n409_479

n10_157

n172_278

n265_428

n260_479

n322_360

n407_80

n383_154

n341_46

n389_408

n278_66

n195_76

n319_44

n275_507

n473_247

n10_251

n447_404

n396_456

n284_100

n365_189

n353_34

n348_13

n360_4

n238_197

n425_211

n26_152

n467_224

n51_452

n302_93

n33_40

n18_300

n287_460

n356_148

n235_441

n318_244

n246_54

n140_107

n268_80

n80_448

n387_413

n487_508

n397_112

n427_322

n108_457

n247_73

n402_452

n360_210

n291_457

n29_449

n160_474

n89_244

n57_355

n154_55

n63_397

n434_218

n354_57

n217_373

n242_166

n336_99

n93_25

n356_163

n394_15

n32_257

n51_270

n304_16

n460_282

n462_410

n455_306

n327_315

n228_306

n27_128

n120_380

n397_384

n221_427

n374_342

n464_41

n366_259

n96_73

n320_266

n424_228

n165_348

n350_410

n281_434

n233_69

n213_443

n493_340

n243_433

n60_481

n487_312

n180_358

n49_67

n328_438

n275_370

n381_453

n57_61

n238_403

n375_445

n291_392

n222_448

n222_188

n173_392

n19_359

n232_341

n340_496

n85_19

n451_82

n155_505

n90_490

n220_250

n17_138

n396_141

n232_74

n462_421

n362_77

n94_324

n401_239

n266_78

n444_272

n15_422

n500_480

n453_228

n168_258

n353_286

n3_502

n243_488

n351_140

n409_274

n139_182

n506_5

n386_143

n87_30 n209_32n182_30

n241_2

n157_15

n501_360

n229_350

n33_228

n308_7

n502_18

n190_223

n426_118

n149_367

n437_340

n313_366

n13_10

n82_275

n246_29

n458_314

n119_494

n349_90

n422_197

n435_281

n45_356

n43_51

n487_1

n5_416

n176_254

n176_283

n312_366

n329_316

n49_51

n341_122

n9_209

n119_36

n251_394

n193_81

n92_500

n83_280

n139_92

n271_93

n458_501

n167_158

n204_473

n350_396

n296_458

n455_441

n168_180

n259_1

n103_203

n224_240

n351_420

n424_181

n439_283

n45_214

n401_212

n395_62

n19_243

n464_79

n426_310

n205_65

n91_271

n79_77

n413_181

n35_157

n468_437

n250_214

n282_331

n196_154

n159_290

n90_460

n93_279

n77_233

n237_415

n449_318

n407_205

n134_433

n41_216

n112_167

n111_506

n406_410

n24_443

n370_262

n435_7

n438_43

n260_390

n88_133

n353_282

n9_199

n360_130

n286_483

n59_28

n352_125

n96_489

n74_209

n175_456

n5_235

n165_450

n96_294

n198_453

n332_83

n6_40

n74_50

n113_65

n422_188

n199_313

n267_164

n436_317

n377_138

n391_224

n151_468 n511_462

n0_381

n155_178

n173_279

n81_129

n137_347

n496_395

n62_287

n11_504

n255_42

n317_284

n141_414

n242_476

n256_488

n454_47

n74_126

n384_164

n265_21

n275_388

n336_479

n219_274

n89_404

n225_201

n372_360

n507_439

n290_0

n137_350

n490_355

n375_71

n62_448

n146_390

n265_394

n310_289

n303_245

n143_455

n7_403

n204_17

n398_438

n443_82

n301_265

n175_242

n298_211

n444_171

n340_80

n438_168

n273_258

n212_218

n299_49

n303_444

n138_287

n373_263

n412_498

n214_165

n137_248

n163_137

n249_373

n125_497

n435_274

n231_39

n30_425

n434_66

n269_171

n148_155

n405_302

n498_353

n427_106

n51_50

n253_6

n8_143

n80_277

n112_214

n105_228

n289_160

n232_250

n171_206

n71_427

n450_137

n203_439

n368_496

n107_156

n90_112

n130_393

n366_313

n107_224

n138_146

n350_111

n354_329

n8_250

n306_503

n390_241

n77_411

n150_293n128_292

n373_452

n219_499

n419_418

n472_219

n199_264

n320_501

n463_92

n510_76

n301_369

n44_433

n186_443

n112_270

n482_347

n343_364

n87_438

n234_458

n403_362

n292_238

n106_240

n31_103

n214_48

n118_335

n281_258

n149_91

n381_30

n62_320

n115_469

n18_204

n480_222

n443_424

n429_389

n412_263

n8_323

n79_156

n105_275

n313_15

n4_237

n226_422

n454_495

n450_508

n77_212

n95_426

n323_314

n486_316

n233_23

n395_176

n385_417

n70_221

n76_167

n428_111

n479_409

n269_390

n373_405

n434_382

n121_471

n420_247

n410_315

n143_199

n450_265

n365_386

n217_453

n310_257

n11_484

n67_78

n229_280

n323_205

n411_0

n324_483

n101_431

n210_361

n435_23

n12_251

n460_114

n55_445

n468_465

n475_370

n234_95

n334_41

n241_370

n344_192

n279_353

n3_96

n455_387

n160_100

n240_164

n88_57

n156_215

n58_341

n485_353

n408_162

n197_283

n510_460

n404_37

n213_118

n7_193

n418_76

n200_358

n448_83

n155_179

n189_91

n78_356

n250_110

n243_318

n61_15

n103_69

n403_427

n450_339

n275_21

n109_154

n287_101

n419_57

n429_484

n424_425

n501_168

n474_476

n308_317

n403_0

n140_492

n269_192

n249_358

n498_107

n176_211

n424_244

n387_279

n253_121

n50_216

n395_103 n437_102

n140_378

n86_380

n50_329

n308_459

n476_46

n399_236

n243_110

n485_175

n163_287

n113_264

n306_22

n140_253

n400_273n183_267

n389_189

n268_396

n8_227

n41_87

n378_77

n124_361

n259_459

n190_313

n410_363

n355_408

n293_204

n499_479

n129_320

n466_26
n256_31

n114_334

n117_486

n179_442

n317_319

n189_44

n191_139

n448_64

n434_161

n305_353

n204_199

n125_330

n215_193

n244_149

n475_327

n124_275

n70_380

n286_174

n21_439

n486_389

n178_336

n300_451

n121_334

n83_491

n392_438

n400_25

n293_228

n409_103

n370_161

n105_79

n114_237

n70_196

n192_56

n377_123

n241_320n157_321

n255_380

Grid (1 , 1)

(b) EDT with ǫ = 1.2

n510_38

n219_250

n441_80

n217_152

n28_29

n492_170

n226_497

n254_138

n395_475

n397_407

n265_477

n486_481

n160_250

n206_442

n22_414

n180_409

n136_270

n261_171

n412_503

n59_245

n155_371

n93_388

n354_133

n74_183

n184_306

n213_33

n139_242

n246_440

n429_370n23_371

n123_325

n200_414

n157_347

n306_356

n2_123

n471_257

n116_8

n23_4

n174_41

n452_379

n18_121

n69_461

n416_219

n116_58

n443_496

n13_165

n116_377

n410_147

n209_73

n315_287

n475_504

n464_72

n176_149

n449_446

n17_304

n50_363

n77_429

n196_111

n3_344

n401_105

n447_372

n29_118

n295_482

n331_270

n145_451

n5_161

n330_448

n27_118

n413_310

n29_349

n135_125

n432_507

n319_326

n191_31

n418_334

n458_106

n417_387

n209_259

n439_16

n375_34

n145_103

n458_123

n92_505

n97_158

n199_13

n104_167

n225_366

n373_134

n471_162

n379_408

n109_344

n232_149

n92_61

n245_315

n68_417

n425_118

n357_239

n255_500

n425_266

n143_138

n268_316

n45_235

n305_324

n185_510

n131_403

n287_141

n18_220

n58_439

n381_204

n241_220

n249_335

n263_31

n450_108

n146_429

n345_125

n397_510

n510_201

n467_332

n443_386

n119_365

n110_17

n361_414

n400_2

n144_258

n237_206

n351_308

n352_499

n333_339

n509_355

n390_175

n160_253

n379_332

n15_454

n352_298

n400_447

n249_204

n237_447

n155_129

n138_105

n209_124

n368_476

n214_439

n478_356

n37_507

n249_100

n163_265

n251_45

n94_37

n259_421

n217_450

n8_444

n485_83

n269_55

n95_60

n323_378

n44_362

n167_489

n293_85

n134_295

n93_449

n485_392

n453_469

n47_444

n278_479

n186_483

n393_362

n52_226

n455_400

n193_497

n212_302

n473_114

n267_200

n487_114

n491_483

n108_261

n276_107

n19_254

n482_401

n504_157

n409_76

n342_251

n304_375

n326_56

n44_322

n160_180

n189_2

n432_279

n478_172

n236_382

n415_434

n101_152

n506_369

n487_419

n176_486

n124_386

n380_6

n444_431

n35_449

n247_459

n326_239

n332_158

n480_133

n38_39

n161_453

n357_370

n511_322

n81_208

n408_475

n485_185

n246_463

n114_374

n455_325

n364_427

n334_194

n228_131

n21_320

n351_189

n147_348

n366_112

n59_453

n90_180

n239_282

n463_93

n160_345

n211_416

n141_284

n2_443

n274_50

n179_107

n296_358

n490_367

n34_36

n263_55

n360_411

n186_419

n154_480

n113_37

n185_447

n378_25

n334_424

n507_177

n263_94

n358_461

n233_451

n61_384

n136_368

n120_386

n447_426

n45_268

n14_318

n139_467

n161_62

n0_358

n189_464

n404_86

n456_303

n131_31

n507_51

n58_157

n383_16

n249_290

n106_388

n218_192

n464_164

n60_349

n84_394

n74_166

n219_377

n10_504

n397_65

n304_46

n147_483

n222_496

n8_239

n146_509

n165_301

n348_16

n415_475

n129_478

n35_13

n128_83

n91_68

n21_317

n511_279

n266_36

n363_444

n217_435

n7_362

n350_8

n372_430

n195_318

n275_400

n252_457

n355_140

n324_341

n331_47

n35_398

n239_215

n451_456

n53_12

n155_190

n55_32 n430_33

n475_389

n212_319

n383_455

n227_511

n242_228

n391_22

n478_129

n412_231

n270_137

n191_42

n269_85

n40_467

n41_53

n252_180

n458_291

n505_250

n427_439

n90_152

n345_411

n271_49

n185_119

n15_224

n401_11

n212_148

n82_376

n138_88

n399_345

n400_58

n239_480

n363_369

n431_280

n65_273

n405_306

n293_375

n457_459

n349_69

n330_20

n441_348

n172_21

n63_2

n417_167

n293_129

n4_206

n117_476

n419_76

n94_275

n341_214

n473_147

n473_511

n383_503

n117_468

n144_152

n100_108

n187_399

n332_255

n91_345

n297_314

n501_264

n440_152

n363_503

n477_50

n145_369

n414_447

n480_242

n133_115

n472_78

n480_257

n133_267

n86_510

n189_276

n421_22

n247_142

n338_187

n295_399

n470_287

n334_312

n496_333

n497_244

n226_237

n453_465

n44_475

n234_65

n260_202

n347_453

n511_382

n401_74

n280_173

n334_33

n213_468

n64_220

n456_184

n162_128

n488_483

n356_69

n86_123

n67_469

n165_371

n510_429

n420_403

n79_56

n29_196

n322_189

n303_480

n287_77

n357_444

n337_68

n176_501

n305_86

n97_340

n98_452

n477_504

n462_117

n214_150

n75_286

n59_197

n346_329

n219_311

n128_498 n387_496

n444_430

n475_366

n450_433

n281_471

n228_19

n29_164

n371_476

n329_244

n390_432

n133_314

n109_381

n160_342

n132_435

n181_187

n106_384

n401_70

n26_80

n240_419

n431_312

n452_220

n210_435

n358_18

n124_291

n508_180

n413_190

n315_422

n240_460

n77_425

n498_405

n412_37

n166_372

n372_276

n206_55

n384_138

n240_312

n171_502

n396_359

n62_162

n497_333

n510_7

n58_170

n294_109

n261_503

n338_464

n432_58

n365_46

n225_19

n138_416

n273_88

n343_70

n169_28

n296_99

n420_460

n86_185

n472_495

n374_61

n468_490

n272_427

n64_437

n243_314

n49_269

n169_488n159_486

n262_39

n442_262

n391_297

n129_160

n71_350

n363_479

n463_177

n429_25

n395_64

n8_478

n89_134

n118_121

n238_184

n140_190

n127_437

n107_282

n360_103

n300_199

n330_183

n106_430

n65_194

n231_409

n453_110

n22_443

n442_202

n487_326

n508_491

n191_379

n111_486

n372_417

n282_447

n349_304

n223_461

n326_171

n110_101

n12_206

n38_384

n271_71

n421_252

n384_487

n135_201

n196_170

n417_404

n125_207

n423_252

n487_55

n318_248

n508_4

n411_65

n74_259

n69_287

n193_35

n169_254

n303_392

n77_301

n135_213

n165_215

n115_432

n437_77

n403_140

n279_511

n150_234

n40_402

n376_292

n1_151

n445_413

n44_140

n304_261

n284_92

n405_11

n501_49

n323_203

n385_225

n12_111

n398_119

n168_266

n376_74

n272_1n195_3

n67_113

n464_414

n64_96

n141_281

n386_29

n405_143

n111_241

n481_316

n103_197

n57_228

n30_420

n155_470

n135_304

n346_394

n408_189

n281_386

n254_291

n40_213

n361_359

n372_446

n304_31

n313_105

n491_238

n224_296

n320_1

n508_467

n355_228

n412_409

n411_463

n357_269

n196_177

n284_270

n195_12

n389_452

n142_392

n431_143

n363_22

n441_384

n135_17

n405_279

n394_333

n212_416

n237_448

n223_424

n136_282

n69_125

n459_70

n431_497

n458_61

n155_237

n401_79

n368_265

n286_57

n241_243

n163_326

n389_281

n35_305

n477_356

n200_212

n147_50

n210_293

n324_247

n149_369

n253_202

n356_241

n289_364

n160_102

n384_284

n391_89

n436_280

n74_132

n500_472

n402_490

n483_166

n32_465

n24_124 n173_123

n138_391

n125_417

n281_19

n84_466

n388_45

n499_380

n509_5

n116_226

n197_261

n54_177

n396_63

n368_46

n361_205

n468_368

n356_506

n222_456

n6_5

n214_469

n490_304

n130_139

n136_464

n131_139

n409_478

n269_361

n242_254

n267_55

n458_40

n417_467

n286_426

n143_92

n361_157

n440_399

n8_338

n34_496

n350_248

n260_175

n457_33

n187_419

n111_244

n63_463

n358_200

n466_334

n313_266

n114_310

n440_45

n338_15

n138_368

n50_249

n122_511

n262_53

n233_203

n389_242

n52_66

n34_25

n344_477

n452_247

n276_217

n167_236

n371_425

n137_127

n58_52

n383_159

n25_106

n24_175

n464_73

n508_505

n334_282

n5_179

n350_103

n257_46

n205_343

n188_11

n94_366

n165_376

n500_459

n433_435

n426_128

n346_125

n483_143

n89_206

n149_131

n184_135

n432_133

n495_211

n202_66

n257_297

n91_224

n232_340

n470_125

n14_37

n172_230

n385_157

n291_463

n3_291

n185_331

n106_226

n173_219

n75_311

n240_104

n404_236

n30_260

n451_224

n400_277

n380_422

n310_401

n422_509

n352_223

n223_381

n354_16

n493_447

n276_15

n452_258

n312_388

n257_436

n82_502

n241_457

n307_14

n116_438

n387_207

n138_347

n374_133

n81_423

n219_443

n344_411

n175_194 n208_191

n186_308

n127_237

n40_66

n244_375

n111_210

n218_60

n290_311

n348_7

n478_11

n8_484

n282_28

n482_213

n224_349

n339_152

n56_364

n15_352

n104_287

n4_71

n119_84

n96_371

n366_43

n379_320

n302_445

n96_7

n112_394

n370_231

n411_385

n42_110

n488_66

n37_420

n469_321

n157_34

n147_160

n220_226

n16_454

n170_242

n395_343

n310_114

n152_209

n79_53

n257_499

n261_426

n321_94

n430_64

n243_374

n307_220

n351_309

n40_418

n147_23

n94_289

n297_163

n224_247

n211_471

n105_204

n109_400

n382_331

n386_451

n187_405

n5_37

n385_68

n379_33

n361_292

n251_473

n91_266

n189_53

n131_128

n158_224

n388_404

n21_500

n458_486

n37_66

n452_22

n98_113

n472_271

n356_24

n509_83

n52_424

n128_236

n15_256 n59_257

n113_31

n235_193

n418_318

n27_58

n458_100

n71_381

n156_279

n0_159

n144_290 n240_290

n283_187

n75_26

n431_220

n234_494

n151_70

n111_418

n163_151

n399_456

n324_471

n374_444

n134_61

n272_179

n140_344

n53_160

n428_440

n267_304

n349_362

n91_490

n57_127

n475_255

n6_379

n98_115

n374_26

n491_203

n395_154

n276_279 n351_280

n160_32

n510_349

n432_219 n445_217

n355_63

n40_214

n32_94

n140_403

n373_66

n285_375

n156_312

n476_285

n443_364

n448_132

n36_116

n94_18

n361_376

n279_444

n192_330

n260_51

n175_66

n89_205n33_204

n387_40

n448_70

n303_312

n113_99

n396_503

n131_1

n315_354

n86_410

n140_299

n20_411

n42_206

n22_9

n86_217

n194_499

n215_410

n139_493

n466_354

n430_118

n190_187

n309_368

n487_327

n103_54

n266_217

n255_391

n61_42

n240_12

n451_239

n429_452

n301_162

n357_414

n72_143

n430_177

n48_380

n52_466

n51_238

n29_430

n133_159

n73_71

n251_191

n47_182

n99_497

n490_292

n327_85

n227_270

n0_69

n248_242

n164_107

n227_53

n258_173

n99_235

n429_421

n455_91

n134_77

n48_426

n250_453

n169_260

n459_323

n15_18

n310_373

n177_400

n456_293

n480_215

n420_140

n220_465

n125_12

n405_24

n237_176

n113_299

n412_352

n249_70

n455_369

n459_49

n354_507

n412_404

n0_253

n280_31

n458_457

n450_60

n259_496

n100_83

n62_354

n156_248n94_249

n464_50

n459_226

n90_294

n16_111

n93_9

n106_442

n403_114

n124_93

n178_186

n147_17

n381_243

n422_275

n123_341

n357_233

n253_44

n46_186

n412_42

n228_315

n31_435

n217_44

n331_305

n429_255

n475_197

n238_484

n366_350

n309_18

n255_390

n145_401

n237_445

n32_4

n312_93

n141_446

n447_30

n192_208

n453_108

n73_208

n328_399

n174_440

n238_243

n431_368

n371_197

n438_173

n465_275

n190_164

n69_81

n440_488

n281_380

n508_192

n305_379

n299_200

n329_34

n452_121

n94_346

n459_65

n10_372

n113_170

n310_3

n448_205

n383_41

n203_372

n51_382

n21_306

n271_327

n189_205

n125_378

n147_272

n87_181

n110_217

n97_454

n94_470

n244_90

n276_480

n434_8

n136_102

n185_420

n386_49

n342_308

n442_370

n400_16

n89_453

n241_244

n105_134

n177_81

n253_23

n342_91

n475_378

n61_406

n283_98

n457_0

n241_24

n80_144

n61_262

n374_489

n315_429

n396_199

n63_227

n374_405

n66_94

n237_52

n490_16

n187_484

n228_72

n282_261

n191_381

n471_408

n226_140

n232_8

n32_477

n290_447

n309_198

n221_325

n130_99

n18_369

n172_438

n114_495

n248_220

n190_7

n342_65

n443_313

n143_257

n102_36

n225_127

n140_32

n307_499

n443_202

n438_229

n464_469

n429_302

n282_507

n196_88

n457_43

n283_433

n94_124

n83_131

n310_9

n185_96

n276_425

n224_132

n245_196

n81_63

n234_377

n31_197

n172_264

n179_418

n259_350

n382_438

n49_497

n434_274

n323_503

n502_480

n225_339

n157_194

n327_370

n427_424

n242_427

n127_31

n141_509

n76_195

n501_98

n488_312

n433_273

n384_371

n35_336

n415_83

n215_363

n441_206

n413_287

n272_115

n308_136

n233_44

n463_31

n439_162

n427_312

n189_404

n106_69

n436_440

n466_470

n334_345

n200_93

n308_335

n246_41

n17_93

n125_356

n307_209

n255_65

n77_76

n354_352

n241_328

n8_345

n229_325

n471_72

n500_27

n114_301

n103_394

n61_503

n243_434

n183_500

n116_297

n447_382

n11_408

n490_218

n80_399

n320_187

n202_426

n487_156

n62_433

n297_158

n91_400

n111_436

n400_131

n6_282

n450_245

n326_382

n215_307

n136_377

n25_398

n395_243

n328_138

n421_194

n131_159

n397_226

n487_461

n233_379

n487_120

n134_31

n398_459

n327_62

n204_80

n463_510

n203_412

n388_9

n439_382

n196_229

n434_133

n153_292

n471_102

n429_361

n440_218

n190_22

n218_17

n88_243

n127_58

n111_256

n76_287

n320_363

n447_379

n401_200

n96_334

n197_50

n244_485

n205_83

n465_327

n355_506

n272_402

n152_126

n147_254

n1_285

n376_39

n218_329

n381_407

n144_86

n493_422

n354_102

n447_117

n254_252

n133_97

n64_58

n15_465

n310_333

n488_469

n503_279

n77_417

n25_426

n56_164

n412_155

n364_503

n480_230

n14_299

n103_315

n497_184

n373_242

n240_455

n269_415

n86_317

n410_257

n501_346

n327_166

n11_316

n365_64

n140_170

n56_493

n17_257

n106_9

n409_490

n485_113

n101_33

n483_364

n379_420

n462_289

n398_45

n212_103

n185_2

n478_404

n392_453

n422_304

n89_46

n253_84

n34_394

n390_322

n423_452

n273_463

n104_60

n76_501

n256_85

n316_426

n166_472

n164_155

n77_326

n81_264

n64_68

n444_13

n367_299

n261_174

n206_30

n81_455

n402_17

n281_336

n432_311

n284_281

n152_367

n341_340

n423_314

n26_370

n116_144

n70_37

n369_459

n360_160

n424_103

n206_249

n146_264

n49_368

n415_444

n56_234

n411_123

n419_322

n239_126

n118_264

n56_61

n254_234

n271_322

n237_114

n505_251

n154_205

n270_11

n178_140

n133_350

n138_272

n255_409

n134_478

n252_135

n0_326

n79_241

n246_327

n220_278

n215_301

n37_230

n23_222

n81_405

n231_449

n510_18

n2_17

n262_284

n163_273

n55_484

n492_333

n222_86

n77_64

n0_33

n270_231

n434_335

n151_331

n69_158

n206_217

n40_488

n255_68

n378_458

n180_354

n2_276

n328_286

n110_425

n503_155

n135_65

n464_447

n256_256

n0_433

n282_170

n361_318

n393_437

n322_34

n346_180

n455_415

n114_252

n110_186

n373_47

n240_468

n227_191

n23_287

n270_503

n271_318

n82_28

n220_50

n322_489

n161_153

n173_409

n179_491

n452_160

n267_88

n310_304

n354_135

n306_113

n340_375

n124_448

n102_232

n138_127

n13_291

n265_427

n501_259

n197_22

n370_247

n89_225

n366_353

n227_265

n231_203

n113_22

n449_484

n395_27

n347_185

n22_81

n390_56

n64_79

n266_343

n502_184

n357_421

n158_341

n499_456

n119_278

n304_91

n151_60

n3_251

n438_325

n395_433

n193_23

n356_261

n79_403

n141_346 n422_346

n267_225

n437_277

n50_473

n157_127

n32_87

n199_255

n83_88

n158_432

n502_76

n446_86

n409_408

n147_219

n365_59

n470_327

n345_492

n457_375

n179_141

n228_13

n21_78

n219_170

n319_75

n178_174

n82_366

n269_378

n64_229

n468_109

n223_398

n409_479

n10_157

n172_278

n265_428

n260_479

n322_360

n407_80

n383_154

n341_46

n389_408

n278_66

n195_76

n319_44

n275_507

n473_247

n10_251

n447_404

n396_456

n284_100

n365_189

n353_34

n348_13

n360_4

n238_197

n425_211

n26_152

n467_224

n51_452

n302_93

n33_40

n18_300

n287_460

n356_148

n235_441

n318_244

n246_54

n140_107

n268_80

n80_448

n387_413

n487_508

n397_112

n427_322

n108_457

n247_73

n402_452

n360_210

n291_457

n29_449

n160_474

n89_244

n57_355

n154_55

n63_397

n434_218

n354_57

n217_373

n242_166

n336_99

n93_25

n356_163

n394_15

n32_257

n51_270

n304_16

n460_282

n462_410

n455_306

n327_315

n228_306

n27_128

n120_380

n397_384

n221_427

n374_342

n464_41

n366_259

n96_73

n320_266

n424_228

n165_348

n350_410

n281_434

n233_69

n213_443

n493_340

n243_433

n60_481

n487_312

n180_358

n49_67

n328_438

n275_370

n381_453

n57_61

n238_403

n375_445

n291_392

n222_448

n222_188

n173_392

n19_359

n232_341

n340_496

n85_19

n451_82

n155_505

n90_490

n220_250

n17_138

n396_141

n232_74

n462_421

n362_77

n94_324

n401_239

n266_78

n444_272

n15_422

n500_480

n453_228

n168_258

n353_286

n3_502

n243_488

n351_140

n409_274

n139_182

n506_5

n386_143

n87_30 n209_32n182_30

n241_2

n157_15

n501_360

n229_350

n33_228

n308_7

n502_18

n190_223

n426_118

n149_367

n437_340

n313_366

n13_10

n82_275

n246_29

n458_314

n119_494

n349_90

n422_197

n435_281

n45_356

n43_51

n487_1

n5_416

n176_254

n176_283

n312_366

n329_316

n49_51

n341_122

n9_209

n119_36

n251_394

n193_81

n92_500

n83_280

n139_92

n271_93

n458_501

n167_158

n204_473

n350_396

n296_458

n455_441

n168_180

n259_1

n103_203

n224_240

n351_420

n424_181

n439_283

n45_214

n401_212

n395_62

n19_243

n464_79

n426_310

n205_65

n91_271

n79_77

n413_181

n35_157

n468_437

n250_214

n282_331

n196_154

n159_290

n90_460

n93_279

n77_233

n237_415

n449_318

n407_205

n134_433

n41_216

n112_167

n111_506

n406_410

n24_443

n370_262

n435_7

n438_43

n260_390

n88_133

n353_282

n9_199

n360_130

n286_483

n59_28

n352_125

n96_489

n74_209

n175_456

n5_235

n165_450

n96_294

n198_453

n332_83

n6_40

n74_50

n113_65

n422_188

n199_313

n267_164

n436_317

n377_138

n391_224

n151_468 n511_462

n0_381

n155_178

n173_279

n81_129

n137_347

n496_395

n62_287

n11_504

n255_42

n317_284

n141_414

n242_476

n256_488

n454_47

n74_126

n384_164

n265_21

n275_388

n336_479

n219_274

n89_404

n225_201

n372_360

n507_439

n290_0

n137_350

n490_355

n375_71

n62_448

n146_390

n265_394

n310_289

n303_245

n143_455

n7_403

n204_17

n398_438

n443_82

n301_265

n175_242

n298_211

n444_171

n340_80

n438_168

n273_258

n212_218

n299_49

n303_444

n138_287

n373_263

n412_498

n214_165

n137_248

n163_137

n249_373

n125_497

n435_274

n231_39

n30_425

n434_66

n269_171

n148_155

n405_302

n498_353

n427_106

n51_50

n253_6

n8_143

n80_277

n112_214

n105_228

n289_160

n232_250

n171_206

n71_427

n450_137

n203_439

n368_496

n107_156

n90_112

n130_393

n366_313

n107_224

n138_146

n350_111

n354_329

n8_250

n306_503

n390_241

n77_411

n150_293n128_292

n373_452

n219_499

n419_418

n472_219

n199_264

n320_501

n463_92

n510_76

n301_369

n44_433

n186_443

n112_270

n482_347

n343_364

n87_438

n234_458

n403_362

n292_238

n106_240

n31_103

n214_48

n118_335

n281_258

n149_91

n381_30

n62_320

n115_469

n18_204

n480_222

n443_424

n429_389

n412_263

n8_323

n79_156

n105_275

n313_15

n4_237

n226_422

n454_495

n450_508

n77_212

n95_426

n323_314

n486_316

n233_23

n395_176

n385_417

n70_221

n76_167

n428_111

n479_409

n269_390

n373_405

n434_382

n121_471

n420_247

n410_315

n143_199

n450_265

n365_386

n217_453

n310_257

n11_484

n67_78

n229_280

n323_205

n411_0

n324_483

n101_431

n210_361

n435_23

n12_251

n460_114

n55_445

n468_465

n475_370

n234_95

n334_41

n241_370

n344_192

n279_353

n3_96

n455_387

n160_100

n240_164

n88_57

n156_215

n58_341

n485_353

n408_162

n197_283

n510_460

n404_37

n213_118

n7_193

n418_76

n200_358

n448_83

n155_179

n189_91

n78_356

n250_110

n243_318

n61_15

n103_69

n403_427

n450_339

n275_21

n109_154

n287_101

n419_57

n429_484

n424_425

n501_168

n474_476

n308_317

n403_0

n140_492

n269_192

n249_358

n498_107

n176_211

n424_244

n387_279

n253_121

n50_216

n395_103 n437_102

n140_378

n86_380

n50_329

n308_459

n476_46

n399_236

n243_110

n485_175

n163_287

n113_264

n306_22

n140_253

n400_273n183_267

n389_189

n268_396

n8_227

n41_87

n378_77

n124_361

n259_459

n190_313

n410_363

n355_408

n293_204

n499_479

n129_320

n466_26
n256_31

n114_334

n117_486

n179_442

n317_319

n189_44

n191_139

n448_64

n434_161

n305_353

n204_199

n125_330

n215_193

n244_149

n475_327

n124_275

n70_380

n286_174

n21_439

n486_389

n178_336

n300_451

n121_334

n83_491

n392_438

n400_25

n293_228

n409_103

n370_161

n105_79

n114_237

n70_196

n192_56

n377_123

n241_320n157_321

n255_380

Grid (1 , 1)

(c) EDT with ǫ = 1.4

n510_38

n219_250

n441_80

n217_152

n28_29

n492_170

n226_497

n397_407

n254_138

n395_475n265_477

n486_481

n160_250

n206_442

n22_414

n180_409

n136_270

n261_171

n412_503

n59_245

n155_371

n93_388

n354_133

n74_183

n184_306

n213_33

n139_242

n246_440

n429_370n23_371

n123_325

n200_414

n157_347

n306_356

n2_123

n471_257

n116_8

n23_4

n174_41

n452_379

n18_121

n69_461

n416_219

n116_58

n443_496

n13_165

n116_377

n410_147

n209_73

n315_287

n475_504

n464_72

n176_149

n449_446

n17_304

n50_363

n77_429

n196_111

n3_344

n401_105

n447_372

n29_118

n295_482

n331_270

n145_451

n5_161

n330_448

n27_118

n413_310

n29_349

n135_125

n432_507

n319_326

n191_31

n418_334

n458_106

n417_387

n209_259

n439_16

n375_34

n145_103

n458_123

n92_505

n97_158

n199_13

n104_167

n225_366

n373_134

n471_162

n379_408

n109_344

n232_149

n92_61

n245_315

n68_417

n425_118

n357_239

n255_500

n425_266

n143_138

n268_316

n45_235

n305_324

n185_510

n131_403

n287_141

n18_220

n58_439

n381_204

n241_220

n249_335

n263_31

n450_108

n146_429

n345_125

n397_510

n510_201

n467_332

n443_386

n119_365

n110_17

n361_414

n400_2

n144_258

n237_206

n351_308

n352_499

n333_339

n509_355

n390_175

n160_253

n379_332

n15_454

n352_298

n400_447

n249_204

n237_447

n155_129

n138_105

n209_124

n368_476

n214_439

n478_356

n37_507

n249_100

n163_265

n251_45

n94_37

n259_421

n217_450

n8_444

n485_83

n269_55

n95_60

n323_378

n44_362

n167_489

n293_85

n134_295

n93_449

n485_392

n453_469

n47_444

n278_479

n186_483

n393_362

n52_226

n455_400

n193_497

n212_302

n473_114

n267_200

n487_114

n491_483

n108_261

n276_107

n19_254

n482_401

n504_157

n409_76

n342_251

n304_375

n326_56

n44_322

n160_180

n189_2

n432_279

n478_172

n236_382

n415_434

n101_152

n506_369

n487_419

n176_486

n124_386

n380_6

n444_431

n35_449

n247_459

n326_239

n332_158

n480_133

n38_39

n161_453

n357_370

n511_322

n81_208

n408_475

n485_185

n246_463

n114_374

n455_325

n364_427

n334_194

n228_131

n21_320

n351_189

n147_348

n366_112

n59_453

n90_180

n239_282

n463_93

n160_345

n211_416

n141_284

n2_443

n274_50

n179_107

n296_358

n490_367

n34_36

n263_55

n360_411

n186_419

n154_480

n113_37

n185_447

n378_25

n334_424

n507_177

n263_94

n358_461

n233_451

n61_384

n136_368

n120_386

n447_426

n45_268

n14_318

n139_467

n161_62

n0_358

n189_464

n404_86

n456_303

n131_31

n507_51

n58_157

n383_16

n249_290

n106_388

n218_192

n464_164

n60_349

n84_394

n74_166

n219_377

n10_504

n397_65

n304_46

n147_483

n222_496

n8_239

n146_509

n165_301

n348_16

n415_475

n129_478

n35_13

n128_83

n91_68

n21_317

n511_279

n266_36

n363_444

n217_435

n7_362

n350_8

n372_430

n195_318

n275_400

n252_457

n355_140

n324_341

n331_47

n35_398

n239_215

n451_456

n53_12

n155_190

n55_32 n430_33

n475_389

n212_319

n383_455

n227_511

n242_228

n391_22

n478_129

n412_231

n270_137

n191_42

n269_85

n40_467

n41_53

n252_180

n458_291

n505_250

n427_439

n90_152

n345_411

n271_49

n185_119

n15_224

n401_11

n212_148

n82_376

n138_88

n399_345

n400_58

n239_480

n363_369

n431_280

n65_273

n405_306

n293_375

n457_459

n349_69

n330_20

n441_348

n172_21

n63_2

n417_167

n293_129

n4_206

n117_476

n419_76

n94_275

n341_214

n473_147

n473_511

n383_503

n117_468

n144_152

n100_108

n187_399

n332_255

n91_345

n297_314

n501_264

n440_152

n363_503

n477_50

n145_369

n414_447

n480_242

n133_115

n472_78

n480_257

n133_267

n86_510

n189_276

n421_22

n247_142

n338_187

n295_399

n470_287

n334_312

n496_333

n497_244

n226_237

n453_465

n44_475

n234_65

n260_202

n347_453

n511_382

n401_74

n280_173

n334_33

n213_468

n64_220

n456_184

n162_128

n488_483

n356_69

n86_123

n67_469

n165_371

n510_429

n420_403

n79_56

n29_196

n322_189

n303_480

n287_77

n357_444

n337_68

n176_501

n305_86

n97_340

n98_452

n477_504

n462_117

n214_150

n75_286

n59_197

n346_329

n219_311

n128_498 n387_496

n444_430

n475_366

n450_433

n281_471

n228_19

n29_164

n371_476

n329_244

n390_432

n133_314

n109_381

n160_342

n132_435

n181_187

n106_384

n401_70

n26_80

n240_419

n431_312

n452_220

n210_435

n358_18

n124_291

n508_180

n413_190

n315_422

n240_460

n77_425

n498_405

n412_37

n166_372

n372_276

n206_55

n384_138

n240_312

n171_502

n396_359

n62_162

n497_333

n510_7

n58_170

n294_109

n261_503

n338_464

n432_58

n365_46

n225_19

n138_416

n273_88

n343_70

n169_28

n296_99

n420_460

n86_185

n472_495

n374_61

n468_490

n272_427

n64_437

n243_314

n49_269

n169_488n159_486

n262_39

n442_262

n391_297

n129_160

n71_350

n363_479

n463_177

n429_25

n395_64

n8_478

n89_134

n118_121

n238_184

n140_190

n127_437

n107_282

n360_103

n300_199

n330_183

n106_430

n65_194

n231_409

n453_110

n22_443

n442_202

n487_326

n508_491

n191_379

n111_486

n372_417

n282_447

n349_304

n223_461

n326_171

n110_101

n12_206

n38_384

n271_71

n421_252

n384_487

n135_201

n196_170

n417_404

n125_207

n423_252

n487_55

n318_248

n508_4

n411_65

n74_259

n69_287

n193_35

n169_254

n303_392

n77_301

n135_213

n165_215

n115_432

n437_77

n403_140

n279_511

n150_234

n40_402

n376_292

n1_151

n445_413

n44_140

n304_261

n284_92

n405_11

n501_49

n323_203

n385_225

n12_111

n398_119

n168_266

n376_74

n272_1n195_3

n67_113

n464_414

n64_96

n141_281

n386_29

n405_143

n111_241

n481_316

n103_197

n57_228

n30_420

n155_470

n135_304

n346_394

n408_189

n281_386

n254_291

n40_213

n361_359

n372_446

n304_31

n313_105

n491_238

n224_296

n320_1

n508_467

n355_228

n412_409

n411_463

n357_269

n196_177

n284_270

n195_12

n389_452

n142_392

n431_143

n363_22

n441_384

n135_17

n405_279

n394_333

n212_416

n237_448

n223_424

n136_282

n69_125

n459_70

n431_497

n458_61

n155_237

n401_79

n368_265

n286_57

n241_243

n163_326

n389_281

n35_305

n477_356

n200_212

n147_50

n210_293

n324_247

n149_369

n253_202

n356_241

n289_364

n160_102

n384_284

n391_89

n436_280

n74_132

n500_472

n402_490

n483_166

n32_465

n24_124 n173_123

n138_391

n125_417

n281_19

n84_466

n388_45

n499_380

n509_5

n116_226

n197_261

n54_177

n396_63

n368_46

n361_205

n468_368

n356_506

n222_456

n6_5

n214_469

n490_304

n130_139

n136_464

n131_139

n409_478

n269_361

n242_254

n267_55

n458_40

n417_467

n286_426

n143_92

n361_157

n440_399

n8_338

n34_496

n350_248

n260_175

n457_33

n187_419

n111_244

n63_463

n358_200

n466_334

n313_266

n114_310

n440_45

n338_15

n138_368

n50_249

n122_511

n262_53

n233_203

n389_242

n52_66

n34_25

n344_477

n452_247

n276_217

n167_236

n371_425

n137_127

n58_52

n383_159

n25_106

n24_175

n464_73

n508_505

n334_282

n5_179

n350_103

n257_46

n205_343

n188_11

n94_366

n165_376

n500_459

n433_435

n426_128

n346_125

n483_143

n89_206

n149_131

n184_135

n432_133

n495_211

n202_66

n257_297

n91_224

n232_340

n470_125

n14_37

n172_230

n385_157

n291_463

n3_291

n185_331

n106_226

n173_219

n75_311

n240_104

n404_236

n30_260

n451_224

n400_277

n380_422

n310_401

n422_509

n352_223

n223_381

n354_16

n493_447

n276_15

n452_258

n312_388

n257_436

n82_502

n241_457

n307_14

n116_438

n387_207

n138_347

n374_133

n81_423

n219_443

n344_411

n175_194 n208_191

n186_308

n127_237

n40_66

n244_375

n111_210

n218_60

n290_311

n348_7

n478_11

n8_484

n282_28

n482_213

n224_349

n339_152

n56_364

n15_352

n104_287

n4_71

n119_84

n96_371

n366_43

n379_320

n302_445

n96_7

n112_394

n370_231

n411_385

n42_110

n488_66

n37_420

n469_321

n157_34

n147_160

n220_226

n16_454

n170_242

n395_343

n310_114

n152_209

n79_53

n257_499

n261_426

n321_94

n430_64

n243_374

n307_220

n351_309

n40_418

n147_23

n94_289

n297_163

n224_247

n211_471

n105_204

n109_400

n382_331

n386_451

n187_405

n5_37

n385_68

n379_33

n361_292

n251_473

n91_266

n189_53

n131_128

n158_224

n388_404

n21_500

n458_486

n37_66

n452_22

n98_113

n472_271

n356_24

n509_83

n52_424

n128_236

n15_256 n59_257

n113_31

n235_193

n418_318

n27_58

n458_100

n71_381

n156_279

n0_159

n144_290 n240_290

n283_187

n75_26

n431_220

n234_494

n151_70

n111_418

n163_151

n399_456

n324_471

n374_444

n134_61

n272_179

n140_344

n53_160

n428_440

n267_304

n349_362

n91_490

n57_127

n475_255

n6_379

n98_115

n374_26

n491_203

n395_154

n276_279 n351_280

n160_32

n510_349

n432_219 n445_217

n355_63

n40_214

n32_94

n140_403

n373_66

n285_375

n156_312

n476_285

n443_364

n448_132

n36_116

n94_18

n361_376

n279_444

n192_330

n260_51

n175_66

n89_205n33_204

n387_40

n448_70

n303_312

n113_99

n396_503

n131_1

n315_354

n86_410

n140_299

n20_411

n42_206

n22_9

n86_217

n194_499

n215_410

n139_493

n466_354

n430_118

n190_187

n309_368

n487_327

n103_54

n266_217

n255_391

n61_42

n240_12

n451_239

n429_452

n301_162

n357_414

n72_143

n430_177

n48_380

n52_466

n51_238

n29_430

n133_159

n73_71

n251_191

n47_182

n99_497

n490_292

n327_85

n227_270

n0_69

n248_242

n164_107

n227_53

n258_173

n99_235

n429_421

n455_91

n134_77

n48_426

n250_453

n169_260

n459_323

n15_18

n310_373

n177_400

n456_293

n480_215

n420_140

n220_465

n125_12

n405_24

n237_176

n113_299

n412_352

n249_70

n455_369

n459_49

n354_507

n412_404

n0_253

n280_31

n458_457

n450_60

n259_496

n100_83

n62_354

n156_248n94_249

n464_50

n459_226

n90_294

n16_111

n93_9

n106_442

n403_114

n124_93

n178_186

n147_17

n381_243

n422_275

n123_341

n357_233

n253_44

n46_186

n412_42

n228_315

n31_435

n217_44

n331_305

n429_255

n475_197

n238_484

n366_350

n309_18

n255_390

n145_401

n237_445

n32_4

n312_93

n141_446

n447_30

n192_208

n453_108

n73_208

n328_399

n174_440

n238_243

n431_368

n371_197

n438_173

n465_275

n190_164

n69_81

n440_488

n281_380

n508_192

n305_379

n299_200

n329_34

n452_121

n94_346

n459_65

n10_372

n113_170

n310_3

n448_205

n383_41

n203_372

n51_382

n21_306

n271_327

n189_205

n125_378

n147_272

n87_181

n110_217

n97_454

n94_470

n244_90

n276_480

n434_8

n136_102

n185_420

n386_49

n342_308

n442_370

n400_16

n89_453

n241_244

n105_134

n177_81

n253_23

n342_91

n475_378

n61_406

n283_98

n457_0

n241_24

n80_144

n61_262

n374_489

n315_429

n396_199

n63_227

n374_405

n66_94

n237_52

n490_16

n187_484

n228_72

n282_261

n191_381

n471_408

n226_140

n232_8

n32_477

n290_447

n309_198

n221_325

n130_99

n18_369

n172_438

n114_495

n248_220

n190_7

n342_65

n443_313

n143_257

n102_36

n225_127

n140_32

n307_499

n443_202

n438_229

n464_469

n429_302

n282_507

n196_88

n457_43

n283_433

n94_124

n83_131

n310_9

n185_96

n276_425

n224_132

n245_196

n81_63

n234_377

n31_197

n172_264

n179_418

n259_350

n382_438

n49_497

n434_274

n323_503

n502_480

n225_339

n157_194

n327_370

n427_424

n242_427

n127_31

n141_509

n76_195

n501_98

n488_312

n433_273

n384_371

n35_336

n415_83

n215_363

n441_206

n413_287

n272_115

n308_136

n233_44

n463_31

n439_162

n427_312

n189_404

n106_69

n436_440

n466_470

n334_345

n200_93

n308_335

n246_41

n17_93

n125_356

n307_209

n255_65

n77_76

n354_352

n241_328

n8_345

n229_325

n471_72

n500_27

n114_301

n103_394

n61_503

n243_434

n183_500

n116_297

n447_382

n11_408

n490_218

n80_399

n320_187

n202_426

n487_156

n62_433

n297_158

n91_400

n111_436

n400_131

n6_282

n450_245

n326_382

n215_307

n136_377

n25_398

n395_243

n328_138

n421_194

n131_159

n397_226

n487_461

n233_379

n487_120

n134_31

n398_459

n327_62

n204_80

n463_510

n203_412

n388_9

n439_382

n196_229

n434_133

n153_292

n471_102

n429_361

n440_218

n190_22

n218_17

n88_243

n127_58

n111_256

n76_287

n320_363

n447_379

n401_200

n96_334

n197_50

n244_485

n205_83

n465_327

n355_506

n272_402

n152_126

n147_254

n1_285

n376_39

n218_329

n381_407

n144_86

n493_422

n354_102

n447_117

n254_252

n133_97

n64_58

n15_465

n310_333

n488_469

n503_279

n77_417

n25_426

n56_164

n412_155

n364_503

n480_230

n14_299

n103_315

n497_184

n373_242

n240_455

n269_415

n86_317

n410_257

n501_346

n327_166

n11_316

n365_64

n140_170

n56_493

n17_257

n106_9

n409_490

n485_113

n101_33

n483_364

n379_420

n462_289

n398_45

n212_103

n185_2

n478_404

n392_453

n422_304

n89_46

n253_84

n34_394

n390_322

n423_452

n273_463

n104_60

n76_501

n256_85

n316_426

n166_472

n164_155

n77_326

n81_264

n64_68

n444_13

n367_299

n261_174

n206_30

n81_455

n402_17

n281_336

n432_311

n284_281

n152_367

n341_340

n423_314

n26_370

n116_144

n70_37

n369_459

n360_160

n424_103

n206_249

n146_264

n49_368

n415_444

n56_234

n411_123

n419_322

n239_126

n118_264

n56_61

n254_234

n271_322

n237_114

n505_251

n154_205

n270_11

n178_140

n133_350

n138_272

n255_409

n134_478

n252_135

n0_326

n79_241

n246_327

n220_278

n215_301

n37_230

n23_222

n81_405

n231_449

n510_18

n2_17

n262_284

n163_273

n55_484

n492_333

n222_86

n77_64

n0_33

n270_231

n434_335

n151_331

n69_158

n206_217

n40_488

n255_68

n378_458

n180_354

n2_276

n328_286

n110_425

n503_155

n135_65

n464_447

n256_256

n0_433

n282_170

n361_318

n393_437

n322_34

n346_180

n455_415

n114_252

n110_186

n373_47

n240_468

n227_191

n23_287

n270_503

n271_318

n82_28

n220_50

n322_489

n161_153

n173_409

n179_491

n452_160

n267_88

n310_304

n354_135

n306_113

n340_375

n124_448

n102_232

n138_127

n13_291

n265_427

n501_259

n197_22

n370_247

n89_225

n366_353

n227_265

n231_203

n113_22

n449_484

n395_27

n347_185

n22_81

n390_56

n64_79

n266_343

n502_184

n357_421

n158_341

n499_456

n119_278

n304_91

n151_60

n3_251

n438_325

n395_433

n193_23

n356_261

n79_403

n141_346 n422_346

n267_225

n437_277

n50_473

n157_127

n32_87

n199_255

n83_88

n158_432

n502_76

n446_86

n409_408

n147_219

n365_59

n470_327

n345_492

n457_375

n179_141

n228_13

n21_78

n219_170

n319_75

n178_174

n82_366

n269_378

n64_229

n468_109

n223_398

n409_479

n10_157

n172_278

n265_428

n260_479

n322_360

n407_80

n383_154

n341_46

n389_408

n278_66

n195_76

n319_44

n275_507

n473_247

n10_251

n447_404

n396_456

n284_100

n365_189

n353_34

n348_13

n360_4

n238_197

n425_211

n26_152

n467_224

n51_452

n302_93

n33_40

n18_300

n287_460

n356_148

n235_441

n318_244

n246_54

n140_107

n268_80

n80_448

n387_413

n487_508

n397_112

n427_322

n108_457

n247_73

n402_452

n360_210

n291_457

n29_449

n160_474

n89_244

n57_355

n154_55

n63_397

n434_218

n354_57

n217_373

n242_166

n336_99

n93_25

n356_163

n394_15

n32_257

n51_270

n304_16

n460_282

n462_410

n455_306

n327_315

n228_306

n27_128

n120_380

n397_384

n221_427

n374_342

n464_41

n366_259

n96_73

n320_266

n424_228

n165_348

n350_410

n281_434

n233_69

n213_443

n493_340

n243_433

n60_481

n487_312

n180_358

n49_67

n328_438

n275_370

n381_453

n57_61

n238_403

n375_445

n291_392

n222_448

n222_188

n173_392

n19_359

n232_341

n340_496

n85_19

n451_82

n155_505

n90_490

n220_250

n17_138

n396_141

n232_74

n462_421

n362_77

n94_324

n401_239

n266_78

n444_272

n15_422

n500_480

n453_228

n168_258

n353_286

n3_502

n243_488

n351_140

n409_274

n139_182

n506_5

n386_143

n87_30 n209_32n182_30

n241_2

n157_15

n501_360

n229_350

n33_228

n308_7

n502_18

n190_223

n426_118

n149_367

n437_340

n313_366

n13_10

n82_275

n246_29

n458_314

n119_494

n349_90

n422_197

n435_281

n45_356

n43_51

n487_1

n5_416

n176_254

n176_283

n312_366

n329_316

n49_51

n341_122

n9_209

n119_36

n251_394

n193_81

n92_500

n83_280

n139_92

n271_93

n458_501

n167_158

n204_473

n350_396

n296_458

n455_441

n168_180

n259_1

n103_203

n224_240

n351_420

n424_181

n439_283

n45_214

n401_212

n395_62

n19_243

n464_79

n426_310

n205_65

n91_271

n79_77

n413_181

n35_157

n468_437

n250_214

n282_331

n196_154

n159_290

n90_460

n93_279

n77_233

n237_415

n449_318

n407_205

n134_433

n41_216

n112_167

n111_506

n406_410

n24_443

n370_262

n435_7

n438_43

n260_390

n88_133

n353_282

n9_199

n360_130

n286_483

n59_28

n352_125

n96_489

n74_209

n175_456

n5_235

n165_450

n96_294

n198_453

n332_83

n6_40

n74_50

n113_65

n422_188

n199_313

n267_164

n436_317

n377_138

n391_224

n151_468 n511_462

n0_381

n155_178

n173_279

n81_129

n137_347

n496_395

n62_287

n11_504

n255_42

n317_284

n141_414

n242_476

n256_488

n454_47

n74_126

n384_164

n265_21

n275_388

n336_479

n219_274

n89_404

n225_201

n372_360

n507_439

n290_0

n137_350

n490_355

n375_71

n62_448

n146_390

n265_394

n310_289

n303_245

n143_455

n7_403

n204_17

n398_438

n443_82

n301_265

n175_242

n298_211

n444_171

n340_80

n438_168

n273_258

n212_218

n299_49

n303_444

n138_287

n373_263

n412_498

n214_165

n137_248

n163_137

n249_373

n125_497

n435_274

n231_39

n30_425

n434_66

n269_171

n148_155

n405_302

n498_353

n427_106

n51_50

n253_6

n8_143

n80_277

n112_214

n105_228

n289_160

n232_250

n171_206

n71_427

n450_137

n203_439

n368_496

n107_156

n90_112

n130_393

n366_313

n107_224

n138_146

n350_111

n354_329

n8_250

n306_503

n390_241

n77_411

n150_293n128_292

n373_452

n219_499

n419_418

n472_219

n199_264

n320_501

n463_92

n510_76

n301_369

n44_433

n186_443

n112_270

n482_347

n343_364

n87_438

n234_458

n403_362

n292_238

n106_240

n31_103

n214_48

n118_335

n281_258

n149_91

n381_30

n62_320

n115_469

n18_204

n480_222

n443_424

n429_389

n412_263

n8_323

n79_156

n105_275

n313_15

n4_237

n226_422

n454_495

n450_508

n77_212

n95_426

n323_314

n486_316

n233_23

n395_176

n385_417

n70_221

n76_167

n428_111

n479_409

n269_390

n373_405

n434_382

n121_471

n420_247

n410_315

n143_199

n450_265

n365_386

n217_453

n310_257

n11_484

n67_78

n229_280

n323_205

n411_0

n324_483

n101_431

n210_361

n435_23

n12_251

n460_114

n55_445

n468_465

n475_370

n234_95

n334_41

n241_370

n344_192

n279_353

n3_96

n455_387

n160_100

n240_164

n88_57

n156_215

n58_341

n485_353

n408_162

n197_283

n510_460

n404_37

n213_118

n7_193

n418_76

n200_358

n448_83

n155_179

n189_91

n78_356

n250_110

n243_318

n61_15

n103_69

n403_427

n450_339

n275_21

n109_154

n287_101

n419_57

n429_484

n424_425

n501_168

n474_476

n308_317

n403_0

n140_492

n269_192

n249_358

n498_107

n176_211

n424_244

n387_279

n253_121

n50_216

n395_103 n437_102

n140_378

n86_380

n50_329

n308_459

n476_46

n399_236

n243_110

n485_175

n163_287

n113_264

n306_22

n140_253

n400_273n183_267

n389_189

n268_396

n8_227

n41_87

n378_77

n124_361

n259_459

n190_313

n410_363

n355_408

n293_204

n499_479

n129_320

n466_26
n256_31

n114_334

n117_486

n179_442

n317_319

n189_44

n191_139

n448_64

n434_161

n305_353

n204_199

n125_330

n215_193

n244_149

n475_327

n124_275

n70_380

n286_174

n21_439

n486_389

n178_336

n300_451

n121_334

n83_491

n392_438

n400_25

n293_228

n409_103

n370_161

n105_79

n114_237

n70_196

n192_56

n377_123

n241_320n157_321

n255_380

Grid (1 , 1)

(d) EDT with ǫ = 1.6

n510_38

n219_250

n441_80

n217_152

n492_170

n397_407

n226_497

n254_138

n395_475n265_477

n486_481

n160_250

n206_442

n22_414

n180_409

n136_270

n261_171

n412_503

n59_245

n28_29

n155_371

n93_388

n354_133

n74_183

n184_306

n213_33

n139_242

n246_440

n429_370n23_371

n123_325

n200_414

n157_347

n306_356

n2_123

n471_257

n116_8

n23_4

n174_41

n452_379

n18_121

n69_461

n416_219

n116_58

n443_496

n13_165

n116_377

n410_147

n209_73

n315_287

n475_504

n464_72

n176_149

n449_446

n17_304

n50_363

n77_429

n196_111

n3_344

n401_105

n447_372

n29_118

n295_482

n331_270

n145_451

n5_161

n330_448

n27_118

n413_310

n29_349

n135_125

n432_507

n319_326

n191_31

n418_334

n458_106

n417_387

n209_259

n439_16

n375_34

n145_103

n458_123

n92_505

n97_158

n199_13

n104_167

n225_366

n373_134

n471_162

n379_408

n109_344

n232_149

n92_61

n245_315

n68_417

n425_118

n357_239

n255_500

n425_266

n143_138

n268_316

n45_235

n305_324

n185_510

n131_403

n287_141

n18_220

n58_439

n381_204

n241_220

n249_335

n263_31

n450_108

n146_429

n345_125

n397_510

n510_201

n467_332

n443_386

n119_365

n110_17

n361_414

n400_2

n144_258

n237_206

n351_308

n352_499

n333_339

n509_355

n390_175

n160_253

n379_332

n15_454

n352_298

n400_447

n249_204

n237_447

n155_129

n138_105

n209_124

n368_476

n214_439

n478_356

n37_507

n249_100

n163_265

n251_45

n94_37

n259_421

n217_450

n8_444

n485_83

n269_55

n95_60

n323_378

n44_362

n167_489

n293_85

n134_295

n93_449

n485_392

n453_469

n47_444

n278_479

n186_483

n393_362

n52_226

n455_400

n193_497

n212_302

n473_114

n267_200

n487_114

n491_483

n108_261

n276_107

n19_254

n482_401

n504_157

n409_76

n342_251

n304_375

n326_56

n44_322

n160_180

n189_2

n432_279

n478_172

n236_382

n415_434

n101_152

n506_369

n487_419

n176_486

n124_386

n380_6

n444_431

n35_449

n247_459

n326_239

n332_158

n480_133

n38_39

n161_453

n357_370

n511_322

n81_208

n408_475

n485_185

n246_463

n114_374

n455_325

n364_427

n334_194

n228_131

n21_320

n351_189

n147_348

n366_112

n59_453

n90_180

n239_282

n463_93

n160_345

n211_416

n141_284

n2_443

n274_50

n179_107

n296_358

n490_367

n34_36

n263_55

n360_411

n186_419

n154_480

n113_37

n185_447

n378_25

n334_424

n507_177

n263_94

n358_461

n233_451

n61_384

n136_368

n120_386

n447_426

n45_268

n14_318

n139_467

n161_62

n0_358

n189_464

n404_86

n456_303

n131_31

n507_51

n58_157

n383_16

n249_290

n106_388

n218_192

n464_164

n60_349

n84_394

n74_166

n219_377

n10_504

n397_65

n304_46

n147_483

n222_496

n8_239

n146_509

n165_301

n348_16

n415_475

n129_478

n35_13

n128_83

n91_68

n21_317

n511_279

n266_36

n363_444

n217_435

n7_362

n350_8

n372_430

n195_318

n275_400

n252_457

n355_140

n324_341

n331_47

n35_398

n239_215

n451_456

n53_12

n155_190

n55_32 n430_33

n475_389

n212_319

n383_455

n227_511

n242_228

n391_22

n478_129

n412_231

n270_137

n191_42

n269_85

n40_467

n41_53

n252_180

n458_291

n505_250

n427_439

n90_152

n345_411

n271_49

n185_119

n15_224

n401_11

n212_148

n82_376

n138_88

n399_345

n400_58

n239_480

n363_369

n431_280

n65_273

n405_306

n293_375

n457_459

n349_69

n330_20

n441_348

n172_21

n63_2

n417_167

n293_129

n4_206

n117_476

n419_76

n94_275

n341_214

n473_147

n473_511

n383_503

n117_468

n144_152

n100_108

n187_399

n332_255

n91_345

n297_314

n501_264

n440_152

n363_503

n477_50

n145_369

n414_447

n480_242

n133_115

n472_78

n480_257

n133_267

n86_510

n189_276

n421_22

n247_142

n338_187

n295_399

n470_287

n334_312

n496_333

n497_244

n226_237

n453_465

n44_475

n234_65

n260_202

n347_453

n511_382

n401_74

n280_173

n334_33

n213_468

n64_220

n456_184

n162_128

n488_483

n356_69

n86_123

n67_469

n165_371

n510_429

n420_403

n79_56

n29_196

n322_189

n303_480

n287_77

n357_444

n337_68

n176_501

n305_86

n97_340

n98_452

n477_504

n462_117

n214_150

n75_286

n59_197

n346_329

n219_311

n128_498 n387_496

n444_430

n475_366

n450_433

n281_471

n228_19

n29_164

n371_476

n329_244

n390_432

n133_314

n109_381

n160_342

n132_435

n181_187

n106_384

n401_70

n26_80

n240_419

n431_312

n452_220

n210_435

n358_18

n124_291

n508_180

n413_190

n315_422

n240_460

n77_425

n498_405

n412_37

n166_372

n372_276

n206_55

n384_138

n240_312

n171_502

n396_359

n62_162

n497_333

n510_7

n58_170

n294_109

n261_503

n338_464

n432_58

n365_46

n225_19

n138_416

n273_88

n343_70

n169_28

n296_99

n420_460

n86_185

n472_495

n374_61

n468_490

n272_427

n64_437

n243_314

n49_269

n169_488n159_486

n262_39

n442_262

n391_297

n129_160

n71_350

n363_479

n463_177

n429_25

n395_64

n8_478

n89_134

n118_121

n238_184

n140_190

n127_437

n107_282

n360_103

n300_199

n330_183

n106_430

n65_194

n231_409

n453_110

n22_443

n442_202

n487_326

n508_491

n191_379

n111_486

n372_417

n282_447

n349_304

n223_461

n326_171

n110_101

n12_206

n38_384

n271_71

n421_252

n384_487

n135_201

n196_170

n417_404

n125_207

n423_252

n487_55

n318_248

n508_4

n411_65

n74_259

n69_287

n193_35

n169_254

n303_392

n77_301

n135_213

n165_215

n115_432

n437_77

n403_140

n279_511

n150_234

n40_402

n376_292

n1_151

n445_413

n44_140

n304_261

n284_92

n405_11

n501_49

n323_203

n385_225

n12_111

n398_119

n168_266

n376_74

n272_1n195_3

n67_113

n464_414

n64_96

n141_281

n386_29

n405_143

n111_241

n481_316

n103_197

n57_228

n30_420

n155_470

n135_304

n346_394

n408_189

n281_386

n254_291

n40_213

n361_359

n372_446

n304_31

n313_105

n491_238

n224_296

n320_1

n508_467

n355_228

n412_409

n411_463

n357_269

n196_177

n284_270

n195_12

n389_452

n142_392

n431_143

n363_22

n441_384

n135_17

n405_279

n394_333

n212_416

n237_448

n223_424

n136_282

n69_125

n459_70

n431_497

n458_61

n155_237

n401_79

n368_265

n286_57

n241_243

n163_326

n389_281

n35_305

n477_356

n200_212

n147_50

n210_293

n324_247

n149_369

n253_202

n356_241

n289_364

n160_102

n384_284

n391_89

n436_280

n74_132

n500_472

n402_490

n483_166

n32_465

n24_124 n173_123

n138_391

n125_417

n281_19

n84_466

n388_45

n499_380

n509_5

n116_226

n197_261

n54_177

n396_63

n368_46

n361_205

n468_368

n356_506

n222_456

n6_5

n214_469

n490_304

n130_139

n136_464

n131_139

n409_478

n269_361

n242_254

n267_55

n458_40

n417_467

n286_426

n143_92

n361_157

n440_399

n8_338

n34_496

n350_248

n260_175

n457_33

n187_419

n111_244

n63_463

n358_200

n466_334

n313_266

n114_310

n440_45

n338_15

n138_368

n50_249

n122_511

n262_53

n233_203

n389_242

n52_66

n34_25

n344_477

n452_247

n276_217

n167_236

n371_425

n137_127

n58_52

n383_159

n25_106

n24_175

n464_73

n508_505

n334_282

n5_179

n350_103

n257_46

n205_343

n188_11

n94_366

n165_376

n500_459

n433_435

n426_128

n346_125

n483_143

n89_206

n149_131

n184_135

n432_133

n495_211

n202_66

n257_297

n91_224

n232_340

n470_125

n14_37

n172_230

n385_157

n291_463

n3_291

n185_331

n106_226

n173_219

n75_311

n240_104

n404_236

n30_260

n451_224

n400_277

n380_422

n310_401

n422_509

n352_223

n223_381

n354_16

n493_447

n276_15

n452_258

n312_388

n257_436

n82_502

n241_457

n307_14

n116_438

n387_207

n138_347

n374_133

n81_423

n219_443

n344_411

n175_194 n208_191

n186_308

n127_237

n40_66

n244_375

n111_210

n218_60

n290_311

n348_7

n478_11

n8_484

n282_28

n482_213

n224_349

n339_152

n56_364

n15_352

n104_287

n4_71

n119_84

n96_371

n366_43

n379_320

n302_445

n96_7

n112_394

n370_231

n411_385

n42_110

n488_66

n37_420

n469_321

n157_34

n147_160

n220_226

n16_454

n170_242

n395_343

n310_114

n152_209

n79_53

n257_499

n261_426

n321_94

n430_64

n243_374

n307_220

n351_309

n40_418

n147_23

n94_289

n297_163

n224_247

n211_471

n105_204

n109_400

n382_331

n386_451

n187_405

n5_37

n385_68

n379_33

n361_292

n251_473

n91_266

n189_53

n131_128

n158_224

n388_404

n21_500

n458_486

n37_66

n452_22

n98_113

n472_271

n356_24

n509_83

n52_424

n128_236

n15_256 n59_257

n113_31

n235_193

n418_318

n27_58

n458_100

n71_381

n156_279

n0_159

n144_290 n240_290

n283_187

n75_26

n431_220

n234_494

n151_70

n111_418

n163_151

n399_456

n324_471

n374_444

n134_61

n272_179

n140_344

n53_160

n428_440

n267_304

n349_362

n91_490

n57_127

n475_255

n6_379

n98_115

n374_26

n491_203

n395_154

n276_279 n351_280

n160_32

n510_349

n432_219 n445_217

n355_63

n40_214

n32_94

n140_403

n373_66

n285_375

n156_312

n476_285

n443_364

n448_132

n36_116

n94_18

n361_376

n279_444

n192_330

n260_51

n175_66

n89_205n33_204

n387_40

n448_70

n303_312

n113_99

n396_503

n131_1

n315_354

n86_410

n140_299

n20_411

n42_206

n22_9

n86_217

n194_499

n215_410

n139_493

n466_354

n430_118

n190_187

n309_368

n487_327

n103_54

n266_217

n255_391

n61_42

n240_12

n451_239

n429_452

n301_162

n357_414

n72_143

n430_177

n48_380

n52_466

n51_238

n29_430

n133_159

n73_71

n251_191

n47_182

n99_497

n490_292

n327_85

n227_270

n0_69

n248_242

n164_107

n227_53

n258_173

n99_235

n429_421

n455_91

n134_77

n48_426

n250_453

n169_260

n459_323

n15_18

n310_373

n177_400

n456_293

n480_215

n420_140

n220_465

n125_12

n405_24

n237_176

n113_299

n412_352

n249_70

n455_369

n459_49

n354_507

n412_404

n0_253

n280_31

n458_457

n450_60

n259_496

n100_83

n62_354

n156_248n94_249

n464_50

n459_226

n90_294

n16_111

n93_9

n106_442

n403_114

n124_93

n178_186

n147_17

n381_243

n422_275

n123_341

n357_233

n253_44

n46_186

n412_42

n228_315

n31_435

n217_44

n331_305

n429_255

n475_197

n238_484

n366_350

n309_18

n255_390

n145_401

n237_445

n32_4

n312_93

n141_446

n447_30

n192_208

n453_108

n73_208

n328_399

n174_440

n238_243

n431_368

n371_197

n438_173

n465_275

n190_164

n69_81

n440_488

n281_380

n508_192

n305_379

n299_200

n329_34

n452_121

n94_346

n459_65

n10_372

n113_170

n310_3

n448_205

n383_41

n203_372

n51_382

n21_306

n271_327

n189_205

n125_378

n147_272

n87_181

n110_217

n97_454

n94_470

n244_90

n276_480

n434_8

n136_102

n185_420

n386_49

n342_308

n442_370

n400_16

n89_453

n241_244

n105_134

n177_81

n253_23

n342_91

n475_378

n61_406

n283_98

n457_0

n241_24

n80_144

n61_262

n374_489

n315_429

n396_199

n63_227

n374_405

n66_94

n237_52

n490_16

n187_484

n228_72

n282_261

n191_381

n471_408

n226_140

n232_8

n32_477

n290_447

n309_198

n221_325

n130_99

n18_369

n172_438

n114_495

n248_220

n190_7

n342_65

n443_313

n143_257

n102_36

n225_127

n140_32

n307_499

n443_202

n438_229

n464_469

n429_302

n282_507

n196_88

n457_43

n283_433

n94_124

n83_131

n310_9

n185_96

n276_425

n224_132

n245_196

n81_63

n234_377

n31_197

n172_264

n179_418

n259_350

n382_438

n49_497

n434_274

n323_503

n502_480

n225_339

n157_194

n327_370

n427_424

n242_427

n127_31

n141_509

n76_195

n501_98

n488_312

n433_273

n384_371

n35_336

n415_83

n215_363

n441_206

n413_287

n272_115

n308_136

n233_44

n463_31

n439_162

n427_312

n189_404

n106_69

n436_440

n466_470

n334_345

n200_93

n308_335

n246_41

n17_93

n125_356

n307_209

n255_65

n77_76

n354_352

n241_328

n8_345

n229_325

n471_72

n500_27

n114_301

n103_394

n61_503

n243_434

n183_500

n116_297

n447_382

n11_408

n490_218

n80_399

n320_187

n202_426

n487_156

n62_433

n297_158

n91_400

n111_436

n400_131

n6_282

n450_245

n326_382

n215_307

n136_377

n25_398

n395_243

n328_138

n421_194

n131_159

n397_226

n487_461

n233_379

n487_120

n134_31

n398_459

n327_62

n204_80

n463_510

n203_412

n388_9

n439_382

n196_229

n434_133

n153_292

n471_102

n429_361

n440_218

n190_22

n218_17

n88_243

n127_58

n111_256

n76_287

n320_363

n447_379

n401_200

n96_334

n197_50

n244_485

n205_83

n465_327

n355_506

n272_402

n152_126

n147_254

n1_285

n376_39

n218_329

n381_407

n144_86

n493_422

n354_102

n447_117

n254_252

n133_97

n64_58

n15_465

n310_333

n488_469

n503_279

n77_417

n25_426

n56_164

n412_155

n364_503

n480_230

n14_299

n103_315

n497_184

n373_242

n240_455

n269_415

n86_317

n410_257

n501_346

n327_166

n11_316

n365_64

n140_170

n56_493

n17_257

n106_9

n409_490

n485_113

n101_33

n483_364

n379_420

n462_289

n398_45

n212_103

n185_2

n478_404

n392_453

n422_304

n89_46

n253_84

n34_394

n390_322

n423_452

n273_463

n104_60

n76_501

n256_85

n316_426

n166_472

n164_155

n77_326

n81_264

n64_68

n444_13

n367_299

n261_174

n206_30

n81_455

n402_17

n281_336

n432_311

n284_281

n152_367

n341_340

n423_314

n26_370

n116_144

n70_37

n369_459

n360_160

n424_103

n206_249

n146_264

n49_368

n415_444

n56_234

n411_123

n419_322

n239_126

n118_264

n56_61

n254_234

n271_322

n237_114

n505_251

n154_205

n270_11

n178_140

n133_350

n138_272

n255_409

n134_478

n252_135

n0_326

n79_241

n246_327

n220_278

n215_301

n37_230

n23_222

n81_405

n231_449

n510_18

n2_17

n262_284

n163_273

n55_484

n492_333

n222_86

n77_64

n0_33

n270_231

n434_335

n151_331

n69_158

n206_217

n40_488

n255_68

n378_458

n180_354

n2_276

n328_286

n110_425

n503_155

n135_65

n464_447

n256_256

n0_433

n282_170

n361_318

n393_437

n322_34

n346_180

n455_415

n114_252

n110_186

n373_47

n240_468

n227_191

n23_287

n270_503

n271_318

n82_28

n220_50

n322_489

n161_153

n173_409

n179_491

n452_160

n267_88

n310_304

n354_135

n306_113

n340_375

n124_448

n102_232

n138_127

n13_291

n265_427

n501_259

n197_22

n370_247

n89_225

n366_353

n227_265

n231_203

n113_22

n449_484

n395_27

n347_185

n22_81

n390_56

n64_79

n266_343

n502_184

n357_421

n158_341

n499_456

n119_278

n304_91

n151_60

n3_251

n438_325

n395_433

n193_23

n356_261

n79_403

n141_346 n422_346

n267_225

n437_277

n50_473

n157_127

n32_87

n199_255

n83_88

n158_432

n502_76

n446_86

n409_408

n147_219

n365_59

n470_327

n345_492

n457_375

n179_141

n228_13

n21_78

n219_170

n319_75

n178_174

n82_366

n269_378

n64_229

n468_109

n223_398

n409_479

n10_157

n172_278

n265_428

n260_479

n322_360

n407_80

n383_154

n341_46

n389_408

n278_66

n195_76

n319_44

n275_507

n473_247

n10_251

n447_404

n396_456

n284_100

n365_189

n353_34

n348_13

n360_4

n238_197

n425_211

n26_152

n467_224

n51_452

n302_93

n33_40

n18_300

n287_460

n356_148

n235_441

n318_244

n246_54

n140_107

n268_80

n80_448

n387_413

n487_508

n397_112

n427_322

n108_457

n247_73

n402_452

n360_210

n291_457

n29_449

n160_474

n89_244

n57_355

n154_55

n63_397

n434_218

n354_57

n217_373

n242_166

n336_99

n93_25

n356_163

n394_15

n32_257

n51_270

n304_16

n460_282

n462_410

n455_306

n327_315

n228_306

n27_128

n120_380

n397_384

n221_427

n374_342

n464_41

n366_259

n96_73

n320_266

n424_228

n165_348

n350_410

n281_434

n233_69

n213_443

n493_340

n243_433

n60_481

n487_312

n180_358

n49_67

n328_438

n275_370

n381_453

n57_61

n238_403

n375_445

n291_392

n222_448

n222_188

n173_392

n19_359

n232_341

n340_496

n85_19

n451_82

n155_505

n90_490

n220_250

n17_138

n396_141

n232_74

n462_421

n362_77

n94_324

n401_239

n266_78

n444_272

n15_422

n500_480

n453_228

n168_258

n353_286

n3_502

n243_488

n351_140

n409_274

n139_182

n506_5

n386_143

n87_30 n209_32n182_30

n241_2

n157_15

n501_360

n229_350

n33_228

n308_7

n502_18

n190_223

n426_118

n149_367

n437_340

n313_366

n13_10

n82_275

n246_29

n458_314

n119_494

n349_90

n422_197

n435_281

n45_356

n43_51

n487_1

n5_416

n176_254

n176_283

n312_366

n329_316

n49_51

n341_122

n9_209

n119_36

n251_394

n193_81

n92_500

n83_280

n139_92

n271_93

n458_501

n167_158

n204_473

n350_396

n296_458

n455_441

n168_180

n259_1

n103_203

n224_240

n351_420

n424_181

n439_283

n45_214

n401_212

n395_62

n19_243

n464_79

n426_310

n205_65

n91_271

n79_77

n413_181

n35_157

n468_437

n250_214

n282_331

n196_154

n159_290

n90_460

n93_279

n77_233

n237_415

n449_318

n407_205

n134_433

n41_216

n112_167

n111_506

n406_410

n24_443

n370_262

n435_7

n438_43

n260_390

n88_133

n353_282

n9_199

n360_130

n286_483

n59_28

n352_125

n96_489

n74_209

n175_456

n5_235

n165_450

n96_294

n198_453

n332_83

n6_40

n74_50

n113_65

n422_188

n199_313

n267_164

n436_317

n377_138

n391_224

n151_468 n511_462

n0_381

n155_178

n173_279

n81_129

n137_347

n496_395

n62_287

n11_504

n255_42

n317_284

n141_414

n242_476

n256_488

n454_47

n74_126

n384_164

n265_21

n275_388

n336_479

n219_274

n89_404

n225_201

n372_360

n507_439

n290_0

n137_350

n490_355

n375_71

n62_448

n146_390

n265_394

n310_289

n303_245

n143_455

n7_403

n204_17

n398_438

n443_82

n301_265

n175_242

n298_211

n444_171

n340_80

n438_168

n273_258

n212_218

n299_49

n303_444

n138_287

n373_263

n412_498

n214_165

n137_248

n163_137

n249_373

n125_497

n435_274

n231_39

n30_425

n434_66

n269_171

n148_155

n405_302

n498_353

n427_106

n51_50

n253_6

n8_143

n80_277

n112_214

n105_228

n289_160

n232_250

n171_206

n71_427

n450_137

n203_439

n368_496

n107_156

n90_112

n130_393

n366_313

n107_224

n138_146

n350_111

n354_329

n8_250

n306_503

n390_241

n77_411

n150_293n128_292

n373_452

n219_499

n419_418

n472_219

n199_264

n320_501

n463_92

n510_76

n301_369

n44_433

n186_443

n112_270

n482_347

n343_364

n87_438

n234_458

n403_362

n292_238

n106_240

n31_103

n214_48

n118_335

n281_258

n149_91

n381_30

n62_320

n115_469

n18_204

n480_222

n443_424

n429_389

n412_263

n8_323

n79_156

n105_275

n313_15

n4_237

n226_422

n454_495

n450_508

n77_212

n95_426

n323_314

n486_316

n233_23

n395_176

n385_417

n70_221

n76_167

n428_111

n479_409

n269_390

n373_405

n434_382

n121_471

n420_247

n410_315

n143_199

n450_265

n365_386

n217_453

n310_257

n11_484

n67_78

n229_280

n323_205

n411_0

n324_483

n101_431

n210_361

n435_23

n12_251

n460_114

n55_445

n468_465

n475_370

n234_95

n334_41

n241_370

n344_192

n279_353

n3_96

n455_387

n160_100

n240_164

n88_57

n156_215

n58_341

n485_353

n408_162

n197_283

n510_460

n404_37

n213_118

n7_193

n418_76

n200_358

n448_83

n155_179

n189_91

n78_356

n250_110

n243_318

n61_15

n103_69

n403_427

n450_339

n275_21

n109_154

n287_101

n419_57

n429_484

n424_425

n501_168

n474_476

n308_317

n403_0

n140_492

n269_192

n249_358

n498_107

n176_211

n424_244

n387_279

n253_121

n50_216

n395_103 n437_102

n140_378

n86_380

n50_329

n308_459

n476_46

n399_236

n243_110

n485_175

n163_287

n113_264

n306_22

n140_253

n400_273n183_267

n389_189

n268_396

n8_227

n41_87

n378_77

n124_361

n259_459

n190_313

n410_363

n355_408

n293_204

n499_479

n129_320

n466_26
n256_31

n114_334

n117_486

n179_442

n317_319

n189_44

n191_139

n448_64

n434_161

n305_353

n204_199

n125_330

n215_193

n244_149

n475_327

n124_275

n70_380

n286_174

n21_439

n486_389

n178_336

n300_451

n121_334

n83_491

n392_438

n400_25

n293_228

n409_103

n370_161

n105_79

n114_237

n70_196

n192_56

n377_123

n241_320n157_321

n255_380

Grid (1 , 1)

(e) EDT with ǫ = 1.8

Figure 4.16: QPS EDTs with varying ǫ value

136

Chapter3/Figs/EPS/0.ps
Chapter3/Figs/EPS/1.ps
Chapter3/Figs/EPS/2.ps
Chapter3/Figs/EPS/3.ps
Chapter3/Figs/EPS/4.ps

CHAPTER 4. QUAD-PUBSUB 4.4 Evaluation

network density (see Table 4.7). This scaling allowed a wider range of path length ratios to be

examined by the subscription ǫ factor than those that could be examined in a 256 × 256 grid size

network. Thus, the performance trend could be observed more clearly even by small subscription

ǫ factor increments. The performance of QPS under both network sizes (n = 500 and n = 2000

nodes) was studied in a separate set of experiments, and verified to be consistent. In this set

of experiments, the subscription ǫ factor was varied from 1.0 to 2.8 (with 0.2 increments), and

the event subscription complexity and event delivery latency were examined in addition to the

previous metrics. Figure 4.15 shows the average results after i experiments, and Figure 4.16

shows a typical result (QPS EDT) for varying the subscription ǫ value from 1.0 to 1.8; the dots

represent the nodes, the lines represent the publish-subscribe links, and the bottom-left corner of

the diagrams represent the (0,0) location coordinate. Note that the original diagrams have been

scaled down unevenly in x and y; distances have been distorted but (node) order is preserved.

The subscription complexity in Figure 4.15(e) was measured according to the number of

subscription messages that were transmitted in the network until all subscriptions were resolved.

The difference between this value and the dissemination complexity is that the subscription

complexity is a cumulative number, while the dissemination complexity is a normalised one. As

expected, the subscription complexity decreases (i.e. subscriptions are resolved quicker and with

lesser messaging) as the subscription ǫ value increases in QPS.

As Figure 4.15(a) shows, the number of publish-subscribe links increased with an increase

in the ǫ value, but only for the first increment; the total number (subsequently) stayed constant

because QPS established the same number of links but to different logical EBs. Figure 4.16

shows how the number of forwarding EBs between publisher-hosting and subscriber-hosting

EBs increased while the total number of publish-subscribe links stayed the same. Originally,

all subscriber-hosting EBs were connected to the leaf logical EB that is responsible for rs (Fig-

ure 4.15(b) confirms this with a high (per node) load shown for ǫ = 1). As the ǫ value increased,

these links were distributed among the logical EBs that were closest to the subscriber-hosting

EBs. Experimental results indicate that the performance stayed constant for ǫ > 1.8. This

is because QPS algorithms did not allow event dissemination paths to become unreasonably

long even if a high subscription ǫ value was specified (Section 4.3.5.4 indicates that subscription

messages are dispatched to the nearest logical EB). The threshold ǫ value, beyond which the

performance remains constant, depends on the size of the network, g, and the number of GS

hierarchy levels, N .

Figure 4.15(c) shows that the highest ǫ value (and hence the highest level of path sharing)

does not lead to the best performance in QPS. This is despite the large number of overlapping

subscriptions that is present in this setup. This is because dissemination complexity depends

on more than just the event dissemination path lengths. An even distribution of EDT load is

also important, and high ǫ values in QPS often result in more load at the higher level logical

EBs than the lower level logical EBs - recall that higher level logical EBs handle larger GSs.

The event delivery latency diagram (Figure 4.15(d)) was plotted according to the time inter-

val between the time of event publications and the time of event deliveries. The global simulation

clock was used to measure these intervals accurately, but the experimental setting was altered

137

4.5 Related Work CHAPTER 4. QUAD-PUBSUB

as follows. In order to minimize the impact of the link-layer and routing layer performances

on the event delivery latency, and grasp a better view of QPS’s effect on the event delivery

latency, event dissemination was restricted to one subscriber at a time (each event publication

was delivered to one event subscriber, in isolation, and measurements were averaged to obtain

the final latency value). With increasing ǫ value and longer event dissemination paths, the

event delivery latency increased as expected but only under controlled conditions. Uncontrolled

measurements indicated that event delivery latency strongly depends on link-layer performance,

and (with possible network congestion) is largely non-deterministic. This is consistent with the

observation made in [SI07] that timely delivery requires the cooperation of many communication

layers, especially the data link layer.

4.5 Related Work

I discuss related work under three headings that group it by design, application setting, or

implementation.

Cross-layer data dissemination protocols. I have already discussed how QPS compares

to the cross-layer data dissemination protocols. In this section, I extend my comparison by

operational analysis, Pub/Sub abstraction, and functional design. QPS is a complete and self-

contained Pub/Sub protocol. This contrasts with some data dissemination protocols, such as

Directed Diffusion [IGE00; IGE+03], that leave some design decisions to the system developer.

While these protocols offer great flexibility (by involving the system developer), they risk cor-

rectness by relying on the human factor to make appropriate design decisions. QPS avoids this

risk, yet delivers flexibility through a layered architecture. System developers may select differ-

ent implementations for lower functional layers, or develop their own (routing and networking)

protocols for added flexibility.

Another interesting distinction between QPS and the data dissemination protocols is the lack

of positive or negative re-enforcements in QPS and its localized EDT construction; end-users

(ECs) do not need to acknowledge or re-enforce paths for EDT construction. In contrast, most

data dissemination protocols (such as Directed Diffusion [IGE00; IGE+03] and SAFE [KSS+03])

need end-user re-enforcements to select appropriate nodes for the EDT.

Finally, the Pub/Sub abstraction, that is provided by QPS and cross-layer data dissemi-

nation protocols, can be compared with respect to location and time decoupling [EFGK03] as

follows. Where location-awareness is utilized in cross-layer data dissemination protocols (e.g.

Directed Diffusion combined with GEAR [YGE01]), the location of the clients (sensors and

sinks) is constrained as opposed to the location of the data. This has two consequences (see

also Section 2.3.1.1): (a) location decoupling between ECs is lost, and (b) only data that corre-

sponds to the location of the publisher is supported. QPS, however, only constrains the location

attribute of the event (data); thus it does not have the above disadvantages. With respect

to time decoupling, when a pull-based (Pub/Sub-like) data dissemination protocol [HSE03] is

operating, time decoupling (analogous to real-time coverage in QPS) is not guaranteed; this is

138

CHAPTER 4. QUAD-PUBSUB 4.5 Related Work

because EDTs (in pull-based data dissemination protocols) do not maintain ECs’ dynamics, but

are periodically re-constructed to exclude failed subscribers and include newly joined publishers.

Wireless ad-hoc network Pub/Sub protocols. As discussed in Section 2.1, wireless ad

hoc networks are different from WSNs. Pub/Sub protocols that are designed for the former, often

perform poorly in the latter - largely due to the lack of energy and load considerations. WSN

applications also have different characteristics from those motivated in ad hoc environments.

For example, in [HGM03], a single (root) node is assumed to be sufficient for publishing events

in an ad hoc network; this is in clear contradiction to the WSN setting where the majority of

nodes are publishers. The work-around solution (unicast all events to the root node and then

disseminate them from there onwards) is equally inappropriate. Researchers have thus begun

to migrate solutions from the wireless ad hoc network setting to the WSN setting. Examples

include [CPR05] that is based on [CCP05], and [HCRW04] that is based on [CCRW04]. These

efforts, however, do not exploit the notion of location that is frequently present in large-scale

WSNs. QPS outperforms many of these protocols, either in operational settings or in operational

performance, due to the use of location-awareness.

Although QPS uses the notion of location, the subscription language supports constraints

over the location of the data and not the ECs. QPS can be considered as a content-based

Pub/Sub protocol that makes assertions about the first two attributes of the events, and sup-

ports a location-based coverage relationship to achieve shared event dissemination paths. This

is different from some related work, such as STEAM [MC02] and [CCdC05], that introduce

location-awareness about the ECs. In STEAM (that is designed for MANETs), ECs are as-

sumed to interact once they are in close proximity; proximity filters are introduced that define

a certain geographical area (surrounding the publisher) in which events are valid. The work

in [CCdC05] generalizes location-awareness with respect to both types of ECs (the event pub-

lishers and the event subscribers). They trade-off location decoupling against added functionality

and performance in their motivating application environments.

Rendezvous-based Approaches. Many rendezvous-based Pub/Sub protocols have been

proposed that build EDTs over Peer-to-peer (P2P) systems. The original idea was introduced

in [WQA+02] and since then several topic-based (Scribe [CDKR02] and Bayeux [ZZJ+01]) and

content-based (Hermes [PB02], Meghdoot [GSAA04] and [BBM+05; TBF+03; TAJ04]) pro-

tocols have been proposed that implement Pub/Sub functionality over some structured over-

lays. The main challenge addressed in these is the mapping of multi-dimensional, multi-typed

content-based subscriptions to uni-dimensional or bi-dimensional numerical-only address spaces

of structured overlays. Their application environment is also restricted by the underlying P2P

systems, which are mostly designed for wired (Internet-like) infrastructures.

Rendezvous-based routing protocols (designed for WSNs) avoid the use of structured over-

lays, which may induce much maintenance and control overheads. Examples of rendezvous-based

routing protocols that facilitate the intersection of data (events) and queries (subscriptions)

at some (rendezvous) points in the network are Rumour routing [BE02], TTDD [YLC+02],

and [LHZ04]. Recently, a low maintenance DHT (called GHT [RKY+02]) was proposed for

DCS [REG+02] points in WSNs. The same scheme has been used in DIMENSIONS [GEH03],

139

4.6 Summary CHAPTER 4. QUAD-PUBSUB

DIMS [LKGH03], and DIFS [GER+03], to implement more complex DCS solutions. QPS is

similar to this work as it uses a geographical hash function, but addresses a different problem -

namely, Pub/Sub functionality in WSNs. I am not aware of any event dissemination protocols

(to date) that have used these schemes, but examined a comparable GHT-based approach as

part of my evaluations. QPS gains performance by reducing the randomness that is inherent in

DHT solutions, and constructing the EDT according to an approximate location-based metric

space.

4.6 Summary

In this chapter, I presented QPS, a distributed and scalable Pub/Sub protocol, for location-aware

WSNs. QPS provides a topic- and location-based Pub/Sub abstraction, and provides a complete

time and location decoupling between its ECs. It operates at two layers: a network-independent

logical layer that provides Pub/Sub functionality, and a network-dependent physical layer that

provides resource-awareness and fault-tolerance. At the Pub/Sub layer, QPS builds logical EB

trees1, and constructs an EDT to interconnect the publishers and the subscribers. The physical

layer maps this EDT to real nodes with EB functionality.

QPS’s independent operation from the routing layer allows different flavors of location-

based routing protocols to operate transparently in the system. I showed that supporting this

while also attaining scalability (through shared event dissemination paths) in the existing work,

is difficult. I exploited location-awareness to offer a trade-off at a logical layer. This trade-

off can be manipulated by subscriber-specified ǫ factors. Performance evaluations, within a

simulation environment, indicated that QPS has limited gain in small and sparse WSNs but

offers consistently better performance than its counterparts in large-scale and dense WSNs. My

literature survey revealed that there are several reasons for preferring dense WSN deployments.

For example, [CDGS04] argues that many proposed localization schemes (for WSNs) require high

node densities to offer acceptable performances, [SSS05] shows that higher network densities can

ensure sensor network coverage and connectivity even when nodes are highly unreliable and the

transmission power is small, and [STGS02] shows that high network densities allow for more

energy savings. Thus QPS is expected to operate as a scalable Pub/Sub protocol in a wide

range of WSN deployments.

1These trees resemble Quad-Trees from which QPS acquired its name.

140

Chapter 5

State-based Publish/Subscribe

With the increased realisation of the benefits of studying environmental data, sensor networks

are rapidly increasing in size, heterogeneity of data, and applications. Future applications are

expected to operate over larger and more heterogeneous sensor networks, with interests that

involve detection of conditions, situations, and contexts. I expect large scale deployment of

application-specific networks to become less likely, and the concurrent operation of applications

over a shared infrastructure to become predominant and more economical. Smart environments

are an example of these systems, where environments are equipped with wired/wireless sen-

sor devices of various types and platforms, and the system serves many diverse and dynamic

applications.

These systems demand frameworks that abstract the low-level data, the infrastructural de-

tails, and capture high-level knowledge or conditions for their applications and users. Knowledge

about time and location can significantly enhance the meaning of observed data, and aid in ac-

curate capture of high-level conditions with appropriate temporal and spatial interrelationships.

For example, high temperature readings at two distinct locations, in a forest, may indicate

separate (multiple) fire incidents or a widespread fire; but repeated high readings at a single

temperature sensor indicates only the continuation of a single fire incident.

In this chapter, I present the State-based Publish/Subscribe (SPS) framework [TB07b; TB08]

for sensor systems with many distributed and independent application clients. SPS decouples

applications from the sensor devices, and processes sensor data internally to capture conditions,

situations, or contexts of interest. SPS provides a state-based information deduction model that

suits many classes of sensor network applications with interests in temporal and spatial con-

ditions. State Maintenance Components (SMCs) are introduced that capture conditions over

events, received from a Pub/Sub system. These SMCs store information about the captured

conditions, and perform context-based data processing for increased efficacy and efficiency. Con-

sidering the heterogeneity of resources in sensor systems, these components were designed to be

predictable in resource usage, flexible in network placement, and decomposable for distributed

processing. They operate independently, but may collaborate through Pub/Sub to attain higher

level knowledge. The Publish/Subscribe communication forms the core messaging component

of the framework, and the decoupling feature of Pub/Sub is used and extended across the SMCs

141

5.1 Application ScenariosCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

to support a more flexible and dynamic system structure. My performance evaluation, using

real sensor data in the context of a smart transportation system, shows that SPS is expressive

in capturing conditions, and scalable in performance.

This chapter begins with an insight into some of the emerging large-scale sensor systems.

High-level application interests are discussed, and an overview of system requirements are out-

lined. Section 5.2 details the component-based architecture of SPS. SPS’s flexible architecture

supports even the most resource-constrained sensor devices, but can also exploit the resourceful

nodes for resource-intensive computations and messaging. These architectural components are

further detailed in Section 5.3. Data processing is governed by SMCs that envelope condition def-

initions and maintain the capturing condition’s context. The semantics of SMCs are explored by

an example in Section 5.4. A data model describes the purpose and structure of inter-component

messages that drive data processing in SPS (Section 5.5), and the detection model (Section 5.6)

explains how high-level conditions are captured in SPS. Condition detection may be performed

in-network, or even distributed across many nodes. The advantages and semantics of SMC

decomposition and distribution are sketched in Section 5.7. With every distribution comes the

concerns of non-deterministic network behavior and node failures; SPS addresses these through

a reliability model described in Section 5.8. Finally, the expressiveness and performance of the

proposed framework is analysed in Section 5.9. A discussion of the related work is presented in

Section 5.10, and a summary of contributions is provided in Section 5.11.

5.1 Application Scenarios

Following recent technological advances in sensor networks and ad hoc systems, large-scale ad

hoc networks are envisaged that span large geographical areas and contain large volumes of

data, input by many primitive sensor hardwares. This data benefits an equally large number

of consumers that wish to process it and/or extract information from it. These multi-user

systems are further motivated by the economical incentives that emerge when a large number

of information consumers (users) are involved in a system.

Unlike conventional sensor networks, which are deployed for specific applications and often

pre-programmed for specific tasks [IGE+03], these systems are dynamic in the number of infor-

mation consumers and the nature of their interests. Applications, sensors, and protocols are no

longer restricted by the constraints of hardware platforms. Instead, hardware platforms (such

as UCB motes [HC02a] [HSW+00b], uAMPS [UAM], PC104 [PC1], GNOMES [WFF03] etc.)

are carefully selected to support the required sensing, computation and performance.

These new classes of sensor systems are expected to support applications beyond the tasks of

data collection and passive monitoring. Support for actuation, application messaging, capture

of conditions and contexts inspire a new range of pervasive applications that can operate in an

open distributed environment. I examine two application scenarios below that demonstrate the

scale, characteristics, and potential applications of these systems.

Monitoring Underground Water. Underground water supplies are one of the oldest man-

made infrastructures beneath the ground. This aging infrastructure is subject to deterioration,

142

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.1 Application Scenarios

Figure 5.1: Thames water supply coverage (taken from [Rob06])

and is greatly influenced by nearby activities, such as constructions, excavations, and tunneling.

Excess water leakage and pipe bursts are frequent, and often unanticipated. These pose safety

and operational reliability issues, they can also impact neighboring infrastructures, such as

telecommunication cables. Considering the scale of these infrastructures and constraints posed

by the environment, physical inspections are difficult and in many cases costly to achieve. The

emerging WSNs, however, can offer viable and cheap monitoring and condition assessment tools

for predicting performance, detecting damage and using the resources efficiently.

Sensors can be deployed to monitor various contexts such as water pressure, chemical-levels,

air and water flows in the pipes and acoustic signals throughout the underground water infras-

tructure. Each node in the network integrates specific sensing capabilities with communication,

data processing and power supply. These nodes can form a network that could potentially scale

into thousands of kilometers. For example Thames Water supply covers 31,000km of water mains

and 78,000km of sewers in the greater London area (see Figure 5.1). Civil engineers have already

begun to investigate how large numbers of sensors can be integrated into large-scale engineer-

ing systems [Rob06; SNMb; LWW08; SNMT07]. Another work [AS06] has motivated the shift

from existing centralized wired architectures to decentralized wireless solutions for monitoring

underground environments. In summary, [AS06] argues that five factors contribute to this shift:

concealment, ease of deployment, timeliness of data, reliability, and coverage density. A wireless

connection will avoid aboveground obstructions that can limit application areas. Absence of

wiring eases the deployment and enhancement of these networks. Nodes can also relay data to

network sinks as opposed to storing data locally at dataloggers which become single points of

failure. Finally, the authors argue that removal of dataloggers allows for even more network

coverage than when clusters are formed around the dataloggers.

143

Chapter4/Figs/EPS/thames.ps

5.1 Application ScenariosCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Applications and interests that arise from these deployments can be diverse in nature. The

deployment and maintenance costs often encourage the involvement of many application do-

mains that can share and re-use the deployed system. For example, the water-supply company

has immediate interest in the collected data. Similarly, telecommunication services can benefit

from information such as water-leakage and pipe bursts that affect their assets, and building

construction units can enhance their performance if they have real-time knowledge about the

underlying environments. Application interests are rarely related to raw data; elements of data

filtering, aggregation, and fusion can always yield more meaningful results. In fact, in-network

data processing is beneficial as it increases the network lifetime by reducing data communica-

tions. Water leakage and pipe bursts are often inferred as a result of such data processing, and

rarely have dedicated sensors for detection.

Characteristics that are observed from the above description are the large network scale,

dynamic network topology (i.e. many independent and distributed application clients), and

high-level information interests.

Smart Transportation System. My second application touches upon the same charac-

teristics, though in a completely different application domain. Transportation is the ability to

move people and goods from one location to another. Being able to move from one point to

another is important, and sometimes the key to survival. In order to maintain a functioning

economy, people must be able to circulate between the various points that are important to

them, and do so with ease. Today, fossil fuel availability and road, rail, marine, and air-based

transportation networks have drastically increased the distances one can travel and increased

the overall number of trips made.

Maintaining ease of transport with increasing numbers of trips however is difficult. Road

congestion in the UK costs in the order of £20bn per annum [Rel03]. In the same report [Rel03],

85% of senior business people are said to believe that investment decisions are influenced by the

quality of transport. These business people believe that investment in monitoring, distribution

and processing of traffic information will cause a substantial and significant increase in transport

efficiency. This would not only improve business efficiency but would also have a profound effect

on pollution control and social cohesion. Existing transportation information systems are largely

vertically integrated and single themed. A generic framework can offer better abstraction (hide

low-level sensor data), and support many applications through a unified higher level interface.

WSNs can play a key part in this, and researchers have already begun developing wireless

sensors [Kna00] for easy low cost deployments. A smart transportation system consists of

many information producing (sensor) devices, including inductive loop sensors, speed cameras,

ANPRs, GPS devices, and traffic light signals, on urban streets. It is an ad hoc infrastructure,

meaning that the sensors and actuators are not deployed and interconnected statically, or at once,

but are progressively deployed and changed over time. At the application layer, the system is a

multi-user sensor system, which serves many independent and heterogeneous application clients

concurrently.

Diverse application interests demand a generic data structure and information processing

model, that can aid many applications with their rich data interests. An examination of the

144

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.1 Application Scenarios

user interests revealed [BBE+08] that very few (if any) relate to raw sensor data. Instead, user

interests often relate to high-level information, such as congestion detection and projection, car-

park status, bus arrival times, and free taxi locations, which could only be realised when data

from multiple (possibly heterogeneous) sources are aggregated and fused in a specific manner.

Despite the independence of the application clients, interests are frequently observed to be similar

or overlap (e.g. two independent users may be interested in traffic congestion in the same area).

In this work, I focus on traffic congestion phenomena, which I detect using data obtained from

SCOOT [SCO].

5.1.1 Requirements

The highlighted applications have a number of characteristics in common that call for a generic

framework. They exhibit the large scale and heterogeneity (of sensing hardware and device

platform) that extend the system coverage and enable data capture from large geographical

spaces. The scale of these networks suggests topological dynamicity and reliability concerns

that cannot be overlooked. Additionally, the scale and maintenance costs restrict the frequency

of sensor node inspections and replacements. Sensor nodes deployed in low-profile areas are

expected to have several years of lifetime, before any replacement or maintenance services are

needed.

Wireless communications are often employed due to their ease of deployment, low cost hard-

ware, high robustness, and flexibility of network configuration, but a pure wireless network

infrastructure should not be assumed. Wireless communications provide expensive and unreli-

able communications that demand fault-tolerant protocols for reliable operation.

Application clients, in the above systems, are distributed and often enclosed within the

sensor network. There may be a large number of application clients, operating concurrently and

independently at any one time. They express dynamic interests, which may vary in number and

nature throughout the system lifetime. Application client interests rarely relate to raw sensor

data, and in many instances raw sensor data may be discarded in favor of more meaningful and

compact high-level information. An application’s prior knowledge about the environment plays

a key role in defining its interests, which could lead to overlapping interests among independent

application clients.

A generic framework can abstract the highlighted concerns about the sensor networks, and

provide a unified interface for supporting the described applications. This framework must

encompass four features: abstraction, scalability, expressiveness, and openness.

Abstraction Infrastructural details, consisting of sensing/actuation devices, network proper-

ties, and topological configurations, are heterogeneous and can change over time. These

details describe the very low-level dynamics of the network, and are often of little interest

to the users. Users can instead benefit from higher level abstractions, such as data-centric

abstractions, that closely match their interests. Abstraction, in sensor systems, shifts

the application/sensor network interaction from a fragile address-based communication to

more robust data-centric communication.

145

5.2 Architecture CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Scalability It is clear that managing a large-scale network with many independent or collab-

orative devices and users is difficult. Managing a sensor network is more difficult as it

embeds a large volume of data that is produced by many networked devices (notably the

sensors). A framework should support these devices and users without sacrificing efficiency

or reliability. In most sensor networks, using wireless (radio-based) communications, scal-

ability implies support for efficient communications and managing client dynamics with

low overheads.

Expressiveness Sensors often produce data that is basic, redundant and highly correlated be-

cause they observe a common external entity (the environment). This primitive data needs

to undergo processing to yield interesting information. Aggregation and fusion are prelim-

inary steps in this regard, and can be extended to support lasting conditions, situations, or

contexts. With high-level conditions, support for temporal and spatial interrelationships

becomes important, and context-based data processing can be used to increase effective-

ness.

Openness Openness in sensor systems allows users, devices, and applications to dynamically

emerge (join) or disappear (leave) the system without centralized coordination or central

management. It also supports the equal treatment of users and devices such that they can

select one or more roles flexibly to suit their applications. For example, a user may operate

as a consumer and receive sensor messages (data) in one application, and simultaneously

operate as a producer and send messages (commands) to actuators in another. Inter-device

and inter-user interactions are also supported in an open system.

5.2 Architecture

SPS is an event-based framework with a layered architecture. It uses Pub/Sub to loosely couple

the end-points (applications and sensors), and to attain abstraction and scalability in the view

of network topology changes. The architecture of a system that utilizes SPS is sketched in

Figure 5.2. SPS enhances Pub/Sub with network-wide services, and builds two functional layers

at the (larger) clients layer. These two support data processing in SPS.

Although the SPS implementation extends into the clients layer, SPS clients, comprising

sensors, actuators, applications, controllers, etc., are supported at the lower layer’s (Pub/Sub’s)

interface. A unified Pub/Sub interface abstracts the sensor network and supports all clients that

reside at the top layer, including the SMC manager and the Information Space (InfoS). These

functional layers are further described below.

Network Layer The network layer provides reliable message delivery from sources to destina-

tions. Its implementation is external to the framework and embodies characteristics of the

sensor network and communication media used in-between the networked nodes. Unicast

and local (1-hop) broadcast services are the only communication services that are required

from this layer.

146

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.2 Architecture

St
at

e-
ba

se
d

Pu
b/

Su
b

Publish/Subscribe Layer

Network Layer

Clients Layer

Applications InfoS SMC Manager

Figure 5.2: SPS architecture

Pub/Sub Layer The Pub/Sub layer implements a lightweight many-to-many messaging ser-

vice. It provides a topic- and location-based abstraction, and exports a unified interface

for its event clients. The Pub/Sub paradigm adapts SPS to topological changes, such

that node joins and leaves and corresponding data changes are transparently reflected in

the system. This layer provides core functionality and distributed messaging for SPS. In

addition, the use of Pub/Sub in the SPS architecture allows SPS to build on previous work

and offer easy integration with existing Pub/Sub systems.

Clients Layer The highest level is the clients level, comprising sensors, actuators, users, em-

bedded processors, etc., that reside on individual nodes and use SPS for their data pro-

cessing and messaging requirements. Clients may interact directly at the local (nodal)

level, but network-wide interactions are solely via the Pub/Sub layer. SPS provides the

InfoS and the SMC Manager that are isolated from other clients and support distinct

functionalities as described below.

Information Space The InfoS is an event repository that receives events from the Pub-

lish/Subscribe layer and presents it to the local (co-located) SMC manager for pro-

cessing. It maintains a globally consistent view of the low-level data, and presents

data changes to the SMC manager component for condition detection. InfoS sup-

ports primitive data processing, consisting of selection and aggregation operations,

and shares data (events) among SMCs, which are maintained by the SMC manager

component.

SMC Manager The SMC manager houses SMCs which envelope condition definitions

and maintain the capturing condition’s context. The SMC manager fuses different

types of data that are received from the InfoS and examines them according to SMCs’

condition definitions which constrain condition initiations and terminations. Data,

147

Chapter4/Figs/EPS/archsps.eps

5.3 Component Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Publish/Subscribe

Applications

InfoS

SMC Manager

Sensors

Actuators Services
eventsSM

C
s

events events

events events

events

Query Expressions

Knowledge Points

Figure 5.3: SPS components

which corresponds to a condition initiation or termination, is then mapped to higher

level data type and sent to interested clients through the Pub/Sub layer. The expres-

siveness of SPS is indicated by the high-level conditions that can be captured at this

layer.

The above functional layers are implemented as components. The component model supports

the scalability and robustness properties of SPS.

5.3 Component Model

SPS functional layers are implemented as components. This helps to decentralize the operation

of the framework, and increase robustness. Components at each node are instances of classes that

communicate with each other using method invocations. All nodes in the network are assumed

to provide SPS functionality, nonetheless at different levels. A lightweight Pub/Sub component

centers the implementation of SPS and operates on all nodes (see Figure 5.3). This component,

representing minimal SPS functionality, supports zero or more client components that consist

of sensors, actuators, applications, services, InfoSs, and SMC managers. These clients adopt

different Pub/Sub roles depending on their function. For example, an application client who

wishes to consume sensor data becomes an event subscriber. Conversely, an application client

that wishes to command an actuator becomes an event publisher.

Clients that reside on different nodes are loosely coupled by the Pub/Sub. Consider Fig-

ure 5.4, where two sensors, denoted by S, and three application clients, denoted by A, are

148

Chapter4/Figs/EPS/compmsg.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.3 Component Model

S

A

S/M

P/S

P/S

P/S

P/S

P/S

P/S

A

A

S/M

S/MI/S

I/S

I/S

S

Figure 5.4: Network view of SPS components

supported by SPS in a network of six nodes. In this example, three nodes provide full SPS func-

tionality (they implement all functional layers of SPS, the Pub/Sub component is denoted by

P/S, the InfoS component is denoted by I/S, and the SMC manager component is denoted by

S/M) and three nodes provide minimal SPS functionality - perhaps due to resource shortages.

Sensor data may be transferred from sensors to nodes that house SMC manager components

for processing; and results (reflecting captured conditions) may then be transferred to the ap-

plication clients as shown by arrows in the diagram. The loose coupling of Pub/Sub clients

means that sensors, applications, InfoSs, and SMC managers can be transparently added, re-

placed, upgraded, moved, or removed (when redundant), without affecting the described data

processing. The SMC manager and InfoS components are tightly coupled, meaning that if an

SMC manager component is present at a node then an InfoS component is also present and

vice-versa. Figure 5.4 shows a view of the SPS components deployed in the network. The

component-based view (Figure 5.5) shows a Directed Acyclic Graph (DAG) that indicates the

flow of information through different types of SPS component. InfoS components (internal event

subscribers) are excluded from the information flow diagrams, as they are tightly coupled with

the SMCs managers that house internal event publishers. Every SMC transforms some named

data that is provided by its downstream publishers into some higher level (named) data for its

upstream subscribers. The flow of information,within SPS is always acyclic - enforced by partial

ordering of data names. The functional components of SPS (Pub/Sub, InfoS, and SMC manager

components) are further described below.

5.3.1 Pub/Sub Component

The Pub/Sub component is the only network-aware component of SPS that directly interacts

with its peers to disseminate events across the network. It also exports the only interface that

is available to the SPS clients, thus it must support the specification of high-level conditions,

149

Chapter4/Figs/EPS/distcomp.eps

5.3 Component Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

A

(external) Event Publishers

(external) Event Subscribers

(internal) Event Publishers

S

SMC

SPS

Figure 5.5: Component view of information flow

Returns API Call Parameters

void advertise (Publisher pub, EventTopic topic, EventRegion

region)

void publish (Publisher pub, Event event)

void subscribe (Subscriber sub, EventTopic topic, EventRegion

region, Callback callback)

void insertSMC (SMC smc)

Table 5.1: SPS Pub/Sub component’s API

via the SMCs, by the SPS clients as shown in Table 5.1. This table shows the interface that is

exported to all SPS clients.

The Pub/Sub component bears a number of additional responsibilities in SPS, mainly due to

its network-awareness. Firstly, it can more effectively identify resourceful nodes and distribute

data processing components as detailed later in Section 5.7.1. Secondly, it can protect SMCs

(by storing passive replicas at alternative nodes) against moderate levels of node failure in the

network (discussed in Section 5.8). Finally, it stores the most recent (latest timestamped) event,

that is published by every event publisher in the system, to support dynamic subscriptions and

information consistency features that are explained in Section 5.8.1.

In my prototype SPS implementation, I chose QPS [TB07a], a location-based Pub/Sub

protocol for WSNs, as the Pub/Sub component. Although this choice restricted my prototype

application to WSNs, alternative Pub/Sub implementations may be used to support other (wired

or hybrid) network infrastructures.

5.3.2 SMC Manager Component

SMC manager components implement the information processing engine of SPS. They interact

with their local InfoS components to obtain input data, and aggregate, join, and evaluate it

150

Chapter4/Figs/EPS/flow.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.3 Component Model

Returns API Call Parameters

void insertSMC (SMC smc)

void input data notification (SMCName topic, QueryExpression

qe, KnowledgePoints kps)

Table 5.2: SMC manager component’s API

to detect high-level condition occurrences or terminations. These computations are directed

by some internal components, called SMCs. The SMC manager manages SMCs in terms of

storage, replacement (when a newer component becomes available), evaluation (when newer

data becomes available, Section 5.6), and decomposition (when distributed detection is desired,

Section 5.7.2). The interface that is exported for the local Pub/Sub and InfoS components is

shown in Figure 5.2. The first method is used by the Pub/Sub component, and the second one

by the local InfoS.

State Maintenance Components. SMCs are the basic information processing elements

of SPS. They are instances that capture conditions or situations of interest through the notion

of state, and perform context-based data processing with two predicates (similar to that of State

Filters in Chapter 3); they capture (or sample) lasting conditions at two distinct points, the

moment of condition initiation, and the moment of condition termination. Event aggregation,

parameterization, fusion, and interrelationships are supported through expressive operators that

have predictable resource usage. They store state, thereby have memory to capture lasting and

complex conditions.

Captured conditions are enveloped as events that can be published using the Pub/Sub com-

ponents; thus SMCs are viewed as event publishers to their local Pub/Sub components. The

context-based data processing feature of SMCs guarantees these events to be unique with re-

spect to their observing conditions (under failure-free operations), and eliminates the possibility

of duplicates at the corresponding end-points. Details of the processing and condition detection

model are described later, in Section 5.6.

Definition 5.1 (State Maintenance Component (SMC)). An SMC m consists of a tuple,

m = (Nm, Qm, Gn
m, Gx

m, sm, em), (5.1)

where the combination of Nm, Qm, Gn
m, Gx

m is a user-defined expression which describes the con-

dition of interest, the sm is a status bit, and the em is the last published SMC event. The

user-defined expression consists of an SMC name Nm, SMC QEs (definition 5.4) Qm, and two

conditional mapping statements Gn
m and Gx

m. A conditional mapping statement, G, consists of

a transition predicate P and a set of attribute computation expressions A, G = (P, A).

The SMC name is composed of a topic name, nm ∈ DP , and an internal signature value

im. The topic name, nm, describes the type of condition that is captured by the SMC, and the

151

5.3 Component Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Returns API Call Parameters

void notify (Event event)

void register input data selection (SMCName topic, QueryExpression qe)

Table 5.3: InfoS component’s API

loc
ati

on

time

to
pi

c

26 27 28 29 30 31 32

temperature

sound

light

explosion

24.3 24.224.1 24.3
(0,1)

(0,2)

(0,3)

(0,4)

Figure 5.6: InfoS cube representation (excludes the status attribute)

signature value, im, distinguishes between two SMCs with the same topic name. These signature

values are either generated by the Pub/Sub component (when it replicates and distributes the

SMCs, Section 5.7.1) or assigned by the SMC manager component (when it spawns temporary

SMCs to monitor concurrent conditions, Section 5.6.6). The Qm highlights the input data that

is relevant for condition evaluation, and indicates the condition interrelationships properties

(discussed later in Sections 5.4.1 and 5.5.3). The conditional mapping statements examine the

input data according to the SMC’s context, examining for condition initiation if the condition is

not yet active, and condition termination if it is already active. A condition detection results in

the generation of an SMC event that is constructed using the attribute computation expressions,

A.

5.3.3 InfoS Component

The InfoS component is a data repository that serves the local SMC manager component. The

SMC manager presents the InfoS with QEs that indicate SMCs’ input data, and the InfoS

component in turn subscribes to the Pub/Sub component to receive the input data from all

publishers. The InfoS interface is shown in Table 5.3.

The InfoS component stores data, because high-level conditions often depend on more than

just the latest received data. Historic data may be needed to aggregate, fuse, or examine

data for condition detection. It also stabilizes (buffers) data to ensure a consistent view of

the data across the distributed InfoS components. Unless the Pub/Sub component offers total

152

Chapter4/Figs/EPS/infoscube.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.3 Component Model

ordered event delivery, it is imperative to establish consistency for distributed processing (InfoS

consistency is discussed later in Section 5.8.1). Finally, it updates data because newly received

information could affect the validity or correctness of the past data.

The implementation resembles an MDX [MDX] cube, which stores data indexed according

to multiple dimensions. Data in the InfoS is stored as tuples of attributed values, referred to as

Knowledge Points (KPs) (described in the next section). These KPs contain some generic at-

tributes (used for indexing), some unconditional attributes that reflect topic-related information,

and a validity bit that indicates their temporal continuity. There are four generic attributes,

topic, time, location, and status, that are used for indexing. They describe the type, temporal,

spatial, and continuity properties of the stored data at each unit of the cube. Each unit can

only store a single KP, i.e. the combination of the four generic attribute values in the InfoS can

at most correspond to a single KP. Figure 5.6 shows an InfoS cube with some data, indexed

by four topic values, seven time values, and four location values. Topic values are data names,

often represented in textual format, that are introduced by users or applications into the system.

Time and location values are point-based values with a vector-based representation that may

be n dimensional (n ∈ N). Status values, which are not shown in Figure 5.6, consist of three

values that are defined internally.

InfoS supports two modes of referencing data in its cube structure: absolute referencing and

relative referencing. Correspondingly, two domains of values are defined for each dimension of

the cube: an absolute domain (D) and a relative domain (Dr). Relative values are distinguished

from absolute values by an r superscript (e.g. 2r is a relative value). The relative domains are

only meaningful with respect to the dimensions of time and location, and are defined with respect

to two pieces of information: an InfoS time tI and a host location lH . The InfoS maintains the

InfoS time tI and the host location lH , which are discussed later in Section 5.8.1.2; it is sufficient

to note that only data with timestamps (time values) less than or equal to the InfoS time is

considered stable and processed in the SPS, and that the ‘host location’ indicates the location

value of the node that houses the corresponding SMC manager and InfoS component at tI . Each

dimension of the InfoS cube is further described below.

Topic The absolute topic domain, DP , reflects the set of topic values that are known in the sys-

tem (e.g. DP ⊇ {temperature, sound , light , explosion} for Figure 5.6). Values are partially

ordered according to their inter-relationship on the information flow diagram. For exam-

ple, if the explosion data is obtained from fusing the temperature, light, and sound data,

then (explosion > temperature)∧ (explosion > sound)∧ (explosion > light). This ordering

may be maintained centrally or perhaps embedded in the values (e.g. topic values can

be appended with Bloom filter expressions [Mit01] that represent their sub-topic values).

The relative domain Dr
P is identical to the absolute domain, Dr

P = {pr|∀p ∈ DP , pr = p}.

Time The absolute time domain, DT , reflects a set of time values that are represented in a

one dimensional vector space R1. For convenience, I illustrate these as real numbers R

(e.g. DT ⊇ {26, 27, 28, 29, 30, 31, 32}). The set DP is totally ordered, because R itself

153

5.4 Condition SpecificationCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

is totally ordered. The relative domain Dr
T also defines a set of totally ordered values,

each of which is the (vector) difference from a given value (the InfoS time tI ∈ DT),

Dr
T = {tr|∀t ∈ DT , tr = t − tI}. Since the InfoS time tI ∈ DT continuously changes

(Section 5.8.1.2), the relative time values may not be permanently mapped to absolute

values; instead, they are mapped on demand for referencing absolute data in the InfoS

cube.

Location The absolute location domain, DL, reflects a set of location values that may be

represented in a one, two, or three dimensional vector space Rn (where n ∈ {1, 2, 3})1.
Using the lexicographical order structure, the set DL is totally ordered given that R itself

is totally ordered. The relative domain Dr
L also defines a set of totally ordered values,

each of which is the (vector) difference from a given value (the host location lH ∈ DL),

Dr
L = {lr|∀l ∈ DL, lr = l − lH}. Relative location values may be permanently mapped

to absolute location values if and only if the host location lH is constant (i.e. the SMC

manager host is stationary).

Status The absolute status domain, DS , is an unordered set of values, DS = {atomic, ingress,

egress}. The relative domain Dr
S is identical to the absolute domain, Dr

S = {sr|∀s ∈
DS , sr = s}.

While the absolute domain D allows data to be globally referenced, the time and location

relative domains, Dr
T and Dr

S , allow contextual referencing where data is identified according

to the temporal and spatial context of the node that hosts the InfoS. For simplicity, I use one

dimensional location values in my examples, though two or three dimensional values may be used

similarly. With the highlighted details, an InfoS may be considered as a relation, over which

data may be aggregated and queried using relational operators. SPS defines custom aggregation

and selection operators, that preserve the relational schema. These are defined as part of the

Query Expressions, described in Section 5.5.3.

5.4 Condition Specification

Application interests rarely match the granularity and primitiveness of data that is realised in

a sensor system. Filtering, aggregation, and fusion provide basic data processing tools that

can transform low level data into higher level information or customized data in the system.

This high-level data is referred to as a condition in SPS. Conditions often relate to real-world

situations or contexts (e.g. a condition of “temperature over 60 ◦C” may relate to a “fire”

situation). The expressiveness of SPS aids the accurate and complete detection of situations,

whereby false-positives (erroneous detections) and false-negatives (missed detections) can be

eliminated.

1The two dimensional vector space R2 (representing a 2-D geographical space) is perhaps the most useful and

researched format among the existing localization schemes.

154

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE5.4 Condition Specification

A

SPS

TrafficCongestion

CarSpeedInductiveLoop

Figure 5.7: Traffic congestion information flow

Conditions in SPS are defined using SMCs. These components contain condition definitions,

and monitor them using the notion of state (as described in Section 5.3.2). In order to capture a

condition, the condition must be explicitly expressed using one or more SMCs. If the condition

relates to a situation, then a mature understanding of the situation is required to use the

expressiveness of SPS and eliminate false-positives and false-negatives in the detection. In SPS,

the terms “condition” and “situation” are interchangeable and only reflect the user’s perception

of his/her interest. In this section I demonstrate the specification of a condition, using an SMC.

I first describe a situation of interest, outline my understanding about the situation, and then

illustrate its specification in an SMC.

Traffic Congestion. Re-visiting my motivating application scenarios (Section 5.1) and the

“smart transportation system” in particular, I decided to capture traffic congestion situations

within SPS. For the purpose of this study I confined myself to the inductive loop sensor data

and speed measurements taken by speed cameras, and described the traffic congestion situation

as the mutual occurrence of “high road occupancy” and “slow vehicle speeds” on the same road.

The high road occupancy situation was described by this condition: the (30s) average reading

of the sensor data must be above the 2.5occ1 threshold value. Similarly, the slow vehicle speeds

situation was described by this condition: the (1min) average speed measurements must be below

7MpH . The traffic congestion was said to last until the (1min average) speed of the moving

vehicles, on the congested road, exceeded a given threshold value (15MpH). The corresponding

information flow and SMC structure that capture this condition are shown in Figure 5.7 and

Table 5.4, respectively. In the next few sections I explain how this SMC structure is derived

from the above interest.

1A sensor occupancy unit, which indicates that an inductive loop sensor is covered by a large metal object

(e.g. a vehicle) for a quarter-second interval.

155

Chapter4/Figs/EPS/tcflow.eps

5.4 Condition SpecificationCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

n Index Value Annotations

1 N “TrafficCongestion” SMC (topic) name

2

Q

A := ((closest , InductiveLoop,null,null), select InductiveLoop event topic

3 (aggregate,null, avg , (−30r, 0r)), aggregate values over last 30s

4 (multiple : separate,null,null,DL), distinct conditions (per location)

5 (closest , atomic,null,null)); select atomic events

6 B := ((closest ,CarSpeed ,null,null), select CarSpeed event topic

7 (aggregate,null, avg , (−60r, 0r)), aggregate values over last 60s

8 (multiple : separate,null,null,DL), distinct conditions (per location)

9 (closest , atomic,null,null)) select atomic events

10 Pn (A.value > 2.5) && (B.value < 7) &&

(A.location == B.location)

condition entrance predicate

11 An location := A.location; level := B.value; ingress event attribute computations

12 P x (B.value > 15)&& (B.location ==

last .location)

condition exit predicate

13 Ax location := last .location; level := B.value; egress event attribute computations

Table 5.4: TrafficCongestion SMC structure (definition 5.1)

5.4.1 SMC QEs (Q)

Query Expressions (QEs) (whose structure are described later in Section 5.5.3) provide a system-

atic way of describing SMC’s input data. They define multi-dimensional queries, which select

and/or aggregate data from each dimension of the InfoS cube independently. In Table 5.4, two

QEs are used to extract two types of information from the InfoS cube. QE A (lines 2–5) extracts

data about road occupancy, and QE B (lines 6–9) extracts data about vehicle speed.

Three custom operators (closest, aggregate, and multiple) are designed, each of which can be

used as part of a query to extract data with respect to one dimension of the InfoS cube. Assuming

InfoS contains data that corresponds to two topic values (InductiveLoop and CarSpeed), several

location values (reflecting readings about different roads), several time values (reflecting readings

at different times), and value attributes that reflect the measured values, then the custom

operators can be described (in the context of my example) as follows. Figure 5.10 shows an

example of such InfoS at the top-left corner.

closest This operator (also called the nearest-index operator) selects the data that has an equal

or closest index value to a given index (on the corresponding InfoS cube dimension). In the

case of topic or status dimensions, this operator can only select the exactly indexed data

from the InfoS. Whereas for the time and location dimensions, nearest indexed data can

also be selected. For example, knowledge about road occupancy can be retrieved by using

this operator with an InductiveLoop parameter for the topic dimension, as in Table 5.4

line 2. For temporal and spatial data, closest can be defined as absolute or relative to the

current time and location. For example, the most recent data may be selected by using

156

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE5.4 Condition Specification

this operator with the 0r parameter for the time dimension, and the geographically nearest

data to the local node may be found by using the 0r parameter for the location dimension.

Data that holds the closest absolute time and location values to the tI and lH values are

selected from the InfoS.

aggregate This operator allows a group of tuples to be aggregated into a single tuple across

an InfoS dimension. For example, the inductive loop sensor data may be aggregated over

time (as required by my condition definition) to give average road occupancy (Table 5.4

lines 3). The same operator is used to aggregate data on vehicle speed in line 7. This

aggregation is performed independently from other dimensions of the InfoS cube, therefore

data about each topic, location (road), and status is aggregated separately over time (i.e.

measured values and time values are aggregated into one measured value and one time

value for every unique combination of topic, location, and status). Figure 5.10 illustrates

this in two steps: group by Topic, Location, Status and aggregate over Time.

multiple This operator, when applied to a generic attribute, selects all tuples whose value for

that attribute is contained in the group argument passed to the operator. The group ar-

gument, can specify a set or a range of values (e.g. {temperature, light , sound} or (10, 25)).

This operator is useful when data from multiple index values need to be examined sep-

arately. For example, lines 4 and 8 (in Table 5.4) use this operator with the location

dimension to select data corresponding to different locations and examine them separately.

Because multiple instances of data (corresponding to different index values) are selected

and examined separately, multiple results that satisfy the user’s interest may be found.

The semantics of these results must be defined by the user. For example, they could

relate to a unique condition, in which case one condition is detected, reported, and mon-

itored in SPS. Alternatively, they could relate to multiple conditions that have occurred

concurrently, in this case, each condition must be detected, reported and monitored sepa-

rately. SPS supports condition interrelationships by allowing the user to specify one of four

sub-operators Omultiple = {one, all , any , separate} that indicate how multiple instances of

data (after examination) need to be constrained or handled to detect conditions reliably.

Note that although these sub-operators are specified as part of the QEs, they can only be

evaluated after the SMC transition predicate (see next section) has been evaluated.

one Asserts that the end result should correspond to one and only one index value, from

the group of index values that were provided as a parameter to the multiple operator.

In the context of my example, the use of this sub-operator implies that the traffic

congestion condition is only detected when congestion occurs at just one location

(road) at a time.

all Asserts that all index values (given as a parameter to the multiple operator) should

appear in the satisfying data set. The use of this sub-operator implies that traffic

congestion is only detected when all roads are congested.

157

5.4 Condition SpecificationCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

any Asserts that any one index value, from the set of given index values, is sufficient to

appear in the end result. This sub-operator is always satisfied when an end result

is present. It it useful for when multiple end results relate to the same condition

(i.e. re-iterate one condition). In my example, the use of this sub-operator implies

that the traffic congestion condition is a global phenomenon, which is detected when

congestion occurs at one or more location values (roads).

separate Asserts that every unique index value, from the set of given indices, corresponds

to a separate and unique condition. When used in my example, it implies that

concurrent traffic congestion conditions can occur, each of which corresponds to a

unique location value (road) that is observed in the satisfying data set. This sub-

operator best describes my condition of interest, and has been used in Table 5.4 (lines

4 and 8). Note that once concurrent traffic congestion conditions have been detected,

they are reported and monitored separately until termination.

5.4.2 SMC Transition Predicates (P n/x)

SMC predicates are boolean expressions that guard the initiation and termination of lasting

conditions. For an SMC m, the entrance predicate, Pn
m, defines a constraint that signals the

occurrence (or presence) of a condition, and the exit predicate, P x
m, defines an alternative con-

straint that indicates its termination (or absence). The condition is said to hold for a continuous

duration that starts from the time of entrance predicate satisfaction to the time that the exit

predicate is satisfied. Momentary conditions can be captured if P x
m is explicitly set to true.

Data tuples that are received from the InfoS as a result of resolving the SMC QEs (detailed

in the previous section) are examined individually or cross-examined, within the predicates, to

constrain the condition initiation or termination. In these expressions, attribute names are used

as operands, and mathematical, comparative, and logical operators (see Section 3.3.1.1) are used

to examine relationships of interest between attribute values. Absolute values and zero relative

values (i.e. 0r) can also be used in these expressions. A special keyword (“last”) is used to

access the last SMC event, em, that is stored within the SMC. last usually refers to the SMC

event that is published by the opposite transition predicate, i.e. refers to the condition initiation

event when condition termination is being examined, and refers to the condition termination

event when condition initiation is being examined.

The SMC predicates, Pn and P x, are specified in lines 10 and 12 of the Table 5.4. The

entrance predicate (line 10) constrains the input knowledge as follows.

• The level of road occupancy should be above 2.5occ.

• The speed of vehicles should be under 7MpH .

• Knowledge about road occupancy and vehicle speed should relate to the same location

(road).

Similarly, the exit predicate (line 12) constrains the knowledge as follows.

158

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.5 Data Model

i ni vi Annotations

1 name n ∈ DP , i event topic name and signature value

2 time t ∈ DT point-based event (occurrence) timestamp

3 location l ∈ DL point-based location of event’s occurrence

4 status p ∈ DS temporal significance of event’s information

Table 5.5: Fixed Event Attributes

• The speed of vehicles should exceed 15MpH .

• Knowledge about vehicle speeds should relate to the location where congestion was previ-

ously detected (at the entrance predicate).

5.4.3 Condition Attributes (An/x)

Following a condition detection, an SMC event, em, is generated that reflects the captured con-

dition. The topic-related attributes of em may borrow information from knowledge instances

that have satisfied the predicate to deliver additional information about the condition initiation

or termination. These attributes may be assigned using the SMC’s attribute computation ex-

pressions, An and Ax. For example, the TrafficCongestion SMC may include the average speed

of the vehicles (on the congested road) as an indication of the level of congestion, see Table 5.4

lines 11 and 13. The user has some flexibility in assigning time and location attribute values,

but these must fall within particular ranges that are defined later in Section 5.6.7.

5.5 Data Model

The data model describes the data structures that are realised in SPS. Since SPS’ functionality

is implemented by components, this model is best described by studying the inter-component

messages (see Figure 5.3). These messages are detailed in the following sections, followed by

some data structures that are realised solely within the SMC manager component. Inter-EB

messaging, event client advertisements and subscriptions are excluded from these discussions as

they solely relate to the Pub/Sub component implementation (see Chapter 4 for a candidate

implementation).

5.5.1 Events

The primary data that is communicated between the Pub/Sub component and the Pub/Sub

event clients (SMC managers, InfoS components, and SPS clients) is events. Events are asyn-

chronous messages that describe an information or situation that is realised in the system. It

may be as primitive as a temperature value, or as comprehensive as signaling a nearby traffic

congestion condition.

159

5.5 Data Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Definition 5.2 (Event Notification). An event notification e belongs to an event space E, and

consists of a tuple of attributes,

e ∈ E. e = (a1, · · · , an). (5.2)

Each attribute, ai, is a name-value pair, (ni, vi), with name ni and value vi. Attribute names

are locally unique, i.e. i 6= j ⇒ ni 6= nj.

The first four attribute names of an event are fixed and predefined in SPS, and the latter

(n−4) attributes relate to the first attribute value v1. These attributes are explained in Table 5.5.

The first attribute labels the information that is contained in the event notification. It also

provides a context in which the last n− 4 attributes (referred to as the topic-related attributes)

are understood. These names correspond to the SMC names, discussed earlier. The event’s time

of occurrence is set by the event’s publisher, and reflects the time of observation (i.e. the time

at which the conveyed information is probably most accurate). Similarly, a point-based location

describes the location where the event’s information was measured. This location depends on

the source of the event’s information, and may be different from the location of the event’s

publisher.

When events transport high-level information, captured by SMCs, the status attribute indi-

cates whether the event signals the initiation of a condition (ingress) or its termination (egress).

This attribute describes the temporal continuity of the captured condition with respect to the

event’s timestamp. If set to ingress, the event signals the start of a lasting condition that begins

from v2 (the event’s timestamp). If set to egress, the event signals the termination of a condition

which lasted until v2. Otherwise, the attribute value is set to atomic to indicate that the event’s

information is momentarily valid, at v2. The remaining (topic-related) attributes are defined by

the event publisher, and hold values that are assumed to be either numerical or textual.

5.5.2 Knowledge Points

The InfoS component feeds the SMC manager with the extracted input data for SMC evalua-

tions. This data corresponds to some QEs, and consists of one or more KPs. KPs have the same

relational schema as data stored in the InfoS, and extend the semantics of event notifications

by a validity parameter, which indicates the validity of the data at the InfoS time, t = tI . This

validity is determined by examining the status attribute value of an event, as described earlier

in Section 5.5.1.

Definition 5.3 (Knowledge Point (KP)). A KP k is a data structure that extends the event

notification data structure with a validity attribute,

k = (validity , e) = ((valid , v), a1, a2, · · · , an). e = (a1, · · · , an) ∈ E. (5.3)

The validity attribute value, v, is a boolean parameter, v ∈ {true, false}, that indicates the

temporal validity of e’s information at the InfoS time, tI ∈ DT .

160

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.5 Data Model

The validity attribute is initially set to true, but later changed to false as more recent

knowledge becomes available at the InfoS. Once changed to false, it can no longer be changed

back to true.

5.5.3 Query Expressions

QEs are one of the structures that are communicated between the SMC manager components

and the InfoS components. They contain expressions and operators that extract data from the

InfoS for SMC condition detection. Essentially they describe a query to the InfoS that yields the

input data for SMC evaluations. Note that the relational schema of the InfoS data is preserved.

Definition 5.4 (Query Expression (QE)). A QE q is a tuple of selection parameters that hold

a one-to-one relationship with the dimensions of the InfoS cube,

q = (s1, s2, s3, s4), (5.4)

where s1, s2, s3, s4 relate to the dimensions of topic, time, location, and status, respectively.

Each selection parameter si describes a tuple that has an operation oi and a set of arguments,

comprising a value vi, an aggregation functions list fi, and a group of values gi,

si = (oi ∈ O, vi ∈ D ∪Dr, fi, gi ⊆ D ∪Dr), (5.5)

where O = {closest , aggregate,multiple} is the set of possible operations, D and Dr are the

domains of absolute and relative attribute values, and fi is a set of aggregation functions for

each data attribute as follows.

fi = {(f, a)|f ∈ F, a ∈ e ∈ E}. (5.6)

The set of supported aggregation functions is F = {max ,min, sum, avg}.

If the attribute values (in D and Dr) are totally ordered, then g can be described by two

values rl, rh ∈ D ∪Dr which denote the lower and higher bound values of a range,

g = {v ∈ D ∪Dr|rl ≤ v ≤ rh} (5.7)

This is most useful when a one dimensional vector space R1 is used. For ease of presentation and

discussions, I use the above syntax frequently, and specify the aggregation functions list f as a

single common aggregation function to all data attributes, i.e. f = x ∈ F implies f = {(x, a)}
for all a ∈ e ∈ E.

When a QE q is applied to the InfoS, its selection parameters are transformed into queries

and evaluated against the stored data to output the SMC’s input data. Let A = {n1, · · · , nk}
represent the set of all event attribute names, and AF = {n1, · · · , n4} and AT = {n5, · · · , nk}
represent the set of fixed and topic-related event attribute names, i.e. A = AF ∪ AT and AF ∩
AT = ∅. If one considers the relational operators in Table 5.6, then the QE selection parameters

can be translated into relational queries as shown in Table 5.7. The processed attributes set,

161

5.5 Data Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Relational operator Arity Symbol Annotations

select unary σpR p is a predicate

project unary πsR s is a set of attributes

rename unary ρxR x is a relation name

aggregation unary gγeR g is a set of attributes (for group-

ing), e is a list of aggregation ex-

pressions

cartesian product binary R1 ×R2

union binary R1 ∪R2

set-difference binary R1 −R2

set-intersection binary R1 ∩R2

Table 5.6: Relational algebra operators

Attr. Selection param. Input Output relation

a ∈ AF (closest , v, f, g) X
⋃

({x|x∈AF−AP ,x 6=a}γmin(|a−v|),{y|y∈AT∪AP },validX)

a ∈ AF (aggregate, v, f, g) X
⋃

({x|x∈AF−AP ,x 6=a}γf({y|y∈AT∪AP }),a,valid [σa∈gX])

a ∈ AF (multiple, v, f, g) X σa∈gX

Table 5.7: QE selection operation translations

AP ⊆ AF , is detailed later in Section 5.6.4, but for now can be considered to be empty, AP =

∅. Different operators result in different data storage (at the InfoS) and processing (at the

SMC manager) complexities that are outlined in Table 5.8. QE selection operators are more

comprehensively described, using set notation, in Appendix B.1.

5.5.4 SMC Manager Data Structures

While examining SMCs for condition detections, the SMC manager introduces two data struc-

tures that are solely seen within the SMC manager component. These data structures are defined

as follows.

Definition 5.5 (Satisfying Knowledge (SK)). An SK s is a set of attributed tuples, whose

attribute values satisfy an SMC predicate p,

s = {(a1, · · · , ak)|p(v1, · · · , vk) = true}, (5.8)

where vi is the value associated with the attribute ai.

Definition 5.6 (Detected Knowledge (DK)). A DK c has the same data structure as an SK s,

c = {(a1, · · · , ak)|p(v1, · · · , vk) = true}, (5.9)

162

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

Op. (oi) Expressiveness Storage Complexity Processing Comp.

closest nearest-index constraint O(1) O(1)

aggregate data aggregation
O(1), fi ∈ {max ,min, sum} O(1)

O(n), fi ∈ {avg} O(1)

multiple condition interrelationships O(n) O(n)

Table 5.8: QE selection operators

but with the difference that the set members (attributed tuples in c) correspond to a single unique

condition. A DK c always has a corresponding SK sc, of which it is a subset,

c ⊆ sc. (5.10)

5.6 Detection Model

The detection model governs the capture of user-specified conditions in SPS. The outcome is a

set of SMC events that signal condition detections; an ingress SMC event signals the initiation

of a condition, an egress SMC event signals its termination, and an atomic SMC event signals

the detection of a momentarily valid condition. These classifications are based on the status

attribute values of the published SMC events.

SPS supports an assertive detection model, where conditions are detected using certain

knowledge. This means inactive conditions need to be explicitly declared using positive knowl-

edge, i.e. absence of data does not contribute to any knowledge such as ‘negation’ or ‘non-

existence’. This assertiveness prevents false-positive detections that may occur in unreliable or

disconnected networks.

In order to give an overview of SPS’s operations, Figure 5.8 shows a process timeline diagram

for typical component messaging in SPS. The diagram covers different phases of SPS operation,

from the clients’ start-up to the high-level event delivery to the application clients. I briefly

describe the setup phase, and then focus on the condition detection phase that is frequently

repeated in the system. Before discussing the formal semantics, the following section describes

the condition detection process with reference to an example introduced earlier in Section 5.4.

5.6.1 Example: traffic congestion detection

The condition detection process can be describes in five steps: knowledge update, knowledge

selection, knowledge examination, knowledge encapsulation, and knowledge transformation. I

have illustrated these in Figure 5.9 using the traffic congestion condition example introduced

earlier. The figure depicts data processing at a single node, which houses the TrafficCongestion

SMC (Table 5.4) and detects traffic congestion conditions.

163

5.6 Detection Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

SPS clients Pub/Sub InfoS SMC Manager
Se

tu
p

P
ha

se

Applications
insert SMC

advertisements

Sensors

Sensors

insert SMC

SM
C

ac
ti

va
ti

on

SMC QEs

subscriptions
Q

E
pa

rs
in

gadvertisement

subscriptions

Applications

SM
C

di
st

ri
bu

ti
on

ev
en

t
di

ss
em

i-
na

ti
onevent publications

event notifications

kn
ow

le
dg

e
up

da
te

kn
ow

le
dg

e
ex

am
in

at
io

n

KPs

SK

KPs

kn
ow

le
dg

e
se

le
ct

io
n

C
on

di
ti

on
 D

et
ec

ti
on

 P
ha

se

kn
ow

le
dg

e
en

ca
ps

ul
at

io
n

SK

DKs

kn
ow

le
dg

e
tr

an
sf

or
m

at
io

n

DKs

SMC events

event publications

ev
en

t
di

ss
em

in
at

io
n

Applications event notifications

kn
ow

le
dg

e
di

sc
ar

di
ng

Figure 5.8: SPS process timelines

164

Chapter4/Figs/EPS/processes.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

IL 10 8 atomic 1false

CS 17 9 atomic 3true

CS 20 7 atomic 5.5false

CS 31 11 atomic 16false

va
li

d

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

IL 26 7 atomic 2.9true

IL 27 11 atomic 2.8true

IL 31 8 atomic 0.5true

IL 27 9 atomic 3.1false

va
li

d

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

atomic atomicfalse IL 27 9 true CS 17 9 33.1

A.valid
A.topic

A.tim
e
A.location

A.sta
tus

A.value
B.valid

B.topic
B.tim

e
B.location

B.sta
tus

B.value

IL 26 7 atomic 2.9true

atomic

CS 20 7 atomic 5.5false

atomicfalse IL 27 9 true CS 17 9 33.1

A
.v

al
id

A
.to

pi
c

A
.ti

m
e

A
.lo

ca
ti

on

A
.s

ta
tu

s

A
.v

al
ue

B
.v

al
id

B
.to

pi
c

B
.ti

m
e

B
.lo

ca
ti

on

B
.s

ta
tu

s

B
.v

al
ue

Satisfying Knowledge (SK)

Knowledge Points (KPs) for B

Detected Knowledge (DK)

Knowledge Points (KPs) for A

IL 26 7 atomic 2.9true CS 20 7 atomic 5.5false

A.valid
A.topic

A.tim
e
A.location

A.sta
tus

A.value
B.valid

B.topic
B.tim

e
B.location

B.sta
tus

B.value

Detected Knowledge (DK)

IL 17 7 atomic 2.2false

IL 12 11 atomic 2.1false

IL 25 8 atomic 0false

IL 27 9 atomic 3.1false

CS 42 9 atomic 2true

CS 20 7 atomic 5.5false

CS 40 11 atomic 13false

CS 7 9 atomic 4false

CS 22 11 atomic 19false

IL 42 7 atomic 3.4true

IL 42 11 atomic 3.5true

IL 42 8 atomic 1true

CS 2 9 atomic 3false

IL 35 8 atomic 0false

IL 22 8 atomic 1false

IL 11 9 atomic 2.5false

IL 19 7 atomic 3.1false
va

li
d

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

In
fo

rm
at

io
n

Sp
ac

e
(I

nf
oS

)
 -

 I
nf

oS
 ti

m
e:

 4
2,

 H
os

t l
oc

at
io

n:
 1

6

TC , 7 42 7 ingress 5.5

topic
tim

e
location

sta
tus

level

SMC event

9 3TC , 9 42 ingress

topic
tim

e
location

sta
tus

level

SMC event

Knowledge Selection (see Figure 5.10)

Knowledge
Examination

Knowledge Encapsulation

Knowledge
Transformation

Knowledge Update

Event notifications

IL, 0 42 7 atomic 3.4

IL, 0 42 8 atomic 1

IL, 0 42 11 atomic 3.5

CS, 0 42 9 atomic 2

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

TC

CS

IL InductiveLoop

CarSpeed

TrafficCongestion

Figure 5.9: Traffic congestion detection

165

Chapter4/Figs/EPS/condition.eps

5.6 Detection Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Knowledge Update As event notifications are received from the local Pub/Sub component,

the InfoS is updated with new knowledge contained in these events.

Knowledge Selection New knowledge at the InfoS component triggers the selection of KPs

which are examined for new traffic congestion conditions. The result is two tables, one of

which corresponds to data reflecting road occupancy, and the other corresponds to vehicle

speeds. These relate to the A and B QEs from the TrafficCongestion SMC (Table 5.4),

respectively, and are delivered to the SMC manager for examination.

Knowledge Examination In this step, the KPs for A and B are combined into a set of larger

tuples (called KP-combinations) and examined according to the SMC predicate. Tuples,

labeled as SK, are KP-combinations, which have satisfied the SMC predicate.

Knowledge Encapsulation This step further constrains the SK tuples, and groups them into

subsets (DKs) that represent unique conditions. In Figure 5.9, the SK is partitioned

according to location values to reflect distinct traffic congestion conditions at different

locations (i.e. one at location value 7, and the other at location value 9).

Knowledge Transformation Finally, DKs are transformed into SMC events according to

the SMC attribute computation expressions, and published for delivery to the event sub-

scribers.

5.6.2 Setup Phase

The setup phase begins by external components initiating interaction with the Pub/Sub com-

ponents. Pub/Sub components form event dissemination paths that direct data from producers

to consumers. Applications, however, need to express their conditions of interest as SMCs be-

fore subscribing to them. These SMCs are replicated (if necessary) and distributed within the

network by Pub/Sub components as described later in Section 5.7.1. When given to SMC man-

ager components, these SMCs are activated. The SMC manager component replaces existing

SMCs with new SMCs if their names match. SMC activation entails an advertisement to the

Pub/Sub component, dispatch of the SMC QEs to the InfoS component, and the initiation of

the condition detection process that is described in the following sections. See Figure 5.8 for a

summary of the described inter-component messaging.

In order to detect high-level conditions, sufficient knowledge about the environment must

exist in the system. This is either introduced by external event publishers (e.g. sensor clients) or

internal event publishers (SMCs). SMC QEs describe what knowledge is required for condition

evaluation, and the InfoS components describe these in the form of event subscriptions to the

Pub/Sub component to receive data from all publishers.

Parsing QEs to Event Subscriptions. The InfoS transforms every QE, q = (s1, s2, s3, s4)

(definition 5.4), into a set of location-based event subscriptions {s}. The number of subscriptions,

|{s}|, exceeds one if the QE topic selection parameter, s1, has a multiple selection operator, i.e.

166

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

if o1 = multiple1. The set of event subscriptions {s}, derived from a QE q, may be defined as

follows for the selected (QPS) Pub/Sub protocol.

{s} = {(ts, rs, ǫs)| ts ∈ ({v1} ∪ g1). rs = {v3} ∪ g3}. (5.11)

If the Pub/Sub component does not support relative-valued subscriptions, then the QE

selection parameter values need to be mapped onto absolute values if they belong to the relative

domain. Additionally, if a QE selection operator (for time or location) is closest, then the

corresponding selection parameter value, v, is extended into a group of values {x|x ∈ DT,L :

|x− v| ≤ ǫ} to cover the nearby knowledge2. In practice, a large ǫ is used initially and reduced

following observations. The ǫ value has an upper bound value that is defined by the system

designer.

5.6.3 Knowledge Update

The InfoS receives events (from the Pub/Sub component) and transforms them into KPs, i.e.

extends them with validity attributes. These attributes are initially set to true, but later updated

as more recent knowledge becomes available. The following two rules hold about the KP validity

attributes.

• A KP, k, whose status is atomic, holds a true validity only when its time value matches

the InfoS time (see Figure 5.9), (vk
2 = tI) ∧ (vk

4 = atomic)⇒ vk = true.

• The validity of a KP, k, whose status is ingress or egress, is true only if no later times-

tamped KP exists with the same name (topic name and signature value3) and different

status value in the InfoS, i.e. ∄j ∈ InfoS : (vj
2 > vk

2) ∧ (vj
1 = vk

1) ∧ (vj
4 6= vk

4)⇒ vk = true.

Every KP occupies a single unit, in the InfoS cube, whose coordinates are identified by the KP

fixed attribute values. Conflicts may arise, when two or more KPs hold identical fixed attribute

values. This occurs only when the granularity of event publications is finer than the granularity

of time and location domains, DT and DL; thus event publishers are forced to publish events

with identical fixed attribute values. An immediate remedy to this conflict is to increase the

granularity of domain values. Otherwise a conflict-resolution policy must be applied to maintain

the singleness of KPs at each InfoS cube unit. SPS uses an aggregation policy that combines

conflicting KPs into single KPs.

If we assume K = {k1, k2, · · · , kn} represents a set of conflicting KPs (i.e. ∀i ∈ {1, 2, 3, 4}.
k1.vi = k2.vi = · · · = kn.vi, where ka.vb is the bth attribute value of ka ∈ K), then the kagg

KP, with attribute values shown below, is the aggregate representation of K. I assume every

k ∈ K is of the form ((valid , v), a1, · · · , am), where each ai is a name-value pair (ni, vi) as in

definition 5.2.

1I assume that the Pub/Sub component supports one event topic name per event subscription.
2The parameter value v is extended into a closed line if D ⊆ R1, into a closed disc if D ⊆ R3, or into a sphere

if D ⊆ R3. In all cases v is at the center, and ǫ indicates the distance to the closed boundary.
3Signature values are used to pair SMC events, when concurrent conditions are detected.

167

5.6 Detection Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

kagg = ((valid , v), a1, · · · , am) (5.12)

kagg .v = k1.v ∀i ∈ {1, · · · , 4} kagg .vi = k1.vi ∀j ∈ {5, · · · , m} kagg .vj = f(k1.vj , · · · , kn.vj)

(5.13)

The conflict-resolving aggregation function, f , is a user-defined order-insensitive function

that is globally defined. The set of conflicting KPs, K, may then be discarded in favor of the

aggregated KP kagg .

5.6.4 Knowledge Selection

This process extracts knowledge, according to SMC QEs, and forwards it to the SMC manager.

The extracted data is structured as tables of KPs, where each table relates to a single QE (see

Figure 5.9). These KPs are not limited to the newly received event notifications, but may include

historic data that is re-used in SMC evaluations. The InfoS maintains the set of historic data,

since it may be needed for present and future SMC evaluations.

Selection is triggered when a change or update has occurred in the InfoS. This change may

affect the resulting KPs that are extracted for a QE, in which case knowledge selection and

examination must be repeated to re-evaluate the condition of interest. Of course, every change

does not affect every QE and its associated table of KPs; hence, it is computationally efficient

to identify relevant QEs and only re-evaluate those against the InfoS. The following is a list of

changes and the corresponding QEs that are affected by the change.

1. Event Reception The receipt of an event affects a set of QEs, {q}, whose selection param-

eter values (excluding the status attribute), {vq
1, g

q
1, v

q
2, g

q
2, v

q
3, g

q
3}, cover the event’s fixed

attribute values {ve
1, v

e
2, v

e
3, v

e
4},

{q|(ve
1 ∈ {vq

1} ∪ gq
1) ∧ (ve

2 ∈ {vq
2} ∪ gq

2) ∧ (ve
3 ∈ {vq

3} ∪ gq
3)}. (5.14)

2. InfoS Timeline Advancement As the InfoS timeline (discussed in Section 5.8.1) advances,

the relative time values map to different absolute values and therefore query different data

in the InfoS. The affected QEs are all those who use relative values in their time selection

parameter,

{q|(vq
2 ∈ Dr

T) ∨ (gq
2 ⊆ Dr

T)}, (5.15)

where the notation is adopted from the previous change. As we shall see in Section 5.8,

this change often coincides with the latter change.

3. Host Relocation Similarly, a change of host’s location affects those QEs which use relative

location values,

{q|(vq
3 ∈ Dr

L) ∨ (gq
3 ⊆ Dr

L)}, (5.16)

where the notation is adopted from the first change.

168

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

group by Topic, Location, Status

IL 17 7 atomic 2.2false

IL 12 11 atomic 2.1false

IL 25 8 atomic 0false

IL 27 9 atomic 3.1false

CS 42 9 atomic 2true

CS 20 7 atomic 5.5false

CS 40 11 atomic 13false

CS 7 9 atomic 4false

CS 22 11 atomic 19false

IL 42 7 atomic 3.4true

IL 42 11 atomic 3.5true

IL 42 8 atomic 1true

CS 2 9 atomic 3false

IL 35 8 atomic 0false

IL 22 8 atomic 1false

IL 10 8 atomic 1false

IL 11 9 atomic 2.5false

IL 19 7 atomic 3.1false

va
li

d

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

In
fo

rm
at

io
n

Sp
ac

e
(I

nf
oS

)
 -

 I
nf

oS
 ti

m
e:

 4
2,

 H
os

t l
oc

at
io

n:
 1

6

IL 17 7 atomic 2.2false

IL 42 7 atomic 3.4true

IL 19 7 atomic 3.1false

CS 42 9 atomic 2true

CS 7 9 atomic 4false

CS 2 9 atomic 3false

IL 25 8 atomic 0false

IL 42 8 atomic 1true

IL 35 8 atomic 0false

IL 22 8 atomic 1false

IL 10 8 atomic 1false

CS 20 7 atomic 5.5false

IL 27 9 atomic 3.1false

IL 11 9 atomic 2.5false

IL 42 11 atomic 3.5true

IL 12 11 atomic 2.1false

CS 40 11 atomic 13false

CS 22 11 atomic 19false

CS 20 7 atomic 5.5false

IL 27 9 atomic 3.1false

CS 31 11 atomic 16false

IL 31 8 atomic 0.5true

IL 26 7 atomic 2.9true

CS 42 9 atomic 2true

CS 20 7 atomic 5.5false

CS 42 9 atomic 2true

CS 31 11 atomic 16false

IL 27 9 atomic 3.1false

IL 26 7 atomic 2.9true

IL 31 8 atomic 0.5true

IL 27 11 atomic 2.8true

IL 27 11 atomic 2.8true

IL 27 11 atomic 2.8true

IL 27 9 atomic 3.1false

IL 31 8 atomic 0.5true

IL 26 7 atomic 2.9true
CS 20 7 atomic 5.5false

CS 42 9 atomic 2true

CS 31 11 atomic 16false

CS 31 11 atomic 16false

IL 27 11 atomic 2.8true

IL 27 9 atomic 3.1false

CS 42 9 atomic 2true

CS 20 7 atomic 5.5false

IL 26 7 atomic 2.9true

IL 31 8 atomic 0.5true

aggregate over Time (30s)

group by Topic, Status.
select over Location

group by Topic, Location.
select over Status

select over Topic

gr
ou

p
by

 L
oc

at
io

n

aggregate over Time (30s)

group by Topic, Status.
select over Location

IL 26 7 atomic 2.9true

IL 27 11 atomic 2.8true

IL 31 8 atomic 0.5true

IL 27 9 atomic 3.1false

va
li

d

to
pi

c

ti
m

e

lo
ca

ti
on

st
at

us

va
lu

e

Knowledge Points (KPs) for A

Figure 5.10: Knowledge (KPs) selection

169

Chapter4/Figs/EPS/selection.eps

5.6 Detection Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Each QE, q, has four selection parameters that are translated into relational queries and

evaluated (in order) against the InfoS. The closest and aggregate selection operators are order-

sensitive, whilst the multiple operator is order-insensitive. SPS imposes a fixed ordering over

the evaluation of attributed queries against the InfoS. If we label the relation that results from

evaluating a selection parameter (corresponding to a fixed attribute a ∈ AF) over an input

relation X as Ra(X) (Section 5.5.3), then the extracted table of KPs, Kq, for QE q is as follows.

Kq = Rtopic (Rstatus (Rlocation (Rtime(InfoS)))) . (5.17)

In this expression, data is initially queried (processed) according to the time attribute, then

location, then status, and finally topic. At each evaluation phase, a processed attributes set,

AP ⊆ AF , indicates which selection parameters have been evaluated. Attributes are placed into

the set if and only if they have been processed and have contained a closest or aggregate selection

operator in their selection parameters. The processed attributes set AP affects the grouping

that is applied prior to data selection. Figure 5.10 shows a detailed account of this process for

extracting KPs for the A QE in the TrafficCongestion SMC (Table 5.4). In Figure 5.10, InfoS

tuples are initially grouped by topic, location, and status, and averaged by time and value (the

figure shows the grouping and the aggregation process in separate steps). The results are then

grouped by topic and status, and selected according to the location attribute. In my example,

tuples corresponding to all location values are selected because the group argument DL contains

all the possible location values. Subsequently, results are grouped by topic and location and

selected according to status (here only tuples with the atomic value are selected). Finally,

results are grouped by location and the set of tuples corresponding to the specified topic value

(IL) is selected. Note that throughout this process tuples were always grouped by location (when

processing with respect to other attributes). This is because the user had specified a multiple

selection operator, which meant tuples corresponding to different location values should be kept

separate (the result table, in Figure 5.10, has tuples corresponding to 7, 8, 9, and 11 location

values that were present in the InfoS). The result table (relation) from this process, Kq, is

forwarded to the SMC manager for condition evaluation.

5.6.5 Knowledge Examination

Tables of KPs, received from the InfoS, are now used by the SMC manager to examine SMC

predicates for condition detection. SPS performs context-based data processing - knowledge

about the current state of the condition is used to prevent redundant detections. Depending on

the SMC’s (m’s) status bit, sm, the received knowledge (KPs) is examined against the entrance

or exit predicate to yield new information. This context-based data processing saves significant

messaging and computation, when correlated and redundant data (e.g. sensor data) are used as

input for condition detection (see SFs in Chapter 3).

If we label the QEs of an SMC, m, as Qm = {qA, qB, qC , · · ·}, and their corresponding tables

of KPs as Km = {KA, KB, KC , · · ·}, then the SK, s, can be determined as follows.

170

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

s = σP ((ρ{A.topic,A.time,A.location,···}KA)× (ρ{B.topic,B.time,B.location,···}KB)× · · ·), (5.18)

where P is set to Pn
m if sm = 0 and P x

m otherwise (i.e. examine for condition initiation if the

condition is inactive and for condition termination if it is already active). Figure 5.9 shows the

result when the entrance predicate (line 10 from Table 5.4) is examined over the table of KPs

extracted from the InfoS.

The cartesian product of the relations (KA, KB, KC , · · ·), and the examination of all KP-

combinations may be computationally expensive. In Section 5.7.2, I discuss the decomposition

of QEs, which enables the distribution of this processing load across many networked devices.

5.6.6 Knowledge Encapsulation

The knowledge encapsulation process groups the tuples (KP-combinations) that are in the SK s

(from the previous step) to yield more meaningful and condition-specific sets of knowledge. The

cardinality of s relates to the cardinality of input KPs (KA, KB, KC , · · ·), such that if |s| > 1

then ∃x ∈ {A, B, · · ·} : |Kx| > 1. For |Kx| > 1 to hold, the corresponding QE, qx, must hold at

least one multiple operator among its attributed selection parameters. We assume this operator,

o ∈ Omultiple , relates to the a ∈ AF attribute for the purpose of the following discussion. In

Figure 5.9, the size of the SK is two (|s| = 2), and there is a multiple selection operator in the

A and B QEs of the TrafficCongestion SMC (shown in Table 5.4).

The outcome of the knowledge encapsulation process is a set of zero or more DKs (defini-

tion 5.6), {c}, where each set member signals a unique condition detection. The size of the set

(the maximum number of concurrent condition detections per evaluation) is bound by |πaKx|,
i.e. |{c}| ≤ |πaKx|. Let’s rewrite the sub-operator assertions using relational algebra notations.

multiple:one |πx.ac| = 1. Asserts that only one unique a value, from Kx, should appear in a

DK c.

multiple:all |πx.ac| = |πaKx|. Asserts that all a values, from Kx, should appear in a DK c.

multiple:any |πx.ac| ≥ 1 ≡ |c| ≥ 1. Asserts that any one satisfied a value, from Kx, may be

taken as a representative in a DK c.

multiple:separate |πx.as| ≥ 1 ≡ |s| ≥ 1. Similarly asserts that any one satisfied a value is

sufficient for condition detection, but with the difference that every unique a value, from

Kx in s, can signal a unique and distinct condition.

A DK c is a subset of the SK s, such that all assertions, by the multiple sub-operators in qx,

are satisfied within c. In order to determine all DKs {c} from an SK s, the following steps are

taken.

171

5.6 Detection Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

1. The SK s is divided into DKs according to the multiple:separate sub-operator, i.e. {c|c =

σ(x.m=i∈(πmKx))s}, where m ∈ AF is the attribute whose selection parameter, in qx, con-

tains the multiple:separate sub-operator. In my example (Figure 5.9), the SK is split

according to unique location values. The result is two DKs, each of which corresponds to

a different location value.

2. Every DK, produced in the previous step, is examined by the multiple:one and multiple:all

sub-operator assertions, and discarded from the set if |πx.nc| 6= 1 or |πx.oc| 6= |πoKx|,
where n, o ∈ AF are attributes whose selection parameters contain the multiple:one and

multiple:all sub-operators, respectively.

3. If the multiple:separate sub-operator was involved in any of the selection parameters, then

|{c}| temporary SMCs are spawned1, each of which is assigned a unique DK c ∈ {c}. The

unique m attribute value of c determines the temporary SMC’s (u’s) name signature value,

i.e. iu ← πx.mc. In Figure 5.9, one SMC is assigned the unique location value of 7, and

the other is assigned the unique location value of 9. These values are seen in the generated

SMC events as name signature values.

If |{c}| > 1, then multiple concurrent conditions are detected, each of which is monitored

by a temporary spawned SMC. These temporary SMCs are distinguished by different signature

values, and last until their corresponding conditions are terminated. The uniqueness of m

attribute value is preserved throughout time, and enforced by unique SMC names, i.e. if u, v

are two SMCs, then (u 6= v)∧ (nu = nv)⇒ iu 6= iv, where n and i are topic and signature values

of an SMC name, respectively.

5.6.7 Knowledge Transformation

Following the knowledge encapsulation process, every SMC, u, is at most assigned a single DK c.

These DKs contain knowledge (KP-combinations) that have contributed to a unique condition

detection. Every SMC transforms its assigned DK into an event notification (called an SMC

event) that is published in the system (see Figure 5.9).

The topic and status attribute values (of the SMC event) are strictly set by the SMC man-

ager. They are set according to the SMC name and the satisfied predicate in the knowledge

examination process - the status is set to ingress if Pn
u is satisfied and P x

u 6= true, to atomic if

Pn
u is satisfied and P x

u = true, and to egress if P x
u is satisfied. The SMC manager has default

assignments for the remaining fixed event attributes and topic-related attributes of the SMC

event. These may be overridden by the SMC’s attribute computation expressions, An
u or Ax

u,

see Table 5.9.

1This is implemented by temporarily extending the SMC’s (u’s) name and data structures (Nu, su and eu)

into array structures of length |{c}| + 1.

172

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.6 Detection Model

i ni Default vi Override Permissables

1 name Nu ∅
2 time max (tI , last.time + 1) t ∈ DT : (t > last.time) ∧ (t ≥ tI)

3 location host location (lH) l ∈ DL

4 status p ∈ DS ∅
5-n topic-related topic-related attribute values of a

most recent KP in c

v ∈ D

Table 5.9: SMC Event Attribute Assignments

The condition detection process is completed when the SMC event is published, the SMC

status bit, su, is appropriately toggled1, and the last capture event, eu, is overwritten by the

newly published SMC event.

5.6.8 Knowledge Discarding

The knowledge discarding policy removes knowledge (KPs) from the InfoS as it becomes out-

dated or irrelevant. The exact semantics of outdated or irrelevant knowledge is defined by SMC

QEs, which highlight what knowledge is related to the condition detections. For a set of SMC

QEs, Q = {q1, q2, · · · , qn}, where each qi = (si
1, s

i
2, s

i
3, s

i
4) (definition 5.4), the set of KPs that

may be permanently discarded from the InfoS are the set of tuples that persist in the following

query result.

σ(∃i∈{1,···,4}:InfoS.ai /∈{Vi∪Gi})
InfoS, (5.19)

where InfoS.ai is the ith attribute of the InfoS (ai ∈ AF) and ∀j ∈ {1, · · · , 4}, Vj =
⋃

i∈{1,···,n}{vi
j}

and Gj =
⋃

i∈{1,···,n} gi
j . This query gives all stored KPs who have at least one attribute value that

falls outside the range of all known QEs interests. Note that the group {x|x ∈ DT,L : |x−v| ≤ ǫ}
is also used here when values correspond to the closest selection operator in time or location

selection parameters.

For many attributes and values, the resulting KPs (from the above query) are persistent and

may be discarded upon initial observation. Exceptions to the above are relative time and location

values. For relative time values, the InfoS timeline is known to be monotonically increasing

(Section 5.8.1). Therefore the KPs that may be discarded can be defined by the following query.

In Figures 5.9 and 5.10, these tuples are shaded and excluded from data evaluations at the

knowledge selection phase.

σ(InfoS.a2<min(V2∪G2)InfoS (5.20)

1The status bit, su, is not toggled (remains unset) if the SMC event’s status attribute value is atomic.

173

5.7 Distributed DetectionCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Unless the InfoS host is stationary or its movement patterns are known in advance, InfoS

knowledge (KPs) that only fall outside the QE relative location values cannot be discarded as

they may become within range some time in the future.

5.7 Distributed Detection

Distribution is the key to load balancing, communication savings, and robustness. In SPS, I

support distribution in two ways: decentralized placement of SMCs and distributed processing

of SMCs. The former allows components to be spread and positioned on resourceful devices,

while the latter aims at the decomposition and distribution of each individual SMC in the SPS.

I discuss these under distribution policy and distributed processing, respectively.

5.7.1 Distribution Policy

SPS, as a Pub/Sub-centric framework, benefits from features and properties that come with

Pub/Sub. The loose-coupling of event clients in Pub/Sub provides location transparency, where

the location of event publishers and event subscribers does not affect the data-centric communi-

cation (see location decoupling in Section 2.3.1.1). Location decoupling allows SMCs (as event

publishers) to be located anywhere in the network and relocated dynamically without affecting

the corresponding event subscribers.

Since the Pub/Sub component is the only network-aware component of the SPS, it is held

responsible for positioning SMCs within the network. The placement affects the downstream

messaging cost (the cost of event delivery from the downstream publishers to the SMC’s host)

as well as the upstream messaging cost (the cost of delivering SMC events from the SMC’s host

to the upstream subscribers). The Pub/Sub component can locate the downstream publishers

and the upstream subscribers, and position SMCs strategically to reduce communication costs.

Assuming the downstream (input) event rate is higher than the upstream (output) event rate,

the Pub/Sub component should aim to position SMCs closer to their downstream publishers

than their upstream subscribers.

If QPS is used as the Pub/Sub component, SMCs may be placed on the logical Event

Brokers (EBs) that are mapped to resourceful nodes. The logical Pub/Sub layer (in QPS) offers

many (4N−1
3 , where N is the number of hierarchical GS levels) EBs for SMC placement. The

nearest logical EB to the downstream publisher may be selected, and mapped to a resourceful

EB in the network for initial SMC placement.

The only exceptions to the above are the SMCs which hold Query Expressions with relative

location values in their selection parameters, i.e. {v3}, g3 ⊆ Dr where v3, g3 belong to location

selection parameter s3 of a QE (definition 5.4). Since knowledge selection in these SMCs is

relative to their hosts’ locations, their positioning flexibility is restricted. They are replicated

(with different signature values) and positioned statically at or closest to nodes that host their

downstream publishers. These SMCs may be re-located if and only if the relative location values

can be permanently mapped to absolute values following the initial placement. This permanent

174

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.7 Distributed Detection

mapping is only possible if the SMC’s host is stationary. The outlined policy is a unique case

were the data-centric abstraction is by-passed and a client-centric abstraction is used for SMC

placement. This allows for a number of services that are useful but not attainable with a

data-centric abstraction. For example, users can associated heart-beat SMCs with individual

publishers (as used later in Section 5.8.1.2) or count the number of publishers that are operating

in the system.

SMC Relocation. The above scheme concerns the initial placement of SMCs. SMCs, if not

statically positioned or localized at their downstream publishers’ hosts, should be mobilized and

shifted according to their run-time downstream and upstream messaging costs. This process,

of course, needs to be transactional to ensure no events, states, or conditions are lost, and has

all the traditional challenges of process migration [Zay87]. Existing methods, such as [BB03]

and DFuse [KWA+03], can be used to incrementally shift SMCs to optimal locations within the

network. These methods need to be integrated into the Pub/Sub component, and the SMC

manager component needs to periodically dispatch its SMCs (to the Pub/Sub component) for

relocation. This is beyond the scope of this work.

5.7.2 Distributed Processing

SPS supports the decomposition of SMC to distribute the SMC processing load across many

network nodes. Complex SMCs are decomposed into simpler SMCs, which may be evaluated

independently on different nodes.

This process may also reduce the overall processing and communication costs if information

sharing and/or more effective SMC placements become possible. The decomposition of complex

SMCs into simpler SMCs lengthens the information processing chain, hence increases the chance

of information sharing among multiple independent event subscribers. Communication costs may

also be reduced, if the decomposed SMCs can be placed closer to their downstream publishers

in the network. SMC decomposition may be with respect to the SMC predicates or SMC QEs.

These are discussed separately below.

5.7.2.1 Predicate Decomposition

An SMC predicate is a boolean expression, which may be decomposed using boolean algebra.

These decompositions, however, are only effective if disjoint operands are produced (i.e. an

SMC is decomposed into many SMCs, that hold mutually exclusive QEs). Every SMC then

either examines a distinct part of the overall condition or joins the partial results to examine

the overall condition. For example, the TrafficCongestion SMC (shown earlier in Table 5.4)

may be decomposed as in Table 5.10. Note how the validity attribute is used in the new

TrafficCongestion SMC to conveniently examine the status of the IL High and Car Slow lasting

conditions in the predicates.

Intermediate IL High and Car Slow SMCs are introduced, which capture the pre-requisite

conditions independently (see Figure 5.11). This decomposition decouples the TrafficCongestion

SMC from the primitive InductiveLoop and Car event notifications that may be high rate and

175

5.7 Distributed DetectionCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Table 5.10: Decomposed TrafficCongestion SMC

(a) TrafficCongestion SMC

In. Value

N “TrafficCongestion”

Q

A := ((closest , IL High,null,null),

(closest , 0r,null,null),

(multiple : separate,null,null,DL),

(closest , ingress,null,null));

B := ((closest ,CarSpeed Slow ,null,null),

(closest , 0r,null,null),

(multiple : separate,null,null,DL),

(multiple : any ,null,null,DS))

Pn A.valid && B.valid &&

(A.location == B.location)

An location := A.location; level :=

B.value;

P x !B.valid &&(B.location ==

last .location)

Ax location := last .location; level :=

B.value;

(b) IL High SMC

In. Value

N “IL High”

Q

A := ((closest , InductiveLoop,null,null),

(aggregate,null, avg , (−30r, 0r)),

(multiple : separate,null,null,DL),

(closest , atomic,null,null))

Pn A.value > 2.5

An location := A.location;

P x (A.value < 2.5)&& (A.location ==

last .location)

Ax

(c) CarSpeed Slow SMC

In. Value

N “CarSpeed Slow”

Q

A := ((closest ,CarSpeed ,null,null),

(aggregate,null, avg , (−60r, 0r)),

(multiple : separate,null,null,DL),

(closest , atomic,null,null))

Pn A.value < 7

An value := A.value;

P x (A.value > 15) && (A.location ==

last .location)

Ax value := A.value;

176

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.7 Distributed Detection

SPS

A

TrafficCongestion

CarSpeedInductiveLoop

CarSpeed_SlowIL_High

Figure 5.11: Decomposed traffic congestion information flow

expensive to process. Instead, these primitive event notifications are pre-processed and trans-

formed into higher level knowledge (by the introduced SMCs) prior to undergoing examination

for traffic congestion detections. These SMCs may capture meaningful conditions, that can also

be shared (used) for other high-level conditions.

SMC predicate decomposition is not automated in SPS, as it requires careful consideration

when complex predicates such as those examining condition interval relationships are involved.

Galton and Augusto [GA02] discuss the complexities that arise when interval relationships are

decomposed under the point-based time model.

5.7.2.2 QE Decomposition

Predicate decomposition leads to the separation of QEs, but each individual QE may also be

decomposed. This decomposition distributes the SK search-space over a number of SMCs, such

that every SMC searches a disjoint portion of the KP-combinations (Section 5.6.5).

QE decomposition splits the table of KPs that result from the knowledge selection pro-

cess (Section 5.6.4) across multiple SMCs. This separation is achieved by decomposing the

given group of values, G, in a QE’s selection parameter, into a number of smaller groups,

{g1, g2, · · · |
⋃

i gi = G, i 6= j ⇒ gi ∩ gj = ∅}. These smaller groups form parts of new QEs and

thereby SMCs that capture conditions over a partition of the data. There are several issues that

must be considered when decomposing QEs:

• It is only applicable to QEs that hold a multiple selection operation in one or more of their

selection parameters.

177

Chapter4/Figs/EPS/tcdecomposedflow.eps

5.7 Distributed DetectionCHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

• Segments of the SMC predicates, Pn and P x, that involve the decomposing QE are evalu-

ated as part of the new SMCs. These segments may be extended to the entire predicates,

but must exclude references to the last SMC event.

• Context-based data processing over partitioned data is error-prone, i.e. the context of no

individual decomposed SMC can be associated with the context of the overall condition.

Hence, decomposed SMCs capture conditions that are momentarily valid and generate

atomic SMC events. To achieve this, selected segments of the SMC predicates are examined

as part of two separate SMCs, one for the Pn predicate segment and the other for the P x

predicate segment.

• SMC events that are published by the decomposed SMCs reflect conditions over partial

data. These must be joined to examine the condition of the sub-operator over complete

data. A join SMC must be specified that takes the decomposed SMC events (as input)

and generates suitable SMC events that reflect the overall condition (as output). The type

of join function depends on the involved sub-operator:

multiple:one requires a logical XOR operation (over the decomposed SMC events) to

ensure the uniqueness of the satisfied attribute value over the complete data.

multiple:all requires a logical AND operation to ensure all attribute values (in the com-

plete data) are satisfied across all decomposed SMCs.

multiple:any requires a logical OR operation to yield only a single result (SMC event)

from the decomposed SMCs.

multiple:separate neither requires a join function nor a join SMC. The independence of

the satisfied attribute values (indicated by this sub-operator) means that conditions

can be captured independently. The two previous decomposition policies are also

irrelevant for this sub-operator. Instead, the decomposed SMCs hold the same topic

(name) value as the original SMC, but differ in signature (name) values.

These join function correspondences are verified in Appendix B.2.

• The decomposition of the multiple:separate sub-operator is prioritized over the decompo-

sition of the other multiple sub-operators.

Table 5.11 shows an example of this decomposition, for a Fire SMC that captures lasting

fire conditions (indicated by high temperature readings across all sensors) in a predefined area.

Table 5.11(a) shown the un-decomposed SMC, Tables 5.11(b) and 5.11(c) show the decom-

posed SMCs for the entrance predicate, Tables 5.11(d) and 5.11(e) show the decomposed SMCs

for the exit predicate, and Table 5.11(f) shows the join SMC, which combines and processes the

partial results from the decomposed SMCs.

Localization. Localization (or localized processing) is where an SMC and its downstream

publishers are co-located (i.e. have the same host). In this case, published data is examined

locally by the corresponding SMC, and messaging is confined to the local node.

178

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.7 Distributed Detection

Table 5.11: Fire SMC (singular and decomposed)

(a) Singular Fire SMC

In. Value

N “Fire”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : all ,null,null, (−10,+10)),

(closest , atomic,null,null))

Pn A.value > 50

P x A.value < 30

(b) Decomposed (entrance,range1) Fire SMC

In. Value

N “Fire EntRange1”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : all ,null,null, (−10, 0)),

(closest , atomic,null,null))

Pn A.value > 50

P x true

(c) Decomposed (entrance,range2) Fire SMC

In. Value

N “Fire EntRange2”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : all ,null,null, (1,+10)),

(closest , atomic,null,null))

Pn A.value > 50

P x true

(d) Decomposed (exit,range1) Fire SMC

In. Value

N “Fire ExtRange1”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : all ,null,null, (−10, 0)),

(closest , atomic,null,null))

Pn A.value < 30

P x true

(e) Decomposed (exit,range2) Fire SMC

In. Value

N “Fire ExtRange2”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : all ,null,null, (1,+10)),

(closest , atomic,null,null))

Pn A.value < 30

P x true

(f) Join SMC

In. Value

N “Fire”

Q

A := ((closest ,Fire EntRange1 ,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DL),

(closest , atomic,null,null));

B := ((closest ,Fire EntRange2 ,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DL),

(closest , atomic,null,null));

C := ((closest ,Fire ExtRange1 ,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DL),

(closest , atomic,null,null));

D := ((closest ,Fire ExtRange2 ,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DL),

(closest , atomic,null,null));

Pn A.valid && B.valid

P x C.valid && D.valid

179

5.8 Reliability Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Temperature

A

SPS

Fire_EntRange2 Fire_ExtRange2Fire_EntRange1 Fire_ExtRange1

Fire

Figure 5.12: Decomposed fire detection information flow

Non-

deterministic

factors

Network layer Pub/Sub layer Clients (SPS) layer

Node failure Topology maintenance EDT maintenance Component robustness

Clock drift Time synchronization × ×
Location drift Localization × ×
Network delay × × InfoS consistency

Packet loss Reliable delivery × ×

Table 5.12: Non-deterministic factors and their treatments

Localization may be achieved by decomposing the location selection parameter of (SMC)

QEs. If the downstream publishers’ advertisement regions, A = {a}, are geographically disjoint

(i.e. i 6= j ⇒ ai ∩ aj = ∅, where i, j are two event publishers), then the group of location values

(the region) of a QE, G, may be decomposed into a set of smaller groups (regions) Gd = {g},
such that ∀g ∈ Gd ∃a ∈ A : g ⊆ a. Then, the decomposed SMCs may be positioned on nodes

that host their corresponding publishers for localized processing.

5.8 Reliability Model

SPS features a largely deterministic information processing model, which helps independent users

to collaboratively build hierarchical levels of knowledge in the system. A high-level condition

that is captured by one SMC may be used by another and so on until end-point subscribers

are reached. The SPS reliability model maintains this deterministic operation in the view of

non-deterministic factors, such as failures and delays. These non-deterministic factors largely

originate from the environment and affect nodal and network behaviors. Table 5.12 shows a

180

Chapter4/Figs/EPS/firedecomposedflow.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.8 Reliability Model

SPS component
Failure resolution

low (moderate) failure high (mass) failure

External publishers deployed redundancy unsubscribe

External subscribers unsubscribe unsubscribe

SMCs replicated recovery unsubscribe

Table 5.13: Component failure resolutions

list of the most influential factors in SPS, and outlines treatments that are provided by each

architectural layer in each case.

As shown in the table, SPS does not treat every non-deterministic factor, but only focuses on

those that are overlooked or have cross-layer impact. Thanks to the SPS’s layered architecture,

many concerns that are met at the lower layers do not need further attention at the upper layers.

Factors that are treated by the SPS (excluding the Pub/Sub component) are further discussed

below.

Network delay (interference) Network connectivity is a complex and environmental-dependent

phenomenon. Interference, congestion, and different messaging path lengths contribute to

non-deterministic network delays when messages are routed from sources to destinations.

This delay results in unordered event delivery, where distributed event subscribers receive

notifications out of order. In turn, unordered event delivery means that the state of dis-

tributed InfoS components is inconsistent, and thus could lead to non-deterministic or

conflicting condition detection across the network. SPS provides a best-effort InfoS con-

sistency mechanism that combats this effect. Users can enhance this consistency to a

guaranteed consistency model on demand.

Node failures Node failures are often unforeseen and abrupt in sensor systems. SPS compo-

nents may be lost when nodes happen to fail. More importantly, user interests, contexts,

and most recent SMC events may be lost if SMCs are lost. In order to prevent this, SMC

structures are replicated at nearby nodes and activated when primary SMCs happen to

fail. This strategy is detailed in Section 5.8.2.

5.8.1 InfoS Consistency

Since SMCs deduce high-level information from InfoS data, it is important to maintain a consis-

tent (and preferably correct) view of the world across the InfoS components. This consistency

reflects a unified view of the world, and makes the distribution of knowledge transparent to

the SMCs. Inconsistencies may emerge as a result of unordered event delivery by the Pub/Sub

component (the sole introducer of knowledge into the InfoS), and dynamic event subscriptions

that are initiated by InfoS components.

181

5.8 Reliability Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

su
bs

cr
ip

tio
n

eg
re

ss
ev

en
t

in
gr

es
s

ev
en

t

in
gr

es
s

ev
en

t

eg
re

ss
ev

en
t

no
tif

ic
at

io
n

no
tif

ic
at

io
n

no
tif

ic
at

io
n

su
bs

cr
ip

tio
n

SMC (m)

Pub/Sub

App1

App2

0
1sm

Figure 5.13: Conflict of information (due to dynamic subscriptions)

5.8.1.1 Initial Consistency

When an SMC is activated (at the SMC manager component), the SMC QEs are dispatched

to the local InfoS component. The InfoS component makes relevant event subscriptions, and

receives events from the Pub/Sub component. The Pub/Sub component delivers events that

are published from the moment when event subscriptions are resolved to the moment when an

unsubscribe operation occurs. This time period bounds the knowledge that is available for SMC

examination. This bounded knowledge may affect initial SMC evaluations, as well as QEs that

select knowledge based on absolute time values.

Furthermore, the use of event pairs to capture lasting conditions may lead to conflicting

knowledge at the subscriber’s side when dynamic subscriptions are involved. Event subscribers

(e.g. App1) who have subscribed prior to condition occurrences receive event notifications

appropriately, but those who have subscribed (e.g. App2) during a condition’s active interval

miss the ingress event and only receive the condition’s egress event (see Figure 5.13). This

leads to conflicting information at the subscribers, where some (App1) know about a condition’s

initiation and some others (App2) don’t (though they do realise the missed ingress event after

receiving the egress event).

The above two cases argue for initial consistency, where knowledge (that is published in

the past) may need to be stored and delivered to the subscribers who arrive after the event

publications. This is achieved by persistent event storage at the Pub/Sub component. In order

to minimise storage costs, I provide a lightweight weak consistency mechanism as follows.

• The Pub/Sub protocol stores the most recent (largest timestamped) event notification that

is published by each event publisher in SPS. This bears little cost in the case of SMCs,

as their last events, e, are already stored within their data structures - the local Pub/Sub

182

Chapter4/Figs/EPS/conflict.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.8 Reliability Model

component may simply hold references to these last SMC events. The storage of most

recent event publications by the external publishers, however, may incur additional costs1.

• The Pub/Sub protocol, upon encountering a new event subscription, delivers the last set of

events that are published by the corresponding event publishers to the new subscriber. This

prevents the conflict of information that may arise due to dynamic event subscriptions, and

provides weak InfoS consistency following SMC activations. InfoS consistency improves as

the InfoS time advances and more recent knowledge becomes available.

5.8.1.2 Run-time Consistency

Event dissemination in sensor networks is subject to network delay. If unmanaged by the

Pub/Sub protocol, this could result in unordered event delivery to event subscribers. SPS

provides a lightweight best-effort consistency mechanism for maintaining a consistent view of

knowledge across distributed InfoS components. Application clients may improve this consis-

tency to a guaranteed consistency model, by using SMCs, when higher reliability is desired.

The best-effort mechanism consists of an input buffer and an InfoS time, that compensates

for the unordered event delivery by providing best-effort ordered delivery at the subscriber-

side. Received events, from the Pub/Sub component, are queued and ordered according to their

timestamps prior to insertion into the InfoS cube structure. A monotonically increasing InfoS

time is introduced that traverses the time values in a discrete manner, tI ∈ DT . At every

InfoS time, the cube structure represents a view of the world that is composed of all events

timestamped equal or less than tI , {e|e ∈ E, v2 ≤ tI}.
The time interval between the system clock2 (mapped to the time domain tG ∈ DT) and

the InfoS time tI is called the stabilization interval, ts = tG − tI . Events are stabilized within

this interval, meaning that they traverse the network and reach all their corresponding event

subscribers. Events, that have a timestamp greater than the InfoS time, e ∈ E : v2 > tI , are

considered unstable and remain in the input buffer. Because of SPS’s hierarchical information

processing model, information may propagate through multiple SMCs before reaching another

SMC. Thus multiple InfoS times, TI = {t1I , t2I , · · ·}, are introduced that correspond to different

levels of information processing and are separated by the stabilization interval ts,

TI = {tiI ∈ DT |tiI = t
(i−1)
I − ts}, (5.21)

where the non-member element t0I denotes the mapped system clock tG, t0I = tG. Note that

with this setup, the InfoS also needs to maintain a set of host location values, LH = {liH |liH =

lH at tiI}.
The stabilization interval, ts, aims to find an upper bound for the event delivery latency in

the network. Network latency, however, is a variable quantity and subject to network dynamics

1The network layer often stores these events to ensure reliable delivery, in which case references can be used

again (in a cross-layer implementation) to minimize storage costs.
2I assume the operation of internal and external time synchronization protocols, see Sections 2.1.3 and 2.4.2,

that bound the system clock variation from the global time.

183

5.8 Reliability Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

SPS

A

TrafficCongestion

CarSpeedInductiveLoop

CarSpeed_SlowIL_High

CarSpeed_Slow_HB

Figure 5.14: Reliable traffic congestion detection

such as node or link failures. InfoS components continuously monitor the event delivery latency

and adjust the stabilization interval within their connected network1. This run-time consistency

mechanism reduces the chances of events arriving late (i.e. having a timestamp earlier than the

InfoS time), but is still subject to failure when network latency changes abruptly or network

disconnections occur2.

Guaranteed Consistency. SPS does not provide guaranteed InfoS consistency, due to

its costs and complexity. Instead, the expressiveness of SMCs can be used to emulate guaran-

teed InfoS consistency. This provides a degree of flexibility and user control, where the costs

of guaranteed InfoS consistency are justified by the user’s decision. The approach involves

HeartBeat SMCs that monitor the downstream publishers (at their local nodes) and generate

periodic updates (heart-beat signals) that contain their most recent event publications. At the

consumer-side, the heart-beat signals may be used to ensure reliable detection.

Consider the two introduced SMCs in Table 5.14. The CarSlow HB SMC monitors the local

Car Slow SMC and generates periodic heart-beats that contain the last Car Slow SMC event.

The TrafficCongestion Reliable SMC validates its condition detection against a recent heart-beat

signal, and revokes the detection if continuous heart-beat signals cease to exist. In this setup,

high network latency or network disconnections result in absence of heart-beat signals which

prevent the TrafficCongestion Reliable SMC from capturing false-positives. Correct detection

resumes when SPS’s best-effort InfoS consistency mechanism has resolved the inconsistencies

and/or network disconnections have been repaired.

This approach has two useful features when network disconnections occur.

1This is preferably achieved in conjunction with the internal time synchronization process.
2Late events are inserted into the InfoS cube and may result in some inconsistencies.

184

Chapter4/Figs/EPS/tcreliable.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.8 Reliability Model

Table 5.14: Reliable TrafficCongestion SMC

(a) CarSpeed Slow HB SMC

In. Value

N “CarSpeed Slow HB”

Q

A := ((closest ,CarSpeed Slow ,null,null),

(closest , 0r,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DS))

Pn (last .valid == 0) || (last .time < 0r −
10)

An location := A.location;

P x true

Ax

(b) TrafficCongestion Reliable SMC

In. Value

N “TrafficCongestion Reliable”

Q

A := ((closest , IL High,null,null),

(closest , 0r,null,null),

(multiple : separate,null,null,DL),

(closest , ingress,null,null));

B := ((closest ,CarSpeed Slow ,null,null),

(closest , 0r,null,null),

(multiple : separate,null,null,DL),

(multiple : any ,null,null,DS));

C := ((closest ,CarSpeed Slow HB ,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null,DL),

(closest , atomic,null,null))

Pn A.valid && B.valid && (A.location ==

B.location == C.location)&& (C.time ≥
(0r − 10))

An location := A.location; level := B.value;

P x (!B.valid && (B.location ==

last .location)) || ((C.time < (0r − 10))

&& (C.location == last .location))

Ax location := last .location; level :=

B.value;

185

5.8 Reliability Model CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

• Affected SMCs are halted; their conditions are not detected because heart-beat signals are

no longer received.

• The InfoS time does not stop; therefore conditions that can receive their input data are

continually examined and detected by SMCs. I refer to this as disconnected operations in

SPS, where despite network disconnections, unaffected conditions are still examined and

captured in the framework.

5.8.2 SMC Replication

SMC distribution avoids a single point of failure, but increases the chance of partial failure

where a node that houses some SMCs is more likely to fail and affect some condition detection.

These failures are often permanent, as sensor nodes often receive no maintenance. SPS adopts a

replicated storage policy to protect condition definitions (at SMCs) against failure. The Pub/Sub

protocol stores SMC replicas at nodes that are close (topologically near) to the selected SMC

hosts. These replicas are passive, and are only activated when failures have been detected.

The Pub/Sub component can learn about node failures to maintain its EDT and/or activate

the stored SMC replicas. When a failure is detected, replicas of the SMCs that were on the

failed node are retrieved from storage and dispatched to suitable SMC managers as discussed

in Section 5.7.1. These activations initiate the SMC and condition detections as described in

Section 5.6.

Loss of SMCs’ context (data structures). To save communication, SPS neither repli-

cates condition detections (with SMC replicas), nor synchronizes SMC data structures. Instead,

SMC replicas (when activated) initiate from an undetected state (s = 0 and e = null, where s

and e are the SMC status bit and the last SMC event), and re-capture the conditions if they

are still active at the time of their activation.

Two factors aid this re-capture: (a) the initial InfoS consistency mechanism (Section 5.8.1.1)

provides some knowledge about the past, (b) future data (event publications) in sensor systems

are expected to repeat the observed knowledge about the environment (e.g. if traffic congestion

persists on a road, then subsequent car and inductive loop event publications are expected to

re-iterate this information and result in the re-capture of the traffic congestion condition). Ap-

plication clients can introduce (active) SMC replicas (with different names), if the SMC data

structures are valuable and non-recoverable. This leads to replicated monitoring and condition

detection, providing higher robustness at the expense of increased communication and computa-

tion costs. An example of an SMC whose data structure is non-recoverable is one that maintains

the count of people in a building - it is impossible to recover this data structure without revis-

iting the entire historic data. The monotonically increasing nature of the InfoS time disallows

roll-backs.

186

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.9 Evaluation

5.9 Evaluation

In this section I evaluate the proposed SPS framework. This evaluation takes note of the ex-

pressiveness of the framework, as well as its performance in the context of a realistic application

scenario. I initially discuss the expressiveness of SMCs and then describe a prototype implemen-

tation of SPS, an evaluation application scenario, and discuss the performance results of SPS in

operation. The goal of this evaluation is to demonstrate the usability and efficiency of SPS for

a wide range of sensor system applications described as “smart environments”.

5.9.1 Expressiveness

The expressiveness of SMCs is determined by the range and type of conditions that they can

capture. Sections 5.4 and 5.6 elaborated on these conditions, their specification and detection

in SPS, but this section provides an overview of SMC’s expressive features - their strengths and

weaknesses.

An SMC detects a condition in three steps: knowledge selection, knowledge examination,

and knowledge encapsulation. The knowledge examination (middle) phase provides the most

expressiveness, enabling individual and cross-examination of KP attribute values with a range

of mathematical, comparative, and logical operators (within the SMC predicates). Dual SMC

predicates, and access to the last SMC event further enhance this expressiveness, providing

context-based data processing and support for memory-based condition detection. This expres-

siveness is partially limited by the fact that the examination of each KP-combination is inde-

pendent of any other. This independence is partially controlled by the knowledge encapsulation

phase, discussed below.

The knowledge selection (first) phase is where input data (KPs) for condition detection is

retrieved from the InfoS. Although the semantics of knowledge selection is limited to a few pre-

defined attributes (topic, time, location, and status), the expressiveness of knowledge selection

(about these attributes) is high: the three selection operations aid knowledge confinement in

different ways (Section 5.4.1), and the introduced absolute and relative data domains enhance

the contextual selection of data. Shortly, I will describe two SMCs that exploit this contextual

awareness to provide useful services.

Finally, the knowledge encapsulation (last) phase asserts some user-defined conditions over

the SK (set of independent KP-combinations that have satisfied the SMC predicate). These

assertions enhance expressiveness, but are likewise limited to a set of fixed attributes. The

introduced multiple sub-operators (separate, one, all, and any) support partitioning, singleness,

entireness, and randomness for the fixed event attribute values in the SK, with the latter sub-

operator often used as a dummy operator for no assertions. Combination of these sub-operators

(in different QEs) can be used to achieve more complex assertions over the SK.

SPS’s extended support for topic, time, location, and status attributes makes it suitable for

detecting conditions that are typed, temporal, or spatial in the environment. I have already

demonstrated SMC’s expressiveness by examples, including the TrafficCongestion SMC and the

187

5.9 Evaluation CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Table 5.15: Filtering SMCs

(a) Temperature 0.5Hz SMC

In. Value

N “Temperature 0.5Hz”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null, (−10,+10)),

(closest , atomic,null,null))

Pn last .time ≤ 0r − 2

An value = A.value

P x true

Ax

(b) Temperature 10%Change SMC

In. Value

N “Temperature 10%Change”

Q

A := ((closest ,Temperature,null,null),

(closest , 0r,null,null),

(multiple : any ,null,null, (−10,+10)),

(closest , atomic,null,null))

Pn |A.value− last .value| ≥ 0.10∗ last .value

An value = A.value

P x true

Ax

CarSpeed Slow HB SMC (for reliable condition detection). Below, I outline another that exploits

contextual awareness.

Controlling the rate of events. Although Pub/Sub subscribers have no control over the

rate of event publication, the need for this control is evident. Consider a temperature sensor

that publishes temperature readings (events) every second. While this granularity is suited to

some applications (e.g. fire breakout monitoring), it may be too fine-grained for others (e.g. daily

temperature logging). Subscriber-asserted control over the rate of event publication is useful,

particularly when communication is a scarce resource.

In SPS, a subscriber may define an SMC that filters events according to a custom specifica-

tion. Table 5.15 shows two SMCs that limit the rate of events, that are delivered to their sub-

scribers, either by time or by value. Temperature 0.5Hz SMC publishes the most recent Temper-

ature event every 2s, maintaining a fixed 0.5Hz event publication rate. Temperature 10%Change

SMC passes an event when the value attribute has changed by more than 10% (relative to the

previously passed event’s value).

5.9.2 Simulation Environment

The proposed framework, SPS, was implemented on JiST/SWANS [BHvR05] to leverage from

the already developed Pub/Sub protocol, QPS. Additional enhancements were made to QPS

to use it as the Pub/Sub component, and limitations were realised that were due to QPS’s

constraints. I discuss the prototype implementation of each SPS component below.

Pub/Sub component. QPS EBs were used as Pub/Sub components in SPS. These were

extended to suit the SPS framework as follows.

• QPS’s API was extended to support SMC insertion and delivery to SMC manager com-

ponents.

• The SMC distribution policy (Section 5.7) was implemented in QPS.

188

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.9 Evaluation

• Support for initial InfoS consistency, as discussed in Section 5.8.1.1, was implemented by

storing the most recent events at the publisher-hosting EBs, and delivering them whenever

a new related subscription was realised. An event retrieval request passed the subscription

coverage points and reached all the relevant publisher-hosting EBs.

The use of QPS also led to some limitations, that are listed below.

• Mobile networks could not be supported (QPS was restricted to static networks). I sup-

ported mobile subscribers, for my experimental setup, using proxies [CCW03] that main-

tained subscribers location and redirected events towards them.

• Subscription to a group of event topics was not possible; QPS supported a single event

topic per event subscription.

• QPS only supported subscriptions to absolute values; hence subscription to relative loca-

tion values were not possible unless mapped to absolute values (by the InfoS component)

as described in Section 5.3.3. A naive form of subscription to an 0r (relative) location

value was supported by resolving the subscription at the local node. This minor support

was necessary for my experimentation, described in the next section.

InfoS component. The InfoS was implemented as a simple MDX cube; knowledge was

stored in a multi-dimensional indexed table. The table eased attribute-based grouping of knowl-

edge for selection parameter evaluation - note that the closest and aggregate selection operations

involve grouping operations. KPs were stored in non-compressed format, and relational queries

were resolved using non-optimized instructions to gain insight into SPS’s basic performance.

The following policies were also adopted to reduce operational memory overhead.

• QEs were passed by reference to the InfoS component; thus the InfoS maintained a table

of references to the original QEs maintained at the SMCs.

• A simple hashtable was used to speed up the pairing of ingress and egress events within the

InfoS cube. The SMC names were used as keys to the hashtable to retrieve the location

and time index of the corresponding event pair.

• A sub-component, QE Analyzer, was implemented to translate QEs with relative values

or ranges into QEs with absolute values and ranges. This sub-component also indicated

whether the translated relative range is momentarily or permanently valid in SPS. It was

used by the InfoS as well as the Pub/Sub component (for SMC distribution analysis). The

SMC manager also used this to receive mapped absolute values for the 0r relative values.

SMC manager component. The SMC manager component maintained SMCs as instances

of a class, and evaluated them according to the SPS detection model; BeanShell [BS] was used to

examine the SMC predicates. SMC decomposition by predicates was assumed to be performed

externally and SMC decomposition by QEs was supported to allow the automatic distribution

and detection of conditions in the network.

189

5.9 Evaluation CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

JourneyPlannerApp

TrafficCongestionNearSPS

CarSpeedInductiveLoop User

TrafficCongestion

CarSpeed_SlowIL_High

Figure 5.15: Application scenario overview

5.9.3 Experiment: Journey Planner Application

An application scenario was implemented and tested (using real-data from SCOOT [SCO]) to

observe the SPS performance. The application was an extension of the traffic congestion exam-

ple, used throughout this chapter. The SPS clients comprised 620 (external) event publishers

and 500 (external) event subscribers. Every external event publisher belonged to one of three

types, described below.

Inductive loop sensors These clients monitored individual roads and provided periodic re-

ports on road-segment occupancies; published periodic InductiveLoop (IL) event notifica-

tions at 1Hz. Raw SCOOT data was used to represent these event publications.

Speed measurement sensors These clients reported on the speed of individual vehicles, pass-

ing by in a single direction, on each road. They published irregular, but potentially high-

volume, CarSpeed event notifications. The data was inferred from a secondary stream of

raw SCOOT data.

Location sensors These clients reported on the location of individual application clients, that

were simulated in the experiment. They published periodic User events at 1Hz. The data

was generated by the simulation engine.

Apart from the location sensors, whose data were simulated, all other sensors exhibited

temporary failures by means of missed data (event notifications). The external event subscribers

were of a single type, Journey Planner Applications. These clients were co-located with their

190

Chapter4/Figs/EPS/tcnflow.eps

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.9 Evaluation

(mobile) users, and subscribed to real-time traffic information to aid their users in planning

their journeys. The application clients subscribed to the TrafficCongestionNear event topic,

whose corresponding SMC (event publisher) is illustrated in Table 5.16. This SMC filtered

traffic congestion reports according to the present location of the user1. The SMC passed

real-time reports that were situated within the 2 road-junction distance of the user’s location.

The manually decomposed version of the TrafficCongestion SMC (shown in Table 5.10) was

introduced to transform low-level data into high-level traffic congestion reports.

The overall information flow diagram is shown in Figure 5.15, and the experimental parame-

ters are shown in Table 5.17. To examine SPS’s highest performance, a total of 1000 nodes were

used to allow complete SMC decomposition and distribution. A larger number would not affect

data processing, but only increase the cost of event routing and latency at the network layer.

A grid size of 256 × 256 ensured that every node had at least 5 neighboring nodes, thereby

prevented network disconnections. I selected real data from two distinct days, one relating to a

weekday and the other relating to a weekend, in the hope of detecting more traffic congestion

on the weekday than the weekend. The two days were Saturday 1st of July, 2006 for Exp1 and

Thursday 6th of April, 2006 for Exp2. Sensor data was examined from early morning (1AM) to

late evening (9PM) when traffic congestion was expected to decease. This expectation was later

confirmed when captured traffic congestion conditions were studied. To verify SPS’s operation

and correctness, the set of high-level events that were delivered to the SPS’s external event

subscribers were compared against an alternative centralized implementation. The SPS oper-

ation and its performance results are discussed below. My performance evaluation takes note

of three vital resources: processing, storage, and communications; and explores how efficiently

these resources were utilized to achieve the desired functionality.

5.9.3.1 Operational setup

The operational setup of SPS is defined by the decomposition and distribution of SMCs, and

the resolution of resulting event subscriptions that form the information processing chain shown

in Figure 5.15. Table 5.18 shows the statistics about the SMCs and the event subscriptions.

The TrafficCongestionNear SMC was replicated and positioned on nodes that hosted the

User event publishers (i.e. the mobile user nodes) in accordance with the SPS distribution

policy (Section 5.7.1). They could not be relocated, and totalled 500 SMCs as indicated in the

table. The TrafficCongestion SMC was decomposed along its QEs to distribute the detection of

traffic congestion conditions across multiple nodes. The range of location selection parameters

of A and B QEs were decomposed into 16 segments each, resulting in a total of 256 decomposed

TrafficCongestion SMCs. The majority of these were ineffective because the A.location ==

B.location condition (imposed by the SMC entrance predicate) meant that only decomposed

SMCs with matching location ranges could detect the condition. Thus, only 16 TrafficCongestion

SMCs were observed to capture traffic congestion conditions in the system.

1I decided to use location values from the User events for a more natural application setting, though the 0r

relative location value could equally be used, i.e. the entrance predicate could be written as |A.location − 0r| ≤ 2.

191

5.9 Evaluation CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Index Value

N “TrafficCongestionNear”

Q

A := ((closest ,TrafficCongestion,null,null),

(multiple : any ,null,null, (0r, 0r)),

(multiple : separate,null,null,DL),

(multiple : any ,null,null,DS));

B := ((closest ,User ,null,null),

(closest , 0r,null,null),

(closest , 0r,null,null),

(closest , atomic,null,null))

Pn |A.location −B.location| ≤ 2

An location := A.location

P x true

Ax

Table 5.16: TrafficCongestionNear SMC

The IL High and CarSpeed Slow SMCs were also decomposed along QEs, but with the

difference that each of these only relied on a single event topic for its input data; therefore

localization was achieved. These decomposed SMCs matched their corresponding number of

publishers, and totalled 60 each. SMC decomposition helped to balance the overall storage and

processing load across the network.

5.9.3.2 Processing

The processing complexity of SPS relates to the cost of SMC evaluations. SMCs are evaluated

whenever a new table of KPs are received from the InfoS. In these experiments, this only

occurred when a new event was received at the InfoS. Table 5.19 shows that SMC decomposition

lowered the number of events that were received at any one InfoS, thus reducing the frequency of

SMC evaluations at each node. For example, although the IL event publications total 4.32e+6

events, the maximum number of IL events (received at any InfoS) totals just 72000 events as a

result of SMC decomposition and localization. Similarly, the maximum number of events that

was received at any one InfoS, co-located with a TrafficCongestion SMC, was lowered from 1616

(Exp1) and 3588 (Exp2) events to 236 and 701 events, respectively. These figures are 14.6% and

19.5% of the 1616 and 3588 numbers, which are the sums of IL High and CarSpeed Slow event

publications.

The processing complexity of all SMC predicates was n, except for the TrafficCongestion

SMC predicates. This means that an incoming event (in most cases) triggered only a single KP-

combination examination at the SMC manager. The maximum processing complexity, observed

for the TrafficCongestion SMC, was 10n (Exp1) and 14n (Exp2), indicating that at worst-case

an SMC manager component examined 10 (Exp1) and 14 (Exp2) KP-combinations that involved

192

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.9 Evaluation

Parameter Value

Simulation parameters

simulation grid size 256 × 256

number of nodes 1000

number of roads 60

number of experiments 2

duration of experiments 20 hours

Topological parameters

number of nodes housing SPS components 1000

number of Journey Planner Application clients 500

number of Inductive loop sensors 60

number of Speed measurement sensors 60

number of Location sensors 500

Input parameters Exp1 / Exp2

number of SPS client subscriptions 500

number of SMC insertions 4

initial event stabilization interval period 3000 ticks

number of IL event publications 4.32e+6

number of CarSpeed event publications 330736 / 494682

number of User event publications 3.6e+7

Table 5.17: Experiment parameters

a newly received event notification. This compares to 74n (Exp1) and 90n (Exp2) processing

complexity that would have been realised had the TrafficCongestion SMC not been decomposed.

This processing complexity relates to the receipt of IL High event notifications, that were ex-

amined against all pairs of recent CarSpeed Slow KPs according to the TrafficCongestion SMC.

5.9.3.3 Storage

SMCs and knowledge are the two main elements that require storage in SPS. Table 5.20 shows

that SMC distribution has resulted in a maximum of one SMC allocation per node in the net-

work. The maximum number of observed SMCs (per node) reflects the maximum number of

temporarily spawned SMCs, which reflected the concurrent capture of traffic congestion condi-

tions at any one SMC. Table 5.20 also shows that a total of 876 SMCs served all (500) mobile

users. From these 876 SMCs, 376 SMCs were shared and collaboratively deduced the traffic

congestion information for the entire system. This sharing was achieved by the Pub/Sub com-

ponent which interconnected independent event subscribers (with overlapping interests) to the

same set of event publishers (SMCs), thereby avoiding duplicate data storage and processing in

the system.

193

5.9 Evaluation CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Statistics Exp1 & Exp2

SMC decomposition & distribution

number of SMC insertions 4

number of SMCs decomposed along predicates 0

number of SMCs decomposed along QEs 3

total number of decomposed SMCs 876

SMC counts

number of TrafficCongestionNear SMCs 500

number of TrafficCongestion SMCs 256

number of CarSpeed Slow SMCs 60

number of IL High SMCs 60

Event subscribers

total number of event subscribers 1376

external (SPS client) event subscribers 500 (36%)

internal (InfoS) event subscribers 876 (64%)

Event subscriptions

total number of event subscriptions 2132

subscriptions by SPS clients 500 (23%)

subscriptions by InfoSs 1632 (77%)

Table 5.18: SPS operational performance

The highest number of KPs, stored at any one InfoS, related to the knowledge stored for

the Car Slow SMCs. The highest numbers of Car KPs, stored for deducing the aggregation

information, were 37 (Exp1) and 30 (Exp2). These figures exclude any compressions or functional

optimizations that could further reduce this storage. Similarly, the highest numbers of KPs

stored for the TrafficCongestion SMCs were 14 and 21 KPs for Exp1 and Exp2, respectively.

This indicates that the aforementioned 236 and 701 input events (in Table 5.19) continuously

updated and overrode 14 and 21 storage units at the corresponding InfoS components. The

same analogy holds for InfoS components co-located with other types of SMCs, i.e. 72000 input

events only updated 30 storage units at the InfoS component co-located with an IL High SMC,

11548 (Exp1) and 17940 (Exp2) input events updated 37 (Exp1) and 30 (Exp2) storage units

within InfoS components co-located with two CarSpeed Slow SMCs, and 72168 (Exp1) and 72296

(Exp2) input events updated just 2 storage units within InfoS components co-located with the

TrafficCongestionNear SMCs. Finally, a maximum of just one event per node, and a total of

620 events were stored at the Pub/Sub components to support initial InfoS consistency.

194

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.9 Evaluation

Statistics Exp1 Exp2

Processing complexity

maximum number of events, received at an InfoS,

for the IL High SMC 72000 72000

for the CarSpeed Slow SMC 11548 17940

for the TrafficCongestion SMC 236 701

for the TrafficCongestionNear SMC 72168 72296

maximum number of predicate evaluations

per IL High SMC evaluation 1 1

per CarSpeed Slow SMC evaluation 1 1

per TrafficCongestion SMC evaluation 10 14

per TrafficCongestionNear SMC evaluation 1 1

Condition detections

number of IL High event publications 842 2540

number of CarSpeed Slow event publications 774 1048

number of TrafficCongestion event publications 168 296

number of TrafficCongestionNear event publications 4032 7104

Table 5.19: SPS computational performance

Statistics Exp1 Exp2

SMC storage

number of decomposed and distributed SMCs 876 876

maximum number of SMC placement per node 1 1

maximum number of observed SMCs per node 4 6

Knowledge (KP) storage

maximum number of KPs, maintained at an InfoS

co-located with an IL High SMC 30 30

co-located with a CarSpeed Slow SMC 37 30

co-located with a TrafficCongestion SMC 14 21

co-located with a TrafficCongestionNear SMC 2 2

Event storage

total number of events, stored at Pub/Sub components 620 620

maximum number of events, stored at one Pub/Sub component 1 1

Table 5.20: SPS storage performance

195

5.9 Evaluation CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

Statistics Exp1 Exp2

Event subscriptions

maximum number of subscriptions per InfoS 2 2

Events

total number of event publications 40656552 40825670

categorized by subscriber

external (SPS client) event publications 40650736 40814682

internal (SMC) event publications 5816 10988

categorized by communication cost

events, disseminated in the network 1784 3884

(events delivered in the network) (109856) (205408)

events, delivered locally 40654768 40821786

to SPS (subscriber) clients 4032 7104

to InfoS components 40650736 40814682

Table 5.21: SPS communication performance

5.9.3.4 Communication

Communication costs are often measured by the total energy used to deliver events from the

publishers to the subscribers. This largely depends on the network structure and the performance

of the adopted Pub/Sub protocol. Nonetheless, because the distribution of SMCs impacts the

formation of Pub/Sub links, I have measured this cost by examining the “number of event

notifications that were disseminated” and “the number of events that were delivered in the

network”.

Table 5.21 shows that out of the 40656552 (Exp1) and 40825670 (Exp2) event notifications

that were published in the system, only 1784 (Exp1) and 3884 (Exp2) events were disseminated

in the network. These figures account for 0.0044% and 0.0095% of the total event publications

in Exp1 and Exp2, respectively. Two factors contributed to these small percentages. Firstly, the

decomposition and localization of IL High and CarSpeed Slow SMCs as well as the partial local-

ization of the TrafficCongestionNear SMC led to localized processing of a substantial portion of

these events in the system. Secondly, the context-based data processing feature of SMCs meant

that only a small number of transitive and highly informative events (5816 events in Exp1, and

10988 events in Exp2) were published by SMCs.

The number of events that were delivered in the network is substantially higher than the

number of disseminated events because some events (e.g. the TrafficCongestion events) were

forwarded to a large number of event subscribers (e.g. 500 InfoS components that were co-located

with the TrafficCongestionNear SMCs).

196

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.10 Related Work

5.10 Related Work

In this section I provide an overview of related work. I discuss similarities and differences

between SPS and three classes of research:

State-based Approaches. SPS is not the first framework to use the notion of state for sen-

sor systems. Others [KR05; LCRZ03; LCL+04; ABE+04; SB07] have also provided the expres-

siveness of states to sensor network applications. But they are mainly based on the principles of

FSMs or enhanced state hierarchy and concurrency models, such as Statecharts [Har87], and de-

scribe the internal state of a program in sensor networks. They are predominantly “state-oriented

programming models”, in which one or more user applications can be modelled and programmed

over sensor devices (Section 2.2). Target tracking is a popular application domain among this

work and in some cases has dominated their design; for example Envirotrack [ABE+04] facili-

tates the coding of tracking applications where tracking objects follow external environmental

entities that are detected by application states.

Other work uses the notion of state to reflect knowledge about the real-world. Examples

include [TB07c] where lasting conditions are captured over correlated events, and [RM04b] where

high-level information is deduced from primitive state events. In [RM04b], primitive state events

are sent to a centralized server, where expressive state predicates are evaluated. The proposed

high-level predicates resemble interval arithmetic [All83; WR94] where temporal relationships

between primitive sensor states are examined. This work is analogous to interval composite event

detection (explored in [Ksh05]) in the CE frameworks. My work uses a similar notion of state

to represent high-level conditions and contexts, but focuses on an open distributed environment

were detectors (SMCs) are distributed and processed independently. In addition, contextual

awareness, and temporal and spatial event processing capabilities are absent in [RM04b].

Composite Event Frameworks. CE frameworks (Section 2.4.2) extract high-level infor-

mation through patterns of event occurrences. These patterns are encapsulated as individual

CEs, which may subsequently serve as events to other CEs. Event parameterization, which

implies constraints over event attribute values, hinders the sharing of CEs, and is often per-

formed pre- or post-CE detection. In contrast, SPS supports event parameterization as part of

its condition detection process.

With regards to expressiveness and usability, previous work [TB07c; RM04b; KBM04] has

shown that some real-world conditions may be difficult to express by event patterns. In [RM04b],

the authors show that in order to detect the presence of multiple people in the same room with

a CE framework all possible event sequences that lead to this must be specified - in fact, the

number of sequences grows exponentially as the number of individuals involved in the evaluation

increases. In addition, CE frameworks were not originally designed for application environments

where publishers (like sensors) observe a shared external entity (such as the environment); they

emerged from active DBMSs where events were certain, unique, and independent (see Sec-

tion 2.4.2). Event occurrences in sensor systems, however, may indicate much the same infor-

mation as others close is time and space, and my analysis within this chapter and Chapter 3

197

5.10 Related Work CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

have demonstrated how states can be used to filter events that convey redundant information

about conditions to the user.

SMCs maintain states and data structures that aid context-based data processing (for in-

creased efficiency) and memory-based condition detection (for increased expressiveness). Of

course some CE frameworks (specifically those implemented using FSA) also use states inter-

nally to maintain partial data structures, but in SPS these states are made available (externally)

to the users to aid the capture of more expressive and lasting conditions. On the downside, SPS

performs worse than CE frameworks, when detection of event occurrence patterns is of interest.

This is because SPS uses a join operation for composing knowledge, which is more expensive

than some detection models that are developed for CE frameworks.

Focusing on the event consumption policies, events are never consumed in SPS; instead,

they are discarded when their contained knowledge falls outside the scope of SMCs’ interests.

This eases detector (SMC) recovery, as SPS only needs to recover the lost events. But within

CE frameworks, one needs to also worry about which events were consumed prior to detector

failure. Finally, SPS defines a unified model for temporal and spatial selection of events, con-

dition detection, and condition interrelationships. Condition interrelationships can lead to the

detection of multiple concurrent conditions, which a single SMC can monitor without the need

for pre-existing replicated detectors.

Databases & Stream Processing. With a Database-oriented view [GHH+02] on sen-

sor networks, Database-related frameworks [MFHH03; BGS00; MFHH02; SKA03] have been

developed, that support application-level SQL queries over resource-constrained sensor devices

(Section 2.4.1.1). These efforts are best suited for application environments where little is known

about the environment, and data collection is of major interest. Data are represented as rows

in a two-dimensional relational table and manipulated as in traditional DBMSs. In contrast, I

chose an MDX-like cube structure which stores data in cells and benefits from multiple symmet-

rical dimensions. MDX dimensions allow for higher expressiveness as data is indexed according

to multiple attributes, and their symmetry was used to achieve a uniform model for SMCs’

contextual, temporal, and spatial data manipulation capabilities in SPS.

Tight resource considerations, in the discussed DBMSs, have often restricted the expressive-

ness and the range of operators that are available to the user, though more recent efforts have

begun to address the need for added expressiveness (e.g. as in REED [AML05]). This class of

work is not suitable for open distributed environments as adaptation and reconfiguration issues

have been largely overlooked by emphasis on query optimizations and evaluations. In addition,

the distinguished role of centralized gateways limit the scalability and openness that can be

achieved in these systems.

Data-stream processing systems support continuous queries over streams of data. They

are also based on the principles of DBMSs, but focus on environments where data comes at a

higher rate, such as from stock markets or sensor networks with gateways. This data cannot

be stored or processed as in traditional DBMSs. These systems are largely centralized and

attempt to achieve the expressiveness of DBMSs over passing data streams. This is difficult

as many DBMS operators have been designed for persistent data (Section 2.4.1.2). SPS is

198

CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE 5.11 Summary

distinguished from data-stream processing systems by its operational environment, as well as

state-based features that incorporate context and memory for data processing. The use of

relational algebra in SPS, however, allows the framework to benefit from a large body of work

that surrounds the implementation and optimization of DSMSs. For example, [WDR06] (a paper

on SASE) discusses how predicates can be examined as part of a join operation to optimize

performance in situations like the knowledge examination phase in the SPS condition detection

model, and [ZDNS98] discusses how multiple dimensional queries (like those defined by QEs

in SPS) can efficiently be examined against an MDX cube (similar to the InfoS component).

However, there is a trade-off between the performance gained by these optimizations and the

complexity that arises from implementing and executing these on certain node platforms.

Primitive sensing and limited bandwidth in sensor networks often restrict the rate of data

that is realised from one or a few sensor devices. Distributed frameworks, like SPS, exploit this

by pushing computations into the network and processing raw data before they turn into large

data streams. When applications do not know what processing to perform a priori, or when

all sensor data needs to be archived for later analysis, stream-processing systems can be used

(at sensor network gateways) to handle the incoming high rate data-streams. Stream-processing

systems could also be used when hard real-time guarantees are required - hierarchical information

processing in SPS induces delays that may be eliminated if all data is processed centrally (at the

gateway). Overall, I envisage SPS and stream-processing systems to complement one-another,

such that distributed frameworks like SPS operate within the network and stream-processing

systems operate at gateways or at the client side.

5.11 Summary

In this chapter, I described SPS [TB07b; TB08], a State-based Publish/Subscribe framework

that is designed for open distributed sensor systems. SPS builds on the Pub/Sub communication

paradigm to support a flexible and dynamic system structure; all components (applications,

sensors, actuators, and even internal SMCs and InfoS components) are served as event clients

through a unified Pub/Sub interface. In SPS, the network infrastructure is separated from the

data processing components by a Pub/Sub layer. Thus, SPS can operate in wired, wireless, and

hybrid networked environments as chosen by the system designers1.

Central to the design of SPS are SMCs that capture high-level user-specified conditions or

situations through internal data processing. These components process data according to the

run-time context of the condition being observed; therefore save significant communication and

processing resource. Their expressiveness allows data to be selected according to time, location,

and context, and processed (aggregated, fused, examined, and/or partitioned) according to user-

specified expressions. They are often composed together to perform hierarchical information

processing; the results of which are re-usable data that is also meaningful to applications.

1It is interesting to note that some work, like [SM05], argue for hybrid infrastructures as opposed to pure

wireless infrastructures that are commonly perceived by the sensor network researchers.

199

5.11 Summary CHAPTER 5. STATE-BASED PUBLISH/SUBSCRIBE

SMCs are also flexible and scalable at the component level; they have an independent and

decomposable operational semantics. This allows SPS to distribute, share, and (where possible)

localize SMCs for efficient and effective data processing. My performance evaluation, in the

context of a smart transportation system, examined these benefits with respect to three system

resources: processing, communication, and storage, and demonstrated that SPS with SMCs

provides an expressive and scalable solution for large-scale heterogeneous sensor systems.

200

Chapter 6

Conclusions

With recent technological advancements and increased realisation of the benefits of studying

environmental data, a wide range of sensor networks are emerging that can serve many diverse

applications. At the center of these systems lies the data, which often constitutes the sole means

of interaction between sensor networks and applications. Facilitating data-centric interaction

is a complex challenge that has been explored in various work, including this dissertation. To

meet this challenge, I developed a data manipulation framework called SPS for large-scale and

dynamic sensor networks.

The wide design space of sensor networks and their diverse set of applications have enabled

researchers to explore different problems, often corresponding to different sensor network design

points. I focused on the problem of developing a decentralized information processing tool for

sensor networks that contain many devices and serve many applications. This design point mo-

tivated the use of Pub/Sub, which is a data-centric many-to-many communication paradigm.

I also realised that these applications, particularly in the context of smart environments, are

increasingly interested in the detection and capture of high-level conditions (situations). Influ-

enced by the expressiveness of states (used in FSMs and some sensor network programming

models), I opted for a state-centric information processing model in which user interests are

reflected as transitions in binary states (null state and detection state). Therefore SPS is a

composition of Pub/Sub messaging and state-centric data processing, which together offer four

key features: abstraction, openness, scalability, and expressiveness.

In the design of SPS, many sensor network challenges were considered and addressed by

distinct operational components. These challenges, which originated from three key attributes:

data, scale, and resource, reflected an inter-related set of issues that arise in many sensor systems,

including smart environments. Given that they may be observed in other sensor networks

(corresponding to different design points), I developed modular components that can be re-used

with other systems and/or employed standalone. These components and their contributions are

summarized below.

State Filter (SF) SFs were developed for Resource-constrained Sensor Networks; these net-

works are motivated by their low manufacturing costs and small device sizes. Since opera-

201

6.1 Further Work CHAPTER 6. CONCLUSIONS

tional complexity must be extremely low for these devices, they demand tailored solutions

and components. SFs exploit the correlation and redundancy of data in sensor networks

and perform simple filtering (similar to that in content-based filters) to reduce the mes-

saging overhead and improve the expressiveness. The key idea at the center of the design

of these components is context-based data processing.

Quad-PubSub (QPS) QPS is a standard Pub/Sub protocol for location-aware Wireless Sen-

sor Networks. It implements a topic- and location-based subscription model and satisfies

three design goals: abstraction, openness, and scalability. Influenced by the need to sup-

port more flexible routing policies, such as low latency routing or resource-aware routing,

it separates itself from data routing and instead uses a location-based overlay (in the form

of Quad-Trees) to construct Event Dissemination Trees with shared paths. QPS pro-

vides complete time and location decoupling and allows Event Dissemination Trees to be

maintained through a standard Pub/Sub interface.

State Maintenance Component (SMC) Shifting from tight resource constraints (in Resource-

constrained Sensor Networks) to heterogeneous resources (in large-scale sensor networks),

I enhanced my SFs with data fusion and temporal/spatial data manipulation capabilities

for more expressive condition detection. Inspired by the event selection and consumption

policies in Composite Event frameworks, which originated from active DBMSs, I facili-

tated similar features for sensor networks with different attributes, namely event content,

event time, and event location. In order to increase scalability, I preserved the simplicity

of SFs in terms of their independent operational semantics and extended them with de-

composability for distribution. Their detection model is described using relational algebra,

which implies that related efforts in the context of DBMSs and Data Stream Management

Systems can be used to implement and/or optimize the framework on different sensor

network platforms. These optimizations are constrained by the available resources on the

selected sensor network platforms.

Information Space (InfoS) InfoS is the data storage component of SPS. It is closely related

to, but separate from, SMCs as it addresses a different set of problems. These problems

are mainly related to non-deterministic network behavior and local contextual (time and

space) information. With simple data processing, InfoS offers rich data reflecting aggre-

gated, continuous, and/or contextual data to SMCs for processing. Since the design of

InfoS resembles an MDX cube, its implementation can benefit from the large class of

optimizations that have been developed for relational Database tables and MDX. These

optimizations may also be constrained due to the limited available nodal resources.

6.1 Further Work

There is a wide range of potential research avenues in which a sensor network middleware

framework, such as SPS, can be extended. These extensions should increase the usability of the

202

CHAPTER 6. CONCLUSIONS 6.1 Further Work

framework across a wider sensor network design space. In this section, I describe five research

areas that could improve SPS.

Real-world Sensor Noise Analysis. In this work, I assumed that sensor noise can be

treated internally in a simple fashion, either by attribute-based computation in SFs or data ag-

gregation functions in SMCs, or externally manipulated (by an application-defined component)

in an accurate manner. Internal noise treatment is preferred as it benefits from middleware’s

features and optimizations, but any such integrated method needs to be justified by wide us-

age and efficient implementation. Only real-world sensor network deployments can suggest how

appropriate and useful the integrated noise manipulation methods are in capturing high-level

conditions for applications and users. Although few data aggregation functions have been im-

plemented in SMCs, the formal semantics of these components allow support for extensible data

aggreation functions that can be defined using relational algebra.

Support for Feedback. A user’s knowledge of an environment improves as he/she monitors

and receives data about it. Conditions (or situations) of interest can then be re-specified with

greater accuracy and detected more reliably in the system. SPS allows SMCs to be replaced

when a newer SMC (with an identical name to an existing SMC) is introduced to the system.

An alternative solution is to relax the condition specification requirements and continually refine

a probabilistic specification through learning and user feedback. The latter option is also useful

when a user cannot express his/her condition of interest explicitly. Support for learning and

feedback requires the existing SPS predicate language (Section 3.3.1.1), which was influenced

by conditional statements in common programming languages, to be re-visited and augmented

with probabilistic expressions that can be continually refined through user feedback. At the

messaging service a lightweight transactional model is also needed to support feedback from the

subscribers to the publishers. This transactional model ensures a consistent knowledge about

the observed conditions at the event publishers. Support for transactions (in Pub/Sub systems)

has recently received some attention [VPGB07] from researchers.

Support for Debugging. As we shift from centralized solutions to decentralized solutions

for increased scalability and fault-tolerance, debugging applications and protocols becomes in-

creasingly difficult. To enable debugging of large-scale distributed systems, novel solutions must

be developed that allow a combination of one or more components (and their operations) to be

studied in isolation. This capability enables system administrators to examine the distributed

system at micro (i.e. individual component) and/or macro (group of components) levels, de-

pending on the error or type of malfunction.

Mobility Support. In sensor networks, individual devices are often static. QPS (Chap-

ter 4) was developed assuming this. Some applications, however, use mobile devices and pose

challenges to system researchers [UVA06]. To support mobility, data routing and data dissemi-

nation algorithms must be adaptable to changes in the location of clients and data. Preliminary

work [SH04] has investigated the maintenance of data in the face of mobility and can be further

investigated to maintain QPS data structures in mobile Wireless Sensor Networks. However,

maintaining a dynamic and scalable Event Dissemination Tree requires more research. In ad-

dition, because the cost of maintaining optimal operation should be compared to the cost of

203

6.1 Further Work CHAPTER 6. CONCLUSIONS

non-optimal operation, the notion of run-time SMC relocation changes significantly in mobile

environments.

Security. Sensor networks are often unattended and operate in remote areas. Devices

may be accessible by remote parties and are susceptible to a variety of attacks including node

capture, physical tampering, and denial of service [PSW04; DX08]. Compromise generally

occurs when an attacker finds a node and then directly connects to it via a wired connection

of some sort. Security concerns and trust issues [CGS+03] are difficult to manage due to the

limited capabilities of devices in terms of computation, communication, and energy. SPS and

QPS need significant enhancements if they are to be used in un-secured and/or un-trusted open

environments. The semantics of data sharing must be controlled [BMY03; BEP+03] and some

collaborative behaviors (such as the open manipulation of the Event Dissemination Tree by

event clients in QPS) should be restricted.

204

Appendix A

Replica SFs Theorem

Theorem. For any n ≥ 1 number of SF replicas (with the same status bit values) applied

sequentially to an event e, the outcome is the same as applying just a single SF to e,

∀n ∈ N.n ≥ 1 Fn(e) = F 1(e), (A.1)

where F denotes an SF, and F i(e) denotes the application of i number of sequential SFs to e,

i.e. F i(e) = F 1(F i−1(e)).

Proof. This proof is by induction. For every natural number n ≥ 1 the statement P (n) must be

true,

P (n) : Fn(e) = F 1(e). (A.2)

The base case, where n = 1, is trivial. P (1) holds by substitution.

P (1) : F 1(e) = F 1(e). (A.3)

For the induction case, I show that P (n) implies P (n + 1).

Fn+1(e) = F 1(Fn(e)) by definition. (A.4)

P (n) holds, therefore

Fn(e) = F 1(e)⇒ Fn+1(e) = F 1(F 1(e)). (A.5)

F is an SF, therefore F = {Pn, P x, b} (definition 3.4) and

F 1(e) =

{

e if (b = 0 ∧ Pn(e) = {true}) ∨ (b = 1 ∧ P x(e) = {true})
∅ otherwise

(A.6)

Let F 1(F 1(e)) ≡ F 1
a (F 1

b (e)), where Fa = Fb = F (i.e. Fa(x) = Fb(x) = F (x)). I show that

F 1
a (F 1

b (e)) = F 1
b (e) for every possible outcome of F 1

b (e).

If F 1
b (e) = e, then F 1

a (F 1
b (e)) = F 1

a (e) = e; therefore F 1
a (F 1

b (e)) = F 1
b (e) holds for F 1

b (e) = e.

If F 1
b (e) = ∅, then F 1

a (F 1
b (e)) = F 1

a (∅).

Pn(∅) = P x(∅) = {false} (by SF predicate definition)⇒ F (∅) = ∅ ⇒ F 1
a (∅) = ∅ (A.7)

205

CHAPTER A. REPLICA SFs THEOREM

Therefore, F 1
a (F 1

b (e)) = F 1
b (e) also holds for F 1

b (e) = ∅.
I have shown that F 1

a (F 1
b (e)) = F 1

b (e) holds for all possible outcomes of F 1
b (e); therefore

F 1(F 1(e)) = F 1(e) and P (n + 1) holds.

206

Appendix B

SPS QEs

B.1 QE selection operators

In this section, I describe the output of QE selection parameters (for different selection operators)

using set notations. The selection parameters are examined with respect to a candidate attribute

a ∈ AF , where AF is the set of fixed attribute names AF = {name, time, location, status}. I

first define the input and output relations X and Y , and then describe how Y is attained in the

case of each selection parameter (containing a different selection operator).

B.1.1 Input relation (X)

Let’s assume the input relation, X, as a set of tuples,

X = {x}, (B.1)

where each tuple x conforms to a KP data structure (definition 5.3) as follows.

x = {(valid , vl), (n1, v1), (n2, v2), · · · , (nm, vm)}. (B.2)

All names are unique (i.e. i 6= j ⇒ ni 6= nj). The first four names (n1, n2, n3, and n4) hold a

one-to-one mapping with the AF set members, and the remaining m−4 names are unrestricted.

B.1.2 Output relation (Y)

Similarly, Y consists of a set of tuples,

Y = {y}, (B.3)

where each tuple y consists of the same set of pairs as in x ∈ X.

y = {(valid , vl), (n1, v1), (n2, v2), · · · , (nm, vm)}. (B.4)

All names match the set of names used in the input relation,

∀(ni, vi) ∈ x ∈ X, (nj , vj) ∈ y ∈ Y. i = j ⇒ ni = nj . (B.5)

The values, however, may differ.

207

B.1 QE selection operators CHAPTER B. SPS QEs

B.1.3 Nearest-index operator (closest)

The output relation, Y , for a selection parameter (closest , v, f, g) over X is defined as follows.

Y = {x ∈ X|∃(ni, vi) ∈ x : (ni = a) ∧N(i, v, x)}, (B.6)

where N is a nearest-value assertion function,

N : N× R× {R2} → B. (B.7)

N(i, v, x) 7→















v = vi ∈ x for i ∈ {1, 4}

∃Z ∈ Z(i) : ∀(nj , vj) ∈ z,∀z ∈ Z. i = j ⇒
LEAST vi ∈ x. |v − vi| ≤ |v − vj | for i ∈ {2, 3},

(B.8)

where LEAST is the least operator (defined shortly) and Z(i) is a mutually exclusive set of

groups that partition X according to AF − {a} attribute values.

The LEAST operator is defined as follows.

(LEAST x. P x) = (THE x. P x ∧ (∀y. P y → x ≤ y)), (B.9)

where the THE operator is the definite description - it denotes the x such that P (x) is true,

provided there exists a unique such x; otherwise, it returns an arbitrary value of the expected

type.

The Z(i) function is defined as follows.

Z(i) = {Zi}, (B.10)

Zi = {x ∈ X|∀l ∈ {1, · · · , 4},∀z ∈ Zi. (nx
l , vx

l) ∈ x, (nz
l , v

z
l) ∈ z, l 6= i⇒ vx

l = vz
l } (B.11)

B.1.4 Aggregation operator (aggregate)

The output relation, Y , for a selection parameter (aggregate, v, f, g) over X is defined as follows.

Y = {y|y = r(Z ∈ Z(a))}, (B.12)

where r is an aggregation function and Z is a distinct partition from the set of X partitions as

follows.

Z(a) = {Za}, (B.13)

Za = {x ∈ X|∀l ∈ {1, · · · , 4},∀z ∈ Za,∀(nx
l , vx

l) ∈ x,∀(nz
l , v

z
l) ∈ z. (B.14)

(nx
l 6= a⇒ vx

l = vz
l) ∧ (nx

l = a⇒ vx
l ∈ g)} (B.15)

The aggregation function r aggregates the set of input tuples Z into a single tuple y as follows.

r(Z) = {(valid , vl), (ni, vi)|∀i ∈ {1, · · · , 4} vi = h(i, Z),∀i ∈ {5, · · · , m} vi = f(i, Z)}, (B.16)

208

CHAPTER B. SPS QEs B.2 Joining decomposed SMCs

where h and f are index and value aggregation functions, respectively. The function f is an

aggregate function, f ∈ F = {max ,min, sum, avg}, and computed as follows.

f(j, Z) 7→



















vj ∈ (nj , vj) ∈ z ∈ Z : ∀v′j ∈ (n′
j , v

′
j) ∈ z′ ∈ Z. vj ≥ v′j for f = max

vj ∈ (nj , vj) ∈ z ∈ Z : ∀v′j ∈ (n′
j , v

′
j) ∈ z′ ∈ Z. vj ≤ v′j for f = min

Σvj : (nj , vj) ∈ z ∈ Z for f = sum
Σvj

|Z| : (nj , vj) ∈ z ∈ Z for f = avg

(B.17)

The function h assigns the fixed attribute values as follows.

h(j, Z) 7→
{

LEAST vj ∈ (nj , vj) ∈ z ∈ Z : f(5, Z) = v5 ∈ (n5, v5) ∈ z for f ∈ {max ,min}
Σvj

|Z| : vj ∈ (nj , vj) ∈ z ∈ Z for f ∈ {sum, avg}
(B.18)

The validity attribute value vl is also determined as follows.

vl =

{

vl ∈ (valid , vl) ∈ z ∈ Z : f(5, Z) = v5 ∈ (n5, v5) ∈ z for f ∈ {max ,min}
true if ∃vl ∈ (valid , vl) ∈ z ∈ Z : vl = true, otherwise false for f ∈ {sum, avg}

(B.19)

B.1.5 Range operator (multiple)

The output relation, Y , for a selection parameter (multiple, v, f, g) over X is defined as follows.

Y = {x ∈ X|∃(ni, vi) ∈ x : (ni = a) ∧ (vi ∈ g)} (B.20)

B.2 Joining decomposed SMCs

In this section, I show what logical operations are required to join SMC events that emerge

from decomposed SMCs. Let s be the main SMC that is decomposed into s1, s2 SMCs with

respect to an QE, B, that has the o ∈ Omultiple sub-operator in its a ∈ AF attributed selection

parameter. I chose a decomposition size of two (i.e. s1 and s2 SMCs) for simplicity and clarity;

the following arguments equally apply for a larger number of decompositions.

Let us also assume that s is an SMC that captures momentary conditions with Pn = p and

just two QEs, A and B - the latter of which is decomposed. The corresponding KPs from these

QEs are labeled as KA and KB, respectively. Of course, s1 and s2 examine disjoint portions

of the InfoS; therefore, we label their resultant KB KPs as K1 and K2 (KA is the same). The

decomposed group attributes (of B QE in s1 and s2) imply the following.

(KB = K1 ∪K2) ∧ (K1 ∩K2 = ∅) (B.21)

Let us also label the SKs, that result from the evaluation of s, s1, s2 SMCs, as S, S1, S2,

respectively; and further assume that their DKs are equivalent to their SKs. The latter assump-

tion holds if no multiple : separate sub-operator exists in B’s selection parameters (in s) or if it

has already been decomposed across each attribute value as required by the QE decomposition

policy (Section 5.7.2.2). This assumption is dropped for when o = multiple : separate.

209

B.2 Joining decomposed SMCs CHAPTER B. SPS QEs

With the above assumption, SMC events mirror their SMCs’ SKs when the condition of the

o sub-operator is satisfied over SKs. Thus, the relationship between satisfied S, S1, and S2 SKs

can be studied to determine how SMC events (from s1 and s2) should be joined to attain results

equivalent to s SMC events. The following, however, holds about S, S1, and S2.

S = S1 ∪ S2 (B.22)

S1 ∩ S2 = ∅ (B.23)

Proof. The S = σp(KA ×KB) holds by definition (Section 5.6.5). Therefore

S = σp(KA ×KB) = σp(KA × (K1 ∪K2)) (B.24)

= σp((KA ×K1) ∪ (KA ×K2)) (as B.21) (B.25)

= (σp(KA ×K1)) ∪ (σp(KA ×K2)) (B.26)

= S1 ∪ S2 (B.27)

K1 ∩K2 = ∅ ⇒ (KA ×K1) ∩ (KA ×K2) = ∅ (B.28)

⇒ S1 ∩ S2 = ∅ (B.29)

B.2.1 multiple : one sub-operator

Given o = multiple : one, SMC events (from s) are realised when |πaS| = 1.

|πaS| = |πa(S1 ∪ S2)| (B.30)

= |πaS1|+ |πaS2| (as B.23) (B.31)

=

{

|πaS1| = 0 ∧ |πaS2| = 1
|πaS1| = 1 ∧ |πaS2| = 0

(B.32)

Therefore, SMC events (from s) are realised when SMC events from either (but not both)

s1 or s2 are realised. Hence, one can eliminate s in favor of s1 and s2 decomposed SMCs if the

resulting SMC events are joined at a joining SMC by an XOR logical operator.

B.2.2 multiple : any sub-operator

Given o = multiple : any , SMC events (from s) are realised when |S| ≥ 1.

|S| = |S1 ∪ S2| (B.33)

= |S1|+ |S2| (as B.23) (B.34)

=

{

|S1| ≥ 1
|S2| ≥ 1

(B.35)

210

CHAPTER B. SPS QEs B.2 Joining decomposed SMCs

Therefore, SMC events (from s) are realised when SMC events from either s1 or s2 are

realised. Hence, one can eliminate s in favor of s1 and s2 decomposed SMCs if the resulting

SMC events are joined at a joining SMC by an OR logical operator.

B.2.3 multiple : all sub-operator

Given o = multiple : all , SMC events (from s) are realised when |πaS| = |πaKB|.

|πaS| = |πaKB| (B.36)

|πaS1|+ |πaS2| = |πaK1|+ |πaK2| (B.37)

=

{

(|πaS1| = |πaK1|) ∧ (|πaS2| = |πaK2|)
(|πaS1| 6= |πaK1|) ∧ (|πaS2| 6= |πaK2|) (B.38)

The latter option can’t hold true, because if (|πaS1| 6= |πaK1|) ∧ (|πaS2| 6= |πaK2|) then S1

and S2 don’t satisfy the condition of the o sub-operator and SMC events (from s1 or s2) are

not generated. Hence, only the former option, (|πaS1| = |πaK1|) ∧ (|πaS2| = |πaK2|), can be

true. In this case, SMC events from all decomposed SMCs (s1 and s2) should be realised. This

assertion can be tested by an AND logical operator in a joining SMC.

B.2.4 multiple : separate sub-operator

Given o = multiple : separate, SMC events (from s) are realised when |S| ≥ 1. The generated

events are defined by the DKs, which are determined as follows.

{c|c = σ(a=i∈(πaKB))S} (B.39)

Let us represent this set by a relation called C, C = {c}.

C = σ(a=i∈(πaKB))S (B.40)

= σ(a=i∈(πa(K1∪K2)))(S1 ∪ S2) (B.41)

= σ(a=i∈(πaK1∪πaK2))S1 ∪ σ(a=i∈(πaK1∪πaK2))S2 (B.42)

Since S1 = σp(KA ×K1), S2 = σp(KA ×K2), and B.21, the following holds.

σ(a=i∈(πaK2))S1 = ∅ (B.43)

σ(a=i∈(πaK1))S2 = ∅ (B.44)

Therefore

C = σ(a=i∈(πaK1))S1 ∪ σ(a=i∈(πaK2))S2 (B.45)

C = C1 ∪ C2, (B.46)

211

B.2 Joining decomposed SMCs CHAPTER B. SPS QEs

where C1 = σ(a=i∈(πaK1))S1 and C2 = σ(a=i∈(πaK2))S2. Observe that C1 and C2 are DKs of S1

and S2 (from s1 and s2) should they happen to satisfy the o sub-operator condition. Therefore,

the set of SMC events (from s) is equivalent to the union of SMC events from s1 and s2. From

B.23 and B.39, it follows that C1 ∩ C2 = ∅; therefore, the decomposed SMCs (s1 and s2) can

publish events that match the event topic name of s SMC without the need for a joining SMC.

212

Bibliography

[AAB+05] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexan-

der Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The

design of the borealis stream processing engine. In Proceedings of the Bien-

nial Conference on Innovative Data Systems Research (CIDR), pages 277–289,

Asilomar, CA, USA, January 2005. 55, 56

[ABE+04] T. Abdelzaher, B. Blum, D. Evans, J. George, S. George, L. Gu, T. He,

C. Huang, P. Nagaraddi, S. Son, P. Sorokin, J. Stankovic, and A. Wood.

EnviroTrack: Towards an environmental computing paradigm for distributed

sensor networks. In Proceedings of the International Conference on Distributed

Computing Systems (ICDCS), pages 582 – 589, Tokyo, Japan, March 2004. 44,

197

[ABW02] A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete lan-

guage for continuous queries over streams and relations. Technical Report

2002-57, Stanford University, November 2002. 55

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous

query language: semantic foundations and query execution. The VLDB Jour-

nal, 15(2):121–142, 2006. 57

[AE04] Asaf Adi and Opher Etzion. Amit - the situation manager. The VLDB Journal,

13(2):177–203, 2004. 59, 60, 61, 62

[AKK04] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor net-

works: a survey. IEEE Wireless Communications, 11(6):6–28, 2004. 45

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Communi-

cations of the ACM, 26(11):832–843, 1983. 197

[AML05] Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner. REED: robust,

efficient filtering and event detection in sensor networks. In Proceedings of the

International Conference on Very Large Data Bases (VLDB), pages 769–780.

VLDB Endowment, 2005. 54, 198

213

BIBLIOGRAPHY BIBLIOGRAPHY

[And96] C. André. Representation and analysis of reactive behaviors: A synchronous

approach. In Proceedings of the IMACS Multiconference on Computational

Engineering in Systems Applications (CESA), pages 19–29, Lille, France, July

1996. IEEE Computer Society. 43

[AS06] Ian F. Akyildiz and Erich P. Stuntebeck. Wireless underground sensor net-

works: Research challenges. Ad Hoc Networks, 4(6):669–686, 2006. 143

[ASSC02] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey

on sensor networks. IEEE Communications Magazine, 40:102–114, 2002. 41,

42

[AY03] Kemal Akkaya and Mohamed Younis. An energy-aware qos routing protocol

for wireless sensor networks. In Proceedings of the International Conference on

Distributed Computing Systems Workshops (ICDCSW), pages 710–715, Wash-

ington, DC, USA, 2003. IEEE Computer Society. 46

[AY05] Kemal Akkaya and Mohamed F. Younis. A survey on routing protocols for

wireless sensor networks. Ad Hoc Networks, 3(3):325–349, 2005. 45

[Bag05] A. Baggio. Wireless sensor networks in precision agriculture. In Proceedings of

the ACM Workshop on Real-World Wireless Sensor Networks (REALWSN).

ACM, 2005. Poster Session. 90

[BB03] Boris Jan Bonfils and Philippe Bonnet. Adaptive and decentralized operator

placement for in-network query processing. In Proceedings of the International

Symposium on Information Processing in Sensor Networks (IPSN), pages 47–

62, 2003. 175

[BBB04] Jenna Burrell, Tim Brooke, and Richard Beckwith. Vineyard computing: Sen-

sor networks in agricultural production. IEEE Pervasive Computing, 3(1):38–

45, 2004. 41

[BBB+06] Can Basaran, Sebnem Baydere, Giancarlo Bongiovanni, Adam Dunkels,

M. Onur Ergin, Laura Marie Feeney, Isa Hacioglu, Vlado Handziski, Andreas

Kopke, Maria Lijding, Gaia Maselli, Nirvana Meratnia, Chiara Petrioli, Silvia

Santini, Lodewijk van Hoesel, Thiemo Voigt, and Andrea Zanella. Research

integration: Platform survey - critical evaluation of platforms commonly used

in embedded wisents research. Technical Report EW-T21/D01-SICS-001-01,

Embedded WiSeNts, 2006. 38

[BBC] Brainy buildings conserve energy. Website.

http://www.coe.berkeley.edu/labnotes/0701brainybuildings.html. 41

214

http://www.coe.berkeley.edu/labnotes/0701brainybuildings.html

BIBLIOGRAPHY BIBLIOGRAPHY

[BBC+01] Ljubica Blazevic, Levente Buttyan, Srdjan Capkun, Silvia Giordano, Jean-

Pierre Hubaux, and Jean-Yves Le Boudec. Self organization in mobile ad

hoc networks: the approach of terminodes. IEEE Communications Magazine,

39(6):166–174, 2001. 89

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. Models and issues in data stream systems. In Proceedings of the ACM

Symposium on Principles of Database Systems (PODS), pages 1–16, New York,

NY, USA, 2002. ACM. 56, 57

[BBE+08] Jean Bacon, Alastair Beresford, David Evans, David Ingram, Niki Trigoni,

Alexandre Guitton, and Antonios Skordylis. Time: An open platform for cap-

turing, processing and delivering transport-related data. In Proceedings of the

IEEE Consumer Communications and Networking Conference (CCNC), pages

687–691, Las Vegas, NV, USA, January 2008. Session on Sensor Networks in

Intelligent Transportation Systems. 145

[BBM+05] R. Baldoni, R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-

based publish-subscribe over structured overlay networks. In C. Marchetti,

editor, Proceedings of the International Conference on Distributed Computing

Systems (ICDCS), pages 437–446, 2005. 139

[BBMD03] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. Chain:

operator scheduling for memory minimization in data stream systems. In

Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pages 253–264, New York, NY, USA, 2003. ACM. 57

[BCSW98] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Wood-

ward. A distance routing effect algorithm for mobility (DREAM). In Proceed-

ings of the ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom), pages 76–84, New York, NY, USA, 1998. ACM. 89

[BDG+07] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Os-

sher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker White.

Cayuga: a high-performance event processing engine. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD), pages

1100–1102, New York, NY, USA, 2007. ACM. 61

[BDSZ94] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang.

MACAW: a media access protocol for wireless lan’s. In Proceedings of the

ACM International Conference on Data Communication (SIGCOMM), pages

212–225, New York, NY, USA, 1994. ACM. 126

215

BIBLIOGRAPHY BIBLIOGRAPHY

[BE02] David Braginsky and Deborah Estrin. Rumor routing algorithm for sensor net-

works. In Proceedings of the Workshop on Sensor Networks and Applications

(WSNA), page 22, Atlanta, GA, USA, September 2002. 46, 139

[BEP+03] András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and

Ken Moody. Role-based access control for publish/subscribe middleware archi-

tectures. In Proceedings of the International Workshop on Distributed Event-

based Systems (DEBS), San Diego, CA, USA, 2003. ACM. 204

[BGS00] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE

Personal Communications [see also IEEE Wireless Communications], 7:10–15,

2000. 46, 52, 54, 55, 57, 85, 198

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. Towards sensor

database systems. In Proceedings of the International Conference on Mobile

Data Management (MDM), pages 3–14, London, UK, 2001. Springer-Verlag.

52

[BHE00] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low cost

outdoor localization for very small devices. IEEE Personal Communications

Magazine, 7(5):28–34, October 2000. 88

[BHS03] Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and im-

plementation of a framework for efficient and programmable sensor networks.

In Proceedings of the The International Conference on Mobile Systems, Appli-

cations, and Services (MobiSys), pages 187–200, New York, NY, USA, 2003.

ACM. 43

[BHvR05] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Scalable wireless

ad hoc network simulation. Handbook on Theoretical and Algorithmic Aspect

of Sensor, Ad hoc Wireless, and Peer-to-Peer Networks, pages 297–311, 2005.

126, 188

[BKZD04] M. Beigl, A. Krohn, T. Zimmer, and C. Decker. Typical sensors needed in

ubiquitous and pervasive computing. In Proceedings of the International Con-

ference on Networked Sensing Systems (INSS), pages 153–158, June 2004. 35

[BMY03] Jean Bacon, Ken Moody, and Walt Yao. Access control and trust in the use of

widely distributed services. Software - Practice and Experience, 33(4):375–394,

April 2003. 204

[BP00] P. Bahl and V.N. Padmanabhan. RADAR: an in-building rf-based user loca-

tion and tracking system. In Proceedings of the IEEE Conference on Computer

Communications (INFOCOM), volume 2, pages 775–784, 2000. 88

216

BIBLIOGRAPHY BIBLIOGRAPHY

[BS] BeanShell. Website.

http://www.beanshell.org. 189

[BT] BTnodes. Website.

http://www.btnodes.ethz.ch. 82, 126

[BV06] R. Baldoni and A. Virgillito. Distributed event routing in publish/ subscribe

communication systems: a survey. Technical Report MIDLAB 1/2006, Dipar-

timento di Informatica e Sistemistica, University di Roma la Sapienza, 2006.

48

[CBB+03] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,

Ugur Çetintemel, Ying Xing, and Stanley B. Zdonik. Scalable distributed

stream processing. In Proceedings of the Biennial Conference on Innovative

Data Systems Research (CIDR), page 23, 2003. 56

[CC1] CC1000 single chip very low power RF transceiver. Website.

http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pdf. 82, 126

[CcC+02] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon

Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.

Monitoring streams: a new class of data management applications. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB),

pages 215–226. VLDB Endowment, 2002. 56, 57

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,

Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden,

Fred Reiss, and Mehul A. Shah. TelegraphCQ: continuous dataflow processing.

In Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pages 668–668, New York, NY, USA, 2003. ACM. 55, 56, 57

[CCdC05] G. Cugola, G. Cugola, and J.E.M. de Cote. On introducing location awareness

in publish-subscribe middleware. In J.E.M. de Cote, editor, Proceedings of the

International Workshop on Distributed Event-based Systems (DEBS), pages

377–382, 2005. 139

[CCMT04] M. Conti, J. Crowcroft, G. Maselli, and G. Turi. Handbook on Theoretical and

Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks,

chapter A modular cross-layer architecture for ad hoc networks. CRC, 2004.

91

[CCP05] P. Costa, P. Costa, and G.P. Picco. Semi-probabilistic content-based publish-

subscribe. In G.P. Picco, editor, Proceedings of the International Conference

on Distributed Computing Systems (ICDCS), pages 575–585, 2005. 139

217

http://www.beanshell.org
http://www.btnodes.ethz.ch
http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[CCRW04] A. Carzaniga, A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing

scheme for content-based networking. In M.J. Rutherford, editor, Proceed-

ings of the IEEE Conference on Computer Communications (INFOCOM),

volume 2, pages 918–928, 2004. 139

[CCW03] Mauro Caporuscio, Antonio Carzaniga, and Alexander L. Wolf. Design and

evaluation of a support service for mobile, wireless publish/subscribe appli-

cations. Technical Report CU-CS-944-03, Department of Computer Science,

University of Colorado, January 2003. 189

[CDGS04] K.K. Chintalapudi, A. Dhariwal, R. Govindan, and G. Sukhatme. Ad-hoc

localization using ranging and sectoring. In Proceedings of the IEEE Con-

ference on Computer Communications (INFOCOM), volume 4, pages 2662–

2672, March 2004. 140

[CDKR02] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-

scale and decentralized application-level multicast infrastructure. IEEE Jour-

nal on Selected Areas in communications (JSAC), 20(8):1489–1499, 2002. 139

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: a

scalable continuous query system for internet databases. In Proceedings of the

ACM International Conference on Management of Data (SIGMOD), pages

379–390, New York, NY, USA, 2000. ACM. 55, 56

[CEH+01] Alberto Cerpa, Jeremy Elson, Michael Hamilton, Jerry Zhao, Deborah Estrin,

and Lewis Girod. Habitat monitoring: application driver for wireless commu-

nications technology. In Proceedings of the ACM SIGCOMM Workshop on

Data Communications in Latin America and the Caribbean (SIGCOMM-LA),

pages 20–41, New York, NY, USA, 2001. ACM. 41, 64

[CGH+02] E. Callaway, P. Gorday, L. Hester, J.A. Gutierrez, M. Naeve, B. Heile, and

V. Bahl. Home networking with IEEE 802.15.4: a developing standard for

low-rate wireless personal area networks. IEEE Communications Magazine,

40:70–77, 2002. 41

[CGS+03] V. Cahill, E. Gray, J.-M. Seigneur, C.D. Jensen, Yong Chen, B. Shand, N. Dim-

mock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon,

G. Di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow, and M. Niel-

son. Using trust for secure collaboration in uncertain environments. IEEE

Pervasive Computing, 2(3):52–61, July-Sept. 2003. 204

[CHZ02] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor query-

ing and routing for ad hoc heterogeneous sensor networks. International Jour-

nal of High Performance Computing Applications, 16(3), 2002. 46

218

BIBLIOGRAPHY BIBLIOGRAPHY

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav

Shkapenyuk. Gigascope: a stream database for network applications. In

Proceedings of the ACM International Conference on Management of Data

(SIGMOD), pages 647–651, New York, NY, USA, 2003. ACM. 56

[CKAK94] Sharma Chakravarthy, V. Krishnaprasad, Eman Anwar, and S.-K. Kim. Com-

posite events for active databases: Semantics, contexts and detection. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB),

pages 606–617, San Francisco, CA, USA, 1994. Morgan Kaufmann. 60

[CKM+03] S. Chandrasekaran, S. Krishnamurthy, S. Madden, A. Deshpande, M. J.

Franklin, J. M. Hellerstein, and M. Shah. Windows explained, windows ex-

pressed. Website, 2003.

http://www.cs.berkeley.edu/~sirish/research/streaquel.pdf. 57

[CM94] S. Chakravarthy and D. Mishra. Snoop: an expressive event specification

language for active databases. Data Knowledge Engineering, 14(1):1–26, 1994.

59, 60, 62, 85

[Cod71] E. F. Codd. A database sublanguage founded on the relational calculus. In

E. F. Codd and A. L. Dean, editors, Proceedings of the ACM SIGFIDET

Workshop on Data Description, Access and Control, pages 35–68. ACM, 1971.

62

[Cou02] Simon Courtenage. Specifying and detecting composite events in content-based

publish/subscribe systems. In Proceedings of the International Conference on

Distributed Computing Systems Workshops (ICDCSW), pages 602–610, Wash-

ington, DC, USA, 2002. IEEE Computer Society. 59, 60

[CPR05] Paolo Costa, Gian Pietro Picco, and Silvana Rossetto. Publish-subscribe on

sensor networks: a semi-probabilistic approach. In G.P. Picco, editor, Pro-

ceedings of the International Conference on Mobile Adhoc and Sensor Systems

(MASS), pages 10–19, 2005. 46, 66, 139

[DA02] S.S. Doumit and D.P. Agrawal. Self-organizing and energy-efficient network

of sensors. In Proceedings of the Military Communications Conference (MIL-

COM), volume 2, pages 1245–1250, 2002. 41

[Dan97] Peter H. Dana. Global positioning system (GPS) time dissemination for real-

time applications. Real-Time Systems, 12(1):9–40, 1997. 88

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin,

D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny, and R. Jauhari.

The HiPAC project: combining active databases and timing constraints. ACM

SIGMOD Record, 17(1):51–70, 1988. 60

219

http://www.cs.berkeley.edu/~sirish/research/streaquel.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[DGH+06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and

Walker M. White. Towards expressive publish/subscribe systems. In Pro-

ceedings of the International Conference on Extending Database Technology

(EDBT), pages 627–644, 2006. 61, 62

[DGP+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun

Sharma, and Walker M. White. Cayuga: A general purpose event monitoring

system. In Proceedings of the Biennial Conference on Innovative Data Systems

Research (CIDR), pages 412–422, 2007. 61

[DX08] Xiaojiang Du and Yang Xiao. A Survey on Sensor Network Security, pages

403–421. Springer-Verlag, 2008. 204

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys

(CSUR), 35(2):114–131, 2003. 48, 138

[EGHK99] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century chal-

lenges: scalable coordination in sensor networks. In Proceedings of the

ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom), pages 263–270, Seattle, WA USA, 1999. 41

[FJK+05] Michael J. Franklin, Shawn R. Jeffery, Sailesh Krishnamurthy, Frederick Reiss,

Shariq Rizvi, Eugene Wu 0002, Owen Cooper, Anil Edakkunni, and Wei Hong.

Design considerations for high fan-in systems: The HiFi approach. In Proceed-

ings of the Biennial Conference on Innovative Data Systems Research (CIDR),

pages 290–304, 2005. 29, 56

[FJLM05] E. Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. The PADRES

distributed publish/subscribe system. In Proceedings of the Feature Interac-

tions in Telecommunications Systems (FIW), pages 12–30, 2005. 59, 61, 62

[FMG02] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. A modular approach to build

structured event-based systems. In Proceedings of the ACM Symposium on

Applied Computing (SAC), pages 385–392, New York, NY, USA, 2002. ACM.

59, 60

[GA02] Antony Galton and Juan Carlos Augusto. Two approaches to event defini-

tion. In Proceedings of the International Conference on Database and Expert

Systems Applications (DEXA), pages 547–556, London, UK, 2002. Springer-

Verlag. 177

[GC+07] Daniel Gyllstrom, Eugene Wu 0002, Hee-Jin Chae, Yanlei Diao, Patrick

Stahlberg, and Gordon Anderson. SASE: Complex event processing over

220

BIBLIOGRAPHY BIBLIOGRAPHY

streams (demo). In Proceedings of the Biennial Conference on Innovative Data

Systems Research (CIDR), pages 407–411, 2007. 61

[GD93] Stella Gatziu and Klaus R. Dittrich. Events in an active object-oriented

database system. In Proceedings of the International Workshop on Rules in

Database Systems (RIDS), pages 23–39, 1993. 59, 60

[GD94] Stella Gatziu and Klaus R. Dittrich. Detecting composite events in active

database systems using petri nets. In Proceedings of the International Work-

shop on Research Issues in Data Engineering (RIDE-ADS), pages 2–9, 1994.

60

[GEH03] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we need

a new data handling architecture for sensor networks? ACM SIGCOMM

Computer Communication Review, 33(1):143–148, 2003. 50, 139

[GER+03] B. Greenstein, D. Estrin, R.Govindan, S. Ratnasamy, and S.Shenker. DIFS:

A distributed index for features in sensor networks. In Proceedings of the In-

ternational Workshop on Sensor Network Protocols and Applications (SNPA),

pages 163–173, Anchorage, AK, USA, May 2003. 50, 140

[GGG05] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-

programming wireless sensor networks using kairos. In Proceedings of the Inter-

national Conference on Distributed Computing in Sensor Systems (DCOSS),

pages 126–140, 2005. 44

[GGHZ04] Jie Gao, Leonidas J. Guibas, John Hershberger, and Li Zhang. Fractionally

cascaded information in a sensor network. In Proceedings of the International

Symposium on Information Processing in Sensor Networks (IPSN), pages 311–

319, New York, NY, USA, 2004. ACM. 50

[GHH+02] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong, Sam Madden, Michael

Franklin, and Scott Shenker. The sensor network as a database. Technical

Report CS-02-771, Information Sciences Institute, University of Southern Cal-

ifornia, September 2002. 52, 198

[GHIGGHPD07] Carlos F. Garcia-Hernandez, Pablo H. Ibarguengoytia-Gonzalez, Joaquin

Garcia-Hernandez, and Jesus A. Perez-Diaz. Wireless sensor networks and

applications: a survey. International Journal of Computer Science and Net-

work Security, 7(3):264–273, March 2007. 19, 41

[GJ96] Narain H. Gehani and H. V. Jagadish. Active database facilities in ode. In Ac-

tive Database Systems: Triggers and Rules For Advanced Database Processing,

pages 207–232. Morgan Kaufmann, 1996. 60

221

BIBLIOGRAPHY BIBLIOGRAPHY

[GKMS01] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. QuickSAND: Quick

summary and analysis of network data. Technical Report 2001-43, DIMACS,

December 2001. 55

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and

David Culler. The nesC language: A holistic approach to networked embedded

systems. In Proceedings of the ACM Conference on Programming Language

Design and Implementation (PLDI), pages 1–11, New York, NY, USA, 2003.

ACM. 43

[GNC+01] J.A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile.

IEEE 802.15.4: a developing standard for low-power low-cost wireless personal

area networks. IEEE Network, 15:12–19, 2001. 41

[GO03] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. ACM

SIGMOD Record, 32(2):5–14, 2003. 57

[GR94] Daniel D. Gajski and Loganath Ramachandran. Introduction to high-level

synthesis. IEEE Design & Test, 11(4):44–54, 1994. 43

[GRI] The Grid project homepage. Website.

http://www.pdos.lcs.mit.edu/grid. 89

[GSAA04] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi.

Meghdoot: content-based publish/subscribe over p2p networks. In Proceed-

ings of the ACM/IFIP/USENIX International Middleware Conference (Mid-

dleware), pages 254–273, New York, NY, USA, 2004. Springer-Verlag. 139

[GT96] Andreas Geppert and Dimitrios Tombros. Event-based distributed workflow

execution with EVE. Technical report, University of Zurich, 1996. 60, 62

[GTS06] O. Ghica, G. Trajcevski, , and P. Scheuermann. Alternating routes in sen-

sor networks. In Proceedings of the International Symposium on Information

Processing in Sensor Networks (IPSN), Nashville, TN, USA, 2006. Extended

Abstract (Work In Progress Session). 92

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, 1987. 43, 197

[HB01] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous

computing. Computer, 34(8):57–66, August 2001. This article is also excerpted

in “IT Roadmap to a Geospatial Future,” a 2003 report from the Computer

Science and Telecommunications Board of the National Research Council. 88

[HC02a] J. Hill and D. Culler. A wireless embedded sensor architecture for system-level

optimization. Technical report, University of California at Berkeley, 2002. 142

222

http://www.pdos.lcs.mit.edu/grid

BIBLIOGRAPHY BIBLIOGRAPHY

[HC02b] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply

embedded networks. IEEE Micro, 22(6):12–24, 2002. 54, 59

[HCB00] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.

Energy-efficient communication protocol for wireless microsensor networks.

In Proceedings of the Hawaii International Conference on System Sciences

(HICSS), page 8020, Washington, DC, USA, 2000. IEEE Computer Society.

46

[HCRW04] Cyrus P. Hall, Antonio Carzaniga, Jeff Rose, and Alexander L. Wolf. A

content-based networking protocol for sensor networks. Technical Report CU-

CS-979-04, Department of Computer Science, University of Colorado, August

2004. 46, 66, 139

[Hef07] Mohamed Hefeeda. Forest fire modeling and early detection using wireless

sensor networks. Technical Report CMPT2007-08, Simon Fraser University,

Canada, 2007. 90

[HFH+05] M. Hirafuji, T. Fukatsu, Hu HaoMing, T. Kiura, T. Watanabe, and S. Ni-

nomiya. A wireless sensor network with field-monitoring servers and metbro-

ker in paddy fields. In World Rice Research Conference. Rice is life: scientific

perspectives for the 21st century, 2005. 90

[HGM03] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe tree construc-

tion in wireless ad-hoc networks. In Proceedings of the International Confer-

ence on Mobile Data Management (MDM), volume 2574 of Lecture Notes in

Computer Science, pages 122–140, London, UK, 2003. Springer-Verlag. 139

[HHB+03] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic, and Tarek

Abdelzaher. Range-free localization schemes for large scale sensor networks. In

Proceedings of the ACM/IEEE International Conference on Mobile Computing

and Networking (MobiCom), pages 81–95, New York, NY, USA, 2003. ACM.

88

[HHKV01] Pai-Hsiang Hsiao, Adon Hwang, H. T. Kung, and Dario Vlah. Load balancing

routing for wireless access networks. In Proceedings of the IEEE Conference

on Computer Communications (INFOCOM), pages 986–995, 2001. 92

[HKB99] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adap-

tive protocols for information dissemination in wireless sensor networks. In

Proceedings of the ACM/IEEE International Conference on Mobile Comput-

ing and Networking (MobiCom), pages 174–185, New York, NY, USA, 1999.

ACM. 46

223

BIBLIOGRAPHY BIBLIOGRAPHY

[HL86] Ting-Chao Hou and Victor Li. Transmission range control in multihop packet

radio networks. IEEE Transactions on Communications [legacy, pre - 1988],

34:38–44, 1986. 89

[HMCP04] Wendi Beth Heinzelman, Amy L. Murphy, Hervaldo S. Carvalho, and Mark A.

Perillo. Middleware to support sensor network applications. IEEE Network,

18(1):6–14, 2004. 41

[HRR99] Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Com-

puting on data streams. External memory algorithms, pages 107–118, 1999.

55

[HSE03] John Heidemann, Fabio Silva, and Deborah Estrin. Matching data dissem-

ination algorithms to application requirements. In Proceedings of the ACM

Conference on Embedded Networked Sensor Systems (SenSys), pages 218–229,

New York, NY, USA, 2003. ACM. 47, 48, 127, 129, 138

[HSLA03] Tian He, John A. Stankovic, Chenyang Lu, and Tarek Abdelzaher. SPEED:

A stateless protocol for real-time communication in sensor networks. In Pro-

ceedings of the International Conference on Distributed Computing Systems

(ICDCS), pages 46–55, Washington, DC, USA, 2003. IEEE Computer Soci-

ety. 46

[HSW+00a] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors. ACM

SIGPLAN Notices, 35(11):93–104, 2000. 43

[HSW+00b] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System architecture directions for networked sensors. ACM

SIGPLAN Notices, 35(11):93–104, 2000. 142

[HV02] A. Hinze and A. Voisard. A flexible parameter-dependent algebra for event

notification services. Technical Report TR-B-02-10, Freie Universität Berlin,

2002. 60, 61, 62

[HWLC97] B. Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins. Global Posi-

tioning System: Theory and Practice. Springer-Verlag, 4th edition, May 1997.

88

[IEGH02] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh Govindan, and John

Heidemann. Impact of network density on data aggregation in wireless sensor

networks. In Proceedings of the International Conference on Distributed Com-

puting Systems (ICDCS), pages 457–458, Washington, DC, USA, 2002. IEEE

Computer Society. 93, 134

224

BIBLIOGRAPHY BIBLIOGRAPHY

[IGE00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

diffusion: a scalable and robust communication paradigm for sensor networks.

In Proceedings of the ACM/IEEE International Conference on Mobile Com-

puting and Networking (MobiCom), pages 56–67, New York, NY, USA, 2000.

ACM. 46, 47, 48, 82, 87, 91, 92, 128, 138

[IGE+03] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-

demann, and Fabio Silva. Directed diffusion for wireless sensor networking.

IEEE/ACM Transactions on Networking, 11(1):2–16, 2003. 47, 82, 87, 91, 92,

128, 138, 142

[IMK04] Mohammad Ilyas, Imad Mahgoub, and Laurie Kelly. Handbook of Sensor

Networks: Compact Wireless and Wired Sensing Systems. CRC, Boca Raton,

FL, USA, 2004. 36

[JAF+05] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jen-

nifer Widom. Virtual devices: An extensible architecture for bridging the

physical-digital divide. Technical Report UCB/CSD-05-1375, EECS Depart-

ment, University of California at Berkeley, March 2005. 29, 56

[JS03] Yuhui Jin and Rob Strom. Relational subscription middleware for internet-

scale publish-subscribe. In Proceedings of the International Workshop on Dis-

tributed Event-based Systems (DEBS), pages 1–8, New York, NY, USA, 2003.

ACM. 56

[KBM04] E. Katsiri, J. Bacon, and A. Mycroft. An extended publish/subscribe protocol

for transparent subscriptions to distributed abstract state in sensor driven

systems using abstract events. In Proceedings of the International Workshop on

Distributed Event-based Systems (DEBS), New York, NY, USA, 2004. ACM.

61, 197

[KEW02] Bhaskar Krishnamachari, Deborah Estrin, and Stephen B. Wicker. The im-

pact of data aggregation in wireless sensor networks. In Proceedings of the

International Conference on Distributed Computing Systems (ICDCS), pages

575–578. IEEE Computer Society, 2002. 45

[KFG+93] Hermann Kopetz, Gerhard Fohler, Günter Grünsteidl, Heinz Kantz, Gustav

Pospischil, Peter Puschner, Johannes Reisinger, Ralf Schlatterbeck, Werner

Schütz, Alexander Vrchoticky, and Ralph Zainlinger. Real-time system devel-

opment: The programming model of MARS. In Proceedings of the IEEE In-

ternational Symposium on Autonomous Decentralized Systems (ISADS), pages

190–199, April 1993. 59

225

BIBLIOGRAPHY BIBLIOGRAPHY

[KK00] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for

wireless networks. In Proceedings of the ACM/IEEE International Conference

on Mobile Computing and Networking (MobiCom), pages 243–254, August

2000. 89

[Kna00] Ara N. Knaian. A wireless sensor network for smart roadbeds and intelli-

gent transportation systems. Technical Report (MEng thesis), Massachusetts

Institute of Technology, 2000. 144

[KP05] Joel Koshy and Raju Pandey. VMSTAR: synthesizing scalable runtime en-

vironments for sensor networks. In Proceedings of the ACM Conference on

Embedded Networked Sensor Systems (SenSys), pages 243–254, New York,

NY, USA, 2005. ACM. 43

[KR05] Oliver Kasten and Kay Römer. Beyond event handlers: Programming wireless

sensors with attributed state machines. In Proceedings of the International

Symposium on Information Processing in Sensor Networks (IPSN), pages 45–

52, Los Angeles, CA, USA, April 2005. 43, 197

[Kra05] Mark Kranz. SENSID: Situation detection for sensor networks. Technical

Report (MEng thesis), University of Western Australia, 2005. 59

[KRKI04] Rajgopal Kannan, Lydia Ray, Ramaraju Kalidindi, and S. Sitharama Iyen-

gar. Max-min length-energy-constrained routing in wireless sensor networks.

In Proceedings of the European Conference on Wireless Sensor Networks

(EWSN), pages 234–249, 2004. 92

[KS86] R Kowalski and M Sergot. A logic-based calculus of events. New Generation

Computing, 4(1):67–95, 1986. 71

[Ksh05] Ajay D. Kshemkalyani. Predicate detection using event streams in ubiqui-

tous environments. In Proceedings of the IFIP International Conference on

Embedded And Ubiquitous Computing (EUC), pages 807–816, 2005. 197

[KSS+03] S. Kim, S.H. Son, J.A. Stankovic, S. Li, and Y. Choi. SAFE: A data dissemi-

nation protocol for periodic updates in sensor networks. In Proceedings of the

International Conference on Distributed Computing Systems (ICDCS), page

228, Providence, RI, USA, March 2003. 46, 127, 129, 138

[KV00] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile

ad hoc networks. Wireless Networks, 6(4):307–321, 2000. 89

226

BIBLIOGRAPHY BIBLIOGRAPHY

[KVJ05] A V U Phani Kumar, Adi Mallikarjuna Reddy V, and D. Janakiram. Dis-

tributed collaboration for event detection in wireless sensor networks. In Pro-

ceedings of the International Workshop on Middleware for Pervasive and Ad-

Hoc Computing (MPAC), pages 1–8, New York, NY, USA, 2005. ACM. 59,

61

[KW03] H. Karl and A. Willig. A short survey of wireless sensor networks. Tech-

nical Report TKN-03-018, Telecommunication Networks Group, Technische

Universitat Berlin, 2003. 42

[KWA+03] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip

Hutto, Arnab Paul, and Umakishore Ramachandran. DFuse: a framework for

distributed data fusion. In Proceedings of the ACM Conference on Embedded

Networked Sensor Systems (SenSys), pages 114–125, New York, NY, USA,

2003. ACM. 175

[LAN97] LAN MAN Standards Committee of the IEEE Computer Society. IEEE

Std 802.11-1997 Information Technology- telecommunications And Informa-

tion exchange Between Systems-Local And Metropolitan Area Networks-specific

Requirements-part 11: Wireless Lan Medium Access Control (MAC) And

Physical Layer (PHY) Specifications, 1997. 126

[LC02] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor net-

works. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pages 85–95,

New York, NY, USA, 2002. ACM. 43

[LCH+07] G. Li, A. Cheung, Sh. Hou, S. Hu, V. Muthusamy, R. Sherafat, A. Wun, H.-

A. Jacobsen, and S. Manovski. Historic data access in publish/subscribe. In

Proceedings of the International Workshop on Distributed Event-based Systems

(DEBS), pages 80–84, New York, NY, USA, 2007. ACM. 61

[LCL+04] Juan Liu, Maurice Chu, Jie Liu, Jim Reich, and Feng Zhao. Distributed state

representation for tracking problems in sensor networks. In Proceedings of

the International Symposium on Information Processing in Sensor Networks

(IPSN), pages 234–242, New York, NY, USA, 2004. ACM. 197

[LCRZ03] J. Liu, M. Chu, J. Reich, and F. Zhao. State-centric programming for sensor-

actuator network systems. IEEE Pervasive Computing, 2(4):50–62, 2003. 44,

197

[LGA96] Daniel F. Lieuwen, Narain H. Gehani, and Robert M. Arlein. The ode ac-

tive database: Trigger semantics and implementation. In Proceedings of the

International Conference on Data Engineering (ICDE), pages 412–420, Wash-

ington, DC, USA, 1996. IEEE Computer Society. 59, 60

227

BIBLIOGRAPHY BIBLIOGRAPHY

[LGC05] Philip Levis, David Gay, and David Culler. Active sensor networks. In Proceed-

ings of the USENIX Symposium on Networked Systems Design & Implementa-

tion (NSDI), pages 343–356, Berkeley, CA, USA, 2005. USENIX Association.

43

[LHZ04] Xin Liu, Qingfeng Huang, and Ying Zhang. Combs, needles, haystacks: balanc-

ing push and pull for discovery in large-scale sensor networks. In Proceedings

of the ACM Conference on Embedded Networked Sensor Systems (SenSys),

pages 122–133, New York, NY, USA, 2004. ACM. 46, 139

[LJ05] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in content-based

publish/subscribe systems. In Proceedings of the ACM/IFIP/USENIX Inter-

national Middleware Conference (Middleware), pages 249–269, 2005. 61

[LKGH03] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries

in sensor networks. In Proceedings of the ACM Conference on Embedded Net-

worked Sensor Systems (SenSys), pages 63–75, Los Angeles, CA, USA, Novem-

ber 2003. ACM. 50, 140

[LL07] Mo Li and Yunhao Liu. Underground structure monitoring with wireless sen-

sor networks. In Proceedings of the International Symposium on Information

Processing in Sensor Networks (IPSN), pages 69–78, New York, NY, USA,

2007. ACM. 41

[LLCB99] C. Liebig, C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-

dependent distributed systems. In M. Cilia, editor, Proceedings of the IECIS

International Conference on Cooperative Information Systems (CoopIS), pages

70–78, 1999. 59, 60

[LM03] Ting Liu and Margaret Martonosi. Impala: a middleware system for managing

autonomic, parallel sensor systems. In Proceedings of the ACM SIGPLAN

Principles and Practice of Paralle Computing (PPoPP), pages 107–118, New

York, NY, USA, 2003. ACM. 43

[LP03] Ying Liu and Beth Plale. Survey of publish subscribe event systems. Technical

Report TR574, Department of Computer Science (CSCI), Indiana University,

May 2003. 48

[LPT99] Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale

event-driven information delivery. IEEE Transactions on Knowledge and Data

Engineering, 11(4):610–628, 1999. 56

[LR02] S. Lindsey and C.S. Raghavendra. PEGASIS: Power-efficient gathering in

sensor information systems. In IEEE Aerospace Conference, volume 3, pages

1125–1130, 2002. 46

228

BIBLIOGRAPHY BIBLIOGRAPHY

[LR03] Koen Langendoen and Niels Reijers. Distributed localization in wireless sen-

sor networks: a quantitative comparison. Computer Networks, 43(4):499–518,

2003. 88

[LS03] Alberto Lerner and Dennis Shasha. AQuery: query language for ordered data,

optimization techniques, and experiments. In Proceedings of the International

Conference on Very Large Data Bases (VLDB), pages 345–356. VLDB En-

dowment, 2003. 57

[LSS03] Shuoqi Li, Sang Hyuk Son, and John A. Stankovic. Event detection services

using data service middleware in distributed sensor networks. In Proceedings of

the International Symposium on Information Processing in Sensor Networks

(IPSN), pages 502–517, 2003. 59, 60, 61, 82

[LWW08] Min Lin, Yan Wu, and I. Wassell. Wireless sensor network: Water distribution

monitoring system. In Proceedings of the IEEE Radio and Wireless Symposium

(RWS), pages 775–778, 2008. 143

[LWWZ04] Yan-Nei Law, Haixun Wang, Haixun Wang, and Carlo Zaniolo. Query lan-

guages and data models for database sequences and data streams. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB),

pages 492–503. VLDB Endowment, 2004. 56, 57

[M0̈1] Gero Mühl. Generic constraints for content-based publish/subscribe. In Pro-

ceedings of the IECIS International Conference on Cooperative Information

Systems (CoopIS), pages 211–225, London, UK, 2001. Springer-Verlag. 59, 60

[MA01] Arati Manjeshwar and Dharma P. Agrawal. TEEN: A routing protocol for en-

hanced efficiency in wireless sensor networks. In Proceedings of the IEEE Inter-

national Parallel & Distributed Processing Symposium (IPDPS), page 30189a,

Washington, DC, USA, 2001. IEEE Computer Society. 46

[MC02] R. Meier and V. Cahill. STEAM: event-based middleware for wireless ad

hoc networks. In Proceedings of the International Conference on Distributed

Computing Systems Workshops (ICDCSW), pages 639–644, July 2002. 139

[MDX] Multidimensional expressions (MDX) reference. Website.

http://msdn2.microsoft.com/en-gb/library/ms145506.aspx. 153

[ME01] D. Moreto and Markus Endler. Evaluating composite events using shared

trees. IEE Proceedings - Software, 148(1):1–10, 2001. 59, 60

[MF02] Samuel Madden and Michael J Franklin. Fjording the stream: An architecture

for queries over streaming sensor data. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 555–566, Washington, DC,

USA, 2002. IEEE Computer Society. 55, 57

229

http://msdn2.microsoft.com/en-gb/library/ms145506.aspx

BIBLIOGRAPHY BIBLIOGRAPHY

[MFHH02] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny

aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating Sys-

tems Review, 36(SI):131–146, 2002. 53, 198

[MFHH03] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

The design of an acquisitional query processor for sensor networks. In Pro-

ceedings of the ACM International Conference on Management of Data (SIG-

MOD), pages 491–502, New York, NY, USA, 2003. ACM. 52, 53, 54, 85,

198

[MHS] Mini hardware survey. Website.

http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html.

38

[MIC] MICA/MICA2 sensor node. Website.

http://www.xbow.com. 82, 126

[Mil89] D. L. Mills. Internet time synchronization: The network time protocol, 1989.

59

[Mit01] Michael Mitzenmacher. Compressed bloom filters. In Proceedings of the ACM

Symposium on Principles of Distributed Computing (PODC), IEEE/ACM

Trans. on Networking, pages 144–150, 2001. 153

[MP06] Luca Mottola and Gian Pietro Picco. Logical neighborhoods: A programming

abstraction for wireless sensor networks. In Proceedings of the International

Conference on Distributed Computing in Sensor Systems (DCOSS), pages 150–

168, 2006. 44

[MSS97] Masoud Mansouri-Samani and Morris Sloman. GEM: a generalized event mon-

itoring language for distributed systems. Distributed Systems Engineering,

4(2):96–108, 1997. 60

[MWA+03] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath

Babu, Mayur Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein,

and Rohit Varma. Query processing, approximation, and resource manage-

ment in a data stream management system. In Proceedings of the Biennial

Conference on Innovative Data Systems Research (CIDR), page 22, 2003. 55,

56, 57

[MWH01] Martin Mauve, J. Widmer, and Hannes Hartenstein. A survey on position-

based routing in mobile ad-hoc networks. IEEE Network Magazine, 15(6):30–

39, November 2001. 89

230

http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html
http://www.xbow.com

BIBLIOGRAPHY BIBLIOGRAPHY

[NAW05] Ryan Newton, Arvind, and Matt Welsh. Building up to macroprogramming:

an intermediate language for sensor networks. In Proceedings of the Inter-

national Symposium on Information Processing in Sensor Networks (IPSN),

pages 37–44, Piscataway, NJ, USA, 2005. IEEE Computer Society. 44

[NLF07] Eduardo F. Nakamura, Antonio A. F. Loureiro, and Alejandro C. Frery. In-

formation fusion for wireless sensor networks: Methods, models, and classifi-

cations. ACM Computing Surveys, 39(3):9, 2007. 51

[NMW07] Ryan Newton, Greg Morrisett, and Matt Welsh. The regiment macroprogram-

ming system. In Proceedings of the International Symposium on Information

Processing in Sensor Networks (IPSN), pages 489–498, New York, NY, USA,

2007. ACM. 44

[NN03a] D. Niculescu and Badri Nath. Ad hoc positioning system (APS) using AOA.

In Proceedings of the IEEE Conference on Computer Communications (IN-

FOCOM), volume 3, pages 1734–1743, 2003. 88

[NN03b] Dragos Niculescu and Badri Nath. DV based positioning in ad hoc networks.

Telecommunication Systems, 22(1-4):267–280, 2003. 88

[NS2] The network simulator NS-2. Website.

http://www.isi.edu/nsnam/ns/. 126

[NW04] Ryan Newton and Matt Welsh. Region streams: functional macroprogramming

for sensor networks. In Proceedings of the International Workshop on Data

Management for Sensor Networks (DMSN), pages 78–87, New York, NY, USA,

2004. ACM. 44

[PB02] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based mid-

dleware architecture. In Proceedings of the International Conference on Dis-

tributed Computing Systems Workshops (ICDCSW), pages 611–618, Washing-

ton, DC, USA, 2002. IEEE Computer Society. 139

[PC1] Getting started with the PC-104 testbed. Website.

http://www.isi.edu/scadds/pc104testbed/guideline.html. 142

[PD99] Norman W. Paton and Oscar Dı́az. Active database systems. ACM Computing

Surveys, 31(1):63–103, 1999. 58

[PI03] Neal Patwari and Alfred O. Hero III. Using proximity and quantized RSS

for sensor localization in wireless networks. In Proceedings of the Workshop

on Sensor Networks and Applications (WSNA), pages 20–29, New York, NY,

USA, 2003. ACM. 88

231

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/scadds/pc104testbed/guideline.html

BIBLIOGRAPHY BIBLIOGRAPHY

[PK00] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commu-

nications of the ACM (CACM), 43(5):51–58, 2000. 45, 78

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A framework for event

composition in distributed systems. In M. Endler and D. Schmidt, editors,

Proceedings of the ACM/IFIP/USENIX International Middleware Conference

(Middleware), pages 62–82, Rio de Janeiro, Brazil, June 2003. Springer-Verlag.

59, 60

[PSB04] Peter R. Pietzuch, Brian Shand, and Jean Bacon. Composite event detection

as a generic middleware extension. IEEE Network, 18(1):44–55, February 2004.

58, 60

[PSW04] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor

networks. Communications of the ACM (CACM), 47(6):53–57, 2004. 204

[RAF+01] J. Rabaey, E. Arens, C. Federspiel, A. Gadgil, D. Messerschmitt, W. Nazaroff,

K. Pister, S. Oren, and P. Varaiya. Smart energy distribution and consump-

tion: Information technology as an enabling force. Technical Report CITRIS

White Paper, University of California at Berkeley, May 2001. 41

[REG+02] Sylvia Ratnasamy, Deborah Estrin, Ramesh Govindan, Brad Karp, Scott

Shenker, Li Yin, and Fang Yu. Data-centric storage in sensornets. In Proceed-

ings of the Workshop on Sensor Networks and Applications (WSNA), page 78,

Atlanta, GA, USA, September 2002. 50, 128, 139

[Rel03] CBI Press Release. Government failure on transport is tarnishing uk as a place

to do business, 2003. 144

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A scalable content-addressable network. In Proceedings of the ACM

International Conference on Data Communication (SIGCOMM), pages 161–

172, New York, NY, USA, 2001. ACM. 50

[RKY+02] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh

Govindan, and Scott Shenker. GHT: a geographic hash table for data-centric

storage. In Proceedings of the Workshop on Sensor Networks and Applications

(WSNA), pages 78–87. ACM, 2002. 50, 93, 122, 129, 139

[RM99] V. Rodoplu and T.H. Meng. Minimum energy mobile wireless networks. IEEE

Journal on Selected Areas in communications (JSAC), 17(8):1333 – 1344, Au-

gust 1999. 46

[RM04a] K. Romer and F. Mattern. The design space of wireless sensor networks.

IEEE Wireless Communications [see also IEEE Personal Communications],

11:54–61, 2004. 36, 37, 40, 41

232

BIBLIOGRAPHY BIBLIOGRAPHY

[RM04b] Kay Römer and Friedemann Mattern. Event-based systems for detecting real-

world states with sensor networks: A critical analysis. In DEST Interna-

tional Workshop on Signal Processing for Sensor Networks, pages 389–395,

Melbourne, Australia, December 2004. 197

[Rob06] Simon Robertson. Sensors at thames water. In Cambridge-MIT Institute

Workshop on Wireless Sensor Networks. CMI, 2006. 17, 143

[SA85] Richard Snodgrass and Ilsoo Ahn. A taxonomy of time databases. In Pro-

ceedings of the ACM International Conference on Management of Data (SIG-

MOD), pages 236–246, New York, NY, USA, 1985. ACM. 55

[SB07] Sebastian Schuster and Uwe Brinkschulte. Model-driven development of ubiq-

uitous applications for sensor-actuator-networks with abstract state machines.

In Proceedings of the IEEE Workshop on Software Technologies for Future

Embedded and Ubiquitous Systems (SEUS), pages 527–536, 2007. 197

[SBC+98] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee,

D. Sturman, and M. Ward. Gryphon: An information flow based approach to

message brokering. In Proceedings of the International Symposium on Software

Reliability Engineering (ISSRE), 1998. Extended Abstract. 56

[SBM+00] David C. Steere, Antonio Baptista, Dylan McNamee, Calton Pu, and Jonathan

Walpole. Research challenges in environmental observation and forecasting

systems. In Proceedings of the ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom), pages 292–299, New York, NY, USA,

2000. ACM. 41

[Sch96] Scarlet Schwiderski. Monitoring the behaviour of distributed systems. PhD

thesis, Cambridge University Computer Laboratory, 1996. 59

[SCO] SCOOT. Website.

http://www.scoot-utc.com. 145, 190

[SDBL07] Rob Strom, Chitra Dorai, Gerry Buttner, and Ying Li. SMILE: distributed

middleware for event stream processing. In Proceedings of the International

Symposium on Information Processing in Sensor Networks (IPSN), pages 553–

554, New York, NY, USA, 2007. ACM. 56

[SFCB04] Jan Steffan, Ludger Fiege, Mariano Cilia, and Alejandro Buchmann. Scop-

ing in wireless sensor networks: a position paper. In Proceedings of the In-

ternational Workshop on Middleware for Pervasive and Ad-Hoc Computing

(MPAC), pages 167–171, New York, NY, USA, 2004. ACM. 75

233

http://www.scoot-utc.com

BIBLIOGRAPHY BIBLIOGRAPHY

[SG08] Ryo Sugihara and Rajesh K. Gupta. Programming models for sensor networks:

A survey. ACM Transactions on Senor Networks, 4(2):1–29, 2008. 42, 43, 44,

45

[SGAP00] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-

organization of a wireless sensor network. IEEE Personal Communications

[see also IEEE Wireless Communications], 7(5):16–27, 2000. 46

[SGV+04] Eduardo Souto, Germano Guimares, Glauco Vasconcelos, Mardoqueu Vieira,

Nelson Rosa, and Carlos Ferraz. A message-oriented middleware for sensor

networks. In Proceedings of the International Workshop on Middleware for

Pervasive and Ad-Hoc Computing (MPAC), pages 127–134, New York, NY,

USA, 2004. ACM. 29, 46, 49

[SH98] Mark Sullivan and Andrew Heybey. Tribeca: a system for managing large

databases of network traffic. In Proceedings of the USENIX Annual Technical

Conference (ATEC), page 2, Berkeley, CA, USA, 1998. USENIX Association.

55, 56

[SH04] Karim Seada and Ahmed Helmy. Rendezvous regions: A scalable architecture

for service location and data-centric storage in large-scale wireless networks.

In Proceedings of the IEEE International Parallel & Distributed Processing

Symposium (IPDPS), page 218, 2004. 50, 203

[Sha97] Murray Shanahan. Solving the frame problem: a mathematical investigation

of the common sense law of inertia. MIT, Cambridge, MA, USA, 1997. 71

[SHS01] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. Dynamic fine-

grained localization in ad-hoc networks of sensors. In Proceedings of the

ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom), pages 166–179, New York, NY, USA, 2001. ACM. 88

[SI07] S. Srivathsan and S. S. Iyengar. Minimizing latency in wireless sensor networks:

a survey. In Proceedings of the IASTED International Conference: Advances

in Computer Science and Technolog (ACST), pages 159–164, Anaheim, CA,

USA, 2007. ACTA. 138

[SJS00] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. Sensor

information networking architecture. In Proceedings of the International Con-

ference on Parallel Processing (ICPP), page 23, Washington, DC, USA, 2000.

IEEE Computer Society. 52

[SK00] Lakshminarayanan Subramanian and Randy H. Katz. An architecture for

building self-configurable systems. In Proceedings of the ACM International

234

BIBLIOGRAPHY BIBLIOGRAPHY

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages

63–73, Piscataway, NJ, USA, 2000. IEEE Computer Society. 46

[SKA03] N. Sadagopan, B. Krishnamachari, and A.Helmy. The ACQUIRE mechanism

for efficient querying in sensor networks. In Proceedings of the International

Workshop on Sensor Network Protocols and Applications (SNPA), pages 149–

155, Anchorage, AK, USA, May 2003. 46, 52, 54, 198

[SM05] Gaurav Sharma and Ravi Mazumdar. Hybrid sensor networks: a small world.

In Proceedings of the ACM International Symposium on Mobile Ad Hoc Net-

working and Computing (MobiHoc), pages 366–377, New York, NY, USA,

2005. ACM. 199

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

In Proceedings of the ACM International Conference on Data Communication

(SIGCOMM), pages 149–160, New York, NY, USA, 2001. ACM. 50

[SMP01] Mani Srivastava, Richard Muntz, and Miodrag Potkonjak. Smart kindergarten:

sensor-based wireless networks for smart developmental problem-solving envi-

ronments. In Proceedings of the ACM/IEEE International Conference on Mo-

bile Computing and Networking (MobiCom), pages 132–138, New York, NY,

USA, 2001. ACM. 41

[SNMa] Sensor network museum. Website.

http://www.btnode.ethz.ch/Projects/SensorNetworkMuseum. 38

[SNMb] Sensor networks for monitoring water supply systems. Website.

http://db.csail.mit.edu/dcnui/index.htm. 143

[SNMT07] Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline.

PIPENET: a wireless sensor network for pipeline monitoring. In Proceedings of

the International Symposium on Information Processing in Sensor Networks

(IPSN), pages 264–273, New York, NY, USA, 2007. ACM. 143

[SP04] E. Shi and A. Perrig. Designing secure sensor networks. IEEE Wireless Com-

munications [see also IEEE Personal Communications], 11(6):38–43, 2004. 41

[SPAM91] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An

architecture for transforming a passive DBMS into an active DBMS. In Pro-

ceedings of the International Conference on Very Large Data Bases (VLDB),

pages 469–478, San Francisco, CA, USA, 1991. Morgan Kaufmann. 60

[SR98] Suresh Singh and C. S. Raghavendra. PAMAS: power aware multi-access

protocol with signalling for ad hoc networks. ACM SIGCOMM Computer

Communication Review, 28(3):5–26, 1998. 126

235

http://www.btnode.ethz.ch/Projects/SensorNetworkMuseum
http://db.csail.mit.edu/dcnui/index.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[SR02] Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy ad

hoc sensor networks. In Proceedings of the IEEE Wireless Communications

and Networking Conference (WCNC), volume 1, pages 350–355, Orlando, FL,

USA, March 2002. 46, 87, 91, 92

[SS01] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor

networks. In Proceedings of the Military Communications Conference (MIL-

COM), volume 1, pages 357–361, 2001. 46

[SSJ01] Chien-Chung Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information

networking architecture and applications. IEEE Personal Communications

[see also IEEE Wireless Communications], 8:52–59, 2001. 41, 52, 54

[SSS05] Sanjay Shakkottai, Rayadurgam Srikant, and Ness B. Shroff. Unreliable sensor

grids: coverage, connectivity and diameter. Ad Hoc Networks, 3(6):702–716,

2005. 140

[STGS02] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani Srivastava.

Topology management for sensor networks: exploiting latency and density. In

Proceedings of the ACM International Symposium on Mobile Ad Hoc Network-

ing and Computing (MobiHoc), pages 135–145, New York, NY, USA, 2002.

ACM. 140

[Str04] R. Strom. Fault-tolerance in the SMILE stateful publish-subscribe system. In

Proceedings of the International Workshop on Distributed Event-based Systems

(DEBS), Edinburgh, Scotland, UK, May 2004. 56

[SZHK04] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamachari.

Energy-efficient forwarding strategies for geographic routing in lossy wireless

sensor networks. In Proceedings of the ACM Conference on Embedded Net-

worked Sensor Systems (SenSys), pages 108–121, New York, NY, USA, 2004.

ACM. 92

[TAJ04] David Tam, Reza Azimi, and Hans-Arno Jacobsen. Building Content-

Based Publish/Subscribe Systems with Distributed Hash Tables, pages 138–152.

Springer-Verlag, 2004. 139

[TB07a] Salman Taherian and Jean Bacon. A publish/subscribe protocol for resource-

awareness in wireless sensor networks. In J. Aspnes, C. Scheideler, A. Arora,

and S. Madden, editors, Proceedings of the International Workshop on Local-

ized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS),

volume 4549 of Lecture Notes in Computer Science (LNCS), pages 27–38,

Santa Fe, NM, USA, June 2007. IEEE Computer Society, Springer-Verlag. 87,

150

236

BIBLIOGRAPHY BIBLIOGRAPHY

[TB07b] Salman Taherian and Jean Bacon. SPS: A middleware for multi-user sensor

systems. In Proceedings of the International Workshop on Middleware for

Pervasive and Ad-Hoc Computing (MPAC), pages 19–24, New York, NY, USA,

November 2007. ACM. 141, 199

[TB07c] Salman Taherian and Jean Bacon. State-filters for enhanced filtering in sensor-

based publish/subscribe systems. In Proceedings of the International Confer-

ence on Mobile Data Management (MDM), pages 346–350, May 2007. 63, 85,

197

[TB08] Salman Taherian and Jean Bacon. Capturing high-level conditions, using a

publish/subscribe middleware, in sensor systems. In Proceedings of the IET

International Conference on Intelligent Environments (IE). IET, July 2008.

To Appear. 141, 199

[TBF+03] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and

Alejandro P. Buchmann. A peer-to-peer approach to content-based pub-

lish/subscribe. In Proceedings of the International Workshop on Distributed

Event-based Systems (DEBS), pages 1–8, New York, NY, USA, 2003. ACM.

139

[TGN+92] Douglas Terry, David Goldberg, David Nichols, David Nichols, David Nichols,

and Brian Oki. Continuous queries over append-only databases. In Proceedings

of the ACM International Conference on Management of Data (SIGMOD),

pages 321–330, New York, NY, USA, 1992. ACM. 52, 56

[TGS06] Goce Trajcevski, Oliviu Ghica, and Peter Scheuermann. CAR: Controlled ad-

justment of routes and sensor networks lifetime. In Proceedings of the Interna-

tional Conference on Mobile Data Management (MDM), page 23, Washington,

DC, USA, 2006. IEEE Computer Society. 92

[TK84] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly dis-

tributed packet radio terminals. IEEE Transactions on Communications

[legacy, pre - 1988], 32:246–257, 1984. 89

[TMSF03] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting

punctuation semantics in continuous data streams. IEEE Transactions on on

Knowledge and Data Engineering, 15(3):555–568, 2003. 57

[TOB04] S. Taherian, D. O’Keeffe, and J. Bacon. Event dissemination in mobile wireless

sensor networks. In Proceedings of the International Conference on Mobile

Adhoc and Sensor Systems (MASS), pages 573–575, 2004. 46

[UAM] uAMPS home. Website.

http://mtlweb.mit.edu/researchgroups/icsystems/uamps. 142

237

http://mtlweb.mit.edu/researchgroups/icsystems/uamps

BIBLIOGRAPHY BIBLIOGRAPHY

[UMWG04] Andreas Ulbrich, Gero Mühl, Torben Weis, and Kurt Geihs. Programming

abstractions for content-based publish/subscribe in object-oriented languages.

In Confederated International Conferences CoopIS, DOA, and ODBASE, vol-

ume 3291 of Lecture Notes in Computer Science (LNCS), pages 1538–1557,

2004. 59

[UVA06] Zartash Afzal Uzmi, Thiemo Voigt, and Muneeb Ali. Mobility management in

sensor networks. In Proceedings of the International Conference on Distributed

Computing in Sensor Systems (DCOSS), pages 131–140, San Francisco, CA,

USA, 2006. 203

[VPGB07] Luis Vargas, Lauri I. W. Pesonen, Ehud Gudes, and Jean Bacon. Transactions

in content-based publish/subscribe middleware. In Proceedings of the Interna-

tional Conference on Distributed Computing Systems Workshops (ICDCSW),

page 68, Washington, DC, USA, 2007. IEEE Computer Society. 203

[WC94] Jennifer Widom and Stefano Ceri, editors. Active Database Systems: Trig-

gers and Rules for Advanced Database Processing. Morgan Kaufmann, San

Francisco, CA, USA, 1994. 58

[WCS+07] Tim Wark, Peter Corke, Pavan Sikka, Lasse Klingbeil, Ying Guo, Chris Cross-

man, Phil Valencia, Dave Swain, and Greg Bishop-Hurley. Transforming agri-

culture through pervasive wireless sensor networks. IEEE Pervasive Comput-

ing, 6(2):50–57, 2007. 90

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event

processing over streams. In Proceedings of the ACM International Conference

on Management of Data (SIGMOD), pages 407–418, New York, NY, USA,

2006. ACM. 61, 199

[WFF03] Erik Welsh, Walt Fish, and J. Patrick Frantz. GNOMES: a testbed for low

power heterogeneous wireless sensor networks. In Proceedings of the IEEE

International Symposium on Circuits and Systems (ISCAS), pages 836–839,

2003. 142

[WM04] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract

regions. In Proceedings of the USENIX Symposium on Networked Systems

Design & Implementation (NSDI), pages 29–42, Berkeley, CA, USA, 2004.

USENIX Association. 44

[WQA+02] Y. M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang.

Subscription partitioning and routing in content-based publish/subscribe net-

works. In Proceedings of the International Symposium on Distributed Comput-

ing (DISC), October 2002. Brief Announcement. 139

238

BIBLIOGRAPHY BIBLIOGRAPHY

[WR94] Thomas Wahl and Kurt Rothermel. Representing time in multimedia sys-

tems. In Proceedings of the IEEE International Conference on Multimedia

Computing and Systems (ICMCS), pages 538–543, 1994. 197

[WSBC04] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a

neighborhood abstraction for sensor networks. In Proceedings of the The Inter-

national Conference on Mobile Systems, Applications, and Services (MobiSys),

pages 99–110, New York, NY, USA, 2004. ACM. 44

[XHE01] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy

conservation for ad hoc routing. In Proceedings of the ACM/IEEE Interna-

tional Conference on Mobile Computing and Networking (MobiCom), pages

70–84, New York, NY, USA, 2001. ACM. 46, 89

[YG03] Y. Yao and J. Gehrke. Query processing for sensor networks. In Proceedings of

the Biennial Conference on Innovative Data Systems Research (CIDR), pages

21–32, 2003. 52

[YGE01] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing: A

recursive data dissemination protocol for wireless sensor networks. Technical

Report UCLA/CSD-TR-01-0023, Computer Science Department, University

of California at Los Angeles, May 2001. 46, 89, 127, 138

[YHE02] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient MAC pro-

tocol for wireless sensor networks. In Proceedings of the IEEE Conference on

Computer Communications (INFOCOM), pages 1567–1576, New York, NY,

USA, June 2002. USC/Information Sciences Institute, IEEE Computer Soci-

ety. 126

[YHE04] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with co-

ordinated, adaptive sleeping for wireless sensor networks. IEEE/ACM Trans-

actions on Networking, 2004. to appear. 126

[YLC+02] Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-tier

data dissemination model for large-scale wireless sensor networks. In Proceed-

ings of the ACM/IEEE International Conference on Mobile Computing and

Networking (MobiCom), pages 148–159, New York, NY, USA, 2002. ACM. 46,

139

[YRBL06] Yang Yu, Loren J. Rittle, Vartika Bhandari, and Jason B. LeBrun. Supporting

concurrent applications in wireless sensor networks. In Proceedings of the ACM

Conference on Embedded Networked Sensor Systems (SenSys), pages 139–152,

New York, NY, USA, 2006. ACM. 43

239

BIBLIOGRAPHY BIBLIOGRAPHY

[YWM05] Liyang Yu, Neng Wang, and Xiaoqiao Meng. Real-time forest fire detection

with wireless sensor networks. In Proceedings of the International Conference

on Wireless Communications, Networking and Mobile Computing (WiCOM),

pages 1214–1217. IEEE Computer Society, 2005. 90

[YYA02] M. Younis, M. Youssef, and K. Arisha. Energy-aware routing in cluster-based

sensor networks. In Proceedings of the IEEE International Symposium on Mod-

eling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 129–136, Washington, DC, USA, 2002. IEEE Computer

Society. 46

[YZLZ05] Fan Ye, Gary Zhong, Songwu Lu, and Lixia Zhang. GRAdient broadcast: a ro-

bust data delivery protocol for large scale sensor networks. Wireless Networks,

11(3):285–298, 2005. 46

[Zay87] E. Zayas. Attacking the process migration bottleneck. ACM SIGOPS Oper-

ating Systems Review, 21(5):13–24, 1987. 175

[ZBG98] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A library for par-

allel simulation of large-scale wireless networks. In Proceedings of the Workshop

on Parallel and Distributed Simulation (PADS), pages 154–161, 1998. 126

[ZDNS98] Yihong Zhao, Prasad M. Deshpande, Jeffrey F. Naughton, and Amit Shukla.

Simultaneous optimization and evaluation of multiple dimensional queries.

ACM SIGMOD Record, 27(2):271–282, 1998. 199

[ZS02] Yunyue Zhu and Dennis Shasha. StatStream: statistical monitoring of thou-

sands of data streams in real time. In Proceedings of the International Confer-

ence on Very Large Data Bases (VLDB), pages 358–369. VLDB Endowment,

2002. 55, 56

[ZSR02] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collabora-

tion for tracking applications. IEEE Signal Processing Magazine, pages 68–77,

March 2002. 41

[ZU99] D. Zimmer and R. Unland. On the semantics of complex events in active

database management systems. In Proceedings of the International Conference

on Data Engineering (ICDE), pages 392–399, Washington, DC, USA, 1999.

IEEE Computer Society. 62

[ZZJ+01] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and

John D. Kubiatowicz. Bayeux: an architecture for scalable and fault-tolerant

wide-area data dissemination. In Proceedings of the International Workshop on

Network and Operating System Support for Digital Audio and Video (NOSS-

DAV), pages 11–20, New York, NY, USA, 2001. ACM. 139

240

	1 Introduction
	1.1 Sensor Systems
	1.1.1 Application Areas

	1.2 High-level Application Support
	1.2.1 Sensor Network Challenges
	1.2.2 Publish/Subscribe Paradigm
	1.2.3 Assumptions

	1.3 Thesis Contribution
	1.4 Thesis Outline

	2 Background & Related Work
	2.1 Sensor Networks
	2.1.1 Design Space
	2.1.1.1 Deployment
	2.1.1.2 Network Size
	2.1.1.3 Heterogeneity (of platforms)
	2.1.1.4 Mobility
	2.1.1.5 Communication modality
	2.1.1.6 Infrastructure
	2.1.1.7 Connectivity
	2.1.1.8 Device Roles

	2.1.2 Applications
	2.1.3 Communication Protocols

	2.2 Programming Models
	2.2.1 Node-level Programming
	2.2.2 Group-level Programming
	2.2.3 Network-level Programming

	2.3 Data Delivery
	2.3.1 Active Delivery
	2.3.1.1 Publish/Subscribe

	2.3.2 Passive Delivery

	2.4 Data Processing
	2.4.1 Database Abstraction
	2.4.1.1 DBMS for WSNs
	2.4.1.2 Data Stream Management System

	2.4.2 Event Abstraction

	3 State Filters
	3.1 Resource-constrained Sensor Networks
	3.1.1 Characteristics
	3.1.2 Application Scenarios

	3.2 Publish/Subscribe
	3.2.1 Subscription Model

	3.3 State Filters
	3.3.1 State
	3.3.1.1 Predicate Language

	3.3.2 Subscription Model

	3.4 Distributed Filtering
	3.4.1 Detection Policies
	3.4.2 Detection Scoping
	3.4.2.1 Placement Policies
	3.4.2.2 Nested Scoping

	3.4.3 Fault-Tolerance
	3.4.3.1 Redundant SFs

	3.5 Evaluation
	3.5.1 Expressiveness
	3.5.1.1 Detecting Hazardous Conditions in Mines
	3.5.1.2 Regulating Office Temperature

	3.5.2 Event Filtering
	3.5.2.1 Simulation Environment
	3.5.2.2 Experimental Setup
	3.5.2.3 Performance Results

	3.6 Related Work
	3.7 Summary

	4 Quad-PubSub
	4.1 Location-aware WSNs
	4.1.1 Location-based Routing
	4.1.2 Potential Applications

	4.2 Cross-layer Pub/Sub Protocols
	4.2.1 Path sharing vs Path freedom

	4.3 Quad-PubSub
	4.3.1 The Event Model
	4.3.1.1 Publications
	4.3.1.2 Advertisements
	4.3.1.3 Subscriptions

	4.3.2 Architecture
	4.3.2.1 Pub/Sub components

	4.3.3 Dissemination Model
	4.3.3.1 Path sharing vs Path freedom
	4.3.3.2 Dissemination Policies

	4.3.4 Event Service
	4.3.4.1 Logical layer
	4.3.4.2 Physical layer
	4.3.4.3 Notation

	4.3.5 Routing
	4.3.5.1 Message Types
	4.3.5.2 Data Structures
	4.3.5.3 Advertisement Messages
	4.3.5.4 Subscription Messages
	4.3.5.5 Coverage Fulfillment Messages
	4.3.5.6 Publication Messages

	4.3.6 Resource-Awareness Model
	4.3.6.1 On-demand Mapping
	4.3.6.2 Proactive Hand-Over

	4.3.7 Reliability Model
	4.3.7.1 Network Dynamics
	4.3.7.2 Component Dynamics

	4.4 Evaluation
	4.4.1 Evaluation Metrics
	4.4.2 Simulation Environment
	4.4.3 Experimental Setup
	4.4.4 Experiments
	4.4.4.1 Number of subscribers
	4.4.4.2 Number of nodes
	4.4.4.3 Epsilon value

	4.5 Related Work
	4.6 Summary

	5 State-based Publish/Subscribe
	5.1 Application Scenarios
	5.1.1 Requirements

	5.2 Architecture
	5.3 Component Model
	5.3.1 Pub/Sub Component
	5.3.2 SMC Manager Component
	5.3.3 InfoS Component

	5.4 Condition Specification
	5.4.1 SMC QEs (Q)
	5.4.2 SMC Transition Predicates (Pn/x)
	5.4.3 Condition Attributes (An/x)

	5.5 Data Model
	5.5.1 Events
	5.5.2 Knowledge Points
	5.5.3 Query Expressions
	5.5.4 SMC Manager Data Structures

	5.6 Detection Model
	5.6.1 Example: traffic congestion detection
	5.6.2 Setup Phase
	5.6.3 Knowledge Update
	5.6.4 Knowledge Selection
	5.6.5 Knowledge Examination
	5.6.6 Knowledge Encapsulation
	5.6.7 Knowledge Transformation
	5.6.8 Knowledge Discarding

	5.7 Distributed Detection
	5.7.1 Distribution Policy
	5.7.2 Distributed Processing
	5.7.2.1 Predicate Decomposition
	5.7.2.2 QE Decomposition

	5.8 Reliability Model
	5.8.1 InfoS Consistency
	5.8.1.1 Initial Consistency
	5.8.1.2 Run-time Consistency

	5.8.2 SMC Replication

	5.9 Evaluation
	5.9.1 Expressiveness
	5.9.2 Simulation Environment
	5.9.3 Experiment: Journey Planner Application
	5.9.3.1 Operational setup
	5.9.3.2 Processing
	5.9.3.3 Storage
	5.9.3.4 Communication

	5.10 Related Work
	5.11 Summary

	6 Conclusions
	6.1 Further Work

	A Replica SFs Theorem
	B SPS QEs
	B.1 QE selection operators
	B.1.1 Input relation (X)
	B.1.2 Output relation (Y)
	B.1.3 Nearest-index operator (closest)
	B.1.4 Aggregation operator (aggregate)
	B.1.5 Range operator (multiple)

	B.2 Joining decomposed SMCs
	B.2.1 multiple:one sub-operator
	B.2.2 multiple:any sub-operator
	B.2.3 multiple:all sub-operator
	B.2.4 multiple:separate sub-operator

	Bibliography

