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Abstract

We propose a new formalisation of stability for Rely-Guarantee, in which an as-
sertion’s stability is encoded into its syntactic form. This allows two advances
in modular reasoning. Firstly, it enables Rely-Guarantee, for the first time, to
verify concurrent libraries independently of their clients’ environments. Sec-
ondly, in a sequential setting, it allows a module’s internal interference to be
hidden while verifying its clients. We demonstrate our approach by verifying,
using RGSep, the Version 7 Unix memory manager, uncovering a twenty-year-
old bug in the process.

This technical report comprises the contents of a conference paper of the same
name [21], plus several appendices.



1 Introduction

Reasoning about concurrent programs is hard because commands from different threads
are interleaved non-deterministically. With many threads and many commands per
thread, naive reasoning soon succumbs to a combinatorial explosion. The Rely-Guarantee
(RG) method [14] restores tractability through abstraction. In addition to the pre and
postconditions inherited from Hoare logic [12], a command is specified by two relations
between states: a rely R that specifies all the state transitions (or ‘actions’) the environ-
ment can cause, and a guarantee GG that specifies all the actions of the command itself.
(The environment is the set of concurrently-running threads.) The method conservatively
assumes that between consecutive commands in a thread, any number of actions in R
may occur. The truth of an assertion that holds after one command must be preserved
by this ‘interference’; so that it may be safely assumed by the next command. Such an
assertion is deemed stable under R.

Stability is traditionally enforced through side-conditions on proof rules. We propose
(Sect. 3) a new formalisation in which stability is recorded within the syntactic form of
the assertion itself. Just as ‘explicit substitution’ [1] added substitution to the syntax of
A-calculus terms, our work adds stabilisation to the syntax of RG assertions. We propose
two new constructs: |p|, to denote the weakest assertion that is both stronger than p and
stable under R, and dually, [p], to denote the strongest stable assertion that is weaker
than p.

The main benefit is in modularity, two forms of which we tease apart and tackle
separately: verifying concurrent libraries independently of clients, and verifying clients of
a (sequential) module independently of its implementation.

Verifying libraries independently of clients RG is a compositional method: an entire pro-
gram’s proof depends only upon the proofs of its constituent commands. Yet it is
not modular: a command’s proof cannot necessarily be re-used when the command
features in a different program, because proofs are environment-specific. Thus, RG
cannot verify libraries that are invoked in several different environments. Our so-
lution (Sect. 4) has the library record stability requirements using | — |, and [—],
but leave the specification parametric in R. Each client then instantiates R appro-
priately and performs the stabilisation.

Verifying clients independently of module implementations In Sect. 5, we bring explicit
stabilisation to an RG-style logic that reasons about heap-manipulating programs:
RGSep [20]. Because it divides the heap into both thread-local and shared regions,
RGSep’s notion of stability is more complex than that of ordinary RG; in partic-
ular, while only the shared heap is susceptible to interference, we shall see that
the local heap can still affect stability arguments. Originally conceived for concur-
rency, RGSep is apt for verifying sequential modules too. Such a verification must
consider every action by which a client can mutate the module’s part of the heap.
Our extension of explicit stabilisation to RGSep permits an INFOHIDING rule that
allows this so-called ‘internal interference’ to be hidden while verifying clients. We
demonstrate (Sect. 6) this approach by verifying — for the first time — the Version 7
Unix memory manager. In doing so, we uncover a bug that has lain dormant since

1979.



WEAKEN
R/, G/ |_ {p/} C {q/}

p=0 ¢ =>q PAR
RQR/ G'QG RUGQ,Gl l—{p1}C'1 {ql} RUGl,Ggl_{pQ}CQ{qQ}
R,GF{p}C{q} R,G1 UGy F{pi Ap2} CL 11 Co {an A g2}
BAsic L
= {p}c{q} pNcCG SKIP Loop
pstab R gstabR pstab R R, G+ {p}C{p}
R,GF {p}c{q} R,G + {p} skip {p} R,GF {p}C* {p}

Figure 1: Selected RG proof rules (with stability checks)

We begin with a short introduction to the RG proof system, followed by a brief account of
the failure of traditional RG to provide a modular specification for even one of the most
trivial library functions: increment.

2 Background: Rely-Guarantee reasoning

RG specifications are of the form R, G F {p} C {q}, where R and G are relations between
states. Following [17], G shall be reflexive. This specification expresses that when C' begins
execution in a state satisfying the precondition p, in an environment whose interference is
limited to the actions in the rely R, then any state transitions performed by C' are within
its guarantee (G, and moreover, if the execution terminates, the final state satisfies the
postcondition q.

Figure 1 presents a selection of the RG proof rules, which concern commands of the
following simple parallel language:

Cu=skip|C;C|ClIC|C+C|Ct]ec

The + operator chooses one of its operands to execute, while C* executes C' at least once.'
We consider only partial correctness, so these non-deterministic constructs for choice and
looping suffice for encoding if and while commands. The language is parameterised on
the set of basic commands ¢, which are relations that model atomic state transformations.
We shall assume c includes assert and assume commands and variable assignment. See
Appx. A and for the formal semantics of our language and Appx. B for the complete set
of proof rules.

The BASIC rule requires that ¢ meets the sequential specification {p} ¢{q}, and that
any action it performs is within its guarantee. It uses the notation p = {(c,0") | o = p}.
The pre and postconditions of the two ‘ground’ commands, ¢ and skip, are required to
be stable. Since the other commands are built inductively from these, their rules can
assume any inherited assertions to be stable (or else derived from stable assertions by the
WEAKEN rule). Stability checks are notated as follows:

Interestingly, a variant of the LooP rule for reasoning about C* commands would require a stability
check on p, in case C* should behave like skip. Our language uses C* so as to sidestep this check.
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Definition 1 (Stability). pstab R = Vo,0".0 =p A R(0,0') = o' |=p.

The PAR rule marks the epitome of RG reasoning. When reasoning about commands
composed in parallel, the rely of each command is extended to include the guarantee of
the other. The composed command C Il C5 guarantees actions in either of its components’
guarantees, and establishes both components’ postconditions upon completion.

2.1 The problem with verifying libraries

Consider a library function f£() that atomically increments a shared variable x. Its two
clients, g() and h(), invoke £ () in an empty environment and an environment that may
increase x, respectively. Call this latter environment R,.. The guarantee GG, additionally
dictates that no variable other than x changes.

Definition 2. £O) = x++

g0 = assume(x=3); f(); assert(x=4)
h() = assume(x=5H);
Ry = {(0,0)

|
GX+ d:d {(07 0/) ’

Now, the proofs of g() and h() hinge, respectively, upon deriving the following two
specifications for £ ():

0,Ges F{x=X}£0 {x=X+1} Rys, G F {x>X}£O {x>X+1}

Both hold, yet no single ‘most general’ specification can derive them both. The first has
the stronger postcondition but the smaller rely; the second is vice versa. This trouble-
some tradeoff can be blamed on stability: the larger the rely, the tougher the stability
requirement, and thus, the weaker the postcondition.

In Sect. 4, we shall present a single specification for £() from which both of the
above can be derived. Parameterised on an arbitrary rely R, it simply states that the
postcondition needs weakening from x=X+1 just enough to become stable under R. Upon
instantiating R to Ry, to verify h(), the postcondition becomes x>X+1. And when R
is (), for g()’s proof, no weakening is required.

3 Explicit Stabilisation

This section describes our formalisation of stability and applies it to the RG proof rules.
The remaining sections develop two alternate proof systems: one (Sect. 4) that can specify
libraries independently of clients, and another (Sects. 5 and 6) that lets a module hide
from clients its internal interference.

We propose two new syntactic constructs: [p|, for the weakest assertion that is
stronger than p and stable under R, and [p], for the strongest assertion that is weaker
than p and stable under R. That is, |p|, = V{¢ | ¢ = p A ¢stab R} and [p], = A{q |
q < p A qstab R}.



Definition 3 (Semantics of |p|, and [p]g). The required properties are realised uniquely
by the following constructions:

ok pl, € Vo.(0,0)ER =0 Ep

ok pl, < 30.(d,0) € R* Ao E=p.
Figure 2 presents the intuition behind our new opera-
tors. The nodes represent states; those that are filled
satisfy some assertion p. The edges depict transitions
of an arbitrary rely R. The states in |p|, are those
from which any reachable state satisfies p. The states
in [p], are those reachable from a state in p.

Our operators can also be defined using Dijkstra’s
predicate transformer semantics [6]: [p|, is the weak-  Figure 2: |—| and [~], intuitively
est precondition of R* given postcondition p, while
[p]g is the strongest postcondition of R* given pre-
condition p.

Example. We stabilise x=0 and x#0 under R, (see Definition 2) like so:
|x=0], < false [x=0], < x>0 [x#0], < x>0 [x#0], < true

3.1 Properties of explicit stabilisation

Both |—] and [—] are monotonic with respect to =. They are related via the equivalence
|-p]gr & — [plg-1. Each has no effect on an already-stable operand, or when R is empty.
Both true and false are stable, and conjunction and disjunction both preserve stability.
The distributivity properties of |—| and [—] over A and V are analogous to those of V
and d respectively:

lphalp & IplpAldlg lpValg <= IplrVldg
(p/\Q]R = [p—‘R/\(q—IR (p\/qu <~ Dﬂ}z\/((ﬂ]{

Several properties mirror those of the floor and ceiling functions in arithmetic, from which
our syntax is borrowed. If R C R’, we have:

plele & Wlelp & TPlelr < [Pk
[[Plele & [[Plalr & LPlele & [Pk

Finally, the following property reminds us of the trade-off mentioned in Sect. 2.1: that as
the rely becomes more permissive, stability becomes harder to show:

R C R'implies |p|p < |plp and [plz = [plg

The properties presented in this section have been formalised using the Isabelle theorem
prover; the proof script is available online.?

3.2 Application to RG proof rules

We now describe how the RG proof rules (Fig. 1) can be adapted to use explicit stabili-
sation rather than side-conditions.

’http://www.cl.cam.ac.uk/"~ jpw48/expstab.thy.html
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Figure 3 displays the replacements for the BASIC and
SKIP rules; the others remain unchanged. The BAsic-S  BAsIc-S L,
rule first derives p and ¢ by considering ¢ sequentially; that - {p}c{q} pNcC G
is, without concern for stability. A concurrent specification R, G+ {lplg}c{lalx}
is obtained by strengthening p and weakening ¢ until they
are both stable. The SKIP-S axiom is justified by consider- ~ SKIP-S
ing the execution of skip from an initial state satisfying p. ;
This state also satisfies [p],, and the final state must too, .G+ {p} skip{[pla}
since skip does nothing. The following backward-reasoning
alternative is interderivable: R, Gt {|p|,} skip {p}.

The new rules are at least as powerful as the originals,
which can be obtained by restoring the stability checks and
then removing the redundant stabilisations.

Figure 3: New RG proof
rules (with stabilised asser-
tions)

3.3 Aside: Simplification of complex RG proof rules

We now highlight the elegance of explicit stabilisation by showing how it can simplify and
generalise complex RG proof rules that rely subtly upon stability.

Coleman [5] proposes the following rule for reasoning about one-armed conditional
statements whose test conditions are evaluated non-atomically in the presence of interfer-
ence.

StableExpr(es, R) R,GF{pAnes}C{q} SingleUnstableVar(e,, R)
Vo,o'.c EpA(o,0') e R No' E—(eshe,) =o' Eq  {—eu,p q}stabR
R,GF {p}if e, Nes then C{q}

Tests are pure, and comprise an unstable conjunct e, and a ‘stable’ conjunct e, that
contains no variables that R can change (first premise). Crucially, only es can be assumed
still to hold by C' (second premise). By requiring e, to involve only a single read of an
unstable variable (third premise), we can treat it as a predicate of a single state — the
state in which the read occurs — despite not knowing which state that is. Should the test
fail, the postcondition must be met without evaluating C' (fourth premise). That premise
requires R to preserve the falsity of e, (fifth premise) so as to ensure that the obligation to
fulfil ¢ cannot be bypassed by having the test evaluate to false but later become logically
true.
Now consider the following alternative rule, which uses explicit stabilisation.

R, G A{pAlelg} Ci{g}
SingleUnstableVar(e, R) {p,q} stab R R,GF{pAJ[-elz} Co{q}
R,GF {p}if e then C) else Cy{q}

Essentially, the execution of (' begins in a state that is reachable (by a sequence of
environment actions) from one in which e evaluated to true. Similarly, [—e], describes
a state reached from one where e did not hold. Stability checks on p and ¢ remain only
for compatibility with the rest of Coleman’s system.

Thanks to explicit stabilisation, the new rule has fewer and simpler premises, plus it
extends naturally to two-armed conditionals. Moreover, e need not be split into stable
and unstable conjuncts, for our rule handles arbitrary test conditions.
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P-WEAKEN

R, G e {p'} C{d} P-PAR
p=rpP d=rgq RUG,, GiFp {p} Ci{q,}
RQR, GIQG RUG1,G2 l_p {pQ}CQ{QQ}
R, G e {p} C{q} R,G1 UGy Fe {pi aulla, P} CLllCa{ar aullay @0}
P-Basic L P.g
F{pte{a}  PNeccda R
U,G Fp {AR. |p]g} c{A\R. [q]p} U,G Fp {A_.p} skip{AR. [p]x}
Abbreviations:
p=rp, = VReR. p(R)= p(R) RUR = {RUR|R e€R}
P rllg, Py = AR.p,(RUR)) A py(RUR,) U = universal set of all relies

Figure 4: Selected proof rules for parametric specifications

4 Verifying concurrent library code

Equipped with a notation for stabilising assertions, we revisit the challenge we set in
Sect. 2.1: to verify concurrent library code using RG reasoning.

Recall our library function f() and its clients g() and h() from Definition 2. Using
explicit stabilisation, we can derive the following specification, which is parametric in R
(although its instantiation will be restricted, as described shortly).

R, G E {[x=X13} £O {[x=X+1]}

Observe that instantiating R to ) yields a specification suitable for proving g(), while h ()
can be proved having set R to Ry.. We now present a proof system for such ‘parametric
specifications’ and formally derive the above one for £ ().

In a parametric specification, the rely is replaced by a set of relies R, and the pre and
postconditions (denoted p, g, r) become functions from relies to assertions. We shall use
A-calculus notation to describe such functions.

Definition 4. R, G |=p {p} C{g} <= VReR.R,G = {p(R)}C {q(R)}.

As the definition above shows, a parametric specification represents a family of specifica-
tions, one for each rely in R. A selection of proof rules for parametric specifications are
presented in Fig. 4; those not depicted are lifted in the obvious way. (See Appx. C for
the full set.)

The P-PAR rule has grown considerably more complex. The reason is that at the fork
and join of parallel commands, the rely changes. If the rely is R initially, then within
the component commands the rely becomes either R UG5 or RU G4, and after joining, it
reverts to R. Our rule simply reflects this progression.

The P-Basic and P-SKIP rules both deduce specifications that feature the universal
set of relies, which enables their use in any environment. The P-WEAKEN rule can
then be used to shrink this set, typically removing the bigger relies. Doing so restricts a
specification’s reusability, but it enhances the applicability of the = relation that allows
it to be simplified.



FLOYD’S ASSIGNMENT AXIOM

= {p} x++ {plx—1/x]}
F {[x=Xg} e+ {[x=X1p [x—1/x]}
U, Gy Fp {AR. [x=X ]} x++ {AR. [[x=X [x—1/x][,}
comm(x++), Gy Fp {AR. [x=X |} x++ {AR. [x=X+1],}

Instantiate p to [x=Xp

P-Basic
P-WEAKEN

Figure 5: Derivation of parametric specification for £ ()

comm(x++), Gys Fp {AR. [x=X |5} x++ {AR. [[x=X, [x—1/x]]|5}

Set Rto 0 / N Set B to By

0,Ge b {x=X}£O {x=X+1} Ry, Gy b {x>X}£0O {x>X+1}

Figure 6: Instantiating the specification

Theorem 5. The proof rules of parametric stability are sound, that is:
R.GFe{p}C{g} — R,GFr{p}C{q}

and they encode the proof rules of Fig. 1 (in which assertions do not contain explicit
stabilisation), both completely and soundly, that is:

R,GH{p}C{q} = P(R),Grp{A_.p}C{\_.q}
R.GEA{p}C{d} <= P(R).GEpr{A_.p}C{A ¢}

Here, the use of powersets lets the P-WEAKEN rule emulate the WEAKEN rule.

Figure 5 shows the derivation of our specification for £(). In applying the P-BAsic
rule, we utilised the identity | [x=X,|, < [*=X;. The specification on the third line is
the most general, as it allows the rely to be instantiated freely. Yet we do not stop there.
We restrict the rely to the set comm(x++) of those that ‘commute’ with the x++ operation;
that is, for which [p], [x—1/%] & [p[x—1/x]], holds for all p. Using this property we can
simplify the postcondition.

Figure 6 shows informally how the parametric specification can then be instantiated
to two ordinary specifications, for use in proving the two clients g() and h(). Really, this
‘instantiation’ is an application of the P-WEAKEN rule to restrict R to the singletons {0}
and {R,.} respectively.?

In conclusion, we find that the ‘most general’ specifications that our parametric scheme
can deduce are, though sometimes desirable, inhibited by their complexity. The specifi-
cation on the third line of Fig. 5 contains two stabilisation operations in its postcondition
— and this is for just a single basic command. A sequence of n basic commands, specified
in a similar way, may contain up to n + 1 stabilisation operations in the postcondition
(modelling the environmental interference before, between and after the commands). The
complexity of the specification is thus comparable to the implementation it describes. Ac-
cordingly, it is crucial that our scheme allows specifications to be specialised to restricted
sets of relies, and thence, simplified.

3Interestingly, although the relies () and R,. are both in comm(x++), the same is not true of all those
in P(Ry+): for instance, the rely that only increments x from 1 to 2.
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Pi=ete|emple=cle>e|true| =P |P=P|PxP|3z.P||Pl,]| [Pl
where k € (0,1] and e is a pure expression.

hifseover <5 h={[e]s>[en]i}

!

h,i F=sL emp L h=1)

hoil=s Pox P, <= 3hg,h1.hoLhy A h=hoWhy A ho,il=s. Py A hy,i=sL Py
hils [Pl <= VI.(hh)ER = W, ils P

hyiks [Pl, <= 3W.(K,h)€R* A W,ifs P

where h_Lh' means dom(h) and dom(h’) are disjoint.

Figure 7: Syntax and (selected) semantics of separation logic assertions

5 Explicit Stabilisation for RGSep

We now bring explicit stabilisation to RGSep [20], an RG-style logic that reasons about
concurrent heap-manipulating programs by splitting the heap into shared and thread-local
parts. The development in this section builds upon our application of explicit stabilisation
to RG (Sect. 3), but we shall now leave behind the parametric specifications of Sect. 4.

Though designed for concurrency, we show (Sect. 5.3) how RGSep can be applied to
sequential modules by reinterpreting the ‘shared’ heap as that part owned by the module
(its so-called ‘internal heap’). Our extension of RGSep with explicit stabilisation enables
an INFOHIDING proof rule, by which a module can hide from clients the interference
that affects its internal heap. We demonstrate our approach in Sect. 6, by verifying the
Version 7 Unix memory manager.

5.1 Introduction to RGSep

RGSep extends ordinary RG reasoning with conceptual divisions of the heap into thread-
local and shared parts. The rely and guarantee need specify only changes to the shared
part, and thus become far more compact.

RGSep inherits its ability to reason naturally about heap-manipulating programs from
separation logic [13, 18], the assertion language of which is presented in Fig. 7. States
comprise a heap h mapping locations to values and a store ¢ mapping variables to values.
The * operator attempts to split the heap using the W operator, such that the two (disjoint)
parts respectively satisfy its two operands. We use the fractional permissions model [3],
in which a heap may describe some locations only partially. For instance, the assertion
2+553 describes a heap comprising a single location x with value 3, and confers full (write)
permission on that location. It may be split into several read-only permissions (e.g.
P :U»—5>3) which may be shared between different threads. Threads communicate only
via the heap, so the stabilisation operators can ignore the store.

Figure 8 presents the assertion language of RGSep, augmented with explicit stabilisa-
tion. The heap is split into disjoint local and shared regions, [ and s, which are described
by unboxed and boxed assertions respectively. The x operator now splits only the local
heap. The shared heap is never split, in order that all threads share the same view of
it. For instance, if one thread’s view of the overall state is described by x P, and

11



pu=P|[Pllpxp|pAp|pVp|3e.p|Ve.p| |plsl [Plg

l,s,il=P & liles P
l,s,i =[P S I=0 A sil=s P
l,s,iEpoxpr <= 3sg,s1.50Ls1 A s=soWs1 A Lso,i=po A Lsii Ep

l,s,i = |plgp £ V8 (s,8) € (R\)* = 1,,i =p
Lsib[pla 45 39 (shs) € (R\)' A Lshi by

Figure 8: Syntax and (selected) semantics of RGSep assertions

another’s by * ();, then the * operator combines them thus: x P x Q.

Definition 6 (RGSep actions). The action P ~» @, which is defined as {(sWsg, $'Wso) |
di.s,i s P A S0 s QF, replaces a part of the shared heap satisfying P with one
satisfying Q).

Definition 7 (Contextual actions). The contextual action P ~» @ | F, defined as
{(sWspWso, s'WspWsg) | Ji.s,i s P A §yi s Q@ A sp,i s F'}, requires a
separate (unaffected) part of the heap that satisfies F' to catalyse it.

5.2 RGSep and stabilisation
Our semantics of |p|, and [p], (Fig. 8) imposes the following restriction on R:
Definition 8 (Restricting the rely). R\l < {(s,s') € R|lLs A ILs'}

The R\l operation removes from R impossible environmental actions that would make
the shared heap overlap the current thread’s local heap [.*

All of the properties detailed in Sect. 3.1 continue to hold. The following series of
lemmas describe some additional RGSep-specific properties. Lemma 9 asserts that local
assertions are vacuously stable.

Lemma 9 (Local assertions). |P|, & [P]|, & P.

The next lemma says that we need not restrict the rely when stabilising a shared assertion.
Such assertions imply that the local heap is empty (see Fig. 8), and thus unable to conflict
with the shared heap.

Lemma 10 (Shared assertions). LJR & and (WR & .

Finally, we describe the distributivity of the stabilisation operators over .

Lemma 11 (Separately-conjoined assertions). |p|, * |¢]p = [p*qlp and [pxql, =
[Plg * T4l

Remark. Neither converse implication holds. Obtain a counterexample for the first from

p as [t—0]xx—0V[t—1]xy—0, ¢ the same but with x and y swapped, and R as the single
action t—0 ~» t—1. For the second, take p as [In.t—n An < 0], g as[In.t—n An > 0]

and R able to increase t’s value.

4This approach slightly refines the presentation of stability in [19, Lem. 15], which did not consider
such conflicts between shared and local heaps.
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The proof rules of RGSep can be adapted to use explicit FRAME-S

stabilisation. Figure 9 shows the replacement for RGSep’s R,GF{p}C{q}

frame rule (see Appx. D for the complete set of new rules). fv(r) Nmods(C) =
The original rule required the frame r (which must not R.GH{p*xr}C{q* [rlp,c}
mention any local variables modified by C) to be stable

under both R and G in case any shared heap it specifies ~ Figure 9: New frame rule

is mutated by either the environment or C' itself. In the

new rule, this check becomes an explicit stabilisation on r in the postcondition. As in the
SKIP-S rule (Fig. 3), the stabilisation could equally be done in the precondition instead.

5.3 RGSep and sequential modules

This discussion lays the groundwork for the verification of a memory manager presented in
Sect. 6. We shall assume a module comprises some state, including several heap locations,
plus a collection of public routines that can manipulate this so-called ‘internal heap’. A
sequential module is one designed for single-threaded machines: its routines and all of its
clients are sequential.

Sequential modules are analogous to the concurrent programs that RGSep was de-
signed to verify. The RG method, of abstracting a command’s environment by a rely,
applies to both, albeit for different reasons. For concurrent programs, we must abstract
the concurrently-running threads in order to avoid the combinatorial explosion that re-
sults from considering each possible interleaving of commands individually. For sequential
modules, we must abstract clients’ actions between module calls because we cannot know
what clients will do. To verify sequential modules, we redeploy RGSep’s ‘shared’ and
‘thread-local’ heaps to model the module’s internal heap and, respectively, the heaps of
its clients.

Consider a module M with several routines. A client first calls init(), which prepares
part of M’s state for this client, and may transfer ownership of some of M’s heap cells. The
return value z identifies subsequent calls in this sequence. The client then invokes some
other routines of M — passing x as a parameter each time — before calling finalise(x)
so that its parts of M’s state can later be used for another client. We use ‘client’ here to
refer to a sequence of calls parameterised on the same .

The crux is to show that several interleaved clients can all interact with M safely. For
instance: if one client executes x :=init(), then another executes y :=1init() followed by
a sequence of calls parameterised on y, can the first client be sure that M is still in a state
of readiness for a sequence of calls parameterised on x, and that the intervening events
have not affected its part of M’s state?

This is actually a matter of stability: we are seeking to prove that the postcondition
of x :=init() is stable under an environment that can execute M’s routines arbitrarily
(excepting those parameterised on x). We need only consider an environment that calls
M’s routines: other activities do not affect M’s internal state, so can be deemed local.

To define such an environment, we require x :=1init() to return a token(x) predicate,
to reside in the client’s local heap. The predicate is abstract [16], which means that its
definition is out of scope. Later module calls by this client (which we name Cy) shall

require the token’s presence in its local heap, and the finalise(x) call shall confiscate
it. The postcondition of x :=init() is thus of the form * token(x), where P(x)

13



describes an internal heap with a part initialised for C,. Let G be the set of RGSep
actions by which M’s routines can mutate its internal heap. Alone, | P(x)]| is not stable
under G, for G includes actions that mutate C,’s part of the internal heap. Yet it becomes
stable when combined with the local assertion token(x). Why? Because the presence of
the token(x) in Cy’s local state prohibits any other client having it and thus being able
to continue the sequence of calls parameterised on x. It is vital that our refined notion
of stability considers such conflicts between local and shared heaps (Definition 8). Since
stability occupies such a central role here, perhaps explicit stabilisation can be usefully
applied? It can, in the following two ways.

5.3.1 Clarifying the stable parts of assertions.

We have claimed | P(x)|* token(x) to be a suitable — and stable — postcondition for init.
Using explicit stabilisation, we now propose |[P(x)]* token(x)] . instead. Strengthening
the postcondition in this way is sound here, because the stabilisation has no effect on the
already-stable assertion. Thus, the presence of | —| operators in the postcondition (and,
dually, [—] in the precondition) serves to assert that their operands are stable. (In fact,
p < |plp exactly characterises those assertions that are stable under R.) We arrive at
the following prototype specification:

G+ {(WG} x :=init() {|[P(x)]* token(x)JG *Q}.

We omit here and henceforth the rely from specifications, there being only one thread. We
retain the guarantee, whose abstraction of the module calls that the thread may make is
utilised by the FRAME-S rule. The unparameterised P describes any valid internal heap
of the module. See how the assertion (), which describes cells that are transferred into
the client’s local heap, can be added outside the stabilised part: a client can mutate this
part of the heap without concern for stability, the changes being purely local (see Lem. 9).
Not all local changes can be treated so flippantly — indeed, the local assertion token(x)
is crucial to stability — but by delimiting the important assertions with the stabilisation
syntax, we certify exactly which bits can and cannot be touched. Clients who obey this can
be free of stability considerations, and instead rely on general properties of stabilisation,
such as those detailed in Sect. 3.1.

5.3.2 Information hiding.

Because the clients need not perform stabilisation, they need not even know the set of
actions under which the assertions must be stable. That is, the definition of G can be
kept internal to the module. This observation inspires the following proof rule.

Module: (A, G {pz} (Cy) {Qi})?zo
— Client: A CA A (GH{p} f; {Qi})izo , G F{p}C{q}
Whole system: F{p}let (f;=C;)_,in C{q}

The rule concerns a sequential module comprising routines f; to f,, with implementations
C: to C,. The first line specifies each routine, in which G is the set of actions that
clients of the module can perform. (In order to be able to access the module’s internal
heap, RGSep requires C; to appear in angled brackets.) A denotes a set of predicate
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definitions, including the definition of token for instance. It also includes the definition
of GG, which we shall treat as an abstract predicate too. The second line specifies a client
of the module, C'. The A’ it uses excludes the definitions of any predicates that are to
remain abstract, and crucially, omits G’s definition. Doing so makes the specification
more reusable — even in the event that G changes — and hence more conducive to modular
reasoning. Explicit stabilisation is vital here: the stabilisation operations in the p/s and
gis refer to a particular G in the module specifications, and an arbitrary G in the client
specification.

Theorem 12. The INFOHIDING rule is sound.

Proof. The only departure from a typical rule for let commands is to remove G’s defini-
tion from the client’s specification, which logically strengthens one of the rule’s assump-
tions. O

6 Case study: Verification of a memory manager

We now reify the concepts of Sect. 5 by verifying the Version 7 Unix memory manager.
This illustrates both our extension of explicit stabilisation to RGSep, and the use of the
INFOHIDING rule to hide a sequential module’s internal interference from its clients. The
verification itself is not only believed to be the first for this program; it also reveals a
latent bug. The proof is one of safety: we prove neither termination nor that blocks are
allocated in any particular fashion.

To begin, consider the following natural specifications, from [16], for malloc and free.
Assume malloc cannot fail, and suppose a word is WORD bytes long.

{emp} x:=malloc(n x WORD) {{token(x,n)*xr—_ s %x+n—1l—_}
{3n. token(x,n) * x—_x - xx+n—1—_} free(x) {emp}

The malloc routine gives each client an abstract token predicate, which the client later
uses to certify to free that the block being returned was truly allocated by malloc (free’s
behaviour being undefined otherwise). These specifications could be realised naively by
implementing token(z,n) as x—1rn; that is, by storing the length of each block in the
preceding cell.

Real memory managers are far more complex. The one we shall examine forms the
cells that precede each block into a monotonically-increasing chain of pointers, linking
all the allocated and free blocks. Such a manager must maintain in its internal heap the
pointer chain, plus any free blocks, while the allocated blocks are conceptually held by
each respective client. For a token, we can now afford only half of the cell preceding
the block, because the manager must retain at least read-permission on this cell for later
traversals of the pointer chain. Note that by creating the token from part of the existing
datastructure, our proof avoids the need for auxiliary state.

The crux of the verification is to prove that a block allocated to a client remains
allocated until, and only until, that client frees it; that is, it is not invalidated by other
calls to malloc and free. Defining G as the set of actions of malloc and free, we are
asking if malloc’s postcondition is stable under G.
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¥ X—_ % -k x+n—1r—_

CL {Eln. (WG * [arenatoken(x,n) ]| } free(x) {\_JG}

¥ X—>_ k- kX4n—1+_

G+ {[[arena]].} x :=malloc(n x WORD) {LJG * Larenatoken(x, n)Jg }

Figure 10: Specifications of malloc and free

G+ {[[arena]].}
x := malloc(2*WORD) ;
s {|[arena] | * [arenatoken(x,2) g * x—_, _}

— {[[arena]]. * |arenatoken(x,2)]¢ * x—_, _}
y := malloc(3*WORD);

6 [arenal |+ | arenatoken(x, 2) |g * x—_, _ * | arenatoken(y, 3) | * y—_, _, _}
[y+1] :=7;

| [arenal | * |arenatoken(x, 2) g * x—_, _ | arenatoken(y, 3) |g * y—_,7, _}
o = {[[arena WG « [arenatoken(x,2)]g * x—_, _* [arenatoken(y, 3)]g * y—_,7, _}
free(x);

arena||. * | arenatoken(y,3) |- *x y—_, 7, _
G y G y

Figure 11: Verification of a simple client

!

It is easy to show that it is unaffected when these actions are applied to blocks other
than the current one. And although the environment is allowed to apply these actions
to the current block, it is actually unable to do so. Why? Because the current block
cannot be accidentally re-allocated, since to do so would give the client a duplicate token,
which the % operator forbids. And neither can it be accidentally freed, without yielding
its token.

Using explicit stabilisation, here is a first attempt to specify malloc:

GF {]_WG} x :=malloc(n X WORD) {L arena(x,n)|* token(x,n)JG}

* X—>_ % -k x4n—1—_

The arena predicate asserts that the manager’s internal heap is valid, while arena(x,n)
additionally asserts that the block at x is missing. Note that the stability of
relies on the token(x,n) predicate in the local heap.

This specification exposes too much of the manager’s innards. We address this in
the improved specifications in Fig. 10, by collapsing |arena(z,n)| x token(x,n) into a
single abstract predicate, arenatoken(z,n). We also append the |arena| predicate to both
malloc’s postcondition and free’s precondition. Strictly, this is redundant, for
is entailed by arenatoken, but having malloc’s postcondition reestablish its precondition
simplifies the verification of successive calls to malloc and allows the predicates to remain
fully abstract.

Now consider the simple client in Fig. 11. Because the content of the block lies outside
the scope of the stabilisation, the client can mutate it (line 7) without having to reconsider
stability. The allocation of the block at y (line 5) does not affect the block at x: such
a deduction is enabled by the FRAME-S rule of Fig. 9. (Although this rule imposes a
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stabilisation on the entire frame, we can leave this implicit for the local parts, by Lem. 9.)
See how the use of explicit stabilisation allows the client’s verifier to rely only on general
properties of stabilisation: for instance, the deduction of the assertion on line 4 follows
straight from |p|, = p = [pli. The definition of G is thus not needed by the client, so
we can use our INFOHIDING rule to keep it internal to the module.

The rest of this section concerns the implementation (Sect. 6.1) and verification
(Sect. 6.2) of the memory manager. The source code and our full proof are provided
in Appx. E. We omit an optimisation that tells malloc where to begin its search, because
it contains a bug, which we explain in Sect. 6.3. Section 6.4 describes some peripheral
details of the implementation and the verification.

6.1 Implementation of the memory manager

The memory manager controls the allocation and
deallocation of blocks of main memory to and from
client processes. The portion of memory it controls
(shown in Fig. 12) contains both free and allocated
blocks. The grey cells form a cyclic chain of point-
ers and the white blocks in between can be allo-
cated to clients. Since blocks are word-aligned, the
least significant bit in each pointer is redundant, Figure 12: An arena

and is hence employed to signal the availability of

the following block. In the figure, black and white squares indicate that this so-called
‘busy’ bit is set and, respectively, unset. The module-level variables s and t respectively
identify the first and last pointers in the arena. Because it is not followed by an allocatable
block, the last pointer’s busy bit is permanently set.

A client requests a block of n bytes by calling malloc(n). For clarity of exposition
we shall keep n a multiple of the word size, WORD. The routine traverses pointers until it
finds a free block that is sufficiently large, returning the null pointer in the case of failure.
It coalesces consecutive free blocks throughout the search. Should the block it finds be
exactly the right size, a pointer to it is returned, and should it be too large, it is divided
into two and a pointer to the first is returned. The client can later invoke free(z), x
being the address of the first cell in the block. Observe that free is not parameterised
by the length of the block, because the length was recorded when malloc allocated it.

6.2 Details of the verification

Figure 13 defines some auxiliary predicates used in the specifications and proof. z—y
describes an unallocated block between x and y. Upon being allocated a block of size
n with first cell x, the client is also given token(x,n), which contains a half permission
on the block’s pointer; the manager retains the other half. We write z+—yp,s, to mean
that upon unsetting z’s busy bit, it would contain the address of y. ¥y says that y is
the special pointer at the end of the arena that points back to z, the start of the arena.
x—»1 denotes a possibly-empty monotonically-increasing chain of pointers from x to y
(including any unallocated blocks), the definition of which abbreviates z—z’ % 2'—y to
x—x'—y.
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r—=y = r<yAz—y* (x+l)—_*x-ok (y—1)—_

oy E a<y A Sy
T—Y = ryVary
2Oy <y A Yo Ty
gy = (3r.z—z'—y) V (z=y A emp)
arena = st x st
arena(z,n) = s—»(r—1)2(z+n)—>t * st
token(x,n) = (x—l)lg(x—l—n)busy

arenatoken(x,n) arena(z,n)|x token(x,n)

Figure 13: Predicates

Coalesce: azboc  ~ aoc |  s—a
AllocateEntire: a—b ~a—b |  s—a
AllocatePart: a—b ~a—z(b-n)=b | s—a
Free: a—b ~ o a—pb | s—a

Figure 14: Main actions

Figure 14 formalises the ways in which the internal heap of the module may be mutated
by clients calling malloc and free. Only one routine can execute at once, so it would
suffice to list a single action for each. We prefer to split them into several simple actions.
The first coalesces two consecutive free blocks. The second allocates an entire block to a
client, while the third allocates just the initial part. The fourth frees a block. The context
s—a ensures that the blocks that are acted upon are really in the arena. G is the union
of all these actions.

p
6.3 A (faulty) optimisation L u
The following bug was discovered during the verification process. —
malloc (1000*WORD) ;

The manager maintains a global variable p (named allocp in
the original source code) that, after a block is allocated, is pointed
to the successive block, and after a block is freed, is pointed to
that block. It serves to identify a good place for the next call to
malloc to begin its search. The implementation does not update x := malloc(1*WORD);
p if allocation fails, however, and therein lies the bug: p should be XxPp
updated in case the block to which it points has been coalesced
with its predecessor, lest it be left pointing inside a block.

Figure 15 demonstrates how this bug could wreak havoc. Our - )
contrived arena contains just two one-word blocks, both of which v m?,llo;(sg WORD)
are free, and p initially points to the second. The first malloc call
fails, but has the side-effect of leaving p inside the coalesced block.
We then allocate a small block at x, before wrapping around to
the start of the arena and allocating a larger block at y, thereby
reaching a situation in which the contents of the smaller block is Figure 15: The bug

%E_d

5=
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allocated twice.

The discovery of this bug was prompted by the failure of the invariant s—p, which
states that p identifies a valid pointer in the arena. We have successfully executed our
exploit to confirm that the bug is real.

6.4 Other issues

There are several other issues involved in the implementation and verification of the
memory manager, which we explain now. These issues have been sidestepped so far in
order to focus on the crucial parts of the verification.

Allocation failure To handle the case where malloc fails, its postcondition should be
disjoined with the following assertion: | [arena] | A x=0.

Extending the arena Once the search for a block has exhausted the arena, malloc invokes
sbrk to ask the system for another block of memory. This block will be located at
an address above t because, in Version 7 Unix, memory allocated via sbrk is never
returned. The following three actions should be added to G, to formalise these calls

to sbrk:®
ExtendGap: gt—t * st x brk(b) A b>t+1 ~» &tt’ x tob—pt' « st « brk(t'+1)
ExtendNoGap: = &ti—t « s * brk(t+1) ~» &ttt (t+1)pt * st « brk(t'+1)
AdvBreak: brk(b) ~» In>0.brk(b+n)

The first extends the arena with a new block, leaving a gap that is filled with an
unfreeable dummy block to maintain the illusion of a contiguous arena. The second
is similar, but without the gap. The third action, which advances the ‘break value’
(the cell at which the next successful call to sbrk will return a block), is kept distinct
to reflect that it may be performed in other situations.

An issue with dummy blocks When the arena is extended via the ExtendGap action, the
resulting gap is filled with a dummy block that is permanently allocated. In order
to allocate such a block, we need to hand the caller the token predicate, yet there
is no client in this situation. We thus add a true predicate to the arena, which can
‘soak up’ these spare tokens. Considering this and the previous points, the arena
(see Fig. 13) can be more precisely defined as follows:

arena = Ts,t,b.true x &s—s * &t * s—»t % s % brk(D) At < b

7 Related Work

Explicit stabilisation arose out of ‘mid stability’ [19, §4.1], a variation of RG reasoning
that places stability checks not on the pre and postconditions of basic commands, but at
the points of sequential and parallel composition instead. This more strategic placement
eliminates redundant checks, and also allows libraries comprising just one basic command

SWe are now treating module-level variables more carefully: the variable t is modelled as a heap cell
at address &t, thus allowing its value to be altered by these actions.
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to be verified without considering stability. Our parametric proof system (Fig. 4) extends
this to all library functions (and encodes mid stability soundly and completely).

RG-style reasoning has been used before to verify concurrent library code (e.g. [10]).
The specifications of that approach involve a particular rely, whereas our parametric
specifications do not require a particular rely to be instantiated.

RG has also furnished proofs of sequential modules before (e.g. [22]), but we believe
ours to be the first that hides the module’s internal interference. The INFOHIDING rule
that enables this feat is related to the hypothetical frame rule [15]: the latter rule hides
the module’s state from the client, while ours hides the module’s interference. Perhaps the
hypothetical frame rule could be used to remove the predicate from the verification
given in Fig. 11, thus revealing to the client neither the module’s state nor its internal
interference.

SAGL [9], like RGSep, is a descendant of RG and separation logic, to which explicit
stabilisation could also be applied. Local Rely-Guarantee (LRG) [8] is a third descendant
that addresses an inherent flaw in the modularity of its siblings: that the shared heap must
be globally known. It defines a * operator over interference, which allows the shared heap
to be split into portions that are shared between just a few threads. The application of
explicit stabilisation to LRG could simplify the verification of clients that invoke multiple
modules, for our approach currently handles only one.

Explicit stabilisation can be seen as a bridge between theory and implementation:
tools, such as SmallfootRG [4], that automate RG-style reasoning may defer stability
checks rather than perform them at the point of rule application, and explicit stabilisation
can help to formalise this ‘lazy’ approach. We have not considered the implementation of
stabilisation; this issue is explored in [2].

8 Conclusion

We have proposed explicit stabilisation as a new way to deal with stability in RG rea-
soning. The central idea is to record information about an assertion’s stability into its
syntactic form. The main benefits are in modular reasoning:

Library code can be verified independently of clients. In Sect. 4, we showed how an ap-
proach based upon explicit stabilisation enables RG reasoning to verify concurrent
library code. Essentially, the stabilisation in the library’s specification is evaluated
so lazily that it actually becomes an obligation of the client.

Client code can be verified independently of a sequential module. We showed in Sect. 5 how
the application of explicit stabilisation to RGSep gives rise to an INFOHIDING rule
that allows a sequential module to hide its internal interference from its clients. Such
information hiding is crucial for modular reasoning, because it allows the specifica-
tion of a client to be reused, even despite changes to the specification of this internal
interference. Section 6 demonstrated this reasoning by verifying a memory manager.

It would be interesting to investigate whether these two forms of modularity can be
combined; that is, can we verify both a library and its clients, modularly, at the same time?
It looks feasible. The specification for the library in Sect. 4 used explicit stabilisation
with an arbitrary rely R, which became specific for each client in turn. Meanwhile,
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the specifications for the memory manager in Sect. 6 used explicit stabilisation with the
specific G of the module, which was then generalised to an arbitrary G for the clients,
so as to provide information hiding. Perhaps a combination of these approaches would
parameterise on both the rely and the guarantee?

We also plan to apply explicit stabilisation to more advanced logics based on RG,
such as LRG, Deny-Guarantee |7], and the logic of Gotsman et al. for proving liveness
[11]. The notions of stability in such logics are becoming ever more demanding, so it is
increasingly important to have a solid basis upon which to reason about stability. We
believe explicit stabilisation provides such a basis.
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A Semantics of commands

This section provides a formal semantics for the programming language introduced in
Sect. 2. The syntax of the language is as follows.

C:u=skip|C;C|CIC|C+C|CT e

Below we show some basic commands and derived commands. Note that since our lan-
guage does not consider faults, the basic command assert writes to the special program
variable fault instead.

r:=e = {(o,0lx—])|xedom(c) A v=[e]o}
T+ = z:i=z+1
lock! = {(o,0[l — true]) | o(¢) = false}
unlock! = {(o,0[l+— false]) | o(¢) = true}
assumeb = {(0,0) | [b]o = true}
{(o,0) | [b]o = true} U
{(0,0[fault — true]) | [b]o = false}
if bthen(CielseCy = (assume(b);C))+ (assume(-b);Cy)

whilebdoC' = (assume(b);C)*;assume(—b)

assertb =

An operational semantics is given below in terms of an inductively-defined transition
relation between configurations. We write (C,0) - (C’,0’) to denote a single step of
computation that reduces the command C' in state o to the command C” in state ¢, in
the presence of environmental interference R. The label A indicates whether the step is
performed by the program itself (p) or the environment (e). We write £+ for the reflexive

transitive closure of —§—> UL,
R(a o) c(a o)
(C,0) E5(C, 0" (c, a> (skip, o) (skip; C, 0) —(C, o)

(skipll skip, o) %(skip, o) (Cy + Cy,0) %(Cl, o) (C1 4 Cy,0) %)<02, o)

(C.0) (0", o)
(C7.0) Z5(C 1 (C;0T),0) E[C).0) T (€[00}

where £ = — | ENNC | CNE | E;C
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B Rely-Guarantee specifications and proof rules

The following definitions provide a formal semantics for RG specifications. Sect. 2 contains
further information.

Definition 13 (Meeting the guarantee). (C,o, R) guar, G expresses that no execution
of command C|, starting in state o, under environmental interference R, will violate its
guarantee GG in fewer than n steps.

(C,0,R)guar, G <= true
(C,0,R)guar, ., G <= V(' o' \.if (C, o) L(C" o)
then (C',0', R) guar,, G
and (A =p = G(o,0"))

Definition 14 (Semantics of RG specifications).

RGE{pC{g} < Vo,o.ifok=p
then Vn > 0. (C, 0, R) guar,, G
and ((C, 0)#5*(skip,0’) = o’ |5 q)

Here is a complete set of rules for proving RG specifications.

WEAKEN
DisJ CONJ R.G'-{p'}C{d}
R,GF{p:} C{q} R, G+ {p}C{a} p=0 ¢d=q
R,GF{p:}C{q} R,GF{p}C{g} RCR GCGqG
R,G+{p Vp2}C{q} R,GFA{p}C{q1 N ¢} R, G+ {p} C{q}
Basic L CHOICE
Fipte{ey PNcCG SKIP R, G+ {p}Ci{q}
pstab R gstab R pstab R R,GF {p} Cy{q}
R,G - {p}c{q} R,G = {p} skip{p} R,GF {p}C1+ C2{q}
SEQ Loopr
R.GFA{p}Ci{r} R GF{r}Cy{q} R, G+ {p}C{p}
R,GF{p}Ci;Cy{q} R,GF {p} C* {p}

PARr
RUG,, G F {p1} Ci {a1} RUG, Gy F {p2} C2 {q2}

R,Gy UGy = {p1 Ap2} C1I1Cy {qq N g2}

C Proof rules for parametric specifications

Here is a complete set of rules for proving parametric specifications. Sect. 4 contains
further information.
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P-DisJ
R,GFp {p} C{q}
R, G Fp {py} C{q}

P-WEAKEN

P-CONJ R, G Fp {p'} C{q}
R,GFp {p}C{q} p=rp d=rq
R, G Fp {p} C{g} RCR G CG

R,GFp {p, VD,} C{q}

P-BAsic

= {p}c{q}

R,GFp {p} C{q A @}

PneC@

R,GFp {p} C{q}

P-SKip

U,G Fp {AR. |p|p} c{AR. [qlg}

P-CHOICE
R,G Fp {p} Ci{q}
R,G Fp {p} C2{q}

P-Loopr
R, G tp {p} C{p}

U,G tp {A_.p} skip{AR. [p]p}

P-SEQ
R, G tp {p} C1 {r}
R,G Fp {1} C2{q}

R,G Fp {p} C" {p}

P-PARr

RUG, G Fp {p} Ci {q,}

R,GFp {p}C1 + C2{q}

R,G Fp {p} C1;Ca{q}

RUG, Gy bp {p} C2{qy}

R,G1 UGy Fp {p; aulla, o} C111Co{ g, culley @0}

Abbreviations used in the rules:

DV Do
J2RAY 2
D1 =R Do

Dy RlllR2 Y2
RUR
U

AR.pi(R)V py(R)

AR pi(R) A py(R)

VR € R.pi(R) = p,(R)
AR.p,(RUR;) A py(RU Ry)
{RRUR| R €R}

universal set of all relies

D RGSep proof rules with explicit stabilisation

Here is a complete set of rules for proving RGSep specifications. Sect. 5.2 contains further
information. Basic commands can access only local state. Upon entering an atomic
block, the relevant part of the shared state becomes local, which effectively allows basic
commands that are enclosed in (—) to access any shared state they require.

Basic Par
- {P}C{Q} RUG,, G {pl} 4 {(11} RUG,, Gy = {pz} Cy {Q2}
R7G'_{P}C{Q} RaGlUGz'_{Pl*p2}01”02{Q1*Q2}

ATOMR-S
0,GF{p}(C){q}

R, G = A{[plp} (C) {lqlg}

FRAME-S
R,GF{p}C{q}

R,GEA{pxr}C{gx[rlzuet

AToMm
P, Q) precise 0,0F{PxP}C{Q*Q'} P~QCdG

0,GH{Lx Flx PHCY@* F]+ Q'
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The DisJ, CONJ, WEAKEN, SKIP, CHOICE, SEQ and LOOP rules carry over from Appx. B
unchanged. Note that only the FRAME-S and ATOMR-S rules differ from the presentation
of RGSep in [19].

E Complete verification of the memory manager

This section provides our proofs of the malloc and free routines that were discussed
in Sect. 6. The source code is available from the Unix Heritage Society.® It has been
abridged and corrected: some variables have been renamed, code for initialising the arena
and debugging has been omitted, and most significantly, we have removed the optimisation
that gives rise to the bug discussed in Sect. 6. Note that in the assertions, ® is the iterated
version of the * operator, and that henceforth [—] is arithmetic ceiling, not stabilisation.
We assume the following sequential specification for sbrk; it is a little informal (the shared
state ought to be specified in its entirety) but its meaning should be clear.

- (brk(b+n) x b—_s -~ * (b+n)—_| A x=b)
{[Brk(®)]} x := sbri(n) { v ([Brk(B)] A x=—1 A n£0) }

Proof of the malloc routine

#define testbusy(p) ((int) (p)&1)
#define setbusy(p) (struct store *) ((int) (p)[1)
#define clearbusy(p) (struct store *)((int) (p)&~1)

struct store {struct store *ptr;};
static struct store *s; //arena start
static struct store *t; //arena top

([arenal)

{[3b. true x s—t * st * brk(b) A t<b]}
char *malloc(unsigned int nbytes) {
register struct store *p, *q;
register nw;
static temp;
//omitted: code to initialise arena
nw=(nbytes+WORD+WORD-1) /WORD; //where WORD=sizeof (struct store)
{[3b-true x st % st brk(h) A t<b| A Ppy} where Py, = nu=1+ [22te2]
for(p=s; ; ) {
{[3b. true x s—>p—t * st * brk(D) A t<b|A Py}
for(temp=0; ; ) {
{[30- true x s—>p—t * st * brk(D) A t<D|A Py}
if (testbusy(p->ptr)) {
{]Elq, b.true x s—»p—q—>t * st x brk(D) A t<b|A in}
while(!testbusy((g=p->ptr)->ptr)) {

Shttp://minnie.tuhs.org/UnixTree/V7/usr/src/libc/gen/malloc.c.html

26



{[3r,b. true ¥ s—>p—qr—t * st * brk(D) A t<b|A Py}
p->ptr = gq->ptr; //coalesce consecutive free blocks
{[3r,b. true ¥ s—>ppr—t * st * brk(b) A t<b| A Py}

}
{[3b. true x s—>p—gq—>t * st * brk(D) A t<b|A Py}
if (g>=p+tnw && p+tnw>=p) {
{Elb. true x s—>p—g—t * st A brk (D) A t<b}
A Py N\ q>p+nw A p4+nw>p

goto found;

}
}
//p’s block is etther allocated or too small
{[30- true ¥ s—p—t * st * brk(D) A t<D|A Py}
q =D
{[30- true ¥ s—»q—t * st * brk(b) A t<b| A Pay A q=p}
p = clearbusy(p->ptr);

[3b. true * s—>q—p—>t * st * brk(b) A t<b| A Py
{ V[3b. true x s—>q * st * brk (D) A t<b|A Ppy A q=t A p:s}
if (p>q) {

{[30- true ¥ s—>q—p—t * st * brk(D) A t<b|A Py}
} else if(q'=t || p'=s) {

{Elb. true x s—»q * st * brk(D) A t<b}

A Poy A q=t Ap=s A (q#t V p#s)
return O;
{false}
} else if (++temp>1) {
{[3b. true x s—>q * st * brk(b) A t<b| A Ppy A q=t Ap=s}
break;
}
{[30- true ¥ s—p—t * st * brk(D) A t<D|A Py}
}
{[3b-true x s—t * st x brk (D) A t<b| A Puy }
temp = ((nw+BLOCK/WORD) /(BLOCK/WORD) ) * (BLOCK/WORD) ;
//where BLOCK defaults to 1024

{Elb. true * s—>t * st * brk(D) A t<b]
A in A Ptemp

q = (struct store *)sbrk(0);
{Hb. [true x s—t * st * brk(b) A t<b| A Poy A Pronp N q:b}
if(g+temp < q) {

return 0;

{[30- true * s—t * st * brk(b) A t<b| A ret=0}
}
{3b.[true x s—t * st * brk(b) A t<b|A Poy A Pyenp A q=b}
q = (struct store *)sbrk(temp * WORD) ;

} where Pienp = temp>nw
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[3b. true * s—1t * st * brk(D) A t<b| A Poy A Premp A q=—1
y Jp, |frue kst * SO * B pemp(0T1) -
' * brk(b+temp) A t<b

if ((INT)q == -1) {

{[3b. true x s>t * st * brk(D) A t<b| A Poy A Prowp N q=—1}
return O;
{]Elb. true x s—t * st * brk(b) A t<b|A retzO}
}
true x s—»t % ¥\t * ®0§i<temp(q+i>'_)—
* brk(q+temp) A t<q

/\in/\Ptemp/\q:b

/\in/\Ptemp}

t->ptr = q;
{ true * St * Q% B, romp (A1) _

* brk(q+temp) A t<q

/\in/\Ptemp}

if(q'=t+1) {

true * s—»t * tr—q % ®ogi<temp(Q+i)’—’-
* brk(q+temp) A t+1<q

t->ptr = setbusy(t->ptr);
{ true * St * t—Qhusy * B pogp (A1) _ N Ptemp}

/\in/\Ptemp}

* brk(q+temp) A t+1<q
//lose half a pointer here - ‘true’ absorbs tt

true S—»t?q * ®0§i<temp(q+i)'_>—
{ x brk(q+temp) A t+1<q A Faw A Pramp

}
{’true k8—»t—q* ®0§i<temp(q+i)'_)— * brk(q+temp) ‘ A in A Ptemp}
t = g->ptr = g+temp-1;
{Bu true x s—»u—q * gt * @iyt~ * brk(t+1) Aq<t|A P}
//make new unallocated block
{Bu.true x s»u—q—pt * brk(t+1) x t—=_| A Py}
t->ptr = setbusy(s);
{Bu.true x s»u—q—pt *x st * brk(t+1)| A Poy }
//restore loop invariant
{[30- true  s—t * st * brk(b) A t<b|A Py}
}
found:
{[3b. true x s—»p—q—>t * st * brk(b) A t<b| A Poy A q>p+nw A p+nw>p}
if (@>ptaw) {
(p+nw) ->ptr = p->ptr;
{HbUW*Sﬁm*pﬁq*®ka
* (p4nw)—q—>t * st * brk

pt+i)—_
b) A t<b
pt+i)—_
b) At<b

A Puy N\ @>p+nw A p+nw2p}

] |

{ Jb. true x s—p * pr—~q * B cpu

* (pnw)—t * st * brk A Fow A q>ptnw A p+nw2p}

}
p->ptr = setbusy(p+nw);
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[3b. true * s—>p— (ptnw) >t * st * brk(D) A t<D]
* ®0<i<nw(p+i>'_>— * p'g(p_‘_nw)busy A in
return((char *) (p+1));
Ip, nw.|3b. true x s—p—(p+nw)—>t x st * brk(b) A t<D]

. 5
* ®U<i<nw(p+z)'_)— * p'_)(p_‘_nw)busy
A (nw—1)= [nbytes/WORD| A ret=p+1

}
(3p, nw.|3b. true ¥ s—p—(p+nw)—>t * st * brk(b) A t<b]
* <>B(]<i<nu) (p_'_Z)H— * p'i(p—i_nw)busy
A (nw—1)= [nbytes/WORD| A ret=p+1)
V[3b. true x s—>t * st * brk(D) A t<b| A ret=0

{( larena * arenatoken(ret, [nbytes/WORD]) ) }
’ \Y% Aret =0

* ret—_ % - - - *x ret+ [nbytes/WORD| —1—_

Proof of the free routine

{Inw. * arenatoken (ap, nw) * ®g<; -, (ap+i)—_}

{Elp, g, nw.|3b. true x s—>p—g—t * st x brk(D) A t<D] }

* B < jn (APF) = * p’gqbusy A p=ap—1 A g=ap+nw
free(register char *ap) {

register struct store *p = (struct store *)ap;

--P;

{Elq, nw.|3b. true x s—>p—g—t * st * brk(b) A t<b\}

* ®0<i<nw (p+l)'—>— * p'ngusy A q=p—i—nw+1
{ dq, b. true x s—p * P> Qbusy * ®p<i<qi'_)— }

% q—t * st * brk (D) A t<b A p<q
p->ptr = clearbusy(p->ptr);

3¢, b. true x s—>p * proq x @y i
% g—t * st * brk (D) A t<b A p<q
{[3¢,b. true x s—p—g—t * st * brk(b) A t<b]}
}
{[3b. true x s—t * st * brk(b) A t<b]}

{[arena]}
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