
Technical Report
Number 777

Computer Laboratory

UCAM-CL-TR-777
ISSN 1476-2986

Concurrent Abstract Predicates

Thomas Dinsdale-Young, Mike Dodds,
Philippa Gardner, Matthew Parkinson,

Viktor Vafeiadis

April 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Thomas Dinsdale-Young, Mike Dodds,
Philippa Gardner, Matthew Parkinson, Viktor Vafeiadis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Concurrent Abstract Predicates
(extended version)

Thomas Dinsdale-Young Mike Dodds Philippa Gardner
Matthew Parkinson Viktor Vafeiadis

Abstract

Abstraction is key to understanding and reasoning about large computer sys-
tems. Abstraction is simple to achieve if the relevant data structures are disjoint,
but rather difficult when they are partially shared, as is often the case for con-
current modules. We present a program logic for reasoning abstractly about data
structures that provides a fiction of disjointness and permits compositional reason-
ing. The internal details of a module are completely hidden from the client by
concurrent abstract predicates. We reason about a module’s implementation using
separation logic with permissions, and provide abstract specifications for use by
client programs using concurrent abstract predicates. We illustrate our abstract
reasoning by building two implementations of a lock module on top of hardware
instructions, and two implementations of a concurrent set module on top of the lock
module.

1 Introduction

When designing physical systems, we use abstraction and locality to hide irrelevant details.
For example, when building a house in London, we do not consider the gravitational forces
on individual brick molecules, nor what the weather is like in Paris. Similarly, we use
abstraction and locality when designing and reasoning about large computer systems.
Locality allows us to consider small parts of a system in isolation. Abstraction gives us a
structured view of the system, because components can be represented by their abstract
properties.

With locality, we can directly provide some degree of abstraction. Using separation
logic [16], we can prove that a module operates only on a particular data structure, not
accessed by other modules. If the structure is manipulated only by module functions, it
can be represented just in terms of its abstract properties, using abstract predicates [21].
For example, we can give a specification for a set using an abstract predicate to assert
that “the set is {5, 6}”. A client can then reason about the set without reasoning about
its internal implementation: given “the set is {5, 6}”, the client can infer, after deleting
6, that “the set is {5}”.

This combination of abstract predicates with the low-level locality from separation
logic supports coarse-grained reasoning about modules, where each data structure is rep-
resented by a single abstract predicate. However, we often need to reason about modules

3

in a fine-grained manner, where many abstract predicates refer to properties of the same
data structure. For example, a fine-grained specification for the set module would allow
element 6 to be manipulated separately from the rest of the set. Fine-grained reasoning
of this sort is advocated by context logic [3].

Fine-grained abstractions often cannot be achieved using traditional abstract predi-
cates. This is because separation in the abstraction (union, in the case of the set module)
need not correspond to separation in the implementation [7]. If the set module is imple-
mented using an array, and each element of the set is represented with a disjoint element
of the array, then the high-level and low-level separation correspond. However, if the set
module is implemented as a singly-linked list, then the implementation must traverse the
global list to manipulate individual set elements. Individual set elements are not repre-
sented disjointly in the implementation, and fine-grained reasoning is not possible with
traditional abstract predicates combined with separation logic.

In this paper, we present a program logic that allows fine-grained abstraction in
the presence of sharing, by introducing concurrent abstract predicates. These predicates
present a fiction of disjointness [7]; that is, they can be used as if each abstract predi-
cate represents disjoint resource, whereas in fact resources are shared between predicates.
For example, given a set implemented by a linked list we can write abstract predicates
asserting “the set contains 5, which I control” and “the set contains 6, which I control”.
Both predicates assert properties about the same shared structure, and both can be used
at the same time by separate threads: for example, elements can be deleted concurrently
from a set.

Concurrent abstract predicates capture information about the permitted changes to
the shared structure. In the case of the set predicates, each predicate gives the thread full
control over a particular element of the set. Only the thread owning the predicate can
remove this element. We implement this control using resource permissions [8], with the
property that the permissions must ensure that a predicate is self-stable: that is, immune
from interference from the surrounding environment. Predicates are thus able to specify
independent properties about the data, even though the data are shared.

With our program logic, a module implementation can be verified against a high-level
specification expressed using concurrent abstract predicates. Clients of the module can
then be verified purely in terms of this high-level specification, without reference to the
module’s implementation. We demonstrate this by presenting two implementations of
a lock module satisfying the same abstract lock specification, and using this specifica-
tion to build two implementations of a concurrent set satisfying the same abstract set
specification. At each level, we reason entirely abstractly, avoiding reasoning about the
implementation of the preceding level. Hence, concurrent abstract predicates provide the
necessary abstraction for compositional reasoning about concurrent systems.

1.1 Paper Structure

In §2 we provide an informal development of our approach using the simple example of
an abstract lock specification. We show how our approach can be used to validate two
implementations of a lock. In §3 we give an implementation of a set, which makes use of
a lock conforming to our abstract specification. We validate the set using our abstract
lock specification. In §4 we give a syntax for logical assertions and a proof system for

4

judgements about programs. We define soundness for our logic and sketch our soundness
argument. Finally, in §5 we draw conclusions and relate our approach to other work.

In this long version we include appendices give full technical details for our approach.
Appendix A defines the operational semantics of our programming language. This seman-
tics omits logical annotations, and deals purely with concrete state. Appendix B gives a
full soundness argument for the proof system.

2 Informal Development

We develop our core idea, to define abstract specifications for concurrent modules and
prove that concrete module implementations satisfy these specifications. We motivate our
work using a lock module, one of the simplest examples of concurrent resource sharing.
We define an abstract specification for locks, and give two implementations satisfying the
specification.

2.1 Lock Specification

A typical lock module has the functions lock(x) and unlock(x). It also has a mechanism
for constructing locks, such as makelock(n), which allocates a lock and a contiguous block
of memory of size n. We give these functions the following specification:

{isLock(x)} lock(x) {isLock(x) ∗ Locked(x)}
{Locked(x)} unlock(x) {emp}

{emp} makelock(n)

{
∃x. ret = x ∧ isLock(x) ∗ Locked(x)
∗ (x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
This abstract specification, which is presented by the module to the client, is independent
of the underlying implementation.1 The assertions isLock(x) and Locked(x) are abstract
predicates. isLock(x) asserts that the lock at x can be acquired by the thread with this
assertion, while Locked(x) asserts that the thread holds the lock. We use the separating
conjunction, ∗, from separation logic: p ∗ q asserts that the state can be split disjointly
into two parts, one satisfying p and the other satisfying q. Below we give a concrete
interpretation of these predicates for a simple compare-and-swap lock.

The module presents the following abstract predicate axioms to the client:

isLock(x) ⇐⇒ isLock(x) ∗ isLock(x) (1)

Locked(x) ∗ Locked(x) ⇐⇒ false (2)

The first axiom allows the client to share freely the knowledge that x is a lock.2 The
second axiom captures the fact that a lock can only be locked once. With the separation
logic interpretation of triples (given in §4.5), the client can infer that, if lock(x) is called
twice in succession, then the program will not terminate as the post-condition is not
satisfiable.

1This specification resembles those used in the work of Gotsman et al. [11] and Hobor et al. [15] on
dynamically-allocated locks.

2We do not record the splittings of isLock(x), although we could use permissions [2] to explicitly track
this information.

5

2.2 Example: A Compare-and-Swap Lock

Consider a simple compare-and-swap lock implementation.

lock(x) {
local b;
do 〈b := ¬CAS(&x, 0, 1)〉
while(b)
}

unlock(x) {
〈[x] := 0〉
}

makelock(n) {
local x := alloc(n+1);
[x] := 1;
return x;
}

Here angle brackets denote atomic statements. The instruction CAS(a, v1, v2) is an atomic
compare-and-swap operation that reads the value stored at address a, compares it with
v1 and replaces it with v2 if the two are equal. CAS returns a boolean value indicating
whether the swap succeeded.

Interpretation of Abstract Predicates. We relate the lock implementation to our
lock specification by giving a concrete interpretation of the abstract predicates. The
predicates are interpreted not just as assertions about the internal state of the module, but
also as assertions about the internal interference of the module: that is, how concurrent
threads can modify shared parts of the module state.

To describe this internal interface, we extend separation logic with two assertions,
the shared region assertion P

r

I(~x)
and the permission assertion [A]rπ. The shared region

assertion P
r

I(~x)
specifies that there is a shared region of memory, identified by label r, and

that the entire shared region satisfies P . The shared region is indivisible to ensure that
all threads maintain a consistent view of it. This is expressed by the logical equivalence
P

r

I(~x)
∗ Q

r

I(~x)
⇔ P ∧Q

r

I(~x)
. The possible changes to the shared region that can occur

(the so-called actions on the shared region) are declared by the environment I(~x).
The permission assertion [Ac]rπ specifies that the thread has permission π to per-

form action Ac over shared region r, provided the action is declared in the environment.
Following Boyland [2], the permission π can be

• the fractional permission, π ∈ (0, 1), denoting that both the thread and the envi-
ronment can do the action, or

• the full permission, π = 1, denoting that the thread can do the action but the
environment cannot.3

We now have the logical machinery to interpret our lock predicates concretely:

isLock(x) ≡ ∃r.∃π. [Lock]rπ ∗ (x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1
r

I(r,x)

Locked(x) ≡ ∃r. [Unlock]r1 ∗ x 7→ 1
r

I(r,x)

The abstract predicate isLock(x) is interpreted by the concrete, implementation-specific
assertion on the right-hand side. This specifies that the thread’s local region contains the
permission [Lock]rπ, meaning that the thread can acquire the lock. It also asserts that
the shared region satisfies the module’s invariant: either the lock is unlocked (x 7→ 0) and

3The state model also contains a zero permission, 0, denoting that the thread may not do the action
but the environment may.

6

the region holds the full permission [Unlock]r1 to unlock the lock; or the lock is locked
(x 7→ 1) and the unlocking permission is gone (the thread that acquired the lock has it).

Meanwhile, the abstract predicate Locked(x) is interpreted as the permission assertion
[Unlock]r1 in the local state, giving the current thread full permission to unlock the lock
in region r, and the shared region assertion, stating that the lock is locked (x 7→ 1).

The actions permitted on the lock’s shared region are declared in I(r, x). Actions
describe how either the current thread or the environment may modify the shared region.
They have the form A : P Q, where assertion P describes the part of the shared region
required to do the action and Q describes the part of the region after the action. The
actions for the lock module are

I(r, x)
def
=

(
Lock : x 7→ 0 ∗ [Unlock]r1 x 7→ 1,

Unlock : x 7→ 1 x 7→ 0 ∗ [Unlock]r1

)

The Lock action requires that the shared region contains the unlocked lock (x 7→ 0) and
full permission [Unlock]r1 to unlock the lock. The result of the action is to lock the lock
(x 7→ 1) and to move the full unlock permission to the thread’s local state ([Unlock]r1
has gone from the shared region). The movement of [Unlock]r1 into the locking thread’s
local region allows the thread to release the lock afterwards. Note that the local region
is not explicitly represented in the action; since interference only happens on the shared
region, actions do not need to be prescriptive about local state.

The Unlock action requires that the shared region r contains the locked lock (x 7→ 1).
The result of the action is to unlock the lock (x 7→ 0) and move the [Unlock]r1 permission
into the shared region. The thread must have [Unlock]r1 in its local state in order to
move it to the shared state as a result of the action.

Notice that Unlock is self-referential. The action moves exclusive permission on itself
out of local state. Consequently, a thread can only apply Unlock once (intuitively, a
thread can only release a lock once without locking it again). In §4.2, we discuss how our
semantics supports such self-referential actions.

The abstract predicates must be self-stable with respect to the actions: that is, for
any action permitted by the module (actions in I(r, x)), the predicate must remain true.
Self-stability ensures that a client can use these predicates without having to consider
the module’s internal interference. For example, assume that the predicate Locked(x) is
true. There are two actions the environment can perform that can potentially affect the
location x:

• Lock, but this action does not apply, as x has value 1 in the shared region of
Locked(x); and

• Unlock, but this action also does not apply, as full permission on it is in the local
region of Locked(x).

The implementer of the module must show that the concrete interpretation of the pred-
icates satisfies the axioms presented to the client. In our example, axiom 1, that only a
single Locked(x) can exist, follows from the presence in the thread’s local region of full
permission on Unlock. Axiom 2, that isLock(x) can be split, follows from the fact that
non-exclusive permissions can be arbitrarily subdivided and that ∗ behaves additively on
shared region assertions.

7

{
isLock(x)

}
lock(x) {{
∃r. π. [Lock]rπ ∗ (x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1

r

I(r,x)

}
local b;
do{
∃r. π. [Lock]rπ ∗ (x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1

r

I(r,x)

}
〈b := ¬CAS(&x,0,1)〉;∃r. π.

(
x 7→ 1

r

I(r,x)
∗ [Lock]rπ ∗ [Unlock]r1 ∗ b = false

)
∨(

(x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1
r

I(r,x)
∗ [Lock]rπ ∗ b = true

)


while(b){
∃r. x 7→ 1

r

I(r,x) ∗ [Lock]rπ ∗ [Unlock]r1 ∗ b = false
}

}{
isLock(x) ∗ Locked(x)

}
{
Locked(x)

}
unlock(x) {{
∃r. [Unlock]r1 ∗ x 7→ 1

r

I(r,x)

}
〈[x] := 0〉;{
∃r. x 7→ 0 ∗ [Unlock]r1

r

I(r,x)

}
// Stabilise the assertion.{
∃r. (x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1

r

I(r,x)

}
}{
emp

}
Figure 1: Verifying the compare-and-swap lock implementation: lock and unlock.

Verifying the Lock Implementation. Given the definitions above, the lock imple-
mentation can be verified against its specification; see Fig. 1 and Fig. 2.

For the unlock case, the atomic update 〈[x] := 0〉 is allowed, because it can be
viewed as performing the Unlock action, full permission for which is in the thread’s
local region. The third assertion specifies that the permission [Unlock]r1 has moved
from the local region to the shared region r as stipulated by the unlock action. This
assertion is not, however, stable under interference from the environment since another
thread could acquire the lock. It does imply the fourth assertion, which is stable under
such interference. The semantics of assertions allows us to forget about the shared region,
resulting in the post-condition, emp.

For the lock case, the key proof step is the atomic compare-and-swap command in
the loop. If successful, this command updates the location referred to by x in the shared
region from 0 to 1. This update is allowed because of the permission [Lock]rπ in the
thread’s local region and the action in I(r, x). The post-condition of the CAS instruction

8

{
emp

}
makelock(n) {
local x := alloc(n + 1);{
x 7→ ∗ (x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
[x] := 1;{
x 7→ 1 ∗ (x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
// Create shared lock region.{
∃r. x 7→ 1 r

I(r,x)
∗ [Lock]r1 ∗ [Unlock]r1 ∗ (x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
return x;

}{
∃x. ret = x ∧ isLock(x) ∗ Locked(x) ∗ (x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
Figure 2: Verifying the compare-and-swap lock implementation: makelock.

specifies that either location x has value 1 and the unlock permission has moved into the
thread’s local region as stipulated by the Lock action, or nothing has happened and the
pre-condition is still satisfied. This post-condition is stable and so the Hoare triple is
valid.

For the makelock case, the key proof step is the creation of a fresh shared region and
its associated permissions. Our proof system includes repartitioning operator, denoted by
≡V, which enables us to repartition the state between regions and to create regions. In
particular, we have that:

P ≡V ∃r. P
r

I(~x)
∗ all(I(~x))

which creates the fresh shared region r and full permission for all of the actions defined
in I(~x) (denoted by all(I(~x))). In our example, we have

x 7→ 1 ≡V ∃r. x 7→ 1
r

I(r,x)
∗ [Lock]r1 ∗ [Unlock]r1

The final post-condition results from the definitions of isLock(x) and Locked(x).

2.3 The Proof System

We give an informal description of the proof system, with the formal details given in
§4. Judgements in our proof system have the form ∆; Γ ` {P}C{Q}, where ∆ contains
predicate definitions and axioms, and Γ presents abstract specifications of the functions
used by C. The local Hoare triple {P}C{Q} has the fault-avoiding partial-correctness
interpretation advocated by separation logic: if the program C is run from a state sat-
isfying P then it will not fault, but will either terminate in a state satisfying Q or not
terminate at all.

The proof rule for atomic commands is

`SL {p} C {q} ∆ ` P ≡V{p}{q} Q ∆ ` stable(P, Q)

∆; Γ ` {P} 〈C 〉 {Q} (Atomic)

The bodies of atomic commands do not contain other atomic commands, nor do they
contain parallel composition. They can thus be reasoned about without concurrency,

9

using sequential separation logic. The first premise, `SL {p} C {q}, is therefore a triple
in sequential separation logic, where p, q denote separation logic assertions that do not
specify predicates, shared regions or interference.

The second premise, ∆ ` P ≡V{p}{q} Q, says that the interference allowed by P enables
the state to be repartitioned to Q, given the change to memory specified by {p}{q}. In
our example, the compare-and-swap instruction corresponds to the state change {x 7→
0}{x 7→ 1}. We also require that P and Q are stable, so that they cannot be falsified by
concurrently executing threads. Pre-condition and post-condition stability is a general
requirement that our proof rules have, which for presentation purposes we keep implicit
in the rest of the paper.

The repartitioning arrow P ≡VQ used earlier for constructing a new region is a short-
hand for P ≡V{emp}{emp} Q, i.e. a repartitioning where no concrete state changes. We use
this repartitioning in the rule of consequence to move resources between regions. The
operator ≡V includes conventional implication, so this rule of consequence subsumes the
traditional one.

∆ ` P ≡VP ′ ∆; Γ ` {P ′} C {Q′} ∆ ` Q′≡VQ

∆; Γ ` {P} C {Q} (Conseq)

We now introduce a rule that allows us to combine a verified module with a verified
client to obtain a complete verified system. The idea is that clients of the module are
verified with respect to the specification of the module, without reference to the internal
interference and the concrete predicate definitions.

Our proof system for programs includes abstract specifications for functions. In pre-
vious work on verifying fine-grained concurrent algorithms [24], interference had to be
specified explicitly for each function. Here we can prove concrete specifications for the
functions of a module, and then present an abstract specification to a client that hides
the interference internal to the module.

This is achieved by capturing two kinds of information in our predicate definitions:
information about state, and information about interference. Our predicates can describe
the internal interference of a module. Given this, we can define high-level specifications
where abstract predicates correspond to invariant assertions about the state of the mod-
ule (that is, they are ‘self-stable’). As these assertions are invariant, we can hide the
definitions of the predicates and treat the specifications as abstract.

The following proof rule expresses the combination of a module with a client, hiding the
module’s internal predicate definitions. (In §4.5, we show that this rule is a consequence
of more fundamental rules in our proof system).

∆ ` {P1}C1{Q1} · · · ∆ ` {Pn}Cn{Qn}
∆ ` ∆′ ∆′; {P1}f1{Q1}, . . . , {Pn}fn{Qn} ` {P}C{Q}

` {P} let f1 = C1 . . . fn = Cn in C {Q}

This rule defines a module consisting of functions f1 . . . fn and uses it to verify a client
specification {P} C {Q}. The rule can be read as follows:

10

If • the implementation Ci of fi satisfies the specification {Pi}Ci{Qi} under predicate
assumptions ∆, for each i;

• the axioms exposed to the client in ∆′ are satisfied by the predicate assumptions
∆; and

• the specifications {P1}f1{Q1}, . . . , {Pn}fn{Qn} and just the predicate assump-
tions ∆′ can be used to prove the client {P}C{Q};

then the composed system satisfies {P} let f1 = C1 . . . fn = Cn in C {Q}.
Using this rule, we can define an abstract module specification and use this specifica-

tion to verify a client program. Any implementation satisfying the specification can be
used in the same place. We are only required to show that the module implementation
satisfies the specification.

2.4 Example: A Ticketed Lock

We now consider another, more complex lock algorithm: a lock that issues tickets to
clients contending for the lock. This algorithm is used in current versions of Linux. It
provides fairness guarantees for threads contending for the lock. Despite the fact that the
ticketed lock is quite different from the compare-and-swap lock, we will show this module
also implements the abstract lock specification described in §2.1.

The lock operations are defined as follows:

lock(x) {
〈int i := INCR(x.next);〉
while(〈i 6= x.owner〉) skip;
}

unlock(x) {
〈x.owner++;〉
}

makelock(n) {
local x := alloc(n+2);
(x+1).owner := 0;
(x+1).next := 1;
return (x+1);
}

The instruction INCR is an atomic operation that increments a stored value and returns
the original value. Field names are encoded as negative offsets (.next = 0, .owner =
−1). Fields are encoded as negative offsets so that the block of memory associated with
the lock begins one byte after the address of the lock. This is required by our abstract
specification.

To acquire the lock, a client atomically increments x.next and reads it to a variable
i. The value of i becomes the client’s ticket. The client waits for x.owner to equal its
ticket value i. Once this is the case, the client is the thread holding the lock. The lock is
released by incrementing x.owner.

The algorithm is correct because (1) each ticket is held by at most one client and (2)
only the thread holding the lock increments x.owner.

Interpretation of Abstract Predicates. The actions for the ticketed lock are:

T (t, x)
def
=

(
Take : ∃k. ([Next(k)]t1 ∗ x.next 7→ k x.next 7→ (k + 1)),

Next(k) : x.owner 7→ k x.owner 7→ (k + 1) ∗ [Next(k)]t1

)

Intuitively, Take corresponds to taking a ticket value from x.next, and Next(k) corre-
sponds to releasing the lock when x.owner = k. The shared region contains permissions

11

on Next(k) for all the values of k not currently used by active threads. Note the ∃k is
required to connect the old and new values of the x.next field in the Take action.

The concrete interpretation of the predicates is as follows:

isLock(x) ≡ ∃t.∃π.
∃k, k′. x.owner 7→ k ∗ x.next 7→ k′ ∗
k ≤ k′ ∗�k′′ ≥ k′. [Next(k′′)] t

1 ∗ true

t

T (t,x)

∗ [Take] t
π

Locked(x) ≡ ∃t, k. x.owner 7→ k ∗ true
t

T (t,x)
∗ [Next(k)] t

1

Here � is the lifting of ∗ to sets; it is the multiplicative analogue of ∀.
isLock(x) requires values x.next and x.owner to be in the shared region, and that a

permission on Next(k) is in the shared region for each value greater than the current
ticket x.next. It also requires a permission on Take to be in the thread’s local region.
Locked(x) requires just that there is an exclusive permission on Next(k) in the local
region for the current value, k, of x.owner.

Self-stability of Locked(x) is ensured by the fact that the predicate holds full permission
on the action Next(k), and the action Take cannot affect the x.owner field. Self-stability
for isLock(x) is ensured by the fact that its definition is invariant under the action Take.

The axioms follow trivially from the predicate definitions, as in the CAS lock.

Verifying the Lock Implementation. Given the definitions above, the ticketed lock
implementation can be verified against the lock specification, as shown in Fig. 3. The
proofs follow the intuitive structure sketched above for the actions. That is, lock(x) pulls
a ticket and a permission out of the shared region, and unlock(x) returns it to the shared
region. (We omit the proof of makelock, which is very similar to the compare-and-swap
lock example.)

3 Composing Abstract Specifications

In the previous section we showed that our system can be used to present abstract spec-
ifications for concurrent modules. In this section we show how these specifications can
be used to verify client programs, which may themselves be modules satisfying abstract
specifications. We illustrate this by defining a specification and two implementations for
a concurrent set. The implementations assume a lock module satisfying the specification
presented in §2.1.

3.1 A Set Module Specification

A typical set module has three functions: contains(h, v), add(h, v) and remove(h, v). We
give these functions the following abstract specifications:

{in(h, v)} contains(h, v) {in(h, v) ∗ ret = true}
{out(h, v)} contains(h, v) {out(h, v) ∗ ret = false}
{own(h, v)} add(h, v) {in(h, v)}
{own(h, v)} remove(h, v) {out(h, v)}

12

{
isLock(x)

}
lock(x) {{
∃t, π. [Take]tπ ∗

∃k, k′. k ≤ k′ ∗ x.owner 7→ k ∗ x.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]t1 ∗ true

t

T (t,x)

}
〈int i := INCR(x.next);〉{
∃t, π. [Take]tπ ∗ [Next(i)]t1 ∗

∃k, k′. k ≤ i < k′ ∗ x.owner 7→ k ∗ x.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]t1 ∗ true

t

T (t,x)

}
while(〈i 6= x.owner〉) skip;{
∃t, π. [Take]tπ ∗ [Next(i)]t1 ∗

∃k′. i < k′ ∗ x.owner 7→ i ∗ x.next 7→ k′

∗�k′′ ≥ k′. [Next(k′′)]t1 ∗ true

t

T (t,x)

}
}{
isLock(x) ∗ Locked(x)

}
{
Locked(x)

}
unlock(x) {{
∃t, k. x.owner 7→ k ∗ true

t

T (t,x)
∗ [Next(k)]t1

}
〈x.owner++;〉{
∃t. ∃k. x.owner 7→ (k + 1) ∗ [Next(k)]t1 ∗ true

t

T (t,x)

}
}{
emp

}

Figure 3: Proofs for the ticketed lock module operations: lock and unlock.

Here in(h, v) is an abstract predicate asserting that the set at h contains v. Correspond-
ingly out(h, v) asserts that the set does not contain v. We define own(h, v) as a shorthand
for the disjunction of these two predicates.

These assertions capture not only knowledge about the set, but also exclusive permis-
sion to alter the set by changing whether v belongs to it. Consequently, out(h, v) is not
simply the negation of in(h, v). The exclusivity of permissions is captured by the module’s
axiom:

own(h, v) ∗ own(h, v) =⇒ false

{own(h, v1) ∗ own(h, v2)}
{own(h, v1)} {own(h, v2)}
remove(h, v1) remove(h, v2)

{out(h, v1)} {out(h, v2)}
{out(h, v1) ∗ out(h, v2)}

Figure 4: Proof outline for the set
module client.

We can reason disjointly about set predicates,
even though they may be implemented by a sin-
gle shared structure.

remove(h, v1) ‖ remove(h, v2)

For example, the above command should succeed
if it has the permissions to change the values v1
and v2 (where v1 6= v2), and it should yield a set
without v1 and v2. This intuition is captured by
the proof outline shown in Fig. 4.

13

3.2 Example: The Coarse-grained Set

Consider the following coarse-grained concurrent set module, based on the lock module
described in §2.1 and a sequential set module.

contains(h,v) {
lock(h.lock);
r := scontains(h.set,v);
unlock(h.lock);
return r;

}

add(h,v) {
lock(h.lock);
sadd(h.set,v);
unlock(h.lock);

}

remove(h,v) {
lock(h.lock);
sremove(h.set,v);
unlock(h.lock);

}

Here scontains, sadd and sremove are the operations of the sequential set module. By
sequential, we mean that at most one of these operations can safely run at once. The
concurrent set achieves concurrency by wrapping the sequential operations in a single big
lock, which enforces sequential access to the set. As the implementation uses a single
lock, concurrency is very limited. Below in §3.3 we discuss a set module where several
threads at once can access the shared set structure.

Interpretation of Abstract Predicates. We assume a coarse-grained sequential set
predicate Set(y, xs) that asserts that the set at location y contains values xs. The pred-
icate Set cannot be split, and so must be held by one thread at once. This enforces
sequential behaviour. We assume the following specifications for the sequential set oper-
ations:

{Set(h, vs)} scontains(h, v) {Set(h, vs) ∗ ret = (v ∈ vs)}
{Set(h, vs)} sadd(h, v) {Set(h, {v} ∪ vs)}
{Set(h, vs)} sremove(h, v) {Set(h, vs \ {v})}

In the set implementation, the predicate Set is held in the shared state when the lock is
not locked. Then when the lock is acquired by a thread, the predicate is pulled into the
thread’s local state so that it can be modified according to the sequential set specification.
When the lock is released, the predicate is returned to the shared state. The actions for
the set module are

C(s, h)
def
=

SChange(v) :

∃vs, ws. Set(h.set, vs)
∗ [SGap(ws)]s1 ∧
vs \ {v} = ws \ {v}

 Locked(h.lock) ,

SGap(ws) : Locked(h.lock) Set(h.set, ws) ∗ [SGap(ws)]s1


The SGap(ws) action allows the thread to return the set containing ws to the shared
state. The SChange(v) action allows a thread to acquire the set from the shared state.
To do so, the thread must currently hold the lock. It gives up the permission to release
the lock in exchange for the set. The thread also acquires the permission [SGap(ws)]s1,
which allows it to re-acquire the lock permission by relinquishing the set, having only
changed whether or not v is in the set.

14

We first define the auxiliary predicates allgaps(s), P∈(h, v, s) and P/∈(h, v, s):

allgaps(s) ≡ �ws. [SGap(ws)]s1

P/(h, v, s) ≡ ∃vs. v / vs ∧
(

(allgaps(s) ∗ Set(h.set, vs))
∨ Locked(h.lock) ∗ ([SGap(vs)]s1 −~ allgaps(s))

)
where / = ∈ or / = /∈

allgaps defines the set of all possible SGap permissions. P∈(h, v, s) is used to assert that
the shared state contains either the set with contents vs, where v ∈ vs, and all possible
SGap permissions; or it contains the Locked predicate and is missing one of the SGap
permissions. The missing SGap permission records the contents of the set when it is
released. P/∈(h, v, s) defines the case where v /∈ vs.

The concrete definitions of in(h, v) and out(h, v) are as follows:

in(h, v) ≡ ∃s. isLock(h.lock) ∗ [SChange(v)]s1 ∗ P∈(h, v, s)
s

C(s,h)

out(h, v) ≡ ∃s. isLock(h.lock) ∗ [SChange(v)]s1 ∗ P/∈(h, v, s)
s

C(s,h)

The in(h, v) predicate gives a thread the permissions to acquire the lock, isLock(h.lock),
and to change whether v is in the set, [SChange(v)]s1. The shared state is described by
the predicate P∈(h, v, s). The out(h, v) predicate is defined analogously to in(h, v), but
with /∈ in place of ∈.

in(h, v) and out(h, v) are self-stable. For in(h, v), the only actions available to another
thread are SChange(w), where w 6= v, and SGap(vs), where v ∈ vs. The assertion
P∈(h, v, s) is invariant under both of these changes: SChange(w) requires the disjunct
allgaps ∗ Set(h.set, vs) to hold and leaves the disjunct Locked(h.lock) ∗ ([SGap(vs)]1 −~
allgaps(s)) holding; SGap(vs) does the reverse. Similar arguments hold for out(h, v).

Finally, we must ensure that the module’s axiom holds. Each in(h, v) and out(h, v)
predicate includes the exclusive permission [SChange(v)]s1. The axiom therefore holds
as a consequence of the fact that exclusive permissions cannot be combined.

Verifying the Set Implementation. Given the definitions above, we can verify the
implementations of the set module. Fig. 5 shows a proof of add(h, v) when the value is not
in the set. The case where the value is in the set, and the proofs of remove and contains

follow a similar structure.
The most interesting steps of this proof are those before and after the operation

sadd(h.set, v), when the permissions [SChange(v)]s1 and [SGap(vs)]s1 are used to repar-
tition between shared and local state. These steps are purely logical repartitioning of the
state, moving state between shared and local regions without mutating the underlying
heap. Any number of such abstract rewritings can take place in a proof, assuming they
are permitted by the permissions held by the thread.

3.3 Example: The Fine-grained Set

Our previous implementation of a concurrent set used a single global lock, and conse-
quently only a single thread at once could access the set. We now consider a set imple-
mentation that uses a sorted list with one lock per node in the list. Many threads at

15

{
out(h, v)

}
add(h,v){
∃s. isLock(h.lock) ∗ [SChange(v)]s1 ∗ P/∈(h, v, s)

s

C(s,h)

}
lock(h.lock);{
∃s. isLock(h.lock) ∗ Locked(h.lock) ∗ [SChange(v)]s1 ∗ P/∈(h, v, s)

s

C(s,h)

}
// use SChange to extract Set predicate and SGap permission.{
∃s, vs. isLock(h.lock) ∗ [SGap(vs ∪ {v})]s1 ∗ [SChange(v)]s1 ∗ Set(h.set, vs)

∗ Locked(h.lock) ∗ ([SGap(vs ∪ {v})]s1 −~ allgaps(s))
s

C(s,h)

}
sadd(h.set,v);{
∃s, vs. isLock(h.lock) ∗ [SGap(vs ∪ {v})]s1 ∗ [SChange(v)]s1 ∗ Set(h.set, vs ∪ {v})

∗ Locked(h.lock) ∗ ([SGap(vs ∪ {v})]s1 −~ allgaps(s))
s

C(s,h)

}
// use SGap permission to put back Set and SGap permission.{
∃s. isLock(h.lock) ∗ Locked(h.lock) ∗ [SChange(v)]s1 ∗ P∈(h, v, s)

s

C(s,h)

}
unlock(h.lock);{
∃s. isLock(h.lock) ∗ [SChange(v)]s1 ∗ P∈(h, v, s)

s

C(s,h)

}
}{
in(h, v)

}
Figure 5: Proof of the add(h, v) specification for the coarse-grained set module.

once can access the list; the algorithm ensures that the threads do not violate each others
safety properties. The source code for this algorithm (adapted from [13, §9.5]) is given in
Fig. 6.

The three module functions use the function locate(h, v) that traverses the sorted list
from the head h up to the position for a node holding value v, whether or not such a node
is present. It begins by locking the initial node (the head node) of the list. It then moves
down the list by hand-over-hand locking. The algorithm first locks the node following its
currently held node, and then releases the previously-held lock. The following diagram
illustrates this pattern of locking:

 . . .

No thread can access a node locked by another thread, or traverse past a locked node.
Consequently, a thread cannot overtake any other threads accessing the list. Nodes can
be added and removed from locked segments of the list. If a thread locks a node, then a
new node can be inserted directly after it, as long as it preserves the sorted nature of the
list. Also, if a thread has locked two nodes in sequence, then the second can be removed.

Since nodes of the list are deleted when an element is removed from the set, the lock
module must provide a mechanism for disposing of locked blocks, disposelock(x,n). For
brevity, we omitted details of this in our exposition. In order for disposal to be sound, no
other thread must be able to access the lock, and so we add an extra argument to account
for the splitting of locks. This gives a lock predicate isLock(x, i), where i ∈ (0, 1]. Lock

16

add(h, v) {
local p, c, z;
(p, c) := locate(h, v);
if (c.val 6= v) {
z := makelock(2);
unlock(z);
z.value := v;
z.next := c;
p.next := z;

}
unlock(p);

}

remove(h,v) {
local p, c, z;
(p, c) := locate(h, v);
if (c.val == v) {
lock(c);
z := c.next;
p.next := z;
disposelock(c, 2);

}
unlock(p);

}

contains(h, v) {
local p, c, b;
(p, c) := locate(h, v);
b := (c.val == v);
unlock(p);
return b;

}

locate(h, v) {
local p, c;
p := h;
lock(p);
c := p.next;
while (c.val < v) {
lock(c);
unlock(p);
p := c;
c := p.next;

}
return(p, c);

}

Figure 6: Lock-coupling list algorithm.

splitting is achieved by the following axiom:

isLock(x, i + j) ⇐⇒ isLock(x, i) ∗ isLock(x, j)

Creating a lock gives i = 1, locking only requires i ∈ (0, 1] and disposal requires i = 1.
Lock disposal has the following specification:

{
isLock(x, 1) ∗ Locked(x) ∗
(x + 1) 7→ ∗ . . . ∗ (x + n) 7→

}
disposelock(x, n) {emp}

For both lock implementations we have given, the disposelock function simply deallo-
cates the appropriate memory block.

Interpretation of Abstract Predicates. We first define some basic predicates for
describing the structure of a list. List nodes consist of a lock, a value field and a link
field. Because owning a node gives the permission to lock its successor, our node predicate
includes the isLock predicate of the next node.

link(a, b) ≡ (a.next 7→ b) ∗ isLock(b, 1) val(a, v) ≡ (a.value 7→ v)

node(a, b, v) ≡ val(a, v) ∗ link(a, b)

17

The actions for the fine-grained set module are defined by the interference environment
F (s), defined by the following assertion:

LChange(v) : ∃n, t. [LGap(n, t, v)]s1 ∗ link(n, t) Locked(n)

LGap(n, t, v) :



Locked(n) link(n, t) ∗ [LGap(n, t, v)]s1

∃v1, v2.

 Locked(n)

∗ val(n, v1)

∗ val(t, v2)


∃y. [LGap(n, t, v)]s1 ∗ node(y, t, v)

∗ link(n, y) ∗ val(n, v1)

∗ val(t, v2) ∗ ∧ v1<v<v2


(

Locked(n) ∗
Locked(t) ∗ val(t, v)

)

(
[LGap(n, t, v)]s1 ∗

[LGap(t, y, v)]s1 ∗ link(n, y)

)

The LGap and LChange actions are analogous to the similarly-named actions defined
for the coarse-grained set, in that they allow a thread to remove part of the shared state by
holding a lock and to return that part with a limited modification. Rather than removing
the entire set as with the coarse-grained set, only a single link of the list is removed with
each lock. Both LGap and LChange are parameterised by v, the value that the thread
may add or remove from the set.

The LChange(v) action allows a thread, having locked some node n, to take the link
of that node (that is, the next pointer and the knowledge of the following node’s lock)
from the shared state, together with a permission that will allow the thread to return
that link, possibly having added or removed a node with value v; in exchange, the thread
gives up the Locked(n) predicate.

The three LGap(n, t, v) actions deal with replacing the link of node n:

• The first simply allows the same link to be returned as was originally removed. In
returning the link, the thread also gives up the LGap permission, but regains the
Locked(n) predicate.

• The second allows the link from n to t to be replaced with a link from n to a new
node at some address y, having value v, that in turn links to the node at t. The
action requires v to fall between the values of the nodes at n and t, which is essential
to maintaining the sorted order of the list. As before, the thread gives up the LGap
permission and regains the Locked(n) predicate.

• The third allows the link from n to t to be replaced with one from n to y, where
there was formerly a link from t to y. To do this, the thread must also have locked
the node at t and obtained its corresponding LGap permission and link(t, y) from
the shared state. Node t must also have the value v; the value component of t is
removed from the shared state, and its lock and next components are not returned.
The LGap permissions for both nodes are returned to the shared state, and both
Locked(n) and Locked(t) are regained by the thread.

The predicates L∈(h, v, s) and L/∈(h, v, s) correspond to lists containing and not containing
v. Their definitions are given in Fig. 7, along with auxiliary predicates. The slsg (‘sorted

18

lsg(x, y, S, []) ≡ x = y ∧ S = ∅

lsg(x, y, S] {(x, z)}, v :: vs)
≡ Locked(x) ∗ val(x, v) ∗ lsg(z, y, S, vs)

lsg(x, y, S, v :: vs) ≡ x 6= y ∧ node(x, v, z) ∗ lsg(z, y, S, vs)

slsg(x, y, S, vs) ≡ lsg(x, y, S, vs) ∧ sorted(vs) ∧ ∃vs′. vs = −∞ :: vs′@[∞]

gaps(S, s) ≡ �(x, y) /∈ S.�v. [LGap(x, y, v)]s1 ∗
�(x, y).∈ S.∃w.�v 6= w. [LGap(x, y, v)]s1 ∧
∀x, y, w, z. (x, y) ∈ S ∧ (w, z) ∈ S ⇒ (x = w ⇔ y = z)

mygaps(v, s) ≡ �x, y. [LGap(x, y, v)]s1 ∗ true

L/(h, v, s) ≡ ∃vs, S. v / vs ∧ slsg(h, nil, S, vs) ∗ (gaps(S, s) ∧mygaps(v, s))

where / = ∈ or / = /∈

Figure 7: Predicates for lock-coupling list.

list with gaps’) predicate represents a list with locked segments. The gaps predicate tracks
the unused Gap permissions in the shared state. In both cases, a carrier set S records
the locked sections in the list.

The concrete interpretation of the predicates for this implementation of the set module
are defined as follows:

in(h, v) ≡ ∃s. ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ L∈(h, v, s)
s

F (s)

out(h, v) ≡ ∃s. ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ L/∈(h, v, s)
s

F (s)

The predicate axiom holds as a consequence of the fact that exclusive permissions cannot
be combined.

Verifying the set implementation Fig. 8 gives a proof for locate(h,v). The initial
code begins the traversal at the head of the list, locking the head node.

The main loop searches through the list checking if the current element, c, is less
than the element v being searched for. At the start of the loop, the thread has locked p,
signified by having the LGap(p, c, v) permission in its local state. The first step of the
loop locks the new current element c. This is allowed as the link(p, c) predicate includes
isLock(c, 1).

As the thread holds the permission to LChange(v), the corresponding action is used
to swap the newly-acquired Locked(c) predicate for an LGap permission and the link
from c to its successor. The thread has now locked two nodes, so the first should be
unlocked. The first LGap(p, c, v) action is used to regain the Locked(p) predicate so that
p can be safely unlocked.

As with the coarse-grained set, locking and unlocking are two-step processes. First
the lock is acquired in local state, then a permission is used to change the shared state to
reflect this locked status. Similarly, for the unlock, first the permission is used to extract
the knowledge that the node is locked, and then it is locally unlocked.

19

locate(h, v) {{
in(h, v)

}
p := h;
lock(p);
c := p.next;
while (c.val < v) {∃s.

(∃v′. val(c, v′) ∗ v′ < v) ∧ ∃vs, S. v ∈ vs ∧ {(p, c)} ⊆ S ∧ slsg(h, nil, S, vs)
∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ link(p, c) ∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1


lock(c);∃s.

(∃v′. val(c, v′) ∗ v < v) ∧ ∃vs, S. v ∈ vs ∧ {(p, c)} ⊆ S ∧ slsg(h, nil, S, vs)
∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ link(p, c) ∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ Locked(c)


// By LChange using Locked(c)
∃s, z.

(∃v′. val(c, v′) ∗ v′ < v)
∧ ∃vs, S. v ∈ vs ∧ {(p, c), (c, z)} ⊆ S ∧ slsg(h, nil, S, vs) ∗
(gaps(S, s) ∧ (([LGap(p, c, v)]s1 ∗ [LGap(c, z, v)]s1)−~mygaps(v, s)))

s

F (s)

∗ link(p, c) ∗ [LGap(p, c, v)]s1 ∗ [LGap(c, z, v)]s1 ∗ ∃π. isLock(h, π)

∗ [LChange(v)]s1 ∗ link(c, z)


// By LGap(p, c, v)∃s, z.

(∃v′. val(c, v′) ∗ v′ < v) ∧ ∃vs, S. v ∈ vs ∧ {(c, z)} ⊆ S ∧ slsg(h, nil, S, vs)
∗ (gaps(S, s) ∧ ([LGap(c, z, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ Locked(p) ∗ [LGap(c, z, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ link(c, z)


unlock(p);
p := c;
c := p.next;∃s.

(∃v′. val(p, v′) ∗ v′ < v) ∧ ∃vs, S. v ∈ vs ∧ {(p, c)} ⊆ S ∧ slsg(h, nil, S, vs)
∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ link(p, c)


}∃s.

(∃v′. val(p, v′) ∗ v′ < v) ∧ (∃v′′. val(c, v′′) ∗ v′′ ≥ v) ∧ ∃vs, S. v ∈ vs ∧ {(p, c)} ⊆ S
∧ slsg(h, nil, S, vs) ∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ link(p, c)


return(p, c);

}

Figure 8: Proof for locate(h, v).

20

{
in(h, v)

}
(p, c) := locate(v); // Use spec. from Fig. 8∃s.

(∃v′. val(p, v′) ∗ v′ < v) ∧ (∃v′′. val(c, v′′) ∗ v′′ ≥ v) ∧ ∃vs, S. v ∈ vs ∧ {(p, c)} ⊆ S
∧ slsg(h, nil, S, vs) ∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ link(p, c)


if (c.val == v) {
lock(c);∃s.

(val(c, v) ∗ true) ∧ ∃vs, S. ∈ vs ∧ {(p, c)} ⊆ S ∧ slsg(h, nil, S, vs)
∗ (gaps(S, s) ∧ ([LGap(p, c, v)]s1 −~mygaps(v, s)))

s

F (s)

∗ [LGap(p, c, v)]s1 ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1 ∗ link(p, c) ∗ Locked(c)


// By LChange using Locked(c)
∃s, z.

(val(c, v) ∗ true) ∧ ∃vs, S. v ∈ vs ∧ {(p, c), (c, z)} ⊆ S ∧ slsg(h, nil, S, vs)

∗
(

gaps(S, s) ∧
((

[LGap(p, c, v)]s1
∗ [LGap(c, z, v)]s1

)
−~mygaps(v, s)

)) s

F (s)

∗ [LGap(p, c, v)]s1 ∗ [LGap(c, z, v)]s1 ∗ link(p, c) ∗ link(c, z)
∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1


z := c.next;
p.next := z;
∃s, z.

(val(c, v) ∗ true) ∧ ∃vs, S. v ∈ vs ∧ {(p, c), (c, z)} ⊆ S ∧ slsg(h, nil, S, vs)

∗
(

gaps(S, s) ∧
((

[LGap(p, c, v)]s1
∗ [LGap(c, z, v)]s1

)
−~mygaps(v, s)

)) s

F (s)

∗ [LGap(p, c, v)]s1 ∗ [LGap(c, z, v)]s1 ∗ link(p, z) ∗ isLock(c, 1) ∗ (c.next 7→ z)
∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1


// By LGap(p, c, v)
∃s, z. ∃vs, S. v /∈ vs ∧ slsg(h, nil, S, vs) ∗ (gaps(S, s) ∧mygaps(v, s))

s

F (s)

∗ Locked(p) ∗ Locked(c) ∗ val(c, v) ∗ isLock(c, 1) ∗ (c.next 7→ z)
∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1


disposelock(c, 2);

}∃s, z. ∃vs, S. v /∈ vs ∧ slsg(h, nil, S, vs) ∗ (gaps(S, s) ∧mygaps(v, s))
s

F (s)

∗ Locked(p) ∗ ∃π. isLock(h, π) ∗ [LChange(v)]s1


unlock(p);{
out(h, v)

}
Figure 9: Proof-sketch for remove(h, v).

21

A proof for remove(h,x) is given in Fig. 9. This proof uses the specification for locate
to acquire a lock on the node immediately prior to the target value. If the value is in the
list, the thread uses the Locked(c) predicate and LChange permission to get the LGap
permission on the current node. It then uses the third LGap action to move the node out
of the shared state, where it can be safely disposed. In the (empty) else branch, the first
LGap action is used to return the link to the shared state without modifying anything.

4 Semantics and Soundness

We present our assertion language and program logic, and sketch a proof of soundness of
our logic. The details of the proof are given in the appendix.

4.1 Assertion Syntax

Recall from §2.3 that our proof judgements have the form ∆, Γ ` {P}C {Q}. Here, P and
Q are assertions from the set Assn. They are constructed from the standard connectives
and quantifiers of separation logic, together with permission assertions, regions of the form
P

r

I
where I denotes an interference assertion from the set IAssn4, and abstract predicates.

We also define a set of basic assertions, BAssn, which are the standard separation-logic
assertions, a set of predicate assertions ∆ from the set PAssn, and a set of function
assertions Γ from the set FAssn. These assertion sets are formally defined by:

(Assn) P, Q ::= emp | E1 7→ E2 | P ∗Q | P −~Q | false | P ⇒ Q | ∃x. P | �x. P |
all(I, r) | [γ(E1, . . . , En)]rπ | P

r

I
| α(E1, . . . , En)

(BAssn) p, q ::= emp | E1 7→ E2 | p ∗ q | p−~ q | false | p ⇒ q | ∃x. p | �x. p

(IAssn) I ::= γ(~x) : ∃~y. (P Q) | I1, I2

(PAssn) ∆ ::= ∅ | ∆,∀~x. P =⇒ Q | ∆,∀~x. α(~x) ≡ P s.t. α 6∈ ∆

(FAssn) Γ ::= ∅ | Γ, {P}f{Q} s.t. f 6∈ Γ

Here γ ranges over the set of action names, AName; α ranges over the set of abstract
predicate names, PName; x and y range over the set of logical variables, Var; and f ranges
over the set of function names, FName. We assume an appropriate syntax for expressions,
E, r, π ∈ Expr, including basic arithmetic operators.

In Assn and BAssn, p −~ q is the existential version of the magic wand from sepa-
ration logic, and �x. is the multiplicative analogue of ∀x. In the interface assertion
γ(~x) : ∃~y. (P Q), the action γ(~x) describes the transformation of the shared region
satisfying P to a shared region satisfying Q. Actions may be parametrised: for exam-
ple, in the ticketed-lock implementation, the Next(k) action releases the lock only when
x.owner is k. The existential quantifier allows (unparametrised) variables to be shared
between P and Q: for example, the Take action takes a ticket value k from x.next; it does

4In our proofs, we often refer to interference assertions by parameterised names, e.g. I(r, x) in the
proof of the CAS lock (§2.2). These parameterised names make the layout of the proof clearer, and
are used purely as a short-hand for the full definitions. In all cases, they can be substituted for their
definitions in-place. For clarity, we omit these names from the syntax.

22

not matter what ticket value it is, but it does matter that the resulting value of x.next
is k + 1. Interface assertions are not unique: for example, see the action LGap from
the fine-grained set implementation. The abstract predicate assertions ∆ consist of the
axioms for predicates, ∀~x. P =⇒ Q, and concrete definitions of predicates, ∀~x. α(~x) ≡ P .
The function assertions Γ are Hoare triples specifying function behaviour.

4.2 Assertion Model

Let (Heap,], ∅) be any separation algebra [4] representing machine states (or heaps).
Typically, we take Heap to be the standard heap model with with arbitrary element
denoted h: that is, the set of finite partial functions from locations to values, where] is
the union of partial functions with disjoint domains.

Our assertions include permissions which specify the possible interactions with shared
regions. Hence, we define LState, the set of logical states, which pair heaps with permission
assignments (elements of Perm, defined below):

l ∈ LState
def
= Heap× Perm

We write lH and lP to stand for the heap and permission components respectively.
Assertions make an explicit (logical) division between shared state, which can be

accessed by all threads, and thread-local state, which is private to a thread and cannot be
subject to interference. Shared state is divided into regions. Intuitively, each region can
be seen as the internal state of a single shared structure, i.e. a single lock, set, etc. Each
region is identified by a region name, r, from the set RName. A region is also associated
with an interference assertion, from the set IAssn, that determines how threads may modify
the shared region. A shared state in SState is therefore a finite partial function mapping
region names to logical states and interference assertions:

s ∈ SState
def
= RName

fin
⇀ (LState× IAssn)

A world in World is a pair of a local (logical) state and a shared state, subject to a
well-formedness condition:

w ∈ World
def
= {(l, s) ∈ LState× SState | wf(l, s)}

Informally, the well-formedness condition ensures that all parts of the state are disjoint and
that each permission corresponds to an appropriate region; we defer the formal definition
of well-formedness. We write wL and wS to stand for the local and shared components
respectively.

Permission assertions in our logic are satisfied by permission assignments in our model.
Permission assignments in Perm assign permission values to actions, recording whether
the particular action is allowed to the thread or environment. Recall from § 2.2 that
actions can be self-referential. For example, the action Unlock moves the permission
assertion [Unlock]r1 from local to shared state. Our semantics breaks the loop by distin-
guishing between the syntactic representation of an action and its semantics. Actions are
represented syntactically by tokens, consisting of the region name, the action name and
a finite sequence of value parameters:

t, (r, γ, ~v) ∈ Token
def
= RName× AName× Val∗

23

For example, we have the token (r,Unlock, ()).
A permission assignment is a function associating each token with a permission value

from the interval [0, 1] determining whether the associated action can occur:

pr ∈ Perm
def
= Token → [0, 1]

Intuitively, 1 represents full, exclusive permission, 0 represents no permission, and the
intermediate values represent partial, non-exclusive permission.5 We write 0Perm for the
empty permission assignment mapping all tokens to 0, and [t 7→ π] for the permission
mapping the token t to π and all other tokens to 0: for example, the permission assignment
[(r,Unlock, ()) 7→ 1].

We now define composition of worlds. First, composition ⊕ on [0, 1] is defined as
addition, with the proviso that the operator is undefined if the two permissions add up

to more than 1. Composition on Perm is the obvious lifting: pr⊕ pr′
def
= λt. pr(t)⊕ pr′(t).

Composition on logical states is defined by lifting composition for heaps and permission

assignments: l ⊕ l′
def
= (lH] l′H, lP ⊕ l′P). Composition on worlds is defined by composing

local states and requiring that shared states be identical:

w ⊕ w′ def
=

{
(wL ⊕ w′

L, wS) if wS = w′
S

⊥ otherwise.

We are nearly in a position to define well-formedness of worlds. First, we define the
action domain of an interference assertion, adom(I), to be the set of action names and
their appropriate parameters:

adom(γ(x1, . . . , xn) : ∃~y. (P Q))
def
= {(γ, (v1, . . . , vn)) | vi ∈ Val}

adom(I1, I2)
def
= adom(I1) ∪ adom(I2)

We also need the operator b(l, s)c which collapses a pair of a logical state l and shared
state s to a single logical state:

b(l, s)c def
= l ⊕

(⊕
r∈dom(s) s(r)

)
where

⊕
is the natural lifting of ⊕ to sets. Finally, the well-formedness of worlds, wf(l, s),

is given by:

wf(l, s)
def⇐⇒ b(l, s)c is defined ∧

∀r, γ, ~v. b(l, s)cP(r, γ, ~v) > 0 =⇒ ∃l′, I. s(r) = (l′, I) ∧ (γ,~v) ∈ adom(I)

4.3 Assertion Semantics

Fig. 10 presents the semantics of assertions, JP Kδ,i. We first define a weaker semantics
(|P |)δ,i that does not enforce well-formedness, then define JP Kδ,i by restricting it to the set of

5This is the fractional permission model of Boyland [2]. With minimal changes we could add a deny
permission prohibiting both the environment and thread from performing the action (see Dodds et al. [8]).
We can achieve much the same effect in the Boyland-style system by placing a full permission in the shared
state.

24

(|−|)−,− : Assn× PEnv× Interp → P(LState× SState)

(|E1 7→ E2|)δ,i

def
=

{
(l, s)

dom(lH) = {JE1Ki} ∧ lH(JE1Ki) = JE2Ki

∧ lP = 0Perm ∧ s ∈ SState

}
(|emp|)δ,i

def
= {((∅,0Perm), s) | s ∈ SState}

(|P1 ∗ P2|)δ,i

def
= {w1 ⊕ w2 | w1 ∈ (|P1|)δ,i ∧ w2 ∈ (|P2|)δ,i}

(|P1 −~ P2|)δ,i

def
= {w | ∃w1, w2. w2 = w ⊕ w1 ∧ w1 ∈ (|P1|)δ,i ∧ w2 ∈ (|P2|)δ,i}(∣∣�x. P

∣∣)
δ,i

def
=

⋃
W

{⊕
v W(v)

∣∣∣ ∀v. W(v) ∈ (|P |)δ,i[x 7→v]

}
(|all(I, r)|) def

=
{

(∅,
⊕

(γ,~v)∈ adom(I)[(r, γ, ~v) 7→ 1])
}

(|[γ(E1, . . . En)]rπ|)δ,i

def
=

{
((∅, [(JrKi , γ, JE1Ki , . . . , JEnKi) 7→ JπKi]), s)

s ∈ SState ∧
JπKi ∈ (0, 1]

}
(∣∣P r

I

∣∣)
δ,i

def
= {((∅,0Perm), s) | ∃l. (l, s) ∈ (|P |)δ,i ∧ s(JrKi) = (l, JIKi)}

(|α(E1, . . . , En)|)δ,i

def
= δ(α, JE1Ki , . . . , JEnKi)

J−K−,− : Assn× PEnv× Interp → P(World)

JP Kδ,i

def
= {(l, s) ∈ (|P |)δ,i | wf((l, s))}

Figure 10: Semantics of assertions. The cases for conjunction, implication, existential,
etc. are standard, simply distributing over the local and shared state.

well-formed worlds. The semantics of assertions depends on the semantics of expressions,
J−K− : Expr × Interp → Val. We have not formally defined this, and just assume an
appropriate semantics. The semantics of interface assertions can also depend on the
semantics of free variables. We define J−K− : IAssn× Interp → IAssn which simply replaces
the free variables with their values.

The semantics is parameterised by a predicate environment, δ, mapping abstract pred-
icates to their semantic definitions, and an interpretation, i, mapping logical variables to
values:

δ ∈ PEnv
def
= PName× Val∗ → P(World) i ∈ Interp

def
= Var → Val

We assume that RName∪ (0, 1] ⊂ Val, so that variables may range over region names and
(non-zero) permission values.

The semantics of the usual separation-logic connectives are standard. Notice that the
semantics of the cell assertion 7→ and the empty assertion emp uses an arbitrary shared
state s. The permission assertion [γ(E1, . . .)]

r
π states that the token (JrKi , γ, JE1Ki . . .)

is associated with permission value JπKi. We restrict the permissions to those in (0, 1],
since the 0 case is given by emp. A shared-state assertion P

r

I
asserts that P holds

for region JrKi in the shared state, and that the region’s interference is given by the
interference assertion, JIKi. For example, in the compare-and-swap lock implementation
(§2.2), (x 7→ 0 ∗ [Unlock]r1) ∨ x 7→ 1

r

I(r,x)
asserts that the shared state for a lock is either

unlocked with the full Unlock permission, or locked. The interference assertion I(r, x)
defines the meaning of actions Lock and Unlock, parameterised by region r and lock

25

location x. Predicate assertions, α(E1, ..., En), are mapped to sets of satisfying local and
shared-state pairs by a predicate environment δ.

A shared state assertion P
r

I
defines the contents of an entire region. To maintain

the same view of a region between threads, splitting a shared-state assertion must pre-
serve the entire contents of the region. Consequently, separating conjunction behaves as
conventional (non-separating) conjunction between shared-state assertions over the same
region. That is:

P
r

I
∗ Q

r

I
⇐⇒ P ∧Q

r

I

We permit nesting of shared-state assertions. However, our semantics for for shared state

does not include nesting: the shared state is just a finite partial function RName
fin
⇀

LState × IAssn. To resolve this, nested assertions are equivalent in our semantics to
flattened assertions with all nested regions moved to the top level. Nested assertions can
always be rewritten in an equivalent unnested form as follows:

P
r

I
∗Q

r′

I′
⇐⇒ P

r

I
∗ Q

r′

I′

(this even holds when when r = r′)
In this paper, we use nesting to ensure that shared and unshared elements can be

referenced by a single abstract predicate. If an assertion is written using an abstract
predicate, in some cases it is impossible to recover abstraction after unnesting the formula.
For example, our compare-and-swap implementation of the lock module defines Locked(x)
as:

Locked(x) ≡ ∃r. [Unlock]r1 ∗ x 7→ 1
r

I(r,x)

Suppose we now put this predicate into a region s. The following implications hold:

Locked(x)
s

K
⇐⇒ ∃r. [Unlock]r1 ∗ x 7→ 1

r

I(r,x)

s

K
(definition of Locked)

⇐⇒ ∃r. [Unlock]r1
s

K
∗ x 7→ 1

r

I(r,x)
(un-nesting)

In the final formula, we can no longer define a single abstract predicate capturing the
information in the original Locked predicate. The shared state s is in the way.

In the future, nesting may also be useful for defining mutually recursive modules. We
could define a pair of abstract predicates to refer to each other’s shared state, and allow
the semantics to resolve the recursion. This may give a modular way to reason disjointly
about closely-related data-structures. Work on this idea is ongoing.

4.4 Environment Semantics

An interference assertion defines the actions that are permitted on a shared region. For
example, in the compare-and-swap lock implementation (§2.2), the assertion I(r, x) pro-
vides the action Lock : x 7→ 0 ∗ [Unlock]r1 x 7→ 1. We interprete an interference
assertion semantically using an interference environment, which is a map from tokens to
sets of shared-state pairs:

J−K− : IAssn× PEnv → Token → P(SState× SState)

26

given by

JI1, I2Kδ(r, γ, ~v)
def
= JI1Kδ(r, γ, ~v) ∪ JI2Kδ(r, γ, ~v)

Jγ(~x) : ∃~y. (P Q)Kδ(r, γ
′, ~v)

def
=


(s, s′)

γ′ = γ ∧ (∀r′ 6= r. s(r′) = s′(r′))

∧ ∃l, l′, l0, I. s(r) = (l ⊕ l0, I) ∧
s′(r) = (l′ ⊕ l0, I) ∧

∃~v′. (l, s) ∈(|P |)δ,[~x 7→~v,~y 7→~v′] ∧
(l′, s′) ∈(|Q|)δ,[~x 7→~v,~y 7→~v′]


The interference environment interprets thebinterface assertion γ(~x) : ∃~y. (P Q) by

mapping token (r, γ, ~v) to a binary relation between shared states, such that the regions
are identical except in the r case where it relates states satisfying P

r

I
to states satisfying

Q
r

I
. For example, for the action Lock on shared region r, the interface environment

relates the unlocked lock region with the locked region.
With our semantics of interference assertions, we are now in a position to define the

rely, Rδ, which describes the updates the environment can perform, and the guarantee, Gδ,
which describes the updates that the thread can perform. First, we give the guarantee.
A thread can update its local state as it pleases, but any change to a shared region,
r, must correspond to an action, γ(~v), for which the thread has sufficient permission,
(wL)P(r, γ, ~v) > 0. For example, in the compare-and-swap lock proof (§2.2), the thread
must hold permission 1 on Unlock before unlocking. Without this restriction, other
threads could potentially unlock the lock.

It is important that each update preserves the total amount of permission in the
world, that is bwcP = bw′cP in the definition of Gδ below, so that threads cannot acquire
permissions out of thin air. This does not hold for heaps, as we permit memory allocation.
Moreover, as we saw in the compare-and-swap lock implementation, the thread can create
a new shared region by giving away some of its local state and gaining full permission on
the newly created region. This is described by Gc below. Conversely, a thread can destroy
any region that it fully owns and grab ownership of the state it protects, as described by
(Gc)−1 below.

The guarantee Gδ is defined by:

Gc def
=

{
(w,w′)

∃r, I, `1, `2. r /∈ dom(wS) ∧ w′
S = wS[r 7→ (`1, I)] ∧

wL = `1 ⊕ `2 ∧ w′
L = `2 ⊕ (|all(I, r)|)

}

Gδ
def
=

{
(w,w′)

((∃r, γ, ~v. (wS, w
′
S) ∈ J(wS(r))2Kδ(r, γ, ~v) ∧

(wL)P(r, γ, ~v) > 0) ∨ wS = w′
S) ∧ bwcP = bw′cP

}
∪Gc ∪ (Gc)−1

Some permitted updates do not modify the heap, but simply repartition it between shared

regions. This is captured by Gδ
def
= Gδ ∩ {(w,w′) | bwcH = bw′cH}. In practice, we allow

an unlimited number of repartitionings in a single step, only one of which actually modifies
the heap. This is captured by Ĝδ, defined as:

Ĝδ
def
= (Gδ)

∗; Gδ; (Gδ)
∗

Using the guarantee, we define the notion of repartitioning with respect to an update from
p to q, written P ≡V{p}{q}

δ Q. The guarantee states how a thread can change the shared

27

regions, and can create and destroy shared regions if the thread has the full permissions.
The repartitioning states how the local and shared heap is updated, so that it is compatible
with the update from p to q as well as being compatible with the guarantee.

Definition 4.1 (Repartitioning). P ≡V{p}{q}
δ Q holds if and only if, for every variable

interpretation i and world w1 in JP Kδ,i, there exists a heap h1 in JpKi and a residual heap
h′ such that

• h1 ⊕ h′ = bw1cH ; and

• for every heap h2 in JqKi, there exists a world w2 in JQKδ,i such that

– h2 ⊕ h′ = bw2cH ; and

– the update is allowed by the guarantee: that is, (w1, w2) ∈ Ĝδ.

Note that, if p = q = emp, then the repartitioning preserves the concrete state and only al-
lows the world to be repartitioned. We write P ≡Vδ Q as a shorthand for P ≡V{emp}{emp}

δ Q.
The rely Rδ describes the possible world updates that the environment can do. In-

tuitively, it models the interference from other threads. At any point, it can update the
shared state by performing one of the actions in any one of the shared regions r, provided
that the environment potentially has permission to perform that action. For this to be
possible, the world must contain less than the total permission (bwcP(r, γ, ~v) < 1). This
models the fact that some other thread’s local state could contain permission π > 0 on
the action. In addition, the environment can create a new region (using Rc) or can de-
stroy an existing region (using (Rc)−1) provided that no permission for that region exists
elsewhere in the world.

The rely Rδ is defined by:

Rc def
=

{
(w,w′)

∃r, `, I. r /∈ dom(wS) ∧ w′
L = wL ∧ w′

S = wS[r 7→(`, I)] ∧
bw′c defined ∧ (∀γ,~v. bw′cP(r, γ, ~v) = 0)

}

Rδ
def
=

{
(w,w′)

∃r, γ, ~v. (wS, w
′
S) ∈ J(wS(r))2Kδ(r, γ, ~v) ∧

wL = w′
L ∧ bwcP(r, γ, ~v) < 1

}
∪Rc ∪ (Rc)−1

The rely Rδ enables us to define the stability of assertions. An assertion is stable if
and only if it cannot be falsified by the interference from other threads that it permits.

Definition 4.2 (Stability). stableδ(P) holds iff for all w, w′ and i, if w ∈ JP Kδ,i and
(w,w′) ∈ Rδ, then w′ ∈ JP Kδ,i.

Similarly, a predicate environment is stable if and only if all the predicates it defines are
stable.

Definition 4.3 (Predicate Environment Stability). pstable(δ) holds iff for all X ∈ ran(δ),
for all w and w′, if w ∈ X and (w,w′) ∈ Rδ, then w′ ∈ X.

A syntactic predicate environment, ∆, is defined in the semantics as a set of stable pred-
icate environments:

J∅K def
= {δ | pstable(δ)}

J∆, ∀~x. α(~x) ≡ P K def
= J∆K ∩ {δ | pstable(δ) ∧ ∀~v. δ(α,~v) = JP Kδ,[~x 7→~v]}

J∆, ∀~x. P ⇒ QK def
= J∆K ∩ {δ | pstable(δ) ∧ ∀~v. JP Kδ,[~x 7→~v] ⊆ JQKδ,[~x 7→~v]}

28

4.5 Programming Language and Proof System

We define a proof system for deriving local Hoare triples for a simple concurrent imperative
programming language of commands:

(Cmd) C ::= skip | c | f | 〈C〉 | C1; C2 | C1 + C2 | C∗ | C1‖C2 |
let f1 = C1 . . . fn = Cn in C

We require that atomic statements 〈C〉 are not nested and that function names f1 . . . fn

for a let are distinct. Here c stands for basic commands, modelled semantically as subsets
of P(Heap× Heap) satisfying the locality conditions of [4].

Judgements about such programs have the form ∆; Γ ` {P}C {Q}, which asserts that,
beginning in a state satisfying P , interpreted under predicate definitions satisfying ∆, the
program C using procedures specified by Γ will not fault and, if it terminates, the final
state will satisfy Q.

The proof rules for our Hoare-style program logic are shown in Fig. 11. These rules
are modified from RGSep [24] and deny-guarantee [8]. All of the rules in our program
logic carry a implicit assumption that the pre- and post-conditions of their judgements
are stable.

The judgement `SL {p} C {q} appearing in Atomic and Prim is a judgement in
standard sequential separation logic. The other minor judgements are defined semantically
to quantify over all δ ∈ J∆K: ∆ ` P ≡V{p}{q} Q means ∀δ ∈ J∆K . P ≡V{p}{q}

δ Q (and
similarly without a superscript); ∆ ` stable(P) means ∀δ ∈ J∆K . stableδ(P); and ∆ ` ∆′

means J∆K ⊆ J∆′K.
To reason about predicate assumptions, we introduce two rules, Pred-I and Pred-E.

The Pred-I rule allows the assumptions about the predicate definitions to be weakened.
If a triple is provable with assumptions ∆′, then it must be provable under stronger
assumptions ∆. The Pred-E rule allows the introduction of predicate definitions. For this
to be sound, the predicate name α must not be used anywhere in the existing definitions
and assertions. We require that recursively-defined predicate definitions are satisfiable;
otherwise the premise of a proof rule could be vacuously true. We ensure this by requiring
that all occurrences of the predicate in its definition are positive.

The Par rule is the key rule for disjoint concurrency. In this rule, we exploit our
fiction of disjointness to prove safety for concurrent programs. Our set-up allows us to
define a simple parallel rule while capturing fine-grained interactions. The Atomic and
Conseq rule were discussed in §2.3. That section also discussed a rule for modules, which
can be derived as follows:

∆ ` {P1}C1{Q1} · · ·
∆ ` ∆′ ∆′; {P1}f1{Q1}, . . . ` {P}C{Q}

∆; {P1}f1{Q1}, . . . ` {P}C{Q}
Pred-I

∆ ` {P} let f1 = C1 . . . fn = Cn in C {Q} Let

` {P} let f1 = C1 . . . fn = Cn in C {Q} Pred-E

Deriving this rule in this way reveals a side-condition: the predicate names defined in ∆
must not appear in P or Q. Intuitively, the module’s predicates must not appear outside
the scope of the module definition.

29

∆; Γ ` {P} skip {P} (Skip)
∆; Γ ` {P} C1 {P ′} ∆; Γ ` {P} C2 {P ′}

∆; Γ ` {P} C1 + C2 {P ′} (Choice)

∆; Γ ` {P} C1 {P ′′} ∆; Γ ` {P ′′} C2 {P ′}
∆; Γ ` {P} C1; C2 {P ′} (Seq)

∆; Γ ` {P} C {P}
∆; Γ ` {P} C∗ {P} (Loop)

`SL {p} C {q} ∆ ` P ≡V{p}{q} Q

∆; Γ ` {P} 〈C 〉 {Q} (Atomic)
`SL {p} C {q}

∆; Γ ` {p} C {q} (Prim)

∆; Γ ` {P1} C1 {Q1} ∆; Γ ` {P2} C2 {Q2}
∆; Γ ` {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}

(Par)
{P} f {Q} ∈ Γ

∆; Γ ` {P} f {Q} (Call)

∆; Γ ` {P} C {Q}
∆ ` stable(R)

∆; Γ ` {P ∗R} C {Q ∗R} (Frame)

∆; Γ ` {P ′} C {Q′}
∆ ` P ≡VP ′ ∆ ` Q′≡VQ

∆; Γ ` {P} C {Q} (Conseq)

∆; Γ ` {P1} C {Q} ∆; Γ ` {P2} C {Q}
∆; Γ ` {P1 ∨ P2} C {Q} (Disj)

x /∈ fv(∆, Γ, P, C,Q)

∆; Γ ` {P} C {Q}
∆; Γ ` {∃x. P} C {Q} (Ex)

∆ ` ∆′ ∆′; Γ ` {P}C{Q}
∆; Γ ` {P}C{Q} (Pred-I)

∆ ` stable(R) α /∈ ∆, Γ, P, Q

∆, (∀~x. α(~x) ≡ R); Γ ` {P}C{Q}
∆; Γ ` {P}C{Q} (Pred-E)

∆; Γ ` {P1} C1 {Q1} . . . ∆; Γ ` {Pn} Cn {Qn}
∆; {P1} f1 {Q1}, . . . , {Pn} fn {Qn}, Γ ` {P} C {Q}

∆; Γ ` {P} let f1 = C1 . . . fn = Cn in C {Q} (Let)

Figure 11: Proof rules. All rules assume that the pre- and post-conditions of their judge-
ments are stable.

4.6 Judgement Semantics and Soundness

We define the meaning of judgements in our proof system with respect to a transition
relation C, h

η→ C ′, h′ defining the operational semantics of our language. The transi-
tion is parameterised with a function environment, η, mapping function names to their
definitions. We also define a faulting relation C, h

η→ fault .

η ∈ FEnv
def
= FName → Cmd

−→ ∈ OpTrans
def
= P(FEnv× Cmd× Heap× Cmd× Heap)

−→ fault ∈ OpFault
def
= P(FEnv× Cmd× Heap)

To define the meaning of judgements, we first define the notion of a logical configuration
(C, w, η, δ, i, Q) being safe for at least n steps. Intuitively, safety for n steps means that
a derivation of length n consisting of steps from the thread and environment does not

30

fault, respects the guarantee at each step, and terminates only in a state satisfying the
post-condition.

The soundness proof for our logic is based on reasoning about configuration safety.
For example, to show the soundness of the parallel rule, we must show that if safety
holds for two configurations for programs C1 and C2, then the compositions of the two
configurations is safe for program C1‖C2.

Definition 4.4 (Configuration safety). C, w, η, δ, i, Q safe0 always holds; and
C, w, η, δ, i, safen+1 iff the following four conditions hold:

1. ∀w′, if (w,w′) ∈ (Rδ)
∗ then C, w′, η, δ, i, Q safen;

2. ¬((C, bwcH)
η→ fault);

3. ∀C ′, h′, if (C, bwcH)
η→ (C ′, h′), then there ∃w′ such that (w,w′) ∈ Ĝδ, h′ = bw′cH

and C ′, w′, η, δ, i, Q safen; and

4. if C=skip, then ∃w′ such that bwcH=bw′cH , (w,w′) ∈ Ĝδ, and w′ ∈ JQKδ,i.

This definition says that a configuration is safe provided that: (1) changing the world in a
way that respects the rely is still safe; (2) the program cannot fault; (3) if the program can
make a step, then there should be an equivalent step in the logical world that is allowed
by the guarantee; and (4) if the configuration has terminated, then the post-condition

should hold. The use of Ĝδ in the third and fourth conjuncts allows the world to be
repartitioned.

Definition 4.5 (Judgement Semantics). ∆; Γ |= {P}C {Q} holds iff

∀i, n. ∀δ ∈ J∆K . ∀η ∈ JΓKn,δ,i . ∀w ∈ JP Kδ,i . C, w, η, δ, i, Q safen+1 ,

where JΓKn,δ,i
def
= {η | ∀{P}f{Q} ∈ Γ. ∀w ∈ JP Kδ,i . η(f), w, η, δ, i, Q safen}.

Theorem 4.6 (Soundness). If ∆; Γ ` {P}C {Q}, then ∆; Γ |= {P}C {Q}.

Proof is by by structural induction on derivations. See Appendix B for full details.
The most interesting case is the Par rule, which embodies the compositionality of our
logic. The proof requires the following lemma.

Lemma 4.7 (Abstract state locality). If (C, bw1⊕w2cH)
η→ (C ′, h) and C, w1, η, δ, i, Q safen,

then ∃w′
1, w

′
2 such that (C, bw1cH)

η→ (C ′, bw′
1cH), h = bw′

1 ⊕ w′
2cH , (w1, w

′
1) ∈ Ĝδ, and

(w2, w
′
2) ∈ (Rδ)

∗.

Proof. We require that basic commands obey a concrete locality assumption. We must
prove that the rely and guarantee obey similar locality lemmas. The lemma then follows
from the definition of configuration safety. The full proof is given in Appendix B, Lemma
B.11.

This lemma shows that program only affects the resources required for it to run safely:
that is, programs are safely contained within their abstract footprints. The soundness of
Par follows immediately.

31

5 Conclusions and Related Work

Our program logic allows fine-grained abstraction in a concurrent setting. It brings to-
gether three streams of research: (1) abstract predicates [21] for abstracting the internal
details of a module or class; (2) deny-guarantee [8] for reasoning about concurrent pro-
grams; and (3) context logic [3, 7] for fine-grained reasoning at the module level.

Our work on concurrent abstract predicates has been strongly influenced by O’Hearn’s
concurrent separation logic (CSL) [19]. CSL takes statically allocated locks as a primi-
tive. With CSL, we can reason about programs with locks as if they are disjoint from
each other, even though they interfere on a shared state. CSL therefore provides a key
example of the fiction of disjointness. The CSL approach has been extended with new
proof rules and assertions to deal with dynamically-allocated locks [11, 15] and re-entrant
locks [12]. Parkinson et al. [20] have shown how the CSL approach can be used to reason
about concurrent algorithms that do not use locks. However, representing the concurrent
interactions in an invariant can require intractable auxiliary state.

Jacobs and Piessens [17] have developed an approach to reasoning abstractly that
is based on CSL for dynamically allocated locks [11]. Their logic uses auxiliary state
to express the temporal nature of interference. To deal modularly with auxiliary state
they add a special implication that allows the auxiliary state to be changed in any way
that satisfies the invariant. This implication is similar to our repartitioning operator
≡V. Unlike our operator, theirs can be used in a module specification, allowing a client’s
auxiliary state to be updated during the module’s execution. Our operator could be
extended with this technique, which may simplify the use of the lock specification in the
set algorithms.

An alternative to using invariants is to abstract interference over the shared state by
relations modelling the interaction of different threads: the rely-guarantee method [18].
There have been two recent logics that combine RG with separation logic: RGSep [24] and
SAGL [10]. Both allow more elegant proofs of concurrent algorithms than the invariant-
based approaches, but they have the drawback that interference on the shared state cannot
be abstracted. Feng’s Local Rely-Guarantee [9] improves the locality of RGSep and SAGL
by scoping interference with a precise footprint, but this approach still has no support
for abstraction. Many of our ideas on abstraction originated in Dinsdale-Young, Gardner
and Wheelhouse’s work on using RGSep to analyse a concurrent B-tree algorithm [6, 22].

We have combined RGSep with resource permissions, as first introduced for deny-
guarantee reasoning [8]. Deny-guarantee is a reformulation of rely-guarantee allowing
reasoning about dynamically scoped concurrency. Deny-guarantee reasoning is related
to the ‘state guarantees’ of Bierhoff et al. [1] in linear logic, which are also splittable
permissions describing how a state can be updated.

We have also used ideas from context logic [3], a high-level logic for fine-grained
local reasoning about program modules. Recent work in context logic has shown how
implementations of modules can be verified, by relating local reasoning about module
specifications with the low-level reasoning about implementations [7]. As presented here,
these implementations break away from the fiction of disjointness presented by the module
specifications.

Proofs in our proof system are slightly more complex in practice than RGSep and
SAGL, as can be seen by comparing the lock-coupling list proof with the RGSep one [24].

32

This may be the penalty that we pay for having greater modularity although, as we acquire
more experience with doing proofs using concurrent abstract predicates, we expect to be
able to reduce this complexity.

An alternative approach to abstracting concurrent algorithms is to use linearisabil-
ity [14]. Linearisability provides a fiction of atomicity allowing “reason[ing] about prop-
erties of concurrent objects given just their (sequential) specifications” [14]. With lin-
earisability, we are forced to step outside the program logic at module boundaries and fall
back on operational reasoning. In contrast, with concurrent abstract predicates we are
able to write modular proofs within a single logical formalism.

Acknowledgements Thanks to Richard Bornat, Alexey Gotsman, Peter O’Hearn,
Suresh Jagannathan, Mohammad Raza, Noam Rinetzky, Mark Wheelhouse, John Wick-
erson and the anonymous referees of our conference paper [5] for useful feedback. This
work was supported by an EPSRC DTA (Dinsdale-Young), an EPSRC Programme Grant
EP/H008373/1 (Dinsdale-Young and Gardner), an EPSRC grant EP/F019394/1 (Dodds
and Parkinson), an RAEng/EPSRC research fellowship (Parkinson) and a Microsoft Re-
search Cambridge/RAEng senior research fellowship (Gardner).

References
[1] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In OOPSLA, pages 301–320, 2007.

[2] J. Boyland. Checking interference with fractional permissions. In SAS, 2003.

[3] C. Calcagno, P. Gardner, and U. Zarfaty. Local reasoning about data update. Festschrift Computation, Meaning and
Logic: Articles dedicated to Gordon Plotkin, 172, 2007.

[4] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In Symp. on Logic in Comp.
Sci. (LICS’07), pages 366–378, 2007.

[5] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Concurrent abstract predicates. In
ECOOP, 2010.

[6] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Local reasoning about a concurrent B∗-list algorithm. Talk and
unpublished report, see http://www.doc.ic.ac.uk/∼pg/, 2009.

[7] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Locality refinement. Technical Report DTR10-8, Imperial College
London, 2010.

[8] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In ESOP, 2009.

[9] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.

[10] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separation logic and assume-guarantee
reasoning. In ESOP, 2007.

[11] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for storable locks and threads. In
APLAS, 2007.

[12] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reentrant Locks. In APLAS, pages 171–187, 2008.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier, 2008.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. TOPLAS, 12(3):463–492,
1990.

[15] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for concurrent separation logic. In ESOP, 2008.

[16] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In POPL, pages 14–26,
Jan. 2001.

33

(C, h)
η[f1 7→C1...fn 7→Cn]−−−−−−−−−−−→ (C ′, h′)

(let f1 = C1 . . . fn = Cn in C, h)
η→ (let f1 = C1 . . . fn = Cn in C ′, h′)

(let . . . in skip, h)
η→ (skip, h)

f ∈ dom(η)

(f, h)
η→ (η(f), h)

(h, h′) ∈ c h′ 6= fault

(c, h)
η→ (skip, h′)

(C, h)
η→ (C1, h

′)

(C; C ′, h)
η→ (C1; C

′, h′) (skip; C, h)
η→ (C, h) (C∗, h)

η→ (skip + (C; C∗), h)

(C1 + C2, h)
η→ (C1, h) (C1 + C2, h)

η→ (C2, h)

(C, h)
η→
∗

(skip, h′)

(〈C〉, h)
η→ (skip, h′)

(C1, h)
η→ (C ′

1, h
′)

(C1‖C2, h)
η→ (C ′

1‖C2, h
′)

(C2, h)
η→ (C ′

2, h
′)

(C1‖C2, h)
η→ (C1‖C ′

2, h
′) (skip‖skip, h)

η→ (skip, h)

(C1, h)
η→ fault

(C1; C2, h)
η→ fault

(C1, h)
η→ fault

(C1‖C2, h)
η→ fault

(C2, h)
η→ fault

(C1‖C2, h)
η→ fault

f /∈ dom(η)

(f, h)
η→ fault

(h, fault) ∈ c

(c, h)
η→ fault

(C, h)
η→
∗
fault

(〈C〉, h)
η→ fault

Figure 12: Operational semantics.

[17] B. Jacobs and F. Piessens. Modular full functional specification and verification of lock-free data structures. Technical
Report CW 551, Katholieke Universiteit Leuven, Department of Computer Science, June 2009.

[18] C. B. Jones. Annoted bibliography on rely/guarantee conditions. http://homepages.cs.ncl.ac.uk/cliff.jones/

ftp-stuff/rg-hist.pdf, 2007.

[19] P. W. O’Hearn. Resources, concurrency and local reasoning. TCS, 2007.

[20] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking stack. In POPL, pages 297–302,
Jan. 2007.

[21] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL, pages 247–258, 2005.

[22] P. Pinto. Reasoning about BLink trees. Advanced masters ISO project, Imperial College London, 2010. Supervised
by Dinsdale-Young, Gardner and Wheelhouse.

[23] V. Vafeiadis. Modular Fine-Grained Concurrency Verification. PhD thesis, University of Cambridge, July 2007.

[24] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic. In CONCUR, pages 256–271, 2007.

A Language Semantics

The operational semantics of our programming language is given in Fig. 12. This seman-
tics is largely taken from [23]. However, this prior semantics required two operational

34

semantics – a logical semantics with proof annotations to separate local and shread state
and a machine semantics erasing such annotations. Using Vafeiadis’s new approach to
soundness of RGSep, Definition 4.4, we can avoid this requirement for two semantics.

We assume a simple Dijkstra-style language with constructs for sequential composition,
nondeterministic choice and looping. Programs in the given in paper can be encoded into
this language for proof purposes. Primitive updates in this language are modelled by
relations c ⊆ States× (States ∪ {fault}). We require that each of the primitive updates
of our language is local.

Assumption 1 (Primitive locality). Each primitive update, c, satisfies the following con-
ditions:

1. If (h⊕ h′, fault) ∈ c, then (h, fault) ∈ c, and

2. if (h ⊕ h′, h2) ∈ c and (h, fault) /∈ c then there exists an h′2 such that (h, h′2) ∈ c
and h′2 ⊕ h′ = h2.

B Soundness of proof system

In order to prove the soundness of our proof system, we must show that each proof rule
represents a valid inference. Typically, we show that the conclusion of each proof rule
is semantically valid (under the assumption that the premisses are semantically valid)
by induction on the number of safe steps we wish to take from an appropriate arbitrary
configuration.

The first case we consider is the Skip rule, which is justified by the following lemma.
The lemma is also used to deal with other rules in cases where the program reduces in
one step to skip, such as 〈C〉 and skip‖skip.

Lemma B.1 (Skip safety). If stableδ(Q) and w ∈ JQKδ,i then skip, w, η, δ, i, Q safen.

Proof. Prove by induction on n. The 0 case holds by definition. Consider now the
inductive case. By the definition of stability, any w′ such that (w,w′) ∈ (Rδ)

∗ must
satisfy w′ ∈ JQKδ,i. Consequently the first clause holds by the inductive assumption.
Clauses 2 and 3 hold trivially, as no reductions from skip exist in the semantics. Clause
4 holds trivially by picking w′ as w.

Locality is essential for the soundness of the frame rule and disjoint concurrency. We
required it of our primitive update commands, and the following two lemmas show that
it holds also for the operational semantics of programs, both when executed for a single
step or for multiple steps. The locality properties capture the intuition that a program
operates within a footprint, independent of any additional state. The two lemmas deal
only with the heap state, and not with the abstract logical state.

Lemma B.2 (Concrete locality). Locality holds for the operational semantics over single
steps and multiple steps.

• If (C, h⊕h′)
η→ (C2, h2) and ¬((C, h)

η→ fault), then ∃h′2 such that (C, h)
η→ (C2, h

′
2)

and h′2 ⊕ h′ = h2.

35

• If (C, h ⊕ h′)
η→
∗

(C2, h2) and ¬((C, h)
η→
∗

fault), then ∃h′2 such that (C, h)
η→
∗

(C2, h
′
2) and h′2 ⊕ h′ = h2.

Proof. Proved by induction over the structure of a derivation or derivation sequence.
Consider the first case, consisting of a single derivation (C, h ⊕ h′)

η→ (C2, h2). For
most of the rules, locality holds simply by the first clause of the inductive assumption.
For the two rules dealing with primitive updates, locality is ensured by Assumption 1.
For the rule dealing with atomic statements, locality is ensured by the second clause of
the inductive assumption.

Now consider the second case, where we have a multi-step derivation (C, h ⊕ h′)
η→
∗

(C2, h2). Any such derivation consists of k single-step derivations. We can thus prove the
result by appeal to the two inductive assumptions.

Lemma B.3 (Concreate fault locality). Fault locality holds for the operational semantics
over single steps and multiple steps.

• If (C, h⊕ h′)
η−→ fault, then (C, h)

η−→ fault.

• If (C, h⊕ h′)
η−→
∗
fault, then (C, h)

η−→
∗
fault.

Proof. The result is proved by induction over the structure of a faulting derivation or
derivation sequence.

The first clause holds when we have a single-step faulting derivation, (C, h ⊕ h′)
η−→

fault . For most of the rules, locality holds immediately by the first clause of the inductive
assumption. For the rule dealing with primitive update, locality is ensured by Assumption
1, as in the previous lemma. For the rule dealing with atomic statements, locality holds
by the second clause of the inductive assumption.

To prove the second clause, we observe that the shortest faulting derivation sequence

(C, h ⊕ h′)
η−→
∗

fault must consist of a length-k derivation (C, h ⊕ h′)
η−→

k
(C ′, h′′) and a

single derivation (C ′, h′′)
η→ fault . We can thus show the result by applying Lemma B.2

and the first inductive assumption.

The following guarantee locality lemmas capture the notion that, if the guarantee
permits some action, then the action that does the same thing but leaves some additional
disjoint state unchanged is also permitted by the guarantee. For justifying the parallel
composition and frame rules, this additional state corresponds to the state of another
thread and the frame, respectively.

Lemma B.4 (Guarantee locality I). If (w1, w
′
1) ∈ Ĝδ and w1⊕w2 and w′

1⊕w′
2 are defined,

where w′
2 = ((w2)L, (w′

1)S), then (w1 ⊕ w2, w
′
1 ⊕ w′

2) ∈ Ĝδ.

Proof. We assume that (w1, w
′
1) ∈ Gδ; for multiple guarantee steps, the result follows

from this case by induction. By the definition of state composition, (w1)S = (w1 ⊕ w2)S

and (w′
1)S = (w′

1 ⊕ w′
2)S. Also, by permission composition, if ((w1)L)P(r, γ, ~v) ∈ (0, 1]

then ((w1 ⊕ w2)L)P(r, γ, ~v) ∈ (0, 1]. For region creation, it follows that the new region
cannot be in the domain of (w1)S. For the region removal, ((w1)L)P must contain all the
permissions on the region being removed, hence so will ((w1 ⊕ w2)L)P. The rest follows
immediately by the definition of guarantee.

36

The following two lemmas are direct corollaries of Lemma B.4.

Lemma B.5 (Guarantee locality II). If (w1, w
′
1) ∈ Ĝδ and (w2, w

′
2) ∈ (Rδ)

∗ and w1 ⊕w2

defined and w′
1 ⊕ w′

2 defined, then (w1 ⊕ w2, w
′
1 ⊕ w′

2) ∈ Ĝδ.

Lemma B.6 (Guarantee locality III). If (w1, w
′
1) ∈ Ĝδ and w1 ⊕ w2 is defined and

bw1cH = bw′
1cH, then (w1 ⊕ w2, w

′
1 ⊕ w′

2) ∈ Ĝδ, where w′
2 = ((w2)L, (w′

1)S).

The following rely locality lemma allows us to decompose a transition that is permitted
by the rely on a composite state into transitions permitted by the rely on the component
states.

Lemma B.7 (Rely locality). If w = w1 ⊕ w2 and (w,w′) ∈ (Rδ)
∗ then ∃w′

1, w
′
2 such that

(w1, w
′
1) ∈ (Rδ)

∗ and (w2, w
′
2) ∈ (Rδ)

∗ and w′ = w′
1 ⊕ w′

2.

Proof. We assume that (w,w′) ∈ Rδ; for multiple rely steps, the result follows from this
case by induction. Take w′

1 = ((w1)L, (w′)S) and w′
2 = ((w2)L, (w′)S). By the definition

of state composition, (w1)S = (w2)S = wS. A rely step does not affect the local state, so
w′ = w′

1 ⊕ w′
2. Furthermore, w1 and w2 have no more permissions than w and so any

change to the shared state allowed by the rely on w is also allowed by the rely on w1 and
w2. Hence, (w1, w

′
1) ∈ (Rδ)

∗ and (w2, w
′
2) ∈ (Rδ)

∗.

The following two lemmas deal with the consistency of rely with guarantee: an action
permitted for one thread by the guarantee corresponds to interference for another thread
that is consistent with the rely.

Lemma B.8 (Containment of rely in guarantee I). If w1⊕w2 is defined and (w1, w
′
1) ∈ Gδ

and bw′
1cH⊕((w2)L)H is defined then w′

2 = ((w2)L, (w′
1)S) is well-formed and (w2, w

′
2) ∈ Rδ

and w′
1 ⊕ w′

2 is defined.

Proof. By the definition of state composition (w1)S = (w1 ⊕ w2)S. By the definition
of permission composition, if ((w1)L)P(r, γ, ~v) ∈ (0, 1] and w1 ⊕ w2 is defined, then
((w2)L)P(r, γ, ~v) ∈ [0, 1). We define w′

2 as w′
2 = ((w2)L, (w′

1)S). For region creation this
is trivial. For region removal, we know ((w1)L)P must contain all the permissions for the
removed region, therefore ((w2)L)P cannot contain any permissions on the region, hence
it can be removed. The rest holds immediately by the definition of rely.

Remark B.9. If w1⊕w2 is defined and bw1cH = bw′
1cH, then bw′

1cH⊕((w2)L)H is defined.

Lemma B.10 (Containment of rely in guarantee II). If w1⊕w2 is defined and (w1, w
′
1) ∈

Ĝδ and bw′
1cH⊕((w2)L)H is defined then w′

2 = ((w2)L, (w′
1)S) is well-formed and (w2, w

′
2) ∈

(Rδ)
∗ and w′

1 ⊕ w′
2 is defined.

Proof. This follows from Lemma B.8 by induction on the number of Gδ steps, making use
of Remark B.9.

Note that the above would not hold for (Gδ)
∗ instead of Ĝδ. To understand why this

is so, suppose that there are two actions for some shared region, one of which involves
putting, say, the heap cell 5 7→ 3 into the region and making some other update and the
other involves taking the cell 5 7→ 3 back out of the shared region. (Gδ)

∗ would allow

37

both actions to happen in a single step without the thread performing the action to have
ever had the cell 5 7→ 3 – it is created and destroyed in a virtual sense. This is an issue
if another thread already holds 5 7→ 3, since it would assume that, since the intermediate
state is inconsistent, the actions could not be performed. Ĝδ is immune to this since it
only permits a single concrete update, and thereby disallows such virtual state.

The following abstract state locality lemma captures the intuition that the operational
semantics is local at the level of logical state.

Lemma B.11 (Abstract state locality). If (C, bw1⊕w2cH)
η→ (C ′, h) and C, w1, η, δ, i, Q safen+1,

then ∃w′
1, w

′
2 such that (C, bw1cH)

η→ (C ′, bw′
1cH) and h = bw′

1 ⊕ w′
2cH and (w1, w

′
1) ∈ Ĝδ

and (w2, w
′
2) ∈ (Rδ)

∗ and C ′, w′
1, η, δ, i, Q safen.

Proof. Let h′ = ((w2)L)H. By the definition of composition bw1 ⊕ w2cH = bw1cH ⊕ h′.
By appeal to Lemma B.2 (Concrete single-step locality) there exists an h′′ such that

C, bw1cH
η→ C ′, h′′ and h′′⊕h′ = h. By the definition of safety there must exist a w′

1 such

that bw′
1cH = h′′ and (w1, w

′
1) ∈ Ĝδ and C ′, w′

1, η, δ, i, Q safen.
We now define w′

2 as ((w2)L, (w′
1)S) – that is, the local state from w2 and shared state

from w′
1. Since h = h′′ ⊕ h′ = bw′

1cH ⊕ ((w′
2)L)H and no permissions in common with

((w′
2)L)H are created or destroyed by any guarantee step, it must be that w′

1 ⊕ w′
2 is

defined and that h = bw1⊕w2cH. It remains to prove that (w2, w
′
2) ∈ (Rδ)

∗. This follows
immediately by appeal to Lemma B.10.

We now have the building blocks necessary to justify the parallel composition rule.
The following lemma establishes the safety conditions necessary for the soundess of the
Par rule.

Lemma B.12 (Parallel safety decomposition). If w = w1⊕w2, and C1, w1, η, δ, i, Q1 safen

and C2, w2, η, δ, i, Q2 safen, and stableδ(Q1) and stableδ(Q2) then C1‖C2, w, η, δ, i, Q1 ∗
Q2 safen.

Proof. By induction. The zero case holds trivially. In the inductive case we must prove
C1‖C2, w, η, δ, i, Q1 ∗ Q2 safen+1. We break down the definition of safety as follows (the
fourth clause is satisfied trivially as the program is not skip):

1. (w,w′) ∈ (Rδ)
∗ =⇒ C1‖C2, w

′, η, δ, i, Q1 ∗Q2 safen

2. ¬((C1‖C2, bwcH)
η→ fault)

3. (C1‖C2, bwcH)
η→ (C ′, h′) =⇒ ∃w′. bw′cH = h′ ∧ (w,w′) ∈ Ĝδ

∧ C ′, w′, η, δ, i, Q1 ∗Q2 safen

For the first clause, we assume that (w,w′) ∈ Rδ. By Lemma B.7 (Rely locality) ∃w′
1, w

′
2

such that (w1, w
′
1) ∈ Rδ and (w2, w

′
2) ∈ Rδ and w′ = w′

1 ⊕ w′
2. Hence, with the assump-

tions we get C1, w
′
1, η, δ, i, Q1 safen and C2, w

′
2, η, δ, i, Q2 safen. Hence, by the inductive

assumption this proves the clause.
For the second clause, we observe that if the thread faults in a parallel composition,

then either C1 or C2 must have faulted. By Lemma B.3 (Concrete fault locality) the
threads must also fault in bw1cH or bw2cH respectively. But by the safety assumptions for
C1 and C2 this cannot occur.

38

For the third clause, there are two cases: either C1‖C2 = skip‖skip, or one of C1 or
C2 is reduced. We first consider the skip case. In this case, C ′ = skip and h′ = bwcH by
the semantics. If n = 0 then the clause holds trivially by letting w′ = w.

Assume that n > 0. By the safety of C1, there is a w′
1 with bw′

1cH = bw1cH and

(w1, w
′
1) ∈ Ĝδ and w′

1 ∈ JQ1Kδ,i. By Lemma B.10 and Remark B.9, (w2, w
′
2) ∈ (Rδ)

∗

and w′
1 ⊕ w′

2 is defined, for w′
2 = ((w2)L, (w′

1)S). By the safety of C2, it follows that
skip, w′

2, η, δ, i, Q2 safen. Since n > 0, this implies that there is a w′′
2 with bw′

2cH = bw′′
2cH

and (w′
2, w

′′
2) ∈ Ĝδ and w′′

2 ∈ JQ2Kδ,i. By Lemma B.10 and Remark B.9, (w′
1, w

′′
1) ∈ (Rδ)

∗

and w′′
1 ⊕ w′′

2 is defined, for w′′
1 = ((w′

1)L, (w′′
2)S). Let w′ = w′′

1 ⊕ w′′
2 . Now, bw′′

1 ⊕
w′′

2cH = ((w′′
1)L)H ⊕ bw′′

2cH = ((w′
1)L)H ⊕ bw′

2cH = bw′
1 ⊕ w′

2cH = bw′
1cH ⊕ ((w′

2)L)H =
bw1cH ⊕ ((w2)L)H = bw1 ⊕ w2cH, as required. By Lemma B.6, (w1 ⊕ w2, w

′
1 ⊕ w′

2) ∈
Ĝδ and (w′

1 ⊕ w′
2, w

′′
1 ⊕ w′′

2) ∈ Ĝδ. Since the concrete heap is unchanged in both of

these steps, (w,w′) ∈ Ĝδ, as required. Since stableδ(Q1) and stableδ(Q2), it follows that
stableδ(Q1 ∗Q2). By stability of Q1, w′′

1 ∈ JQ1Kδ,i. Thus, since we know that w′′
2 ∈ JQ2Kδ,i,

w′ ∈ JQ1 ∗Q2Kδ,i. By appeal to Lemma B.1 (Skip safety), we have the final requirement,
that C ′, w′, η, δ, i, Q1 ∗Q2 safen.

Now consider the case where C1 or C2 is reduced. We only consider C1; the C2

case is identical. It must hold that (C1, bwcH)
η→ (C ′

1, h
′) and C ′ = C ′

1‖C2. By ap-

peal to Lemma B.11 (Abstract state locality) there are w′
1, w

′
2 such that (C1, bw1cH)

η→
(C ′

1, bw′
1cH) and h′ = bw′

1⊕w′
2cH and (w1, w

′
1) ∈ Ĝδ and (w2, w

′
2) ∈ (Rδ)

∗ and C ′
1, w

′
1, η, δ, i, Q1 safen.

Let w′ = w′
1 ⊕ w′

2. We have that bw′cH = h′ as required. By Lemma B.5 (Guar-

antee locality II), we also have (w,w′) ∈ Ĝδ, as required. By the safety of C2, we
have C2, w

′
2, η, δ, i, Q2 safen. By the inductive assumption, we the final requirement, that

C ′, w′, η, δ, i, Q1 ∗Q2 safen.

The following two lemmas justify the Frame rule.

Lemma B.13. If C, w1, η, δ, i, Q safen and w = w1 ⊕ w2 and w2 ∈ JF Kδ,i and stableδ(F),
then C, w, η, δ, i, Q ∗ F safen.

Proof. By induction on n. The zero case is trivial. In the inductive case we must prove
C, w, η, δ, i, Q ∗ F safen+1, which we break down as follows

1. (w,w′) ∈ (Rδ)
∗ =⇒ C, w′, η, δ, i, Q ∗ F safen

2. ¬((C, bwcH)
η→ fault)

3. (C, bwcH)
η→ (C ′, h′) =⇒ ∃w′. bw′cH = h′ ∧ (w,w′) ∈ Ĝδ

∧ C ′, w′, η, δ, i, Q ∗ F safen

4. C = skip =⇒ ∃w′. (w,w′) ∈ Ĝδ ∧ bwcH = bw′cH ∧ w′ ∈ JQ ∗ F Kδ,i

For the first clause, we can assume (w,w′) ∈ (Rδ)
∗ which with Lemma B.7 (Rely locality)

gives us w′
1, w

′
2 such that (w1, w

′
1) ∈ (Rδ)

∗ and (w2, w
′
2) ∈ (Rδ)

∗ and w′ = w′
1 ⊕ w′

2. By
the safety assumption, we have C, w′

1, η, δ, i, Q safen. As F is stable, we know w′
2 ∈ JF Kδ,i.

By the inductive assumption, we have C, w′, η, δ, i, Q ∗F safen, which completes the case.
The second clause holds by the contrapositive of Lemma B.3 (Concrete fault locality).

39

For the third clause, we assume a transition C, bwcH
η→ C ′, h′. By appeal to Lemma

B.11 (Abstract state locality) there exist w′
1, w

′
2 such that (C, bw1cH)

η→ (C ′, bw′
1cH) and

h′ = bw′
1 ⊕ w′

2cH and (w1, w
′
1) ∈ Ĝδ and (w2, w

′
2) ∈ (Rδ)

∗ and C ′, w′
1, η, δ, i, Q safen.

Let w′ = w′
1 ⊕ w′

2. We have that bw′cH = h′, as required. By Lemma B.5, we have

(w,w′) ∈ Ĝδ, as required. By the stability of F we have that w′
2 ∈ JF Kδ,i. Hence, by the

inductive assumption, we have the final requirement, that C ′, w′, η, δ, i, Q ∗ F safen.
For the fourth clause assume that C = skip. By the safety assumption, we know there

exists w′
1 such that (w1, w

′
1) ∈ Ĝδ and bw1cH = bw′

1cH and w′
1 ∈ JQKδ,i. By Lemma B.6

(Guarantee locality III), for w′
2 = ((w2)L, (w′

1)H) we have (w1 ⊕ w2, w
′
1 ⊕ w′

2) ∈ Ĝδ. Let

w′ = w′
1 ⊕ w′

2. We have that (w,w′) ∈ Ĝ, as required. Also, bwcH = bw1cH ⊕ ((w2)L)H =
bw′

1cH⊕((w′
2)L)H = bw′cH, as required. By Lemma B.10 (Containment of rely in guarantee

II), we have (w2, w
′
2) ∈ (Rδ)

∗. By the stability of F , it follows that w2 ∈ JF Kδ,i. Thus,
since also w′

1 ∈ JQKδ,i, we have the final requirement, that w′ ∈ JQ ∗ F Kδ,i.

Lemma B.14 (Frame safety). If δ, η |=n {P}C {Q} and stableδ(F), then δ, η |=n {P ∗
F}C {Q ∗ F}.

Proof. We pick w, i such that w ∈ JP ∗ F Kδ,i. Note that by the definition of ∗, ∃w1, w2

such that w1 ∈ JP Kδ,i, w2 ∈ JF Kδ,i, and w = w1 ⊕ w2. Thus the result follows directly
from Lemma B.13.

For our modified rule of consequence, we have to establish that repartitioning the state
in accordance with the guarantee is permissible both before and after the execution of a
command. The following two lemmas capture this.

Lemma B.15 (Pre-partitioning safety). If P ≡Vδ P ′ and δ, η |=n {P ′}C{Q} and stableδ(P),
then δ, η |=n {P}C{Q}.

Proof. Induction on n. The zero case is trivial. For the inductive case, we must establish
δ, η |=n+1 {P}C{Q}.

Fix i and w ∈ JP Kδ,i. By our first assumption, there exists a w′ with w′ ∈ JP ′Kδ,i and

bwcH = bw′cH and (w,w′) ∈ Ĝδ. By our second assumption, C, w′, η, δ, i, Q, safen+1.
We wish to show C, w, η, δ, i, Q safen+1, which we break down to

1. (w,w′′) ∈ (Rδ)
∗ =⇒ C, w′, η, δ, i, Q safen

2. ¬((C, bwcH)
η→ fault)

3. (C, bwcH)
η→ (C ′, h′) =⇒ ∃w′′. bw′′cH = h′ ∧ (w,w′′) ∈ Ĝδ

∧ C ′, w′′, η, δ, i, Q safen

4. C = skip =⇒ ∃w′′. (w,w′′) ∈ (Gδ)
∗ ∧ bwcH = bw′′cH ∧ w′′, i |=δ Q

The first clause holds by the inductive assumption since P is stable. The remaining clauses
hold by the fact that w′ and w do not differ in concrete state, and the fact that C is safe
of w′. Since the choice of i and w was arbitrary, δ, η |=n+1 {P}C{Q}, as required.

Lemma B.16 (Post-partitioning safety). If Q′≡Vδ Q and δ, η |=n {P}C{Q′}, then
δ, η |=n {P}C{Q}.

40

Proof. Induction on n. The zero case is trivial. For the inductive case, we must establish
δ, η |=n+1 {P}C{Q}.

Fix i and w ∈ JP Kδ,i. By assumption, C, w, η, δ, i, Q′ safen+1. We must show that
C, w, η, δ, i, Q safen+1. This follows trivially for the first three clauses of the definition of
safety. For the fourth, we can assume that

∃w′. (w,w′) ∈ Ĝδ ∧ bwcH = bw′cH ∧ w′, i |=δ Q′

and must show
∃w′. (w,w′) ∈ Ĝδ ∧ bwcH = bw′cH ∧ w′, i |=δ Q

which follows by the definition of ≡V and Ĝδ.

The next lemma establishes the soundness of the Atomic rule.

Lemma B.17 (Atomic safety). If `SL {p}C{q} and P ≡V{p}{q}
δ Q, and stableδ(P) and

stableδ(Q), then δ; η |=n {P} 〈C 〉 {Q}

Proof. By induction on n. The zero case is trivial. For the inductive case we assume a
w and i such that w ∈ JP Kδ,i. Note that, by the definition of ≡V there are h1, h

′′ such
that bwcH = h1 ⊕ h′′ and h1 ∈ JpKi and for all h2 ∈ JqKi there exists w′ ∈ JQKδ,i such that

h2 ⊕ h′′ = bw′cH and (w,w′) ∈ Ĝδ.
We now need to prove that 〈C〉, w, η, δ, i, Q safen+1, which we break down as follows

(the fourth clause is trivial as the command is not skip)

1. (w,w′) ∈ (Rδ)
∗ =⇒ 〈C〉, w′, η, δ, i, Q safen

2. ¬(〈C〉, bwcH
η→ fault)

3. 〈C〉, bwcH
η→ C ′, h′ =⇒ ∃w′. bw′cH = h′ ∧ (w,w′) ∈ Ĝδ

∧ C ′, w′, η, δ, i, Q safen

The first clause holds by the stability of P and the inductive assumption.
Suppose for a contradiction that 〈C〉, bwcH

η→ fault . By the semantics, this means that

C, bwcH
η→ fault . By Lemma B.3 (Concrete fault locality) this means that C, h1

η→ fault ,
which cannot be by separation logic soundness.

For clause 3, we assume there is some C ′, h′ with 〈C〉, bwcH
η→ C ′, h′. By the oper-

ational semantics, C ′ = skip and C, bwcH
η−→
∗

skip, h′. By the soundness of separation

logic, we have ¬(C, h1
η−→
∗
fault). By Lemma B.2 (Concrete locality), there is an h2 with

C, h1
η−→
∗

skip, h2 and h′ = h2 ⊕ h′′. Again, by the soundness of separation logic, we
have h2 ∈ JqKi. Therefore, there exists w′ with h2 ⊕ h′′ = bw′cH and (w,w′) ∈ Ĝ and
w′ ∈ JQKδ,i. For this w′, the first two conditions hold by the above, and the third by
Lemma B.1 (Skip safety).

Finally, the following lemma establishes the soundness of the Pred-E rule. The result
is quite simple, since the predicate being eliminated has no bearing on the semantical
validity of the assertion.

Lemma B.18 (Predicate elimination). If ∆,∀x. α(x) ≡ R; Γ |= {P}C{Q} and ∆ `
stable(R) and α /∈ Γ, ∆, P, Q, then ∆; Γ |= {P}C{Q}.

41

Proof. We first claim that:

δ′ ∈ J∆K ⇐⇒ ∃δ. δ ∈ J∆,∀x. α(x) ≡ RK ∧
∀~v. δ′[(α,~v) 7→ ⊥] = δ[(α,~v) 7→ ⊥]

This can be easily proved by appeal to the predicate definition semantics. Note that
stability is required otherwise the set of δs is empty.

We then make use of this result to prove that for any n, i, and δ′ ∈ J∆K, there exists
a δ. δ ∈ J∆ ∧ ∀x. α(x) ⇔ RK such that

JΓKn,δ′,i = JΓKn,δ,i

and for any assertion P , it holds that

w ∈ JP Kδ′,i ⇐⇒ w ∈ JP Kδ,i

Both results can be proved by simple appeal to the semantics. These results are sufficient
to prove our main result, as other values are unaffected by the selection of δ.

We now bring together these lemmas in the following theorem, which establishes the
soundess of our proof system.

Theorem B.19 (Soundness). If ∆; Γ ` {P}C{Q}, then ∆; Γ |= {P}C{Q}.

Proof. Proved by induction over proof rules. We consider in detail the Skip, Par, Frame,
Atomic, Conseq and Pred-E rules. Other rules follow trivially by the inductive as-
sumption.

∆; Γ |= {P} skip {P} (Skip)

Holds by Lemma B.1 (Skip safety).

∆; Γ |= {P1} C1 {Q1} ∆; Γ |= {P2} C2 {Q2}
∆; Γ |= {P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}

(Par)

Holds by Lemma B.12 (Parallel safety decomposition).

∆; Γ |= {P} C {Q} stable(F)

∆; Γ |= {P ∗ F} C {Q ∗ F} (Frame)

Holds by Lemma B.14 (Frame safety).

`SL {p} C {q} ∆ ` P ≡V{p}{q}
δ Q

∆; Γ |= {P} 〈C 〉 {Q} (Atomic)

Holds by Lemma B.17 (Atomic safety).

42

∆ ` P ≡VP ′ ∆; Γ |= {P ′} C {Q′} ∆ ` Q′≡VQ

∆; Γ |= {P} C {Q} (Conseq)

For simplicity we treat the P and Q implications separately - no loss of generality results.
The P case follows from Lemma B.15 (Pre-partitioning safety), while the Q case follows
from Lemma B.16 (Post-partitioning safety).

stable(R) α /∈ Γ, ∆, P, Q

∆,∀x. α(x) ≡ R; Γ |= {P}C{Q}
∆; Γ |= {P}C{Q} (Pred-E)

Holds by appeal to Lemma B.18 (Predicate elimination).

43

