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AtoZ: an automatic traffic organizer using NetFPGA

Marco Canini, Wei Li, Martin Zadnik, Andrew W. Moore

Abstract

This paper introduces AtoZ, an automatic traffic organizer that provides end-
users with control of how their applications use network resources. Such an approach
contrasts with the moves of many ISPs towards network-wide application throttling
and provider-centric control of an application’s network-usage. AtoZ provides seam-
less per-application traffic-organizing on gigabit links, with minimal packet-delays
and no unintended packet drops.

The AtoZ combines the high-speed packet processing of the NetFPGA with
an efficient flow-behavior identification method. Currently users can enable AtoZ
control over network resources by prohibiting certain applications and controlling
the priority of others. We discuss deployment experience and use real traffic to
illustrate how such an architecture enables several distinct features: high accuracy,
high throughput, minimal delay, and efficient packet labeling — all in a low-cost,
robust configuration that works alongside the home or enterprise access-router.

1 Introduction

The evolution of the Internet has encouraged new data-intensive applications to emerge
and quickly gain in popularity. Examples include Peer-to-Peer (P2P) file-sharing, online
video services (e.g., YouTube), IPTV, wide-area file storage and network-based appli-
cations (e.g., Google Docs). The resulting high-rate of Internet traffic growth, 50–60%
annually according to MINTS1, drives the ever-higher Internet bandwidth requirements.

Simple over-provisioning is insufficient and comes with significant costs. The broadband
buildouts which are expected to take the form of fiber to curb, premises and home2, ap-
pears as part of the fiscal stimulus packages for many countries3 and will only accelerate
the growth. However, the increasing traffic, diversity of the applications and their intoler-
ance to disruptions are posing an unprecedented challenge for the Internet infrastructure.
Many business critical or highly interactive applications such as VoIP, financial trading
platforms and real-time multi-player games are latency and loss sensitive, and thus prone
to starvation caused by the hands of other data-intensive applications.

Several ISPs react by throttling certain traffic (e.g., BitTorrent), which is inappropriate
for solving the wide-ranging problems in enterprise, organization, and domestic settings;
and moreover triggers network neutrality concerns4.

1http://www.dtc.umn.edu/mints/igrowth.html
2High-Speed Internet Grants Find Support in House, Wall Street Journal, January 22nd, 2009. http:

//online.wsj.com/article/SB123265622888307299.html
3http://www.bloomberg.com/apps/news?pid=20601204\&sid=aJeIvPUk2vAQ
4http://uk.reuters.com/article/burningIssues/idUKTRE50R6W020090129
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In this paper, we present AtoZ, an automatic traffic organizer which gives control back to
the end user: it allows flexible managing, shaping, balancing and distributing the traffic
load on an access network based on actual applications. AtoZ is built upon a hybrid
hardware-software platform and combines two significant elements:

• a hierarchical packet labeling scheme based on accurate behavioral application iden-
tification, and

• an implementation based upon the NetFPGA platform [1] permitting high perfor-
mance packet processing.

This architecture can handle gigabit line-rates, while providing accurate and efficient la-
beling of packets, and to have the reliability and seamlessness in packet processing with
minimum delay and no unintended packet loss5. The system exhibits substantial advan-
tages over operating system-based solutions, such as the Linux netfilter6, and commercial
traffic shaping solutions, such as Qosmos QWork.

Our deployed prototype of AtoZ implements application-specific switching of traffic from
different applications to different physical interfaces. We have conducted evaluations
using real network traces from a university campus and a research institution to show
how specialized hardware for packet-processing has a low impact on performance and
complements the high accuracy application-labeling approach.

We begin by motivating our approach, followed by detailing design specifics and the results
of our evaluations.

1.1 Motivation

Inefficient use of bandwidth is a significant problem for many enterprise, institution and
even home networks. Business-critical traffic in an enterprise network can be congested
by activities irrelevant to the core business, while critical applications may not receive
even the simplest priority or service guarantees.

Our goal for traffic-organizing is to re-balance, reduce, or restrict specific traffic gener-
ated by particular network-applications. In a business scenario this may be motivated by
financial common-sense, apportioning the cost of link usage appropriately among particu-
lar applications. But these need not imply weighty policies or heavy-handed restrictions.
Our approach can dynamically provision network resources as new critical-applications
come and go. Perhaps IPTV or data-replication causes unwanted service degradation?
By providing a degree of resource-limiting, other applications such as VoIP can be shown
to work without resulting in poorer service.

Even in the home context, balancing the uplink bandwidth, a bottleneck on ADSL and
other asymmetric deployments common to the home, can provide a huge improvement in
collective experience when the P2P clients are throttled permitting the VoIP even just a
small quantity of constant capacity.

Figure 1 illustrates our prototype deployments of the AtoZ Automatic Traffic Organizer:
as part of the access router. In our prototype deployments, the traffic organizer has been

5Intended packet-loss would result if the user configured AtoZ to discard certain applications.
6http://www.netfilter.org/
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Figure 1: AtoZ in use as part of an enterprise or institutional gateway and as the access-
router in a domestic setting.

placed alongside the existing access-routers, in the same manner as NIDSes (Network In-
trusion Detection Systems) might be deployed. We foresee deployment of this system on
the granularity of access-policy such as the department, hall-of-residence or, the increas-
ingly well-connected home. With an access-router approach, the rewards for deployment
are enjoyed by those bearing the cost.

We acknowledge specific requirements can differ both subtly and significantly in differ-
ent scenarios. We focus on these quite different uses and these reflect our deployment
experience.

Firstly, Home Access Links are commonly shared by family members or room-mates.
Despite a comparably small number of simultaneous activities ongoing on the link, the
traffic is rarely under effective management. The user experience of certain applications,
e.g., online gaming or VoIP are often affected by resource consuming activities, e.g.,
P2P file-sharing or bulk downloading of video content. AtoZ provides “seamless home
happiness” where different activities are neatly organized to optimize and utilization of
the link and the overall user experience.

In contrast, Enterprise7 networks are often intended to serve, as a priority, specific busi-
ness goals. These may have clear functional-definitions: emails, electronic conferencing,
customer services, or specific network computing needs, yet may be difficult to enumerate
as network applications; particularly when practical and effective business work is done
via Skype, Windows Live Messenger and other difficult to classify applications. In such an
environment stringent policy may exist that embargo certain applications entirely. Our
approach provides a combination of robust application identification and flexible control,
implementing a range of access-policy: from understanding the (access-link) use, through
prioritization of applications to the implementation of outright embargoes on unwanted
applications. One outcome of our trial at a hall-of-residence has been a pending policy
change permitting several previously banned applications including Skype. The reason has
been that AtoZ removes the unpredictable impact of such applications upon more critical
network services, and a user-pays situation can go some-way to reducing the unexpected
cost to users of such applications.

Our approach builds a high performance but cost-effective traffic organizer, which is

7We evaluated AtoZ operating in a number of different sized organizations: including SOHO envi-
ronments, departments, halls-of-residence, and entire research institutions of between 1,000 and 15,000
users.
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capable of fulfilling the requirements for the current and next generation network, while
being adaptable to different application scenarios.

2 Design Overview

The core component of a traffic organizer is its packet-labeling process, which attaches
a label on each packet permitting application-specific management to be done using the
label. We acknowledge a range of literature and practical implementations of packet
scheduling and management such as the CSFQ [2], which this work may usefully inform.
Our focus and main contribution is an architecture that provides accurate input to be
used in application-specific management.

Several significant features allow our system to meet all our design objectives. The hybrid
architecture (Section 2.3) allows the NetFPGA fast data path to support high-throughput,
minimum packet-delay and non packet-loss of the system, while maintaining its intelligent
functionalities (e.g., application identification) in software components. The hierarchical
packet-labeling (Section 2.2) is combined with accurate application identification (Section
3.3) to maintain the high labeling accuracy while significantly reduces the overall time-
to-bind8 and occupation of the flow cache. Further, the modular structure (Section 2.4)
of our system allows flexible updates and extensibility of the system.

We observe that there have been two main kinds of approaches in application-based traffic-
shaping systems. The first is based upon a list of known IPs and services, such as the
Linux netfilter, and a second approach is based upon individually-identified flows and
through the use, for example, of deep-packet inspection (DPI) modules, which is common
as part of commercial products (e.g., Qosmos QWork, Blue Coat PacketShaper, Riverbed
Steelhead and D-Link Traffic Manager) and NIDSes (e.g., Snort [3], Bro [4]).

The first approach utilizes user-defined IP-based rules stored in the form of a static IP
or service table. Despite having the advantage of simplicity, the table represents only a
known part of the total traffic, and such a static definition will be error-prone, particularly
with changes over time, and may have limited scalability if it is to describe, statically,
every possible combination of IP address and service (port).

The second individual flow-based approach has been widely deployed, however, it has a
number of architectural disadvantages:

1. a very accurate flow-identification mechanism is a must-have, but standard methods
based on pre-declared port numbers or DPI have faced a challenging environment
for some time [5],

2. application-specific operations can be taken only after a flow is classified, which
introduces a period in which packets are left unlabeled; this makes the mechanism
less effective for applications that involve many short, separate connections, and

3. it is non-trivial, introducing a non-negligible overhead to maintain a flow-table, with
which each packet is matched to a flow entry in order to identify flow/application
membership.

8We define time-to-bind as the period between the time a new flow is first observed and the time it is
identified.
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In contrast, several distinct observations allow us to develop a novel solution that meets all
our design objectives – high throughput, high accuracy, swift packet-labeling, minimum
delay and zero (unintended) packet loss.

Firstly, for any given traffic, there is only one unique application for a distinct {IP, port,
proto.} 3-tuple within a certain time period9. We base this assertion on our observation
and are confident it holds in most circumstances. This means that dynamically learned
{IP, port, proto.} rules can be used to accurately label packets at a higher level of ag-
gregation than the standard IP 5-tuple {src IP, src port, dst IP, dst port, proto.} which
identifies a flow. This enables the labeling of packets of significant hosts and activities
without time-to-bind, while also reducing the cost involved in maintaining the flow table
and identifying each flow.

Secondly, past work has shown that behavior-based machine learning models can identify
applications with very high accuracy using the first few packets of each flow [6, 7]. This
mechanism can provide accurate and timely labeling result, and also be used to create
and maintain 3-tuple rules.

Thirdly, the NetFPGA platform: a combination of FPGA and Gigabit Ethernet ports lo-
cated on a PCI board, provides an ideal environment for implementing a packet-processing
fast-path. In this way minimal-delay packet processing can be driven by specialized hard-
ware. It is still difficult to support all the sophisticated requirements of classification
within the NetFPGA. However, this allows for a natural division of work between the
complex software suited to a general-purpose computer and the NetFPGA which focuses
on accelerating the packet-processing pipeline.

This allows us to shape several key features of our design. In the following sections we
present the design, discuss the tradeoff and show its advantages over standard approaches.
We summarized earlier how we approach these design objectives.

2.1 Service Stability Assumption

Usually, packets with the same {IP, port, proto.} 3-tuple10 are carrying out a similar
service. For example, TCP packets to and from 207.46.107.73:1863 would be associated
to the Windows Live Messenger. This observation leads to an assumption that packets
associated to the same 3-tuple commonly belong to the same application in a certain time
period. And so, most packets can be accurately labeled using a mapping table between the
3-tuple and an application. This can significantly reduce the memory cost of maintaining
a mapping table based on the 5-tuple and accelerate the labeling process.

We base our assumption on observations of institutional networks (for several institutions)
taken over multi-day periods covering periods since 2003 up until the current day. Within
each day, we identify flows through pattern matching and manual inspection of the payload
contents. The results show that traffic follows our stability assumption for the entire day
although our work does not imply stability over longer periods. The only exceptions that
exist are the different applications encapsulated in VPNs, tunnels or SOCKS proxies. In
our current implementation these applications are identified as a special class of their own.

9We acknowledge the application-multiplexing that may occur within certain ports (80) and within
services such as VPNs, these are specifically dealt with in Section 2.1.

10In either the server or client side.
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Figure 2: Hierarchical Packet Labeling

Others have discussed further mechanisms that can be applied to identify the encapsulated
applications as needed [8].

2.2 Hierarchical Packet Labeling

The packet labeling in our system, illustrated in Figure 2, is hierarchically structured: it
comprises of the Host Cache (HC) working at the host and service level, and the Flow
Cache (FC) working at the flow level.

The HC stores entries that contain dynamically learned rules to label the packets asso-
ciated to significant hosts and service activities ongoing on the link, which map an {IP,
port, proto.} 3-tuple to an application class.

Packets not labeled by the HC are handled by the FC, which implements the mapping
between a flow (identified by its 5-tuple) and an application class.

Finally, all labeled and unlabeled packets are forwarded for application-specific manage-
ment.

The application-class labels in both caches are automatically learned. Specifically, the
HC is dynamically updated by inferring the binding of an application to a certain {IP,
port, proto.} 3-tuple via aggregation of the application information of flows derived from
early flow application identification. Once the association for a 3-tuple has been estab-
lished, subsequent packets carrying that 3-tuple can be immediately labeled at this higher
aggregation. This means that new flows involving a known 3-tuple are handled without
requiring to track and identify them; and their the time-to-bind is reduced to zero.

In common with past-authors [9], we capitalize on the observation that host interactions on
the Internet exhibit a heavy-tail behavior, that is, the majority of the traffic is associated
to only a small proportion of the interacting hosts [10, 11].

The HC is intended to deal with such heavy tail – the services most frequently used or
with the heaviest traffic load. Clearly, the existence of the HC also effectively reduces the
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Figure 3: The hybrid architecture and data flow in the traffic organizer.

utilization of flow records in the FC, since a significant number of flows may be handled
by fewer HC entries; otherwise, each flow will result in one FC entry.

However, the HC does not label packets carrying 3-tuples that have not appeared before
and for which an association has not been established. Therefore, we complement it with
the FC in order to guarantee that the rest of traffic is also timely labeled. In common
with traditional flow-monitoring mechanisms (e.g., Cisco NetFlow), the FC supports the
maintenance of per-flow state information, but here it only handles traffic which has not
already been organized by the HC.

The application-identification module provides accurate flow identification to initiate in-
stant updates of the FC, and updates the HC at certain time intervals as further discussed
in Section 3.1. The module adopts a light-weighted behavior-based early-flow identifica-
tion method [7]. The method focuses upon the beginning of flows, enabling application
identification to be done promptly after the flow is observed.

Our resulting hierarchical packet labeling process is able to maintain labeling accuracy of
the application identification mechanism. More significantly, it removes the time-to-bind
of up to 79% of the flows and saves up to 75% the FC occupation.

2.3 Hybrid Architecture

The NetFPGA has meant we are able to implement the data path for packet processing
at full-duplex Gigabit line rates with minimal processing latency measured in only a few
clock cycles [1]. Its capabilities are only limited by the complexity of the logic and the size
of available memory; therefore, our system adopts a hybrid architecture that integrates
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the NetFPGA as a fast-path packet processor with a more comprehensive, albeit slower,
software slow-path executed on a host machine to overcome memory and complexity
limitations.

Several design challenges exist for such a hybrid architecture. The first challenge is the gap
between sophisticated, dynamic, organizing-functions and heavily constrained complexity
and memory availability in hardware. The second challenge is to be disruption-free: that
is, to minimize the impact on performance, at speed, latency and (unintended) packet-
loss. The third challenge is to find the right balance between the high-speed hardware
and the lower speed software. Meanwhile, the communication between hardware and
software is limited, operating at rates far slower than the total fast-path throughput
and removing any opportunities for the simple off-loading of hardware-workloads into the
general-purpose software systems. One final challenge is that the hardware ought allow
dynamic rule updates, of the FC and the HC, on-the-fly.

These challenges are resolved by properly designing the data paths and distributing the
processing tasks between hardware and software components, while considering the fol-
lowing design principles:

• build a complete, uninterrupted packet processing data path in hardware (which
only duplicates packets to software as it is able to),

• minimize transfers between NetFPGA and host machine,

• limit the complexity of gateware, the synthesized logic downloaded into an FPGA,

• reduce memory usage in hardware, and

• modularize by function (not by process) each system component to preserve the
flexibility of various traffic organizing sub-systems, permit mobility between hard-
ware and software module implementations and allow for future extensions of the
system.

All the core packet processing components are implemented in hardware, including the
packet labeling process based on the HC and FC hierarchy, the Application-specific Man-
agement logic, and the packet-receive and transmit units. These form the fast data path
of our system, from receiving packets from an interface to delivering them to where they
should be organized. Currently, our prototype implements modification of the destina-
tion MAC address and-or switches traffic on different physical interfaces. Extensions to
traffic-shaping (e.g., rate-limiting) for specific applications is also available.

The components not located on the fast data path are implemented in software. These are
the software flow cache, the application identification module, the hardware controllers
which dynamically update and maintain the caches, and further extensible modules that
allow for other specific operations.

Moreover, the computational cost in this architecture can be significantly reduced by
limiting the number of packets to be processed in software. Packets having been matched
by the HC or the FC do not need to be processed again by the software. And so, we design
a packet filter in hardware that forwards only the first few (typically five) packets of each
flow to the software, so that a fairly small proportion of total packets will go through the
software data path.
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Between the hardware and software, data-driven communications permit the system to
work smoothly and efficiently. For example, immediately after identifying a flow, the
software forces an update of the corresponding hardware FC entry on-the-fly.

The packet filter combined with the de-synchronization between hardware and software
guarantees that the processing capability of software components will not be a bottleneck
for the entire system. In this way, the whole system is able to work at a constant high
speed: it handles up to 8 Mpps with an average latency of less than 17 µs.

2.4 Modular Structure

Owing much to the modular vision of the Click Modular Router [12], we implement our
system as functional modules. Each software and hardware component in our system can
be flexibly reorganized and easily tuned, in order to (a) facilitate further research, (b) allow
using alternative algorithms to achieve specific tasks or to optimize performance, and (c)
to enable easy, frequent update of identification models or traffic organizing policies due
to novel development of Internet applications.

For example, the application identification module can be replaced, such that any other
machine-learned early-flow identification models or DPI methods can be used, or even a
combined classifier using multiple methods. Host-based classification models, for example
BLINC [13], can also be used alongside the flow identification results to derive HC rules.

The modularity also allows re-assembling the pipeline for many more purposes than in
this prototype. This allows the system to be extended to other applications, which are
further discussed in Section 6.

3 System Component Design

The traffic organizer is comprised of several modules, as shown in Figure 3. The modules
in the system may combine codes on two different platforms: gateware on the NetFPGA
card and software on the host machine. For convenience we refer to them as hardware
components and software components.

Hardware components focus on supporting a fast data path providing minimal packet-
processing delays and no unintended packet loss. Accordingly, software components are
designed for two objectives: firstly, to support sophisticated functions such as rule creation
and flow identification, and secondly, to manage and control the hardware components
where the data structures have a higher complexity than that can be managed by them-
selves.

In the following subsections, we describe a system design which is based upon several
functional modules. We show how the modules connect with each other, and how software
and hardware components collaborate in each module to achieve the design goals. Here we
focus on the high-level functional design and the software implementation, while hardware
design and implementation is further discussed in Section 4.
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3.1 Host Cache

As mentioned in Section 2, by focusing upon the subset of hosts which are responsible for
large amounts of traffic flows, the Host Cache serves to label packets to and from these
hosts with the corresponding application class.

HC is a two-stage mechanism, comprising a fast packet labeling stage in hardware, and
a management stage in software. The packet labeling stage operates at the per-packet
level, matching three packet header fields, either {dst IP, dst port, proto.} or {src IP, src
port, proto.} against a set of existing rules based on {IP, port, proto.} 3-tuples. If it finds
a match, the packet is labeled using the application class associated with the matching
rule; otherwise it retains a default empty label.

These rules are created and managed by the HC management stage. This operates by
defining a time window (and thus the time scale is several orders of magnitude larger
than the per-packet level) during which the newly classified flows are aggregated by the
server end-point: the {IP, port, proto.} 3-tuple based on the server address. Now, to
each end-point corresponds a flow count x and a set of application classes. Let p be the
proportion of flows belonging to the class with the majority of memberships.

Note that only flows starting after the beginning of the measurement interval are counted.
Furthermore, only flows that are not matched by the HC rules currently in use are consid-
ered because the matched flows are not being processed by the application-identification
module.

At the end of each time window, we score each candidate rule using a utility metric, and
we consider just those rules whose utility exceeds a threshold Uth. If the total number of
rules is larger than the HC capacity, the ones with higher utility are selected. For a given
end-point, we define the utility metric as

U = x × f(p)

where f(p) is a function increasing with p11. The idea here is that the utility is pro-
portional to the flow count and is also affected by the consistency of the application
identification results. For active rules, we estimate their utility as U = n where n is the
number of flows matched by this rule during the past time window. As the active rules
are stored in hardware memory, it is the hardware that measures n (approximately).

Finally, the management stage identifies the most useful rules by comparing the candidate
with the active rules. Active rules that are not considered sufficiently useful are evicted
and replaced by more useful ones.

The utility score serves to describe the usefulness of a rule and by quantifying the contri-
bution of the candidate rule we provide a mechanism for selecting the entries for eviction.
Using the utility metric in this way allows us to directly trade uncertainty in classification-
stability (i.e., the applicability of previous classifications to future traffic) for speed-gains
made through use of the HC. Recall that if an entry is evicted from the HC then the
full-classification path is used.

We now discuss some details of the complexity encountered in our implementation.

11The f(p) in this prototype is a linear function, and further investigation is planned in the future
work.
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Firstly, the initial aggregation of identified flows requires us to keep state information
about the interacting hosts. However, as we are only interested in relatively popular end-
points, we want to avoid wasting memory tracking every single host’s activities. Thus, the
first step of the aggregation involves a particular technique based on multistage filters to
efficiently detect the heavy-hitter end-points (in terms of flow count). A detailed descrip-
tion of multistage filters is offered in [14], but in essence, a multistage filter is a variation
of counting Bloom filter [15] that represents a subset of elements and their individual
occurrences with just a small, fixed-size memory block. This technique effectively reduces
the memory consumption of the management stage because it only has to track the state
for the small set of popular end-points that pass the filter, i.e., their flow count is above
a certain threshold.

The management stage then maintains a hash-table that associates each popular end-
point with an array of counters of identified flows in each class. The table supports an
update(f) operation that is invoked upon the identification of a flow f involving an end-
point that passes the filter. When invoked, it increments the counter corresponding to
f ’s class for the table entry indexed by f ’s 3-tuple (the end-point).

The filters and hash-tables are reset at the beginning of each time window.

Secondly, the estimation of the active rules’ utility requires that some statistics are kept for
each rule in hardware. Since we want a low gateware complexity, we use an implementation
based on Bloom filters to arbitrarily trade-off estimation accuracy for space-efficiency [15].

3.2 Flow Cache

In our system, flow level operations are supported by a dual flow cache, combining two
data structures: hardware Flow Cache (HFC) and software Flow Cache (SFC), located
on the NetFPGA and on the host machine, respectively. The role of the dual flow cache is
to maintain flow state information for currently active flows (inactive flows are identified
using a timeout). Indeed, this is similar to standard flow monitoring mechanisms such as
Cisco’s NetFlow. However, some notable differences remain.

Firstly, an important difference is that such dual flow cache is specifically designed for
traffic organizing instead of traffic measurements (Section 6 discusses how traffic measure-
ments can be made in our system). Thus, the HFC only observes and processes packets
which are not matched by the HC. Furthermore, the SFC processes an even smaller pro-
portion of the packets than the hardware counterpart, typically the first five packets of
each flow, according to the principle that the hardware supports larger throughput than
software.

Secondly, the HFC and the SFC are bi-directional, i.e., there is only one entry for packets
of the same flow in both directions.

Thirdly, the HFC is devoted to packet labeling, and maintains minimal information about
the flows (stored in a space-efficient format). On the other hand, the SFC supports the
flow identification by collecting the flow features.

Furthermore, the HFC is not self-managed. Instead, its management operations are driven
by software, with the hardware providing an interface to support these operations. How-
ever, all the communications are data driven and de-synchronized, in order to minimize
the latency and overhead. For instance, the software updates the application class of a
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certain flow once it is classified, and manages the flow timeout12. Finally, it removes the
FC entry when a flow expires.

Importantly, stricter hardware constraints require that the HFC has smaller capacity than
the SFC. When changes in the traffic patterns cause an increase in the number of flows
leading to a saturation of its capacity (e.g., during DoS attacks), the HFC is not able to
label continuously all packets for the set of identified flows in the SFC. As described in
Section 4.3, we include a simple LRU-based eviction policy to maintain the most active
flows in the HFC. In such situations, counter-measures such as elephant flow detection
[14] or reducing the flow timeout can overcome the impact of such an attack with the
drawback of (potentially) increased inaccuracy in classification performance.

3.3 Application Identification

As already noted, the hierarchical packet labeling mechanism is supported by the early-
flow application-identification module.

Here, we implemented the method described in [7] in C++. It utilizes 12 behavioral
features and C4.5 decision tree algorithm to build machine-learned models that are able to
classify traffic into 13 application classes with both high accuracy and low computational
overhead.

The 13 classes group applications based on their purpose, and are intended to cover
all the Internet traffic, with each application categorized into one of the classes (e.g.,
Windows Live messenger being classified into “CHAT”). Such definition tends to capture
the inherent property of each type of application and may exhibit better stability over
time than individual protocols or applications.

The method supports both TCP and UDP traffic; furthermore, the early-flow features
used in this method are collected from the packet headers of no more than the first five
packets of each flow, allowing a short time-to-bind.

In [7], the authors show that the models are fairly accurate over a considerably long period
of time, and across different sites; they also suggest that a model built up with traffic
from various sites can be more accurate in overall for all sites. Notably, the worst result
(classifying traffic using a model from a different site 1 year ago) using the classifier is
still better than conventional DPI and port number-based approaches.

Besides the accuracy, the method also benefits from the extremely low complexity of
the C4.5 decision tree classifier [16], the implementation comprises of several nested if

statements. This makes it a very efficient flow classifier that is well-suited to handling
online traffic.

4 Hardware Design

While the software system provides the control plane of the whole system, the hardware
implements the entire packet data path on a NetFPGA card. The gateware in the NetF-

12The flow timeout is managed in software only to maintain a simple hardware logic. When a flow
times out, the software resets the packet filtering counter to test whether the flow is still active. If no
packets are observed for this flow during another timeout period, the flow is considered expired.
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Figure 4: FPGA gateware – Fast data pipeline and the NetFPGA environment.

PGA is described in Verilog13 and can be easily ported to any network interface card
equipped with FPGA chips.

4.1 The Fast Packet Data Path

The fast data path consists of a modular pipeline with multiple modules, as shown in
Figure 4. All hardware modules are data-driven: each processes frames (Ethernet en-
capsulated packets) immediately upon arrival and independently of any other module.
Modules receive and transfer data using a 64-bit wide data bus with a FIFO-like inter-
face, and are designed to process up to 8 Mpps which is sufficient to handle more than
four fully utilized Gigabit interfaces irrespective of packet sizes.

As can be seen in Figure 4, while running independently, each module consists of several
actions including extraction of packet header fields, hash computation, table lookup, and
packet labeling or forwarding.

The life of a packet in the pipeline begins in the HC. Firstly, the IP addresses, ports and
protocol are extracted from the packet. Then two hash values are computed, the first
using {src IP, src port, proto.} and the second using {dst IP, dst port, proto.}. These
hash values are used to look up the application class label in the HC table. The mechanics
of the hash-table is discussed in detail in Section 4.3. If the lookup is successful, then
the frame header is annotated with the class label. In this case, the frame passes the
HFC without any further processing. Otherwise, the HFC extracts the IP 5-tuple and
computes a single hash value (since we consider bi-directional flows) which is used to look
up the flow record in the HFC table. If found, the flow record contains the class label
and a packet counter. If the label is valid, the frame header is annotated with it. The
counter is only used to keep track of the first few packets for this flow (typically 5) so that
they can be duplicated to software. When the counter reaches its maximum, aside from
TCP packets with FIN or RST flags set, no more packets for this flow are duplicated to
software. However, the software can reset the counter when required (e.g., to handle a
flow-timeout). When the lookup fails, a new flow entry is created in the HFC table, with
counter of zero and an empty class label. The class label is updated as soon as the new
flow is identified.

13http://www.verilog.com/

15



Both labeled and unlabeled frames are forwarded for application-specific management. In
our implementation, this is done by the Forward Module which is capable of forwarding
traffic to different output ports and/or to modify destination MAC addresses based on the
application class. It uses a uniform interface to implement both the packet transmission
and packet duplication to the SFC on the host machine. Non-IP packets, such as ARP
and ICMP are simply forwarded to the default output port.

The implementation of this module can vary depending on the desired functionality. Ex-
amples include priority queues to accelerate critical traffic, filters and rate-limiters to
throttle undesired traffic, intelligent load balancers or specific modules that apply differ-
ent Service Level Agreements to different application classes.

4.2 Hardware – Software Communication

The fast data path and software components cooperate to organize traffic at a high speed.
Due to its limited complexity the hardware utilizes results from software to accurately
label incoming packets, and at the same time it realizes load shedding for the software by
handling the majority of the traffic.

Hardware and software sub-systems communicate via the PCI interconnect.

From the fast data path perspective the NetFPGA platform provides an interface to
receive or transmit Ethernet frames on physical interfaces or to transfer frames using
DMA operations in either directions between the card and the host machine. In addition,
it provides a register-based interface which is used to receive the control commands.

From the software perspective the interface to receive the duplicated packets is provided by
a Linux kernel driver which exposes the NetFPGA to the operating system as a standard
NIC. Further, the software components have access to memory-mapped registers that are
used for both configuring the data pipeline and updating the HC and HFC tables.

4.3 Hash Table Lookup Scheme

The lookup scheme in both the HC and HFC is based on a Näıve Hash Table (NHT)
that consists of an array of buckets each of which contains a fixed number of entries. We
are aware of other schemes, such as those based on Bloom filters [17, 18, 14], but NHT
is readily mapped on FPGA on-chip memory structure and inherently has characteristics
that other schemes might miss or for which it is hard to achieve: NHT allows to (a)
add and remove items quickly and continuously, and (b) store and update per-entry state
information.

The lookup procedure works as follow. Given an item to be searched, we compute an
hash value and use this value to select the corresponding bucket. Then, instead of doing
a sequential scan through the bucket’s entries, we search all entries simultaneously by
exploiting a function of the Xilinx Virtex-II-Pro FPGA which allows parallel access to
multiple banks of on-chip memory in one clock cycle. Also at no extra hardware or time
cost, the entries in each bucket are kept in least recently used (LRU) order so that when
a bucket becomes full we can maintain the most active flows and evict old entries to allow
new items in the bucket.
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Parameters HC HFC
Entries 2048 32768
Buckets 256 4096
Fingerprint 40 36
Length of hash 48 48
F.p. probability pf 7.5 × 10−9 1.9 × 10−6

Table 1: Configuration of Host Cache (HC) and Hardware Flow Cache (HFC)

As both tables are stored in the on-chip memory, space is a major limiting factor. At the
expense of accuracy, we store in each entry only a small fingerprint of the original item
instead of its complete descriptor (e.g., the IP 5-tuple). This greatly increases the number
of entries, but it introduces the possibility that two different items (e.g., flows) collide into
the same entry if they have the same hash value and fingerprint. This undesired situation
is called a false positive. However, by dimensioning the bit-length b of the fingerprint, the
probability of false positives pf can be reduced to an acceptable rate. This probability can
be estimated by the birthday problem. Suppose there are 2h buckets, then the bit-length
of an hash value is h + b, therefore we have:

pf = 1 −
m!

mn(m − n)!
= 1 −

2(h+b)!

2(h+b)n(2(h+b) − n)!

≈ 1 − e
−

(n−1)n

2×2(h+b)

where m is the total number of hash values and n is the number of entries in use.

4.4 Hardware Setup

The total on-chip memory available in NetFPGA would allow us to accommodate ap-
proximately 128 K entries if each entry has a 36 bit fingerprint and a few bits reserved
for the application class and the packet counter. Unfortunately, the NetFPGA infrastruc-
ture (MAC cores, etc.) consumes over a half of the memory resources. In our prototype,
we use the configuration of the HC and the HFC as shown in Table 1. Each bucket in
the HC and the HFC contains 8 entries; with a total length of 48 bits for the hash, the
false-positive probability of the NHT is negligible for our experiments, as shown in the
table.

We are planning to use the external SSRAM memory available on the NetFPGA board
which is currently used for packet buffers and queues. We estimate it can accommodate
approximately 500 K entries which will make it more suitable for deployment in larger
enterprises.

Moreover, we show that our approach works sufficiently well with these limited num-
bers of table-entries even when contrasted with the total number of flows present in our
evaluation traces. The HC effectively labels a significant number of flows and the HFC
gracefully degrades the labeling performance when the number of concurrent flows exceed
its capacity. In no case packets are dropped.
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Trace Dur. Packets Bytes Avg. Util. Avg. Concur.
Flows

R.Inst. 30m 202 M 142 G 624 Mbps 38 K
Campus 30m 268 M 22 G 98 Mbps 17 K

Table 2: Working dimensions of our traces.

5 Performance Evaluation

The experiments aim at validating our hierarchical packet labeling approach, and demon-
strating the performance advantages of simple and cost-effective hardware.

5.1 Experimental Setup

For this system, the packet and flow rate have more significance than just the data rate.
The data path is designed to handle multi-Gigabit/s data streams. However, each packet
and flow undergoes a number of operations (e.g., table lookup, feature extraction, clas-
sification) that must be able to keep up with packet and flow rates, respectively, so it is
important to include realistic traffic in the evaluation methodology. Moreover, as AtoZ
derives and uses information of behavior of applications we conclude that real traffic traces
(with pre-determined ground truth) are fundamental to the system evaluation.

For these experiments, we use two data traces of real traffic, one from a research institute
(R.Inst.), and one from a large university campus (Campus). Table 2 summarizes the
working dimensions of our traces.

Our testbed consists of two high-end server machines which can replay the traffic using
tcpreplay14. We partitioned the traces into two halves, using flow hashing to ensure that
packets belonging to the same flow are in the same trace, to allow them being replayed
from the two machines with fidelity. The traffic from the two machines is aggregated in
a Cisco C6509 switch to provide high data-rate traffic. The NetFPGA is connected to an
optical port on the switch via a media converter. By means of an optical splitter located
on the path to the optical port, we also connect a DAG card downstream from the switch
so that measurements are not impacted by jitter and delay introduced at aggregation.
tcpreplay provided support to reproduce the timings of the original trace with sufficient
fidelity.

The NetFPGA board is hosted on a machine with an Intel Quad Core CPU (2.40 GHz)
with 4 GB of RAM, running CentOS Linux 5.0 (kernel version 2.6.18). However, our
software implementation is only single threaded.

In order to compare AtoZ with an equivalent software-only solution, we combine our
software components with elements from the standard Click distribution that provide
packet-receive and transmit functionalities. In this case, we run the software on the same
PC hosting the NetFPGA, but we use a high-end dual port NIC (Intel e1000) to receive
and retransmit packets, because the NetFPGA is not optimized to operate as a standard
NIC.

We point out that our prototype uses research-grade code and many opportunities exist
for further improvements to be made. We simply intend to show the performance gap

14http://tcpreplay.synfin.net/
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Data rate 300 Mbps 600 Mbps 1 Gbps
(Packet rate) (51 Kpps) (107 Kpps) (137 Kpps)
AtoZ 13 ± 4 µs 16 ± 3 µs 17 ± 2 µs
SW only 304 ± 120 µs 12 ± 25 ms -

Table 3: Packet processing latency of AtoZ compared to software-only solution.

between using a software-only solution and a system that builds on that same software
but combines with functionalities implemented in specialized hardware.

5.2 System Capacity

We start by examining whether AtoZ is able to handle a fully loaded link, as our simulation
predicted. To test the system’s throughput, we generate traffic by replaying the R.Inst.
traffic traces at maximum speed. This produces a 1 Gbps data stream. Our experiments
confirm that no packets are dropped, even when traffic is sent at maximum speed. We
measure the throughput using 10 s intervals. The mean throughput is about 137 Kpps
and achieves a maximum of 173 Kpps, while the software processes on average 1.6 Kpps
with a peak of 12 Kpps (duplicated packets).

5.3 System Latency and Packet Loss

We simulate each hardware component to measure its processing time, using minimum and
maximum IP packet lengths of 64 and 1500 bytes respectively. Summing the individual
contributions, we obtain 227 and 281 clock cycles which correspond to about 1.8 and
2.3 µs for the minimum and maximum packet length, respectively, excluding buffering
and transmission delays. At the expense of complexity, these times can be improved by
increasing the clock frequency15.

To measure the actual latency, we generate traffic by replaying the traces at 300 Mbps,
600 Mbps and maximum speed. Table 3 shows the measured processing latencies with
standard deviations (which do include buffering and transmission delays). AtoZ maintains
a very low latency (at worst 17 µs) with no observed packet loss and CPU utilization
always below 6%. The software sustains a data rate of 300 Mbps, but its processing
latency is already an order of magnitude higher than AtoZ. At 600 Mbps, the software
drops about 4% of the packets and the CPU reaches 100% utilization, causing an increase
in latency of tens of milliseconds. As packet loss already starts to occur, there is no need
to test the software with 1 Gbps.

5.4 Packet Labeling

For these experiments, we replayed the traffic traces at their original speed.

Host Cache Efficiency: We evaluate the Host Cache (HC) efficiency by measuring the
number of flows that it matches over the total number of flows in each time window. We

15The NetFPGA has a core clock that runs at 125 MHz, but modern FPGA architectures readily
support 200 MHz.
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Figure 5: Host Cache efficiency.

vary the time window from 15 to 90 s, and we vary the capacity from 128 to 2048 entries
by powers of two. Figure 5 shows the average efficiency for some significant time window
lengths. The value of Uth is 10. We experimented with several values and we found that
this value is a sufficient trade-off between avoiding spurious rules (which happen with
lower values) and requiring longer time windows.

As expected, the number of flows matched by the HC increases with a higher HC capacity.
The optimum value of the time window is 30 to 45 s for both traces to reach the highest
number of matches. Although a longer time window allows establishing with higher
confidence which end-points are the most significant and stable over time, extending the
time window for too long also reduces the opportunity for applying the rules just derived.

Time-to-bind: An important benefit of the HC is that the system can promptly organize
the traffic of new flows involving known hosts: the time-to-bind is zero for all new flows
matched by the HC, which means that their packets are labeled from the time the flows
start. To demonstrate this improvement, we measure the time-to-bind when the HC is
disabled and compare it with the case when it is enabled. Figure 6 shows the time-to-bind
histogram obtained for the R.Inst. trace.
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Figure 6: Time-to-bind distribution, with Host Cache vs. without Host Cache.

Labeling Accuracy: By comparing with pre-determined application ground-truth, we
evaluate the overall accuracy of the packet labeling process.

Two metrics are considered: the flow accuracy and the packet labeling accuracy. To
measure the flow accuracy we export the application identification results and HC rules
on the host. For the packet labeling accuracy, we use the DAG card to capture only the
packets that are not labeled. By combining this with the results above, we determine
which packets are correctly labeled. We compare our labeling accuracy with a number of
methods, including the original behavioral method [7], IANA port-based identification,
the l7-filter16 and Qosmos QWork, considering all the TCP and UDP traffic. Table 4

16Application Layer Packet Classifier for Linux. http://l7-filter.sourceforge.net.
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Trace Metric AtoZ Original Port-based l7-filter QWork
R.Inst. Flows [%] 99.63 99.73 64.66 73.03 86.88

Packets [%] 99.46 99.71 21.07 27.34 46.39
Campus Flows [%] 99.59 99.66 89.67 94.28 95.04

Packets [%] 99.36 99.50 79.39 86.61 87.92

Table 4: Overall packet labeling accuracy.

summarizes the results. (The packet-accuracy for all the other methods is the gross

accuracy without considering the time-to-bind.) It shows that our approach maintains
the high accuracy of the application identification method and outperforms other methods.

Load Shedding: We track the packet rate in the HC, HFC and SFC to evaluate the
workload distribution in the hierarchical labeling process. Using the R.Inst. trace, Figure
7 shows the packet processing rate at several stages: the total traffic load, the traffic load
of HFC and the traffic load of SFC during its steady-state operation. The HC sustains
the entire traffic load and labels about a third of the total packets. The remaining two
thirds are mostly processed by the HFC, whereas the SFC receives only a very small
fraction of the load. It can be seen that the SFC curve closely resembles that of the traffic
load except for the point marked (1) in the figure. This corresponds to the expiration
of a certain HC entry due to timeout. As desired, the system periodically expires HC
entries even though they are well performing. This is done to maintain accurate traffic
classification. In this case, after one time window the HC management restores the HC
entry.

Further, the packet filter in HFC combines with the HC effectively to reduce the traffic
processed in software to about 0.1% of the original traffic. This result agrees with the
findings of other works that also leverage the heavy-tailed nature of traffic. For instance,
in [9] the authors reduce the data to less than 6% of the original traffic from their sites
by collecting the first 15 KB of each flow. In our experiments, the reduction is even more
drastic due to the use of just the first 5 packets and the efficiency of the HC. In this case,
disabling the HC increases by 5 times the amount of traffic processed in software.

Figure 8 presents the temporal evolution of the SFC size for R.Inst. We compare the
case of HC disabled with HC enabled. When the HC is disabled, every active flow is
present in the SFC, causing greater load on the system (e.g., longer table lookup times)
and high utilization of the (limited) HFC resources. In this case, the SFC maintains on
average 38.5 × 103 entries which is 17% larger than the HFC. However, when the HC is
enabled only about 25% of the active flows need to be maintained in the SFC, reaching a
maximum of 25 × 103 entries and less than 77% utilization of HFC.

The two curves have similar profiles except for point marked (2) in the figure. Here,
in correspondence with (1), the number of flows entering the SFC increases. These are
the flows that are matched by the HC until (1), but when the HC entry is removed,
the successive 5 packets for these flows are processed by software. AtoZ now has two
alternatives: it can label these flows based on the HC entry or it can classify the flows
using mid-flow features. In our implementation, we chose the simpler solution which is
to label the flows using the HC entry. Therefore, once the HC entry is removed from the
HC we still keep it in software for one flow timeout period.
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Figure 8: Temporal evolution of SFC size, with HC vs. without HC.

6 Discussion

Robustness

The robustness of the whole system is guaranteed by the hardware fast data path, in
which each component is designed to support full line-rate packet switching.

System failures may impact other traffic organizer implementations due to resource ex-
haustion or system-overloading. In our system, there is no interruption to the fast data
path which serves as the default path for all data, so that even in exceptional circumstance
only the software system can be overloaded. The worst case is that not every packet is
labeled. We could conjecture that the resulting performance will still be an improvement
over no device, since at least some traffic labeling would take place. In common with
many high-end network device designs, e.g., NIDS[19], the hierarchical packet labeling
scheme also provides more resilience against attacks which lead to poisoning of the flow
cache.

Quality of Experience (QoE)

QoE is part of our motivation and our prototype can be naturally extended into a QoE
device. Space limitations prevent discussing this specific topic in depth, but simple ap-
proaches include applying a rate limiter to the lower-priority application classes, or apply-
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ing a different packet filter for each class. Further, our device is able to provide a flexible
classification of network-traffic for the benefit of other systems that can provide QoE such
as diffserv [20] and MPLS [21].

Extensibility

The traffic organizer presented uses only automatically-generated rules learned from the
flow classifier. However, thanks to its modular structure, it is readily extensible to allow
input information from other sources such as an organization’s NIDS or input from a
manual interface, or to provide network utilization information to specific traffic-handling
systems such as firewalls and NIDS implementations.

Implementation and Costs

Our current software implementation is based on extensions to Click and makes extensive
use of the NetFPGA platform, which permits rapid prototyping of our system and demon-
strates the feasibility of the hybrid architecture to fulfill the design objectives including
packet processing performance, accuracy and flexibility.

For future implementations, one tempting approach is to extend the Linux netfilter to use
the NetFGPA by adding hardware implementations of appropriate functional modules,
as we have done in the AtoZ traffic organizer. This would improve the performance and
efficiency of netfilter in the same manner as the NetFPGA-based acceleration for the
standard Linux router17.

We suggested earlier that the AtoZ traffic organizer be part-of or used alongside the
access-router. The advantages of traffic organization are immediately provided to those
who incur the deployment costs. For an academic target-audience the NetFPGA card
cost is low, at $580. Further, the implementation we have made is portable and may
be ported to existing systems (e.g., Netronome18 and NetCOPE19), to provide 10 Gbps
implementations at reasonable cost.

7 Related Work

Our work on the AtoZ automatic traffic organizer relates to a wide set of fields rang-
ing from systems-architectures to application-identification based upon machine-learning
methods.

We are indebted to the creators of the Click modular route [12], and extend this idea with
an approach that preserves functionality between modules. While this does not permit the
same level of plug’n’play that Click provides, our approach still permits high-performance
hardware modules to be co-designed alongside software implementations.

An important theme, and one we share with several past works is the the placement
of network functionality. Aside from the obvious example of the NetFPGA itself [1],

17http://netfpga.org/wordpress/?p=124
18Netronome. http://www.netronome.com/.
19NetCOPE. http://www.liberouter.org/netcope/index.php.
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the work of U-net [22], SPINE [23] and ARSEnic [24], — while focused specifically on
network interface cards — each provides valuable insight into the choices that are faced
in hardware-software co-design.

Issues of co-design were also faced by the designers and users of the PCI-based Pamette
FPGA board from the DEC Systems Research Center. A general-function system, this
board saw use as a (reprogrammable) engine for graphics offloading, encryption and
performance-instrumentation [25].

The architecture of AtoZ shares a few common characteristics with some other FPGA-
based architectures that “shed load” for network-intrusion detection and prevention sys-
tems ([19, 26, 27]), in particular, the way that it distributes the workload and functionali-
ties between hardware and software. These approaches are specifically designed to offload
the subset of traffic which is large in volume but of little interest to intrusion detection
and prevention systems. In contrast, AtoZ aims at organizing the entire traffic on the
link, and solves different problems that arise associated with traffic organizing. However,
due to the architectural similarity, there are certainly possibilities that these systems can
be integrated in the same framework.

The hierarchical packet labeling scheme is inspired by an observation of the application
binding with IP, port pairs. Similar assumptions have also been used for application
identification [13].

We also acknowledge the variety of work on behavior-based application identification and
early flow fingerprinting [6, 28, 29]. The biggest difference among these methods is the
feature set used, and we argue that with a strong and compact feature set, we can make
advantageous trade-offs between classifier complexity, accuracy and time-to-bind, and
couple high identification accuracy with system performance by using simple and efficient
algorithms (such as the C4.5 decision tree).

We have recently seen numbers of proposals intended to tackle the challenges of support-
ing the diverse range of Internet applications. Some examples include virtual enterprise-
network provisioning with Da Vinci [30], co-ordinating the Home network in HomeMae-
stro [31], and new proposals such as network exception handlers [32], which more closely
integrate the end-host into the networks’ operation.

8 Conclusion and future work

We have described the design and implementation of the AtoZ traffic organizer: a small,
intelligent and high-speed network device. It enables seamless, application-specific traffic
management on edge-network, benefiting from a highly-efficient packet-labeling mech-
anism based on intelligent behavioral flow identification, and high performance packet
processing using NetFPGA.

We deal with several technical challenges: how to support the entire system functionality
under maximum throughput, without delay or packet loss; all while incorporating effective
intelligent traffic classification.

In Section 4, our implementation worked well for smaller instutions (≈1,000 hosts) but
was not best-suited to the largest enterprise (15,000 users and close to 100,000 hosts).
However, there is no reason for the current constraints of on-chip memory to exist in a
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future implementation. Furthermore, we showed the feasibility of a simple, cost-efficient
hardware-software hybrid implementation that facilitates seamless and sophisticated traf-
fic management operations on multiple Gigabit-rate links. We are making our implemen-
tation available to the community at http://anonymized and at the NetFPGA project
page http://www.netfpga.org.

Limitations and Future work

Our implementation is an early-day prototype, and while deployment experience has been
positive, we can identify several areas for future work. Our classification method is nei-
ther definitive nor complete: we next intend to investigate replacement schemes that use
hybrid methods. Our implementation could logically be integrated into an existing access-
router; although current practical limitations make this a challenge for a NetFPGA-based
solution. We also note that our work does not provide full traffic-accounting functionality
at line rate. However, there is no reason (aside from NetFPGA gate-resource limita-
tions) that AtoZ could not be integrated with the NetFlow probe also developed on the
NetFPGA platform20.

We restate that AtoZ is also not supposed to be a network intrusion detection system or
a firewall in its own right. Our prototype has no sophisticated mechanism for detecting
attack patterns (although that may be a logical addition). We suggest that this system
operates in tandem with existing NIDSes and firewalls.
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