Technical Report A

Number 77

Computer Laboratory

Why higher-order logic
is a good formalisation for
specifying and verifying hardware

Mike Gordon

September 1985

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1985 Mike Gordon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

September 23, 1985

Why higher-order logic is a good formalism

for specifying and verifying hardware

Mike Gordon
Computer Laboratory

Corn Exchange Street
Cambridge CB2 3QG

Abstract

Higher-order logic was originally developed as a foundation for mathematics. In

this paper we show how it can be used as:
1. a hardware description language and
2. a formalism for proving that designs meet their specifications.

Examples are given which illustrate various specification and verification tech-
niques. These include a CMOS inverter, a CMOS full adder, an n-bit ripple-carry

adder, a sequential multiplier and an edge-triggered Diype register.

1.

2.

CONTENTS

Introduction
Introduction to higher-order logic

Representing behaviour with predicates
3.1. Adelaylessswitch
3.2. Aninverterwithdelay

Representing circuit structure with predicates

A CMOS inverter

5.1. Specification of the components
511, Power oo .
512, Ground
5.1.3. n-transistor o e e e e e
5.1.4. p-transistor

5.2. Logic representation of the inverter circuit . . .

5.3. Verification by proof

A 1-bit CMOS full adder

6.1. Specification00
6.2. Implementation
6.3. Verification 0oL,

An n-bit adder

7.1. Specification 0000

7.2. Implementation
7.2.1. Recursive description of the adder circuit
7.2.2. Iterative description of the adder circuit

7.3. Verification

Sequential Devices

A sequential multiplier
9.1. Specification 0oL

0.1.1. Some temporal predicates

1

ooooooooo

ooooooooo

ooooooooo

vvvvvvvvv

ooooooooo

O O © 0 v W

iz
12
12
13

14
14
15
16
16
18

19

9.2, Implementation 0000
0.3. Verification « v . o .t i e e e e e e e e e e

10. An edge-triggered Dtype
10.1. Specification e
10.2. Implementation 00000
10.3. Verification e e e e e e e e e e e e

11. Conclusions
12. Acknowledgements

13. References

23
23
25
25

26

26

27

1. Introduction

The purpose of this paper is to show, via examples, that:

1. Many kinds of digital systems can be formally specified using the notation

of formal logic; specialized hardware description languages are not needed.

2. The inference rules of logic provide a practical means of proving systems
correct; specialized deductive systems are not needed.

The idea of using ‘pure logic’ as a hardware description and verification language
is not new. The general approach advocated here has been promoted by, among
others, Keith Hanna [Hanna & Daeche] and Ben Moszkowski [Halpern et al.].
It was as a result of working with Moszkowski that I realized that everything
that I had previously been doing using an ad hoc formalism called LSM (ngic of
Sequential Machines [Gordon83]) could be done much better in pure logic.

The particular logical system used here is called higher-order logic, and is very
briefly explained in the next section. It is hoped that this section will enable
readers who are not familiar with predicate calculus to understand what follows.
Thorough introductions to higher-order logic can be found in textbooks on math-
ematical logic [Hatcher], in Church’s original paper [Church], or in the report on
the HOL logic [Gordon85(a)).

2. Introduction to higher-order logic

Highe.r-order logic uses standard predicate logic notation:
e “P(z)” means “z has proi)erty pP?,
e “—t” means “not ¢7,
e “ty V1,” means “¢; or t,”,
e “ty Aty” means “t; and t,”,
e “ty D ty” means “t; implies {,”,
o “t; = t,” means “t; if and only if ¢,”,
e “VYz. t[z]” means “for all z it is the case that ¢[z]”,
e “Jz. {[z]” means “for some z it is the case that t[z]”,
o “(t — t; | t;)” means “if ¢ is true then ¢, else £,”.

There are three important ways that higher-order logic extends first-order logic.

3

1. Variables can range over functions and predicates. Such variables are called
higher-order and can be quantified. For example, the principle of math-
ematical induction can be expressed using a variable P that ranges over

predicates:
VP. P(0) A (Vn. P(n) D P(n+1)) D Vn. P(n)

The existence of a function satisfying a simple recursive definition can be

stated using variables f and s that range over functions.
Vng. Vf. 3s. (8(0) = ng) A (Yn. s(n+1) = f(s(n)))

This asserts that for each number nq and function f there exists a function
s such that s(0)=ng and s(n+1)=f(s(n)) for all n. The two examples just
described make essential use of higher-order variables, and thus they can’t

be expressed in first-order logic.

2. Functions and predicates can be the arguments and results of other func-
tions and predicates. For example, a function lterate can be defined such
that:

- Iterate(m,n)(f) = f(n) A f(n=1) A --- A f(m)

Iterate maps a pair of numbers (m,n) to a higher-order predicate whose

argument is a function. This predicate is true of a function f if and only

if f(r)A f(n—1)A---A f(m) holds.

3. Higher-order logic has special function-denoting terms called A-expressions.
These have the form Az. { where z is a variable and ¢ is an expression.
Such a A-term denotes the function @ — t[a/z] where t[a/z] is the result
of substituting a for £ in ¢. For example, Az. z+3 denotes the function
a + a+3 which adds 3 to its argument. A common use of A-expressions is
as arguments to higher-order functions. It will be explained later how the

term
lterate (0, n) (M. Add1(a(i), b(5), c(3), sum(s), c(i+1)))

can be used to represent an array of n+1 1-bit adders.

4

3. Representing behaviour with predicates

A device is 2 ‘black box’ with a specified behaviour; for example:

al —Dbl
a2 —b2
: Dev .
an bn
This device is called Dev and has external lines a1, a2, ..., am, b1, b2, ..., bn.

These lines correspond to the ‘pins’ of an integrated circuit. When the device is in
operation each line has a value drawn from some set of possfble values. Different
‘kinds of device may require different sets of values on their lines. The behaviour
of device Dev is specified by giving a predicate Dev of m+n arguments. The idea
is that Dev(ay, as,y...,@m, by, b2,...,b,) holds if and only if ay, az, ..., am, by, bs,
..., b, are allowable values on the corresponding lines of Dev.
The following font conventions will be used:
o Physical objects like devices and lines will be written in typewriter font.

e Mathematical variables will be written in staltc font.

e Mathematical constants, (e.g. predicate and function constants) will be

written in sans serif font.

The same letter will be used for a physical object and its mathematical repre-
sentation. Thus, for example, I will range over the values allowed at line 1, and

Dev denotes the predicate describing the behaviour of device Dev.

We now describe two examples that illustrate the use of predicates to specify,
behaviour. In the first of these examples the values on lines are modelled with
truth-values. In the second example the values on lines are modelled with func-
tions, and consequently the prédicate used to specify the behaviour of the device

is higher-order.

3.1. A delayless switch

Zero-delay combinational devices can be modelled by taking the boolean values

T and F as the allowed values on their lines. An example is a switch:

L

The intended behaviour of this is that a is connected to b if g has the value
T and a and b are not connected if g has the value F. This behaviour can be

represented by the predicate Switch defined by:
Switch(g, a,b) = (¢ D (e = 1))

The condition Switch(g, a,b) holds-if and only if whenever g is true then a and
b are equal. For example, Switch(T,F,F) holds because T D (F=F) is true, and
Switch(F, T, F) holds because F D (T=F) is true, but Switch(T, T, F) does not hold
because T D (T=F) is false.

3.2. An inverter with delay

The values occurring on the lines of devices may vary over time. When this
happens, their behaviour must be represented by predicates whose arguments are
‘time varying values’. Such values correspond to ‘waveforms’ and can be modelled
by functions of time. For example, the behaviour of an inverter with a delay of §

units of time can be specified with a predicate Invert defined by:
Invert(i,0) = Vt. o(t+8) = —i(t)

Here the values on lines 1 and o are functions 7 and o which map times (represented
by numbers) to values (represented by booleans). These functions are in the Invert
relation if and only if for all times ¢, the value of 0 at time {46 equals the value

of 1 at time ¢.

4. Representing circuit structure with predicates

Consider the following structure (called D):

Di

i

D3 d

This device is built by connecting together three component devices Di, D2 and
D3. The external lines of D are a, b, ¢ and d. The lines p and q are internal and
are not connected to the ‘outside world’. (External lines might correspond to the

pins of an integrated circuit, and internal lines to tracks.)

Suppose the behaviours of D1, D2 and D3 are specified by predicates Dy, D, and
D; respectively. How can we derive the behaviour of the system D shown above?
Each device constrains the values on its lines. If ¢, b and p denote the values on
the lines a, b and p, then D1 constrains these values so that Dy(a, b, p) holds. To
get the constraint imposed by the whole device D we just conjoin (i.e. A-together)
the constraints imposed by D1, D2 and D3; the combined constraint is thus:

Di(a,b,p) A Dip,d,c) A Ds(g,b,d)

This expression constrains the values on both the external lines a, b, ¢ and d and
the internal lines p and q. If we regard D as a ‘black box’ with the internal lines
invisible, then we are really only interested in what constraints are imposed on
its external lines. The variables a, b, ¢ and d will denote possible values at the
external lines a, b, ¢ and d if and only if the conjunction above holds for some
values p and q. We can therefore define a predicate D representing the behaviour
of D by:

D(a,b,¢,d) = Ip q. Dy(a,b,p) A Da(p,d,c) A Ds(g,b,d)

Thus we see that the behaviour corresponding to a circuit is got by:

7

e Conjoining the constraints corresponding to the components, and
e existentially quantifying the variables corresponding to the internal lines.

This technique of representing circuit diagrams in logic is fairly well known [Hoare].
In the terminology of CCS [Milner] we are using conjunction for parallel composi-
tion and existential quantification for hiding. Other ways of representing structure
in logic are also possible [Clocksin].

5. A CMOS inverter

The standard CMOS implementation of an inverter is:

Pur

IE
p— }_—
|2

Gnd

5.1. Specification of the components

The inverter shown above can be viewed as a structure built out of four compo-

nents: a power source, a ground, an n-transistor and a p-transistor.

5.1.1. Power

Pwr

This is a power source {sometimes called V44) and can be modelled by a predicate

8

Pwr that constrains the value on the line p to be T.

Pwr(p) = (p=T)

5.1.2. Ground

Gnd

This represents ‘ground’ and can be modelled by a predicate Gnd that constrains
the value on the line p to be F.

Gnd(p) = (p=F)
5.1.83. n-transistor

A

b

This represents an n-transistor. It can be modelled as a switch.

Ntran(g,e,8) = (9 (a = b))

5.1.4. p-transistor
-

This represents a p-transistor. It can be modelled as a switch which conducts

when its gate (i.e. line g) is low.

Ptran(g,a,b) = (—g D (a =1b))

5.2. Logic representation of the inverter circuit

Conjoining together the constraints from the four components and existentially

quantifying the internal line variables yields the following definition of a predicate

Inv:
inv(i,0) = 3p; pa. Pwr(p;) A Ptran(s, pi, 0) A Ntran(i, 0, p2} A Gnd(p,)

If Inv(z,0) holds then the values ¢ and o are contrained to be in the relation

determined by the inverter circuit above.

5.3. Verification by proof

It follows by standard logical reasoning that if Inv is defined as above, then
Inv(i,0) = (0=)

This shows that the constraint on 7 and o imposed by the inverter circuit is exactly

what we want: o is the inverse of 4,
An outline of the formal proof of this is as follows:

1. By definition of Inv:

Inv(i,0) = 3p; ps. Pwr(ps) A
Ptran(s, py,0) A
Ntran(s, o, p2) A
Gnd(p:)

2. Substituting in the definitions of Pwr and Gnd yields:

Inv(i,0) = 3py pa. (P =T) A
Ptran(z, ps,0) A
Ntran(z, o, p2) A
(p2 = F)

3. Substituting with the equations p;=T and p,=F yields:

Inv(i,0) = Fpipe. (1 =T) A
Ptran(s, T,0) A
Ntran(z,0,F) A
(p2=F)

10

. In general, if t; and ¢, are any terms such that ¢, doesn’t contain z then:
(Fz. 8y A f) =((3z. 8) A t,)

and
(Fz. t; A) =(t2 A Bz ty))

are both true. Using these properties we can move the existential quanti-

fiers inwards to derive:
Inv(f,0) = Bp1-p1=T) A
Ptran(z, T,0) A
Ntran(s, 0, F) A
(3P2- D2 = F)

. Both (3p;. py=T) and (Ip,. p,=F) are logical truths and so can be deleted

from conjunctions; hence:

Inv(i,0) = Ptran(i, T,0) A Ntran(i,o,F)
. Next we substitute in the definitions of Ptran and Ntran to get:
Inv(i,0) = (=F)D(T=0)) A (=T)D(o=F))
. From this we can derive

Inv(T,0) = (0 =F)
and

Inv(F,0) = (0 =T)

I

from which it follows by case analysis that:

inv(z,0) = (0o =)

Proofs such as these can be generated by the HOL system [Gordon85(b)].

11

6. A 1-bit CMOS full adder

The full adder described in this section was shown to me by Inder Dhingra;
it illustrates the use of bidirectional transistors in CMOS. The transistor models
Ptran and Ntran can be used to prove the circuit correct. Such a proof would
be difficult with the usual representation of combinational circuits as boolean
functions. Relations rather than functions are needed to model bidirectionality.

6.1. Specification

Here is a diagram of a full adder:

cout Addi cin

sum

The lines a, b, cin, sum and cout carry the boolean values T or F. To relate

these logical values to the numbers 1 and 0 we define a function Bit_Val by:
Bit.Val(T) =1 and Bit.Val(F) =0
The specification of the adder can then be defined by:

Addi(a, b, cin, sum, cout) =
(2 x Bit_Val(cout) + Bit_Val(sum) =
Bit_Val(a) + Bit_Val(b) + Bit_Val(cin))

A correct implementation of this specification is a circuit with lines a, b, cin, sum
and cout such that the constraints imposed on the values a, b, cin, sum and, cout

that can exist on these lines imply that Addi{a,b, cin, sum, cout) always holds.

6.2. Implementation

A CMOS implementation of the adder is given below. Lines with the same
name are connected. The lines pO, ..., pil are internal. The two transistors

drawn horizontally function bidirectionally.

12

Puwr

PO
] T
pl—o . b b— ¢in a
o
2 —o pb— pl cin’
p4—1 [- sum cout
| L
a — b — pl cin
pl— — cin a
| L
pil
Gnd

This circuit can be represented in logic by defining:

Add1_Imp(a, b, cin, sum, cout) =

Jpo p1 P2 Pa P4 Ps Po P17 Ps Po Pro Pir-
Ptran(py, po, p2) A Ptran(cin, po, ps) A Ptran(b, p,, ps) A Ptran(a, p,, ps)A
Ptran(py, ps, p4) A Ntran(a, ps, ps) A Ntran(py, pa, ps) A Ntran(b, ps, ps)A
Ntran(ps, ps, p11) A Ntran(cin, pe, p11) A Ptran(a, po, p7) A Ptran(b, po, p7)A
Ptran(a, po, ps) A Ptran(cin, py, p1) A Ptran(b, ps, p1) A Ntran(cin, py, po)A
Ntran(b, p1, p1o) A Ntran(a, py, p11) A Ntran(b, py, ps1) A Ntran(a, pio, p11)A
Pwr(po) A Ptran(py, po, sum) A Ntran(py, sum, p;1)A
Gnd(p11) A Ptran(py, po, cout) A Ntran(py, cout, p;)

6.3. Verification

To verify that the implementation Addi_Imp correctly implements the specifica-
tion Add1, it must be proved that if a, b, cin, sum and cout satisfy the constraints
imposed by the implementation, then they also satisfy the specification. Formally:

Add1.mp(a, b, cin, sum, cout) D Addi(a,b, cin, sum, cout)

13

The most straightforward way to prove this implication is to consider separately
the eight possible input combinations.

Manipulations like those given for the inverter yield the following eight facts:

Add1 Imp(T, T, T,sum,cout) = (sum=T) A (cout=T)
Add1.imp(T, T,F, sum, cout) = (sum=F) A (cout=T)
Add1_Imp(T,F, T, sum, cout) = (sum=F) A (cout=T)
Add1 Imp(T,F,F, sum, cout) = (sum=T) A (cout=F)
Add1_Imp(F, T, T, sum, cout) = (sum=F) A (cout=T)
Add1.imp(F, T,F, sum, cout) = (sum=T) A (cout=F)
Addi_Imp(F,F, T, sum, cout) = (sum=T) A (cout=F)
Add1Imp(F,F,F, sum,cout) = (sum=F) A (cout=F)

Deriving these equations is equivalent to exhaustive simulation for all input values

and is best done by computer. It follows from these eight equations that:
Add1 Imp(e, b, cin, sum, cout) = Addi(a,b, cin, sum, cout)

This entails the implication we want, since if ¢;=t, then ¢, D¢, holds a fortiori.

7. An n-bit adder

The example in this section is intended to illustrate the use of higher-order logic
to represent parameterized systems. An n-bit adder computes an n-bit sum and
1-bit carry-out from two n-bit inputs and a 1-bit carry-in. Each value of the
parameter n determines an adder operating on words of size n+1 (“n+1” because

n counts from 0; e.g. if n is 0 we get a 1-bit adder).

7.1. Specification

Here is a diagram of an n-bit adder:
a b

Adder(n-1)

cin

cout

sum

14

The lines cin and cout carry 1-bit words and the lines a, b and sum carry n-
bit words. We will model 1-bit words as booleans and n-bit words as functions
from natural numbers to booleans. Thus the 4-bit word 1101 is represented by a
function f such that f(0)=T, f(1)=F, f(2)=T and f(3)=T. To relate words to
numbers we use a function Val such that Val(n, f) is the number denoted by the
(n+1)-bit word f(n)f(n—1)--- f(0). Val can be defined by primitive recursion.

The primitive recursive definition of Val consists of two parts, a basts which

specifies Val(0) and a recursion which specifies Val(n+1, f) in terms of Val(n, f).
The basis is:

Val(0, f) = Bit_Val(£(0))

and the recursion is:

Val(n+1, f) = 2" x Bit_Val(f(rn+1)) + Val(n, f)

To specify an n-bit adder we will define a higher-order function Adder which
when applied to the number n—1 yields a predicate specifying the adder. Thus,
for example, Adder(3) is a predicate specifying a 4-bit adder. The definition of
Adder is:

Adder(n)(a, b, cin, sum, cout) =
(2n*+! x Bit_Val(cout) + Val(n, sum) =
Val(n, a) + Val(n, b) + Bit_Val(cin))

7.2. Implementation

An n-bit adder can be built by connecting together n full adders. The diagram
below shows an (n+1)-bit adder. The inputs are a single bit carry-in cin and two
(n+1)-bit words a(n)a(n-1)...a(0) and b(n)b(n-1)...b(0). The outputs are
an (n+1)-bit sum sum(n)sum(n-1)...sum(0) and a 1-bit carry-out cout.

a(ln) b(n) a(n-1) b(n-1) a(0) b(0)
cout — Addi — Addi — e Addi —— ¢in
| l l
sum(n) sum(n-1) sum(0)

15

To express this diagram in logic we define Adder Imp(n)(a, b, cin, out, cout) where
Adder_Imp is a higher-order function which when applied to a number n yields the
predicate specifying the implementation of an n+1-bit adder.

Two logically equivalent definitions of Adderimp are given below. The first one
is a simple primitive recursive definition. The second one is intended to mimic
how the adder might be described in a commercial hardware description language
like MODEL [Lattice]. This second definition illustrates the claim that pure logic

has all the expressive power found in special purpose languages.

7.2.1. Recursive description of the adder circuit

A primitive-recursive definition of Adder_Imp corresponding to the above diagram

has the following basis:
Adder Imp(0)(a, b, cin, sum, cout) = Addi(a(0),b(0), cin, sum(0), cout)

The recursive part of the definition says that an (n+2)-bit adder is built by first
building an n+1-bit adder and then connecting its carry-out to the carry-in of a
1-bit adder.

Adder Imp(n+1)(a, b, cin, sum, cout) =
Jec. Adderdmp(n)(a, b, cin, sum,c) A
Addi(a(n+1), b(n+1), ¢, sum(n+1), cout)

- 7.2.2. Iterative description of the adder circuit

To indicate the expressiveness of higher-order logic we will show how to mimic

the following ‘part specification’ written in MODEL.

PART Adder_Imp (n) [a(0:n),b(0:n),cin] -> sum(0:n),cout
SIGNAL c(0:n+1)

INTEGER i

cin -> ¢(0)

FOR i = O:n CYCLE

Add1fa(i),b(i),c(i)] -> sum(i),c(i+l)

REPEAT

c{n+i) -> cout
END

16

Here is a line by line explanation of this code,.
1. PART Adder_Imp (n) [a(0:n),b(0:n),ein] -> sum(O:n),cout
A part called Adder_Imp is being specified.
(a) ()
indicates that the part is parameterized on a number n.
(b) [2(0:n),b(0:n),cin]
indicates that Adder_Imp has two (n+1)-bit inputs 'called a and b, and

one single bit input called cin.
(c) -> sum(0:n),cout

indicates that Adder_Imp has an (n+1)-bit output called out and a
i-bit output called cout.

2. SIGNAL c(0:n+1)

declares a ‘local’ (n+1)-bit line called e.
3. INTEGER i

declares a local integer-valued variable called i.
4. cin -> c(0)

specifies that cin be connected to the 0% bit of c.
5. FOR i = 0:n CYCLE

starts an iteration in which the body of the iteration (see below) is executed

with i successively taking values 0, 1, ..., n.
6. Add1[a(i),b(i),c(i)] -> sum(i),c(i+1)

is the body of the iteration; it specifies an instance of Add1 having as inputs
the it bits of 2, b and ¢ and as outputs the i** bit of sum and the i+1** bit

of c.
7. REPEAT

ends the iteration.
8. ¢(n+1) -> cout

specifies that the n+1*® bit of ¢ be connected to cout.
9. END

ends the specification of Adder_TImp.

17

A transcription of the MODEL part specification into higher-order logic is:

Adder Imp(n)(a, b, cin, sum, cout) =
de.

cin = c(0) A

Iterate {0, n) (Xi. Add1(a(?), b(2), c(7), sum(s), c(i+1))) A
¢(n+1) = cout

Note that in logic:
o a ‘part specification’ is just the definition of a function,
e a ‘signal declaration’ is an existential quantification,
e a wiring specification (e.g. cin -> ¢(0)) is an equation, and
e an iteration is just an invocation of the higher-order function lterate.

No ad hoc hardware description constructs are needed, pure logic is enough.

7.3. Verification

To verify the adder one proves by induction on n that:

Adder Imp(n)(a, b, cin, sum, cout) D Adder(n)(a,b, cin, sum, cout)

The basis of the induction is:
Adder Imp(0)(a, b, cin, sum, cout) D Adder(0)(a, b, cin, sum, cout)

This is easily proved by substituting the definitions of Adderimp and Adder into
the above implication and then reducing the resulting expression to a tautology.

The induction step is:

(Adder Imp(n)(a, b, cin, sum, cout) D Adder(n)(a, b, cin, sum, cout))
D)
(Adder Imp(n+1)(a, b, cin, sum, cout) D Adder(n+1)(a, b, cin, sum, cout))

This can be proved by simple arithmetic. A correctness proof of the recursively
specified adder has been generated by Albert Camilleri using the HOL system.

18

8. Sequential Devices

All of the examples so far have been combinational; i.e. the values on the outputs
have only depended on the current input values, not on input values at past times.
Sequential devices can be modelled by taking the values on lines to be functions
of time. For example, a unit-delay element Del, with input line 1 and output line
o, is modelled by specifying that the value output at time t+1 equals the value
input at time ¢. This is expressed in higher-order logic by:

Del(i,0) = Vt. o(t+1) = i(t)

Combinational devices can be modelled as sequential devices having no delay.

To illustrate this, recall the specification of the adder:

Adder(n)(a, b, cin, sum, cout) =
(27*1 x Bit_Val(cout) + Val(n, sum) =
Val(n, a) + Val(n, b) + Bit_Val(cin))

The variables a, b and sum range over words (modelled as functions) and the
variables cin and cout range over truth-values. To model the adder as a zero-
delay sequential device we must represent its behaviour with a predicate whose
arguments are functions of time.

Combinational Adder(n)(a', V', cin', sum’, cout') =
Vt. Adder(n)(d'(t), b'(2), cin' (t), sum'(t), cout' (%)

The variables a', b and sum' range over functions from time to words, and the
variables cin' and cout' range over functions from time to truth-values. Thus, for
example, out'(7)(5) is bit 5 of the word output at time 7. If we wanted to specify
the adder as having a unit-delay then we could define:

Unitdelay_Adder(n)(a', ', ctn', sum/, cout') =
Vt. Adder(n)(d'(2), b'(2), cin' (t), sum'(t+1), cout'(¢+1))

19

9. A sequential multiplier

As an illustration of the specification and verification of a sequential device, we
describe below a multiplier. To simplify details, it is (unrealistically) assumed that
lines carry numbers rather than words. This enables us to use ordinary arithmetic

operators in the specification.

9.1. Specification

The multiplier is specified to have two inputs and two outputs.
i1t 12

Mult

done ©

An informal specification of the required behaviour of Mult is:
If
¢ done has value T at time ¢;, and
o t, is the first time after ¢; that done again has value T, and
e the values at i1 and 12 are stable from ¢, to ¢,, |

then
e the value at o at time ¢, is the product of the values at i1 and
i2 at time ¢;.
In order to formalize this in logic various temporal notions like “the first time

after” and “stable” must be represented.

9.1.1. Some temporal predicates

The predicate Stable is defined so that Stable(¢;,?,)(f) is true if and only if the
value of f is constant from ¢; until just before time ¢;. Formally:

Stable(ty, ,)(f) = Vi ty <t A t<t, D (f(O)=F(t))

The predicate Next is defined so that Next(ty,?;)(f) is true if and only if ¢, is
the first time after £, that f(¢,)=T. Formally:

Next(tl,tg)(f) = tl < tg A f(tz) A (Vt. tl <t A< t2 D) '“lf(t))
20

Using Stable and Next, the specification of Mult can be represented with the
predicate Mult defined by:

Mult(sy, %5, 0, done) =
done(t,) A
Next(ty,t,)(done) A
Stable(ty,£2)(31) A
Stable(¢, £2)(32) A

)

(o(t2) = 41(t1) % 12(t1))

9.2. Implementation

Here is a circuit which meets the specification Mult(iy, ,, 0, done):

ini in2
Dec Zero _Test Zero
4 —19
5 b4
L1 — |
Mux Mux Mux
11 14
1 I
Reg Zero_Test Zero_Test Mux:
bl b2 -
1i0 L————1 r————J 18 16 17
Dec Or_Gate Reg
12 : ——]
b3
Dec Adder
i) — [
[
Flipflop
done o

21

The components of this device are specified by:

Mux(ctl, 1y,15,0) = Vi. o(t) = (cti(t) — #1(t) | 12(2))
Reg(i,0) = Vi. o(t+1) = i(t)

Flipflop(i,0) = WVi. o(t+1) = i(¢)

Dec(t,0) = V. o(‘) = i(t)—
Add(zy,15,0) = Vi o(t) =
Zero.Test(i,0) = Vi. o() =
Or_Gate(iy,15,0) = ()
Zero(o) = Vi. oft) =

i
i1(t) +142(2)
(1(t)=0)
= 11(t) V 1,(?)

The behaviour corresponding to the diagram above is captured in logic as follows:

Mult_Imp(2,, 45, 0, done) =

by by by by Iy U I Uy s g U7 Ig 1y 1.
Mux(done, Is, I7,1s) A Reg(ls,0) A Add(ls,0,17) A Dec(iy,ls) A
Mux(done, Is, Is, 1) A Mux(done, 11,1, 11} A Reg(ly, 1) A
Dec(ly0,12) A Dec(lz,l3) A Zero(ly) A Mux(ba,ly, 2,15} A
Zero_Test(iy,by) A Zero_Test(ly,b;) A Zero_Test(iy, b)) A
Or_Gate(b;, by, b3) A Flipflop(bs, done)

9.3. Verification

The correctness of the multiplier implementation is established by proving that
for all values of %;, %, 0 and done:

Mult_imp(sy, 22, 0,done) D Mult(iy, 15, 0, done)
Expanding the definition of Mult and then slightly rearranging the result yields:

Yty t,. Mult Imp(iy, 14, 0, done) A
done(ty) A
Next(ty,t2)(done) A
Stable(t;, 2)(41) A
Stable(ty, 82)(32) A
D

(oft2) = d1(t:) X 12(t1))
22

This can be proved by mathematical induction on t2—t;. The proof is mostly
routine, but there are a few slightly tricky bits. Some elementary results concerning
+ and X are required, together with the following lemmas about time:

F(i+1) D Next(t,t+1)(f)

Next(ts, £2)(f) A =f(t:+1) D Next(t;+1,,)(f)
Next(f1,22)(f) A Next(tr,ts)(f) D (t,=ts)

Next(t, ((+1)+d)(f) A —f(t+1) D —(d=0)
Stable(t;,2;)(f) D Stable(t;+1,¢,)(f)

Stable(t, (t+1) + d)(f) A =(d=0) > (f(¢) = f(t+1))

We do not give details of the proof here. It was not difficult to generate using the
HOL system. Tom Melham has done a similar example: a device for computing
the factorial function. In the process he discovered some general principles for
reasoning about self-timed devices. Details will appear in a forthcoming paper.

10. An edge-triggered Dtype

The implementation of the multiplier described in the preceding section was
described at the register-transfer level. This is an abstract level in which devices
are viewed as sequential machines. At this level registers are modelled as unit-
delay elements without explicit clock lines. To implement such a register using
actual hardware, something like a Dtype device must be used:

d — — q
Dtype
ck

10.1. Specification

An informal behavioural specification of Dtype is:
If
o the clock ck has a rising edge at time ¢y, and
e the next rising edge of ck is at ¢,, and
e the value at d is stable for ¢; units of time before t; (c; is the

setup time), and

23

e there are at least ¢, units of time between ¢; and ¢, (c, is the

minimum clock period),

then
e the value at q will be stable from c¢; units of time after ¢, (c;
is the start time) until ¢, units of time after £, (¢, is the finish
time), and
¢ the value at q between the start and finish times will equal
the value held stable at d during the setup time.

To formalize this we need to define what a “rising edge” is. We will continue to
use a discrete model of time, but the grain of time will be finer than before. A
function from time to truth-values is defined to rise at time £ if it is F at time {—1

and T at {. Formally:
Rise(/)(t) = (f(t-1)=F) A (f(t) =T)
The above specification of a Dtype can now be expressed in logic by:

Dtype(cy, €z, €3y €4)(d, ck, q) =
Vi, t,. Rise(ck)(t() A
Next(ty,¢,)(Rise(ck)) A
(t2—t1 > c3) A
Stable(t; —cy, t,)(d)
D
(Stable(t;+cs, t2+ca)(q) A (q(t2) = d(t1)))

The parameters c;, c,, ¢3 and ¢4 are the timing constants of the Dtype; their value
depends on how the device is fabricated.

A Dtype becomes a unit-delay if we abstract signals to the sequence of values
occurring at rising edges of the clock. The formal analysis of such abstractions is

currently being studied by Tom Melham as part of his Ph.D. research.

24

10.2. Implementation

A common implementation of a Diype uses NAND-gates:

NAND pd
p3
L
NAND NAND q
l—
i C *’5
ck l___ NAND3 P2 NAND
L
d NAND pi

10.3. Verification

To show that this implementation works we must use a model in which the
NAND-gates have delay, since it is the delay in feedback loops that provides mem-
ory. The simplest such model is one in which each gate has unit-delay:

NAND(il,ig,) = Vi. 0(t+1) M
NAND3(11,12,Z3,0) Vit. 0(t+1)

i1(2) Ada(t))
(73 () Ada(t) Ads(t))

”r‘\

The Dtype implementation can be represented in logic by defining:

Dtype.Imp(d, ck,q) =

Ip1 p2 ps P4 Ps.
NAND(p,,d,p1) A NAND3(ps, ck, p1,p2) A

NAND(p,,,ck,p;,) A NAND(pI:p3sp4) A
NAND(p(hpS’Q) A NAND(Q)pZaps)

It can then be proved that:

Dtype.Imp(d, ck,q) D Dtype(2,3,4,1)(d, ck, q)
25

This shows that if each NAND-gate has unit-delay then the Dtype has a setup
time of 2, a minimum clock period of 3, a start time of 4 and a finish time of 1.
The formal proof of this is fairly complicated. It has been done by hand by John
Herbert.

11. Conclusions

The examples presented here demonstrate that higher-order logic is a formalism
in which a wide variety of behaviour and structure can be specified. With the
aid of suitable functions (e.g. lterate), specifications can be made to look like con-
ventional hardware descriptions whilst retaining logical purity (and hence formal
tractability).

Hardware verification requires various kinds of reasoning,.

o The adder example shows the need for mathematical induction (both to
deal with iterated structures and for proving arithmetic lemmas).

e The multiplier example shows the need for reasoning about temporal con-
cepts (Next, Stable etc.).

e The Dtype and unit-delay show the need for reasoning about abstractions

between different time scales.

All these kinds of reasoning can be done using the standard inference rules of logic.

12. Acknowledgements

The use of higher-order logic for hardware specification and verification has
been pioneered by Keith Hanna. Many of the techniques presented here have been
adapted from Ben Moszkowski’s work on applying temporal logic to hardware de-
scription. I learnt from him the representation of circuits as predicates described
in Section 4. I have had numerous useful discussions with the users of the HOL sys-
tem. These include Albert Camilleri, Nives Chaplin, Inder Dhingra, John Herbert,
Tom Melham and Edmund Ronald, all from Cambridge, and Jeff Joyce from the
University of Calgary. Don Gaubatz, Andy Hopper and Peter Robinson patiently

explained to me various electrical phenomena that arise in MOS circuits.

Avra Cohn, Inder Dhingra and John Herbert pointed out errors in a first draft
of this paper.

26

13. References

[Church]

[Clocksin]

[Gordon83]

[Gordon85(a)]

[Gordon85(b)]

(Halpern et al)]

A. Church. A Formulation of the Simple Theory of Types. Jour-
nal of Symbolic Logic 5, 1940,

W. F. Clocksin. Logic Programming and the Specification of Cir-
custs. Computer Laboratory Technical Report No. 72, 1985.

M. J. C. Gordon. LCOF_LSM. University of Cambridge Computer
Laboratory Technical Report No. 41, 1983.

M. J. C. Gordon. HOL: A Machine Oriented Formulation of
Higher-Order Logic. University of Cambridge Computer Labo-
ratory Technical Report No. 68, 1085.

M. J. C. Gordon. HOL: A Proof Generating System for Higher-
Order Logic. Forthcoming technical report.

J. Halpern, Z. Manna and B. Moszkowski. A Hardware Seman-
tics based on Temporal Intervals. In the proceedings of the 10-th
International Collogqusum on Automata, Languages anid Program-

ming, Barcelona, Spain, 1983.

[Hanna & Daeche] F. K. Hanna and N. Daeche. Specification and Verification

[Hatcher]

[Hoare]

[Lattice]

[Milner]

using Higher-Order Logic. Proceedings of the 7th International
Conference on Computer Hardware Design Languages. Tokyo,
1985. ‘

W. Hatcher. The Logical Foundations of Mathematics. Perga-
mon Press, 1082.

C. A. R. Hoare. A Calculus of Total Correctness for Commu-
nicating Processes. Science of Computer Programming, Vol. i,
No. 1, 1981.

Designing with Gate Arrays. Lattice Logic Limited, 9 Wemyss
Place, Edinburgh EH3 6DH, 1982.

R. Milner. A Calculus of Communicating Systems. Lecture
Notes in Computer Science No. 92. Springer-Verlag, 1980.

27

